xref: /linux/fs/btrfs/disk-io.c (revision add07519ea6b6c2ba2b7842225eb87e0f08f2b0f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <linux/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "dev-replace.h"
33 #include "raid56.h"
34 #include "sysfs.h"
35 #include "qgroup.h"
36 #include "compression.h"
37 #include "tree-checker.h"
38 #include "ref-verify.h"
39 #include "block-group.h"
40 #include "discard.h"
41 #include "space-info.h"
42 #include "zoned.h"
43 #include "subpage.h"
44 #include "fs.h"
45 #include "accessors.h"
46 #include "extent-tree.h"
47 #include "root-tree.h"
48 #include "defrag.h"
49 #include "uuid-tree.h"
50 #include "relocation.h"
51 #include "scrub.h"
52 #include "super.h"
53 
54 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
55 				 BTRFS_HEADER_FLAG_RELOC |\
56 				 BTRFS_SUPER_FLAG_ERROR |\
57 				 BTRFS_SUPER_FLAG_SEEDING |\
58 				 BTRFS_SUPER_FLAG_METADUMP |\
59 				 BTRFS_SUPER_FLAG_METADUMP_V2)
60 
61 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
62 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
63 
64 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
65 {
66 	if (fs_info->csum_shash)
67 		crypto_free_shash(fs_info->csum_shash);
68 }
69 
70 /*
71  * Compute the csum of a btree block and store the result to provided buffer.
72  */
73 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
74 {
75 	struct btrfs_fs_info *fs_info = buf->fs_info;
76 	int num_pages;
77 	u32 first_page_part;
78 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
79 	char *kaddr;
80 	int i;
81 
82 	shash->tfm = fs_info->csum_shash;
83 	crypto_shash_init(shash);
84 
85 	if (buf->addr) {
86 		/* Pages are contiguous, handle them as a big one. */
87 		kaddr = buf->addr;
88 		first_page_part = fs_info->nodesize;
89 		num_pages = 1;
90 	} else {
91 		kaddr = folio_address(buf->folios[0]);
92 		first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
93 		num_pages = num_extent_pages(buf);
94 	}
95 
96 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
97 			    first_page_part - BTRFS_CSUM_SIZE);
98 
99 	/*
100 	 * Multiple single-page folios case would reach here.
101 	 *
102 	 * nodesize <= PAGE_SIZE and large folio all handled by above
103 	 * crypto_shash_update() already.
104 	 */
105 	for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
106 		kaddr = folio_address(buf->folios[i]);
107 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
108 	}
109 	memset(result, 0, BTRFS_CSUM_SIZE);
110 	crypto_shash_final(shash, result);
111 }
112 
113 /*
114  * we can't consider a given block up to date unless the transid of the
115  * block matches the transid in the parent node's pointer.  This is how we
116  * detect blocks that either didn't get written at all or got written
117  * in the wrong place.
118  */
119 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
120 {
121 	if (!extent_buffer_uptodate(eb))
122 		return 0;
123 
124 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
125 		return 1;
126 
127 	if (atomic)
128 		return -EAGAIN;
129 
130 	if (!extent_buffer_uptodate(eb) ||
131 	    btrfs_header_generation(eb) != parent_transid) {
132 		btrfs_err_rl(eb->fs_info,
133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
134 			eb->start, eb->read_mirror,
135 			parent_transid, btrfs_header_generation(eb));
136 		clear_extent_buffer_uptodate(eb);
137 		return 0;
138 	}
139 	return 1;
140 }
141 
142 static bool btrfs_supported_super_csum(u16 csum_type)
143 {
144 	switch (csum_type) {
145 	case BTRFS_CSUM_TYPE_CRC32:
146 	case BTRFS_CSUM_TYPE_XXHASH:
147 	case BTRFS_CSUM_TYPE_SHA256:
148 	case BTRFS_CSUM_TYPE_BLAKE2:
149 		return true;
150 	default:
151 		return false;
152 	}
153 }
154 
155 /*
156  * Return 0 if the superblock checksum type matches the checksum value of that
157  * algorithm. Pass the raw disk superblock data.
158  */
159 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
160 			   const struct btrfs_super_block *disk_sb)
161 {
162 	char result[BTRFS_CSUM_SIZE];
163 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
164 
165 	shash->tfm = fs_info->csum_shash;
166 
167 	/*
168 	 * The super_block structure does not span the whole
169 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
170 	 * filled with zeros and is included in the checksum.
171 	 */
172 	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
173 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
174 
175 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
176 		return 1;
177 
178 	return 0;
179 }
180 
181 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
182 				      int mirror_num)
183 {
184 	struct btrfs_fs_info *fs_info = eb->fs_info;
185 	int ret = 0;
186 
187 	if (sb_rdonly(fs_info->sb))
188 		return -EROFS;
189 
190 	for (int i = 0; i < num_extent_folios(eb); i++) {
191 		struct folio *folio = eb->folios[i];
192 		u64 start = max_t(u64, eb->start, folio_pos(folio));
193 		u64 end = min_t(u64, eb->start + eb->len,
194 				folio_pos(folio) + eb->folio_size);
195 		u32 len = end - start;
196 		phys_addr_t paddr = PFN_PHYS(folio_pfn(folio)) +
197 				    offset_in_folio(folio, start);
198 
199 		ret = btrfs_repair_io_failure(fs_info, 0, start, len, start,
200 					      paddr, mirror_num);
201 		if (ret)
202 			break;
203 	}
204 
205 	return ret;
206 }
207 
208 /*
209  * helper to read a given tree block, doing retries as required when
210  * the checksums don't match and we have alternate mirrors to try.
211  *
212  * @check:		expected tree parentness check, see the comments of the
213  *			structure for details.
214  */
215 int btrfs_read_extent_buffer(struct extent_buffer *eb,
216 			     const struct btrfs_tree_parent_check *check)
217 {
218 	struct btrfs_fs_info *fs_info = eb->fs_info;
219 	int failed = 0;
220 	int ret;
221 	int num_copies = 0;
222 	int mirror_num = 0;
223 	int failed_mirror = 0;
224 
225 	ASSERT(check);
226 
227 	while (1) {
228 		ret = read_extent_buffer_pages(eb, mirror_num, check);
229 		if (!ret)
230 			break;
231 
232 		num_copies = btrfs_num_copies(fs_info,
233 					      eb->start, eb->len);
234 		if (num_copies == 1)
235 			break;
236 
237 		if (!failed_mirror) {
238 			failed = 1;
239 			failed_mirror = eb->read_mirror;
240 		}
241 
242 		mirror_num++;
243 		if (mirror_num == failed_mirror)
244 			mirror_num++;
245 
246 		if (mirror_num > num_copies)
247 			break;
248 	}
249 
250 	if (failed && !ret && failed_mirror)
251 		btrfs_repair_eb_io_failure(eb, failed_mirror);
252 
253 	return ret;
254 }
255 
256 /*
257  * Checksum a dirty tree block before IO.
258  */
259 int btree_csum_one_bio(struct btrfs_bio *bbio)
260 {
261 	struct extent_buffer *eb = bbio->private;
262 	struct btrfs_fs_info *fs_info = eb->fs_info;
263 	u64 found_start = btrfs_header_bytenr(eb);
264 	u64 last_trans;
265 	u8 result[BTRFS_CSUM_SIZE];
266 	int ret;
267 
268 	/* Btree blocks are always contiguous on disk. */
269 	if (WARN_ON_ONCE(bbio->file_offset != eb->start))
270 		return -EIO;
271 	if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
272 		return -EIO;
273 
274 	/*
275 	 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
276 	 * checksum it but zero-out its content. This is done to preserve
277 	 * ordering of I/O without unnecessarily writing out data.
278 	 */
279 	if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
280 		memzero_extent_buffer(eb, 0, eb->len);
281 		return 0;
282 	}
283 
284 	if (WARN_ON_ONCE(found_start != eb->start))
285 		return -EIO;
286 	if (WARN_ON(!btrfs_meta_folio_test_uptodate(eb->folios[0], eb)))
287 		return -EIO;
288 
289 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
290 				    offsetof(struct btrfs_header, fsid),
291 				    BTRFS_FSID_SIZE) == 0);
292 	csum_tree_block(eb, result);
293 
294 	if (btrfs_header_level(eb))
295 		ret = btrfs_check_node(eb);
296 	else
297 		ret = btrfs_check_leaf(eb);
298 
299 	if (ret < 0)
300 		goto error;
301 
302 	/*
303 	 * Also check the generation, the eb reached here must be newer than
304 	 * last committed. Or something seriously wrong happened.
305 	 */
306 	last_trans = btrfs_get_last_trans_committed(fs_info);
307 	if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
308 		ret = -EUCLEAN;
309 		btrfs_err(fs_info,
310 			"block=%llu bad generation, have %llu expect > %llu",
311 			  eb->start, btrfs_header_generation(eb), last_trans);
312 		goto error;
313 	}
314 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
315 	return 0;
316 
317 error:
318 	btrfs_print_tree(eb, 0);
319 	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
320 		  eb->start);
321 	/*
322 	 * Be noisy if this is an extent buffer from a log tree. We don't abort
323 	 * a transaction in case there's a bad log tree extent buffer, we just
324 	 * fallback to a transaction commit. Still we want to know when there is
325 	 * a bad log tree extent buffer, as that may signal a bug somewhere.
326 	 */
327 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
328 		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
329 	return ret;
330 }
331 
332 static bool check_tree_block_fsid(struct extent_buffer *eb)
333 {
334 	struct btrfs_fs_info *fs_info = eb->fs_info;
335 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
336 	u8 fsid[BTRFS_FSID_SIZE];
337 
338 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
339 			   BTRFS_FSID_SIZE);
340 
341 	/*
342 	 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
343 	 * This is then overwritten by metadata_uuid if it is present in the
344 	 * device_list_add(). The same true for a seed device as well. So use of
345 	 * fs_devices::metadata_uuid is appropriate here.
346 	 */
347 	if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
348 		return false;
349 
350 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
351 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
352 			return false;
353 
354 	return true;
355 }
356 
357 /* Do basic extent buffer checks at read time */
358 int btrfs_validate_extent_buffer(struct extent_buffer *eb,
359 				 const struct btrfs_tree_parent_check *check)
360 {
361 	struct btrfs_fs_info *fs_info = eb->fs_info;
362 	u64 found_start;
363 	const u32 csum_size = fs_info->csum_size;
364 	u8 found_level;
365 	u8 result[BTRFS_CSUM_SIZE];
366 	const u8 *header_csum;
367 	int ret = 0;
368 	const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS);
369 
370 	ASSERT(check);
371 
372 	found_start = btrfs_header_bytenr(eb);
373 	if (found_start != eb->start) {
374 		btrfs_err_rl(fs_info,
375 			"bad tree block start, mirror %u want %llu have %llu",
376 			     eb->read_mirror, eb->start, found_start);
377 		ret = -EIO;
378 		goto out;
379 	}
380 	if (check_tree_block_fsid(eb)) {
381 		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
382 			     eb->start, eb->read_mirror);
383 		ret = -EIO;
384 		goto out;
385 	}
386 	found_level = btrfs_header_level(eb);
387 	if (found_level >= BTRFS_MAX_LEVEL) {
388 		btrfs_err(fs_info,
389 			"bad tree block level, mirror %u level %d on logical %llu",
390 			eb->read_mirror, btrfs_header_level(eb), eb->start);
391 		ret = -EIO;
392 		goto out;
393 	}
394 
395 	csum_tree_block(eb, result);
396 	header_csum = folio_address(eb->folios[0]) +
397 		get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
398 
399 	if (memcmp(result, header_csum, csum_size) != 0) {
400 		btrfs_warn_rl(fs_info,
401 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d%s",
402 			      eb->start, eb->read_mirror,
403 			      CSUM_FMT_VALUE(csum_size, header_csum),
404 			      CSUM_FMT_VALUE(csum_size, result),
405 			      btrfs_header_level(eb),
406 			      ignore_csum ? ", ignored" : "");
407 		if (!ignore_csum) {
408 			ret = -EUCLEAN;
409 			goto out;
410 		}
411 	}
412 
413 	if (found_level != check->level) {
414 		btrfs_err(fs_info,
415 		"level verify failed on logical %llu mirror %u wanted %u found %u",
416 			  eb->start, eb->read_mirror, check->level, found_level);
417 		ret = -EIO;
418 		goto out;
419 	}
420 	if (unlikely(check->transid &&
421 		     btrfs_header_generation(eb) != check->transid)) {
422 		btrfs_err_rl(eb->fs_info,
423 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
424 				eb->start, eb->read_mirror, check->transid,
425 				btrfs_header_generation(eb));
426 		ret = -EIO;
427 		goto out;
428 	}
429 	if (check->has_first_key) {
430 		const struct btrfs_key *expect_key = &check->first_key;
431 		struct btrfs_key found_key;
432 
433 		if (found_level)
434 			btrfs_node_key_to_cpu(eb, &found_key, 0);
435 		else
436 			btrfs_item_key_to_cpu(eb, &found_key, 0);
437 		if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
438 			btrfs_err(fs_info,
439 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
440 				  eb->start, check->transid,
441 				  expect_key->objectid,
442 				  expect_key->type, expect_key->offset,
443 				  found_key.objectid, found_key.type,
444 				  found_key.offset);
445 			ret = -EUCLEAN;
446 			goto out;
447 		}
448 	}
449 	if (check->owner_root) {
450 		ret = btrfs_check_eb_owner(eb, check->owner_root);
451 		if (ret < 0)
452 			goto out;
453 	}
454 
455 	/* If this is a leaf block and it is corrupt, just return -EIO. */
456 	if (found_level == 0 && btrfs_check_leaf(eb))
457 		ret = -EIO;
458 
459 	if (found_level > 0 && btrfs_check_node(eb))
460 		ret = -EIO;
461 
462 	if (ret)
463 		btrfs_err(fs_info,
464 		"read time tree block corruption detected on logical %llu mirror %u",
465 			  eb->start, eb->read_mirror);
466 out:
467 	return ret;
468 }
469 
470 #ifdef CONFIG_MIGRATION
471 static int btree_migrate_folio(struct address_space *mapping,
472 		struct folio *dst, struct folio *src, enum migrate_mode mode)
473 {
474 	/*
475 	 * we can't safely write a btree page from here,
476 	 * we haven't done the locking hook
477 	 */
478 	if (folio_test_dirty(src))
479 		return -EAGAIN;
480 	/*
481 	 * Buffers may be managed in a filesystem specific way.
482 	 * We must have no buffers or drop them.
483 	 */
484 	if (folio_get_private(src) &&
485 	    !filemap_release_folio(src, GFP_KERNEL))
486 		return -EAGAIN;
487 	return migrate_folio(mapping, dst, src, mode);
488 }
489 #else
490 #define btree_migrate_folio NULL
491 #endif
492 
493 static int btree_writepages(struct address_space *mapping,
494 			    struct writeback_control *wbc)
495 {
496 	int ret;
497 
498 	if (wbc->sync_mode == WB_SYNC_NONE) {
499 		struct btrfs_fs_info *fs_info;
500 
501 		if (wbc->for_kupdate)
502 			return 0;
503 
504 		fs_info = inode_to_fs_info(mapping->host);
505 		/* this is a bit racy, but that's ok */
506 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
507 					     BTRFS_DIRTY_METADATA_THRESH,
508 					     fs_info->dirty_metadata_batch);
509 		if (ret < 0)
510 			return 0;
511 	}
512 	return btree_write_cache_pages(mapping, wbc);
513 }
514 
515 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
516 {
517 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
518 		return false;
519 
520 	return try_release_extent_buffer(folio);
521 }
522 
523 static void btree_invalidate_folio(struct folio *folio, size_t offset,
524 				 size_t length)
525 {
526 	struct extent_io_tree *tree;
527 
528 	tree = &folio_to_inode(folio)->io_tree;
529 	extent_invalidate_folio(tree, folio, offset);
530 	btree_release_folio(folio, GFP_NOFS);
531 	if (folio_get_private(folio)) {
532 		btrfs_warn(folio_to_fs_info(folio),
533 			   "folio private not zero on folio %llu",
534 			   (unsigned long long)folio_pos(folio));
535 		folio_detach_private(folio);
536 	}
537 }
538 
539 #ifdef DEBUG
540 static bool btree_dirty_folio(struct address_space *mapping,
541 		struct folio *folio)
542 {
543 	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
544 	struct btrfs_subpage_info *spi = fs_info->subpage_info;
545 	struct btrfs_subpage *subpage;
546 	struct extent_buffer *eb;
547 	int cur_bit = 0;
548 	u64 page_start = folio_pos(folio);
549 
550 	if (fs_info->sectorsize == PAGE_SIZE) {
551 		eb = folio_get_private(folio);
552 		BUG_ON(!eb);
553 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
554 		BUG_ON(!atomic_read(&eb->refs));
555 		btrfs_assert_tree_write_locked(eb);
556 		return filemap_dirty_folio(mapping, folio);
557 	}
558 
559 	ASSERT(spi);
560 	subpage = folio_get_private(folio);
561 
562 	for (cur_bit = spi->dirty_offset;
563 	     cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
564 	     cur_bit++) {
565 		unsigned long flags;
566 		u64 cur;
567 
568 		spin_lock_irqsave(&subpage->lock, flags);
569 		if (!test_bit(cur_bit, subpage->bitmaps)) {
570 			spin_unlock_irqrestore(&subpage->lock, flags);
571 			continue;
572 		}
573 		spin_unlock_irqrestore(&subpage->lock, flags);
574 		cur = page_start + cur_bit * fs_info->sectorsize;
575 
576 		eb = find_extent_buffer(fs_info, cur);
577 		ASSERT(eb);
578 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
579 		ASSERT(atomic_read(&eb->refs));
580 		btrfs_assert_tree_write_locked(eb);
581 		free_extent_buffer(eb);
582 
583 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
584 	}
585 	return filemap_dirty_folio(mapping, folio);
586 }
587 #else
588 #define btree_dirty_folio filemap_dirty_folio
589 #endif
590 
591 static const struct address_space_operations btree_aops = {
592 	.writepages	= btree_writepages,
593 	.release_folio	= btree_release_folio,
594 	.invalidate_folio = btree_invalidate_folio,
595 	.migrate_folio	= btree_migrate_folio,
596 	.dirty_folio	= btree_dirty_folio,
597 };
598 
599 struct extent_buffer *btrfs_find_create_tree_block(
600 						struct btrfs_fs_info *fs_info,
601 						u64 bytenr, u64 owner_root,
602 						int level)
603 {
604 	if (btrfs_is_testing(fs_info))
605 		return alloc_test_extent_buffer(fs_info, bytenr);
606 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
607 }
608 
609 /*
610  * Read tree block at logical address @bytenr and do variant basic but critical
611  * verification.
612  *
613  * @check:		expected tree parentness check, see comments of the
614  *			structure for details.
