1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <linux/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "dev-replace.h" 33 #include "raid56.h" 34 #include "sysfs.h" 35 #include "qgroup.h" 36 #include "compression.h" 37 #include "tree-checker.h" 38 #include "ref-verify.h" 39 #include "block-group.h" 40 #include "discard.h" 41 #include "space-info.h" 42 #include "zoned.h" 43 #include "subpage.h" 44 #include "fs.h" 45 #include "accessors.h" 46 #include "extent-tree.h" 47 #include "root-tree.h" 48 #include "defrag.h" 49 #include "uuid-tree.h" 50 #include "relocation.h" 51 #include "scrub.h" 52 #include "super.h" 53 #include "delayed-inode.h" 54 55 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 56 BTRFS_HEADER_FLAG_RELOC |\ 57 BTRFS_SUPER_FLAG_ERROR |\ 58 BTRFS_SUPER_FLAG_SEEDING |\ 59 BTRFS_SUPER_FLAG_METADUMP |\ 60 BTRFS_SUPER_FLAG_METADUMP_V2) 61 62 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 63 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 64 65 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 66 { 67 if (fs_info->csum_shash) 68 crypto_free_shash(fs_info->csum_shash); 69 } 70 71 /* 72 * Compute the csum of a btree block and store the result to provided buffer. 73 */ 74 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 75 { 76 struct btrfs_fs_info *fs_info = buf->fs_info; 77 int num_pages; 78 u32 first_page_part; 79 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 80 char *kaddr; 81 int i; 82 83 shash->tfm = fs_info->csum_shash; 84 crypto_shash_init(shash); 85 86 if (buf->addr) { 87 /* Pages are contiguous, handle them as a big one. */ 88 kaddr = buf->addr; 89 first_page_part = fs_info->nodesize; 90 num_pages = 1; 91 } else { 92 kaddr = folio_address(buf->folios[0]); 93 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 94 num_pages = num_extent_pages(buf); 95 } 96 97 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 98 first_page_part - BTRFS_CSUM_SIZE); 99 100 /* 101 * Multiple single-page folios case would reach here. 102 * 103 * nodesize <= PAGE_SIZE and large folio all handled by above 104 * crypto_shash_update() already. 105 */ 106 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { 107 kaddr = folio_address(buf->folios[i]); 108 crypto_shash_update(shash, kaddr, PAGE_SIZE); 109 } 110 memset(result, 0, BTRFS_CSUM_SIZE); 111 crypto_shash_final(shash, result); 112 } 113 114 /* 115 * we can't consider a given block up to date unless the transid of the 116 * block matches the transid in the parent node's pointer. This is how we 117 * detect blocks that either didn't get written at all or got written 118 * in the wrong place. 119 */ 120 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, bool atomic) 121 { 122 if (!extent_buffer_uptodate(eb)) 123 return 0; 124 125 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 126 return 1; 127 128 if (atomic) 129 return -EAGAIN; 130 131 if (!extent_buffer_uptodate(eb) || 132 btrfs_header_generation(eb) != parent_transid) { 133 btrfs_err_rl(eb->fs_info, 134 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 135 eb->start, eb->read_mirror, 136 parent_transid, btrfs_header_generation(eb)); 137 clear_extent_buffer_uptodate(eb); 138 return 0; 139 } 140 return 1; 141 } 142 143 static bool btrfs_supported_super_csum(u16 csum_type) 144 { 145 switch (csum_type) { 146 case BTRFS_CSUM_TYPE_CRC32: 147 case BTRFS_CSUM_TYPE_XXHASH: 148 case BTRFS_CSUM_TYPE_SHA256: 149 case BTRFS_CSUM_TYPE_BLAKE2: 150 return true; 151 default: 152 return false; 153 } 154 } 155 156 /* 157 * Return 0 if the superblock checksum type matches the checksum value of that 158 * algorithm. Pass the raw disk superblock data. 159 */ 160 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 161 const struct btrfs_super_block *disk_sb) 162 { 163 char result[BTRFS_CSUM_SIZE]; 164 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 165 166 shash->tfm = fs_info->csum_shash; 167 168 /* 169 * The super_block structure does not span the whole 170 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 171 * filled with zeros and is included in the checksum. 172 */ 173 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 174 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 175 176 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 177 return 1; 178 179 return 0; 180 } 181 182 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 183 int mirror_num) 184 { 185 struct btrfs_fs_info *fs_info = eb->fs_info; 186 const u32 step = min(fs_info->nodesize, PAGE_SIZE); 187 const u32 nr_steps = eb->len / step; 188 phys_addr_t paddrs[BTRFS_MAX_BLOCKSIZE / PAGE_SIZE]; 189 int ret = 0; 190 191 if (sb_rdonly(fs_info->sb)) 192 return -EROFS; 193 194 for (int i = 0; i < num_extent_pages(eb); i++) { 195 struct folio *folio = eb->folios[i]; 196 197 /* No large folio support yet. */ 198 ASSERT(folio_order(folio) == 0); 199 ASSERT(i < nr_steps); 200 201 /* 202 * For nodesize < page size, there is just one paddr, with some 203 * offset inside the page. 204 * 205 * For nodesize >= page size, it's one or more paddrs, and eb->start 206 * must be aligned to page boundary. 207 */ 208 paddrs[i] = page_to_phys(&folio->page) + offset_in_page(eb->start); 209 } 210 211 ret = btrfs_repair_io_failure(fs_info, 0, eb->start, eb->len, eb->start, 212 paddrs, step, mirror_num); 213 return ret; 214 } 215 216 /* 217 * helper to read a given tree block, doing retries as required when 218 * the checksums don't match and we have alternate mirrors to try. 219 * 220 * @check: expected tree parentness check, see the comments of the 221 * structure for details. 222 */ 223 int btrfs_read_extent_buffer(struct extent_buffer *eb, 224 const struct btrfs_tree_parent_check *check) 225 { 226 struct btrfs_fs_info *fs_info = eb->fs_info; 227 int failed = 0; 228 int ret; 229 int num_copies = 0; 230 int mirror_num = 0; 231 int failed_mirror = 0; 232 233 ASSERT(check); 234 235 while (1) { 236 ret = read_extent_buffer_pages(eb, mirror_num, check); 237 if (!ret) 238 break; 239 240 num_copies = btrfs_num_copies(fs_info, 241 eb->start, eb->len); 242 if (num_copies == 1) 243 break; 244 245 if (!failed_mirror) { 246 failed = 1; 247 failed_mirror = eb->read_mirror; 248 } 249 250 mirror_num++; 251 if (mirror_num == failed_mirror) 252 mirror_num++; 253 254 if (mirror_num > num_copies) 255 break; 256 } 257 258 if (failed && !ret && failed_mirror) 259 btrfs_repair_eb_io_failure(eb, failed_mirror); 260 261 return ret; 262 } 263 264 /* 265 * Checksum a dirty tree block before IO. 266 */ 267 int btree_csum_one_bio(struct btrfs_bio *bbio) 268 { 269 struct extent_buffer *eb = bbio->private; 270 struct btrfs_fs_info *fs_info = eb->fs_info; 271 u64 found_start = btrfs_header_bytenr(eb); 272 u64 last_trans; 273 u8 result[BTRFS_CSUM_SIZE]; 274 int ret; 275 276 /* Btree blocks are always contiguous on disk. */ 277 if (WARN_ON_ONCE(bbio->file_offset != eb->start)) 278 return -EIO; 279 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len)) 280 return -EIO; 281 282 /* 283 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't 284 * checksum it but zero-out its content. This is done to preserve 285 * ordering of I/O without unnecessarily writing out data. 286 */ 287 if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) { 288 memzero_extent_buffer(eb, 0, eb->len); 289 return 0; 290 } 291 292 if (WARN_ON_ONCE(found_start != eb->start)) 293 return -EIO; 294 if (WARN_ON(!btrfs_meta_folio_test_uptodate(eb->folios[0], eb))) 295 return -EIO; 296 297 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 298 offsetof(struct btrfs_header, fsid), 299 BTRFS_FSID_SIZE) == 0); 300 csum_tree_block(eb, result); 301 302 if (btrfs_header_level(eb)) 303 ret = btrfs_check_node(eb); 304 else 305 ret = btrfs_check_leaf(eb); 306 307 if (ret < 0) 308 goto error; 309 310 /* 311 * Also check the generation, the eb reached here must be newer than 312 * last committed. Or something seriously wrong happened. 313 */ 314 last_trans = btrfs_get_last_trans_committed(fs_info); 315 if (unlikely(btrfs_header_generation(eb) <= last_trans)) { 316 ret = -EUCLEAN; 317 btrfs_err(fs_info, 318 "block=%llu bad generation, have %llu expect > %llu", 319 eb->start, btrfs_header_generation(eb), last_trans); 320 goto error; 321 } 322 write_extent_buffer(eb, result, 0, fs_info->csum_size); 323 return 0; 324 325 error: 326 btrfs_print_tree(eb, 0); 327 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 328 eb->start); 329 /* 330 * Be noisy if this is an extent buffer from a log tree. We don't abort 331 * a transaction in case there's a bad log tree extent buffer, we just 332 * fallback to a transaction commit. Still we want to know when there is 333 * a bad log tree extent buffer, as that may signal a bug somewhere. 334 */ 335 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 336 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 337 return ret; 338 } 339 340 static bool check_tree_block_fsid(struct extent_buffer *eb) 341 { 342 struct btrfs_fs_info *fs_info = eb->fs_info; 343 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 344 u8 fsid[BTRFS_FSID_SIZE]; 345 346 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 347 BTRFS_FSID_SIZE); 348 349 /* 350 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid. 351 * This is then overwritten by metadata_uuid if it is present in the 352 * device_list_add(). The same true for a seed device as well. So use of 353 * fs_devices::metadata_uuid is appropriate here. 354 */ 355 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0) 356 return false; 357 358 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 359 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 360 return false; 361 362 return true; 363 } 364 365 /* Do basic extent buffer checks at read time */ 366 int btrfs_validate_extent_buffer(struct extent_buffer *eb, 367 const struct btrfs_tree_parent_check *check) 368 { 369 struct btrfs_fs_info *fs_info = eb->fs_info; 370 u64 found_start; 371 const u32 csum_size = fs_info->csum_size; 372 u8 found_level; 373 u8 result[BTRFS_CSUM_SIZE]; 374 const u8 *header_csum; 375 int ret = 0; 376 const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS); 377 378 ASSERT(check); 379 380 found_start = btrfs_header_bytenr(eb); 381 if (unlikely(found_start != eb->start)) { 382 btrfs_err_rl(fs_info, 383 "bad tree block start, mirror %u want %llu have %llu", 384 eb->read_mirror, eb->start, found_start); 385 ret = -EIO; 386 goto out; 387 } 388 if (unlikely(check_tree_block_fsid(eb))) { 389 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 390 eb->start, eb->read_mirror); 391 ret = -EIO; 392 goto out; 393 } 394 found_level = btrfs_header_level(eb); 395 if (unlikely(found_level >= BTRFS_MAX_LEVEL)) { 396 btrfs_err(fs_info, 397 "bad tree block level, mirror %u level %d on logical %llu", 398 eb->read_mirror, btrfs_header_level(eb), eb->start); 399 ret = -EIO; 400 goto out; 401 } 402 403 csum_tree_block(eb, result); 404 header_csum = folio_address(eb->folios[0]) + 405 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum)); 406 407 if (memcmp(result, header_csum, csum_size) != 0) { 408 btrfs_warn_rl(fs_info, 409 "checksum verify failed on logical %llu mirror %u wanted " BTRFS_CSUM_FMT " found " BTRFS_CSUM_FMT " level %d%s", 410 eb->start, eb->read_mirror, 411 BTRFS_CSUM_FMT_VALUE(csum_size, header_csum), 412 BTRFS_CSUM_FMT_VALUE(csum_size, result), 413 btrfs_header_level(eb), 414 ignore_csum ? ", ignored" : ""); 415 if (unlikely(!ignore_csum)) { 416 ret = -EUCLEAN; 417 goto out; 418 } 419 } 420 421 if (unlikely(found_level != check->level)) { 422 btrfs_err(fs_info, 423 "level verify failed on logical %llu mirror %u wanted %u found %u", 424 eb->start, eb->read_mirror, check->level, found_level); 425 ret = -EIO; 426 goto out; 427 } 428 if (unlikely(check->transid && 429 btrfs_header_generation(eb) != check->transid)) { 430 btrfs_err_rl(eb->fs_info, 431 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 432 eb->start, eb->read_mirror, check->transid, 433 btrfs_header_generation(eb)); 434 ret = -EIO; 435 goto out; 436 } 437 if (check->has_first_key) { 438 const struct btrfs_key *expect_key = &check->first_key; 439 struct btrfs_key found_key; 440 441 if (found_level) 442 btrfs_node_key_to_cpu(eb, &found_key, 0); 443 else 444 btrfs_item_key_to_cpu(eb, &found_key, 0); 445 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 446 btrfs_err(fs_info, 447 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 448 eb->start, check->transid, 449 expect_key->objectid, 450 expect_key->type, expect_key->offset, 451 found_key.objectid, found_key.type, 452 found_key.offset); 453 ret = -EUCLEAN; 454 goto out; 455 } 456 } 457 if (check->owner_root) { 458 ret = btrfs_check_eb_owner(eb, check->owner_root); 459 if (ret < 0) 460 goto out; 461 } 462 463 /* If this is a leaf block and it is corrupt, just return -EIO. */ 464 if (found_level == 0 && btrfs_check_leaf(eb)) 465 ret = -EIO; 466 467 if (found_level > 0 && btrfs_check_node(eb)) 468 ret = -EIO; 469 470 if (ret) 471 btrfs_err(fs_info, 472 "read time tree block corruption detected on logical %llu mirror %u", 473 eb->start, eb->read_mirror); 474 out: 475 return ret; 476 } 477 478 #ifdef CONFIG_MIGRATION 479 static int btree_migrate_folio(struct address_space *mapping, 480 struct folio *dst, struct folio *src, enum migrate_mode mode) 481 { 482 /* 483 * we can't safely write a btree page from here, 484 * we haven't done the locking hook 485 */ 486 if (folio_test_dirty(src)) 487 return -EAGAIN; 488 /* 489 * Buffers may be managed in a filesystem specific way. 490 * We must have no buffers or drop them. 491 */ 492 if (folio_get_private(src) && 493 !filemap_release_folio(src, GFP_KERNEL)) 494 return -EAGAIN; 495 return migrate_folio(mapping, dst, src, mode); 496 } 497 #else 498 #define btree_migrate_folio NULL 499 #endif 500 501 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 502 { 503 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 504 return false; 505 506 return try_release_extent_buffer(folio); 507 } 508 509 static void btree_invalidate_folio(struct folio *folio, size_t offset, 510 size_t length) 511 { 512 struct extent_io_tree *tree; 513 514 tree = &folio_to_inode(folio)->io_tree; 515 extent_invalidate_folio(tree, folio, offset); 516 btree_release_folio(folio, GFP_NOFS); 517 if (folio_get_private(folio)) { 518 btrfs_warn(folio_to_fs_info(folio), 519 "folio private not zero on folio %llu", 520 (unsigned long long)folio_pos(folio)); 521 folio_detach_private(folio); 522 } 523 } 524 525 #ifdef DEBUG 526 static bool btree_dirty_folio(struct address_space *mapping, 527 struct folio *folio) 528 { 529 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 530 struct btrfs_subpage_info *spi = fs_info->subpage_info; 531 struct btrfs_subpage *subpage; 532 struct extent_buffer *eb; 533 int cur_bit = 0; 534 u64 page_start = folio_pos(folio); 535 536 if (fs_info->sectorsize == PAGE_SIZE) { 537 eb = folio_get_private(folio); 538 BUG_ON(!eb); 539 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 540 BUG_ON(!atomic_read(&eb->refs)); 541 btrfs_assert_tree_write_locked(eb); 542 return filemap_dirty_folio(mapping, folio); 543 } 544 545 ASSERT(spi); 546 subpage = folio_get_private(folio); 547 548 for (cur_bit = spi->dirty_offset; 549 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits; 550 cur_bit++) { 551 unsigned long flags; 552 u64 cur; 553 554 spin_lock_irqsave(&subpage->lock, flags); 555 if (!test_bit(cur_bit, subpage->bitmaps)) { 556 spin_unlock_irqrestore(&subpage->lock, flags); 557 continue; 558 } 559 spin_unlock_irqrestore(&subpage->lock, flags); 560 cur = page_start + cur_bit * fs_info->sectorsize; 561 562 eb = find_extent_buffer(fs_info, cur); 563 ASSERT(eb); 564 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 565 ASSERT(atomic_read(&eb->refs)); 566 btrfs_assert_tree_write_locked(eb); 567 free_extent_buffer(eb); 568 569 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1; 570 } 571 return filemap_dirty_folio(mapping, folio); 572 } 573 #else 574 #define btree_dirty_folio filemap_dirty_folio 575 #endif 576 577 static const struct address_space_operations btree_aops = { 578 .writepages = btree_writepages, 579 .release_folio = btree_release_folio, 580 .invalidate_folio = btree_invalidate_folio, 581 .migrate_folio = btree_migrate_folio, 582 .dirty_folio = btree_dirty_folio, 583 }; 584 585 struct extent_buffer *btrfs_find_create_tree_block( 586 struct btrfs_fs_info *fs_info, 587 u64 bytenr, u64 owner_root, 588 int level) 589 { 590 if (btrfs_is_testing(fs_info)) 591 return alloc_test_extent_buffer(fs_info, bytenr); 592 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 593 } 594 595 /* 596 * Read tree block at logical address @bytenr and do variant basic but critical 597 * verification. 598 * 599 * @check: expected tree parentness check, see comments of the 600 * structure for details. 