1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include "compat.h" 30 #include "crc32c.h" 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "btrfs_inode.h" 35 #include "volumes.h" 36 #include "print-tree.h" 37 #include "async-thread.h" 38 #include "locking.h" 39 #include "ref-cache.h" 40 #include "tree-log.h" 41 42 static struct extent_io_ops btree_extent_io_ops; 43 static void end_workqueue_fn(struct btrfs_work *work); 44 45 /* 46 * end_io_wq structs are used to do processing in task context when an IO is 47 * complete. This is used during reads to verify checksums, and it is used 48 * by writes to insert metadata for new file extents after IO is complete. 49 */ 50 struct end_io_wq { 51 struct bio *bio; 52 bio_end_io_t *end_io; 53 void *private; 54 struct btrfs_fs_info *info; 55 int error; 56 int metadata; 57 struct list_head list; 58 struct btrfs_work work; 59 }; 60 61 /* 62 * async submit bios are used to offload expensive checksumming 63 * onto the worker threads. They checksum file and metadata bios 64 * just before they are sent down the IO stack. 65 */ 66 struct async_submit_bio { 67 struct inode *inode; 68 struct bio *bio; 69 struct list_head list; 70 extent_submit_bio_hook_t *submit_bio_start; 71 extent_submit_bio_hook_t *submit_bio_done; 72 int rw; 73 int mirror_num; 74 unsigned long bio_flags; 75 struct btrfs_work work; 76 }; 77 78 /* 79 * extents on the btree inode are pretty simple, there's one extent 80 * that covers the entire device 81 */ 82 static struct extent_map *btree_get_extent(struct inode *inode, 83 struct page *page, size_t page_offset, u64 start, u64 len, 84 int create) 85 { 86 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 87 struct extent_map *em; 88 int ret; 89 90 spin_lock(&em_tree->lock); 91 em = lookup_extent_mapping(em_tree, start, len); 92 if (em) { 93 em->bdev = 94 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 95 spin_unlock(&em_tree->lock); 96 goto out; 97 } 98 spin_unlock(&em_tree->lock); 99 100 em = alloc_extent_map(GFP_NOFS); 101 if (!em) { 102 em = ERR_PTR(-ENOMEM); 103 goto out; 104 } 105 em->start = 0; 106 em->len = (u64)-1; 107 em->block_len = (u64)-1; 108 em->block_start = 0; 109 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 110 111 spin_lock(&em_tree->lock); 112 ret = add_extent_mapping(em_tree, em); 113 if (ret == -EEXIST) { 114 u64 failed_start = em->start; 115 u64 failed_len = em->len; 116 117 free_extent_map(em); 118 em = lookup_extent_mapping(em_tree, start, len); 119 if (em) { 120 ret = 0; 121 } else { 122 em = lookup_extent_mapping(em_tree, failed_start, 123 failed_len); 124 ret = -EIO; 125 } 126 } else if (ret) { 127 free_extent_map(em); 128 em = NULL; 129 } 130 spin_unlock(&em_tree->lock); 131 132 if (ret) 133 em = ERR_PTR(ret); 134 out: 135 return em; 136 } 137 138 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 139 { 140 return btrfs_crc32c(seed, data, len); 141 } 142 143 void btrfs_csum_final(u32 crc, char *result) 144 { 145 *(__le32 *)result = ~cpu_to_le32(crc); 146 } 147 148 /* 149 * compute the csum for a btree block, and either verify it or write it 150 * into the csum field of the block. 151 */ 152 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 153 int verify) 154 { 155 u16 csum_size = 156 btrfs_super_csum_size(&root->fs_info->super_copy); 157 char *result = NULL; 158 unsigned long len; 159 unsigned long cur_len; 160 unsigned long offset = BTRFS_CSUM_SIZE; 161 char *map_token = NULL; 162 char *kaddr; 163 unsigned long map_start; 164 unsigned long map_len; 165 int err; 166 u32 crc = ~(u32)0; 167 unsigned long inline_result; 168 169 len = buf->len - offset; 170 while (len > 0) { 171 err = map_private_extent_buffer(buf, offset, 32, 172 &map_token, &kaddr, 173 &map_start, &map_len, KM_USER0); 174 if (err) 175 return 1; 176 cur_len = min(len, map_len - (offset - map_start)); 177 crc = btrfs_csum_data(root, kaddr + offset - map_start, 178 crc, cur_len); 179 len -= cur_len; 180 offset += cur_len; 181 unmap_extent_buffer(buf, map_token, KM_USER0); 182 } 183 if (csum_size > sizeof(inline_result)) { 184 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 185 if (!result) 186 return 1; 187 } else { 188 result = (char *)&inline_result; 189 } 190 191 btrfs_csum_final(crc, result); 192 193 if (verify) { 194 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 195 u32 val; 196 u32 found = 0; 197 memcpy(&found, result, csum_size); 198 199 read_extent_buffer(buf, &val, 0, csum_size); 200 printk(KERN_INFO "btrfs: %s checksum verify failed " 201 "on %llu wanted %X found %X level %d\n", 202 root->fs_info->sb->s_id, 203 buf->start, val, found, btrfs_header_level(buf)); 204 if (result != (char *)&inline_result) 205 kfree(result); 206 return 1; 207 } 208 } else { 209 write_extent_buffer(buf, result, 0, csum_size); 210 } 211 if (result != (char *)&inline_result) 212 kfree(result); 213 return 0; 214 } 215 216 /* 217 * we can't consider a given block up to date unless the transid of the 218 * block matches the transid in the parent node's pointer. This is how we 219 * detect blocks that either didn't get written at all or got written 220 * in the wrong place. 221 */ 222 static int verify_parent_transid(struct extent_io_tree *io_tree, 223 struct extent_buffer *eb, u64 parent_transid) 224 { 225 int ret; 226 227 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 228 return 0; 229 230 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS); 231 if (extent_buffer_uptodate(io_tree, eb) && 232 btrfs_header_generation(eb) == parent_transid) { 233 ret = 0; 234 goto out; 235 } 236 printk("parent transid verify failed on %llu wanted %llu found %llu\n", 237 (unsigned long long)eb->start, 238 (unsigned long long)parent_transid, 239 (unsigned long long)btrfs_header_generation(eb)); 240 ret = 1; 241 clear_extent_buffer_uptodate(io_tree, eb); 242 out: 243 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 244 GFP_NOFS); 245 return ret; 246 } 247 248 /* 249 * helper to read a given tree block, doing retries as required when 250 * the checksums don't match and we have alternate mirrors to try. 251 */ 252 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 253 struct extent_buffer *eb, 254 u64 start, u64 parent_transid) 255 { 256 struct extent_io_tree *io_tree; 257 int ret; 258 int num_copies = 0; 259 int mirror_num = 0; 260 261 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 262 while (1) { 263 ret = read_extent_buffer_pages(io_tree, eb, start, 1, 264 btree_get_extent, mirror_num); 265 if (!ret && 266 !verify_parent_transid(io_tree, eb, parent_transid)) 267 return ret; 268 269 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 270 eb->start, eb->len); 271 if (num_copies == 1) 272 return ret; 273 274 mirror_num++; 275 if (mirror_num > num_copies) 276 return ret; 277 } 278 return -EIO; 279 } 280 281 /* 282 * checksum a dirty tree block before IO. This has extra checks to make sure 283 * we only fill in the checksum field in the first page of a multi-page block 284 */ 285 286 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 287 { 288 struct extent_io_tree *tree; 289 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 290 u64 found_start; 291 int found_level; 292 unsigned long len; 293 struct extent_buffer *eb; 294 int ret; 295 296 tree = &BTRFS_I(page->mapping->host)->io_tree; 297 298 if (page->private == EXTENT_PAGE_PRIVATE) 299 goto out; 300 if (!page->private) 301 goto out; 302 len = page->private >> 2; 303 WARN_ON(len == 0); 304 305 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 306 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE, 307 btrfs_header_generation(eb)); 308 BUG_ON(ret); 309 found_start = btrfs_header_bytenr(eb); 310 if (found_start != start) { 311 WARN_ON(1); 312 goto err; 313 } 314 if (eb->first_page != page) { 315 WARN_ON(1); 316 goto err; 317 } 318 if (!PageUptodate(page)) { 319 WARN_ON(1); 320 goto err; 321 } 322 found_level = btrfs_header_level(eb); 323 324 csum_tree_block(root, eb, 0); 325 err: 326 free_extent_buffer(eb); 327 out: 328 return 0; 329 } 330 331 static int check_tree_block_fsid(struct btrfs_root *root, 332 struct extent_buffer *eb) 333 { 334 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 335 u8 fsid[BTRFS_UUID_SIZE]; 336 int ret = 1; 337 338 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 339 BTRFS_FSID_SIZE); 340 while (fs_devices) { 341 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 342 ret = 0; 343 break; 344 } 345 fs_devices = fs_devices->seed; 346 } 347 return ret; 348 } 349 350 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 351 struct extent_state *state) 352 { 353 struct extent_io_tree *tree; 354 u64 found_start; 355 int found_level; 356 unsigned long len; 357 struct extent_buffer *eb; 358 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 359 int ret = 0; 360 361 tree = &BTRFS_I(page->mapping->host)->io_tree; 362 if (page->private == EXTENT_PAGE_PRIVATE) 363 goto out; 364 if (!page->private) 365 goto out; 366 367 len = page->private >> 2; 368 WARN_ON(len == 0); 369 370 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 371 372 found_start = btrfs_header_bytenr(eb); 373 if (found_start != start) { 374 printk(KERN_INFO "btrfs bad tree block start %llu %llu\n", 375 (unsigned long long)found_start, 376 (unsigned long long)eb->start); 377 ret = -EIO; 378 goto err; 379 } 380 if (eb->first_page != page) { 381 printk(KERN_INFO "btrfs bad first page %lu %lu\n", 382 eb->first_page->index, page->index); 383 WARN_ON(1); 384 ret = -EIO; 385 goto err; 386 } 387 if (check_tree_block_fsid(root, eb)) { 388 printk(KERN_INFO "btrfs bad fsid on block %llu\n", 389 (unsigned long long)eb->start); 390 ret = -EIO; 391 goto err; 392 } 393 found_level = btrfs_header_level(eb); 394 395 ret = csum_tree_block(root, eb, 1); 396 if (ret) 397 ret = -EIO; 398 399 end = min_t(u64, eb->len, PAGE_CACHE_SIZE); 400 end = eb->start + end - 1; 401 err: 402 free_extent_buffer(eb); 403 out: 404 return ret; 405 } 406 407 static void end_workqueue_bio(struct bio *bio, int err) 408 { 409 struct end_io_wq *end_io_wq = bio->bi_private; 410 struct btrfs_fs_info *fs_info; 411 412 fs_info = end_io_wq->info; 413 end_io_wq->error = err; 414 end_io_wq->work.func = end_workqueue_fn; 415 end_io_wq->work.flags = 0; 416 417 if (bio->bi_rw & (1 << BIO_RW)) { 418 if (end_io_wq->metadata) 419 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 420 &end_io_wq->work); 421 else 422 btrfs_queue_worker(&fs_info->endio_write_workers, 423 &end_io_wq->work); 424 } else { 425 if (end_io_wq->metadata) 426 btrfs_queue_worker(&fs_info->endio_meta_workers, 427 &end_io_wq->work); 428 else 429 btrfs_queue_worker(&fs_info->endio_workers, 430 &end_io_wq->work); 431 } 432 } 433 434 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 435 int metadata) 436 { 437 struct end_io_wq *end_io_wq; 438 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 439 if (!end_io_wq) 440 return -ENOMEM; 441 442 end_io_wq->private = bio->bi_private; 443 end_io_wq->end_io = bio->bi_end_io; 444 end_io_wq->info = info; 445 end_io_wq->error = 0; 446 end_io_wq->bio = bio; 447 end_io_wq->metadata = metadata; 448 449 bio->bi_private = end_io_wq; 450 bio->bi_end_io = end_workqueue_bio; 451 return 0; 452 } 453 454 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 455 { 456 unsigned long limit = min_t(unsigned long, 457 info->workers.max_workers, 458 info->fs_devices->open_devices); 459 return 256 * limit; 460 } 461 462 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone) 463 { 464 return atomic_read(&info->nr_async_bios) > 465 btrfs_async_submit_limit(info); 466 } 467 468 static void run_one_async_start(struct btrfs_work *work) 469 { 470 struct btrfs_fs_info *fs_info; 471 struct async_submit_bio *async; 472 473 async = container_of(work, struct async_submit_bio, work); 474 fs_info = BTRFS_I(async->inode)->root->fs_info; 475 async->submit_bio_start(async->inode, async->rw, async->bio, 476 async->mirror_num, async->bio_flags); 477 } 478 479 static void run_one_async_done(struct btrfs_work *work) 480 { 481 struct btrfs_fs_info *fs_info; 482 struct async_submit_bio *async; 483 int limit; 484 485 async = container_of(work, struct async_submit_bio, work); 486 fs_info = BTRFS_I(async->inode)->root->fs_info; 487 488 limit = btrfs_async_submit_limit(fs_info); 489 limit = limit * 2 / 3; 490 491 atomic_dec(&fs_info->nr_async_submits); 492 493 if (atomic_read(&fs_info->nr_async_submits) < limit && 494 waitqueue_active(&fs_info->async_submit_wait)) 495 wake_up(&fs_info->async_submit_wait); 496 497 async->submit_bio_done(async->inode, async->rw, async->bio, 498 async->mirror_num, async->bio_flags); 499 } 500 501 static void run_one_async_free(struct btrfs_work *work) 502 { 503 struct async_submit_bio *async; 504 505 async = container_of(work, struct async_submit_bio, work); 506 kfree(async); 507 } 508 509 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 510 int rw, struct bio *bio, int mirror_num, 511 unsigned long bio_flags, 512 extent_submit_bio_hook_t *submit_bio_start, 513 extent_submit_bio_hook_t *submit_bio_done) 514 { 515 struct async_submit_bio *async; 516 517 async = kmalloc(sizeof(*async), GFP_NOFS); 518 if (!async) 519 return -ENOMEM; 520 521 async->inode = inode; 522 async->rw = rw; 523 async->bio = bio; 524 async->mirror_num = mirror_num; 525 async->submit_bio_start = submit_bio_start; 526 async->submit_bio_done = submit_bio_done; 527 528 async->work.func = run_one_async_start; 529 async->work.ordered_func = run_one_async_done; 530 async->work.ordered_free = run_one_async_free; 531 532 async->work.flags = 0; 533 async->bio_flags = bio_flags; 534 535 atomic_inc(&fs_info->nr_async_submits); 536 btrfs_queue_worker(&fs_info->workers, &async->work); 537 #if 0 538 int limit = btrfs_async_submit_limit(fs_info); 539 if (atomic_read(&fs_info->nr_async_submits) > limit) { 540 wait_event_timeout(fs_info->async_submit_wait, 541 (atomic_read(&fs_info->nr_async_submits) < limit), 542 HZ/10); 543 544 wait_event_timeout(fs_info->async_submit_wait, 545 (atomic_read(&fs_info->nr_async_bios) < limit), 546 HZ/10); 547 } 548 #endif 549 while (atomic_read(&fs_info->async_submit_draining) && 550 atomic_read(&fs_info->nr_async_submits)) { 551 wait_event(fs_info->async_submit_wait, 552 (atomic_read(&fs_info->nr_async_submits) == 0)); 553 } 554 555 return 0; 556 } 557 558 static int btree_csum_one_bio(struct bio *bio) 559 { 560 struct bio_vec *bvec = bio->bi_io_vec; 561 int bio_index = 0; 562 struct btrfs_root *root; 563 564 WARN_ON(bio->bi_vcnt <= 0); 565 while (bio_index < bio->bi_vcnt) { 566 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 567 csum_dirty_buffer(root, bvec->bv_page); 568 bio_index++; 569 bvec++; 570 } 571 return 0; 572 } 573 574 static int __btree_submit_bio_start(struct inode *inode, int rw, 575 struct bio *bio, int mirror_num, 576 unsigned long bio_flags) 577 { 578 /* 579 * when we're called for a write, we're already in the async 580 * submission context. Just jump into btrfs_map_bio 581 */ 582 btree_csum_one_bio(bio); 583 return 0; 584 } 585 586 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 587 int mirror_num, unsigned long bio_flags) 588 { 589 /* 590 * when we're called for a write, we're already in the async 591 * submission context. Just jump into btrfs_map_bio 592 */ 593 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 594 } 595 596 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 597 int mirror_num, unsigned long bio_flags) 598 { 599 int ret; 600 601 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 602 bio, 1); 603 BUG_ON(ret); 604 605 if (!(rw & (1 << BIO_RW))) { 606 /* 607 * called for a read, do the setup so that checksum validation 608 * can happen in the async kernel threads 609 */ 610 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 611 mirror_num, 0); 612 } 613 /* 614 * kthread helpers are used to submit writes so that checksumming 615 * can happen in parallel across all CPUs 616 */ 617 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 618 inode, rw, bio, mirror_num, 0, 619 __btree_submit_bio_start, 620 __btree_submit_bio_done); 621 } 622 623 static int btree_writepage(struct page *page, struct writeback_control *wbc) 624 { 625 struct extent_io_tree *tree; 626 tree = &BTRFS_I(page->mapping->host)->io_tree; 627 628 if (current->flags & PF_MEMALLOC) { 629 redirty_page_for_writepage(wbc, page); 630 unlock_page(page); 631 return 0; 632 } 633 return extent_write_full_page(tree, page, btree_get_extent, wbc); 634 } 635 636 static int btree_writepages(struct address_space *mapping, 637 struct writeback_control *wbc) 638 { 639 struct extent_io_tree *tree; 640 tree = &BTRFS_I(mapping->host)->io_tree; 641 if (wbc->sync_mode == WB_SYNC_NONE) { 642 u64 num_dirty; 643 u64 start = 0; 644 unsigned long thresh = 32 * 1024 * 1024; 645 646 if (wbc->for_kupdate) 647 return 0; 648 649 num_dirty = count_range_bits(tree, &start, (u64)-1, 650 thresh, EXTENT_DIRTY); 651 if (num_dirty < thresh) 652 return 0; 653 } 654 return extent_writepages(tree, mapping, btree_get_extent, wbc); 655 } 656 657 static int btree_readpage(struct file *file, struct page *page) 658 { 659 struct extent_io_tree *tree; 660 tree = &BTRFS_I(page->mapping->host)->io_tree; 661 return extent_read_full_page(tree, page, btree_get_extent); 