1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include <linux/slab.h> 31 #include "compat.h" 32 #include "ctree.h" 33 #include "disk-io.h" 34 #include "transaction.h" 35 #include "btrfs_inode.h" 36 #include "volumes.h" 37 #include "print-tree.h" 38 #include "async-thread.h" 39 #include "locking.h" 40 #include "tree-log.h" 41 #include "free-space-cache.h" 42 43 static struct extent_io_ops btree_extent_io_ops; 44 static void end_workqueue_fn(struct btrfs_work *work); 45 static void free_fs_root(struct btrfs_root *root); 46 47 /* 48 * end_io_wq structs are used to do processing in task context when an IO is 49 * complete. This is used during reads to verify checksums, and it is used 50 * by writes to insert metadata for new file extents after IO is complete. 51 */ 52 struct end_io_wq { 53 struct bio *bio; 54 bio_end_io_t *end_io; 55 void *private; 56 struct btrfs_fs_info *info; 57 int error; 58 int metadata; 59 struct list_head list; 60 struct btrfs_work work; 61 }; 62 63 /* 64 * async submit bios are used to offload expensive checksumming 65 * onto the worker threads. They checksum file and metadata bios 66 * just before they are sent down the IO stack. 67 */ 68 struct async_submit_bio { 69 struct inode *inode; 70 struct bio *bio; 71 struct list_head list; 72 extent_submit_bio_hook_t *submit_bio_start; 73 extent_submit_bio_hook_t *submit_bio_done; 74 int rw; 75 int mirror_num; 76 unsigned long bio_flags; 77 struct btrfs_work work; 78 }; 79 80 /* These are used to set the lockdep class on the extent buffer locks. 81 * The class is set by the readpage_end_io_hook after the buffer has 82 * passed csum validation but before the pages are unlocked. 83 * 84 * The lockdep class is also set by btrfs_init_new_buffer on freshly 85 * allocated blocks. 86 * 87 * The class is based on the level in the tree block, which allows lockdep 88 * to know that lower nodes nest inside the locks of higher nodes. 89 * 90 * We also add a check to make sure the highest level of the tree is 91 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this 92 * code needs update as well. 93 */ 94 #ifdef CONFIG_DEBUG_LOCK_ALLOC 95 # if BTRFS_MAX_LEVEL != 8 96 # error 97 # endif 98 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1]; 99 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = { 100 /* leaf */ 101 "btrfs-extent-00", 102 "btrfs-extent-01", 103 "btrfs-extent-02", 104 "btrfs-extent-03", 105 "btrfs-extent-04", 106 "btrfs-extent-05", 107 "btrfs-extent-06", 108 "btrfs-extent-07", 109 /* highest possible level */ 110 "btrfs-extent-08", 111 }; 112 #endif 113 114 /* 115 * extents on the btree inode are pretty simple, there's one extent 116 * that covers the entire device 117 */ 118 static struct extent_map *btree_get_extent(struct inode *inode, 119 struct page *page, size_t page_offset, u64 start, u64 len, 120 int create) 121 { 122 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 123 struct extent_map *em; 124 int ret; 125 126 read_lock(&em_tree->lock); 127 em = lookup_extent_mapping(em_tree, start, len); 128 if (em) { 129 em->bdev = 130 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 131 read_unlock(&em_tree->lock); 132 goto out; 133 } 134 read_unlock(&em_tree->lock); 135 136 em = alloc_extent_map(GFP_NOFS); 137 if (!em) { 138 em = ERR_PTR(-ENOMEM); 139 goto out; 140 } 141 em->start = 0; 142 em->len = (u64)-1; 143 em->block_len = (u64)-1; 144 em->block_start = 0; 145 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 146 147 write_lock(&em_tree->lock); 148 ret = add_extent_mapping(em_tree, em); 149 if (ret == -EEXIST) { 150 u64 failed_start = em->start; 151 u64 failed_len = em->len; 152 153 free_extent_map(em); 154 em = lookup_extent_mapping(em_tree, start, len); 155 if (em) { 156 ret = 0; 157 } else { 158 em = lookup_extent_mapping(em_tree, failed_start, 159 failed_len); 160 ret = -EIO; 161 } 162 } else if (ret) { 163 free_extent_map(em); 164 em = NULL; 165 } 166 write_unlock(&em_tree->lock); 167 168 if (ret) 169 em = ERR_PTR(ret); 170 out: 171 return em; 172 } 173 174 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 175 { 176 return crc32c(seed, data, len); 177 } 178 179 void btrfs_csum_final(u32 crc, char *result) 180 { 181 *(__le32 *)result = ~cpu_to_le32(crc); 182 } 183 184 /* 185 * compute the csum for a btree block, and either verify it or write it 186 * into the csum field of the block. 187 */ 188 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 189 int verify) 190 { 191 u16 csum_size = 192 btrfs_super_csum_size(&root->fs_info->super_copy); 193 char *result = NULL; 194 unsigned long len; 195 unsigned long cur_len; 196 unsigned long offset = BTRFS_CSUM_SIZE; 197 char *map_token = NULL; 198 char *kaddr; 199 unsigned long map_start; 200 unsigned long map_len; 201 int err; 202 u32 crc = ~(u32)0; 203 unsigned long inline_result; 204 205 len = buf->len - offset; 206 while (len > 0) { 207 err = map_private_extent_buffer(buf, offset, 32, 208 &map_token, &kaddr, 209 &map_start, &map_len, KM_USER0); 210 if (err) 211 return 1; 212 cur_len = min(len, map_len - (offset - map_start)); 213 crc = btrfs_csum_data(root, kaddr + offset - map_start, 214 crc, cur_len); 215 len -= cur_len; 216 offset += cur_len; 217 unmap_extent_buffer(buf, map_token, KM_USER0); 218 } 219 if (csum_size > sizeof(inline_result)) { 220 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 221 if (!result) 222 return 1; 223 } else { 224 result = (char *)&inline_result; 225 } 226 227 btrfs_csum_final(crc, result); 228 229 if (verify) { 230 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 231 u32 val; 232 u32 found = 0; 233 memcpy(&found, result, csum_size); 234 235 read_extent_buffer(buf, &val, 0, csum_size); 236 if (printk_ratelimit()) { 237 printk(KERN_INFO "btrfs: %s checksum verify " 238 "failed on %llu wanted %X found %X " 239 "level %d\n", 240 root->fs_info->sb->s_id, 241 (unsigned long long)buf->start, val, found, 242 btrfs_header_level(buf)); 243 } 244 if (result != (char *)&inline_result) 245 kfree(result); 246 return 1; 247 } 248 } else { 249 write_extent_buffer(buf, result, 0, csum_size); 250 } 251 if (result != (char *)&inline_result) 252 kfree(result); 253 return 0; 254 } 255 256 /* 257 * we can't consider a given block up to date unless the transid of the 258 * block matches the transid in the parent node's pointer. This is how we 259 * detect blocks that either didn't get written at all or got written 260 * in the wrong place. 261 */ 262 static int verify_parent_transid(struct extent_io_tree *io_tree, 263 struct extent_buffer *eb, u64 parent_transid) 264 { 265 struct extent_state *cached_state = NULL; 266 int ret; 267 268 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 269 return 0; 270 271 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 272 0, &cached_state, GFP_NOFS); 273 if (extent_buffer_uptodate(io_tree, eb, cached_state) && 274 btrfs_header_generation(eb) == parent_transid) { 275 ret = 0; 276 goto out; 277 } 278 if (printk_ratelimit()) { 279 printk("parent transid verify failed on %llu wanted %llu " 280 "found %llu\n", 281 (unsigned long long)eb->start, 282 (unsigned long long)parent_transid, 283 (unsigned long long)btrfs_header_generation(eb)); 284 } 285 ret = 1; 286 clear_extent_buffer_uptodate(io_tree, eb, &cached_state); 287 out: 288 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 289 &cached_state, GFP_NOFS); 290 return ret; 291 } 292 293 /* 294 * helper to read a given tree block, doing retries as required when 295 * the checksums don't match and we have alternate mirrors to try. 296 */ 297 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 298 struct extent_buffer *eb, 299 u64 start, u64 parent_transid) 300 { 301 struct extent_io_tree *io_tree; 302 int ret; 303 int num_copies = 0; 304 int mirror_num = 0; 305 306 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 307 while (1) { 308 ret = read_extent_buffer_pages(io_tree, eb, start, 1, 309 btree_get_extent, mirror_num); 310 if (!ret && 311 !verify_parent_transid(io_tree, eb, parent_transid)) 312 return ret; 313 314 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 315 eb->start, eb->len); 316 if (num_copies == 1) 317 return ret; 318 319 mirror_num++; 320 if (mirror_num > num_copies) 321 return ret; 322 } 323 return -EIO; 324 } 325 326 /* 327 * checksum a dirty tree block before IO. This has extra checks to make sure 328 * we only fill in the checksum field in the first page of a multi-page block 329 */ 330 331 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 332 { 333 struct extent_io_tree *tree; 334 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 335 u64 found_start; 336 int found_level; 337 unsigned long len; 338 struct extent_buffer *eb; 339 int ret; 340 341 tree = &BTRFS_I(page->mapping->host)->io_tree; 342 343 if (page->private == EXTENT_PAGE_PRIVATE) 344 goto out; 345 if (!page->private) 346 goto out; 347 len = page->private >> 2; 348 WARN_ON(len == 0); 349 350 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 351 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE, 352 btrfs_header_generation(eb)); 353 BUG_ON(ret); 354 found_start = btrfs_header_bytenr(eb); 355 if (found_start != start) { 356 WARN_ON(1); 357 goto err; 358 } 359 if (eb->first_page != page) { 360 WARN_ON(1); 361 goto err; 362 } 363 if (!PageUptodate(page)) { 364 WARN_ON(1); 365 goto err; 366 } 367 found_level = btrfs_header_level(eb); 368 369 csum_tree_block(root, eb, 0); 370 err: 371 free_extent_buffer(eb); 372 out: 373 return 0; 374 } 