xref: /linux/fs/btrfs/disk-io.c (revision b3b77c8caef1750ebeea1054e39e358550ea9f55)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include "compat.h"
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "btrfs_inode.h"
36 #include "volumes.h"
37 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "locking.h"
40 #include "tree-log.h"
41 #include "free-space-cache.h"
42 
43 static struct extent_io_ops btree_extent_io_ops;
44 static void end_workqueue_fn(struct btrfs_work *work);
45 static void free_fs_root(struct btrfs_root *root);
46 
47 /*
48  * end_io_wq structs are used to do processing in task context when an IO is
49  * complete.  This is used during reads to verify checksums, and it is used
50  * by writes to insert metadata for new file extents after IO is complete.
51  */
52 struct end_io_wq {
53 	struct bio *bio;
54 	bio_end_io_t *end_io;
55 	void *private;
56 	struct btrfs_fs_info *info;
57 	int error;
58 	int metadata;
59 	struct list_head list;
60 	struct btrfs_work work;
61 };
62 
63 /*
64  * async submit bios are used to offload expensive checksumming
65  * onto the worker threads.  They checksum file and metadata bios
66  * just before they are sent down the IO stack.
67  */
68 struct async_submit_bio {
69 	struct inode *inode;
70 	struct bio *bio;
71 	struct list_head list;
72 	extent_submit_bio_hook_t *submit_bio_start;
73 	extent_submit_bio_hook_t *submit_bio_done;
74 	int rw;
75 	int mirror_num;
76 	unsigned long bio_flags;
77 	struct btrfs_work work;
78 };
79 
80 /* These are used to set the lockdep class on the extent buffer locks.
81  * The class is set by the readpage_end_io_hook after the buffer has
82  * passed csum validation but before the pages are unlocked.
83  *
84  * The lockdep class is also set by btrfs_init_new_buffer on freshly
85  * allocated blocks.
86  *
87  * The class is based on the level in the tree block, which allows lockdep
88  * to know that lower nodes nest inside the locks of higher nodes.
89  *
90  * We also add a check to make sure the highest level of the tree is
91  * the same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this
92  * code needs update as well.
93  */
94 #ifdef CONFIG_DEBUG_LOCK_ALLOC
95 # if BTRFS_MAX_LEVEL != 8
96 #  error
97 # endif
98 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
99 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
100 	/* leaf */
101 	"btrfs-extent-00",
102 	"btrfs-extent-01",
103 	"btrfs-extent-02",
104 	"btrfs-extent-03",
105 	"btrfs-extent-04",
106 	"btrfs-extent-05",
107 	"btrfs-extent-06",
108 	"btrfs-extent-07",
109 	/* highest possible level */
110 	"btrfs-extent-08",
111 };
112 #endif
113 
114 /*
115  * extents on the btree inode are pretty simple, there's one extent
116  * that covers the entire device
117  */
118 static struct extent_map *btree_get_extent(struct inode *inode,
119 		struct page *page, size_t page_offset, u64 start, u64 len,
120 		int create)
121 {
122 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
123 	struct extent_map *em;
124 	int ret;
125 
126 	read_lock(&em_tree->lock);
127 	em = lookup_extent_mapping(em_tree, start, len);
128 	if (em) {
129 		em->bdev =
130 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
131 		read_unlock(&em_tree->lock);
132 		goto out;
133 	}
134 	read_unlock(&em_tree->lock);
135 
136 	em = alloc_extent_map(GFP_NOFS);
137 	if (!em) {
138 		em = ERR_PTR(-ENOMEM);
139 		goto out;
140 	}
141 	em->start = 0;
142 	em->len = (u64)-1;
143 	em->block_len = (u64)-1;
144 	em->block_start = 0;
145 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
146 
147 	write_lock(&em_tree->lock);
148 	ret = add_extent_mapping(em_tree, em);
149 	if (ret == -EEXIST) {
150 		u64 failed_start = em->start;
151 		u64 failed_len = em->len;
152 
153 		free_extent_map(em);
154 		em = lookup_extent_mapping(em_tree, start, len);
155 		if (em) {
156 			ret = 0;
157 		} else {
158 			em = lookup_extent_mapping(em_tree, failed_start,
159 						   failed_len);
160 			ret = -EIO;
161 		}
162 	} else if (ret) {
163 		free_extent_map(em);
164 		em = NULL;
165 	}
166 	write_unlock(&em_tree->lock);
167 
168 	if (ret)
169 		em = ERR_PTR(ret);
170 out:
171 	return em;
172 }
173 
174 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
175 {
176 	return crc32c(seed, data, len);
177 }
178 
179 void btrfs_csum_final(u32 crc, char *result)
180 {
181 	*(__le32 *)result = ~cpu_to_le32(crc);
182 }
183 
184 /*
185  * compute the csum for a btree block, and either verify it or write it
186  * into the csum field of the block.
187  */
188 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
189 			   int verify)
190 {
191 	u16 csum_size =
192 		btrfs_super_csum_size(&root->fs_info->super_copy);
193 	char *result = NULL;
194 	unsigned long len;
195 	unsigned long cur_len;
196 	unsigned long offset = BTRFS_CSUM_SIZE;
197 	char *map_token = NULL;
198 	char *kaddr;
199 	unsigned long map_start;
200 	unsigned long map_len;
201 	int err;
202 	u32 crc = ~(u32)0;
203 	unsigned long inline_result;
204 
205 	len = buf->len - offset;
206 	while (len > 0) {
207 		err = map_private_extent_buffer(buf, offset, 32,
208 					&map_token, &kaddr,
209 					&map_start, &map_len, KM_USER0);
210 		if (err)
211 			return 1;
212 		cur_len = min(len, map_len - (offset - map_start));
213 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
214 				      crc, cur_len);
215 		len -= cur_len;
216 		offset += cur_len;
217 		unmap_extent_buffer(buf, map_token, KM_USER0);
218 	}
219 	if (csum_size > sizeof(inline_result)) {
220 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
221 		if (!result)
222 			return 1;
223 	} else {
224 		result = (char *)&inline_result;
225 	}
226 
227 	btrfs_csum_final(crc, result);
228 
229 	if (verify) {
230 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
231 			u32 val;
232 			u32 found = 0;
233 			memcpy(&found, result, csum_size);
234 
235 			read_extent_buffer(buf, &val, 0, csum_size);
236 			if (printk_ratelimit()) {
237 				printk(KERN_INFO "btrfs: %s checksum verify "
238 				       "failed on %llu wanted %X found %X "
239 				       "level %d\n",
240 				       root->fs_info->sb->s_id,
241 				       (unsigned long long)buf->start, val, found,
242 				       btrfs_header_level(buf));
243 			}
244 			if (result != (char *)&inline_result)
245 				kfree(result);
246 			return 1;
247 		}
248 	} else {
249 		write_extent_buffer(buf, result, 0, csum_size);
250 	}
251 	if (result != (char *)&inline_result)
252 		kfree(result);
253 	return 0;
254 }
255 
256 /*
257  * we can't consider a given block up to date unless the transid of the
258  * block matches the transid in the parent node's pointer.  This is how we
259  * detect blocks that either didn't get written at all or got written
260  * in the wrong place.
261  */
262 static int verify_parent_transid(struct extent_io_tree *io_tree,
263 				 struct extent_buffer *eb, u64 parent_transid)
264 {
265 	struct extent_state *cached_state = NULL;
266 	int ret;
267 
268 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
269 		return 0;
270 
271 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
272 			 0, &cached_state, GFP_NOFS);
273 	if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
274 	    btrfs_header_generation(eb) == parent_transid) {
275 		ret = 0;
276 		goto out;
277 	}
278 	if (printk_ratelimit()) {
279 		printk("parent transid verify failed on %llu wanted %llu "
280 		       "found %llu\n",
281 		       (unsigned long long)eb->start,
282 		       (unsigned long long)parent_transid,
283 		       (unsigned long long)btrfs_header_generation(eb));
284 	}
285 	ret = 1;
286 	clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
287 out:
288 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
289 			     &cached_state, GFP_NOFS);
290 	return ret;
291 }
292 
293 /*
294  * helper to read a given tree block, doing retries as required when
295  * the checksums don't match and we have alternate mirrors to try.