662 } 663 664 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 665 { 666 struct extent_io_tree *tree; 667 struct extent_map_tree *map; 668 int ret; 669 670 if (PageWriteback(page) || PageDirty(page)) 671 return 0; 672 673 tree = &BTRFS_I(page->mapping->host)->io_tree; 674 map = &BTRFS_I(page->mapping->host)->extent_tree; 675 676 ret = try_release_extent_state(map, tree, page, gfp_flags); 677 if (!ret) 678 return 0; 679 680 ret = try_release_extent_buffer(tree, page); 681 if (ret == 1) { 682 ClearPagePrivate(page); 683 set_page_private(page, 0); 684 page_cache_release(page); 685 } 686 687 return ret; 688 } 689 690 static void btree_invalidatepage(struct page *page, unsigned long offset) 691 { 692 struct extent_io_tree *tree; 693 tree = &BTRFS_I(page->mapping->host)->io_tree; 694 extent_invalidatepage(tree, page, offset); 695 btree_releasepage(page, GFP_NOFS); 696 if (PagePrivate(page)) { 697 printk(KERN_WARNING "btrfs warning page private not zero " 698 "on page %llu\n", (unsigned long long)page_offset(page)); 699 ClearPagePrivate(page); 700 set_page_private(page, 0); 701 page_cache_release(page); 702 } 703 } 704 705 #if 0 706 static int btree_writepage(struct page *page, struct writeback_control *wbc) 707 { 708 struct buffer_head *bh; 709 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 710 struct buffer_head *head; 711 if (!page_has_buffers(page)) { 712 create_empty_buffers(page, root->fs_info->sb->s_blocksize, 713 (1 << BH_Dirty)|(1 << BH_Uptodate)); 714 } 715 head = page_buffers(page); 716 bh = head; 717 do { 718 if (buffer_dirty(bh)) 719 csum_tree_block(root, bh, 0); 720 bh = bh->b_this_page; 721 } while (bh != head); 722 return block_write_full_page(page, btree_get_block, wbc); 723 } 724 #endif 725 726 static struct address_space_operations btree_aops = { 727 .readpage = btree_readpage, 728 .writepage = btree_writepage, 729 .writepages = btree_writepages, 730 .releasepage = btree_releasepage, 731 .invalidatepage = btree_invalidatepage, 732 .sync_page = block_sync_page, 733 }; 734 735 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 736 u64 parent_transid) 737 { 738 struct extent_buffer *buf = NULL; 739 struct inode *btree_inode = root->fs_info->btree_inode; 740 int ret = 0; 741 742 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 743 if (!buf) 744 return 0; 745 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 746 buf, 0, 0, btree_get_extent, 0); 747 free_extent_buffer(buf); 748 return ret; 749 } 750 751 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 752 u64 bytenr, u32 blocksize) 753 { 754 struct inode *btree_inode = root->fs_info->btree_inode; 755 struct extent_buffer *eb; 756 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 757 bytenr, blocksize, GFP_NOFS); 758 return eb; 759 } 760 761 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 762 u64 bytenr, u32 blocksize) 763 { 764 struct inode *btree_inode = root->fs_info->btree_inode; 765 struct extent_buffer *eb; 766 767 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 768 bytenr, blocksize, NULL, GFP_NOFS); 769 return eb; 770 } 771 772 773 int btrfs_write_tree_block(struct extent_buffer *buf) 774 { 775 return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start, 776 buf->start + buf->len - 1, WB_SYNC_ALL); 777 } 778 779 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 780 { 781 return btrfs_wait_on_page_writeback_range(buf->first_page->mapping, 782 buf->start, buf->start + buf->len - 1); 783 } 784 785 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 786 u32 blocksize, u64 parent_transid) 787 { 788 struct extent_buffer *buf = NULL; 789 struct inode *btree_inode = root->fs_info->btree_inode; 790 struct extent_io_tree *io_tree; 791 int ret; 792 793 io_tree = &BTRFS_I(btree_inode)->io_tree; 794 795 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 796 if (!buf) 797 return NULL; 798 799 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 800 801 if (ret == 0) 802 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 803 else 804 WARN_ON(1); 805 return buf; 806 807 } 808 809 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 810 struct extent_buffer *buf) 811 { 812 struct inode *btree_inode = root->fs_info->btree_inode; 813 if (btrfs_header_generation(buf) == 814 root->fs_info->running_transaction->transid) { 815 WARN_ON(!btrfs_tree_locked(buf)); 816 817 /* ugh, clear_extent_buffer_dirty can be expensive */ 818 btrfs_set_lock_blocking(buf); 819 820 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 821 buf); 822 } 823 return 0; 824 } 825 826 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 827 u32 stripesize, struct btrfs_root *root, 828 struct btrfs_fs_info *fs_info, 829 u64 objectid) 830 { 831 root->node = NULL; 832 root->commit_root = NULL; 833 root->ref_tree = NULL; 834 root->sectorsize = sectorsize; 835 root->nodesize = nodesize; 836 root->leafsize = leafsize; 837 root->stripesize = stripesize; 838 root->ref_cows = 0; 839 root->track_dirty = 0; 840 841 root->fs_info = fs_info; 842 root->objectid = objectid; 843 root->last_trans = 0; 844 root->highest_inode = 0; 845 root->last_inode_alloc = 0; 846 root->name = NULL; 847 root->in_sysfs = 0; 848 849 INIT_LIST_HEAD(&root->dirty_list); 850 INIT_LIST_HEAD(&root->orphan_list); 851 INIT_LIST_HEAD(&root->dead_list); 852 spin_lock_init(&root->node_lock); 853 spin_lock_init(&root->list_lock); 854 mutex_init(&root->objectid_mutex); 855 mutex_init(&root->log_mutex); 856 init_waitqueue_head(&root->log_writer_wait); 857 init_waitqueue_head(&root->log_commit_wait[0]); 858 init_waitqueue_head(&root->log_commit_wait[1]); 859 atomic_set(&root->log_commit[0], 0); 860 atomic_set(&root->log_commit[1], 0); 861 atomic_set(&root->log_writers, 0); 862 root->log_batch = 0; 863 root->log_transid = 0; 864 extent_io_tree_init(&root->dirty_log_pages, 865 fs_info->btree_inode->i_mapping, GFP_NOFS); 866 867 btrfs_leaf_ref_tree_init(&root->ref_tree_struct); 868 root->ref_tree = &root->ref_tree_struct; 869 870 memset(&root->root_key, 0, sizeof(root->root_key)); 871 memset(&root->root_item, 0, sizeof(root->root_item)); 872 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 873 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 874 root->defrag_trans_start = fs_info->generation; 875 init_completion(&root->kobj_unregister); 876 root->defrag_running = 0; 877 root->defrag_level = 0; 878 root->root_key.objectid = objectid; 879 root->anon_super.s_root = NULL; 880 root->anon_super.s_dev = 0; 881 INIT_LIST_HEAD(&root->anon_super.s_list); 882 INIT_LIST_HEAD(&root->anon_super.s_instances); 883 init_rwsem(&root->anon_super.s_umount); 884 885 return 0; 886 } 887 888 static int find_and_setup_root(struct btrfs_root *tree_root, 889 struct btrfs_fs_info *fs_info, 890 u64 objectid, 891 struct btrfs_root *root) 892 { 893 int ret; 894 u32 blocksize; 895 u64 generation; 896 897 __setup_root(tree_root->nodesize, tree_root->leafsize, 898 tree_root->sectorsize, tree_root->stripesize, 899 root, fs_info, objectid); 900 ret = btrfs_find_last_root(tree_root, objectid, 901 &root->root_item, &root->root_key); 902 BUG_ON(ret); 903 904 generation = btrfs_root_generation(&root->root_item); 905 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 906 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 907 blocksize, generation); 908 BUG_ON(!root->node); 909 return 0; 910 } 911 912 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 913 struct btrfs_fs_info *fs_info) 914 { 915 struct extent_buffer *eb; 916 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 917 u64 start = 0; 918 u64 end = 0; 919 int ret; 920 921 if (!log_root_tree) 922 return 0; 923 924 while (1) { 925 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages, 926 0, &start, &end, EXTENT_DIRTY); 927 if (ret) 928 break; 929 930 clear_extent_dirty(&log_root_tree->dirty_log_pages, 931 start, end, GFP_NOFS); 932 } 933 eb = fs_info->log_root_tree->node; 934 935 WARN_ON(btrfs_header_level(eb) != 0); 936 WARN_ON(btrfs_header_nritems(eb) != 0); 937 938 ret = btrfs_free_reserved_extent(fs_info->tree_root, 939 eb->start, eb->len); 940 BUG_ON(ret); 941 942 free_extent_buffer(eb); 943 kfree(fs_info->log_root_tree); 944 fs_info->log_root_tree = NULL; 945 return 0; 946 } 947 948 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 949 struct btrfs_fs_info *fs_info) 950 { 951 struct btrfs_root *root; 952 struct btrfs_root *tree_root = fs_info->tree_root; 953 struct extent_buffer *leaf; 954 955 root = kzalloc(sizeof(*root), GFP_NOFS); 956 if (!root) 957 return ERR_PTR(-ENOMEM); 958 959 __setup_root(tree_root->nodesize, tree_root->leafsize, 960 tree_root->sectorsize, tree_root->stripesize, 961 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 962 963 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 964 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 965 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 966 /* 967 * log trees do not get reference counted because they go away 968 * before a real commit is actually done. They do store pointers 969 * to file data extents, and those reference counts still get 970 * updated (along with back refs to the log tree). 