615  */
616 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
617 				      struct btrfs_tree_parent_check *check)
618 {
619 	struct extent_buffer *buf = NULL;
620 	int ret;
621 
622 	ASSERT(check);
623 
624 	buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
625 					   check->level);
626 	if (IS_ERR(buf))
627 		return buf;
628 
629 	ret = btrfs_read_extent_buffer(buf, check);
630 	if (ret) {
631 		free_extent_buffer_stale(buf);
632 		return ERR_PTR(ret);
633 	}
634 	return buf;
635 
636 }
637 
638 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
639 					   u64 objectid, gfp_t flags)
640 {
641 	struct btrfs_root *root;
642 	bool dummy = btrfs_is_testing(fs_info);
643 
644 	root = kzalloc(sizeof(*root), flags);
645 	if (!root)
646 		return NULL;
647 
648 	memset(&root->root_key, 0, sizeof(root->root_key));
649 	memset(&root->root_item, 0, sizeof(root->root_item));
650 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
651 	root->fs_info = fs_info;
652 	root->root_key.objectid = objectid;
653 	root->node = NULL;
654 	root->commit_root = NULL;
655 	root->state = 0;
656 	RB_CLEAR_NODE(&root->rb_node);
657 
658 	btrfs_set_root_last_trans(root, 0);
659 	root->free_objectid = 0;
660 	root->nr_delalloc_inodes = 0;
661 	root->nr_ordered_extents = 0;
662 	xa_init(&root->inodes);
663 	xa_init(&root->delayed_nodes);
664 
665 	btrfs_init_root_block_rsv(root);
666 
667 	INIT_LIST_HEAD(&root->dirty_list);
668 	INIT_LIST_HEAD(&root->root_list);
669 	INIT_LIST_HEAD(&root->delalloc_inodes);
670 	INIT_LIST_HEAD(&root->delalloc_root);
671 	INIT_LIST_HEAD(&root->ordered_extents);
672 	INIT_LIST_HEAD(&root->ordered_root);
673 	INIT_LIST_HEAD(&root->reloc_dirty_list);
674 	spin_lock_init(&root->delalloc_lock);
675 	spin_lock_init(&root->ordered_extent_lock);
676 	spin_lock_init(&root->accounting_lock);
677 	spin_lock_init(&root->qgroup_meta_rsv_lock);
678 	mutex_init(&root->objectid_mutex);
679 	mutex_init(&root->log_mutex);
680 	mutex_init(&root->ordered_extent_mutex);
681 	mutex_init(&root->delalloc_mutex);
682 	init_waitqueue_head(&root->qgroup_flush_wait);
683 	init_waitqueue_head(&root->log_writer_wait);
684 	init_waitqueue_head(&root->log_commit_wait[0]);
685 	init_waitqueue_head(&root->log_commit_wait[1]);
686 	INIT_LIST_HEAD(&root->log_ctxs[0]);
687 	INIT_LIST_HEAD(&root->log_ctxs[1]);
688 	atomic_set(&root->log_commit[0], 0);
689 	atomic_set(&root->log_commit[1], 0);
690 	atomic_set(&root->log_writers, 0);
691 	atomic_set(&root->log_batch, 0);
692 	refcount_set(&root->refs, 1);
693 	atomic_set(&root->snapshot_force_cow, 0);
694 	atomic_set(&root->nr_swapfiles, 0);
695 	btrfs_set_root_log_transid(root, 0);
696 	root->log_transid_committed = -1;
697 	btrfs_set_root_last_log_commit(root, 0);
698 	root->anon_dev = 0;
699 	if (!dummy) {
700 		btrfs_extent_io_tree_init(fs_info, &root->dirty_log_pages,
701 					  IO_TREE_ROOT_DIRTY_LOG_PAGES);
702 		btrfs_extent_io_tree_init(fs_info, &root->log_csum_range,
703 					  IO_TREE_LOG_CSUM_RANGE);
704 	}
705 
706 	spin_lock_init(&root->root_item_lock);
707 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
708 #ifdef CONFIG_BTRFS_DEBUG
709 	INIT_LIST_HEAD(&root->leak_list);
710 	spin_lock(&fs_info->fs_roots_radix_lock);
711 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
712 	spin_unlock(&fs_info->fs_roots_radix_lock);
713 #endif
714 
715 	return root;
716 }
717 
718 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
719 /* Should only be used by the testing infrastructure */
720 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
721 {
722 	struct btrfs_root *root;
723 
724 	if (!fs_info)
725 		return ERR_PTR(-EINVAL);
726 
727 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
728 	if (!root)
729 		return ERR_PTR(-ENOMEM);
730 
731 	/* We don't use the stripesize in selftest, set it as sectorsize */
732 	root->alloc_bytenr = 0;
733 
734 	return root;
735 }
736 #endif
737 
738 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
739 {
740 	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
741 	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
742 
743 	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
744 }
745 
746 static int global_root_key_cmp(const void *k, const struct rb_node *node)
747 {
748 	const struct btrfs_key *key = k;
749 	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
750 
751 	return btrfs_comp_cpu_keys(key, &root->root_key);
752 }
753 
754 int btrfs_global_root_insert(struct btrfs_root *root)
755 {
756 	struct btrfs_fs_info *fs_info = root->fs_info;
757 	struct rb_node *tmp;
758 	int ret = 0;
759 
760 	write_lock(&fs_info->global_root_lock);
761 	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
762 	write_unlock(&fs_info->global_root_lock);
763 
764 	if (tmp) {
765 		ret = -EEXIST;
766 		btrfs_warn(fs_info, "global root %llu %llu already exists",
767 			   btrfs_root_id(root), root->root_key.offset);
768 	}
769 	return ret;
770 }
771 
772 void btrfs_global_root_delete(struct btrfs_root *root)
773 {
774 	struct btrfs_fs_info *fs_info = root->fs_info;
775 
776 	write_lock(&fs_info->global_root_lock);
777 	rb_erase(&root->rb_node, &fs_info->global_root_tree);
778 	write_unlock(&fs_info->global_root_lock);
779 }
780 
781 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
782 				     struct btrfs_key *key)
783 {
784 	struct rb_node *node;
785 	struct btrfs_root *root = NULL;
786 
787 	read_lock(&fs_info->global_root_lock);
788 	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
789 	if (node)
790 		root = container_of(node, struct btrfs_root, rb_node);
791 	read_unlock(&fs_info->global_root_lock);
792 
793 	return root;
794 }
795 
796 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
797 {
798 	struct btrfs_block_group *block_group;
799 	u64 ret;
800 
801 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
802 		return 0;
803 
804 	if (bytenr)
805 		block_group = btrfs_lookup_block_group(fs_info, bytenr);
806 	else
807 		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
808 	ASSERT(block_group);
809 	if (!block_group)
810 		return 0;
811 	ret = block_group->global_root_id;
812 	btrfs_put_block_group(block_group);
813 
814 	return ret;
815 }
816 
817 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
818 {
819 	struct btrfs_key key = {
820 		.objectid = BTRFS_CSUM_TREE_OBJECTID,
821 		.type = BTRFS_ROOT_ITEM_KEY,
822 		.offset = btrfs_global_root_id(fs_info, bytenr),
823 	};
824 
825 	return btrfs_global_root(fs_info, &key);
826 }
827 
828 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
829 {
830 	struct btrfs_key key = {
831 		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
832 		.type = BTRFS_ROOT_ITEM_KEY,
833 		.offset = btrfs_global_root_id(fs_info, bytenr),
834 	};
835 
836 	return btrfs_global_root(fs_info, &key);
837 }
838 
839 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
840 				     u64 objectid)
841 {
842 	struct btrfs_fs_info *fs_info = trans->fs_info;
843 	struct extent_buffer *leaf;
844 	struct btrfs_root *tree_root = fs_info->tree_root;
845 	struct btrfs_root *root;
846 	struct btrfs_key key;
847 	unsigned int nofs_flag;
848 	int ret = 0;
849 
850 	/*
851 	 * We're holding a transaction handle, so use a NOFS memory allocation
852 	 * context to avoid deadlock if reclaim happens.
853 	 */
854 	nofs_flag = memalloc_nofs_save();
855 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
856 	memalloc_nofs_restore(nofs_flag);
857 	if (!root)
858 		return ERR_PTR(-ENOMEM);
859 
860 	root->root_key.objectid = objectid;
861 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
862 	root->root_key.offset = 0;
863 
864 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
865 				      0, BTRFS_NESTING_NORMAL);
866 	if (IS_ERR(leaf)) {
867 		ret = PTR_ERR(leaf);
868 		leaf = NULL;
869 		goto fail;
870 	}
871 
872 	root->node = leaf;
873 	btrfs_mark_buffer_dirty(trans, leaf);
874 
875 	root->commit_root = btrfs_root_node(root);
876 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
877 
878 	btrfs_set_root_flags(&root->root_item, 0);
879 	btrfs_set_root_limit(&root->root_item, 0);
880 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
881 	btrfs_set_root_generation(&root->root_item, trans->transid);
882 	btrfs_set_root_level(&root->root_item, 0);
883 	btrfs_set_root_refs(&root->root_item, 1);
884 	btrfs_set_root_used(&root->root_item, leaf->len);
885 	btrfs_set_root_last_snapshot(&root->root_item, 0);
886 	btrfs_set_root_dirid(&root->root_item, 0);
887 	if (btrfs_is_fstree(objectid))
888 		generate_random_guid(root->root_item.uuid);
889 	else
890 		export_guid(root->root_item.uuid, &guid_null);
891 	btrfs_set_root_drop_level(&root->root_item, 0);
892 
893 	btrfs_tree_unlock(leaf);
894 
895 	key.objectid = objectid;
896 	key.type = BTRFS_ROOT_ITEM_KEY;
897 	key.offset = 0;
898 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
899 	if (ret)
900 		goto fail;
901 
902 	return root;
903 
904 fail:
905 	btrfs_put_root(root);
906 
907 	return ERR_PTR(ret);
908 }
909 
910 static struct btrfs_root *alloc_log_tree(struct btrfs_fs_info *fs_info)
911 {
912 	struct btrfs_root *root;
913 
914 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
915 	if (!root)
916 		return ERR_PTR(-ENOMEM);
917 
918 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
919 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
920 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
921 
922 	return root;
923 }
924 
925 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
926 			      struct btrfs_root *root)
927 {
928 	struct extent_buffer *leaf;
929 
930 	/*
931 	 * DON'T set SHAREABLE bit for log trees.
932 	 *
933 	 * Log trees are not exposed to user space thus can't be snapshotted,
934 	 * and they go away before a real commit is actually done.
935 	 *
936 	 * They do store pointers to file data extents, and those reference
937 	 * counts still get updated (along with back refs to the log tree).
938 	 */
939 
940 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
941 			NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
942 	if (IS_ERR(leaf))
943 		return PTR_ERR(leaf);
944 
945 	root->node = leaf;
946 
947 	btrfs_mark_buffer_dirty(trans, root->node);
948 	btrfs_tree_unlock(root->node);
949 
950 	return 0;
951 }
952 
953 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
954 			     struct btrfs_fs_info *fs_info)
955 {
956 	struct btrfs_root *log_root;
957 
958 	log_root = alloc_log_tree(fs_info);
959 	if (IS_ERR(log_root))
960 		return PTR_ERR(log_root);
961 
962 	if (!btrfs_is_zoned(fs_info)) {
963 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
964 
965 		if (ret) {
966 			btrfs_put_root(log_root);
967 			return ret;
968 		}
969 	}
970 
971 	WARN_ON(fs_info->log_root_tree);
972 	fs_info->log_root_tree = log_root;
973 	return 0;
974 }
975 
976 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
977 		       struct btrfs_root *root)
978 {
979 	struct btrfs_fs_info *fs_info = root->fs_info;
980 	struct btrfs_root *log_root;
981 	struct btrfs_inode_item *inode_item;
982 	int ret;
983 
984 	log_root = alloc_log_tree(fs_info);
985 	if (IS_ERR(log_root))
986 		return PTR_ERR(log_root);
987 
988 	ret = btrfs_alloc_log_tree_node(trans, log_root);
989 	if (ret) {
990 		btrfs_put_root(log_root);
991 		return ret;
992 	}
993 
994 	btrfs_set_root_last_trans(log_root, trans->transid);
995 	log_root->root_key.offset = btrfs_root_id(root);
996 
997 	inode_item = &log_root->root_item.inode;
998 	btrfs_set_stack_inode_generation(inode_item, 1);
999 	btrfs_set_stack_inode_size(inode_item, 3);
1000 	btrfs_set_stack_inode_nlink(inode_item, 1);
1001 	btrfs_set_stack_inode_nbytes(inode_item,
1002 				     fs_info->nodesize);
1003 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1004 
1005 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1006 
1007 	WARN_ON(root->log_root);
1008 	root->log_root = log_root;
1009 	btrfs_set_root_log_transid(root, 0);
1010 	root->log_transid_committed = -1;
1011 	btrfs_set_root_last_log_commit(root, 0);
1012 	return 0;
1013 }
1014 
1015 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1016 					      struct btrfs_path *path,
1017 					      const struct btrfs_key *key)
1018 {
1019 	struct btrfs_root *root;
1020 	struct btrfs_tree_parent_check check = { 0 };
1021 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1022 	u64 generation;
1023 	int ret;
1024 	int level;
1025 
1026 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1027 	if (!root)
1028 		return ERR_PTR(-ENOMEM);
1029 
1030 	ret = btrfs_find_root(tree_root, key, path,
1031 			      &root->root_item, &root->root_key);
1032 	if (ret) {
1033 		if (ret > 0)
1034 			ret = -ENOENT;
1035 		goto fail;
1036 	}
1037 
1038 	generation = btrfs_root_generation(&root->root_item);
1039 	level = btrfs_root_level(&root->root_item);
1040 	check.level = level;
1041 	check.transid = generation;
1042 	check.owner_root = key->objectid;
1043 	root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1044 				     &check);
1045 	if (IS_ERR(root->node)) {
1046 		ret = PTR_ERR(root->node);
1047 		root->node = NULL;
1048 		goto fail;
1049 	}
1050 	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1051 		ret = -EIO;
1052 		goto fail;
1053 	}
1054 
1055 	/*
1056 	 * For real fs, and not log/reloc trees, root owner must
1057 	 * match its root node owner
1058 	 */
1059 	if (!btrfs_is_testing(fs_info) &&
1060 	    btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1061 	    btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
1062 	    btrfs_root_id(root) != btrfs_header_owner(root->node)) {
1063 		btrfs_crit(fs_info,
1064 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1065 			   btrfs_root_id(root), root->node->start,
1066 			   btrfs_header_owner(root->node),
1067 			   btrfs_root_id(root));
1068 		ret = -EUCLEAN;
1069 		goto fail;
1070 	}
1071 	root->commit_root = btrfs_root_node(root);
1072 	return root;
1073 fail:
1074 	btrfs_put_root(root);
1075 	return ERR_PTR(ret);
1076 }
1077 
1078 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1079 					const struct btrfs_key *key)
1080 {
1081 	struct btrfs_root *root;
1082 	BTRFS_PATH_AUTO_FREE(path);
1083 
1084 	path = btrfs_alloc_path();
1085 	if (!path)
1086 		return ERR_PTR(-ENOMEM);
1087 	root = read_tree_root_path(tree_root, path, key);
1088 
1089 	return root;
1090 }
1091 
1092 /*
1093  * Initialize subvolume root in-memory structure.
1094  *
1095  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1096  *
1097  * In case of failure the caller is responsible to call btrfs_free_fs_root()
1098  */
1099 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1100 {
1101 	int ret;
1102 
1103 	btrfs_drew_lock_init(&root->snapshot_lock);
1104 
1105 	if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1106 	    !btrfs_is_data_reloc_root(root) &&
1107 	    btrfs_is_fstree(btrfs_root_id(root))) {
1108 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1109 		btrfs_check_and_init_root_item(&root->root_item);
1110 	}
1111 
1112 	/*
1113 	 * Don't assign anonymous block device to roots that are not exposed to
1114 	 * userspace, the id pool is limited to 1M
1115 	 */
1116 	if (btrfs_is_fstree(btrfs_root_id(root)) &&
1117 	    btrfs_root_refs(&root->root_item) > 0) {
1118 		if (!anon_dev) {
1119 			ret = get_anon_bdev(&root->anon_dev);
1120 			if (ret)
1121 				return ret;
1122 		} else {
1123 			root->anon_dev = anon_dev;
1124 		}
1125 	}
1126 
1127 	mutex_lock(&root->objectid_mutex);
1128 	ret = btrfs_init_root_free_objectid(root);
1129 	if (ret) {
1130 		mutex_unlock(&root->objectid_mutex);
1131 		return ret;
1132 	}
1133 
1134 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1135 
1136 	mutex_unlock(&root->objectid_mutex);
1137 
1138 	return 0;
1139 }
1140 
1141 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1142 					       u64 root_id)
1143 {
1144 	struct btrfs_root *root;
1145 
1146 	spin_lock(&fs_info->fs_roots_radix_lock);
1147 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1148 				 (unsigned long)root_id);
1149 	root = btrfs_grab_root(root);
1150 	spin_unlock(&fs_info->fs_roots_radix_lock);
1151 	return root;
1152 }
1153 
1154 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1155 						u64 objectid)
1156 {
1157 	struct btrfs_key key = {
1158 		.objectid = objectid,
1159 		.type = BTRFS_ROOT_ITEM_KEY,
1160 		.offset = 0,
1161 	};
1162 
1163 	switch (objectid) {
1164 	case BTRFS_ROOT_TREE_OBJECTID:
1165 		return btrfs_grab_root(fs_info->tree_root);
1166 	case BTRFS_EXTENT_TREE_OBJECTID:
1167 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1168 	case BTRFS_CHUNK_TREE_OBJECTID:
1169 		return btrfs_grab_root(fs_info->chunk_root);
1170 	case BTRFS_DEV_TREE_OBJECTID:
1171 		return btrfs_grab_root(fs_info->dev_root);
1172 	case BTRFS_CSUM_TREE_OBJECTID:
1173 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1174 	case BTRFS_QUOTA_TREE_OBJECTID:
1175 		return btrfs_grab_root(fs_info->quota_root);
1176 	case BTRFS_UUID_TREE_OBJECTID:
1177 		return btrfs_grab_root(fs_info->uuid_root);
1178 	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1179 		return btrfs_grab_root(fs_info->block_group_root);
1180 	case BTRFS_FREE_SPACE_TREE_OBJECTID:
1181 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1182 	case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1183 		return btrfs_grab_root(fs_info->stripe_root);
1184 	default:
1185 		return NULL;
1186 	}
1187 }
1188 
1189 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1190 			 struct btrfs_root *root)
1191 {
1192 	int ret;
1193 
1194 	ret = radix_tree_preload(GFP_NOFS);
1195 	if (ret)
1196 		return ret;
1197 
1198 	spin_lock(&fs_info->fs_roots_radix_lock);
1199 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1200 				(unsigned long)btrfs_root_id(root),
1201 				root);
1202 	if (ret == 0) {
1203 		btrfs_grab_root(root);
1204 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1205 	}
1206 	spin_unlock(&fs_info->fs_roots_radix_lock);
1207 	radix_tree_preload_end();
1208 
1209 	return ret;
1210 }
1211 
1212 void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info)
1213 {
1214 #ifdef CONFIG_BTRFS_DEBUG
1215 	struct btrfs_root *root;
1216 
1217 	while (!list_empty(&fs_info->allocated_roots)) {
1218 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1219 
1220 		root = list_first_entry(&fs_info->allocated_roots,
1221 					struct btrfs_root, leak_list);
1222 		btrfs_err(fs_info, "leaked root %s refcount %d",
1223 			  btrfs_root_name(&root->root_key, buf),
1224 			  refcount_read(&root->refs));
1225 		WARN_ON_ONCE(1);
1226 		while (refcount_read(&root->refs) > 1)
1227 			btrfs_put_root(root);
1228 		btrfs_put_root(root);
1229 	}
1230 #endif
1231 }
1232 
1233 static void free_global_roots(struct btrfs_fs_info *fs_info)
1234 {
1235 	struct btrfs_root *root;
1236 	struct rb_node *node;
1237 
1238 	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1239 		root = rb_entry(node, struct btrfs_root, rb_node);
1240 		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1241 		btrfs_put_root(root);
1242 	}
1243 }
1244 
1245 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1246 {
1247 	struct percpu_counter *em_counter = &fs_info->evictable_extent_maps;
1248 
1249 	if (fs_info->fs_devices)
1250 		btrfs_close_devices(fs_info->fs_devices);
1251 	percpu_counter_destroy(&fs_info->stats_read_blocks);
1252 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1253 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1254 	percpu_counter_destroy(&fs_info->ordered_bytes);
1255 	if (percpu_counter_initialized(em_counter))
1256 		ASSERT(percpu_counter_sum_positive(em_counter) == 0);
1257 	percpu_counter_destroy(em_counter);
1258 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1259 	btrfs_free_csum_hash(fs_info);
1260 	btrfs_free_stripe_hash_table(fs_info);
1261 	btrfs_free_ref_cache(fs_info);
1262 	kfree(fs_info->balance_ctl);
1263 	kfree(fs_info->delayed_root);
1264 	free_global_roots(fs_info);
1265 	btrfs_put_root(fs_info->tree_root);
1266 	btrfs_put_root(fs_info->chunk_root);
1267 	btrfs_put_root(fs_info->dev_root);
1268 	btrfs_put_root(fs_info->quota_root);
1269 	btrfs_put_root(fs_info->uuid_root);
1270 	btrfs_put_root(fs_info->fs_root);
1271 	btrfs_put_root(fs_info->data_reloc_root);
1272 	btrfs_put_root(fs_info->block_group_root);
1273 	btrfs_put_root(fs_info->stripe_root);
1274 	btrfs_check_leaked_roots(fs_info);
1275 	btrfs_extent_buffer_leak_debug_check(fs_info);
1276 	kfree(fs_info->super_copy);
1277 	kfree(fs_info->super_for_commit);
1278 	kvfree(fs_info);
1279 }
1280 
1281 
1282 /*
1283  * Get an in-memory reference of a root structure.