296  */
297 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
298 					  struct extent_buffer *eb,
299 					  u64 start, u64 parent_transid)
300 {
301 	struct extent_io_tree *io_tree;
302 	int ret;
303 	int num_copies = 0;
304 	int mirror_num = 0;
305 
306 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
307 	while (1) {
308 		ret = read_extent_buffer_pages(io_tree, eb, start, 1,
309 					       btree_get_extent, mirror_num);
310 		if (!ret &&
311 		    !verify_parent_transid(io_tree, eb, parent_transid))
312 			return ret;
313 
314 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
315 					      eb->start, eb->len);
316 		if (num_copies == 1)
317 			return ret;
318 
319 		mirror_num++;
320 		if (mirror_num > num_copies)
321 			return ret;
322 	}
323 	return -EIO;
324 }
325 
326 /*
327  * checksum a dirty tree block before IO.  This has extra checks to make sure
328  * we only fill in the checksum field in the first page of a multi-page block
329  */
330 
331 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
332 {
333 	struct extent_io_tree *tree;
334 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
335 	u64 found_start;
336 	int found_level;
337 	unsigned long len;
338 	struct extent_buffer *eb;
339 	int ret;
340 
341 	tree = &BTRFS_I(page->mapping->host)->io_tree;
342 
343 	if (page->private == EXTENT_PAGE_PRIVATE)
344 		goto out;
345 	if (!page->private)
346 		goto out;
347 	len = page->private >> 2;
348 	WARN_ON(len == 0);
349 
350 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
351 	ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
352 					     btrfs_header_generation(eb));
353 	BUG_ON(ret);
354 	found_start = btrfs_header_bytenr(eb);
355 	if (found_start != start) {
356 		WARN_ON(1);
357 		goto err;
358 	}
359 	if (eb->first_page != page) {
360 		WARN_ON(1);
361 		goto err;
362 	}
363 	if (!PageUptodate(page)) {
364 		WARN_ON(1);
365 		goto err;
366 	}
367 	found_level = btrfs_header_level(eb);
368 
369 	csum_tree_block(root, eb, 0);
370 err:
371 	free_extent_buffer(eb);
372 out:
373 	return 0;
374 }
375 
376 static int check_tree_block_fsid(struct btrfs_root *root,
377 				 struct extent_buffer *eb)
378 {
379 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
380 	u8 fsid[BTRFS_UUID_SIZE];
381 	int ret = 1;
382 
383 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
384 			   BTRFS_FSID_SIZE);
385 	while (fs_devices) {
386 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
387 			ret = 0;
388 			break;
389 		}
390 		fs_devices = fs_devices->seed;
391 	}
392 	return ret;
393 }
394 
395 #ifdef CONFIG_DEBUG_LOCK_ALLOC
396 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
397 {
398 	lockdep_set_class_and_name(&eb->lock,
399 			   &btrfs_eb_class[level],
400 			   btrfs_eb_name[level]);
401 }
402 #endif
403 
404 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
405 			       struct extent_state *state)
406 {
407 	struct extent_io_tree *tree;
408 	u64 found_start;
409 	int found_level;
410 	unsigned long len;
411 	struct extent_buffer *eb;
412 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
413 	int ret = 0;
414 
415 	tree = &BTRFS_I(page->mapping->host)->io_tree;
416 	if (page->private == EXTENT_PAGE_PRIVATE)
417 		goto out;
418 	if (!page->private)
419 		goto out;
420 
421 	len = page->private >> 2;
422 	WARN_ON(len == 0);
423 
424 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
425 
426 	found_start = btrfs_header_bytenr(eb);
427 	if (found_start != start) {
428 		if (printk_ratelimit()) {
429 			printk(KERN_INFO "btrfs bad tree block start "
430 			       "%llu %llu\n",
431 			       (unsigned long long)found_start,
432 			       (unsigned long long)eb->start);
433 		}
434 		ret = -EIO;
435 		goto err;
436 	}
437 	if (eb->first_page != page) {
438 		printk(KERN_INFO "btrfs bad first page %lu %lu\n",
439 		       eb->first_page->index, page->index);
440 		WARN_ON(1);
441 		ret = -EIO;
442 		goto err;
443 	}
444 	if (check_tree_block_fsid(root, eb)) {
445 		if (printk_ratelimit()) {
446 			printk(KERN_INFO "btrfs bad fsid on block %llu\n",
447 			       (unsigned long long)eb->start);
448 		}
449 		ret = -EIO;
450 		goto err;
451 	}
452 	found_level = btrfs_header_level(eb);
453 
454 	btrfs_set_buffer_lockdep_class(eb, found_level);
455 
456 	ret = csum_tree_block(root, eb, 1);
457 	if (ret)
458 		ret = -EIO;
459 
460 	end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
461 	end = eb->start + end - 1;
462 err:
463 	free_extent_buffer(eb);
464 out:
465 	return ret;
466 }
467 
468 static void end_workqueue_bio(struct bio *bio, int err)
469 {
470 	struct end_io_wq *end_io_wq = bio->bi_private;
471 	struct btrfs_fs_info *fs_info;
472 
473 	fs_info = end_io_wq->info;
474 	end_io_wq->error = err;
475 	end_io_wq->work.func = end_workqueue_fn;
476 	end_io_wq->work.flags = 0;
477 
478 	if (bio->bi_rw & (1 << BIO_RW)) {
479 		if (end_io_wq->metadata)
480 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
481 					   &end_io_wq->work);
482 		else
483 			btrfs_queue_worker(&fs_info->endio_write_workers,
484 					   &end_io_wq->work);
485 	} else {
486 		if (end_io_wq->metadata)
487 			btrfs_queue_worker(&fs_info->endio_meta_workers,
488 					   &end_io_wq->work);
489 		else
490 			btrfs_queue_worker(&fs_info->endio_workers,
491 					   &end_io_wq->work);
492 	}
493 }
494 
495 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
496 			int metadata)
497 {
498 	struct end_io_wq *end_io_wq;
499 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
500 	if (!end_io_wq)
501 		return -ENOMEM;
502 
503 	end_io_wq->private = bio->bi_private;
504 	end_io_wq->end_io = bio->bi_end_io;
505 	end_io_wq->info = info;
506 	end_io_wq->error = 0;
507 	end_io_wq->bio = bio;
508 	end_io_wq->metadata = metadata;
509 
510 	bio->bi_private = end_io_wq;
511 	bio->bi_end_io = end_workqueue_bio;
512 	return 0;
513 }
514 
515 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
516 {
517 	unsigned long limit = min_t(unsigned long,
518 				    info->workers.max_workers,
519 				    info->fs_devices->open_devices);
520 	return 256 * limit;
521 }
522 
523 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
524 {
525 	return atomic_read(&info->nr_async_bios) >
526 		btrfs_async_submit_limit(info);
527 }
528 
529 static void run_one_async_start(struct btrfs_work *work)
530 {
531 	struct btrfs_fs_info *fs_info;
532 	struct async_submit_bio *async;
533 
534 	async = container_of(work, struct  async_submit_bio, work);
535 	fs_info = BTRFS_I(async->inode)->root->fs_info;
536 	async->submit_bio_start(async->inode, async->rw, async->bio,
537 			       async->mirror_num, async->bio_flags);
538 }
539 
540 static void run_one_async_done(struct btrfs_work *work)
541 {
542 	struct btrfs_fs_info *fs_info;
543 	struct async_submit_bio *async;
544 	int limit;
545 
546 	async = container_of(work, struct  async_submit_bio, work);
547 	fs_info = BTRFS_I(async->inode)->root->fs_info;
548 
549 	limit = btrfs_async_submit_limit(fs_info);
550 	limit = limit * 2 / 3;
551 
552 	atomic_dec(&fs_info->nr_async_submits);
553 
554 	if (atomic_read(&fs_info->nr_async_submits) < limit &&
555 	    waitqueue_active(&fs_info->async_submit_wait))
556 		wake_up(&fs_info->async_submit_wait);
557 
558 	async->submit_bio_done(async->inode, async->rw, async->bio,
559 			       async->mirror_num, async->bio_flags);
560 }
561 
562 static void run_one_async_free(struct btrfs_work *work)
563 {
564 	struct async_submit_bio *async;
565 
566 	async = container_of(work, struct  async_submit_bio, work);
567 	kfree(async);
568 }
569 
570 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
571 			int rw, struct bio *bio, int mirror_num,
572 			unsigned long bio_flags,
573 			extent_submit_bio_hook_t *submit_bio_start,
574 			extent_submit_bio_hook_t *submit_bio_done)
575 {
576 	struct async_submit_bio *async;
577 
578 	async = kmalloc(sizeof(*async), GFP_NOFS);
579 	if (!async)
580 		return -ENOMEM;
581 
582 	async->inode = inode;
583 	async->rw = rw;
584 	async->bio = bio;
585 	async->mirror_num = mirror_num;
586 	async->submit_bio_start = submit_bio_start;
587 	async->submit_bio_done = submit_bio_done;
588 
589 	async->work.func = run_one_async_start;
590 	async->work.ordered_func = run_one_async_done;
591 	async->work.ordered_free = run_one_async_free;
592 
593 	async->work.flags = 0;
594 	async->bio_flags = bio_flags;
595 
596 	atomic_inc(&fs_info->nr_async_submits);
597 
598 	if (rw & (1 << BIO_RW_SYNCIO))
599 		btrfs_set_work_high_prio(&async->work);
600 
601 	btrfs_queue_worker(&fs_info->workers, &async->work);
602 
603 	while (atomic_read(&fs_info->async_submit_draining) &&
604 	      atomic_read(&fs_info->nr_async_submits)) {
605 		wait_event(fs_info->async_submit_wait,
606 			   (atomic_read(&fs_info->nr_async_submits) == 0));
607 	}
608 
609 	return 0;
610 }
611 
612 static int btree_csum_one_bio(struct bio *bio)
613 {
614 	struct bio_vec *bvec = bio->bi_io_vec;
615 	int bio_index = 0;
616 	struct btrfs_root *root;
617 
618 	WARN_ON(bio->bi_vcnt <= 0);
619 	while (bio_index < bio->bi_vcnt) {
620 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
621 		csum_dirty_buffer(root, bvec->bv_page);
622 		bio_index++;
623 		bvec++;
624 	}
625 	return 0;
626 }
627 
628 static int __btree_submit_bio_start(struct inode *inode, int rw,
629 				    struct bio *bio, int mirror_num,
630 				    unsigned long bio_flags)
631 {
632 	/*
633 	 * when we're called for a write, we're already in the async
634 	 * submission context.  Just jump into btrfs_map_bio
635 	 */
636 	btree_csum_one_bio(bio);
637 	return 0;
638 }
639 
640 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
641 				 int mirror_num, unsigned long bio_flags)
642 {
643 	/*
644 	 * when we're called for a write, we're already in the async
645 	 * submission context.  Just jump into btrfs_map_bio
646 	 */
647 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
648 }
649 
650 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
651 				 int mirror_num, unsigned long bio_flags)
652 {
653 	int ret;
654 
655 	ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
656 					  bio, 1);
657 	BUG_ON(ret);
658 
659 	if (!(rw & (1 << BIO_RW))) {
660 		/*
661 		 * called for a read, do the setup so that checksum validation
662 		 * can happen in the async kernel threads
663 		 */
664 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
665 				     mirror_num, 0);
666 	}
667 
668 	/*
669 	 * kthread helpers are used to submit writes so that checksumming
670 	 * can happen in parallel across all CPUs
671 	 */
672 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
673 				   inode, rw, bio, mirror_num, 0,
674 				   __btree_submit_bio_start,
675 				   __btree_submit_bio_done);
676 }
677 
678 static int btree_writepage(struct page *page, struct writeback_control *wbc)
679 {
680 	struct extent_io_tree *tree;
681 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
682 	struct extent_buffer *eb;
