1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 #include "block-group.h" 42 #include "discard.h" 43 #include "space-info.h" 44 #include "zoned.h" 45 46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 47 BTRFS_HEADER_FLAG_RELOC |\ 48 BTRFS_SUPER_FLAG_ERROR |\ 49 BTRFS_SUPER_FLAG_SEEDING |\ 50 BTRFS_SUPER_FLAG_METADUMP |\ 51 BTRFS_SUPER_FLAG_METADUMP_V2) 52 53 static void end_workqueue_fn(struct btrfs_work *work); 54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 56 struct btrfs_fs_info *fs_info); 57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 59 struct extent_io_tree *dirty_pages, 60 int mark); 61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 62 struct extent_io_tree *pinned_extents); 63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 65 66 /* 67 * btrfs_end_io_wq structs are used to do processing in task context when an IO 68 * is complete. This is used during reads to verify checksums, and it is used 69 * by writes to insert metadata for new file extents after IO is complete. 70 */ 71 struct btrfs_end_io_wq { 72 struct bio *bio; 73 bio_end_io_t *end_io; 74 void *private; 75 struct btrfs_fs_info *info; 76 blk_status_t status; 77 enum btrfs_wq_endio_type metadata; 78 struct btrfs_work work; 79 }; 80 81 static struct kmem_cache *btrfs_end_io_wq_cache; 82 83 int __init btrfs_end_io_wq_init(void) 84 { 85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 86 sizeof(struct btrfs_end_io_wq), 87 0, 88 SLAB_MEM_SPREAD, 89 NULL); 90 if (!btrfs_end_io_wq_cache) 91 return -ENOMEM; 92 return 0; 93 } 94 95 void __cold btrfs_end_io_wq_exit(void) 96 { 97 kmem_cache_destroy(btrfs_end_io_wq_cache); 98 } 99 100 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 101 { 102 if (fs_info->csum_shash) 103 crypto_free_shash(fs_info->csum_shash); 104 } 105 106 /* 107 * async submit bios are used to offload expensive checksumming 108 * onto the worker threads. They checksum file and metadata bios 109 * just before they are sent down the IO stack. 110 */ 111 struct async_submit_bio { 112 struct inode *inode; 113 struct bio *bio; 114 extent_submit_bio_start_t *submit_bio_start; 115 int mirror_num; 116 117 /* Optional parameter for submit_bio_start used by direct io */ 118 u64 dio_file_offset; 119 struct btrfs_work work; 120 blk_status_t status; 121 }; 122 123 /* 124 * Lockdep class keys for extent_buffer->lock's in this root. For a given 125 * eb, the lockdep key is determined by the btrfs_root it belongs to and 126 * the level the eb occupies in the tree. 127 * 128 * Different roots are used for different purposes and may nest inside each 129 * other and they require separate keysets. As lockdep keys should be 130 * static, assign keysets according to the purpose of the root as indicated 131 * by btrfs_root->root_key.objectid. This ensures that all special purpose 132 * roots have separate keysets. 133 * 134 * Lock-nesting across peer nodes is always done with the immediate parent 135 * node locked thus preventing deadlock. As lockdep doesn't know this, use 136 * subclass to avoid triggering lockdep warning in such cases. 137 * 138 * The key is set by the readpage_end_io_hook after the buffer has passed 139 * csum validation but before the pages are unlocked. It is also set by 140 * btrfs_init_new_buffer on freshly allocated blocks. 141 * 142 * We also add a check to make sure the highest level of the tree is the 143 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 144 * needs update as well. 145 */ 146 #ifdef CONFIG_DEBUG_LOCK_ALLOC 147 # if BTRFS_MAX_LEVEL != 8 148 # error 149 # endif 150 151 #define DEFINE_LEVEL(stem, level) \ 152 .names[level] = "btrfs-" stem "-0" #level, 153 154 #define DEFINE_NAME(stem) \ 155 DEFINE_LEVEL(stem, 0) \ 156 DEFINE_LEVEL(stem, 1) \ 157 DEFINE_LEVEL(stem, 2) \ 158 DEFINE_LEVEL(stem, 3) \ 159 DEFINE_LEVEL(stem, 4) \ 160 DEFINE_LEVEL(stem, 5) \ 161 DEFINE_LEVEL(stem, 6) \ 162 DEFINE_LEVEL(stem, 7) 163 164 static struct btrfs_lockdep_keyset { 165 u64 id; /* root objectid */ 166 /* Longest entry: btrfs-free-space-00 */ 167 char names[BTRFS_MAX_LEVEL][20]; 168 struct lock_class_key keys[BTRFS_MAX_LEVEL]; 169 } btrfs_lockdep_keysets[] = { 170 { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") }, 171 { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") }, 172 { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") }, 173 { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") }, 174 { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") }, 175 { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") }, 176 { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") }, 177 { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") }, 178 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") }, 179 { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") }, 180 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") }, 181 { .id = 0, DEFINE_NAME("tree") }, 182 }; 183 184 #undef DEFINE_LEVEL 185 #undef DEFINE_NAME 186 187 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 188 int level) 189 { 190 struct btrfs_lockdep_keyset *ks; 191 192 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 193 194 /* find the matching keyset, id 0 is the default entry */ 195 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 196 if (ks->id == objectid) 197 break; 198 199 lockdep_set_class_and_name(&eb->lock, 200 &ks->keys[level], ks->names[level]); 201 } 202 203 #endif 204 205 /* 206 * Compute the csum of a btree block and store the result to provided buffer. 207 */ 208 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 209 { 210 struct btrfs_fs_info *fs_info = buf->fs_info; 211 const int num_pages = fs_info->nodesize >> PAGE_SHIFT; 212 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 213 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 214 char *kaddr; 215 int i; 216 217 shash->tfm = fs_info->csum_shash; 218 crypto_shash_init(shash); 219 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start); 220 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 221 first_page_part - BTRFS_CSUM_SIZE); 222 223 for (i = 1; i < num_pages; i++) { 224 kaddr = page_address(buf->pages[i]); 225 crypto_shash_update(shash, kaddr, PAGE_SIZE); 226 } 227 memset(result, 0, BTRFS_CSUM_SIZE); 228 crypto_shash_final(shash, result); 229 } 230 231 /* 232 * we can't consider a given block up to date unless the transid of the 233 * block matches the transid in the parent node's pointer. This is how we 234 * detect blocks that either didn't get written at all or got written 235 * in the wrong place. 236 */ 237 static int verify_parent_transid(struct extent_io_tree *io_tree, 238 struct extent_buffer *eb, u64 parent_transid, 239 int atomic) 240 { 241 struct extent_state *cached_state = NULL; 242 int ret; 243 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 244 245 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 246 return 0; 247 248 if (atomic) 249 return -EAGAIN; 250 251 if (need_lock) 252 btrfs_tree_read_lock(eb); 253 254 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 255 &cached_state); 256 if (extent_buffer_uptodate(eb) && 257 btrfs_header_generation(eb) == parent_transid) { 258 ret = 0; 259 goto out; 260 } 261 btrfs_err_rl(eb->fs_info, 262 "parent transid verify failed on %llu wanted %llu found %llu", 263 eb->start, 264 parent_transid, btrfs_header_generation(eb)); 265 ret = 1; 266 267 /* 268 * Things reading via commit roots that don't have normal protection, 269 * like send, can have a really old block in cache that may point at a 270 * block that has been freed and re-allocated. So don't clear uptodate 271 * if we find an eb that is under IO (dirty/writeback) because we could 272 * end up reading in the stale data and then writing it back out and 273 * making everybody very sad. 274 */ 275 if (!extent_buffer_under_io(eb)) 276 clear_extent_buffer_uptodate(eb); 277 out: 278 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 279 &cached_state); 280 if (need_lock) 281 btrfs_tree_read_unlock(eb); 282 return ret; 283 } 284 285 static bool btrfs_supported_super_csum(u16 csum_type) 286 { 287 switch (csum_type) { 288 case BTRFS_CSUM_TYPE_CRC32: 289 case BTRFS_CSUM_TYPE_XXHASH: 290 case BTRFS_CSUM_TYPE_SHA256: 291 case BTRFS_CSUM_TYPE_BLAKE2: 292 return true; 293 default: 294 return false; 295 } 296 } 297 298 /* 299 * Return 0 if the superblock checksum type matches the checksum value of that 300 * algorithm. Pass the raw disk superblock data. 301 */ 302 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 303 char *raw_disk_sb) 304 { 305 struct btrfs_super_block *disk_sb = 306 (struct btrfs_super_block *)raw_disk_sb; 307 char result[BTRFS_CSUM_SIZE]; 308 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 309 310 shash->tfm = fs_info->csum_shash; 311 312 /* 313 * The super_block structure does not span the whole 314 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 315 * filled with zeros and is included in the checksum. 316 */ 317 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE, 318 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 319 320 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 321 return 1; 322 323 return 0; 324 } 325 326 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 327 struct btrfs_key *first_key, u64 parent_transid) 328 { 329 struct btrfs_fs_info *fs_info = eb->fs_info; 330 int found_level; 331 struct btrfs_key found_key; 332 int ret; 333 334 found_level = btrfs_header_level(eb); 335 if (found_level != level) { 336 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 337 KERN_ERR "BTRFS: tree level check failed\n"); 338 btrfs_err(fs_info, 339 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 340 eb->start, level, found_level); 341 return -EIO; 342 } 343 344 if (!first_key) 345 return 0; 346 347 /* 348 * For live tree block (new tree blocks in current transaction), 349 * we need proper lock context to avoid race, which is impossible here. 350 * So we only checks tree blocks which is read from disk, whose 351 * generation <= fs_info->last_trans_committed. 352 */ 353 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 354 return 0; 355 356 /* We have @first_key, so this @eb must have at least one item */ 357 if (btrfs_header_nritems(eb) == 0) { 358 btrfs_err(fs_info, 359 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 360 eb->start); 361 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 362 return -EUCLEAN; 363 } 364 365 if (found_level) 366 btrfs_node_key_to_cpu(eb, &found_key, 0); 367 else 368 btrfs_item_key_to_cpu(eb, &found_key, 0); 369 ret = btrfs_comp_cpu_keys(first_key, &found_key); 370 371 if (ret) { 372 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 373 KERN_ERR "BTRFS: tree first key check failed\n"); 374 btrfs_err(fs_info, 375 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 376 eb->start, parent_transid, first_key->objectid, 377 first_key->type, first_key->offset, 378 found_key.objectid, found_key.type, 379 found_key.offset); 380 } 381 return ret; 382 } 383 384 /* 385 * helper to read a given tree block, doing retries as required when 386 * the checksums don't match and we have alternate mirrors to try. 387 * 388 * @parent_transid: expected transid, skip check if 0 389 * @level: expected level, mandatory check 390 * @first_key: expected key of first slot, skip check if NULL 391 */ 392 static int btree_read_extent_buffer_pages(struct extent_buffer *eb, 393 u64 parent_transid, int level, 394 struct btrfs_key *first_key) 395 { 396 struct btrfs_fs_info *fs_info = eb->fs_info; 397 struct extent_io_tree *io_tree; 398 int failed = 0; 399 int ret; 400 int num_copies = 0; 401 int mirror_num = 0; 402 int failed_mirror = 0; 403 404 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 405 while (1) { 406 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 407 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num); 408 if (!ret) { 409 if (verify_parent_transid(io_tree, eb, 410 parent_transid, 0)) 411 ret = -EIO; 412 else if (btrfs_verify_level_key(eb, level, 413 first_key, parent_transid)) 414 ret = -EUCLEAN; 415 else 416 break; 417 } 418 419 num_copies = btrfs_num_copies(fs_info, 420 eb->start, eb->len); 421 if (num_copies == 1) 422 break; 423 424 if (!failed_mirror) { 425 failed = 1; 426 failed_mirror = eb->read_mirror; 427 } 428 429 mirror_num++; 430 if (mirror_num == failed_mirror) 431 mirror_num++; 432 433 if (mirror_num > num_copies) 434 break; 435 } 436 437 if (failed && !ret && failed_mirror) 438 btrfs_repair_eb_io_failure(eb, failed_mirror); 439 440 return ret; 441 } 442 443 /* 444 * Checksum a dirty tree block before IO. This has extra checks to make sure 445 * we only fill in the checksum field in the first page of a multi-page block. 446 * For subpage extent buffers we need bvec to also read the offset in the page. 447 */ 448 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec) 449 { 450 struct page *page = bvec->bv_page; 451 u64 start = page_offset(page); 452 u64 found_start; 453 u8 result[BTRFS_CSUM_SIZE]; 454 struct extent_buffer *eb; 455 int ret; 456 457 eb = (struct extent_buffer *)page->private; 458 if (page != eb->pages[0]) 459 return 0; 460 461 found_start = btrfs_header_bytenr(eb); 462 463 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) { 464 WARN_ON(found_start != 0); 465 return 0; 466 } 467 468 /* 469 * Please do not consolidate these warnings into a single if. 470 * It is useful to know what went wrong. 471 */ 472 if (WARN_ON(found_start != start)) 473 return -EUCLEAN; 474 if (WARN_ON(!PageUptodate(page))) 475 return -EUCLEAN; 476 477 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 478 offsetof(struct btrfs_header, fsid), 479 BTRFS_FSID_SIZE) == 0); 480 481 csum_tree_block(eb, result); 482 483 if (btrfs_header_level(eb)) 484 ret = btrfs_check_node(eb); 485 else 486 ret = btrfs_check_leaf_full(eb); 487 488 if (ret < 0) { 489 btrfs_print_tree(eb, 0); 490 btrfs_err(fs_info, 491 "block=%llu write time tree block corruption detected", 492 eb->start); 493 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 494 return ret; 495 } 496 write_extent_buffer(eb, result, 0, fs_info->csum_size); 497 498 return 0; 499 } 500 501 static int check_tree_block_fsid(struct extent_buffer *eb) 502 { 503 struct btrfs_fs_info *fs_info = eb->fs_info; 504 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 505 u8 fsid[BTRFS_FSID_SIZE]; 506 u8 *metadata_uuid; 507 508 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 509 BTRFS_FSID_SIZE); 510 /* 511 * Checking the incompat flag is only valid for the current fs. For 512 * seed devices it's forbidden to have their uuid changed so reading 513 * ->fsid in this case is fine 514 */ 515 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 516 metadata_uuid = fs_devices->metadata_uuid; 517 else 518 metadata_uuid = fs_devices->fsid; 519 520 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) 521 return 0; 522 523 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 524 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 525 return 0; 526 527 return 1; 528 } 529 530 /* Do basic extent buffer checks at read time */ 531 static int validate_extent_buffer(struct extent_buffer *eb) 532 { 533 struct btrfs_fs_info *fs_info = eb->fs_info; 534 u64 found_start; 535 const u32 csum_size = fs_info->csum_size; 536 u8 found_level; 537 u8 result[BTRFS_CSUM_SIZE]; 538 int ret = 0; 539 540 found_start = btrfs_header_bytenr(eb); 541 if (found_start != eb->start) { 542 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 543 eb->start, found_start); 544 ret = -EIO; 545 goto out; 546 } 547 if (check_tree_block_fsid(eb)) { 548 btrfs_err_rl(fs_info, "bad fsid on block %llu", 549 eb->start); 550 ret = -EIO; 551 goto out; 552 } 553 found_level = btrfs_header_level(eb); 554 if (found_level >= BTRFS_MAX_LEVEL) { 555 btrfs_err(fs_info, "bad tree block level %d on %llu", 556 (int)btrfs_header_level(eb), eb->start); 557 ret = -EIO; 558 goto out; 559 } 560 561 csum_tree_block(eb, result); 562 563 if (memcmp_extent_buffer(eb, result, 0, csum_size)) { 564 u8 val[BTRFS_CSUM_SIZE] = { 0 }; 565 566 read_extent_buffer(eb, &val, 0, csum_size); 567 btrfs_warn_rl(fs_info, 568 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d", 569 fs_info->sb->s_id, eb->start, 570 CSUM_FMT_VALUE(csum_size, val), 571 CSUM_FMT_VALUE(csum_size, result), 572 btrfs_header_level(eb)); 573 ret = -EUCLEAN; 574 goto out; 575 } 576 577 /* 578 * If this is a leaf block and it is corrupt, set the corrupt bit so 579 * that we don't try and read the other copies of this block, just 580 * return -EIO. 581 */ 582 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 583 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 584 ret = -EIO; 585 } 586 587 if (found_level > 0 && btrfs_check_node(eb)) 588 ret = -EIO; 589 590 if (!ret) 591 set_extent_buffer_uptodate(eb); 592 else 593 btrfs_err(fs_info, 594 "block=%llu read time tree block corruption detected", 595 eb->start); 596 out: 597 return ret; 598 } 599 600 static int validate_subpage_buffer(struct page *page, u64 start, u64 end, 601 int mirror) 602 { 603 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 604 struct extent_buffer *eb; 605 bool reads_done; 606 int ret = 0; 607 608 /* 609 * We don't allow bio merge for subpage metadata read, so we should 610 * only get one eb for each endio hook. 611 */ 612 ASSERT(end == start + fs_info->nodesize - 1); 613 ASSERT(PagePrivate(page)); 614 615 eb = find_extent_buffer(fs_info, start); 616 /* 617 * When we are reading one tree block, eb must have been inserted into 618 * the radix tree. If not, something is wrong. 619 */ 620 ASSERT(eb); 621 622 reads_done = atomic_dec_and_test(&eb->io_pages); 623 /* Subpage read must finish in page read */ 624 ASSERT(reads_done); 625 626 eb->read_mirror = mirror; 627 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 628 ret = -EIO; 629 goto err; 630 } 631 ret = validate_extent_buffer(eb); 632 if (ret < 0) 633 goto err; 634 635 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 636 btree_readahead_hook(eb, ret); 637 638 set_extent_buffer_uptodate(eb); 639 640 free_extent_buffer(eb); 641 return ret; 642 err: 643 /* 644 * end_bio_extent_readpage decrements io_pages in case of error, 645 * make sure it has something to decrement. 