375 376 static int check_tree_block_fsid(struct btrfs_root *root, 377 struct extent_buffer *eb) 378 { 379 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 380 u8 fsid[BTRFS_UUID_SIZE]; 381 int ret = 1; 382 383 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 384 BTRFS_FSID_SIZE); 385 while (fs_devices) { 386 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 387 ret = 0; 388 break; 389 } 390 fs_devices = fs_devices->seed; 391 } 392 return ret; 393 } 394 395 #ifdef CONFIG_DEBUG_LOCK_ALLOC 396 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level) 397 { 398 lockdep_set_class_and_name(&eb->lock, 399 &btrfs_eb_class[level], 400 btrfs_eb_name[level]); 401 } 402 #endif 403 404 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 405 struct extent_state *state) 406 { 407 struct extent_io_tree *tree; 408 u64 found_start; 409 int found_level; 410 unsigned long len; 411 struct extent_buffer *eb; 412 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 413 int ret = 0; 414 415 tree = &BTRFS_I(page->mapping->host)->io_tree; 416 if (page->private == EXTENT_PAGE_PRIVATE) 417 goto out; 418 if (!page->private) 419 goto out; 420 421 len = page->private >> 2; 422 WARN_ON(len == 0); 423 424 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 425 426 found_start = btrfs_header_bytenr(eb); 427 if (found_start != start) { 428 if (printk_ratelimit()) { 429 printk(KERN_INFO "btrfs bad tree block start " 430 "%llu %llu\n", 431 (unsigned long long)found_start, 432 (unsigned long long)eb->start); 433 } 434 ret = -EIO; 435 goto err; 436 } 437 if (eb->first_page != page) { 438 printk(KERN_INFO "btrfs bad first page %lu %lu\n", 439 eb->first_page->index, page->index); 440 WARN_ON(1); 441 ret = -EIO; 442 goto err; 443 } 444 if (check_tree_block_fsid(root, eb)) { 445 if (printk_ratelimit()) { 446 printk(KERN_INFO "btrfs bad fsid on block %llu\n", 447 (unsigned long long)eb->start); 448 } 449 ret = -EIO; 450 goto err; 451 } 452 found_level = btrfs_header_level(eb); 453 454 btrfs_set_buffer_lockdep_class(eb, found_level); 455 456 ret = csum_tree_block(root, eb, 1); 457 if (ret) 458 ret = -EIO; 459 460 end = min_t(u64, eb->len, PAGE_CACHE_SIZE); 461 end = eb->start + end - 1; 462 err: 463 free_extent_buffer(eb); 464 out: 465 return ret; 466 } 467 468 static void end_workqueue_bio(struct bio *bio, int err) 469 { 470 struct end_io_wq *end_io_wq = bio->bi_private; 471 struct btrfs_fs_info *fs_info; 472 473 fs_info = end_io_wq->info; 474 end_io_wq->error = err; 475 end_io_wq->work.func = end_workqueue_fn; 476 end_io_wq->work.flags = 0; 477 478 if (bio->bi_rw & (1 << BIO_RW)) { 479 if (end_io_wq->metadata) 480 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 481 &end_io_wq->work); 482 else 483 btrfs_queue_worker(&fs_info->endio_write_workers, 484 &end_io_wq->work); 485 } else { 486 if (end_io_wq->metadata) 487 btrfs_queue_worker(&fs_info->endio_meta_workers, 488 &end_io_wq->work); 489 else 490 btrfs_queue_worker(&fs_info->endio_workers, 491 &end_io_wq->work); 492 } 493 } 494 495 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 496 int metadata) 497 { 498 struct end_io_wq *end_io_wq; 499 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 500 if (!end_io_wq) 501 return -ENOMEM; 502 503 end_io_wq->private = bio->bi_private; 504 end_io_wq->end_io = bio->bi_end_io; 505 end_io_wq->info = info; 506 end_io_wq->error = 0; 507 end_io_wq->bio = bio; 508 end_io_wq->metadata = metadata; 509 510 bio->bi_private = end_io_wq; 511 bio->bi_end_io = end_workqueue_bio; 512 return 0; 513 } 514 515 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 516 { 517 unsigned long limit = min_t(unsigned long, 518 info->workers.max_workers, 519 info->fs_devices->open_devices); 520 return 256 * limit; 521 } 522 523 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone) 524 { 525 return atomic_read(&info->nr_async_bios) > 526 btrfs_async_submit_limit(info); 527 } 528 529 static void run_one_async_start(struct btrfs_work *work) 530 { 531 struct btrfs_fs_info *fs_info; 532 struct async_submit_bio *async; 533 534 async = container_of(work, struct async_submit_bio, work); 535 fs_info = BTRFS_I(async->inode)->root->fs_info; 536 async->submit_bio_start(async->inode, async->rw, async->bio, 537 async->mirror_num, async->bio_flags); 538 } 539 540 static void run_one_async_done(struct btrfs_work *work) 541 { 542 struct btrfs_fs_info *fs_info; 543 struct async_submit_bio *async; 544 int limit; 545 546 async = container_of(work, struct async_submit_bio, work); 547 fs_info = BTRFS_I(async->inode)->root->fs_info; 548 549 limit = btrfs_async_submit_limit(fs_info); 550 limit = limit * 2 / 3; 551 552 atomic_dec(&fs_info->nr_async_submits); 553 554 if (atomic_read(&fs_info->nr_async_submits) < limit && 555 waitqueue_active(&fs_info->async_submit_wait)) 556 wake_up(&fs_info->async_submit_wait); 557 558 async->submit_bio_done(async->inode, async->rw, async->bio, 559 async->mirror_num, async->bio_flags); 560 } 561 562 static void run_one_async_free(struct btrfs_work *work) 563 { 564 struct async_submit_bio *async; 565 566 async = container_of(work, struct async_submit_bio, work); 567 kfree(async); 568 } 569 570 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 571 int rw, struct bio *bio, int mirror_num, 572 unsigned long bio_flags, 573 extent_submit_bio_hook_t *submit_bio_start, 574 extent_submit_bio_hook_t *submit_bio_done) 575 { 576 struct async_submit_bio *async; 577 578 async = kmalloc(sizeof(*async), GFP_NOFS); 579 if (!async) 580 return -ENOMEM; 581 582 async->inode = inode; 583 async->rw = rw; 584 async->bio = bio; 585 async->mirror_num = mirror_num; 586 async->submit_bio_start = submit_bio_start; 587 async->submit_bio_done = submit_bio_done; 588 589 async->work.func = run_one_async_start; 590 async->work.ordered_func = run_one_async_done; 591 async->work.ordered_free = run_one_async_free; 592 593 async->work.flags = 0; 594 async->bio_flags = bio_flags; 595 596 atomic_inc(&fs_info->nr_async_submits); 597 598 if (rw & (1 << BIO_RW_SYNCIO)) 599 btrfs_set_work_high_prio(&async->work); 600 601 btrfs_queue_worker(&fs_info->workers, &async->work); 602 603 while (atomic_read(&fs_info->async_submit_draining) && 604 atomic_read(&fs_info->nr_async_submits)) { 605 wait_event(fs_info->async_submit_wait, 606 (atomic_read(&fs_info->nr_async_submits) == 0)); 607 } 608 609 return 0; 610 } 611 612 static int btree_csum_one_bio(struct bio *bio) 613 { 614 struct bio_vec *bvec = bio->bi_io_vec; 615 int bio_index = 0; 616 struct btrfs_root *root; 617 618 WARN_ON(bio->bi_vcnt <= 0); 619 while (bio_index < bio->bi_vcnt) { 620 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 621 csum_dirty_buffer(root, bvec->bv_page); 622 bio_index++; 623 bvec++; 624 } 625 return 0; 626 } 627 628 static int __btree_submit_bio_start(struct inode *inode, int rw, 629 struct bio *bio, int mirror_num, 630 unsigned long bio_flags) 631 { 632 /* 633 * when we're called for a write, we're already in the async 634 * submission context. Just jump into btrfs_map_bio 635 */ 636 btree_csum_one_bio(bio); 637 return 0; 638 } 639 640 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 641 int mirror_num, unsigned long bio_flags) 642 { 643 /* 644 * when we're called for a write, we're already in the async 645 * submission context. Just jump into btrfs_map_bio 646 */ 647 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 648 } 649 650 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 651 int mirror_num, unsigned long bio_flags) 652 { 653 int ret; 654 655 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 656 bio, 1); 657 BUG_ON(ret); 658 659 if (!(rw & (1 << BIO_RW))) { 660 /* 661 * called for a read, do the setup so that checksum validation 662 * can happen in the async kernel threads 663 */ 664 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 665 mirror_num, 0); 666 } 667 668 /* 669 * kthread helpers are used to submit writes so that checksumming 670 * can happen in parallel across all CPUs 671 */ 672 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 673 inode, rw, bio, mirror_num, 0, 674 __btree_submit_bio_start, 675 __btree_submit_bio_done); 676 } 677 678 static int btree_writepage(struct page *page, struct writeback_control *wbc) 679 { 680 struct extent_io_tree *tree; 681 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 682 struct extent_buffer *eb; 683 int was_dirty; 684 685 tree = &BTRFS_I(page->mapping->host)->io_tree; 686 if (!