971 */ 972 root->ref_cows = 0; 973 974 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 975 0, BTRFS_TREE_LOG_OBJECTID, 976 trans->transid, 0, 0, 0); 977 if (IS_ERR(leaf)) { 978 kfree(root); 979 return ERR_CAST(leaf); 980 } 981 982 root->node = leaf; 983 btrfs_set_header_nritems(root->node, 0); 984 btrfs_set_header_level(root->node, 0); 985 btrfs_set_header_bytenr(root->node, root->node->start); 986 btrfs_set_header_generation(root->node, trans->transid); 987 btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID); 988 989 write_extent_buffer(root->node, root->fs_info->fsid, 990 (unsigned long)btrfs_header_fsid(root->node), 991 BTRFS_FSID_SIZE); 992 btrfs_mark_buffer_dirty(root->node); 993 btrfs_tree_unlock(root->node); 994 return root; 995 } 996 997 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 998 struct btrfs_fs_info *fs_info) 999 { 1000 struct btrfs_root *log_root; 1001 1002 log_root = alloc_log_tree(trans, fs_info); 1003 if (IS_ERR(log_root)) 1004 return PTR_ERR(log_root); 1005 WARN_ON(fs_info->log_root_tree); 1006 fs_info->log_root_tree = log_root; 1007 return 0; 1008 } 1009 1010 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1011 struct btrfs_root *root) 1012 { 1013 struct btrfs_root *log_root; 1014 struct btrfs_inode_item *inode_item; 1015 1016 log_root = alloc_log_tree(trans, root->fs_info); 1017 if (IS_ERR(log_root)) 1018 return PTR_ERR(log_root); 1019 1020 log_root->last_trans = trans->transid; 1021 log_root->root_key.offset = root->root_key.objectid; 1022 1023 inode_item = &log_root->root_item.inode; 1024 inode_item->generation = cpu_to_le64(1); 1025 inode_item->size = cpu_to_le64(3); 1026 inode_item->nlink = cpu_to_le32(1); 1027 inode_item->nbytes = cpu_to_le64(root->leafsize); 1028 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1029 1030 btrfs_set_root_bytenr(&log_root->root_item, log_root->node->start); 1031 btrfs_set_root_generation(&log_root->root_item, trans->transid); 1032 1033 WARN_ON(root->log_root); 1034 root->log_root = log_root; 1035 root->log_transid = 0; 1036 return 0; 1037 } 1038 1039 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1040 struct btrfs_key *location) 1041 { 1042 struct btrfs_root *root; 1043 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1044 struct btrfs_path *path; 1045 struct extent_buffer *l; 1046 u64 highest_inode; 1047 u64 generation; 1048 u32 blocksize; 1049 int ret = 0; 1050 1051 root = kzalloc(sizeof(*root), GFP_NOFS); 1052 if (!root) 1053 return ERR_PTR(-ENOMEM); 1054 if (location->offset == (u64)-1) { 1055 ret = find_and_setup_root(tree_root, fs_info, 1056 location->objectid, root); 1057 if (ret) { 1058 kfree(root); 1059 return ERR_PTR(ret); 1060 } 1061 goto insert; 1062 } 1063 1064 __setup_root(tree_root->nodesize, tree_root->leafsize, 1065 tree_root->sectorsize, tree_root->stripesize, 1066 root, fs_info, location->objectid); 1067 1068 path = btrfs_alloc_path(); 1069 BUG_ON(!path); 1070 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1071 if (ret != 0) { 1072 if (ret > 0) 1073 ret = -ENOENT; 1074 goto out; 1075 } 1076 l = path->nodes[0]; 1077 read_extent_buffer(l, &root->root_item, 1078 btrfs_item_ptr_offset(l, path->slots[0]), 1079 sizeof(root->root_item)); 1080 memcpy(&root->root_key, location, sizeof(*location)); 1081 ret = 0; 1082 out: 1083 btrfs_release_path(root, path); 1084 btrfs_free_path(path); 1085 if (ret) { 1086 kfree(root); 1087 return ERR_PTR(ret); 1088 } 1089 generation = btrfs_root_generation(&root->root_item); 1090 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1091 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1092 blocksize, generation); 1093 BUG_ON(!root->node); 1094 insert: 1095 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { 1096 root->ref_cows = 1; 1097 ret = btrfs_find_highest_inode(root, &highest_inode); 1098 if (ret == 0) { 1099 root->highest_inode = highest_inode; 1100 root->last_inode_alloc = highest_inode; 1101 } 1102 } 1103 return root; 1104 } 1105 1106 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1107 u64 root_objectid) 1108 { 1109 struct btrfs_root *root; 1110 1111 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID) 1112 return fs_info->tree_root; 1113 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID) 1114 return fs_info->extent_root; 1115 1116 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1117 (unsigned long)root_objectid); 1118 return root; 1119 } 1120 1121 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1122 struct btrfs_key *location) 1123 { 1124 struct btrfs_root *root; 1125 int ret; 1126 1127 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1128 return fs_info->tree_root; 1129 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1130 return fs_info->extent_root; 1131 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1132 return fs_info->chunk_root; 1133 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1134 return fs_info->dev_root; 1135 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1136 return fs_info->csum_root; 1137 1138 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1139 (unsigned long)location->objectid); 1140 if (root) 1141 return root; 1142 1143 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1144 if (IS_ERR(root)) 1145 return root; 1146 1147 set_anon_super(&root->anon_super, NULL); 1148 1149 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1150 (unsigned long)root->root_key.objectid, 1151 root); 1152 if (ret) { 1153 free_extent_buffer(root->node); 1154 kfree(root); 1155 return ERR_PTR(ret); 1156 } 1157 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 1158 ret = btrfs_find_dead_roots(fs_info->tree_root, 1159 root->root_key.objectid, root); 1160 BUG_ON(ret); 1161 btrfs_orphan_cleanup(root); 1162 } 1163 return root; 1164 } 1165 1166 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info, 1167 struct btrfs_key *location, 1168 const char *name, int namelen) 1169 { 1170 struct btrfs_root *root; 1171 int ret; 1172 1173 root = btrfs_read_fs_root_no_name(fs_info, location); 1174 if (!root) 1175 return NULL; 1176 1177 if (root->in_sysfs) 1178 return root; 1179 1180 ret = btrfs_set_root_name(root, name, namelen); 1181 if (ret) { 1182 free_extent_buffer(root->node); 1183 kfree(root); 1184 return ERR_PTR(ret); 1185 } 1186 #if 0 1187 ret = btrfs_sysfs_add_root(root); 1188 if (ret) { 1189 free_extent_buffer(root->node); 1190 kfree(root->name); 1191 kfree(root); 1192 return ERR_PTR(ret); 1193 } 1194 #endif 1195 root->in_sysfs = 1; 1196 return root; 1197 } 1198 1199 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1200 { 1201 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1202 int ret = 0; 1203 struct btrfs_device *device; 1204 struct backing_dev_info *bdi; 1205 #if 0 1206 if ((bdi_bits & (1 << BDI_write_congested)) && 1207 btrfs_congested_async(info, 0)) 1208 return 1; 1209 #endif 1210 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1211 if (!device->bdev) 1212 continue; 1213 bdi = blk_get_backing_dev_info(device->bdev); 1214 if (bdi && bdi_congested(bdi, bdi_bits)) { 1215 ret = 1; 1216 break; 1217 } 1218 } 1219 return ret; 1220 } 1221 1222 /* 1223 * this unplugs every device on the box, and it is only used when page 1224 * is null 1225 */ 1226 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1227 { 1228 struct btrfs_device *device; 1229 struct btrfs_fs_info *info; 1230 1231 info = (struct btrfs_fs_info *)bdi->unplug_io_data; 1232 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1233 if (!device->bdev) 1234 continue; 1235 1236 bdi = blk_get_backing_dev_info(device->bdev); 1237 if (bdi->unplug_io_fn) 1238 bdi->unplug_io_fn(bdi, page); 1239 } 1240 } 1241 1242 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1243 { 1244 struct inode *inode; 1245 struct extent_map_tree *em_tree; 1246 struct extent_map *em; 1247 struct address_space *mapping; 1248 u64 offset; 1249 1250 /* the generic O_DIRECT read code does this */ 1251 if (1 || !page) { 1252 __unplug_io_fn(bdi, page); 1253 return; 1254 } 1255 1256 /* 1257 * page->mapping may change at any time. Get a consistent copy 1258 * and use