646 */ 647 atomic_inc(&eb->io_pages); 648 clear_extent_buffer_uptodate(eb); 649 free_extent_buffer(eb); 650 return ret; 651 } 652 653 int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio, 654 struct page *page, u64 start, u64 end, 655 int mirror) 656 { 657 struct extent_buffer *eb; 658 int ret = 0; 659 int reads_done; 660 661 ASSERT(page->private); 662 663 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE) 664 return validate_subpage_buffer(page, start, end, mirror); 665 666 eb = (struct extent_buffer *)page->private; 667 668 /* 669 * The pending IO might have been the only thing that kept this buffer 670 * in memory. Make sure we have a ref for all this other checks 671 */ 672 atomic_inc(&eb->refs); 673 674 reads_done = atomic_dec_and_test(&eb->io_pages); 675 if (!reads_done) 676 goto err; 677 678 eb->read_mirror = mirror; 679 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 680 ret = -EIO; 681 goto err; 682 } 683 ret = validate_extent_buffer(eb); 684 err: 685 if (reads_done && 686 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 687 btree_readahead_hook(eb, ret); 688 689 if (ret) { 690 /* 691 * our io error hook is going to dec the io pages 692 * again, we have to make sure it has something 693 * to decrement 694 */ 695 atomic_inc(&eb->io_pages); 696 clear_extent_buffer_uptodate(eb); 697 } 698 free_extent_buffer(eb); 699 700 return ret; 701 } 702 703 static void end_workqueue_bio(struct bio *bio) 704 { 705 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 706 struct btrfs_fs_info *fs_info; 707 struct btrfs_workqueue *wq; 708 709 fs_info = end_io_wq->info; 710 end_io_wq->status = bio->bi_status; 711 712 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 713 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) 714 wq = fs_info->endio_meta_write_workers; 715 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) 716 wq = fs_info->endio_freespace_worker; 717 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 718 wq = fs_info->endio_raid56_workers; 719 else 720 wq = fs_info->endio_write_workers; 721 } else { 722 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 723 wq = fs_info->endio_raid56_workers; 724 else if (end_io_wq->metadata) 725 wq = fs_info->endio_meta_workers; 726 else 727 wq = fs_info->endio_workers; 728 } 729 730 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL); 731 btrfs_queue_work(wq, &end_io_wq->work); 732 } 733 734 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 735 enum btrfs_wq_endio_type metadata) 736 { 737 struct btrfs_end_io_wq *end_io_wq; 738 739 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 740 if (!end_io_wq) 741 return BLK_STS_RESOURCE; 742 743 end_io_wq->private = bio->bi_private; 744 end_io_wq->end_io = bio->bi_end_io; 745 end_io_wq->info = info; 746 end_io_wq->status = 0; 747 end_io_wq->bio = bio; 748 end_io_wq->metadata = metadata; 749 750 bio->bi_private = end_io_wq; 751 bio->bi_end_io = end_workqueue_bio; 752 return 0; 753 } 754 755 static void run_one_async_start(struct btrfs_work *work) 756 { 757 struct async_submit_bio *async; 758 blk_status_t ret; 759 760 async = container_of(work, struct async_submit_bio, work); 761 ret = async->submit_bio_start(async->inode, async->bio, 762 async->dio_file_offset); 763 if (ret) 764 async->status = ret; 765 } 766 767 /* 768 * In order to insert checksums into the metadata in large chunks, we wait 769 * until bio submission time. All the pages in the bio are checksummed and 770 * sums are attached onto the ordered extent record. 771 * 772 * At IO completion time the csums attached on the ordered extent record are 773 * inserted into the tree. 774 */ 775 static void run_one_async_done(struct btrfs_work *work) 776 { 777 struct async_submit_bio *async; 778 struct inode *inode; 779 blk_status_t ret; 780 781 async = container_of(work, struct async_submit_bio, work); 782 inode = async->inode; 783 784 /* If an error occurred we just want to clean up the bio and move on */ 785 if (async->status) { 786 async->bio->bi_status = async->status; 787 bio_endio(async->bio); 788 return; 789 } 790 791 /* 792 * All of the bios that pass through here are from async helpers. 793 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context. 794 * This changes nothing when cgroups aren't in use. 795 */ 796 async->bio->bi_opf |= REQ_CGROUP_PUNT; 797 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num); 798 if (ret) { 799 async->bio->bi_status = ret; 800 bio_endio(async->bio); 801 } 802 } 803 804 static void run_one_async_free(struct btrfs_work *work) 805 { 806 struct async_submit_bio *async; 807 808 async = container_of(work, struct async_submit_bio, work); 809 kfree(async); 810 } 811 812 blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio, 813 int mirror_num, unsigned long bio_flags, 814 u64 dio_file_offset, 815 extent_submit_bio_start_t *submit_bio_start) 816 { 817 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 818 struct async_submit_bio *async; 819 820 async = kmalloc(sizeof(*async), GFP_NOFS); 821 if (!async) 822 return BLK_STS_RESOURCE; 823 824 async->inode = inode; 825 async->bio = bio; 826 async->mirror_num = mirror_num; 827 async->submit_bio_start = submit_bio_start; 828 829 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, 830 run_one_async_free); 831 832 async->dio_file_offset = dio_file_offset; 833 834 async->status = 0; 835 836 if (op_is_sync(bio->bi_opf)) 837 btrfs_set_work_high_priority(&async->work); 838 839 btrfs_queue_work(fs_info->workers, &async->work); 840 return 0; 841 } 842 843 static blk_status_t btree_csum_one_bio(struct bio *bio) 844 { 845 struct bio_vec *bvec; 846 struct btrfs_root *root; 847 int ret = 0; 848 struct bvec_iter_all iter_all; 849 850 ASSERT(!bio_flagged(bio, BIO_CLONED)); 851 bio_for_each_segment_all(bvec, bio, iter_all) { 852 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 853 ret = csum_dirty_buffer(root->fs_info, bvec); 854 if (ret) 855 break; 856 } 857 858 return errno_to_blk_status(ret); 859 } 860 861 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio, 862 u64 dio_file_offset) 863 { 864 /* 865 * when we're called for a write, we're already in the async 866 * submission context. Just jump into btrfs_map_bio 867 */ 868 return btree_csum_one_bio(bio); 869 } 870 871 static int check_async_write(struct btrfs_fs_info *fs_info, 872 struct btrfs_inode *bi) 873 { 874 if (btrfs_is_zoned(fs_info)) 875 return 0; 876 if (atomic_read(&bi->sync_writers)) 877 return 0; 878 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 879 return 0; 880 return 1; 881 } 882 883 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, 884 int mirror_num, unsigned long bio_flags) 885 { 886 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 887 int async = check_async_write(fs_info, BTRFS_I(inode)); 888 blk_status_t ret; 889 890 if (btrfs_op(bio) != BTRFS_MAP_WRITE) { 891 /* 892 * called for a read, do the setup so that checksum validation 893 * can happen in the async kernel threads 894 */ 895 ret = btrfs_bio_wq_end_io(fs_info, bio, 896 BTRFS_WQ_ENDIO_METADATA); 897 if (ret) 898 goto out_w_error; 899 ret = btrfs_map_bio(fs_info, bio, mirror_num); 900 } else if (!async) { 901 ret = btree_csum_one_bio(bio); 902 if (ret) 903 goto out_w_error; 904 ret = btrfs_map_bio(fs_info, bio, mirror_num); 905 } else { 906 /* 907 * kthread helpers are used to submit writes so that 908 * checksumming can happen in parallel across all CPUs 909 */ 910 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0, 911 0, btree_submit_bio_start); 912 } 913 914 if (ret) 915 goto out_w_error; 916 return 0; 917 918 out_w_error: 919 bio->bi_status = ret; 920 bio_endio(bio); 921 return ret; 922 } 923 924 #ifdef CONFIG_MIGRATION 925 static int btree_migratepage(struct address_space *mapping, 926 struct page *newpage, struct page *page, 927 enum migrate_mode mode) 928 { 929 /* 930 * we can't safely write a btree page from here, 931 * we haven't done the locking hook 932 */ 933 if (PageDirty(page)) 934 return -EAGAIN; 935 /* 936 * Buffers may be managed in a filesystem specific way. 937 * We must have no buffers or drop them. 938 */ 939 if (page_has_private(page) && 940 !try_to_release_page(page, GFP_KERNEL)) 941 return -EAGAIN; 942 return migrate_page(mapping, newpage, page, mode); 943 } 944 #endif 945 946 947 static int btree_writepages(struct address_space *mapping, 948 struct writeback_control *wbc) 949 { 950 struct btrfs_fs_info *fs_info; 951 int ret; 952 953 if (wbc->sync_mode == WB_SYNC_NONE) { 954 955 if (wbc->for_kupdate) 956 return 0; 957 958 fs_info = BTRFS_I(mapping->host)->root->fs_info; 959 /* this is a bit racy, but that's ok */ 960 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 961 BTRFS_DIRTY_METADATA_THRESH, 962 fs_info->dirty_metadata_batch); 963 if (ret < 0) 964 return 0; 965 } 966 return btree_write_cache_pages(mapping, wbc); 967 } 968 969 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 970 { 971 if (PageWriteback(page) || PageDirty(page)) 972 return 0; 973 974 return try_release_extent_buffer(page); 975 } 976 977 static void btree_invalidatepage(struct page *page, unsigned int offset, 978 unsigned int length) 979 { 980 struct extent_io_tree *tree; 981 tree = &BTRFS_I(page->mapping->host)->io_tree; 982 extent_invalidatepage(tree, page, offset); 983 btree_releasepage(page, GFP_NOFS); 984 if (PagePrivate(page)) { 985 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 986 "page private not zero on page %llu", 987 (unsigned long long)page_offset(page)); 988 detach_page_private(page); 989 } 990 } 991 992 static int btree_set_page_dirty(struct page *page) 993 { 994 #ifdef DEBUG 995 struct extent_buffer *eb; 996 997 BUG_ON(!PagePrivate(page)); 998 eb = (struct extent_buffer *)page->private; 999 BUG_ON(!eb); 1000 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1001 BUG_ON(!atomic_read(&eb->refs)); 1002 btrfs_assert_tree_locked(eb); 1003 #endif 1004 return __set_page_dirty_nobuffers(page); 1005 } 1006 1007 static const struct address_space_operations btree_aops = { 1008 .writepages = btree_writepages, 1009 .releasepage = btree_releasepage, 1010 .invalidatepage = btree_invalidatepage, 1011 #ifdef CONFIG_MIGRATION 1012 .migratepage = btree_migratepage, 1013 #endif 1014 .set_page_dirty = btree_set_page_dirty, 1015 }; 1016 1017 struct extent_buffer *btrfs_find_create_tree_block( 1018 struct btrfs_fs_info *fs_info, 1019 u64 bytenr, u64 owner_root, 1020 int level) 1021 { 1022 if (btrfs_is_testing(fs_info)) 1023 return alloc_test_extent_buffer(fs_info, bytenr); 1024 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 1025 } 1026 1027 /* 1028 * Read tree block at logical address @bytenr and do variant basic but critical 1029 * verification. 1030 * 1031 * @owner_root: the objectid of the root owner for this block. 1032 * @parent_transid: expected transid of this tree block, skip check if 0 1033 * @level: expected level, mandatory check 1034 * @first_key: expected key in slot 0, skip check if NULL 1035 */ 1036 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1037 u64 owner_root, u64 parent_transid, 1038 int level, struct btrfs_key *first_key) 1039 { 1040 struct extent_buffer *buf = NULL; 1041 int ret; 1042 1043 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level); 1044 if (IS_ERR(buf)) 1045 return buf; 1046 1047 ret = btree_read_extent_buffer_pages(buf, parent_transid, 1048 level, first_key); 1049 if (ret) { 1050 free_extent_buffer_stale(buf); 1051 return ERR_PTR(ret); 1052 } 1053 return buf; 1054 1055 } 1056 1057 void btrfs_clean_tree_block(struct extent_buffer *buf) 1058 { 1059 struct btrfs_fs_info *fs_info = buf->fs_info; 1060 if (btrfs_header_generation(buf) == 1061 fs_info->running_transaction->transid) { 1062 btrfs_assert_tree_locked(buf); 1063 1064 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1065 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1066 -buf->len, 1067 fs_info->dirty_metadata_batch); 1068 clear_extent_buffer_dirty(buf); 1069 } 1070 } 1071 } 1072 1073 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1074 u64 objectid) 1075 { 1076 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1077 root->fs_info = fs_info; 1078 root->node = NULL; 1079 root->commit_root = NULL; 1080 root->state = 0; 1081 root->orphan_cleanup_state = 0; 1082 1083 root->last_trans = 0; 1084 root->free_objectid = 0; 1085 root->nr_delalloc_inodes = 0; 1086 root->nr_ordered_extents = 0; 1087 root->inode_tree = RB_ROOT; 1088 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1089 root->block_rsv = NULL; 1090 1091 INIT_LIST_HEAD(&root->dirty_list); 1092 INIT_LIST_HEAD(&root->root_list); 1093 INIT_LIST_HEAD(&root->delalloc_inodes); 1094 INIT_LIST_HEAD(&root->delalloc_root); 1095 INIT_LIST_HEAD(&root->ordered_extents); 1096 INIT_LIST_HEAD(&root->ordered_root); 1097 INIT_LIST_HEAD(&root->reloc_dirty_list); 1098 INIT_LIST_HEAD(&root->logged_list[0]); 1099 INIT_LIST_HEAD(&root->logged_list[1]); 1100 spin_lock_init(&root->inode_lock); 1101 spin_lock_init(&root->delalloc_lock); 1102 spin_lock_init(&root->ordered_extent_lock); 1103 spin_lock_init(&root->accounting_lock); 1104 spin_lock_init(&root->log_extents_lock[0]); 1105 spin_lock_init(&root->log_extents_lock[1]); 1106 spin_lock_init(&root->qgroup_meta_rsv_lock); 1107 mutex_init(&root->objectid_mutex); 1108 mutex_init(&root->log_mutex); 1109 mutex_init(&root->ordered_extent_mutex); 1110 mutex_init(&root->delalloc_mutex); 1111 init_waitqueue_head(&root->qgroup_flush_wait); 1112 init_waitqueue_head(&root->log_writer_wait); 1113 init_waitqueue_head(&root->log_commit_wait[0]); 1114 init_waitqueue_head(&root->log_commit_wait[1]); 1115 INIT_LIST_HEAD(&root->log_ctxs[0]); 1116 INIT_LIST_HEAD(&root->log_ctxs[1]); 1117 atomic_set(&root->log_commit[0], 0); 1118 atomic_set(&root->log_commit[1], 0); 1119 atomic_set(&root->log_writers, 0); 1120 atomic_set(&root->log_batch, 0); 1121 refcount_set(&root->refs, 1); 1122 atomic_set(&root->snapshot_force_cow, 0); 1123 atomic_set(&root->nr_swapfiles, 0); 1124 root->log_transid = 0; 1125 root->log_transid_committed = -1; 1126 root->last_log_commit = 0; 1127 if (!dummy) { 1128 extent_io_tree_init(fs_info, &root->dirty_log_pages, 1129 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL); 1130 extent_io_tree_init(fs_info, &root->log_csum_range, 1131 IO_TREE_LOG_CSUM_RANGE, NULL); 1132 } 1133 1134 memset(&root->root_key, 0, sizeof(root->root_key)); 1135 memset(&root->root_item, 0, sizeof(root->root_item)); 1136 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1137 root->root_key.objectid = objectid; 1138 root->anon_dev = 0; 1139 1140 spin_lock_init(&root->root_item_lock); 1141 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1142 #ifdef CONFIG_BTRFS_DEBUG 1143 INIT_LIST_HEAD(&root->leak_list); 1144 spin_lock(&fs_info->fs_roots_radix_lock); 1145 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 1146 spin_unlock(&fs_info->fs_roots_radix_lock); 1147 #endif 1148 } 1149 1150 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1151 u64 objectid, gfp_t flags) 1152 { 1153 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1154 if (root) 1155 __setup_root(root, fs_info, objectid); 1156 return root; 1157 } 1158 1159 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1160 /* Should only be used by the testing infrastructure */ 1161 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1162 { 1163 struct btrfs_root *root; 1164 1165 if (!fs_info) 1166 return ERR_PTR(-EINVAL); 1167 1168 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 1169 if (!root) 1170 return ERR_PTR(-ENOMEM); 1171 1172 /* We don't use the stripesize in selftest, set it as sectorsize */ 1173 root->alloc_bytenr = 0; 1174 1175 return root; 1176 } 1177 #endif 1178 1179 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1180 u64 objectid) 1181 { 1182 struct btrfs_fs_info *fs_info = trans->fs_info; 1183 struct extent_buffer *leaf; 1184 struct btrfs_root *tree_root = fs_info->tree_root; 1185 struct btrfs_root *root; 1186 struct btrfs_key key; 1187 unsigned int nofs_flag; 1188 int ret = 0; 1189 1190 /* 1191 * We're holding a transaction handle, so use a NOFS memory allocation 1192 * context to avoid deadlock if reclaim happens. 1193 */ 1194 nofs_flag = memalloc_nofs_save(); 1195 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 1196 memalloc_nofs_restore(nofs_flag); 1197 if (!root) 1198 return ERR_PTR(-ENOMEM); 1199 1200 root->root_key.objectid = objectid; 1201 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1202 root->root_key.offset = 0; 1203 1204 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 1205 BTRFS_NESTING_NORMAL); 1206 if (IS_ERR(leaf)) { 1207 ret = PTR_ERR(leaf); 1208 leaf = NULL; 1209 goto fail_unlock; 1210 } 1211 1212 root->node = leaf; 1213 btrfs_mark_buffer_dirty(leaf); 1214 1215 root->commit_root = btrfs_root_node(root); 1216 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1217 1218 btrfs_set_root_flags(&root->root_item, 0); 1219 btrfs_set_root_limit(&root->root_item, 0); 1220 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1221 btrfs_set_root_generation(&root->root_item, trans->transid); 1222 btrfs_set_root_level(&root->root_item, 0); 1223 btrfs_set_root_refs(&root->root_item, 1); 1224 btrfs_set_root_used(&root->root_item, leaf->len); 1225 btrfs_set_root_last_snapshot(&root->root_item, 0); 1226 btrfs_set_root_dirid(&root->root_item, 0); 1227 if (is_fstree(objectid)) 1228 generate_random_guid(root->root_item.uuid); 1229 else 1230 export_guid(root->root_item.uuid, &guid_null); 1231 btrfs_set_root_drop_level(&root->root_item, 0); 1232 1233 btrfs_tree_unlock(leaf); 1234 1235 key.objectid = objectid; 1236 key.type = BTRFS_ROOT_ITEM_KEY; 1237 key.offset = 0; 1238 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1239 if (ret) 1240 goto fail; 1241 1242 return root; 1243 1244 fail_unlock: 1245 if (leaf) 1246 btrfs_tree_unlock(leaf); 1247 fail: 1248 btrfs_put_root(root); 1249 1250 return ERR_PTR(ret); 1251 } 1252 1253 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1254 struct btrfs_fs_info *fs_info) 1255 { 1256 struct btrfs_root *root; 1257 1258 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 1259 if (!root) 1260 return ERR_PTR(-ENOMEM); 1261 1262 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1263 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1264 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1265 1266 return root; 1267 } 1268 1269 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 1270 struct btrfs_root *root) 1271 { 1272 struct extent_buffer *leaf; 1273 1274 /* 1275 * DON'T set SHAREABLE bit for log trees. 1276 * 1277 * Log trees are not exposed to user space thus can't be snapshotted, 1278 * and they go away before a real commit is actually done. 1279 * 1280 * They do store pointers to file data extents, and those reference 1281 * counts still get updated (along with back refs to the log tree). 