xref: /linux/fs/btrfs/disk-io.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 
48 static struct extent_io_ops btree_extent_io_ops;
49 static void end_workqueue_fn(struct btrfs_work *work);
50 static void free_fs_root(struct btrfs_root *root);
51 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
52 				    int read_only);
53 static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
54 static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 				      struct btrfs_root *root);
57 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
58 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
60 					struct extent_io_tree *dirty_pages,
61 					int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
63 				       struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_root *root);
65 
66 /*
67  * end_io_wq structs are used to do processing in task context when an IO is
68  * complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct end_io_wq {
72 	struct bio *bio;
73 	bio_end_io_t *end_io;
74 	void *private;
75 	struct btrfs_fs_info *info;
76 	int error;
77 	int metadata;
78 	struct list_head list;
79 	struct btrfs_work work;
80 };
81 
82 /*
83  * async submit bios are used to offload expensive checksumming
84  * onto the worker threads.  They checksum file and metadata bios
85  * just before they are sent down the IO stack.
86  */
87 struct async_submit_bio {
88 	struct inode *inode;
89 	struct bio *bio;
90 	struct list_head list;
91 	extent_submit_bio_hook_t *submit_bio_start;
92 	extent_submit_bio_hook_t *submit_bio_done;
93 	int rw;
94 	int mirror_num;
95 	unsigned long bio_flags;
96 	/*
97 	 * bio_offset is optional, can be used if the pages in the bio
98 	 * can't tell us where in the file the bio should go
99 	 */
100 	u64 bio_offset;
101 	struct btrfs_work work;
102 };
103 
104 /*
105  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
106  * eb, the lockdep key is determined by the btrfs_root it belongs to and
107  * the level the eb occupies in the tree.
108  *
109  * Different roots are used for different purposes and may nest inside each
110  * other and they require separate keysets.  As lockdep keys should be
111  * static, assign keysets according to the purpose of the root as indicated
112  * by btrfs_root->objectid.  This ensures that all special purpose roots
113  * have separate keysets.
114  *
115  * Lock-nesting across peer nodes is always done with the immediate parent
116  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
117  * subclass to avoid triggering lockdep warning in such cases.
118  *
119  * The key is set by the readpage_end_io_hook after the buffer has passed
120  * csum validation but before the pages are unlocked.  It is also set by
121  * btrfs_init_new_buffer on freshly allocated blocks.
122  *
123  * We also add a check to make sure the highest level of the tree is the
124  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
125  * needs update as well.
126  */
127 #ifdef CONFIG_DEBUG_LOCK_ALLOC
128 # if BTRFS_MAX_LEVEL != 8
129 #  error
130 # endif
131 
132 static struct btrfs_lockdep_keyset {
133 	u64			id;		/* root objectid */
134 	const char		*name_stem;	/* lock name stem */
135 	char			names[BTRFS_MAX_LEVEL + 1][20];
136 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
137 } btrfs_lockdep_keysets[] = {
138 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
139 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
140 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
141 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
142 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
143 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
144 	{ .id = BTRFS_ORPHAN_OBJECTID,		.name_stem = "orphan"	},
145 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
146 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
147 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
148 	{ .id = 0,				.name_stem = "tree"	},
149 };
150 
151 void __init btrfs_init_lockdep(void)
152 {
153 	int i, j;
154 
155 	/* initialize lockdep class names */
156 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
157 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
158 
159 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
160 			snprintf(ks->names[j], sizeof(ks->names[j]),
161 				 "btrfs-%s-%02d", ks->name_stem, j);
162 	}
163 }
164 
165 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
166 				    int level)
167 {
168 	struct btrfs_lockdep_keyset *ks;
169 
170 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
171 
172 	/* find the matching keyset, id 0 is the default entry */
173 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
174 		if (ks->id == objectid)
175 			break;
176 
177 	lockdep_set_class_and_name(&eb->lock,
178 				   &ks->keys[level], ks->names[level]);
179 }
180 
181 #endif
182 
183 /*
184  * extents on the btree inode are pretty simple, there's one extent
185  * that covers the entire device
186  */
187 static struct extent_map *btree_get_extent(struct inode *inode,
188 		struct page *page, size_t pg_offset, u64 start, u64 len,
189 		int create)
190 {
191 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
192 	struct extent_map *em;
193 	int ret;
194 
195 	read_lock(&em_tree->lock);
196 	em = lookup_extent_mapping(em_tree, start, len);
197 	if (em) {
198 		em->bdev =
199 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
200 		read_unlock(&em_tree->lock);
201 		goto out;
202 	}
203 	read_unlock(&em_tree->lock);
204 
205 	em = alloc_extent_map();
206 	if (!em) {
207 		em = ERR_PTR(-ENOMEM);
208 		goto out;
209 	}
210 	em->start = 0;
211 	em->len = (u64)-1;
212 	em->block_len = (u64)-1;
213 	em->block_start = 0;
214 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
215 
216 	write_lock(&em_tree->lock);
217 	ret = add_extent_mapping(em_tree, em);
218 	if (ret == -EEXIST) {
219 		u64 failed_start = em->start;
220 		u64 failed_len = em->len;
221 
222 		free_extent_map(em);
223 		em = lookup_extent_mapping(em_tree, start, len);
224 		if (em) {
225 			ret = 0;
226 		} else {
227 			em = lookup_extent_mapping(em_tree, failed_start,
228 						   failed_len);
229 			ret = -EIO;
230 		}
231 	} else if (ret) {
232 		free_extent_map(em);
233 		em = NULL;
234 	}
235 	write_unlock(&em_tree->lock);
236 
237 	if (ret)
238 		em = ERR_PTR(ret);
239 out:
240 	return em;
241 }
242 
243 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
244 {
245 	return crc32c(seed, data, len);
246 }
247 
248 void btrfs_csum_final(u32 crc, char *result)
249 {
250 	put_unaligned_le32(~crc, result);
251 }
252 
253 /*
254  * compute the csum for a btree block, and either verify it or write it
255  * into the csum field of the block.
256  */
257 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258 			   int verify)
259 {
260 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
261 	char *result = NULL;
262 	unsigned long len;
263 	unsigned long cur_len;
264 	unsigned long offset = BTRFS_CSUM_SIZE;
265 	char *kaddr;
266 	unsigned long map_start;
267 	unsigned long map_len;
268 	int err;
269 	u32 crc = ~(u32)0;
270 	unsigned long inline_result;
271 
272 	len = buf->len - offset;
273 	while (len > 0) {
274 		err = map_private_extent_buffer(buf, offset, 32,
275 					&kaddr, &map_start, &map_len);
276 		if (err)
277 			return 1;
278 		cur_len = min(len, map_len - (offset - map_start));
279 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
280 				      crc, cur_len);
281 		len -= cur_len;
282 		offset += cur_len;
283 	}
284 	if (csum_size > sizeof(inline_result)) {
285 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286 		if (!result)
287 			return 1;
288 	} else {
289 		result = (char *)&inline_result;
290 	}
291 
292 	btrfs_csum_final(crc, result);
293 
294 	if (verify) {
295 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
296 			u32 val;
297 			u32 found = 0;
298 			memcpy(&found, result, csum_size);
299 
300 			read_extent_buffer(buf, &val, 0, csum_size);
301 			printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
302 				       "failed on %llu wanted %X found %X "
303 				       "level %d\n",
304 				       root->fs_info->sb->s_id,
305 				       (unsigned long long)buf->start, val, found,
306 				       btrfs_header_level(buf));
307 			if (result != (char *)&inline_result)
308 				kfree(result);
309 			return 1;
310 		}
311 	} else {
312 		write_extent_buffer(buf, result, 0, csum_size);
313 	}
314 	if (result != (char *)&inline_result)
315 		kfree(result);
316 	return 0;
317 }
318 
319 /*
320  * we can't consider a given block up to date unless the transid of the
321  * block matches the transid in the parent node's pointer.  This is how we
322  * detect blocks that either didn't get written at all or got written
323  * in the wrong place.
324  */
325 static int verify_parent_transid(struct extent_io_tree *io_tree,
326 				 struct extent_buffer *eb, u64 parent_transid)
327 {
328 	struct extent_state *cached_state = NULL;
329 	int ret;
330 
331 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332 		return 0;
333 
334 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335 			 0, &cached_state, GFP_NOFS);
336 	if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
337 	    btrfs_header_generation(eb) == parent_transid) {
338 		ret = 0;
339 		goto out;
340 	}
341 	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
342 		       "found %llu\n",
343 		       (unsigned long long)eb->start,
344 		       (unsigned long long)parent_transid,
345 		       (unsigned long long)btrfs_header_generation(eb));
346 	ret = 1;
347 	clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
348 out:
349 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350 			     &cached_state, GFP_NOFS);
351 	return ret;
352 }
353 
354 /*
355  * helper to read a given tree block, doing retries as required when
356  * the checksums don't match and we have alternate mirrors to try.
357  */
358 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359 					  struct extent_buffer *eb,
360 					  u64 start, u64 parent_transid)
361 {
362 	struct extent_io_tree *io_tree;
363 	int ret;
364 	int num_copies = 0;
365 	int mirror_num = 0;
366 
367 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
368 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
369 	while (1) {
370 		ret = read_extent_buffer_pages(io_tree, eb, start,
371 					       WAIT_COMPLETE,
372 					       btree_get_extent, mirror_num);
373 		if (!ret &&
374 		    !verify_parent_transid(io_tree, eb, parent_transid))
375 			return ret;
376 
377 		/*
378 		 * This buffer's crc is fine, but its contents are corrupted, so
379 		 * there is no reason to read the other copies, they won't be
380 		 * any less wrong.
381 		 */
382 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
383 			return ret;
384 
385 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
386 					      eb->start, eb->len);
387 		if (num_copies == 1)
388 			return ret;
389 
390 		mirror_num++;
391 		if (mirror_num > num_copies)
392 			return ret;
393 	}
394 	return -EIO;
395 }
396 
397 /*
398  * checksum a dirty tree block before IO.  This has extra checks to make sure
399  * we only fill in the checksum field in the first page of a multi-page block
400  */
401 
402 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
403 {
404 	struct extent_io_tree *tree;
405 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
406 	u64 found_start;
407 	unsigned long len;
408 	struct extent_buffer *eb;
409 	int ret;
410 
411 	tree = &BTRFS_I(page->mapping->host)->io_tree;
412 
413 	if (page->private == EXTENT_PAGE_PRIVATE) {
414 		WARN_ON(1);
415 		goto out;
416 	}
417 	if (!page->private) {
418 		WARN_ON(1);
419 		goto out;
420 	}
421 	len = page->private >> 2;
422 	WARN_ON(len == 0);
423 
424 	eb = alloc_extent_buffer(tree, start, len, page);
425 	if (eb == NULL) {
426 		WARN_ON(1);
427 		goto out;
428 	}
429 	ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
430 					     btrfs_header_generation(eb));
431 	BUG_ON(ret);
432 	WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
433 
434 	found_start = btrfs_header_bytenr(eb);
435 	if (found_start != start) {
436 		WARN_ON(1);
437 		goto err;
438 	}
439 	if (eb->first_page != page) {
440 		WARN_ON(1);
441 		goto err;
442 	}
443 	if (!PageUptodate(page)) {
444 		WARN_ON(1);
445 		goto err;
446 	}
447 	csum_tree_block(root, eb, 0);
448 err:
449 	free_extent_buffer(eb);
450 out:
451 	return 0;
452 }
453 
454 static int check_tree_block_fsid(struct btrfs_root *root,
455 				 struct extent_buffer *eb)
456 {
457 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
458 	u8 fsid[BTRFS_UUID_SIZE];
459 	int ret = 1;
460 
461 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
462 			   BTRFS_FSID_SIZE);
463 	while (fs_devices) {
464 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
465 			ret = 0;
466 			break;
467 		}
468 		fs_devices = fs_devices->seed;
469 	}
470 	return ret;
471 }
472 
473 #define CORRUPT(reason, eb, root, slot)				\
474 	printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu,"	\
475 	       "root=%llu, slot=%d\n", reason,			\
476 	       (unsigned long long)btrfs_header_bytenr(eb),	\
477 	       (unsigned long long)root->objectid, slot)
478 
479 static noinline int check_leaf(struct btrfs_root *root,
480 			       struct extent_buffer *leaf)
481 {
482 	struct btrfs_key key;
483 	struct btrfs_key leaf_key;
484 	u32 nritems = btrfs_header_nritems(leaf);
485 	int slot;
486 
487 	if (nritems == 0)
488 		return 0;
489 
490 	/* Check the 0 item */
491 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
492 	    BTRFS_LEAF_DATA_SIZE(root)) {
493 		CORRUPT("invalid item offset size pair", leaf, root, 0);
494 		return -EIO;
495 	}
496 
497 	/*
498 	 * Check to make sure each items keys are in the correct order and their
499 	 * offsets make sense.  We only have to loop through nritems-1 because
500 	 * we check the current slot against the next slot, which verifies the
501 	 * next slot's offset+size makes sense and that the current's slot
502 	 * offset is correct.
503 	 */
504 	for (slot = 0; slot < nritems - 1; slot++) {
505 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
506 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
507 
508 		/* Make sure the keys are in the right order */
509 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
510 			CORRUPT("bad key order", leaf, root, slot);
511 			return -EIO;
512 		}
513 
514 		/*
515 		 * Make sure the offset and ends are right, remember that the
516 		 * item data starts at the end of the leaf and grows towards the
517 		 * front.
518 		 */
519 		if (btrfs_item_offset_nr(leaf, slot) !=
520 			btrfs_item_end_nr(leaf, slot + 1)) {
521 			CORRUPT("slot offset bad", leaf, root, slot);
522 			return -EIO;
523 		}
524 
525 		/*
526 		 * Check to make sure that we don't point outside of the leaf,
527 		 * just incase all the items are consistent to eachother, but
528 		 * all point outside of the leaf.
