xref: /linux/fs/btrfs/disk-io.c (revision b233b28eac0cc37d07c2d007ea08c86c778c5af4)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include "compat.h"
30 #include "crc32c.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "volumes.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
38 #include "locking.h"
39 #include "ref-cache.h"
40 #include "tree-log.h"
41 
42 static struct extent_io_ops btree_extent_io_ops;
43 static void end_workqueue_fn(struct btrfs_work *work);
44 
45 /*
46  * end_io_wq structs are used to do processing in task context when an IO is
47  * complete.  This is used during reads to verify checksums, and it is used
48  * by writes to insert metadata for new file extents after IO is complete.
49  */
50 struct end_io_wq {
51 	struct bio *bio;
52 	bio_end_io_t *end_io;
53 	void *private;
54 	struct btrfs_fs_info *info;
55 	int error;
56 	int metadata;
57 	struct list_head list;
58 	struct btrfs_work work;
59 };
60 
61 /*
62  * async submit bios are used to offload expensive checksumming
63  * onto the worker threads.  They checksum file and metadata bios
64  * just before they are sent down the IO stack.
65  */
66 struct async_submit_bio {
67 	struct inode *inode;
68 	struct bio *bio;
69 	struct list_head list;
70 	extent_submit_bio_hook_t *submit_bio_start;
71 	extent_submit_bio_hook_t *submit_bio_done;
72 	int rw;
73 	int mirror_num;
74 	unsigned long bio_flags;
75 	struct btrfs_work work;
76 };
77 
78 /*
79  * extents on the btree inode are pretty simple, there's one extent
80  * that covers the entire device
81  */
82 static struct extent_map *btree_get_extent(struct inode *inode,
83 		struct page *page, size_t page_offset, u64 start, u64 len,
84 		int create)
85 {
86 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
87 	struct extent_map *em;
88 	int ret;
89 
90 	spin_lock(&em_tree->lock);
91 	em = lookup_extent_mapping(em_tree, start, len);
92 	if (em) {
93 		em->bdev =
94 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
95 		spin_unlock(&em_tree->lock);
96 		goto out;
97 	}
98 	spin_unlock(&em_tree->lock);
99 
100 	em = alloc_extent_map(GFP_NOFS);
101 	if (!em) {
102 		em = ERR_PTR(-ENOMEM);
103 		goto out;
104 	}
105 	em->start = 0;
106 	em->len = (u64)-1;
107 	em->block_len = (u64)-1;
108 	em->block_start = 0;
109 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
110 
111 	spin_lock(&em_tree->lock);
112 	ret = add_extent_mapping(em_tree, em);
113 	if (ret == -EEXIST) {
114 		u64 failed_start = em->start;
115 		u64 failed_len = em->len;
116 
117 		free_extent_map(em);
118 		em = lookup_extent_mapping(em_tree, start, len);
119 		if (em) {
120 			ret = 0;
121 		} else {
122 			em = lookup_extent_mapping(em_tree, failed_start,
123 						   failed_len);
124 			ret = -EIO;
125 		}
126 	} else if (ret) {
127 		free_extent_map(em);
128 		em = NULL;
129 	}
130 	spin_unlock(&em_tree->lock);
131 
132 	if (ret)
133 		em = ERR_PTR(ret);
134 out:
135 	return em;
136 }
137 
138 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
139 {
140 	return btrfs_crc32c(seed, data, len);
141 }
142 
143 void btrfs_csum_final(u32 crc, char *result)
144 {
145 	*(__le32 *)result = ~cpu_to_le32(crc);
146 }
147 
148 /*
149  * compute the csum for a btree block, and either verify it or write it
150  * into the csum field of the block.
151  */
152 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
153 			   int verify)
154 {
155 	u16 csum_size =
156 		btrfs_super_csum_size(&root->fs_info->super_copy);
157 	char *result = NULL;
158 	unsigned long len;
159 	unsigned long cur_len;
160 	unsigned long offset = BTRFS_CSUM_SIZE;
161 	char *map_token = NULL;
162 	char *kaddr;
163 	unsigned long map_start;
164 	unsigned long map_len;
165 	int err;
166 	u32 crc = ~(u32)0;
167 	unsigned long inline_result;
168 
169 	len = buf->len - offset;
170 	while (len > 0) {
171 		err = map_private_extent_buffer(buf, offset, 32,
172 					&map_token, &kaddr,
173 					&map_start, &map_len, KM_USER0);
174 		if (err)
175 			return 1;
176 		cur_len = min(len, map_len - (offset - map_start));
177 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
178 				      crc, cur_len);
179 		len -= cur_len;
180 		offset += cur_len;
181 		unmap_extent_buffer(buf, map_token, KM_USER0);
182 	}
183 	if (csum_size > sizeof(inline_result)) {
184 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
185 		if (!result)
186 			return 1;
187 	} else {
188 		result = (char *)&inline_result;
189 	}
190 
191 	btrfs_csum_final(crc, result);
192 
193 	if (verify) {
194 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
195 			u32 val;
196 			u32 found = 0;
197 			memcpy(&found, result, csum_size);
198 
199 			read_extent_buffer(buf, &val, 0, csum_size);
200 			printk(KERN_INFO "btrfs: %s checksum verify failed "
201 			       "on %llu wanted %X found %X level %d\n",
202 			       root->fs_info->sb->s_id,
203 			       buf->start, val, found, btrfs_header_level(buf));
204 			if (result != (char *)&inline_result)
205 				kfree(result);
206 			return 1;
207 		}
208 	} else {
209 		write_extent_buffer(buf, result, 0, csum_size);
210 	}
211 	if (result != (char *)&inline_result)
212 		kfree(result);
213 	return 0;
214 }
215 
216 /*
217  * we can't consider a given block up to date unless the transid of the
218  * block matches the transid in the parent node's pointer.  This is how we
219  * detect blocks that either didn't get written at all or got written
220  * in the wrong place.
221  */
222 static int verify_parent_transid(struct extent_io_tree *io_tree,
223 				 struct extent_buffer *eb, u64 parent_transid)
224 {
225 	int ret;
226 
227 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
228 		return 0;
229 
230 	lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
231 	if (extent_buffer_uptodate(io_tree, eb) &&
232 	    btrfs_header_generation(eb) == parent_transid) {
233 		ret = 0;
234 		goto out;
235 	}
236 	printk("parent transid verify failed on %llu wanted %llu found %llu\n",
237 	       (unsigned long long)eb->start,
238 	       (unsigned long long)parent_transid,
239 	       (unsigned long long)btrfs_header_generation(eb));
240 	ret = 1;
241 	clear_extent_buffer_uptodate(io_tree, eb);
242 out:
243 	unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
244 		      GFP_NOFS);
245 	return ret;
246 }
247 
248 /*
249  * helper to read a given tree block, doing retries as required when
250  * the checksums don't match and we have alternate mirrors to try.
251  */
252 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
253 					  struct extent_buffer *eb,
254 					  u64 start, u64 parent_transid)
255 {
256 	struct extent_io_tree *io_tree;
257 	int ret;
258 	int num_copies = 0;
259 	int mirror_num = 0;
260 
261 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
262 	while (1) {
263 		ret = read_extent_buffer_pages(io_tree, eb, start, 1,
264 					       btree_get_extent, mirror_num);
265 		if (!ret &&
266 		    !verify_parent_transid(io_tree, eb, parent_transid))
267 			return ret;
268 
269 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
270 					      eb->start, eb->len);
271 		if (num_copies == 1)
272 			return ret;
273 
274 		mirror_num++;
275 		if (mirror_num > num_copies)
276 			return ret;
277 	}
278 	return -EIO;
279 }
280 
281 /*
282  * checksum a dirty tree block before IO.  This has extra checks to make sure
283  * we only fill in the checksum field in the first page of a multi-page block
284  */
285 
286 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
287 {
288 	struct extent_io_tree *tree;
289 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
290 	u64 found_start;
291 	int found_level;
292 	unsigned long len;
293 	struct extent_buffer *eb;
294 	int ret;
295 
296 	tree = &BTRFS_I(page->mapping->host)->io_tree;
297 
298 	if (page->private == EXTENT_PAGE_PRIVATE)
299 		goto out;
300 	if (!page->private)
301 		goto out;
302 	len = page->private >> 2;
303 	WARN_ON(len == 0);
304 
305 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
306 	ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
307 					     btrfs_header_generation(eb));
308 	BUG_ON(ret);
309 	found_start = btrfs_header_bytenr(eb);
310 	if (found_start != start) {
311 		WARN_ON(1);
312 		goto err;
313 	}
314 	if (eb->first_page != page) {
315 		WARN_ON(1);
316 		goto err;
317 	}
318 	if (!PageUptodate(page)) {
319 		WARN_ON(1);
320 		goto err;
321 	}
322 	found_level = btrfs_header_level(eb);
323 
324 	csum_tree_block(root, eb, 0);
325 err:
326 	free_extent_buffer(eb);
327 out:
328 	return 0;
329 }
330 
331 static int check_tree_block_fsid(struct btrfs_root *root,
332 				 struct extent_buffer *eb)
333 {
334 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
335 	u8 fsid[BTRFS_UUID_SIZE];
336 	int ret = 1;
337 
338 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
339 			   BTRFS_FSID_SIZE);
340 	while (fs_devices) {
341 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
342 			ret = 0;
343 			break;
344 		}
345 		fs_devices = fs_devices->seed;
346 	}
347 	return ret;
348 }
349 
350 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
351 			       struct extent_state *state)
352 {
353 	struct extent_io_tree *tree;
354 	u64 found_start;
355 	int found_level;
356 	unsigned long len;
357 	struct extent_buffer *eb;
358 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