601 */ 602 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 603 struct btrfs_tree_parent_check *check) 604 { 605 struct extent_buffer *buf = NULL; 606 int ret; 607 608 ASSERT(check); 609 610 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 611 check->level); 612 if (IS_ERR(buf)) 613 return buf; 614 615 ret = btrfs_read_extent_buffer(buf, check); 616 if (ret) { 617 free_extent_buffer_stale(buf); 618 return ERR_PTR(ret); 619 } 620 return buf; 621 622 } 623 624 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 625 u64 objectid, gfp_t flags) 626 { 627 struct btrfs_root *root; 628 629 root = kzalloc(sizeof(*root), flags); 630 if (!root) 631 return NULL; 632 633 root->fs_info = fs_info; 634 root->root_key.objectid = objectid; 635 RB_CLEAR_NODE(&root->rb_node); 636 637 xa_init(&root->inodes); 638 xa_init(&root->delayed_nodes); 639 640 btrfs_init_root_block_rsv(root); 641 642 INIT_LIST_HEAD(&root->dirty_list); 643 INIT_LIST_HEAD(&root->root_list); 644 INIT_LIST_HEAD(&root->delalloc_inodes); 645 INIT_LIST_HEAD(&root->delalloc_root); 646 INIT_LIST_HEAD(&root->ordered_extents); 647 INIT_LIST_HEAD(&root->ordered_root); 648 INIT_LIST_HEAD(&root->reloc_dirty_list); 649 spin_lock_init(&root->delalloc_lock); 650 spin_lock_init(&root->ordered_extent_lock); 651 spin_lock_init(&root->accounting_lock); 652 spin_lock_init(&root->qgroup_meta_rsv_lock); 653 mutex_init(&root->objectid_mutex); 654 mutex_init(&root->log_mutex); 655 mutex_init(&root->ordered_extent_mutex); 656 mutex_init(&root->delalloc_mutex); 657 init_waitqueue_head(&root->qgroup_flush_wait); 658 init_waitqueue_head(&root->log_writer_wait); 659 init_waitqueue_head(&root->log_commit_wait[0]); 660 init_waitqueue_head(&root->log_commit_wait[1]); 661 INIT_LIST_HEAD(&root->log_ctxs[0]); 662 INIT_LIST_HEAD(&root->log_ctxs[1]); 663 atomic_set(&root->log_commit[0], 0); 664 atomic_set(&root->log_commit[1], 0); 665 atomic_set(&root->log_writers, 0); 666 atomic_set(&root->log_batch, 0); 667 refcount_set(&root->refs, 1); 668 atomic_set(&root->snapshot_force_cow, 0); 669 atomic_set(&root->nr_swapfiles, 0); 670 root->log_transid_committed = -1; 671 if (!btrfs_is_testing(fs_info)) { 672 btrfs_extent_io_tree_init(fs_info, &root->dirty_log_pages, 673 IO_TREE_ROOT_DIRTY_LOG_PAGES); 674 btrfs_extent_io_tree_init(fs_info, &root->log_csum_range, 675 IO_TREE_LOG_CSUM_RANGE); 676 } 677 678 spin_lock_init(&root->root_item_lock); 679 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 680 #ifdef CONFIG_BTRFS_DEBUG 681 INIT_LIST_HEAD(&root->leak_list); 682 spin_lock(&fs_info->fs_roots_radix_lock); 683 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 684 spin_unlock(&fs_info->fs_roots_radix_lock); 685 #endif 686 687 return root; 688 } 689 690 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 691 /* Should only be used by the testing infrastructure */ 692 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 693 { 694 struct btrfs_root *root; 695 696 if (!fs_info) 697 return ERR_PTR(-EINVAL); 698 699 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 700 if (!root) 701 return ERR_PTR(-ENOMEM); 702 703 /* We don't use the stripesize in selftest, set it as sectorsize */ 704 root->alloc_bytenr = 0; 705 706 return root; 707 } 708 #endif 709 710 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 711 { 712 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 713 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 714 715 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 716 } 717 718 static int global_root_key_cmp(const void *k, const struct rb_node *node) 719 { 720 const struct btrfs_key *key = k; 721 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 722 723 return btrfs_comp_cpu_keys(key, &root->root_key); 724 } 725 726 int btrfs_global_root_insert(struct btrfs_root *root) 727 { 728 struct btrfs_fs_info *fs_info = root->fs_info; 729 struct rb_node *tmp; 730 int ret = 0; 731 732 write_lock(&fs_info->global_root_lock); 733 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 734 write_unlock(&fs_info->global_root_lock); 735 736 if (tmp) { 737 ret = -EEXIST; 738 btrfs_warn(fs_info, "global root %llu %llu already exists", 739 btrfs_root_id(root), root->root_key.offset); 740 } 741 return ret; 742 } 743 744 void btrfs_global_root_delete(struct btrfs_root *root) 745 { 746 struct btrfs_fs_info *fs_info = root->fs_info; 747 748 write_lock(&fs_info->global_root_lock); 749 rb_erase(&root->rb_node, &fs_info->global_root_tree); 750 write_unlock(&fs_info->global_root_lock); 751 } 752 753 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 754 struct btrfs_key *key) 755 { 756 struct rb_node *node; 757 struct btrfs_root *root = NULL; 758 759 read_lock(&fs_info->global_root_lock); 760 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 761 if (node) 762 root = container_of(node, struct btrfs_root, rb_node); 763 read_unlock(&fs_info->global_root_lock); 764 765 return root; 766 } 767 768 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 769 { 770 struct btrfs_block_group *block_group; 771 u64 ret; 772 773 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 774 return 0; 775 776 if (bytenr) 777 block_group = btrfs_lookup_block_group(fs_info, bytenr); 778 else 779 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 780 ASSERT(block_group); 781 if (!block_group) 782 return 0; 783 ret = block_group->global_root_id; 784 btrfs_put_block_group(block_group); 785 786 return ret; 787 } 788 789 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 790 { 791 struct btrfs_key key = { 792 .objectid = BTRFS_CSUM_TREE_OBJECTID, 793 .type = BTRFS_ROOT_ITEM_KEY, 794 .offset = btrfs_global_root_id(fs_info, bytenr), 795 }; 796 797 return btrfs_global_root(fs_info, &key); 798 } 799 800 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 801 { 802 struct btrfs_key key = { 803 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 804 .type = BTRFS_ROOT_ITEM_KEY, 805 .offset = btrfs_global_root_id(fs_info, bytenr), 806 }; 807 808 return btrfs_global_root(fs_info, &key); 809 } 810 811 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 812 u64 objectid) 813 { 814 struct btrfs_fs_info *fs_info = trans->fs_info; 815 struct extent_buffer *leaf; 816 struct btrfs_root *tree_root = fs_info->tree_root; 817 struct btrfs_root *root; 818 struct btrfs_key key; 819 unsigned int nofs_flag; 820 int ret = 0; 821 822 /* 823 * We're holding a transaction handle, so use a NOFS memory allocation 824 * context to avoid deadlock if reclaim happens. 825 */ 826 nofs_flag = memalloc_nofs_save(); 827 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 828 memalloc_nofs_restore(nofs_flag); 829 if (!root) 830 return ERR_PTR(-ENOMEM); 831 832 root->root_key.objectid = objectid; 833 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 834 root->root_key.offset = 0; 835 836 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 837 0, BTRFS_NESTING_NORMAL); 838 if (IS_ERR(leaf)) { 839 ret = PTR_ERR(leaf); 840 leaf = NULL; 841 goto fail; 842 } 843 844 root->node = leaf; 845 btrfs_mark_buffer_dirty(trans, leaf); 846 847 root->commit_root = btrfs_root_node(root); 848 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 849 850 btrfs_set_root_flags(&root->root_item, 0); 851 btrfs_set_root_limit(&root->root_item, 0); 852 btrfs_set_root_bytenr(&root->root_item, leaf->start); 853 btrfs_set_root_generation(&root->root_item, trans->transid); 854 btrfs_set_root_level(&root->root_item, 0); 855 btrfs_set_root_refs(&root->root_item, 1); 856 btrfs_set_root_used(&root->root_item, leaf->len); 857 btrfs_set_root_last_snapshot(&root->root_item, 0); 858 btrfs_set_root_dirid(&root->root_item, 0); 859 if (btrfs_is_fstree(objectid)) 860 generate_random_guid(root->root_item.uuid); 861 else 862 export_guid(root->root_item.uuid, &guid_null); 863 btrfs_set_root_drop_level(&root->root_item, 0); 864 865 btrfs_tree_unlock(leaf); 866 867 key.objectid = objectid; 868 key.type = BTRFS_ROOT_ITEM_KEY; 869 key.offset = 0; 870 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 871 if (ret) 872 goto fail; 873 874 return root; 875 876 fail: 877 btrfs_put_root(root); 878 879 return ERR_PTR(ret); 880 } 881 882 static struct btrfs_root *alloc_log_tree(struct btrfs_fs_info *fs_info) 883 { 884 struct btrfs_root *root; 885 886 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 887 if (!root) 888 return ERR_PTR(-ENOMEM); 889 890 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 891 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 892 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 893 894 return root; 895 } 896 897 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 898 struct btrfs_root *root) 899 { 900 struct extent_buffer *leaf; 901 902 /* 903 * DON'T set SHAREABLE bit for log trees. 904 * 905 * Log trees are not exposed to user space thus can't be snapshotted, 906 * and they go away before a real commit is actually done. 907 * 908 * They do store pointers to file data extents, and those reference 909 * counts still get updated (along with back refs to the log tree). 910 */ 911 912 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 913 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL); 914 if (IS_ERR(leaf)) 915 return PTR_ERR(leaf); 916 917 root->node = leaf; 918 919 btrfs_mark_buffer_dirty(trans, root->node); 920 btrfs_tree_unlock(root->node); 921 922 return 0; 923 } 924 925 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 926 struct btrfs_fs_info *fs_info) 927 { 928 struct btrfs_root *log_root; 929 930 log_root = alloc_log_tree(fs_info); 931 if (IS_ERR(log_root)) 932 return PTR_ERR(log_root); 933 934 if (!btrfs_is_zoned(fs_info)) { 935 int ret = btrfs_alloc_log_tree_node(trans, log_root); 936 937 if (ret) { 938 btrfs_put_root(log_root); 939 return ret; 940 } 941 } 942 943 WARN_ON(fs_info->log_root_tree); 944 fs_info->log_root_tree = log_root; 945 return 0; 946 } 947 948 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 949 struct btrfs_root *root) 950 { 951 struct btrfs_fs_info *fs_info = root->fs_info; 952 struct btrfs_root *log_root; 953 struct btrfs_inode_item *inode_item; 954 int ret; 955 956 log_root = alloc_log_tree(fs_info); 957 if (IS_ERR(log_root)) 958 return PTR_ERR(log_root); 959 960 ret = btrfs_alloc_log_tree_node(trans, log_root); 961 if (ret) { 962 btrfs_put_root(log_root); 963 return ret; 964 } 965 966 btrfs_set_root_last_trans(log_root, trans->transid); 967 log_root->root_key.offset = btrfs_root_id(root); 968 969 inode_item = &log_root->root_item.inode; 970 btrfs_set_stack_inode_generation(inode_item, 1); 971 btrfs_set_stack_inode_size(inode_item, 3); 972 btrfs_set_stack_inode_nlink(inode_item, 1); 973 btrfs_set_stack_inode_nbytes(inode_item, 974 fs_info->nodesize); 975 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 976 977 btrfs_set_root_node(&log_root->root_item, log_root->node); 978 979 WARN_ON(root->log_root); 980 root->log_root = log_root; 981 btrfs_set_root_log_transid(root, 0); 982 root->log_transid_committed = -1; 983 btrfs_set_root_last_log_commit(root, 0); 984 return 0; 985 } 986 987 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 988 struct btrfs_path *path, 989 const struct btrfs_key *key) 990 { 991 struct btrfs_root *root; 992 struct btrfs_tree_parent_check check = { 0 }; 993 struct btrfs_fs_info *fs_info = tree_root->fs_info; 994 u64 generation; 995 int ret; 996 int level; 997 998 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 999 if (!root) 1000 return ERR_PTR(-ENOMEM); 1001 1002 ret = btrfs_find_root(tree_root, key, path, 1003 &root->root_item, &root->root_key); 1004 if (ret) { 1005 if (ret > 0) 1006 ret = -ENOENT; 1007 goto fail; 1008 } 1009 1010 generation = btrfs_root_generation(&root->root_item); 1011 level = btrfs_root_level(&root->root_item); 1012 check.level = level; 1013 check.transid = generation; 1014 check.owner_root = key->objectid; 1015 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1016 &check); 1017 if (IS_ERR(root->node)) { 1018 ret = PTR_ERR(root->node); 1019 root->node = NULL; 1020 goto fail; 1021 } 1022 if (unlikely(!btrfs_buffer_uptodate(root->node, generation, false))) { 1023 ret = -EIO; 1024 goto fail; 1025 } 1026 1027 /* 1028 * For real fs, and not log/reloc trees, root owner must 1029 * match its root node owner 1030 */ 1031 if (unlikely(!btrfs_is_testing(fs_info) && 1032 btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && 1033 btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID && 1034 btrfs_root_id(root) != btrfs_header_owner(root->node))) { 1035 btrfs_crit(fs_info, 1036 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1037 btrfs_root_id(root), root->node->start, 1038 btrfs_header_owner(root->node), 1039 btrfs_root_id(root)); 1040 ret = -EUCLEAN; 1041 goto fail; 1042 } 1043 root->commit_root = btrfs_root_node(root); 1044 return root; 1045 fail: 1046 btrfs_put_root(root); 1047 return ERR_PTR(ret); 1048 } 1049 1050 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1051 const struct btrfs_key *key) 1052 { 1053 struct btrfs_root *root; 1054 BTRFS_PATH_AUTO_FREE(path); 1055 1056 path = btrfs_alloc_path(); 1057 if (!path) 1058 return ERR_PTR(-ENOMEM); 1059 root = read_tree_root_path(tree_root, path, key); 1060 1061 return root; 1062 } 1063 1064 /* 1065 * Initialize subvolume root in-memory structure. 1066 * 1067 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1068 * 1069 * In case of failure the caller is responsible to call btrfs_free_fs_root() 1070 */ 1071 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1072 { 1073 int ret; 1074 1075 btrfs_drew_lock_init(&root->snapshot_lock); 1076 1077 if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && 1078 !btrfs_is_data_reloc_root(root) && 1079 btrfs_is_fstree(btrfs_root_id(root))) { 1080 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1081 btrfs_check_and_init_root_item(&root->root_item); 1082 } 1083 1084 /* 1085 * Don't assign anonymous block device to roots that are not exposed to 1086 * userspace, the id pool is limited to 1M 1087 */ 1088 if (btrfs_is_fstree(btrfs_root_id(root)) && 1089 btrfs_root_refs(&root->root_item) > 0) { 1090 if (!anon_dev) { 1091 ret = get_anon_bdev(&root->anon_dev); 1092 if (ret) 1093 return ret; 1094 } else { 1095 root->anon_dev = anon_dev; 1096 } 1097 } 1098 1099 mutex_lock(&root->objectid_mutex); 1100 ret = btrfs_init_root_free_objectid(root); 1101 if (ret) { 1102 mutex_unlock(&root->objectid_mutex); 1103 return ret; 1104 } 1105 1106 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1107 1108 mutex_unlock(&root->objectid_mutex); 1109 1110 return 0; 1111 } 1112 1113 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1114 u64 root_id) 1115 { 1116 struct btrfs_root *root; 1117 1118 spin_lock(&fs_info->fs_roots_radix_lock); 1119 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1120 (unsigned long)root_id); 1121 root = btrfs_grab_root(root); 1122 spin_unlock(&fs_info->fs_roots_radix_lock); 1123 return root; 1124 } 1125 1126 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1127 u64 objectid) 1128 { 1129 struct btrfs_key key = { 1130 .objectid = objectid, 1131 .type = BTRFS_ROOT_ITEM_KEY, 1132 .offset = 0, 1133 }; 1134 1135 switch (objectid) { 1136 case BTRFS_ROOT_TREE_OBJECTID: 1137 return btrfs_grab_root(fs_info->tree_root); 1138 case BTRFS_EXTENT_TREE_OBJECTID: 1139 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1140 case BTRFS_CHUNK_TREE_OBJECTID: 1141 return btrfs_grab_root(fs_info->chunk_root); 1142 case BTRFS_DEV_TREE_OBJECTID: 1143 return btrfs_grab_root(fs_info->dev_root); 1144 case BTRFS_CSUM_TREE_OBJECTID: 1145 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1146 case BTRFS_QUOTA_TREE_OBJECTID: 1147 return btrfs_grab_root(fs_info->quota_root); 1148 case BTRFS_UUID_TREE_OBJECTID: 1149 return btrfs_grab_root(fs_info->uuid_root); 1150 case BTRFS_BLOCK_GROUP_TREE_OBJECTID: 1151 return btrfs_grab_root(fs_info->block_group_root); 1152 case BTRFS_FREE_SPACE_TREE_OBJECTID: 1153 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1154 case BTRFS_RAID_STRIPE_TREE_OBJECTID: 1155 return btrfs_grab_root(fs_info->stripe_root); 1156 default: 1157 return NULL; 1158 } 1159 } 1160 1161 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1162 struct btrfs_root *root) 1163 { 1164 int ret; 1165 1166 ret = radix_tree_preload(GFP_NOFS); 1167 if (ret) 1168 return ret; 1169 1170 spin_lock(&fs_info->fs_roots_radix_lock); 1171 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1172 (unsigned long)btrfs_root_id(root), 1173 root); 1174 if (ret == 0) { 1175 btrfs_grab_root(root); 1176 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1177 } 1178 spin_unlock(&fs_info->fs_roots_radix_lock); 1179 radix_tree_preload_end(); 1180 1181 return ret; 1182 } 1183 1184 void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info) 1185 { 1186 #ifdef CONFIG_BTRFS_DEBUG 1187 struct btrfs_root *root; 1188 1189 while (!list_empty(&fs_info->allocated_roots)) { 1190 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1191 1192 root = list_first_entry(&fs_info->allocated_roots, 1193 struct btrfs_root, leak_list); 1194 btrfs_err(fs_info, "leaked root %s refcount %d", 1195 btrfs_root_name(&root->root_key, buf), 1196 refcount_read(&root->refs)); 1197 WARN_ON_ONCE(1); 1198 while (refcount_read(&root->refs) > 1) 1199 btrfs_put_root(root); 1200 btrfs_put_root(root); 1201 } 1202 #endif 1203 } 1204 1205 static void free_global_roots(struct btrfs_fs_info *fs_info) 1206 { 1207 struct btrfs_root *root; 1208 struct rb_node *node; 1209 1210 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1211 root = rb_entry(node, struct btrfs_root, rb_node); 1212 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1213 btrfs_put_root(root); 1214 } 1215 } 1216 1217 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1218 { 1219 struct percpu_counter *em_counter = &fs_info->evictable_extent_maps; 1220 1221 if (fs_info->fs_devices) 1222 btrfs_close_devices(fs_info->fs_devices); 1223 btrfs_free_compress_wsm(fs_info); 1224 percpu_counter_destroy(&fs_info->stats_read_blocks); 1225 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1226 percpu_counter_destroy(&fs_info->delalloc_bytes); 1227 percpu_counter_destroy(&fs_info->ordered_bytes); 1228 if (percpu_counter_initialized(em_counter)) 1229 ASSERT(percpu_counter_sum_positive(em_counter) == 0); 1230 percpu_counter_destroy(em_counter); 1231 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1232 btrfs_free_csum_hash(fs_info); 1233 btrfs_free_stripe_hash_table(fs_info); 1234 btrfs_free_ref_cache(fs_info); 1235 kfree(fs_info->balance_ctl); 1236 kfree(fs_info->delayed_root); 1237 free_global_roots(fs_info); 1238 btrfs_put_root(fs_info->tree_root); 1239 btrfs_put_root(fs_info->chunk_root); 1240 btrfs_put_root(fs_info->dev_root); 1241 btrfs_put_root(fs_info->quota_root); 1242 btrfs_put_root(fs_info->uuid_root); 1243 btrfs_put_root(fs_info->fs_root); 1244 btrfs_put_root(fs_info->data_reloc_root); 1245 btrfs_put_root(fs_info->block_group_root); 1246 btrfs_put_root(fs_info->stripe_root); 1247 btrfs_check_leaked_roots(fs_info); 1248 btrfs_extent_buffer_leak_debug_check(fs_info); 1249 kfree(fs_info->super_copy); 1250 kfree(fs_info->super_for_commit); 1251 kvfree(fs_info); 1252 } 1253 1254 1255 /* 1256 * Get an in-memory reference of a root structure. 1257 * 1258 * For essential trees like root/extent tree, we grab it from fs_info directly. 1259 * For subvolume trees, we check the cached filesystem roots first. If not 1260 * found, then read it from disk and add it to cached fs roots. 1261 * 1262 * Caller should release the root by calling btrfs_put_root() after the usage. 1263 * 1264 * NOTE: Reloc and log trees can't be read by this function as they share the 1265 * same root objectid. 1266 * 1267 * @objectid: root id 1268 * @anon_dev: preallocated anonymous block device number for new roots, 1269 * pass NULL for a new allocation. 1270 * @check_ref: whether to check root item references, If true, return -ENOENT 1271 * for orphan roots 1272 */ 1273 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1274 u64 objectid, dev_t *anon_dev, 1275 bool check_ref) 1276 { 1277 struct btrfs_root *root; 1278 struct btrfs_path *path; 1279 struct btrfs_key key; 1280 int ret; 1281 1282 root = btrfs_get_global_root(fs_info, objectid); 1283 if (root) 1284 return root; 1285 1286 /* 1287 * If we're called for non-subvolume trees, and above function didn't 1288 * find one, do not try to read it from disk. 1289 * 1290 * This is namely for free-space-tree and quota tree, which can change 1291 * at runtime and should only be grabbed from fs_info. 1292 */ 1293 if (!btrfs_is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) 1294 return ERR_PTR(-ENOENT); 1295 again: 1296 root = btrfs_lookup_fs_root(fs_info, objectid); 1297 if (root) { 1298 /* 1299 * Some other caller may have read out the newly inserted 1300 * subvolume already (for things like backref walk etc). Not 1301 * that common but still possible. In that case, we just need 1302 * to free the anon_dev. 1303 */ 1304 if (unlikely(anon_dev && *anon_dev)) { 1305 free_anon_bdev(*anon_dev); 1306 *anon_dev = 0; 1307 } 1308 1309 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1310 btrfs_put_root(root); 1311 return ERR_PTR(-ENOENT); 1312 } 1313 return root; 1314 } 1315 1316 key.objectid = objectid; 1317 key.type = BTRFS_ROOT_ITEM_KEY; 1318 key.offset = (u64)-1; 1319 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1320 if (IS_ERR(root)) 1321 return root; 1322 1323 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1324 ret = -ENOENT; 1325 goto fail; 1326 } 1327 1328 ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0); 1329 if (ret) 1330 goto fail; 1331 1332 path = btrfs_alloc_path(); 1333 if (!path) { 1334 ret = -ENOMEM; 1335 goto fail; 1336 } 1337 key.objectid = BTRFS_ORPHAN_OBJECTID; 1338 key.type = BTRFS_ORPHAN_ITEM_KEY; 1339 key.offset = objectid; 1340 1341 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1342 btrfs_free_path(path); 1343 if (ret < 0) 1344 goto fail; 1345 if (ret == 0) 1346 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1347 1348 ret = btrfs_insert_fs_root(fs_info, root); 1349 if (ret) { 1350 if (ret == -EEXIST) { 1351 btrfs_put_root(root); 1352 goto again; 1353 } 1354 goto fail; 1355 } 1356 return root; 1357 fail: 1358 /* 1359 * If our caller provided us an anonymous device, then it's his 1360 * responsibility to free it in case we fail. So we have to set our 1361 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1362 * and once again by our caller. 