1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include <linux/slab.h> 31 #include <linux/migrate.h> 32 #include <linux/ratelimit.h> 33 #include <asm/unaligned.h> 34 #include "compat.h" 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "async-thread.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 48 static struct extent_io_ops btree_extent_io_ops; 49 static void end_workqueue_fn(struct btrfs_work *work); 50 static void free_fs_root(struct btrfs_root *root); 51 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 52 int read_only); 53 static int btrfs_destroy_ordered_operations(struct btrfs_root *root); 54 static int btrfs_destroy_ordered_extents(struct btrfs_root *root); 55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 56 struct btrfs_root *root); 57 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t); 58 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 59 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 60 struct extent_io_tree *dirty_pages, 61 int mark); 62 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 63 struct extent_io_tree *pinned_extents); 64 static int btrfs_cleanup_transaction(struct btrfs_root *root); 65 66 /* 67 * end_io_wq structs are used to do processing in task context when an IO is 68 * complete. This is used during reads to verify checksums, and it is used 69 * by writes to insert metadata for new file extents after IO is complete. 70 */ 71 struct end_io_wq { 72 struct bio *bio; 73 bio_end_io_t *end_io; 74 void *private; 75 struct btrfs_fs_info *info; 76 int error; 77 int metadata; 78 struct list_head list; 79 struct btrfs_work work; 80 }; 81 82 /* 83 * async submit bios are used to offload expensive checksumming 84 * onto the worker threads. They checksum file and metadata bios 85 * just before they are sent down the IO stack. 86 */ 87 struct async_submit_bio { 88 struct inode *inode; 89 struct bio *bio; 90 struct list_head list; 91 extent_submit_bio_hook_t *submit_bio_start; 92 extent_submit_bio_hook_t *submit_bio_done; 93 int rw; 94 int mirror_num; 95 unsigned long bio_flags; 96 /* 97 * bio_offset is optional, can be used if the pages in the bio 98 * can't tell us where in the file the bio should go 99 */ 100 u64 bio_offset; 101 struct btrfs_work work; 102 }; 103 104 /* 105 * Lockdep class keys for extent_buffer->lock's in this root. For a given 106 * eb, the lockdep key is determined by the btrfs_root it belongs to and 107 * the level the eb occupies in the tree. 108 * 109 * Different roots are used for different purposes and may nest inside each 110 * other and they require separate keysets. As lockdep keys should be 111 * static, assign keysets according to the purpose of the root as indicated 112 * by btrfs_root->objectid. This ensures that all special purpose roots 113 * have separate keysets. 114 * 115 * Lock-nesting across peer nodes is always done with the immediate parent 116 * node locked thus preventing deadlock. As lockdep doesn't know this, use 117 * subclass to avoid triggering lockdep warning in such cases. 118 * 119 * The key is set by the readpage_end_io_hook after the buffer has passed 120 * csum validation but before the pages are unlocked. It is also set by 121 * btrfs_init_new_buffer on freshly allocated blocks. 122 * 123 * We also add a check to make sure the highest level of the tree is the 124 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 125 * needs update as well. 126 */ 127 #ifdef CONFIG_DEBUG_LOCK_ALLOC 128 # if BTRFS_MAX_LEVEL != 8 129 # error 130 # endif 131 132 static struct btrfs_lockdep_keyset { 133 u64 id; /* root objectid */ 134 const char *name_stem; /* lock name stem */ 135 char names[BTRFS_MAX_LEVEL + 1][20]; 136 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 137 } btrfs_lockdep_keysets[] = { 138 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 139 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 140 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 141 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 142 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 143 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 144 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" }, 145 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 146 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 147 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 148 { .id = 0, .name_stem = "tree" }, 149 }; 150 151 void __init btrfs_init_lockdep(void) 152 { 153 int i, j; 154 155 /* initialize lockdep class names */ 156 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 157 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 158 159 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 160 snprintf(ks->names[j], sizeof(ks->names[j]), 161 "btrfs-%s-%02d", ks->name_stem, j); 162 } 163 } 164 165 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 166 int level) 167 { 168 struct btrfs_lockdep_keyset *ks; 169 170 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 171 172 /* find the matching keyset, id 0 is the default entry */ 173 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 174 if (ks->id == objectid) 175 break; 176 177 lockdep_set_class_and_name(&eb->lock, 178 &ks->keys[level], ks->names[level]); 179 } 180 181 #endif 182 183 /* 184 * extents on the btree inode are pretty simple, there's one extent 185 * that covers the entire device 186 */ 187 static struct extent_map *btree_get_extent(struct inode *inode, 188 struct page *page, size_t pg_offset, u64 start, u64 len, 189 int create) 190 { 191 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 192 struct extent_map *em; 193 int ret; 194 195 read_lock(&em_tree->lock); 196 em = lookup_extent_mapping(em_tree, start, len); 197 if (em) { 198 em->bdev = 199 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 200 read_unlock(&em_tree->lock); 201 goto out; 202 } 203 read_unlock(&em_tree->lock); 204 205 em = alloc_extent_map(); 206 if (!em) { 207 em = ERR_PTR(-ENOMEM); 208 goto out; 209 } 210 em->start = 0; 211 em->len = (u64)-1; 212 em->block_len = (u64)-1; 213 em->block_start = 0; 214 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 215 216 write_lock(&em_tree->lock); 217 ret = add_extent_mapping(em_tree, em); 218 if (ret == -EEXIST) { 219 u64 failed_start = em->start; 220 u64 failed_len = em->len; 221 222 free_extent_map(em); 223 em = lookup_extent_mapping(em_tree, start, len); 224 if (em) { 225 ret = 0; 226 } else { 227 em = lookup_extent_mapping(em_tree, failed_start, 228 failed_len); 229 ret = -EIO; 230 } 231 } else if (ret) { 232 free_extent_map(em); 233 em = NULL; 234 } 235 write_unlock(&em_tree->lock); 236 237 if (ret) 238 em = ERR_PTR(ret); 239 out: 240 return em; 241 } 242 243 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 244 { 245 return crc32c(seed, data, len); 246 } 247 248 void btrfs_csum_final(u32 crc, char *result) 249 { 250 put_unaligned_le32(~crc, result); 251 } 252 253 /* 254 * compute the csum for a btree block, and either verify it or write it 255 * into the csum field of the block. 256 */ 257 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 258 int verify) 259 { 260 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 261 char *result = NULL; 262 unsigned long len; 263 unsigned long cur_len; 264 unsigned long offset = BTRFS_CSUM_SIZE; 265 char *kaddr; 266 unsigned long map_start; 267 unsigned long map_len; 268 int err; 269 u32 crc = ~(u32)0; 270 unsigned long inline_result; 271 272 len = buf->len - offset; 273 while (len > 0) { 274 err = map_private_extent_buffer(buf, offset, 32, 275 &kaddr, &map_start, &map_len); 276 if (err) 277 return 1; 278 cur_len = min(len, map_len - (offset - map_start)); 279 crc = btrfs_csum_data(root, kaddr + offset - map_start, 280 crc, cur_len); 281 len -= cur_len; 282 offset += cur_len; 283 } 284 if (csum_size > sizeof(inline_result)) { 285 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 286 if (!result) 287 return 1; 288 } else { 289 result = (char *)&inline_result; 290 } 291 292 btrfs_csum_final(crc, result); 293 294 if (verify) { 295 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 296 u32 val; 297 u32 found = 0; 298 memcpy(&found, result, csum_size); 299 300 read_extent_buffer(buf, &val, 0, csum_size); 301 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify " 302 "failed on %llu wanted %X found %X " 303 "level %d\n", 304 root->fs_info->sb->s_id, 305 (unsigned long long)buf->start, val, found, 306 btrfs_header_level(buf)); 307 if (result != (char *)&inline_result) 308 kfree(result); 309 return 1; 310 } 311 } else { 312 write_extent_buffer(buf, result, 0, csum_size); 313 } 314 if (result != (char *)&inline_result) 315 kfree(result); 316 return 0; 317 } 318 319 /* 320 * we can't consider a given block up to date unless the transid of the 321 * block matches the transid in the parent node's pointer. This is how we 322 * detect blocks that either didn't get written at all or got written 323 * in the wrong place. 324 */ 325 static int verify_parent_transid(struct extent_io_tree *io_tree, 326 struct extent_buffer *eb, u64 parent_transid) 327 { 328 struct extent_state *cached_state = NULL; 329 int ret; 330 331 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 332 return 0; 333 334 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 335 0, &cached_state, GFP_NOFS); 336 if (extent_buffer_uptodate(io_tree, eb, cached_state) && 337 btrfs_header_generation(eb) == parent_transid) { 338 ret = 0; 339 goto out; 340 } 341 printk_ratelimited("parent transid verify failed on %llu wanted %llu " 342 "found %llu\n", 343 (unsigned long long)eb->start, 344 (unsigned long long)parent_transid, 345 (unsigned long long)btrfs_header_generation(eb)); 346 ret = 1; 347 clear_extent_buffer_uptodate(io_tree, eb, &cached_state); 348 out: 349 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 350 &cached_state, GFP_NOFS); 351 return ret; 352 } 353 354 /* 355 * helper to read a given tree block, doing retries as required when 356 * the checksums don't match and we have alternate mirrors to try. 357 */ 358 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 359 struct extent_buffer *eb, 360 u64 start, u64 parent_transid) 361 { 362 struct extent_io_tree *io_tree; 363 int ret; 364 int num_copies = 0; 365 int mirror_num = 0; 366 367 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 368 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 369 while (1) { 370 ret = read_extent_buffer_pages(io_tree, eb, start, 371 WAIT_COMPLETE, 372 btree_get_extent, mirror_num); 373 if (!ret && 374 !verify_parent_transid(io_tree, eb, parent_transid)) 375 return ret; 376 377 /* 378 * This buffer's crc is fine, but its contents are corrupted, so 379 * there is no reason to read the other copies, they won't be 380 * any less wrong. 381 */ 382 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 383 return ret; 384 385 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 386 eb->start, eb->len); 387 if (num_copies == 1) 388 return ret; 389 390 mirror_num++; 391 if (mirror_num > num_copies) 392 return ret; 393 } 394 return -EIO; 395 } 396 397 /* 398 * checksum a dirty tree block before IO. This has extra checks to make sure 399 * we only fill in the checksum field in the first page of a multi-page block 400 */ 401 402 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 403 { 404 struct extent_io_tree *tree; 405 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 406 u64 found_start; 407 unsigned long len; 408 struct extent_buffer *eb; 409 int ret; 410 411 tree = &BTRFS_I(page->mapping->host)->io_tree; 412 413 if (page->private == EXTENT_PAGE_PRIVATE) { 414 WARN_ON(1); 415 goto out; 416 } 417 if (!page->private) { 418 WARN_ON(1); 419 goto out; 420 } 421 len = page->private >> 2; 422 WARN_ON(len == 0); 423 424 eb = alloc_extent_buffer(tree, start, len, page); 425 if (eb == NULL) { 426 WARN_ON(1); 427 goto out; 428 } 429 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE, 430 btrfs_header_generation(eb)); 431 BUG_ON(ret); 432 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN)); 433 434 found_start = btrfs_header_bytenr(eb); 435 if (found_start != start) { 436 WARN_ON(1); 437 goto err; 438 } 439 if (eb->first_page != page) { 440 WARN_ON(1); 441 goto err; 442 } 443 if (!PageUptodate(page)) { 444 WARN_ON(1); 445 goto err; 446 } 447 csum_tree_block(root, eb, 0); 448 err: 449 free_extent_buffer(eb); 450 out: 451 return 0; 452 } 453 454 static int check_tree_block_fsid(struct btrfs_root *root, 455 struct extent_buffer *eb) 456 { 457 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 458 u8 fsid[BTRFS_UUID_SIZE]; 459 int ret = 1; 460 461 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 462 BTRFS_FSID_SIZE); 463 while (fs_devices) { 464 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 465 ret = 0; 466 break; 467 } 468 fs_devices = fs_devices->seed; 469 } 470 return ret; 471 } 472 473 #define CORRUPT(reason, eb, root, slot) \ 474 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \ 475 "root=%llu, slot=%d\n", reason, \ 476 (unsigned long long)btrfs_header_bytenr(eb), \ 477 (unsigned long long)root->objectid, slot) 478 479 static noinline int check_leaf(struct btrfs_root *root, 480 struct extent_buffer *leaf) 481 { 482 struct btrfs_key key; 483 struct btrfs_key leaf_key; 484 u32 nritems = btrfs_header_nritems(leaf); 485 int slot; 486 487 if (nritems == 0) 488 return 0; 489 490 /* Check the 0 item */ 491 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 492 BTRFS_LEAF_DATA_SIZE(root)) { 493 CORRUPT("invalid item offset size pair", leaf, root, 0); 494 return -EIO; 495 } 496 497 /* 498 * Check to make sure each items keys are in the correct order and their 499 * offsets make sense. We only have to loop through nritems-1 because 500 * we check the current slot against the next slot, which verifies the 501 * next slot's offset+size makes sense and that the current's slot 502 * offset is correct. 