1282 */ 1283 1284 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1285 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); 1286 if (IS_ERR(leaf)) 1287 return PTR_ERR(leaf); 1288 1289 root->node = leaf; 1290 1291 btrfs_mark_buffer_dirty(root->node); 1292 btrfs_tree_unlock(root->node); 1293 1294 return 0; 1295 } 1296 1297 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1298 struct btrfs_fs_info *fs_info) 1299 { 1300 struct btrfs_root *log_root; 1301 1302 log_root = alloc_log_tree(trans, fs_info); 1303 if (IS_ERR(log_root)) 1304 return PTR_ERR(log_root); 1305 1306 if (!btrfs_is_zoned(fs_info)) { 1307 int ret = btrfs_alloc_log_tree_node(trans, log_root); 1308 1309 if (ret) { 1310 btrfs_put_root(log_root); 1311 return ret; 1312 } 1313 } 1314 1315 WARN_ON(fs_info->log_root_tree); 1316 fs_info->log_root_tree = log_root; 1317 return 0; 1318 } 1319 1320 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1321 struct btrfs_root *root) 1322 { 1323 struct btrfs_fs_info *fs_info = root->fs_info; 1324 struct btrfs_root *log_root; 1325 struct btrfs_inode_item *inode_item; 1326 int ret; 1327 1328 log_root = alloc_log_tree(trans, fs_info); 1329 if (IS_ERR(log_root)) 1330 return PTR_ERR(log_root); 1331 1332 ret = btrfs_alloc_log_tree_node(trans, log_root); 1333 if (ret) { 1334 btrfs_put_root(log_root); 1335 return ret; 1336 } 1337 1338 log_root->last_trans = trans->transid; 1339 log_root->root_key.offset = root->root_key.objectid; 1340 1341 inode_item = &log_root->root_item.inode; 1342 btrfs_set_stack_inode_generation(inode_item, 1); 1343 btrfs_set_stack_inode_size(inode_item, 3); 1344 btrfs_set_stack_inode_nlink(inode_item, 1); 1345 btrfs_set_stack_inode_nbytes(inode_item, 1346 fs_info->nodesize); 1347 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1348 1349 btrfs_set_root_node(&log_root->root_item, log_root->node); 1350 1351 WARN_ON(root->log_root); 1352 root->log_root = log_root; 1353 root->log_transid = 0; 1354 root->log_transid_committed = -1; 1355 root->last_log_commit = 0; 1356 return 0; 1357 } 1358 1359 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1360 struct btrfs_path *path, 1361 struct btrfs_key *key) 1362 { 1363 struct btrfs_root *root; 1364 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1365 u64 generation; 1366 int ret; 1367 int level; 1368 1369 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1370 if (!root) 1371 return ERR_PTR(-ENOMEM); 1372 1373 ret = btrfs_find_root(tree_root, key, path, 1374 &root->root_item, &root->root_key); 1375 if (ret) { 1376 if (ret > 0) 1377 ret = -ENOENT; 1378 goto fail; 1379 } 1380 1381 generation = btrfs_root_generation(&root->root_item); 1382 level = btrfs_root_level(&root->root_item); 1383 root->node = read_tree_block(fs_info, 1384 btrfs_root_bytenr(&root->root_item), 1385 key->objectid, generation, level, NULL); 1386 if (IS_ERR(root->node)) { 1387 ret = PTR_ERR(root->node); 1388 root->node = NULL; 1389 goto fail; 1390 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1391 ret = -EIO; 1392 goto fail; 1393 } 1394 root->commit_root = btrfs_root_node(root); 1395 return root; 1396 fail: 1397 btrfs_put_root(root); 1398 return ERR_PTR(ret); 1399 } 1400 1401 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1402 struct btrfs_key *key) 1403 { 1404 struct btrfs_root *root; 1405 struct btrfs_path *path; 1406 1407 path = btrfs_alloc_path(); 1408 if (!path) 1409 return ERR_PTR(-ENOMEM); 1410 root = read_tree_root_path(tree_root, path, key); 1411 btrfs_free_path(path); 1412 1413 return root; 1414 } 1415 1416 /* 1417 * Initialize subvolume root in-memory structure 1418 * 1419 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1420 */ 1421 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1422 { 1423 int ret; 1424 unsigned int nofs_flag; 1425 1426 /* 1427 * We might be called under a transaction (e.g. indirect backref 1428 * resolution) which could deadlock if it triggers memory reclaim 1429 */ 1430 nofs_flag = memalloc_nofs_save(); 1431 ret = btrfs_drew_lock_init(&root->snapshot_lock); 1432 memalloc_nofs_restore(nofs_flag); 1433 if (ret) 1434 goto fail; 1435 1436 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1437 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 1438 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1439 btrfs_check_and_init_root_item(&root->root_item); 1440 } 1441 1442 /* 1443 * Don't assign anonymous block device to roots that are not exposed to 1444 * userspace, the id pool is limited to 1M 1445 */ 1446 if (is_fstree(root->root_key.objectid) && 1447 btrfs_root_refs(&root->root_item) > 0) { 1448 if (!anon_dev) { 1449 ret = get_anon_bdev(&root->anon_dev); 1450 if (ret) 1451 goto fail; 1452 } else { 1453 root->anon_dev = anon_dev; 1454 } 1455 } 1456 1457 mutex_lock(&root->objectid_mutex); 1458 ret = btrfs_init_root_free_objectid(root); 1459 if (ret) { 1460 mutex_unlock(&root->objectid_mutex); 1461 goto fail; 1462 } 1463 1464 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1465 1466 mutex_unlock(&root->objectid_mutex); 1467 1468 return 0; 1469 fail: 1470 /* The caller is responsible to call btrfs_free_fs_root */ 1471 return ret; 1472 } 1473 1474 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1475 u64 root_id) 1476 { 1477 struct btrfs_root *root; 1478 1479 spin_lock(&fs_info->fs_roots_radix_lock); 1480 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1481 (unsigned long)root_id); 1482 if (root) 1483 root = btrfs_grab_root(root); 1484 spin_unlock(&fs_info->fs_roots_radix_lock); 1485 return root; 1486 } 1487 1488 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1489 u64 objectid) 1490 { 1491 if (objectid == BTRFS_ROOT_TREE_OBJECTID) 1492 return btrfs_grab_root(fs_info->tree_root); 1493 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 1494 return btrfs_grab_root(fs_info->extent_root); 1495 if (objectid == BTRFS_CHUNK_TREE_OBJECTID) 1496 return btrfs_grab_root(fs_info->chunk_root); 1497 if (objectid == BTRFS_DEV_TREE_OBJECTID) 1498 return btrfs_grab_root(fs_info->dev_root); 1499 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 1500 return btrfs_grab_root(fs_info->csum_root); 1501 if (objectid == BTRFS_QUOTA_TREE_OBJECTID) 1502 return btrfs_grab_root(fs_info->quota_root) ? 1503 fs_info->quota_root : ERR_PTR(-ENOENT); 1504 if (objectid == BTRFS_UUID_TREE_OBJECTID) 1505 return btrfs_grab_root(fs_info->uuid_root) ? 1506 fs_info->uuid_root : ERR_PTR(-ENOENT); 1507 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1508 return btrfs_grab_root(fs_info->free_space_root) ? 1509 fs_info->free_space_root : ERR_PTR(-ENOENT); 1510 return NULL; 1511 } 1512 1513 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1514 struct btrfs_root *root) 1515 { 1516 int ret; 1517 1518 ret = radix_tree_preload(GFP_NOFS); 1519 if (ret) 1520 return ret; 1521 1522 spin_lock(&fs_info->fs_roots_radix_lock); 1523 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1524 (unsigned long)root->root_key.objectid, 1525 root); 1526 if (ret == 0) { 1527 btrfs_grab_root(root); 1528 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1529 } 1530 spin_unlock(&fs_info->fs_roots_radix_lock); 1531 radix_tree_preload_end(); 1532 1533 return ret; 1534 } 1535 1536 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1537 { 1538 #ifdef CONFIG_BTRFS_DEBUG 1539 struct btrfs_root *root; 1540 1541 while (!list_empty(&fs_info->allocated_roots)) { 1542 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1543 1544 root = list_first_entry(&fs_info->allocated_roots, 1545 struct btrfs_root, leak_list); 1546 btrfs_err(fs_info, "leaked root %s refcount %d", 1547 btrfs_root_name(&root->root_key, buf), 1548 refcount_read(&root->refs)); 1549 while (refcount_read(&root->refs) > 1) 1550 btrfs_put_root(root); 1551 btrfs_put_root(root); 1552 } 1553 #endif 1554 } 1555 1556 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1557 { 1558 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1559 percpu_counter_destroy(&fs_info->delalloc_bytes); 1560 percpu_counter_destroy(&fs_info->ordered_bytes); 1561 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1562 btrfs_free_csum_hash(fs_info); 1563 btrfs_free_stripe_hash_table(fs_info); 1564 btrfs_free_ref_cache(fs_info); 1565 kfree(fs_info->balance_ctl); 1566 kfree(fs_info->delayed_root); 1567 btrfs_put_root(fs_info->extent_root); 1568 btrfs_put_root(fs_info->tree_root); 1569 btrfs_put_root(fs_info->chunk_root); 1570 btrfs_put_root(fs_info->dev_root); 1571 btrfs_put_root(fs_info->csum_root); 1572 btrfs_put_root(fs_info->quota_root); 1573 btrfs_put_root(fs_info->uuid_root); 1574 btrfs_put_root(fs_info->free_space_root); 1575 btrfs_put_root(fs_info->fs_root); 1576 btrfs_put_root(fs_info->data_reloc_root); 1577 btrfs_check_leaked_roots(fs_info); 1578 btrfs_extent_buffer_leak_debug_check(fs_info); 1579 kfree(fs_info->super_copy); 1580 kfree(fs_info->super_for_commit); 1581 kvfree(fs_info); 1582 } 1583 1584 1585 /* 1586 * Get an in-memory reference of a root structure. 1587 * 1588 * For essential trees like root/extent tree, we grab it from fs_info directly. 1589 * For subvolume trees, we check the cached filesystem roots first. If not 1590 * found, then read it from disk and add it to cached fs roots. 1591 * 1592 * Caller should release the root by calling btrfs_put_root() after the usage. 1593 * 1594 * NOTE: Reloc and log trees can't be read by this function as they share the 1595 * same root objectid. 1596 * 1597 * @objectid: root id 1598 * @anon_dev: preallocated anonymous block device number for new roots, 1599 * pass 0 for new allocation. 1600 * @check_ref: whether to check root item references, If true, return -ENOENT 1601 * for orphan roots 1602 */ 1603 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1604 u64 objectid, dev_t anon_dev, 1605 bool check_ref) 1606 { 1607 struct btrfs_root *root; 1608 struct btrfs_path *path; 1609 struct btrfs_key key; 1610 int ret; 1611 1612 root = btrfs_get_global_root(fs_info, objectid); 1613 if (root) 1614 return root; 1615 again: 1616 root = btrfs_lookup_fs_root(fs_info, objectid); 1617 if (root) { 1618 /* Shouldn't get preallocated anon_dev for cached roots */ 1619 ASSERT(!anon_dev); 1620 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1621 btrfs_put_root(root); 1622 return ERR_PTR(-ENOENT); 1623 } 1624 return root; 1625 } 1626 1627 key.objectid = objectid; 1628 key.type = BTRFS_ROOT_ITEM_KEY; 1629 key.offset = (u64)-1; 1630 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1631 if (IS_ERR(root)) 1632 return root; 1633 1634 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1635 ret = -ENOENT; 1636 goto fail; 1637 } 1638 1639 ret = btrfs_init_fs_root(root, anon_dev); 1640 if (ret) 1641 goto fail; 1642 1643 path = btrfs_alloc_path(); 1644 if (!path) { 1645 ret = -ENOMEM; 1646 goto fail; 1647 } 1648 key.objectid = BTRFS_ORPHAN_OBJECTID; 1649 key.type = BTRFS_ORPHAN_ITEM_KEY; 1650 key.offset = objectid; 1651 1652 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1653 btrfs_free_path(path); 1654 if (ret < 0) 1655 goto fail; 1656 if (ret == 0) 1657 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1658 1659 ret = btrfs_insert_fs_root(fs_info, root); 1660 if (ret) { 1661 btrfs_put_root(root); 1662 if (ret == -EEXIST) 1663 goto again; 1664 goto fail; 1665 } 1666 return root; 1667 fail: 1668 btrfs_put_root(root); 1669 return ERR_PTR(ret); 1670 } 1671 1672 /* 1673 * Get in-memory reference of a root structure 1674 * 1675 * @objectid: tree objectid 1676 * @check_ref: if set, verify that the tree exists and the item has at least 1677 * one reference 1678 */ 1679 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1680 u64 objectid, bool check_ref) 1681 { 1682 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1683 } 1684 1685 /* 1686 * Get in-memory reference of a root structure, created as new, optionally pass 1687 * the anonymous block device id 1688 * 1689 * @objectid: tree objectid 1690 * @anon_dev: if zero, allocate a new anonymous block device or use the 1691 * parameter value 1692 */ 1693 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1694 u64 objectid, dev_t anon_dev) 1695 { 1696 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1697 } 1698 1699 /* 1700 * btrfs_get_fs_root_commit_root - return a root for the given objectid 1701 * @fs_info: the fs_info 1702 * @objectid: the objectid we need to lookup 1703 * 1704 * This is exclusively used for backref walking, and exists specifically because 1705 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1706 * creation time, which means we may have to read the tree_root in order to look 1707 * up a fs root that is not in memory. If the root is not in memory we will 1708 * read the tree root commit root and look up the fs root from there. This is a 1709 * temporary root, it will not be inserted into the radix tree as it doesn't 1710 * have the most uptodate information, it'll simply be discarded once the 1711 * backref code is finished using the root. 1712 */ 1713 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1714 struct btrfs_path *path, 1715 u64 objectid) 1716 { 1717 struct btrfs_root *root; 1718 struct btrfs_key key; 1719 1720 ASSERT(path->search_commit_root && path->skip_locking); 1721 1722 /* 1723 * This can return -ENOENT if we ask for a root that doesn't exist, but 1724 * since this is called via the backref walking code we won't be looking 1725 * up a root that doesn't exist, unless there's corruption. So if root 1726 * != NULL just return it. 1727 */ 1728 root = btrfs_get_global_root(fs_info, objectid); 1729 if (root) 1730 return root; 1731 1732 root = btrfs_lookup_fs_root(fs_info, objectid); 1733 if (root) 1734 return root; 1735 1736 key.objectid = objectid; 1737 key.type = BTRFS_ROOT_ITEM_KEY; 1738 key.offset = (u64)-1; 1739 root = read_tree_root_path(fs_info->tree_root, path, &key); 1740 btrfs_release_path(path); 1741 1742 return root; 1743 } 1744 1745 /* 1746 * called by the kthread helper functions to finally call the bio end_io 1747 * functions. This is where read checksum verification actually happens 1748 */ 1749 static void end_workqueue_fn(struct btrfs_work *work) 1750 { 1751 struct bio *bio; 1752 struct btrfs_end_io_wq *end_io_wq; 1753 1754 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1755 bio = end_io_wq->bio; 1756 1757 bio->bi_status = end_io_wq->status; 1758 bio->bi_private = end_io_wq->private; 1759 bio->bi_end_io = end_io_wq->end_io; 1760 bio_endio(bio); 1761 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1762 } 1763 1764 static int cleaner_kthread(void *arg) 1765 { 1766 struct btrfs_root *root = arg; 1767 struct btrfs_fs_info *fs_info = root->fs_info; 1768 int again; 1769 1770 while (1) { 1771 again = 0; 1772 1773 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1774 1775 /* Make the cleaner go to sleep early. */ 1776 if (btrfs_need_cleaner_sleep(fs_info)) 1777 goto sleep; 1778 1779 /* 1780 * Do not do anything if we might cause open_ctree() to block 1781 * before we have finished mounting the filesystem. 1782 */ 1783 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1784 goto sleep; 1785 1786 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1787 goto sleep; 1788 1789 /* 1790 * Avoid the problem that we change the status of the fs 1791 * during the above check and trylock. 1792 */ 1793 if (btrfs_need_cleaner_sleep(fs_info)) { 1794 mutex_unlock(&fs_info->cleaner_mutex); 1795 goto sleep; 1796 } 1797 1798 btrfs_run_delayed_iputs(fs_info); 1799 1800 again = btrfs_clean_one_deleted_snapshot(root); 1801 mutex_unlock(&fs_info->cleaner_mutex); 1802 1803 /* 1804 * The defragger has dealt with the R/O remount and umount, 1805 * needn't do anything special here. 1806 */ 1807 btrfs_run_defrag_inodes(fs_info); 1808 1809 /* 1810 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1811 * with relocation (btrfs_relocate_chunk) and relocation 1812 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1813 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1814 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1815 * unused block groups. 1816 */ 1817 btrfs_delete_unused_bgs(fs_info); 1818 sleep: 1819 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1820 if (kthread_should_park()) 1821 kthread_parkme(); 1822 if (kthread_should_stop()) 1823 return 0; 1824 if (!again) { 1825 set_current_state(TASK_INTERRUPTIBLE); 1826 schedule(); 1827 __set_current_state(TASK_RUNNING); 1828 } 1829 } 1830 } 1831 1832 static int transaction_kthread(void *arg) 1833 { 1834 struct btrfs_root *root = arg; 1835 struct btrfs_fs_info *fs_info = root->fs_info; 1836 struct btrfs_trans_handle *trans; 1837 struct btrfs_transaction *cur; 1838 u64 transid; 1839 time64_t delta; 1840 unsigned long delay; 1841 bool cannot_commit; 1842 1843 do { 1844 cannot_commit = false; 1845 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1846 mutex_lock(&fs_info->transaction_kthread_mutex); 1847 1848 spin_lock(&fs_info->trans_lock); 1849 cur = fs_info->running_transaction; 1850 if (!cur) { 1851 spin_unlock(&fs_info->trans_lock); 1852 goto sleep; 1853 } 1854 1855 delta = ktime_get_seconds() - cur->start_time; 1856 if (cur->state < TRANS_STATE_COMMIT_START && 1857 delta < fs_info->commit_interval) { 1858 spin_unlock(&fs_info->trans_lock); 1859 delay -= msecs_to_jiffies((delta - 1) * 1000); 1860 delay = min(delay, 1861 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1862 goto sleep; 1863 } 1864 transid = cur->transid; 1865 spin_unlock(&fs_info->trans_lock); 1866 1867 /* If the file system is aborted, this will always fail. */ 1868 trans = btrfs_attach_transaction(root); 1869 if (IS_ERR(trans)) { 1870 if (PTR_ERR(trans) != -ENOENT) 1871 cannot_commit = true; 1872 goto sleep; 1873 } 1874 if (transid == trans->transid) { 1875 btrfs_commit_transaction(trans); 1876 } else { 1877 btrfs_end_transaction(trans); 1878 } 1879 sleep: 1880 wake_up_process(fs_info->cleaner_kthread); 1881 mutex_unlock(&fs_info->transaction_kthread_mutex); 1882 1883 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1884 &fs_info->fs_state))) 1885 btrfs_cleanup_transaction(fs_info); 1886 if (!kthread_should_stop() && 1887 (!btrfs_transaction_blocked(fs_info) || 1888 cannot_commit)) 1889 schedule_timeout_interruptible(delay); 1890 } while (!kthread_should_stop()); 1891 return 0; 1892 } 1893 1894 /* 1895 * This will find the highest generation in the array of root backups. The 1896 * index of the highest array is returned, or -EINVAL if we can't find 1897 * anything. 1898 * 1899 * We check to make sure the array is valid by comparing the 1900 * generation of the latest root in the array with the generation 1901 * in the super block. If they don't match we pitch it. 1902 */ 1903 static int find_newest_super_backup(struct btrfs_fs_info *info) 1904 { 1905 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1906 u64 cur; 1907 struct btrfs_root_backup *root_backup; 1908 int i; 1909 1910 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1911 root_backup = info->super_copy->super_roots + i; 1912 cur = btrfs_backup_tree_root_gen(root_backup); 1913 if (cur == newest_gen) 1914 return i; 1915 } 1916 1917 return -EINVAL; 1918 } 1919 1920 /* 1921 * copy all the root pointers into the super backup array. 