xref: /linux/fs/btrfs/disk-io.c (revision ab475966455ce285c2c9978a3e3bfe97d75ff8d4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "rcu-string.h"
33 #include "dev-replace.h"
34 #include "raid56.h"
35 #include "sysfs.h"
36 #include "qgroup.h"
37 #include "compression.h"
38 #include "tree-checker.h"
39 #include "ref-verify.h"
40 #include "block-group.h"
41 #include "discard.h"
42 #include "space-info.h"
43 #include "zoned.h"
44 #include "subpage.h"
45 #include "fs.h"
46 #include "accessors.h"
47 #include "extent-tree.h"
48 #include "root-tree.h"
49 #include "defrag.h"
50 #include "uuid-tree.h"
51 #include "relocation.h"
52 #include "scrub.h"
53 #include "super.h"
54 
55 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
56 				 BTRFS_HEADER_FLAG_RELOC |\
57 				 BTRFS_SUPER_FLAG_ERROR |\
58 				 BTRFS_SUPER_FLAG_SEEDING |\
59 				 BTRFS_SUPER_FLAG_METADUMP |\
60 				 BTRFS_SUPER_FLAG_METADUMP_V2)
61 
62 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
63 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
64 
65 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
66 {
67 	if (fs_info->csum_shash)
68 		crypto_free_shash(fs_info->csum_shash);
69 }
70 
71 /*
72  * Compute the csum of a btree block and store the result to provided buffer.
73  */
74 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
75 {
76 	struct btrfs_fs_info *fs_info = buf->fs_info;
77 	const int num_pages = num_extent_pages(buf);
78 	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
79 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
80 	char *kaddr;
81 	int i;
82 
83 	shash->tfm = fs_info->csum_shash;
84 	crypto_shash_init(shash);
85 	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
86 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
87 			    first_page_part - BTRFS_CSUM_SIZE);
88 
89 	for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
90 		kaddr = page_address(buf->pages[i]);
91 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
92 	}
93 	memset(result, 0, BTRFS_CSUM_SIZE);
94 	crypto_shash_final(shash, result);
95 }
96 
97 /*
98  * we can't consider a given block up to date unless the transid of the
99  * block matches the transid in the parent node's pointer.  This is how we
100  * detect blocks that either didn't get written at all or got written
101  * in the wrong place.
102  */
103 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
104 {
105 	if (!extent_buffer_uptodate(eb))
106 		return 0;
107 
108 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
109 		return 1;
110 
111 	if (atomic)
112 		return -EAGAIN;
113 
114 	if (!extent_buffer_uptodate(eb) ||
115 	    btrfs_header_generation(eb) != parent_transid) {
116 		btrfs_err_rl(eb->fs_info,
117 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
118 			eb->start, eb->read_mirror,
119 			parent_transid, btrfs_header_generation(eb));
120 		clear_extent_buffer_uptodate(eb);
121 		return 0;
122 	}
123 	return 1;
124 }
125 
126 static bool btrfs_supported_super_csum(u16 csum_type)
127 {
128 	switch (csum_type) {
129 	case BTRFS_CSUM_TYPE_CRC32:
130 	case BTRFS_CSUM_TYPE_XXHASH:
131 	case BTRFS_CSUM_TYPE_SHA256:
132 	case BTRFS_CSUM_TYPE_BLAKE2:
133 		return true;
134 	default:
135 		return false;
136 	}
137 }
138 
139 /*
140  * Return 0 if the superblock checksum type matches the checksum value of that
141  * algorithm. Pass the raw disk superblock data.
142  */
143 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
144 			   const struct btrfs_super_block *disk_sb)
145 {
146 	char result[BTRFS_CSUM_SIZE];
147 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
148 
149 	shash->tfm = fs_info->csum_shash;
150 
151 	/*
152 	 * The super_block structure does not span the whole
153 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
154 	 * filled with zeros and is included in the checksum.