503 */ 504 for (slot = 0; slot < nritems - 1; slot++) { 505 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 506 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 507 508 /* Make sure the keys are in the right order */ 509 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 510 CORRUPT("bad key order", leaf, root, slot); 511 return -EIO; 512 } 513 514 /* 515 * Make sure the offset and ends are right, remember that the 516 * item data starts at the end of the leaf and grows towards the 517 * front. 518 */ 519 if (btrfs_item_offset_nr(leaf, slot) != 520 btrfs_item_end_nr(leaf, slot + 1)) { 521 CORRUPT("slot offset bad", leaf, root, slot); 522 return -EIO; 523 } 524 525 /* 526 * Check to make sure that we don't point outside of the leaf, 527 * just incase all the items are consistent to eachother, but 528 * all point outside of the leaf. 529 */ 530 if (btrfs_item_end_nr(leaf, slot) > 531 BTRFS_LEAF_DATA_SIZE(root)) { 532 CORRUPT("slot end outside of leaf", leaf, root, slot); 533 return -EIO; 534 } 535 } 536 537 return 0; 538 } 539 540 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 541 struct extent_state *state) 542 { 543 struct extent_io_tree *tree; 544 u64 found_start; 545 int found_level; 546 unsigned long len; 547 struct extent_buffer *eb; 548 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 549 int ret = 0; 550 551 tree = &BTRFS_I(page->mapping->host)->io_tree; 552 if (page->private == EXTENT_PAGE_PRIVATE) 553 goto out; 554 if (!page->private) 555 goto out; 556 557 len = page->private >> 2; 558 WARN_ON(len == 0); 559 560 eb = alloc_extent_buffer(tree, start, len, page); 561 if (eb == NULL) { 562 ret = -EIO; 563 goto out; 564 } 565 566 found_start = btrfs_header_bytenr(eb); 567 if (found_start != start) { 568 printk_ratelimited(KERN_INFO "btrfs bad tree block start " 569 "%llu %llu\n", 570 (unsigned long long)found_start, 571 (unsigned long long)eb->start); 572 ret = -EIO; 573 goto err; 574 } 575 if (eb->first_page != page) { 576 printk(KERN_INFO "btrfs bad first page %lu %lu\n", 577 eb->first_page->index, page->index); 578 WARN_ON(1); 579 ret = -EIO; 580 goto err; 581 } 582 if (check_tree_block_fsid(root, eb)) { 583 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n", 584 (unsigned long long)eb->start); 585 ret = -EIO; 586 goto err; 587 } 588 found_level = btrfs_header_level(eb); 589 590 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 591 eb, found_level); 592 593 ret = csum_tree_block(root, eb, 1); 594 if (ret) { 595 ret = -EIO; 596 goto err; 597 } 598 599 /* 600 * If this is a leaf block and it is corrupt, set the corrupt bit so 601 * that we don't try and read the other copies of this block, just 602 * return -EIO. 603 */ 604 if (found_level == 0 && check_leaf(root, eb)) { 605 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 606 ret = -EIO; 607 } 608 609 end = min_t(u64, eb->len, PAGE_CACHE_SIZE); 610 end = eb->start + end - 1; 611 err: 612 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) { 613 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags); 614 btree_readahead_hook(root, eb, eb->start, ret); 615 } 616 617 free_extent_buffer(eb); 618 out: 619 return ret; 620 } 621 622 static int btree_io_failed_hook(struct bio *failed_bio, 623 struct page *page, u64 start, u64 end, 624 int mirror_num, struct extent_state *state) 625 { 626 struct extent_io_tree *tree; 627 unsigned long len; 628 struct extent_buffer *eb; 629 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 630 631 tree = &BTRFS_I(page->mapping->host)->io_tree; 632 if (page->private == EXTENT_PAGE_PRIVATE) 633 goto out; 634 if (!page->private) 635 goto out; 636 637 len = page->private >> 2; 638 WARN_ON(len == 0); 639 640 eb = alloc_extent_buffer(tree, start, len, page); 641 if (eb == NULL) 642 goto out; 643 644 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) { 645 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags); 646 btree_readahead_hook(root, eb, eb->start, -EIO); 647 } 648 free_extent_buffer(eb); 649 650 out: 651 return -EIO; /* we fixed nothing */ 652 } 653 654 static void end_workqueue_bio(struct bio *bio, int err) 655 { 656 struct end_io_wq *end_io_wq = bio->bi_private; 657 struct btrfs_fs_info *fs_info; 658 659 fs_info = end_io_wq->info; 660 end_io_wq->error = err; 661 end_io_wq->work.func = end_workqueue_fn; 662 end_io_wq->work.flags = 0; 663 664 if (bio->bi_rw & REQ_WRITE) { 665 if (end_io_wq->metadata == 1) 666 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 667 &end_io_wq->work); 668 else if (end_io_wq->metadata == 2) 669 btrfs_queue_worker(&fs_info->endio_freespace_worker, 670 &end_io_wq->work); 671 else 672 btrfs_queue_worker(&fs_info->endio_write_workers, 673 &end_io_wq->work); 674 } else { 675 if (end_io_wq->metadata) 676 btrfs_queue_worker(&fs_info->endio_meta_workers, 677 &end_io_wq->work); 678 else 679 btrfs_queue_worker(&fs_info->endio_workers, 680 &end_io_wq->work); 681 } 682 } 683 684 /* 685 * For the metadata arg you want 686 * 687 * 0 - if data 688 * 1 - if normal metadta 689 * 2 - if writing to the free space cache area 690 */ 691 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 692 int metadata) 693 { 694 struct end_io_wq *end_io_wq; 695 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 696 if (!end_io_wq) 697 return -ENOMEM; 698 699 end_io_wq->private = bio->bi_private; 700 end_io_wq->end_io = bio->bi_end_io; 701 end_io_wq->info = info; 702 end_io_wq->error = 0; 703 end_io_wq->bio = bio; 704 end_io_wq->metadata = metadata; 705 706 bio->bi_private = end_io_wq; 707 bio->bi_end_io = end_workqueue_bio; 708 return 0; 709 } 710 711 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 712 { 713 unsigned long limit = min_t(unsigned long, 714 info->workers.max_workers, 715 info->fs_devices->open_devices); 716 return 256 * limit; 717 } 718 719 static void run_one_async_start(struct btrfs_work *work) 720 { 721 struct async_submit_bio *async; 722 723 async = container_of(work, struct async_submit_bio, work); 724 async->submit_bio_start(async->inode, async->rw, async->bio, 725 async->mirror_num, async->bio_flags, 726 async->bio_offset); 727 } 728 729 static void run_one_async_done(struct btrfs_work *work) 730 { 731 struct btrfs_fs_info *fs_info; 732 struct async_submit_bio *async; 733 int limit; 734 735 async = container_of(work, struct async_submit_bio, work); 736 fs_info = BTRFS_I(async->inode)->root->fs_info; 737 738 limit = btrfs_async_submit_limit(fs_info); 739 limit = limit * 2 / 3; 740 741 atomic_dec(&fs_info->nr_async_submits); 742 743 if (atomic_read(&fs_info->nr_async_submits) < limit && 744 waitqueue_active(&fs_info->async_submit_wait)) 745 wake_up(&fs_info->async_submit_wait); 746 747 async->submit_bio_done(async->inode, async->rw, async->bio, 748 async->mirror_num, async->bio_flags, 749 async->bio_offset); 750 } 751 752 static void run_one_async_free(struct btrfs_work *work) 753 { 754 struct async_submit_bio *async; 755 756 async = container_of(work, struct async_submit_bio, work); 757 kfree(async); 758 } 759 760 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 761 int rw, struct bio *bio, int mirror_num, 762 unsigned long bio_flags, 763 u64 bio_offset, 764 extent_submit_bio_hook_t *submit_bio_start, 765 extent_submit_bio_hook_t *submit_bio_done) 766 { 767 struct async_submit_bio *async; 768 769 async = kmalloc(sizeof(*async), GFP_NOFS); 770 if (!async) 771 return -ENOMEM; 772 773 async->inode = inode; 774 async->rw = rw; 775 async->bio = bio; 776 async->mirror_num = mirror_num; 777 async->submit_bio_start = submit_bio_start; 778 async->submit_bio_done = submit_bio_done; 779 780 async->work.func = run_one_async_start; 781 async->work.ordered_func = run_one_async_done; 782 async->work.ordered_free = run_one_async_free; 783 784 async->work.flags = 0; 785 async->bio_flags = bio_flags; 786 async->bio_offset = bio_offset; 787 788 atomic_inc(&fs_info->nr_async_submits); 789 790 if (rw & REQ_SYNC) 791 btrfs_set_work_high_prio(&async->work); 792 793 btrfs_queue_worker(&fs_info->workers, &async->work); 794 795 while (atomic_read(&fs_info->async_submit_draining) && 796 atomic_read(&fs_info->nr_async_submits)) { 797 wait_event(fs_info->async_submit_wait, 798 (atomic_read(&fs_info->nr_async_submits) == 0)); 799 } 800 801 return 0; 802 } 803 804 static int btree_csum_one_bio(struct bio *bio) 805 { 806 struct bio_vec *bvec = bio->bi_io_vec; 807 int bio_index = 0; 808 struct btrfs_root *root; 809 810 WARN_ON(bio->bi_vcnt <= 0); 811 while (bio_index < bio->bi_vcnt) { 812 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 813 csum_dirty_buffer(root, bvec->bv_page); 814 bio_index++; 815 bvec++; 816 } 817 return 0; 818 } 819 820 static int __btree_submit_bio_start(struct inode *inode, int rw, 821 struct bio *bio, int mirror_num, 822 unsigned long bio_flags, 823 u64 bio_offset) 824 { 825 /* 826 * when we're called for a write, we're already in the async 827 * submission context. Just jump into btrfs_map_bio 828 */ 829 btree_csum_one_bio(bio); 830 return 0; 831 } 832 833 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 834 int mirror_num, unsigned long bio_flags, 835 u64 bio_offset) 836 { 837 /* 838 * when we're called for a write, we're already in the async 839 * submission context. Just jump into btrfs_map_bio 840 */ 841 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 842 } 843 844 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 845 int mirror_num, unsigned long bio_flags, 846 u64 bio_offset) 847 { 848 int ret; 849 850 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 851 bio, 1); 852 BUG_ON(ret); 853 854 if (!(rw & REQ_WRITE)) { 855 /* 856 * called for a read, do the setup so that checksum validation 857 * can happen in the async kernel threads 858 */ 859 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 860 mirror_num, 0); 861 } 862 863 /* 864 * kthread helpers are used to submit writes so that checksumming 865 * can happen in parallel across all CPUs 866 */ 867 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 868 inode, rw, bio, mirror_num, 0, 869 bio_offset, 870 __btree_submit_bio_start, 871 __btree_submit_bio_done); 872 } 873 874 #ifdef CONFIG_MIGRATION 875 static int btree_migratepage(struct address_space *mapping, 876 struct page *newpage, struct page *page, 877 enum migrate_mode mode) 878 { 879 /* 880 * we can't safely write a btree page from here, 881 * we haven't done the locking hook 882 */ 883 if (PageDirty(page)) 884 return -EAGAIN; 885 /* 886 * Buffers may be managed in a filesystem specific way. 887 * We must have no buffers or drop them. 888 */ 889 if (page_has_private(page) && 890 !try_to_release_page(page, GFP_KERNEL)) 891 return -EAGAIN; 892 return migrate_page(mapping, newpage, page, mode); 893 } 894 #endif 895 896 static int btree_writepage(struct page *page, struct writeback_control *wbc) 897 { 898 struct extent_io_tree *tree; 899 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 900 struct extent_buffer *eb; 901 int was_dirty; 902 903 tree = &BTRFS_I(page->mapping->host)->io_tree; 904 if (!