683 	int was_dirty;
684 
685 	tree = &BTRFS_I(page->mapping->host)->io_tree;
686 	if (!(current->flags & PF_MEMALLOC)) {
687 		return extent_write_full_page(tree, page,
688 					      btree_get_extent, wbc);
689 	}
690 
691 	redirty_page_for_writepage(wbc, page);
692 	eb = btrfs_find_tree_block(root, page_offset(page),
693 				      PAGE_CACHE_SIZE);
694 	WARN_ON(!eb);
695 
696 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
697 	if (!was_dirty) {
698 		spin_lock(&root->fs_info->delalloc_lock);
699 		root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
700 		spin_unlock(&root->fs_info->delalloc_lock);
701 	}
702 	free_extent_buffer(eb);
703 
704 	unlock_page(page);
705 	return 0;
706 }
707 
708 static int btree_writepages(struct address_space *mapping,
709 			    struct writeback_control *wbc)
710 {
711 	struct extent_io_tree *tree;
712 	tree = &BTRFS_I(mapping->host)->io_tree;
713 	if (wbc->sync_mode == WB_SYNC_NONE) {
714 		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
715 		u64 num_dirty;
716 		unsigned long thresh = 32 * 1024 * 1024;
717 
718 		if (wbc->for_kupdate)
719 			return 0;
720 
721 		/* this is a bit racy, but that's ok */
722 		num_dirty = root->fs_info->dirty_metadata_bytes;
723 		if (num_dirty < thresh)
724 			return 0;
725 	}
726 	return extent_writepages(tree, mapping, btree_get_extent, wbc);
727 }
728 
729 static int btree_readpage(struct file *file, struct page *page)
730 {
731 	struct extent_io_tree *tree;
732 	tree = &BTRFS_I(page->mapping->host)->io_tree;
733 	return extent_read_full_page(tree, page, btree_get_extent);
734 }
735 
736 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
737 {
738 	struct extent_io_tree *tree;
739 	struct extent_map_tree *map;
740 	int ret;
741 
742 	if (PageWriteback(page) || PageDirty(page))
743 		return 0;
744 
745 	tree = &BTRFS_I(page->mapping->host)->io_tree;
746 	map = &BTRFS_I(page->mapping->host)->extent_tree;
747 
748 	ret = try_release_extent_state(map, tree, page, gfp_flags);
749 	if (!ret)
750 		return 0;
751 
752 	ret = try_release_extent_buffer(tree, page);
753 	if (ret == 1) {
754 		ClearPagePrivate(page);
755 		set_page_private(page, 0);
756 		page_cache_release(page);
757 	}
758 
759 	return ret;
760 }
761 
762 static void btree_invalidatepage(struct page *page, unsigned long offset)
763 {
764 	struct extent_io_tree *tree;
765 	tree = &BTRFS_I(page->mapping->host)->io_tree;
766 	extent_invalidatepage(tree, page, offset);
767 	btree_releasepage(page, GFP_NOFS);
768 	if (PagePrivate(page)) {
769 		printk(KERN_WARNING "btrfs warning page private not zero "
770 		       "on page %llu\n", (unsigned long long)page_offset(page));
771 		ClearPagePrivate(page);
772 		set_page_private(page, 0);
773 		page_cache_release(page);
774 	}
775 }
776 
777 static const struct address_space_operations btree_aops = {
778 	.readpage	= btree_readpage,
779 	.writepage	= btree_writepage,
780 	.writepages	= btree_writepages,
781 	.releasepage	= btree_releasepage,
782 	.invalidatepage = btree_invalidatepage,
783 	.sync_page	= block_sync_page,
784 };
785 
786 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
787 			 u64 parent_transid)
788 {
789 	struct extent_buffer *buf = NULL;
790 	struct inode *btree_inode = root->fs_info->btree_inode;
791 	int ret = 0;
792 
793 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
794 	if (!buf)
795 		return 0;
796 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
797 				 buf, 0, 0, btree_get_extent, 0);
798 	free_extent_buffer(buf);
799 	return ret;
800 }
801 
802 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
803 					    u64 bytenr, u32 blocksize)
804 {
805 	struct inode *btree_inode = root->fs_info->btree_inode;
806 	struct extent_buffer *eb;
807 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
808 				bytenr, blocksize, GFP_NOFS);
809 	return eb;
810 }
811 
812 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
813 						 u64 bytenr, u32 blocksize)
814 {
815 	struct inode *btree_inode = root->fs_info->btree_inode;
816 	struct extent_buffer *eb;
817 
818 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
819 				 bytenr, blocksize, NULL, GFP_NOFS);
820 	return eb;
821 }
822 
823 
824 int btrfs_write_tree_block(struct extent_buffer *buf)
825 {
826 	return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
827 					buf->start + buf->len - 1);
828 }
829 
830 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
831 {
832 	return filemap_fdatawait_range(buf->first_page->mapping,
833 				       buf->start, buf->start + buf->len - 1);
834 }
835 
836 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
837 				      u32 blocksize, u64 parent_transid)
838 {
839 	struct extent_buffer *buf = NULL;
840 	struct inode *btree_inode = root->fs_info->btree_inode;
841 	struct extent_io_tree *io_tree;
842 	int ret;
843 
844 	io_tree = &BTRFS_I(btree_inode)->io_tree;
845 
846 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
847 	if (!buf)
848 		return NULL;
849 
850 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
851 
852 	if (ret == 0)
853 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
854 	return buf;
855 
856 }
857 
858 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
859 		     struct extent_buffer *buf)
860 {
861 	struct inode *btree_inode = root->fs_info->btree_inode;
862 	if (btrfs_header_generation(buf) ==
863 	    root->fs_info->running_transaction->transid) {
864 		btrfs_assert_tree_locked(buf);
865 
866 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
867 			spin_lock(&root->fs_info->delalloc_lock);
868 			if (root->fs_info->dirty_metadata_bytes >= buf->len)
869 				root->fs_info->dirty_metadata_bytes -= buf->len;
870 			else
871 				WARN_ON(1);
872 			spin_unlock(&root->fs_info->delalloc_lock);
873 		}
874 
875 		/* ugh, clear_extent_buffer_dirty needs to lock the page */
876 		btrfs_set_lock_blocking(buf);
877 		clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
878 					  buf);
879 	}
880 	return 0;
881 }
882 
883 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
884 			u32 stripesize, struct btrfs_root *root,
885 			struct btrfs_fs_info *fs_info,
886 			u64 objectid)
887 {
888 	root->node = NULL;
889 	root->commit_root = NULL;
890 	root->sectorsize = sectorsize;
891 	root->nodesize = nodesize;
892 	root->leafsize = leafsize;
893 	root->stripesize = stripesize;
894 	root->ref_cows = 0;
895 	root->track_dirty = 0;
896 	root->in_radix = 0;
897 	root->clean_orphans = 0;
898 
899 	root->fs_info = fs_info;
900 	root->objectid = objectid;
901 	root->last_trans = 0;
902 	root->highest_objectid = 0;
903 	root->name = NULL;
904 	root->in_sysfs = 0;
905 	root->inode_tree = RB_ROOT;
906 
907 	INIT_LIST_HEAD(&root->dirty_list);
908 	INIT_LIST_HEAD(&root->orphan_list);
909 	INIT_LIST_HEAD(&root->root_list);
910 	spin_lock_init(&root->node_lock);
911 	spin_lock_init(&root->list_lock);
912 	spin_lock_init(&root->inode_lock);
913 	mutex_init(&root->objectid_mutex);
914 	mutex_init(&root->log_mutex);
915 	init_waitqueue_head(&root->log_writer_wait);
916 	init_waitqueue_head(&root->log_commit_wait[0]);
917 	init_waitqueue_head(&root->log_commit_wait[1]);
918 	atomic_set(&root->log_commit[0], 0);
919 	atomic_set(&root->log_commit[1], 0);
920 	atomic_set(&root->log_writers, 0);
921 	root->log_batch = 0;
922 	root->log_transid = 0;
923 	root->last_log_commit = 0;
924 	extent_io_tree_init(&root->dirty_log_pages,
925 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
926 
927 	memset(&root->root_key, 0, sizeof(root->root_key));
928 	memset(&root->root_item, 0, sizeof(root->root_item));
929 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
930 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
931 	root->defrag_trans_start = fs_info->generation;
932 	init_completion(&root->kobj_unregister);
933 	root->defrag_running = 0;
934 	root->root_key.objectid = objectid;
935 	root->anon_super.s_root = NULL;
936 	root->anon_super.s_dev = 0;
937 	INIT_LIST_HEAD(&root->anon_super.s_list);
938 	INIT_LIST_HEAD(&root->anon_super.s_instances);
939 	init_rwsem(&root->anon_super.s_umount);
940 
941 	return 0;
942 }
943 
944 static int find_and_setup_root(struct btrfs_root *tree_root,
945 			       struct btrfs_fs_info *fs_info,
946 			       u64 objectid,
947 			       struct btrfs_root *root)
948 {
949 	int ret;
950 	u32 blocksize;
951 	u64 generation;
952 
953 	__setup_root(tree_root->nodesize, tree_root->leafsize,
954 		     tree_root->sectorsize, tree_root->stripesize,
955 		     root, fs_info, objectid);
956 	ret = btrfs_find_last_root(tree_root, objectid,
957 				   &root->root_item, &root->root_key);
958 	if (ret > 0)
959 		return -ENOENT;
960 	BUG_ON(ret);
961 
962 	generation = btrfs_root_generation(&root->root_item);
963 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
964 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
965 				     blocksize, generation);
966 	BUG_ON(!root->node);
967 	root->commit_root = btrfs_root_node(root);
968 	return 0;
969 }
970 
971 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
972 			     struct btrfs_fs_info *fs_info)
973 {
974 	struct extent_buffer *eb;
975 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
976 	u64 start = 0;
977 	u64 end = 0;
978 	int ret;
979 
980 	if (!log_root_tree)
981 		return 0;
982 
983 	while (1) {
984 		ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
985 				0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
986 		if (ret)
987 			break;
988 
989 		clear_extent_bits(&log_root_tree->dirty_log_pages, start, end,
990 				  EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
991 	}
992 	eb = fs_info->log_root_tree->node;
993 
994 	WARN_ON(btrfs_header_level(eb) != 0);
995 	WARN_ON(btrfs_header_nritems(eb) != 0);
996 
997 	ret = btrfs_free_reserved_extent(fs_info->tree_root,
998 				eb->start, eb->len);
999 	BUG_ON(ret);
1000 
1001 	free_extent_buffer(eb);
1002 	kfree(fs_info->log_root_tree);
1003 	fs_info->log_root_tree = NULL;
1004 	return 0;
1005 }
1006 
1007 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1008 					 struct btrfs_fs_info *fs_info)
1009 {
1010 	struct btrfs_root *root;
1011 	struct btrfs_root *tree_root = fs_info->tree_root;
1012 	struct extent_buffer *leaf;
1013 
1014 	root = kzalloc(sizeof(*root), GFP_NOFS);
1015 	if (!root)
1016 		return ERR_PTR(-ENOMEM);
1017 
1018 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1019 		     tree_root->sectorsize, tree_root->stripesize,
1020 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1021 
1022 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1023 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1024 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1025 	/*
1026 	 * log trees do not get reference counted because they go away
1027 	 * before a real commit is actually done.  They do store pointers
1028 	 * to file data extents, and those reference counts still get
1029 	 * updated (along with back refs to the log tree).