155 	 */
156 	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
157 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
158 
159 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
160 		return 1;
161 
162 	return 0;
163 }
164 
165 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
166 				      int mirror_num)
167 {
168 	struct btrfs_fs_info *fs_info = eb->fs_info;
169 	int i, num_pages = num_extent_pages(eb);
170 	int ret = 0;
171 
172 	if (sb_rdonly(fs_info->sb))
173 		return -EROFS;
174 
175 	for (i = 0; i < num_pages; i++) {
176 		struct page *p = eb->pages[i];
177 		u64 start = max_t(u64, eb->start, page_offset(p));
178 		u64 end = min_t(u64, eb->start + eb->len, page_offset(p) + PAGE_SIZE);
179 		u32 len = end - start;
180 
181 		ret = btrfs_repair_io_failure(fs_info, 0, start, len,
182 				start, p, offset_in_page(start), mirror_num);
183 		if (ret)
184 			break;
185 	}
186 
187 	return ret;
188 }
189 
190 /*
191  * helper to read a given tree block, doing retries as required when
192  * the checksums don't match and we have alternate mirrors to try.
193  *
194  * @check:		expected tree parentness check, see the comments of the
195  *			structure for details.
196  */
197 int btrfs_read_extent_buffer(struct extent_buffer *eb,
198 			     struct btrfs_tree_parent_check *check)
199 {
200 	struct btrfs_fs_info *fs_info = eb->fs_info;
201 	int failed = 0;
202 	int ret;
203 	int num_copies = 0;
204 	int mirror_num = 0;
205 	int failed_mirror = 0;
206 
207 	ASSERT(check);
208 
209 	while (1) {
210 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
211 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
212 		if (!ret)
213 			break;
214 
215 		num_copies = btrfs_num_copies(fs_info,
216 					      eb->start, eb->len);
217 		if (num_copies == 1)
218 			break;
219 
220 		if (!failed_mirror) {
221 			failed = 1;
222 			failed_mirror = eb->read_mirror;
223 		}
224 
225 		mirror_num++;
226 		if (mirror_num == failed_mirror)
227 			mirror_num++;
228 
229 		if (mirror_num > num_copies)
230 			break;
231 	}
232 
233 	if (failed && !ret && failed_mirror)
234 		btrfs_repair_eb_io_failure(eb, failed_mirror);
235 
236 	return ret;
237 }
238 
239 /*
240  * Checksum a dirty tree block before IO.
241  */
242 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
243 {
244 	struct extent_buffer *eb = bbio->private;
245 	struct btrfs_fs_info *fs_info = eb->fs_info;
246 	u64 found_start = btrfs_header_bytenr(eb);
247 	u64 last_trans;
248 	u8 result[BTRFS_CSUM_SIZE];
249 	int ret;
250 
251 	/* Btree blocks are always contiguous on disk. */
252 	if (WARN_ON_ONCE(bbio->file_offset != eb->start))
253 		return BLK_STS_IOERR;
254 	if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
255 		return BLK_STS_IOERR;
256 
257 	if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
258 		WARN_ON_ONCE(found_start != 0);
259 		return BLK_STS_OK;
260 	}
261 
262 	if (WARN_ON_ONCE(found_start != eb->start))
263 		return BLK_STS_IOERR;
264 	if (WARN_ON(!btrfs_page_test_uptodate(fs_info, eb->pages[0], eb->start,
265 					      eb->len)))
266 		return BLK_STS_IOERR;
267 
268 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
269 				    offsetof(struct btrfs_header, fsid),
270 				    BTRFS_FSID_SIZE) == 0);
271 	csum_tree_block(eb, result);
272 
273 	if (btrfs_header_level(eb))
274 		ret = btrfs_check_node(eb);
275 	else
276 		ret = btrfs_check_leaf(eb);
277 
278 	if (ret < 0)
279 		goto error;
280 
281 	/*
282 	 * Also check the generation, the eb reached here must be newer than
283 	 * last committed. Or something seriously wrong happened.
284 	 */
285 	last_trans = btrfs_get_last_trans_committed(fs_info);
286 	if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
287 		ret = -EUCLEAN;
288 		btrfs_err(fs_info,
289 			"block=%llu bad generation, have %llu expect > %llu",
290 			  eb->start, btrfs_header_generation(eb), last_trans);
291 		goto error;
292 	}
293 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
294 	return BLK_STS_OK;
295 
296 error:
297 	btrfs_print_tree(eb, 0);
298 	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
299 		  eb->start);
300 	/*
301 	 * Be noisy if this is an extent buffer from a log tree. We don't abort
302 	 * a transaction in case there's a bad log tree extent buffer, we just
303 	 * fallback to a transaction commit. Still we want to know when there is
304 	 * a bad log tree extent buffer, as that may signal a bug somewhere.