359 	int ret = 0;
360 
361 	tree = &BTRFS_I(page->mapping->host)->io_tree;
362 	if (page->private == EXTENT_PAGE_PRIVATE)
363 		goto out;
364 	if (!page->private)
365 		goto out;
366 
367 	len = page->private >> 2;
368 	WARN_ON(len == 0);
369 
370 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
371 
372 	found_start = btrfs_header_bytenr(eb);
373 	if (found_start != start) {
374 		printk(KERN_INFO "btrfs bad tree block start %llu %llu\n",
375 		       (unsigned long long)found_start,
376 		       (unsigned long long)eb->start);
377 		ret = -EIO;
378 		goto err;
379 	}
380 	if (eb->first_page != page) {
381 		printk(KERN_INFO "btrfs bad first page %lu %lu\n",
382 		       eb->first_page->index, page->index);
383 		WARN_ON(1);
384 		ret = -EIO;
385 		goto err;
386 	}
387 	if (check_tree_block_fsid(root, eb)) {
388 		printk(KERN_INFO "btrfs bad fsid on block %llu\n",
389 		       (unsigned long long)eb->start);
390 		ret = -EIO;
391 		goto err;
392 	}
393 	found_level = btrfs_header_level(eb);
394 
395 	ret = csum_tree_block(root, eb, 1);
396 	if (ret)
397 		ret = -EIO;
398 
399 	end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
400 	end = eb->start + end - 1;
401 err:
402 	free_extent_buffer(eb);
403 out:
404 	return ret;
405 }
406 
407 static void end_workqueue_bio(struct bio *bio, int err)
408 {
409 	struct end_io_wq *end_io_wq = bio->bi_private;
410 	struct btrfs_fs_info *fs_info;
411 
412 	fs_info = end_io_wq->info;
413 	end_io_wq->error = err;
414 	end_io_wq->work.func = end_workqueue_fn;
415 	end_io_wq->work.flags = 0;
416 
417 	if (bio->bi_rw & (1 << BIO_RW)) {
418 		if (end_io_wq->metadata)
419 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
420 					   &end_io_wq->work);
421 		else
422 			btrfs_queue_worker(&fs_info->endio_write_workers,
423 					   &end_io_wq->work);
424 	} else {
425 		if (end_io_wq->metadata)
426 			btrfs_queue_worker(&fs_info->endio_meta_workers,
427 					   &end_io_wq->work);
428 		else
429 			btrfs_queue_worker(&fs_info->endio_workers,
430 					   &end_io_wq->work);
431 	}
432 }
433 
434 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
435 			int metadata)
436 {
437 	struct end_io_wq *end_io_wq;
438 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
439 	if (!end_io_wq)
440 		return -ENOMEM;
441 
442 	end_io_wq->private = bio->bi_private;
443 	end_io_wq->end_io = bio->bi_end_io;
444 	end_io_wq->info = info;
445 	end_io_wq->error = 0;
446 	end_io_wq->bio = bio;
447 	end_io_wq->metadata = metadata;
448 
449 	bio->bi_private = end_io_wq;
450 	bio->bi_end_io = end_workqueue_bio;
451 	return 0;
452 }
453 
454 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
455 {
456 	unsigned long limit = min_t(unsigned long,
457 				    info->workers.max_workers,
458 				    info->fs_devices->open_devices);
459 	return 256 * limit;
460 }
461 
462 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
463 {
464 	return atomic_read(&info->nr_async_bios) >
465 		btrfs_async_submit_limit(info);
466 }
467 
468 static void run_one_async_start(struct btrfs_work *work)
469 {
470 	struct btrfs_fs_info *fs_info;
471 	struct async_submit_bio *async;
472 
473 	async = container_of(work, struct  async_submit_bio, work);
474 	fs_info = BTRFS_I(async->inode)->root->fs_info;
475 	async->submit_bio_start(async->inode, async->rw, async->bio,
476 			       async->mirror_num, async->bio_flags);
477 }
478 
479 static void run_one_async_done(struct btrfs_work *work)
480 {
481 	struct btrfs_fs_info *fs_info;
482 	struct async_submit_bio *async;
483 	int limit;
484 
485 	async = container_of(work, struct  async_submit_bio, work);
486 	fs_info = BTRFS_I(async->inode)->root->fs_info;
487 
488 	limit = btrfs_async_submit_limit(fs_info);
489 	limit = limit * 2 / 3;
490 
491 	atomic_dec(&fs_info->nr_async_submits);
492 
493 	if (atomic_read(&fs_info->nr_async_submits) < limit &&
494 	    waitqueue_active(&fs_info->async_submit_wait))
495 		wake_up(&fs_info->async_submit_wait);
496 
497 	async->submit_bio_done(async->inode, async->rw, async->bio,
498 			       async->mirror_num, async->bio_flags);
499 }
500 
501 static void run_one_async_free(struct btrfs_work *work)
502 {
503 	struct async_submit_bio *async;
504 
505 	async = container_of(work, struct  async_submit_bio, work);
506 	kfree(async);
507 }
508 
509 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
510 			int rw, struct bio *bio, int mirror_num,
511 			unsigned long bio_flags,
512 			extent_submit_bio_hook_t *submit_bio_start,
513 			extent_submit_bio_hook_t *submit_bio_done)
514 {
515 	struct async_submit_bio *async;
516 
517 	async = kmalloc(sizeof(*async), GFP_NOFS);
518 	if (!async)
519 		return -ENOMEM;
520 
521 	async->inode = inode;
522 	async->rw = rw;
523 	async->bio = bio;
524 	async->mirror_num = mirror_num;
525 	async->submit_bio_start = submit_bio_start;
526 	async->submit_bio_done = submit_bio_done;
527 
528 	async->work.func = run_one_async_start;
529 	async->work.ordered_func = run_one_async_done;
530 	async->work.ordered_free = run_one_async_free;
531 
532 	async->work.flags = 0;
533 	async->bio_flags = bio_flags;
534 
535 	atomic_inc(&fs_info->nr_async_submits);
536 	btrfs_queue_worker(&fs_info->workers, &async->work);
537 #if 0
538 	int limit = btrfs_async_submit_limit(fs_info);
539 	if (atomic_read(&fs_info->nr_async_submits) > limit) {
540 		wait_event_timeout(fs_info->async_submit_wait,
541 			   (atomic_read(&fs_info->nr_async_submits) < limit),
542 			   HZ/10);
543 
544 		wait_event_timeout(fs_info->async_submit_wait,
545 			   (atomic_read(&fs_info->nr_async_bios) < limit),
546 			   HZ/10);
547 	}
548 #endif
549 	while (atomic_read(&fs_info->async_submit_draining) &&
550 	      atomic_read(&fs_info->nr_async_submits)) {
551 		wait_event(fs_info->async_submit_wait,
552 			   (atomic_read(&fs_info->nr_async_submits) == 0));
553 	}
554 
555 	return 0;
556 }
557 
558 static int btree_csum_one_bio(struct bio *bio)
559 {
560 	struct bio_vec *bvec = bio->bi_io_vec;
561 	int bio_index = 0;
562 	struct btrfs_root *root;
563 
564 	WARN_ON(bio->bi_vcnt <= 0);
565 	while (bio_index < bio->bi_vcnt) {
566 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
567 		csum_dirty_buffer(root, bvec->bv_page);
568 		bio_index++;
569 		bvec++;
570 	}
571 	return 0;
572 }
573 
574 static int __btree_submit_bio_start(struct inode *inode, int rw,
575 				    struct bio *bio, int mirror_num,
576 				    unsigned long bio_flags)
577 {
578 	/*
579 	 * when we're called for a write, we're already in the async
580 	 * submission context.  Just jump into btrfs_map_bio
581 	 */
582 	btree_csum_one_bio(bio);
583 	return 0;
584 }
585 
586 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
587 				 int mirror_num, unsigned long bio_flags)
588 {
589 	/*
590 	 * when we're called for a write, we're already in the async
591 	 * submission context.  Just jump into btrfs_map_bio
592 	 */
593 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
594 }
595 
596 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
597 				 int mirror_num, unsigned long bio_flags)
598 {
599 	int ret;
600 
601 	ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
602 					  bio, 1);
603 	BUG_ON(ret);
604 
605 	if (!(rw & (1 << BIO_RW))) {
606 		/*
607 		 * called for a read, do the setup so that checksum validation
608 		 * can happen in the async kernel threads
609 		 */
610 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
611 				     mirror_num, 0);
612 	}
613 	/*
614 	 * kthread helpers are used to submit writes so that checksumming
615 	 * can happen in parallel across all CPUs
616 	 */
617 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
618 				   inode, rw, bio, mirror_num, 0,
619 				   __btree_submit_bio_start,
620 				   __btree_submit_bio_done);
621 }
622 
623 static int btree_writepage(struct page *page, struct writeback_control *wbc)
624 {
625 	struct extent_io_tree *tree;
626 	tree = &BTRFS_I(page->mapping->host)->io_tree;
627 
628 	if (current->flags & PF_MEMALLOC) {
629 		redirty_page_for_writepage(wbc, page);
630 		unlock_page(page);
631 		return 0;
632 	}
633 	return extent_write_full_page(tree, page, btree_get_extent, wbc);
634 }
635 
636 static int btree_writepages(struct address_space *mapping,
637 			    struct writeback_control *wbc)
638 {
639 	struct extent_io_tree *tree;
640 	tree = &BTRFS_I(mapping->host)->io_tree;
641 	if (wbc->sync_mode == WB_SYNC_NONE) {
642 		u64 num_dirty;
643 		u64 start = 0;
644 		unsigned long thresh = 32 * 1024 * 1024;
645 
646 		if (wbc->for_kupdate)
647 			return 0;
648 
649 		num_dirty = count_range_bits(tree, &start, (u64)-1,
650 					     thresh, EXTENT_DIRTY);
651 		if (num_dirty < thresh)
652 			return 0;
653 	}
654 	return extent_writepages(tree, mapping, btree_get_extent, wbc);
655 }
656 
657 static int btree_readpage(struct file *file, struct page *page)
658 {
659 	struct extent_io_tree *tree;
660 	tree = &BTRFS_I(page->mapping->host)->io_tree;
661 	return extent_read_full_page(tree, page, btree_get_extent);
662 }
663 
664 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
665 {
666 	struct extent_io_tree *tree;
667 	struct extent_map_tree *map;
668 	int ret;
669 
670 	if (PageWriteback(page) || PageDirty(page))
671 		return 0;
672 
673 	tree = &BTRFS_I(page->mapping->host)->io_tree;