1030 	 */
1031 	root->ref_cows = 0;
1032 
1033 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1034 				      BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1035 	if (IS_ERR(leaf)) {
1036 		kfree(root);
1037 		return ERR_CAST(leaf);
1038 	}
1039 
1040 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1041 	btrfs_set_header_bytenr(leaf, leaf->start);
1042 	btrfs_set_header_generation(leaf, trans->transid);
1043 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1044 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1045 	root->node = leaf;
1046 
1047 	write_extent_buffer(root->node, root->fs_info->fsid,
1048 			    (unsigned long)btrfs_header_fsid(root->node),
1049 			    BTRFS_FSID_SIZE);
1050 	btrfs_mark_buffer_dirty(root->node);
1051 	btrfs_tree_unlock(root->node);
1052 	return root;
1053 }
1054 
1055 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1056 			     struct btrfs_fs_info *fs_info)
1057 {
1058 	struct btrfs_root *log_root;
1059 
1060 	log_root = alloc_log_tree(trans, fs_info);
1061 	if (IS_ERR(log_root))
1062 		return PTR_ERR(log_root);
1063 	WARN_ON(fs_info->log_root_tree);
1064 	fs_info->log_root_tree = log_root;
1065 	return 0;
1066 }
1067 
1068 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1069 		       struct btrfs_root *root)
1070 {
1071 	struct btrfs_root *log_root;
1072 	struct btrfs_inode_item *inode_item;
1073 
1074 	log_root = alloc_log_tree(trans, root->fs_info);
1075 	if (IS_ERR(log_root))
1076 		return PTR_ERR(log_root);
1077 
1078 	log_root->last_trans = trans->transid;
1079 	log_root->root_key.offset = root->root_key.objectid;
1080 
1081 	inode_item = &log_root->root_item.inode;
1082 	inode_item->generation = cpu_to_le64(1);
1083 	inode_item->size = cpu_to_le64(3);
1084 	inode_item->nlink = cpu_to_le32(1);
1085 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1086 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1087 
1088 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1089 
1090 	WARN_ON(root->log_root);
1091 	root->log_root = log_root;
1092 	root->log_transid = 0;
1093 	root->last_log_commit = 0;
1094 	return 0;
1095 }
1096 
1097 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1098 					       struct btrfs_key *location)
1099 {
1100 	struct btrfs_root *root;
1101 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1102 	struct btrfs_path *path;
1103 	struct extent_buffer *l;
1104 	u64 generation;
1105 	u32 blocksize;
1106 	int ret = 0;
1107 
1108 	root = kzalloc(sizeof(*root), GFP_NOFS);
1109 	if (!root)
1110 		return ERR_PTR(-ENOMEM);
1111 	if (location->offset == (u64)-1) {
1112 		ret = find_and_setup_root(tree_root, fs_info,
1113 					  location->objectid, root);
1114 		if (ret) {
1115 			kfree(root);
1116 			return ERR_PTR(ret);
1117 		}
1118 		goto out;
1119 	}
1120 
1121 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1122 		     tree_root->sectorsize, tree_root->stripesize,
1123 		     root, fs_info, location->objectid);
1124 
1125 	path = btrfs_alloc_path();
1126 	BUG_ON(!path);
1127 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1128 	if (ret == 0) {
1129 		l = path->nodes[0];
1130 		read_extent_buffer(l, &root->root_item,
1131 				btrfs_item_ptr_offset(l, path->slots[0]),
1132 				sizeof(root->root_item));
1133 		memcpy(&root->root_key, location, sizeof(*location));
1134 	}
1135 	btrfs_free_path(path);
1136 	if (ret) {
1137 		if (ret > 0)
1138 			ret = -ENOENT;
1139 		return ERR_PTR(ret);
1140 	}
1141 
1142 	generation = btrfs_root_generation(&root->root_item);
1143 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1144 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1145 				     blocksize, generation);
1146 	root->commit_root = btrfs_root_node(root);
1147 	BUG_ON(!root->node);
1148 out:
1149 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID)
1150 		root->ref_cows = 1;
1151 
1152 	return root;
1153 }
1154 
1155 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1156 					u64 root_objectid)
1157 {
1158 	struct btrfs_root *root;
1159 
1160 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1161 		return fs_info->tree_root;
1162 	if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1163 		return fs_info->extent_root;
1164 
1165 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1166 				 (unsigned long)root_objectid);
1167 	return root;
1168 }
1169 
1170 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1171 					      struct btrfs_key *location)
1172 {
1173 	struct btrfs_root *root;
1174 	int ret;
1175 
1176 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1177 		return fs_info->tree_root;
1178 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1179 		return fs_info->extent_root;
1180 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1181 		return fs_info->chunk_root;
1182 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1183 		return fs_info->dev_root;
1184 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1185 		return fs_info->csum_root;
1186 again:
1187 	spin_lock(&fs_info->fs_roots_radix_lock);
1188 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1189 				 (unsigned long)location->objectid);
1190 	spin_unlock(&fs_info->fs_roots_radix_lock);
1191 	if (root)
1192 		return root;
1193 
1194 	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1195 	if (ret == 0)
1196 		ret = -ENOENT;
1197 	if (ret < 0)
1198 		return ERR_PTR(ret);
1199 
1200 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1201 	if (IS_ERR(root))
1202 		return root;
1203 
1204 	WARN_ON(btrfs_root_refs(&root->root_item) == 0);
1205 	set_anon_super(&root->anon_super, NULL);
1206 
1207 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1208 	if (ret)
1209 		goto fail;
1210 
1211 	spin_lock(&fs_info->fs_roots_radix_lock);
1212 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1213 				(unsigned long)root->root_key.objectid,
1214 				root);
1215 	if (ret == 0) {
1216 		root->in_radix = 1;
1217 		root->clean_orphans = 1;
1218 	}
1219 	spin_unlock(&fs_info->fs_roots_radix_lock);
1220 	radix_tree_preload_end();
1221 	if (ret) {
1222 		if (ret == -EEXIST) {
1223 			free_fs_root(root);
1224 			goto again;
1225 		}
1226 		goto fail;
1227 	}
1228 
1229 	ret = btrfs_find_dead_roots(fs_info->tree_root,
1230 				    root->root_key.objectid);
1231 	WARN_ON(ret);
1232 	return root;
1233 fail:
1234 	free_fs_root(root);
1235 	return ERR_PTR(ret);
1236 }
1237 
1238 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1239 				      struct btrfs_key *location,
1240 				      const char *name, int namelen)
1241 {
1242 	return btrfs_read_fs_root_no_name(fs_info, location);
1243 #if 0
1244 	struct btrfs_root *root;
1245 	int ret;
1246 
1247 	root = btrfs_read_fs_root_no_name(fs_info, location);
1248 	if (!root)
1249 		return NULL;
1250 
1251 	if (root->in_sysfs)
1252 		return root;
1253 
1254 	ret = btrfs_set_root_name(root, name, namelen);
1255 	if (ret) {
1256 		free_extent_buffer(root->node);
1257 		kfree(root);
1258 		return ERR_PTR(ret);
1259 	}
1260 
1261 	ret = btrfs_sysfs_add_root(root);
1262 	if (ret) {
1263 		free_extent_buffer(root->node);
1264 		kfree(root->name);
1265 		kfree(root);
1266 		return ERR_PTR(ret);
1267 	}
1268 	root->in_sysfs = 1;
1269 	return root;
1270 #endif
1271 }
1272 
1273 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1274 {
1275 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1276 	int ret = 0;
1277 	struct btrfs_device *device;
1278 	struct backing_dev_info *bdi;
1279 
1280 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1281 		if (!device->bdev)
1282 			continue;
1283 		bdi = blk_get_backing_dev_info(device->bdev);
1284 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1285 			ret = 1;
1286 			break;
1287 		}
1288 	}
1289 	return ret;
1290 }
1291 
1292 /*
1293  * this unplugs every device on the box, and it is only used when page
1294  * is null
1295  */
1296 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1297 {
1298 	struct btrfs_device *device;
1299 	struct btrfs_fs_info *info;
1300 
1301 	info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1302 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1303 		if (!device->bdev)
1304 			continue;
1305 
1306 		bdi = blk_get_backing_dev_info(device->bdev);
1307 		if (bdi->unplug_io_fn)
1308 			bdi->unplug_io_fn(bdi, page);
1309 	}
1310 }
1311 
1312 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1313 {
1314 	struct inode *inode;
1315 	struct extent_map_tree *em_tree;
1316 	struct extent_map *em;
1317 	struct address_space *mapping;
1318 	u64 offset;
1319 
1320 	/* the generic O_DIRECT read code does this */
1321 	if (1 || !page) {
1322 		__unplug_io_fn(bdi, page);
1323 		return;
1324 	}
1325 
1326 	/*
1327 	 * page->mapping may change at any time.  Get a consistent copy
1328 	 * and use that for everything below
1329 	 */
1330 	smp_mb();
1331 	mapping = page->mapping;
1332 	if (!mapping)
1333 		return;
1334 
1335 	inode = mapping->host;
1336 
1337 	/*
1338 	 * don't do the expensive searching for a small number of
1339 	 * devices
1340 	 */
1341 	if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1342 		__unplug_io_fn(bdi, page);
1343 		return;
1344 	}
1345 
1346 	offset = page_offset(page);
1347 
1348 	em_tree = &BTRFS_I(inode)->extent_tree;
1349 	read_lock(&em_tree->lock);
1350 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1351 	read_unlock(&em_tree->lock);
1352 	if (!em) {
1353 		__unplug_io_fn(bdi, page);
1354 		return;
1355 	}
1356 
1357 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1358 		free_extent_map(em);
1359 		__unplug_io_fn(bdi, page);
1360 		return;
1361 	}
1362 	offset = offset - em->start;
1363 	btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1364 			  em->block_start + offset, page);
1365 	free_extent_map(em);
1366 }
1367 
1368 /*
1369  * If this fails, caller must call bdi_destroy() to get rid of the
1370  * bdi again.