(current->flags & PF_MEMALLOC)) { 905 return extent_write_full_page(tree, page, 906 btree_get_extent, wbc); 907 } 908 909 redirty_page_for_writepage(wbc, page); 910 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE); 911 WARN_ON(!eb); 912 913 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 914 if (!was_dirty) { 915 spin_lock(&root->fs_info->delalloc_lock); 916 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE; 917 spin_unlock(&root->fs_info->delalloc_lock); 918 } 919 free_extent_buffer(eb); 920 921 unlock_page(page); 922 return 0; 923 } 924 925 static int btree_writepages(struct address_space *mapping, 926 struct writeback_control *wbc) 927 { 928 struct extent_io_tree *tree; 929 tree = &BTRFS_I(mapping->host)->io_tree; 930 if (wbc->sync_mode == WB_SYNC_NONE) { 931 struct btrfs_root *root = BTRFS_I(mapping->host)->root; 932 u64 num_dirty; 933 unsigned long thresh = 32 * 1024 * 1024; 934 935 if (wbc->for_kupdate) 936 return 0; 937 938 /* this is a bit racy, but that's ok */ 939 num_dirty = root->fs_info->dirty_metadata_bytes; 940 if (num_dirty < thresh) 941 return 0; 942 } 943 return extent_writepages(tree, mapping, btree_get_extent, wbc); 944 } 945 946 static int btree_readpage(struct file *file, struct page *page) 947 { 948 struct extent_io_tree *tree; 949 tree = &BTRFS_I(page->mapping->host)->io_tree; 950 return extent_read_full_page(tree, page, btree_get_extent, 0); 951 } 952 953 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 954 { 955 struct extent_io_tree *tree; 956 struct extent_map_tree *map; 957 int ret; 958 959 if (PageWriteback(page) || PageDirty(page)) 960 return 0; 961 962 tree = &BTRFS_I(page->mapping->host)->io_tree; 963 map = &BTRFS_I(page->mapping->host)->extent_tree; 964 965 ret = try_release_extent_state(map, tree, page, gfp_flags); 966 if (!ret) 967 return 0; 968 969 ret = try_release_extent_buffer(tree, page); 970 if (ret == 1) { 971 ClearPagePrivate(page); 972 set_page_private(page, 0); 973 page_cache_release(page); 974 } 975 976 return ret; 977 } 978 979 static void btree_invalidatepage(struct page *page, unsigned long offset) 980 { 981 struct extent_io_tree *tree; 982 tree = &BTRFS_I(page->mapping->host)->io_tree; 983 extent_invalidatepage(tree, page, offset); 984 btree_releasepage(page, GFP_NOFS); 985 if (PagePrivate(page)) { 986 printk(KERN_WARNING "btrfs warning page private not zero " 987 "on page %llu\n", (unsigned long long)page_offset(page)); 988 ClearPagePrivate(page); 989 set_page_private(page, 0); 990 page_cache_release(page); 991 } 992 } 993 994 static const struct address_space_operations btree_aops = { 995 .readpage = btree_readpage, 996 .writepage = btree_writepage, 997 .writepages = btree_writepages, 998 .releasepage = btree_releasepage, 999 .invalidatepage = btree_invalidatepage, 1000 #ifdef CONFIG_MIGRATION 1001 .migratepage = btree_migratepage, 1002 #endif 1003 }; 1004 1005 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1006 u64 parent_transid) 1007 { 1008 struct extent_buffer *buf = NULL; 1009 struct inode *btree_inode = root->fs_info->btree_inode; 1010 int ret = 0; 1011 1012 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1013 if (!buf) 1014 return 0; 1015 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1016 buf, 0, WAIT_NONE, btree_get_extent, 0); 1017 free_extent_buffer(buf); 1018 return ret; 1019 } 1020 1021 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1022 int mirror_num, struct extent_buffer **eb) 1023 { 1024 struct extent_buffer *buf = NULL; 1025 struct inode *btree_inode = root->fs_info->btree_inode; 1026 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1027 int ret; 1028 1029 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1030 if (!buf) 1031 return 0; 1032 1033 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1034 1035 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1036 btree_get_extent, mirror_num); 1037 if (ret) { 1038 free_extent_buffer(buf); 1039 return ret; 1040 } 1041 1042 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1043 free_extent_buffer(buf); 1044 return -EIO; 1045 } else if (extent_buffer_uptodate(io_tree, buf, NULL)) { 1046 *eb = buf; 1047 } else { 1048 free_extent_buffer(buf); 1049 } 1050 return 0; 1051 } 1052 1053 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 1054 u64 bytenr, u32 blocksize) 1055 { 1056 struct inode *btree_inode = root->fs_info->btree_inode; 1057 struct extent_buffer *eb; 1058 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1059 bytenr, blocksize); 1060 return eb; 1061 } 1062 1063 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1064 u64 bytenr, u32 blocksize) 1065 { 1066 struct inode *btree_inode = root->fs_info->btree_inode; 1067 struct extent_buffer *eb; 1068 1069 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1070 bytenr, blocksize, NULL); 1071 return eb; 1072 } 1073 1074 1075 int btrfs_write_tree_block(struct extent_buffer *buf) 1076 { 1077 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start, 1078 buf->start + buf->len - 1); 1079 } 1080 1081 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1082 { 1083 return filemap_fdatawait_range(buf->first_page->mapping, 1084 buf->start, buf->start + buf->len - 1); 1085 } 1086 1087 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1088 u32 blocksize, u64 parent_transid) 1089 { 1090 struct extent_buffer *buf = NULL; 1091 int ret; 1092 1093 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1094 if (!buf) 1095 return NULL; 1096 1097 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1098 1099 if (ret == 0) 1100 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 1101 return buf; 1102 1103 } 1104 1105 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1106 struct extent_buffer *buf) 1107 { 1108 struct inode *btree_inode = root->fs_info->btree_inode; 1109 if (btrfs_header_generation(buf) == 1110 root->fs_info->running_transaction->transid) { 1111 btrfs_assert_tree_locked(buf); 1112 1113 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1114 spin_lock(&root->fs_info->delalloc_lock); 1115 if (root->fs_info->dirty_metadata_bytes >= buf->len) 1116 root->fs_info->dirty_metadata_bytes -= buf->len; 1117 else 1118 WARN_ON(1); 1119 spin_unlock(&root->fs_info->delalloc_lock); 1120 } 1121 1122 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1123 btrfs_set_lock_blocking(buf); 1124 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 1125 buf); 1126 } 1127 return 0; 1128 } 1129 1130 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 1131 u32 stripesize, struct btrfs_root *root, 1132 struct btrfs_fs_info *fs_info, 1133 u64 objectid) 1134 { 1135 root->node = NULL; 1136 root->commit_root = NULL; 1137 root->sectorsize = sectorsize; 1138 root->nodesize = nodesize; 1139 root->leafsize = leafsize; 1140 root->stripesize = stripesize; 1141 root->ref_cows = 0; 1142 root->track_dirty = 0; 1143 root->in_radix = 0; 1144 root->orphan_item_inserted = 0; 1145 root->orphan_cleanup_state = 0; 1146 1147 root->objectid = objectid; 1148 root->last_trans = 0; 1149 root->highest_objectid = 0; 1150 root->name = NULL; 1151 root->inode_tree = RB_ROOT; 1152 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1153 root->block_rsv = NULL; 1154 root->orphan_block_rsv = NULL; 1155 1156 INIT_LIST_HEAD(&root->dirty_list); 1157 INIT_LIST_HEAD(&root->orphan_list); 1158 INIT_LIST_HEAD(&root->root_list); 1159 spin_lock_init(&root->orphan_lock); 1160 spin_lock_init(&root->inode_lock); 1161 spin_lock_init(&root->accounting_lock); 1162 mutex_init(&root->objectid_mutex); 1163 mutex_init(&root->log_mutex); 1164 init_waitqueue_head(&root->log_writer_wait); 1165 init_waitqueue_head(&root->log_commit_wait[0]); 1166 init_waitqueue_head(&root->log_commit_wait[1]); 1167 atomic_set(&root->log_commit[0], 0); 1168 atomic_set(&root->log_commit[1], 0); 1169 atomic_set(&root->log_writers, 0); 1170 root->log_batch = 0; 1171 root->log_transid = 0; 1172 root->last_log_commit = 0; 1173 extent_io_tree_init(&root->dirty_log_pages, 1174 fs_info->btree_inode->i_mapping); 1175 1176 memset(&root->root_key, 0, sizeof(root->root_key)); 1177 memset(&root->root_item, 0, sizeof(root->root_item)); 1178 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1179 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1180 root->defrag_trans_start = fs_info->generation; 1181 init_completion(&root->kobj_unregister); 1182 root->defrag_running = 0; 1183 root->root_key.objectid = objectid; 1184 root->anon_dev = 0; 1185 return 0; 1186 } 1187 1188 static int find_and_setup_root(struct btrfs_root *tree_root, 1189 struct btrfs_fs_info *fs_info, 1190 u64 objectid, 1191 struct btrfs_root *root) 1192 { 1193 int ret; 1194 u32 blocksize; 1195 u64 generation; 1196 1197 __setup_root(tree_root->nodesize, tree_root->leafsize, 1198 tree_root->sectorsize, tree_root->stripesize, 1199 root, fs_info, objectid); 1200 ret = btrfs_find_last_root(tree_root, objectid, 1201 &root->root_item, &root->root_key); 1202 if (ret > 0) 1203 return -ENOENT; 1204 BUG_ON(ret); 1205 1206 generation = btrfs_root_generation(&root->root_item); 1207 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1208 root->commit_root = NULL; 1209 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1210 blocksize, generation); 1211 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) { 1212 free_extent_buffer(root->node); 1213 root->node = NULL; 1214 return -EIO; 1215 } 1216 root->commit_root = btrfs_root_node(root); 1217 return 0; 1218 } 1219 1220 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1221 { 1222 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1223 if (root) 1224 root->fs_info = fs_info; 1225 return root; 1226 } 1227 1228 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1229 struct btrfs_fs_info *fs_info) 1230 { 1231 struct btrfs_root *root; 1232 struct btrfs_root *tree_root = fs_info->tree_root; 1233 struct extent_buffer *leaf; 1234 1235 root = btrfs_alloc_root(fs_info); 1236 if (!root) 1237 return ERR_PTR(-ENOMEM); 1238 1239 __setup_root(tree_root->nodesize, tree_root->leafsize, 1240 tree_root->sectorsize, tree_root->stripesize, 1241 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1242 1243 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1244 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1245 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1246 /* 1247 * log trees do not get reference counted because they go away 1248 * before a real commit is actually done. They do store pointers 1249 * to file data extents, and those reference counts still get 1250 * updated (along with back refs to the log tree). 1251 */ 1252 root->ref_cows = 0; 1253 1254 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1255 BTRFS_TREE_LOG_OBJECTID, NULL, 1256 0, 0, 0, 0); 1257 if (IS_ERR(leaf)) { 1258 kfree(root); 1259 return ERR_CAST(leaf); 1260 } 1261 1262 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1263 btrfs_set_header_bytenr(leaf, leaf->start); 1264 btrfs_set_header_generation(leaf, trans->transid); 1265 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1266 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1267 root->node = leaf; 1268 1269 write_extent_buffer(root->node, root->fs_info->fsid, 1270 (unsigned long)btrfs_header_fsid(root->node), 1271 BTRFS_FSID_SIZE); 1272 btrfs_mark_buffer_dirty(root->node); 1273 btrfs_tree_unlock(root->node); 1274 return root; 1275 } 1276 1277 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1278 struct btrfs_fs_info *fs_info) 1279 { 1280 struct btrfs_root *log_root; 1281 1282 log_root = alloc_log_tree(trans, fs_info); 1283 if (IS_ERR(log_root)) 1284 return PTR_ERR(log_root); 1285 WARN_ON(fs_info->log_root_tree); 1286 fs_info->log_root_tree = log_root; 1287 return 0; 1288 } 1289 1290 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1291 struct btrfs_root *root) 1292 { 1293 struct btrfs_root *log_root; 1294 struct btrfs_inode_item *inode_item; 1295 1296 log_root = alloc_log_tree(trans, root->fs_info); 1297 if (IS_ERR(log_root)) 1298 return PTR_ERR(log_root); 1299 1300 log_root->last_trans = trans->transid; 1301 log_root->root_key.offset = root->root_key.objectid; 1302 1303 inode_item = &log_root->root_item.inode; 1304 inode_item->generation = cpu_to_le64(1); 1305 inode_item->size = cpu_to_le64(3); 1306 inode_item->nlink = cpu_to_le32(1); 1307 inode_item->nbytes = cpu_to_le64(root->leafsize); 1308 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1309 1310 btrfs_set_root_node(&log_root->root_item, log_root->node); 1311 1312 WARN_ON(root->log_root); 1313 root->log_root = log_root; 1314 root->log_transid = 0; 1315 root->last_log_commit = 0; 1316 return 0; 1317 } 1318 1319 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1320 struct btrfs_key *location) 1321 { 1322 struct btrfs_root *root; 1323 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1324 struct btrfs_path *path; 1325 struct extent_buffer *l; 1326 u64 generation; 1327 u32 blocksize; 1328 int ret = 0; 1329 1330 root = btrfs_alloc_root(fs_info); 1331 if (!root) 1332 return ERR_PTR(-ENOMEM); 1333 if (location->offset == (u64)-1) { 1334 ret = find_and_setup_root(tree_root, fs_info, 1335 location->objectid, root); 1336 if (ret) { 1337 kfree(root); 1338 return ERR_PTR(ret); 1339 } 1340 goto out; 1341 } 1342 1343 __setup_root(tree_root->nodesize, tree_root->leafsize, 1344 tree_root->sectorsize, tree_root->stripesize, 1345 root, fs_info, location->objectid); 1346 1347 path = btrfs_alloc_path(); 1348 if (!path) { 1349 kfree(root); 1350 return ERR_PTR(-ENOMEM); 1351 } 1352 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1353 if (ret == 0) { 1354 l = path->nodes[0]; 1355 read_extent_buffer(l, &root->root_item, 1356 btrfs_item_ptr_offset(l, path->slots[0]), 1357 sizeof(root->root_item)); 1358 memcpy(&root->root_key, location, sizeof(*location)); 1359 } 1360 btrfs_free_path(path); 1361 if (ret) { 1362 kfree(root); 1363 if (ret > 0) 1364 ret = -ENOENT; 1365 return ERR_PTR(ret); 1366 } 1367 1368 generation = btrfs_root_generation(&root->root_item); 1369 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1370 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1371 blocksize, generation); 1372 root->commit_root = btrfs_root_node(root); 1373 BUG_ON(!root->node); 1374 out: 1375 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { 1376 root->ref_cows = 1; 1377 btrfs_check_and_init_root_item(&root->root_item); 1378 } 1379 1380 return root; 1381 } 1382 1383 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1384 struct btrfs_key *location) 1385 { 1386 struct btrfs_root *root; 1387 int ret; 1388 1389 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1390 return fs_info->tree_root; 1391 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1392 return fs_info->extent_root; 1393 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1394 return fs_info->chunk_root; 1395 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1396 return fs_info->dev_root; 1397 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1398 return fs_info->csum_root; 1399 again: 1400 spin_lock(&fs_info->fs_roots_radix_lock); 1401 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1402 (unsigned long)location->objectid); 1403 spin_unlock(&fs_info->fs_roots_radix_lock); 1404 if (root) 1405 return root; 1406 1407 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1408 if (IS_ERR(root)) 1409 return root; 1410 1411 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1412 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1413 GFP_NOFS); 1414 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1415 ret = -ENOMEM; 1416 goto fail; 1417 } 1418 1419 btrfs_init_free_ino_ctl(root); 1420 mutex_init(&root->fs_commit_mutex); 1421 spin_lock_init(&root->cache_lock); 1422 init_waitqueue_head(&root->cache_wait); 1423 1424 ret = get_anon_bdev(&root->anon_dev); 1425 if (ret) 1426 goto fail; 1427 1428 if (btrfs_root_refs(&root->root_item) == 0) { 1429 ret = -ENOENT; 1430 goto fail; 1431 } 1432 1433 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); 1434 if (ret < 0) 1435 goto fail; 1436 if (ret == 0) 1437 root->orphan_item_inserted = 1; 1438 1439 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1440 if (ret) 1441 goto fail; 1442 1443 spin_lock(&fs_info->fs_roots_radix_lock); 1444 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1445 (unsigned long)root->root_key.objectid, 1446 root); 1447 if (ret == 0) 1448 root->in_radix = 1; 1449 1450 spin_unlock(&fs_info->fs_roots_radix_lock); 1451 radix_tree_preload_end(); 1452 if (ret) { 1453 if (ret == -EEXIST) { 1454 free_fs_root(root); 1455 goto again; 1456 } 1457 goto fail; 1458 } 1459 1460 ret = btrfs_find_dead_roots(fs_info->tree_root, 1461 root->root_key.objectid); 1462 WARN_ON(ret); 1463 return root; 1464 fail: 1465 free_fs_root(root); 1466 return ERR_PTR(ret); 1467 } 1468 1469 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1470 { 1471 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1472 int ret = 0; 1473 struct btrfs_device *device; 1474 struct backing_dev_info *bdi; 1475 1476 rcu_read_lock(); 1477 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1478 if (!device->bdev) 1479 continue; 1480 bdi = blk_get_backing_dev_info(device->bdev); 1481 if (bdi && bdi_congested(bdi, bdi_bits)) { 1482 ret = 1; 1483 break; 1484 } 1485 } 1486 rcu_read_unlock(); 1487 return ret; 1488 } 1489 1490 /* 1491 * If this fails, caller must call bdi_destroy() to get rid of the 1492 * bdi again. 1493 */ 1494 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1495 { 1496 int err; 1497 1498 bdi->capabilities = BDI_CAP_MAP_COPY; 1499 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1500 if (err) 1501 return err; 1502 1503 bdi->ra_pages = default_backing_dev_info.ra_pages; 1504 bdi->congested_fn = btrfs_congested_fn; 1505 bdi->congested_data = info; 1506 return 0; 1507 } 1508 1509 static int bio_ready_for_csum(struct bio *bio) 1510 { 1511 u64 length = 0; 1512 u64 buf_len = 0; 1513 u64 start = 0; 1514 struct page *page; 1515 struct extent_io_tree *io_tree = NULL; 1516 struct bio_vec *bvec; 1517 int i; 1518 int ret; 1519 1520 bio_for_each_segment(bvec, bio, i) { 1521 page = bvec->bv_page; 1522 if (page->private == EXTENT_PAGE_PRIVATE) { 1523 length += bvec->bv_len; 1524 continue; 1525 } 1526 if (!page->private) { 1527 length += bvec->bv_len; 1528 continue; 1529 } 1530 length = bvec->bv_len; 1531 buf_len = page->private >> 2; 1532 start = page_offset(page) + bvec->bv_offset; 1533 io_tree = &BTRFS_I(page->mapping->host)->io_tree; 1534 } 1535 /* are we fully contained in this bio? */ 1536 if (buf_len <= length) 1537 return 1; 1538 1539 ret = extent_range_uptodate(io_tree, start + length, 1540 start + buf_len - 1); 1541 return ret; 1542 } 1543 1544 /* 1545 * called by the kthread helper functions to finally call the bio end_io 1546 * functions. This is where read checksum verification actually happens 1547 */ 1548 static void end_workqueue_fn(struct btrfs_work *work) 1549 { 1550 struct bio *bio; 1551 struct end_io_wq *end_io_wq; 1552 struct btrfs_fs_info *fs_info; 1553 int error; 1554 1555 end_io_wq = container_of(work, struct end_io_wq, work); 1556 bio = end_io_wq->bio; 1557 fs_info = end_io_wq->info; 1558 1559 /* metadata bio reads are special because the whole tree block must 1560 * be checksummed at once. This makes sure the entire block is in 1561 * ram and up to date before trying to verify things. For 1562 * blocksize <= pagesize, it is basically a noop 1563 */ 1564 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata && 1565 !bio_ready_for_csum(bio)) { 1566 btrfs_queue_worker(&fs_info->endio_meta_workers, 1567 &end_io_wq->work); 1568 return; 1569 } 1570 error = end_io_wq->error; 1571 bio->bi_private = end_io_wq->private; 1572 bio->bi_end_io = end_io_wq->end_io; 1573 kfree(end_io_wq); 1574 bio_endio(bio, error); 1575 } 1576 1577 static int cleaner_kthread(void *arg) 1578 { 1579 struct btrfs_root *root = arg; 1580 1581 do { 1582 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1583 1584 if (!(root->fs_info->sb->s_flags & MS_RDONLY) && 1585 mutex_trylock(&root->fs_info->cleaner_mutex)) { 1586 btrfs_run_delayed_iputs(root); 1587 btrfs_clean_old_snapshots(root); 1588 mutex_unlock(&root->fs_info->cleaner_mutex); 1589 btrfs_run_defrag_inodes(root->fs_info); 1590 } 1591 1592 if (!try_to_freeze()) { 1593 set_current_state(TASK_INTERRUPTIBLE); 1594 if (!kthread_should_stop()) 1595 schedule(); 1596 __set_current_state(TASK_RUNNING); 1597 } 1598 } while (!kthread_should_stop()); 1599 return 0; 1600 } 1601 1602 static int transaction_kthread(void *arg) 1603 { 1604 struct btrfs_root *root = arg; 1605 struct btrfs_trans_handle *trans; 1606 struct btrfs_transaction *cur; 1607 u64 transid; 1608 unsigned long now; 1609 unsigned long delay; 1610 int ret; 1611 1612 do { 1613 delay = HZ * 30; 1614 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1615 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1616 1617 spin_lock(&root->fs_info->trans_lock); 1618 cur = root->fs_info->running_transaction; 1619 if (!cur) { 1620 spin_unlock(&root->fs_info->trans_lock); 1621 goto sleep; 1622 } 1623 1624 now = get_seconds(); 1625 if (!cur->blocked && 1626 (now < cur->start_time || now - cur->start_time < 30)) { 1627 spin_unlock(&root->fs_info->trans_lock); 1628 delay = HZ * 5; 1629 goto sleep; 1630 } 1631 transid = cur->transid; 1632 spin_unlock(&root->fs_info->trans_lock); 1633 1634 trans = btrfs_join_transaction(root); 1635 BUG_ON(IS_ERR(trans)); 1636 if (transid == trans->transid) { 1637 ret = btrfs_commit_transaction(trans, root); 1638 BUG_ON(ret); 1639 } else { 1640 btrfs_end_transaction(trans, root); 1641 } 1642 sleep: 1643 wake_up_process(root->fs_info->cleaner_kthread); 1644 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1645 1646 if (!try_to_freeze()) { 1647 set_current_state(TASK_INTERRUPTIBLE); 1648 if (!kthread_should_stop() && 1649 !btrfs_transaction_blocked(root->fs_info)) 1650 schedule_timeout(delay); 1651 __set_current_state(TASK_RUNNING); 1652 } 1653 } while (!kthread_should_stop()); 1654 return 0; 1655 } 1656 1657 /* 1658 * this will find the highest generation in the array of 1659 * root backups. The index of the highest array is returned, 1660 * or -1 if we can't find anything. 1661 * 1662 * We check to make sure the array is valid by comparing the 1663 * generation of the latest root in the array with the generation 1664 * in the super block. If they don't match we pitch it. 1665 */ 1666 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1667 { 1668 u64 cur; 1669 int newest_index = -1; 1670 struct btrfs_root_backup *root_backup; 1671 int i; 1672 1673 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1674 root_backup = info->super_copy->super_roots + i; 1675 cur = btrfs_backup_tree_root_gen(root_backup); 1676 if (cur == newest_gen) 1677 newest_index = i; 1678 } 1679 1680 /* check to see if we actually wrapped around */ 1681 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1682 root_backup = info->super_copy->super_roots; 1683 cur = btrfs_backup_tree_root_gen(root_backup); 1684 if (cur == newest_gen) 1685 newest_index = 0; 1686 } 1687 return newest_index; 1688 } 1689 1690 1691 /* 1692 * find the oldest backup so we know where to store new entries 1693 * in the backup array. This will set the backup_root_index 1694 * field in the fs_info struct 1695 */ 1696 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1697 u64 newest_gen) 1698 { 1699 int newest_index = -1; 1700 1701 newest_index = find_newest_super_backup(info, newest_gen); 1702 /* if there was garbage in there, just move along */ 1703 if (newest_index == -1) { 1704 info->backup_root_index = 0; 1705 } else { 1706 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1707 } 1708 } 1709 1710 /* 1711 * copy all the root pointers into the super backup array. 1712 * this will bump the backup pointer by one when it is 1713 * done 1714 */ 1715 static void backup_super_roots(struct btrfs_fs_info *info) 1716 { 1717 int next_backup; 1718 struct btrfs_root_backup *root_backup; 1719 int last_backup; 1720 1721 next_backup = info->backup_root_index; 1722 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1723 BTRFS_NUM_BACKUP_ROOTS; 1724 1725 /* 1726 * just overwrite the last backup if we're at the same generation 1727 * this happens only at umount 1728 */ 1729 root_backup = info->super_for_commit->super_roots + last_backup; 1730 if (btrfs_backup_tree_root_gen(root_backup) == 1731 btrfs_header_generation(info->tree_root->node)) 1732 next_backup = last_backup; 1733 1734 root_backup = info->super_for_commit->super_roots + next_backup; 1735 1736 /* 1737 * make sure all of our padding and empty slots get zero filled 1738 * regardless of which ones we use today 1739 */ 1740 memset(root_backup, 0, sizeof(*root_backup)); 1741 1742 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1743 1744 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1745 btrfs_set_backup_tree_root_gen(root_backup, 1746 btrfs_header_generation(info->tree_root->node)); 1747 1748 btrfs_set_backup_tree_root_level(root_backup, 1749 btrfs_header_level(info->tree_root->node)); 1750 1751 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1752 btrfs_set_backup_chunk_root_gen(root_backup, 1753 btrfs_header_generation(info->chunk_root->node)); 1754 btrfs_set_backup_chunk_root_level(root_backup, 1755 btrfs_header_level(info->chunk_root->node)); 1756 1757 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1758 btrfs_set_backup_extent_root_gen(root_backup, 1759 btrfs_header_generation(info->extent_root->node)); 1760 btrfs_set_backup_extent_root_level(root_backup, 1761 btrfs_header_level(info->extent_root->node)); 1762 1763 /* 1764 * we might commit during log recovery, which happens before we set 1765 * the fs_root. Make sure it is valid before we fill it in. 1766 */ 1767 if (info->fs_root && info->fs_root->node) { 1768 btrfs_set_backup_fs_root(root_backup, 1769 info->fs_root->node->start); 1770 btrfs_set_backup_fs_root_gen(root_backup, 1771 btrfs_header_generation(info->fs_root->node)); 1772 btrfs_set_backup_fs_root_level(root_backup, 1773 btrfs_header_level(info->fs_root->node)); 1774 } 1775 1776 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1777 btrfs_set_backup_dev_root_gen(root_backup, 1778 btrfs_header_generation(info->dev_root->node)); 1779 btrfs_set_backup_dev_root_level(root_backup, 1780 btrfs_header_level(info->dev_root->node)); 1781 1782 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1783 btrfs_set_backup_csum_root_gen(root_backup, 1784 btrfs_header_generation(info->csum_root->node)); 1785 btrfs_set_backup_csum_root_level(root_backup, 1786 btrfs_header_level(info->csum_root->node)); 1787 1788 btrfs_set_backup_total_bytes(root_backup, 1789 btrfs_super_total_bytes(info->super_copy)); 1790 btrfs_set_backup_bytes_used(root_backup, 1791 btrfs_super_bytes_used(info->super_copy)); 1792 btrfs_set_backup_num_devices(root_backup, 1793 btrfs_super_num_devices(info->super_copy)); 1794 1795 /* 1796 * if we don't copy this out to the super_copy, it won't get remembered 1797 * for the next commit 1798 */ 1799 memcpy(&info->super_copy->super_roots, 1800 &info->super_for_commit->super_roots, 1801 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1802 } 1803 1804 /* 1805 * this copies info out of the root backup array and back into 1806 * the in-memory super block. It is meant to help iterate through 1807 * the array, so you send it the number of backups you've already 1808 * tried and the last backup index you used. 1809 * 1810 * this returns -1 when it has tried all the backups 1811 */ 1812 static noinline int next_root_backup(struct btrfs_fs_info *info, 1813 struct btrfs_super_block *super, 1814 int *num_backups_tried, int *backup_index) 1815 { 1816 struct btrfs_root_backup *root_backup; 1817 int newest = *backup_index; 1818 1819 if (*num_backups_tried == 0) { 1820 u64 gen = btrfs_super_generation(super); 1821 1822 newest = find_newest_super_backup(info, gen); 1823 if (newest == -1) 1824 return -1; 1825 1826 *backup_index = newest; 1827 *num_backups_tried = 1; 1828 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1829 /* we've tried all the backups, all done */ 1830 return -1; 1831 } else { 1832 /* jump to the next oldest backup */ 1833 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1834 BTRFS_NUM_BACKUP_ROOTS; 1835 *backup_index = newest; 1836 *num_backups_tried += 1; 1837 } 1838 root_backup = super->super_roots + newest; 1839 1840 btrfs_set_super_generation(super, 1841 