1922 * this will bump the backup pointer by one when it is 1923 * done 1924 */ 1925 static void backup_super_roots(struct btrfs_fs_info *info) 1926 { 1927 const int next_backup = info->backup_root_index; 1928 struct btrfs_root_backup *root_backup; 1929 1930 root_backup = info->super_for_commit->super_roots + next_backup; 1931 1932 /* 1933 * make sure all of our padding and empty slots get zero filled 1934 * regardless of which ones we use today 1935 */ 1936 memset(root_backup, 0, sizeof(*root_backup)); 1937 1938 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1939 1940 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1941 btrfs_set_backup_tree_root_gen(root_backup, 1942 btrfs_header_generation(info->tree_root->node)); 1943 1944 btrfs_set_backup_tree_root_level(root_backup, 1945 btrfs_header_level(info->tree_root->node)); 1946 1947 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1948 btrfs_set_backup_chunk_root_gen(root_backup, 1949 btrfs_header_generation(info->chunk_root->node)); 1950 btrfs_set_backup_chunk_root_level(root_backup, 1951 btrfs_header_level(info->chunk_root->node)); 1952 1953 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1954 btrfs_set_backup_extent_root_gen(root_backup, 1955 btrfs_header_generation(info->extent_root->node)); 1956 btrfs_set_backup_extent_root_level(root_backup, 1957 btrfs_header_level(info->extent_root->node)); 1958 1959 /* 1960 * we might commit during log recovery, which happens before we set 1961 * the fs_root. Make sure it is valid before we fill it in. 1962 */ 1963 if (info->fs_root && info->fs_root->node) { 1964 btrfs_set_backup_fs_root(root_backup, 1965 info->fs_root->node->start); 1966 btrfs_set_backup_fs_root_gen(root_backup, 1967 btrfs_header_generation(info->fs_root->node)); 1968 btrfs_set_backup_fs_root_level(root_backup, 1969 btrfs_header_level(info->fs_root->node)); 1970 } 1971 1972 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1973 btrfs_set_backup_dev_root_gen(root_backup, 1974 btrfs_header_generation(info->dev_root->node)); 1975 btrfs_set_backup_dev_root_level(root_backup, 1976 btrfs_header_level(info->dev_root->node)); 1977 1978 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1979 btrfs_set_backup_csum_root_gen(root_backup, 1980 btrfs_header_generation(info->csum_root->node)); 1981 btrfs_set_backup_csum_root_level(root_backup, 1982 btrfs_header_level(info->csum_root->node)); 1983 1984 btrfs_set_backup_total_bytes(root_backup, 1985 btrfs_super_total_bytes(info->super_copy)); 1986 btrfs_set_backup_bytes_used(root_backup, 1987 btrfs_super_bytes_used(info->super_copy)); 1988 btrfs_set_backup_num_devices(root_backup, 1989 btrfs_super_num_devices(info->super_copy)); 1990 1991 /* 1992 * if we don't copy this out to the super_copy, it won't get remembered 1993 * for the next commit 1994 */ 1995 memcpy(&info->super_copy->super_roots, 1996 &info->super_for_commit->super_roots, 1997 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1998 } 1999 2000 /* 2001 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 2002 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 2003 * 2004 * fs_info - filesystem whose backup roots need to be read 2005 * priority - priority of backup root required 2006 * 2007 * Returns backup root index on success and -EINVAL otherwise. 2008 */ 2009 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 2010 { 2011 int backup_index = find_newest_super_backup(fs_info); 2012 struct btrfs_super_block *super = fs_info->super_copy; 2013 struct btrfs_root_backup *root_backup; 2014 2015 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 2016 if (priority == 0) 2017 return backup_index; 2018 2019 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 2020 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 2021 } else { 2022 return -EINVAL; 2023 } 2024 2025 root_backup = super->super_roots + backup_index; 2026 2027 btrfs_set_super_generation(super, 2028 btrfs_backup_tree_root_gen(root_backup)); 2029 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2030 btrfs_set_super_root_level(super, 2031 btrfs_backup_tree_root_level(root_backup)); 2032 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2033 2034 /* 2035 * Fixme: the total bytes and num_devices need to match or we should 2036 * need a fsck 2037 */ 2038 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2039 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2040 2041 return backup_index; 2042 } 2043 2044 /* helper to cleanup workers */ 2045 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2046 { 2047 btrfs_destroy_workqueue(fs_info->fixup_workers); 2048 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2049 btrfs_destroy_workqueue(fs_info->workers); 2050 btrfs_destroy_workqueue(fs_info->endio_workers); 2051 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2052 btrfs_destroy_workqueue(fs_info->rmw_workers); 2053 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2054 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2055 btrfs_destroy_workqueue(fs_info->delayed_workers); 2056 btrfs_destroy_workqueue(fs_info->caching_workers); 2057 btrfs_destroy_workqueue(fs_info->readahead_workers); 2058 btrfs_destroy_workqueue(fs_info->flush_workers); 2059 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2060 if (fs_info->discard_ctl.discard_workers) 2061 destroy_workqueue(fs_info->discard_ctl.discard_workers); 2062 /* 2063 * Now that all other work queues are destroyed, we can safely destroy 2064 * the queues used for metadata I/O, since tasks from those other work 2065 * queues can do metadata I/O operations. 2066 */ 2067 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2068 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2069 } 2070 2071 static void free_root_extent_buffers(struct btrfs_root *root) 2072 { 2073 if (root) { 2074 free_extent_buffer(root->node); 2075 free_extent_buffer(root->commit_root); 2076 root->node = NULL; 2077 root->commit_root = NULL; 2078 } 2079 } 2080 2081 /* helper to cleanup tree roots */ 2082 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 2083 { 2084 free_root_extent_buffers(info->tree_root); 2085 2086 free_root_extent_buffers(info->dev_root); 2087 free_root_extent_buffers(info->extent_root); 2088 free_root_extent_buffers(info->csum_root); 2089 free_root_extent_buffers(info->quota_root); 2090 free_root_extent_buffers(info->uuid_root); 2091 free_root_extent_buffers(info->fs_root); 2092 free_root_extent_buffers(info->data_reloc_root); 2093 if (free_chunk_root) 2094 free_root_extent_buffers(info->chunk_root); 2095 free_root_extent_buffers(info->free_space_root); 2096 } 2097 2098 void btrfs_put_root(struct btrfs_root *root) 2099 { 2100 if (!root) 2101 return; 2102 2103 if (refcount_dec_and_test(&root->refs)) { 2104 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2105 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 2106 if (root->anon_dev) 2107 free_anon_bdev(root->anon_dev); 2108 btrfs_drew_lock_destroy(&root->snapshot_lock); 2109 free_root_extent_buffers(root); 2110 #ifdef CONFIG_BTRFS_DEBUG 2111 spin_lock(&root->fs_info->fs_roots_radix_lock); 2112 list_del_init(&root->leak_list); 2113 spin_unlock(&root->fs_info->fs_roots_radix_lock); 2114 #endif 2115 kfree(root); 2116 } 2117 } 2118 2119 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2120 { 2121 int ret; 2122 struct btrfs_root *gang[8]; 2123 int i; 2124 2125 while (!list_empty(&fs_info->dead_roots)) { 2126 gang[0] = list_entry(fs_info->dead_roots.next, 2127 struct btrfs_root, root_list); 2128 list_del(&gang[0]->root_list); 2129 2130 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 2131 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2132 btrfs_put_root(gang[0]); 2133 } 2134 2135 while (1) { 2136 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2137 (void **)gang, 0, 2138 ARRAY_SIZE(gang)); 2139 if (!ret) 2140 break; 2141 for (i = 0; i < ret; i++) 2142 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2143 } 2144 } 2145 2146 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2147 { 2148 mutex_init(&fs_info->scrub_lock); 2149 atomic_set(&fs_info->scrubs_running, 0); 2150 atomic_set(&fs_info->scrub_pause_req, 0); 2151 atomic_set(&fs_info->scrubs_paused, 0); 2152 atomic_set(&fs_info->scrub_cancel_req, 0); 2153 init_waitqueue_head(&fs_info->scrub_pause_wait); 2154 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2155 } 2156 2157 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2158 { 2159 spin_lock_init(&fs_info->balance_lock); 2160 mutex_init(&fs_info->balance_mutex); 2161 atomic_set(&fs_info->balance_pause_req, 0); 2162 atomic_set(&fs_info->balance_cancel_req, 0); 2163 fs_info->balance_ctl = NULL; 2164 init_waitqueue_head(&fs_info->balance_wait_q); 2165 } 2166 2167 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2168 { 2169 struct inode *inode = fs_info->btree_inode; 2170 2171 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2172 set_nlink(inode, 1); 2173 /* 2174 * we set the i_size on the btree inode to the max possible int. 2175 * the real end of the address space is determined by all of 2176 * the devices in the system 2177 */ 2178 inode->i_size = OFFSET_MAX; 2179 inode->i_mapping->a_ops = &btree_aops; 2180 2181 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2182 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2183 IO_TREE_BTREE_INODE_IO, inode); 2184 BTRFS_I(inode)->io_tree.track_uptodate = false; 2185 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2186 2187 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 2188 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2189 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2190 btrfs_insert_inode_hash(inode); 2191 } 2192 2193 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2194 { 2195 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2196 init_rwsem(&fs_info->dev_replace.rwsem); 2197 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2198 } 2199 2200 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2201 { 2202 spin_lock_init(&fs_info->qgroup_lock); 2203 mutex_init(&fs_info->qgroup_ioctl_lock); 2204 fs_info->qgroup_tree = RB_ROOT; 2205 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2206 fs_info->qgroup_seq = 1; 2207 fs_info->qgroup_ulist = NULL; 2208 fs_info->qgroup_rescan_running = false; 2209 mutex_init(&fs_info->qgroup_rescan_lock); 2210 } 2211 2212 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2213 struct btrfs_fs_devices *fs_devices) 2214 { 2215 u32 max_active = fs_info->thread_pool_size; 2216 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2217 2218 fs_info->workers = 2219 btrfs_alloc_workqueue(fs_info, "worker", 2220 flags | WQ_HIGHPRI, max_active, 16); 2221 2222 fs_info->delalloc_workers = 2223 btrfs_alloc_workqueue(fs_info, "delalloc", 2224 flags, max_active, 2); 2225 2226 fs_info->flush_workers = 2227 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2228 flags, max_active, 0); 2229 2230 fs_info->caching_workers = 2231 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2232 2233 fs_info->fixup_workers = 2234 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2235 2236 /* 2237 * endios are largely parallel and should have a very 2238 * low idle thresh 2239 */ 2240 fs_info->endio_workers = 2241 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2242 fs_info->endio_meta_workers = 2243 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2244 max_active, 4); 2245 fs_info->endio_meta_write_workers = 2246 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2247 max_active, 2); 2248 fs_info->endio_raid56_workers = 2249 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2250 max_active, 4); 2251 fs_info->rmw_workers = 2252 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2253 fs_info->endio_write_workers = 2254 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2255 max_active, 2); 2256 fs_info->endio_freespace_worker = 2257 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2258 max_active, 0); 2259 fs_info->delayed_workers = 2260 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2261 max_active, 0); 2262 fs_info->readahead_workers = 2263 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2264 max_active, 2); 2265 fs_info->qgroup_rescan_workers = 2266 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2267 fs_info->discard_ctl.discard_workers = 2268 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2269 2270 if (!(fs_info->workers && fs_info->delalloc_workers && 2271 fs_info->flush_workers && 2272 fs_info->endio_workers && fs_info->endio_meta_workers && 2273 fs_info->endio_meta_write_workers && 2274 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2275 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2276 fs_info->caching_workers && fs_info->readahead_workers && 2277 fs_info->fixup_workers && fs_info->delayed_workers && 2278 fs_info->qgroup_rescan_workers && 2279 fs_info->discard_ctl.discard_workers)) { 2280 return -ENOMEM; 2281 } 2282 2283 return 0; 2284 } 2285 2286 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2287 { 2288 struct crypto_shash *csum_shash; 2289 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2290 2291 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2292 2293 if (IS_ERR(csum_shash)) { 2294 btrfs_err(fs_info, "error allocating %s hash for checksum", 2295 csum_driver); 2296 return PTR_ERR(csum_shash); 2297 } 2298 2299 fs_info->csum_shash = csum_shash; 2300 2301 return 0; 2302 } 2303 2304 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2305 struct btrfs_fs_devices *fs_devices) 2306 { 2307 int ret; 2308 struct btrfs_root *log_tree_root; 2309 struct btrfs_super_block *disk_super = fs_info->super_copy; 2310 u64 bytenr = btrfs_super_log_root(disk_super); 2311 int level = btrfs_super_log_root_level(disk_super); 2312 2313 if (fs_devices->rw_devices == 0) { 2314 btrfs_warn(fs_info, "log replay required on RO media"); 2315 return -EIO; 2316 } 2317 2318 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2319 GFP_KERNEL); 2320 if (!log_tree_root) 2321 return -ENOMEM; 2322 2323 log_tree_root->node = read_tree_block(fs_info, bytenr, 2324 BTRFS_TREE_LOG_OBJECTID, 2325 fs_info->generation + 1, level, 2326 NULL); 2327 if (IS_ERR(log_tree_root->node)) { 2328 btrfs_warn(fs_info, "failed to read log tree"); 2329 ret = PTR_ERR(log_tree_root->node); 2330 log_tree_root->node = NULL; 2331 btrfs_put_root(log_tree_root); 2332 return ret; 2333 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2334 btrfs_err(fs_info, "failed to read log tree"); 2335 btrfs_put_root(log_tree_root); 2336 return -EIO; 2337 } 2338 /* returns with log_tree_root freed on success */ 2339 ret = btrfs_recover_log_trees(log_tree_root); 2340 if (ret) { 2341 btrfs_handle_fs_error(fs_info, ret, 2342 "Failed to recover log tree"); 2343 btrfs_put_root(log_tree_root); 2344 return ret; 2345 } 2346 2347 if (sb_rdonly(fs_info->sb)) { 2348 ret = btrfs_commit_super(fs_info); 2349 if (ret) 2350 return ret; 2351 } 2352 2353 return 0; 2354 } 2355 2356 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2357 { 2358 struct btrfs_root *tree_root = fs_info->tree_root; 2359 struct btrfs_root *root; 2360 struct btrfs_key location; 2361 int ret; 2362 2363 BUG_ON(!fs_info->tree_root); 2364 2365 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2366 location.type = BTRFS_ROOT_ITEM_KEY; 2367 location.offset = 0; 2368 2369 root = btrfs_read_tree_root(tree_root, &location); 2370 if (IS_ERR(root)) { 2371 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2372 ret = PTR_ERR(root); 2373 goto out; 2374 } 2375 } else { 2376 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2377 fs_info->extent_root = root; 2378 } 2379 2380 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2381 root = btrfs_read_tree_root(tree_root, &location); 2382 if (IS_ERR(root)) { 2383 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2384 ret = PTR_ERR(root); 2385 goto out; 2386 } 2387 } else { 2388 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2389 fs_info->dev_root = root; 2390 btrfs_init_devices_late(fs_info); 2391 } 2392 2393 /* If IGNOREDATACSUMS is set don't bother reading the csum root. */ 2394 if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2395 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2396 root = btrfs_read_tree_root(tree_root, &location); 2397 if (IS_ERR(root)) { 2398 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2399 ret = PTR_ERR(root); 2400 goto out; 2401 } 2402 } else { 2403 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2404 fs_info->csum_root = root; 2405 } 2406 } 2407 2408 /* 2409 * This tree can share blocks with some other fs tree during relocation 2410 * and we need a proper setup by btrfs_get_fs_root 2411 */ 2412 root = btrfs_get_fs_root(tree_root->fs_info, 2413 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2414 if (IS_ERR(root)) { 2415 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2416 ret = PTR_ERR(root); 2417 goto out; 2418 } 2419 } else { 2420 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2421 fs_info->data_reloc_root = root; 2422 } 2423 2424 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2425 root = btrfs_read_tree_root(tree_root, &location); 2426 if (!IS_ERR(root)) { 2427 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2428 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2429 fs_info->quota_root = root; 2430 } 2431 2432 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2433 root = btrfs_read_tree_root(tree_root, &location); 2434 if (IS_ERR(root)) { 2435 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2436 ret = PTR_ERR(root); 2437 if (ret != -ENOENT) 2438 goto out; 2439 } 2440 } else { 2441 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2442 fs_info->uuid_root = root; 2443 } 2444 2445 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2446 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2447 root = btrfs_read_tree_root(tree_root, &location); 2448 if (IS_ERR(root)) { 2449 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2450 ret = PTR_ERR(root); 2451 goto out; 2452 } 2453 } else { 2454 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2455 fs_info->free_space_root = root; 2456 } 2457 } 2458 2459 return 0; 2460 out: 2461 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2462 location.objectid, ret); 2463 return ret; 2464 } 2465 2466 /* 2467 * Real super block validation 2468 * NOTE: super csum type and incompat features will not be checked here. 2469 * 2470 * @sb: super block to check 2471 * @mirror_num: the super block number to check its bytenr: 2472 * 0 the primary (1st) sb 2473 * 1, 2 2nd and 3rd backup copy 2474 * -1 skip bytenr check 2475 */ 2476 static int validate_super(struct btrfs_fs_info *fs_info, 2477 struct btrfs_super_block *sb, int