1371  */
1372 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1373 {
1374 	int err;
1375 
1376 	bdi->capabilities = BDI_CAP_MAP_COPY;
1377 	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1378 	if (err)
1379 		return err;
1380 
1381 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1382 	bdi->unplug_io_fn	= btrfs_unplug_io_fn;
1383 	bdi->unplug_io_data	= info;
1384 	bdi->congested_fn	= btrfs_congested_fn;
1385 	bdi->congested_data	= info;
1386 	return 0;
1387 }
1388 
1389 static int bio_ready_for_csum(struct bio *bio)
1390 {
1391 	u64 length = 0;
1392 	u64 buf_len = 0;
1393 	u64 start = 0;
1394 	struct page *page;
1395 	struct extent_io_tree *io_tree = NULL;
1396 	struct btrfs_fs_info *info = NULL;
1397 	struct bio_vec *bvec;
1398 	int i;
1399 	int ret;
1400 
1401 	bio_for_each_segment(bvec, bio, i) {
1402 		page = bvec->bv_page;
1403 		if (page->private == EXTENT_PAGE_PRIVATE) {
1404 			length += bvec->bv_len;
1405 			continue;
1406 		}
1407 		if (!page->private) {
1408 			length += bvec->bv_len;
1409 			continue;
1410 		}
1411 		length = bvec->bv_len;
1412 		buf_len = page->private >> 2;
1413 		start = page_offset(page) + bvec->bv_offset;
1414 		io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1415 		info = BTRFS_I(page->mapping->host)->root->fs_info;
1416 	}
1417 	/* are we fully contained in this bio? */
1418 	if (buf_len <= length)
1419 		return 1;
1420 
1421 	ret = extent_range_uptodate(io_tree, start + length,
1422 				    start + buf_len - 1);
1423 	return ret;
1424 }
1425 
1426 /*
1427  * called by the kthread helper functions to finally call the bio end_io
1428  * functions.  This is where read checksum verification actually happens
1429  */
1430 static void end_workqueue_fn(struct btrfs_work *work)
1431 {
1432 	struct bio *bio;
1433 	struct end_io_wq *end_io_wq;
1434 	struct btrfs_fs_info *fs_info;
1435 	int error;
1436 
1437 	end_io_wq = container_of(work, struct end_io_wq, work);
1438 	bio = end_io_wq->bio;
1439 	fs_info = end_io_wq->info;
1440 
1441 	/* metadata bio reads are special because the whole tree block must
1442 	 * be checksummed at once.  This makes sure the entire block is in
1443 	 * ram and up to date before trying to verify things.  For
1444 	 * blocksize <= pagesize, it is basically a noop
1445 	 */
1446 	if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1447 	    !bio_ready_for_csum(bio)) {
1448 		btrfs_queue_worker(&fs_info->endio_meta_workers,
1449 				   &end_io_wq->work);
1450 		return;
1451 	}
1452 	error = end_io_wq->error;
1453 	bio->bi_private = end_io_wq->private;
1454 	bio->bi_end_io = end_io_wq->end_io;
1455 	kfree(end_io_wq);
1456 	bio_endio(bio, error);
1457 }
1458 
1459 static int cleaner_kthread(void *arg)
1460 {
1461 	struct btrfs_root *root = arg;
1462 
1463 	do {
1464 		smp_mb();
1465 		if (root->fs_info->closing)
1466 			break;
1467 
1468 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1469 
1470 		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1471 		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
1472 			btrfs_run_delayed_iputs(root);
1473 			btrfs_clean_old_snapshots(root);
1474 			mutex_unlock(&root->fs_info->cleaner_mutex);
1475 		}
1476 
1477 		if (freezing(current)) {
1478 			refrigerator();
1479 		} else {
1480 			smp_mb();
1481 			if (root->fs_info->closing)
1482 				break;
1483 			set_current_state(TASK_INTERRUPTIBLE);
1484 			schedule();
1485 			__set_current_state(TASK_RUNNING);
1486 		}
1487 	} while (!kthread_should_stop());
1488 	return 0;
1489 }
1490 
1491 static int transaction_kthread(void *arg)
1492 {
1493 	struct btrfs_root *root = arg;
1494 	struct btrfs_trans_handle *trans;
1495 	struct btrfs_transaction *cur;
1496 	unsigned long now;
1497 	unsigned long delay;
1498 	int ret;
1499 
1500 	do {
1501 		smp_mb();
1502 		if (root->fs_info->closing)
1503 			break;
1504 
1505 		delay = HZ * 30;
1506 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1507 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1508 
1509 		mutex_lock(&root->fs_info->trans_mutex);
1510 		cur = root->fs_info->running_transaction;
1511 		if (!cur) {
1512 			mutex_unlock(&root->fs_info->trans_mutex);
1513 			goto sleep;
1514 		}
1515 
1516 		now = get_seconds();
1517 		if (now < cur->start_time || now - cur->start_time < 30) {
1518 			mutex_unlock(&root->fs_info->trans_mutex);
1519 			delay = HZ * 5;
1520 			goto sleep;
1521 		}
1522 		mutex_unlock(&root->fs_info->trans_mutex);
1523 		trans = btrfs_start_transaction(root, 1);
1524 		ret = btrfs_commit_transaction(trans, root);
1525 
1526 sleep:
1527 		wake_up_process(root->fs_info->cleaner_kthread);
1528 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1529 
1530 		if (freezing(current)) {
1531 			refrigerator();
1532 		} else {
1533 			if (root->fs_info->closing)
1534 				break;
1535 			set_current_state(TASK_INTERRUPTIBLE);
1536 			schedule_timeout(delay);
1537 			__set_current_state(TASK_RUNNING);
1538 		}
1539 	} while (!kthread_should_stop());
1540 	return 0;
1541 }
1542 
1543 struct btrfs_root *open_ctree(struct super_block *sb,
1544 			      struct btrfs_fs_devices *fs_devices,
1545 			      char *options)
1546 {
1547 	u32 sectorsize;
1548 	u32 nodesize;
1549 	u32 leafsize;
1550 	u32 blocksize;
1551 	u32 stripesize;
1552 	u64 generation;
1553 	u64 features;
1554 	struct btrfs_key location;
1555 	struct buffer_head *bh;
1556 	struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1557 						 GFP_NOFS);
1558 	struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1559 						 GFP_NOFS);
1560 	struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1561 					       GFP_NOFS);
1562 	struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1563 						GFP_NOFS);
1564 	struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1565 						GFP_NOFS);
1566 	struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1567 					      GFP_NOFS);
1568 	struct btrfs_root *log_tree_root;
1569 
1570 	int ret;
1571 	int err = -EINVAL;
1572 
1573 	struct btrfs_super_block *disk_super;
1574 
1575 	if (!extent_root || !tree_root || !fs_info ||
1576 	    !chunk_root || !dev_root || !csum_root) {
1577 		err = -ENOMEM;
1578 		goto fail;
1579 	}
1580 
1581 	ret = init_srcu_struct(&fs_info->subvol_srcu);
1582 	if (ret) {
1583 		err = ret;
1584 		goto fail;
1585 	}
1586 
1587 	ret = setup_bdi(fs_info, &fs_info->bdi);
1588 	if (ret) {
1589 		err = ret;
1590 		goto fail_srcu;
1591 	}
1592 
1593 	fs_info->btree_inode = new_inode(sb);
1594 	if (!fs_info->btree_inode) {
1595 		err = -ENOMEM;
1596 		goto fail_bdi;
1597 	}
1598 
1599 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1600 	INIT_LIST_HEAD(&fs_info->trans_list);
1601 	INIT_LIST_HEAD(&fs_info->dead_roots);
1602 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
1603 	INIT_LIST_HEAD(&fs_info->hashers);
1604 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1605 	INIT_LIST_HEAD(&fs_info->ordered_operations);
1606 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
1607 	spin_lock_init(&fs_info->delalloc_lock);
1608 	spin_lock_init(&fs_info->new_trans_lock);
1609 	spin_lock_init(&fs_info->ref_cache_lock);
1610 	spin_lock_init(&fs_info->fs_roots_radix_lock);
1611 	spin_lock_init(&fs_info->delayed_iput_lock);
1612 
1613 	init_completion(&fs_info->kobj_unregister);
1614 	fs_info->tree_root = tree_root;
1615 	fs_info->extent_root = extent_root;
1616 	fs_info->csum_root = csum_root;
1617 	fs_info->chunk_root = chunk_root;
1618 	fs_info->dev_root = dev_root;
1619 	fs_info->fs_devices = fs_devices;
1620 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1621 	INIT_LIST_HEAD(&fs_info->space_info);
1622 	btrfs_mapping_init(&fs_info->mapping_tree);
1623 	atomic_set(&fs_info->nr_async_submits, 0);
1624 	atomic_set(&fs_info->async_delalloc_pages, 0);
1625 	atomic_set(&fs_info->async_submit_draining, 0);
1626 	atomic_set(&fs_info->nr_async_bios, 0);
1627 	fs_info->sb = sb;
1628 	fs_info->max_inline = 8192 * 1024;
1629 	fs_info->metadata_ratio = 0;
1630 
1631 	fs_info->thread_pool_size = min_t(unsigned long,
1632 					  num_online_cpus() + 2, 8);
1633 
1634 	INIT_LIST_HEAD(&fs_info->ordered_extents);
1635 	spin_lock_init(&fs_info->ordered_extent_lock);
1636 
1637 	sb->s_blocksize = 4096;
1638 	sb->s_blocksize_bits = blksize_bits(4096);
1639 	sb->s_bdi = &fs_info->bdi;
1640 
1641 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1642 	fs_info->btree_inode->i_nlink = 1;
1643 	/*
1644 	 * we set the i_size on the btree inode to the max possible int.