674 	map = &BTRFS_I(page->mapping->host)->extent_tree;
675 
676 	ret = try_release_extent_state(map, tree, page, gfp_flags);
677 	if (!ret)
678 		return 0;
679 
680 	ret = try_release_extent_buffer(tree, page);
681 	if (ret == 1) {
682 		ClearPagePrivate(page);
683 		set_page_private(page, 0);
684 		page_cache_release(page);
685 	}
686 
687 	return ret;
688 }
689 
690 static void btree_invalidatepage(struct page *page, unsigned long offset)
691 {
692 	struct extent_io_tree *tree;
693 	tree = &BTRFS_I(page->mapping->host)->io_tree;
694 	extent_invalidatepage(tree, page, offset);
695 	btree_releasepage(page, GFP_NOFS);
696 	if (PagePrivate(page)) {
697 		printk(KERN_WARNING "btrfs warning page private not zero "
698 		       "on page %llu\n", (unsigned long long)page_offset(page));
699 		ClearPagePrivate(page);
700 		set_page_private(page, 0);
701 		page_cache_release(page);
702 	}
703 }
704 
705 #if 0
706 static int btree_writepage(struct page *page, struct writeback_control *wbc)
707 {
708 	struct buffer_head *bh;
709 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
710 	struct buffer_head *head;
711 	if (!page_has_buffers(page)) {
712 		create_empty_buffers(page, root->fs_info->sb->s_blocksize,
713 					(1 << BH_Dirty)|(1 << BH_Uptodate));
714 	}
715 	head = page_buffers(page);
716 	bh = head;
717 	do {
718 		if (buffer_dirty(bh))
719 			csum_tree_block(root, bh, 0);
720 		bh = bh->b_this_page;
721 	} while (bh != head);
722 	return block_write_full_page(page, btree_get_block, wbc);
723 }
724 #endif
725 
726 static struct address_space_operations btree_aops = {
727 	.readpage	= btree_readpage,
728 	.writepage	= btree_writepage,
729 	.writepages	= btree_writepages,
730 	.releasepage	= btree_releasepage,
731 	.invalidatepage = btree_invalidatepage,
732 	.sync_page	= block_sync_page,
733 };
734 
735 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
736 			 u64 parent_transid)
737 {
738 	struct extent_buffer *buf = NULL;
739 	struct inode *btree_inode = root->fs_info->btree_inode;
740 	int ret = 0;
741 
742 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
743 	if (!buf)
744 		return 0;
745 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
746 				 buf, 0, 0, btree_get_extent, 0);
747 	free_extent_buffer(buf);
748 	return ret;
749 }
750 
751 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
752 					    u64 bytenr, u32 blocksize)
753 {
754 	struct inode *btree_inode = root->fs_info->btree_inode;
755 	struct extent_buffer *eb;
756 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
757 				bytenr, blocksize, GFP_NOFS);
758 	return eb;
759 }
760 
761 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
762 						 u64 bytenr, u32 blocksize)
763 {
764 	struct inode *btree_inode = root->fs_info->btree_inode;
765 	struct extent_buffer *eb;
766 
767 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
768 				 bytenr, blocksize, NULL, GFP_NOFS);
769 	return eb;
770 }
771 
772 
773 int btrfs_write_tree_block(struct extent_buffer *buf)
774 {
775 	return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
776 				      buf->start + buf->len - 1, WB_SYNC_ALL);
777 }
778 
779 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
780 {
781 	return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
782 				  buf->start, buf->start + buf->len - 1);
783 }
784 
785 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
786 				      u32 blocksize, u64 parent_transid)
787 {
788 	struct extent_buffer *buf = NULL;
789 	struct inode *btree_inode = root->fs_info->btree_inode;
790 	struct extent_io_tree *io_tree;
791 	int ret;
792 
793 	io_tree = &BTRFS_I(btree_inode)->io_tree;
794 
795 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
796 	if (!buf)
797 		return NULL;
798 
799 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
800 
801 	if (ret == 0)
802 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
803 	else
804 		WARN_ON(1);
805 	return buf;
806 
807 }
808 
809 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
810 		     struct extent_buffer *buf)
811 {
812 	struct inode *btree_inode = root->fs_info->btree_inode;
813 	if (btrfs_header_generation(buf) ==
814 	    root->fs_info->running_transaction->transid) {
815 		WARN_ON(!btrfs_tree_locked(buf));
816 
817 		/* ugh, clear_extent_buffer_dirty can be expensive */
818 		btrfs_set_lock_blocking(buf);
819 
820 		clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
821 					  buf);
822 	}
823 	return 0;
824 }
825 
826 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
827 			u32 stripesize, struct btrfs_root *root,
828 			struct btrfs_fs_info *fs_info,
829 			u64 objectid)
830 {
831 	root->node = NULL;
832 	root->commit_root = NULL;
833 	root->ref_tree = NULL;
834 	root->sectorsize = sectorsize;
835 	root->nodesize = nodesize;
836 	root->leafsize = leafsize;
837 	root->stripesize = stripesize;
838 	root->ref_cows = 0;
839 	root->track_dirty = 0;
840 
841 	root->fs_info = fs_info;
842 	root->objectid = objectid;
843 	root->last_trans = 0;
844 	root->highest_inode = 0;
845 	root->last_inode_alloc = 0;
846 	root->name = NULL;
847 	root->in_sysfs = 0;
848 
849 	INIT_LIST_HEAD(&root->dirty_list);
850 	INIT_LIST_HEAD(&root->orphan_list);
851 	INIT_LIST_HEAD(&root->dead_list);
852 	spin_lock_init(&root->node_lock);
853 	spin_lock_init(&root->list_lock);
854 	mutex_init(&root->objectid_mutex);
855 	mutex_init(&root->log_mutex);
856 	init_waitqueue_head(&root->log_writer_wait);
857 	init_waitqueue_head(&root->log_commit_wait[0]);
858 	init_waitqueue_head(&root->log_commit_wait[1]);
859 	atomic_set(&root->log_commit[0], 0);
860 	atomic_set(&root->log_commit[1], 0);
861 	atomic_set(&root->log_writers, 0);
862 	root->log_batch = 0;
863 	root->log_transid = 0;
864 	extent_io_tree_init(&root->dirty_log_pages,
865 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
866 
867 	btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
868 	root->ref_tree = &root->ref_tree_struct;
869 
870 	memset(&root->root_key, 0, sizeof(root->root_key));
871 	memset(&root->root_item, 0, sizeof(root->root_item));
872 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
873 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
874 	root->defrag_trans_start = fs_info->generation;
875 	init_completion(&root->kobj_unregister);
876 	root->defrag_running = 0;
877 	root->defrag_level = 0;
878 	root->root_key.objectid = objectid;
879 	root->anon_super.s_root = NULL;
880 	root->anon_super.s_dev = 0;
881 	INIT_LIST_HEAD(&root->anon_super.s_list);
882 	INIT_LIST_HEAD(&root->anon_super.s_instances);
883 	init_rwsem(&root->anon_super.s_umount);
884 
885 	return 0;
886 }
887 
888 static int find_and_setup_root(struct btrfs_root *tree_root,
889 			       struct btrfs_fs_info *fs_info,
890 			       u64 objectid,
891 			       struct btrfs_root *root)
892 {
893 	int ret;
894 	u32 blocksize;
895 	u64 generation;
896 
897 	__setup_root(tree_root->nodesize, tree_root->leafsize,
898 		     tree_root->sectorsize, tree_root->stripesize,
899 		     root, fs_info, objectid);
900 	ret = btrfs_find_last_root(tree_root, objectid,
901 				   &root->root_item, &root->root_key);
902 	BUG_ON(ret);
903 
904 	generation = btrfs_root_generation(&root->root_item);
905 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
906 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
907 				     blocksize, generation);
908 	BUG_ON(!root->node);
909 	return 0;
910 }
911 
912 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
913 			     struct btrfs_fs_info *fs_info)
914 {
915 	struct extent_buffer *eb;
916 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
917 	u64 start = 0;
918 	u64 end = 0;
919 	int ret;
920 
921 	if (!log_root_tree)
922 		return 0;
923 
924 	while (1) {
925 		ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
926 				    0, &start, &end, EXTENT_DIRTY);
927 		if (ret)
928 			break;
929 
930 		clear_extent_dirty(&log_root_tree->dirty_log_pages,
931 				   start, end, GFP_NOFS);
932 	}
933 	eb = fs_info->log_root_tree->node;
934 
935 	WARN_ON(btrfs_header_level(eb) != 0);
936 	WARN_ON(btrfs_header_nritems(eb) != 0);
937 
938 	ret = btrfs_free_reserved_extent(fs_info->tree_root,
939 				eb->start, eb->len);
940 	BUG_ON(ret);
941 
942 	free_extent_buffer(eb);
943 	kfree(fs_info->log_root_tree);
944 	fs_info->log_root_tree = NULL;
945 	return 0;
946 }
947 
948 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
949 					 struct btrfs_fs_info *fs_info)
950 {
951 	struct btrfs_root *root;
952 	struct btrfs_root *tree_root = fs_info->tree_root;
953 	struct extent_buffer *leaf;
954 
955 	root = kzalloc(sizeof(*root), GFP_NOFS);
956 	if (!root)
957 		return ERR_PTR(-ENOMEM);
958 
959 	__setup_root(tree_root->nodesize, tree_root->leafsize,
960 		     tree_root->sectorsize, tree_root->stripesize,
961 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
962 
963 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
964 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
965 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
966 	/*
967 	 * log trees do not get reference counted because they go away
968 	 * before a real commit is actually done.  They do store pointers
969 	 * to file data extents, and those reference counts still get
970 	 * updated (along with back refs to the log tree).