mirror_num) 2478 { 2479 u64 nodesize = btrfs_super_nodesize(sb); 2480 u64 sectorsize = btrfs_super_sectorsize(sb); 2481 int ret = 0; 2482 2483 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2484 btrfs_err(fs_info, "no valid FS found"); 2485 ret = -EINVAL; 2486 } 2487 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2488 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2489 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2490 ret = -EINVAL; 2491 } 2492 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2493 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2494 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2495 ret = -EINVAL; 2496 } 2497 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2498 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2499 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2500 ret = -EINVAL; 2501 } 2502 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2503 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2504 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2505 ret = -EINVAL; 2506 } 2507 2508 /* 2509 * Check sectorsize and nodesize first, other check will need it. 2510 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2511 */ 2512 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2513 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2514 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2515 ret = -EINVAL; 2516 } 2517 2518 /* 2519 * For 4K page size, we only support 4K sector size. 2520 * For 64K page size, we support read-write for 64K sector size, and 2521 * read-only for 4K sector size. 2522 */ 2523 if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) || 2524 (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K && 2525 sectorsize != SZ_64K))) { 2526 btrfs_err(fs_info, 2527 "sectorsize %llu not yet supported for page size %lu", 2528 sectorsize, PAGE_SIZE); 2529 ret = -EINVAL; 2530 } 2531 2532 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2533 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2534 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2535 ret = -EINVAL; 2536 } 2537 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2538 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2539 le32_to_cpu(sb->__unused_leafsize), nodesize); 2540 ret = -EINVAL; 2541 } 2542 2543 /* Root alignment check */ 2544 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2545 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2546 btrfs_super_root(sb)); 2547 ret = -EINVAL; 2548 } 2549 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2550 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2551 btrfs_super_chunk_root(sb)); 2552 ret = -EINVAL; 2553 } 2554 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2555 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2556 btrfs_super_log_root(sb)); 2557 ret = -EINVAL; 2558 } 2559 2560 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2561 BTRFS_FSID_SIZE) != 0) { 2562 btrfs_err(fs_info, 2563 "dev_item UUID does not match metadata fsid: %pU != %pU", 2564 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2565 ret = -EINVAL; 2566 } 2567 2568 /* 2569 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2570 * done later 2571 */ 2572 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2573 btrfs_err(fs_info, "bytes_used is too small %llu", 2574 btrfs_super_bytes_used(sb)); 2575 ret = -EINVAL; 2576 } 2577 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2578 btrfs_err(fs_info, "invalid stripesize %u", 2579 btrfs_super_stripesize(sb)); 2580 ret = -EINVAL; 2581 } 2582 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2583 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2584 btrfs_super_num_devices(sb)); 2585 if (btrfs_super_num_devices(sb) == 0) { 2586 btrfs_err(fs_info, "number of devices is 0"); 2587 ret = -EINVAL; 2588 } 2589 2590 if (mirror_num >= 0 && 2591 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2592 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2593 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2594 ret = -EINVAL; 2595 } 2596 2597 /* 2598 * Obvious sys_chunk_array corruptions, it must hold at least one key 2599 * and one chunk 2600 */ 2601 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2602 btrfs_err(fs_info, "system chunk array too big %u > %u", 2603 btrfs_super_sys_array_size(sb), 2604 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2605 ret = -EINVAL; 2606 } 2607 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2608 + sizeof(struct btrfs_chunk)) { 2609 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2610 btrfs_super_sys_array_size(sb), 2611 sizeof(struct btrfs_disk_key) 2612 + sizeof(struct btrfs_chunk)); 2613 ret = -EINVAL; 2614 } 2615 2616 /* 2617 * The generation is a global counter, we'll trust it more than the others 2618 * but it's still possible that it's the one that's wrong. 2619 */ 2620 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2621 btrfs_warn(fs_info, 2622 "suspicious: generation < chunk_root_generation: %llu < %llu", 2623 btrfs_super_generation(sb), 2624 btrfs_super_chunk_root_generation(sb)); 2625 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2626 && btrfs_super_cache_generation(sb) != (u64)-1) 2627 btrfs_warn(fs_info, 2628 "suspicious: generation < cache_generation: %llu < %llu", 2629 btrfs_super_generation(sb), 2630 btrfs_super_cache_generation(sb)); 2631 2632 return ret; 2633 } 2634 2635 /* 2636 * Validation of super block at mount time. 2637 * Some checks already done early at mount time, like csum type and incompat 2638 * flags will be skipped. 2639 */ 2640 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2641 { 2642 return validate_super(fs_info, fs_info->super_copy, 0); 2643 } 2644 2645 /* 2646 * Validation of super block at write time. 2647 * Some checks like bytenr check will be skipped as their values will be 2648 * overwritten soon. 2649 * Extra checks like csum type and incompat flags will be done here. 2650 */ 2651 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2652 struct btrfs_super_block *sb) 2653 { 2654 int ret; 2655 2656 ret = validate_super(fs_info, sb, -1); 2657 if (ret < 0) 2658 goto out; 2659 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2660 ret = -EUCLEAN; 2661 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2662 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2663 goto out; 2664 } 2665 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2666 ret = -EUCLEAN; 2667 btrfs_err(fs_info, 2668 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2669 btrfs_super_incompat_flags(sb), 2670 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2671 goto out; 2672 } 2673 out: 2674 if (ret < 0) 2675 btrfs_err(fs_info, 2676 "super block corruption detected before writing it to disk"); 2677 return ret; 2678 } 2679 2680 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2681 { 2682 int backup_index = find_newest_super_backup(fs_info); 2683 struct btrfs_super_block *sb = fs_info->super_copy; 2684 struct btrfs_root *tree_root = fs_info->tree_root; 2685 bool handle_error = false; 2686 int ret = 0; 2687 int i; 2688 2689 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2690 u64 generation; 2691 int level; 2692 2693 if (handle_error) { 2694 if (!IS_ERR(tree_root->node)) 2695 free_extent_buffer(tree_root->node); 2696 tree_root->node = NULL; 2697 2698 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2699 break; 2700 2701 free_root_pointers(fs_info, 0); 2702 2703 /* 2704 * Don't use the log in recovery mode, it won't be 2705 * valid 2706 */ 2707 btrfs_set_super_log_root(sb, 0); 2708 2709 /* We can't trust the free space cache either */ 2710 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2711 2712 ret = read_backup_root(fs_info, i); 2713 backup_index = ret; 2714 if (ret < 0) 2715 return ret; 2716 } 2717 generation = btrfs_super_generation(sb); 2718 level = btrfs_super_root_level(sb); 2719 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb), 2720 BTRFS_ROOT_TREE_OBJECTID, 2721 generation, level, NULL); 2722 if (IS_ERR(tree_root->node)) { 2723 handle_error = true; 2724 ret = PTR_ERR(tree_root->node); 2725 tree_root->node = NULL; 2726 btrfs_warn(fs_info, "couldn't read tree root"); 2727 continue; 2728 2729 } else if (!extent_buffer_uptodate(tree_root->node)) { 2730 handle_error = true; 2731 ret = -EIO; 2732 btrfs_warn(fs_info, "error while reading tree root"); 2733 continue; 2734 } 2735 2736 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2737 tree_root->commit_root = btrfs_root_node(tree_root); 2738 btrfs_set_root_refs(&tree_root->root_item, 1); 2739 2740 /* 2741 * No need to hold btrfs_root::objectid_mutex since the fs 2742 * hasn't been fully initialised and we are the only user 2743 */ 2744 ret = btrfs_init_root_free_objectid(tree_root); 2745 if (ret < 0) { 2746 handle_error = true; 2747 continue; 2748 } 2749 2750 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2751 2752 ret = btrfs_read_roots(fs_info); 2753 if (ret < 0) { 2754 handle_error = true; 2755 continue; 2756 } 2757 2758 /* All successful */ 2759 fs_info->generation = generation; 2760 fs_info->last_trans_committed = generation; 2761 2762 /* Always begin writing backup roots after the one being used */ 2763 if (backup_index < 0) { 2764 fs_info->backup_root_index = 0; 2765 } else { 2766 fs_info->backup_root_index = backup_index + 1; 2767 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2768 } 2769 break; 2770 } 2771 2772 return ret; 2773 } 2774 2775 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2776 { 2777 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2778 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2779 INIT_LIST_HEAD(&fs_info->trans_list); 2780 INIT_LIST_HEAD(&fs_info->dead_roots); 2781 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2782 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2783 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2784 spin_lock_init(&fs_info->delalloc_root_lock); 2785 spin_lock_init(&fs_info->trans_lock); 2786 spin_lock_init(&fs_info->fs_roots_radix_lock); 2787 spin_lock_init(&fs_info->delayed_iput_lock); 2788 spin_lock_init(&fs_info->defrag_inodes_lock); 2789 spin_lock_init(&fs_info->super_lock); 2790 spin_lock_init(&fs_info->buffer_lock); 2791 spin_lock_init(&fs_info->unused_bgs_lock); 2792 spin_lock_init(&fs_info->treelog_bg_lock); 2793 rwlock_init(&fs_info->tree_mod_log_lock); 2794 mutex_init(&fs_info->unused_bg_unpin_mutex); 2795 mutex_init(&fs_info->delete_unused_bgs_mutex); 2796 mutex_init(&fs_info->reloc_mutex); 2797 mutex_init(&fs_info->delalloc_root_mutex); 2798 mutex_init(&fs_info->zoned_meta_io_lock); 2799 seqlock_init(&fs_info->profiles_lock); 2800 2801 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2802 INIT_LIST_HEAD(&fs_info->space_info); 2803 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2804 INIT_LIST_HEAD(&fs_info->unused_bgs); 2805 #ifdef CONFIG_BTRFS_DEBUG 2806 INIT_LIST_HEAD(&fs_info->allocated_roots); 2807 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2808 spin_lock_init(&fs_info->eb_leak_lock); 2809 #endif 2810 extent_map_tree_init(&fs_info->mapping_tree); 2811 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2812 BTRFS_BLOCK_RSV_GLOBAL); 2813 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2814 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2815 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2816 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2817 BTRFS_BLOCK_RSV_DELOPS); 2818 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2819 BTRFS_BLOCK_RSV_DELREFS); 2820 2821 atomic_set(&fs_info->async_delalloc_pages, 0); 2822 atomic_set(&fs_info->defrag_running, 0); 2823 atomic_set(&fs_info->reada_works_cnt, 0); 2824 atomic_set(&fs_info->nr_delayed_iputs, 0); 2825 atomic64_set(&fs_info->tree_mod_seq, 0); 2826 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2827 fs_info->metadata_ratio = 0; 2828 fs_info->defrag_inodes = RB_ROOT; 2829 atomic64_set(&fs_info->free_chunk_space, 0); 2830 fs_info->tree_mod_log = RB_ROOT; 2831 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2832 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2833 /* readahead state */ 2834 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2835 spin_lock_init(&fs_info->reada_lock); 2836 btrfs_init_ref_verify(fs_info); 2837 2838 fs_info->thread_pool_size = min_t(unsigned long, 2839 num_online_cpus() + 2, 8); 2840 2841 INIT_LIST_HEAD(&fs_info->ordered_roots); 2842 spin_lock_init(&fs_info->ordered_root_lock); 2843 2844 btrfs_init_scrub(fs_info); 2845 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2846 fs_info->check_integrity_print_mask = 0; 2847 #endif 2848 btrfs_init_balance(fs_info); 2849 btrfs_init_async_reclaim_work(fs_info); 2850 2851 spin_lock_init(&fs_info->block_group_cache_lock); 2852 fs_info->block_group_cache_tree = RB_ROOT; 2853 fs_info->first_logical_byte = (u64)-1; 2854 2855 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2856 IO_TREE_FS_EXCLUDED_EXTENTS, NULL); 2857 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2858 2859 mutex_init(&fs_info->ordered_operations_mutex); 2860 mutex_init(&fs_info->tree_log_mutex); 2861 mutex_init(&fs_info->chunk_mutex); 2862 mutex_init(&fs_info->transaction_kthread_mutex); 2863 mutex_init(&fs_info->cleaner_mutex); 2864 mutex_init(&fs_info->ro_block_group_mutex); 2865 init_rwsem(&fs_info->commit_root_sem); 2866 init_rwsem(&fs_info->cleanup_work_sem); 2867 init_rwsem(&fs_info->subvol_sem); 2868 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2869 2870 btrfs_init_dev_replace_locks(fs_info); 2871 btrfs_init_qgroup(fs_info); 2872 btrfs_discard_init(fs_info); 2873 2874 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2875 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2876 2877 init_waitqueue_head(&fs_info->transaction_throttle); 2878 init_waitqueue_head(&fs_info->transaction_wait); 2879 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2880 init_waitqueue_head(&fs_info->async_submit_wait); 2881 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2882 2883 /* Usable values until the real ones are cached from the superblock */ 2884 fs_info->nodesize = 4096; 2885 fs_info->sectorsize = 4096; 2886 fs_info->sectorsize_bits = ilog2(4096); 2887 fs_info->stripesize = 4096; 2888 2889 spin_lock_init(&fs_info->swapfile_pins_lock); 2890 fs_info->swapfile_pins = RB_ROOT; 2891 2892 fs_info->send_in_progress = 0; 2893 } 2894 2895 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2896 { 2897 int ret; 2898 2899 fs_info->sb = sb; 2900 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2901 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2902 2903 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 2904 if (ret) 2905 return ret; 2906 2907 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2908 if (ret) 2909 return ret; 2910 2911 fs_info->dirty_metadata_batch = PAGE_SIZE * 2912 (1 + ilog2(nr_cpu_ids)); 2913 2914 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2915 if (ret) 2916 return ret; 2917 2918 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2919 GFP_KERNEL); 2920 if (ret) 2921 return ret; 2922 2923 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2924 GFP_KERNEL); 2925 if (!fs_info->delayed_root) 2926 return -ENOMEM; 2927 btrfs_init_delayed_root(fs_info->delayed_root); 2928 2929 if (sb_rdonly(sb)) 2930 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2931 2932 return btrfs_alloc_stripe_hash_table(fs_info); 2933 } 2934 2935 static int btrfs_uuid_rescan_kthread(void *data) 2936 { 2937 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 2938 int ret; 2939 2940 /* 2941 * 1st step is to iterate through the existing UUID tree and 2942 * to delete all entries that contain outdated data. 2943 * 2nd step is to add all missing entries to the UUID tree. 2944 */ 2945 ret = btrfs_uuid_tree_iterate(fs_info); 2946 if (ret < 0) { 2947 if (ret != -EINTR) 2948 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2949 ret); 2950 up(&fs_info->uuid_tree_rescan_sem); 2951 return ret; 2952 } 2953 return btrfs_uuid_scan_kthread(data); 2954 } 2955 2956 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2957 { 2958 struct task_struct *task; 2959 2960 down(&fs_info->uuid_tree_rescan_sem); 2961 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2962 if (IS_ERR(task)) { 2963 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2964 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2965 up(&fs_info->uuid_tree_rescan_sem); 2966 return PTR_ERR(task); 2967 } 2968 2969 return 0; 2970 } 2971 2972 /* 2973 * Some options only have meaning at mount time and shouldn't persist across 2974 * remounts, or be displayed. Clear these at the end of mount and remount 2975 * code paths. 2976 */ 2977 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 2978 { 2979 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 2980 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 2981 } 2982 2983 /* 2984 * Mounting logic specific to read-write file systems. Shared by open_ctree 2985 * and btrfs_remount when remounting from read-only to read-write. 