that for everything below 1259 */ 1260 smp_mb(); 1261 mapping = page->mapping; 1262 if (!mapping) 1263 return; 1264 1265 inode = mapping->host; 1266 1267 /* 1268 * don't do the expensive searching for a small number of 1269 * devices 1270 */ 1271 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) { 1272 __unplug_io_fn(bdi, page); 1273 return; 1274 } 1275 1276 offset = page_offset(page); 1277 1278 em_tree = &BTRFS_I(inode)->extent_tree; 1279 spin_lock(&em_tree->lock); 1280 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 1281 spin_unlock(&em_tree->lock); 1282 if (!em) { 1283 __unplug_io_fn(bdi, page); 1284 return; 1285 } 1286 1287 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1288 free_extent_map(em); 1289 __unplug_io_fn(bdi, page); 1290 return; 1291 } 1292 offset = offset - em->start; 1293 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree, 1294 em->block_start + offset, page); 1295 free_extent_map(em); 1296 } 1297 1298 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1299 { 1300 bdi_init(bdi); 1301 bdi->ra_pages = default_backing_dev_info.ra_pages; 1302 bdi->state = 0; 1303 bdi->capabilities = default_backing_dev_info.capabilities; 1304 bdi->unplug_io_fn = btrfs_unplug_io_fn; 1305 bdi->unplug_io_data = info; 1306 bdi->congested_fn = btrfs_congested_fn; 1307 bdi->congested_data = info; 1308 return 0; 1309 } 1310 1311 static int bio_ready_for_csum(struct bio *bio) 1312 { 1313 u64 length = 0; 1314 u64 buf_len = 0; 1315 u64 start = 0; 1316 struct page *page; 1317 struct extent_io_tree *io_tree = NULL; 1318 struct btrfs_fs_info *info = NULL; 1319 struct bio_vec *bvec; 1320 int i; 1321 int ret; 1322 1323 bio_for_each_segment(bvec, bio, i) { 1324 page = bvec->bv_page; 1325 if (page->private == EXTENT_PAGE_PRIVATE) { 1326 length += bvec->bv_len; 1327 continue; 1328 } 1329 if (!page->private) { 1330 length += bvec->bv_len; 1331 continue; 1332 } 1333 length = bvec->bv_len; 1334 buf_len = page->private >> 2; 1335 start = page_offset(page) + bvec->bv_offset; 1336 io_tree = &BTRFS_I(page->mapping->host)->io_tree; 1337 info = BTRFS_I(page->mapping->host)->root->fs_info; 1338 } 1339 /* are we fully contained in this bio? */ 1340 if (buf_len <= length) 1341 return 1; 1342 1343 ret = extent_range_uptodate(io_tree, start + length, 1344 start + buf_len - 1); 1345 if (ret == 1) 1346 return ret; 1347 return ret; 1348 } 1349 1350 /* 1351 * called by the kthread helper functions to finally call the bio end_io 1352 * functions. This is where read checksum verification actually happens 1353 */ 1354 static void end_workqueue_fn(struct btrfs_work *work) 1355 { 1356 struct bio *bio; 1357 struct end_io_wq *end_io_wq; 1358 struct btrfs_fs_info *fs_info; 1359 int error; 1360 1361 end_io_wq = container_of(work, struct end_io_wq, work); 1362 bio = end_io_wq->bio; 1363 fs_info = end_io_wq->info; 1364 1365 /* metadata bio reads are special because the whole tree block must 1366 * be checksummed at once. This makes sure the entire block is in 1367 * ram and up to date before trying to verify things. For 1368 * blocksize <= pagesize, it is basically a noop 1369 */ 1370 if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata && 1371 !bio_ready_for_csum(bio)) { 1372 btrfs_queue_worker(&fs_info->endio_meta_workers, 1373 &end_io_wq->work); 1374 return; 1375 } 1376 error = end_io_wq->error; 1377 bio->bi_private = end_io_wq->private; 1378 bio->bi_end_io = end_io_wq->end_io; 1379 kfree(end_io_wq); 1380 bio_endio(bio, error); 1381 } 1382 1383 static int cleaner_kthread(void *arg) 1384 { 1385 struct btrfs_root *root = arg; 1386 1387 do { 1388 smp_mb(); 1389 if (root->fs_info->closing) 1390 break; 1391 1392 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1393 mutex_lock(&root->fs_info->cleaner_mutex); 1394 btrfs_clean_old_snapshots(root); 1395 mutex_unlock(&root->fs_info->cleaner_mutex); 1396 1397 if (freezing(current)) { 1398 refrigerator(); 1399 } else { 1400 smp_mb(); 1401 if (root->fs_info->closing) 1402 break; 1403 set_current_state(TASK_INTERRUPTIBLE); 1404 schedule(); 1405 __set_current_state(TASK_RUNNING); 1406 } 1407 } while (!kthread_should_stop()); 1408 return 0; 1409 } 1410 1411 static int transaction_kthread(void *arg) 1412 { 1413 struct btrfs_root *root = arg; 1414 struct btrfs_trans_handle *trans; 1415 struct btrfs_transaction *cur; 1416 unsigned long now; 1417 unsigned long delay; 1418 int ret; 1419 1420 do { 1421 smp_mb(); 1422 if (root->fs_info->closing) 1423 break; 1424 1425 delay = HZ * 30; 1426 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1427 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1428 1429 if (root->fs_info->total_ref_cache_size > 20 * 1024 * 1024) { 1430 printk(KERN_INFO "btrfs: total reference cache " 1431 "size %llu\n", 1432 root->fs_info->total_ref_cache_size); 1433 } 1434 1435 mutex_lock(&root->fs_info->trans_mutex); 1436 cur = root->fs_info->running_transaction; 1437 if (!cur) { 1438 mutex_unlock(&root->fs_info->trans_mutex); 1439 goto sleep; 1440 } 1441 1442 now = get_seconds(); 1443 if (now < cur->start_time || now - cur->start_time < 30) { 1444 mutex_unlock(&root->fs_info->trans_mutex); 1445 delay = HZ * 5; 1446 goto sleep; 1447 } 1448 mutex_unlock(&root->fs_info->trans_mutex); 1449 trans = btrfs_start_transaction(root, 1); 1450 ret = btrfs_commit_transaction(trans, root); 1451 sleep: 1452 wake_up_process(root->fs_info->cleaner_kthread); 1453 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1454 1455 if (freezing(current)) { 1456 refrigerator(); 1457 } else { 1458 if (root->fs_info->closing) 1459 break; 1460 set_current_state(TASK_INTERRUPTIBLE); 1461 schedule_timeout(delay); 1462 __set_current_state(TASK_RUNNING); 1463 } 1464 } while (!kthread_should_stop()); 1465 return 0; 1466 } 1467 1468 struct btrfs_root *open_ctree(struct super_block *sb, 1469 struct btrfs_fs_devices *fs_devices, 1470 char *options) 1471 { 1472 u32 sectorsize; 1473 u32 nodesize; 1474 u32 leafsize; 1475 u32 blocksize; 1476 u32 stripesize; 1477 u64 generation; 1478 u64 features; 1479 struct btrfs_key location; 1480 struct buffer_head *bh; 1481 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root), 1482 GFP_NOFS); 1483 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root), 1484 GFP_NOFS); 1485 struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root), 1486 GFP_NOFS); 1487 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info), 1488 GFP_NOFS); 1489 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root), 1490 GFP_NOFS); 1491 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root), 1492 GFP_NOFS); 1493 struct btrfs_root *log_tree_root; 1494 1495 int ret; 1496 int err = -EINVAL; 1497 1498 struct btrfs_super_block *disk_super; 1499 1500 if (!extent_root || !tree_root || !fs_info || 1501 !chunk_root || !dev_root || !csum_root) { 1502 err = -ENOMEM; 1503 goto fail; 1504 } 1505 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS); 1506 INIT_LIST_HEAD(&fs_info->trans_list); 1507 INIT_LIST_HEAD(&fs_info->dead_roots); 1508 INIT_LIST_HEAD(&fs_info->hashers); 1509 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 1510 spin_lock_init(&fs_info->delalloc_lock); 1511 spin_lock_init(&fs_info->new_trans_lock); 1512 spin_lock_init(&fs_info->ref_cache_lock); 1513 1514 init_completion(&fs_info->kobj_unregister); 1515 fs_info->tree_root = tree_root; 1516 fs_info->extent_root = extent_root; 1517 fs_info->csum_root = csum_root; 1518 fs_info->chunk_root = chunk_root; 1519 fs_info->dev_root = dev_root; 1520 fs_info->fs_devices = fs_devices; 1521 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 1522 INIT_LIST_HEAD(&fs_info->space_info); 1523 btrfs_mapping_init(&fs_info->mapping_tree); 1524 atomic_set(&fs_info->nr_async_submits, 0); 1525 atomic_set(&fs_info->async_delalloc_pages, 0); 1526 atomic_set(&fs_info->async_submit_draining, 0); 1527 atomic_set(&fs_info->nr_async_bios, 0); 1528 atomic_set(&fs_info->throttles, 0); 1529 atomic_set(&fs_info->throttle_gen, 0); 1530 fs_info->sb = sb; 1531 fs_info->max_extent = (u64)-1; 1532 fs_info->max_inline = 8192 * 1024; 1533 setup_bdi(fs_info, &fs_info->bdi); 1534 fs_info->btree_inode = new_inode(sb); 1535 fs_info->btree_inode->i_ino = 1; 1536 fs_info->btree_inode->i_nlink = 1; 1537 1538 fs_info->thread_pool_size = min_t(unsigned long, 1539 num_online_cpus() + 2, 8); 1540 1541 INIT_LIST_HEAD(&fs_info->ordered_extents); 1542 spin_lock_init(&fs_info->ordered_extent_lock); 1543 1544 sb->s_blocksize = 4096; 1545 sb->s_blocksize_bits = blksize_bits(4096); 1546 1547 /* 1548 * we set the i_size on the btree inode to the max possible int. 1549 * the real end of the address space is determined