1363 */ 1364 if (anon_dev && *anon_dev) 1365 root->anon_dev = 0; 1366 btrfs_put_root(root); 1367 return ERR_PTR(ret); 1368 } 1369 1370 /* 1371 * Get in-memory reference of a root structure 1372 * 1373 * @objectid: tree objectid 1374 * @check_ref: if set, verify that the tree exists and the item has at least 1375 * one reference 1376 */ 1377 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1378 u64 objectid, bool check_ref) 1379 { 1380 return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref); 1381 } 1382 1383 /* 1384 * Get in-memory reference of a root structure, created as new, optionally pass 1385 * the anonymous block device id 1386 * 1387 * @objectid: tree objectid 1388 * @anon_dev: if NULL, allocate a new anonymous block device or use the 1389 * parameter value if not NULL 1390 */ 1391 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1392 u64 objectid, dev_t *anon_dev) 1393 { 1394 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1395 } 1396 1397 /* 1398 * Return a root for the given objectid. 1399 * 1400 * @fs_info: the fs_info 1401 * @objectid: the objectid we need to lookup 1402 * 1403 * This is exclusively used for backref walking, and exists specifically because 1404 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1405 * creation time, which means we may have to read the tree_root in order to look 1406 * up a fs root that is not in memory. If the root is not in memory we will 1407 * read the tree root commit root and look up the fs root from there. This is a 1408 * temporary root, it will not be inserted into the radix tree as it doesn't 1409 * have the most uptodate information, it'll simply be discarded once the 1410 * backref code is finished using the root. 1411 */ 1412 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1413 struct btrfs_path *path, 1414 u64 objectid) 1415 { 1416 struct btrfs_root *root; 1417 struct btrfs_key key; 1418 1419 ASSERT(path->search_commit_root && path->skip_locking); 1420 1421 /* 1422 * This can return -ENOENT if we ask for a root that doesn't exist, but 1423 * since this is called via the backref walking code we won't be looking 1424 * up a root that doesn't exist, unless there's corruption. So if root 1425 * != NULL just return it. 1426 */ 1427 root = btrfs_get_global_root(fs_info, objectid); 1428 if (root) 1429 return root; 1430 1431 root = btrfs_lookup_fs_root(fs_info, objectid); 1432 if (root) 1433 return root; 1434 1435 key.objectid = objectid; 1436 key.type = BTRFS_ROOT_ITEM_KEY; 1437 key.offset = (u64)-1; 1438 root = read_tree_root_path(fs_info->tree_root, path, &key); 1439 btrfs_release_path(path); 1440 1441 return root; 1442 } 1443 1444 static int cleaner_kthread(void *arg) 1445 { 1446 struct btrfs_fs_info *fs_info = arg; 1447 int again; 1448 1449 while (1) { 1450 again = 0; 1451 1452 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1453 1454 /* Make the cleaner go to sleep early. */ 1455 if (btrfs_need_cleaner_sleep(fs_info)) 1456 goto sleep; 1457 1458 /* 1459 * Do not do anything if we might cause open_ctree() to block 1460 * before we have finished mounting the filesystem. 1461 */ 1462 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1463 goto sleep; 1464 1465 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1466 goto sleep; 1467 1468 /* 1469 * Avoid the problem that we change the status of the fs 1470 * during the above check and trylock. 1471 */ 1472 if (btrfs_need_cleaner_sleep(fs_info)) { 1473 mutex_unlock(&fs_info->cleaner_mutex); 1474 goto sleep; 1475 } 1476 1477 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) 1478 btrfs_sysfs_feature_update(fs_info); 1479 1480 btrfs_run_delayed_iputs(fs_info); 1481 1482 again = btrfs_clean_one_deleted_snapshot(fs_info); 1483 mutex_unlock(&fs_info->cleaner_mutex); 1484 1485 /* 1486 * The defragger has dealt with the R/O remount and umount, 1487 * needn't do anything special here. 1488 */ 1489 btrfs_run_defrag_inodes(fs_info); 1490 1491 /* 1492 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1493 * with relocation (btrfs_relocate_chunk) and relocation 1494 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1495 * after acquiring fs_info->reclaim_bgs_lock. So we 1496 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1497 * unused block groups. 1498 */ 1499 btrfs_delete_unused_bgs(fs_info); 1500 1501 /* 1502 * Reclaim block groups in the reclaim_bgs list after we deleted 1503 * all unused block_groups. This possibly gives us some more free 1504 * space. 1505 */ 1506 btrfs_reclaim_bgs(fs_info); 1507 sleep: 1508 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1509 if (kthread_should_park()) 1510 kthread_parkme(); 1511 if (kthread_should_stop()) 1512 return 0; 1513 if (!again) { 1514 set_current_state(TASK_INTERRUPTIBLE); 1515 schedule(); 1516 __set_current_state(TASK_RUNNING); 1517 } 1518 } 1519 } 1520 1521 static int transaction_kthread(void *arg) 1522 { 1523 struct btrfs_root *root = arg; 1524 struct btrfs_fs_info *fs_info = root->fs_info; 1525 struct btrfs_trans_handle *trans; 1526 struct btrfs_transaction *cur; 1527 u64 transid; 1528 time64_t delta; 1529 unsigned long delay; 1530 bool cannot_commit; 1531 1532 do { 1533 cannot_commit = false; 1534 delay = secs_to_jiffies(fs_info->commit_interval); 1535 mutex_lock(&fs_info->transaction_kthread_mutex); 1536 1537 spin_lock(&fs_info->trans_lock); 1538 cur = fs_info->running_transaction; 1539 if (!cur) { 1540 spin_unlock(&fs_info->trans_lock); 1541 goto sleep; 1542 } 1543 1544 delta = ktime_get_seconds() - cur->start_time; 1545 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1546 cur->state < TRANS_STATE_COMMIT_PREP && 1547 delta < fs_info->commit_interval) { 1548 spin_unlock(&fs_info->trans_lock); 1549 delay -= secs_to_jiffies(delta - 1); 1550 delay = min(delay, 1551 secs_to_jiffies(fs_info->commit_interval)); 1552 goto sleep; 1553 } 1554 transid = cur->transid; 1555 spin_unlock(&fs_info->trans_lock); 1556 1557 /* If the file system is aborted, this will always fail. */ 1558 trans = btrfs_attach_transaction(root); 1559 if (IS_ERR(trans)) { 1560 if (PTR_ERR(trans) != -ENOENT) 1561 cannot_commit = true; 1562 goto sleep; 1563 } 1564 if (transid == trans->transid) { 1565 btrfs_commit_transaction(trans); 1566 } else { 1567 btrfs_end_transaction(trans); 1568 } 1569 sleep: 1570 wake_up_process(fs_info->cleaner_kthread); 1571 mutex_unlock(&fs_info->transaction_kthread_mutex); 1572 1573 if (BTRFS_FS_ERROR(fs_info)) 1574 btrfs_cleanup_transaction(fs_info); 1575 if (!kthread_should_stop() && 1576 (!btrfs_transaction_blocked(fs_info) || 1577 cannot_commit)) 1578 schedule_timeout_interruptible(delay); 1579 } while (!kthread_should_stop()); 1580 return 0; 1581 } 1582 1583 /* 1584 * This will find the highest generation in the array of root backups. The 1585 * index of the highest array is returned, or -EINVAL if we can't find 1586 * anything. 1587 * 1588 * We check to make sure the array is valid by comparing the 1589 * generation of the latest root in the array with the generation 1590 * in the super block. If they don't match we pitch it. 1591 */ 1592 static int find_newest_super_backup(struct btrfs_fs_info *info) 1593 { 1594 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1595 u64 cur; 1596 struct btrfs_root_backup *root_backup; 1597 int i; 1598 1599 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1600 root_backup = info->super_copy->super_roots + i; 1601 cur = btrfs_backup_tree_root_gen(root_backup); 1602 if (cur == newest_gen) 1603 return i; 1604 } 1605 1606 return -EINVAL; 1607 } 1608 1609 /* 1610 * copy all the root pointers into the super backup array. 1611 * this will bump the backup pointer by one when it is 1612 * done 1613 */ 1614 static void backup_super_roots(struct btrfs_fs_info *info) 1615 { 1616 const int next_backup = info->backup_root_index; 1617 struct btrfs_root_backup *root_backup; 1618 1619 root_backup = info->super_for_commit->super_roots + next_backup; 1620 1621 /* 1622 * make sure all of our padding and empty slots get zero filled 1623 * regardless of which ones we use today 1624 */ 1625 memset(root_backup, 0, sizeof(*root_backup)); 1626 1627 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1628 1629 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1630 btrfs_set_backup_tree_root_gen(root_backup, 1631 btrfs_header_generation(info->tree_root->node)); 1632 1633 btrfs_set_backup_tree_root_level(root_backup, 1634 btrfs_header_level(info->tree_root->node)); 1635 1636 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1637 btrfs_set_backup_chunk_root_gen(root_backup, 1638 btrfs_header_generation(info->chunk_root->node)); 1639 btrfs_set_backup_chunk_root_level(root_backup, 1640 btrfs_header_level(info->chunk_root->node)); 1641 1642 if (!btrfs_fs_incompat(info, EXTENT_TREE_V2)) { 1643 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1644 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1645 1646 btrfs_set_backup_extent_root(root_backup, 1647 extent_root->node->start); 1648 btrfs_set_backup_extent_root_gen(root_backup, 1649 btrfs_header_generation(extent_root->node)); 1650 btrfs_set_backup_extent_root_level(root_backup, 1651 btrfs_header_level(extent_root->node)); 1652 1653 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1654 btrfs_set_backup_csum_root_gen(root_backup, 1655 btrfs_header_generation(csum_root->node)); 1656 btrfs_set_backup_csum_root_level(root_backup, 1657 btrfs_header_level(csum_root->node)); 1658 } 1659 1660 /* 1661 * we might commit during log recovery, which happens before we set 1662 * the fs_root. Make sure it is valid before we fill it in. 1663 */ 1664 if (info->fs_root && info->fs_root->node) { 1665 btrfs_set_backup_fs_root(root_backup, 1666 info->fs_root->node->start); 1667 btrfs_set_backup_fs_root_gen(root_backup, 1668 btrfs_header_generation(info->fs_root->node)); 1669 btrfs_set_backup_fs_root_level(root_backup, 1670 btrfs_header_level(info->fs_root->node)); 1671 } 1672 1673 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1674 btrfs_set_backup_dev_root_gen(root_backup, 1675 btrfs_header_generation(info->dev_root->node)); 1676 btrfs_set_backup_dev_root_level(root_backup, 1677 btrfs_header_level(info->dev_root->node)); 1678 1679 btrfs_set_backup_total_bytes(root_backup, 1680 btrfs_super_total_bytes(info->super_copy)); 1681 btrfs_set_backup_bytes_used(root_backup, 1682 btrfs_super_bytes_used(info->super_copy)); 1683 btrfs_set_backup_num_devices(root_backup, 1684 btrfs_super_num_devices(info->super_copy)); 1685 1686 /* 1687 * if we don't copy this out to the super_copy, it won't get remembered 1688 * for the next commit 1689 */ 1690 memcpy(&info->super_copy->super_roots, 1691 &info->super_for_commit->super_roots, 1692 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1693 } 1694 1695 /* 1696 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio 1697 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1698 * 1699 * @fs_info: filesystem whose backup roots need to be read 1700 * @priority: priority of backup root required 1701 * 1702 * Returns backup root index on success and -EINVAL otherwise. 1703 */ 1704 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1705 { 1706 int backup_index = find_newest_super_backup(fs_info); 1707 struct btrfs_super_block *super = fs_info->super_copy; 1708 struct btrfs_root_backup *root_backup; 1709 1710 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1711 if (priority == 0) 1712 return backup_index; 1713 1714 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1715 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1716 } else { 1717 return -EINVAL; 1718 } 1719 1720 root_backup = super->super_roots + backup_index; 1721 1722 btrfs_set_super_generation(super, 1723 btrfs_backup_tree_root_gen(root_backup)); 1724 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1725 btrfs_set_super_root_level(super, 1726 btrfs_backup_tree_root_level(root_backup)); 1727 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1728 1729 /* 1730 * Fixme: the total bytes and num_devices need to match or we should 1731 * need a fsck 1732 */ 1733 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1734 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1735 1736 return backup_index; 1737 } 1738 1739 /* helper to cleanup workers */ 1740 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1741 { 1742 btrfs_destroy_workqueue(fs_info->fixup_workers); 1743 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1744 btrfs_destroy_workqueue(fs_info->workers); 1745 if (fs_info->endio_workers) 1746 destroy_workqueue(fs_info->endio_workers); 1747 if (fs_info->rmw_workers) 1748 destroy_workqueue(fs_info->rmw_workers); 1749 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1750 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1751 btrfs_destroy_workqueue(fs_info->delayed_workers); 1752 btrfs_destroy_workqueue(fs_info->caching_workers); 1753 btrfs_destroy_workqueue(fs_info->flush_workers); 1754 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1755 if (fs_info->discard_ctl.discard_workers) 1756 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1757 /* 1758 * Now that all other work queues are destroyed, we can safely destroy 1759 * the queues used for metadata I/O, since tasks from those other work 1760 * queues can do metadata I/O operations. 1761 */ 1762 if (fs_info->endio_meta_workers) 1763 destroy_workqueue(fs_info->endio_meta_workers); 1764 } 1765 1766 static void free_root_extent_buffers(struct btrfs_root *root) 1767 { 1768 if (root) { 1769 free_extent_buffer(root->node); 1770 free_extent_buffer(root->commit_root); 1771 root->node = NULL; 1772 root->commit_root = NULL; 1773 } 1774 } 1775 1776 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 1777 { 1778 struct btrfs_root *root, *tmp; 1779 1780 rbtree_postorder_for_each_entry_safe(root, tmp, 1781 &fs_info->global_root_tree, 1782 rb_node) 1783 free_root_extent_buffers(root); 1784 } 1785 1786 /* helper to cleanup tree roots */ 1787 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1788 { 1789 free_root_extent_buffers(info->tree_root); 1790 1791 free_global_root_pointers(info); 1792 free_root_extent_buffers(info->dev_root); 1793 free_root_extent_buffers(info->quota_root); 1794 free_root_extent_buffers(info->uuid_root); 1795 free_root_extent_buffers(info->fs_root); 1796 free_root_extent_buffers(info->data_reloc_root); 1797 free_root_extent_buffers(info->block_group_root); 1798 free_root_extent_buffers(info->stripe_root); 1799 if (free_chunk_root) 1800 free_root_extent_buffers(info->chunk_root); 1801 } 1802 1803 void btrfs_put_root(struct btrfs_root *root) 1804 { 1805 if (!root) 1806 return; 1807 1808 if (refcount_dec_and_test(&root->refs)) { 1809 if (WARN_ON(!xa_empty(&root->inodes))) 1810 xa_destroy(&root->inodes); 1811 if (WARN_ON(!xa_empty(&root->delayed_nodes))) 1812 xa_destroy(&root->delayed_nodes); 1813 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 1814 if (root->anon_dev) 1815 free_anon_bdev(root->anon_dev); 1816 free_root_extent_buffers(root); 1817 #ifdef CONFIG_BTRFS_DEBUG 1818 spin_lock(&root->fs_info->fs_roots_radix_lock); 1819 list_del_init(&root->leak_list); 1820 spin_unlock(&root->fs_info->fs_roots_radix_lock); 1821 #endif 1822 kfree(root); 1823 } 1824 } 1825 1826 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 1827 { 1828 int ret; 1829 struct btrfs_root *gang[8]; 1830 int i; 1831 1832 while (!list_empty(&fs_info->dead_roots)) { 1833 gang[0] = list_first_entry(&fs_info->dead_roots, 1834 struct btrfs_root, root_list); 1835 list_del(&gang[0]->root_list); 1836 1837 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 1838 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 1839 btrfs_put_root(gang[0]); 1840 } 1841 1842 while (1) { 1843 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 1844 (void **)gang, 0, 1845 ARRAY_SIZE(gang)); 1846 if (!ret) 1847 break; 1848 for (i = 0; i < ret; i++) 1849 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 1850 } 1851 } 1852 1853 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 1854 { 1855 mutex_init(&fs_info->scrub_lock); 1856 atomic_set(&fs_info->scrubs_running, 0); 1857 atomic_set(&fs_info->scrub_pause_req, 0); 1858 atomic_set(&fs_info->scrubs_paused, 0); 1859 atomic_set(&fs_info->scrub_cancel_req, 0); 1860 init_waitqueue_head(&fs_info->scrub_pause_wait); 1861 refcount_set(&fs_info->scrub_workers_refcnt, 0); 1862 } 1863 1864 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 1865 { 1866 spin_lock_init(&fs_info->balance_lock); 1867 mutex_init(&fs_info->balance_mutex); 1868 atomic_set(&fs_info->balance_pause_req, 0); 1869 atomic_set(&fs_info->balance_cancel_req, 0); 1870 fs_info->balance_ctl = NULL; 1871 init_waitqueue_head(&fs_info->balance_wait_q); 1872 atomic_set(&fs_info->reloc_cancel_req, 0); 1873 } 1874 1875 static int btrfs_init_btree_inode(struct super_block *sb) 1876 { 1877 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1878 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 1879 fs_info->tree_root); 1880 struct inode *inode; 1881 1882 inode = new_inode(sb); 1883 if (!inode) 1884 return -ENOMEM; 1885 1886 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID); 1887 set_nlink(inode, 1); 1888 /* 1889 * we set the i_size on the btree inode to the max possible int. 1890 * the real end of the address space is determined by all of 1891 * the devices in the system 1892 */ 1893 inode->i_size = OFFSET_MAX; 1894 inode->i_mapping->a_ops = &btree_aops; 1895 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); 1896 1897 btrfs_extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 1898 IO_TREE_BTREE_INODE_IO); 1899 btrfs_extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 1900 1901 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 1902 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 1903 __insert_inode_hash(inode, hash); 1904 set_bit(AS_KERNEL_FILE, &inode->i_mapping->flags); 1905 fs_info->btree_inode = inode; 1906 1907 return 0; 1908 } 1909 1910 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 1911 { 1912 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 1913 init_rwsem(&fs_info->dev_replace.rwsem); 1914 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 1915 } 1916 1917 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 1918 { 1919 spin_lock_init(&fs_info->qgroup_lock); 1920 mutex_init(&fs_info->qgroup_ioctl_lock); 1921 fs_info->qgroup_tree = RB_ROOT; 1922 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 1923 fs_info->qgroup_seq = 1; 1924 fs_info->qgroup_rescan_running = false; 1925 fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT; 1926 mutex_init(&fs_info->qgroup_rescan_lock); 1927 } 1928 1929 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 1930 { 1931 u32 max_active = fs_info->thread_pool_size; 1932 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 1933 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_PERCPU; 1934 1935 fs_info->workers = 1936 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 1937 1938 fs_info->delalloc_workers = 1939 btrfs_alloc_workqueue(fs_info, "delalloc", 1940 flags, max_active, 2); 1941 1942 fs_info->flush_workers = 1943 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 1944 flags, max_active, 0); 1945 1946 fs_info->caching_workers = 1947 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 1948 1949 fs_info->fixup_workers = 1950 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags); 1951 1952 fs_info->endio_workers = 1953 alloc_workqueue("btrfs-endio", flags, max_active); 1954 fs_info->endio_meta_workers = 1955 alloc_workqueue("btrfs-endio-meta", flags, max_active); 1956 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 1957 fs_info->endio_write_workers = 1958 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 1959 max_active, 2); 1960 fs_info->endio_freespace_worker = 1961 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 1962 max_active, 0); 1963 fs_info->delayed_workers = 1964 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 1965 max_active, 0); 1966 fs_info->qgroup_rescan_workers = 1967 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan", 1968 ordered_flags); 1969 fs_info->discard_ctl.discard_workers = 1970 alloc_ordered_workqueue("btrfs-discard", WQ_FREEZABLE); 1971 1972 if (!