529 		 */
530 		if (btrfs_item_end_nr(leaf, slot) >
531 		    BTRFS_LEAF_DATA_SIZE(root)) {
532 			CORRUPT("slot end outside of leaf", leaf, root, slot);
533 			return -EIO;
534 		}
535 	}
536 
537 	return 0;
538 }
539 
540 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
541 			       struct extent_state *state)
542 {
543 	struct extent_io_tree *tree;
544 	u64 found_start;
545 	int found_level;
546 	unsigned long len;
547 	struct extent_buffer *eb;
548 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
549 	int ret = 0;
550 
551 	tree = &BTRFS_I(page->mapping->host)->io_tree;
552 	if (page->private == EXTENT_PAGE_PRIVATE)
553 		goto out;
554 	if (!page->private)
555 		goto out;
556 
557 	len = page->private >> 2;
558 	WARN_ON(len == 0);
559 
560 	eb = alloc_extent_buffer(tree, start, len, page);
561 	if (eb == NULL) {
562 		ret = -EIO;
563 		goto out;
564 	}
565 
566 	found_start = btrfs_header_bytenr(eb);
567 	if (found_start != start) {
568 		printk_ratelimited(KERN_INFO "btrfs bad tree block start "
569 			       "%llu %llu\n",
570 			       (unsigned long long)found_start,
571 			       (unsigned long long)eb->start);
572 		ret = -EIO;
573 		goto err;
574 	}
575 	if (eb->first_page != page) {
576 		printk(KERN_INFO "btrfs bad first page %lu %lu\n",
577 		       eb->first_page->index, page->index);
578 		WARN_ON(1);
579 		ret = -EIO;
580 		goto err;
581 	}
582 	if (check_tree_block_fsid(root, eb)) {
583 		printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
584 			       (unsigned long long)eb->start);
585 		ret = -EIO;
586 		goto err;
587 	}
588 	found_level = btrfs_header_level(eb);
589 
590 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
591 				       eb, found_level);
592 
593 	ret = csum_tree_block(root, eb, 1);
594 	if (ret) {
595 		ret = -EIO;
596 		goto err;
597 	}
598 
599 	/*
600 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
601 	 * that we don't try and read the other copies of this block, just
602 	 * return -EIO.
603 	 */
604 	if (found_level == 0 && check_leaf(root, eb)) {
605 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
606 		ret = -EIO;
607 	}
608 
609 	end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
610 	end = eb->start + end - 1;
611 err:
612 	if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
613 		clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
614 		btree_readahead_hook(root, eb, eb->start, ret);
615 	}
616 
617 	free_extent_buffer(eb);
618 out:
619 	return ret;
620 }
621 
622 static int btree_io_failed_hook(struct bio *failed_bio,
623 			 struct page *page, u64 start, u64 end,
624 			 int mirror_num, struct extent_state *state)
625 {
626 	struct extent_io_tree *tree;
627 	unsigned long len;
628 	struct extent_buffer *eb;
629 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
630 
631 	tree = &BTRFS_I(page->mapping->host)->io_tree;
632 	if (page->private == EXTENT_PAGE_PRIVATE)
633 		goto out;
634 	if (!page->private)
635 		goto out;
636 
637 	len = page->private >> 2;
638 	WARN_ON(len == 0);
639 
640 	eb = alloc_extent_buffer(tree, start, len, page);
641 	if (eb == NULL)
642 		goto out;
643 
644 	if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
645 		clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
646 		btree_readahead_hook(root, eb, eb->start, -EIO);
647 	}
648 	free_extent_buffer(eb);
649 
650 out:
651 	return -EIO;	/* we fixed nothing */
652 }
653 
654 static void end_workqueue_bio(struct bio *bio, int err)
655 {
656 	struct end_io_wq *end_io_wq = bio->bi_private;
657 	struct btrfs_fs_info *fs_info;
658 
659 	fs_info = end_io_wq->info;
660 	end_io_wq->error = err;
661 	end_io_wq->work.func = end_workqueue_fn;
662 	end_io_wq->work.flags = 0;
663 
664 	if (bio->bi_rw & REQ_WRITE) {
665 		if (end_io_wq->metadata == 1)
666 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
667 					   &end_io_wq->work);
668 		else if (end_io_wq->metadata == 2)
669 			btrfs_queue_worker(&fs_info->endio_freespace_worker,
670 					   &end_io_wq->work);
671 		else
672 			btrfs_queue_worker(&fs_info->endio_write_workers,
673 					   &end_io_wq->work);
674 	} else {
675 		if (end_io_wq->metadata)
676 			btrfs_queue_worker(&fs_info->endio_meta_workers,
677 					   &end_io_wq->work);
678 		else
679 			btrfs_queue_worker(&fs_info->endio_workers,
680 					   &end_io_wq->work);
681 	}
682 }
683 
684 /*
685  * For the metadata arg you want
686  *
687  * 0 - if data
688  * 1 - if normal metadta
689  * 2 - if writing to the free space cache area
690  */
691 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
692 			int metadata)
693 {
694 	struct end_io_wq *end_io_wq;
695 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
696 	if (!end_io_wq)
697 		return -ENOMEM;
698 
699 	end_io_wq->private = bio->bi_private;
700 	end_io_wq->end_io = bio->bi_end_io;
701 	end_io_wq->info = info;
702 	end_io_wq->error = 0;
703 	end_io_wq->bio = bio;
704 	end_io_wq->metadata = metadata;
705 
706 	bio->bi_private = end_io_wq;
707 	bio->bi_end_io = end_workqueue_bio;
708 	return 0;
709 }
710 
711 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
712 {
713 	unsigned long limit = min_t(unsigned long,
714 				    info->workers.max_workers,
715 				    info->fs_devices->open_devices);
716 	return 256 * limit;
717 }
718 
719 static void run_one_async_start(struct btrfs_work *work)
720 {
721 	struct async_submit_bio *async;
722 
723 	async = container_of(work, struct  async_submit_bio, work);
724 	async->submit_bio_start(async->inode, async->rw, async->bio,
725 			       async->mirror_num, async->bio_flags,
726 			       async->bio_offset);
727 }
728 
729 static void run_one_async_done(struct btrfs_work *work)
730 {
731 	struct btrfs_fs_info *fs_info;
732 	struct async_submit_bio *async;
733 	int limit;
734 
735 	async = container_of(work, struct  async_submit_bio, work);
736 	fs_info = BTRFS_I(async->inode)->root->fs_info;
737 
738 	limit = btrfs_async_submit_limit(fs_info);
739 	limit = limit * 2 / 3;
740 
741 	atomic_dec(&fs_info->nr_async_submits);
742 
743 	if (atomic_read(&fs_info->nr_async_submits) < limit &&
744 	    waitqueue_active(&fs_info->async_submit_wait))
745 		wake_up(&fs_info->async_submit_wait);
746 
747 	async->submit_bio_done(async->inode, async->rw, async->bio,
748 			       async->mirror_num, async->bio_flags,
749 			       async->bio_offset);
750 }
751 
752 static void run_one_async_free(struct btrfs_work *work)
753 {
754 	struct async_submit_bio *async;
755 
756 	async = container_of(work, struct  async_submit_bio, work);
757 	kfree(async);
758 }
759 
760 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
761 			int rw, struct bio *bio, int mirror_num,
762 			unsigned long bio_flags,
763 			u64 bio_offset,
764 			extent_submit_bio_hook_t *submit_bio_start,
765 			extent_submit_bio_hook_t *submit_bio_done)
766 {
767 	struct async_submit_bio *async;
768 
769 	async = kmalloc(sizeof(*async), GFP_NOFS);
770 	if (!async)
771 		return -ENOMEM;
772 
773 	async->inode = inode;
774 	async->rw = rw;
775 	async->bio = bio;
776 	async->mirror_num = mirror_num;
777 	async->submit_bio_start = submit_bio_start;
778 	async->submit_bio_done = submit_bio_done;
779 
780 	async->work.func = run_one_async_start;
781 	async->work.ordered_func = run_one_async_done;
782 	async->work.ordered_free = run_one_async_free;
783 
784 	async->work.flags = 0;
785 	async->bio_flags = bio_flags;
786 	async->bio_offset = bio_offset;
787 
788 	atomic_inc(&fs_info->nr_async_submits);
789 
790 	if (rw & REQ_SYNC)
791 		btrfs_set_work_high_prio(&async->work);
792 
793 	btrfs_queue_worker(&fs_info->workers, &async->work);
794 
795 	while (atomic_read(&fs_info->async_submit_draining) &&
796 	      atomic_read(&fs_info->nr_async_submits)) {
797 		wait_event(fs_info->async_submit_wait,
798 			   (atomic_read(&fs_info->nr_async_submits) == 0));
799 	}
800 
801 	return 0;
802 }
803 
804 static int btree_csum_one_bio(struct bio *bio)
805 {
806 	struct bio_vec *bvec = bio->bi_io_vec;
807 	int bio_index = 0;
808 	struct btrfs_root *root;
809 
810 	WARN_ON(bio->bi_vcnt <= 0);
811 	while (bio_index < bio->bi_vcnt) {
812 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
813 		csum_dirty_buffer(root, bvec->bv_page);
814 		bio_index++;
815 		bvec++;
816 	}
817 	return 0;
818 }
819 
820 static int __btree_submit_bio_start(struct inode *inode, int rw,
821 				    struct bio *bio, int mirror_num,
822 				    unsigned long bio_flags,
823 				    u64 bio_offset)
824 {
825 	/*
826 	 * when we're called for a write, we're already in the async
827 	 * submission context.  Just jump into btrfs_map_bio
828 	 */
829 	btree_csum_one_bio(bio);
830 	return 0;
831 }
832 
833 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
834 				 int mirror_num, unsigned long bio_flags,
835 				 u64 bio_offset)
836 {
837 	/*
838 	 * when we're called for a write, we're already in the async
839 	 * submission context.  Just jump into btrfs_map_bio
840 	 */
841 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
842 }
843 
844 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
845 				 int mirror_num, unsigned long bio_flags,
846 				 u64 bio_offset)
847 {
848 	int ret;
849 
850 	ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
851 					  bio, 1);
852 	BUG_ON(ret);
853 
854 	if (!(rw & REQ_WRITE)) {
855 		/*
856 		 * called for a read, do the setup so that checksum validation
857 		 * can happen in the async kernel threads
858 		 */
859 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
860 				     mirror_num, 0);
861 	}
862 
863 	/*
864 	 * kthread helpers are used to submit writes so that checksumming
865 	 * can happen in parallel across all CPUs
866 	 */
867 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
868 				   inode, rw, bio, mirror_num, 0,
869 				   bio_offset,
870 				   __btree_submit_bio_start,
871 				   __btree_submit_bio_done);
872 }
873 
874 #ifdef CONFIG_MIGRATION
875 static int btree_migratepage(struct address_space *mapping,
876 			struct page *newpage, struct page *page,
877 			enum migrate_mode mode)
878 {
879 	/*
880 	 * we can't safely write a btree page from here,
881 	 * we haven't done the locking hook
882 	 */
883 	if (PageDirty(page))
884 		return -EAGAIN;
885 	/*
886 	 * Buffers may be managed in a filesystem specific way.
887 	 * We must have no buffers or drop them.