1645 	 * the real end of the address space is determined by all of
1646 	 * the devices in the system
1647 	 */
1648 	fs_info->btree_inode->i_size = OFFSET_MAX;
1649 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1650 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1651 
1652 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1653 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1654 			     fs_info->btree_inode->i_mapping,
1655 			     GFP_NOFS);
1656 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1657 			     GFP_NOFS);
1658 
1659 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1660 
1661 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
1662 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1663 	       sizeof(struct btrfs_key));
1664 	BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1665 	insert_inode_hash(fs_info->btree_inode);
1666 
1667 	spin_lock_init(&fs_info->block_group_cache_lock);
1668 	fs_info->block_group_cache_tree = RB_ROOT;
1669 
1670 	extent_io_tree_init(&fs_info->freed_extents[0],
1671 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1672 	extent_io_tree_init(&fs_info->freed_extents[1],
1673 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1674 	fs_info->pinned_extents = &fs_info->freed_extents[0];
1675 	fs_info->do_barriers = 1;
1676 
1677 
1678 	mutex_init(&fs_info->trans_mutex);
1679 	mutex_init(&fs_info->ordered_operations_mutex);
1680 	mutex_init(&fs_info->tree_log_mutex);
1681 	mutex_init(&fs_info->chunk_mutex);
1682 	mutex_init(&fs_info->transaction_kthread_mutex);
1683 	mutex_init(&fs_info->cleaner_mutex);
1684 	mutex_init(&fs_info->volume_mutex);
1685 	init_rwsem(&fs_info->extent_commit_sem);
1686 	init_rwsem(&fs_info->cleanup_work_sem);
1687 	init_rwsem(&fs_info->subvol_sem);
1688 
1689 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1690 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1691 
1692 	init_waitqueue_head(&fs_info->transaction_throttle);
1693 	init_waitqueue_head(&fs_info->transaction_wait);
1694 	init_waitqueue_head(&fs_info->async_submit_wait);
1695 
1696 	__setup_root(4096, 4096, 4096, 4096, tree_root,
1697 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
1698 
1699 
1700 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1701 	if (!bh)
1702 		goto fail_iput;
1703 
1704 	memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1705 	memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1706 	       sizeof(fs_info->super_for_commit));
1707 	brelse(bh);
1708 
1709 	memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1710 
1711 	disk_super = &fs_info->super_copy;
1712 	if (!btrfs_super_root(disk_super))
1713 		goto fail_iput;
1714 
1715 	ret = btrfs_parse_options(tree_root, options);
1716 	if (ret) {
1717 		err = ret;
1718 		goto fail_iput;
1719 	}
1720 
1721 	features = btrfs_super_incompat_flags(disk_super) &
1722 		~BTRFS_FEATURE_INCOMPAT_SUPP;
1723 	if (features) {
1724 		printk(KERN_ERR "BTRFS: couldn't mount because of "
1725 		       "unsupported optional features (%Lx).\n",
1726 		       (unsigned long long)features);
1727 		err = -EINVAL;
1728 		goto fail_iput;
1729 	}
1730 
1731 	features = btrfs_super_incompat_flags(disk_super);
1732 	if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
1733 		features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1734 		btrfs_set_super_incompat_flags(disk_super, features);
1735 	}
1736 
1737 	features = btrfs_super_compat_ro_flags(disk_super) &
1738 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
1739 	if (!(sb->s_flags & MS_RDONLY) && features) {
1740 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1741 		       "unsupported option features (%Lx).\n",
1742 		       (unsigned long long)features);
1743 		err = -EINVAL;
1744 		goto fail_iput;
1745 	}
1746 
1747 	btrfs_init_workers(&fs_info->generic_worker,
1748 			   "genwork", 1, NULL);
1749 
1750 	btrfs_init_workers(&fs_info->workers, "worker",
1751 			   fs_info->thread_pool_size,
1752 			   &fs_info->generic_worker);
1753 
1754 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1755 			   fs_info->thread_pool_size,
1756 			   &fs_info->generic_worker);
1757 
1758 	btrfs_init_workers(&fs_info->submit_workers, "submit",
1759 			   min_t(u64, fs_devices->num_devices,
1760 			   fs_info->thread_pool_size),
1761 			   &fs_info->generic_worker);
1762 	btrfs_init_workers(&fs_info->enospc_workers, "enospc",
1763 			   fs_info->thread_pool_size,
1764 			   &fs_info->generic_worker);
1765 
1766 	/* a higher idle thresh on the submit workers makes it much more
1767 	 * likely that bios will be send down in a sane order to the
1768 	 * devices
1769 	 */
1770 	fs_info->submit_workers.idle_thresh = 64;
1771 
1772 	fs_info->workers.idle_thresh = 16;
1773 	fs_info->workers.ordered = 1;
1774 
1775 	fs_info->delalloc_workers.idle_thresh = 2;
1776 	fs_info->delalloc_workers.ordered = 1;
1777 
1778 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
1779 			   &fs_info->generic_worker);
1780 	btrfs_init_workers(&fs_info->endio_workers, "endio",
1781 			   fs_info->thread_pool_size,
1782 			   &fs_info->generic_worker);
1783 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1784 			   fs_info->thread_pool_size,
1785 			   &fs_info->generic_worker);
1786 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
1787 			   "endio-meta-write", fs_info->thread_pool_size,
1788 			   &fs_info->generic_worker);
1789 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1790 			   fs_info->thread_pool_size,
1791 			   &fs_info->generic_worker);
1792 
1793 	/*
1794 	 * endios are largely parallel and should have a very
1795 	 * low idle thresh
1796 	 */
1797 	fs_info->endio_workers.idle_thresh = 4;
1798 	fs_info->endio_meta_workers.idle_thresh = 4;
1799 
1800 	fs_info->endio_write_workers.idle_thresh = 2;
1801 	fs_info->endio_meta_write_workers.idle_thresh = 2;
1802 
1803 	btrfs_start_workers(&fs_info->workers, 1);
1804 	btrfs_start_workers(&fs_info->generic_worker, 1);
1805 	btrfs_start_workers(&fs_info->submit_workers, 1);
1806 	btrfs_start_workers(&fs_info->delalloc_workers, 1);
1807 	btrfs_start_workers(&fs_info->fixup_workers, 1);
1808 	btrfs_start_workers(&fs_info->endio_workers, 1);
1809 	btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1810 	btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1811 	btrfs_start_workers(&fs_info->endio_write_workers, 1);
1812 	btrfs_start_workers(&fs_info->enospc_workers, 1);
1813 
1814 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1815 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1816 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1817 
1818 	nodesize = btrfs_super_nodesize(disk_super);
1819 	leafsize = btrfs_super_leafsize(disk_super);
1820 	sectorsize = btrfs_super_sectorsize(disk_super);
1821 	stripesize = btrfs_super_stripesize(disk_super);
1822 	tree_root->nodesize = nodesize;
1823 	tree_root->leafsize = leafsize;
1824 	tree_root->sectorsize = sectorsize;
1825 	tree_root->stripesize = stripesize;
1826 
1827 	sb->s_blocksize = sectorsize;
1828 	sb->s_blocksize_bits = blksize_bits(sectorsize);
1829 
1830 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1831 		    sizeof(disk_super->magic))) {
1832 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1833 		goto fail_sb_buffer;
1834 	}
1835 
1836 	mutex_lock(&fs_info->chunk_mutex);
1837 	ret = btrfs_read_sys_array(tree_root);
1838 	mutex_unlock(&fs_info->chunk_mutex);
1839 	if (ret) {
1840 		printk(KERN_WARNING "btrfs: failed to read the system "
1841 		       "array on %s\n", sb->s_id);
1842 		goto fail_sb_buffer;
1843 	}
1844 
1845 	blocksize = btrfs_level_size(tree_root,
1846 				     btrfs_super_chunk_root_level(disk_super));
1847 	generation = btrfs_super_chunk_root_generation(disk_super);
1848 
1849 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
1850 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1851 
1852 	chunk_root->node = read_tree_block(chunk_root,
1853 					   btrfs_super_chunk_root(disk_super),
1854 					   blocksize, generation);
1855 	BUG_ON(!chunk_root->node);
1856 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1857 		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1858 		       sb->s_id);
1859 		goto fail_chunk_root;
1860 	}
1861 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1862 	chunk_root->commit_root = btrfs_root_node(chunk_root);
1863 
1864 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1865 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1866 	   BTRFS_UUID_SIZE);
1867 
1868 	mutex_lock(&fs_info->chunk_mutex);
1869 	ret = btrfs_read_chunk_tree(chunk_root);
1870 	mutex_unlock(&fs_info->chunk_mutex);
1871 	if (ret) {
1872 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1873 		       sb->s_id);
1874 		goto fail_chunk_root;
1875 	}
1876 
1877 	btrfs_close_extra_devices(fs_devices);
1878 
1879 	blocksize = btrfs_level_size(tree_root,
1880 				     btrfs_super_root_level(disk_super));
1881 	generation = btrfs_super_generation(disk_super);
1882 
1883 	tree_root->node = read_tree_block(tree_root,
1884 					  btrfs_super_root(disk_super),
1885 					  blocksize, generation);
1886 	if (!tree_root->node)
1887 		goto fail_chunk_root;
1888 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1889 		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1890 		       sb->s_id);
1891 		goto fail_tree_root;
1892 	}
1893 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1894 	tree_root->commit_root = btrfs_root_node(tree_root);
1895 
1896 	ret = find_and_setup_root(tree_root, fs_info,
1897 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1898 	if (ret)
1899 		goto fail_tree_root;
1900 	extent_root->track_dirty = 1;
1901 
1902 	ret = find_and_setup_root(tree_root, fs_info,
1903 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
1904 	if (ret)
1905 		goto fail_extent_root;
1906 	dev_root->track_dirty = 1;
1907 
1908 	ret = find_and_setup_root(tree_root, fs_info,
1909 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
1910 	if (ret)
1911 		goto fail_dev_root;
1912 
1913 	csum_root->track_dirty = 1;
1914 
1915 	ret = btrfs_read_block_groups(extent_root);
1916 	if (ret) {
1917 		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
1918 		goto fail_block_groups;
1919 	}
1920 
1921 	fs_info->generation = generation;
1922 	fs_info->last_trans_committed = generation;
1923 	fs_info->data_alloc_profile = (u64)-1;
1924 	fs_info->metadata_alloc_profile = (u64)-1;
1925 	fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1926 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1927 					       "btrfs-cleaner");
1928 	if (IS_ERR(fs_info->cleaner_kthread))