971 	 */
972 	root->ref_cows = 0;
973 
974 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
975 				      0, BTRFS_TREE_LOG_OBJECTID,
976 				      trans->transid, 0, 0, 0);
977 	if (IS_ERR(leaf)) {
978 		kfree(root);
979 		return ERR_CAST(leaf);
980 	}
981 
982 	root->node = leaf;
983 	btrfs_set_header_nritems(root->node, 0);
984 	btrfs_set_header_level(root->node, 0);
985 	btrfs_set_header_bytenr(root->node, root->node->start);
986 	btrfs_set_header_generation(root->node, trans->transid);
987 	btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID);
988 
989 	write_extent_buffer(root->node, root->fs_info->fsid,
990 			    (unsigned long)btrfs_header_fsid(root->node),
991 			    BTRFS_FSID_SIZE);
992 	btrfs_mark_buffer_dirty(root->node);
993 	btrfs_tree_unlock(root->node);
994 	return root;
995 }
996 
997 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
998 			     struct btrfs_fs_info *fs_info)
999 {
1000 	struct btrfs_root *log_root;
1001 
1002 	log_root = alloc_log_tree(trans, fs_info);
1003 	if (IS_ERR(log_root))
1004 		return PTR_ERR(log_root);
1005 	WARN_ON(fs_info->log_root_tree);
1006 	fs_info->log_root_tree = log_root;
1007 	return 0;
1008 }
1009 
1010 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1011 		       struct btrfs_root *root)
1012 {
1013 	struct btrfs_root *log_root;
1014 	struct btrfs_inode_item *inode_item;
1015 
1016 	log_root = alloc_log_tree(trans, root->fs_info);
1017 	if (IS_ERR(log_root))
1018 		return PTR_ERR(log_root);
1019 
1020 	log_root->last_trans = trans->transid;
1021 	log_root->root_key.offset = root->root_key.objectid;
1022 
1023 	inode_item = &log_root->root_item.inode;
1024 	inode_item->generation = cpu_to_le64(1);
1025 	inode_item->size = cpu_to_le64(3);
1026 	inode_item->nlink = cpu_to_le32(1);
1027 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1028 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1029 
1030 	btrfs_set_root_bytenr(&log_root->root_item, log_root->node->start);
1031 	btrfs_set_root_generation(&log_root->root_item, trans->transid);
1032 
1033 	WARN_ON(root->log_root);
1034 	root->log_root = log_root;
1035 	root->log_transid = 0;
1036 	return 0;
1037 }
1038 
1039 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1040 					       struct btrfs_key *location)
1041 {
1042 	struct btrfs_root *root;
1043 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1044 	struct btrfs_path *path;
1045 	struct extent_buffer *l;
1046 	u64 highest_inode;
1047 	u64 generation;
1048 	u32 blocksize;
1049 	int ret = 0;
1050 
1051 	root = kzalloc(sizeof(*root), GFP_NOFS);
1052 	if (!root)
1053 		return ERR_PTR(-ENOMEM);
1054 	if (location->offset == (u64)-1) {
1055 		ret = find_and_setup_root(tree_root, fs_info,
1056 					  location->objectid, root);
1057 		if (ret) {
1058 			kfree(root);
1059 			return ERR_PTR(ret);
1060 		}
1061 		goto insert;
1062 	}
1063 
1064 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1065 		     tree_root->sectorsize, tree_root->stripesize,
1066 		     root, fs_info, location->objectid);
1067 
1068 	path = btrfs_alloc_path();
1069 	BUG_ON(!path);
1070 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1071 	if (ret != 0) {
1072 		if (ret > 0)
1073 			ret = -ENOENT;
1074 		goto out;
1075 	}
1076 	l = path->nodes[0];
1077 	read_extent_buffer(l, &root->root_item,
1078 	       btrfs_item_ptr_offset(l, path->slots[0]),
1079 	       sizeof(root->root_item));
1080 	memcpy(&root->root_key, location, sizeof(*location));
1081 	ret = 0;
1082 out:
1083 	btrfs_release_path(root, path);
1084 	btrfs_free_path(path);
1085 	if (ret) {
1086 		kfree(root);
1087 		return ERR_PTR(ret);
1088 	}
1089 	generation = btrfs_root_generation(&root->root_item);
1090 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1091 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1092 				     blocksize, generation);
1093 	BUG_ON(!root->node);
1094 insert:
1095 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1096 		root->ref_cows = 1;
1097 		ret = btrfs_find_highest_inode(root, &highest_inode);
1098 		if (ret == 0) {
1099 			root->highest_inode = highest_inode;
1100 			root->last_inode_alloc = highest_inode;
1101 		}
1102 	}
1103 	return root;
1104 }
1105 
1106 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1107 					u64 root_objectid)
1108 {
1109 	struct btrfs_root *root;
1110 
1111 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1112 		return fs_info->tree_root;
1113 	if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1114 		return fs_info->extent_root;
1115 
1116 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1117 				 (unsigned long)root_objectid);
1118 	return root;
1119 }
1120 
1121 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1122 					      struct btrfs_key *location)
1123 {
1124 	struct btrfs_root *root;
1125 	int ret;
1126 
1127 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1128 		return fs_info->tree_root;
1129 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1130 		return fs_info->extent_root;
1131 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1132 		return fs_info->chunk_root;
1133 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1134 		return fs_info->dev_root;
1135 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1136 		return fs_info->csum_root;
1137 
1138 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1139 				 (unsigned long)location->objectid);
1140 	if (root)
1141 		return root;
1142 
1143 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1144 	if (IS_ERR(root))
1145 		return root;
1146 
1147 	set_anon_super(&root->anon_super, NULL);
1148 
1149 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1150 				(unsigned long)root->root_key.objectid,
1151 				root);
1152 	if (ret) {
1153 		free_extent_buffer(root->node);
1154 		kfree(root);
1155 		return ERR_PTR(ret);
1156 	}
1157 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
1158 		ret = btrfs_find_dead_roots(fs_info->tree_root,
1159 					    root->root_key.objectid, root);
1160 		BUG_ON(ret);
1161 		btrfs_orphan_cleanup(root);
1162 	}
1163 	return root;
1164 }
1165 
1166 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1167 				      struct btrfs_key *location,
1168 				      const char *name, int namelen)
1169 {
1170 	struct btrfs_root *root;
1171 	int ret;
1172 
1173 	root = btrfs_read_fs_root_no_name(fs_info, location);
1174 	if (!root)
1175 		return NULL;
1176 
1177 	if (root->in_sysfs)
1178 		return root;
1179 
1180 	ret = btrfs_set_root_name(root, name, namelen);
1181 	if (ret) {
1182 		free_extent_buffer(root->node);
1183 		kfree(root);
1184 		return ERR_PTR(ret);
1185 	}
1186 #if 0
1187 	ret = btrfs_sysfs_add_root(root);
1188 	if (ret) {
1189 		free_extent_buffer(root->node);
1190 		kfree(root->name);
1191 		kfree(root);
1192 		return ERR_PTR(ret);
1193 	}
1194 #endif
1195 	root->in_sysfs = 1;
1196 	return root;
1197 }
1198 
1199 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1200 {
1201 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1202 	int ret = 0;
1203 	struct btrfs_device *device;
1204 	struct backing_dev_info *bdi;
1205 #if 0
1206 	if ((bdi_bits & (1 << BDI_write_congested)) &&
1207 	    btrfs_congested_async(info, 0))
1208 		return 1;
1209 #endif
1210 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1211 		if (!device->bdev)
1212 			continue;
1213 		bdi = blk_get_backing_dev_info(device->bdev);
1214 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1215 			ret = 1;
1216 			break;
1217 		}
1218 	}
1219 	return ret;
1220 }
1221 
1222 /*
1223  * this unplugs every device on the box, and it is only used when page
1224  * is null
1225  */
1226 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1227 {
1228 	struct btrfs_device *device;
1229 	struct btrfs_fs_info *info;
1230 
1231 	info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1232 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1233 		if (!device->bdev)
1234 			continue;
1235 
1236 		bdi = blk_get_backing_dev_info(device->bdev);
1237 		if (bdi->unplug_io_fn)
1238 			bdi->unplug_io_fn(bdi, page);
1239 	}
1240 }
1241 
1242 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1243 {
1244 	struct inode *inode;
1245 	struct extent_map_tree *em_tree;
1246 	struct extent_map *em;
1247 	struct address_space *mapping;
1248 	u64 offset;
1249 
1250 	/* the generic O_DIRECT read code does this */
1251 	if (1 || !page) {
1252 		__unplug_io_fn(bdi, page);
1253 		return;
1254 	}
1255 
1256 	/*
1257 	 * page->mapping may change at any time.  Get a consistent copy
1258 	 * and use that for everything below
1259 	 */
1260 	smp_mb();
1261 	mapping = page->mapping;
1262 	if (!mapping)
1263 		return;
1264 
1265 	inode = mapping->host;
1266 
1267 	/*
1268 	 * don't do the expensive searching for a small number of