btrfs_backup_tree_root_gen(root_backup)); 1842 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1843 btrfs_set_super_root_level(super, 1844 btrfs_backup_tree_root_level(root_backup)); 1845 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1846 1847 /* 1848 * fixme: the total bytes and num_devices need to match or we should 1849 * need a fsck 1850 */ 1851 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1852 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1853 return 0; 1854 } 1855 1856 /* helper to cleanup tree roots */ 1857 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 1858 { 1859 free_extent_buffer(info->tree_root->node); 1860 free_extent_buffer(info->tree_root->commit_root); 1861 free_extent_buffer(info->dev_root->node); 1862 free_extent_buffer(info->dev_root->commit_root); 1863 free_extent_buffer(info->extent_root->node); 1864 free_extent_buffer(info->extent_root->commit_root); 1865 free_extent_buffer(info->csum_root->node); 1866 free_extent_buffer(info->csum_root->commit_root); 1867 1868 info->tree_root->node = NULL; 1869 info->tree_root->commit_root = NULL; 1870 info->dev_root->node = NULL; 1871 info->dev_root->commit_root = NULL; 1872 info->extent_root->node = NULL; 1873 info->extent_root->commit_root = NULL; 1874 info->csum_root->node = NULL; 1875 info->csum_root->commit_root = NULL; 1876 1877 if (chunk_root) { 1878 free_extent_buffer(info->chunk_root->node); 1879 free_extent_buffer(info->chunk_root->commit_root); 1880 info->chunk_root->node = NULL; 1881 info->chunk_root->commit_root = NULL; 1882 } 1883 } 1884 1885 1886 int open_ctree(struct super_block *sb, 1887 struct btrfs_fs_devices *fs_devices, 1888 char *options) 1889 { 1890 u32 sectorsize; 1891 u32 nodesize; 1892 u32 leafsize; 1893 u32 blocksize; 1894 u32 stripesize; 1895 u64 generation; 1896 u64 features; 1897 struct btrfs_key location; 1898 struct buffer_head *bh; 1899 struct btrfs_super_block *disk_super; 1900 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1901 struct btrfs_root *tree_root; 1902 struct btrfs_root *extent_root; 1903 struct btrfs_root *csum_root; 1904 struct btrfs_root *chunk_root; 1905 struct btrfs_root *dev_root; 1906 struct btrfs_root *log_tree_root; 1907 int ret; 1908 int err = -EINVAL; 1909 int num_backups_tried = 0; 1910 int backup_index = 0; 1911 1912 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 1913 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info); 1914 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info); 1915 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 1916 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info); 1917 1918 if (!tree_root || !extent_root || !csum_root || 1919 !chunk_root || !dev_root) { 1920 err = -ENOMEM; 1921 goto fail; 1922 } 1923 1924 ret = init_srcu_struct(&fs_info->subvol_srcu); 1925 if (ret) { 1926 err = ret; 1927 goto fail; 1928 } 1929 1930 ret = setup_bdi(fs_info, &fs_info->bdi); 1931 if (ret) { 1932 err = ret; 1933 goto fail_srcu; 1934 } 1935 1936 fs_info->btree_inode = new_inode(sb); 1937 if (!fs_info->btree_inode) { 1938 err = -ENOMEM; 1939 goto fail_bdi; 1940 } 1941 1942 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 1943 1944 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 1945 INIT_LIST_HEAD(&fs_info->trans_list); 1946 INIT_LIST_HEAD(&fs_info->dead_roots); 1947 INIT_LIST_HEAD(&fs_info->delayed_iputs); 1948 INIT_LIST_HEAD(&fs_info->hashers); 1949 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 1950 INIT_LIST_HEAD(&fs_info->ordered_operations); 1951 INIT_LIST_HEAD(&fs_info->caching_block_groups); 1952 spin_lock_init(&fs_info->delalloc_lock); 1953 spin_lock_init(&fs_info->trans_lock); 1954 spin_lock_init(&fs_info->ref_cache_lock); 1955 spin_lock_init(&fs_info->fs_roots_radix_lock); 1956 spin_lock_init(&fs_info->delayed_iput_lock); 1957 spin_lock_init(&fs_info->defrag_inodes_lock); 1958 spin_lock_init(&fs_info->free_chunk_lock); 1959 mutex_init(&fs_info->reloc_mutex); 1960 1961 init_completion(&fs_info->kobj_unregister); 1962 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 1963 INIT_LIST_HEAD(&fs_info->space_info); 1964 btrfs_mapping_init(&fs_info->mapping_tree); 1965 btrfs_init_block_rsv(&fs_info->global_block_rsv); 1966 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv); 1967 btrfs_init_block_rsv(&fs_info->trans_block_rsv); 1968 btrfs_init_block_rsv(&fs_info->chunk_block_rsv); 1969 btrfs_init_block_rsv(&fs_info->empty_block_rsv); 1970 btrfs_init_block_rsv(&fs_info->delayed_block_rsv); 1971 atomic_set(&fs_info->nr_async_submits, 0); 1972 atomic_set(&fs_info->async_delalloc_pages, 0); 1973 atomic_set(&fs_info->async_submit_draining, 0); 1974 atomic_set(&fs_info->nr_async_bios, 0); 1975 atomic_set(&fs_info->defrag_running, 0); 1976 fs_info->sb = sb; 1977 fs_info->max_inline = 8192 * 1024; 1978 fs_info->metadata_ratio = 0; 1979 fs_info->defrag_inodes = RB_ROOT; 1980 fs_info->trans_no_join = 0; 1981 fs_info->free_chunk_space = 0; 1982 1983 /* readahead state */ 1984 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 1985 spin_lock_init(&fs_info->reada_lock); 1986 1987 fs_info->thread_pool_size = min_t(unsigned long, 1988 num_online_cpus() + 2, 8); 1989 1990 INIT_LIST_HEAD(&fs_info->ordered_extents); 1991 spin_lock_init(&fs_info->ordered_extent_lock); 1992 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 1993 GFP_NOFS); 1994 if (!fs_info->delayed_root) { 1995 err = -ENOMEM; 1996 goto fail_iput; 1997 } 1998 btrfs_init_delayed_root(fs_info->delayed_root); 1999 2000 mutex_init(&fs_info->scrub_lock); 2001 atomic_set(&fs_info->scrubs_running, 0); 2002 atomic_set(&fs_info->scrub_pause_req, 0); 2003 atomic_set(&fs_info->scrubs_paused, 0); 2004 atomic_set(&fs_info->scrub_cancel_req, 0); 2005 init_waitqueue_head(&fs_info->scrub_pause_wait); 2006 init_rwsem(&fs_info->scrub_super_lock); 2007 fs_info->scrub_workers_refcnt = 0; 2008 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2009 fs_info->check_integrity_print_mask = 0; 2010 #endif 2011 2012 spin_lock_init(&fs_info->balance_lock); 2013 mutex_init(&fs_info->balance_mutex); 2014 atomic_set(&fs_info->balance_running, 0); 2015 atomic_set(&fs_info->balance_pause_req, 0); 2016 atomic_set(&fs_info->balance_cancel_req, 0); 2017 fs_info->balance_ctl = NULL; 2018 init_waitqueue_head(&fs_info->balance_wait_q); 2019 2020 sb->s_blocksize = 4096; 2021 sb->s_blocksize_bits = blksize_bits(4096); 2022 sb->s_bdi = &fs_info->bdi; 2023 2024 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2025 set_nlink(fs_info->btree_inode, 1); 2026 /* 2027 * we set the i_size on the btree inode to the max possible int. 2028 * the real end of the address space is determined by all of 2029 * the devices in the system 2030 */ 2031 fs_info->btree_inode->i_size = OFFSET_MAX; 2032 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2033 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 2034 2035 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2036 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2037 fs_info->btree_inode->i_mapping); 2038 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2039 2040 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2041 2042 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2043 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2044 sizeof(struct btrfs_key)); 2045 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1; 2046 insert_inode_hash(fs_info->btree_inode); 2047 2048 spin_lock_init(&fs_info->block_group_cache_lock); 2049 fs_info->block_group_cache_tree = RB_ROOT; 2050 2051 extent_io_tree_init(&fs_info->freed_extents[0], 2052 fs_info->btree_inode->i_mapping); 2053 extent_io_tree_init(&fs_info->freed_extents[1], 2054 fs_info->btree_inode->i_mapping); 2055 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2056 fs_info->do_barriers = 1; 2057 2058 2059 mutex_init(&fs_info->ordered_operations_mutex); 2060 mutex_init(&fs_info->tree_log_mutex); 2061 mutex_init(&fs_info->chunk_mutex); 2062 mutex_init(&fs_info->transaction_kthread_mutex); 2063 mutex_init(&fs_info->cleaner_mutex); 2064 mutex_init(&fs_info->volume_mutex); 2065 init_rwsem(&fs_info->extent_commit_sem); 2066 init_rwsem(&fs_info->cleanup_work_sem); 2067 init_rwsem(&fs_info->subvol_sem); 2068 2069 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2070 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2071 2072 init_waitqueue_head(&fs_info->transaction_throttle); 2073 init_waitqueue_head(&fs_info->transaction_wait); 2074 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2075 init_waitqueue_head(&fs_info->async_submit_wait); 2076 2077 __setup_root(4096, 4096, 4096, 4096, tree_root, 2078 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2079 2080 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2081 if (!bh) { 2082 err = -EINVAL; 2083 goto fail_alloc; 2084 } 2085 2086 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2087 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2088 sizeof(*fs_info->super_for_commit)); 2089 brelse(bh); 2090 2091 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2092 2093 disk_super = fs_info->super_copy; 2094 if (!btrfs_super_root(disk_super)) 2095 goto fail_alloc; 2096 2097 /* check FS state, whether FS is broken. */ 2098 fs_info->fs_state |= btrfs_super_flags(disk_super); 2099 2100 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2101 2102 /* 2103 * run through our array of backup supers and setup 2104 * our ring pointer to the oldest one 2105 */ 2106 generation = btrfs_super_generation(disk_super); 2107 find_oldest_super_backup(fs_info, generation); 2108 2109 /* 2110 * In the long term, we'll store the compression type in the super 2111 * block, and it'll be used for per file compression control. 2112 */ 2113 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2114 2115 ret = btrfs_parse_options(tree_root, options); 2116 if (ret) { 2117 err = ret; 2118 goto fail_alloc; 2119 } 2120 2121 features = btrfs_super_incompat_flags(disk_super) & 2122 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2123 if (features) { 2124 printk(KERN_ERR "BTRFS: couldn't mount because of " 2125 "unsupported optional features (%Lx).\n", 2126 (unsigned long long)features); 2127 err = -EINVAL; 2128 goto fail_alloc; 2129 } 2130 2131 features = btrfs_super_incompat_flags(disk_super); 2132 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2133 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO) 2134 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2135 btrfs_set_super_incompat_flags(disk_super, features); 2136 2137 features = btrfs_super_compat_ro_flags(disk_super) & 2138 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2139 if (!(sb->s_flags & MS_RDONLY) && features) { 2140 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2141 "unsupported option features (%Lx).\n", 2142 (unsigned long long)features); 2143 err = -EINVAL; 2144 goto fail_alloc; 2145 } 2146 2147 btrfs_init_workers(&fs_info->generic_worker, 2148 "genwork", 1, NULL); 2149 2150 btrfs_init_workers(&fs_info->workers, "worker", 2151 fs_info->thread_pool_size, 2152 &fs_info->generic_worker); 2153 2154 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 2155 fs_info->thread_pool_size, 2156 &fs_info->generic_worker); 2157 2158 btrfs_init_workers(&fs_info->submit_workers, "submit", 2159 min_t(u64, fs_devices->num_devices, 2160 fs_info->thread_pool_size), 2161 &fs_info->generic_worker); 2162 2163 btrfs_init_workers(&fs_info->caching_workers, "cache", 2164 2, &fs_info->generic_worker); 2165 2166 /* a higher idle thresh on the submit workers makes it much more 2167 * likely that bios will be send down in a sane order to the 2168 * devices 2169 */ 2170 fs_info->submit_workers.idle_thresh = 64; 2171 2172 fs_info->workers.idle_thresh = 16; 2173 fs_info->workers.ordered = 1; 2174 2175 fs_info->delalloc_workers.idle_thresh = 2; 2176 fs_info->delalloc_workers.ordered = 1; 2177 2178 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, 2179 &fs_info->generic_worker); 2180 btrfs_init_workers(&fs_info->endio_workers, "endio", 2181 fs_info->thread_pool_size, 2182 &fs_info->generic_worker); 2183 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 2184 fs_info->thread_pool_size, 2185 &fs_info->generic_worker); 2186 btrfs_init_workers(&fs_info->endio_meta_write_workers, 2187 "endio-meta-write", fs_info->thread_pool_size, 2188 &fs_info->generic_worker); 2189 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 2190 fs_info->thread_pool_size, 2191 &fs_info->generic_worker); 2192 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", 2193 1, &fs_info->generic_worker); 2194 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta", 2195 fs_info->thread_pool_size, 2196 &fs_info->generic_worker); 2197 btrfs_init_workers(&fs_info->readahead_workers, "readahead", 2198 fs_info->thread_pool_size, 2199 &fs_info->generic_worker); 2200 2201 /* 2202 * endios are largely parallel and should have a very 2203 * low idle thresh 2204 */ 2205 fs_info->endio_workers.idle_thresh = 4; 2206 fs_info->endio_meta_workers.idle_thresh = 4; 2207 2208 fs_info->endio_write_workers.idle_thresh = 2; 2209 fs_info->endio_meta_write_workers.idle_thresh = 2; 2210 fs_info->readahead_workers.idle_thresh = 2; 2211 2212 /* 2213 * btrfs_start_workers can really only fail because of ENOMEM so just 2214 * return -ENOMEM if any of these fail. 2215 */ 2216 ret = btrfs_start_workers(&fs_info->workers); 