(fs_info->workers && 1973 fs_info->delalloc_workers && fs_info->flush_workers && 1974 fs_info->endio_workers && fs_info->endio_meta_workers && 1975 fs_info->endio_write_workers && 1976 fs_info->endio_freespace_worker && fs_info->rmw_workers && 1977 fs_info->caching_workers && fs_info->fixup_workers && 1978 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 1979 fs_info->discard_ctl.discard_workers)) { 1980 return -ENOMEM; 1981 } 1982 1983 return 0; 1984 } 1985 1986 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 1987 { 1988 struct crypto_shash *csum_shash; 1989 const char *csum_driver = btrfs_super_csum_driver(csum_type); 1990 1991 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 1992 1993 if (IS_ERR(csum_shash)) { 1994 btrfs_err(fs_info, "error allocating %s hash for checksum", 1995 csum_driver); 1996 return PTR_ERR(csum_shash); 1997 } 1998 1999 fs_info->csum_shash = csum_shash; 2000 2001 /* Check if the checksum implementation is a fast accelerated one. */ 2002 switch (csum_type) { 2003 case BTRFS_CSUM_TYPE_CRC32: 2004 if (crc32_optimizations() & CRC32C_OPTIMIZATION) 2005 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2006 break; 2007 case BTRFS_CSUM_TYPE_XXHASH: 2008 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2009 break; 2010 default: 2011 break; 2012 } 2013 2014 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2015 btrfs_super_csum_name(csum_type), 2016 crypto_shash_driver_name(csum_shash)); 2017 return 0; 2018 } 2019 2020 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2021 struct btrfs_fs_devices *fs_devices) 2022 { 2023 int ret; 2024 struct btrfs_tree_parent_check check = { 0 }; 2025 struct btrfs_root *log_tree_root; 2026 struct btrfs_super_block *disk_super = fs_info->super_copy; 2027 u64 bytenr = btrfs_super_log_root(disk_super); 2028 int level = btrfs_super_log_root_level(disk_super); 2029 2030 if (unlikely(fs_devices->rw_devices == 0)) { 2031 btrfs_warn(fs_info, "log replay required on RO media"); 2032 return -EIO; 2033 } 2034 2035 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2036 GFP_KERNEL); 2037 if (!log_tree_root) 2038 return -ENOMEM; 2039 2040 check.level = level; 2041 check.transid = fs_info->generation + 1; 2042 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2043 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2044 if (IS_ERR(log_tree_root->node)) { 2045 btrfs_warn(fs_info, "failed to read log tree"); 2046 ret = PTR_ERR(log_tree_root->node); 2047 log_tree_root->node = NULL; 2048 btrfs_put_root(log_tree_root); 2049 return ret; 2050 } 2051 if (unlikely(!extent_buffer_uptodate(log_tree_root->node))) { 2052 btrfs_err(fs_info, "failed to read log tree"); 2053 btrfs_put_root(log_tree_root); 2054 return -EIO; 2055 } 2056 2057 /* returns with log_tree_root freed on success */ 2058 ret = btrfs_recover_log_trees(log_tree_root); 2059 btrfs_put_root(log_tree_root); 2060 if (ret) { 2061 btrfs_handle_fs_error(fs_info, ret, 2062 "Failed to recover log tree"); 2063 return ret; 2064 } 2065 2066 if (sb_rdonly(fs_info->sb)) { 2067 ret = btrfs_commit_super(fs_info); 2068 if (ret) 2069 return ret; 2070 } 2071 2072 return 0; 2073 } 2074 2075 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2076 struct btrfs_path *path, u64 objectid, 2077 const char *name) 2078 { 2079 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2080 struct btrfs_root *root; 2081 u64 max_global_id = 0; 2082 int ret; 2083 struct btrfs_key key = { 2084 .objectid = objectid, 2085 .type = BTRFS_ROOT_ITEM_KEY, 2086 .offset = 0, 2087 }; 2088 bool found = false; 2089 2090 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2091 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2092 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2093 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); 2094 return 0; 2095 } 2096 2097 while (1) { 2098 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2099 if (ret < 0) 2100 break; 2101 2102 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2103 ret = btrfs_next_leaf(tree_root, path); 2104 if (ret) { 2105 if (ret > 0) 2106 ret = 0; 2107 break; 2108 } 2109 } 2110 ret = 0; 2111 2112 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2113 if (key.objectid != objectid) 2114 break; 2115 btrfs_release_path(path); 2116 2117 /* 2118 * Just worry about this for extent tree, it'll be the same for 2119 * everybody. 2120 */ 2121 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2122 max_global_id = max(max_global_id, key.offset); 2123 2124 found = true; 2125 root = read_tree_root_path(tree_root, path, &key); 2126 if (IS_ERR(root)) { 2127 ret = PTR_ERR(root); 2128 break; 2129 } 2130 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2131 ret = btrfs_global_root_insert(root); 2132 if (ret) { 2133 btrfs_put_root(root); 2134 break; 2135 } 2136 key.offset++; 2137 } 2138 btrfs_release_path(path); 2139 2140 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2141 fs_info->nr_global_roots = max_global_id + 1; 2142 2143 if (!found || ret) { 2144 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2145 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); 2146 2147 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2148 ret = ret ? ret : -ENOENT; 2149 else 2150 ret = 0; 2151 btrfs_err(fs_info, "failed to load root %s", name); 2152 } 2153 return ret; 2154 } 2155 2156 static int load_global_roots(struct btrfs_root *tree_root) 2157 { 2158 BTRFS_PATH_AUTO_FREE(path); 2159 int ret; 2160 2161 path = btrfs_alloc_path(); 2162 if (!path) 2163 return -ENOMEM; 2164 2165 ret = load_global_roots_objectid(tree_root, path, 2166 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2167 if (ret) 2168 return ret; 2169 ret = load_global_roots_objectid(tree_root, path, 2170 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2171 if (ret) 2172 return ret; 2173 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2174 return ret; 2175 ret = load_global_roots_objectid(tree_root, path, 2176 BTRFS_FREE_SPACE_TREE_OBJECTID, 2177 "free space"); 2178 2179 return ret; 2180 } 2181 2182 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2183 { 2184 struct btrfs_root *tree_root = fs_info->tree_root; 2185 struct btrfs_root *root; 2186 struct btrfs_key location; 2187 int ret; 2188 2189 ASSERT(fs_info->tree_root); 2190 2191 ret = load_global_roots(tree_root); 2192 if (ret) 2193 return ret; 2194 2195 location.type = BTRFS_ROOT_ITEM_KEY; 2196 location.offset = 0; 2197 2198 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2199 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2200 root = btrfs_read_tree_root(tree_root, &location); 2201 if (IS_ERR(root)) { 2202 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2203 ret = PTR_ERR(root); 2204 goto out; 2205 } 2206 } else { 2207 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2208 fs_info->block_group_root = root; 2209 } 2210 } 2211 2212 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2213 root = btrfs_read_tree_root(tree_root, &location); 2214 if (IS_ERR(root)) { 2215 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2216 ret = PTR_ERR(root); 2217 goto out; 2218 } 2219 } else { 2220 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2221 fs_info->dev_root = root; 2222 } 2223 /* Initialize fs_info for all devices in any case */ 2224 ret = btrfs_init_devices_late(fs_info); 2225 if (ret) 2226 goto out; 2227 2228 /* 2229 * This tree can share blocks with some other fs tree during relocation 2230 * and we need a proper setup by btrfs_get_fs_root 2231 */ 2232 root = btrfs_get_fs_root(tree_root->fs_info, 2233 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2234 if (IS_ERR(root)) { 2235 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2236 location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID; 2237 ret = PTR_ERR(root); 2238 goto out; 2239 } 2240 } else { 2241 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2242 fs_info->data_reloc_root = root; 2243 } 2244 2245 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2246 root = btrfs_read_tree_root(tree_root, &location); 2247 if (!IS_ERR(root)) { 2248 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2249 fs_info->quota_root = root; 2250 } 2251 2252 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2253 root = btrfs_read_tree_root(tree_root, &location); 2254 if (IS_ERR(root)) { 2255 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2256 ret = PTR_ERR(root); 2257 if (ret != -ENOENT) 2258 goto out; 2259 } 2260 } else { 2261 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2262 fs_info->uuid_root = root; 2263 } 2264 2265 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) { 2266 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID; 2267 root = btrfs_read_tree_root(tree_root, &location); 2268 if (IS_ERR(root)) { 2269 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2270 ret = PTR_ERR(root); 2271 goto out; 2272 } 2273 } else { 2274 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2275 fs_info->stripe_root = root; 2276 } 2277 } 2278 2279 return 0; 2280 out: 2281 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2282 location.objectid, ret); 2283 return ret; 2284 } 2285 2286 static int validate_sys_chunk_array(const struct btrfs_fs_info *fs_info, 2287 const struct btrfs_super_block *sb) 2288 { 2289 unsigned int cur = 0; /* Offset inside the sys chunk array */ 2290 /* 2291 * At sb read time, fs_info is not fully initialized. Thus we have 2292 * to use super block sectorsize, which should have been validated. 2293 */ 2294 const u32 sectorsize = btrfs_super_sectorsize(sb); 2295 u32 sys_array_size = btrfs_super_sys_array_size(sb); 2296 2297 if (unlikely(sys_array_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)) { 2298 btrfs_err(fs_info, "system chunk array too big %u > %u", 2299 sys_array_size, BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2300 return -EUCLEAN; 2301 } 2302 2303 while (cur < sys_array_size) { 2304 struct btrfs_disk_key *disk_key; 2305 struct btrfs_chunk *chunk; 2306 struct btrfs_key key; 2307 u64 type; 2308 u16 num_stripes; 2309 u32 len; 2310 int ret; 2311 2312 disk_key = (struct btrfs_disk_key *)(sb->sys_chunk_array + cur); 2313 len = sizeof(*disk_key); 2314 2315 if (unlikely(cur + len > sys_array_size)) 2316 goto short_read; 2317 cur += len; 2318 2319 btrfs_disk_key_to_cpu(&key, disk_key); 2320 if (unlikely(key.type != BTRFS_CHUNK_ITEM_KEY)) { 2321 btrfs_err(fs_info, 2322 "unexpected item type %u in sys_array at offset %u", 2323 key.type, cur); 2324 return -EUCLEAN; 2325 } 2326 chunk = (struct btrfs_chunk *)(sb->sys_chunk_array + cur); 2327 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2328 if (unlikely(cur + btrfs_chunk_item_size(num_stripes) > sys_array_size)) 2329 goto short_read; 2330 type = btrfs_stack_chunk_type(chunk); 2331 if (unlikely(!(type & BTRFS_BLOCK_GROUP_SYSTEM))) { 2332 btrfs_err(fs_info, 2333 "invalid chunk type %llu in sys_array at offset %u", 2334 type, cur); 2335 return -EUCLEAN; 2336 } 2337 ret = btrfs_check_chunk_valid(fs_info, NULL, chunk, key.offset, 2338 sectorsize); 2339 if (ret < 0) 2340 return ret; 2341 cur += btrfs_chunk_item_size(num_stripes); 2342 } 2343 return 0; 2344 short_read: 2345 btrfs_err(fs_info, 2346 "super block sys chunk array short read, cur=%u sys_array_size=%u", 2347 cur, sys_array_size); 2348 return -EUCLEAN; 2349 } 2350 2351 /* 2352 * Real super block validation 2353 * NOTE: super csum type and incompat features will not be checked here. 2354 * 2355 * @sb: super block to check 2356 * @mirror_num: the super block number to check its bytenr: 2357 * 0 the primary (1st) sb 2358 * 1, 2 2nd and 3rd backup copy 2359 * -1 skip bytenr check 2360 */ 2361 int btrfs_validate_super(const struct btrfs_fs_info *fs_info, 2362 const struct btrfs_super_block *sb, int mirror_num) 2363 { 2364 u64 nodesize = btrfs_super_nodesize(sb); 2365 u64 sectorsize = btrfs_super_sectorsize(sb); 2366 int ret = 0; 2367 const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS); 2368 2369 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2370 btrfs_err(fs_info, "no valid FS found"); 2371 ret = -EINVAL; 2372 } 2373 if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) { 2374 if (!ignore_flags) { 2375 btrfs_err(fs_info, 2376 "unrecognized or unsupported super flag 0x%llx", 2377 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2378 ret = -EINVAL; 2379 } else { 2380 btrfs_info(fs_info, 2381 "unrecognized or unsupported super flags: 0x%llx, ignored", 2382 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2383 } 2384 } 2385 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2386 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2387 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2388 ret = -EINVAL; 2389 } 2390 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2391 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2392 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2393 ret = -EINVAL; 2394 } 2395 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2396 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2397 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2398 ret = -EINVAL; 2399 } 2400 2401 /* 2402 * Check sectorsize and nodesize first, other check will need it. 2403 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2404 */ 2405 if (!is_power_of_2(sectorsize) || sectorsize < BTRFS_MIN_BLOCKSIZE || 2406 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2407 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2408 ret = -EINVAL; 2409 } 2410 2411 if (!btrfs_supported_blocksize(sectorsize)) { 2412 btrfs_err(fs_info, 2413 "sectorsize %llu not yet supported for page size %lu", 2414 sectorsize, PAGE_SIZE); 2415 ret = -EINVAL; 2416 } 2417 2418 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2419 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2420 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2421 ret = -EINVAL; 2422 } 2423 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2424 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2425 le32_to_cpu(sb->__unused_leafsize), nodesize); 2426 ret = -EINVAL; 2427 } 2428 2429 /* Root alignment check */ 2430 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2431 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2432 btrfs_super_root(sb)); 2433 ret = -EINVAL; 2434 } 2435 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2436 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2437 btrfs_super_chunk_root(sb)); 2438 ret = -EINVAL; 2439 } 2440 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2441 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2442 btrfs_super_log_root(sb)); 2443 ret = -EINVAL; 2444 } 2445 2446 if (!fs_info->fs_devices->temp_fsid && 2447 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) { 2448 btrfs_err(fs_info, 2449 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2450 sb->fsid, fs_info->fs_devices->fsid); 2451 ret = -EINVAL; 2452 } 2453 2454 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb), 2455 BTRFS_FSID_SIZE) != 0) { 2456 btrfs_err(fs_info, 2457 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2458 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid); 2459 ret = -EINVAL; 2460 } 2461 2462 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2463 BTRFS_FSID_SIZE) != 0) { 2464 btrfs_err(fs_info, 2465 "dev_item UUID does not match metadata fsid: %pU != %pU", 2466 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2467 ret = -EINVAL; 2468 } 2469 2470 /* 2471 * Artificial requirement for block-group-tree to force newer features 2472 * (free-space-tree, no-holes) so the test matrix is smaller. 2473 */ 2474 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2475 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2476 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2477 btrfs_err(fs_info, 2478 "block-group-tree feature requires free-space-tree and no-holes"); 2479 ret = -EINVAL; 2480 } 2481 2482 /* 2483 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2484 * done later 2485 */ 2486 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2487 btrfs_err(fs_info, "bytes_used is too small %llu", 2488 btrfs_super_bytes_used(sb)); 2489 ret = -EINVAL; 2490 } 2491 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2492 btrfs_err(fs_info, "invalid stripesize %u", 2493 btrfs_super_stripesize(sb)); 2494 ret = -EINVAL; 2495 } 2496 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2497 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2498 btrfs_super_num_devices(sb)); 2499 if (btrfs_super_num_devices(sb) == 0) { 2500 btrfs_err(fs_info, "number of devices is 0"); 2501 ret = -EINVAL; 2502 } 2503 2504 if (mirror_num >= 0 && 2505 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2506 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2507 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2508 ret = -EINVAL; 2509 } 2510 2511 if (ret) 2512 return ret; 2513 2514 ret = validate_sys_chunk_array(fs_info, sb); 2515 2516 /* 2517 * Obvious sys_chunk_array corruptions, it must hold at least one key 2518 * and one chunk 2519 */ 2520 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2521 btrfs_err(fs_info, "system chunk array too big %u > %u", 2522 btrfs_super_sys_array_size(sb), 2523 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2524 ret = -EINVAL; 2525 } 2526 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2527 + sizeof(struct btrfs_chunk)) { 2528 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2529 btrfs_super_sys_array_size(sb), 2530 sizeof(struct btrfs_disk_key) 2531 + sizeof(struct btrfs_chunk)); 2532 ret = -EINVAL; 2533 } 2534 2535 /* 2536 * The generation is a global counter, we'll trust it more than the others 2537 * but it's still possible that it's the one that's wrong. 