888 	 */
889 	if (page_has_private(page) &&
890 	    !try_to_release_page(page, GFP_KERNEL))
891 		return -EAGAIN;
892 	return migrate_page(mapping, newpage, page, mode);
893 }
894 #endif
895 
896 static int btree_writepage(struct page *page, struct writeback_control *wbc)
897 {
898 	struct extent_io_tree *tree;
899 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
900 	struct extent_buffer *eb;
901 	int was_dirty;
902 
903 	tree = &BTRFS_I(page->mapping->host)->io_tree;
904 	if (!(current->flags & PF_MEMALLOC)) {
905 		return extent_write_full_page(tree, page,
906 					      btree_get_extent, wbc);
907 	}
908 
909 	redirty_page_for_writepage(wbc, page);
910 	eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
911 	WARN_ON(!eb);
912 
913 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
914 	if (!was_dirty) {
915 		spin_lock(&root->fs_info->delalloc_lock);
916 		root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
917 		spin_unlock(&root->fs_info->delalloc_lock);
918 	}
919 	free_extent_buffer(eb);
920 
921 	unlock_page(page);
922 	return 0;
923 }
924 
925 static int btree_writepages(struct address_space *mapping,
926 			    struct writeback_control *wbc)
927 {
928 	struct extent_io_tree *tree;
929 	tree = &BTRFS_I(mapping->host)->io_tree;
930 	if (wbc->sync_mode == WB_SYNC_NONE) {
931 		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
932 		u64 num_dirty;
933 		unsigned long thresh = 32 * 1024 * 1024;
934 
935 		if (wbc->for_kupdate)
936 			return 0;
937 
938 		/* this is a bit racy, but that's ok */
939 		num_dirty = root->fs_info->dirty_metadata_bytes;
940 		if (num_dirty < thresh)
941 			return 0;
942 	}
943 	return extent_writepages(tree, mapping, btree_get_extent, wbc);
944 }
945 
946 static int btree_readpage(struct file *file, struct page *page)
947 {
948 	struct extent_io_tree *tree;
949 	tree = &BTRFS_I(page->mapping->host)->io_tree;
950 	return extent_read_full_page(tree, page, btree_get_extent, 0);
951 }
952 
953 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
954 {
955 	struct extent_io_tree *tree;
956 	struct extent_map_tree *map;
957 	int ret;
958 
959 	if (PageWriteback(page) || PageDirty(page))
960 		return 0;
961 
962 	tree = &BTRFS_I(page->mapping->host)->io_tree;
963 	map = &BTRFS_I(page->mapping->host)->extent_tree;
964 
965 	ret = try_release_extent_state(map, tree, page, gfp_flags);
966 	if (!ret)
967 		return 0;
968 
969 	ret = try_release_extent_buffer(tree, page);
970 	if (ret == 1) {
971 		ClearPagePrivate(page);
972 		set_page_private(page, 0);
973 		page_cache_release(page);
974 	}
975 
976 	return ret;
977 }
978 
979 static void btree_invalidatepage(struct page *page, unsigned long offset)
980 {
981 	struct extent_io_tree *tree;
982 	tree = &BTRFS_I(page->mapping->host)->io_tree;
983 	extent_invalidatepage(tree, page, offset);
984 	btree_releasepage(page, GFP_NOFS);
985 	if (PagePrivate(page)) {
986 		printk(KERN_WARNING "btrfs warning page private not zero "
987 		       "on page %llu\n", (unsigned long long)page_offset(page));
988 		ClearPagePrivate(page);
989 		set_page_private(page, 0);
990 		page_cache_release(page);
991 	}
992 }
993 
994 static const struct address_space_operations btree_aops = {
995 	.readpage	= btree_readpage,
996 	.writepage	= btree_writepage,
997 	.writepages	= btree_writepages,
998 	.releasepage	= btree_releasepage,
999 	.invalidatepage = btree_invalidatepage,
1000 #ifdef CONFIG_MIGRATION
1001 	.migratepage	= btree_migratepage,
1002 #endif
1003 };
1004 
1005 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1006 			 u64 parent_transid)
1007 {
1008 	struct extent_buffer *buf = NULL;
1009 	struct inode *btree_inode = root->fs_info->btree_inode;
1010 	int ret = 0;
1011 
1012 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1013 	if (!buf)
1014 		return 0;
1015 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1016 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1017 	free_extent_buffer(buf);
1018 	return ret;
1019 }
1020 
1021 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1022 			 int mirror_num, struct extent_buffer **eb)
1023 {
1024 	struct extent_buffer *buf = NULL;
1025 	struct inode *btree_inode = root->fs_info->btree_inode;
1026 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1027 	int ret;
1028 
1029 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1030 	if (!buf)
1031 		return 0;
1032 
1033 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1034 
1035 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1036 				       btree_get_extent, mirror_num);
1037 	if (ret) {
1038 		free_extent_buffer(buf);
1039 		return ret;
1040 	}
1041 
1042 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1043 		free_extent_buffer(buf);
1044 		return -EIO;
1045 	} else if (extent_buffer_uptodate(io_tree, buf, NULL)) {
1046 		*eb = buf;
1047 	} else {
1048 		free_extent_buffer(buf);
1049 	}
1050 	return 0;
1051 }
1052 
1053 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1054 					    u64 bytenr, u32 blocksize)
1055 {
1056 	struct inode *btree_inode = root->fs_info->btree_inode;
1057 	struct extent_buffer *eb;
1058 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1059 				bytenr, blocksize);
1060 	return eb;
1061 }
1062 
1063 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1064 						 u64 bytenr, u32 blocksize)
1065 {
1066 	struct inode *btree_inode = root->fs_info->btree_inode;
1067 	struct extent_buffer *eb;
1068 
1069 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1070 				 bytenr, blocksize, NULL);
1071 	return eb;
1072 }
1073 
1074 
1075 int btrfs_write_tree_block(struct extent_buffer *buf)
1076 {
1077 	return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
1078 					buf->start + buf->len - 1);
1079 }
1080 
1081 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1082 {
1083 	return filemap_fdatawait_range(buf->first_page->mapping,
1084 				       buf->start, buf->start + buf->len - 1);
1085 }
1086 
1087 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1088 				      u32 blocksize, u64 parent_transid)
1089 {
1090 	struct extent_buffer *buf = NULL;
1091 	int ret;
1092 
1093 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1094 	if (!buf)
1095 		return NULL;
1096 
1097 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1098 
1099 	if (ret == 0)
1100 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
1101 	return buf;
1102 
1103 }
1104 
1105 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1106 		     struct extent_buffer *buf)
1107 {
1108 	struct inode *btree_inode = root->fs_info->btree_inode;
1109 	if (btrfs_header_generation(buf) ==
1110 	    root->fs_info->running_transaction->transid) {
1111 		btrfs_assert_tree_locked(buf);
1112 
1113 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1114 			spin_lock(&root->fs_info->delalloc_lock);
1115 			if (root->fs_info->dirty_metadata_bytes >= buf->len)
1116 				root->fs_info->dirty_metadata_bytes -= buf->len;
1117 			else
1118 				WARN_ON(1);
1119 			spin_unlock(&root->fs_info->delalloc_lock);
1120 		}
1121 
1122 		/* ugh, clear_extent_buffer_dirty needs to lock the page */
1123 		btrfs_set_lock_blocking(buf);
1124 		clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
1125 					  buf);
1126 	}
1127 	return 0;
1128 }
1129 
1130 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1131 			u32 stripesize, struct btrfs_root *root,
1132 			struct btrfs_fs_info *fs_info,
1133 			u64 objectid)
1134 {
1135 	root->node = NULL;
1136 	root->commit_root = NULL;
1137 	root->sectorsize = sectorsize;
1138 	root->nodesize = nodesize;
1139 	root->leafsize = leafsize;
1140 	root->stripesize = stripesize;
1141 	root->ref_cows = 0;
1142 	root->track_dirty = 0;
1143 	root->in_radix = 0;
1144 	root->orphan_item_inserted = 0;
1145 	root->orphan_cleanup_state = 0;
1146 
1147 	root->objectid = objectid;
1148 	root->last_trans = 0;
1149 	root->highest_objectid = 0;
1150 	root->name = NULL;
1151 	root->inode_tree = RB_ROOT;
1152 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1153 	root->block_rsv = NULL;
1154 	root->orphan_block_rsv = NULL;
1155 
1156 	INIT_LIST_HEAD(&root->dirty_list);
1157 	INIT_LIST_HEAD(&root->orphan_list);
1158 	INIT_LIST_HEAD(&root->root_list);
1159 	spin_lock_init(&root->orphan_lock);
1160 	spin_lock_init(&root->inode_lock);
1161 	spin_lock_init(&root->accounting_lock);
1162 	mutex_init(&root->objectid_mutex);
1163 	mutex_init(&root->log_mutex);
1164 	init_waitqueue_head(&root->log_writer_wait);
1165 	init_waitqueue_head(&root->log_commit_wait[0]);
1166 	init_waitqueue_head(&root->log_commit_wait[1]);
1167 	atomic_set(&root->log_commit[0], 0);
1168 	atomic_set(&root->log_commit[1], 0);
1169 	atomic_set(&root->log_writers, 0);
1170 	root->log_batch = 0;
1171 	root->log_transid = 0;
1172 	root->last_log_commit = 0;
1173 	extent_io_tree_init(&root->dirty_log_pages,
1174 			     fs_info->btree_inode->i_mapping);
1175 
1176 	memset(&root->root_key, 0, sizeof(root->root_key));
1177 	memset(&root->root_item, 0, sizeof(root->root_item));
1178 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1179 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1180 	root->defrag_trans_start = fs_info->generation;
1181 	init_completion(&root->kobj_unregister);
1182 	root->defrag_running = 0;
1183 	root->root_key.objectid = objectid;
1184 	root->anon_dev = 0;
1185 	return 0;
1186 }
1187 
1188 static int find_and_setup_root(struct btrfs_root *tree_root,
1189 			       struct btrfs_fs_info *fs_info,
1190 			       u64 objectid,
1191 			       struct btrfs_root *root)
1192 {
1193 	int ret;
1194 	u32 blocksize;
1195 	u64 generation;
1196 
1197 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1198 		     tree_root->sectorsize, tree_root->stripesize,
1199 		     root, fs_info, objectid);
1200 	ret = btrfs_find_last_root(tree_root, objectid,
1201 				   &root->root_item, &root->root_key);
1202 	if (ret > 0)
1203 		return -ENOENT;
1204 	BUG_ON(ret);
1205 
1206 	generation = btrfs_root_generation(&root->root_item);
1207 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1208 	root->commit_root = NULL;
1209 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1210 				     blocksize, generation);
1211 	if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1212 		free_extent_buffer(root->node);
1213 		root->node = NULL;
1214 		return -EIO;
1215 	}
1216 	root->commit_root = btrfs_root_node(root);
1217 	return 0;
1218 }
1219 
1220 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1221 {
1222 	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1223 	if (root)
1224 		root->fs_info = fs_info;
1225 	return root;
1226 }
1227 
1228 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1229 					 struct btrfs_fs_info *fs_info)
1230 {
1231 	struct btrfs_root *root;
1232 	struct btrfs_root *tree_root = fs_info->tree_root;
1233 	struct extent_buffer *leaf;
1234 
1235 	root = btrfs_alloc_root(fs_info);
1236 	if (!root)
1237 		return ERR_PTR(-ENOMEM);
1238 
1239 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1240 		     tree_root->sectorsize, tree_root->stripesize,
1241 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1242 
1243 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1244 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1245 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1246 	/*
1247 	 * log trees do not get reference counted because they go away
1248 	 * before a real commit is actually done.  They do store pointers
1249 	 * to file data extents, and those reference counts still get
1250 	 * updated (along with back refs to the log tree).
1251 	 */
1252 	root->ref_cows = 0;
1253 
1254 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1255 				      BTRFS_TREE_LOG_OBJECTID, NULL,
1256 				      0, 0, 0, 0);
1257 	if (IS_ERR(leaf)) {
1258 		kfree(root);
1259 		return ERR_CAST(leaf);
1260 	}
1261 
1262 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1263 	btrfs_set_header_bytenr(leaf, leaf->start);
1264 	btrfs_set_header_generation(leaf, trans->transid);
1265 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1266 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1267 	root->node = leaf;
1268 
1269 	write_extent_buffer(root->node, root->fs_info->fsid,
1270 			    (unsigned long)btrfs_header_fsid(root->node),
1271 			    BTRFS_FSID_SIZE);
1272 	btrfs_mark_buffer_dirty(root->node);
1273 	btrfs_tree_unlock(root->node);
1274 	return root;
1275 }
1276 
1277 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1278 			     struct btrfs_fs_info *fs_info)
1279 {
1280 	struct btrfs_root *log_root;
1281 
1282 	log_root = alloc_log_tree(trans, fs_info);
1283 	if (IS_ERR(log_root))
1284 		return PTR_ERR(log_root);
1285 	WARN_ON(fs_info->log_root_tree);
1286 	fs_info->log_root_tree = log_root;
1287 	return 0;
1288 }
1289 
1290 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1291 		       struct btrfs_root *root)
1292 {
1293 	struct btrfs_root *log_root;
1294 	struct btrfs_inode_item *inode_item;
1295 
1296 	log_root = alloc_log_tree(trans, root->fs_info);
1297 	if (IS_ERR(log_root))
1298 		return PTR_ERR(log_root);
1299 
1300 	log_root->last_trans = trans->transid;
1301 	log_root->root_key.offset = root->root_key.objectid;
1302 
1303 	inode_item = &log_root->root_item.inode;
1304 	inode_item->generation = cpu_to_le64(1);
1305 	inode_item->size = cpu_to_le64(3);
1306 	inode_item->nlink = cpu_to_le32(1);
1307 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1308 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1309 
1310 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1311 
1312 	WARN_ON(root->log_root);
1313 	root->log_root = log_root;
1314 	root->log_transid = 0;
1315 	root->last_log_commit = 0;
1316 	return 0;
1317 }
1318 
1319 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1320 					       struct btrfs_key *location)
1321 {
1322 	struct btrfs_root *root;
1323 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1324 	struct btrfs_path *path;
1325 	struct extent_buffer *l;
1326 	u64 generation;
1327 	u32 blocksize;
1328 	int ret = 0;
1329 
1330 	root = btrfs_alloc_root(fs_info);
1331 	if (!root)
1332 		return ERR_PTR(-ENOMEM);
1333 	if (location->offset == (u64)-1) {
1334 		ret = find_and_setup_root(tree_root, fs_info,
1335 					  location->objectid, root);
1336 		if (ret) {
1337 			kfree(root);
1338 			return ERR_PTR(ret);
1339 		}
1340 		goto out;
1341 	}
1342 
1343 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1344 		     tree_root->sectorsize, tree_root->stripesize,
1345 		     root, fs_info, location->objectid);
1346 
1347 	path = btrfs_alloc_path();
1348 	if (!path) {
1349 		kfree(root);
1350 		return ERR_PTR(-ENOMEM);
1351 	}
1352 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1353 	if (ret == 0) {
1354 		l = path->nodes[0];
1355 		read_extent_buffer(l, &root->root_item,
1356 				btrfs_item_ptr_offset(l, path->slots[0]),
1357 				sizeof(root->root_item));
1358 		memcpy(&root->root_key, location, sizeof(*location));
1359 	}
1360 	btrfs_free_path(path);
1361 	if (ret) {
1362 		kfree(root);
1363 		if (ret > 0)
1364 			ret = -ENOENT;
1365 		return ERR_PTR(ret);
1366 	}
1367 
1368 	generation = btrfs_root_generation(&root->root_item);
1369 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1370 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1371 				     blocksize, generation);
1372 	root->commit_root = btrfs_root_node(root);
1373 	BUG_ON(!root->node);
1374 out:
1375 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1376 		root->ref_cows = 1;
1377 		btrfs_check_and_init_root_item(&root->root_item);
1378 	}
1379 
1380 	return root;
1381 }
1382 
1383 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1384 					      struct btrfs_key *location)
1385 {
1386 	struct btrfs_root *root;
1387 	int ret;
1388 
1389 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1390 		return fs_info->tree_root;
1391 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1392 		return fs_info->extent_root;
1393 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1394 		return fs_info->chunk_root;
1395 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1396 		return fs_info->dev_root;
1397 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1398 		return fs_info->csum_root;
1399 again:
1400 	spin_lock(&fs_info->fs_roots_radix_lock);
1401 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1402 				 (unsigned long)location->objectid);
1403 	spin_unlock(&fs_info->fs_roots_radix_lock);
1404 	if (root)
1405 		return root;
1406 
1407 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1408 	if (IS_ERR(root))
1409 		return root;
1410 
1411 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1412 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1413 					GFP_NOFS);
1414 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1415 		ret = -ENOMEM;
1416 		goto fail;
1417 	}
1418 
1419 	btrfs_init_free_ino_ctl(root);
1420 	mutex_init(&root->fs_commit_mutex);
1421 	spin_lock_init(&root->cache_lock);
1422 	init_waitqueue_head(&root->cache_wait);
1423 
1424 	ret = get_anon_bdev(&root->anon_dev);
1425 	if (ret)
1426 		goto fail;
1427 
1428 	if (btrfs_root_refs(&root->root_item) == 0) {
1429 		ret = -ENOENT;
1430 		goto fail;
1431 	}
1432 
1433 	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1434 	if (ret < 0)
1435 		goto fail;
1436 	if (ret == 0)
1437 		root->orphan_item_inserted = 1;
1438 
1439 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1440 	if (ret)
1441 		goto fail;
1442 
1443 	spin_lock(&fs_info->fs_roots_radix_lock);
1444 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1445 				(unsigned long)root->root_key.objectid,
1446 				root);
1447 	if (ret == 0)
1448 		root->in_radix = 1;
1449 
1450 	spin_unlock(&fs_info->fs_roots_radix_lock);
1451 	radix_tree_preload_end();
1452 	if (ret) {
1453 		if (ret == -EEXIST) {
1454 			free_fs_root(root);
1455 			goto again;
1456 		}
1457 		goto fail;
1458 	}
1459 
1460 	ret = btrfs_find_dead_roots(fs_info->tree_root,
1461 				    root->root_key.objectid);
1462 	WARN_ON(ret);
1463 	return root;
1464 fail:
1465 	free_fs_root(root);
1466 	return ERR_PTR(ret);
1467 }
1468 
1469 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1470 {
1471 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1472 	int ret = 0;
1473 	struct btrfs_device *device;
1474 	struct backing_dev_info *bdi;
1475 
1476 	rcu_read_lock();
1477 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1478 		if (!device->bdev)
1479 			continue;
1480 		bdi = blk_get_backing_dev_info(device->bdev);
1481 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1482 			ret = 1;
1483 			break;
1484 		}
1485 	}
1486 	rcu_read_unlock();
1487 	return ret;
1488 }
1489 
1490 /*
1491  * If this fails, caller must call bdi_destroy() to get rid of the
1492  * bdi again.