1284  *
1285  * For essential trees like root/extent tree, we grab it from fs_info directly.
1286  * For subvolume trees, we check the cached filesystem roots first. If not
1287  * found, then read it from disk and add it to cached fs roots.
1288  *
1289  * Caller should release the root by calling btrfs_put_root() after the usage.
1290  *
1291  * NOTE: Reloc and log trees can't be read by this function as they share the
1292  *	 same root objectid.
1293  *
1294  * @objectid:	root id
1295  * @anon_dev:	preallocated anonymous block device number for new roots,
1296  *		pass NULL for a new allocation.
1297  * @check_ref:	whether to check root item references, If true, return -ENOENT
1298  *		for orphan roots
1299  */
1300 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1301 					     u64 objectid, dev_t *anon_dev,
1302 					     bool check_ref)
1303 {
1304 	struct btrfs_root *root;
1305 	struct btrfs_path *path;
1306 	struct btrfs_key key;
1307 	int ret;
1308 
1309 	root = btrfs_get_global_root(fs_info, objectid);
1310 	if (root)
1311 		return root;
1312 
1313 	/*
1314 	 * If we're called for non-subvolume trees, and above function didn't
1315 	 * find one, do not try to read it from disk.
1316 	 *
1317 	 * This is namely for free-space-tree and quota tree, which can change
1318 	 * at runtime and should only be grabbed from fs_info.
1319 	 */
1320 	if (!btrfs_is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1321 		return ERR_PTR(-ENOENT);
1322 again:
1323 	root = btrfs_lookup_fs_root(fs_info, objectid);
1324 	if (root) {
1325 		/*
1326 		 * Some other caller may have read out the newly inserted
1327 		 * subvolume already (for things like backref walk etc).  Not
1328 		 * that common but still possible.  In that case, we just need
1329 		 * to free the anon_dev.
1330 		 */
1331 		if (unlikely(anon_dev && *anon_dev)) {
1332 			free_anon_bdev(*anon_dev);
1333 			*anon_dev = 0;
1334 		}
1335 
1336 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1337 			btrfs_put_root(root);
1338 			return ERR_PTR(-ENOENT);
1339 		}
1340 		return root;
1341 	}
1342 
1343 	key.objectid = objectid;
1344 	key.type = BTRFS_ROOT_ITEM_KEY;
1345 	key.offset = (u64)-1;
1346 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1347 	if (IS_ERR(root))
1348 		return root;
1349 
1350 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1351 		ret = -ENOENT;
1352 		goto fail;
1353 	}
1354 
1355 	ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
1356 	if (ret)
1357 		goto fail;
1358 
1359 	path = btrfs_alloc_path();
1360 	if (!path) {
1361 		ret = -ENOMEM;
1362 		goto fail;
1363 	}
1364 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1365 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1366 	key.offset = objectid;
1367 
1368 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1369 	btrfs_free_path(path);
1370 	if (ret < 0)
1371 		goto fail;
1372 	if (ret == 0)
1373 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1374 
1375 	ret = btrfs_insert_fs_root(fs_info, root);
1376 	if (ret) {
1377 		if (ret == -EEXIST) {
1378 			btrfs_put_root(root);
1379 			goto again;
1380 		}
1381 		goto fail;
1382 	}
1383 	return root;
1384 fail:
1385 	/*
1386 	 * If our caller provided us an anonymous device, then it's his
1387 	 * responsibility to free it in case we fail. So we have to set our
1388 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1389 	 * and once again by our caller.
1390 	 */
1391 	if (anon_dev && *anon_dev)
1392 		root->anon_dev = 0;
1393 	btrfs_put_root(root);
1394 	return ERR_PTR(ret);
1395 }
1396 
1397 /*
1398  * Get in-memory reference of a root structure
1399  *
1400  * @objectid:	tree objectid
1401  * @check_ref:	if set, verify that the tree exists and the item has at least
1402  *		one reference
1403  */
1404 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1405 				     u64 objectid, bool check_ref)
1406 {
1407 	return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
1408 }
1409 
1410 /*
1411  * Get in-memory reference of a root structure, created as new, optionally pass
1412  * the anonymous block device id
1413  *
1414  * @objectid:	tree objectid
1415  * @anon_dev:	if NULL, allocate a new anonymous block device or use the
1416  *		parameter value if not NULL
1417  */
1418 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1419 					 u64 objectid, dev_t *anon_dev)
1420 {
1421 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1422 }
1423 
1424 /*
1425  * Return a root for the given objectid.
1426  *
1427  * @fs_info:	the fs_info
1428  * @objectid:	the objectid we need to lookup
1429  *
1430  * This is exclusively used for backref walking, and exists specifically because
1431  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1432  * creation time, which means we may have to read the tree_root in order to look
1433  * up a fs root that is not in memory.  If the root is not in memory we will
1434  * read the tree root commit root and look up the fs root from there.  This is a
1435  * temporary root, it will not be inserted into the radix tree as it doesn't
1436  * have the most uptodate information, it'll simply be discarded once the
1437  * backref code is finished using the root.
1438  */
1439 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1440 						 struct btrfs_path *path,
1441 						 u64 objectid)
1442 {
1443 	struct btrfs_root *root;
1444 	struct btrfs_key key;
1445 
1446 	ASSERT(path->search_commit_root && path->skip_locking);
1447 
1448 	/*
1449 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1450 	 * since this is called via the backref walking code we won't be looking
1451 	 * up a root that doesn't exist, unless there's corruption.  So if root
1452 	 * != NULL just return it.
1453 	 */
1454 	root = btrfs_get_global_root(fs_info, objectid);
1455 	if (root)
1456 		return root;
1457 
1458 	root = btrfs_lookup_fs_root(fs_info, objectid);
1459 	if (root)
1460 		return root;
1461 
1462 	key.objectid = objectid;
1463 	key.type = BTRFS_ROOT_ITEM_KEY;
1464 	key.offset = (u64)-1;
1465 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1466 	btrfs_release_path(path);
1467 
1468 	return root;
1469 }
1470 
1471 static int cleaner_kthread(void *arg)
1472 {
1473 	struct btrfs_fs_info *fs_info = arg;
1474 	int again;
1475 
1476 	while (1) {
1477 		again = 0;
1478 
1479 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1480 
1481 		/* Make the cleaner go to sleep early. */
1482 		if (btrfs_need_cleaner_sleep(fs_info))
1483 			goto sleep;
1484 
1485 		/*
1486 		 * Do not do anything if we might cause open_ctree() to block
1487 		 * before we have finished mounting the filesystem.
1488 		 */
1489 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1490 			goto sleep;
1491 
1492 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1493 			goto sleep;
1494 
1495 		/*
1496 		 * Avoid the problem that we change the status of the fs
1497 		 * during the above check and trylock.
1498 		 */
1499 		if (btrfs_need_cleaner_sleep(fs_info)) {
1500 			mutex_unlock(&fs_info->cleaner_mutex);
1501 			goto sleep;
1502 		}
1503 
1504 		if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1505 			btrfs_sysfs_feature_update(fs_info);
1506 
1507 		btrfs_run_delayed_iputs(fs_info);
1508 
1509 		again = btrfs_clean_one_deleted_snapshot(fs_info);
1510 		mutex_unlock(&fs_info->cleaner_mutex);
1511 
1512 		/*
1513 		 * The defragger has dealt with the R/O remount and umount,
1514 		 * needn't do anything special here.
1515 		 */
1516 		btrfs_run_defrag_inodes(fs_info);
1517 
1518 		/*
1519 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1520 		 * with relocation (btrfs_relocate_chunk) and relocation
1521 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1522 		 * after acquiring fs_info->reclaim_bgs_lock. So we
1523 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1524 		 * unused block groups.
1525 		 */
1526 		btrfs_delete_unused_bgs(fs_info);
1527 
1528 		/*
1529 		 * Reclaim block groups in the reclaim_bgs list after we deleted
1530 		 * all unused block_groups. This possibly gives us some more free
1531 		 * space.
1532 		 */
1533 		btrfs_reclaim_bgs(fs_info);
1534 sleep:
1535 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1536 		if (kthread_should_park())
1537 			kthread_parkme();
1538 		if (kthread_should_stop())
1539 			return 0;
1540 		if (!again) {
1541 			set_current_state(TASK_INTERRUPTIBLE);
1542 			schedule();
1543 			__set_current_state(TASK_RUNNING);
1544 		}
1545 	}
1546 }
1547 
1548 static int transaction_kthread(void *arg)
1549 {
1550 	struct btrfs_root *root = arg;
1551 	struct btrfs_fs_info *fs_info = root->fs_info;
1552 	struct btrfs_trans_handle *trans;
1553 	struct btrfs_transaction *cur;
1554 	u64 transid;
1555 	time64_t delta;
1556 	unsigned long delay;
1557 	bool cannot_commit;
1558 
1559 	do {
1560 		cannot_commit = false;
1561 		delay = secs_to_jiffies(fs_info->commit_interval);
1562 		mutex_lock(&fs_info->transaction_kthread_mutex);
1563 
1564 		spin_lock(&fs_info->trans_lock);
1565 		cur = fs_info->running_transaction;
1566 		if (!cur) {
1567 			spin_unlock(&fs_info->trans_lock);
1568 			goto sleep;
1569 		}
1570 
1571 		delta = ktime_get_seconds() - cur->start_time;
1572 		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1573 		    cur->state < TRANS_STATE_COMMIT_PREP &&
1574 		    delta < fs_info->commit_interval) {
1575 			spin_unlock(&fs_info->trans_lock);
1576 			delay -= secs_to_jiffies(delta - 1);
1577 			delay = min(delay,
1578 				    secs_to_jiffies(fs_info->commit_interval));
1579 			goto sleep;
1580 		}
1581 		transid = cur->transid;
1582 		spin_unlock(&fs_info->trans_lock);
1583 
1584 		/* If the file system is aborted, this will always fail. */
1585 		trans = btrfs_attach_transaction(root);
1586 		if (IS_ERR(trans)) {
1587 			if (PTR_ERR(trans) != -ENOENT)
1588 				cannot_commit = true;
1589 			goto sleep;
1590 		}
1591 		if (transid == trans->transid) {
1592 			btrfs_commit_transaction(trans);
1593 		} else {
1594 			btrfs_end_transaction(trans);
1595 		}
1596 sleep:
1597 		wake_up_process(fs_info->cleaner_kthread);
1598 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1599 
1600 		if (BTRFS_FS_ERROR(fs_info))
1601 			btrfs_cleanup_transaction(fs_info);
1602 		if (!kthread_should_stop() &&
1603 				(!btrfs_transaction_blocked(fs_info) ||
1604 				 cannot_commit))
1605 			schedule_timeout_interruptible(delay);
1606 	} while (!kthread_should_stop());
1607 	return 0;
1608 }
1609 
1610 /*
1611  * This will find the highest generation in the array of root backups.  The
1612  * index of the highest array is returned, or -EINVAL if we can't find
1613  * anything.
1614  *
1615  * We check to make sure the array is valid by comparing the
1616  * generation of the latest  root in the array with the generation
1617  * in the super block.  If they don't match we pitch it.
1618  */
1619 static int find_newest_super_backup(struct btrfs_fs_info *info)
1620 {
1621 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1622 	u64 cur;
1623 	struct btrfs_root_backup *root_backup;
1624 	int i;
1625 
1626 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1627 		root_backup = info->super_copy->super_roots + i;
1628 		cur = btrfs_backup_tree_root_gen(root_backup);
1629 		if (cur == newest_gen)
1630 			return i;
1631 	}
1632 
1633 	return -EINVAL;
1634 }
1635 
1636 /*
1637  * copy all the root pointers into the super backup array.
1638  * this will bump the backup pointer by one when it is
1639  * done
1640  */
1641 static void backup_super_roots(struct btrfs_fs_info *info)
1642 {
1643 	const int next_backup = info->backup_root_index;
1644 	struct btrfs_root_backup *root_backup;
1645 
1646 	root_backup = info->super_for_commit->super_roots + next_backup;
1647 
1648 	/*
1649 	 * make sure all of our padding and empty slots get zero filled
1650 	 * regardless of which ones we use today
1651 	 */
1652 	memset(root_backup, 0, sizeof(*root_backup));
1653 
1654 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1655 
1656 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1657 	btrfs_set_backup_tree_root_gen(root_backup,
1658 			       btrfs_header_generation(info->tree_root->node));
1659 
1660 	btrfs_set_backup_tree_root_level(root_backup,
1661 			       btrfs_header_level(info->tree_root->node));
1662 
1663 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1664 	btrfs_set_backup_chunk_root_gen(root_backup,
1665 			       btrfs_header_generation(info->chunk_root->node));
1666 	btrfs_set_backup_chunk_root_level(root_backup,
1667 			       btrfs_header_level(info->chunk_root->node));
1668 
1669 	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1670 		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1671 		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1672 
1673 		btrfs_set_backup_extent_root(root_backup,
1674 					     extent_root->node->start);
1675 		btrfs_set_backup_extent_root_gen(root_backup,
1676 				btrfs_header_generation(extent_root->node));
1677 		btrfs_set_backup_extent_root_level(root_backup,
1678 					btrfs_header_level(extent_root->node));
1679 
1680 		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1681 		btrfs_set_backup_csum_root_gen(root_backup,
1682 					       btrfs_header_generation(csum_root->node));
1683 		btrfs_set_backup_csum_root_level(root_backup,
1684 						 btrfs_header_level(csum_root->node));
1685 	}
1686 
1687 	/*
1688 	 * we might commit during log recovery, which happens before we set
1689 	 * the fs_root.  Make sure it is valid before we fill it in.
1690 	 */
1691 	if (info->fs_root && info->fs_root->node) {
1692 		btrfs_set_backup_fs_root(root_backup,
1693 					 info->fs_root->node->start);
1694 		btrfs_set_backup_fs_root_gen(root_backup,
1695 			       btrfs_header_generation(info->fs_root->node));
1696 		btrfs_set_backup_fs_root_level(root_backup,
1697 			       btrfs_header_level(info->fs_root->node));
1698 	}
1699 
1700 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1701 	btrfs_set_backup_dev_root_gen(root_backup,
1702 			       btrfs_header_generation(info->dev_root->node));
1703 	btrfs_set_backup_dev_root_level(root_backup,
1704 				       btrfs_header_level(info->dev_root->node));
1705 
1706 	btrfs_set_backup_total_bytes(root_backup,
1707 			     btrfs_super_total_bytes(info->super_copy));
1708 	btrfs_set_backup_bytes_used(root_backup,
1709 			     btrfs_super_bytes_used(info->super_copy));
1710 	btrfs_set_backup_num_devices(root_backup,
1711 			     btrfs_super_num_devices(info->super_copy));
1712 
1713 	/*
1714 	 * if we don't copy this out to the super_copy, it won't get remembered
1715 	 * for the next commit
1716 	 */
1717 	memcpy(&info->super_copy->super_roots,
1718 	       &info->super_for_commit->super_roots,
1719 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1720 }
1721 
1722 /*
1723  * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1724  * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1725  *
1726  * @fs_info:  filesystem whose backup roots need to be read
1727  * @priority: priority of backup root required
1728  *
1729  * Returns backup root index on success and -EINVAL otherwise.
1730  */
1731 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1732 {
1733 	int backup_index = find_newest_super_backup(fs_info);
1734 	struct btrfs_super_block *super = fs_info->super_copy;
1735 	struct btrfs_root_backup *root_backup;
1736 
1737 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1738 		if (priority == 0)
1739 			return backup_index;
1740 
1741 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1742 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1743 	} else {
1744 		return -EINVAL;
1745 	}
1746 
1747 	root_backup = super->super_roots + backup_index;
1748 
1749 	btrfs_set_super_generation(super,
1750 				   btrfs_backup_tree_root_gen(root_backup));
1751 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1752 	btrfs_set_super_root_level(super,
1753 				   btrfs_backup_tree_root_level(root_backup));
1754 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1755 
1756 	/*
1757 	 * Fixme: the total bytes and num_devices need to match or we should
1758 	 * need a fsck
1759 	 */
1760 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1761 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1762 
1763 	return backup_index;
1764 }
1765 
1766 /* helper to cleanup workers */
1767 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1768 {
1769 	btrfs_destroy_workqueue(fs_info->fixup_workers);
1770 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1771 	btrfs_destroy_workqueue(fs_info->workers);
1772 	if (fs_info->endio_workers)
1773 		destroy_workqueue(fs_info->endio_workers);
1774 	if (fs_info->rmw_workers)
1775 		destroy_workqueue(fs_info->rmw_workers);
1776 	if (fs_info->compressed_write_workers)
1777 		destroy_workqueue(fs_info->compressed_write_workers);
1778 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1779 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1780 	btrfs_destroy_workqueue(fs_info->delayed_workers);
1781 	btrfs_destroy_workqueue(fs_info->caching_workers);
1782 	btrfs_destroy_workqueue(fs_info->flush_workers);
1783 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1784 	if (fs_info->discard_ctl.discard_workers)
1785 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1786 	/*
1787 	 * Now that all other work queues are destroyed, we can safely destroy
1788 	 * the queues used for metadata I/O, since tasks from those other work
1789 	 * queues can do metadata I/O operations.
1790 	 */
1791 	if (fs_info->endio_meta_workers)
1792 		destroy_workqueue(fs_info->endio_meta_workers);
1793 }
1794 
1795 static void free_root_extent_buffers(struct btrfs_root *root)
1796 {
1797 	if (root) {
1798 		free_extent_buffer(root->node);
1799 		free_extent_buffer(root->commit_root);
1800 		root->node = NULL;
1801 		root->commit_root = NULL;
1802 	}
1803 }
1804 
1805 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1806 {
1807 	struct btrfs_root *root, *tmp;
1808 
1809 	rbtree_postorder_for_each_entry_safe(root, tmp,
1810 					     &fs_info->global_root_tree,
1811 					     rb_node)
1812 		free_root_extent_buffers(root);
1813 }
1814 
1815 /* helper to cleanup tree roots */
1816 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1817 {
1818 	free_root_extent_buffers(info->tree_root);
1819 
1820 	free_global_root_pointers(info);
1821 	free_root_extent_buffers(info->dev_root);
1822 	free_root_extent_buffers(info->quota_root);
1823 	free_root_extent_buffers(info->uuid_root);
1824 	free_root_extent_buffers(info->fs_root);
1825 	free_root_extent_buffers(info->data_reloc_root);
1826 	free_root_extent_buffers(info->block_group_root);
1827 	free_root_extent_buffers(info->stripe_root);
1828 	if (free_chunk_root)
1829 		free_root_extent_buffers(info->chunk_root);
1830 }
1831 
1832 void btrfs_put_root(struct btrfs_root *root)
1833 {
1834 	if (!root)
1835 		return;
1836 
1837 	if (refcount_dec_and_test(&root->refs)) {
1838 		if (WARN_ON(!xa_empty(&root->inodes)))
1839 			xa_destroy(&root->inodes);
1840 		if (WARN_ON(!xa_empty(&root->delayed_nodes)))
1841 			xa_destroy(&root->delayed_nodes);
1842 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1843 		if (root->anon_dev)
1844 			free_anon_bdev(root->anon_dev);
1845 		free_root_extent_buffers(root);
1846 #ifdef CONFIG_BTRFS_DEBUG
1847 		spin_lock(&root->fs_info->fs_roots_radix_lock);
1848 		list_del_init(&root->leak_list);
1849 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
1850 #endif
1851 		kfree(root);
1852 	}
1853 }
1854 
1855 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1856 {
1857 	int ret;
1858 	struct btrfs_root *gang[8];
1859 	int i;
1860 
1861 	while (!list_empty(&fs_info->dead_roots)) {
1862 		gang[0] = list_first_entry(&fs_info->dead_roots,
1863 					   struct btrfs_root, root_list);
1864 		list_del(&gang[0]->root_list);
1865 
1866 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1867 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1868 		btrfs_put_root(gang[0]);
1869 	}
1870 
1871 	while (1) {
1872 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1873 					     (void **)gang, 0,
1874 					     ARRAY_SIZE(gang));
1875 		if (!ret)
1876 			break;
1877 		for (i = 0; i < ret; i++)
1878 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1879 	}
1880 }
1881 
1882 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1883 {
1884 	mutex_init(&fs_info->scrub_lock);
1885 	atomic_set(&fs_info->scrubs_running, 0);
1886 	atomic_set(&fs_info->scrub_pause_req, 0);
1887 	atomic_set(&fs_info->scrubs_paused, 0);
1888 	atomic_set(&fs_info->scrub_cancel_req, 0);
1889 	init_waitqueue_head(&fs_info->scrub_pause_wait);
1890 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
1891 }
1892 
1893 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1894 {
1895 	spin_lock_init(&fs_info->balance_lock);
1896 	mutex_init(&fs_info->balance_mutex);
1897 	atomic_set(&fs_info->balance_pause_req, 0);
1898 	atomic_set(&fs_info->balance_cancel_req, 0);
1899 	fs_info->balance_ctl = NULL;
1900 	init_waitqueue_head(&fs_info->balance_wait_q);
1901 	atomic_set(&fs_info->reloc_cancel_req, 0);
1902 }
1903 
1904 static int btrfs_init_btree_inode(struct super_block *sb)
1905 {
1906 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1907 	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1908 					      fs_info->tree_root);
1909 	struct inode *inode;
1910 
1911 	inode = new_inode(sb);
1912 	if (!inode)
1913 		return -ENOMEM;
1914 
1915 	btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID);
1916 	set_nlink(inode, 1);
1917 	/*
1918 	 * we set the i_size on the btree inode to the max possible int.