2986 */ 2987 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 2988 { 2989 int ret; 2990 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 2991 bool clear_free_space_tree = false; 2992 2993 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 2994 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2995 clear_free_space_tree = true; 2996 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 2997 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 2998 btrfs_warn(fs_info, "free space tree is invalid"); 2999 clear_free_space_tree = true; 3000 } 3001 3002 if (clear_free_space_tree) { 3003 btrfs_info(fs_info, "clearing free space tree"); 3004 ret = btrfs_clear_free_space_tree(fs_info); 3005 if (ret) { 3006 btrfs_warn(fs_info, 3007 "failed to clear free space tree: %d", ret); 3008 goto out; 3009 } 3010 } 3011 3012 ret = btrfs_cleanup_fs_roots(fs_info); 3013 if (ret) 3014 goto out; 3015 3016 down_read(&fs_info->cleanup_work_sem); 3017 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3018 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3019 up_read(&fs_info->cleanup_work_sem); 3020 goto out; 3021 } 3022 up_read(&fs_info->cleanup_work_sem); 3023 3024 mutex_lock(&fs_info->cleaner_mutex); 3025 ret = btrfs_recover_relocation(fs_info->tree_root); 3026 mutex_unlock(&fs_info->cleaner_mutex); 3027 if (ret < 0) { 3028 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3029 goto out; 3030 } 3031 3032 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3033 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3034 btrfs_info(fs_info, "creating free space tree"); 3035 ret = btrfs_create_free_space_tree(fs_info); 3036 if (ret) { 3037 btrfs_warn(fs_info, 3038 "failed to create free space tree: %d", ret); 3039 goto out; 3040 } 3041 } 3042 3043 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3044 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3045 if (ret) 3046 goto out; 3047 } 3048 3049 ret = btrfs_resume_balance_async(fs_info); 3050 if (ret) 3051 goto out; 3052 3053 ret = btrfs_resume_dev_replace_async(fs_info); 3054 if (ret) { 3055 btrfs_warn(fs_info, "failed to resume dev_replace"); 3056 goto out; 3057 } 3058 3059 btrfs_qgroup_rescan_resume(fs_info); 3060 3061 if (!fs_info->uuid_root) { 3062 btrfs_info(fs_info, "creating UUID tree"); 3063 ret = btrfs_create_uuid_tree(fs_info); 3064 if (ret) { 3065 btrfs_warn(fs_info, 3066 "failed to create the UUID tree %d", ret); 3067 goto out; 3068 } 3069 } 3070 3071 ret = btrfs_find_orphan_roots(fs_info); 3072 out: 3073 return ret; 3074 } 3075 3076 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3077 char *options) 3078 { 3079 u32 sectorsize; 3080 u32 nodesize; 3081 u32 stripesize; 3082 u64 generation; 3083 u64 features; 3084 u16 csum_type; 3085 struct btrfs_super_block *disk_super; 3086 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3087 struct btrfs_root *tree_root; 3088 struct btrfs_root *chunk_root; 3089 int ret; 3090 int err = -EINVAL; 3091 int level; 3092 3093 ret = init_mount_fs_info(fs_info, sb); 3094 if (ret) { 3095 err = ret; 3096 goto fail; 3097 } 3098 3099 /* These need to be init'ed before we start creating inodes and such. */ 3100 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3101 GFP_KERNEL); 3102 fs_info->tree_root = tree_root; 3103 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3104 GFP_KERNEL); 3105 fs_info->chunk_root = chunk_root; 3106 if (!tree_root || !chunk_root) { 3107 err = -ENOMEM; 3108 goto fail; 3109 } 3110 3111 fs_info->btree_inode = new_inode(sb); 3112 if (!fs_info->btree_inode) { 3113 err = -ENOMEM; 3114 goto fail; 3115 } 3116 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 3117 btrfs_init_btree_inode(fs_info); 3118 3119 invalidate_bdev(fs_devices->latest_bdev); 3120 3121 /* 3122 * Read super block and check the signature bytes only 3123 */ 3124 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev); 3125 if (IS_ERR(disk_super)) { 3126 err = PTR_ERR(disk_super); 3127 goto fail_alloc; 3128 } 3129 3130 /* 3131 * Verify the type first, if that or the checksum value are 3132 * corrupted, we'll find out 3133 */ 3134 csum_type = btrfs_super_csum_type(disk_super); 3135 if (!btrfs_supported_super_csum(csum_type)) { 3136 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3137 csum_type); 3138 err = -EINVAL; 3139 btrfs_release_disk_super(disk_super); 3140 goto fail_alloc; 3141 } 3142 3143 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3144 3145 ret = btrfs_init_csum_hash(fs_info, csum_type); 3146 if (ret) { 3147 err = ret; 3148 btrfs_release_disk_super(disk_super); 3149 goto fail_alloc; 3150 } 3151 3152 /* 3153 * We want to check superblock checksum, the type is stored inside. 3154 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3155 */ 3156 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) { 3157 btrfs_err(fs_info, "superblock checksum mismatch"); 3158 err = -EINVAL; 3159 btrfs_release_disk_super(disk_super); 3160 goto fail_alloc; 3161 } 3162 3163 /* 3164 * super_copy is zeroed at allocation time and we never touch the 3165 * following bytes up to INFO_SIZE, the checksum is calculated from 3166 * the whole block of INFO_SIZE 3167 */ 3168 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3169 btrfs_release_disk_super(disk_super); 3170 3171 disk_super = fs_info->super_copy; 3172 3173 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 3174 BTRFS_FSID_SIZE)); 3175 3176 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) { 3177 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid, 3178 fs_info->super_copy->metadata_uuid, 3179 BTRFS_FSID_SIZE)); 3180 } 3181 3182 features = btrfs_super_flags(disk_super); 3183 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 3184 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 3185 btrfs_set_super_flags(disk_super, features); 3186 btrfs_info(fs_info, 3187 "found metadata UUID change in progress flag, clearing"); 3188 } 3189 3190 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3191 sizeof(*fs_info->super_for_commit)); 3192 3193 ret = btrfs_validate_mount_super(fs_info); 3194 if (ret) { 3195 btrfs_err(fs_info, "superblock contains fatal errors"); 3196 err = -EINVAL; 3197 goto fail_alloc; 3198 } 3199 3200 if (!btrfs_super_root(disk_super)) 3201 goto fail_alloc; 3202 3203 /* check FS state, whether FS is broken. */ 3204 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3205 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 3206 3207 /* 3208 * In the long term, we'll store the compression type in the super 3209 * block, and it'll be used for per file compression control. 3210 */ 3211 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 3212 3213 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 3214 if (ret) { 3215 err = ret; 3216 goto fail_alloc; 3217 } 3218 3219 features = btrfs_super_incompat_flags(disk_super) & 3220 ~BTRFS_FEATURE_INCOMPAT_SUPP; 3221 if (features) { 3222 btrfs_err(fs_info, 3223 "cannot mount because of unsupported optional features (%llx)", 3224 features); 3225 err = -EINVAL; 3226 goto fail_alloc; 3227 } 3228 3229 features = btrfs_super_incompat_flags(disk_super); 3230 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3231 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3232 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3233 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3234 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3235 3236 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 3237 btrfs_info(fs_info, "has skinny extents"); 3238 3239 /* 3240 * flag our filesystem as having big metadata blocks if 3241 * they are bigger than the page size 3242 */ 3243 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 3244 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 3245 btrfs_info(fs_info, 3246 "flagging fs with big metadata feature"); 3247 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3248 } 3249 3250 nodesize = btrfs_super_nodesize(disk_super); 3251 sectorsize = btrfs_super_sectorsize(disk_super); 3252 stripesize = sectorsize; 3253 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3254 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3255 3256 /* Cache block sizes */ 3257 fs_info->nodesize = nodesize; 3258 fs_info->sectorsize = sectorsize; 3259 fs_info->sectorsize_bits = ilog2(sectorsize); 3260 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3261 fs_info->stripesize = stripesize; 3262 3263 /* 3264 * mixed block groups end up with duplicate but slightly offset 3265 * extent buffers for the same range. It leads to corruptions 3266 */ 3267 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3268 (sectorsize != nodesize)) { 3269 btrfs_err(fs_info, 3270 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3271 nodesize, sectorsize); 3272 goto fail_alloc; 3273 } 3274 3275 /* 3276 * Needn't use the lock because there is no other task which will 3277 * update the flag. 3278 */ 3279 btrfs_set_super_incompat_flags(disk_super, features); 3280 3281 features = btrfs_super_compat_ro_flags(disk_super) & 3282 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 3283 if (!sb_rdonly(sb) && features) { 3284 btrfs_err(fs_info, 3285 "cannot mount read-write because of unsupported optional features (%llx)", 3286 features); 3287 err = -EINVAL; 3288 goto fail_alloc; 3289 } 3290 3291 /* For 4K sector size support, it's only read-only */ 3292 if (PAGE_SIZE == SZ_64K && sectorsize == SZ_4K) { 3293 if (!sb_rdonly(sb) || btrfs_super_log_root(disk_super)) { 3294 btrfs_err(fs_info, 3295 "subpage sectorsize %u only supported read-only for page size %lu", 3296 sectorsize, PAGE_SIZE); 3297 err = -EINVAL; 3298 goto fail_alloc; 3299 } 3300 } 3301 3302 ret = btrfs_init_workqueues(fs_info, fs_devices); 3303 if (ret) { 3304 err = ret; 3305 goto fail_sb_buffer; 3306 } 3307 3308 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3309 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3310 3311 sb->s_blocksize = sectorsize; 3312 sb->s_blocksize_bits = blksize_bits(sectorsize); 3313 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3314 3315 mutex_lock(&fs_info->chunk_mutex); 3316 ret = btrfs_read_sys_array(fs_info); 3317 mutex_unlock(&fs_info->chunk_mutex); 3318 if (ret) { 3319 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3320 goto fail_sb_buffer; 3321 } 3322 3323 generation = btrfs_super_chunk_root_generation(disk_super); 3324 level = btrfs_super_chunk_root_level(disk_super); 3325 3326 chunk_root->node = read_tree_block(fs_info, 3327 btrfs_super_chunk_root(disk_super), 3328 BTRFS_CHUNK_TREE_OBJECTID, 3329 generation, level, NULL); 3330 if (IS_ERR(chunk_root->node) || 3331 !extent_buffer_uptodate(chunk_root->node)) { 3332 btrfs_err(fs_info, "failed to read chunk root"); 3333 if (!IS_ERR(chunk_root->node)) 3334 free_extent_buffer(chunk_root->node); 3335 chunk_root->node = NULL; 3336 goto fail_tree_roots; 3337 } 3338 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 3339 chunk_root->commit_root = btrfs_root_node(chunk_root); 3340 3341 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3342 offsetof(struct btrfs_header, chunk_tree_uuid), 3343 BTRFS_UUID_SIZE); 3344 3345 ret = btrfs_read_chunk_tree(fs_info); 3346 if (ret) { 3347 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3348 goto fail_tree_roots; 3349 } 3350 3351 /* 3352 * At this point we know all the devices that make this filesystem, 3353 * including the seed devices but we don't know yet if the replace 3354 * target is required. So free devices that are not part of this 3355 * filesystem but skip the replace traget device which is checked 3356 * below in btrfs_init_dev_replace(). 3357 */ 3358 btrfs_free_extra_devids(fs_devices); 3359 if (!fs_devices->latest_bdev) { 3360 btrfs_err(fs_info, "failed to read devices"); 3361 goto fail_tree_roots; 3362 } 3363 3364 ret = init_tree_roots(fs_info); 3365 if (ret) 3366 goto fail_tree_roots; 3367 3368 /* 3369 * Get zone type information of zoned block devices. This will also 3370 * handle emulation of a zoned filesystem if a regular device has the 3371 * zoned incompat feature flag set. 3372 */ 3373 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3374 if (ret) { 3375 btrfs_err(fs_info, 3376 "zoned: failed to read device zone info: %d", 3377 ret); 3378 goto fail_block_groups; 3379 } 3380 3381 /* 3382 * If we have a uuid root and we're not being told to rescan we need to 3383 * check the generation here so we can set the 3384 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3385 * transaction during a balance or the log replay without updating the 3386 * uuid generation, and then if we crash we would rescan the uuid tree, 3387 * even though it was perfectly fine. 3388 */ 3389 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3390 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3391 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3392 3393 ret = btrfs_verify_dev_extents(fs_info); 3394 if (ret) { 3395 btrfs_err(fs_info, 3396 "failed to verify dev extents against chunks: %d", 3397 ret); 3398 goto fail_block_groups; 3399 } 3400 ret = btrfs_recover_balance(fs_info); 3401 if (ret) { 3402 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3403 goto fail_block_groups; 3404 } 3405 3406 ret = btrfs_init_dev_stats(fs_info); 3407 if (ret) { 3408 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3409 goto fail_block_groups; 3410 } 3411 3412 ret = btrfs_init_dev_replace(fs_info); 3413 if (ret) { 3414 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3415 goto fail_block_groups; 3416 } 3417 3418 ret = btrfs_check_zoned_mode(fs_info); 3419 if (ret) { 3420 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3421 ret); 3422 goto fail_block_groups; 3423 } 3424 3425 ret = btrfs_sysfs_add_fsid(fs_devices); 3426 if (ret) { 3427 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3428 ret); 3429 goto fail_block_groups; 3430 } 3431 3432 ret = btrfs_sysfs_add_mounted(fs_info); 3433 if (ret) { 3434 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3435 goto fail_fsdev_sysfs; 3436 } 3437 3438 ret = btrfs_init_space_info(fs_info); 3439 if (ret) { 3440 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3441 goto fail_sysfs; 3442 } 3443 3444 ret = btrfs_read_block_groups(fs_info); 3445 if (ret) { 3446 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3447 goto fail_sysfs; 3448 } 3449 3450 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 3451 btrfs_warn(fs_info, 3452 "writable mount is not allowed due to too many missing devices"); 3453 goto fail_sysfs; 3454 } 3455 3456 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3457 "btrfs-cleaner"); 3458 if (IS_ERR(fs_info->cleaner_kthread)) 3459 goto fail_sysfs; 3460 3461 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3462 tree_root, 3463 "btrfs-transaction"); 3464 if (IS_ERR(fs_info->transaction_kthread)) 3465 goto fail_cleaner; 3466 3467 if (!btrfs_test_opt(fs_info, NOSSD) && 3468 !fs_info->fs_devices->rotating) { 3469 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3470 } 3471 3472 /* 3473 * Mount does not set all options immediately, we can do it now and do 3474 * not have to wait for transaction commit 3475 */ 3476 btrfs_apply_pending_changes(fs_info); 3477 3478 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3479 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3480 ret = btrfsic_mount(fs_info, fs_devices, 3481 btrfs_test_opt(fs_info, 3482 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3483 1 : 0, 3484 fs_info->check_integrity_print_mask); 3485 if (ret) 3486 btrfs_warn(fs_info, 3487 "failed to initialize integrity check module: %d", 3488 ret); 3489 } 3490 #endif 3491 ret = btrfs_read_qgroup_config(fs_info); 3492 if (ret) 3493 goto fail_trans_kthread; 3494 3495 if (btrfs_build_ref_tree(fs_info)) 3496 btrfs_err(fs_info, "couldn't build ref tree"); 3497 3498 /* do not make disk changes in broken FS or nologreplay is given */ 3499 if (btrfs_super_log_root(disk_super) != 0 && 3500 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3501 btrfs_info(fs_info, "start tree-log replay"); 3502 ret = btrfs_replay_log(fs_info, fs_devices); 3503 if (ret) { 3504 err = ret; 3505 goto fail_qgroup; 3506 } 3507 } 3508 3509 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3510 if (IS_ERR(fs_info->fs_root)) { 3511 err = PTR_ERR(fs_info->fs_root); 3512 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3513 fs_info->fs_root = NULL; 3514 goto fail_qgroup; 3515 } 3516 3517 if (sb_rdonly(sb)) 3518 goto clear_oneshot; 3519 3520 ret = btrfs_start_pre_rw_mount(fs_info); 3521 if (ret) { 3522 close_ctree(fs_info); 3523 return ret; 3524 } 3525 btrfs_discard_resume(fs_info); 3526 3527 if (fs_info->uuid_root && 3528 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3529 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3530 btrfs_info(fs_info, "checking UUID tree"); 3531 ret = btrfs_check_uuid_tree(fs_info); 3532 if (ret) { 3533 btrfs_warn(fs_info, 3534 "failed to check the UUID tree: %d", ret); 3535 close_ctree(fs_info); 3536 return ret; 3537 } 3538 } 3539 3540 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3541 3542 clear_oneshot: 3543 btrfs_clear_oneshot_options(fs_info); 3544 return 0; 3545 3546 fail_qgroup: 3547 btrfs_free_qgroup_config(fs_info); 3548 fail_trans_kthread: 3549 kthread_stop(fs_info->transaction_kthread); 3550 btrfs_cleanup_transaction(fs_info); 3551 btrfs_free_fs_roots(fs_info); 3552 fail_cleaner: 3553 kthread_stop(fs_info->cleaner_kthread); 3554 3555 /* 3556 * make sure we're done with the btree inode before we stop our 3557 * kthreads 3558 */ 3559 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3560 3561 fail_sysfs: 3562 btrfs_sysfs_remove_mounted(fs_info); 3563 3564 fail_fsdev_sysfs: 3565 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3566 3567 fail_block_groups: 3568 btrfs_put_block_group_cache(fs_info); 3569 3570 fail_tree_roots: 3571 if (fs_info->data_reloc_root) 3572 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3573 free_root_pointers(fs_info, true); 3574 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3575 3576 fail_sb_buffer: 3577 btrfs_stop_all_workers(fs_info); 3578 btrfs_free_block_groups(fs_info); 3579 fail_alloc: 3580 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3581 3582 iput(fs_info->btree_inode); 3583 fail: 3584 btrfs_close_devices(fs_info->fs_devices); 3585 return err; 3586 } 3587 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3588 3589 static void btrfs_end_super_write(struct bio *bio) 3590 { 3591 struct btrfs_device *device = bio->bi_private; 3592 struct bio_vec *bvec; 3593 struct bvec_iter_all iter_all; 3594 struct page *page; 3595 3596 bio_for_each_segment_all(bvec, bio, iter_all) { 3597 page = bvec->bv_page; 3598 3599 if (bio->bi_status) { 3600 btrfs_warn_rl_in_rcu(device->fs_info, 3601 "lost page write due to IO error on %s (%d)", 3602 rcu_str_deref(device->name), 3603 blk_status_to_errno(bio->bi_status)); 3604 ClearPageUptodate(page); 3605 SetPageError(page); 3606 btrfs_dev_stat_inc_and_print(device, 3607 BTRFS_DEV_STAT_WRITE_ERRS); 3608 } else { 3609 SetPageUptodate(page); 3610 } 3611 3612 put_page(page); 3613 unlock_page(page); 3614 } 3615 3616 bio_put(bio); 3617 } 3618 3619 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3620 int copy_num) 3621 { 3622 struct btrfs_super_block *super; 3623 struct page *page; 3624 u64 bytenr, bytenr_orig; 3625 struct address_space *mapping = bdev->bd_inode->i_mapping; 3626 int ret; 3627 3628 bytenr_orig = btrfs_sb_offset(copy_num); 3629 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3630 if (ret == -ENOENT) 3631 return ERR_PTR(-EINVAL); 3632 else if (ret) 3633 return ERR_PTR(ret); 3634 3635 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3636 return ERR_PTR(-EINVAL); 3637 3638 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3639 if (IS_ERR(page)) 3640 return ERR_CAST(page); 3641 3642 super = page_address(page); 3643 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3644 btrfs_release_disk_super(super); 3645 return ERR_PTR(-ENODATA); 3646 } 3647 3648 if (btrfs_super_bytenr(super) != bytenr_orig) { 3649 btrfs_release_disk_super(super); 3650 return ERR_PTR(-EINVAL); 3651 } 3652 3653 return super; 3654 } 3655 3656 3657 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3658 { 3659 struct btrfs_super_block *super, *latest = NULL; 3660 int i; 3661 u64 transid = 0; 3662 3663 /* we would like to check all the supers, but that would make 3664 * a btrfs mount succeed after a mkfs from a different FS. 3665 * So, we need to add a special mount option to scan for 3666 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3667 */ 3668 for (i = 0; i < 1; i++) { 3669 super = btrfs_read_dev_one_super(bdev, i); 3670 if (IS_ERR(super)) 3671 continue; 3672 3673 if (!latest || btrfs_super_generation(super) > transid) { 3674 if (latest) 3675 btrfs_release_disk_super(super); 3676 3677 latest = super; 3678 transid = btrfs_super_generation(super); 3679 } 3680 } 3681 3682 return super; 3683 } 3684 3685 /* 3686 * Write superblock @sb to the @device. Do not wait for completion, all the 3687 * pages we use for writing are locked. 