by all of 1550 * the devices in the system 1551 */ 1552 fs_info->btree_inode->i_size = OFFSET_MAX; 1553 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 1554 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 1555 1556 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 1557 fs_info->btree_inode->i_mapping, 1558 GFP_NOFS); 1559 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree, 1560 GFP_NOFS); 1561 1562 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 1563 1564 spin_lock_init(&fs_info->block_group_cache_lock); 1565 fs_info->block_group_cache_tree.rb_node = NULL; 1566 1567 extent_io_tree_init(&fs_info->pinned_extents, 1568 fs_info->btree_inode->i_mapping, GFP_NOFS); 1569 extent_io_tree_init(&fs_info->pending_del, 1570 fs_info->btree_inode->i_mapping, GFP_NOFS); 1571 extent_io_tree_init(&fs_info->extent_ins, 1572 fs_info->btree_inode->i_mapping, GFP_NOFS); 1573 fs_info->do_barriers = 1; 1574 1575 INIT_LIST_HEAD(&fs_info->dead_reloc_roots); 1576 btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree); 1577 btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree); 1578 1579 BTRFS_I(fs_info->btree_inode)->root = tree_root; 1580 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 1581 sizeof(struct btrfs_key)); 1582 insert_inode_hash(fs_info->btree_inode); 1583 1584 mutex_init(&fs_info->trans_mutex); 1585 mutex_init(&fs_info->tree_log_mutex); 1586 mutex_init(&fs_info->drop_mutex); 1587 mutex_init(&fs_info->extent_ins_mutex); 1588 mutex_init(&fs_info->pinned_mutex); 1589 mutex_init(&fs_info->chunk_mutex); 1590 mutex_init(&fs_info->transaction_kthread_mutex); 1591 mutex_init(&fs_info->cleaner_mutex); 1592 mutex_init(&fs_info->volume_mutex); 1593 mutex_init(&fs_info->tree_reloc_mutex); 1594 init_waitqueue_head(&fs_info->transaction_throttle); 1595 init_waitqueue_head(&fs_info->transaction_wait); 1596 init_waitqueue_head(&fs_info->async_submit_wait); 1597 1598 __setup_root(4096, 4096, 4096, 4096, tree_root, 1599 fs_info, BTRFS_ROOT_TREE_OBJECTID); 1600 1601 1602 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 1603 if (!bh) 1604 goto fail_iput; 1605 1606 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy)); 1607 memcpy(&fs_info->super_for_commit, &fs_info->super_copy, 1608 sizeof(fs_info->super_for_commit)); 1609 brelse(bh); 1610 1611 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE); 1612 1613 disk_super = &fs_info->super_copy; 1614 if (!btrfs_super_root(disk_super)) 1615 goto fail_iput; 1616 1617 ret = btrfs_parse_options(tree_root, options); 1618 if (ret) { 1619 err = ret; 1620 goto fail_iput; 1621 } 1622 1623 features = btrfs_super_incompat_flags(disk_super) & 1624 ~BTRFS_FEATURE_INCOMPAT_SUPP; 1625 if (features) { 1626 printk(KERN_ERR "BTRFS: couldn't mount because of " 1627 "unsupported optional features (%Lx).\n", 1628 features); 1629 err = -EINVAL; 1630 goto fail_iput; 1631 } 1632 1633 features = btrfs_super_compat_ro_flags(disk_super) & 1634 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 1635 if (!(sb->s_flags & MS_RDONLY) && features) { 1636 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 1637 "unsupported option features (%Lx).\n", 1638 features); 1639 err = -EINVAL; 1640 goto fail_iput; 1641 } 1642 1643 /* 1644 * we need to start all the end_io workers up front because the 1645 * queue work function gets called at interrupt time, and so it 1646 * cannot dynamically grow. 1647 */ 1648 btrfs_init_workers(&fs_info->workers, "worker", 1649 fs_info->thread_pool_size); 1650 1651 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 1652 fs_info->thread_pool_size); 1653 1654 btrfs_init_workers(&fs_info->submit_workers, "submit", 1655 min_t(u64, fs_devices->num_devices, 1656 fs_info->thread_pool_size)); 1657 1658 /* a higher idle thresh on the submit workers makes it much more 1659 * likely that bios will be send down in a sane order to the 1660 * devices 1661 */ 1662 fs_info->submit_workers.idle_thresh = 64; 1663 1664 fs_info->workers.idle_thresh = 16; 1665 fs_info->workers.ordered = 1; 1666 1667 fs_info->delalloc_workers.idle_thresh = 2; 1668 fs_info->delalloc_workers.ordered = 1; 1669 1670 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1); 1671 btrfs_init_workers(&fs_info->endio_workers, "endio", 1672 fs_info->thread_pool_size); 1673 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 1674 fs_info->thread_pool_size); 1675 btrfs_init_workers(&fs_info->endio_meta_write_workers, 1676 "endio-meta-write", fs_info->thread_pool_size); 1677 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 1678 fs_info->thread_pool_size); 1679 1680 /* 1681 * endios are largely parallel and should have a very 1682 * low idle thresh 1683 */ 1684 fs_info->endio_workers.idle_thresh = 4; 1685 fs_info->endio_meta_workers.idle_thresh = 4; 1686 1687 fs_info->endio_write_workers.idle_thresh = 64; 1688 fs_info->endio_meta_write_workers.idle_thresh = 64; 1689 1690 btrfs_start_workers(&fs_info->workers, 1); 1691 btrfs_start_workers(&fs_info->submit_workers, 1); 1692 btrfs_start_workers(&fs_info->delalloc_workers, 1); 1693 btrfs_start_workers(&fs_info->fixup_workers, 1); 1694 btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size); 1695 btrfs_start_workers(&fs_info->endio_meta_workers, 1696 fs_info->thread_pool_size); 1697 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1698 fs_info->thread_pool_size); 1699 btrfs_start_workers(&fs_info->endio_write_workers, 1700 fs_info->thread_pool_size); 1701 1702 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 1703 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 1704 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 1705 1706 nodesize = btrfs_super_nodesize(disk_super); 1707 leafsize = btrfs_super_leafsize(disk_super); 1708 sectorsize = btrfs_super_sectorsize(disk_super); 1709 stripesize = btrfs_super_stripesize(disk_super); 1710 tree_root->nodesize = nodesize; 1711 tree_root->leafsize = leafsize; 1712 tree_root->sectorsize = sectorsize; 1713 tree_root->stripesize = stripesize; 1714 1715 sb->s_blocksize = sectorsize; 1716 sb->s_blocksize_bits = blksize_bits(sectorsize); 1717 1718 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 1719 sizeof(disk_super->magic))) { 1720 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 1721 goto fail_sb_buffer; 1722 } 1723 1724 mutex_lock(&fs_info->chunk_mutex); 1725 ret = btrfs_read_sys_array(tree_root); 1726 mutex_unlock(&fs_info->chunk_mutex); 1727 if (ret) { 1728 printk(KERN_WARNING "btrfs: failed to read the system " 1729 "array on %s\n", sb->s_id); 1730 goto fail_sys_array; 1731 } 1732 1733 blocksize = btrfs_level_size(tree_root, 1734 btrfs_super_chunk_root_level(disk_super)); 1735 generation = btrfs_super_chunk_root_generation(disk_super); 1736 1737 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1738 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 1739 1740 chunk_root->node = read_tree_block(chunk_root, 1741 btrfs_super_chunk_root(disk_super), 1742 blocksize, generation); 1743 BUG_ON(!chunk_root->node); 1744 1745 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 1746 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 1747 BTRFS_UUID_SIZE); 1748 1749 mutex_lock(&fs_info->chunk_mutex); 1750 ret = btrfs_read_chunk_tree(chunk_root); 1751 mutex_unlock(&fs_info->chunk_mutex); 1752 if (ret) { 1753 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 1754 sb->s_id); 1755 goto fail_chunk_root; 1756 } 1757 1758 btrfs_close_extra_devices(fs_devices); 1759 1760 blocksize = btrfs_level_size(tree_root, 1761 btrfs_super_root_level(disk_super)); 1762 generation = btrfs_super_generation(disk_super); 1763 1764 tree_root->node = read_tree_block(tree_root, 1765 btrfs_super_root(disk_super), 1766 blocksize, generation); 1767 if (!tree_root->node) 1768 goto fail_chunk_root; 1769 1770 1771 ret = find_and_setup_root(tree_root, fs_info, 1772 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 1773 if (ret) 1774 goto fail_tree_root; 1775 extent_root->track_dirty = 1; 1776 1777 ret = find_and_setup_root(tree_root, fs_info, 1778 BTRFS_DEV_TREE_OBJECTID, dev_root); 1779 dev_root->track_dirty = 1; 1780 1781 if (ret) 1782 goto fail_extent_root; 1783 1784 ret = find_and_setup_root(tree_root, fs_info, 1785 BTRFS_CSUM_TREE_OBJECTID, csum_root); 1786 if (ret) 1787 goto fail_extent_root; 1788 1789 csum_root->track_dirty = 1; 1790 1791 btrfs_read_block_groups(extent_root); 1792 1793 fs_info->generation = generation; 1794 fs_info->last_trans_committed = generation; 1795 fs_info->data_alloc_profile = (u64)-1; 1796 fs_info->metadata_alloc_profile = (u64)-1; 1797 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile; 1798 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 1799 "btrfs-cleaner"); 1800 if (IS_ERR(fs_info->cleaner_kthread)) 1801 goto fail_csum_root; 1802 1803 fs_info->transaction_kthread = kthread_run(transaction_kthread, 1804 tree_root, 1805 "btrfs-transaction"); 1806 if (IS_ERR(fs_info->transaction_kthread)) 1807 goto fail_cleaner; 1808 1809 if (btrfs_super_log_root(disk_super) != 0) { 1810 u64 bytenr = btrfs_super_log_root(disk_super); 1811 1812 if (fs_devices->rw_devices == 0) { 1813 printk(KERN_WARNING "Btrfs log replay required " 1814 "on RO media\n"); 1815 err = -EIO; 1816 goto fail_trans_kthread; 1817 } 1818 blocksize = 1819 btrfs_level_size(tree_root, 1820 btrfs_super_log_root_level(disk_super)); 1821 1822 log_tree_root = kzalloc(sizeof(struct btrfs_root), 1823 GFP_NOFS); 1824 1825 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1826 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1827 1828 log_tree_root->node = read_tree_block(tree_root, bytenr, 1829 blocksize, 1830 generation + 1); 1831 ret = btrfs_recover_log_trees(log_tree_root); 1832 BUG_ON(ret); 1833 1834 if (sb->s_flags & MS_RDONLY) { 1835 ret = btrfs_commit_super(tree_root); 1836 BUG_ON(ret); 1837 } 1838 } 1839 1840 if (!