(current->flags & PF_MEMALLOC)) { 687 return extent_write_full_page(tree, page, 688 btree_get_extent, wbc); 689 } 690 691 redirty_page_for_writepage(wbc, page); 692 eb = btrfs_find_tree_block(root, page_offset(page), 693 PAGE_CACHE_SIZE); 694 WARN_ON(!eb); 695 696 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 697 if (!was_dirty) { 698 spin_lock(&root->fs_info->delalloc_lock); 699 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE; 700 spin_unlock(&root->fs_info->delalloc_lock); 701 } 702 free_extent_buffer(eb); 703 704 unlock_page(page); 705 return 0; 706 } 707 708 static int btree_writepages(struct address_space *mapping, 709 struct writeback_control *wbc) 710 { 711 struct extent_io_tree *tree; 712 tree = &BTRFS_I(mapping->host)->io_tree; 713 if (wbc->sync_mode == WB_SYNC_NONE) { 714 struct btrfs_root *root = BTRFS_I(mapping->host)->root; 715 u64 num_dirty; 716 unsigned long thresh = 32 * 1024 * 1024; 717 718 if (wbc->for_kupdate) 719 return 0; 720 721 /* this is a bit racy, but that's ok */ 722 num_dirty = root->fs_info->dirty_metadata_bytes; 723 if (num_dirty < thresh) 724 return 0; 725 } 726 return extent_writepages(tree, mapping, btree_get_extent, wbc); 727 } 728 729 static int btree_readpage(struct file *file, struct page *page) 730 { 731 struct extent_io_tree *tree; 732 tree = &BTRFS_I(page->mapping->host)->io_tree; 733 return extent_read_full_page(tree, page, btree_get_extent); 734 } 735 736 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 737 { 738 struct extent_io_tree *tree; 739 struct extent_map_tree *map; 740 int ret; 741 742 if (PageWriteback(page) || PageDirty(page)) 743 return 0; 744 745 tree = &BTRFS_I(page->mapping->host)->io_tree; 746 map = &BTRFS_I(page->mapping->host)->extent_tree; 747 748 ret = try_release_extent_state(map, tree, page, gfp_flags); 749 if (!ret) 750 return 0; 751 752 ret = try_release_extent_buffer(tree, page); 753 if (ret == 1) { 754 ClearPagePrivate(page); 755 set_page_private(page, 0); 756 page_cache_release(page); 757 } 758 759 return ret; 760 } 761 762 static void btree_invalidatepage(struct page *page, unsigned long offset) 763 { 764 struct extent_io_tree *tree; 765 tree = &BTRFS_I(page->mapping->host)->io_tree; 766 extent_invalidatepage(tree, page, offset); 767 btree_releasepage(page, GFP_NOFS); 768 if (PagePrivate(page)) { 769 printk(KERN_WARNING "btrfs warning page private not zero " 770 "on page %llu\n", (unsigned long long)page_offset(page)); 771 ClearPagePrivate(page); 772 set_page_private(page, 0); 773 page_cache_release(page); 774 } 775 } 776 777 static const struct address_space_operations btree_aops = { 778 .readpage = btree_readpage, 779 .writepage = btree_writepage, 780 .writepages = btree_writepages, 781 .releasepage = btree_releasepage, 782 .invalidatepage = btree_invalidatepage, 783 .sync_page = block_sync_page, 784 }; 785 786 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 787 u64 parent_transid) 788 { 789 struct extent_buffer *buf = NULL; 790 struct inode *btree_inode = root->fs_info->btree_inode; 791 int ret = 0; 792 793 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 794 if (!buf) 795 return 0; 796 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 797 buf, 0, 0, btree_get_extent, 0); 798 free_extent_buffer(buf); 799 return ret; 800 } 801 802 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 803 u64 bytenr, u32 blocksize) 804 { 805 struct inode *btree_inode = root->fs_info->btree_inode; 806 struct extent_buffer *eb; 807 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 808 bytenr, blocksize, GFP_NOFS); 809 return eb; 810 } 811 812 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 813 u64 bytenr, u32 blocksize) 814 { 815 struct inode *btree_inode = root->fs_info->btree_inode; 816 struct extent_buffer *eb; 817 818 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 819 bytenr, blocksize, NULL, GFP_NOFS); 820 return eb; 821 } 822 823 824 int btrfs_write_tree_block(struct extent_buffer *buf) 825 { 826 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start, 827 buf->start + buf->len - 1); 828 } 829 830 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 831 { 832 return filemap_fdatawait_range(buf->first_page->mapping, 833 buf->start, buf->start + buf->len - 1); 834 } 835 836 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 837 u32 blocksize, u64 parent_transid) 838 { 839 struct extent_buffer *buf = NULL; 840 struct inode *btree_inode = root->fs_info->btree_inode; 841 struct extent_io_tree *io_tree; 842 int ret; 843 844 io_tree = &BTRFS_I(btree_inode)->io_tree; 845 846 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 847 if (!buf) 848 return NULL; 849 850 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 851 852 if (ret == 0) 853 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 854 return buf; 855 856 } 857 858 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 859 struct extent_buffer *buf) 860 { 861 struct inode *btree_inode = root->fs_info->btree_inode; 862 if (btrfs_header_generation(buf) == 863 root->fs_info->running_transaction->transid) { 864 btrfs_assert_tree_locked(buf); 865 866 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 867 spin_lock(&root->fs_info->delalloc_lock); 868 if (root->fs_info->dirty_metadata_bytes >= buf->len) 869 root->fs_info->dirty_metadata_bytes -= buf->len; 870 else 871 WARN_ON(1); 872 spin_unlock(&root->fs_info->delalloc_lock); 873 } 874 875 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 876 btrfs_set_lock_blocking(buf); 877 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 878 buf); 879 } 880 return 0; 881 } 882 883 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 884 u32 stripesize, struct btrfs_root *root, 885 struct btrfs_fs_info *fs_info, 886 u64 objectid) 887 { 888 root->node = NULL; 889 root->commit_root = NULL; 890 root->sectorsize = sectorsize; 891 root->nodesize = nodesize; 892 root->leafsize = leafsize; 893 root->stripesize = stripesize; 894 root->ref_cows = 0; 895 root->track_dirty = 0; 896 root->in_radix = 0; 897 root->clean_orphans = 0; 898 899 root->fs_info = fs_info; 900 root->objectid = objectid; 901 root->last_trans = 0; 902 root->highest_objectid = 0; 903 root->name = NULL; 904 root->in_sysfs = 0; 905 root->inode_tree = RB_ROOT; 906 907 INIT_LIST_HEAD(&root->dirty_list); 908 INIT_LIST_HEAD(&root->orphan_list); 909 INIT_LIST_HEAD(&root->root_list); 910 spin_lock_init(&root->node_lock); 911 spin_lock_init(&root->list_lock); 912 spin_lock_init(&root->inode_lock); 913 mutex_init(&root->objectid_mutex); 914 mutex_init(&root->log_mutex); 915 init_waitqueue_head(&root->log_writer_wait); 916 init_waitqueue_head(&root->log_commit_wait[0]); 917 init_waitqueue_head(&root->log_commit_wait[1]); 918 atomic_set(&root->log_commit[0], 0); 919 atomic_set(&root->log_commit[1], 0); 920 atomic_set(&root->log_writers, 0); 921 root->log_batch = 0; 922 root->log_transid = 0; 923 root->last_log_commit = 0; 924 extent_io_tree_init(&root->dirty_log_pages, 925 fs_info->btree_inode->i_mapping, GFP_NOFS); 926 927 memset(&root->root_key, 0, sizeof(root->root_key)); 928 memset(&root->root_item, 0, sizeof(root->root_item)); 929 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 930 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 931 root->defrag_trans_start = fs_info->generation; 932 init_completion(&root->kobj_unregister); 933 root->defrag_running = 0; 934 root->root_key.objectid = objectid; 935 root->anon_super.s_root = NULL; 936 root->anon_super.s_dev = 0; 937 INIT_LIST_HEAD(&root->anon_super.s_list); 938 INIT_LIST_HEAD(&root->anon_super.s_instances); 939 init_rwsem(&root->anon_super.s_umount); 940 941 return 0; 942 } 943 944 static int find_and_setup_root(struct btrfs_root *tree_root, 945 struct btrfs_fs_info *fs_info, 946 u64 objectid, 947 struct btrfs_root *root) 948 { 949 int ret; 950 u32 blocksize; 951 u64 generation; 952 953 __setup_root(tree_root->nodesize, tree_root->leafsize, 954 tree_root->sectorsize, tree_root->stripesize, 955 root, fs_info, objectid); 956 ret = btrfs_find_last_root(tree_root, objectid, 957 &root->root_item, &root->root_key); 958 if (ret > 0) 959 return -ENOENT; 960 BUG_ON(ret); 961 962 generation = btrfs_root_generation(&root->root_item); 963 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 964 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 965 blocksize, generation); 966 BUG_ON(!root->node); 967 root->commit_root = btrfs_root_node(root); 968 return 0; 969 } 970 971 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 972 struct btrfs_fs_info *fs_info) 973 { 974 struct extent_buffer *eb; 975 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 976 u64 start = 0; 977 u64 end = 0; 978 int ret; 979 980 if (!log_root_tree) 981 return 0; 982 983 while (1) { 984 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages, 985 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW); 986 if (ret) 987 break; 988 989 clear_extent_bits(&log_root_tree->dirty_log_pages, start, end, 990 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS); 991 } 992 eb = fs_info->log_root_tree->node; 993 994 WARN_ON(btrfs_header_level(eb) != 0); 995 WARN_ON(btrfs_header_nritems(eb) != 0); 996 997 ret = btrfs_free_reserved_extent(fs_info->tree_root, 998 eb->start, eb->len); 999 BUG_ON(ret); 1000 1001 free_extent_buffer(eb); 1002 kfree(fs_info->log_root_tree); 1003 fs_info->log_root_tree = NULL; 1004 return 0; 1005 } 1006 1007 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1008 struct btrfs_fs_info *fs_info) 1009 { 1010 struct btrfs_root *root; 1011 struct btrfs_root *tree_root = fs_info->tree_root; 1012 struct extent_buffer *leaf; 1013 1014 root = kzalloc(sizeof(*root), GFP_NOFS); 1015 if (!root) 1016 return ERR_PTR(-ENOMEM); 1017 1018 __setup_root(tree_root->nodesize, tree_root->leafsize, 1019 tree_root->sectorsize, tree_root->stripesize, 1020 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1021 1022 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1023 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1024 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1025 /* 1026 * log trees do not get reference counted because they go away 1027 * before a real commit is actually done. They do store pointers 1028 * to file data extents, and those reference counts still get 1029 * updated (along with back refs to the log tree). 