1493  */
1494 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1495 {
1496 	int err;
1497 
1498 	bdi->capabilities = BDI_CAP_MAP_COPY;
1499 	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1500 	if (err)
1501 		return err;
1502 
1503 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1504 	bdi->congested_fn	= btrfs_congested_fn;
1505 	bdi->congested_data	= info;
1506 	return 0;
1507 }
1508 
1509 static int bio_ready_for_csum(struct bio *bio)
1510 {
1511 	u64 length = 0;
1512 	u64 buf_len = 0;
1513 	u64 start = 0;
1514 	struct page *page;
1515 	struct extent_io_tree *io_tree = NULL;
1516 	struct bio_vec *bvec;
1517 	int i;
1518 	int ret;
1519 
1520 	bio_for_each_segment(bvec, bio, i) {
1521 		page = bvec->bv_page;
1522 		if (page->private == EXTENT_PAGE_PRIVATE) {
1523 			length += bvec->bv_len;
1524 			continue;
1525 		}
1526 		if (!page->private) {
1527 			length += bvec->bv_len;
1528 			continue;
1529 		}
1530 		length = bvec->bv_len;
1531 		buf_len = page->private >> 2;
1532 		start = page_offset(page) + bvec->bv_offset;
1533 		io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1534 	}
1535 	/* are we fully contained in this bio? */
1536 	if (buf_len <= length)
1537 		return 1;
1538 
1539 	ret = extent_range_uptodate(io_tree, start + length,
1540 				    start + buf_len - 1);
1541 	return ret;
1542 }
1543 
1544 /*
1545  * called by the kthread helper functions to finally call the bio end_io
1546  * functions.  This is where read checksum verification actually happens
1547  */
1548 static void end_workqueue_fn(struct btrfs_work *work)
1549 {
1550 	struct bio *bio;
1551 	struct end_io_wq *end_io_wq;
1552 	struct btrfs_fs_info *fs_info;
1553 	int error;
1554 
1555 	end_io_wq = container_of(work, struct end_io_wq, work);
1556 	bio = end_io_wq->bio;
1557 	fs_info = end_io_wq->info;
1558 
1559 	/* metadata bio reads are special because the whole tree block must
1560 	 * be checksummed at once.  This makes sure the entire block is in
1561 	 * ram and up to date before trying to verify things.  For
1562 	 * blocksize <= pagesize, it is basically a noop
1563 	 */
1564 	if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
1565 	    !bio_ready_for_csum(bio)) {
1566 		btrfs_queue_worker(&fs_info->endio_meta_workers,
1567 				   &end_io_wq->work);
1568 		return;
1569 	}
1570 	error = end_io_wq->error;
1571 	bio->bi_private = end_io_wq->private;
1572 	bio->bi_end_io = end_io_wq->end_io;
1573 	kfree(end_io_wq);
1574 	bio_endio(bio, error);
1575 }
1576 
1577 static int cleaner_kthread(void *arg)
1578 {
1579 	struct btrfs_root *root = arg;
1580 
1581 	do {
1582 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1583 
1584 		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1585 		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
1586 			btrfs_run_delayed_iputs(root);
1587 			btrfs_clean_old_snapshots(root);
1588 			mutex_unlock(&root->fs_info->cleaner_mutex);
1589 			btrfs_run_defrag_inodes(root->fs_info);
1590 		}
1591 
1592 		if (!try_to_freeze()) {
1593 			set_current_state(TASK_INTERRUPTIBLE);
1594 			if (!kthread_should_stop())
1595 				schedule();
1596 			__set_current_state(TASK_RUNNING);
1597 		}
1598 	} while (!kthread_should_stop());
1599 	return 0;
1600 }
1601 
1602 static int transaction_kthread(void *arg)
1603 {
1604 	struct btrfs_root *root = arg;
1605 	struct btrfs_trans_handle *trans;
1606 	struct btrfs_transaction *cur;
1607 	u64 transid;
1608 	unsigned long now;
1609 	unsigned long delay;
1610 	int ret;
1611 
1612 	do {
1613 		delay = HZ * 30;
1614 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1615 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1616 
1617 		spin_lock(&root->fs_info->trans_lock);
1618 		cur = root->fs_info->running_transaction;
1619 		if (!cur) {
1620 			spin_unlock(&root->fs_info->trans_lock);
1621 			goto sleep;
1622 		}
1623 
1624 		now = get_seconds();
1625 		if (!cur->blocked &&
1626 		    (now < cur->start_time || now - cur->start_time < 30)) {
1627 			spin_unlock(&root->fs_info->trans_lock);
1628 			delay = HZ * 5;
1629 			goto sleep;
1630 		}
1631 		transid = cur->transid;
1632 		spin_unlock(&root->fs_info->trans_lock);
1633 
1634 		trans = btrfs_join_transaction(root);
1635 		BUG_ON(IS_ERR(trans));
1636 		if (transid == trans->transid) {
1637 			ret = btrfs_commit_transaction(trans, root);
1638 			BUG_ON(ret);
1639 		} else {
1640 			btrfs_end_transaction(trans, root);
1641 		}
1642 sleep:
1643 		wake_up_process(root->fs_info->cleaner_kthread);
1644 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1645 
1646 		if (!try_to_freeze()) {
1647 			set_current_state(TASK_INTERRUPTIBLE);
1648 			if (!kthread_should_stop() &&
1649 			    !btrfs_transaction_blocked(root->fs_info))
1650 				schedule_timeout(delay);
1651 			__set_current_state(TASK_RUNNING);
1652 		}
1653 	} while (!kthread_should_stop());
1654 	return 0;
1655 }
1656 
1657 /*
1658  * this will find the highest generation in the array of
1659  * root backups.  The index of the highest array is returned,
1660  * or -1 if we can't find anything.
1661  *
1662  * We check to make sure the array is valid by comparing the
1663  * generation of the latest  root in the array with the generation
1664  * in the super block.  If they don't match we pitch it.
1665  */
1666 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1667 {
1668 	u64 cur;
1669 	int newest_index = -1;
1670 	struct btrfs_root_backup *root_backup;
1671 	int i;
1672 
1673 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1674 		root_backup = info->super_copy->super_roots + i;
1675 		cur = btrfs_backup_tree_root_gen(root_backup);
1676 		if (cur == newest_gen)
1677 			newest_index = i;
1678 	}
1679 
1680 	/* check to see if we actually wrapped around */
1681 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1682 		root_backup = info->super_copy->super_roots;
1683 		cur = btrfs_backup_tree_root_gen(root_backup);
1684 		if (cur == newest_gen)
1685 			newest_index = 0;
1686 	}
1687 	return newest_index;
1688 }
1689 
1690 
1691 /*
1692  * find the oldest backup so we know where to store new entries
1693  * in the backup array.  This will set the backup_root_index
1694  * field in the fs_info struct
1695  */
1696 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1697 				     u64 newest_gen)
1698 {
1699 	int newest_index = -1;
1700 
1701 	newest_index = find_newest_super_backup(info, newest_gen);
1702 	/* if there was garbage in there, just move along */
1703 	if (newest_index == -1) {
1704 		info->backup_root_index = 0;
1705 	} else {
1706 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1707 	}
1708 }
1709 
1710 /*
1711  * copy all the root pointers into the super backup array.
1712  * this will bump the backup pointer by one when it is
1713  * done
1714  */
1715 static void backup_super_roots(struct btrfs_fs_info *info)
1716 {
1717 	int next_backup;
1718 	struct btrfs_root_backup *root_backup;
1719 	int last_backup;
1720 
1721 	next_backup = info->backup_root_index;
1722 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1723 		BTRFS_NUM_BACKUP_ROOTS;
1724 
1725 	/*
1726 	 * just overwrite the last backup if we're at the same generation
1727 	 * this happens only at umount
1728 	 */
1729 	root_backup = info->super_for_commit->super_roots + last_backup;
1730 	if (btrfs_backup_tree_root_gen(root_backup) ==
1731 	    btrfs_header_generation(info->tree_root->node))
1732 		next_backup = last_backup;
1733 
1734 	root_backup = info->super_for_commit->super_roots + next_backup;
1735 
1736 	/*
1737 	 * make sure all of our padding and empty slots get zero filled
1738 	 * regardless of which ones we use today
1739 	 */
1740 	memset(root_backup, 0, sizeof(*root_backup));
1741 
1742 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1743 
1744 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1745 	btrfs_set_backup_tree_root_gen(root_backup,
1746 			       btrfs_header_generation(info->tree_root->node));
1747 
1748 	btrfs_set_backup_tree_root_level(root_backup,
1749 			       btrfs_header_level(info->tree_root->node));
1750 
1751 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1752 	btrfs_set_backup_chunk_root_gen(root_backup,
1753 			       btrfs_header_generation(info->chunk_root->node));
1754 	btrfs_set_backup_chunk_root_level(root_backup,
1755 			       btrfs_header_level(info->chunk_root->node));
1756 
1757 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1758 	btrfs_set_backup_extent_root_gen(root_backup,
1759 			       btrfs_header_generation(info->extent_root->node));
1760 	btrfs_set_backup_extent_root_level(root_backup,
1761 			       btrfs_header_level(info->extent_root->node));
1762 
1763 	/*
1764 	 * we might commit during log recovery, which happens before we set
1765 	 * the fs_root.  Make sure it is valid before we fill it in.
1766 	 */
1767 	if (info->fs_root && info->fs_root->node) {
1768 		btrfs_set_backup_fs_root(root_backup,
1769 					 info->fs_root->node->start);
1770 		btrfs_set_backup_fs_root_gen(root_backup,
1771 			       btrfs_header_generation(info->fs_root->node));
1772 		btrfs_set_backup_fs_root_level(root_backup,
1773 			       btrfs_header_level(info->fs_root->node));
1774 	}
1775 
1776 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1777 	btrfs_set_backup_dev_root_gen(root_backup,
1778 			       btrfs_header_generation(info->dev_root->node));
1779 	btrfs_set_backup_dev_root_level(root_backup,
1780 				       btrfs_header_level(info->dev_root->node));
1781 
1782 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1783 	btrfs_set_backup_csum_root_gen(root_backup,
1784 			       btrfs_header_generation(info->csum_root->node));
1785 	btrfs_set_backup_csum_root_level(root_backup,
1786 			       btrfs_header_level(info->csum_root->node));
1787 
1788 	btrfs_set_backup_total_bytes(root_backup,
1789 			     btrfs_super_total_bytes(info->super_copy));
1790 	btrfs_set_backup_bytes_used(root_backup,
1791 			     btrfs_super_bytes_used(info->super_copy));
1792 	btrfs_set_backup_num_devices(root_backup,
1793 			     btrfs_super_num_devices(info->super_copy));
1794 
1795 	/*
1796 	 * if we don't copy this out to the super_copy, it won't get remembered
1797 	 * for the next commit
1798 	 */
1799 	memcpy(&info->super_copy->super_roots,
1800 	       &info->super_for_commit->super_roots,
1801 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1802 }
1803 
1804 /*
1805  * this copies info out of the root backup array and back into
1806  * the in-memory super block.  It is meant to help iterate through
1807  * the array, so you send it the number of backups you've already
1808  * tried and the last backup index you used.