1269 	 * devices
1270 	 */
1271 	if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1272 		__unplug_io_fn(bdi, page);
1273 		return;
1274 	}
1275 
1276 	offset = page_offset(page);
1277 
1278 	em_tree = &BTRFS_I(inode)->extent_tree;
1279 	spin_lock(&em_tree->lock);
1280 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1281 	spin_unlock(&em_tree->lock);
1282 	if (!em) {
1283 		__unplug_io_fn(bdi, page);
1284 		return;
1285 	}
1286 
1287 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1288 		free_extent_map(em);
1289 		__unplug_io_fn(bdi, page);
1290 		return;
1291 	}
1292 	offset = offset - em->start;
1293 	btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1294 			  em->block_start + offset, page);
1295 	free_extent_map(em);
1296 }
1297 
1298 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1299 {
1300 	bdi_init(bdi);
1301 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1302 	bdi->state		= 0;
1303 	bdi->capabilities	= default_backing_dev_info.capabilities;
1304 	bdi->unplug_io_fn	= btrfs_unplug_io_fn;
1305 	bdi->unplug_io_data	= info;
1306 	bdi->congested_fn	= btrfs_congested_fn;
1307 	bdi->congested_data	= info;
1308 	return 0;
1309 }
1310 
1311 static int bio_ready_for_csum(struct bio *bio)
1312 {
1313 	u64 length = 0;
1314 	u64 buf_len = 0;
1315 	u64 start = 0;
1316 	struct page *page;
1317 	struct extent_io_tree *io_tree = NULL;
1318 	struct btrfs_fs_info *info = NULL;
1319 	struct bio_vec *bvec;
1320 	int i;
1321 	int ret;
1322 
1323 	bio_for_each_segment(bvec, bio, i) {
1324 		page = bvec->bv_page;
1325 		if (page->private == EXTENT_PAGE_PRIVATE) {
1326 			length += bvec->bv_len;
1327 			continue;
1328 		}
1329 		if (!page->private) {
1330 			length += bvec->bv_len;
1331 			continue;
1332 		}
1333 		length = bvec->bv_len;
1334 		buf_len = page->private >> 2;
1335 		start = page_offset(page) + bvec->bv_offset;
1336 		io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1337 		info = BTRFS_I(page->mapping->host)->root->fs_info;
1338 	}
1339 	/* are we fully contained in this bio? */
1340 	if (buf_len <= length)
1341 		return 1;
1342 
1343 	ret = extent_range_uptodate(io_tree, start + length,
1344 				    start + buf_len - 1);
1345 	if (ret == 1)
1346 		return ret;
1347 	return ret;
1348 }
1349 
1350 /*
1351  * called by the kthread helper functions to finally call the bio end_io
1352  * functions.  This is where read checksum verification actually happens
1353  */
1354 static void end_workqueue_fn(struct btrfs_work *work)
1355 {
1356 	struct bio *bio;
1357 	struct end_io_wq *end_io_wq;
1358 	struct btrfs_fs_info *fs_info;
1359 	int error;
1360 
1361 	end_io_wq = container_of(work, struct end_io_wq, work);
1362 	bio = end_io_wq->bio;
1363 	fs_info = end_io_wq->info;
1364 
1365 	/* metadata bio reads are special because the whole tree block must
1366 	 * be checksummed at once.  This makes sure the entire block is in
1367 	 * ram and up to date before trying to verify things.  For
1368 	 * blocksize <= pagesize, it is basically a noop
1369 	 */
1370 	if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1371 	    !bio_ready_for_csum(bio)) {
1372 		btrfs_queue_worker(&fs_info->endio_meta_workers,
1373 				   &end_io_wq->work);
1374 		return;
1375 	}
1376 	error = end_io_wq->error;
1377 	bio->bi_private = end_io_wq->private;
1378 	bio->bi_end_io = end_io_wq->end_io;
1379 	kfree(end_io_wq);
1380 	bio_endio(bio, error);
1381 }
1382 
1383 static int cleaner_kthread(void *arg)
1384 {
1385 	struct btrfs_root *root = arg;
1386 
1387 	do {
1388 		smp_mb();
1389 		if (root->fs_info->closing)
1390 			break;
1391 
1392 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1393 		mutex_lock(&root->fs_info->cleaner_mutex);
1394 		btrfs_clean_old_snapshots(root);
1395 		mutex_unlock(&root->fs_info->cleaner_mutex);
1396 
1397 		if (freezing(current)) {
1398 			refrigerator();
1399 		} else {
1400 			smp_mb();
1401 			if (root->fs_info->closing)
1402 				break;
1403 			set_current_state(TASK_INTERRUPTIBLE);
1404 			schedule();
1405 			__set_current_state(TASK_RUNNING);
1406 		}
1407 	} while (!kthread_should_stop());
1408 	return 0;
1409 }
1410 
1411 static int transaction_kthread(void *arg)
1412 {
1413 	struct btrfs_root *root = arg;
1414 	struct btrfs_trans_handle *trans;
1415 	struct btrfs_transaction *cur;
1416 	unsigned long now;
1417 	unsigned long delay;
1418 	int ret;
1419 
1420 	do {
1421 		smp_mb();
1422 		if (root->fs_info->closing)
1423 			break;
1424 
1425 		delay = HZ * 30;
1426 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1427 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1428 
1429 		if (root->fs_info->total_ref_cache_size > 20 * 1024 * 1024) {
1430 			printk(KERN_INFO "btrfs: total reference cache "
1431 			       "size %llu\n",
1432 			       root->fs_info->total_ref_cache_size);
1433 		}
1434 
1435 		mutex_lock(&root->fs_info->trans_mutex);
1436 		cur = root->fs_info->running_transaction;
1437 		if (!cur) {
1438 			mutex_unlock(&root->fs_info->trans_mutex);
1439 			goto sleep;
1440 		}
1441 
1442 		now = get_seconds();
1443 		if (now < cur->start_time || now - cur->start_time < 30) {
1444 			mutex_unlock(&root->fs_info->trans_mutex);
1445 			delay = HZ * 5;
1446 			goto sleep;
1447 		}
1448 		mutex_unlock(&root->fs_info->trans_mutex);
1449 		trans = btrfs_start_transaction(root, 1);
1450 		ret = btrfs_commit_transaction(trans, root);
1451 sleep:
1452 		wake_up_process(root->fs_info->cleaner_kthread);
1453 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1454 
1455 		if (freezing(current)) {
1456 			refrigerator();
1457 		} else {
1458 			if (root->fs_info->closing)
1459 				break;
1460 			set_current_state(TASK_INTERRUPTIBLE);
1461 			schedule_timeout(delay);
1462 			__set_current_state(TASK_RUNNING);
1463 		}
1464 	} while (!kthread_should_stop());
1465 	return 0;
1466 }
1467 
1468 struct btrfs_root *open_ctree(struct super_block *sb,
1469 			      struct btrfs_fs_devices *fs_devices,
1470 			      char *options)
1471 {
1472 	u32 sectorsize;
1473 	u32 nodesize;
1474 	u32 leafsize;
1475 	u32 blocksize;
1476 	u32 stripesize;
1477 	u64 generation;
1478 	u64 features;
1479 	struct btrfs_key location;
1480 	struct buffer_head *bh;
1481 	struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1482 						 GFP_NOFS);
1483 	struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1484 						 GFP_NOFS);
1485 	struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1486 					       GFP_NOFS);
1487 	struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1488 						GFP_NOFS);
1489 	struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1490 						GFP_NOFS);
1491 	struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1492 					      GFP_NOFS);
1493 	struct btrfs_root *log_tree_root;
1494 
1495 	int ret;
1496 	int err = -EINVAL;
1497 
1498 	struct btrfs_super_block *disk_super;
1499 
1500 	if (!extent_root || !tree_root || !fs_info ||
1501 	    !chunk_root || !dev_root || !csum_root) {
1502 		err = -ENOMEM;
1503 		goto fail;
1504 	}
1505 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1506 	INIT_LIST_HEAD(&fs_info->trans_list);
1507 	INIT_LIST_HEAD(&fs_info->dead_roots);
1508 	INIT_LIST_HEAD(&fs_info->hashers);
1509 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1510 	spin_lock_init(&fs_info->delalloc_lock);
1511 	spin_lock_init(&fs_info->new_trans_lock);
1512 	spin_lock_init(&fs_info->ref_cache_lock);
1513 
1514 	init_completion(&fs_info->kobj_unregister);
1515 	fs_info->tree_root = tree_root;
1516 	fs_info->extent_root = extent_root;
1517 	fs_info->csum_root = csum_root;
1518 	fs_info->chunk_root = chunk_root;
1519 	fs_info->dev_root = dev_root;
1520 	fs_info->fs_devices = fs_devices;
1521 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1522 	INIT_LIST_HEAD(&fs_info->space_info);
1523 	btrfs_mapping_init(&fs_info->mapping_tree);
1524 	atomic_set(&fs_info->nr_async_submits, 0);
1525 	atomic_set(&fs_info->async_delalloc_pages, 0);
1526 	atomic_set(&fs_info->async_submit_draining, 0);
1527 	atomic_set(&fs_info->nr_async_bios, 0);
1528 	atomic_set(&fs_info->throttles, 0);
1529 	atomic_set(&fs_info->throttle_gen, 0);
1530 	fs_info->sb = sb;
1531 	fs_info->max_extent = (u64)-1;
1532 	fs_info->max_inline = 8192 * 1024;
1533 	setup_bdi(fs_info, &fs_info->bdi);
1534 	fs_info->btree_inode = new_inode(sb);
1535 	fs_info->btree_inode->i_ino = 1;
1536 	fs_info->btree_inode->i_nlink = 1;
1537 
1538 	fs_info->thread_pool_size = min_t(unsigned long,
1539 					  num_online_cpus() + 2, 8);
1540 
1541 	INIT_LIST_HEAD(&fs_info->ordered_extents);
1542 	spin_lock_init(&fs_info->ordered_extent_lock);
1543 
1544 	sb->s_blocksize = 4096;
1545 	sb->s_blocksize_bits = blksize_bits(4096);
1546 
1547 	/*
1548 	 * we set the i_size on the btree inode to the max possible int.