1030 */ 1031 root->ref_cows = 0; 1032 1033 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1034 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0); 1035 if (IS_ERR(leaf)) { 1036 kfree(root); 1037 return ERR_CAST(leaf); 1038 } 1039 1040 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1041 btrfs_set_header_bytenr(leaf, leaf->start); 1042 btrfs_set_header_generation(leaf, trans->transid); 1043 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1044 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1045 root->node = leaf; 1046 1047 write_extent_buffer(root->node, root->fs_info->fsid, 1048 (unsigned long)btrfs_header_fsid(root->node), 1049 BTRFS_FSID_SIZE); 1050 btrfs_mark_buffer_dirty(root->node); 1051 btrfs_tree_unlock(root->node); 1052 return root; 1053 } 1054 1055 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1056 struct btrfs_fs_info *fs_info) 1057 { 1058 struct btrfs_root *log_root; 1059 1060 log_root = alloc_log_tree(trans, fs_info); 1061 if (IS_ERR(log_root)) 1062 return PTR_ERR(log_root); 1063 WARN_ON(fs_info->log_root_tree); 1064 fs_info->log_root_tree = log_root; 1065 return 0; 1066 } 1067 1068 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1069 struct btrfs_root *root) 1070 { 1071 struct btrfs_root *log_root; 1072 struct btrfs_inode_item *inode_item; 1073 1074 log_root = alloc_log_tree(trans, root->fs_info); 1075 if (IS_ERR(log_root)) 1076 return PTR_ERR(log_root); 1077 1078 log_root->last_trans = trans->transid; 1079 log_root->root_key.offset = root->root_key.objectid; 1080 1081 inode_item = &log_root->root_item.inode; 1082 inode_item->generation = cpu_to_le64(1); 1083 inode_item->size = cpu_to_le64(3); 1084 inode_item->nlink = cpu_to_le32(1); 1085 inode_item->nbytes = cpu_to_le64(root->leafsize); 1086 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1087 1088 btrfs_set_root_node(&log_root->root_item, log_root->node); 1089 1090 WARN_ON(root->log_root); 1091 root->log_root = log_root; 1092 root->log_transid = 0; 1093 root->last_log_commit = 0; 1094 return 0; 1095 } 1096 1097 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1098 struct btrfs_key *location) 1099 { 1100 struct btrfs_root *root; 1101 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1102 struct btrfs_path *path; 1103 struct extent_buffer *l; 1104 u64 generation; 1105 u32 blocksize; 1106 int ret = 0; 1107 1108 root = kzalloc(sizeof(*root), GFP_NOFS); 1109 if (!root) 1110 return ERR_PTR(-ENOMEM); 1111 if (location->offset == (u64)-1) { 1112 ret = find_and_setup_root(tree_root, fs_info, 1113 location->objectid, root); 1114 if (ret) { 1115 kfree(root); 1116 return ERR_PTR(ret); 1117 } 1118 goto out; 1119 } 1120 1121 __setup_root(tree_root->nodesize, tree_root->leafsize, 1122 tree_root->sectorsize, tree_root->stripesize, 1123 root, fs_info, location->objectid); 1124 1125 path = btrfs_alloc_path(); 1126 BUG_ON(!path); 1127 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1128 if (ret == 0) { 1129 l = path->nodes[0]; 1130 read_extent_buffer(l, &root->root_item, 1131 btrfs_item_ptr_offset(l, path->slots[0]), 1132 sizeof(root->root_item)); 1133 memcpy(&root->root_key, location, sizeof(*location)); 1134 } 1135 btrfs_free_path(path); 1136 if (ret) { 1137 if (ret > 0) 1138 ret = -ENOENT; 1139 return ERR_PTR(ret); 1140 } 1141 1142 generation = btrfs_root_generation(&root->root_item); 1143 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1144 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1145 blocksize, generation); 1146 root->commit_root = btrfs_root_node(root); 1147 BUG_ON(!root->node); 1148 out: 1149 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) 1150 root->ref_cows = 1; 1151 1152 return root; 1153 } 1154 1155 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1156 u64 root_objectid) 1157 { 1158 struct btrfs_root *root; 1159 1160 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID) 1161 return fs_info->tree_root; 1162 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID) 1163 return fs_info->extent_root; 1164 1165 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1166 (unsigned long)root_objectid); 1167 return root; 1168 } 1169 1170 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1171 struct btrfs_key *location) 1172 { 1173 struct btrfs_root *root; 1174 int ret; 1175 1176 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1177 return fs_info->tree_root; 1178 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1179 return fs_info->extent_root; 1180 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1181 return fs_info->chunk_root; 1182 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1183 return fs_info->dev_root; 1184 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1185 return fs_info->csum_root; 1186 again: 1187 spin_lock(&fs_info->fs_roots_radix_lock); 1188 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1189 (unsigned long)location->objectid); 1190 spin_unlock(&fs_info->fs_roots_radix_lock); 1191 if (root) 1192 return root; 1193 1194 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); 1195 if (ret == 0) 1196 ret = -ENOENT; 1197 if (ret < 0) 1198 return ERR_PTR(ret); 1199 1200 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1201 if (IS_ERR(root)) 1202 return root; 1203 1204 WARN_ON(btrfs_root_refs(&root->root_item) == 0); 1205 set_anon_super(&root->anon_super, NULL); 1206 1207 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1208 if (ret) 1209 goto fail; 1210 1211 spin_lock(&fs_info->fs_roots_radix_lock); 1212 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1213 (unsigned long)root->root_key.objectid, 1214 root); 1215 if (ret == 0) { 1216 root->in_radix = 1; 1217 root->clean_orphans = 1; 1218 } 1219 spin_unlock(&fs_info->fs_roots_radix_lock); 1220 radix_tree_preload_end(); 1221 if (ret) { 1222 if (ret == -EEXIST) { 1223 free_fs_root(root); 1224 goto again; 1225 } 1226 goto fail; 1227 } 1228 1229 ret = btrfs_find_dead_roots(fs_info->tree_root, 1230 root->root_key.objectid); 1231 WARN_ON(ret); 1232 return root; 1233 fail: 1234 free_fs_root(root); 1235 return ERR_PTR(ret); 1236 } 1237 1238 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info, 1239 struct btrfs_key *location, 1240 const char *name, int namelen) 1241 { 1242 return btrfs_read_fs_root_no_name(fs_info, location); 1243 #if 0 1244 struct btrfs_root *root; 1245 int ret; 1246 1247 root = btrfs_read_fs_root_no_name(fs_info, location); 1248 if (!root) 1249 return NULL; 1250 1251 if (root->in_sysfs) 1252 return root; 1253 1254 ret = btrfs_set_root_name(root, name, namelen); 1255 if (ret) { 1256 free_extent_buffer(root->node); 1257 kfree(root); 1258 return ERR_PTR(ret); 1259 } 1260 1261 ret = btrfs_sysfs_add_root(root); 1262 if (ret) { 1263 free_extent_buffer(root->node); 1264 kfree(root->name); 1265 kfree(root); 1266 return ERR_PTR(ret); 1267 } 1268 root->in_sysfs = 1; 1269 return root; 1270 #endif 1271 } 1272 1273 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1274 { 1275 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1276 int ret = 0; 1277 struct btrfs_device *device; 1278 struct backing_dev_info *bdi; 1279 1280 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1281 if (!device->bdev) 1282 continue; 1283 bdi = blk_get_backing_dev_info(device->bdev); 1284 if (bdi && bdi_congested(bdi, bdi_bits)) { 1285 ret = 1; 1286 break; 1287 } 1288 } 1289 return ret; 1290 } 1291 1292 /* 1293 * this unplugs every device on the box, and it is only used when page 1294 * is null 1295 */ 1296 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1297 { 1298 struct btrfs_device *device; 1299 struct btrfs_fs_info *info; 1300 1301 info = (struct btrfs_fs_info *)bdi->unplug_io_data; 1302 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1303 if (!device->bdev) 1304 continue; 1305 1306 bdi = blk_get_backing_dev_info(device->bdev); 1307 if (bdi->unplug_io_fn) 1308 bdi->unplug_io_fn(bdi, page); 1309 } 1310 } 1311 1312 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1313 { 1314 struct inode *inode; 1315 struct extent_map_tree *em_tree; 1316 struct extent_map *em; 1317 struct address_space *mapping; 1318 u64 offset; 1319 1320 /* the generic O_DIRECT read code does this */ 1321 if (1 || !page) { 1322 __unplug_io_fn(bdi, page); 1323 return; 1324 } 1325 1326 /* 1327 * page->mapping may change at any time. Get a consistent copy 1328 * and use that for everything below 1329 */ 1330 smp_mb(); 1331 mapping = page->mapping; 1332 if (!mapping) 1333 return; 1334 1335 inode = mapping->host; 1336 1337 /* 1338 * don't do the expensive searching for a small number of 1339 * devices 1340 */ 1341 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) { 1342 __unplug_io_fn(bdi, page); 1343 return; 1344 } 1345 1346 offset = page_offset(page); 1347 1348 em_tree = &BTRFS_I(inode)->extent_tree; 1349 read_lock(&em_tree->lock); 1350 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 1351 read_unlock(&em_tree->lock); 1352 if (!em) { 1353 __unplug_io_fn(bdi, page); 1354 return; 1355 } 1356 1357 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1358 free_extent_map(em); 1359 __unplug_io_fn(bdi, page); 1360 return; 1361 } 1362 offset = offset - em->start; 1363 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree, 1364 em->block_start + offset, page); 1365 free_extent_map(em); 1366 } 1367 1368 /* 1369 * If this fails, caller must call bdi_destroy() to get rid of the 1370 * bdi again. 