3688 * 3689 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3690 * the expected device size at commit time. Note that max_mirrors must be 3691 * same for write and wait phases. 3692 * 3693 * Return number of errors when page is not found or submission fails. 3694 */ 3695 static int write_dev_supers(struct btrfs_device *device, 3696 struct btrfs_super_block *sb, int max_mirrors) 3697 { 3698 struct btrfs_fs_info *fs_info = device->fs_info; 3699 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3700 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3701 int i; 3702 int errors = 0; 3703 int ret; 3704 u64 bytenr, bytenr_orig; 3705 3706 if (max_mirrors == 0) 3707 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3708 3709 shash->tfm = fs_info->csum_shash; 3710 3711 for (i = 0; i < max_mirrors; i++) { 3712 struct page *page; 3713 struct bio *bio; 3714 struct btrfs_super_block *disk_super; 3715 3716 bytenr_orig = btrfs_sb_offset(i); 3717 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3718 if (ret == -ENOENT) { 3719 continue; 3720 } else if (ret < 0) { 3721 btrfs_err(device->fs_info, 3722 "couldn't get super block location for mirror %d", 3723 i); 3724 errors++; 3725 continue; 3726 } 3727 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3728 device->commit_total_bytes) 3729 break; 3730 3731 btrfs_set_super_bytenr(sb, bytenr_orig); 3732 3733 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3734 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3735 sb->csum); 3736 3737 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 3738 GFP_NOFS); 3739 if (!page) { 3740 btrfs_err(device->fs_info, 3741 "couldn't get super block page for bytenr %llu", 3742 bytenr); 3743 errors++; 3744 continue; 3745 } 3746 3747 /* Bump the refcount for wait_dev_supers() */ 3748 get_page(page); 3749 3750 disk_super = page_address(page); 3751 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3752 3753 /* 3754 * Directly use bios here instead of relying on the page cache 3755 * to do I/O, so we don't lose the ability to do integrity 3756 * checking. 3757 */ 3758 bio = bio_alloc(GFP_NOFS, 1); 3759 bio_set_dev(bio, device->bdev); 3760 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3761 bio->bi_private = device; 3762 bio->bi_end_io = btrfs_end_super_write; 3763 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 3764 offset_in_page(bytenr)); 3765 3766 /* 3767 * We FUA only the first super block. The others we allow to 3768 * go down lazy and there's a short window where the on-disk 3769 * copies might still contain the older version. 3770 */ 3771 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO; 3772 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3773 bio->bi_opf |= REQ_FUA; 3774 3775 btrfsic_submit_bio(bio); 3776 btrfs_advance_sb_log(device, i); 3777 } 3778 return errors < i ? 0 : -1; 3779 } 3780 3781 /* 3782 * Wait for write completion of superblocks done by write_dev_supers, 3783 * @max_mirrors same for write and wait phases. 3784 * 3785 * Return number of errors when page is not found or not marked up to 3786 * date. 3787 */ 3788 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3789 { 3790 int i; 3791 int errors = 0; 3792 bool primary_failed = false; 3793 int ret; 3794 u64 bytenr; 3795 3796 if (max_mirrors == 0) 3797 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3798 3799 for (i = 0; i < max_mirrors; i++) { 3800 struct page *page; 3801 3802 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 3803 if (ret == -ENOENT) { 3804 break; 3805 } else if (ret < 0) { 3806 errors++; 3807 if (i == 0) 3808 primary_failed = true; 3809 continue; 3810 } 3811 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3812 device->commit_total_bytes) 3813 break; 3814 3815 page = find_get_page(device->bdev->bd_inode->i_mapping, 3816 bytenr >> PAGE_SHIFT); 3817 if (!page) { 3818 errors++; 3819 if (i == 0) 3820 primary_failed = true; 3821 continue; 3822 } 3823 /* Page is submitted locked and unlocked once the IO completes */ 3824 wait_on_page_locked(page); 3825 if (PageError(page)) { 3826 errors++; 3827 if (i == 0) 3828 primary_failed = true; 3829 } 3830 3831 /* Drop our reference */ 3832 put_page(page); 3833 3834 /* Drop the reference from the writing run */ 3835 put_page(page); 3836 } 3837 3838 /* log error, force error return */ 3839 if (primary_failed) { 3840 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3841 device->devid); 3842 return -1; 3843 } 3844 3845 return errors < i ? 0 : -1; 3846 } 3847 3848 /* 3849 * endio for the write_dev_flush, this will wake anyone waiting 3850 * for the barrier when it is done 3851 */ 3852 static void btrfs_end_empty_barrier(struct bio *bio) 3853 { 3854 complete(bio->bi_private); 3855 } 3856 3857 /* 3858 * Submit a flush request to the device if it supports it. Error handling is 3859 * done in the waiting counterpart. 3860 */ 3861 static void write_dev_flush(struct btrfs_device *device) 3862 { 3863 struct request_queue *q = bdev_get_queue(device->bdev); 3864 struct bio *bio = device->flush_bio; 3865 3866 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3867 return; 3868 3869 bio_reset(bio); 3870 bio->bi_end_io = btrfs_end_empty_barrier; 3871 bio_set_dev(bio, device->bdev); 3872 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3873 init_completion(&device->flush_wait); 3874 bio->bi_private = &device->flush_wait; 3875 3876 btrfsic_submit_bio(bio); 3877 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3878 } 3879 3880 /* 3881 * If the flush bio has been submitted by write_dev_flush, wait for it. 3882 */ 3883 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3884 { 3885 struct bio *bio = device->flush_bio; 3886 3887 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3888 return BLK_STS_OK; 3889 3890 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3891 wait_for_completion_io(&device->flush_wait); 3892 3893 return bio->bi_status; 3894 } 3895 3896 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3897 { 3898 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3899 return -EIO; 3900 return 0; 3901 } 3902 3903 /* 3904 * send an empty flush down to each device in parallel, 3905 * then wait for them 3906 */ 3907 static int barrier_all_devices(struct btrfs_fs_info *info) 3908 { 3909 struct list_head *head; 3910 struct btrfs_device *dev; 3911 int errors_wait = 0; 3912 blk_status_t ret; 3913 3914 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3915 /* send down all the barriers */ 3916 head = &info->fs_devices->devices; 3917 list_for_each_entry(dev, head, dev_list) { 3918 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3919 continue; 3920 if (!dev->bdev) 3921 continue; 3922 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3923 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3924 continue; 3925 3926 write_dev_flush(dev); 3927 dev->last_flush_error = BLK_STS_OK; 3928 } 3929 3930 /* wait for all the barriers */ 3931 list_for_each_entry(dev, head, dev_list) { 3932 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3933 continue; 3934 if (!dev->bdev) { 3935 errors_wait++; 3936 continue; 3937 } 3938 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3939 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3940 continue; 3941 3942 ret = wait_dev_flush(dev); 3943 if (ret) { 3944 dev->last_flush_error = ret; 3945 btrfs_dev_stat_inc_and_print(dev, 3946 BTRFS_DEV_STAT_FLUSH_ERRS); 3947 errors_wait++; 3948 } 3949 } 3950 3951 if (errors_wait) { 3952 /* 3953 * At some point we need the status of all disks 3954 * to arrive at the volume status. So error checking 3955 * is being pushed to a separate loop. 3956 */ 3957 return check_barrier_error(info); 3958 } 3959 return 0; 3960 } 3961 3962 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3963 { 3964 int raid_type; 3965 int min_tolerated = INT_MAX; 3966 3967 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3968 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3969 min_tolerated = min_t(int, min_tolerated, 3970 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3971 tolerated_failures); 3972 3973 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3974 if (raid_type == BTRFS_RAID_SINGLE) 3975 continue; 3976 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3977 continue; 3978 min_tolerated = min_t(int, min_tolerated, 3979 btrfs_raid_array[raid_type]. 3980 tolerated_failures); 3981 } 3982 3983 if (min_tolerated == INT_MAX) { 3984 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3985 min_tolerated = 0; 3986 } 3987 3988 return min_tolerated; 3989 } 3990 3991 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3992 { 3993 struct list_head *head; 3994 struct btrfs_device *dev; 3995 struct btrfs_super_block *sb; 3996 struct btrfs_dev_item *dev_item; 3997 int ret; 3998 int do_barriers; 3999 int max_errors; 4000 int total_errors = 0; 4001 u64 flags; 4002 4003 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4004 4005 /* 4006 * max_mirrors == 0 indicates we're from commit_transaction, 4007 * not from fsync where the tree roots in fs_info have not 4008 * been consistent on disk. 4009 */ 4010 if (max_mirrors == 0) 4011 backup_super_roots(fs_info); 4012 4013 sb = fs_info->super_for_commit; 4014 dev_item = &sb->dev_item; 4015 4016 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4017 head = &fs_info->fs_devices->devices; 4018 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4019 4020 if (do_barriers) { 4021 ret = barrier_all_devices(fs_info); 4022 if (ret) { 4023 mutex_unlock( 4024 &fs_info->fs_devices->device_list_mutex); 4025 btrfs_handle_fs_error(fs_info, ret, 4026 "errors while submitting device barriers."); 4027 return ret; 4028 } 4029 } 4030 4031 list_for_each_entry(dev, head, dev_list) { 4032 if (!dev->bdev) { 4033 total_errors++; 4034 continue; 4035 } 4036 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4037 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4038 continue; 4039 4040 btrfs_set_stack_device_generation(dev_item, 0); 4041 btrfs_set_stack_device_type(dev_item, dev->type); 4042 btrfs_set_stack_device_id(dev_item, dev->devid); 4043 btrfs_set_stack_device_total_bytes(dev_item, 4044 dev->commit_total_bytes); 4045 btrfs_set_stack_device_bytes_used(dev_item, 4046 dev->commit_bytes_used); 4047 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4048 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4049 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4050 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4051 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4052 BTRFS_FSID_SIZE); 4053 4054 flags = btrfs_super_flags(sb); 4055 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4056 4057 ret = btrfs_validate_write_super(fs_info, sb); 4058 if (ret < 0) { 4059 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4060 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4061 "unexpected superblock corruption detected"); 4062 return -EUCLEAN; 4063 } 4064 4065 ret = write_dev_supers(dev, sb, max_mirrors); 4066 if (ret) 4067 total_errors++; 4068 } 4069 if (total_errors > max_errors) { 4070 btrfs_err(fs_info, "%d errors while writing supers", 4071 total_errors); 4072 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4073 4074 /* FUA is masked off if unsupported and can't be the reason */ 4075 btrfs_handle_fs_error(fs_info, -EIO, 4076 "%d errors while writing supers", 4077 total_errors); 4078 return -EIO; 4079 } 4080 4081 total_errors = 0; 4082 list_for_each_entry(dev, head, dev_list) { 4083 if (!dev->bdev) 4084 continue; 4085 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4086 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4087 continue; 4088 4089 ret = wait_dev_supers(dev, max_mirrors); 4090 if (ret) 4091 total_errors++; 4092 } 4093 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4094 if (total_errors > max_errors) { 4095 btrfs_handle_fs_error(fs_info, -EIO, 4096 "%d errors while writing supers", 4097 total_errors); 4098 return -EIO; 4099 } 4100 return 0; 4101 } 4102 4103 /* Drop a fs root from the radix tree and free it. */ 4104 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4105 struct btrfs_root *root) 4106 { 4107 bool drop_ref = false; 4108 4109 spin_lock(&fs_info->fs_roots_radix_lock); 4110 radix_tree_delete(&fs_info->fs_roots_radix, 4111 (unsigned long)root->root_key.objectid); 4112 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4113 drop_ref = true; 4114 spin_unlock(&fs_info->fs_roots_radix_lock); 4115 4116 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 4117 ASSERT(root->log_root == NULL); 4118 if (root->reloc_root) { 4119 btrfs_put_root(root->reloc_root); 4120 root->reloc_root = NULL; 4121 } 4122 } 4123 4124 if (drop_ref) 4125 btrfs_put_root(root); 4126 } 4127 4128 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 4129 { 4130 u64 root_objectid = 0; 4131 struct btrfs_root *gang[8]; 4132 int i = 0; 4133 int err = 0; 4134 unsigned int ret = 0; 4135 4136 while (1) { 4137 spin_lock(&fs_info->fs_roots_radix_lock); 4138 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4139 (void **)gang, root_objectid, 4140 ARRAY_SIZE(gang)); 4141 if (!ret) { 4142 spin_unlock(&fs_info->fs_roots_radix_lock); 4143 break; 4144 } 4145 root_objectid = gang[ret - 1]->root_key.objectid + 1; 4146 4147 for (i = 0; i < ret; i++) { 4148 /* Avoid to grab roots in dead_roots */ 4149 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 4150 gang[i] = NULL; 4151 continue; 4152 } 4153 /* grab all the search result for later use */ 4154 gang[i] = btrfs_grab_root(gang[i]); 4155 } 4156 spin_unlock(&fs_info->fs_roots_radix_lock); 4157 4158 for (i = 0; i < ret; i++) { 4159 if (!gang[i]) 4160 continue; 4161 root_objectid = gang[i]->root_key.objectid; 4162 err = btrfs_orphan_cleanup(gang[i]); 4163 if (err) 4164 break; 4165 btrfs_put_root(gang[i]); 4166 } 4167 root_objectid++; 4168 } 4169 4170 /* release the uncleaned roots due to error */ 4171 for (; i < ret; i++) { 4172 if (gang[i]) 4173 btrfs_put_root(gang[i]); 4174 } 4175 return err; 4176 } 4177 4178 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4179 { 4180 struct btrfs_root *root = fs_info->tree_root; 4181 struct btrfs_trans_handle *trans; 4182 4183 mutex_lock(&fs_info->cleaner_mutex); 4184 btrfs_run_delayed_iputs(fs_info); 4185 mutex_unlock(&fs_info->cleaner_mutex); 4186 wake_up_process(fs_info->cleaner_kthread); 4187 4188 /* wait until ongoing cleanup work done */ 4189 down_write(&fs_info->cleanup_work_sem); 4190 up_write(&fs_info->cleanup_work_sem); 4191 4192 trans = btrfs_join_transaction(root); 4193 if (IS_ERR(trans)) 4194 return PTR_ERR(trans); 4195 return btrfs_commit_transaction(trans); 4196 } 4197 4198 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4199 { 4200 int ret; 4201 4202 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4203 /* 4204 * We don't want the cleaner to start new transactions, add more delayed 4205 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4206 * because that frees the task_struct, and the transaction kthread might 4207 * still try to wake up the cleaner. 4208 */ 4209 kthread_park(fs_info->cleaner_kthread); 4210 4211 /* wait for the qgroup rescan worker to stop */ 4212 btrfs_qgroup_wait_for_completion(fs_info, false); 4213 4214 /* wait for the uuid_scan task to finish */ 4215 down(&fs_info->uuid_tree_rescan_sem); 4216 /* avoid complains from lockdep et al., set sem back to initial state */ 4217 up(&fs_info->uuid_tree_rescan_sem); 4218 4219 /* pause restriper - we want to resume on mount */ 4220 btrfs_pause_balance(fs_info); 4221 4222 btrfs_dev_replace_suspend_for_unmount(fs_info); 4223 4224 btrfs_scrub_cancel(fs_info); 4225 4226 /* wait for any defraggers to finish */ 4227 wait_event(fs_info->transaction_wait, 4228 (atomic_read(&fs_info->defrag_running) == 0)); 4229 4230 /* clear out the rbtree of defraggable inodes */ 4231 btrfs_cleanup_defrag_inodes(fs_info); 4232 4233 cancel_work_sync(&fs_info->async_reclaim_work); 4234 cancel_work_sync(&fs_info->async_data_reclaim_work); 4235 cancel_work_sync(&fs_info->preempt_reclaim_work); 4236 4237 /* Cancel or finish ongoing discard work */ 4238 btrfs_discard_cleanup(fs_info); 4239 4240 if (!sb_rdonly(fs_info->sb)) { 4241 /* 4242 * The cleaner kthread is stopped, so do one final pass over 4243 * unused block groups. 4244 */ 4245 btrfs_delete_unused_bgs(fs_info); 4246 4247 /* 4248 * There might be existing delayed inode workers still running 4249 * and holding an empty delayed inode item. We must wait for 4250 * them to complete first because they can create a transaction. 4251 * This happens when someone calls btrfs_balance_delayed_items() 4252 * and then a transaction commit runs the same delayed nodes 4253 * before any delayed worker has done something with the nodes. 4254 * We must wait for any worker here and not at transaction 4255 * commit time since that could cause a deadlock. 4256 * This is a very rare case. 4257 */ 4258 btrfs_flush_workqueue(fs_info->delayed_workers); 4259 4260 ret = btrfs_commit_super(fs_info); 4261 if (ret) 4262 btrfs_err(fs_info, "commit super ret %d", ret); 4263 } 4264 4265 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 4266 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 4267 btrfs_error_commit_super(fs_info); 4268 4269 kthread_stop(fs_info->transaction_kthread); 4270 kthread_stop(fs_info->cleaner_kthread); 4271 4272 ASSERT(list_empty(&fs_info->delayed_iputs)); 4273 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4274 4275 if (btrfs_check_quota_leak(fs_info)) { 4276 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4277 btrfs_err(fs_info, "qgroup reserved space leaked"); 4278 } 4279 4280 btrfs_free_qgroup_config(fs_info); 4281 ASSERT(list_empty(&fs_info->delalloc_roots)); 4282 4283 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4284 btrfs_info(fs_info, "at unmount delalloc count %lld", 4285 percpu_counter_sum(&fs_info->delalloc_bytes)); 4286 } 4287 4288 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4289 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4290 percpu_counter_sum(&fs_info->ordered_bytes)); 4291 4292 btrfs_sysfs_remove_mounted(fs_info); 4293 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4294 4295 btrfs_put_block_group_cache(fs_info); 4296 4297 /* 4298 * we must make sure there is not any read request to 4299 * submit after we stopping all workers. 