1549 	 * the real end of the address space is determined by all of
1550 	 * the devices in the system
1551 	 */
1552 	fs_info->btree_inode->i_size = OFFSET_MAX;
1553 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1554 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1555 
1556 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1557 			     fs_info->btree_inode->i_mapping,
1558 			     GFP_NOFS);
1559 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1560 			     GFP_NOFS);
1561 
1562 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1563 
1564 	spin_lock_init(&fs_info->block_group_cache_lock);
1565 	fs_info->block_group_cache_tree.rb_node = NULL;
1566 
1567 	extent_io_tree_init(&fs_info->pinned_extents,
1568 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1569 	extent_io_tree_init(&fs_info->pending_del,
1570 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1571 	extent_io_tree_init(&fs_info->extent_ins,
1572 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1573 	fs_info->do_barriers = 1;
1574 
1575 	INIT_LIST_HEAD(&fs_info->dead_reloc_roots);
1576 	btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree);
1577 	btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree);
1578 
1579 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
1580 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1581 	       sizeof(struct btrfs_key));
1582 	insert_inode_hash(fs_info->btree_inode);
1583 
1584 	mutex_init(&fs_info->trans_mutex);
1585 	mutex_init(&fs_info->tree_log_mutex);
1586 	mutex_init(&fs_info->drop_mutex);
1587 	mutex_init(&fs_info->extent_ins_mutex);
1588 	mutex_init(&fs_info->pinned_mutex);
1589 	mutex_init(&fs_info->chunk_mutex);
1590 	mutex_init(&fs_info->transaction_kthread_mutex);
1591 	mutex_init(&fs_info->cleaner_mutex);
1592 	mutex_init(&fs_info->volume_mutex);
1593 	mutex_init(&fs_info->tree_reloc_mutex);
1594 	init_waitqueue_head(&fs_info->transaction_throttle);
1595 	init_waitqueue_head(&fs_info->transaction_wait);
1596 	init_waitqueue_head(&fs_info->async_submit_wait);
1597 
1598 	__setup_root(4096, 4096, 4096, 4096, tree_root,
1599 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
1600 
1601 
1602 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1603 	if (!bh)
1604 		goto fail_iput;
1605 
1606 	memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1607 	memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1608 	       sizeof(fs_info->super_for_commit));
1609 	brelse(bh);
1610 
1611 	memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1612 
1613 	disk_super = &fs_info->super_copy;
1614 	if (!btrfs_super_root(disk_super))
1615 		goto fail_iput;
1616 
1617 	ret = btrfs_parse_options(tree_root, options);
1618 	if (ret) {
1619 		err = ret;
1620 		goto fail_iput;
1621 	}
1622 
1623 	features = btrfs_super_incompat_flags(disk_super) &
1624 		~BTRFS_FEATURE_INCOMPAT_SUPP;
1625 	if (features) {
1626 		printk(KERN_ERR "BTRFS: couldn't mount because of "
1627 		       "unsupported optional features (%Lx).\n",
1628 		       features);
1629 		err = -EINVAL;
1630 		goto fail_iput;
1631 	}
1632 
1633 	features = btrfs_super_compat_ro_flags(disk_super) &
1634 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
1635 	if (!(sb->s_flags & MS_RDONLY) && features) {
1636 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1637 		       "unsupported option features (%Lx).\n",
1638 		       features);
1639 		err = -EINVAL;
1640 		goto fail_iput;
1641 	}
1642 
1643 	/*
1644 	 * we need to start all the end_io workers up front because the
1645 	 * queue work function gets called at interrupt time, and so it
1646 	 * cannot dynamically grow.
1647 	 */
1648 	btrfs_init_workers(&fs_info->workers, "worker",
1649 			   fs_info->thread_pool_size);
1650 
1651 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1652 			   fs_info->thread_pool_size);
1653 
1654 	btrfs_init_workers(&fs_info->submit_workers, "submit",
1655 			   min_t(u64, fs_devices->num_devices,
1656 			   fs_info->thread_pool_size));
1657 
1658 	/* a higher idle thresh on the submit workers makes it much more
1659 	 * likely that bios will be send down in a sane order to the
1660 	 * devices
1661 	 */
1662 	fs_info->submit_workers.idle_thresh = 64;
1663 
1664 	fs_info->workers.idle_thresh = 16;
1665 	fs_info->workers.ordered = 1;
1666 
1667 	fs_info->delalloc_workers.idle_thresh = 2;
1668 	fs_info->delalloc_workers.ordered = 1;
1669 
1670 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
1671 	btrfs_init_workers(&fs_info->endio_workers, "endio",
1672 			   fs_info->thread_pool_size);
1673 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1674 			   fs_info->thread_pool_size);
1675 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
1676 			   "endio-meta-write", fs_info->thread_pool_size);
1677 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1678 			   fs_info->thread_pool_size);
1679 
1680 	/*
1681 	 * endios are largely parallel and should have a very
1682 	 * low idle thresh
1683 	 */
1684 	fs_info->endio_workers.idle_thresh = 4;
1685 	fs_info->endio_meta_workers.idle_thresh = 4;
1686 
1687 	fs_info->endio_write_workers.idle_thresh = 64;
1688 	fs_info->endio_meta_write_workers.idle_thresh = 64;
1689 
1690 	btrfs_start_workers(&fs_info->workers, 1);
1691 	btrfs_start_workers(&fs_info->submit_workers, 1);
1692 	btrfs_start_workers(&fs_info->delalloc_workers, 1);
1693 	btrfs_start_workers(&fs_info->fixup_workers, 1);
1694 	btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1695 	btrfs_start_workers(&fs_info->endio_meta_workers,
1696 			    fs_info->thread_pool_size);
1697 	btrfs_start_workers(&fs_info->endio_meta_write_workers,
1698 			    fs_info->thread_pool_size);
1699 	btrfs_start_workers(&fs_info->endio_write_workers,
1700 			    fs_info->thread_pool_size);
1701 
1702 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1703 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1704 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1705 
1706 	nodesize = btrfs_super_nodesize(disk_super);
1707 	leafsize = btrfs_super_leafsize(disk_super);
1708 	sectorsize = btrfs_super_sectorsize(disk_super);
1709 	stripesize = btrfs_super_stripesize(disk_super);
1710 	tree_root->nodesize = nodesize;
1711 	tree_root->leafsize = leafsize;
1712 	tree_root->sectorsize = sectorsize;
1713 	tree_root->stripesize = stripesize;
1714 
1715 	sb->s_blocksize = sectorsize;
1716 	sb->s_blocksize_bits = blksize_bits(sectorsize);
1717 
1718 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1719 		    sizeof(disk_super->magic))) {
1720 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1721 		goto fail_sb_buffer;
1722 	}
1723 
1724 	mutex_lock(&fs_info->chunk_mutex);
1725 	ret = btrfs_read_sys_array(tree_root);
1726 	mutex_unlock(&fs_info->chunk_mutex);
1727 	if (ret) {
1728 		printk(KERN_WARNING "btrfs: failed to read the system "
1729 		       "array on %s\n", sb->s_id);
1730 		goto fail_sys_array;
1731 	}
1732 
1733 	blocksize = btrfs_level_size(tree_root,
1734 				     btrfs_super_chunk_root_level(disk_super));
1735 	generation = btrfs_super_chunk_root_generation(disk_super);
1736 
1737 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
1738 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1739 
1740 	chunk_root->node = read_tree_block(chunk_root,
1741 					   btrfs_super_chunk_root(disk_super),
1742 					   blocksize, generation);
1743 	BUG_ON(!chunk_root->node);
1744 
1745 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1746 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1747 	   BTRFS_UUID_SIZE);
1748 
1749 	mutex_lock(&fs_info->chunk_mutex);
1750 	ret = btrfs_read_chunk_tree(chunk_root);
1751 	mutex_unlock(&fs_info->chunk_mutex);
1752 	if (ret) {
1753 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1754 		       sb->s_id);
1755 		goto fail_chunk_root;
1756 	}
1757 
1758 	btrfs_close_extra_devices(fs_devices);
1759 
1760 	blocksize = btrfs_level_size(tree_root,
1761 				     btrfs_super_root_level(disk_super));
1762 	generation = btrfs_super_generation(disk_super);
1763 
1764 	tree_root->node = read_tree_block(tree_root,
1765 					  btrfs_super_root(disk_super),
1766 					  blocksize, generation);
1767 	if (!tree_root->node)
1768 		goto fail_chunk_root;
1769 
1770 
1771 	ret = find_and_setup_root(tree_root, fs_info,
1772 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1773 	if (ret)
1774 		goto fail_tree_root;
1775 	extent_root->track_dirty = 1;
1776 
1777 	ret = find_and_setup_root(tree_root, fs_info,
1778 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
1779 	dev_root->track_dirty = 1;
1780 
1781 	if (ret)
1782 		goto fail_extent_root;
1783 
1784 	ret = find_and_setup_root(tree_root, fs_info,
1785 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
1786 	if (ret)
1787 		goto fail_extent_root;
1788 
1789 	csum_root->track_dirty = 1;
1790 
1791 	btrfs_read_block_groups(extent_root);
1792 
1793 	fs_info->generation = generation;
1794 	fs_info->last_trans_committed = generation;
1795 	fs_info->data_alloc_profile = (u64)-1;
1796 	fs_info->metadata_alloc_profile = (u64)-1;