1371 */ 1372 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1373 { 1374 int err; 1375 1376 bdi->capabilities = BDI_CAP_MAP_COPY; 1377 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1378 if (err) 1379 return err; 1380 1381 bdi->ra_pages = default_backing_dev_info.ra_pages; 1382 bdi->unplug_io_fn = btrfs_unplug_io_fn; 1383 bdi->unplug_io_data = info; 1384 bdi->congested_fn = btrfs_congested_fn; 1385 bdi->congested_data = info; 1386 return 0; 1387 } 1388 1389 static int bio_ready_for_csum(struct bio *bio) 1390 { 1391 u64 length = 0; 1392 u64 buf_len = 0; 1393 u64 start = 0; 1394 struct page *page; 1395 struct extent_io_tree *io_tree = NULL; 1396 struct btrfs_fs_info *info = NULL; 1397 struct bio_vec *bvec; 1398 int i; 1399 int ret; 1400 1401 bio_for_each_segment(bvec, bio, i) { 1402 page = bvec->bv_page; 1403 if (page->private == EXTENT_PAGE_PRIVATE) { 1404 length += bvec->bv_len; 1405 continue; 1406 } 1407 if (!page->private) { 1408 length += bvec->bv_len; 1409 continue; 1410 } 1411 length = bvec->bv_len; 1412 buf_len = page->private >> 2; 1413 start = page_offset(page) + bvec->bv_offset; 1414 io_tree = &BTRFS_I(page->mapping->host)->io_tree; 1415 info = BTRFS_I(page->mapping->host)->root->fs_info; 1416 } 1417 /* are we fully contained in this bio? */ 1418 if (buf_len <= length) 1419 return 1; 1420 1421 ret = extent_range_uptodate(io_tree, start + length, 1422 start + buf_len - 1); 1423 return ret; 1424 } 1425 1426 /* 1427 * called by the kthread helper functions to finally call the bio end_io 1428 * functions. This is where read checksum verification actually happens 1429 */ 1430 static void end_workqueue_fn(struct btrfs_work *work) 1431 { 1432 struct bio *bio; 1433 struct end_io_wq *end_io_wq; 1434 struct btrfs_fs_info *fs_info; 1435 int error; 1436 1437 end_io_wq = container_of(work, struct end_io_wq, work); 1438 bio = end_io_wq->bio; 1439 fs_info = end_io_wq->info; 1440 1441 /* metadata bio reads are special because the whole tree block must 1442 * be checksummed at once. This makes sure the entire block is in 1443 * ram and up to date before trying to verify things. For 1444 * blocksize <= pagesize, it is basically a noop 1445 */ 1446 if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata && 1447 !bio_ready_for_csum(bio)) { 1448 btrfs_queue_worker(&fs_info->endio_meta_workers, 1449 &end_io_wq->work); 1450 return; 1451 } 1452 error = end_io_wq->error; 1453 bio->bi_private = end_io_wq->private; 1454 bio->bi_end_io = end_io_wq->end_io; 1455 kfree(end_io_wq); 1456 bio_endio(bio, error); 1457 } 1458 1459 static int cleaner_kthread(void *arg) 1460 { 1461 struct btrfs_root *root = arg; 1462 1463 do { 1464 smp_mb(); 1465 if (root->fs_info->closing) 1466 break; 1467 1468 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1469 1470 if (!(root->fs_info->sb->s_flags & MS_RDONLY) && 1471 mutex_trylock(&root->fs_info->cleaner_mutex)) { 1472 btrfs_run_delayed_iputs(root); 1473 btrfs_clean_old_snapshots(root); 1474 mutex_unlock(&root->fs_info->cleaner_mutex); 1475 } 1476 1477 if (freezing(current)) { 1478 refrigerator(); 1479 } else { 1480 smp_mb(); 1481 if (root->fs_info->closing) 1482 break; 1483 set_current_state(TASK_INTERRUPTIBLE); 1484 schedule(); 1485 __set_current_state(TASK_RUNNING); 1486 } 1487 } while (!kthread_should_stop()); 1488 return 0; 1489 } 1490 1491 static int transaction_kthread(void *arg) 1492 { 1493 struct btrfs_root *root = arg; 1494 struct btrfs_trans_handle *trans; 1495 struct btrfs_transaction *cur; 1496 unsigned long now; 1497 unsigned long delay; 1498 int ret; 1499 1500 do { 1501 smp_mb(); 1502 if (root->fs_info->closing) 1503 break; 1504 1505 delay = HZ * 30; 1506 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1507 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1508 1509 mutex_lock(&root->fs_info->trans_mutex); 1510 cur = root->fs_info->running_transaction; 1511 if (!cur) { 1512 mutex_unlock(&root->fs_info->trans_mutex); 1513 goto sleep; 1514 } 1515 1516 now = get_seconds(); 1517 if (now < cur->start_time || now - cur->start_time < 30) { 1518 mutex_unlock(&root->fs_info->trans_mutex); 1519 delay = HZ * 5; 1520 goto sleep; 1521 } 1522 mutex_unlock(&root->fs_info->trans_mutex); 1523 trans = btrfs_start_transaction(root, 1); 1524 ret = btrfs_commit_transaction(trans, root); 1525 1526 sleep: 1527 wake_up_process(root->fs_info->cleaner_kthread); 1528 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1529 1530 if (freezing(current)) { 1531 refrigerator(); 1532 } else { 1533 if (root->fs_info->closing) 1534 break; 1535 set_current_state(TASK_INTERRUPTIBLE); 1536 schedule_timeout(delay); 1537 __set_current_state(TASK_RUNNING); 1538 } 1539 } while (!kthread_should_stop()); 1540 return 0; 1541 } 1542 1543 struct btrfs_root *open_ctree(struct super_block *sb, 1544 struct btrfs_fs_devices *fs_devices, 1545 char *options) 1546 { 1547 u32 sectorsize; 1548 u32 nodesize; 1549 u32 leafsize; 1550 u32 blocksize; 1551 u32 stripesize; 1552 u64 generation; 1553 u64 features; 1554 struct btrfs_key location; 1555 struct buffer_head *bh; 1556 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root), 1557 GFP_NOFS); 1558 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root), 1559 GFP_NOFS); 1560 struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root), 1561 GFP_NOFS); 1562 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info), 1563 GFP_NOFS); 1564 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root), 1565 GFP_NOFS); 1566 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root), 1567 GFP_NOFS); 1568 struct btrfs_root *log_tree_root; 1569 1570 int ret; 1571 int err = -EINVAL; 1572 1573 struct btrfs_super_block *disk_super; 1574 1575 if (!extent_root || !tree_root || !fs_info || 1576 !chunk_root || !dev_root || !csum_root) { 1577 err = -ENOMEM; 1578 goto fail; 1579 } 1580 1581 ret = init_srcu_struct(&fs_info->subvol_srcu); 1582 if (ret) { 1583 err = ret; 1584 goto fail; 1585 } 1586 1587 ret = setup_bdi(fs_info, &fs_info->bdi); 1588 if (ret) { 1589 err = ret; 1590 goto fail_srcu; 1591 } 1592 1593 fs_info->btree_inode = new_inode(sb); 1594 if (!fs_info->btree_inode) { 1595 err = -ENOMEM; 1596 goto fail_bdi; 1597 } 1598 1599 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 1600 INIT_LIST_HEAD(&fs_info->trans_list); 1601 INIT_LIST_HEAD(&fs_info->dead_roots); 1602 INIT_LIST_HEAD(&fs_info->delayed_iputs); 1603 INIT_LIST_HEAD(&fs_info->hashers); 1604 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 1605 INIT_LIST_HEAD(&fs_info->ordered_operations); 1606 INIT_LIST_HEAD(&fs_info->caching_block_groups); 1607 spin_lock_init(&fs_info->delalloc_lock); 1608 spin_lock_init(&fs_info->new_trans_lock); 1609 spin_lock_init(&fs_info->ref_cache_lock); 1610 spin_lock_init(&fs_info->fs_roots_radix_lock); 1611 spin_lock_init(&fs_info->delayed_iput_lock); 1612 1613 init_completion(&fs_info->kobj_unregister); 1614 fs_info->tree_root = tree_root; 1615 fs_info->extent_root = extent_root; 1616 fs_info->csum_root = csum_root; 1617 fs_info->chunk_root = chunk_root; 1618 fs_info->dev_root = dev_root; 1619 fs_info->fs_devices = fs_devices; 1620 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 1621 INIT_LIST_HEAD(&fs_info->space_info); 1622 btrfs_mapping_init(&fs_info->mapping_tree); 1623 atomic_set(&fs_info->nr_async_submits, 0); 1624 atomic_set(&fs_info->async_delalloc_pages, 0); 1625 atomic_set(&fs_info->async_submit_draining, 0); 1626 atomic_set(&fs_info->nr_async_bios, 0); 1627 fs_info->sb = sb; 1628 fs_info->max_inline = 8192 * 1024; 1629 fs_info->metadata_ratio = 0; 1630 1631 fs_info->thread_pool_size = min_t(unsigned long, 1632 num_online_cpus() + 2, 8); 1633 1634 INIT_LIST_HEAD(&fs_info->ordered_extents); 1635 spin_lock_init(&fs_info->ordered_extent_lock); 1636 1637 sb->s_blocksize = 4096; 1638 sb->s_blocksize_bits = blksize_bits(4096); 1639 sb->s_bdi = &fs_info->bdi; 1640 1641 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 1642 fs_info->btree_inode->i_nlink = 1; 1643 /* 1644 * we set the i_size on the btree inode to the max possible int. 1645 * the real end of the address space is determined by all of 1646 * the devices in the system 1647 */ 1648 fs_info->btree_inode->i_size = OFFSET_MAX; 1649 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 1650 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 1651 1652 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 1653 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 1654 fs_info->btree_inode->i_mapping, 1655 GFP_NOFS); 1656 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree, 1657 GFP_NOFS); 1658 1659 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 1660 1661 BTRFS_I(fs_info->btree_inode)->root = tree_root; 1662 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 1663 sizeof(struct btrfs_key)); 1664 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1; 1665 insert_inode_hash(fs_info->btree_inode); 1666 1667 spin_lock_init(&fs_info->block_group_cache_lock); 1668 fs_info->block_group_cache_tree = RB_ROOT; 1669 1670 extent_io_tree_init(&fs_info->freed_extents[0], 1671 fs_info->btree_inode->i_mapping, GFP_NOFS); 1672 extent_io_tree_init(&fs_info->freed_extents[1], 1673 fs_info->btree_inode->i_mapping, GFP_NOFS); 1674 fs_info->pinned_extents = &fs_info->freed_extents[0]; 1675 fs_info->do_barriers = 1; 1676 1677 1678 mutex_init(&fs_info->trans_mutex); 1679 mutex_init(&fs_info->ordered_operations_mutex); 1680 mutex_init(&fs_info->tree_log_mutex); 1681 mutex_init(&fs_info->chunk_mutex); 1682 mutex_init(&fs_info->transaction_kthread_mutex); 1683 mutex_init(&fs_info->cleaner_mutex); 1684 mutex_init(&fs_info->volume_mutex); 1685 init_rwsem(&fs_info->extent_commit_sem); 1686 init_rwsem(&fs_info->cleanup_work_sem); 1687 init_rwsem(&fs_info->subvol_sem); 1688 1689 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 1690 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 1691 1692 init_waitqueue_head(&fs_info->transaction_throttle); 1693 init_waitqueue_head(&fs_info->transaction_wait); 1694 init_waitqueue_head(&fs_info->async_submit_wait); 1695 1696 __setup_root(4096, 4096, 4096, 4096, tree_root, 1697 fs_info, BTRFS_ROOT_TREE_OBJECTID); 1698 1699 1700 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 1701 if (!bh) 1702 goto fail_iput; 1703 1704 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy)); 1705 memcpy(&fs_info->super_for_commit, &fs_info->super_copy, 1706 sizeof(fs_info->super_for_commit)); 1707 brelse(bh); 1708 1709 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE); 1710 1711 disk_super = &fs_info->super_copy; 1712 if (!btrfs_super_root(disk_super)) 1713 goto fail_iput; 1714 1715 ret = btrfs_parse_options(tree_root, options); 1716 if (ret) { 1717 err = ret; 1718 goto fail_iput; 1719 } 1720 1721 features = btrfs_super_incompat_flags(disk_super) & 1722 ~BTRFS_FEATURE_INCOMPAT_SUPP; 1723 if (features) { 1724 printk(KERN_ERR "BTRFS: couldn't mount because of " 1725 "unsupported optional features (%Lx).