1809  *
1810  * this returns -1 when it has tried all the backups
1811  */
1812 static noinline int next_root_backup(struct btrfs_fs_info *info,
1813 				     struct btrfs_super_block *super,
1814 				     int *num_backups_tried, int *backup_index)
1815 {
1816 	struct btrfs_root_backup *root_backup;
1817 	int newest = *backup_index;
1818 
1819 	if (*num_backups_tried == 0) {
1820 		u64 gen = btrfs_super_generation(super);
1821 
1822 		newest = find_newest_super_backup(info, gen);
1823 		if (newest == -1)
1824 			return -1;
1825 
1826 		*backup_index = newest;
1827 		*num_backups_tried = 1;
1828 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1829 		/* we've tried all the backups, all done */
1830 		return -1;
1831 	} else {
1832 		/* jump to the next oldest backup */
1833 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1834 			BTRFS_NUM_BACKUP_ROOTS;
1835 		*backup_index = newest;
1836 		*num_backups_tried += 1;
1837 	}
1838 	root_backup = super->super_roots + newest;
1839 
1840 	btrfs_set_super_generation(super,
1841 				   btrfs_backup_tree_root_gen(root_backup));
1842 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1843 	btrfs_set_super_root_level(super,
1844 				   btrfs_backup_tree_root_level(root_backup));
1845 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1846 
1847 	/*
1848 	 * fixme: the total bytes and num_devices need to match or we should
1849 	 * need a fsck
1850 	 */
1851 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1852 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1853 	return 0;
1854 }
1855 
1856 /* helper to cleanup tree roots */
1857 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1858 {
1859 	free_extent_buffer(info->tree_root->node);
1860 	free_extent_buffer(info->tree_root->commit_root);
1861 	free_extent_buffer(info->dev_root->node);
1862 	free_extent_buffer(info->dev_root->commit_root);
1863 	free_extent_buffer(info->extent_root->node);
1864 	free_extent_buffer(info->extent_root->commit_root);
1865 	free_extent_buffer(info->csum_root->node);
1866 	free_extent_buffer(info->csum_root->commit_root);
1867 
1868 	info->tree_root->node = NULL;
1869 	info->tree_root->commit_root = NULL;
1870 	info->dev_root->node = NULL;
1871 	info->dev_root->commit_root = NULL;
1872 	info->extent_root->node = NULL;
1873 	info->extent_root->commit_root = NULL;
1874 	info->csum_root->node = NULL;
1875 	info->csum_root->commit_root = NULL;
1876 
1877 	if (chunk_root) {
1878 		free_extent_buffer(info->chunk_root->node);
1879 		free_extent_buffer(info->chunk_root->commit_root);
1880 		info->chunk_root->node = NULL;
1881 		info->chunk_root->commit_root = NULL;
1882 	}
1883 }
1884 
1885 
1886 int open_ctree(struct super_block *sb,
1887 	       struct btrfs_fs_devices *fs_devices,
1888 	       char *options)
1889 {
1890 	u32 sectorsize;
1891 	u32 nodesize;
1892 	u32 leafsize;
1893 	u32 blocksize;
1894 	u32 stripesize;
1895 	u64 generation;
1896 	u64 features;
1897 	struct btrfs_key location;
1898 	struct buffer_head *bh;
1899 	struct btrfs_super_block *disk_super;
1900 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1901 	struct btrfs_root *tree_root;
1902 	struct btrfs_root *extent_root;
1903 	struct btrfs_root *csum_root;
1904 	struct btrfs_root *chunk_root;
1905 	struct btrfs_root *dev_root;
1906 	struct btrfs_root *log_tree_root;
1907 	int ret;
1908 	int err = -EINVAL;
1909 	int num_backups_tried = 0;
1910 	int backup_index = 0;
1911 
1912 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1913 	extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1914 	csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1915 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1916 	dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1917 
1918 	if (!tree_root || !extent_root || !csum_root ||
1919 	    !chunk_root || !dev_root) {
1920 		err = -ENOMEM;
1921 		goto fail;
1922 	}
1923 
1924 	ret = init_srcu_struct(&fs_info->subvol_srcu);
1925 	if (ret) {
1926 		err = ret;
1927 		goto fail;
1928 	}
1929 
1930 	ret = setup_bdi(fs_info, &fs_info->bdi);
1931 	if (ret) {
1932 		err = ret;
1933 		goto fail_srcu;
1934 	}
1935 
1936 	fs_info->btree_inode = new_inode(sb);
1937 	if (!fs_info->btree_inode) {
1938 		err = -ENOMEM;
1939 		goto fail_bdi;
1940 	}
1941 
1942 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1943 
1944 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1945 	INIT_LIST_HEAD(&fs_info->trans_list);
1946 	INIT_LIST_HEAD(&fs_info->dead_roots);
1947 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
1948 	INIT_LIST_HEAD(&fs_info->hashers);
1949 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1950 	INIT_LIST_HEAD(&fs_info->ordered_operations);
1951 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
1952 	spin_lock_init(&fs_info->delalloc_lock);
1953 	spin_lock_init(&fs_info->trans_lock);
1954 	spin_lock_init(&fs_info->ref_cache_lock);
1955 	spin_lock_init(&fs_info->fs_roots_radix_lock);
1956 	spin_lock_init(&fs_info->delayed_iput_lock);
1957 	spin_lock_init(&fs_info->defrag_inodes_lock);
1958 	spin_lock_init(&fs_info->free_chunk_lock);
1959 	mutex_init(&fs_info->reloc_mutex);
1960 
1961 	init_completion(&fs_info->kobj_unregister);
1962 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1963 	INIT_LIST_HEAD(&fs_info->space_info);
1964 	btrfs_mapping_init(&fs_info->mapping_tree);
1965 	btrfs_init_block_rsv(&fs_info->global_block_rsv);
1966 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1967 	btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1968 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1969 	btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1970 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
1971 	atomic_set(&fs_info->nr_async_submits, 0);
1972 	atomic_set(&fs_info->async_delalloc_pages, 0);
1973 	atomic_set(&fs_info->async_submit_draining, 0);
1974 	atomic_set(&fs_info->nr_async_bios, 0);
1975 	atomic_set(&fs_info->defrag_running, 0);
1976 	fs_info->sb = sb;
1977 	fs_info->max_inline = 8192 * 1024;
1978 	fs_info->metadata_ratio = 0;
1979 	fs_info->defrag_inodes = RB_ROOT;
1980 	fs_info->trans_no_join = 0;
1981 	fs_info->free_chunk_space = 0;
1982 
1983 	/* readahead state */
1984 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1985 	spin_lock_init(&fs_info->reada_lock);
1986 
1987 	fs_info->thread_pool_size = min_t(unsigned long,
1988 					  num_online_cpus() + 2, 8);
1989 
1990 	INIT_LIST_HEAD(&fs_info->ordered_extents);
1991 	spin_lock_init(&fs_info->ordered_extent_lock);
1992 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1993 					GFP_NOFS);
1994 	if (!fs_info->delayed_root) {
1995 		err = -ENOMEM;
1996 		goto fail_iput;
1997 	}
1998 	btrfs_init_delayed_root(fs_info->delayed_root);
1999 
2000 	mutex_init(&fs_info->scrub_lock);
2001 	atomic_set(&fs_info->scrubs_running, 0);
2002 	atomic_set(&fs_info->scrub_pause_req, 0);
2003 	atomic_set(&fs_info->scrubs_paused, 0);
2004 	atomic_set(&fs_info->scrub_cancel_req, 0);
2005 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2006 	init_rwsem(&fs_info->scrub_super_lock);
2007 	fs_info->scrub_workers_refcnt = 0;
2008 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2009 	fs_info->check_integrity_print_mask = 0;
2010 #endif
2011 
2012 	spin_lock_init(&fs_info->balance_lock);
2013 	mutex_init(&fs_info->balance_mutex);
2014 	atomic_set(&fs_info->balance_running, 0);
2015 	atomic_set(&fs_info->balance_pause_req, 0);
2016 	atomic_set(&fs_info->balance_cancel_req, 0);
2017 	fs_info->balance_ctl = NULL;
2018 	init_waitqueue_head(&fs_info->balance_wait_q);
2019 
2020 	sb->s_blocksize = 4096;
2021 	sb->s_blocksize_bits = blksize_bits(4096);
2022 	sb->s_bdi = &fs_info->bdi;
2023 
2024 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2025 	set_nlink(fs_info->btree_inode, 1);
2026 	/*
2027 	 * we set the i_size on the btree inode to the max possible int.
2028 	 * the real end of the address space is determined by all of
2029 	 * the devices in the system
2030 	 */
2031 	fs_info->btree_inode->i_size = OFFSET_MAX;
2032 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2033 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2034 
2035 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2036 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2037 			     fs_info->btree_inode->i_mapping);
2038 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2039 
2040 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2041 
2042 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2043 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2044 	       sizeof(struct btrfs_key));
2045 	BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
2046 	insert_inode_hash(fs_info->btree_inode);
2047 
2048 	spin_lock_init(&fs_info->block_group_cache_lock);
2049 	fs_info->block_group_cache_tree = RB_ROOT;
2050 
2051 	extent_io_tree_init(&fs_info->freed_extents[0],
2052 			     fs_info->btree_inode->i_mapping);
2053 	extent_io_tree_init(&fs_info->freed_extents[1],
2054 			     fs_info->btree_inode->i_mapping);
2055 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2056 	fs_info->do_barriers = 1;
2057 
2058 
2059 	mutex_init(&fs_info->ordered_operations_mutex);
2060 	mutex_init(&fs_info->tree_log_mutex);
2061 	mutex_init(&fs_info->chunk_mutex);
2062 	mutex_init(&fs_info->transaction_kthread_mutex);
2063 	mutex_init(&fs_info->cleaner_mutex);
2064 	mutex_init(&fs_info->volume_mutex);
2065 	init_rwsem(&fs_info->extent_commit_sem);
2066 	init_rwsem(&fs_info->cleanup_work_sem);
2067 	init_rwsem(&fs_info->subvol_sem);
2068 
2069 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2070 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2071 
2072 	init_waitqueue_head(&fs_info->transaction_throttle);
2073 	init_waitqueue_head(&fs_info->transaction_wait);
2074 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2075 	init_waitqueue_head(&fs_info->async_submit_wait);
2076 
2077 	__setup_root(4096, 4096, 4096, 4096, tree_root,
2078 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2079 
2080 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2081 	if (!bh) {
2082 		err = -EINVAL;
2083 		goto fail_alloc;
2084 	}
2085 
2086 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2087 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2088 	       sizeof(*fs_info->super_for_commit));
2089 	brelse(bh);
2090 
2091 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2092 
2093 	disk_super = fs_info->super_copy;
2094 	if (!btrfs_super_root(disk_super))
2095 		goto fail_alloc;
2096 
2097 	/* check FS state, whether FS is broken. */
2098 	fs_info->fs_state |= btrfs_super_flags(disk_super);
2099 
2100 	btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2101 
2102 	/*
2103 	 * run through our array of backup supers and setup
2104 	 * our ring pointer to the oldest one
2105 	 */
2106 	generation = btrfs_super_generation(disk_super);
2107 	find_oldest_super_backup(fs_info, generation);
2108 
2109 	/*
2110 	 * In the long term, we'll store the compression type in the super
2111 	 * block, and it'll be used for per file compression control.
2112 	 */
2113 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2114 
2115 	ret = btrfs_parse_options(tree_root, options);
2116 	if (ret) {
2117 		err = ret;
2118 		goto fail_alloc;
2119 	}
2120 
2121 	features = btrfs_super_incompat_flags(disk_super) &
2122 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2123 	if (features) {
2124 		printk(KERN_ERR "BTRFS: couldn't mount because of "
2125 		       "unsupported optional features (%Lx).\n",
2126 		       (unsigned long long)features);
2127 		err = -EINVAL;
2128 		goto fail_alloc;
2129 	}
2130 
2131 	features = btrfs_super_incompat_flags(disk_super);
2132 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2133 	if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2134 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2135 	btrfs_set_super_incompat_flags(disk_super, features);
2136 
2137 	features = btrfs_super_compat_ro_flags(disk_super) &
2138 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2139 	if (!(sb->s_flags & MS_RDONLY) && features) {
2140 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2141 		       "unsupported option features (%Lx).\n",
2142 		       (unsigned long long)features);
2143 		err = -EINVAL;
2144 		goto fail_alloc;
2145 	}
2146 
2147 	btrfs_init_workers(&fs_info->generic_worker,
2148 			   "genwork", 1, NULL);
2149 
2150 	btrfs_init_workers(&fs_info->workers, "worker",
2151 			   fs_info->thread_pool_size,
2152 			   &fs_info->generic_worker);
2153 
2154 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2155 			   fs_info->thread_pool_size,
2156 			   &fs_info->generic_worker);
2157 
2158 	btrfs_init_workers(&fs_info->submit_workers, "submit",
2159 			   min_t(u64, fs_devices->num_devices,
2160 			   fs_info->thread_pool_size),
2161 			   &fs_info->generic_worker);
2162 
2163 	btrfs_init_workers(&fs_info->caching_workers, "cache",
2164 			   2, &fs_info->generic_worker);
2165 
2166 	/* a higher idle thresh on the submit workers makes it much more
2167 	 * likely that bios will be send down in a sane order to the
2168 	 * devices
2169 	 */
2170 	fs_info->submit_workers.idle_thresh = 64;
2171 
2172 	fs_info->workers.idle_thresh = 16;
2173 	fs_info->workers.ordered = 1;
2174 
2175 	fs_info->delalloc_workers.idle_thresh = 2;
2176 	fs_info->delalloc_workers.ordered = 1;
2177 
2178 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2179 			   &fs_info->generic_worker);
2180 	btrfs_init_workers(&fs_info->endio_workers, "endio",
2181 			   fs_info->thread_pool_size,
2182 			   &fs_info->generic_worker);
2183 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2184 			   fs_info->thread_pool_size,
2185 			   &fs_info->generic_worker);
2186 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
2187 			   "endio-meta-write", fs_info->thread_pool_size,
2188 			   &fs_info->generic_worker);
2189 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2190 			   fs_info->thread_pool_size,
2191 			   &fs_info->generic_worker);
2192 	btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2193 			   1, &fs_info->generic_worker);
2194 	btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2195 			   fs_info->thread_pool_size,
2196 			   &fs_info->generic_worker);
2197 	btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2198 			   fs_info->thread_pool_size,
2199 			   &fs_info->generic_worker);
2200 
2201 	/*
2202 	 * endios are largely parallel and should have a very
2203 	 * low idle thresh
2204 	 */
2205 	fs_info->endio_workers.idle_thresh = 4;
2206 	fs_info->endio_meta_workers.idle_thresh = 4;
2207 
2208 	fs_info->endio_write_workers.idle_thresh = 2;
2209 	fs_info->endio_meta_write_workers.idle_thresh = 2;
2210 	fs_info->readahead_workers.idle_thresh = 2;
2211 
2212 	/*
2213 	 * btrfs_start_workers can really only fail because of ENOMEM so just
2214 	 * return -ENOMEM if any of these fail.