1797 	fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1798 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1799 					       "btrfs-cleaner");
1800 	if (IS_ERR(fs_info->cleaner_kthread))
1801 		goto fail_csum_root;
1802 
1803 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
1804 						   tree_root,
1805 						   "btrfs-transaction");
1806 	if (IS_ERR(fs_info->transaction_kthread))
1807 		goto fail_cleaner;
1808 
1809 	if (btrfs_super_log_root(disk_super) != 0) {
1810 		u64 bytenr = btrfs_super_log_root(disk_super);
1811 
1812 		if (fs_devices->rw_devices == 0) {
1813 			printk(KERN_WARNING "Btrfs log replay required "
1814 			       "on RO media\n");
1815 			err = -EIO;
1816 			goto fail_trans_kthread;
1817 		}
1818 		blocksize =
1819 		     btrfs_level_size(tree_root,
1820 				      btrfs_super_log_root_level(disk_super));
1821 
1822 		log_tree_root = kzalloc(sizeof(struct btrfs_root),
1823 						      GFP_NOFS);
1824 
1825 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
1826 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1827 
1828 		log_tree_root->node = read_tree_block(tree_root, bytenr,
1829 						      blocksize,
1830 						      generation + 1);
1831 		ret = btrfs_recover_log_trees(log_tree_root);
1832 		BUG_ON(ret);
1833 
1834 		if (sb->s_flags & MS_RDONLY) {
1835 			ret =  btrfs_commit_super(tree_root);
1836 			BUG_ON(ret);
1837 		}
1838 	}
1839 
1840 	if (!(sb->s_flags & MS_RDONLY)) {
1841 		ret = btrfs_cleanup_reloc_trees(tree_root);
1842 		BUG_ON(ret);
1843 	}
1844 
1845 	location.objectid = BTRFS_FS_TREE_OBJECTID;
1846 	location.type = BTRFS_ROOT_ITEM_KEY;
1847 	location.offset = (u64)-1;
1848 
1849 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1850 	if (!fs_info->fs_root)
1851 		goto fail_trans_kthread;
1852 	return tree_root;
1853 
1854 fail_trans_kthread:
1855 	kthread_stop(fs_info->transaction_kthread);
1856 fail_cleaner:
1857 	kthread_stop(fs_info->cleaner_kthread);
1858 
1859 	/*
1860 	 * make sure we're done with the btree inode before we stop our
1861 	 * kthreads
1862 	 */
1863 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1864 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1865 
1866 fail_csum_root:
1867 	free_extent_buffer(csum_root->node);
1868 fail_extent_root:
1869 	free_extent_buffer(extent_root->node);
1870 fail_tree_root:
1871 	free_extent_buffer(tree_root->node);
1872 fail_chunk_root:
1873 	free_extent_buffer(chunk_root->node);
1874 fail_sys_array:
1875 	free_extent_buffer(dev_root->node);
1876 fail_sb_buffer:
1877 	btrfs_stop_workers(&fs_info->fixup_workers);
1878 	btrfs_stop_workers(&fs_info->delalloc_workers);
1879 	btrfs_stop_workers(&fs_info->workers);
1880 	btrfs_stop_workers(&fs_info->endio_workers);
1881 	btrfs_stop_workers(&fs_info->endio_meta_workers);
1882 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1883 	btrfs_stop_workers(&fs_info->endio_write_workers);
1884 	btrfs_stop_workers(&fs_info->submit_workers);
1885 fail_iput:
1886 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1887 	iput(fs_info->btree_inode);
1888 
1889 	btrfs_close_devices(fs_info->fs_devices);
1890 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
1891 	bdi_destroy(&fs_info->bdi);
1892 
1893 fail:
1894 	kfree(extent_root);
1895 	kfree(tree_root);
1896 	kfree(fs_info);
1897 	kfree(chunk_root);
1898 	kfree(dev_root);
1899 	kfree(csum_root);
1900 	return ERR_PTR(err);
1901 }
1902 
1903 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1904 {
1905 	char b[BDEVNAME_SIZE];
1906 
1907 	if (uptodate) {
1908 		set_buffer_uptodate(bh);
1909 	} else {
1910 		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1911 			printk(KERN_WARNING "lost page write due to "
1912 					"I/O error on %s\n",
1913 				       bdevname(bh->b_bdev, b));
1914 		}
1915 		/* note, we dont' set_buffer_write_io_error because we have
1916 		 * our own ways of dealing with the IO errors
1917 		 */
1918 		clear_buffer_uptodate(bh);
1919 	}
1920 	unlock_buffer(bh);
1921 	put_bh(bh);
1922 }
1923 
1924 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
1925 {
1926 	struct buffer_head *bh;
1927 	struct buffer_head *latest = NULL;
1928 	struct btrfs_super_block *super;
1929 	int i;
1930 	u64 transid = 0;
1931 	u64 bytenr;
1932 
1933 	/* we would like to check all the supers, but that would make
1934 	 * a btrfs mount succeed after a mkfs from a different FS.
1935 	 * So, we need to add a special mount option to scan for
1936 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1937 	 */
1938 	for (i = 0; i < 1; i++) {
1939 		bytenr = btrfs_sb_offset(i);
1940 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
1941 			break;
1942 		bh = __bread(bdev, bytenr / 4096, 4096);
1943 		if (!bh)
1944 			continue;
1945 
1946 		super = (struct btrfs_super_block *)bh->b_data;
1947 		if (btrfs_super_bytenr(super) != bytenr ||
1948 		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
1949 			    sizeof(super->magic))) {
1950 			brelse(bh);
1951 			continue;
1952 		}
1953 
1954 		if (!latest || btrfs_super_generation(super) > transid) {
1955 			brelse(latest);
1956 			latest = bh;
1957 			transid = btrfs_super_generation(super);
1958 		} else {
1959 			brelse(bh);
1960 		}
1961 	}
1962 	return latest;
1963 }
1964 
1965 static int write_dev_supers(struct btrfs_device *device,
1966 			    struct btrfs_super_block *sb,
1967 			    int do_barriers, int wait, int max_mirrors)
1968 {
1969 	struct buffer_head *bh;
1970 	int i;
1971 	int ret;
1972 	int errors = 0;
1973 	u32 crc;
1974 	u64 bytenr;
1975 	int last_barrier = 0;
1976 
1977 	if (max_mirrors == 0)
1978 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
1979 
1980 	/* make sure only the last submit_bh does a barrier */
1981 	if (do_barriers) {
1982 		for (i = 0; i < max_mirrors; i++) {
1983 			bytenr = btrfs_sb_offset(i);
1984 			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1985 			    device->total_bytes)
1986 				break;
1987 			last_barrier = i;
1988 		}
1989 	}
1990 
1991 	for (i = 0; i < max_mirrors; i++) {
1992 		bytenr = btrfs_sb_offset(i);
1993 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
1994 			break;
1995 
1996 		if (wait) {
1997 			bh = __find_get_block(device->bdev, bytenr / 4096,
1998 					      BTRFS_SUPER_INFO_SIZE);
1999 			BUG_ON(!bh);
2000 			brelse(bh);
2001 			wait_on_buffer(bh);
2002 			if (buffer_uptodate(bh)) {
2003 				brelse(bh);
2004 				continue;
2005 			}
2006 		} else {
2007 			btrfs_set_super_bytenr(sb, bytenr);
2008 
2009 			crc = ~(u32)0;
2010 			crc = btrfs_csum_data(NULL, (char *)sb +
2011 					      BTRFS_CSUM_SIZE, crc,
2012 					      BTRFS_SUPER_INFO_SIZE -
2013 					      BTRFS_CSUM_SIZE);
2014 			btrfs_csum_final(crc, sb->csum);
2015 
2016 			bh = __getblk(device->bdev, bytenr / 4096,
2017 				      BTRFS_SUPER_INFO_SIZE);
2018 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2019 
2020 			set_buffer_uptodate(bh);
2021 			get_bh(bh);
2022 			lock_buffer(bh);
2023 			bh->b_end_io = btrfs_end_buffer_write_sync;
2024 		}
2025 
2026 		if (i == last_barrier && do_barriers && device->barriers) {
2027 			ret = submit_bh(WRITE_BARRIER, bh);
2028 			if (ret == -EOPNOTSUPP) {
2029 				printk("btrfs: disabling barriers on dev %s\n",
2030 				       device->name);
2031 				set_buffer_uptodate(bh);
2032 				device->barriers = 0;
2033 				get_bh(bh);
2034 				lock_buffer(bh);
2035 				ret = submit_bh(WRITE, bh);
2036 			}
2037 		} else {
2038 			ret = submit_bh(WRITE, bh);
2039 		}
2040 
2041 		if (!ret && wait) {
2042 			wait_on_buffer(bh);
2043 			if (!buffer_uptodate(bh))
2044 				errors++;
2045 		} else if (ret) {
2046 			errors++;
2047 		}
2048 		if (wait)
2049 			brelse(bh);
2050 	}
2051 	return errors < i ? 0 : -1;
2052 }
2053 
2054 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2055 {
2056 	struct list_head *head = &root->fs_info->fs_devices->devices;
2057 	struct btrfs_device *dev;
2058 	struct btrfs_super_block *sb;
2059 	struct btrfs_dev_item *dev_item;
2060 	int ret;
2061 	int do_barriers;
2062 	int max_errors;
2063 	int total_errors = 0;
2064 	u64 flags;
2065 
2066 	max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2067 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2068 
2069 	sb = &root->fs_info->super_for_commit;
2070 	dev_item = &sb->dev_item;
2071 	list_for_each_entry(dev, head, dev_list) {
2072 		if (!dev->bdev) {
2073 			total_errors++;
2074 			continue;
2075 		}
2076 		if (!dev->in_fs_metadata || !dev->writeable)
2077 			continue;
2078 
2079 		btrfs_set_stack_device_generation(dev_item, 0);
2080 		btrfs_set_stack_device_type(dev_item, dev->type);
2081 		btrfs_set_stack_device_id(dev_item, dev->devid);
2082 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2083 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2084 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2085 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2086 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2087 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2088 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2089 
2090 		flags = btrfs_super_flags(sb);
2091 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2092 