\n", 1726 (unsigned long long)features); 1727 err = -EINVAL; 1728 goto fail_iput; 1729 } 1730 1731 features = btrfs_super_incompat_flags(disk_super); 1732 if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) { 1733 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 1734 btrfs_set_super_incompat_flags(disk_super, features); 1735 } 1736 1737 features = btrfs_super_compat_ro_flags(disk_super) & 1738 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 1739 if (!(sb->s_flags & MS_RDONLY) && features) { 1740 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 1741 "unsupported option features (%Lx).\n", 1742 (unsigned long long)features); 1743 err = -EINVAL; 1744 goto fail_iput; 1745 } 1746 1747 btrfs_init_workers(&fs_info->generic_worker, 1748 "genwork", 1, NULL); 1749 1750 btrfs_init_workers(&fs_info->workers, "worker", 1751 fs_info->thread_pool_size, 1752 &fs_info->generic_worker); 1753 1754 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 1755 fs_info->thread_pool_size, 1756 &fs_info->generic_worker); 1757 1758 btrfs_init_workers(&fs_info->submit_workers, "submit", 1759 min_t(u64, fs_devices->num_devices, 1760 fs_info->thread_pool_size), 1761 &fs_info->generic_worker); 1762 btrfs_init_workers(&fs_info->enospc_workers, "enospc", 1763 fs_info->thread_pool_size, 1764 &fs_info->generic_worker); 1765 1766 /* a higher idle thresh on the submit workers makes it much more 1767 * likely that bios will be send down in a sane order to the 1768 * devices 1769 */ 1770 fs_info->submit_workers.idle_thresh = 64; 1771 1772 fs_info->workers.idle_thresh = 16; 1773 fs_info->workers.ordered = 1; 1774 1775 fs_info->delalloc_workers.idle_thresh = 2; 1776 fs_info->delalloc_workers.ordered = 1; 1777 1778 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, 1779 &fs_info->generic_worker); 1780 btrfs_init_workers(&fs_info->endio_workers, "endio", 1781 fs_info->thread_pool_size, 1782 &fs_info->generic_worker); 1783 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 1784 fs_info->thread_pool_size, 1785 &fs_info->generic_worker); 1786 btrfs_init_workers(&fs_info->endio_meta_write_workers, 1787 "endio-meta-write", fs_info->thread_pool_size, 1788 &fs_info->generic_worker); 1789 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 1790 fs_info->thread_pool_size, 1791 &fs_info->generic_worker); 1792 1793 /* 1794 * endios are largely parallel and should have a very 1795 * low idle thresh 1796 */ 1797 fs_info->endio_workers.idle_thresh = 4; 1798 fs_info->endio_meta_workers.idle_thresh = 4; 1799 1800 fs_info->endio_write_workers.idle_thresh = 2; 1801 fs_info->endio_meta_write_workers.idle_thresh = 2; 1802 1803 btrfs_start_workers(&fs_info->workers, 1); 1804 btrfs_start_workers(&fs_info->generic_worker, 1); 1805 btrfs_start_workers(&fs_info->submit_workers, 1); 1806 btrfs_start_workers(&fs_info->delalloc_workers, 1); 1807 btrfs_start_workers(&fs_info->fixup_workers, 1); 1808 btrfs_start_workers(&fs_info->endio_workers, 1); 1809 btrfs_start_workers(&fs_info->endio_meta_workers, 1); 1810 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1); 1811 btrfs_start_workers(&fs_info->endio_write_workers, 1); 1812 btrfs_start_workers(&fs_info->enospc_workers, 1); 1813 1814 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 1815 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 1816 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 1817 1818 nodesize = btrfs_super_nodesize(disk_super); 1819 leafsize = btrfs_super_leafsize(disk_super); 1820 sectorsize = btrfs_super_sectorsize(disk_super); 1821 stripesize = btrfs_super_stripesize(disk_super); 1822 tree_root->nodesize = nodesize; 1823 tree_root->leafsize = leafsize; 1824 tree_root->sectorsize = sectorsize; 1825 tree_root->stripesize = stripesize; 1826 1827 sb->s_blocksize = sectorsize; 1828 sb->s_blocksize_bits = blksize_bits(sectorsize); 1829 1830 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 1831 sizeof(disk_super->magic))) { 1832 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 1833 goto fail_sb_buffer; 1834 } 1835 1836 mutex_lock(&fs_info->chunk_mutex); 1837 ret = btrfs_read_sys_array(tree_root); 1838 mutex_unlock(&fs_info->chunk_mutex); 1839 if (ret) { 1840 printk(KERN_WARNING "btrfs: failed to read the system " 1841 "array on %s\n", sb->s_id); 1842 goto fail_sb_buffer; 1843 } 1844 1845 blocksize = btrfs_level_size(tree_root, 1846 btrfs_super_chunk_root_level(disk_super)); 1847 generation = btrfs_super_chunk_root_generation(disk_super); 1848 1849 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1850 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 1851 1852 chunk_root->node = read_tree_block(chunk_root, 1853 btrfs_super_chunk_root(disk_super), 1854 blocksize, generation); 1855 BUG_ON(!chunk_root->node); 1856 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 1857 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 1858 sb->s_id); 1859 goto fail_chunk_root; 1860 } 1861 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 1862 chunk_root->commit_root = btrfs_root_node(chunk_root); 1863 1864 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 1865 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 1866 BTRFS_UUID_SIZE); 1867 1868 mutex_lock(&fs_info->chunk_mutex); 1869 ret = btrfs_read_chunk_tree(chunk_root); 1870 mutex_unlock(&fs_info->chunk_mutex); 1871 if (ret) { 1872 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 1873 sb->s_id); 1874 goto fail_chunk_root; 1875 } 1876 1877 btrfs_close_extra_devices(fs_devices); 1878 1879 blocksize = btrfs_level_size(tree_root, 1880 btrfs_super_root_level(disk_super)); 1881 generation = btrfs_super_generation(disk_super); 1882 1883 tree_root->node = read_tree_block(tree_root, 1884 btrfs_super_root(disk_super), 1885 blocksize, generation); 1886 if (!tree_root->node) 1887 goto fail_chunk_root; 1888 if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 1889 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 1890 sb->s_id); 1891 goto fail_tree_root; 1892 } 1893 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 1894 tree_root->commit_root = btrfs_root_node(tree_root); 1895 1896 ret = find_and_setup_root(tree_root, fs_info, 1897 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 1898 if (ret) 1899 goto fail_tree_root; 1900 extent_root->track_dirty = 1; 1901 1902 ret = find_and_setup_root(tree_root, fs_info, 1903 BTRFS_DEV_TREE_OBJECTID, dev_root); 1904 if (ret) 1905 goto fail_extent_root; 1906 dev_root->track_dirty = 1; 1907 1908 ret = find_and_setup_root(tree_root, fs_info, 1909 BTRFS_CSUM_TREE_OBJECTID, csum_root); 1910 if (ret) 1911 goto fail_dev_root; 1912 1913 csum_root->track_dirty = 1; 1914 1915 ret = btrfs_read_block_groups(extent_root); 1916 if (ret) { 1917 printk(KERN_ERR "Failed to read block groups: %d\n", ret); 1918 goto fail_block_groups; 1919 } 1920 1921 fs_info->generation = generation; 1922 fs_info->last_trans_committed = generation; 1923 fs_info->data_alloc_profile = (u64)-1; 1924 fs_info->metadata_alloc_profile = (u64)-1; 1925 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile; 1926 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 1927 "btrfs-cleaner"); 1928 if (IS_ERR(fs_info->cleaner_kthread)) 1929 goto fail_block_groups; 1930 1931 fs_info->transaction_kthread = kthread_run(transaction_kthread, 1932 tree_root, 1933 "btrfs-transaction"); 1934 if (IS_ERR(fs_info->transaction_kthread)) 1935 goto fail_cleaner; 1936 1937 if (!btrfs_test_opt(tree_root, SSD) && 1938 !btrfs_test_opt(tree_root, NOSSD) && 1939 !fs_info->fs_devices->rotating) { 1940 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 1941 "mode\n"); 1942 btrfs_set_opt(fs_info->mount_opt, SSD); 1943 } 1944 1945 if (btrfs_super_log_root(disk_super) != 0) { 1946 u64 bytenr = btrfs_super_log_root(disk_super); 1947 1948 if (fs_devices->rw_devices == 0) { 1949 printk(KERN_WARNING "Btrfs log replay required " 1950 "on RO media\n"); 1951 err = -EIO; 1952 goto fail_trans_kthread; 1953 } 1954 blocksize = 1955 btrfs_level_size(tree_root, 1956 btrfs_super_log_root_level(disk_super)); 1957 1958 log_tree_root = kzalloc(sizeof(struct btrfs_root), 1959 GFP_NOFS); 1960 1961 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1962 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1963 1964 log_tree_root->node = read_tree_block(tree_root, bytenr, 1965 blocksize, 1966 generation + 1); 1967 ret = btrfs_recover_log_trees(log_tree_root); 1968 BUG_ON(ret); 1969 1970 if (sb->s_flags & MS_RDONLY) { 1971 ret = btrfs_commit_super(tree_root); 1972 BUG_ON(ret); 1973 } 1974 } 1975 1976 ret = btrfs_find_orphan_roots(tree_root); 1977 BUG_ON(ret); 1978 1979 if (!