2217 ret |= btrfs_start_workers(&fs_info->generic_worker); 2218 ret |= btrfs_start_workers(&fs_info->submit_workers); 2219 ret |= btrfs_start_workers(&fs_info->delalloc_workers); 2220 ret |= btrfs_start_workers(&fs_info->fixup_workers); 2221 ret |= btrfs_start_workers(&fs_info->endio_workers); 2222 ret |= btrfs_start_workers(&fs_info->endio_meta_workers); 2223 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers); 2224 ret |= btrfs_start_workers(&fs_info->endio_write_workers); 2225 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker); 2226 ret |= btrfs_start_workers(&fs_info->delayed_workers); 2227 ret |= btrfs_start_workers(&fs_info->caching_workers); 2228 ret |= btrfs_start_workers(&fs_info->readahead_workers); 2229 if (ret) { 2230 ret = -ENOMEM; 2231 goto fail_sb_buffer; 2232 } 2233 2234 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2235 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2236 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2237 2238 nodesize = btrfs_super_nodesize(disk_super); 2239 leafsize = btrfs_super_leafsize(disk_super); 2240 sectorsize = btrfs_super_sectorsize(disk_super); 2241 stripesize = btrfs_super_stripesize(disk_super); 2242 tree_root->nodesize = nodesize; 2243 tree_root->leafsize = leafsize; 2244 tree_root->sectorsize = sectorsize; 2245 tree_root->stripesize = stripesize; 2246 2247 sb->s_blocksize = sectorsize; 2248 sb->s_blocksize_bits = blksize_bits(sectorsize); 2249 2250 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 2251 sizeof(disk_super->magic))) { 2252 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 2253 goto fail_sb_buffer; 2254 } 2255 2256 mutex_lock(&fs_info->chunk_mutex); 2257 ret = btrfs_read_sys_array(tree_root); 2258 mutex_unlock(&fs_info->chunk_mutex); 2259 if (ret) { 2260 printk(KERN_WARNING "btrfs: failed to read the system " 2261 "array on %s\n", sb->s_id); 2262 goto fail_sb_buffer; 2263 } 2264 2265 blocksize = btrfs_level_size(tree_root, 2266 btrfs_super_chunk_root_level(disk_super)); 2267 generation = btrfs_super_chunk_root_generation(disk_super); 2268 2269 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2270 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2271 2272 chunk_root->node = read_tree_block(chunk_root, 2273 btrfs_super_chunk_root(disk_super), 2274 blocksize, generation); 2275 BUG_ON(!chunk_root->node); 2276 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 2277 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 2278 sb->s_id); 2279 goto fail_tree_roots; 2280 } 2281 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2282 chunk_root->commit_root = btrfs_root_node(chunk_root); 2283 2284 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2285 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 2286 BTRFS_UUID_SIZE); 2287 2288 ret = btrfs_read_chunk_tree(chunk_root); 2289 if (ret) { 2290 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 2291 sb->s_id); 2292 goto fail_tree_roots; 2293 } 2294 2295 btrfs_close_extra_devices(fs_devices); 2296 2297 retry_root_backup: 2298 blocksize = btrfs_level_size(tree_root, 2299 btrfs_super_root_level(disk_super)); 2300 generation = btrfs_super_generation(disk_super); 2301 2302 tree_root->node = read_tree_block(tree_root, 2303 btrfs_super_root(disk_super), 2304 blocksize, generation); 2305 if (!tree_root->node || 2306 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 2307 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 2308 sb->s_id); 2309 2310 goto recovery_tree_root; 2311 } 2312 2313 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2314 tree_root->commit_root = btrfs_root_node(tree_root); 2315 2316 ret = find_and_setup_root(tree_root, fs_info, 2317 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 2318 if (ret) 2319 goto recovery_tree_root; 2320 extent_root->track_dirty = 1; 2321 2322 ret = find_and_setup_root(tree_root, fs_info, 2323 BTRFS_DEV_TREE_OBJECTID, dev_root); 2324 if (ret) 2325 goto recovery_tree_root; 2326 dev_root->track_dirty = 1; 2327 2328 ret = find_and_setup_root(tree_root, fs_info, 2329 BTRFS_CSUM_TREE_OBJECTID, csum_root); 2330 if (ret) 2331 goto recovery_tree_root; 2332 2333 csum_root->track_dirty = 1; 2334 2335 fs_info->generation = generation; 2336 fs_info->last_trans_committed = generation; 2337 2338 ret = btrfs_init_space_info(fs_info); 2339 if (ret) { 2340 printk(KERN_ERR "Failed to initial space info: %d\n", ret); 2341 goto fail_block_groups; 2342 } 2343 2344 ret = btrfs_read_block_groups(extent_root); 2345 if (ret) { 2346 printk(KERN_ERR "Failed to read block groups: %d\n", ret); 2347 goto fail_block_groups; 2348 } 2349 2350 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2351 "btrfs-cleaner"); 2352 if (IS_ERR(fs_info->cleaner_kthread)) 2353 goto fail_block_groups; 2354 2355 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2356 tree_root, 2357 "btrfs-transaction"); 2358 if (IS_ERR(fs_info->transaction_kthread)) 2359 goto fail_cleaner; 2360 2361 if (!btrfs_test_opt(tree_root, SSD) && 2362 !btrfs_test_opt(tree_root, NOSSD) && 2363 !fs_info->fs_devices->rotating) { 2364 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 2365 "mode\n"); 2366 btrfs_set_opt(fs_info->mount_opt, SSD); 2367 } 2368 2369 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2370 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2371 ret = btrfsic_mount(tree_root, fs_devices, 2372 btrfs_test_opt(tree_root, 2373 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2374 1 : 0, 2375 fs_info->check_integrity_print_mask); 2376 if (ret) 2377 printk(KERN_WARNING "btrfs: failed to initialize" 2378 " integrity check module %s\n", sb->s_id); 2379 } 2380 #endif 2381 2382 /* do not make disk changes in broken FS */ 2383 if (btrfs_super_log_root(disk_super) != 0 && 2384 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) { 2385 u64 bytenr = btrfs_super_log_root(disk_super); 2386 2387 if (fs_devices->rw_devices == 0) { 2388 printk(KERN_WARNING "Btrfs log replay required " 2389 "on RO media\n"); 2390 err = -EIO; 2391 goto fail_trans_kthread; 2392 } 2393 blocksize = 2394 btrfs_level_size(tree_root, 2395 btrfs_super_log_root_level(disk_super)); 2396 2397 log_tree_root = btrfs_alloc_root(fs_info); 2398 if (!log_tree_root) { 2399 err = -ENOMEM; 2400 goto fail_trans_kthread; 2401 } 2402 2403 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2404 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2405 2406 log_tree_root->node = read_tree_block(tree_root, bytenr, 2407 blocksize, 2408 generation + 1); 2409 ret = btrfs_recover_log_trees(log_tree_root); 2410 BUG_ON(ret); 2411 2412 if (sb->s_flags & MS_RDONLY) { 2413 ret = btrfs_commit_super(tree_root); 2414 BUG_ON(ret); 2415 } 2416 } 2417 2418 ret = btrfs_find_orphan_roots(tree_root); 2419 BUG_ON(ret); 2420 2421 if (!(sb->s_flags & MS_RDONLY)) { 2422 ret = btrfs_cleanup_fs_roots(fs_info); 2423 BUG_ON(ret); 2424 2425 ret = btrfs_recover_relocation(tree_root); 2426 if (ret < 0) { 2427 printk(KERN_WARNING 2428 "btrfs: failed to recover relocation\n"); 2429 err = -EINVAL; 2430 goto fail_trans_kthread; 2431 } 2432 } 2433 2434 location.objectid = BTRFS_FS_TREE_OBJECTID; 2435 location.type = BTRFS_ROOT_ITEM_KEY; 2436 location.offset = (u64)-1; 2437 2438 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2439 if (!fs_info->fs_root) 2440 goto fail_trans_kthread; 2441 if (IS_ERR(fs_info->fs_root)) { 2442 err = PTR_ERR(fs_info->fs_root); 2443 goto fail_trans_kthread; 2444 } 2445 2446 if (!(sb->s_flags & MS_RDONLY)) { 2447 down_read(&fs_info->cleanup_work_sem); 2448 err = btrfs_orphan_cleanup(fs_info->fs_root); 2449 if (!err) 2450 err = btrfs_orphan_cleanup(fs_info->tree_root); 2451 up_read(&fs_info->cleanup_work_sem); 2452 2453 if (!err) 2454 err = btrfs_recover_balance(fs_info->tree_root); 2455 2456 if (err) { 2457 close_ctree(tree_root); 2458 return err; 2459 } 2460 } 2461 2462 return 0; 2463 2464 fail_trans_kthread: 2465 kthread_stop(fs_info->transaction_kthread); 2466 fail_cleaner: 2467 kthread_stop(fs_info->cleaner_kthread); 2468 2469 /* 2470 * make sure we're done with the btree inode before we stop our 2471 * kthreads 2472 */ 2473 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2474 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2475 2476 fail_block_groups: 2477 btrfs_free_block_groups(fs_info); 2478 2479 fail_tree_roots: 2480 free_root_pointers(fs_info, 1); 2481 2482 fail_sb_buffer: 2483 btrfs_stop_workers(&fs_info->generic_worker); 2484 btrfs_stop_workers(&fs_info->readahead_workers); 2485 btrfs_stop_workers(&fs_info->fixup_workers); 2486 btrfs_stop_workers(&fs_info->delalloc_workers); 2487 btrfs_stop_workers(&fs_info->workers); 2488 btrfs_stop_workers(&fs_info->endio_workers); 2489 btrfs_stop_workers(&fs_info->endio_meta_workers); 2490 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2491 btrfs_stop_workers(&fs_info->endio_write_workers); 2492 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2493 btrfs_stop_workers(&fs_info->submit_workers); 2494 btrfs_stop_workers(&fs_info->delayed_workers); 2495 btrfs_stop_workers(&fs_info->caching_workers); 2496 fail_alloc: 2497 fail_iput: 2498 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2499 2500 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2501 iput(fs_info->btree_inode); 2502 fail_bdi: 2503 bdi_destroy(&fs_info->bdi); 2504 fail_srcu: 2505 cleanup_srcu_struct(&fs_info->subvol_srcu); 2506 fail: 2507 btrfs_close_devices(fs_info->fs_devices); 2508 return err; 2509 2510 recovery_tree_root: 2511 if (!btrfs_test_opt(tree_root, RECOVERY)) 2512 goto fail_tree_roots; 2513 2514 free_root_pointers(fs_info, 0); 2515 2516 /* don't use the log in recovery mode, it won't be valid */ 2517 btrfs_set_super_log_root(disk_super, 0); 2518 2519 /* we can't trust the free space cache either */ 2520 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2521 2522 ret = next_root_backup(fs_info, fs_info->super_copy, 2523 &num_backups_tried, &backup_index); 2524 if (ret == -1) 2525 goto fail_block_groups; 2526 goto retry_root_backup; 2527 } 2528 2529 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 2530 { 2531 char b[BDEVNAME_SIZE]; 2532 2533 if (uptodate) { 2534 set_buffer_uptodate(bh); 2535 } else { 2536 printk_ratelimited(KERN_WARNING "lost page write due to " 2537 "I/O error on %s\n", 2538 bdevname(bh->b_bdev, b)); 2539 /* note, we dont' set_buffer_write_io_error because we have 2540 * our own ways of dealing with the IO errors 2541 */ 2542 clear_buffer_uptodate(bh); 2543 } 2544 unlock_buffer(bh); 2545 put_bh(bh); 2546 } 2547 2548 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 2549 { 2550 struct buffer_head *bh; 2551 struct buffer_head *latest = NULL; 2552 struct btrfs_super_block *super; 2553 int i; 2554 u64 transid = 0; 2555 u64 bytenr; 2556 2557 /* we would like to check all the supers, but that would make 2558 * a btrfs mount succeed after a mkfs from a different FS. 2559 * So, we need to add a special mount option to scan for 2560 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 2561 */ 2562 for (i = 0; i < 1; i++) { 2563 bytenr = btrfs_sb_offset(i); 2564 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 2565 break; 2566 bh = __bread(bdev, bytenr / 4096, 4096); 2567 if (!bh) 2568 continue; 2569 2570 super = (struct btrfs_super_block *)bh->b_data; 2571 if (btrfs_super_bytenr(super) != bytenr || 2572 strncmp((char *)(&super->magic), BTRFS_MAGIC, 2573 sizeof(super->magic))) { 2574 brelse(bh); 2575 continue; 2576 } 2577 2578 if (!latest || btrfs_super_generation(super) > transid) { 2579 brelse(latest); 2580 latest = bh; 2581 transid = btrfs_super_generation(super); 2582 } else { 2583 brelse(bh); 2584 } 2585 } 2586 return latest; 2587 } 2588 2589 /* 2590 * this should be called twice, once with wait == 0 and 2591 * once with wait == 1. When wait == 0 is done, all the buffer heads 2592 * we write are pinned. 2593 * 2594 * They are released when wait == 1 is done. 2595 * max_mirrors must be the same for both runs, and it indicates how 2596 * many supers on this one device should be written. 2597 * 2598 * max_mirrors == 0 means to write them all. 2599 */ 2600 static int write_dev_supers(struct btrfs_device *device, 2601 struct btrfs_super_block *sb, 2602 int do_barriers, int wait, int max_mirrors) 2603 { 2604 struct buffer_head *bh; 2605 int i; 2606 int ret; 2607 int errors = 0; 2608 u32 crc; 2609 u64 bytenr; 2610 2611 if (max_mirrors == 0) 2612 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2613 2614 for (i = 0; i < max_mirrors; i++) { 2615 bytenr = btrfs_sb_offset(i); 2616 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2617 break; 2618 2619 if (wait) { 2620 bh = __find_get_block(device->bdev, bytenr / 4096, 2621 BTRFS_SUPER_INFO_SIZE); 2622 BUG_ON(!bh); 2623 wait_on_buffer(bh); 2624 if (!buffer_uptodate(bh)) 2625 errors++; 2626 2627 /* drop our reference */ 2628 brelse(bh); 2629 2630 /* drop the reference from the wait == 0 run */ 2631 brelse(bh); 2632 continue; 2633 } else { 2634 btrfs_set_super_bytenr(sb, bytenr); 2635 2636 crc = ~(u32)0; 2637 crc = btrfs_csum_data(NULL, (char *)sb + 2638 BTRFS_CSUM_SIZE, crc, 2639 BTRFS_SUPER_INFO_SIZE - 2640 BTRFS_CSUM_SIZE); 2641 btrfs_csum_final(crc, sb->csum); 2642 2643 /* 2644 * one reference for us, and we leave it for the 2645 * caller 2646 */ 2647 bh = __getblk(device->bdev, bytenr / 4096, 2648 BTRFS_SUPER_INFO_SIZE); 2649 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2650 2651 /* one reference for submit_bh */ 2652 get_bh(bh); 2653 2654 set_buffer_uptodate(bh); 2655 lock_buffer(bh); 2656 bh->b_end_io = btrfs_end_buffer_write_sync; 2657 } 2658 2659 /* 2660 * we fua the first super. The others we allow 2661 * to go down lazy. 2662 */ 2663 ret = btrfsic_submit_bh(WRITE_FUA, bh); 2664 if (ret) 2665 errors++; 2666 } 2667 return errors < i ? 