2215 	 */
2216 	ret = btrfs_start_workers(&fs_info->workers);
2217 	ret |= btrfs_start_workers(&fs_info->generic_worker);
2218 	ret |= btrfs_start_workers(&fs_info->submit_workers);
2219 	ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2220 	ret |= btrfs_start_workers(&fs_info->fixup_workers);
2221 	ret |= btrfs_start_workers(&fs_info->endio_workers);
2222 	ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2223 	ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2224 	ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2225 	ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2226 	ret |= btrfs_start_workers(&fs_info->delayed_workers);
2227 	ret |= btrfs_start_workers(&fs_info->caching_workers);
2228 	ret |= btrfs_start_workers(&fs_info->readahead_workers);
2229 	if (ret) {
2230 		ret = -ENOMEM;
2231 		goto fail_sb_buffer;
2232 	}
2233 
2234 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2235 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2236 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2237 
2238 	nodesize = btrfs_super_nodesize(disk_super);
2239 	leafsize = btrfs_super_leafsize(disk_super);
2240 	sectorsize = btrfs_super_sectorsize(disk_super);
2241 	stripesize = btrfs_super_stripesize(disk_super);
2242 	tree_root->nodesize = nodesize;
2243 	tree_root->leafsize = leafsize;
2244 	tree_root->sectorsize = sectorsize;
2245 	tree_root->stripesize = stripesize;
2246 
2247 	sb->s_blocksize = sectorsize;
2248 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2249 
2250 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2251 		    sizeof(disk_super->magic))) {
2252 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2253 		goto fail_sb_buffer;
2254 	}
2255 
2256 	mutex_lock(&fs_info->chunk_mutex);
2257 	ret = btrfs_read_sys_array(tree_root);
2258 	mutex_unlock(&fs_info->chunk_mutex);
2259 	if (ret) {
2260 		printk(KERN_WARNING "btrfs: failed to read the system "
2261 		       "array on %s\n", sb->s_id);
2262 		goto fail_sb_buffer;
2263 	}
2264 
2265 	blocksize = btrfs_level_size(tree_root,
2266 				     btrfs_super_chunk_root_level(disk_super));
2267 	generation = btrfs_super_chunk_root_generation(disk_super);
2268 
2269 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
2270 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2271 
2272 	chunk_root->node = read_tree_block(chunk_root,
2273 					   btrfs_super_chunk_root(disk_super),
2274 					   blocksize, generation);
2275 	BUG_ON(!chunk_root->node);
2276 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2277 		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2278 		       sb->s_id);
2279 		goto fail_tree_roots;
2280 	}
2281 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2282 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2283 
2284 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2285 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2286 	   BTRFS_UUID_SIZE);
2287 
2288 	ret = btrfs_read_chunk_tree(chunk_root);
2289 	if (ret) {
2290 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2291 		       sb->s_id);
2292 		goto fail_tree_roots;
2293 	}
2294 
2295 	btrfs_close_extra_devices(fs_devices);
2296 
2297 retry_root_backup:
2298 	blocksize = btrfs_level_size(tree_root,
2299 				     btrfs_super_root_level(disk_super));
2300 	generation = btrfs_super_generation(disk_super);
2301 
2302 	tree_root->node = read_tree_block(tree_root,
2303 					  btrfs_super_root(disk_super),
2304 					  blocksize, generation);
2305 	if (!tree_root->node ||
2306 	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2307 		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2308 		       sb->s_id);
2309 
2310 		goto recovery_tree_root;
2311 	}
2312 
2313 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2314 	tree_root->commit_root = btrfs_root_node(tree_root);
2315 
2316 	ret = find_and_setup_root(tree_root, fs_info,
2317 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2318 	if (ret)
2319 		goto recovery_tree_root;
2320 	extent_root->track_dirty = 1;
2321 
2322 	ret = find_and_setup_root(tree_root, fs_info,
2323 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
2324 	if (ret)
2325 		goto recovery_tree_root;
2326 	dev_root->track_dirty = 1;
2327 
2328 	ret = find_and_setup_root(tree_root, fs_info,
2329 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
2330 	if (ret)
2331 		goto recovery_tree_root;
2332 
2333 	csum_root->track_dirty = 1;
2334 
2335 	fs_info->generation = generation;
2336 	fs_info->last_trans_committed = generation;
2337 
2338 	ret = btrfs_init_space_info(fs_info);
2339 	if (ret) {
2340 		printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2341 		goto fail_block_groups;
2342 	}
2343 
2344 	ret = btrfs_read_block_groups(extent_root);
2345 	if (ret) {
2346 		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2347 		goto fail_block_groups;
2348 	}
2349 
2350 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2351 					       "btrfs-cleaner");
2352 	if (IS_ERR(fs_info->cleaner_kthread))
2353 		goto fail_block_groups;
2354 
2355 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2356 						   tree_root,
2357 						   "btrfs-transaction");
2358 	if (IS_ERR(fs_info->transaction_kthread))
2359 		goto fail_cleaner;
2360 
2361 	if (!btrfs_test_opt(tree_root, SSD) &&
2362 	    !btrfs_test_opt(tree_root, NOSSD) &&
2363 	    !fs_info->fs_devices->rotating) {
2364 		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2365 		       "mode\n");
2366 		btrfs_set_opt(fs_info->mount_opt, SSD);
2367 	}
2368 
2369 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2370 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2371 		ret = btrfsic_mount(tree_root, fs_devices,
2372 				    btrfs_test_opt(tree_root,
2373 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2374 				    1 : 0,
2375 				    fs_info->check_integrity_print_mask);
2376 		if (ret)
2377 			printk(KERN_WARNING "btrfs: failed to initialize"
2378 			       " integrity check module %s\n", sb->s_id);
2379 	}
2380 #endif
2381 
2382 	/* do not make disk changes in broken FS */
2383 	if (btrfs_super_log_root(disk_super) != 0 &&
2384 	    !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2385 		u64 bytenr = btrfs_super_log_root(disk_super);
2386 
2387 		if (fs_devices->rw_devices == 0) {
2388 			printk(KERN_WARNING "Btrfs log replay required "
2389 			       "on RO media\n");
2390 			err = -EIO;
2391 			goto fail_trans_kthread;
2392 		}
2393 		blocksize =
2394 		     btrfs_level_size(tree_root,
2395 				      btrfs_super_log_root_level(disk_super));
2396 
2397 		log_tree_root = btrfs_alloc_root(fs_info);
2398 		if (!log_tree_root) {
2399 			err = -ENOMEM;
2400 			goto fail_trans_kthread;
2401 		}
2402 
2403 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2404 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2405 
2406 		log_tree_root->node = read_tree_block(tree_root, bytenr,
2407 						      blocksize,
2408 						      generation + 1);
2409 		ret = btrfs_recover_log_trees(log_tree_root);
2410 		BUG_ON(ret);
2411 
2412 		if (sb->s_flags & MS_RDONLY) {
2413 			ret =  btrfs_commit_super(tree_root);
2414 			BUG_ON(ret);
2415 		}
2416 	}
2417 
2418 	ret = btrfs_find_orphan_roots(tree_root);
2419 	BUG_ON(ret);
2420 
2421 	if (!(sb->s_flags & MS_RDONLY)) {
2422 		ret = btrfs_cleanup_fs_roots(fs_info);
2423 		BUG_ON(ret);
2424 
2425 		ret = btrfs_recover_relocation(tree_root);
2426 		if (ret < 0) {
2427 			printk(KERN_WARNING
2428 			       "btrfs: failed to recover relocation\n");
2429 			err = -EINVAL;
2430 			goto fail_trans_kthread;
2431 		}
2432 	}
2433 
2434 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2435 	location.type = BTRFS_ROOT_ITEM_KEY;
2436 	location.offset = (u64)-1;
2437 
2438 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2439 	if (!fs_info->fs_root)
2440 		goto fail_trans_kthread;
2441 	if (IS_ERR(fs_info->fs_root)) {
2442 		err = PTR_ERR(fs_info->fs_root);
2443 		goto fail_trans_kthread;
2444 	}
2445 
2446 	if (!(sb->s_flags & MS_RDONLY)) {
2447 		down_read(&fs_info->cleanup_work_sem);
2448 		err = btrfs_orphan_cleanup(fs_info->fs_root);
2449 		if (!err)
2450 			err = btrfs_orphan_cleanup(fs_info->tree_root);
2451 		up_read(&fs_info->cleanup_work_sem);
2452 
2453 		if (!err)
2454 			err = btrfs_recover_balance(fs_info->tree_root);
2455 
2456 		if (err) {
2457 			close_ctree(tree_root);
2458 			return err;
2459 		}
2460 	}
2461 
2462 	return 0;
2463 
2464 fail_trans_kthread:
2465 	kthread_stop(fs_info->transaction_kthread);
2466 fail_cleaner:
2467 	kthread_stop(fs_info->cleaner_kthread);
2468 
2469 	/*
2470 	 * make sure we're done with the btree inode before we stop our
2471 	 * kthreads
2472 	 */
2473 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2474 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2475 
2476 fail_block_groups:
2477 	btrfs_free_block_groups(fs_info);
2478 
2479 fail_tree_roots:
2480 	free_root_pointers(fs_info, 1);
2481 
2482 fail_sb_buffer:
2483 	btrfs_stop_workers(&fs_info->generic_worker);
2484 	btrfs_stop_workers(&fs_info->readahead_workers);
2485 	btrfs_stop_workers(&fs_info->fixup_workers);
2486 	btrfs_stop_workers(&fs_info->delalloc_workers);
2487 	btrfs_stop_workers(&fs_info->workers);
2488 	btrfs_stop_workers(&fs_info->endio_workers);
2489 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2490 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2491 	btrfs_stop_workers(&fs_info->endio_write_workers);
2492 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2493 	btrfs_stop_workers(&fs_info->submit_workers);
2494 	btrfs_stop_workers(&fs_info->delayed_workers);
2495 	btrfs_stop_workers(&fs_info->caching_workers);
2496 fail_alloc:
2497 fail_iput:
2498 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2499 
2500 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2501 	iput(fs_info->btree_inode);
2502 fail_bdi:
2503 	bdi_destroy(&fs_info->bdi);
2504 fail_srcu:
2505 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2506 fail:
2507 	btrfs_close_devices(fs_info->fs_devices);
2508 	return err;
2509 
2510 recovery_tree_root:
2511 	if (!btrfs_test_opt(tree_root, RECOVERY))
2512 		goto fail_tree_roots;
2513 
2514 	free_root_pointers(fs_info, 0);
2515 
2516 	/* don't use the log in recovery mode, it won't be valid */
2517 	btrfs_set_super_log_root(disk_super, 0);
2518 
2519 	/* we can't trust the free space cache either */
2520 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2521 
2522 	ret = next_root_backup(fs_info, fs_info->super_copy,
2523 			       &num_backups_tried, &backup_index);
2524 	if (ret == -1)
2525 		goto fail_block_groups;
2526 	goto retry_root_backup;
2527 }
2528 
2529 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2530 {
2531 	char b[BDEVNAME_SIZE];
2532 
2533 	if (uptodate) {
2534 		set_buffer_uptodate(bh);
2535 	} else {
2536 		printk_ratelimited(KERN_WARNING "lost page write due to "
2537 					"I/O error on %s\n",
2538 				       bdevname(bh->b_bdev, b));
2539 		/* note, we dont' set_buffer_write_io_error because we have
2540 		 * our own ways of dealing with the IO errors
2541 		 */
2542 		clear_buffer_uptodate(bh);
2543 	}
2544 	unlock_buffer(bh);
2545 	put_bh(bh);
2546 }
2547 
2548 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2549 {
2550 	struct buffer_head *bh;
2551 	struct buffer_head *latest = NULL;
2552 	struct btrfs_super_block *super;
2553 	int i;
2554 	u64 transid = 0;
2555 	u64 bytenr;
2556 
2557 	/* we would like to check all the supers, but that would make
2558 	 * a btrfs mount succeed after a mkfs from a different FS.
2559 	 * So, we need to add a special mount option to scan for
2560 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2561 	 */
2562 	for (i = 0; i < 1; i++) {
2563 		bytenr = btrfs_sb_offset(i);
2564 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2565 			break;
2566 		bh = __bread(bdev, bytenr / 4096, 4096);
2567 		if (!bh)
2568 			continue;
2569 
2570 		super = (struct btrfs_super_block *)bh->b_data;
2571 		if (btrfs_super_bytenr(super) != bytenr ||
2572 		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2573 			    sizeof(super->magic))) {
2574 			brelse(bh);
2575 			continue;
2576 		}
2577 
2578 		if (!latest || btrfs_super_generation(super) > transid) {
2579 			brelse(latest);
2580 			latest = bh;
2581 			transid = btrfs_super_generation(super);
2582 		} else {
2583 			brelse(bh);
2584 		}
2585 	}
2586 	return latest;
2587 }
2588 
2589 /*
2590  * this should be called twice, once with wait == 0 and
2591  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2592  * we write are pinned.
2593  *
2594  * They are released when wait == 1 is done.
2595  * max_mirrors must be the same for both runs, and it indicates how
2596  * many supers on this one device should be written.
2597  *
2598  * max_mirrors == 0 means to write them all.
2599  */
2600 static int write_dev_supers(struct btrfs_device *device,
2601 			    struct btrfs_super_block *sb,
2602 			    int do_barriers, int wait, int max_mirrors)
2603 {
2604 	struct buffer_head *bh;
2605 	int i;
2606 	int ret;
2607 	int errors = 0;
2608 	u32 crc;
2609 	u64 bytenr;
2610 
2611 	if (max_mirrors == 0)
2612 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2613 
2614 	for (i = 0; i < max_mirrors; i++) {
2615 		bytenr = btrfs_sb_offset(i);
2616 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2617 			break;
2618 
2619 		if (wait) {
2620 			bh = __find_get_block(device->bdev, bytenr / 4096,
2621 					      BTRFS_SUPER_INFO_SIZE);
2622 			BUG_ON(!bh);
2623 			wait_on_buffer(bh);
2624 			if (!buffer_uptodate(bh))
2625 				errors++;
2626 
2627 			/* drop our reference */
2628 			brelse(bh);
2629 
2630 			/* drop the reference from the wait == 0 run */
2631 			brelse(bh);
2632 			continue;
2633 		} else {
2634 			btrfs_set_super_bytenr(sb, bytenr);
2635 
2636 			crc = ~(u32)0;
2637 			crc = btrfs_csum_data(NULL, (char *)sb +
2638 					      BTRFS_CSUM_SIZE, crc,
2639 					      BTRFS_SUPER_INFO_SIZE -
2640 					      BTRFS_CSUM_SIZE);
2641 			btrfs_csum_final(crc, sb->csum);
2642 
2643 			/*
2644 			 * one reference for us, and we leave it for the
2645 			 * caller
2646 			 */
2647 			bh = __getblk(device->bdev, bytenr / 4096,
2648 				      BTRFS_SUPER_INFO_SIZE);
2649 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2650 
2651 			/* one reference for submit_bh */
2652 			get_bh(bh);
2653 
2654 			set_buffer_uptodate(bh);
2655 			lock_buffer(bh);
2656 			bh->b_end_io = btrfs_end_buffer_write_sync;
2657 		}
2658 
2659 		/*
2660 		 * we fua the first super.  The others we allow
2661 		 * to go down lazy.
2662 		 */
2663 		ret = btrfsic_submit_bh(WRITE_FUA, bh);
2664 		if (ret)
2665 			errors++;
2666 	}
2667 	return errors < i ? 0 : -1;
2668 }
2669 
2670 /*
2671  * endio for the write_dev_flush, this will wake anyone waiting
2672  * for the barrier when it is done
2673  */
2674 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2675 {
2676 	if (err) {
2677 		if (err == -EOPNOTSUPP)
2678 			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2679 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
2680 	}
2681 	if (bio->bi_private)
2682 		complete(bio->bi_private);
2683 	bio_put(bio);
2684 }
2685 
2686 /*
2687  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2688  * sent down.  With wait == 1, it waits for the previous flush.