2538 */ 2539 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2540 btrfs_warn(fs_info, 2541 "suspicious: generation < chunk_root_generation: %llu < %llu", 2542 btrfs_super_generation(sb), 2543 btrfs_super_chunk_root_generation(sb)); 2544 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2545 && btrfs_super_cache_generation(sb) != (u64)-1) 2546 btrfs_warn(fs_info, 2547 "suspicious: generation < cache_generation: %llu < %llu", 2548 btrfs_super_generation(sb), 2549 btrfs_super_cache_generation(sb)); 2550 2551 return ret; 2552 } 2553 2554 /* 2555 * Validation of super block at mount time. 2556 * Some checks already done early at mount time, like csum type and incompat 2557 * flags will be skipped. 2558 */ 2559 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2560 { 2561 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2562 } 2563 2564 /* 2565 * Validation of super block at write time. 2566 * Some checks like bytenr check will be skipped as their values will be 2567 * overwritten soon. 2568 * Extra checks like csum type and incompat flags will be done here. 2569 */ 2570 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2571 struct btrfs_super_block *sb) 2572 { 2573 int ret; 2574 2575 ret = btrfs_validate_super(fs_info, sb, -1); 2576 if (ret < 0) 2577 goto out; 2578 if (unlikely(!btrfs_supported_super_csum(btrfs_super_csum_type(sb)))) { 2579 ret = -EUCLEAN; 2580 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2581 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2582 goto out; 2583 } 2584 if (unlikely(btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP)) { 2585 ret = -EUCLEAN; 2586 btrfs_err(fs_info, 2587 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2588 btrfs_super_incompat_flags(sb), 2589 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2590 goto out; 2591 } 2592 out: 2593 if (ret < 0) 2594 btrfs_err(fs_info, 2595 "super block corruption detected before writing it to disk"); 2596 return ret; 2597 } 2598 2599 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2600 { 2601 struct btrfs_tree_parent_check check = { 2602 .level = level, 2603 .transid = gen, 2604 .owner_root = btrfs_root_id(root) 2605 }; 2606 int ret = 0; 2607 2608 root->node = read_tree_block(root->fs_info, bytenr, &check); 2609 if (IS_ERR(root->node)) { 2610 ret = PTR_ERR(root->node); 2611 root->node = NULL; 2612 return ret; 2613 } 2614 if (unlikely(!extent_buffer_uptodate(root->node))) { 2615 free_extent_buffer(root->node); 2616 root->node = NULL; 2617 return -EIO; 2618 } 2619 2620 btrfs_set_root_node(&root->root_item, root->node); 2621 root->commit_root = btrfs_root_node(root); 2622 btrfs_set_root_refs(&root->root_item, 1); 2623 return ret; 2624 } 2625 2626 static int load_important_roots(struct btrfs_fs_info *fs_info) 2627 { 2628 struct btrfs_super_block *sb = fs_info->super_copy; 2629 u64 gen, bytenr; 2630 int level, ret; 2631 2632 bytenr = btrfs_super_root(sb); 2633 gen = btrfs_super_generation(sb); 2634 level = btrfs_super_root_level(sb); 2635 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2636 if (ret) { 2637 btrfs_warn(fs_info, "couldn't read tree root"); 2638 return ret; 2639 } 2640 return 0; 2641 } 2642 2643 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2644 { 2645 int backup_index = find_newest_super_backup(fs_info); 2646 struct btrfs_super_block *sb = fs_info->super_copy; 2647 struct btrfs_root *tree_root = fs_info->tree_root; 2648 bool handle_error = false; 2649 int ret = 0; 2650 int i; 2651 2652 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2653 if (handle_error) { 2654 if (!IS_ERR(tree_root->node)) 2655 free_extent_buffer(tree_root->node); 2656 tree_root->node = NULL; 2657 2658 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2659 break; 2660 2661 free_root_pointers(fs_info, 0); 2662 2663 /* 2664 * Don't use the log in recovery mode, it won't be 2665 * valid 2666 */ 2667 btrfs_set_super_log_root(sb, 0); 2668 2669 btrfs_warn(fs_info, "try to load backup roots slot %d", i); 2670 ret = read_backup_root(fs_info, i); 2671 backup_index = ret; 2672 if (ret < 0) 2673 return ret; 2674 } 2675 2676 ret = load_important_roots(fs_info); 2677 if (ret) { 2678 handle_error = true; 2679 continue; 2680 } 2681 2682 /* 2683 * No need to hold btrfs_root::objectid_mutex since the fs 2684 * hasn't been fully initialised and we are the only user 2685 */ 2686 ret = btrfs_init_root_free_objectid(tree_root); 2687 if (ret < 0) { 2688 handle_error = true; 2689 continue; 2690 } 2691 2692 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2693 2694 ret = btrfs_read_roots(fs_info); 2695 if (ret < 0) { 2696 handle_error = true; 2697 continue; 2698 } 2699 2700 /* All successful */ 2701 fs_info->generation = btrfs_header_generation(tree_root->node); 2702 btrfs_set_last_trans_committed(fs_info, fs_info->generation); 2703 fs_info->last_reloc_trans = 0; 2704 2705 /* Always begin writing backup roots after the one being used */ 2706 if (backup_index < 0) { 2707 fs_info->backup_root_index = 0; 2708 } else { 2709 fs_info->backup_root_index = backup_index + 1; 2710 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2711 } 2712 break; 2713 } 2714 2715 return ret; 2716 } 2717 2718 /* 2719 * Lockdep gets confused between our buffer_tree which requires IRQ locking because 2720 * we modify marks in the IRQ context, and our delayed inode xarray which doesn't 2721 * have these requirements. Use a class key so lockdep doesn't get them mixed up. 2722 */ 2723 static struct lock_class_key buffer_xa_class; 2724 2725 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2726 { 2727 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2728 2729 /* Use the same flags as mapping->i_pages. */ 2730 xa_init_flags(&fs_info->buffer_tree, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 2731 lockdep_set_class(&fs_info->buffer_tree.xa_lock, &buffer_xa_class); 2732 2733 INIT_LIST_HEAD(&fs_info->trans_list); 2734 INIT_LIST_HEAD(&fs_info->dead_roots); 2735 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2736 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2737 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2738 spin_lock_init(&fs_info->delalloc_root_lock); 2739 spin_lock_init(&fs_info->trans_lock); 2740 spin_lock_init(&fs_info->fs_roots_radix_lock); 2741 spin_lock_init(&fs_info->delayed_iput_lock); 2742 spin_lock_init(&fs_info->defrag_inodes_lock); 2743 spin_lock_init(&fs_info->super_lock); 2744 spin_lock_init(&fs_info->unused_bgs_lock); 2745 spin_lock_init(&fs_info->treelog_bg_lock); 2746 spin_lock_init(&fs_info->zone_active_bgs_lock); 2747 spin_lock_init(&fs_info->relocation_bg_lock); 2748 rwlock_init(&fs_info->tree_mod_log_lock); 2749 rwlock_init(&fs_info->global_root_lock); 2750 mutex_init(&fs_info->unused_bg_unpin_mutex); 2751 mutex_init(&fs_info->reclaim_bgs_lock); 2752 mutex_init(&fs_info->reloc_mutex); 2753 mutex_init(&fs_info->delalloc_root_mutex); 2754 mutex_init(&fs_info->zoned_meta_io_lock); 2755 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2756 seqlock_init(&fs_info->profiles_lock); 2757 2758 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2759 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2760 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2761 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2762 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep, 2763 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2764 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2765 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2766 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 2767 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2768 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 2769 BTRFS_LOCKDEP_TRANS_COMPLETED); 2770 2771 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2772 INIT_LIST_HEAD(&fs_info->space_info); 2773 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2774 INIT_LIST_HEAD(&fs_info->unused_bgs); 2775 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2776 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2777 #ifdef CONFIG_BTRFS_DEBUG 2778 INIT_LIST_HEAD(&fs_info->allocated_roots); 2779 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2780 spin_lock_init(&fs_info->eb_leak_lock); 2781 #endif 2782 fs_info->mapping_tree = RB_ROOT_CACHED; 2783 rwlock_init(&fs_info->mapping_tree_lock); 2784 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2785 BTRFS_BLOCK_RSV_GLOBAL); 2786 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2787 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2788 btrfs_init_block_rsv(&fs_info->treelog_rsv, BTRFS_BLOCK_RSV_TREELOG); 2789 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2790 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2791 BTRFS_BLOCK_RSV_DELOPS); 2792 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2793 BTRFS_BLOCK_RSV_DELREFS); 2794 2795 atomic_set(&fs_info->async_delalloc_pages, 0); 2796 atomic_set(&fs_info->defrag_running, 0); 2797 atomic_set(&fs_info->nr_delayed_iputs, 0); 2798 atomic64_set(&fs_info->tree_mod_seq, 0); 2799 fs_info->global_root_tree = RB_ROOT; 2800 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2801 fs_info->metadata_ratio = 0; 2802 fs_info->defrag_inodes = RB_ROOT; 2803 atomic64_set(&fs_info->free_chunk_space, 0); 2804 fs_info->tree_mod_log = RB_ROOT; 2805 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2806 btrfs_init_ref_verify(fs_info); 2807 2808 fs_info->thread_pool_size = min_t(unsigned long, 2809 num_online_cpus() + 2, 8); 2810 2811 INIT_LIST_HEAD(&fs_info->ordered_roots); 2812 spin_lock_init(&fs_info->ordered_root_lock); 2813 2814 btrfs_init_scrub(fs_info); 2815 btrfs_init_balance(fs_info); 2816 btrfs_init_async_reclaim_work(fs_info); 2817 btrfs_init_extent_map_shrinker_work(fs_info); 2818 2819 rwlock_init(&fs_info->block_group_cache_lock); 2820 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 2821 2822 btrfs_extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2823 IO_TREE_FS_EXCLUDED_EXTENTS); 2824 2825 mutex_init(&fs_info->ordered_operations_mutex); 2826 mutex_init(&fs_info->tree_log_mutex); 2827 mutex_init(&fs_info->chunk_mutex); 2828 mutex_init(&fs_info->transaction_kthread_mutex); 2829 mutex_init(&fs_info->cleaner_mutex); 2830 mutex_init(&fs_info->ro_block_group_mutex); 2831 init_rwsem(&fs_info->commit_root_sem); 2832 init_rwsem(&fs_info->cleanup_work_sem); 2833 init_rwsem(&fs_info->subvol_sem); 2834 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2835 2836 btrfs_init_dev_replace_locks(fs_info); 2837 btrfs_init_qgroup(fs_info); 2838 btrfs_discard_init(fs_info); 2839 2840 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2841 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2842 2843 init_waitqueue_head(&fs_info->transaction_throttle); 2844 init_waitqueue_head(&fs_info->transaction_wait); 2845 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2846 init_waitqueue_head(&fs_info->async_submit_wait); 2847 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2848 2849 /* Usable values until the real ones are cached from the superblock */ 2850 fs_info->nodesize = 4096; 2851 fs_info->sectorsize = 4096; 2852 fs_info->sectorsize_bits = ilog2(4096); 2853 fs_info->stripesize = 4096; 2854 2855 /* Default compress algorithm when user does -o compress */ 2856 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2857 2858 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 2859 2860 spin_lock_init(&fs_info->swapfile_pins_lock); 2861 fs_info->swapfile_pins = RB_ROOT; 2862 2863 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 2864 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 2865 } 2866 2867 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2868 { 2869 int ret; 2870 2871 fs_info->sb = sb; 2872 /* Temporary fixed values for block size until we read the superblock. */ 2873 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2874 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2875 2876 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 2877 if (ret) 2878 return ret; 2879 2880 ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL); 2881 if (ret) 2882 return ret; 2883 2884 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2885 if (ret) 2886 return ret; 2887 2888 ret = percpu_counter_init(&fs_info->stats_read_blocks, 0, GFP_KERNEL); 2889 if (ret) 2890 return ret; 2891 2892 fs_info->dirty_metadata_batch = PAGE_SIZE * 2893 (1 + ilog2(nr_cpu_ids)); 2894 2895 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2896 if (ret) 2897 return ret; 2898 2899 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2900 GFP_KERNEL); 2901 if (ret) 2902 return ret; 2903 2904 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2905 GFP_KERNEL); 2906 if (!fs_info->delayed_root) 2907 return -ENOMEM; 2908 btrfs_init_delayed_root(fs_info->delayed_root); 2909 2910 if (sb_rdonly(sb)) 2911 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2912 if (btrfs_test_opt(fs_info, IGNOREMETACSUMS)) 2913 set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state); 2914 2915 return btrfs_alloc_stripe_hash_table(fs_info); 2916 } 2917 2918 static int btrfs_uuid_rescan_kthread(void *data) 2919 { 2920 struct btrfs_fs_info *fs_info = data; 2921 int ret; 2922 2923 /* 2924 * 1st step is to iterate through the existing UUID tree and 2925 * to delete all entries that contain outdated data. 2926 * 2nd step is to add all missing entries to the UUID tree. 2927 */ 2928 ret = btrfs_uuid_tree_iterate(fs_info); 2929 if (ret < 0) { 2930 if (ret != -EINTR) 2931 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2932 ret); 2933 up(&fs_info->uuid_tree_rescan_sem); 2934 return ret; 2935 } 2936 return btrfs_uuid_scan_kthread(data); 2937 } 2938 2939 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2940 { 2941 struct task_struct *task; 2942 2943 down(&fs_info->uuid_tree_rescan_sem); 2944 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2945 if (IS_ERR(task)) { 2946 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2947 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2948 up(&fs_info->uuid_tree_rescan_sem); 2949 return PTR_ERR(task); 2950 } 2951 2952 return 0; 2953 } 2954 2955 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2956 { 2957 u64 root_objectid = 0; 2958 struct btrfs_root *gang[8]; 2959 int ret = 0; 2960 2961 while (1) { 2962 unsigned int found; 2963 2964 spin_lock(&fs_info->fs_roots_radix_lock); 2965 found = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2966 (void **)gang, root_objectid, 2967 ARRAY_SIZE(gang)); 2968 if (!found) { 2969 spin_unlock(&fs_info->fs_roots_radix_lock); 2970 break; 2971 } 2972 root_objectid = btrfs_root_id(gang[found - 1]) + 1; 2973 2974 for (int i = 0; i < found; i++) { 2975 /* Avoid to grab roots in dead_roots. */ 2976 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 2977 gang[i] = NULL; 2978 continue; 2979 } 2980 /* Grab all the search result for later use. */ 2981 gang[i] = btrfs_grab_root(gang[i]); 2982 } 2983 spin_unlock(&fs_info->fs_roots_radix_lock); 2984 2985 for (int i = 0; i < found; i++) { 2986 if (!gang[i]) 2987 continue; 2988 root_objectid = btrfs_root_id(gang[i]); 2989 /* 2990 * Continue to release the remaining roots after the first 2991 * error without cleanup and preserve the first error 2992 * for the return. 2993 */ 2994 if (!ret) 2995 ret = btrfs_orphan_cleanup(gang[i]); 2996 btrfs_put_root(gang[i]); 2997 } 2998 if (ret) 2999 break; 3000 3001 root_objectid++; 3002 } 3003 return ret; 3004 } 3005 3006 /* 3007 * Mounting logic specific to read-write file systems. Shared by open_ctree 3008 * and btrfs_remount when remounting from read-only to read-write. 3009 */ 3010 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 3011 { 3012 int ret; 3013 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 3014 bool rebuild_free_space_tree = false; 3015 3016 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3017 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3018 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 3019 btrfs_warn(fs_info, 3020 "'clear_cache' option is ignored with extent tree v2"); 3021 else 3022 rebuild_free_space_tree = true; 3023 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3024 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3025 btrfs_warn(fs_info, "free space tree is invalid"); 3026 rebuild_free_space_tree = true; 3027 } 3028 3029 if (rebuild_free_space_tree) { 3030 btrfs_info(fs_info, "rebuilding free space tree"); 3031 ret = btrfs_rebuild_free_space_tree(fs_info); 3032 if (ret) { 3033 btrfs_warn(fs_info, 3034 "failed to rebuild free space tree: %d", ret); 3035 goto out; 3036 } 3037 } 3038 3039 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3040 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 3041 btrfs_info(fs_info, "disabling free space tree"); 3042 ret = btrfs_delete_free_space_tree(fs_info); 3043 if (ret) { 3044 btrfs_warn(fs_info, 3045 "failed to disable free space tree: %d", ret); 3046 goto out; 3047 } 3048 } 3049 3050 /* 3051 * btrfs_find_orphan_roots() is responsible for finding all the dead 3052 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3053 * them into the fs_info->fs_roots_radix tree. This must be done before 3054 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3055 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3056 * item before the root's tree is deleted - this means that if we unmount 3057 * or crash before the deletion completes, on the next mount we will not 3058 * delete what remains of the tree because the orphan item does not 3059 * exists anymore, which is what tells us we have a pending deletion. 3060 */ 3061 ret = btrfs_find_orphan_roots(fs_info); 3062 if (ret) 3063 goto out; 3064 3065 ret = btrfs_cleanup_fs_roots(fs_info); 3066 if (ret) 3067 goto out; 3068 3069 down_read(&fs_info->cleanup_work_sem); 3070 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3071 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3072 up_read(&fs_info->cleanup_work_sem); 3073 goto out; 3074 } 3075 up_read(&fs_info->cleanup_work_sem); 3076 3077 mutex_lock(&fs_info->cleaner_mutex); 3078 ret = btrfs_recover_relocation(fs_info); 3079 mutex_unlock(&fs_info->cleaner_mutex); 3080 if (ret < 0) { 3081 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3082 goto out; 3083 } 3084 3085 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3086 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3087 btrfs_info(fs_info, "creating free space tree"); 3088 ret = btrfs_create_free_space_tree(fs_info); 3089 if (ret) { 3090 btrfs_warn(fs_info, 3091 "failed to create free space tree: %d", ret); 3092 goto out; 3093 } 3094 } 3095 3096 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3097 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3098 if (ret) 3099 goto out; 3100 } 3101 3102 ret = btrfs_resume_balance_async(fs_info); 3103 if (ret) 3104 goto out; 3105 3106 ret = btrfs_resume_dev_replace_async(fs_info); 3107 if (ret) { 3108 btrfs_warn(fs_info, "failed to resume dev_replace"); 3109 goto out; 3110 } 3111 3112 btrfs_qgroup_rescan_resume(fs_info); 3113 3114 if (!fs_info->uuid_root) { 3115 btrfs_info(fs_info, "creating UUID tree"); 3116 ret = btrfs_create_uuid_tree(fs_info); 3117 if (ret) { 3118 btrfs_warn(fs_info, 3119 "failed to create the UUID tree %d", ret); 3120 goto out; 3121 } 3122 } 3123 3124 out: 3125 return ret; 3126 } 3127 3128 /* 3129 * Do various sanity and dependency checks of different features. 