1919 	 * the real end of the address space is determined by all of
1920 	 * the devices in the system
1921 	 */
1922 	inode->i_size = OFFSET_MAX;
1923 	inode->i_mapping->a_ops = &btree_aops;
1924 	mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1925 
1926 	btrfs_extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1927 				  IO_TREE_BTREE_INODE_IO);
1928 	btrfs_extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1929 
1930 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1931 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1932 	__insert_inode_hash(inode, hash);
1933 	fs_info->btree_inode = inode;
1934 
1935 	return 0;
1936 }
1937 
1938 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1939 {
1940 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1941 	init_rwsem(&fs_info->dev_replace.rwsem);
1942 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1943 }
1944 
1945 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1946 {
1947 	spin_lock_init(&fs_info->qgroup_lock);
1948 	mutex_init(&fs_info->qgroup_ioctl_lock);
1949 	fs_info->qgroup_tree = RB_ROOT;
1950 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1951 	fs_info->qgroup_seq = 1;
1952 	fs_info->qgroup_rescan_running = false;
1953 	fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT;
1954 	mutex_init(&fs_info->qgroup_rescan_lock);
1955 }
1956 
1957 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1958 {
1959 	u32 max_active = fs_info->thread_pool_size;
1960 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1961 	unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1962 
1963 	fs_info->workers =
1964 		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1965 
1966 	fs_info->delalloc_workers =
1967 		btrfs_alloc_workqueue(fs_info, "delalloc",
1968 				      flags, max_active, 2);
1969 
1970 	fs_info->flush_workers =
1971 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1972 				      flags, max_active, 0);
1973 
1974 	fs_info->caching_workers =
1975 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1976 
1977 	fs_info->fixup_workers =
1978 		btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1979 
1980 	fs_info->endio_workers =
1981 		alloc_workqueue("btrfs-endio", flags, max_active);
1982 	fs_info->endio_meta_workers =
1983 		alloc_workqueue("btrfs-endio-meta", flags, max_active);
1984 	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
1985 	fs_info->endio_write_workers =
1986 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1987 				      max_active, 2);
1988 	fs_info->compressed_write_workers =
1989 		alloc_workqueue("btrfs-compressed-write", flags, max_active);
1990 	fs_info->endio_freespace_worker =
1991 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
1992 				      max_active, 0);
1993 	fs_info->delayed_workers =
1994 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
1995 				      max_active, 0);
1996 	fs_info->qgroup_rescan_workers =
1997 		btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
1998 					      ordered_flags);
1999 	fs_info->discard_ctl.discard_workers =
2000 		alloc_ordered_workqueue("btrfs-discard", WQ_FREEZABLE);
2001 
2002 	if (!(fs_info->workers &&
2003 	      fs_info->delalloc_workers && fs_info->flush_workers &&
2004 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2005 	      fs_info->compressed_write_workers &&
2006 	      fs_info->endio_write_workers &&
2007 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2008 	      fs_info->caching_workers && fs_info->fixup_workers &&
2009 	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2010 	      fs_info->discard_ctl.discard_workers)) {
2011 		return -ENOMEM;
2012 	}
2013 
2014 	return 0;
2015 }
2016 
2017 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2018 {
2019 	struct crypto_shash *csum_shash;
2020 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2021 
2022 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2023 
2024 	if (IS_ERR(csum_shash)) {
2025 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2026 			  csum_driver);
2027 		return PTR_ERR(csum_shash);
2028 	}
2029 
2030 	fs_info->csum_shash = csum_shash;
2031 
2032 	/*
2033 	 * Check if the checksum implementation is a fast accelerated one.
2034 	 * As-is this is a bit of a hack and should be replaced once the csum
2035 	 * implementations provide that information themselves.
2036 	 */
2037 	switch (csum_type) {
2038 	case BTRFS_CSUM_TYPE_CRC32:
2039 		if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2040 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2041 		break;
2042 	case BTRFS_CSUM_TYPE_XXHASH:
2043 		set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2044 		break;
2045 	default:
2046 		break;
2047 	}
2048 
2049 	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2050 			btrfs_super_csum_name(csum_type),
2051 			crypto_shash_driver_name(csum_shash));
2052 	return 0;
2053 }
2054 
2055 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2056 			    struct btrfs_fs_devices *fs_devices)
2057 {
2058 	int ret;
2059 	struct btrfs_tree_parent_check check = { 0 };
2060 	struct btrfs_root *log_tree_root;
2061 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2062 	u64 bytenr = btrfs_super_log_root(disk_super);
2063 	int level = btrfs_super_log_root_level(disk_super);
2064 
2065 	if (fs_devices->rw_devices == 0) {
2066 		btrfs_warn(fs_info, "log replay required on RO media");
2067 		return -EIO;
2068 	}
2069 
2070 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2071 					 GFP_KERNEL);
2072 	if (!log_tree_root)
2073 		return -ENOMEM;
2074 
2075 	check.level = level;
2076 	check.transid = fs_info->generation + 1;
2077 	check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2078 	log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2079 	if (IS_ERR(log_tree_root->node)) {
2080 		btrfs_warn(fs_info, "failed to read log tree");
2081 		ret = PTR_ERR(log_tree_root->node);
2082 		log_tree_root->node = NULL;
2083 		btrfs_put_root(log_tree_root);
2084 		return ret;
2085 	}
2086 	if (!extent_buffer_uptodate(log_tree_root->node)) {
2087 		btrfs_err(fs_info, "failed to read log tree");
2088 		btrfs_put_root(log_tree_root);
2089 		return -EIO;
2090 	}
2091 
2092 	/* returns with log_tree_root freed on success */
2093 	ret = btrfs_recover_log_trees(log_tree_root);
2094 	if (ret) {
2095 		btrfs_handle_fs_error(fs_info, ret,
2096 				      "Failed to recover log tree");
2097 		btrfs_put_root(log_tree_root);
2098 		return ret;
2099 	}
2100 
2101 	if (sb_rdonly(fs_info->sb)) {
2102 		ret = btrfs_commit_super(fs_info);
2103 		if (ret)
2104 			return ret;
2105 	}
2106 
2107 	return 0;
2108 }
2109 
2110 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2111 				      struct btrfs_path *path, u64 objectid,
2112 				      const char *name)
2113 {
2114 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2115 	struct btrfs_root *root;
2116 	u64 max_global_id = 0;
2117 	int ret;
2118 	struct btrfs_key key = {
2119 		.objectid = objectid,
2120 		.type = BTRFS_ROOT_ITEM_KEY,
2121 		.offset = 0,
2122 	};
2123 	bool found = false;
2124 
2125 	/* If we have IGNOREDATACSUMS skip loading these roots. */
2126 	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2127 	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2128 		set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2129 		return 0;
2130 	}
2131 
2132 	while (1) {
2133 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2134 		if (ret < 0)
2135 			break;
2136 
2137 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2138 			ret = btrfs_next_leaf(tree_root, path);
2139 			if (ret) {
2140 				if (ret > 0)
2141 					ret = 0;
2142 				break;
2143 			}
2144 		}
2145 		ret = 0;
2146 
2147 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2148 		if (key.objectid != objectid)
2149 			break;
2150 		btrfs_release_path(path);
2151 
2152 		/*
2153 		 * Just worry about this for extent tree, it'll be the same for
2154 		 * everybody.
2155 		 */
2156 		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2157 			max_global_id = max(max_global_id, key.offset);
2158 
2159 		found = true;
2160 		root = read_tree_root_path(tree_root, path, &key);
2161 		if (IS_ERR(root)) {
2162 			ret = PTR_ERR(root);
2163 			break;
2164 		}
2165 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2166 		ret = btrfs_global_root_insert(root);
2167 		if (ret) {
2168 			btrfs_put_root(root);
2169 			break;
2170 		}
2171 		key.offset++;
2172 	}
2173 	btrfs_release_path(path);
2174 
2175 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2176 		fs_info->nr_global_roots = max_global_id + 1;
2177 
2178 	if (!found || ret) {
2179 		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2180 			set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2181 
2182 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2183 			ret = ret ? ret : -ENOENT;
2184 		else
2185 			ret = 0;
2186 		btrfs_err(fs_info, "failed to load root %s", name);
2187 	}
2188 	return ret;
2189 }
2190 
2191 static int load_global_roots(struct btrfs_root *tree_root)
2192 {
2193 	BTRFS_PATH_AUTO_FREE(path);
2194 	int ret;
2195 
2196 	path = btrfs_alloc_path();
2197 	if (!path)
2198 		return -ENOMEM;
2199 
2200 	ret = load_global_roots_objectid(tree_root, path,
2201 					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2202 	if (ret)
2203 		return ret;
2204 	ret = load_global_roots_objectid(tree_root, path,
2205 					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2206 	if (ret)
2207 		return ret;
2208 	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2209 		return ret;
2210 	ret = load_global_roots_objectid(tree_root, path,
2211 					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2212 					 "free space");
2213 
2214 	return ret;
2215 }
2216 
2217 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2218 {
2219 	struct btrfs_root *tree_root = fs_info->tree_root;
2220 	struct btrfs_root *root;
2221 	struct btrfs_key location;
2222 	int ret;
2223 
2224 	ASSERT(fs_info->tree_root);
2225 
2226 	ret = load_global_roots(tree_root);
2227 	if (ret)
2228 		return ret;
2229 
2230 	location.type = BTRFS_ROOT_ITEM_KEY;
2231 	location.offset = 0;
2232 
2233 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2234 		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2235 		root = btrfs_read_tree_root(tree_root, &location);
2236 		if (IS_ERR(root)) {
2237 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2238 				ret = PTR_ERR(root);
2239 				goto out;
2240 			}
2241 		} else {
2242 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2243 			fs_info->block_group_root = root;
2244 		}
2245 	}
2246 
2247 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2248 	root = btrfs_read_tree_root(tree_root, &location);
2249 	if (IS_ERR(root)) {
2250 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2251 			ret = PTR_ERR(root);
2252 			goto out;
2253 		}
2254 	} else {
2255 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2256 		fs_info->dev_root = root;
2257 	}
2258 	/* Initialize fs_info for all devices in any case */
2259 	ret = btrfs_init_devices_late(fs_info);
2260 	if (ret)
2261 		goto out;
2262 
2263 	/*
2264 	 * This tree can share blocks with some other fs tree during relocation
2265 	 * and we need a proper setup by btrfs_get_fs_root
2266 	 */
2267 	root = btrfs_get_fs_root(tree_root->fs_info,
2268 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2269 	if (IS_ERR(root)) {
2270 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2271 			ret = PTR_ERR(root);
2272 			goto out;
2273 		}
2274 	} else {
2275 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2276 		fs_info->data_reloc_root = root;
2277 	}
2278 
2279 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2280 	root = btrfs_read_tree_root(tree_root, &location);
2281 	if (!IS_ERR(root)) {
2282 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2283 		fs_info->quota_root = root;
2284 	}
2285 
2286 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2287 	root = btrfs_read_tree_root(tree_root, &location);
2288 	if (IS_ERR(root)) {
2289 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2290 			ret = PTR_ERR(root);
2291 			if (ret != -ENOENT)
2292 				goto out;
2293 		}
2294 	} else {
2295 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2296 		fs_info->uuid_root = root;
2297 	}
2298 
2299 	if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2300 		location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2301 		root = btrfs_read_tree_root(tree_root, &location);
2302 		if (IS_ERR(root)) {
2303 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2304 				ret = PTR_ERR(root);
2305 				goto out;
2306 			}
2307 		} else {
2308 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2309 			fs_info->stripe_root = root;
2310 		}
2311 	}
2312 
2313 	return 0;
2314 out:
2315 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2316 		   location.objectid, ret);
2317 	return ret;
2318 }
2319 
2320 static int validate_sys_chunk_array(const struct btrfs_fs_info *fs_info,
2321 				    const struct btrfs_super_block *sb)
2322 {
2323 	unsigned int cur = 0; /* Offset inside the sys chunk array */
2324 	/*
2325 	 * At sb read time, fs_info is not fully initialized. Thus we have
2326 	 * to use super block sectorsize, which should have been validated.
2327 	 */
2328 	const u32 sectorsize = btrfs_super_sectorsize(sb);
2329 	u32 sys_array_size = btrfs_super_sys_array_size(sb);
2330 
2331 	if (sys_array_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2332 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2333 			  sys_array_size, BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2334 		return -EUCLEAN;
2335 	}
2336 
2337 	while (cur < sys_array_size) {
2338 		struct btrfs_disk_key *disk_key;
2339 		struct btrfs_chunk *chunk;
2340 		struct btrfs_key key;
2341 		u64 type;
2342 		u16 num_stripes;
2343 		u32 len;
2344 		int ret;
2345 
2346 		disk_key = (struct btrfs_disk_key *)(sb->sys_chunk_array + cur);
2347 		len = sizeof(*disk_key);
2348 
2349 		if (cur + len > sys_array_size)
2350 			goto short_read;
2351 		cur += len;
2352 
2353 		btrfs_disk_key_to_cpu(&key, disk_key);
2354 		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
2355 			btrfs_err(fs_info,
2356 			    "unexpected item type %u in sys_array at offset %u",
2357 				  key.type, cur);
2358 			return -EUCLEAN;
2359 		}
2360 		chunk = (struct btrfs_chunk *)(sb->sys_chunk_array + cur);
2361 		num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2362 		if (cur + btrfs_chunk_item_size(num_stripes) > sys_array_size)
2363 			goto short_read;
2364 		type = btrfs_stack_chunk_type(chunk);
2365 		if (!(type & BTRFS_BLOCK_GROUP_SYSTEM)) {
2366 			btrfs_err(fs_info,
2367 			"invalid chunk type %llu in sys_array at offset %u",
2368 				  type, cur);
2369 			return -EUCLEAN;
2370 		}
2371 		ret = btrfs_check_chunk_valid(fs_info, NULL, chunk, key.offset,
2372 					      sectorsize);
2373 		if (ret < 0)
2374 			return ret;
2375 		cur += btrfs_chunk_item_size(num_stripes);
2376 	}
2377 	return 0;
2378 short_read:
2379 	btrfs_err(fs_info,
2380 	"super block sys chunk array short read, cur=%u sys_array_size=%u",
2381 		  cur, sys_array_size);
2382 	return -EUCLEAN;
2383 }
2384 
2385 /*
2386  * Real super block validation
2387  * NOTE: super csum type and incompat features will not be checked here.
2388  *
2389  * @sb:		super block to check
2390  * @mirror_num:	the super block number to check its bytenr:
2391  * 		0	the primary (1st) sb
2392  * 		1, 2	2nd and 3rd backup copy
2393  * 	       -1	skip bytenr check
2394  */
2395 int btrfs_validate_super(const struct btrfs_fs_info *fs_info,
2396 			 const struct btrfs_super_block *sb, int mirror_num)
2397 {
2398 	u64 nodesize = btrfs_super_nodesize(sb);
2399 	u64 sectorsize = btrfs_super_sectorsize(sb);
2400 	int ret = 0;
2401 	const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS);
2402 
2403 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2404 		btrfs_err(fs_info, "no valid FS found");
2405 		ret = -EINVAL;
2406 	}
2407 	if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) {
2408 		if (!ignore_flags) {
2409 			btrfs_err(fs_info,
2410 			"unrecognized or unsupported super flag 0x%llx",
2411 				  btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2412 			ret = -EINVAL;
2413 		} else {
2414 			btrfs_info(fs_info,
2415 			"unrecognized or unsupported super flags: 0x%llx, ignored",
2416 				   btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2417 		}
2418 	}
2419 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2420 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2421 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2422 		ret = -EINVAL;
2423 	}
2424 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2425 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2426 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2427 		ret = -EINVAL;
2428 	}
2429 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2430 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2431 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2432 		ret = -EINVAL;
2433 	}
2434 
2435 	/*
2436 	 * Check sectorsize and nodesize first, other check will need it.
2437 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2438 	 */
2439 	if (!is_power_of_2(sectorsize) || sectorsize < BTRFS_MIN_BLOCKSIZE ||
2440 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2441 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2442 		ret = -EINVAL;
2443 	}
2444 
2445 	/*
2446 	 * We only support at most 3 sectorsizes: 4K, PAGE_SIZE, MIN_BLOCKSIZE.
2447 	 *
2448 	 * For 4K page sized systems with non-debug builds, all 3 matches (4K).
2449 	 * For 4K page sized systems with debug builds, there are two block sizes
2450 	 * supported. (4K and 2K)
2451 	 *
2452 	 * We can support 16K sectorsize with 64K page size without problem,
2453 	 * but such sectorsize/pagesize combination doesn't make much sense.
2454 	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2455 	 * beginning.
2456 	 */
2457 	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K &&
2458 				       sectorsize != PAGE_SIZE &&
2459 				       sectorsize != BTRFS_MIN_BLOCKSIZE)) {
2460 		btrfs_err(fs_info,
2461 			"sectorsize %llu not yet supported for page size %lu",
2462 			sectorsize, PAGE_SIZE);
2463 		ret = -EINVAL;
2464 	}
2465 
2466 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2467 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2468 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2469 		ret = -EINVAL;
2470 	}
2471 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2472 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2473 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2474 		ret = -EINVAL;
2475 	}
2476 
2477 	/* Root alignment check */
2478 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2479 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2480 			   btrfs_super_root(sb));
2481 		ret = -EINVAL;
2482 	}
2483 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2484 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2485 			   btrfs_super_chunk_root(sb));
2486 		ret = -EINVAL;
2487 	}
2488 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2489 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2490 			   btrfs_super_log_root(sb));
2491 		ret = -EINVAL;
2492 	}
2493 
2494 	if (!fs_info->fs_devices->temp_fsid &&
2495 	    memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2496 		btrfs_err(fs_info,
2497 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2498 			  sb->fsid, fs_info->fs_devices->fsid);
2499 		ret = -EINVAL;
2500 	}
2501 
2502 	if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2503 		   BTRFS_FSID_SIZE) != 0) {
2504 		btrfs_err(fs_info,
2505 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2506 			  btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2507 		ret = -EINVAL;
2508 	}
2509 
2510 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2511 		   BTRFS_FSID_SIZE) != 0) {
2512 		btrfs_err(fs_info,
2513 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2514 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2515 		ret = -EINVAL;
2516 	}
2517 
2518 	/*
2519 	 * Artificial requirement for block-group-tree to force newer features
2520 	 * (free-space-tree, no-holes) so the test matrix is smaller.