0 : -1; 2668 } 2669 2670 /* 2671 * endio for the write_dev_flush, this will wake anyone waiting 2672 * for the barrier when it is done 2673 */ 2674 static void btrfs_end_empty_barrier(struct bio *bio, int err) 2675 { 2676 if (err) { 2677 if (err == -EOPNOTSUPP) 2678 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2679 clear_bit(BIO_UPTODATE, &bio->bi_flags); 2680 } 2681 if (bio->bi_private) 2682 complete(bio->bi_private); 2683 bio_put(bio); 2684 } 2685 2686 /* 2687 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 2688 * sent down. With wait == 1, it waits for the previous flush. 2689 * 2690 * any device where the flush fails with eopnotsupp are flagged as not-barrier 2691 * capable 2692 */ 2693 static int write_dev_flush(struct btrfs_device *device, int wait) 2694 { 2695 struct bio *bio; 2696 int ret = 0; 2697 2698 if (device->nobarriers) 2699 return 0; 2700 2701 if (wait) { 2702 bio = device->flush_bio; 2703 if (!bio) 2704 return 0; 2705 2706 wait_for_completion(&device->flush_wait); 2707 2708 if (bio_flagged(bio, BIO_EOPNOTSUPP)) { 2709 printk("btrfs: disabling barriers on dev %s\n", 2710 device->name); 2711 device->nobarriers = 1; 2712 } 2713 if (!bio_flagged(bio, BIO_UPTODATE)) { 2714 ret = -EIO; 2715 } 2716 2717 /* drop the reference from the wait == 0 run */ 2718 bio_put(bio); 2719 device->flush_bio = NULL; 2720 2721 return ret; 2722 } 2723 2724 /* 2725 * one reference for us, and we leave it for the 2726 * caller 2727 */ 2728 device->flush_bio = NULL;; 2729 bio = bio_alloc(GFP_NOFS, 0); 2730 if (!bio) 2731 return -ENOMEM; 2732 2733 bio->bi_end_io = btrfs_end_empty_barrier; 2734 bio->bi_bdev = device->bdev; 2735 init_completion(&device->flush_wait); 2736 bio->bi_private = &device->flush_wait; 2737 device->flush_bio = bio; 2738 2739 bio_get(bio); 2740 btrfsic_submit_bio(WRITE_FLUSH, bio); 2741 2742 return 0; 2743 } 2744 2745 /* 2746 * send an empty flush down to each device in parallel, 2747 * then wait for them 2748 */ 2749 static int barrier_all_devices(struct btrfs_fs_info *info) 2750 { 2751 struct list_head *head; 2752 struct btrfs_device *dev; 2753 int errors = 0; 2754 int ret; 2755 2756 /* send down all the barriers */ 2757 head = &info->fs_devices->devices; 2758 list_for_each_entry_rcu(dev, head, dev_list) { 2759 if (!dev->bdev) { 2760 errors++; 2761 continue; 2762 } 2763 if (!dev->in_fs_metadata || !dev->writeable) 2764 continue; 2765 2766 ret = write_dev_flush(dev, 0); 2767 if (ret) 2768 errors++; 2769 } 2770 2771 /* wait for all the barriers */ 2772 list_for_each_entry_rcu(dev, head, dev_list) { 2773 if (!dev->bdev) { 2774 errors++; 2775 continue; 2776 } 2777 if (!dev->in_fs_metadata || !dev->writeable) 2778 continue; 2779 2780 ret = write_dev_flush(dev, 1); 2781 if (ret) 2782 errors++; 2783 } 2784 if (errors) 2785 return -EIO; 2786 return 0; 2787 } 2788 2789 int write_all_supers(struct btrfs_root *root, int max_mirrors) 2790 { 2791 struct list_head *head; 2792 struct btrfs_device *dev; 2793 struct btrfs_super_block *sb; 2794 struct btrfs_dev_item *dev_item; 2795 int ret; 2796 int do_barriers; 2797 int max_errors; 2798 int total_errors = 0; 2799 u64 flags; 2800 2801 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 2802 do_barriers = !btrfs_test_opt(root, NOBARRIER); 2803 backup_super_roots(root->fs_info); 2804 2805 sb = root->fs_info->super_for_commit; 2806 dev_item = &sb->dev_item; 2807 2808 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2809 head = &root->fs_info->fs_devices->devices; 2810 2811 if (do_barriers) 2812 barrier_all_devices(root->fs_info); 2813 2814 list_for_each_entry_rcu(dev, head, dev_list) { 2815 if (!dev->bdev) { 2816 total_errors++; 2817 continue; 2818 } 2819 if (!dev->in_fs_metadata || !dev->writeable) 2820 continue; 2821 2822 btrfs_set_stack_device_generation(dev_item, 0); 2823 btrfs_set_stack_device_type(dev_item, dev->type); 2824 btrfs_set_stack_device_id(dev_item, dev->devid); 2825 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 2826 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 2827 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 2828 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 2829 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 2830 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 2831 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2832 2833 flags = btrfs_super_flags(sb); 2834 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 2835 2836 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 2837 if (ret) 2838 total_errors++; 2839 } 2840 if (total_errors > max_errors) { 2841 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2842 total_errors); 2843 BUG(); 2844 } 2845 2846 total_errors = 0; 2847 list_for_each_entry_rcu(dev, head, dev_list) { 2848 if (!dev->bdev) 2849 continue; 2850 if (!dev->in_fs_metadata || !dev->writeable) 2851 continue; 2852 2853 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 2854 if (ret) 2855 total_errors++; 2856 } 2857 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2858 if (total_errors > max_errors) { 2859 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2860 total_errors); 2861 BUG(); 2862 } 2863 return 0; 2864 } 2865 2866 int write_ctree_super(struct btrfs_trans_handle *trans, 2867 struct btrfs_root *root, int max_mirrors) 2868 { 2869 int ret; 2870 2871 ret = write_all_supers(root, max_mirrors); 2872 return ret; 2873 } 2874 2875 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2876 { 2877 spin_lock(&fs_info->fs_roots_radix_lock); 2878 radix_tree_delete(&fs_info->fs_roots_radix, 2879 (unsigned long)root->root_key.objectid); 2880 spin_unlock(&fs_info->fs_roots_radix_lock); 2881 2882 if (btrfs_root_refs(&root->root_item) == 0) 2883 synchronize_srcu(&fs_info->subvol_srcu); 2884 2885 __btrfs_remove_free_space_cache(root->free_ino_pinned); 2886 __btrfs_remove_free_space_cache(root->free_ino_ctl); 2887 free_fs_root(root); 2888 return 0; 2889 } 2890 2891 static void free_fs_root(struct btrfs_root *root) 2892 { 2893 iput(root->cache_inode); 2894 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2895 if (root->anon_dev) 2896 free_anon_bdev(root->anon_dev); 2897 free_extent_buffer(root->node); 2898 free_extent_buffer(root->commit_root); 2899 kfree(root->free_ino_ctl); 2900 kfree(root->free_ino_pinned); 2901 kfree(root->name); 2902 kfree(root); 2903 } 2904 2905 static int del_fs_roots(struct btrfs_fs_info *fs_info) 2906 { 2907 int ret; 2908 struct btrfs_root *gang[8]; 2909 int i; 2910 2911 while (!list_empty(&fs_info->dead_roots)) { 2912 gang[0] = list_entry(fs_info->dead_roots.next, 2913 struct btrfs_root, root_list); 2914 list_del(&gang[0]->root_list); 2915 2916 if (gang[0]->in_radix) { 2917 btrfs_free_fs_root(fs_info, gang[0]); 2918 } else { 2919 free_extent_buffer(gang[0]->node); 2920 free_extent_buffer(gang[0]->commit_root); 2921 kfree(gang[0]); 2922 } 2923 } 2924 2925 while (1) { 2926 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2927 (void **)gang, 0, 2928 ARRAY_SIZE(gang)); 2929 if (!ret) 2930 break; 2931 for (i = 0; i < ret; i++) 2932 btrfs_free_fs_root(fs_info, gang[i]); 2933 } 2934 return 0; 2935 } 2936 2937 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2938 { 2939 u64 root_objectid = 0; 2940 struct btrfs_root *gang[8]; 2941 int i; 2942 int ret; 2943 2944 while (1) { 2945 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2946 (void **)gang, root_objectid, 2947 ARRAY_SIZE(gang)); 2948 if (!ret) 2949 break; 2950 2951 root_objectid = gang[ret - 1]->root_key.objectid + 1; 2952 for (i = 0; i < ret; i++) { 2953 int err; 2954 2955 root_objectid = gang[i]->root_key.objectid; 2956 err = btrfs_orphan_cleanup(gang[i]); 2957 if (err) 2958 return err; 2959 } 2960 root_objectid++; 2961 } 2962 return 0; 2963 } 2964 2965 int btrfs_commit_super(struct btrfs_root *root) 2966 { 2967 struct btrfs_trans_handle *trans; 2968 int ret; 2969 2970 mutex_lock(&root->fs_info->cleaner_mutex); 2971 btrfs_run_delayed_iputs(root); 2972 btrfs_clean_old_snapshots(root); 2973 mutex_unlock(&root->fs_info->cleaner_mutex); 2974 2975 /* wait until ongoing cleanup work done */ 2976 down_write(&root->fs_info->cleanup_work_sem); 2977 up_write(&root->fs_info->cleanup_work_sem); 2978 2979 trans = btrfs_join_transaction(root); 2980 if (IS_ERR(trans)) 2981 return PTR_ERR(trans); 2982 ret = btrfs_commit_transaction(trans, root); 2983 BUG_ON(ret); 2984 /* run commit again to drop the original snapshot */ 2985 trans = btrfs_join_transaction(root); 2986 if (IS_ERR(trans)) 2987 return PTR_ERR(trans); 2988 btrfs_commit_transaction(trans, root); 2989 ret = btrfs_write_and_wait_transaction(NULL, root); 2990 BUG_ON(ret); 2991 2992 ret = write_ctree_super(NULL, root, 0); 2993 return ret; 2994 } 2995 2996 int close_ctree(struct btrfs_root *root) 2997 { 2998 struct btrfs_fs_info *fs_info = root->fs_info; 2999 int ret; 3000 3001 fs_info->closing = 1; 3002 smp_mb(); 3003 3004 /* pause restriper - we want to resume on mount */ 3005 btrfs_pause_balance(root->fs_info); 3006 3007 btrfs_scrub_cancel(root); 3008 3009 /* wait for any defraggers to finish */ 3010 wait_event(fs_info->transaction_wait, 3011 (atomic_read(&fs_info->defrag_running) == 0)); 3012 3013 /* clear out the rbtree of defraggable inodes */ 3014 btrfs_run_defrag_inodes(fs_info); 3015 3016 /* 3017 * Here come 2 situations when btrfs is broken to flip readonly: 3018 * 3019 * 1. when btrfs flips readonly somewhere else before 3020 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag, 3021 * and btrfs will skip to write sb directly to keep 3022 * ERROR state on disk. 3023 * 3024 * 2. when btrfs flips readonly just in btrfs_commit_super, 3025 * and in such case, btrfs cannot write sb via btrfs_commit_super, 3026 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag, 3027 * btrfs will cleanup all FS resources first and write sb then. 3028 */ 3029 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3030 ret = btrfs_commit_super(root); 3031 if (ret) 3032 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 3033 } 3034 3035 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 3036 ret = btrfs_error_commit_super(root); 3037 if (ret) 3038 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 3039 } 3040 3041 btrfs_put_block_group_cache(fs_info); 3042 3043 kthread_stop(fs_info->transaction_kthread); 3044 kthread_stop(fs_info->cleaner_kthread); 3045 3046 fs_info->closing = 2; 3047 smp_mb(); 3048 3049 if (fs_info->delalloc_bytes) { 3050 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 3051 (unsigned long long)fs_info->delalloc_bytes); 3052 } 3053 if (fs_info->total_ref_cache_size) { 3054 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", 3055 (unsigned long long)fs_info->total_ref_cache_size); 3056 } 3057 3058 free_extent_buffer(fs_info->extent_root->node); 3059 free_extent_buffer(fs_info->extent_root->commit_root); 3060 free_extent_buffer(fs_info->tree_root->node); 3061 free_extent_buffer(fs_info->tree_root->commit_root); 3062 free_extent_buffer(fs_info->chunk_root->node); 3063 free_extent_buffer(fs_info->chunk_root->commit_root); 3064 free_extent_buffer(fs_info->dev_root->node); 3065 free_extent_buffer(fs_info->dev_root->commit_root); 3066 free_extent_buffer(fs_info->csum_root->node); 3067 free_extent_buffer(fs_info->csum_root->commit_root); 3068 3069 btrfs_free_block_groups(fs_info); 3070 3071 del_fs_roots(fs_info); 3072 3073 iput(fs_info->btree_inode); 3074 3075 btrfs_stop_workers(&fs_info->generic_worker); 3076 btrfs_stop_workers(&fs_info->fixup_workers); 3077 btrfs_stop_workers(&fs_info->delalloc_workers); 3078 btrfs_stop_workers(&fs_info->workers); 3079 btrfs_stop_workers(&fs_info->endio_workers); 3080 btrfs_stop_workers(&fs_info->endio_meta_workers); 3081 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 3082 btrfs_stop_workers(&fs_info->endio_write_workers); 3083 btrfs_stop_workers(&fs_info->endio_freespace_worker); 3084 btrfs_stop_workers(&fs_info->submit_workers); 3085 btrfs_stop_workers(&fs_info->delayed_workers); 3086 btrfs_stop_workers(&fs_info->caching_workers); 3087 btrfs_stop_workers(&fs_info->readahead_workers); 3088 3089 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3090 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3091 btrfsic_unmount(root, fs_info->fs_devices); 3092 #endif 3093 3094 btrfs_close_devices(fs_info->fs_devices); 3095 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3096 3097 bdi_destroy(&fs_info->bdi); 3098 cleanup_srcu_struct(&fs_info->subvol_srcu); 3099 3100 return 0; 3101 } 3102 3103 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) 3104 { 3105 int ret; 3106 struct inode *btree_inode = buf->first_page->mapping->host; 3107 3108 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf, 3109 NULL); 3110 if (!ret) 3111 return ret; 3112 3113 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3114 parent_transid); 3115 return !ret; 3116 } 3117 3118 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3119 { 3120 struct