2689  *
2690  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2691  * capable
2692  */
2693 static int write_dev_flush(struct btrfs_device *device, int wait)
2694 {
2695 	struct bio *bio;
2696 	int ret = 0;
2697 
2698 	if (device->nobarriers)
2699 		return 0;
2700 
2701 	if (wait) {
2702 		bio = device->flush_bio;
2703 		if (!bio)
2704 			return 0;
2705 
2706 		wait_for_completion(&device->flush_wait);
2707 
2708 		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2709 			printk("btrfs: disabling barriers on dev %s\n",
2710 			       device->name);
2711 			device->nobarriers = 1;
2712 		}
2713 		if (!bio_flagged(bio, BIO_UPTODATE)) {
2714 			ret = -EIO;
2715 		}
2716 
2717 		/* drop the reference from the wait == 0 run */
2718 		bio_put(bio);
2719 		device->flush_bio = NULL;
2720 
2721 		return ret;
2722 	}
2723 
2724 	/*
2725 	 * one reference for us, and we leave it for the
2726 	 * caller
2727 	 */
2728 	device->flush_bio = NULL;;
2729 	bio = bio_alloc(GFP_NOFS, 0);
2730 	if (!bio)
2731 		return -ENOMEM;
2732 
2733 	bio->bi_end_io = btrfs_end_empty_barrier;
2734 	bio->bi_bdev = device->bdev;
2735 	init_completion(&device->flush_wait);
2736 	bio->bi_private = &device->flush_wait;
2737 	device->flush_bio = bio;
2738 
2739 	bio_get(bio);
2740 	btrfsic_submit_bio(WRITE_FLUSH, bio);
2741 
2742 	return 0;
2743 }
2744 
2745 /*
2746  * send an empty flush down to each device in parallel,
2747  * then wait for them
2748  */
2749 static int barrier_all_devices(struct btrfs_fs_info *info)
2750 {
2751 	struct list_head *head;
2752 	struct btrfs_device *dev;
2753 	int errors = 0;
2754 	int ret;
2755 
2756 	/* send down all the barriers */
2757 	head = &info->fs_devices->devices;
2758 	list_for_each_entry_rcu(dev, head, dev_list) {
2759 		if (!dev->bdev) {
2760 			errors++;
2761 			continue;
2762 		}
2763 		if (!dev->in_fs_metadata || !dev->writeable)
2764 			continue;
2765 
2766 		ret = write_dev_flush(dev, 0);
2767 		if (ret)
2768 			errors++;
2769 	}
2770 
2771 	/* wait for all the barriers */
2772 	list_for_each_entry_rcu(dev, head, dev_list) {
2773 		if (!dev->bdev) {
2774 			errors++;
2775 			continue;
2776 		}
2777 		if (!dev->in_fs_metadata || !dev->writeable)
2778 			continue;
2779 
2780 		ret = write_dev_flush(dev, 1);
2781 		if (ret)
2782 			errors++;
2783 	}
2784 	if (errors)
2785 		return -EIO;
2786 	return 0;
2787 }
2788 
2789 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2790 {
2791 	struct list_head *head;
2792 	struct btrfs_device *dev;
2793 	struct btrfs_super_block *sb;
2794 	struct btrfs_dev_item *dev_item;
2795 	int ret;
2796 	int do_barriers;
2797 	int max_errors;
2798 	int total_errors = 0;
2799 	u64 flags;
2800 
2801 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2802 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2803 	backup_super_roots(root->fs_info);
2804 
2805 	sb = root->fs_info->super_for_commit;
2806 	dev_item = &sb->dev_item;
2807 
2808 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2809 	head = &root->fs_info->fs_devices->devices;
2810 
2811 	if (do_barriers)
2812 		barrier_all_devices(root->fs_info);
2813 
2814 	list_for_each_entry_rcu(dev, head, dev_list) {
2815 		if (!dev->bdev) {
2816 			total_errors++;
2817 			continue;
2818 		}
2819 		if (!dev->in_fs_metadata || !dev->writeable)
2820 			continue;
2821 
2822 		btrfs_set_stack_device_generation(dev_item, 0);
2823 		btrfs_set_stack_device_type(dev_item, dev->type);
2824 		btrfs_set_stack_device_id(dev_item, dev->devid);
2825 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2826 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2827 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2828 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2829 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2830 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2831 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2832 
2833 		flags = btrfs_super_flags(sb);
2834 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2835 
2836 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2837 		if (ret)
2838 			total_errors++;
2839 	}
2840 	if (total_errors > max_errors) {
2841 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2842 		       total_errors);
2843 		BUG();
2844 	}
2845 
2846 	total_errors = 0;
2847 	list_for_each_entry_rcu(dev, head, dev_list) {
2848 		if (!dev->bdev)
2849 			continue;
2850 		if (!dev->in_fs_metadata || !dev->writeable)
2851 			continue;
2852 
2853 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2854 		if (ret)
2855 			total_errors++;
2856 	}
2857 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2858 	if (total_errors > max_errors) {
2859 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2860 		       total_errors);
2861 		BUG();
2862 	}
2863 	return 0;
2864 }
2865 
2866 int write_ctree_super(struct btrfs_trans_handle *trans,
2867 		      struct btrfs_root *root, int max_mirrors)
2868 {
2869 	int ret;
2870 
2871 	ret = write_all_supers(root, max_mirrors);
2872 	return ret;
2873 }
2874 
2875 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2876 {
2877 	spin_lock(&fs_info->fs_roots_radix_lock);
2878 	radix_tree_delete(&fs_info->fs_roots_radix,
2879 			  (unsigned long)root->root_key.objectid);
2880 	spin_unlock(&fs_info->fs_roots_radix_lock);
2881 
2882 	if (btrfs_root_refs(&root->root_item) == 0)
2883 		synchronize_srcu(&fs_info->subvol_srcu);
2884 
2885 	__btrfs_remove_free_space_cache(root->free_ino_pinned);
2886 	__btrfs_remove_free_space_cache(root->free_ino_ctl);
2887 	free_fs_root(root);
2888 	return 0;
2889 }
2890 
2891 static void free_fs_root(struct btrfs_root *root)
2892 {
2893 	iput(root->cache_inode);
2894 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2895 	if (root->anon_dev)
2896 		free_anon_bdev(root->anon_dev);
2897 	free_extent_buffer(root->node);
2898 	free_extent_buffer(root->commit_root);
2899 	kfree(root->free_ino_ctl);
2900 	kfree(root->free_ino_pinned);
2901 	kfree(root->name);
2902 	kfree(root);
2903 }
2904 
2905 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2906 {
2907 	int ret;
2908 	struct btrfs_root *gang[8];
2909 	int i;
2910 
2911 	while (!list_empty(&fs_info->dead_roots)) {
2912 		gang[0] = list_entry(fs_info->dead_roots.next,
2913 				     struct btrfs_root, root_list);
2914 		list_del(&gang[0]->root_list);
2915 
2916 		if (gang[0]->in_radix) {
2917 			btrfs_free_fs_root(fs_info, gang[0]);
2918 		} else {
2919 			free_extent_buffer(gang[0]->node);
2920 			free_extent_buffer(gang[0]->commit_root);
2921 			kfree(gang[0]);
2922 		}
2923 	}
2924 
2925 	while (1) {
2926 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2927 					     (void **)gang, 0,
2928 					     ARRAY_SIZE(gang));
2929 		if (!ret)
2930 			break;
2931 		for (i = 0; i < ret; i++)
2932 			btrfs_free_fs_root(fs_info, gang[i]);
2933 	}
2934 	return 0;
2935 }
2936 
2937 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2938 {
2939 	u64 root_objectid = 0;
2940 	struct btrfs_root *gang[8];
2941 	int i;
2942 	int ret;
2943 
2944 	while (1) {
2945 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2946 					     (void **)gang, root_objectid,
2947 					     ARRAY_SIZE(gang));
2948 		if (!ret)
2949 			break;
2950 
2951 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
2952 		for (i = 0; i < ret; i++) {
2953 			int err;
2954 
2955 			root_objectid = gang[i]->root_key.objectid;
2956 			err = btrfs_orphan_cleanup(gang[i]);
2957 			if (err)
2958 				return err;
2959 		}
2960 		root_objectid++;
2961 	}
2962 	return 0;
2963 }
2964 
2965 int btrfs_commit_super(struct btrfs_root *root)
2966 {
2967 	struct btrfs_trans_handle *trans;
2968 	int ret;
2969 
2970 	mutex_lock(&root->fs_info->cleaner_mutex);
2971 	btrfs_run_delayed_iputs(root);
2972 	btrfs_clean_old_snapshots(root);
2973 	mutex_unlock(&root->fs_info->cleaner_mutex);
2974 
2975 	/* wait until ongoing cleanup work done */
2976 	down_write(&root->fs_info->cleanup_work_sem);
2977 	up_write(&root->fs_info->cleanup_work_sem);
2978 
2979 	trans = btrfs_join_transaction(root);
2980 	if (IS_ERR(trans))
2981 		return PTR_ERR(trans);
2982 	ret = btrfs_commit_transaction(trans, root);
2983 	BUG_ON(ret);
2984 	/* run commit again to drop the original snapshot */
2985 	trans = btrfs_join_transaction(root);
2986 	if (IS_ERR(trans))
2987 		return PTR_ERR(trans);
2988 	btrfs_commit_transaction(trans, root);
2989 	ret = btrfs_write_and_wait_transaction(NULL, root);
2990 	BUG_ON(ret);
2991 
2992 	ret = write_ctree_super(NULL, root, 0);
2993 	return ret;
2994 }
2995 
2996 int close_ctree(struct btrfs_root *root)
2997 {
2998 	struct btrfs_fs_info *fs_info = root->fs_info;
2999 	int ret;
3000 
3001 	fs_info->closing = 1;
3002 	smp_mb();
3003 
3004 	/* pause restriper - we want to resume on mount */
3005 	btrfs_pause_balance(root->fs_info);
3006 
3007 	btrfs_scrub_cancel(root);
3008 
3009 	/* wait for any defraggers to finish */
3010 	wait_event(fs_info->transaction_wait,
3011 		   (atomic_read(&fs_info->defrag_running) == 0));
3012 
3013 	/* clear out the rbtree of defraggable inodes */
3014 	btrfs_run_defrag_inodes(fs_info);
3015 
3016 	/*
3017 	 * Here come 2 situations when btrfs is broken to flip readonly:
3018 	 *
3019 	 * 1. when btrfs flips readonly somewhere else before
3020 	 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3021 	 * and btrfs will skip to write sb directly to keep
3022 	 * ERROR state on disk.
3023 	 *
3024 	 * 2. when btrfs flips readonly just in btrfs_commit_super,
3025 	 * and in such case, btrfs cannot write sb via btrfs_commit_super,
3026 	 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3027 	 * btrfs will cleanup all FS resources first and write sb then.
3028 	 */
3029 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3030 		ret = btrfs_commit_super(root);
3031 		if (ret)
3032 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3033 	}
3034 
3035 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3036 		ret = btrfs_error_commit_super(root);
3037 		if (ret)
3038 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3039 	}
3040 
3041 	btrfs_put_block_group_cache(fs_info);
3042 
3043 	kthread_stop(fs_info->transaction_kthread);
3044 	kthread_stop(fs_info->cleaner_kthread);
3045 
3046 	fs_info->closing = 2;
3047 	smp_mb();
3048 
3049 	if (fs_info->delalloc_bytes) {
3050 		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3051 		       (unsigned long long)fs_info->delalloc_bytes);
3052 	}
3053 	if (fs_info->total_ref_cache_size) {
3054 		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3055 		       (unsigned long long)fs_info->total_ref_cache_size);
3056 	}
3057 
3058 	free_extent_buffer(fs_info->extent_root->node);
3059 	free_extent_buffer(fs_info->extent_root->commit_root);
3060 	free_extent_buffer(fs_info->tree_root->node);
3061 	free_extent_buffer(fs_info->tree_root->commit_root);
3062 	free_extent_buffer(fs_info->chunk_root->node);
3063 	free_extent_buffer(fs_info->chunk_root->commit_root);
3064 	free_extent_buffer(fs_info->dev_root->node);
3065 	free_extent_buffer(fs_info->dev_root->commit_root);
3066 	free_extent_buffer(fs_info->csum_root->node);
3067 	free_extent_buffer(fs_info->csum_root->commit_root);
3068 
3069 	btrfs_free_block_groups(fs_info);
3070 
3071 	del_fs_roots(fs_info);
3072 
3073 	iput(fs_info->btree_inode);
3074 
3075 	btrfs_stop_workers(&fs_info->generic_worker);
3076 	btrfs_stop_workers(&fs_info->fixup_workers);
3077 	btrfs_stop_workers(&fs_info->delalloc_workers);
3078 	btrfs_stop_workers(&fs_info->workers);
3079 	btrfs_stop_workers(&fs_info->endio_workers);
3080 	btrfs_stop_workers(&fs_info->endio_meta_workers);
3081 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3082 	btrfs_stop_workers(&fs_info->endio_write_workers);
3083 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
3084 	btrfs_stop_workers(&fs_info->submit_workers);
3085 	btrfs_stop_workers(&fs_info->delayed_workers);
3086 	btrfs_stop_workers(&fs_info->caching_workers);
3087 	btrfs_stop_workers(&fs_info->readahead_workers);
3088 
3089 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3090 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3091 		btrfsic_unmount(root, fs_info->fs_devices);
3092 #endif
3093 
3094 	btrfs_close_devices(fs_info->fs_devices);
3095 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3096 
3097 	bdi_destroy(&fs_info->bdi);
3098 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3099 
3100 	return 0;
3101 }
3102 
3103 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
3104 {
3105 	int ret;
3106 	struct inode *btree_inode = buf->first_page->mapping->host;
3107 
3108 	ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
3109 				     NULL);
3110 	if (!ret)
3111 		return ret;
3112 
3113 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3114 				    parent_transid);
3115 	return !ret;
3116 }
3117 
3118 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3119 {
3120 	struct inode *btree_inode = buf->first_page->mapping->host;
3121 	return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
3122 					  buf);
3123 }
3124 
3125 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3126 {
3127 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
3128 	u64 transid = btrfs_header_generation(buf);
3129 	struct inode *btree_inode = root->fs_info->btree_inode;
3130 	int was_dirty;
3131 
3132 	btrfs_assert_tree_locked(buf);
3133 	if (transid != root->fs_info->generation) {
3134 		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3135 		       "found %llu running %llu\n",