2521 	 */
2522 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2523 	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2524 	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2525 		btrfs_err(fs_info,
2526 		"block-group-tree feature requires free-space-tree and no-holes");
2527 		ret = -EINVAL;
2528 	}
2529 
2530 	/*
2531 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2532 	 * done later
2533 	 */
2534 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2535 		btrfs_err(fs_info, "bytes_used is too small %llu",
2536 			  btrfs_super_bytes_used(sb));
2537 		ret = -EINVAL;
2538 	}
2539 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2540 		btrfs_err(fs_info, "invalid stripesize %u",
2541 			  btrfs_super_stripesize(sb));
2542 		ret = -EINVAL;
2543 	}
2544 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2545 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2546 			   btrfs_super_num_devices(sb));
2547 	if (btrfs_super_num_devices(sb) == 0) {
2548 		btrfs_err(fs_info, "number of devices is 0");
2549 		ret = -EINVAL;
2550 	}
2551 
2552 	if (mirror_num >= 0 &&
2553 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2554 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2555 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2556 		ret = -EINVAL;
2557 	}
2558 
2559 	if (ret)
2560 		return ret;
2561 
2562 	ret = validate_sys_chunk_array(fs_info, sb);
2563 
2564 	/*
2565 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2566 	 * and one chunk
2567 	 */
2568 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2569 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2570 			  btrfs_super_sys_array_size(sb),
2571 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2572 		ret = -EINVAL;
2573 	}
2574 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2575 			+ sizeof(struct btrfs_chunk)) {
2576 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2577 			  btrfs_super_sys_array_size(sb),
2578 			  sizeof(struct btrfs_disk_key)
2579 			  + sizeof(struct btrfs_chunk));
2580 		ret = -EINVAL;
2581 	}
2582 
2583 	/*
2584 	 * The generation is a global counter, we'll trust it more than the others
2585 	 * but it's still possible that it's the one that's wrong.
2586 	 */
2587 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2588 		btrfs_warn(fs_info,
2589 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2590 			btrfs_super_generation(sb),
2591 			btrfs_super_chunk_root_generation(sb));
2592 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2593 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2594 		btrfs_warn(fs_info,
2595 			"suspicious: generation < cache_generation: %llu < %llu",
2596 			btrfs_super_generation(sb),
2597 			btrfs_super_cache_generation(sb));
2598 
2599 	return ret;
2600 }
2601 
2602 /*
2603  * Validation of super block at mount time.
2604  * Some checks already done early at mount time, like csum type and incompat
2605  * flags will be skipped.
2606  */
2607 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2608 {
2609 	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2610 }
2611 
2612 /*
2613  * Validation of super block at write time.
2614  * Some checks like bytenr check will be skipped as their values will be
2615  * overwritten soon.
2616  * Extra checks like csum type and incompat flags will be done here.
2617  */
2618 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2619 				      struct btrfs_super_block *sb)
2620 {
2621 	int ret;
2622 
2623 	ret = btrfs_validate_super(fs_info, sb, -1);
2624 	if (ret < 0)
2625 		goto out;
2626 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2627 		ret = -EUCLEAN;
2628 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2629 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2630 		goto out;
2631 	}
2632 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2633 		ret = -EUCLEAN;
2634 		btrfs_err(fs_info,
2635 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2636 			  btrfs_super_incompat_flags(sb),
2637 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2638 		goto out;
2639 	}
2640 out:
2641 	if (ret < 0)
2642 		btrfs_err(fs_info,
2643 		"super block corruption detected before writing it to disk");
2644 	return ret;
2645 }
2646 
2647 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2648 {
2649 	struct btrfs_tree_parent_check check = {
2650 		.level = level,
2651 		.transid = gen,
2652 		.owner_root = btrfs_root_id(root)
2653 	};
2654 	int ret = 0;
2655 
2656 	root->node = read_tree_block(root->fs_info, bytenr, &check);
2657 	if (IS_ERR(root->node)) {
2658 		ret = PTR_ERR(root->node);
2659 		root->node = NULL;
2660 		return ret;
2661 	}
2662 	if (!extent_buffer_uptodate(root->node)) {
2663 		free_extent_buffer(root->node);
2664 		root->node = NULL;
2665 		return -EIO;
2666 	}
2667 
2668 	btrfs_set_root_node(&root->root_item, root->node);
2669 	root->commit_root = btrfs_root_node(root);
2670 	btrfs_set_root_refs(&root->root_item, 1);
2671 	return ret;
2672 }
2673 
2674 static int load_important_roots(struct btrfs_fs_info *fs_info)
2675 {
2676 	struct btrfs_super_block *sb = fs_info->super_copy;
2677 	u64 gen, bytenr;
2678 	int level, ret;
2679 
2680 	bytenr = btrfs_super_root(sb);
2681 	gen = btrfs_super_generation(sb);
2682 	level = btrfs_super_root_level(sb);
2683 	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2684 	if (ret) {
2685 		btrfs_warn(fs_info, "couldn't read tree root");
2686 		return ret;
2687 	}
2688 	return 0;
2689 }
2690 
2691 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2692 {
2693 	int backup_index = find_newest_super_backup(fs_info);
2694 	struct btrfs_super_block *sb = fs_info->super_copy;
2695 	struct btrfs_root *tree_root = fs_info->tree_root;
2696 	bool handle_error = false;
2697 	int ret = 0;
2698 	int i;
2699 
2700 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2701 		if (handle_error) {
2702 			if (!IS_ERR(tree_root->node))
2703 				free_extent_buffer(tree_root->node);
2704 			tree_root->node = NULL;
2705 
2706 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2707 				break;
2708 
2709 			free_root_pointers(fs_info, 0);
2710 
2711 			/*
2712 			 * Don't use the log in recovery mode, it won't be
2713 			 * valid
2714 			 */
2715 			btrfs_set_super_log_root(sb, 0);
2716 
2717 			btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2718 			ret = read_backup_root(fs_info, i);
2719 			backup_index = ret;
2720 			if (ret < 0)
2721 				return ret;
2722 		}
2723 
2724 		ret = load_important_roots(fs_info);
2725 		if (ret) {
2726 			handle_error = true;
2727 			continue;
2728 		}
2729 
2730 		/*
2731 		 * No need to hold btrfs_root::objectid_mutex since the fs
2732 		 * hasn't been fully initialised and we are the only user
2733 		 */
2734 		ret = btrfs_init_root_free_objectid(tree_root);
2735 		if (ret < 0) {
2736 			handle_error = true;
2737 			continue;
2738 		}
2739 
2740 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2741 
2742 		ret = btrfs_read_roots(fs_info);
2743 		if (ret < 0) {
2744 			handle_error = true;
2745 			continue;
2746 		}
2747 
2748 		/* All successful */
2749 		fs_info->generation = btrfs_header_generation(tree_root->node);
2750 		btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2751 		fs_info->last_reloc_trans = 0;
2752 
2753 		/* Always begin writing backup roots after the one being used */
2754 		if (backup_index < 0) {
2755 			fs_info->backup_root_index = 0;
2756 		} else {
2757 			fs_info->backup_root_index = backup_index + 1;
2758 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2759 		}
2760 		break;
2761 	}
2762 
2763 	return ret;
2764 }
2765 
2766 /*
2767  * Lockdep gets confused between our buffer_tree which requires IRQ locking because
2768  * we modify marks in the IRQ context, and our delayed inode xarray which doesn't
2769  * have these requirements. Use a class key so lockdep doesn't get them mixed up.
2770  */
2771 static struct lock_class_key buffer_xa_class;
2772 
2773 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2774 {
2775 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2776 
2777 	/* Use the same flags as mapping->i_pages. */
2778 	xa_init_flags(&fs_info->buffer_tree, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
2779 	lockdep_set_class(&fs_info->buffer_tree.xa_lock, &buffer_xa_class);
2780 
2781 	INIT_LIST_HEAD(&fs_info->trans_list);
2782 	INIT_LIST_HEAD(&fs_info->dead_roots);
2783 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2784 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2785 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2786 	spin_lock_init(&fs_info->delalloc_root_lock);
2787 	spin_lock_init(&fs_info->trans_lock);
2788 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2789 	spin_lock_init(&fs_info->delayed_iput_lock);
2790 	spin_lock_init(&fs_info->defrag_inodes_lock);
2791 	spin_lock_init(&fs_info->super_lock);
2792 	spin_lock_init(&fs_info->unused_bgs_lock);
2793 	spin_lock_init(&fs_info->treelog_bg_lock);
2794 	spin_lock_init(&fs_info->zone_active_bgs_lock);
2795 	spin_lock_init(&fs_info->relocation_bg_lock);
2796 	rwlock_init(&fs_info->tree_mod_log_lock);
2797 	rwlock_init(&fs_info->global_root_lock);
2798 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2799 	mutex_init(&fs_info->reclaim_bgs_lock);
2800 	mutex_init(&fs_info->reloc_mutex);
2801 	mutex_init(&fs_info->delalloc_root_mutex);
2802 	mutex_init(&fs_info->zoned_meta_io_lock);
2803 	mutex_init(&fs_info->zoned_data_reloc_io_lock);
2804 	seqlock_init(&fs_info->profiles_lock);
2805 
2806 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2807 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2808 	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2809 	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2810 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2811 				     BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2812 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2813 				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2814 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2815 				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2816 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2817 				     BTRFS_LOCKDEP_TRANS_COMPLETED);
2818 
2819 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2820 	INIT_LIST_HEAD(&fs_info->space_info);
2821 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2822 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2823 	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2824 	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2825 #ifdef CONFIG_BTRFS_DEBUG
2826 	INIT_LIST_HEAD(&fs_info->allocated_roots);
2827 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2828 	spin_lock_init(&fs_info->eb_leak_lock);
2829 #endif
2830 	fs_info->mapping_tree = RB_ROOT_CACHED;
2831 	rwlock_init(&fs_info->mapping_tree_lock);
2832 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2833 			     BTRFS_BLOCK_RSV_GLOBAL);
2834 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2835 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2836 	btrfs_init_block_rsv(&fs_info->treelog_rsv, BTRFS_BLOCK_RSV_TREELOG);
2837 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2838 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2839 			     BTRFS_BLOCK_RSV_DELOPS);
2840 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2841 			     BTRFS_BLOCK_RSV_DELREFS);
2842 
2843 	atomic_set(&fs_info->async_delalloc_pages, 0);
2844 	atomic_set(&fs_info->defrag_running, 0);
2845 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2846 	atomic64_set(&fs_info->tree_mod_seq, 0);
2847 	fs_info->global_root_tree = RB_ROOT;
2848 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2849 	fs_info->metadata_ratio = 0;
2850 	fs_info->defrag_inodes = RB_ROOT;
2851 	atomic64_set(&fs_info->free_chunk_space, 0);
2852 	fs_info->tree_mod_log = RB_ROOT;
2853 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2854 	btrfs_init_ref_verify(fs_info);
2855 
2856 	fs_info->thread_pool_size = min_t(unsigned long,
2857 					  num_online_cpus() + 2, 8);
2858 
2859 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2860 	spin_lock_init(&fs_info->ordered_root_lock);
2861 
2862 	btrfs_init_scrub(fs_info);
2863 	btrfs_init_balance(fs_info);
2864 	btrfs_init_async_reclaim_work(fs_info);
2865 	btrfs_init_extent_map_shrinker_work(fs_info);
2866 
2867 	rwlock_init(&fs_info->block_group_cache_lock);
2868 	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2869 
2870 	btrfs_extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2871 				  IO_TREE_FS_EXCLUDED_EXTENTS);
2872 
2873 	mutex_init(&fs_info->ordered_operations_mutex);
2874 	mutex_init(&fs_info->tree_log_mutex);
2875 	mutex_init(&fs_info->chunk_mutex);
2876 	mutex_init(&fs_info->transaction_kthread_mutex);
2877 	mutex_init(&fs_info->cleaner_mutex);
2878 	mutex_init(&fs_info->ro_block_group_mutex);
2879 	init_rwsem(&fs_info->commit_root_sem);
2880 	init_rwsem(&fs_info->cleanup_work_sem);
2881 	init_rwsem(&fs_info->subvol_sem);
2882 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2883 
2884 	btrfs_init_dev_replace_locks(fs_info);
2885 	btrfs_init_qgroup(fs_info);
2886 	btrfs_discard_init(fs_info);
2887 
2888 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2889 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2890 
2891 	init_waitqueue_head(&fs_info->transaction_throttle);
2892 	init_waitqueue_head(&fs_info->transaction_wait);
2893 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2894 	init_waitqueue_head(&fs_info->async_submit_wait);
2895 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2896 
2897 	/* Usable values until the real ones are cached from the superblock */
2898 	fs_info->nodesize = 4096;
2899 	fs_info->sectorsize = 4096;
2900 	fs_info->sectorsize_bits = ilog2(4096);
2901 	fs_info->stripesize = 4096;
2902 
2903 	/* Default compress algorithm when user does -o compress */
2904 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2905 
2906 	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2907 
2908 	spin_lock_init(&fs_info->swapfile_pins_lock);
2909 	fs_info->swapfile_pins = RB_ROOT;
2910 
2911 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2912 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2913 }
2914 
2915 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2916 {
2917 	int ret;
2918 
2919 	fs_info->sb = sb;
2920 	/* Temporary fixed values for block size until we read the superblock. */
2921 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2922 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2923 
2924 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2925 	if (ret)
2926 		return ret;
2927 
2928 	ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL);
2929 	if (ret)
2930 		return ret;
2931 
2932 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2933 	if (ret)
2934 		return ret;
2935 
2936 	ret = percpu_counter_init(&fs_info->stats_read_blocks, 0, GFP_KERNEL);
2937 	if (ret)
2938 		return ret;
2939 
2940 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2941 					(1 + ilog2(nr_cpu_ids));
2942 
2943 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2944 	if (ret)
2945 		return ret;
2946 
2947 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2948 			GFP_KERNEL);
2949 	if (ret)
2950 		return ret;
2951 
2952 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2953 					GFP_KERNEL);
2954 	if (!fs_info->delayed_root)
2955 		return -ENOMEM;
2956 	btrfs_init_delayed_root(fs_info->delayed_root);
2957 
2958 	if (sb_rdonly(sb))
2959 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2960 	if (btrfs_test_opt(fs_info, IGNOREMETACSUMS))
2961 		set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state);
2962 
2963 	return btrfs_alloc_stripe_hash_table(fs_info);
2964 }
2965 
2966 static int btrfs_uuid_rescan_kthread(void *data)
2967 {
2968 	struct btrfs_fs_info *fs_info = data;
2969 	int ret;
2970 
2971 	/*
2972 	 * 1st step is to iterate through the existing UUID tree and
2973 	 * to delete all entries that contain outdated data.
2974 	 * 2nd step is to add all missing entries to the UUID tree.
2975 	 */
2976 	ret = btrfs_uuid_tree_iterate(fs_info);
2977 	if (ret < 0) {
2978 		if (ret != -EINTR)
2979 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2980 				   ret);
2981 		up(&fs_info->uuid_tree_rescan_sem);
2982 		return ret;
2983 	}
2984 	return btrfs_uuid_scan_kthread(data);
2985 }
2986 
2987 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2988 {
2989 	struct task_struct *task;
2990 
2991 	down(&fs_info->uuid_tree_rescan_sem);
2992 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2993 	if (IS_ERR(task)) {
2994 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2995 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2996 		up(&fs_info->uuid_tree_rescan_sem);
2997 		return PTR_ERR(task);
2998 	}
2999 
3000 	return 0;
3001 }
3002 
3003 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3004 {
3005 	u64 root_objectid = 0;
3006 	struct btrfs_root *gang[8];
3007 	int ret = 0;
3008 
3009 	while (1) {
3010 		unsigned int found;
3011 
3012 		spin_lock(&fs_info->fs_roots_radix_lock);
3013 		found = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3014 					     (void **)gang, root_objectid,
3015 					     ARRAY_SIZE(gang));
3016 		if (!found) {
3017 			spin_unlock(&fs_info->fs_roots_radix_lock);
3018 			break;
3019 		}
3020 		root_objectid = btrfs_root_id(gang[found - 1]) + 1;
3021 
3022 		for (int i = 0; i < found; i++) {
3023 			/* Avoid to grab roots in dead_roots. */
3024 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3025 				gang[i] = NULL;
3026 				continue;
3027 			}
3028 			/* Grab all the search result for later use. */
3029 			gang[i] = btrfs_grab_root(gang[i]);
3030 		}
3031 		spin_unlock(&fs_info->fs_roots_radix_lock);
3032 
3033 		for (int i = 0; i < found; i++) {
3034 			if (!gang[i])
3035 				continue;
3036 			root_objectid = btrfs_root_id(gang[i]);
3037 			/*
3038 			 * Continue to release the remaining roots after the first
3039 			 * error without cleanup and preserve the first error
3040 			 * for the return.
3041 			 */
3042 			if (!ret)
3043 				ret = btrfs_orphan_cleanup(gang[i]);
3044 			btrfs_put_root(gang[i]);
3045 		}
3046 		if (ret)
3047 			break;
3048 
3049 		root_objectid++;
3050 	}
3051 	return ret;
3052 }
3053 
3054 /*
3055  * Mounting logic specific to read-write file systems. Shared by open_ctree
3056  * and btrfs_remount when remounting from read-only to read-write.
3057  */
3058 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3059 {
3060 	int ret;
3061 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3062 	bool rebuild_free_space_tree = false;
3063 
3064 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3065 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3066 		if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
3067 			btrfs_warn(fs_info,
3068 				   "'clear_cache' option is ignored with extent tree v2");
3069 		else
3070 			rebuild_free_space_tree = true;
3071 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3072 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3073 		btrfs_warn(fs_info, "free space tree is invalid");
3074 		rebuild_free_space_tree = true;
3075 	}
3076 
3077 	if (rebuild_free_space_tree) {
3078 		btrfs_info(fs_info, "rebuilding free space tree");
3079 		ret = btrfs_rebuild_free_space_tree(fs_info);
3080 		if (ret) {
3081 			btrfs_warn(fs_info,
3082 				   "failed to rebuild free space tree: %d", ret);
3083 			goto out;
3084 		}
3085 	}
3086 
3087 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3088 	    !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3089 		btrfs_info(fs_info, "disabling free space tree");
3090 		ret = btrfs_delete_free_space_tree(fs_info);
3091 		if (ret) {
3092 			btrfs_warn(fs_info,
3093 				   "failed to disable free space tree: %d", ret);
3094 			goto out;
3095 		}
3096 	}
3097 
3098 	/*
3099 	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3100 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3101 	 * them into the fs_info->fs_roots_radix tree. This must be done before
3102 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3103 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3104 	 * item before the root's tree is deleted - this means that if we unmount
3105 	 * or crash before the deletion completes, on the next mount we will not
3106 	 * delete what remains of the tree because the orphan item does not
3107 	 * exists anymore, which is what tells us we have a pending deletion.