2093 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2094 		if (ret)
2095 			total_errors++;
2096 	}
2097 	if (total_errors > max_errors) {
2098 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2099 		       total_errors);
2100 		BUG();
2101 	}
2102 
2103 	total_errors = 0;
2104 	list_for_each_entry(dev, head, dev_list) {
2105 		if (!dev->bdev)
2106 			continue;
2107 		if (!dev->in_fs_metadata || !dev->writeable)
2108 			continue;
2109 
2110 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2111 		if (ret)
2112 			total_errors++;
2113 	}
2114 	if (total_errors > max_errors) {
2115 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2116 		       total_errors);
2117 		BUG();
2118 	}
2119 	return 0;
2120 }
2121 
2122 int write_ctree_super(struct btrfs_trans_handle *trans,
2123 		      struct btrfs_root *root, int max_mirrors)
2124 {
2125 	int ret;
2126 
2127 	ret = write_all_supers(root, max_mirrors);
2128 	return ret;
2129 }
2130 
2131 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2132 {
2133 	radix_tree_delete(&fs_info->fs_roots_radix,
2134 			  (unsigned long)root->root_key.objectid);
2135 	if (root->anon_super.s_dev) {
2136 		down_write(&root->anon_super.s_umount);
2137 		kill_anon_super(&root->anon_super);
2138 	}
2139 	if (root->node)
2140 		free_extent_buffer(root->node);
2141 	if (root->commit_root)
2142 		free_extent_buffer(root->commit_root);
2143 	kfree(root->name);
2144 	kfree(root);
2145 	return 0;
2146 }
2147 
2148 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2149 {
2150 	int ret;
2151 	struct btrfs_root *gang[8];
2152 	int i;
2153 
2154 	while (1) {
2155 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2156 					     (void **)gang, 0,
2157 					     ARRAY_SIZE(gang));
2158 		if (!ret)
2159 			break;
2160 		for (i = 0; i < ret; i++)
2161 			btrfs_free_fs_root(fs_info, gang[i]);
2162 	}
2163 	return 0;
2164 }
2165 
2166 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2167 {
2168 	u64 root_objectid = 0;
2169 	struct btrfs_root *gang[8];
2170 	int i;
2171 	int ret;
2172 
2173 	while (1) {
2174 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2175 					     (void **)gang, root_objectid,
2176 					     ARRAY_SIZE(gang));
2177 		if (!ret)
2178 			break;
2179 		for (i = 0; i < ret; i++) {
2180 			root_objectid = gang[i]->root_key.objectid;
2181 			ret = btrfs_find_dead_roots(fs_info->tree_root,
2182 						    root_objectid, gang[i]);
2183 			BUG_ON(ret);
2184 			btrfs_orphan_cleanup(gang[i]);
2185 		}
2186 		root_objectid++;
2187 	}
2188 	return 0;
2189 }
2190 
2191 int btrfs_commit_super(struct btrfs_root *root)
2192 {
2193 	struct btrfs_trans_handle *trans;
2194 	int ret;
2195 
2196 	mutex_lock(&root->fs_info->cleaner_mutex);
2197 	btrfs_clean_old_snapshots(root);
2198 	mutex_unlock(&root->fs_info->cleaner_mutex);
2199 	trans = btrfs_start_transaction(root, 1);
2200 	ret = btrfs_commit_transaction(trans, root);
2201 	BUG_ON(ret);
2202 	/* run commit again to drop the original snapshot */
2203 	trans = btrfs_start_transaction(root, 1);
2204 	btrfs_commit_transaction(trans, root);
2205 	ret = btrfs_write_and_wait_transaction(NULL, root);
2206 	BUG_ON(ret);
2207 
2208 	ret = write_ctree_super(NULL, root, 0);
2209 	return ret;
2210 }
2211 
2212 int close_ctree(struct btrfs_root *root)
2213 {
2214 	struct btrfs_fs_info *fs_info = root->fs_info;
2215 	int ret;
2216 
2217 	fs_info->closing = 1;
2218 	smp_mb();
2219 
2220 	kthread_stop(root->fs_info->transaction_kthread);
2221 	kthread_stop(root->fs_info->cleaner_kthread);
2222 
2223 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2224 		ret =  btrfs_commit_super(root);
2225 		if (ret)
2226 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2227 	}
2228 
2229 	if (fs_info->delalloc_bytes) {
2230 		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2231 		       fs_info->delalloc_bytes);
2232 	}
2233 	if (fs_info->total_ref_cache_size) {
2234 		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2235 		       (unsigned long long)fs_info->total_ref_cache_size);
2236 	}
2237 
2238 	if (fs_info->extent_root->node)
2239 		free_extent_buffer(fs_info->extent_root->node);
2240 
2241 	if (fs_info->tree_root->node)
2242 		free_extent_buffer(fs_info->tree_root->node);
2243 
2244 	if (root->fs_info->chunk_root->node)
2245 		free_extent_buffer(root->fs_info->chunk_root->node);
2246 
2247 	if (root->fs_info->dev_root->node)
2248 		free_extent_buffer(root->fs_info->dev_root->node);
2249 
2250 	if (root->fs_info->csum_root->node)
2251 		free_extent_buffer(root->fs_info->csum_root->node);
2252 
2253 	btrfs_free_block_groups(root->fs_info);
2254 
2255 	del_fs_roots(fs_info);
2256 
2257 	iput(fs_info->btree_inode);
2258 
2259 	btrfs_stop_workers(&fs_info->fixup_workers);
2260 	btrfs_stop_workers(&fs_info->delalloc_workers);
2261 	btrfs_stop_workers(&fs_info->workers);
2262 	btrfs_stop_workers(&fs_info->endio_workers);
2263 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2264 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2265 	btrfs_stop_workers(&fs_info->endio_write_workers);
2266 	btrfs_stop_workers(&fs_info->submit_workers);
2267 
2268 #if 0
2269 	while (!list_empty(&fs_info->hashers)) {
2270 		struct btrfs_hasher *hasher;
2271 		hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
2272 				    hashers);
2273 		list_del(&hasher->hashers);
2274 		crypto_free_hash(&fs_info->hash_tfm);
2275 		kfree(hasher);
2276 	}
2277 #endif
2278 	btrfs_close_devices(fs_info->fs_devices);
2279 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2280 
2281 	bdi_destroy(&fs_info->bdi);
2282 
2283 	kfree(fs_info->extent_root);
2284 	kfree(fs_info->tree_root);
2285 	kfree(fs_info->chunk_root);
2286 	kfree(fs_info->dev_root);
2287 	kfree(fs_info->csum_root);
2288 	return 0;
2289 }
2290 
2291 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2292 {
2293 	int ret;
2294 	struct inode *btree_inode = buf->first_page->mapping->host;
2295 
2296 	ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2297 	if (!ret)
2298 		return ret;
2299 
2300 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2301 				    parent_transid);
2302 	return !ret;
2303 }
2304 
2305 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2306 {
2307 	struct inode *btree_inode = buf->first_page->mapping->host;
2308 	return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2309 					  buf);
2310 }
2311 
2312 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2313 {
2314 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2315 	u64 transid = btrfs_header_generation(buf);
2316 	struct inode *btree_inode = root->fs_info->btree_inode;
2317 
2318 	btrfs_set_lock_blocking(buf);
2319 
2320 	WARN_ON(!btrfs_tree_locked(buf));
2321 	if (transid != root->fs_info->generation) {
2322 		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2323 		       "found %llu running %llu\n",
2324 			(unsigned long long)buf->start,
2325 			(unsigned long long)transid,
2326 			(unsigned long long)root->fs_info->generation);
2327 		WARN_ON(1);
2328 	}
2329 	set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
2330 }
2331 
2332 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2333 {
2334 	/*
2335 	 * looks as though older kernels can get into trouble with
2336 	 * this code, they end up stuck in balance_dirty_pages forever
2337 	 */
2338 	struct extent_io_tree *tree;
2339 	u64 num_dirty;
2340 	u64 start = 0;
2341 	unsigned long thresh = 32 * 1024 * 1024;
2342 	tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
2343 
2344 	if (current_is_pdflush() || current->flags & PF_MEMALLOC)
2345 		return;
2346 
2347 	num_dirty = count_range_bits(tree, &start, (u64)-1,
2348 				     thresh, EXTENT_DIRTY);
2349 	if (num_dirty > thresh) {
2350 		balance_dirty_pages_ratelimited_nr(
2351 				   root->fs_info->btree_inode->i_mapping, 1);
2352 	}
2353 	return;
2354 }
2355 
2356 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2357 {
2358 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2359 	int ret;
2360 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2361 	if (ret == 0)
2362 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2363 	return ret;
2364 }
2365 
2366 int btree_lock_page_hook(struct page *page)
2367 {
2368 	struct inode *inode = page->mapping->host;
2369 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2370 	struct extent_buffer *eb;
2371 	unsigned long len;
2372 	u64 bytenr = page_offset(page);
2373 
2374 	if (page->private == EXTENT_PAGE_PRIVATE)
2375 		goto out;
2376 
2377 	len = page->private >> 2;
2378 	eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2379 	if (!eb)
2380 		goto out;
2381 
2382 	btrfs_tree_lock(eb);
2383 	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2384 	btrfs_tree_unlock(eb);
2385 	free_extent_buffer(eb);
2386 out:
2387 	lock_page(page);
2388 	return 0;
2389 }
2390 
2391 static struct extent_io_ops btree_extent_io_ops = {
2392 	.write_cache_pages_lock_hook = btree_lock_page_hook,
2393 	.readpage_end_io_hook = btree_readpage_end_io_hook,
2394 	.submit_bio_hook = btree_submit_bio_hook,
2395 	/* note we're sharing with inode.c for the merge bio hook */
2396 	.merge_bio_hook = btrfs_merge_bio_hook,
2397 };
2398