3130 * 3131 * @is_rw_mount: If the mount is read-write. 3132 * 3133 * This is the place for less strict checks (like for subpage or artificial 3134 * feature dependencies). 3135 * 3136 * For strict checks or possible corruption detection, see 3137 * btrfs_validate_super(). 3138 * 3139 * This should be called after btrfs_parse_options(), as some mount options 3140 * (space cache related) can modify on-disk format like free space tree and 3141 * screw up certain feature dependencies. 3142 */ 3143 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3144 { 3145 struct btrfs_super_block *disk_super = fs_info->super_copy; 3146 u64 incompat = btrfs_super_incompat_flags(disk_super); 3147 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3148 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3149 3150 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3151 btrfs_err(fs_info, 3152 "cannot mount because of unknown incompat features (0x%llx)", 3153 incompat); 3154 return -EINVAL; 3155 } 3156 3157 /* Runtime limitation for mixed block groups. */ 3158 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3159 (fs_info->sectorsize != fs_info->nodesize)) { 3160 btrfs_err(fs_info, 3161 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3162 fs_info->nodesize, fs_info->sectorsize); 3163 return -EINVAL; 3164 } 3165 3166 /* Mixed backref is an always-enabled feature. */ 3167 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3168 3169 /* Set compression related flags just in case. */ 3170 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3171 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3172 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3173 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3174 3175 /* 3176 * An ancient flag, which should really be marked deprecated. 3177 * Such runtime limitation doesn't really need a incompat flag. 3178 */ 3179 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3180 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3181 3182 if (compat_ro_unsupp && is_rw_mount) { 3183 btrfs_err(fs_info, 3184 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3185 compat_ro); 3186 return -EINVAL; 3187 } 3188 3189 /* 3190 * We have unsupported RO compat features, although RO mounted, we 3191 * should not cause any metadata writes, including log replay. 3192 * Or we could screw up whatever the new feature requires. 3193 */ 3194 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3195 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3196 btrfs_err(fs_info, 3197 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3198 compat_ro); 3199 return -EINVAL; 3200 } 3201 3202 /* 3203 * Artificial limitations for block group tree, to force 3204 * block-group-tree to rely on no-holes and free-space-tree. 3205 */ 3206 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3207 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3208 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3209 btrfs_err(fs_info, 3210 "block-group-tree feature requires no-holes and free-space-tree features"); 3211 return -EINVAL; 3212 } 3213 3214 /* 3215 * Subpage/bs > ps runtime limitation on v1 cache. 3216 * 3217 * V1 space cache still has some hard coded PAGE_SIZE usage, while 3218 * we're already defaulting to v2 cache, no need to bother v1 as it's 3219 * going to be deprecated anyway. 3220 */ 3221 if (fs_info->sectorsize != PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3222 btrfs_warn(fs_info, 3223 "v1 space cache is not supported for page size %lu with sectorsize %u", 3224 PAGE_SIZE, fs_info->sectorsize); 3225 return -EINVAL; 3226 } 3227 3228 /* This can be called by remount, we need to protect the super block. */ 3229 spin_lock(&fs_info->super_lock); 3230 btrfs_set_super_incompat_flags(disk_super, incompat); 3231 spin_unlock(&fs_info->super_lock); 3232 3233 return 0; 3234 } 3235 3236 static bool fs_is_full_ro(const struct btrfs_fs_info *fs_info) 3237 { 3238 if (!sb_rdonly(fs_info->sb)) 3239 return false; 3240 if (unlikely(fs_info->mount_opt & BTRFS_MOUNT_FULL_RO_MASK)) 3241 return true; 3242 return false; 3243 } 3244 3245 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices) 3246 { 3247 u32 sectorsize; 3248 u32 nodesize; 3249 u32 stripesize; 3250 u64 generation; 3251 u16 csum_type; 3252 struct btrfs_super_block *disk_super; 3253 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3254 struct btrfs_root *tree_root; 3255 struct btrfs_root *chunk_root; 3256 int ret; 3257 int level; 3258 3259 ret = init_mount_fs_info(fs_info, sb); 3260 if (ret) 3261 goto fail; 3262 3263 /* These need to be init'ed before we start creating inodes and such. */ 3264 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3265 GFP_KERNEL); 3266 fs_info->tree_root = tree_root; 3267 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3268 GFP_KERNEL); 3269 fs_info->chunk_root = chunk_root; 3270 if (!tree_root || !chunk_root) { 3271 ret = -ENOMEM; 3272 goto fail; 3273 } 3274 3275 ret = btrfs_init_btree_inode(sb); 3276 if (ret) 3277 goto fail; 3278 3279 invalidate_bdev(fs_devices->latest_dev->bdev); 3280 3281 /* 3282 * Read super block and check the signature bytes only 3283 */ 3284 disk_super = btrfs_read_disk_super(fs_devices->latest_dev->bdev, 0, false); 3285 if (IS_ERR(disk_super)) { 3286 ret = PTR_ERR(disk_super); 3287 goto fail_alloc; 3288 } 3289 3290 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid); 3291 /* 3292 * Verify the type first, if that or the checksum value are 3293 * corrupted, we'll find out 3294 */ 3295 csum_type = btrfs_super_csum_type(disk_super); 3296 if (!btrfs_supported_super_csum(csum_type)) { 3297 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3298 csum_type); 3299 ret = -EINVAL; 3300 btrfs_release_disk_super(disk_super); 3301 goto fail_alloc; 3302 } 3303 3304 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3305 3306 ret = btrfs_init_csum_hash(fs_info, csum_type); 3307 if (ret) { 3308 btrfs_release_disk_super(disk_super); 3309 goto fail_alloc; 3310 } 3311 3312 /* 3313 * We want to check superblock checksum, the type is stored inside. 3314 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3315 */ 3316 if (btrfs_check_super_csum(fs_info, disk_super)) { 3317 btrfs_err(fs_info, "superblock checksum mismatch"); 3318 ret = -EINVAL; 3319 btrfs_release_disk_super(disk_super); 3320 goto fail_alloc; 3321 } 3322 3323 /* 3324 * super_copy is zeroed at allocation time and we never touch the 3325 * following bytes up to INFO_SIZE, the checksum is calculated from 3326 * the whole block of INFO_SIZE 3327 */ 3328 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3329 btrfs_release_disk_super(disk_super); 3330 3331 disk_super = fs_info->super_copy; 3332 3333 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3334 sizeof(*fs_info->super_for_commit)); 3335 3336 ret = btrfs_validate_mount_super(fs_info); 3337 if (ret) { 3338 btrfs_err(fs_info, "superblock contains fatal errors"); 3339 ret = -EINVAL; 3340 goto fail_alloc; 3341 } 3342 3343 if (!btrfs_super_root(disk_super)) { 3344 btrfs_err(fs_info, "invalid superblock tree root bytenr"); 3345 ret = -EINVAL; 3346 goto fail_alloc; 3347 } 3348 3349 /* check FS state, whether FS is broken. */ 3350 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3351 WRITE_ONCE(fs_info->fs_error, -EUCLEAN); 3352 3353 /* If the fs has any rescue options, no transaction is allowed. */ 3354 if (fs_is_full_ro(fs_info)) 3355 WRITE_ONCE(fs_info->fs_error, -EROFS); 3356 3357 /* Set up fs_info before parsing mount options */ 3358 nodesize = btrfs_super_nodesize(disk_super); 3359 sectorsize = btrfs_super_sectorsize(disk_super); 3360 stripesize = sectorsize; 3361 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3362 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3363 3364 fs_info->nodesize = nodesize; 3365 fs_info->nodesize_bits = ilog2(nodesize); 3366 fs_info->sectorsize = sectorsize; 3367 fs_info->sectorsize_bits = ilog2(sectorsize); 3368 fs_info->block_min_order = ilog2(round_up(sectorsize, PAGE_SIZE) >> PAGE_SHIFT); 3369 fs_info->block_max_order = ilog2((BITS_PER_LONG << fs_info->sectorsize_bits) >> PAGE_SHIFT); 3370 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3371 fs_info->stripesize = stripesize; 3372 fs_info->fs_devices->fs_info = fs_info; 3373 3374 if (fs_info->sectorsize > PAGE_SIZE) 3375 btrfs_warn(fs_info, 3376 "support for block size %u with page size %lu is experimental, some features may be missing", 3377 fs_info->sectorsize, PAGE_SIZE); 3378 /* 3379 * Handle the space caching options appropriately now that we have the 3380 * super block loaded and validated. 3381 */ 3382 btrfs_set_free_space_cache_settings(fs_info); 3383 3384 if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) { 3385 ret = -EINVAL; 3386 goto fail_alloc; 3387 } 3388 3389 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3390 if (ret < 0) 3391 goto fail_alloc; 3392 3393 /* 3394 * At this point our mount options are validated, if we set ->max_inline 3395 * to something non-standard make sure we truncate it to sectorsize. 3396 */ 3397 fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize); 3398 3399 ret = btrfs_alloc_compress_wsm(fs_info); 3400 if (ret) 3401 goto fail_sb_buffer; 3402 ret = btrfs_init_workqueues(fs_info); 3403 if (ret) 3404 goto fail_sb_buffer; 3405 3406 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3407 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3408 3409 /* Update the values for the current filesystem. */ 3410 sb->s_blocksize = sectorsize; 3411 sb->s_blocksize_bits = blksize_bits(sectorsize); 3412 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3413 3414 mutex_lock(&fs_info->chunk_mutex); 3415 ret = btrfs_read_sys_array(fs_info); 3416 mutex_unlock(&fs_info->chunk_mutex); 3417 if (ret) { 3418 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3419 goto fail_sb_buffer; 3420 } 3421 3422 generation = btrfs_super_chunk_root_generation(disk_super); 3423 level = btrfs_super_chunk_root_level(disk_super); 3424 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3425 generation, level); 3426 if (ret) { 3427 btrfs_err(fs_info, "failed to read chunk root"); 3428 goto fail_tree_roots; 3429 } 3430 3431 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3432 offsetof(struct btrfs_header, chunk_tree_uuid), 3433 BTRFS_UUID_SIZE); 3434 3435 ret = btrfs_read_chunk_tree(fs_info); 3436 if (ret) { 3437 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3438 goto fail_tree_roots; 3439 } 3440 3441 /* 3442 * At this point we know all the devices that make this filesystem, 3443 * including the seed devices but we don't know yet if the replace 3444 * target is required. So free devices that are not part of this 3445 * filesystem but skip the replace target device which is checked 3446 * below in btrfs_init_dev_replace(). 3447 */ 3448 btrfs_free_extra_devids(fs_devices); 3449 if (unlikely(!fs_devices->latest_dev->bdev)) { 3450 btrfs_err(fs_info, "failed to read devices"); 3451 ret = -EIO; 3452 goto fail_tree_roots; 3453 } 3454 3455 ret = init_tree_roots(fs_info); 3456 if (ret) 3457 goto fail_tree_roots; 3458 3459 /* 3460 * Get zone type information of zoned block devices. This will also 3461 * handle emulation of a zoned filesystem if a regular device has the 3462 * zoned incompat feature flag set. 3463 */ 3464 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3465 if (ret) { 3466 btrfs_err(fs_info, 3467 "zoned: failed to read device zone info: %d", ret); 3468 goto fail_block_groups; 3469 } 3470 3471 /* 3472 * If we have a uuid root and we're not being told to rescan we need to 3473 * check the generation here so we can set the 3474 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3475 * transaction during a balance or the log replay without updating the 3476 * uuid generation, and then if we crash we would rescan the uuid tree, 3477 * even though it was perfectly fine. 3478 */ 3479 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3480 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3481 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3482 3483 if (unlikely(btrfs_verify_dev_items(fs_info))) { 3484 ret = -EUCLEAN; 3485 goto fail_block_groups; 3486 } 3487 ret = btrfs_verify_dev_extents(fs_info); 3488 if (ret) { 3489 btrfs_err(fs_info, 3490 "failed to verify dev extents against chunks: %d", 3491 ret); 3492 goto fail_block_groups; 3493 } 3494 ret = btrfs_recover_balance(fs_info); 3495 if (ret) { 3496 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3497 goto fail_block_groups; 3498 } 3499 3500 ret = btrfs_init_dev_stats(fs_info); 3501 if (ret) { 3502 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3503 goto fail_block_groups; 3504 } 3505 3506 ret = btrfs_init_dev_replace(fs_info); 3507 if (ret) { 3508 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3509 goto fail_block_groups; 3510 } 3511 3512 ret = btrfs_check_zoned_mode(fs_info); 3513 if (ret) { 3514 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3515 ret); 3516 goto fail_block_groups; 3517 } 3518 3519 ret = btrfs_sysfs_add_fsid(fs_devices); 3520 if (ret) { 3521 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3522 ret); 3523 goto fail_block_groups; 3524 } 3525 3526 ret = btrfs_sysfs_add_mounted(fs_info); 3527 if (ret) { 3528 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3529 goto fail_fsdev_sysfs; 3530 } 3531 3532 ret = btrfs_init_space_info(fs_info); 3533 if (ret) { 3534 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3535 goto fail_sysfs; 3536 } 3537 3538 ret = btrfs_read_block_groups(fs_info); 3539 if (ret) { 3540 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3541 goto fail_sysfs; 3542 } 3543 3544 btrfs_zoned_reserve_data_reloc_bg(fs_info); 3545 btrfs_free_zone_cache(fs_info); 3546 3547 btrfs_check_active_zone_reservation(fs_info); 3548 3549 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3550 !btrfs_check_rw_degradable(fs_info, NULL)) { 3551 btrfs_warn(fs_info, 3552 "writable mount is not allowed due to too many missing devices"); 3553 ret = -EINVAL; 3554 goto fail_sysfs; 3555 } 3556 3557 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3558 "btrfs-cleaner"); 3559 if (IS_ERR(fs_info->cleaner_kthread)) { 3560 ret = PTR_ERR(fs_info->cleaner_kthread); 3561 goto fail_sysfs; 3562 } 3563 3564 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3565 tree_root, 3566 "btrfs-transaction"); 3567 if (IS_ERR(fs_info->transaction_kthread)) { 3568 ret = PTR_ERR(fs_info->transaction_kthread); 3569 goto fail_cleaner; 3570 } 3571 3572 ret = btrfs_read_qgroup_config(fs_info); 3573 if (ret) 3574 goto fail_trans_kthread; 3575 3576 if (btrfs_build_ref_tree(fs_info)) 3577 btrfs_err(fs_info, "couldn't build ref tree"); 3578 3579 /* do not make disk changes in broken FS or nologreplay is given */ 3580 if (btrfs_super_log_root(disk_super) != 0 && 3581 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3582 btrfs_info(fs_info, "start tree-log replay"); 3583 ret = btrfs_replay_log(fs_info, fs_devices); 3584 if (ret) 3585 goto fail_qgroup; 3586 } 3587 3588 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3589 if (IS_ERR(fs_info->fs_root)) { 3590 ret = PTR_ERR(fs_info->fs_root); 3591 btrfs_warn(fs_info, "failed to read fs tree: %d", ret); 3592 fs_info->fs_root = NULL; 3593 goto fail_qgroup; 3594 } 3595 3596 if (sb_rdonly(sb)) 3597 return 0; 3598 3599 ret = btrfs_start_pre_rw_mount(fs_info); 3600 if (ret) { 3601 close_ctree(fs_info); 3602 return ret; 3603 } 3604 btrfs_discard_resume(fs_info); 3605 3606 if (fs_info->uuid_root && 3607 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3608 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3609 btrfs_info(fs_info, "checking UUID tree"); 3610 ret = btrfs_check_uuid_tree(fs_info); 3611 if (ret) { 3612 btrfs_warn(fs_info, 3613 "failed to check the UUID tree: %d", ret); 3614 close_ctree(fs_info); 3615 return ret; 3616 } 3617 } 3618 3619 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3620 3621 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3622 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3623 wake_up_process(fs_info->cleaner_kthread); 3624 3625 return 0; 3626 3627 fail_qgroup: 3628 btrfs_free_qgroup_config(fs_info); 3629 fail_trans_kthread: 3630 kthread_stop(fs_info->transaction_kthread); 3631 btrfs_cleanup_transaction(fs_info); 3632 btrfs_free_fs_roots(fs_info); 3633 fail_cleaner: 3634 kthread_stop(fs_info->cleaner_kthread); 3635 3636 /* 3637 * make sure we're done with the btree inode before we stop our 3638 * kthreads 3639 */ 3640 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3641 3642 fail_sysfs: 3643 btrfs_sysfs_remove_mounted(fs_info); 3644 3645 fail_fsdev_sysfs: 3646 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3647 3648 fail_block_groups: 3649 btrfs_put_block_group_cache(fs_info); 3650 3651 fail_tree_roots: 3652 if (fs_info->data_reloc_root) 3653 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3654 free_root_pointers(fs_info, true); 3655 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3656 3657 fail_sb_buffer: 3658 btrfs_stop_all_workers(fs_info); 3659 btrfs_free_block_groups(fs_info); 3660 fail_alloc: 3661 btrfs_mapping_tree_free(fs_info); 3662 3663 iput(fs_info->btree_inode); 3664 fail: 3665 ASSERT(ret < 0); 3666 return ret; 3667 } 3668 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3669 3670 static void btrfs_end_super_write(struct bio *bio) 3671 { 3672 struct btrfs_device *device = bio->bi_private; 3673 struct folio_iter fi; 3674 3675 bio_for_each_folio_all(fi, bio) { 3676 if (bio->bi_status) { 3677 btrfs_warn_rl(device->fs_info, 3678 "lost super block write due to IO error on %s (%d)", 3679 btrfs_dev_name(device), 3680 blk_status_to_errno(bio->bi_status)); 3681 btrfs_dev_stat_inc_and_print(device, 3682 BTRFS_DEV_STAT_WRITE_ERRS); 3683 /* Ensure failure if the primary sb fails. */ 3684 if (bio->bi_opf & REQ_FUA) 3685 atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR, 3686 &device->sb_write_errors); 3687 else 3688 atomic_inc(&device->sb_write_errors); 3689 } 3690 folio_unlock(fi.folio); 3691 folio_put(fi.folio); 3692 } 3693 3694 bio_put(bio); 3695 } 3696 3697 /* 3698 * Write superblock @sb to the @device. Do not wait for completion, all the 3699 * folios we use for writing are locked. 3700 * 3701 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3702 * the expected device size at commit time. Note that max_mirrors must be 3703 * same for write and wait phases. 3704 * 3705 * Return number of errors when folio is not found or submission fails. 