3136 			(unsigned long long)buf->start,
3137 			(unsigned long long)transid,
3138 			(unsigned long long)root->fs_info->generation);
3139 		WARN_ON(1);
3140 	}
3141 	was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
3142 					    buf);
3143 	if (!was_dirty) {
3144 		spin_lock(&root->fs_info->delalloc_lock);
3145 		root->fs_info->dirty_metadata_bytes += buf->len;
3146 		spin_unlock(&root->fs_info->delalloc_lock);
3147 	}
3148 }
3149 
3150 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3151 {
3152 	/*
3153 	 * looks as though older kernels can get into trouble with
3154 	 * this code, they end up stuck in balance_dirty_pages forever
3155 	 */
3156 	u64 num_dirty;
3157 	unsigned long thresh = 32 * 1024 * 1024;
3158 
3159 	if (current->flags & PF_MEMALLOC)
3160 		return;
3161 
3162 	btrfs_balance_delayed_items(root);
3163 
3164 	num_dirty = root->fs_info->dirty_metadata_bytes;
3165 
3166 	if (num_dirty > thresh) {
3167 		balance_dirty_pages_ratelimited_nr(
3168 				   root->fs_info->btree_inode->i_mapping, 1);
3169 	}
3170 	return;
3171 }
3172 
3173 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3174 {
3175 	/*
3176 	 * looks as though older kernels can get into trouble with
3177 	 * this code, they end up stuck in balance_dirty_pages forever
3178 	 */
3179 	u64 num_dirty;
3180 	unsigned long thresh = 32 * 1024 * 1024;
3181 
3182 	if (current->flags & PF_MEMALLOC)
3183 		return;
3184 
3185 	num_dirty = root->fs_info->dirty_metadata_bytes;
3186 
3187 	if (num_dirty > thresh) {
3188 		balance_dirty_pages_ratelimited_nr(
3189 				   root->fs_info->btree_inode->i_mapping, 1);
3190 	}
3191 	return;
3192 }
3193 
3194 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3195 {
3196 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
3197 	int ret;
3198 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3199 	if (ret == 0)
3200 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
3201 	return ret;
3202 }
3203 
3204 static int btree_lock_page_hook(struct page *page, void *data,
3205 				void (*flush_fn)(void *))
3206 {
3207 	struct inode *inode = page->mapping->host;
3208 	struct btrfs_root *root = BTRFS_I(inode)->root;
3209 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3210 	struct extent_buffer *eb;
3211 	unsigned long len;
3212 	u64 bytenr = page_offset(page);
3213 
3214 	if (page->private == EXTENT_PAGE_PRIVATE)
3215 		goto out;
3216 
3217 	len = page->private >> 2;
3218 	eb = find_extent_buffer(io_tree, bytenr, len);
3219 	if (!eb)
3220 		goto out;
3221 
3222 	if (!btrfs_try_tree_write_lock(eb)) {
3223 		flush_fn(data);
3224 		btrfs_tree_lock(eb);
3225 	}
3226 	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3227 
3228 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3229 		spin_lock(&root->fs_info->delalloc_lock);
3230 		if (root->fs_info->dirty_metadata_bytes >= eb->len)
3231 			root->fs_info->dirty_metadata_bytes -= eb->len;
3232 		else
3233 			WARN_ON(1);
3234 		spin_unlock(&root->fs_info->delalloc_lock);
3235 	}
3236 
3237 	btrfs_tree_unlock(eb);
3238 	free_extent_buffer(eb);
3239 out:
3240 	if (!trylock_page(page)) {
3241 		flush_fn(data);
3242 		lock_page(page);
3243 	}
3244 	return 0;
3245 }
3246 
3247 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3248 			      int read_only)
3249 {
3250 	if (read_only)
3251 		return;
3252 
3253 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3254 		printk(KERN_WARNING "warning: mount fs with errors, "
3255 		       "running btrfsck is recommended\n");
3256 }
3257 
3258 int btrfs_error_commit_super(struct btrfs_root *root)
3259 {
3260 	int ret;
3261 
3262 	mutex_lock(&root->fs_info->cleaner_mutex);
3263 	btrfs_run_delayed_iputs(root);
3264 	mutex_unlock(&root->fs_info->cleaner_mutex);
3265 
3266 	down_write(&root->fs_info->cleanup_work_sem);
3267 	up_write(&root->fs_info->cleanup_work_sem);
3268 
3269 	/* cleanup FS via transaction */
3270 	btrfs_cleanup_transaction(root);
3271 
3272 	ret = write_ctree_super(NULL, root, 0);
3273 
3274 	return ret;
3275 }
3276 
3277 static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
3278 {
3279 	struct btrfs_inode *btrfs_inode;
3280 	struct list_head splice;
3281 
3282 	INIT_LIST_HEAD(&splice);
3283 
3284 	mutex_lock(&root->fs_info->ordered_operations_mutex);
3285 	spin_lock(&root->fs_info->ordered_extent_lock);
3286 
3287 	list_splice_init(&root->fs_info->ordered_operations, &splice);
3288 	while (!list_empty(&splice)) {
3289 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3290 					 ordered_operations);
3291 
3292 		list_del_init(&btrfs_inode->ordered_operations);
3293 
3294 		btrfs_invalidate_inodes(btrfs_inode->root);
3295 	}
3296 
3297 	spin_unlock(&root->fs_info->ordered_extent_lock);
3298 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
3299 
3300 	return 0;
3301 }
3302 
3303 static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
3304 {
3305 	struct list_head splice;
3306 	struct btrfs_ordered_extent *ordered;
3307 	struct inode *inode;
3308 
3309 	INIT_LIST_HEAD(&splice);
3310 
3311 	spin_lock(&root->fs_info->ordered_extent_lock);
3312 
3313 	list_splice_init(&root->fs_info->ordered_extents, &splice);
3314 	while (!list_empty(&splice)) {
3315 		ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3316 				     root_extent_list);
3317 
3318 		list_del_init(&ordered->root_extent_list);
3319 		atomic_inc(&ordered->refs);
3320 
3321 		/* the inode may be getting freed (in sys_unlink path). */
3322 		inode = igrab(ordered->inode);
3323 
3324 		spin_unlock(&root->fs_info->ordered_extent_lock);
3325 		if (inode)
3326 			iput(inode);
3327 
3328 		atomic_set(&ordered->refs, 1);
3329 		btrfs_put_ordered_extent(ordered);
3330 
3331 		spin_lock(&root->fs_info->ordered_extent_lock);
3332 	}
3333 
3334 	spin_unlock(&root->fs_info->ordered_extent_lock);
3335 
3336 	return 0;
3337 }
3338 
3339 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3340 				      struct btrfs_root *root)
3341 {
3342 	struct rb_node *node;
3343 	struct btrfs_delayed_ref_root *delayed_refs;
3344 	struct btrfs_delayed_ref_node *ref;
3345 	int ret = 0;
3346 
3347 	delayed_refs = &trans->delayed_refs;
3348 
3349 	spin_lock(&delayed_refs->lock);
3350 	if (delayed_refs->num_entries == 0) {
3351 		spin_unlock(&delayed_refs->lock);
3352 		printk(KERN_INFO "delayed_refs has NO entry\n");
3353 		return ret;
3354 	}
3355 
3356 	node = rb_first(&delayed_refs->root);
3357 	while (node) {
3358 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3359 		node = rb_next(node);
3360 
3361 		ref->in_tree = 0;
3362 		rb_erase(&ref->rb_node, &delayed_refs->root);
3363 		delayed_refs->num_entries--;
3364 
3365 		atomic_set(&ref->refs, 1);
3366 		if (btrfs_delayed_ref_is_head(ref)) {
3367 			struct btrfs_delayed_ref_head *head;
3368 
3369 			head = btrfs_delayed_node_to_head(ref);
3370 			mutex_lock(&head->mutex);
3371 			kfree(head->extent_op);
3372 			delayed_refs->num_heads--;
3373 			if (list_empty(&head->cluster))
3374 				delayed_refs->num_heads_ready--;
3375 			list_del_init(&head->cluster);
3376 			mutex_unlock(&head->mutex);
3377 		}
3378 
3379 		spin_unlock(&delayed_refs->lock);
3380 		btrfs_put_delayed_ref(ref);
3381 
3382 		cond_resched();
3383 		spin_lock(&delayed_refs->lock);
3384 	}
3385 
3386 	spin_unlock(&delayed_refs->lock);
3387 
3388 	return ret;
3389 }
3390 
3391 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3392 {
3393 	struct btrfs_pending_snapshot *snapshot;
3394 	struct list_head splice;
3395 
3396 	INIT_LIST_HEAD(&splice);
3397 
3398 	list_splice_init(&t->pending_snapshots, &splice);
3399 
3400 	while (!list_empty(&splice)) {
3401 		snapshot = list_entry(splice.next,
3402 				      struct btrfs_pending_snapshot,
3403 				      list);
3404 
3405 		list_del_init(&snapshot->list);
3406 
3407 		kfree(snapshot);
3408 	}
3409 
3410 	return 0;
3411 }
3412 
3413 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3414 {
3415 	struct btrfs_inode *btrfs_inode;
3416 	struct list_head splice;
3417 
3418 	INIT_LIST_HEAD(&splice);
3419 
3420 	spin_lock(&root->fs_info->delalloc_lock);
3421 	list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3422 
3423 	while (!list_empty(&splice)) {
3424 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3425 				    delalloc_inodes);
3426 
3427 		list_del_init(&btrfs_inode->delalloc_inodes);
3428 
3429 		btrfs_invalidate_inodes(btrfs_inode->root);
3430 	}
3431 
3432 	spin_unlock(&root->fs_info->delalloc_lock);
3433 
3434 	return 0;
3435 }
3436 
3437 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3438 					struct extent_io_tree *dirty_pages,
3439 					int mark)
3440 {
3441 	int ret;
3442 	struct page *page;
3443 	struct inode *btree_inode = root->fs_info->btree_inode;
3444 	struct extent_buffer *eb;
3445 	u64 start = 0;
3446 	u64 end;
3447 	u64 offset;
3448 	unsigned long index;
3449 
3450 	while (1) {
3451 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3452 					    mark);
3453 		if (ret)
3454 			break;
3455 
3456 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3457 		while (start <= end) {
3458 			index = start >> PAGE_CACHE_SHIFT;
3459 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3460 			page = find_get_page(btree_inode->i_mapping, index);
3461 			if (!page)
3462 				continue;
3463 			offset = page_offset(page);
3464 
3465 			spin_lock(&dirty_pages->buffer_lock);
3466 			eb = radix_tree_lookup(
3467 			     &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3468 					       offset >> PAGE_CACHE_SHIFT);
3469 			spin_unlock(&dirty_pages->buffer_lock);
3470 			if (eb) {
3471 				ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3472 							 &eb->bflags);
3473 				atomic_set(&eb->refs, 1);
3474 			}
3475 			if (PageWriteback(page))
3476 				end_page_writeback(page);
3477 
3478 			lock_page(page);
3479 			if (PageDirty(page)) {
3480 				clear_page_dirty_for_io(page);
3481 				spin_lock_irq(&page->mapping->tree_lock);
3482 				radix_tree_tag_clear(&page->mapping->page_tree,
3483 							page_index(page),
3484 							PAGECACHE_TAG_DIRTY);
3485 				spin_unlock_irq(&page->mapping->tree_lock);
3486 			}
3487 
3488 			page->mapping->a_ops->invalidatepage(page, 0);
3489 			unlock_page(page);
3490 		}
3491 	}
3492 
3493 	return ret;
3494 }
3495 
3496 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3497 				       struct extent_io_tree *pinned_extents)
3498 {
3499 	struct extent_io_tree *unpin;
3500 	u64 start;
3501 	u64 end;
3502 	int ret;
3503 
3504 	unpin = pinned_extents;
3505 	while (1) {
3506 		ret = find_first_extent_bit(unpin, 0, &start, &end,
3507 					    EXTENT_DIRTY);
3508 		if (ret)
3509 			break;
3510 
3511 		/* opt_discard */
3512 		if (btrfs_test_opt(root, DISCARD))
3513 			ret = btrfs_error_discard_extent(root, start,
3514 							 end + 1 - start,
3515 							 NULL);
3516 
3517 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
3518 		btrfs_error_unpin_extent_range(root, start, end);
3519 		cond_resched();
3520 	}
3521 
3522 	return 0;
3523 }
3524 
3525 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3526 {
3527 	struct btrfs_transaction *t;
3528 	LIST_HEAD(list);
3529 
3530 	WARN_ON(1);
3531 
3532 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
3533 
3534 	spin_lock(&root->fs_info->trans_lock);
3535 	list_splice_init(&root->fs_info->trans_list, &list);
3536 	root->fs_info->trans_no_join = 1;
3537 	spin_unlock(&root->fs_info->trans_lock);
3538 
3539 	while (!list_empty(&list)) {
3540 		t = list_entry(list.next, struct btrfs_transaction, list);
3541 		if (!t)
3542 			break;
3543 
3544 		btrfs_destroy_ordered_operations(root);
3545 
3546 		btrfs_destroy_ordered_extents(root);
3547 
3548 		btrfs_destroy_delayed_refs(t, root);
3549 
3550 		btrfs_block_rsv_release(root,
3551 					&root->fs_info->trans_block_rsv,
3552 					t->dirty_pages.dirty_bytes);
3553 
3554 		/* FIXME: cleanup wait for commit */
3555 		t->in_commit = 1;
3556 		t->blocked = 1;
3557 		if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3558 			wake_up(&root->fs_info->transaction_blocked_wait);
3559 
3560 		t->blocked = 0;
3561 		if (waitqueue_active(&root->fs_info->transaction_wait))
3562 			wake_up(&root->fs_info->transaction_wait);
3563 
3564 		t->commit_done = 1;
3565 		if (waitqueue_active(&t->commit_wait))
3566 			wake_up(&t->commit_wait);
3567 
3568 		btrfs_destroy_pending_snapshots(t);
3569 
3570 		btrfs_destroy_delalloc_inodes(root);
3571 
3572 		spin_lock(&root->fs_info->trans_lock);
3573 		root->fs_info->running_transaction = NULL;
3574 		spin_unlock(&root->fs_info->trans_lock);
3575 
3576 		btrfs_destroy_marked_extents(root, &t->dirty_pages,
3577 					     EXTENT_DIRTY);
3578 
3579 		btrfs_destroy_pinned_extent(root,
3580 					    root->fs_info->pinned_extents);
3581 
3582 		atomic_set(&t->use_count, 0);
3583 		list_del_init(&t->list);
3584 		memset(t, 0, sizeof(*t));
3585 		kmem_cache_free(btrfs_transaction_cachep, t);
3586 	}
3587 
3588 	spin_lock(&root->fs_info->trans_lock);
3589 	root->fs_info->trans_no_join = 0;
3590 	spin_unlock(&root->fs_info->trans_lock);
3591 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3592 
3593 	return 0;
3594 }
3595 
3596 static struct extent_io_ops btree_extent_io_ops = {
3597 	.write_cache_pages_lock_hook = btree_lock_page_hook,
3598 	.readpage_end_io_hook = btree_readpage_end_io_hook,
3599 	.readpage_io_failed_hook = btree_io_failed_hook,
3600 	.submit_bio_hook = btree_submit_bio_hook,
3601 	/* note we're sharing with inode.c for the merge bio hook */
3602 	.merge_bio_hook = btrfs_merge_bio_hook,
3603 };
3604