3108 	 */
3109 	ret = btrfs_find_orphan_roots(fs_info);
3110 	if (ret)
3111 		goto out;
3112 
3113 	ret = btrfs_cleanup_fs_roots(fs_info);
3114 	if (ret)
3115 		goto out;
3116 
3117 	down_read(&fs_info->cleanup_work_sem);
3118 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3119 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3120 		up_read(&fs_info->cleanup_work_sem);
3121 		goto out;
3122 	}
3123 	up_read(&fs_info->cleanup_work_sem);
3124 
3125 	mutex_lock(&fs_info->cleaner_mutex);
3126 	ret = btrfs_recover_relocation(fs_info);
3127 	mutex_unlock(&fs_info->cleaner_mutex);
3128 	if (ret < 0) {
3129 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3130 		goto out;
3131 	}
3132 
3133 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3134 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3135 		btrfs_info(fs_info, "creating free space tree");
3136 		ret = btrfs_create_free_space_tree(fs_info);
3137 		if (ret) {
3138 			btrfs_warn(fs_info,
3139 				"failed to create free space tree: %d", ret);
3140 			goto out;
3141 		}
3142 	}
3143 
3144 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3145 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3146 		if (ret)
3147 			goto out;
3148 	}
3149 
3150 	ret = btrfs_resume_balance_async(fs_info);
3151 	if (ret)
3152 		goto out;
3153 
3154 	ret = btrfs_resume_dev_replace_async(fs_info);
3155 	if (ret) {
3156 		btrfs_warn(fs_info, "failed to resume dev_replace");
3157 		goto out;
3158 	}
3159 
3160 	btrfs_qgroup_rescan_resume(fs_info);
3161 
3162 	if (!fs_info->uuid_root) {
3163 		btrfs_info(fs_info, "creating UUID tree");
3164 		ret = btrfs_create_uuid_tree(fs_info);
3165 		if (ret) {
3166 			btrfs_warn(fs_info,
3167 				   "failed to create the UUID tree %d", ret);
3168 			goto out;
3169 		}
3170 	}
3171 
3172 out:
3173 	return ret;
3174 }
3175 
3176 /*
3177  * Do various sanity and dependency checks of different features.
3178  *
3179  * @is_rw_mount:	If the mount is read-write.
3180  *
3181  * This is the place for less strict checks (like for subpage or artificial
3182  * feature dependencies).
3183  *
3184  * For strict checks or possible corruption detection, see
3185  * btrfs_validate_super().
3186  *
3187  * This should be called after btrfs_parse_options(), as some mount options
3188  * (space cache related) can modify on-disk format like free space tree and
3189  * screw up certain feature dependencies.
3190  */
3191 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3192 {
3193 	struct btrfs_super_block *disk_super = fs_info->super_copy;
3194 	u64 incompat = btrfs_super_incompat_flags(disk_super);
3195 	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3196 	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3197 
3198 	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3199 		btrfs_err(fs_info,
3200 		"cannot mount because of unknown incompat features (0x%llx)",
3201 		    incompat);
3202 		return -EINVAL;
3203 	}
3204 
3205 	/* Runtime limitation for mixed block groups. */
3206 	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3207 	    (fs_info->sectorsize != fs_info->nodesize)) {
3208 		btrfs_err(fs_info,
3209 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3210 			fs_info->nodesize, fs_info->sectorsize);
3211 		return -EINVAL;
3212 	}
3213 
3214 	/* Mixed backref is an always-enabled feature. */
3215 	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3216 
3217 	/* Set compression related flags just in case. */
3218 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3219 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3220 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3221 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3222 
3223 	/*
3224 	 * An ancient flag, which should really be marked deprecated.
3225 	 * Such runtime limitation doesn't really need a incompat flag.
3226 	 */
3227 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3228 		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3229 
3230 	if (compat_ro_unsupp && is_rw_mount) {
3231 		btrfs_err(fs_info,
3232 	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3233 		       compat_ro);
3234 		return -EINVAL;
3235 	}
3236 
3237 	/*
3238 	 * We have unsupported RO compat features, although RO mounted, we
3239 	 * should not cause any metadata writes, including log replay.
3240 	 * Or we could screw up whatever the new feature requires.
3241 	 */
3242 	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3243 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3244 		btrfs_err(fs_info,
3245 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3246 			  compat_ro);
3247 		return -EINVAL;
3248 	}
3249 
3250 	/*
3251 	 * Artificial limitations for block group tree, to force
3252 	 * block-group-tree to rely on no-holes and free-space-tree.
3253 	 */
3254 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3255 	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3256 	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3257 		btrfs_err(fs_info,
3258 "block-group-tree feature requires no-holes and free-space-tree features");
3259 		return -EINVAL;
3260 	}
3261 
3262 	/*
3263 	 * Subpage runtime limitation on v1 cache.
3264 	 *
3265 	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3266 	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3267 	 * going to be deprecated anyway.
3268 	 */
3269 	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3270 		btrfs_warn(fs_info,
3271 	"v1 space cache is not supported for page size %lu with sectorsize %u",
3272 			   PAGE_SIZE, fs_info->sectorsize);
3273 		return -EINVAL;
3274 	}
3275 
3276 	/* This can be called by remount, we need to protect the super block. */
3277 	spin_lock(&fs_info->super_lock);
3278 	btrfs_set_super_incompat_flags(disk_super, incompat);
3279 	spin_unlock(&fs_info->super_lock);
3280 
3281 	return 0;
3282 }
3283 
3284 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices)
3285 {
3286 	u32 sectorsize;
3287 	u32 nodesize;
3288 	u32 stripesize;
3289 	u64 generation;
3290 	u16 csum_type;
3291 	struct btrfs_super_block *disk_super;
3292 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3293 	struct btrfs_root *tree_root;
3294 	struct btrfs_root *chunk_root;
3295 	int ret;
3296 	int level;
3297 
3298 	ret = init_mount_fs_info(fs_info, sb);
3299 	if (ret)
3300 		goto fail;
3301 
3302 	/* These need to be init'ed before we start creating inodes and such. */
3303 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3304 				     GFP_KERNEL);
3305 	fs_info->tree_root = tree_root;
3306 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3307 				      GFP_KERNEL);
3308 	fs_info->chunk_root = chunk_root;
3309 	if (!tree_root || !chunk_root) {
3310 		ret = -ENOMEM;
3311 		goto fail;
3312 	}
3313 
3314 	ret = btrfs_init_btree_inode(sb);
3315 	if (ret)
3316 		goto fail;
3317 
3318 	invalidate_bdev(fs_devices->latest_dev->bdev);
3319 
3320 	/*
3321 	 * Read super block and check the signature bytes only
3322 	 */
3323 	disk_super = btrfs_read_disk_super(fs_devices->latest_dev->bdev, 0, false);
3324 	if (IS_ERR(disk_super)) {
3325 		ret = PTR_ERR(disk_super);
3326 		goto fail_alloc;
3327 	}
3328 
3329 	btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3330 	/*
3331 	 * Verify the type first, if that or the checksum value are
3332 	 * corrupted, we'll find out
3333 	 */
3334 	csum_type = btrfs_super_csum_type(disk_super);
3335 	if (!btrfs_supported_super_csum(csum_type)) {
3336 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3337 			  csum_type);
3338 		ret = -EINVAL;
3339 		btrfs_release_disk_super(disk_super);
3340 		goto fail_alloc;
3341 	}
3342 
3343 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3344 
3345 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3346 	if (ret) {
3347 		btrfs_release_disk_super(disk_super);
3348 		goto fail_alloc;
3349 	}
3350 
3351 	/*
3352 	 * We want to check superblock checksum, the type is stored inside.
3353 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3354 	 */
3355 	if (btrfs_check_super_csum(fs_info, disk_super)) {
3356 		btrfs_err(fs_info, "superblock checksum mismatch");
3357 		ret = -EINVAL;
3358 		btrfs_release_disk_super(disk_super);
3359 		goto fail_alloc;
3360 	}
3361 
3362 	/*
3363 	 * super_copy is zeroed at allocation time and we never touch the
3364 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3365 	 * the whole block of INFO_SIZE
3366 	 */
3367 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3368 	btrfs_release_disk_super(disk_super);
3369 
3370 	disk_super = fs_info->super_copy;
3371 
3372 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3373 	       sizeof(*fs_info->super_for_commit));
3374 
3375 	ret = btrfs_validate_mount_super(fs_info);
3376 	if (ret) {
3377 		btrfs_err(fs_info, "superblock contains fatal errors");
3378 		ret = -EINVAL;
3379 		goto fail_alloc;
3380 	}
3381 
3382 	if (!btrfs_super_root(disk_super)) {
3383 		btrfs_err(fs_info, "invalid superblock tree root bytenr");
3384 		ret = -EINVAL;
3385 		goto fail_alloc;
3386 	}
3387 
3388 	/* check FS state, whether FS is broken. */
3389 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3390 		WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3391 
3392 	/* Set up fs_info before parsing mount options */
3393 	nodesize = btrfs_super_nodesize(disk_super);
3394 	sectorsize = btrfs_super_sectorsize(disk_super);
3395 	stripesize = sectorsize;
3396 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3397 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3398 
3399 	fs_info->nodesize = nodesize;
3400 	fs_info->nodesize_bits = ilog2(nodesize);
3401 	fs_info->sectorsize = sectorsize;
3402 	fs_info->sectorsize_bits = ilog2(sectorsize);
3403 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3404 	fs_info->stripesize = stripesize;
3405 	fs_info->fs_devices->fs_info = fs_info;
3406 
3407 	/*
3408 	 * Handle the space caching options appropriately now that we have the
3409 	 * super block loaded and validated.
3410 	 */
3411 	btrfs_set_free_space_cache_settings(fs_info);
3412 
3413 	if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3414 		ret = -EINVAL;
3415 		goto fail_alloc;
3416 	}
3417 
3418 	ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3419 	if (ret < 0)
3420 		goto fail_alloc;
3421 
3422 	/*
3423 	 * At this point our mount options are validated, if we set ->max_inline
3424 	 * to something non-standard make sure we truncate it to sectorsize.
3425 	 */
3426 	fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3427 
3428 	ret = btrfs_init_workqueues(fs_info);
3429 	if (ret)
3430 		goto fail_sb_buffer;
3431 
3432 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3433 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3434 
3435 	/* Update the values for the current filesystem. */
3436 	sb->s_blocksize = sectorsize;
3437 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3438 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3439 
3440 	mutex_lock(&fs_info->chunk_mutex);
3441 	ret = btrfs_read_sys_array(fs_info);
3442 	mutex_unlock(&fs_info->chunk_mutex);
3443 	if (ret) {
3444 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3445 		goto fail_sb_buffer;
3446 	}
3447 
3448 	generation = btrfs_super_chunk_root_generation(disk_super);
3449 	level = btrfs_super_chunk_root_level(disk_super);
3450 	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3451 			      generation, level);
3452 	if (ret) {
3453 		btrfs_err(fs_info, "failed to read chunk root");
3454 		goto fail_tree_roots;
3455 	}
3456 
3457 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3458 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3459 			   BTRFS_UUID_SIZE);
3460 
3461 	ret = btrfs_read_chunk_tree(fs_info);
3462 	if (ret) {
3463 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3464 		goto fail_tree_roots;
3465 	}
3466 
3467 	/*
3468 	 * At this point we know all the devices that make this filesystem,
3469 	 * including the seed devices but we don't know yet if the replace
3470 	 * target is required. So free devices that are not part of this
3471 	 * filesystem but skip the replace target device which is checked
3472 	 * below in btrfs_init_dev_replace().
3473 	 */
3474 	btrfs_free_extra_devids(fs_devices);
3475 	if (!fs_devices->latest_dev->bdev) {
3476 		btrfs_err(fs_info, "failed to read devices");
3477 		ret = -EIO;
3478 		goto fail_tree_roots;
3479 	}
3480 
3481 	ret = init_tree_roots(fs_info);
3482 	if (ret)
3483 		goto fail_tree_roots;
3484 
3485 	/*
3486 	 * Get zone type information of zoned block devices. This will also
3487 	 * handle emulation of a zoned filesystem if a regular device has the
3488 	 * zoned incompat feature flag set.
3489 	 */
3490 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3491 	if (ret) {
3492 		btrfs_err(fs_info,
3493 			  "zoned: failed to read device zone info: %d", ret);
3494 		goto fail_block_groups;
3495 	}
3496 
3497 	/*
3498 	 * If we have a uuid root and we're not being told to rescan we need to
3499 	 * check the generation here so we can set the
3500 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3501 	 * transaction during a balance or the log replay without updating the
3502 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3503 	 * even though it was perfectly fine.
3504 	 */
3505 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3506 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3507 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3508 
3509 	ret = btrfs_verify_dev_extents(fs_info);
3510 	if (ret) {
3511 		btrfs_err(fs_info,
3512 			  "failed to verify dev extents against chunks: %d",
3513 			  ret);
3514 		goto fail_block_groups;
3515 	}
3516 	ret = btrfs_recover_balance(fs_info);
3517 	if (ret) {
3518 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3519 		goto fail_block_groups;
3520 	}
3521 
3522 	ret = btrfs_init_dev_stats(fs_info);
3523 	if (ret) {
3524 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3525 		goto fail_block_groups;
3526 	}
3527 
3528 	ret = btrfs_init_dev_replace(fs_info);
3529 	if (ret) {
3530 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3531 		goto fail_block_groups;
3532 	}
3533 
3534 	ret = btrfs_check_zoned_mode(fs_info);
3535 	if (ret) {
3536 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3537 			  ret);
3538 		goto fail_block_groups;
3539 	}
3540 
3541 	ret = btrfs_sysfs_add_fsid(fs_devices);
3542 	if (ret) {
3543 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3544 				ret);
3545 		goto fail_block_groups;
3546 	}
3547 
3548 	ret = btrfs_sysfs_add_mounted(fs_info);
3549 	if (ret) {
3550 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3551 		goto fail_fsdev_sysfs;
3552 	}
3553 
3554 	ret = btrfs_init_space_info(fs_info);
3555 	if (ret) {
3556 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3557 		goto fail_sysfs;
3558 	}
3559 
3560 	ret = btrfs_read_block_groups(fs_info);
3561 	if (ret) {
3562 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3563 		goto fail_sysfs;
3564 	}
3565 
3566 	btrfs_zoned_reserve_data_reloc_bg(fs_info);
3567 	btrfs_free_zone_cache(fs_info);
3568 
3569 	btrfs_check_active_zone_reservation(fs_info);
3570 
3571 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3572 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3573 		btrfs_warn(fs_info,
3574 		"writable mount is not allowed due to too many missing devices");
3575 		ret = -EINVAL;
3576 		goto fail_sysfs;
3577 	}
3578 
3579 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3580 					       "btrfs-cleaner");
3581 	if (IS_ERR(fs_info->cleaner_kthread)) {
3582 		ret = PTR_ERR(fs_info->cleaner_kthread);
3583 		goto fail_sysfs;
3584 	}
3585 
3586 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3587 						   tree_root,
3588 						   "btrfs-transaction");
3589 	if (IS_ERR(fs_info->transaction_kthread)) {
3590 		ret = PTR_ERR(fs_info->transaction_kthread);
3591 		goto fail_cleaner;
3592 	}
3593 
3594 	ret = btrfs_read_qgroup_config(fs_info);
3595 	if (ret)
3596 		goto fail_trans_kthread;
3597 
3598 	if (btrfs_build_ref_tree(fs_info))
3599 		btrfs_err(fs_info, "couldn't build ref tree");
3600 
3601 	/* do not make disk changes in broken FS or nologreplay is given */
3602 	if (btrfs_super_log_root(disk_super) != 0 &&
3603 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3604 		btrfs_info(fs_info, "start tree-log replay");
3605 		ret = btrfs_replay_log(fs_info, fs_devices);
3606 		if (ret)
3607 			goto fail_qgroup;
3608 	}
3609 
3610 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3611 	if (IS_ERR(fs_info->fs_root)) {
3612 		ret = PTR_ERR(fs_info->fs_root);
3613 		btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3614 		fs_info->fs_root = NULL;
3615 		goto fail_qgroup;
3616 	}
3617 
3618 	if (sb_rdonly(sb))
3619 		return 0;
3620 
3621 	ret = btrfs_start_pre_rw_mount(fs_info);
3622 	if (ret) {
3623 		close_ctree(fs_info);
3624 		return ret;
3625 	}
3626 	btrfs_discard_resume(fs_info);
3627 
3628 	if (fs_info->uuid_root &&
3629 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3630 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3631 		btrfs_info(fs_info, "checking UUID tree");
3632 		ret = btrfs_check_uuid_tree(fs_info);
3633 		if (ret) {
3634 			btrfs_warn(fs_info,
3635 				"failed to check the UUID tree: %d", ret);
3636 			close_ctree(fs_info);
3637 			return ret;
3638 		}
3639 	}
3640 
3641 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3642 
3643 	/* Kick the cleaner thread so it'll start deleting snapshots. */
3644 	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3645 		wake_up_process(fs_info->cleaner_kthread);
3646 
3647 	return 0;
3648 
3649 fail_qgroup:
3650 	btrfs_free_qgroup_config(fs_info);
3651 fail_trans_kthread:
3652 	kthread_stop(fs_info->transaction_kthread);
3653 	btrfs_cleanup_transaction(fs_info);
3654 	btrfs_free_fs_roots(fs_info);
3655 fail_cleaner:
3656 	kthread_stop(fs_info->cleaner_kthread);
3657 
3658 	/*
3659 	 * make sure we're done with the btree inode before we stop our
3660 	 * kthreads
3661 	 */
3662 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3663 
3664 fail_sysfs:
3665 	btrfs_sysfs_remove_mounted(fs_info);
3666 
3667 fail_fsdev_sysfs:
3668 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3669 
3670 fail_block_groups:
3671 	btrfs_put_block_group_cache(fs_info);
3672 
3673 fail_tree_roots:
3674 	if (fs_info->data_reloc_root)
3675 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3676 	free_root_pointers(fs_info, true);
3677 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3678 
3679 fail_sb_buffer:
3680 	btrfs_stop_all_workers(fs_info);
3681 	btrfs_free_block_groups(fs_info);
3682 fail_alloc:
3683 	btrfs_mapping_tree_free(fs_info);
3684 
3685 	iput(fs_info->btree_inode);
3686 fail:
3687 	ASSERT(ret < 0);
3688 	return ret;
3689 }
3690 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3691 
3692 static void btrfs_end_super_write(struct bio *bio)
3693 {
3694 	struct btrfs_device *device = bio->bi_private;
3695 	struct folio_iter fi;
3696 
3697 	bio_for_each_folio_all(fi, bio) {
3698 		if (bio->bi_status) {
3699 			btrfs_warn_rl(device->fs_info,
3700 				"lost super block write due to IO error on %s (%d)",
3701 				btrfs_dev_name(device),
3702 				blk_status_to_errno(bio->bi_status));
3703 			btrfs_dev_stat_inc_and_print(device,
3704 						     BTRFS_DEV_STAT_WRITE_ERRS);
3705 			/* Ensure failure if the primary sb fails. */
3706 			if (bio->bi_opf & REQ_FUA)
3707 				atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR,
3708 					   &device->sb_write_errors);
3709 			else
3710 				atomic_inc(&device->sb_write_errors);
3711 		}
3712 		folio_unlock(fi.folio);
3713 		folio_put(fi.folio);
3714 	}
3715 
3716 	bio_put(bio);
3717 }
3718 
3719 /*
3720  * Write superblock @sb to the @device. Do not wait for completion, all the
3721  * folios we use for writing are locked.
3722  *
3723  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3724  * the expected device size at commit time. Note that max_mirrors must be
3725  * same for write and wait phases.
3726  *
3727  * Return number of errors when folio is not found or submission fails.
3728  */
3729 static int write_dev_supers(struct btrfs_device *device,
3730 			    struct btrfs_super_block *sb, int max_mirrors)
3731 {
3732 	struct btrfs_fs_info *fs_info = device->fs_info;
3733 	struct address_space *mapping = device->bdev->bd_mapping;
3734 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3735 	int i;
3736 	int ret;
3737 	u64 bytenr, bytenr_orig;
3738 
3739 	atomic_set(&device->sb_write_errors, 0);
3740 
3741 	if (max_mirrors == 0)
3742 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3743 
3744 	shash->tfm = fs_info->csum_shash;
3745 
3746 	for (i = 0; i < max_mirrors; i++) {
3747 		struct folio *folio;
3748 		struct bio *bio;
3749 		struct btrfs_super_block *disk_super;
3750 		size_t offset;
3751 
3752 		bytenr_orig = btrfs_sb_offset(i);
3753 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3754 		if (ret == -ENOENT) {
3755 			continue;
3756 		} else if (ret < 0) {
3757 			btrfs_err(device->fs_info,
3758 			  "couldn't get super block location for mirror %d error %d",
3759 			  i, ret);
3760 			atomic_inc(&device->sb_write_errors);
3761 			continue;
3762 		}
3763 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3764 		    device->commit_total_bytes)
3765 			break;
3766 
3767 		btrfs_set_super_bytenr(sb, bytenr_orig);
3768 
3769 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3770 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3771 				    sb->csum);
3772 
3773 		folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT,
3774 					    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3775 					    GFP_NOFS);
3776 		if (IS_ERR(folio)) {
3777 			btrfs_err(device->fs_info,
3778 			  "couldn't get super block page for bytenr %llu error %ld",
3779 			  bytenr, PTR_ERR(folio));
3780 			atomic_inc(&device->sb_write_errors);
3781 			continue;
3782 		}
3783 
3784 		offset = offset_in_folio(folio, bytenr);
3785 		disk_super = folio_address(folio) + offset;
3786 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3787 
3788 		/*
3789 		 * Directly use bios here instead of relying on the page cache
3790 		 * to do I/O, so we don't lose the ability to do integrity
3791 		 * checking.