(sb->s_flags & MS_RDONLY)) { 1841 ret = btrfs_cleanup_reloc_trees(tree_root); 1842 BUG_ON(ret); 1843 } 1844 1845 location.objectid = BTRFS_FS_TREE_OBJECTID; 1846 location.type = BTRFS_ROOT_ITEM_KEY; 1847 location.offset = (u64)-1; 1848 1849 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 1850 if (!fs_info->fs_root) 1851 goto fail_trans_kthread; 1852 return tree_root; 1853 1854 fail_trans_kthread: 1855 kthread_stop(fs_info->transaction_kthread); 1856 fail_cleaner: 1857 kthread_stop(fs_info->cleaner_kthread); 1858 1859 /* 1860 * make sure we're done with the btree inode before we stop our 1861 * kthreads 1862 */ 1863 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 1864 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 1865 1866 fail_csum_root: 1867 free_extent_buffer(csum_root->node); 1868 fail_extent_root: 1869 free_extent_buffer(extent_root->node); 1870 fail_tree_root: 1871 free_extent_buffer(tree_root->node); 1872 fail_chunk_root: 1873 free_extent_buffer(chunk_root->node); 1874 fail_sys_array: 1875 free_extent_buffer(dev_root->node); 1876 fail_sb_buffer: 1877 btrfs_stop_workers(&fs_info->fixup_workers); 1878 btrfs_stop_workers(&fs_info->delalloc_workers); 1879 btrfs_stop_workers(&fs_info->workers); 1880 btrfs_stop_workers(&fs_info->endio_workers); 1881 btrfs_stop_workers(&fs_info->endio_meta_workers); 1882 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 1883 btrfs_stop_workers(&fs_info->endio_write_workers); 1884 btrfs_stop_workers(&fs_info->submit_workers); 1885 fail_iput: 1886 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 1887 iput(fs_info->btree_inode); 1888 1889 btrfs_close_devices(fs_info->fs_devices); 1890 btrfs_mapping_tree_free(&fs_info->mapping_tree); 1891 bdi_destroy(&fs_info->bdi); 1892 1893 fail: 1894 kfree(extent_root); 1895 kfree(tree_root); 1896 kfree(fs_info); 1897 kfree(chunk_root); 1898 kfree(dev_root); 1899 kfree(csum_root); 1900 return ERR_PTR(err); 1901 } 1902 1903 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 1904 { 1905 char b[BDEVNAME_SIZE]; 1906 1907 if (uptodate) { 1908 set_buffer_uptodate(bh); 1909 } else { 1910 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { 1911 printk(KERN_WARNING "lost page write due to " 1912 "I/O error on %s\n", 1913 bdevname(bh->b_bdev, b)); 1914 } 1915 /* note, we dont' set_buffer_write_io_error because we have 1916 * our own ways of dealing with the IO errors 1917 */ 1918 clear_buffer_uptodate(bh); 1919 } 1920 unlock_buffer(bh); 1921 put_bh(bh); 1922 } 1923 1924 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 1925 { 1926 struct buffer_head *bh; 1927 struct buffer_head *latest = NULL; 1928 struct btrfs_super_block *super; 1929 int i; 1930 u64 transid = 0; 1931 u64 bytenr; 1932 1933 /* we would like to check all the supers, but that would make 1934 * a btrfs mount succeed after a mkfs from a different FS. 1935 * So, we need to add a special mount option to scan for 1936 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1937 */ 1938 for (i = 0; i < 1; i++) { 1939 bytenr = btrfs_sb_offset(i); 1940 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 1941 break; 1942 bh = __bread(bdev, bytenr / 4096, 4096); 1943 if (!bh) 1944 continue; 1945 1946 super = (struct btrfs_super_block *)bh->b_data; 1947 if (btrfs_super_bytenr(super) != bytenr || 1948 strncmp((char *)(&super->magic), BTRFS_MAGIC, 1949 sizeof(super->magic))) { 1950 brelse(bh); 1951 continue; 1952 } 1953 1954 if (!latest || btrfs_super_generation(super) > transid) { 1955 brelse(latest); 1956 latest = bh; 1957 transid = btrfs_super_generation(super); 1958 } else { 1959 brelse(bh); 1960 } 1961 } 1962 return latest; 1963 } 1964 1965 static int write_dev_supers(struct btrfs_device *device, 1966 struct btrfs_super_block *sb, 1967 int do_barriers, int wait, int max_mirrors) 1968 { 1969 struct buffer_head *bh; 1970 int i; 1971 int ret; 1972 int errors = 0; 1973 u32 crc; 1974 u64 bytenr; 1975 int last_barrier = 0; 1976 1977 if (max_mirrors == 0) 1978 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 1979 1980 /* make sure only the last submit_bh does a barrier */ 1981 if (do_barriers) { 1982 for (i = 0; i < max_mirrors; i++) { 1983 bytenr = btrfs_sb_offset(i); 1984 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 1985 device->total_bytes) 1986 break; 1987 last_barrier = i; 1988 } 1989 } 1990 1991 for (i = 0; i < max_mirrors; i++) { 1992 bytenr = btrfs_sb_offset(i); 1993 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 1994 break; 1995 1996 if (wait) { 1997 bh = __find_get_block(device->bdev, bytenr / 4096, 1998 BTRFS_SUPER_INFO_SIZE); 1999 BUG_ON(!bh); 2000 brelse(bh); 2001 wait_on_buffer(bh); 2002 if (buffer_uptodate(bh)) { 2003 brelse(bh); 2004 continue; 2005 } 2006 } else { 2007 btrfs_set_super_bytenr(sb, bytenr); 2008 2009 crc = ~(u32)0; 2010 crc = btrfs_csum_data(NULL, (char *)sb + 2011 BTRFS_CSUM_SIZE, crc, 2012 BTRFS_SUPER_INFO_SIZE - 2013 BTRFS_CSUM_SIZE); 2014 btrfs_csum_final(crc, sb->csum); 2015 2016 bh = __getblk(device->bdev, bytenr / 4096, 2017 BTRFS_SUPER_INFO_SIZE); 2018 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2019 2020 set_buffer_uptodate(bh); 2021 get_bh(bh); 2022 lock_buffer(bh); 2023 bh->b_end_io = btrfs_end_buffer_write_sync; 2024 } 2025 2026 if (i == last_barrier && do_barriers && device->barriers) { 2027 ret = submit_bh(WRITE_BARRIER, bh); 2028 if (ret == -EOPNOTSUPP) { 2029 printk("btrfs: disabling barriers on dev %s\n", 2030 device->name); 2031 set_buffer_uptodate(bh); 2032 device->barriers = 0; 2033 get_bh(bh); 2034 lock_buffer(bh); 2035 ret = submit_bh(WRITE, bh); 2036 } 2037 } else { 2038 ret = submit_bh(WRITE, bh); 2039 } 2040 2041 if (!ret && wait) { 2042 wait_on_buffer(bh); 2043 if (!buffer_uptodate(bh)) 2044 errors++; 2045 } else if (ret) { 2046 errors++; 2047 } 2048 if (wait) 2049 brelse(bh); 2050 } 2051 return errors < i ? 0 : -1; 2052 } 2053 2054 int write_all_supers(struct btrfs_root *root, int max_mirrors) 2055 { 2056 struct list_head *head = &root->fs_info->fs_devices->devices; 2057 struct btrfs_device *dev; 2058 struct btrfs_super_block *sb; 2059 struct btrfs_dev_item *dev_item; 2060 int ret; 2061 int do_barriers; 2062 int max_errors; 2063 int total_errors = 0; 2064 u64 flags; 2065 2066 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1; 2067 do_barriers = !btrfs_test_opt(root, NOBARRIER); 2068 2069 sb = &root->fs_info->super_for_commit; 2070 dev_item = &sb->dev_item; 2071 list_for_each_entry(dev, head, dev_list) { 2072 if (!dev->bdev) { 2073 total_errors++; 2074 continue; 2075 } 2076 if (!dev->in_fs_metadata || !dev->writeable) 2077 continue; 2078 2079 btrfs_set_stack_device_generation(dev_item, 0); 2080 btrfs_set_stack_device_type(dev_item, dev->type); 2081 btrfs_set_stack_device_id(dev_item, dev->devid); 2082 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 2083 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 2084 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 2085 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 2086 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 2087 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 2088 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2089 2090 flags = btrfs_super_flags(sb); 2091 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 2092 2093 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 2094 if (ret) 2095 total_errors++; 2096 } 2097 if (total_errors > max_errors) { 2098 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2099 total_errors); 2100 BUG(); 2101 } 2102 2103 total_errors = 0; 2104 list_for_each_entry(dev, head, dev_list) { 2105 if (!dev->bdev) 2106 continue; 2107 if (!dev->in_fs_metadata || !dev->writeable) 2108 continue; 2109 2110 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 2111 if (ret) 2112 total_errors++; 2113 } 2114 if (total_errors > max_errors) { 2115 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2116 total_errors); 2117 BUG(); 2118 } 2119 return 0; 2120 } 2121 2122 int write_ctree_super(struct btrfs_trans_handle *trans, 2123 struct btrfs_root *root, int max_mirrors) 2124 { 2125 int ret; 2126 2127 ret = write_all_supers(root, max_mirrors); 2128 return ret; 2129 } 2130 2131 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2132 { 2133 radix_tree_delete(&fs_info->fs_roots_radix, 2134 (unsigned long)root->root_key.objectid); 2135 if (root->anon_super.s_dev) { 2136 down_write(&root->anon_super.s_umount); 2137 kill_anon_super(&root->anon_super); 2138 } 2139 if (root->node) 2140 free_extent_buffer(root->node); 2141 if (root->commit_root) 2142 free_extent_buffer(root->commit_root); 2143 kfree(root->name); 2144 kfree(root); 2145 return 0; 2146 } 2147 2148 static int del_fs_roots(struct btrfs_fs_info *fs_info) 2149 { 2150 int ret; 2151 struct btrfs_root *gang[8]; 2152 int i; 2153 2154 while (1) { 2155 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2156 (void **)gang, 0, 2157 ARRAY_SIZE(gang)); 2158 if (!ret) 2159 break; 2160 for (i = 0; i < ret; i++) 2161 btrfs_free_fs_root(fs_info, gang[i]); 2162 } 2163 return 0; 2164 } 2165 2166 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2167 { 2168 u64 root_objectid = 0; 2169 struct btrfs_root *gang[8]; 2170 int i; 2171 int ret; 2172 2173 while (1) { 2174 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2175 (void **)gang, root_objectid, 2176 ARRAY_SIZE(gang)); 2177 if (!ret) 2178 break; 2179 for (i = 0; i < ret; i++) { 2180 root_objectid = gang[i]->root_key.objectid; 2181 ret = btrfs_find_dead_roots(fs_info->tree_root, 2182 root_objectid, gang[i]); 2183 BUG_ON(ret); 2184 btrfs_orphan_cleanup(gang[i]); 2185 } 2186 root_objectid++; 2187 } 2188 return 0; 2189 } 2190 2191 int btrfs_commit_super(struct btrfs_root *root) 2192 { 2193 struct btrfs_trans_handle *trans; 2194 int ret; 2195 2196 mutex_lock(&root->fs_info->cleaner_mutex); 2197 btrfs_clean_old_snapshots(root); 2198 mutex_unlock(&root->fs_info->cleaner_mutex); 2199 trans = btrfs_start_transaction(root, 1); 2200 ret = btrfs_commit_transaction(trans, root); 2201 BUG_ON(ret); 2202 /* run commit again to drop the original snapshot */ 2203 trans = btrfs_start_transaction(root, 1); 2204 btrfs_commit_transaction(trans, root); 2205 ret = btrfs_write_and_wait_transaction(NULL, root); 2206 BUG_ON(ret); 2207 2208 ret = write_ctree_super(NULL, root, 0); 2209 return ret; 2210 } 2211 2212 int close_ctree(struct btrfs_root *root) 2213 { 2214 struct btrfs_fs_info *fs_info = root->fs_info; 2215 int ret; 2216 2217 fs_info->closing = 1; 2218 smp_mb(); 2219 2220 kthread_stop(root->fs_info->transaction_kthread); 2221 kthread_stop(root->fs_info->cleaner_kthread); 2222 2223 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 2224 ret = btrfs_commit_super(root); 2225 if (ret) 2226 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 2227 } 2228 2229 if (fs_info->delalloc_bytes) { 2230 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 2231 fs_info->delalloc_bytes); 2232 } 2233 if (fs_info->total_ref_cache_size) { 2234 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", 2235 (unsigned long long)fs_info->total_ref_cache_size); 2236 } 2237 2238 if (fs_info->extent_root->node) 2239 free_extent_buffer(fs_info->extent_root->node); 2240 2241 if (fs_info->tree_root->node) 2242 free_extent_buffer(fs_info->tree_root->node); 2243 2244 if (root->fs_info->chunk_root->node) 2245 free_extent_buffer(root->fs_info->chunk_root->node); 2246 2247 if (root->fs_info->dev_root->node) 2248 free_extent_buffer(root->fs_info->dev_root->node); 2249 2250 if (root->fs_info->csum_root->node) 2251 free_extent_buffer(root->fs_info->csum_root->node); 2252 2253 btrfs_free_block_groups(root->fs_info); 2254 2255 del_fs_roots(fs_info); 2256 2257 iput(fs_info->btree_inode); 2258 2259 btrfs_stop_workers(&fs_info->fixup_workers); 2260 btrfs_stop_workers(&fs_info->delalloc_workers); 2261 btrfs_stop_workers(&fs_info->workers); 2262 btrfs_stop_workers(&fs_info->endio_workers); 2263 btrfs_stop_workers(&fs_info->endio_meta_workers); 2264 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2265 btrfs_stop_workers(&fs_info->endio_write_workers); 2266 btrfs_stop_workers(&fs_info->submit_workers); 2267 2268 #if 0 2269 while (!list_empty(&fs_info->hashers)) { 2270 struct btrfs_hasher *hasher; 2271 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher, 2272 hashers); 2273 list_del(&hasher->hashers); 2274 crypto_free_hash(&fs_info->hash_tfm); 2275 kfree(hasher); 2276 } 2277 #endif 2278 btrfs_close_devices(fs_info->fs_devices); 2279 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2280 2281 bdi_destroy(&fs_info->bdi); 2282 2283 kfree(fs_info->extent_root); 2284 kfree(fs_info->tree_root); 2285 kfree(fs_info->chunk_root); 2286 kfree(fs_info->dev_root); 2287 kfree(fs_info->csum_root); 2288 return 0; 2289 } 2290 2291 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) 2292 { 2293 int ret; 2294 struct inode *btree_inode = buf->first_page->mapping->host; 2295 2296 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf); 2297 if (!ret) 2298 return ret; 2299 2300 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 2301 parent_transid); 2302 return !ret; 2303 } 2304 2305 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 2306 { 2307 struct inode *btree_inode = buf->first_page->mapping->host; 2308 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, 2309 buf); 2310 } 2311 2312 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 2313 { 2314 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2315 u64 transid = btrfs_header_generation(buf); 2316 struct inode *btree_inode = root->fs_info->btree_inode; 2317 2318 btrfs_set_lock_blocking(buf); 2319 2320 WARN_ON(!btrfs_tree_locked(buf)); 2321 if (transid != root->fs_info->generation) { 2322 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 2323 "found %llu running %llu\n", 2324 (unsigned long long)buf->start, 2325 (unsigned long long)transid, 2326 (unsigned long long)root->fs_info->generation); 2327 WARN_ON(1); 2328 } 2329 set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf); 2330 } 2331 2332 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 2333 { 2334 /* 2335 * looks as though older kernels can get into trouble with 2336 * this code, they end up stuck in balance_dirty_pages forever 2337 */ 2338 struct extent_io_tree *tree; 2339 u64 num_dirty; 2340 u64 start = 0; 2341 unsigned long thresh = 32 * 1024 * 1024; 2342 tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 2343 2344 if (current_is_pdflush() || current->flags & PF_MEMALLOC) 2345 return; 2346 2347 num_dirty = count_range_bits(tree, &start, (u64)-1, 2348 thresh, EXTENT_DIRTY); 2349 if (num_dirty > thresh) { 2350 balance_dirty_pages_ratelimited_nr( 2351 root->fs_info->btree_inode->i_mapping, 1); 2352 } 2353 return; 2354 } 2355 2356 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 2357 { 2358 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2359 int ret; 2360 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 2361 if (ret == 0) 2362 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 2363 return ret; 2364 } 2365 2366 int btree_lock_page_hook(struct page *page) 2367 { 2368 struct inode *inode = page->mapping->host; 2369 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2370 struct extent_buffer *eb; 2371 unsigned long len; 2372 u64 bytenr = page_offset(page); 2373 2374 if (page->private == EXTENT_PAGE_PRIVATE) 2375 goto out; 2376 2377 len = page->private >> 2; 2378 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS); 2379 if (!eb) 2380 goto out; 2381 2382 btrfs_tree_lock(eb); 2383 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 2384 btrfs_tree_unlock(eb); 2385 free_extent_buffer(eb); 2386 out: 2387 lock_page(page); 2388 return 0; 2389 } 2390 2391 static struct extent_io_ops btree_extent_io_ops = { 2392 .write_cache_pages_lock_hook = btree_lock_page_hook, 2393 .readpage_end_io_hook = btree_readpage_end_io_hook, 2394 .submit_bio_hook = btree_submit_bio_hook, 2395 /* note we're sharing with inode.c for the merge bio hook */ 2396 .merge_bio_hook = btrfs_merge_bio_hook, 2397 }; 2398