3706 */ 3707 static int write_dev_supers(struct btrfs_device *device, 3708 struct btrfs_super_block *sb, int max_mirrors) 3709 { 3710 struct btrfs_fs_info *fs_info = device->fs_info; 3711 struct address_space *mapping = device->bdev->bd_mapping; 3712 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3713 int i; 3714 int ret; 3715 u64 bytenr, bytenr_orig; 3716 3717 atomic_set(&device->sb_write_errors, 0); 3718 3719 if (max_mirrors == 0) 3720 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3721 3722 shash->tfm = fs_info->csum_shash; 3723 3724 for (i = 0; i < max_mirrors; i++) { 3725 struct folio *folio; 3726 struct bio *bio; 3727 struct btrfs_super_block *disk_super; 3728 size_t offset; 3729 3730 bytenr_orig = btrfs_sb_offset(i); 3731 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3732 if (ret == -ENOENT) { 3733 continue; 3734 } else if (ret < 0) { 3735 btrfs_err(device->fs_info, 3736 "couldn't get super block location for mirror %d error %d", 3737 i, ret); 3738 atomic_inc(&device->sb_write_errors); 3739 continue; 3740 } 3741 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3742 device->commit_total_bytes) 3743 break; 3744 3745 btrfs_set_super_bytenr(sb, bytenr_orig); 3746 3747 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3748 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3749 sb->csum); 3750 3751 folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT, 3752 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3753 GFP_NOFS); 3754 if (IS_ERR(folio)) { 3755 btrfs_err(device->fs_info, 3756 "couldn't get super block page for bytenr %llu error %ld", 3757 bytenr, PTR_ERR(folio)); 3758 atomic_inc(&device->sb_write_errors); 3759 continue; 3760 } 3761 3762 offset = offset_in_folio(folio, bytenr); 3763 disk_super = folio_address(folio) + offset; 3764 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3765 3766 /* 3767 * Directly use bios here instead of relying on the page cache 3768 * to do I/O, so we don't lose the ability to do integrity 3769 * checking. 3770 */ 3771 bio = bio_alloc(device->bdev, 1, 3772 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 3773 GFP_NOFS); 3774 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3775 bio->bi_private = device; 3776 bio->bi_end_io = btrfs_end_super_write; 3777 bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset); 3778 3779 /* 3780 * We FUA only the first super block. The others we allow to 3781 * go down lazy and there's a short window where the on-disk 3782 * copies might still contain the older version. 3783 */ 3784 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3785 bio->bi_opf |= REQ_FUA; 3786 submit_bio(bio); 3787 3788 if (btrfs_advance_sb_log(device, i)) 3789 atomic_inc(&device->sb_write_errors); 3790 } 3791 return atomic_read(&device->sb_write_errors) < i ? 0 : -1; 3792 } 3793 3794 /* 3795 * Wait for write completion of superblocks done by write_dev_supers, 3796 * @max_mirrors same for write and wait phases. 3797 * 3798 * Return -1 if primary super block write failed or when there were no super block 3799 * copies written. Otherwise 0. 3800 */ 3801 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3802 { 3803 int i; 3804 int errors = 0; 3805 bool primary_failed = false; 3806 int ret; 3807 u64 bytenr; 3808 3809 if (max_mirrors == 0) 3810 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3811 3812 for (i = 0; i < max_mirrors; i++) { 3813 struct folio *folio; 3814 3815 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 3816 if (ret == -ENOENT) { 3817 break; 3818 } else if (ret < 0) { 3819 errors++; 3820 if (i == 0) 3821 primary_failed = true; 3822 continue; 3823 } 3824 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3825 device->commit_total_bytes) 3826 break; 3827 3828 folio = filemap_get_folio(device->bdev->bd_mapping, 3829 bytenr >> PAGE_SHIFT); 3830 /* If the folio has been removed, then we know it completed. */ 3831 if (IS_ERR(folio)) 3832 continue; 3833 3834 /* Folio will be unlocked once the write completes. */ 3835 folio_wait_locked(folio); 3836 folio_put(folio); 3837 } 3838 3839 errors += atomic_read(&device->sb_write_errors); 3840 if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR) 3841 primary_failed = true; 3842 if (primary_failed) { 3843 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3844 device->devid); 3845 return -1; 3846 } 3847 3848 return errors < i ? 0 : -1; 3849 } 3850 3851 /* 3852 * endio for the write_dev_flush, this will wake anyone waiting 3853 * for the barrier when it is done 3854 */ 3855 static void btrfs_end_empty_barrier(struct bio *bio) 3856 { 3857 bio_uninit(bio); 3858 complete(bio->bi_private); 3859 } 3860 3861 /* 3862 * Submit a flush request to the device if it supports it. Error handling is 3863 * done in the waiting counterpart. 3864 */ 3865 static void write_dev_flush(struct btrfs_device *device) 3866 { 3867 struct bio *bio = &device->flush_bio; 3868 3869 device->last_flush_error = BLK_STS_OK; 3870 3871 bio_init(bio, device->bdev, NULL, 0, 3872 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 3873 bio->bi_end_io = btrfs_end_empty_barrier; 3874 init_completion(&device->flush_wait); 3875 bio->bi_private = &device->flush_wait; 3876 submit_bio(bio); 3877 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3878 } 3879 3880 /* 3881 * If the flush bio has been submitted by write_dev_flush, wait for it. 3882 * Return true for any error, and false otherwise. 3883 */ 3884 static bool wait_dev_flush(struct btrfs_device *device) 3885 { 3886 struct bio *bio = &device->flush_bio; 3887 3888 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3889 return false; 3890 3891 wait_for_completion_io(&device->flush_wait); 3892 3893 if (bio->bi_status) { 3894 device->last_flush_error = bio->bi_status; 3895 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); 3896 return true; 3897 } 3898 3899 return false; 3900 } 3901 3902 /* 3903 * send an empty flush down to each device in parallel, 3904 * then wait for them 3905 */ 3906 static int barrier_all_devices(struct btrfs_fs_info *info) 3907 { 3908 struct list_head *head; 3909 struct btrfs_device *dev; 3910 int errors_wait = 0; 3911 3912 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3913 /* send down all the barriers */ 3914 head = &info->fs_devices->devices; 3915 list_for_each_entry(dev, head, dev_list) { 3916 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3917 continue; 3918 if (!dev->bdev) 3919 continue; 3920 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3921 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3922 continue; 3923 3924 write_dev_flush(dev); 3925 } 3926 3927 /* wait for all the barriers */ 3928 list_for_each_entry(dev, head, dev_list) { 3929 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3930 continue; 3931 if (!dev->bdev) { 3932 errors_wait++; 3933 continue; 3934 } 3935 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3936 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3937 continue; 3938 3939 if (wait_dev_flush(dev)) 3940 errors_wait++; 3941 } 3942 3943 /* 3944 * Checks last_flush_error of disks in order to determine the device 3945 * state. 3946 */ 3947 if (unlikely(errors_wait && !btrfs_check_rw_degradable(info, NULL))) 3948 return -EIO; 3949 3950 return 0; 3951 } 3952 3953 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3954 { 3955 int raid_type; 3956 int min_tolerated = INT_MAX; 3957 3958 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3959 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3960 min_tolerated = min_t(int, min_tolerated, 3961 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3962 tolerated_failures); 3963 3964 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3965 if (raid_type == BTRFS_RAID_SINGLE) 3966 continue; 3967 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3968 continue; 3969 min_tolerated = min_t(int, min_tolerated, 3970 btrfs_raid_array[raid_type]. 3971 tolerated_failures); 3972 } 3973 3974 if (min_tolerated == INT_MAX) { 3975 btrfs_warn(NULL, "unknown raid flag: %llu", flags); 3976 min_tolerated = 0; 3977 } 3978 3979 return min_tolerated; 3980 } 3981 3982 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3983 { 3984 struct list_head *head; 3985 struct btrfs_device *dev; 3986 struct btrfs_super_block *sb; 3987 struct btrfs_dev_item *dev_item; 3988 int ret; 3989 int do_barriers; 3990 int max_errors; 3991 int total_errors = 0; 3992 u64 flags; 3993 3994 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3995 3996 /* 3997 * max_mirrors == 0 indicates we're from commit_transaction, 3998 * not from fsync where the tree roots in fs_info have not 3999 * been consistent on disk. 4000 */ 4001 if (max_mirrors == 0) 4002 backup_super_roots(fs_info); 4003 4004 sb = fs_info->super_for_commit; 4005 dev_item = &sb->dev_item; 4006 4007 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4008 head = &fs_info->fs_devices->devices; 4009 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4010 4011 if (do_barriers) { 4012 ret = barrier_all_devices(fs_info); 4013 if (ret) { 4014 mutex_unlock( 4015 &fs_info->fs_devices->device_list_mutex); 4016 btrfs_handle_fs_error(fs_info, ret, 4017 "errors while submitting device barriers."); 4018 return ret; 4019 } 4020 } 4021 4022 list_for_each_entry(dev, head, dev_list) { 4023 if (!dev->bdev) { 4024 total_errors++; 4025 continue; 4026 } 4027 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4028 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4029 continue; 4030 4031 btrfs_set_stack_device_generation(dev_item, 0); 4032 btrfs_set_stack_device_type(dev_item, dev->type); 4033 btrfs_set_stack_device_id(dev_item, dev->devid); 4034 btrfs_set_stack_device_total_bytes(dev_item, 4035 dev->commit_total_bytes); 4036 btrfs_set_stack_device_bytes_used(dev_item, 4037 dev->commit_bytes_used); 4038 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4039 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4040 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4041 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4042 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4043 BTRFS_FSID_SIZE); 4044 4045 flags = btrfs_super_flags(sb); 4046 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4047 4048 ret = btrfs_validate_write_super(fs_info, sb); 4049 if (unlikely(ret < 0)) { 4050 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4051 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4052 "unexpected superblock corruption detected"); 4053 return -EUCLEAN; 4054 } 4055 4056 ret = write_dev_supers(dev, sb, max_mirrors); 4057 if (ret) 4058 total_errors++; 4059 } 4060 if (unlikely(total_errors > max_errors)) { 4061 btrfs_err(fs_info, "%d errors while writing supers", 4062 total_errors); 4063 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4064 4065 /* FUA is masked off if unsupported and can't be the reason */ 4066 btrfs_handle_fs_error(fs_info, -EIO, 4067 "%d errors while writing supers", 4068 total_errors); 4069 return -EIO; 4070 } 4071 4072 total_errors = 0; 4073 list_for_each_entry(dev, head, dev_list) { 4074 if (!dev->bdev) 4075 continue; 4076 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4077 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4078 continue; 4079 4080 ret = wait_dev_supers(dev, max_mirrors); 4081 if (ret) 4082 total_errors++; 4083 } 4084 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4085 if (unlikely(total_errors > max_errors)) { 4086 btrfs_handle_fs_error(fs_info, -EIO, 4087 "%d errors while writing supers", 4088 total_errors); 4089 return -EIO; 4090 } 4091 return 0; 4092 } 4093 4094 /* Drop a fs root from the radix tree and free it. */ 4095 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4096 struct btrfs_root *root) 4097 { 4098 bool drop_ref = false; 4099 4100 spin_lock(&fs_info->fs_roots_radix_lock); 4101 radix_tree_delete(&fs_info->fs_roots_radix, 4102 (unsigned long)btrfs_root_id(root)); 4103 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4104 drop_ref = true; 4105 spin_unlock(&fs_info->fs_roots_radix_lock); 4106 4107 if (BTRFS_FS_ERROR(fs_info)) { 4108 ASSERT(root->log_root == NULL); 4109 if (root->reloc_root) { 4110 btrfs_put_root(root->reloc_root); 4111 root->reloc_root = NULL; 4112 } 4113 } 4114 4115 if (drop_ref) 4116 btrfs_put_root(root); 4117 } 4118 4119 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4120 { 4121 mutex_lock(&fs_info->cleaner_mutex); 4122 btrfs_run_delayed_iputs(fs_info); 4123 mutex_unlock(&fs_info->cleaner_mutex); 4124 wake_up_process(fs_info->cleaner_kthread); 4125 4126 /* wait until ongoing cleanup work done */ 4127 down_write(&fs_info->cleanup_work_sem); 4128 up_write(&fs_info->cleanup_work_sem); 4129 4130 return btrfs_commit_current_transaction(fs_info->tree_root); 4131 } 4132 4133 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4134 { 4135 struct btrfs_transaction *trans; 4136 struct btrfs_transaction *tmp; 4137 bool found = false; 4138 4139 /* 4140 * This function is only called at the very end of close_ctree(), 4141 * thus no other running transaction, no need to take trans_lock. 4142 */ 4143 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4144 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4145 struct extent_state *cached = NULL; 4146 u64 dirty_bytes = 0; 4147 u64 cur = 0; 4148 u64 found_start; 4149 u64 found_end; 4150 4151 found = true; 4152 while (btrfs_find_first_extent_bit(&trans->dirty_pages, cur, 4153 &found_start, &found_end, 4154 EXTENT_DIRTY, &cached)) { 4155 dirty_bytes += found_end + 1 - found_start; 4156 cur = found_end + 1; 4157 } 4158 btrfs_warn(fs_info, 4159 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4160 trans->transid, dirty_bytes); 4161 btrfs_cleanup_one_transaction(trans); 4162 4163 if (trans == fs_info->running_transaction) 4164 fs_info->running_transaction = NULL; 4165 list_del_init(&trans->list); 4166 4167 btrfs_put_transaction(trans); 4168 trace_btrfs_transaction_commit(fs_info); 4169 } 4170 ASSERT(!found); 4171 } 4172 4173 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4174 { 4175 int ret; 4176 4177 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4178 4179 /* 4180 * If we had UNFINISHED_DROPS we could still be processing them, so 4181 * clear that bit and wake up relocation so it can stop. 4182 * We must do this before stopping the block group reclaim task, because 4183 * at btrfs_relocate_block_group() we wait for this bit, and after the 4184 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4185 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4186 * return 1. 4187 */ 4188 btrfs_wake_unfinished_drop(fs_info); 4189 4190 /* 4191 * We may have the reclaim task running and relocating a data block group, 4192 * in which case it may create delayed iputs. So stop it before we park 4193 * the cleaner kthread otherwise we can get new delayed iputs after 4194 * parking the cleaner, and that can make the async reclaim task to hang 4195 * if it's waiting for delayed iputs to complete, since the cleaner is 4196 * parked and can not run delayed iputs - this will make us hang when 4197 * trying to stop the async reclaim task. 4198 */ 4199 cancel_work_sync(&fs_info->reclaim_bgs_work); 4200 /* 4201 * We don't want the cleaner to start new transactions, add more delayed 4202 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4203 * because that frees the task_struct, and the transaction kthread might 4204 * still try to wake up the cleaner. 4205 */ 4206 kthread_park(fs_info->cleaner_kthread); 4207 4208 /* wait for the qgroup rescan worker to stop */ 4209 btrfs_qgroup_wait_for_completion(fs_info, false); 4210 4211 /* wait for the uuid_scan task to finish */ 4212 down(&fs_info->uuid_tree_rescan_sem); 4213 /* avoid complains from lockdep et al., set sem back to initial state */ 4214 up(&fs_info->uuid_tree_rescan_sem); 4215 4216 /* pause restriper - we want to resume on mount */ 4217 btrfs_pause_balance(fs_info); 4218 4219 btrfs_dev_replace_suspend_for_unmount(fs_info); 4220 4221 btrfs_scrub_cancel(fs_info); 4222 4223 /* wait for any defraggers to finish */ 4224 wait_event(fs_info->transaction_wait, 4225 (atomic_read(&fs_info->defrag_running) == 0)); 4226 4227 /* clear out the rbtree of defraggable inodes */ 4228 btrfs_cleanup_defrag_inodes(fs_info); 4229 4230 /* 4231 * Handle the error fs first, as it will flush and wait for all ordered 4232 * extents. This will generate delayed iputs, thus we want to handle 4233 * it first. 4234 */ 4235 if (unlikely(BTRFS_FS_ERROR(fs_info))) 4236 btrfs_error_commit_super(fs_info); 4237 4238 /* 4239 * Wait for any fixup workers to complete. 4240 * If we don't wait for them here and they are still running by the time 4241 * we call kthread_stop() against the cleaner kthread further below, we 4242 * get an use-after-free on the cleaner because the fixup worker adds an 4243 * inode to the list of delayed iputs and then attempts to wakeup the 4244 * cleaner kthread, which was already stopped and destroyed. We parked 4245 * already the cleaner, but below we run all pending delayed iputs. 4246 */ 4247 btrfs_flush_workqueue(fs_info->fixup_workers); 4248 /* 4249 * Similar case here, we have to wait for delalloc workers before we 4250 * proceed below and stop the cleaner kthread, otherwise we trigger a 4251 * use-after-tree on the cleaner kthread task_struct when a delalloc 4252 * worker running submit_compressed_extents() adds a delayed iput, which 4253 * does a wake up on the cleaner kthread, which was already freed below 4254 * when we call kthread_stop(). 4255 */ 4256 btrfs_flush_workqueue(fs_info->delalloc_workers); 4257 4258 /* 4259 * We can have ordered extents getting their last reference dropped from 4260 * the fs_info->workers queue because for async writes for data bios we 4261 * queue a work for that queue, at btrfs_wq_submit_bio(), that runs 4262 * run_one_async_done() which calls btrfs_bio_end_io() in case the bio 4263 * has an error, and that later function can do the final 4264 * btrfs_put_ordered_extent() on the ordered extent attached to the bio, 4265 * which adds a delayed iput for the inode. So we must flush the queue 4266 * so that we don't have delayed iputs after committing the current 4267 * transaction below and stopping the cleaner and transaction kthreads. 4268 */ 4269 btrfs_flush_workqueue(fs_info->workers); 4270 4271 /* 4272 * When finishing a compressed write bio we schedule a work queue item 4273 * to finish an ordered extent - end_bbio_compressed_write() 4274 * calls btrfs_finish_ordered_extent() which in turns does a call to 4275 * btrfs_queue_ordered_fn(), and that queues the ordered extent 4276 * completion either in the endio_write_workers work queue or in the 4277 * fs_info->endio_freespace_worker work queue. We flush those queues 4278 * below, so before we flush them we must flush this queue for the 4279 * workers of compressed writes. 4280 */ 4281 flush_workqueue(fs_info->endio_workers); 4282 4283 /* 4284 * After we parked the cleaner kthread, ordered extents may have 4285 * completed and created new delayed iputs. If one of the async reclaim 4286 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4287 * can hang forever trying to stop it, because if a delayed iput is 4288 * added after it ran btrfs_run_delayed_iputs() and before it called 4289 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4290 * no one else to run iputs. 