3792 		 */
3793 		bio = bio_alloc(device->bdev, 1,
3794 				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3795 				GFP_NOFS);
3796 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3797 		bio->bi_private = device;
3798 		bio->bi_end_io = btrfs_end_super_write;
3799 		bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset);
3800 
3801 		/*
3802 		 * We FUA only the first super block.  The others we allow to
3803 		 * go down lazy and there's a short window where the on-disk
3804 		 * copies might still contain the older version.
3805 		 */
3806 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3807 			bio->bi_opf |= REQ_FUA;
3808 		submit_bio(bio);
3809 
3810 		if (btrfs_advance_sb_log(device, i))
3811 			atomic_inc(&device->sb_write_errors);
3812 	}
3813 	return atomic_read(&device->sb_write_errors) < i ? 0 : -1;
3814 }
3815 
3816 /*
3817  * Wait for write completion of superblocks done by write_dev_supers,
3818  * @max_mirrors same for write and wait phases.
3819  *
3820  * Return -1 if primary super block write failed or when there were no super block
3821  * copies written. Otherwise 0.
3822  */
3823 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3824 {
3825 	int i;
3826 	int errors = 0;
3827 	bool primary_failed = false;
3828 	int ret;
3829 	u64 bytenr;
3830 
3831 	if (max_mirrors == 0)
3832 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3833 
3834 	for (i = 0; i < max_mirrors; i++) {
3835 		struct folio *folio;
3836 
3837 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3838 		if (ret == -ENOENT) {
3839 			break;
3840 		} else if (ret < 0) {
3841 			errors++;
3842 			if (i == 0)
3843 				primary_failed = true;
3844 			continue;
3845 		}
3846 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3847 		    device->commit_total_bytes)
3848 			break;
3849 
3850 		folio = filemap_get_folio(device->bdev->bd_mapping,
3851 					  bytenr >> PAGE_SHIFT);
3852 		/* If the folio has been removed, then we know it completed. */
3853 		if (IS_ERR(folio))
3854 			continue;
3855 
3856 		/* Folio will be unlocked once the write completes. */
3857 		folio_wait_locked(folio);
3858 		folio_put(folio);
3859 	}
3860 
3861 	errors += atomic_read(&device->sb_write_errors);
3862 	if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR)
3863 		primary_failed = true;
3864 	if (primary_failed) {
3865 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3866 			  device->devid);
3867 		return -1;
3868 	}
3869 
3870 	return errors < i ? 0 : -1;
3871 }
3872 
3873 /*
3874  * endio for the write_dev_flush, this will wake anyone waiting
3875  * for the barrier when it is done
3876  */
3877 static void btrfs_end_empty_barrier(struct bio *bio)
3878 {
3879 	bio_uninit(bio);
3880 	complete(bio->bi_private);
3881 }
3882 
3883 /*
3884  * Submit a flush request to the device if it supports it. Error handling is
3885  * done in the waiting counterpart.
3886  */
3887 static void write_dev_flush(struct btrfs_device *device)
3888 {
3889 	struct bio *bio = &device->flush_bio;
3890 
3891 	device->last_flush_error = BLK_STS_OK;
3892 
3893 	bio_init(bio, device->bdev, NULL, 0,
3894 		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3895 	bio->bi_end_io = btrfs_end_empty_barrier;
3896 	init_completion(&device->flush_wait);
3897 	bio->bi_private = &device->flush_wait;
3898 	submit_bio(bio);
3899 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3900 }
3901 
3902 /*
3903  * If the flush bio has been submitted by write_dev_flush, wait for it.
3904  * Return true for any error, and false otherwise.
3905  */
3906 static bool wait_dev_flush(struct btrfs_device *device)
3907 {
3908 	struct bio *bio = &device->flush_bio;
3909 
3910 	if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3911 		return false;
3912 
3913 	wait_for_completion_io(&device->flush_wait);
3914 
3915 	if (bio->bi_status) {
3916 		device->last_flush_error = bio->bi_status;
3917 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3918 		return true;
3919 	}
3920 
3921 	return false;
3922 }
3923 
3924 /*
3925  * send an empty flush down to each device in parallel,
3926  * then wait for them
3927  */
3928 static int barrier_all_devices(struct btrfs_fs_info *info)
3929 {
3930 	struct list_head *head;
3931 	struct btrfs_device *dev;
3932 	int errors_wait = 0;
3933 
3934 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3935 	/* send down all the barriers */
3936 	head = &info->fs_devices->devices;
3937 	list_for_each_entry(dev, head, dev_list) {
3938 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3939 			continue;
3940 		if (!dev->bdev)
3941 			continue;
3942 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3943 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3944 			continue;
3945 
3946 		write_dev_flush(dev);
3947 	}
3948 
3949 	/* wait for all the barriers */
3950 	list_for_each_entry(dev, head, dev_list) {
3951 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3952 			continue;
3953 		if (!dev->bdev) {
3954 			errors_wait++;
3955 			continue;
3956 		}
3957 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3958 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3959 			continue;
3960 
3961 		if (wait_dev_flush(dev))
3962 			errors_wait++;
3963 	}
3964 
3965 	/*
3966 	 * Checks last_flush_error of disks in order to determine the device
3967 	 * state.
3968 	 */
3969 	if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3970 		return -EIO;
3971 
3972 	return 0;
3973 }
3974 
3975 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3976 {
3977 	int raid_type;
3978 	int min_tolerated = INT_MAX;
3979 
3980 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3981 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3982 		min_tolerated = min_t(int, min_tolerated,
3983 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3984 				    tolerated_failures);
3985 
3986 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3987 		if (raid_type == BTRFS_RAID_SINGLE)
3988 			continue;
3989 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3990 			continue;
3991 		min_tolerated = min_t(int, min_tolerated,
3992 				    btrfs_raid_array[raid_type].
3993 				    tolerated_failures);
3994 	}
3995 
3996 	if (min_tolerated == INT_MAX) {
3997 		btrfs_warn(NULL, "unknown raid flag: %llu", flags);
3998 		min_tolerated = 0;
3999 	}
4000 
4001 	return min_tolerated;
4002 }
4003 
4004 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4005 {
4006 	struct list_head *head;
4007 	struct btrfs_device *dev;
4008 	struct btrfs_super_block *sb;
4009 	struct btrfs_dev_item *dev_item;
4010 	int ret;
4011 	int do_barriers;
4012 	int max_errors;
4013 	int total_errors = 0;
4014 	u64 flags;
4015 
4016 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4017 
4018 	/*
4019 	 * max_mirrors == 0 indicates we're from commit_transaction,
4020 	 * not from fsync where the tree roots in fs_info have not
4021 	 * been consistent on disk.
4022 	 */
4023 	if (max_mirrors == 0)
4024 		backup_super_roots(fs_info);
4025 
4026 	sb = fs_info->super_for_commit;
4027 	dev_item = &sb->dev_item;
4028 
4029 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4030 	head = &fs_info->fs_devices->devices;
4031 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4032 
4033 	if (do_barriers) {
4034 		ret = barrier_all_devices(fs_info);
4035 		if (ret) {
4036 			mutex_unlock(
4037 				&fs_info->fs_devices->device_list_mutex);
4038 			btrfs_handle_fs_error(fs_info, ret,
4039 					      "errors while submitting device barriers.");
4040 			return ret;
4041 		}
4042 	}
4043 
4044 	list_for_each_entry(dev, head, dev_list) {
4045 		if (!dev->bdev) {
4046 			total_errors++;
4047 			continue;
4048 		}
4049 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4050 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4051 			continue;
4052 
4053 		btrfs_set_stack_device_generation(dev_item, 0);
4054 		btrfs_set_stack_device_type(dev_item, dev->type);
4055 		btrfs_set_stack_device_id(dev_item, dev->devid);
4056 		btrfs_set_stack_device_total_bytes(dev_item,
4057 						   dev->commit_total_bytes);
4058 		btrfs_set_stack_device_bytes_used(dev_item,
4059 						  dev->commit_bytes_used);
4060 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4061 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4062 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4063 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4064 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4065 		       BTRFS_FSID_SIZE);
4066 
4067 		flags = btrfs_super_flags(sb);
4068 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4069 
4070 		ret = btrfs_validate_write_super(fs_info, sb);
4071 		if (ret < 0) {
4072 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4073 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4074 				"unexpected superblock corruption detected");
4075 			return -EUCLEAN;
4076 		}
4077 
4078 		ret = write_dev_supers(dev, sb, max_mirrors);
4079 		if (ret)
4080 			total_errors++;
4081 	}
4082 	if (total_errors > max_errors) {
4083 		btrfs_err(fs_info, "%d errors while writing supers",
4084 			  total_errors);
4085 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4086 
4087 		/* FUA is masked off if unsupported and can't be the reason */
4088 		btrfs_handle_fs_error(fs_info, -EIO,
4089 				      "%d errors while writing supers",
4090 				      total_errors);
4091 		return -EIO;
4092 	}
4093 
4094 	total_errors = 0;
4095 	list_for_each_entry(dev, head, dev_list) {
4096 		if (!dev->bdev)
4097 			continue;
4098 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4099 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4100 			continue;
4101 
4102 		ret = wait_dev_supers(dev, max_mirrors);
4103 		if (ret)
4104 			total_errors++;
4105 	}
4106 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4107 	if (total_errors > max_errors) {
4108 		btrfs_handle_fs_error(fs_info, -EIO,
4109 				      "%d errors while writing supers",
4110 				      total_errors);
4111 		return -EIO;
4112 	}
4113 	return 0;
4114 }
4115 
4116 /* Drop a fs root from the radix tree and free it. */
4117 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4118 				  struct btrfs_root *root)
4119 {
4120 	bool drop_ref = false;
4121 
4122 	spin_lock(&fs_info->fs_roots_radix_lock);
4123 	radix_tree_delete(&fs_info->fs_roots_radix,
4124 			  (unsigned long)btrfs_root_id(root));
4125 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4126 		drop_ref = true;
4127 	spin_unlock(&fs_info->fs_roots_radix_lock);
4128 
4129 	if (BTRFS_FS_ERROR(fs_info)) {
4130 		ASSERT(root->log_root == NULL);
4131 		if (root->reloc_root) {
4132 			btrfs_put_root(root->reloc_root);
4133 			root->reloc_root = NULL;
4134 		}
4135 	}
4136 
4137 	if (drop_ref)
4138 		btrfs_put_root(root);
4139 }
4140 
4141 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4142 {
4143 	mutex_lock(&fs_info->cleaner_mutex);
4144 	btrfs_run_delayed_iputs(fs_info);
4145 	mutex_unlock(&fs_info->cleaner_mutex);
4146 	wake_up_process(fs_info->cleaner_kthread);
4147 
4148 	/* wait until ongoing cleanup work done */
4149 	down_write(&fs_info->cleanup_work_sem);
4150 	up_write(&fs_info->cleanup_work_sem);
4151 
4152 	return btrfs_commit_current_transaction(fs_info->tree_root);
4153 }
4154 
4155 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4156 {
4157 	struct btrfs_transaction *trans;
4158 	struct btrfs_transaction *tmp;
4159 	bool found = false;
4160 
4161 	/*
4162 	 * This function is only called at the very end of close_ctree(),
4163 	 * thus no other running transaction, no need to take trans_lock.
4164 	 */
4165 	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4166 	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4167 		struct extent_state *cached = NULL;
4168 		u64 dirty_bytes = 0;
4169 		u64 cur = 0;
4170 		u64 found_start;
4171 		u64 found_end;
4172 
4173 		found = true;
4174 		while (btrfs_find_first_extent_bit(&trans->dirty_pages, cur,
4175 						   &found_start, &found_end,
4176 						   EXTENT_DIRTY, &cached)) {
4177 			dirty_bytes += found_end + 1 - found_start;
4178 			cur = found_end + 1;
4179 		}
4180 		btrfs_warn(fs_info,
4181 	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4182 			   trans->transid, dirty_bytes);
4183 		btrfs_cleanup_one_transaction(trans);
4184 
4185 		if (trans == fs_info->running_transaction)
4186 			fs_info->running_transaction = NULL;
4187 		list_del_init(&trans->list);
4188 
4189 		btrfs_put_transaction(trans);
4190 		trace_btrfs_transaction_commit(fs_info);
4191 	}
4192 	ASSERT(!found);
4193 }
4194 
4195 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4196 {
4197 	int ret;
4198 
4199 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4200 
4201 	/*
4202 	 * If we had UNFINISHED_DROPS we could still be processing them, so
4203 	 * clear that bit and wake up relocation so it can stop.
4204 	 * We must do this before stopping the block group reclaim task, because
4205 	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4206 	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4207 	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4208 	 * return 1.
4209 	 */
4210 	btrfs_wake_unfinished_drop(fs_info);
4211 
4212 	/*
4213 	 * We may have the reclaim task running and relocating a data block group,
4214 	 * in which case it may create delayed iputs. So stop it before we park
4215 	 * the cleaner kthread otherwise we can get new delayed iputs after
4216 	 * parking the cleaner, and that can make the async reclaim task to hang
4217 	 * if it's waiting for delayed iputs to complete, since the cleaner is
4218 	 * parked and can not run delayed iputs - this will make us hang when
4219 	 * trying to stop the async reclaim task.
4220 	 */
4221 	cancel_work_sync(&fs_info->reclaim_bgs_work);
4222 	/*
4223 	 * We don't want the cleaner to start new transactions, add more delayed
4224 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4225 	 * because that frees the task_struct, and the transaction kthread might
4226 	 * still try to wake up the cleaner.
4227 	 */
4228 	kthread_park(fs_info->cleaner_kthread);
4229 
4230 	/* wait for the qgroup rescan worker to stop */
4231 	btrfs_qgroup_wait_for_completion(fs_info, false);
4232 
4233 	/* wait for the uuid_scan task to finish */
4234 	down(&fs_info->uuid_tree_rescan_sem);
4235 	/* avoid complains from lockdep et al., set sem back to initial state */
4236 	up(&fs_info->uuid_tree_rescan_sem);
4237 
4238 	/* pause restriper - we want to resume on mount */
4239 	btrfs_pause_balance(fs_info);
4240 
4241 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4242 
4243 	btrfs_scrub_cancel(fs_info);
4244 
4245 	/* wait for any defraggers to finish */
4246 	wait_event(fs_info->transaction_wait,
4247 		   (atomic_read(&fs_info->defrag_running) == 0));
4248 
4249 	/* clear out the rbtree of defraggable inodes */
4250 	btrfs_cleanup_defrag_inodes(fs_info);
4251 
4252 	/*
4253 	 * Handle the error fs first, as it will flush and wait for all ordered
4254 	 * extents.  This will generate delayed iputs, thus we want to handle
4255 	 * it first.
4256 	 */
4257 	if (unlikely(BTRFS_FS_ERROR(fs_info)))
4258 		btrfs_error_commit_super(fs_info);
4259 
4260 	/*
4261 	 * Wait for any fixup workers to complete.
4262 	 * If we don't wait for them here and they are still running by the time
4263 	 * we call kthread_stop() against the cleaner kthread further below, we
4264 	 * get an use-after-free on the cleaner because the fixup worker adds an
4265 	 * inode to the list of delayed iputs and then attempts to wakeup the
4266 	 * cleaner kthread, which was already stopped and destroyed. We parked
4267 	 * already the cleaner, but below we run all pending delayed iputs.
4268 	 */
4269 	btrfs_flush_workqueue(fs_info->fixup_workers);
4270 	/*
4271 	 * Similar case here, we have to wait for delalloc workers before we
4272 	 * proceed below and stop the cleaner kthread, otherwise we trigger a
4273 	 * use-after-tree on the cleaner kthread task_struct when a delalloc
4274 	 * worker running submit_compressed_extents() adds a delayed iput, which
4275 	 * does a wake up on the cleaner kthread, which was already freed below
4276 	 * when we call kthread_stop().
4277 	 */
4278 	btrfs_flush_workqueue(fs_info->delalloc_workers);
4279 
4280 	/*
4281 	 * We can have ordered extents getting their last reference dropped from
4282 	 * the fs_info->workers queue because for async writes for data bios we
4283 	 * queue a work for that queue, at btrfs_wq_submit_bio(), that runs
4284 	 * run_one_async_done() which calls btrfs_bio_end_io() in case the bio
4285 	 * has an error, and that later function can do the final
4286 	 * btrfs_put_ordered_extent() on the ordered extent attached to the bio,
4287 	 * which adds a delayed iput for the inode. So we must flush the queue
4288 	 * so that we don't have delayed iputs after committing the current
4289 	 * transaction below and stopping the cleaner and transaction kthreads.
4290 	 */
4291 	btrfs_flush_workqueue(fs_info->workers);
4292 
4293 	/*
4294 	 * When finishing a compressed write bio we schedule a work queue item
4295 	 * to finish an ordered extent - btrfs_finish_compressed_write_work()
4296 	 * calls btrfs_finish_ordered_extent() which in turns does a call to
4297 	 * btrfs_queue_ordered_fn(), and that queues the ordered extent
4298 	 * completion either in the endio_write_workers work queue or in the
4299 	 * fs_info->endio_freespace_worker work queue. We flush those queues
4300 	 * below, so before we flush them we must flush this queue for the
4301 	 * workers of compressed writes.
4302 	 */
4303 	flush_workqueue(fs_info->compressed_write_workers);
4304 
4305 	/*
4306 	 * After we parked the cleaner kthread, ordered extents may have
4307 	 * completed and created new delayed iputs. If one of the async reclaim
4308 	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4309 	 * can hang forever trying to stop it, because if a delayed iput is
4310 	 * added after it ran btrfs_run_delayed_iputs() and before it called
4311 	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4312 	 * no one else to run iputs.
4313 	 *
4314 	 * So wait for all ongoing ordered extents to complete and then run
4315 	 * delayed iputs. This works because once we reach this point no one
4316 	 * can create new ordered extents, but delayed iputs can still be added
4317 	 * by a reclaim worker (see comments further below).
4318 	 *
4319 	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4320 	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4321 	 * but the delayed iput for the respective inode is made only when doing
4322 	 * the final btrfs_put_ordered_extent() (which must happen at
4323 	 * btrfs_finish_ordered_io() when we are unmounting).
4324 	 */
4325 	btrfs_flush_workqueue(fs_info->endio_write_workers);
4326 	/* Ordered extents for free space inodes. */
4327 	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4328 	/*
4329 	 * Run delayed iputs in case an async reclaim worker is waiting for them
4330 	 * to be run as mentioned above.
4331 	 */
4332 	btrfs_run_delayed_iputs(fs_info);
4333 
4334 	cancel_work_sync(&fs_info->async_reclaim_work);
4335 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4336 	cancel_work_sync(&fs_info->preempt_reclaim_work);
4337 	cancel_work_sync(&fs_info->em_shrinker_work);
4338 
4339 	/*
4340 	 * Run delayed iputs again because an async reclaim worker may have
4341 	 * added new ones if it was flushing delalloc:
4342 	 *
4343 	 * shrink_delalloc() -> btrfs_start_delalloc_roots() ->
4344 	 *    start_delalloc_inodes() -> btrfs_add_delayed_iput()
4345 	 */
4346 	btrfs_run_delayed_iputs(fs_info);
4347 
4348 	/* There should be no more workload to generate new delayed iputs. */
4349 	set_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state);
4350 
4351 	/* Cancel or finish ongoing discard work */
4352 	btrfs_discard_cleanup(fs_info);
4353 
4354 	if (!sb_rdonly(fs_info->sb)) {
4355 		/*
4356 		 * The cleaner kthread is stopped, so do one final pass over
4357 		 * unused block groups.