(sb->s_flags & MS_RDONLY)) { 1980 ret = btrfs_recover_relocation(tree_root); 1981 if (ret < 0) { 1982 printk(KERN_WARNING 1983 "btrfs: failed to recover relocation\n"); 1984 err = -EINVAL; 1985 goto fail_trans_kthread; 1986 } 1987 } 1988 1989 location.objectid = BTRFS_FS_TREE_OBJECTID; 1990 location.type = BTRFS_ROOT_ITEM_KEY; 1991 location.offset = (u64)-1; 1992 1993 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 1994 if (!fs_info->fs_root) 1995 goto fail_trans_kthread; 1996 1997 if (!(sb->s_flags & MS_RDONLY)) { 1998 down_read(&fs_info->cleanup_work_sem); 1999 btrfs_orphan_cleanup(fs_info->fs_root); 2000 up_read(&fs_info->cleanup_work_sem); 2001 } 2002 2003 return tree_root; 2004 2005 fail_trans_kthread: 2006 kthread_stop(fs_info->transaction_kthread); 2007 fail_cleaner: 2008 kthread_stop(fs_info->cleaner_kthread); 2009 2010 /* 2011 * make sure we're done with the btree inode before we stop our 2012 * kthreads 2013 */ 2014 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2015 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2016 2017 fail_block_groups: 2018 btrfs_free_block_groups(fs_info); 2019 free_extent_buffer(csum_root->node); 2020 free_extent_buffer(csum_root->commit_root); 2021 fail_dev_root: 2022 free_extent_buffer(dev_root->node); 2023 free_extent_buffer(dev_root->commit_root); 2024 fail_extent_root: 2025 free_extent_buffer(extent_root->node); 2026 free_extent_buffer(extent_root->commit_root); 2027 fail_tree_root: 2028 free_extent_buffer(tree_root->node); 2029 free_extent_buffer(tree_root->commit_root); 2030 fail_chunk_root: 2031 free_extent_buffer(chunk_root->node); 2032 free_extent_buffer(chunk_root->commit_root); 2033 fail_sb_buffer: 2034 btrfs_stop_workers(&fs_info->generic_worker); 2035 btrfs_stop_workers(&fs_info->fixup_workers); 2036 btrfs_stop_workers(&fs_info->delalloc_workers); 2037 btrfs_stop_workers(&fs_info->workers); 2038 btrfs_stop_workers(&fs_info->endio_workers); 2039 btrfs_stop_workers(&fs_info->endio_meta_workers); 2040 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2041 btrfs_stop_workers(&fs_info->endio_write_workers); 2042 btrfs_stop_workers(&fs_info->submit_workers); 2043 btrfs_stop_workers(&fs_info->enospc_workers); 2044 fail_iput: 2045 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2046 iput(fs_info->btree_inode); 2047 2048 btrfs_close_devices(fs_info->fs_devices); 2049 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2050 fail_bdi: 2051 bdi_destroy(&fs_info->bdi); 2052 fail_srcu: 2053 cleanup_srcu_struct(&fs_info->subvol_srcu); 2054 fail: 2055 kfree(extent_root); 2056 kfree(tree_root); 2057 kfree(fs_info); 2058 kfree(chunk_root); 2059 kfree(dev_root); 2060 kfree(csum_root); 2061 return ERR_PTR(err); 2062 } 2063 2064 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 2065 { 2066 char b[BDEVNAME_SIZE]; 2067 2068 if (uptodate) { 2069 set_buffer_uptodate(bh); 2070 } else { 2071 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { 2072 printk(KERN_WARNING "lost page write due to " 2073 "I/O error on %s\n", 2074 bdevname(bh->b_bdev, b)); 2075 } 2076 /* note, we dont' set_buffer_write_io_error because we have 2077 * our own ways of dealing with the IO errors 2078 */ 2079 clear_buffer_uptodate(bh); 2080 } 2081 unlock_buffer(bh); 2082 put_bh(bh); 2083 } 2084 2085 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 2086 { 2087 struct buffer_head *bh; 2088 struct buffer_head *latest = NULL; 2089 struct btrfs_super_block *super; 2090 int i; 2091 u64 transid = 0; 2092 u64 bytenr; 2093 2094 /* we would like to check all the supers, but that would make 2095 * a btrfs mount succeed after a mkfs from a different FS. 2096 * So, we need to add a special mount option to scan for 2097 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 2098 */ 2099 for (i = 0; i < 1; i++) { 2100 bytenr = btrfs_sb_offset(i); 2101 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 2102 break; 2103 bh = __bread(bdev, bytenr / 4096, 4096); 2104 if (!bh) 2105 continue; 2106 2107 super = (struct btrfs_super_block *)bh->b_data; 2108 if (btrfs_super_bytenr(super) != bytenr || 2109 strncmp((char *)(&super->magic), BTRFS_MAGIC, 2110 sizeof(super->magic))) { 2111 brelse(bh); 2112 continue; 2113 } 2114 2115 if (!latest || btrfs_super_generation(super) > transid) { 2116 brelse(latest); 2117 latest = bh; 2118 transid = btrfs_super_generation(super); 2119 } else { 2120 brelse(bh); 2121 } 2122 } 2123 return latest; 2124 } 2125 2126 /* 2127 * this should be called twice, once with wait == 0 and 2128 * once with wait == 1. When wait == 0 is done, all the buffer heads 2129 * we write are pinned. 2130 * 2131 * They are released when wait == 1 is done. 2132 * max_mirrors must be the same for both runs, and it indicates how 2133 * many supers on this one device should be written. 2134 * 2135 * max_mirrors == 0 means to write them all. 2136 */ 2137 static int write_dev_supers(struct btrfs_device *device, 2138 struct btrfs_super_block *sb, 2139 int do_barriers, int wait, int max_mirrors) 2140 { 2141 struct buffer_head *bh; 2142 int i; 2143 int ret; 2144 int errors = 0; 2145 u32 crc; 2146 u64 bytenr; 2147 int last_barrier = 0; 2148 2149 if (max_mirrors == 0) 2150 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2151 2152 /* make sure only the last submit_bh does a barrier */ 2153 if (do_barriers) { 2154 for (i = 0; i < max_mirrors; i++) { 2155 bytenr = btrfs_sb_offset(i); 2156 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 2157 device->total_bytes) 2158 break; 2159 last_barrier = i; 2160 } 2161 } 2162 2163 for (i = 0; i < max_mirrors; i++) { 2164 bytenr = btrfs_sb_offset(i); 2165 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2166 break; 2167 2168 if (wait) { 2169 bh = __find_get_block(device->bdev, bytenr / 4096, 2170 BTRFS_SUPER_INFO_SIZE); 2171 BUG_ON(!bh); 2172 wait_on_buffer(bh); 2173 if (!buffer_uptodate(bh)) 2174 errors++; 2175 2176 /* drop our reference */ 2177 brelse(bh); 2178 2179 /* drop the reference from the wait == 0 run */ 2180 brelse(bh); 2181 continue; 2182 } else { 2183 btrfs_set_super_bytenr(sb, bytenr); 2184 2185 crc = ~(u32)0; 2186 crc = btrfs_csum_data(NULL, (char *)sb + 2187 BTRFS_CSUM_SIZE, crc, 2188 BTRFS_SUPER_INFO_SIZE - 2189 BTRFS_CSUM_SIZE); 2190 btrfs_csum_final(crc, sb->csum); 2191 2192 /* 2193 * one reference for us, and we leave it for the 2194 * caller 2195 */ 2196 bh = __getblk(device->bdev, bytenr / 4096, 2197 BTRFS_SUPER_INFO_SIZE); 2198 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2199 2200 /* one reference for submit_bh */ 2201 get_bh(bh); 2202 2203 set_buffer_uptodate(bh); 2204 lock_buffer(bh); 2205 bh->b_end_io = btrfs_end_buffer_write_sync; 2206 } 2207 2208 if (i == last_barrier && do_barriers && device->barriers) { 2209 ret = submit_bh(WRITE_BARRIER, bh); 2210 if (ret == -EOPNOTSUPP) { 2211 printk("btrfs: disabling barriers on dev %s\n", 2212 device->name); 2213 set_buffer_uptodate(bh); 2214 device->barriers = 0; 2215 /* one reference for submit_bh */ 2216 get_bh(bh); 2217 lock_buffer(bh); 2218 ret = submit_bh(WRITE_SYNC, bh); 2219 } 2220 } else { 2221 ret = submit_bh(WRITE_SYNC, bh); 2222 } 2223 2224 if (ret) 2225 errors++; 2226 } 2227 return errors < i ? 0 : -1; 2228 } 2229 2230 int write_all_supers(struct btrfs_root *root, int max_mirrors) 2231 { 2232 struct list_head *head; 2233 struct btrfs_device *dev; 2234 struct btrfs_super_block *sb; 2235 struct btrfs_dev_item *dev_item; 2236 int ret; 2237 int do_barriers; 2238 int max_errors; 2239 int total_errors = 0; 2240 u64 flags; 2241 2242 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1; 2243 do_barriers = !btrfs_test_opt(root, NOBARRIER); 2244 2245 sb = &root->fs_info->super_for_commit; 2246 dev_item = &sb->dev_item; 2247 2248 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2249 head = &root->fs_info->fs_devices->devices; 2250 list_for_each_entry(dev, head, dev_list) { 2251 if (!dev->bdev) { 2252 total_errors++; 2253 continue; 2254 } 2255 if (!dev->in_fs_metadata || !dev->writeable) 2256 continue; 2257 2258 btrfs_set_stack_device_generation(dev_item, 0); 2259 btrfs_set_stack_device_type(dev_item, dev->type); 2260 btrfs_set_stack_device_id(dev_item, dev->devid); 2261 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 2262 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 2263 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 2264 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 2265 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 2266 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 2267 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2268 2269 flags = btrfs_super_flags(sb); 2270 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 2271 2272 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 2273 if (ret) 2274 total_errors++; 2275 } 2276 if (total_errors > max_errors) { 2277 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2278 total_errors); 2279 BUG(); 2280 } 2281 2282 total_errors = 0; 2283 list_for_each_entry(dev, head, dev_list) { 2284 if (!dev->bdev) 2285 continue; 2286 if (!dev->in_fs_metadata || !dev->writeable) 2287 continue; 2288 2289 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 2290 if (ret) 2291 total_errors++; 2292 } 2293 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2294 