4300 */ 4301 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4302 btrfs_stop_all_workers(fs_info); 4303 4304 /* We shouldn't have any transaction open at this point */ 4305 ASSERT(list_empty(&fs_info->trans_list)); 4306 4307 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4308 free_root_pointers(fs_info, true); 4309 btrfs_free_fs_roots(fs_info); 4310 4311 /* 4312 * We must free the block groups after dropping the fs_roots as we could 4313 * have had an IO error and have left over tree log blocks that aren't 4314 * cleaned up until the fs roots are freed. This makes the block group 4315 * accounting appear to be wrong because there's pending reserved bytes, 4316 * so make sure we do the block group cleanup afterwards. 4317 */ 4318 btrfs_free_block_groups(fs_info); 4319 4320 iput(fs_info->btree_inode); 4321 4322 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4323 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4324 btrfsic_unmount(fs_info->fs_devices); 4325 #endif 4326 4327 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4328 btrfs_close_devices(fs_info->fs_devices); 4329 } 4330 4331 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4332 int atomic) 4333 { 4334 int ret; 4335 struct inode *btree_inode = buf->pages[0]->mapping->host; 4336 4337 ret = extent_buffer_uptodate(buf); 4338 if (!ret) 4339 return ret; 4340 4341 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4342 parent_transid, atomic); 4343 if (ret == -EAGAIN) 4344 return ret; 4345 return !ret; 4346 } 4347 4348 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4349 { 4350 struct btrfs_fs_info *fs_info = buf->fs_info; 4351 u64 transid = btrfs_header_generation(buf); 4352 int was_dirty; 4353 4354 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4355 /* 4356 * This is a fast path so only do this check if we have sanity tests 4357 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4358 * outside of the sanity tests. 4359 */ 4360 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4361 return; 4362 #endif 4363 btrfs_assert_tree_locked(buf); 4364 if (transid != fs_info->generation) 4365 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4366 buf->start, transid, fs_info->generation); 4367 was_dirty = set_extent_buffer_dirty(buf); 4368 if (!was_dirty) 4369 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4370 buf->len, 4371 fs_info->dirty_metadata_batch); 4372 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4373 /* 4374 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4375 * but item data not updated. 4376 * So here we should only check item pointers, not item data. 4377 */ 4378 if (btrfs_header_level(buf) == 0 && 4379 btrfs_check_leaf_relaxed(buf)) { 4380 btrfs_print_leaf(buf); 4381 ASSERT(0); 4382 } 4383 #endif 4384 } 4385 4386 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4387 int flush_delayed) 4388 { 4389 /* 4390 * looks as though older kernels can get into trouble with 4391 * this code, they end up stuck in balance_dirty_pages forever 4392 */ 4393 int ret; 4394 4395 if (current->flags & PF_MEMALLOC) 4396 return; 4397 4398 if (flush_delayed) 4399 btrfs_balance_delayed_items(fs_info); 4400 4401 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4402 BTRFS_DIRTY_METADATA_THRESH, 4403 fs_info->dirty_metadata_batch); 4404 if (ret > 0) { 4405 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4406 } 4407 } 4408 4409 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4410 { 4411 __btrfs_btree_balance_dirty(fs_info, 1); 4412 } 4413 4414 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4415 { 4416 __btrfs_btree_balance_dirty(fs_info, 0); 4417 } 4418 4419 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4420 struct btrfs_key *first_key) 4421 { 4422 return btree_read_extent_buffer_pages(buf, parent_transid, 4423 level, first_key); 4424 } 4425 4426 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4427 { 4428 /* cleanup FS via transaction */ 4429 btrfs_cleanup_transaction(fs_info); 4430 4431 mutex_lock(&fs_info->cleaner_mutex); 4432 btrfs_run_delayed_iputs(fs_info); 4433 mutex_unlock(&fs_info->cleaner_mutex); 4434 4435 down_write(&fs_info->cleanup_work_sem); 4436 up_write(&fs_info->cleanup_work_sem); 4437 } 4438 4439 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4440 { 4441 struct btrfs_root *gang[8]; 4442 u64 root_objectid = 0; 4443 int ret; 4444 4445 spin_lock(&fs_info->fs_roots_radix_lock); 4446 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4447 (void **)gang, root_objectid, 4448 ARRAY_SIZE(gang))) != 0) { 4449 int i; 4450 4451 for (i = 0; i < ret; i++) 4452 gang[i] = btrfs_grab_root(gang[i]); 4453 spin_unlock(&fs_info->fs_roots_radix_lock); 4454 4455 for (i = 0; i < ret; i++) { 4456 if (!gang[i]) 4457 continue; 4458 root_objectid = gang[i]->root_key.objectid; 4459 btrfs_free_log(NULL, gang[i]); 4460 btrfs_put_root(gang[i]); 4461 } 4462 root_objectid++; 4463 spin_lock(&fs_info->fs_roots_radix_lock); 4464 } 4465 spin_unlock(&fs_info->fs_roots_radix_lock); 4466 btrfs_free_log_root_tree(NULL, fs_info); 4467 } 4468 4469 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4470 { 4471 struct btrfs_ordered_extent *ordered; 4472 4473 spin_lock(&root->ordered_extent_lock); 4474 /* 4475 * This will just short circuit the ordered completion stuff which will 4476 * make sure the ordered extent gets properly cleaned up. 4477 */ 4478 list_for_each_entry(ordered, &root->ordered_extents, 4479 root_extent_list) 4480 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4481 spin_unlock(&root->ordered_extent_lock); 4482 } 4483 4484 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4485 { 4486 struct btrfs_root *root; 4487 struct list_head splice; 4488 4489 INIT_LIST_HEAD(&splice); 4490 4491 spin_lock(&fs_info->ordered_root_lock); 4492 list_splice_init(&fs_info->ordered_roots, &splice); 4493 while (!list_empty(&splice)) { 4494 root = list_first_entry(&splice, struct btrfs_root, 4495 ordered_root); 4496 list_move_tail(&root->ordered_root, 4497 &fs_info->ordered_roots); 4498 4499 spin_unlock(&fs_info->ordered_root_lock); 4500 btrfs_destroy_ordered_extents(root); 4501 4502 cond_resched(); 4503 spin_lock(&fs_info->ordered_root_lock); 4504 } 4505 spin_unlock(&fs_info->ordered_root_lock); 4506 4507 /* 4508 * We need this here because if we've been flipped read-only we won't 4509 * get sync() from the umount, so we need to make sure any ordered 4510 * extents that haven't had their dirty pages IO start writeout yet 4511 * actually get run and error out properly. 4512 */ 4513 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4514 } 4515 4516 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4517 struct btrfs_fs_info *fs_info) 4518 { 4519 struct rb_node *node; 4520 struct btrfs_delayed_ref_root *delayed_refs; 4521 struct btrfs_delayed_ref_node *ref; 4522 int ret = 0; 4523 4524 delayed_refs = &trans->delayed_refs; 4525 4526 spin_lock(&delayed_refs->lock); 4527 if (atomic_read(&delayed_refs->num_entries) == 0) { 4528 spin_unlock(&delayed_refs->lock); 4529 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4530 return ret; 4531 } 4532 4533 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4534 struct btrfs_delayed_ref_head *head; 4535 struct rb_node *n; 4536 bool pin_bytes = false; 4537 4538 head = rb_entry(node, struct btrfs_delayed_ref_head, 4539 href_node); 4540 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4541 continue; 4542 4543 spin_lock(&head->lock); 4544 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4545 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4546 ref_node); 4547 ref->in_tree = 0; 4548 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4549 RB_CLEAR_NODE(&ref->ref_node); 4550 if (!list_empty(&ref->add_list)) 4551 list_del(&ref->add_list); 4552 atomic_dec(&delayed_refs->num_entries); 4553 btrfs_put_delayed_ref(ref); 4554 } 4555 if (head->must_insert_reserved) 4556 pin_bytes = true; 4557 btrfs_free_delayed_extent_op(head->extent_op); 4558 btrfs_delete_ref_head(delayed_refs, head); 4559 spin_unlock(&head->lock); 4560 spin_unlock(&delayed_refs->lock); 4561 mutex_unlock(&head->mutex); 4562 4563 if (pin_bytes) { 4564 struct btrfs_block_group *cache; 4565 4566 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4567 BUG_ON(!cache); 4568 4569 spin_lock(&cache->space_info->lock); 4570 spin_lock(&cache->lock); 4571 cache->pinned += head->num_bytes; 4572 btrfs_space_info_update_bytes_pinned(fs_info, 4573 cache->space_info, head->num_bytes); 4574 cache->reserved -= head->num_bytes; 4575 cache->space_info->bytes_reserved -= head->num_bytes; 4576 spin_unlock(&cache->lock); 4577 spin_unlock(&cache->space_info->lock); 4578 percpu_counter_add_batch( 4579 &cache->space_info->total_bytes_pinned, 4580 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH); 4581 4582 btrfs_put_block_group(cache); 4583 4584 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4585 head->bytenr + head->num_bytes - 1); 4586 } 4587 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4588 btrfs_put_delayed_ref_head(head); 4589 cond_resched(); 4590 spin_lock(&delayed_refs->lock); 4591 } 4592 btrfs_qgroup_destroy_extent_records(trans); 4593 4594 spin_unlock(&delayed_refs->lock); 4595 4596 return ret; 4597 } 4598 4599 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4600 { 4601 struct btrfs_inode *btrfs_inode; 4602 struct list_head splice; 4603 4604 INIT_LIST_HEAD(&splice); 4605 4606 spin_lock(&root->delalloc_lock); 4607 list_splice_init(&root->delalloc_inodes, &splice); 4608 4609 while (!list_empty(&splice)) { 4610 struct inode *inode = NULL; 4611 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4612 delalloc_inodes); 4613 __btrfs_del_delalloc_inode(root, btrfs_inode); 4614 spin_unlock(&root->delalloc_lock); 4615 4616 /* 4617 * Make sure we get a live inode and that it'll not disappear 4618 * meanwhile. 4619 */ 4620 inode = igrab(&btrfs_inode->vfs_inode); 4621 if (inode) { 4622 invalidate_inode_pages2(inode->i_mapping); 4623 iput(inode); 4624 } 4625 spin_lock(&root->delalloc_lock); 4626 } 4627 spin_unlock(&root->delalloc_lock); 4628 } 4629 4630 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4631 { 4632 struct btrfs_root *root; 4633 struct list_head splice; 4634 4635 INIT_LIST_HEAD(&splice); 4636 4637 spin_lock(&fs_info->delalloc_root_lock); 4638 list_splice_init(&fs_info->delalloc_roots, &splice); 4639 while (!list_empty(&splice)) { 4640 root = list_first_entry(&splice, struct btrfs_root, 4641 delalloc_root); 4642 root = btrfs_grab_root(root); 4643 BUG_ON(!root); 4644 spin_unlock(&fs_info->delalloc_root_lock); 4645 4646 btrfs_destroy_delalloc_inodes(root); 4647 btrfs_put_root(root); 4648 4649 spin_lock(&fs_info->delalloc_root_lock); 4650 } 4651 spin_unlock(&fs_info->delalloc_root_lock); 4652 } 4653 4654 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4655 struct extent_io_tree *dirty_pages, 4656 int mark) 4657 { 4658 int ret; 4659 struct extent_buffer *eb; 4660 u64 start = 0; 4661 u64 end; 4662 4663 while (1) { 4664 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4665 mark, NULL); 4666 if (ret) 4667 break; 4668 4669 clear_extent_bits(dirty_pages, start, end, mark); 4670 while (start <= end) { 4671 eb = find_extent_buffer(fs_info, start); 4672 start += fs_info->nodesize; 4673 if (!eb) 4674 continue; 4675 wait_on_extent_buffer_writeback(eb); 4676 4677 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4678 &eb->bflags)) 4679 clear_extent_buffer_dirty(eb); 4680 free_extent_buffer_stale(eb); 4681 } 4682 } 4683 4684 return ret; 4685 } 4686 4687 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4688 struct extent_io_tree *unpin) 4689 { 4690 u64 start; 4691 u64 end; 4692 int ret; 4693 4694 while (1) { 4695 struct extent_state *cached_state = NULL; 4696 4697 /* 4698 * The btrfs_finish_extent_commit() may get the same range as 4699 * ours between find_first_extent_bit and clear_extent_dirty. 4700 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4701 * the same extent range. 4702 */ 4703 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4704 ret = find_first_extent_bit(unpin, 0, &start, &end, 4705 EXTENT_DIRTY, &cached_state); 4706 if (ret) { 4707 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4708 break; 4709 } 4710 4711 clear_extent_dirty(unpin, start, end, &cached_state); 4712 free_extent_state(cached_state); 4713 btrfs_error_unpin_extent_range(fs_info, start, end); 4714 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4715 cond_resched(); 4716 } 4717 4718 return 0; 4719 } 4720 4721 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4722 { 4723 struct inode *inode; 4724 4725 inode = cache->io_ctl.inode; 4726 if (inode) { 4727 invalidate_inode_pages2(inode->i_mapping); 4728 BTRFS_I(inode)->generation = 0; 4729 cache->io_ctl.inode = NULL; 4730 iput(inode); 4731 } 4732 ASSERT(cache->io_ctl.pages == NULL); 4733 btrfs_put_block_group(cache); 4734 } 4735 4736 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4737 struct btrfs_fs_info *fs_info) 4738 { 4739 struct btrfs_block_group *cache; 4740 4741 spin_lock(&cur_trans->dirty_bgs_lock); 4742 while (!list_empty(&cur_trans->dirty_bgs)) { 4743 cache = list_first_entry(&cur_trans->dirty_bgs, 4744 struct btrfs_block_group, 4745 dirty_list); 4746 4747 if (!list_empty(&cache->io_list)) { 4748 spin_unlock(&cur_trans->dirty_bgs_lock); 4749 list_del_init(&cache->io_list); 4750 btrfs_cleanup_bg_io(cache); 4751 spin_lock(&cur_trans->dirty_bgs_lock); 4752 } 4753 4754 list_del_init(&cache->dirty_list); 4755 spin_lock(&cache->lock); 4756 cache->disk_cache_state = BTRFS_DC_ERROR; 4757 spin_unlock(&cache->lock); 4758 4759 spin_unlock(&cur_trans->dirty_bgs_lock); 4760 btrfs_put_block_group(cache); 4761 btrfs_delayed_refs_rsv_release(fs_info, 1); 4762 spin_lock(&cur_trans->dirty_bgs_lock); 4763 } 4764 spin_unlock(&cur_trans->dirty_bgs_lock); 4765 4766 /* 4767 * Refer to the definition of io_bgs member for details why it's safe 4768 * to use it without any locking 4769 */ 4770 while (!list_empty(&cur_trans->io_bgs)) { 4771 cache = list_first_entry(&cur_trans->io_bgs, 4772 struct btrfs_block_group, 4773 io_list); 4774 4775 list_del_init(&cache->io_list); 4776 spin_lock(&cache->lock); 4777 cache->disk_cache_state = BTRFS_DC_ERROR; 4778 spin_unlock(&cache->lock); 4779 btrfs_cleanup_bg_io(cache); 4780 } 4781 } 4782 4783 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4784 struct btrfs_fs_info *fs_info) 4785 { 4786 struct btrfs_device *dev, *tmp; 4787 4788 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4789 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4790 ASSERT(list_empty(&cur_trans->io_bgs)); 4791 4792 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4793 post_commit_list) { 4794 list_del_init(&dev->post_commit_list); 4795 } 4796 4797 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4798 4799 cur_trans->state = TRANS_STATE_COMMIT_START; 4800 wake_up(&fs_info->transaction_blocked_wait); 4801 4802 cur_trans->state = TRANS_STATE_UNBLOCKED; 4803 wake_up(&fs_info->transaction_wait); 4804 4805 btrfs_destroy_delayed_inodes(fs_info); 4806 4807 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4808 EXTENT_DIRTY); 4809 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4810 4811 btrfs_free_redirty_list(cur_trans); 4812 4813 cur_trans->state =TRANS_STATE_COMPLETED; 4814 wake_up(&cur_trans->commit_wait); 4815 } 4816 4817 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4818 { 4819 struct btrfs_transaction *t; 4820 4821 mutex_lock(&fs_info->transaction_kthread_mutex); 4822 4823 spin_lock(&fs_info->trans_lock); 4824 while (!list_empty(&fs_info->trans_list)) { 4825 t = list_first_entry(&fs_info->trans_list, 4826 struct btrfs_transaction, list); 4827 if (t->state >= TRANS_STATE_COMMIT_START) { 4828 refcount_inc(&t->use_count); 4829 spin_unlock(&fs_info->trans_lock); 4830 btrfs_wait_for_commit(fs_info, t->transid); 4831 btrfs_put_transaction(t); 4832 spin_lock(&fs_info->trans_lock); 4833 continue; 4834 } 4835 if (t == fs_info->running_transaction) { 4836 t->state = TRANS_STATE_COMMIT_DOING; 4837 spin_unlock(&fs_info->trans_lock); 4838 /* 4839 * We wait for 0 num_writers since we don't hold a trans 4840 * handle open currently for this transaction. 4841 */ 4842 wait_event(t->writer_wait, 4843 atomic_read(&t->num_writers) == 0); 4844 } else { 4845 spin_unlock(&fs_info->trans_lock); 4846 } 4847 btrfs_cleanup_one_transaction(t, fs_info); 4848 4849 spin_lock(&fs_info->trans_lock); 4850 if (t == fs_info->running_transaction) 4851 fs_info->running_transaction = NULL; 4852 list_del_init(&t->list); 4853 spin_unlock(&fs_info->trans_lock); 4854 4855 btrfs_put_transaction(t); 4856 trace_btrfs_transaction_commit(fs_info->tree_root); 4857 spin_lock(&fs_info->trans_lock); 4858 } 4859 spin_unlock(&fs_info->trans_lock); 4860 btrfs_destroy_all_ordered_extents(fs_info); 4861 btrfs_destroy_delayed_inodes(fs_info); 4862 btrfs_assert_delayed_root_empty(fs_info); 4863 btrfs_destroy_all_delalloc_inodes(fs_info); 4864 btrfs_drop_all_logs(fs_info); 4865 mutex_unlock(&fs_info->transaction_kthread_mutex); 4866 4867 return 0; 4868 } 4869 4870 int btrfs_init_root_free_objectid(struct btrfs_root *root) 4871 { 4872 struct btrfs_path *path; 4873 int ret; 4874 struct extent_buffer *l; 4875 struct btrfs_key search_key; 4876 struct btrfs_key found_key; 4877 int slot; 4878 4879 path = btrfs_alloc_path(); 4880 if (!path) 4881 return -ENOMEM; 4882 4883 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 4884 search_key.type = -1; 4885 search_key.offset = (u64)-1; 4886 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 4887 if (ret < 0) 4888 goto error; 4889 BUG_ON(ret == 0); /* Corruption */ 4890 if (path->slots[0] > 0) { 4891 slot = path->slots[0] - 1; 4892 l = path->nodes[0]; 4893 btrfs_item_key_to_cpu(l, &found_key, slot); 4894 root->free_objectid = max_t(u64, found_key.objectid + 1, 4895 BTRFS_FIRST_FREE_OBJECTID); 4896 } else { 4897 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 4898 } 4899 ret = 0; 4900 error: 4901 btrfs_free_path(path); 4902 return ret; 4903 } 4904 4905 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 4906 { 4907 int ret; 4908 mutex_lock(&root->objectid_mutex); 4909 4910 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 4911 btrfs_warn(root->fs_info, 4912 "the objectid of root %llu reaches its highest value", 4913 root->root_key.objectid); 4914 ret = -ENOSPC; 4915 goto out; 4916 } 4917 4918 *objectid = root->free_objectid++; 4919 ret = 0; 4920 out: 4921 mutex_unlock(&root->objectid_mutex); 4922 return ret; 4923 } 4924