4358 		 */
4359 		btrfs_delete_unused_bgs(fs_info);
4360 
4361 		/*
4362 		 * There might be existing delayed inode workers still running
4363 		 * and holding an empty delayed inode item. We must wait for
4364 		 * them to complete first because they can create a transaction.
4365 		 * This happens when someone calls btrfs_balance_delayed_items()
4366 		 * and then a transaction commit runs the same delayed nodes
4367 		 * before any delayed worker has done something with the nodes.
4368 		 * We must wait for any worker here and not at transaction
4369 		 * commit time since that could cause a deadlock.
4370 		 * This is a very rare case.
4371 		 */
4372 		btrfs_flush_workqueue(fs_info->delayed_workers);
4373 
4374 		ret = btrfs_commit_super(fs_info);
4375 		if (ret)
4376 			btrfs_err(fs_info, "commit super ret %d", ret);
4377 	}
4378 
4379 	kthread_stop(fs_info->transaction_kthread);
4380 	kthread_stop(fs_info->cleaner_kthread);
4381 
4382 	ASSERT(list_empty(&fs_info->delayed_iputs));
4383 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4384 
4385 	if (btrfs_check_quota_leak(fs_info)) {
4386 		DEBUG_WARN("qgroup reserved space leaked");
4387 		btrfs_err(fs_info, "qgroup reserved space leaked");
4388 	}
4389 
4390 	btrfs_free_qgroup_config(fs_info);
4391 	ASSERT(list_empty(&fs_info->delalloc_roots));
4392 
4393 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4394 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4395 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4396 	}
4397 
4398 	if (percpu_counter_sum(&fs_info->ordered_bytes))
4399 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4400 			   percpu_counter_sum(&fs_info->ordered_bytes));
4401 
4402 	btrfs_sysfs_remove_mounted(fs_info);
4403 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4404 
4405 	btrfs_put_block_group_cache(fs_info);
4406 
4407 	/*
4408 	 * we must make sure there is not any read request to
4409 	 * submit after we stopping all workers.
4410 	 */
4411 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4412 	btrfs_stop_all_workers(fs_info);
4413 
4414 	/* We shouldn't have any transaction open at this point */
4415 	warn_about_uncommitted_trans(fs_info);
4416 
4417 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4418 	free_root_pointers(fs_info, true);
4419 	btrfs_free_fs_roots(fs_info);
4420 
4421 	/*
4422 	 * We must free the block groups after dropping the fs_roots as we could
4423 	 * have had an IO error and have left over tree log blocks that aren't
4424 	 * cleaned up until the fs roots are freed.  This makes the block group
4425 	 * accounting appear to be wrong because there's pending reserved bytes,
4426 	 * so make sure we do the block group cleanup afterwards.
4427 	 */
4428 	btrfs_free_block_groups(fs_info);
4429 
4430 	iput(fs_info->btree_inode);
4431 
4432 	btrfs_mapping_tree_free(fs_info);
4433 }
4434 
4435 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4436 			     struct extent_buffer *buf)
4437 {
4438 	struct btrfs_fs_info *fs_info = buf->fs_info;
4439 	u64 transid = btrfs_header_generation(buf);
4440 
4441 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4442 	/*
4443 	 * This is a fast path so only do this check if we have sanity tests
4444 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4445 	 * outside of the sanity tests.
4446 	 */
4447 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4448 		return;
4449 #endif
4450 	/* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4451 	ASSERT(trans->transid == fs_info->generation);
4452 	btrfs_assert_tree_write_locked(buf);
4453 	if (unlikely(transid != fs_info->generation)) {
4454 		btrfs_abort_transaction(trans, -EUCLEAN);
4455 		btrfs_crit(fs_info,
4456 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4457 			   buf->start, transid, fs_info->generation);
4458 	}
4459 	set_extent_buffer_dirty(buf);
4460 }
4461 
4462 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4463 					int flush_delayed)
4464 {
4465 	/*
4466 	 * looks as though older kernels can get into trouble with
4467 	 * this code, they end up stuck in balance_dirty_pages forever
4468 	 */
4469 	int ret;
4470 
4471 	if (current->flags & PF_MEMALLOC)
4472 		return;
4473 
4474 	if (flush_delayed)
4475 		btrfs_balance_delayed_items(fs_info);
4476 
4477 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4478 				     BTRFS_DIRTY_METADATA_THRESH,
4479 				     fs_info->dirty_metadata_batch);
4480 	if (ret > 0) {
4481 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4482 	}
4483 }
4484 
4485 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4486 {
4487 	__btrfs_btree_balance_dirty(fs_info, 1);
4488 }
4489 
4490 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4491 {
4492 	__btrfs_btree_balance_dirty(fs_info, 0);
4493 }
4494 
4495 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4496 {
4497 	/* cleanup FS via transaction */
4498 	btrfs_cleanup_transaction(fs_info);
4499 
4500 	down_write(&fs_info->cleanup_work_sem);
4501 	up_write(&fs_info->cleanup_work_sem);
4502 }
4503 
4504 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4505 {
4506 	struct btrfs_root *gang[8];
4507 	u64 root_objectid = 0;
4508 	int ret;
4509 
4510 	spin_lock(&fs_info->fs_roots_radix_lock);
4511 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4512 					     (void **)gang, root_objectid,
4513 					     ARRAY_SIZE(gang))) != 0) {
4514 		int i;
4515 
4516 		for (i = 0; i < ret; i++)
4517 			gang[i] = btrfs_grab_root(gang[i]);
4518 		spin_unlock(&fs_info->fs_roots_radix_lock);
4519 
4520 		for (i = 0; i < ret; i++) {
4521 			if (!gang[i])
4522 				continue;
4523 			root_objectid = btrfs_root_id(gang[i]);
4524 			btrfs_free_log(NULL, gang[i]);
4525 			btrfs_put_root(gang[i]);
4526 		}
4527 		root_objectid++;
4528 		spin_lock(&fs_info->fs_roots_radix_lock);
4529 	}
4530 	spin_unlock(&fs_info->fs_roots_radix_lock);
4531 	btrfs_free_log_root_tree(NULL, fs_info);
4532 }
4533 
4534 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4535 {
4536 	struct btrfs_ordered_extent *ordered;
4537 
4538 	spin_lock(&root->ordered_extent_lock);
4539 	/*
4540 	 * This will just short circuit the ordered completion stuff which will
4541 	 * make sure the ordered extent gets properly cleaned up.
4542 	 */
4543 	list_for_each_entry(ordered, &root->ordered_extents,
4544 			    root_extent_list)
4545 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4546 	spin_unlock(&root->ordered_extent_lock);
4547 }
4548 
4549 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4550 {
4551 	struct btrfs_root *root;
4552 	LIST_HEAD(splice);
4553 
4554 	spin_lock(&fs_info->ordered_root_lock);
4555 	list_splice_init(&fs_info->ordered_roots, &splice);
4556 	while (!list_empty(&splice)) {
4557 		root = list_first_entry(&splice, struct btrfs_root,
4558 					ordered_root);
4559 		list_move_tail(&root->ordered_root,
4560 			       &fs_info->ordered_roots);
4561 
4562 		spin_unlock(&fs_info->ordered_root_lock);
4563 		btrfs_destroy_ordered_extents(root);
4564 
4565 		cond_resched();
4566 		spin_lock(&fs_info->ordered_root_lock);
4567 	}
4568 	spin_unlock(&fs_info->ordered_root_lock);
4569 
4570 	/*
4571 	 * We need this here because if we've been flipped read-only we won't
4572 	 * get sync() from the umount, so we need to make sure any ordered
4573 	 * extents that haven't had their dirty pages IO start writeout yet
4574 	 * actually get run and error out properly.
4575 	 */
4576 	btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
4577 }
4578 
4579 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4580 {
4581 	struct btrfs_inode *btrfs_inode;
4582 	LIST_HEAD(splice);
4583 
4584 	spin_lock(&root->delalloc_lock);
4585 	list_splice_init(&root->delalloc_inodes, &splice);
4586 
4587 	while (!list_empty(&splice)) {
4588 		struct inode *inode = NULL;
4589 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4590 					       delalloc_inodes);
4591 		btrfs_del_delalloc_inode(btrfs_inode);
4592 		spin_unlock(&root->delalloc_lock);
4593 
4594 		/*
4595 		 * Make sure we get a live inode and that it'll not disappear
4596 		 * meanwhile.
4597 		 */
4598 		inode = igrab(&btrfs_inode->vfs_inode);
4599 		if (inode) {
4600 			unsigned int nofs_flag;
4601 
4602 			nofs_flag = memalloc_nofs_save();
4603 			invalidate_inode_pages2(inode->i_mapping);
4604 			memalloc_nofs_restore(nofs_flag);
4605 			iput(inode);
4606 		}
4607 		spin_lock(&root->delalloc_lock);
4608 	}
4609 	spin_unlock(&root->delalloc_lock);
4610 }
4611 
4612 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4613 {
4614 	struct btrfs_root *root;
4615 	LIST_HEAD(splice);
4616 
4617 	spin_lock(&fs_info->delalloc_root_lock);
4618 	list_splice_init(&fs_info->delalloc_roots, &splice);
4619 	while (!list_empty(&splice)) {
4620 		root = list_first_entry(&splice, struct btrfs_root,
4621 					 delalloc_root);
4622 		root = btrfs_grab_root(root);
4623 		BUG_ON(!root);
4624 		spin_unlock(&fs_info->delalloc_root_lock);
4625 
4626 		btrfs_destroy_delalloc_inodes(root);
4627 		btrfs_put_root(root);
4628 
4629 		spin_lock(&fs_info->delalloc_root_lock);
4630 	}
4631 	spin_unlock(&fs_info->delalloc_root_lock);
4632 }
4633 
4634 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4635 					 struct extent_io_tree *dirty_pages,
4636 					 int mark)
4637 {
4638 	struct extent_buffer *eb;
4639 	u64 start = 0;
4640 	u64 end;
4641 
4642 	while (btrfs_find_first_extent_bit(dirty_pages, start, &start, &end,
4643 					   mark, NULL)) {
4644 		btrfs_clear_extent_bit(dirty_pages, start, end, mark, NULL);
4645 		while (start <= end) {
4646 			eb = find_extent_buffer(fs_info, start);
4647 			start += fs_info->nodesize;
4648 			if (!eb)
4649 				continue;
4650 
4651 			btrfs_tree_lock(eb);
4652 			wait_on_extent_buffer_writeback(eb);
4653 			btrfs_clear_buffer_dirty(NULL, eb);
4654 			btrfs_tree_unlock(eb);
4655 
4656 			free_extent_buffer_stale(eb);
4657 		}
4658 	}
4659 }
4660 
4661 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4662 					struct extent_io_tree *unpin)
4663 {
4664 	u64 start;
4665 	u64 end;
4666 
4667 	while (1) {
4668 		struct extent_state *cached_state = NULL;
4669 
4670 		/*
4671 		 * The btrfs_finish_extent_commit() may get the same range as
4672 		 * ours between find_first_extent_bit and clear_extent_dirty.
4673 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4674 		 * the same extent range.
4675 		 */
4676 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4677 		if (!btrfs_find_first_extent_bit(unpin, 0, &start, &end,
4678 						 EXTENT_DIRTY, &cached_state)) {
4679 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4680 			break;
4681 		}
4682 
4683 		btrfs_clear_extent_dirty(unpin, start, end, &cached_state);
4684 		btrfs_free_extent_state(cached_state);
4685 		btrfs_error_unpin_extent_range(fs_info, start, end);
4686 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4687 		cond_resched();
4688 	}
4689 }
4690 
4691 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4692 {
4693 	struct inode *inode;
4694 
4695 	inode = cache->io_ctl.inode;
4696 	if (inode) {
4697 		unsigned int nofs_flag;
4698 
4699 		nofs_flag = memalloc_nofs_save();
4700 		invalidate_inode_pages2(inode->i_mapping);
4701 		memalloc_nofs_restore(nofs_flag);
4702 
4703 		BTRFS_I(inode)->generation = 0;
4704 		cache->io_ctl.inode = NULL;
4705 		iput(inode);
4706 	}
4707 	ASSERT(cache->io_ctl.pages == NULL);
4708 	btrfs_put_block_group(cache);
4709 }
4710 
4711 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4712 			     struct btrfs_fs_info *fs_info)
4713 {
4714 	struct btrfs_block_group *cache;
4715 
4716 	spin_lock(&cur_trans->dirty_bgs_lock);
4717 	while (!list_empty(&cur_trans->dirty_bgs)) {
4718 		cache = list_first_entry(&cur_trans->dirty_bgs,
4719 					 struct btrfs_block_group,
4720 					 dirty_list);
4721 
4722 		if (!list_empty(&cache->io_list)) {
4723 			spin_unlock(&cur_trans->dirty_bgs_lock);
4724 			list_del_init(&cache->io_list);
4725 			btrfs_cleanup_bg_io(cache);
4726 			spin_lock(&cur_trans->dirty_bgs_lock);
4727 		}
4728 
4729 		list_del_init(&cache->dirty_list);
4730 		spin_lock(&cache->lock);
4731 		cache->disk_cache_state = BTRFS_DC_ERROR;
4732 		spin_unlock(&cache->lock);
4733 
4734 		spin_unlock(&cur_trans->dirty_bgs_lock);
4735 		btrfs_put_block_group(cache);
4736 		btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4737 		spin_lock(&cur_trans->dirty_bgs_lock);
4738 	}
4739 	spin_unlock(&cur_trans->dirty_bgs_lock);
4740 
4741 	/*
4742 	 * Refer to the definition of io_bgs member for details why it's safe
4743 	 * to use it without any locking
4744 	 */
4745 	while (!list_empty(&cur_trans->io_bgs)) {
4746 		cache = list_first_entry(&cur_trans->io_bgs,
4747 					 struct btrfs_block_group,
4748 					 io_list);
4749 
4750 		list_del_init(&cache->io_list);
4751 		spin_lock(&cache->lock);
4752 		cache->disk_cache_state = BTRFS_DC_ERROR;
4753 		spin_unlock(&cache->lock);
4754 		btrfs_cleanup_bg_io(cache);
4755 	}
4756 }
4757 
4758 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4759 {
4760 	struct btrfs_root *gang[8];
4761 	int i;
4762 	int ret;
4763 
4764 	spin_lock(&fs_info->fs_roots_radix_lock);
4765 	while (1) {
4766 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4767 						 (void **)gang, 0,
4768 						 ARRAY_SIZE(gang),
4769 						 BTRFS_ROOT_TRANS_TAG);
4770 		if (ret == 0)
4771 			break;
4772 		for (i = 0; i < ret; i++) {
4773 			struct btrfs_root *root = gang[i];
4774 
4775 			btrfs_qgroup_free_meta_all_pertrans(root);
4776 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
4777 					(unsigned long)btrfs_root_id(root),
4778 					BTRFS_ROOT_TRANS_TAG);
4779 		}
4780 	}
4781 	spin_unlock(&fs_info->fs_roots_radix_lock);
4782 }
4783 
4784 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans)
4785 {
4786 	struct btrfs_fs_info *fs_info = cur_trans->fs_info;
4787 	struct btrfs_device *dev, *tmp;
4788 
4789 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4790 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4791 	ASSERT(list_empty(&cur_trans->io_bgs));
4792 
4793 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4794 				 post_commit_list) {
4795 		list_del_init(&dev->post_commit_list);
4796 	}
4797 
4798 	btrfs_destroy_delayed_refs(cur_trans);
4799 
4800 	cur_trans->state = TRANS_STATE_COMMIT_START;
4801 	wake_up(&fs_info->transaction_blocked_wait);
4802 
4803 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4804 	wake_up(&fs_info->transaction_wait);
4805 
4806 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4807 				     EXTENT_DIRTY);
4808 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4809 
4810 	cur_trans->state =TRANS_STATE_COMPLETED;
4811 	wake_up(&cur_trans->commit_wait);
4812 }
4813 
4814 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4815 {
4816 	struct btrfs_transaction *t;
4817 
4818 	mutex_lock(&fs_info->transaction_kthread_mutex);
4819 
4820 	spin_lock(&fs_info->trans_lock);
4821 	while (!list_empty(&fs_info->trans_list)) {
4822 		t = list_first_entry(&fs_info->trans_list,
4823 				     struct btrfs_transaction, list);
4824 		if (t->state >= TRANS_STATE_COMMIT_PREP) {
4825 			refcount_inc(&t->use_count);
4826 			spin_unlock(&fs_info->trans_lock);
4827 			btrfs_wait_for_commit(fs_info, t->transid);
4828 			btrfs_put_transaction(t);
4829 			spin_lock(&fs_info->trans_lock);
4830 			continue;
4831 		}
4832 		if (t == fs_info->running_transaction) {
4833 			t->state = TRANS_STATE_COMMIT_DOING;
4834 			spin_unlock(&fs_info->trans_lock);
4835 			/*
4836 			 * We wait for 0 num_writers since we don't hold a trans
4837 			 * handle open currently for this transaction.
4838 			 */
4839 			wait_event(t->writer_wait,
4840 				   atomic_read(&t->num_writers) == 0);
4841 		} else {
4842 			spin_unlock(&fs_info->trans_lock);
4843 		}
4844 		btrfs_cleanup_one_transaction(t);
4845 
4846 		spin_lock(&fs_info->trans_lock);
4847 		if (t == fs_info->running_transaction)
4848 			fs_info->running_transaction = NULL;
4849 		list_del_init(&t->list);
4850 		spin_unlock(&fs_info->trans_lock);
4851 
4852 		btrfs_put_transaction(t);
4853 		trace_btrfs_transaction_commit(fs_info);
4854 		spin_lock(&fs_info->trans_lock);
4855 	}
4856 	spin_unlock(&fs_info->trans_lock);
4857 	btrfs_destroy_all_ordered_extents(fs_info);
4858 	btrfs_destroy_delayed_inodes(fs_info);
4859 	btrfs_assert_delayed_root_empty(fs_info);
4860 	btrfs_destroy_all_delalloc_inodes(fs_info);
4861 	btrfs_drop_all_logs(fs_info);
4862 	btrfs_free_all_qgroup_pertrans(fs_info);
4863 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4864 
4865 	return 0;
4866 }
4867 
4868 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4869 {
4870 	BTRFS_PATH_AUTO_FREE(path);
4871 	int ret;
4872 	struct extent_buffer *l;
4873 	struct btrfs_key search_key;
4874 	struct btrfs_key found_key;
4875 	int slot;
4876 
4877 	path = btrfs_alloc_path();
4878 	if (!path)
4879 		return -ENOMEM;
4880 
4881 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4882 	search_key.type = -1;
4883 	search_key.offset = (u64)-1;
4884 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4885 	if (ret < 0)
4886 		return ret;
4887 	if (ret == 0) {
4888 		/*
4889 		 * Key with offset -1 found, there would have to exist a root
4890 		 * with such id, but this is out of valid range.
4891 		 */
4892 		return -EUCLEAN;
4893 	}
4894 	if (path->slots[0] > 0) {
4895 		slot = path->slots[0] - 1;
4896 		l = path->nodes[0];
4897 		btrfs_item_key_to_cpu(l, &found_key, slot);
4898 		root->free_objectid = max_t(u64, found_key.objectid + 1,
4899 					    BTRFS_FIRST_FREE_OBJECTID);
4900 	} else {
4901 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4902 	}
4903 
4904 	return 0;
4905 }
4906 
4907 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4908 {
4909 	int ret;
4910 	mutex_lock(&root->objectid_mutex);
4911 
4912 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4913 		btrfs_warn(root->fs_info,
4914 			   "the objectid of root %llu reaches its highest value",
4915 			   btrfs_root_id(root));
4916 		ret = -ENOSPC;
4917 		goto out;
4918 	}
4919 
4920 	*objectid = root->free_objectid++;
4921 	ret = 0;
4922 out:
4923 	mutex_unlock(&root->objectid_mutex);
4924 	return ret;
4925 }
4926