1929 		goto fail_block_groups;
1930 
1931 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
1932 						   tree_root,
1933 						   "btrfs-transaction");
1934 	if (IS_ERR(fs_info->transaction_kthread))
1935 		goto fail_cleaner;
1936 
1937 	if (!btrfs_test_opt(tree_root, SSD) &&
1938 	    !btrfs_test_opt(tree_root, NOSSD) &&
1939 	    !fs_info->fs_devices->rotating) {
1940 		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1941 		       "mode\n");
1942 		btrfs_set_opt(fs_info->mount_opt, SSD);
1943 	}
1944 
1945 	if (btrfs_super_log_root(disk_super) != 0) {
1946 		u64 bytenr = btrfs_super_log_root(disk_super);
1947 
1948 		if (fs_devices->rw_devices == 0) {
1949 			printk(KERN_WARNING "Btrfs log replay required "
1950 			       "on RO media\n");
1951 			err = -EIO;
1952 			goto fail_trans_kthread;
1953 		}
1954 		blocksize =
1955 		     btrfs_level_size(tree_root,
1956 				      btrfs_super_log_root_level(disk_super));
1957 
1958 		log_tree_root = kzalloc(sizeof(struct btrfs_root),
1959 						      GFP_NOFS);
1960 
1961 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
1962 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1963 
1964 		log_tree_root->node = read_tree_block(tree_root, bytenr,
1965 						      blocksize,
1966 						      generation + 1);
1967 		ret = btrfs_recover_log_trees(log_tree_root);
1968 		BUG_ON(ret);
1969 
1970 		if (sb->s_flags & MS_RDONLY) {
1971 			ret =  btrfs_commit_super(tree_root);
1972 			BUG_ON(ret);
1973 		}
1974 	}
1975 
1976 	ret = btrfs_find_orphan_roots(tree_root);
1977 	BUG_ON(ret);
1978 
1979 	if (!(sb->s_flags & MS_RDONLY)) {
1980 		ret = btrfs_recover_relocation(tree_root);
1981 		if (ret < 0) {
1982 			printk(KERN_WARNING
1983 			       "btrfs: failed to recover relocation\n");
1984 			err = -EINVAL;
1985 			goto fail_trans_kthread;
1986 		}
1987 	}
1988 
1989 	location.objectid = BTRFS_FS_TREE_OBJECTID;
1990 	location.type = BTRFS_ROOT_ITEM_KEY;
1991 	location.offset = (u64)-1;
1992 
1993 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1994 	if (!fs_info->fs_root)
1995 		goto fail_trans_kthread;
1996 
1997 	if (!(sb->s_flags & MS_RDONLY)) {
1998 		down_read(&fs_info->cleanup_work_sem);
1999 		btrfs_orphan_cleanup(fs_info->fs_root);
2000 		up_read(&fs_info->cleanup_work_sem);
2001 	}
2002 
2003 	return tree_root;
2004 
2005 fail_trans_kthread:
2006 	kthread_stop(fs_info->transaction_kthread);
2007 fail_cleaner:
2008 	kthread_stop(fs_info->cleaner_kthread);
2009 
2010 	/*
2011 	 * make sure we're done with the btree inode before we stop our
2012 	 * kthreads
2013 	 */
2014 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2015 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2016 
2017 fail_block_groups:
2018 	btrfs_free_block_groups(fs_info);
2019 	free_extent_buffer(csum_root->node);
2020 	free_extent_buffer(csum_root->commit_root);
2021 fail_dev_root:
2022 	free_extent_buffer(dev_root->node);
2023 	free_extent_buffer(dev_root->commit_root);
2024 fail_extent_root:
2025 	free_extent_buffer(extent_root->node);
2026 	free_extent_buffer(extent_root->commit_root);
2027 fail_tree_root:
2028 	free_extent_buffer(tree_root->node);
2029 	free_extent_buffer(tree_root->commit_root);
2030 fail_chunk_root:
2031 	free_extent_buffer(chunk_root->node);
2032 	free_extent_buffer(chunk_root->commit_root);
2033 fail_sb_buffer:
2034 	btrfs_stop_workers(&fs_info->generic_worker);
2035 	btrfs_stop_workers(&fs_info->fixup_workers);
2036 	btrfs_stop_workers(&fs_info->delalloc_workers);
2037 	btrfs_stop_workers(&fs_info->workers);
2038 	btrfs_stop_workers(&fs_info->endio_workers);
2039 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2040 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2041 	btrfs_stop_workers(&fs_info->endio_write_workers);
2042 	btrfs_stop_workers(&fs_info->submit_workers);
2043 	btrfs_stop_workers(&fs_info->enospc_workers);
2044 fail_iput:
2045 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2046 	iput(fs_info->btree_inode);
2047 
2048 	btrfs_close_devices(fs_info->fs_devices);
2049 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2050 fail_bdi:
2051 	bdi_destroy(&fs_info->bdi);
2052 fail_srcu:
2053 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2054 fail:
2055 	kfree(extent_root);
2056 	kfree(tree_root);
2057 	kfree(fs_info);
2058 	kfree(chunk_root);
2059 	kfree(dev_root);
2060 	kfree(csum_root);
2061 	return ERR_PTR(err);
2062 }
2063 
2064 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2065 {
2066 	char b[BDEVNAME_SIZE];
2067 
2068 	if (uptodate) {
2069 		set_buffer_uptodate(bh);
2070 	} else {
2071 		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
2072 			printk(KERN_WARNING "lost page write due to "
2073 					"I/O error on %s\n",
2074 				       bdevname(bh->b_bdev, b));
2075 		}
2076 		/* note, we dont' set_buffer_write_io_error because we have
2077 		 * our own ways of dealing with the IO errors
2078 		 */
2079 		clear_buffer_uptodate(bh);
2080 	}
2081 	unlock_buffer(bh);
2082 	put_bh(bh);
2083 }
2084 
2085 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2086 {
2087 	struct buffer_head *bh;
2088 	struct buffer_head *latest = NULL;
2089 	struct btrfs_super_block *super;
2090 	int i;
2091 	u64 transid = 0;
2092 	u64 bytenr;
2093 
2094 	/* we would like to check all the supers, but that would make
2095 	 * a btrfs mount succeed after a mkfs from a different FS.
2096 	 * So, we need to add a special mount option to scan for
2097 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2098 	 */
2099 	for (i = 0; i < 1; i++) {
2100 		bytenr = btrfs_sb_offset(i);
2101 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2102 			break;
2103 		bh = __bread(bdev, bytenr / 4096, 4096);
2104 		if (!bh)
2105 			continue;
2106 
2107 		super = (struct btrfs_super_block *)bh->b_data;
2108 		if (btrfs_super_bytenr(super) != bytenr ||
2109 		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2110 			    sizeof(super->magic))) {
2111 			brelse(bh);
2112 			continue;
2113 		}
2114 
2115 		if (!latest || btrfs_super_generation(super) > transid) {
2116 			brelse(latest);
2117 			latest = bh;
2118 			transid = btrfs_super_generation(super);
2119 		} else {
2120 			brelse(bh);
2121 		}
2122 	}
2123 	return latest;
2124 }
2125 
2126 /*
2127  * this should be called twice, once with wait == 0 and
2128  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2129  * we write are pinned.
2130  *
2131  * They are released when wait == 1 is done.
2132  * max_mirrors must be the same for both runs, and it indicates how
2133  * many supers on this one device should be written.
2134  *
2135  * max_mirrors == 0 means to write them all.
2136  */
2137 static int write_dev_supers(struct btrfs_device *device,
2138 			    struct btrfs_super_block *sb,
2139 			    int do_barriers, int wait, int max_mirrors)
2140 {
2141 	struct buffer_head *bh;
2142 	int i;
2143 	int ret;
2144 	int errors = 0;
2145 	u32 crc;
2146 	u64 bytenr;
2147 	int last_barrier = 0;
2148 
2149 	if (max_mirrors == 0)
2150 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2151 
2152 	/* make sure only the last submit_bh does a barrier */
2153 	if (do_barriers) {
2154 		for (i = 0; i < max_mirrors; i++) {
2155 			bytenr = btrfs_sb_offset(i);
2156 			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2157 			    device->total_bytes)
2158 				break;
2159 			last_barrier = i;
2160 		}
2161 	}
2162 
2163 	for (i = 0; i < max_mirrors; i++) {
2164 		bytenr = btrfs_sb_offset(i);
2165 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2166 			break;
2167 
2168 		if (wait) {
2169 			bh = __find_get_block(device->bdev, bytenr / 4096,
2170 					      BTRFS_SUPER_INFO_SIZE);
2171 			BUG_ON(!bh);
2172 			wait_on_buffer(bh);
2173 			if (!buffer_uptodate(bh))
2174 				errors++;
2175 
2176 			/* drop our reference */
2177 			brelse(bh);
2178 
2179 			/* drop the reference from the wait == 0 run */
2180 			brelse(bh);
2181 			continue;
2182 		} else {
2183 			btrfs_set_super_bytenr(sb, bytenr);
2184 
2185 			crc = ~(u32)0;
2186 			crc = btrfs_csum_data(NULL, (char *)sb +
2187 					      BTRFS_CSUM_SIZE, crc,
2188 					      BTRFS_SUPER_INFO_SIZE -
2189 					      BTRFS_CSUM_SIZE);
2190 			btrfs_csum_final(crc, sb->csum);
2191 
2192 			/*
2193 			 * one reference for us, and we leave it for the
2194 			 * caller
2195 			 */
2196 			bh = __getblk(device->bdev, bytenr / 4096,
2197 				      BTRFS_SUPER_INFO_SIZE);
2198 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2199 
2200 			/* one reference for submit_bh */
2201 			get_bh(bh);
2202 
2203 			set_buffer_uptodate(bh);
2204 			lock_buffer(bh);
2205 			bh->b_end_io = btrfs_end_buffer_write_sync;
2206 		}
2207 
2208 		if (i == last_barrier && do_barriers && device->barriers) {
2209 			ret = submit_bh(WRITE_BARRIER, bh);
2210 			if (ret == -EOPNOTSUPP) {
2211 				printk("btrfs: disabling barriers on dev %s\n",
2212 				       device->name);
2213 				set_buffer_uptodate(bh);
2214 				device->barriers = 0;
2215 				/* one reference for submit_bh */
2216 				get_bh(bh);
2217 				lock_buffer(bh);
2218 				ret = submit_bh(WRITE_SYNC, bh);
2219 			}
2220 		} else {
2221 			ret = submit_bh(WRITE_SYNC, bh);
2222 		}
2223 
2224 		if (ret)
2225 			errors++;
2226 	}
2227 	return errors < i ? 0 : -1;
2228 }
2229 
2230 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2231 {
2232 	struct list_head *head;
2233 	struct btrfs_device *dev;
2234 	struct btrfs_super_block *sb;
2235 	struct btrfs_dev_item *dev_item;
2236 	int ret;
2237 	int do_barriers;
2238 	int max_errors;
2239 	int total_errors = 0;
2240 	u64 flags;
2241 
2242 	max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2243 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2244 
2245 	sb = &root->fs_info->super_for_commit;
2246 	dev_item = &sb->dev_item;
2247 
2248 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2249 	head = &root->fs_info->fs_devices->devices;
2250 	list_for_each_entry(dev, head, dev_list) {
2251 		if (!dev->bdev) {
2252 			total_errors++;
2253 			continue;
2254 		}
2255 		if (!dev->in_fs_metadata || !dev->writeable)
2256 			continue;
2257 
2258 		btrfs_set_stack_device_generation(dev_item, 0);
2259 		btrfs_set_stack_device_type(dev_item, dev->type);
2260 		btrfs_set_stack_device_id(dev_item, dev->devid);
2261 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2262 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2263 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2264 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2265 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2266 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2267 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2268 