if (total_errors > max_errors) { 2295 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2296 total_errors); 2297 BUG(); 2298 } 2299 return 0; 2300 } 2301 2302 int write_ctree_super(struct btrfs_trans_handle *trans, 2303 struct btrfs_root *root, int max_mirrors) 2304 { 2305 int ret; 2306 2307 ret = write_all_supers(root, max_mirrors); 2308 return ret; 2309 } 2310 2311 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2312 { 2313 spin_lock(&fs_info->fs_roots_radix_lock); 2314 radix_tree_delete(&fs_info->fs_roots_radix, 2315 (unsigned long)root->root_key.objectid); 2316 spin_unlock(&fs_info->fs_roots_radix_lock); 2317 2318 if (btrfs_root_refs(&root->root_item) == 0) 2319 synchronize_srcu(&fs_info->subvol_srcu); 2320 2321 free_fs_root(root); 2322 return 0; 2323 } 2324 2325 static void free_fs_root(struct btrfs_root *root) 2326 { 2327 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2328 if (root->anon_super.s_dev) { 2329 down_write(&root->anon_super.s_umount); 2330 kill_anon_super(&root->anon_super); 2331 } 2332 free_extent_buffer(root->node); 2333 free_extent_buffer(root->commit_root); 2334 kfree(root->name); 2335 kfree(root); 2336 } 2337 2338 static int del_fs_roots(struct btrfs_fs_info *fs_info) 2339 { 2340 int ret; 2341 struct btrfs_root *gang[8]; 2342 int i; 2343 2344 while (!list_empty(&fs_info->dead_roots)) { 2345 gang[0] = list_entry(fs_info->dead_roots.next, 2346 struct btrfs_root, root_list); 2347 list_del(&gang[0]->root_list); 2348 2349 if (gang[0]->in_radix) { 2350 btrfs_free_fs_root(fs_info, gang[0]); 2351 } else { 2352 free_extent_buffer(gang[0]->node); 2353 free_extent_buffer(gang[0]->commit_root); 2354 kfree(gang[0]); 2355 } 2356 } 2357 2358 while (1) { 2359 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2360 (void **)gang, 0, 2361 ARRAY_SIZE(gang)); 2362 if (!ret) 2363 break; 2364 for (i = 0; i < ret; i++) 2365 btrfs_free_fs_root(fs_info, gang[i]); 2366 } 2367 return 0; 2368 } 2369 2370 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2371 { 2372 u64 root_objectid = 0; 2373 struct btrfs_root *gang[8]; 2374 int i; 2375 int ret; 2376 2377 while (1) { 2378 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2379 (void **)gang, root_objectid, 2380 ARRAY_SIZE(gang)); 2381 if (!ret) 2382 break; 2383 2384 root_objectid = gang[ret - 1]->root_key.objectid + 1; 2385 for (i = 0; i < ret; i++) { 2386 root_objectid = gang[i]->root_key.objectid; 2387 btrfs_orphan_cleanup(gang[i]); 2388 } 2389 root_objectid++; 2390 } 2391 return 0; 2392 } 2393 2394 int btrfs_commit_super(struct btrfs_root *root) 2395 { 2396 struct btrfs_trans_handle *trans; 2397 int ret; 2398 2399 mutex_lock(&root->fs_info->cleaner_mutex); 2400 btrfs_run_delayed_iputs(root); 2401 btrfs_clean_old_snapshots(root); 2402 mutex_unlock(&root->fs_info->cleaner_mutex); 2403 2404 /* wait until ongoing cleanup work done */ 2405 down_write(&root->fs_info->cleanup_work_sem); 2406 up_write(&root->fs_info->cleanup_work_sem); 2407 2408 trans = btrfs_start_transaction(root, 1); 2409 ret = btrfs_commit_transaction(trans, root); 2410 BUG_ON(ret); 2411 /* run commit again to drop the original snapshot */ 2412 trans = btrfs_start_transaction(root, 1); 2413 btrfs_commit_transaction(trans, root); 2414 ret = btrfs_write_and_wait_transaction(NULL, root); 2415 BUG_ON(ret); 2416 2417 ret = write_ctree_super(NULL, root, 0); 2418 return ret; 2419 } 2420 2421 int close_ctree(struct btrfs_root *root) 2422 { 2423 struct btrfs_fs_info *fs_info = root->fs_info; 2424 int ret; 2425 2426 fs_info->closing = 1; 2427 smp_mb(); 2428 2429 kthread_stop(root->fs_info->transaction_kthread); 2430 kthread_stop(root->fs_info->cleaner_kthread); 2431 2432 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 2433 ret = btrfs_commit_super(root); 2434 if (ret) 2435 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 2436 } 2437 2438 fs_info->closing = 2; 2439 smp_mb(); 2440 2441 if (fs_info->delalloc_bytes) { 2442 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 2443 (unsigned long long)fs_info->delalloc_bytes); 2444 } 2445 if (fs_info->total_ref_cache_size) { 2446 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", 2447 (unsigned long long)fs_info->total_ref_cache_size); 2448 } 2449 2450 free_extent_buffer(fs_info->extent_root->node); 2451 free_extent_buffer(fs_info->extent_root->commit_root); 2452 free_extent_buffer(fs_info->tree_root->node); 2453 free_extent_buffer(fs_info->tree_root->commit_root); 2454 free_extent_buffer(root->fs_info->chunk_root->node); 2455 free_extent_buffer(root->fs_info->chunk_root->commit_root); 2456 free_extent_buffer(root->fs_info->dev_root->node); 2457 free_extent_buffer(root->fs_info->dev_root->commit_root); 2458 free_extent_buffer(root->fs_info->csum_root->node); 2459 free_extent_buffer(root->fs_info->csum_root->commit_root); 2460 2461 btrfs_free_block_groups(root->fs_info); 2462 2463 del_fs_roots(fs_info); 2464 2465 iput(fs_info->btree_inode); 2466 2467 btrfs_stop_workers(&fs_info->generic_worker); 2468 btrfs_stop_workers(&fs_info->fixup_workers); 2469 btrfs_stop_workers(&fs_info->delalloc_workers); 2470 btrfs_stop_workers(&fs_info->workers); 2471 btrfs_stop_workers(&fs_info->endio_workers); 2472 btrfs_stop_workers(&fs_info->endio_meta_workers); 2473 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2474 btrfs_stop_workers(&fs_info->endio_write_workers); 2475 btrfs_stop_workers(&fs_info->submit_workers); 2476 btrfs_stop_workers(&fs_info->enospc_workers); 2477 2478 btrfs_close_devices(fs_info->fs_devices); 2479 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2480 2481 bdi_destroy(&fs_info->bdi); 2482 cleanup_srcu_struct(&fs_info->subvol_srcu); 2483 2484 kfree(fs_info->extent_root); 2485 kfree(fs_info->tree_root); 2486 kfree(fs_info->chunk_root); 2487 kfree(fs_info->dev_root); 2488 kfree(fs_info->csum_root); 2489 return 0; 2490 } 2491 2492 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) 2493 { 2494 int ret; 2495 struct inode *btree_inode = buf->first_page->mapping->host; 2496 2497 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf, 2498 NULL); 2499 if (!ret) 2500 return ret; 2501 2502 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 2503 parent_transid); 2504 return !ret; 2505 } 2506 2507 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 2508 { 2509 struct inode *btree_inode = buf->first_page->mapping->host; 2510 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, 2511 buf); 2512 } 2513 2514 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 2515 { 2516 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2517 u64 transid = btrfs_header_generation(buf); 2518 struct inode *btree_inode = root->fs_info->btree_inode; 2519 int was_dirty; 2520 2521 btrfs_assert_tree_locked(buf); 2522 if (transid != root->fs_info->generation) { 2523 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 2524 "found %llu running %llu\n", 2525 (unsigned long long)buf->start, 2526 (unsigned long long)transid, 2527 (unsigned long long)root->fs_info->generation); 2528 WARN_ON(1); 2529 } 2530 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 2531 buf); 2532 if (!was_dirty) { 2533 spin_lock(&root->fs_info->delalloc_lock); 2534 root->fs_info->dirty_metadata_bytes += buf->len; 2535 spin_unlock(&root->fs_info->delalloc_lock); 2536 } 2537 } 2538 2539 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 2540 { 2541 /* 2542 * looks as though older kernels can get into trouble with 2543 * this code, they end up stuck in balance_dirty_pages forever 2544 */ 2545 u64 num_dirty; 2546 unsigned long thresh = 32 * 1024 * 1024; 2547 2548 if (current->flags & PF_MEMALLOC) 2549 return; 2550 2551 num_dirty = root->fs_info->dirty_metadata_bytes; 2552 2553 if (num_dirty > thresh) { 2554 balance_dirty_pages_ratelimited_nr( 2555 root->fs_info->btree_inode->i_mapping, 1); 2556 } 2557 return; 2558 } 2559 2560 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 2561 { 2562 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2563 int ret; 2564 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 2565 if (ret == 0) 2566 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 2567 return ret; 2568 } 2569 2570 int btree_lock_page_hook(struct page *page) 2571 { 2572 struct inode *inode = page->mapping->host; 2573 struct btrfs_root *root = BTRFS_I(inode)->root; 2574 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2575 struct extent_buffer *eb; 2576 unsigned long len; 2577 u64 bytenr = page_offset(page); 2578 2579 if (page->private == EXTENT_PAGE_PRIVATE) 2580 goto out; 2581 2582 len = page->private >> 2; 2583 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS); 2584 if (!eb) 2585 goto out; 2586 2587 btrfs_tree_lock(eb); 2588 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 2589 2590 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 2591 spin_lock(&root->fs_info->delalloc_lock); 2592 if (root->fs_info->dirty_metadata_bytes >= eb->len) 2593 root->fs_info->dirty_metadata_bytes -= eb->len; 2594 else 2595 WARN_ON(1); 2596 spin_unlock(&root->fs_info->delalloc_lock); 2597 } 2598 2599 btrfs_tree_unlock(eb); 2600 free_extent_buffer(eb); 2601 out: 2602 lock_page(page); 2603 return 0; 2604 } 2605 2606 static struct extent_io_ops btree_extent_io_ops = { 2607 .write_cache_pages_lock_hook = btree_lock_page_hook, 2608 .readpage_end_io_hook = btree_readpage_end_io_hook, 2609 .submit_bio_hook = btree_submit_bio_hook, 2610 /* note we're sharing with inode.c for the merge bio hook */ 2611 .merge_bio_hook = btrfs_merge_bio_hook, 2612 }; 2613