inode *btree_inode = buf->first_page->mapping->host; 3121 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, 3122 buf); 3123 } 3124 3125 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3126 { 3127 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 3128 u64 transid = btrfs_header_generation(buf); 3129 struct inode *btree_inode = root->fs_info->btree_inode; 3130 int was_dirty; 3131 3132 btrfs_assert_tree_locked(buf); 3133 if (transid != root->fs_info->generation) { 3134 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 3135 "found %llu running %llu\n", 3136 (unsigned long long)buf->start, 3137 (unsigned long long)transid, 3138 (unsigned long long)root->fs_info->generation); 3139 WARN_ON(1); 3140 } 3141 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 3142 buf); 3143 if (!was_dirty) { 3144 spin_lock(&root->fs_info->delalloc_lock); 3145 root->fs_info->dirty_metadata_bytes += buf->len; 3146 spin_unlock(&root->fs_info->delalloc_lock); 3147 } 3148 } 3149 3150 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 3151 { 3152 /* 3153 * looks as though older kernels can get into trouble with 3154 * this code, they end up stuck in balance_dirty_pages forever 3155 */ 3156 u64 num_dirty; 3157 unsigned long thresh = 32 * 1024 * 1024; 3158 3159 if (current->flags & PF_MEMALLOC) 3160 return; 3161 3162 btrfs_balance_delayed_items(root); 3163 3164 num_dirty = root->fs_info->dirty_metadata_bytes; 3165 3166 if (num_dirty > thresh) { 3167 balance_dirty_pages_ratelimited_nr( 3168 root->fs_info->btree_inode->i_mapping, 1); 3169 } 3170 return; 3171 } 3172 3173 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 3174 { 3175 /* 3176 * looks as though older kernels can get into trouble with 3177 * this code, they end up stuck in balance_dirty_pages forever 3178 */ 3179 u64 num_dirty; 3180 unsigned long thresh = 32 * 1024 * 1024; 3181 3182 if (current->flags & PF_MEMALLOC) 3183 return; 3184 3185 num_dirty = root->fs_info->dirty_metadata_bytes; 3186 3187 if (num_dirty > thresh) { 3188 balance_dirty_pages_ratelimited_nr( 3189 root->fs_info->btree_inode->i_mapping, 1); 3190 } 3191 return; 3192 } 3193 3194 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3195 { 3196 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 3197 int ret; 3198 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3199 if (ret == 0) 3200 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 3201 return ret; 3202 } 3203 3204 static int btree_lock_page_hook(struct page *page, void *data, 3205 void (*flush_fn)(void *)) 3206 { 3207 struct inode *inode = page->mapping->host; 3208 struct btrfs_root *root = BTRFS_I(inode)->root; 3209 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3210 struct extent_buffer *eb; 3211 unsigned long len; 3212 u64 bytenr = page_offset(page); 3213 3214 if (page->private == EXTENT_PAGE_PRIVATE) 3215 goto out; 3216 3217 len = page->private >> 2; 3218 eb = find_extent_buffer(io_tree, bytenr, len); 3219 if (!eb) 3220 goto out; 3221 3222 if (!btrfs_try_tree_write_lock(eb)) { 3223 flush_fn(data); 3224 btrfs_tree_lock(eb); 3225 } 3226 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3227 3228 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3229 spin_lock(&root->fs_info->delalloc_lock); 3230 if (root->fs_info->dirty_metadata_bytes >= eb->len) 3231 root->fs_info->dirty_metadata_bytes -= eb->len; 3232 else 3233 WARN_ON(1); 3234 spin_unlock(&root->fs_info->delalloc_lock); 3235 } 3236 3237 btrfs_tree_unlock(eb); 3238 free_extent_buffer(eb); 3239 out: 3240 if (!trylock_page(page)) { 3241 flush_fn(data); 3242 lock_page(page); 3243 } 3244 return 0; 3245 } 3246 3247 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3248 int read_only) 3249 { 3250 if (read_only) 3251 return; 3252 3253 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) 3254 printk(KERN_WARNING "warning: mount fs with errors, " 3255 "running btrfsck is recommended\n"); 3256 } 3257 3258 int btrfs_error_commit_super(struct btrfs_root *root) 3259 { 3260 int ret; 3261 3262 mutex_lock(&root->fs_info->cleaner_mutex); 3263 btrfs_run_delayed_iputs(root); 3264 mutex_unlock(&root->fs_info->cleaner_mutex); 3265 3266 down_write(&root->fs_info->cleanup_work_sem); 3267 up_write(&root->fs_info->cleanup_work_sem); 3268 3269 /* cleanup FS via transaction */ 3270 btrfs_cleanup_transaction(root); 3271 3272 ret = write_ctree_super(NULL, root, 0); 3273 3274 return ret; 3275 } 3276 3277 static int btrfs_destroy_ordered_operations(struct btrfs_root *root) 3278 { 3279 struct btrfs_inode *btrfs_inode; 3280 struct list_head splice; 3281 3282 INIT_LIST_HEAD(&splice); 3283 3284 mutex_lock(&root->fs_info->ordered_operations_mutex); 3285 spin_lock(&root->fs_info->ordered_extent_lock); 3286 3287 list_splice_init(&root->fs_info->ordered_operations, &splice); 3288 while (!list_empty(&splice)) { 3289 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3290 ordered_operations); 3291 3292 list_del_init(&btrfs_inode->ordered_operations); 3293 3294 btrfs_invalidate_inodes(btrfs_inode->root); 3295 } 3296 3297 spin_unlock(&root->fs_info->ordered_extent_lock); 3298 mutex_unlock(&root->fs_info->ordered_operations_mutex); 3299 3300 return 0; 3301 } 3302 3303 static int btrfs_destroy_ordered_extents(struct btrfs_root *root) 3304 { 3305 struct list_head splice; 3306 struct btrfs_ordered_extent *ordered; 3307 struct inode *inode; 3308 3309 INIT_LIST_HEAD(&splice); 3310 3311 spin_lock(&root->fs_info->ordered_extent_lock); 3312 3313 list_splice_init(&root->fs_info->ordered_extents, &splice); 3314 while (!list_empty(&splice)) { 3315 ordered = list_entry(splice.next, struct btrfs_ordered_extent, 3316 root_extent_list); 3317 3318 list_del_init(&ordered->root_extent_list); 3319 atomic_inc(&ordered->refs); 3320 3321 /* the inode may be getting freed (in sys_unlink path). */ 3322 inode = igrab(ordered->inode); 3323 3324 spin_unlock(&root->fs_info->ordered_extent_lock); 3325 if (inode) 3326 iput(inode); 3327 3328 atomic_set(&ordered->refs, 1); 3329 btrfs_put_ordered_extent(ordered); 3330 3331 spin_lock(&root->fs_info->ordered_extent_lock); 3332 } 3333 3334 spin_unlock(&root->fs_info->ordered_extent_lock); 3335 3336 return 0; 3337 } 3338 3339 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 3340 struct btrfs_root *root) 3341 { 3342 struct rb_node *node; 3343 struct btrfs_delayed_ref_root *delayed_refs; 3344 struct btrfs_delayed_ref_node *ref; 3345 int ret = 0; 3346 3347 delayed_refs = &trans->delayed_refs; 3348 3349 spin_lock(&delayed_refs->lock); 3350 if (delayed_refs->num_entries == 0) { 3351 spin_unlock(&delayed_refs->lock); 3352 printk(KERN_INFO "delayed_refs has NO entry\n"); 3353 return ret; 3354 } 3355 3356 node = rb_first(&delayed_refs->root); 3357 while (node) { 3358 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 3359 node = rb_next(node); 3360 3361 ref->in_tree = 0; 3362 rb_erase(&ref->rb_node, &delayed_refs->root); 3363 delayed_refs->num_entries--; 3364 3365 atomic_set(&ref->refs, 1); 3366 if (btrfs_delayed_ref_is_head(ref)) { 3367 struct btrfs_delayed_ref_head *head; 3368 3369 head = btrfs_delayed_node_to_head(ref); 3370 mutex_lock(&head->mutex); 3371 kfree(head->extent_op); 3372 delayed_refs->num_heads--; 3373 if (list_empty(&head->cluster)) 3374 delayed_refs->num_heads_ready--; 3375 list_del_init(&head->cluster); 3376 mutex_unlock(&head->mutex); 3377 } 3378 3379 spin_unlock(&delayed_refs->lock); 3380 btrfs_put_delayed_ref(ref); 3381 3382 cond_resched(); 3383 spin_lock(&delayed_refs->lock); 3384 } 3385 3386 spin_unlock(&delayed_refs->lock); 3387 3388 return ret; 3389 } 3390 3391 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t) 3392 { 3393 struct btrfs_pending_snapshot *snapshot; 3394 struct list_head splice; 3395 3396 INIT_LIST_HEAD(&splice); 3397 3398 list_splice_init(&t->pending_snapshots, &splice); 3399 3400 while (!list_empty(&splice)) { 3401 snapshot = list_entry(splice.next, 3402 struct btrfs_pending_snapshot, 3403 list); 3404 3405 list_del_init(&snapshot->list); 3406 3407 kfree(snapshot); 3408 } 3409 3410 return 0; 3411 } 3412 3413 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 3414 { 3415 struct btrfs_inode *btrfs_inode; 3416 struct list_head splice; 3417 3418 INIT_LIST_HEAD(&splice); 3419 3420 spin_lock(&root->fs_info->delalloc_lock); 3421 list_splice_init(&root->fs_info->delalloc_inodes, &splice); 3422 3423 while (!list_empty(&splice)) { 3424 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3425 delalloc_inodes); 3426 3427 list_del_init(&btrfs_inode->delalloc_inodes); 3428 3429 btrfs_invalidate_inodes(btrfs_inode->root); 3430 } 3431 3432 spin_unlock(&root->fs_info->delalloc_lock); 3433 3434 return 0; 3435 } 3436 3437 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 3438 struct extent_io_tree *dirty_pages, 3439 int mark) 3440 { 3441 int ret; 3442 struct page *page; 3443 struct inode *btree_inode = root->fs_info->btree_inode; 3444 struct extent_buffer *eb; 3445 u64 start = 0; 3446 u64 end; 3447 u64 offset; 3448 unsigned long index; 3449 3450 while (1) { 3451 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 3452 mark); 3453 if (ret) 3454 break; 3455 3456 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 3457 while (start <= end) { 3458 index = start >> PAGE_CACHE_SHIFT; 3459 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 3460 page = find_get_page(btree_inode->i_mapping, index); 3461 if (!page) 3462 continue; 3463 offset = page_offset(page); 3464 3465 spin_lock(&dirty_pages->buffer_lock); 3466 eb = radix_tree_lookup( 3467 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer, 3468 offset >> PAGE_CACHE_SHIFT); 3469 spin_unlock(&dirty_pages->buffer_lock); 3470 if (eb) { 3471 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY, 3472 &eb->bflags); 3473 atomic_set(&eb->refs, 1); 3474 } 3475 if (PageWriteback(page)) 3476 end_page_writeback(page); 3477 3478 lock_page(page); 3479 if (PageDirty(page)) { 3480 clear_page_dirty_for_io(page); 3481 spin_lock_irq(&page->mapping->tree_lock); 3482 radix_tree_tag_clear(&page->mapping->page_tree, 3483 page_index(page), 3484 PAGECACHE_TAG_DIRTY); 3485 spin_unlock_irq(&page->mapping->tree_lock); 3486 } 3487 3488 page->mapping->a_ops->invalidatepage(page, 0); 3489 unlock_page(page); 3490 } 3491 } 3492 3493 return ret; 3494 } 3495 3496 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 3497 struct extent_io_tree *pinned_extents) 3498 { 3499 struct extent_io_tree *unpin; 3500 u64 start; 3501 u64 end; 3502 int ret; 3503 3504 unpin = pinned_extents; 3505 while (1) { 3506 ret = find_first_extent_bit(unpin, 0, &start, &end, 3507 EXTENT_DIRTY); 3508 if (ret) 3509 break; 3510 3511 /* opt_discard */ 3512 if (btrfs_test_opt(root, DISCARD)) 3513 ret = btrfs_error_discard_extent(root, start, 3514 end + 1 - start, 3515 NULL); 3516 3517 clear_extent_dirty(unpin, start, end, GFP_NOFS); 3518 btrfs_error_unpin_extent_range(root, start, end); 3519 cond_resched(); 3520 } 3521 3522 return 0; 3523 } 3524 3525 static int btrfs_cleanup_transaction(struct btrfs_root *root) 3526 { 3527 struct btrfs_transaction *t; 3528 LIST_HEAD(list); 3529 3530 WARN_ON(1); 3531 3532 mutex_lock(&root->fs_info->transaction_kthread_mutex); 3533 3534 spin_lock(&root->fs_info->trans_lock); 3535 list_splice_init(&root->fs_info->trans_list, &list); 3536 root->fs_info->trans_no_join = 1; 3537 spin_unlock(&root->fs_info->trans_lock); 3538 3539 while (!list_empty(&list)) { 3540 t = list_entry(list.next, struct btrfs_transaction, list); 3541 if (!t) 3542 break; 3543 3544 btrfs_destroy_ordered_operations(root); 3545 3546 btrfs_destroy_ordered_extents(root); 3547 3548 btrfs_destroy_delayed_refs(t, root); 3549 3550 btrfs_block_rsv_release(root, 3551 &root->fs_info->trans_block_rsv, 3552 t->dirty_pages.dirty_bytes); 3553 3554 /* FIXME: cleanup wait for commit */ 3555 t->in_commit = 1; 3556 t->blocked = 1; 3557 if (waitqueue_active(&root->fs_info->transaction_blocked_wait)) 3558 wake_up(&root->fs_info->transaction_blocked_wait); 3559 3560 t->blocked = 0; 3561 if (waitqueue_active(&root->fs_info->transaction_wait)) 3562 wake_up(&root->fs_info->transaction_wait); 3563 3564 t->commit_done = 1; 3565 if (waitqueue_active(&t->commit_wait)) 3566 wake_up(&t->commit_wait); 3567 3568 btrfs_destroy_pending_snapshots(t); 3569 3570 btrfs_destroy_delalloc_inodes(root); 3571 3572 spin_lock(&root->fs_info->trans_lock); 3573 root->fs_info->running_transaction = NULL; 3574 spin_unlock(&root->fs_info->trans_lock); 3575 3576 btrfs_destroy_marked_extents(root, &t->dirty_pages, 3577 EXTENT_DIRTY); 3578 3579 btrfs_destroy_pinned_extent(root, 3580 root->fs_info->pinned_extents); 3581 3582 atomic_set(&t->use_count, 0); 3583 list_del_init(&t->list); 3584 memset(t, 0, sizeof(*t)); 3585 kmem_cache_free(btrfs_transaction_cachep, t); 3586 } 3587 3588 spin_lock(&root->fs_info->trans_lock); 3589 root->fs_info->trans_no_join = 0; 3590 spin_unlock(&root->fs_info->trans_lock); 3591 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 3592 3593 return 0; 3594 } 3595 3596 static struct extent_io_ops btree_extent_io_ops = { 3597 .write_cache_pages_lock_hook = btree_lock_page_hook, 3598 .readpage_end_io_hook = btree_readpage_end_io_hook, 3599 .readpage_io_failed_hook = btree_io_failed_hook, 3600 .submit_bio_hook = btree_submit_bio_hook, 3601 /* note we're sharing with inode.c for the merge bio hook */ 3602 .merge_bio_hook = btrfs_merge_bio_hook, 3603 }; 3604