2269 		flags = btrfs_super_flags(sb);
2270 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2271 
2272 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2273 		if (ret)
2274 			total_errors++;
2275 	}
2276 	if (total_errors > max_errors) {
2277 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2278 		       total_errors);
2279 		BUG();
2280 	}
2281 
2282 	total_errors = 0;
2283 	list_for_each_entry(dev, head, dev_list) {
2284 		if (!dev->bdev)
2285 			continue;
2286 		if (!dev->in_fs_metadata || !dev->writeable)
2287 			continue;
2288 
2289 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2290 		if (ret)
2291 			total_errors++;
2292 	}
2293 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2294 	if (total_errors > max_errors) {
2295 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2296 		       total_errors);
2297 		BUG();
2298 	}
2299 	return 0;
2300 }
2301 
2302 int write_ctree_super(struct btrfs_trans_handle *trans,
2303 		      struct btrfs_root *root, int max_mirrors)
2304 {
2305 	int ret;
2306 
2307 	ret = write_all_supers(root, max_mirrors);
2308 	return ret;
2309 }
2310 
2311 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2312 {
2313 	spin_lock(&fs_info->fs_roots_radix_lock);
2314 	radix_tree_delete(&fs_info->fs_roots_radix,
2315 			  (unsigned long)root->root_key.objectid);
2316 	spin_unlock(&fs_info->fs_roots_radix_lock);
2317 
2318 	if (btrfs_root_refs(&root->root_item) == 0)
2319 		synchronize_srcu(&fs_info->subvol_srcu);
2320 
2321 	free_fs_root(root);
2322 	return 0;
2323 }
2324 
2325 static void free_fs_root(struct btrfs_root *root)
2326 {
2327 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2328 	if (root->anon_super.s_dev) {
2329 		down_write(&root->anon_super.s_umount);
2330 		kill_anon_super(&root->anon_super);
2331 	}
2332 	free_extent_buffer(root->node);
2333 	free_extent_buffer(root->commit_root);
2334 	kfree(root->name);
2335 	kfree(root);
2336 }
2337 
2338 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2339 {
2340 	int ret;
2341 	struct btrfs_root *gang[8];
2342 	int i;
2343 
2344 	while (!list_empty(&fs_info->dead_roots)) {
2345 		gang[0] = list_entry(fs_info->dead_roots.next,
2346 				     struct btrfs_root, root_list);
2347 		list_del(&gang[0]->root_list);
2348 
2349 		if (gang[0]->in_radix) {
2350 			btrfs_free_fs_root(fs_info, gang[0]);
2351 		} else {
2352 			free_extent_buffer(gang[0]->node);
2353 			free_extent_buffer(gang[0]->commit_root);
2354 			kfree(gang[0]);
2355 		}
2356 	}
2357 
2358 	while (1) {
2359 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2360 					     (void **)gang, 0,
2361 					     ARRAY_SIZE(gang));
2362 		if (!ret)
2363 			break;
2364 		for (i = 0; i < ret; i++)
2365 			btrfs_free_fs_root(fs_info, gang[i]);
2366 	}
2367 	return 0;
2368 }
2369 
2370 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2371 {
2372 	u64 root_objectid = 0;
2373 	struct btrfs_root *gang[8];
2374 	int i;
2375 	int ret;
2376 
2377 	while (1) {
2378 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2379 					     (void **)gang, root_objectid,
2380 					     ARRAY_SIZE(gang));
2381 		if (!ret)
2382 			break;
2383 
2384 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
2385 		for (i = 0; i < ret; i++) {
2386 			root_objectid = gang[i]->root_key.objectid;
2387 			btrfs_orphan_cleanup(gang[i]);
2388 		}
2389 		root_objectid++;
2390 	}
2391 	return 0;
2392 }
2393 
2394 int btrfs_commit_super(struct btrfs_root *root)
2395 {
2396 	struct btrfs_trans_handle *trans;
2397 	int ret;
2398 
2399 	mutex_lock(&root->fs_info->cleaner_mutex);
2400 	btrfs_run_delayed_iputs(root);
2401 	btrfs_clean_old_snapshots(root);
2402 	mutex_unlock(&root->fs_info->cleaner_mutex);
2403 
2404 	/* wait until ongoing cleanup work done */
2405 	down_write(&root->fs_info->cleanup_work_sem);
2406 	up_write(&root->fs_info->cleanup_work_sem);
2407 
2408 	trans = btrfs_start_transaction(root, 1);
2409 	ret = btrfs_commit_transaction(trans, root);
2410 	BUG_ON(ret);
2411 	/* run commit again to drop the original snapshot */
2412 	trans = btrfs_start_transaction(root, 1);
2413 	btrfs_commit_transaction(trans, root);
2414 	ret = btrfs_write_and_wait_transaction(NULL, root);
2415 	BUG_ON(ret);
2416 
2417 	ret = write_ctree_super(NULL, root, 0);
2418 	return ret;
2419 }
2420 
2421 int close_ctree(struct btrfs_root *root)
2422 {
2423 	struct btrfs_fs_info *fs_info = root->fs_info;
2424 	int ret;
2425 
2426 	fs_info->closing = 1;
2427 	smp_mb();
2428 
2429 	kthread_stop(root->fs_info->transaction_kthread);
2430 	kthread_stop(root->fs_info->cleaner_kthread);
2431 
2432 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2433 		ret =  btrfs_commit_super(root);
2434 		if (ret)
2435 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2436 	}
2437 
2438 	fs_info->closing = 2;
2439 	smp_mb();
2440 
2441 	if (fs_info->delalloc_bytes) {
2442 		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2443 		       (unsigned long long)fs_info->delalloc_bytes);
2444 	}
2445 	if (fs_info->total_ref_cache_size) {
2446 		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2447 		       (unsigned long long)fs_info->total_ref_cache_size);
2448 	}
2449 
2450 	free_extent_buffer(fs_info->extent_root->node);
2451 	free_extent_buffer(fs_info->extent_root->commit_root);
2452 	free_extent_buffer(fs_info->tree_root->node);
2453 	free_extent_buffer(fs_info->tree_root->commit_root);
2454 	free_extent_buffer(root->fs_info->chunk_root->node);
2455 	free_extent_buffer(root->fs_info->chunk_root->commit_root);
2456 	free_extent_buffer(root->fs_info->dev_root->node);
2457 	free_extent_buffer(root->fs_info->dev_root->commit_root);
2458 	free_extent_buffer(root->fs_info->csum_root->node);
2459 	free_extent_buffer(root->fs_info->csum_root->commit_root);
2460 
2461 	btrfs_free_block_groups(root->fs_info);
2462 
2463 	del_fs_roots(fs_info);
2464 
2465 	iput(fs_info->btree_inode);
2466 
2467 	btrfs_stop_workers(&fs_info->generic_worker);
2468 	btrfs_stop_workers(&fs_info->fixup_workers);
2469 	btrfs_stop_workers(&fs_info->delalloc_workers);
2470 	btrfs_stop_workers(&fs_info->workers);
2471 	btrfs_stop_workers(&fs_info->endio_workers);
2472 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2473 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2474 	btrfs_stop_workers(&fs_info->endio_write_workers);
2475 	btrfs_stop_workers(&fs_info->submit_workers);
2476 	btrfs_stop_workers(&fs_info->enospc_workers);
2477 
2478 	btrfs_close_devices(fs_info->fs_devices);
2479 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2480 
2481 	bdi_destroy(&fs_info->bdi);
2482 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2483 
2484 	kfree(fs_info->extent_root);
2485 	kfree(fs_info->tree_root);
2486 	kfree(fs_info->chunk_root);
2487 	kfree(fs_info->dev_root);
2488 	kfree(fs_info->csum_root);
2489 	return 0;
2490 }
2491 
2492 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2493 {
2494 	int ret;
2495 	struct inode *btree_inode = buf->first_page->mapping->host;
2496 
2497 	ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
2498 				     NULL);
2499 	if (!ret)
2500 		return ret;
2501 
2502 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2503 				    parent_transid);
2504 	return !ret;
2505 }
2506 
2507 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2508 {
2509 	struct inode *btree_inode = buf->first_page->mapping->host;
2510 	return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2511 					  buf);
2512 }
2513 
2514 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2515 {
2516 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2517 	u64 transid = btrfs_header_generation(buf);
2518 	struct inode *btree_inode = root->fs_info->btree_inode;
2519 	int was_dirty;
2520 
2521 	btrfs_assert_tree_locked(buf);
2522 	if (transid != root->fs_info->generation) {
2523 		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2524 		       "found %llu running %llu\n",
2525 			(unsigned long long)buf->start,
2526 			(unsigned long long)transid,
2527 			(unsigned long long)root->fs_info->generation);
2528 		WARN_ON(1);
2529 	}
2530 	was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2531 					    buf);
2532 	if (!was_dirty) {
2533 		spin_lock(&root->fs_info->delalloc_lock);
2534 		root->fs_info->dirty_metadata_bytes += buf->len;
2535 		spin_unlock(&root->fs_info->delalloc_lock);
2536 	}
2537 }
2538 
2539 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2540 {
2541 	/*
2542 	 * looks as though older kernels can get into trouble with
2543 	 * this code, they end up stuck in balance_dirty_pages forever
2544 	 */
2545 	u64 num_dirty;
2546 	unsigned long thresh = 32 * 1024 * 1024;
2547 
2548 	if (current->flags & PF_MEMALLOC)
2549 		return;
2550 
2551 	num_dirty = root->fs_info->dirty_metadata_bytes;
2552 
2553 	if (num_dirty > thresh) {
2554 		balance_dirty_pages_ratelimited_nr(
2555 				   root->fs_info->btree_inode->i_mapping, 1);
2556 	}
2557 	return;
2558 }
2559 
2560 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2561 {
2562 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2563 	int ret;
2564 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2565 	if (ret == 0)
2566 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2567 	return ret;
2568 }
2569 
2570 int btree_lock_page_hook(struct page *page)
2571 {
2572 	struct inode *inode = page->mapping->host;
2573 	struct btrfs_root *root = BTRFS_I(inode)->root;
2574 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2575 	struct extent_buffer *eb;
2576 	unsigned long len;
2577 	u64 bytenr = page_offset(page);
2578 
2579 	if (page->private == EXTENT_PAGE_PRIVATE)
2580 		goto out;
2581 
2582 	len = page->private >> 2;
2583 	eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2584 	if (!eb)
2585 		goto out;
2586 
2587 	btrfs_tree_lock(eb);
2588 	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2589 
2590 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2591 		spin_lock(&root->fs_info->delalloc_lock);
2592 		if (root->fs_info->dirty_metadata_bytes >= eb->len)
2593 			root->fs_info->dirty_metadata_bytes -= eb->len;
2594 		else
2595 			WARN_ON(1);
2596 		spin_unlock(&root->fs_info->delalloc_lock);
2597 	}
2598 
2599 	btrfs_tree_unlock(eb);
2600 	free_extent_buffer(eb);
2601 out:
2602 	lock_page(page);
2603 	return 0;
2604 }
2605 
2606 static struct extent_io_ops btree_extent_io_ops = {
2607 	.write_cache_pages_lock_hook = btree_lock_page_hook,
2608 	.readpage_end_io_hook = btree_readpage_end_io_hook,
2609 	.submit_bio_hook = btree_submit_bio_hook,
2610 	/* note we're sharing with inode.c for the merge bio hook */
2611 	.merge_bio_hook = btrfs_merge_bio_hook,
2612 };
2613