4291 * 4292 * So wait for all ongoing ordered extents to complete and then run 4293 * delayed iputs. This works because once we reach this point no one 4294 * can create new ordered extents, but delayed iputs can still be added 4295 * by a reclaim worker (see comments further below). 4296 * 4297 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4298 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4299 * but the delayed iput for the respective inode is made only when doing 4300 * the final btrfs_put_ordered_extent() (which must happen at 4301 * btrfs_finish_ordered_io() when we are unmounting). 4302 */ 4303 btrfs_flush_workqueue(fs_info->endio_write_workers); 4304 /* Ordered extents for free space inodes. */ 4305 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4306 /* 4307 * Run delayed iputs in case an async reclaim worker is waiting for them 4308 * to be run as mentioned above. 4309 */ 4310 btrfs_run_delayed_iputs(fs_info); 4311 4312 cancel_work_sync(&fs_info->async_reclaim_work); 4313 cancel_work_sync(&fs_info->async_data_reclaim_work); 4314 cancel_work_sync(&fs_info->preempt_reclaim_work); 4315 cancel_work_sync(&fs_info->em_shrinker_work); 4316 4317 /* 4318 * Run delayed iputs again because an async reclaim worker may have 4319 * added new ones if it was flushing delalloc: 4320 * 4321 * shrink_delalloc() -> btrfs_start_delalloc_roots() -> 4322 * start_delalloc_inodes() -> btrfs_add_delayed_iput() 4323 */ 4324 btrfs_run_delayed_iputs(fs_info); 4325 4326 /* There should be no more workload to generate new delayed iputs. */ 4327 set_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state); 4328 4329 /* Cancel or finish ongoing discard work */ 4330 btrfs_discard_cleanup(fs_info); 4331 4332 if (!sb_rdonly(fs_info->sb)) { 4333 /* 4334 * The cleaner kthread is stopped, so do one final pass over 4335 * unused block groups. 4336 */ 4337 btrfs_delete_unused_bgs(fs_info); 4338 4339 /* 4340 * There might be existing delayed inode workers still running 4341 * and holding an empty delayed inode item. We must wait for 4342 * them to complete first because they can create a transaction. 4343 * This happens when someone calls btrfs_balance_delayed_items() 4344 * and then a transaction commit runs the same delayed nodes 4345 * before any delayed worker has done something with the nodes. 4346 * We must wait for any worker here and not at transaction 4347 * commit time since that could cause a deadlock. 4348 * This is a very rare case. 4349 */ 4350 btrfs_flush_workqueue(fs_info->delayed_workers); 4351 4352 ret = btrfs_commit_super(fs_info); 4353 if (ret) 4354 btrfs_err(fs_info, "commit super ret %d", ret); 4355 } 4356 4357 kthread_stop(fs_info->transaction_kthread); 4358 kthread_stop(fs_info->cleaner_kthread); 4359 4360 ASSERT(list_empty(&fs_info->delayed_iputs)); 4361 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4362 4363 if (btrfs_check_quota_leak(fs_info)) { 4364 DEBUG_WARN("qgroup reserved space leaked"); 4365 btrfs_err(fs_info, "qgroup reserved space leaked"); 4366 } 4367 4368 btrfs_free_qgroup_config(fs_info); 4369 ASSERT(list_empty(&fs_info->delalloc_roots)); 4370 4371 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4372 btrfs_info(fs_info, "at unmount delalloc count %lld", 4373 percpu_counter_sum(&fs_info->delalloc_bytes)); 4374 } 4375 4376 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4377 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4378 percpu_counter_sum(&fs_info->ordered_bytes)); 4379 4380 btrfs_sysfs_remove_mounted(fs_info); 4381 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4382 4383 btrfs_put_block_group_cache(fs_info); 4384 4385 /* 4386 * we must make sure there is not any read request to 4387 * submit after we stopping all workers. 4388 */ 4389 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4390 btrfs_stop_all_workers(fs_info); 4391 4392 /* We shouldn't have any transaction open at this point */ 4393 warn_about_uncommitted_trans(fs_info); 4394 4395 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4396 free_root_pointers(fs_info, true); 4397 btrfs_free_fs_roots(fs_info); 4398 4399 /* 4400 * We must free the block groups after dropping the fs_roots as we could 4401 * have had an IO error and have left over tree log blocks that aren't 4402 * cleaned up until the fs roots are freed. This makes the block group 4403 * accounting appear to be wrong because there's pending reserved bytes, 4404 * so make sure we do the block group cleanup afterwards. 4405 */ 4406 btrfs_free_block_groups(fs_info); 4407 4408 iput(fs_info->btree_inode); 4409 4410 btrfs_mapping_tree_free(fs_info); 4411 } 4412 4413 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans, 4414 struct extent_buffer *buf) 4415 { 4416 struct btrfs_fs_info *fs_info = buf->fs_info; 4417 u64 transid = btrfs_header_generation(buf); 4418 4419 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4420 /* 4421 * This is a fast path so only do this check if we have sanity tests 4422 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4423 * outside of the sanity tests. 4424 */ 4425 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4426 return; 4427 #endif 4428 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */ 4429 ASSERT(trans->transid == fs_info->generation); 4430 btrfs_assert_tree_write_locked(buf); 4431 if (unlikely(transid != fs_info->generation)) { 4432 btrfs_abort_transaction(trans, -EUCLEAN); 4433 btrfs_crit(fs_info, 4434 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu", 4435 buf->start, transid, fs_info->generation); 4436 } 4437 set_extent_buffer_dirty(buf); 4438 } 4439 4440 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4441 int flush_delayed) 4442 { 4443 /* 4444 * looks as though older kernels can get into trouble with 4445 * this code, they end up stuck in balance_dirty_pages forever 4446 */ 4447 int ret; 4448 4449 if (current->flags & PF_MEMALLOC) 4450 return; 4451 4452 if (flush_delayed) 4453 btrfs_balance_delayed_items(fs_info); 4454 4455 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4456 BTRFS_DIRTY_METADATA_THRESH, 4457 fs_info->dirty_metadata_batch); 4458 if (ret > 0) { 4459 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4460 } 4461 } 4462 4463 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4464 { 4465 __btrfs_btree_balance_dirty(fs_info, 1); 4466 } 4467 4468 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4469 { 4470 __btrfs_btree_balance_dirty(fs_info, 0); 4471 } 4472 4473 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4474 { 4475 /* cleanup FS via transaction */ 4476 btrfs_cleanup_transaction(fs_info); 4477 4478 down_write(&fs_info->cleanup_work_sem); 4479 up_write(&fs_info->cleanup_work_sem); 4480 } 4481 4482 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4483 { 4484 struct btrfs_root *gang[8]; 4485 u64 root_objectid = 0; 4486 int ret; 4487 4488 spin_lock(&fs_info->fs_roots_radix_lock); 4489 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4490 (void **)gang, root_objectid, 4491 ARRAY_SIZE(gang))) != 0) { 4492 int i; 4493 4494 for (i = 0; i < ret; i++) 4495 gang[i] = btrfs_grab_root(gang[i]); 4496 spin_unlock(&fs_info->fs_roots_radix_lock); 4497 4498 for (i = 0; i < ret; i++) { 4499 if (!gang[i]) 4500 continue; 4501 root_objectid = btrfs_root_id(gang[i]); 4502 btrfs_free_log(NULL, gang[i]); 4503 btrfs_put_root(gang[i]); 4504 } 4505 root_objectid++; 4506 spin_lock(&fs_info->fs_roots_radix_lock); 4507 } 4508 spin_unlock(&fs_info->fs_roots_radix_lock); 4509 btrfs_free_log_root_tree(NULL, fs_info); 4510 } 4511 4512 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4513 { 4514 struct btrfs_ordered_extent *ordered; 4515 4516 spin_lock(&root->ordered_extent_lock); 4517 /* 4518 * This will just short circuit the ordered completion stuff which will 4519 * make sure the ordered extent gets properly cleaned up. 4520 */ 4521 list_for_each_entry(ordered, &root->ordered_extents, 4522 root_extent_list) 4523 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4524 spin_unlock(&root->ordered_extent_lock); 4525 } 4526 4527 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4528 { 4529 struct btrfs_root *root; 4530 LIST_HEAD(splice); 4531 4532 spin_lock(&fs_info->ordered_root_lock); 4533 list_splice_init(&fs_info->ordered_roots, &splice); 4534 while (!list_empty(&splice)) { 4535 root = list_first_entry(&splice, struct btrfs_root, 4536 ordered_root); 4537 list_move_tail(&root->ordered_root, 4538 &fs_info->ordered_roots); 4539 4540 spin_unlock(&fs_info->ordered_root_lock); 4541 btrfs_destroy_ordered_extents(root); 4542 4543 cond_resched(); 4544 spin_lock(&fs_info->ordered_root_lock); 4545 } 4546 spin_unlock(&fs_info->ordered_root_lock); 4547 4548 /* 4549 * We need this here because if we've been flipped read-only we won't 4550 * get sync() from the umount, so we need to make sure any ordered 4551 * extents that haven't had their dirty pages IO start writeout yet 4552 * actually get run and error out properly. 4553 */ 4554 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL); 4555 } 4556 4557 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4558 { 4559 struct btrfs_inode *btrfs_inode; 4560 LIST_HEAD(splice); 4561 4562 spin_lock(&root->delalloc_lock); 4563 list_splice_init(&root->delalloc_inodes, &splice); 4564 4565 while (!list_empty(&splice)) { 4566 struct inode *inode = NULL; 4567 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4568 delalloc_inodes); 4569 btrfs_del_delalloc_inode(btrfs_inode); 4570 spin_unlock(&root->delalloc_lock); 4571 4572 /* 4573 * Make sure we get a live inode and that it'll not disappear 4574 * meanwhile. 4575 */ 4576 inode = igrab(&btrfs_inode->vfs_inode); 4577 if (inode) { 4578 unsigned int nofs_flag; 4579 4580 nofs_flag = memalloc_nofs_save(); 4581 invalidate_inode_pages2(inode->i_mapping); 4582 memalloc_nofs_restore(nofs_flag); 4583 iput(inode); 4584 } 4585 spin_lock(&root->delalloc_lock); 4586 } 4587 spin_unlock(&root->delalloc_lock); 4588 } 4589 4590 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4591 { 4592 struct btrfs_root *root; 4593 LIST_HEAD(splice); 4594 4595 spin_lock(&fs_info->delalloc_root_lock); 4596 list_splice_init(&fs_info->delalloc_roots, &splice); 4597 while (!list_empty(&splice)) { 4598 root = list_first_entry(&splice, struct btrfs_root, 4599 delalloc_root); 4600 root = btrfs_grab_root(root); 4601 BUG_ON(!root); 4602 spin_unlock(&fs_info->delalloc_root_lock); 4603 4604 btrfs_destroy_delalloc_inodes(root); 4605 btrfs_put_root(root); 4606 4607 spin_lock(&fs_info->delalloc_root_lock); 4608 } 4609 spin_unlock(&fs_info->delalloc_root_lock); 4610 } 4611 4612 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4613 struct extent_io_tree *dirty_pages, 4614 int mark) 4615 { 4616 struct extent_buffer *eb; 4617 u64 start = 0; 4618 u64 end; 4619 4620 while (btrfs_find_first_extent_bit(dirty_pages, start, &start, &end, 4621 mark, NULL)) { 4622 btrfs_clear_extent_bit(dirty_pages, start, end, mark, NULL); 4623 while (start <= end) { 4624 eb = find_extent_buffer(fs_info, start); 4625 start += fs_info->nodesize; 4626 if (!eb) 4627 continue; 4628 4629 btrfs_tree_lock(eb); 4630 wait_on_extent_buffer_writeback(eb); 4631 btrfs_clear_buffer_dirty(NULL, eb); 4632 btrfs_tree_unlock(eb); 4633 4634 free_extent_buffer_stale(eb); 4635 } 4636 } 4637 } 4638 4639 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4640 struct extent_io_tree *unpin) 4641 { 4642 u64 start; 4643 u64 end; 4644 4645 while (1) { 4646 struct extent_state *cached_state = NULL; 4647 4648 /* 4649 * The btrfs_finish_extent_commit() may get the same range as 4650 * ours between find_first_extent_bit and clear_extent_dirty. 4651 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4652 * the same extent range. 4653 */ 4654 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4655 if (!btrfs_find_first_extent_bit(unpin, 0, &start, &end, 4656 EXTENT_DIRTY, &cached_state)) { 4657 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4658 break; 4659 } 4660 4661 btrfs_clear_extent_dirty(unpin, start, end, &cached_state); 4662 btrfs_free_extent_state(cached_state); 4663 btrfs_error_unpin_extent_range(fs_info, start, end); 4664 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4665 cond_resched(); 4666 } 4667 } 4668 4669 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4670 { 4671 struct inode *inode; 4672 4673 inode = cache->io_ctl.inode; 4674 if (inode) { 4675 unsigned int nofs_flag; 4676 4677 nofs_flag = memalloc_nofs_save(); 4678 invalidate_inode_pages2(inode->i_mapping); 4679 memalloc_nofs_restore(nofs_flag); 4680 4681 BTRFS_I(inode)->generation = 0; 4682 cache->io_ctl.inode = NULL; 4683 iput(inode); 4684 } 4685 ASSERT(cache->io_ctl.pages == NULL); 4686 btrfs_put_block_group(cache); 4687 } 4688 4689 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4690 struct btrfs_fs_info *fs_info) 4691 { 4692 struct btrfs_block_group *cache; 4693 4694 spin_lock(&cur_trans->dirty_bgs_lock); 4695 while (!list_empty(&cur_trans->dirty_bgs)) { 4696 cache = list_first_entry(&cur_trans->dirty_bgs, 4697 struct btrfs_block_group, 4698 dirty_list); 4699 4700 if (!list_empty(&cache->io_list)) { 4701 spin_unlock(&cur_trans->dirty_bgs_lock); 4702 list_del_init(&cache->io_list); 4703 btrfs_cleanup_bg_io(cache); 4704 spin_lock(&cur_trans->dirty_bgs_lock); 4705 } 4706 4707 list_del_init(&cache->dirty_list); 4708 spin_lock(&cache->lock); 4709 cache->disk_cache_state = BTRFS_DC_ERROR; 4710 spin_unlock(&cache->lock); 4711 4712 spin_unlock(&cur_trans->dirty_bgs_lock); 4713 btrfs_put_block_group(cache); 4714 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 4715 spin_lock(&cur_trans->dirty_bgs_lock); 4716 } 4717 spin_unlock(&cur_trans->dirty_bgs_lock); 4718 4719 /* 4720 * Refer to the definition of io_bgs member for details why it's safe 4721 * to use it without any locking 4722 */ 4723 while (!list_empty(&cur_trans->io_bgs)) { 4724 cache = list_first_entry(&cur_trans->io_bgs, 4725 struct btrfs_block_group, 4726 io_list); 4727 4728 list_del_init(&cache->io_list); 4729 spin_lock(&cache->lock); 4730 cache->disk_cache_state = BTRFS_DC_ERROR; 4731 spin_unlock(&cache->lock); 4732 btrfs_cleanup_bg_io(cache); 4733 } 4734 } 4735 4736 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info) 4737 { 4738 struct btrfs_root *gang[8]; 4739 int i; 4740 int ret; 4741 4742 spin_lock(&fs_info->fs_roots_radix_lock); 4743 while (1) { 4744 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 4745 (void **)gang, 0, 4746 ARRAY_SIZE(gang), 4747 BTRFS_ROOT_TRANS_TAG); 4748 if (ret == 0) 4749 break; 4750 for (i = 0; i < ret; i++) { 4751 struct btrfs_root *root = gang[i]; 4752 4753 btrfs_qgroup_free_meta_all_pertrans(root); 4754 radix_tree_tag_clear(&fs_info->fs_roots_radix, 4755 (unsigned long)btrfs_root_id(root), 4756 BTRFS_ROOT_TRANS_TAG); 4757 } 4758 } 4759 spin_unlock(&fs_info->fs_roots_radix_lock); 4760 } 4761 4762 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans) 4763 { 4764 struct btrfs_fs_info *fs_info = cur_trans->fs_info; 4765 struct btrfs_device *dev, *tmp; 4766 4767 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4768 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4769 ASSERT(list_empty(&cur_trans->io_bgs)); 4770 4771 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4772 post_commit_list) { 4773 list_del_init(&dev->post_commit_list); 4774 } 4775 4776 btrfs_destroy_delayed_refs(cur_trans); 4777 4778 cur_trans->state = TRANS_STATE_COMMIT_START; 4779 wake_up(&fs_info->transaction_blocked_wait); 4780 4781 cur_trans->state = TRANS_STATE_UNBLOCKED; 4782 wake_up(&fs_info->transaction_wait); 4783 4784 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4785 EXTENT_DIRTY); 4786 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4787 4788 cur_trans->state =TRANS_STATE_COMPLETED; 4789 wake_up(&cur_trans->commit_wait); 4790 } 4791 4792 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4793 { 4794 struct btrfs_transaction *t; 4795 4796 mutex_lock(&fs_info->transaction_kthread_mutex); 4797 4798 spin_lock(&fs_info->trans_lock); 4799 while (!list_empty(&fs_info->trans_list)) { 4800 t = list_first_entry(&fs_info->trans_list, 4801 struct btrfs_transaction, list); 4802 if (t->state >= TRANS_STATE_COMMIT_PREP) { 4803 refcount_inc(&t->use_count); 4804 spin_unlock(&fs_info->trans_lock); 4805 btrfs_wait_for_commit(fs_info, t->transid); 4806 btrfs_put_transaction(t); 4807 spin_lock(&fs_info->trans_lock); 4808 continue; 4809 } 4810 if (t == fs_info->running_transaction) { 4811 t->state = TRANS_STATE_COMMIT_DOING; 4812 spin_unlock(&fs_info->trans_lock); 4813 /* 4814 * We wait for 0 num_writers since we don't hold a trans 4815 * handle open currently for this transaction. 4816 */ 4817 wait_event(t->writer_wait, 4818 atomic_read(&t->num_writers) == 0); 4819 } else { 4820 spin_unlock(&fs_info->trans_lock); 4821 } 4822 btrfs_cleanup_one_transaction(t); 4823 4824 spin_lock(&fs_info->trans_lock); 4825 if (t == fs_info->running_transaction) 4826 fs_info->running_transaction = NULL; 4827 list_del_init(&t->list); 4828 spin_unlock(&fs_info->trans_lock); 4829 4830 btrfs_put_transaction(t); 4831 trace_btrfs_transaction_commit(fs_info); 4832 spin_lock(&fs_info->trans_lock); 4833 } 4834 spin_unlock(&fs_info->trans_lock); 4835 btrfs_destroy_all_ordered_extents(fs_info); 4836 btrfs_destroy_delayed_inodes(fs_info); 4837 btrfs_assert_delayed_root_empty(fs_info); 4838 btrfs_destroy_all_delalloc_inodes(fs_info); 4839 btrfs_drop_all_logs(fs_info); 4840 btrfs_free_all_qgroup_pertrans(fs_info); 4841 mutex_unlock(&fs_info->transaction_kthread_mutex); 4842 4843 return 0; 4844 } 4845 4846 int btrfs_init_root_free_objectid(struct btrfs_root *root) 4847 { 4848 BTRFS_PATH_AUTO_FREE(path); 4849 int ret; 4850 struct extent_buffer *l; 4851 struct btrfs_key search_key; 4852 struct btrfs_key found_key; 4853 int slot; 4854 4855 path = btrfs_alloc_path(); 4856 if (!path) 4857 return -ENOMEM; 4858 4859 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 4860 search_key.type = -1; 4861 search_key.offset = (u64)-1; 4862 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 4863 if (ret < 0) 4864 return ret; 4865 if (unlikely(ret == 0)) { 4866 /* 4867 * Key with offset -1 found, there would have to exist a root 4868 * with such id, but this is out of valid range. 4869 */ 4870 return -EUCLEAN; 4871 } 4872 if (path->slots[0] > 0) { 4873 slot = path->slots[0] - 1; 4874 l = path->nodes[0]; 4875 btrfs_item_key_to_cpu(l, &found_key, slot); 4876 root->free_objectid = max_t(u64, found_key.objectid + 1, 4877 BTRFS_FIRST_FREE_OBJECTID); 4878 } else { 4879 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 4880 } 4881 4882 return 0; 4883 } 4884 4885 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 4886 { 4887 int ret; 4888 mutex_lock(&root->objectid_mutex); 4889 4890 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 4891 btrfs_warn(root->fs_info, 4892 "the objectid of root %llu reaches its highest value", 4893 btrfs_root_id(root)); 4894 ret = -ENOSPC; 4895 goto out; 4896 } 4897 4898 *objectid = root->free_objectid++; 4899 ret = 0; 4900 out: 4901 mutex_unlock(&root->objectid_mutex); 4902 return ret; 4903 } 4904