305 	 */
306 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
307 		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
308 	return errno_to_blk_status(ret);
309 }
310 
311 static bool check_tree_block_fsid(struct extent_buffer *eb)
312 {
313 	struct btrfs_fs_info *fs_info = eb->fs_info;
314 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
315 	u8 fsid[BTRFS_FSID_SIZE];
316 
317 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
318 			   BTRFS_FSID_SIZE);
319 
320 	/*
321 	 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
322 	 * This is then overwritten by metadata_uuid if it is present in the
323 	 * device_list_add(). The same true for a seed device as well. So use of
324 	 * fs_devices::metadata_uuid is appropriate here.
325 	 */
326 	if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
327 		return false;
328 
329 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
330 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
331 			return false;
332 
333 	return true;
334 }
335 
336 /* Do basic extent buffer checks at read time */
337 int btrfs_validate_extent_buffer(struct extent_buffer *eb,
338 				 struct btrfs_tree_parent_check *check)
339 {
340 	struct btrfs_fs_info *fs_info = eb->fs_info;
341 	u64 found_start;
342 	const u32 csum_size = fs_info->csum_size;
343 	u8 found_level;
344 	u8 result[BTRFS_CSUM_SIZE];
345 	const u8 *header_csum;
346 	int ret = 0;
347 
348 	ASSERT(check);
349 
350 	found_start = btrfs_header_bytenr(eb);
351 	if (found_start != eb->start) {
352 		btrfs_err_rl(fs_info,
353 			"bad tree block start, mirror %u want %llu have %llu",
354 			     eb->read_mirror, eb->start, found_start);
355 		ret = -EIO;
356 		goto out;
357 	}
358 	if (check_tree_block_fsid(eb)) {
359 		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
360 			     eb->start, eb->read_mirror);
361 		ret = -EIO;
362 		goto out;
363 	}
364 	found_level = btrfs_header_level(eb);
365 	if (found_level >= BTRFS_MAX_LEVEL) {
366 		btrfs_err(fs_info,
367 			"bad tree block level, mirror %u level %d on logical %llu",
368 			eb->read_mirror, btrfs_header_level(eb), eb->start);
369 		ret = -EIO;
370 		goto out;
371 	}
372 
373 	csum_tree_block(eb, result);
374 	header_csum = page_address(eb->pages[0]) +
375 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
376 
377 	if (memcmp(result, header_csum, csum_size) != 0) {
378 		btrfs_warn_rl(fs_info,
379 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
380 			      eb->start, eb->read_mirror,
381 			      CSUM_FMT_VALUE(csum_size, header_csum),
382 			      CSUM_FMT_VALUE(csum_size, result),
383 			      btrfs_header_level(eb));
384 		ret = -EUCLEAN;
385 		goto out;
386 	}
387 
388 	if (found_level != check->level) {
389 		btrfs_err(fs_info,
390 		"level verify failed on logical %llu mirror %u wanted %u found %u",
391 			  eb->start, eb->read_mirror, check->level, found_level);
392 		ret = -EIO;
393 		goto out;
394 	}
395 	if (unlikely(check->transid &&
396 		     btrfs_header_generation(eb) != check->transid)) {
397 		btrfs_err_rl(eb->fs_info,
398 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
399 				eb->start, eb->read_mirror, check->transid,
400 				btrfs_header_generation(eb));
401 		ret = -EIO;
402 		goto out;
403 	}
404 	if (check->has_first_key) {
405 		struct btrfs_key *expect_key = &check->first_key;
406 		struct btrfs_key found_key;
407 
408 		if (found_level)
409 			btrfs_node_key_to_cpu(eb, &found_key, 0);
410 		else
411 			btrfs_item_key_to_cpu(eb, &found_key, 0);
412 		if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
413 			btrfs_err(fs_info,
414 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
415 				  eb->start, check->transid,
416 				  expect_key->objectid,
417 				  expect_key->type, expect_key->offset,
418 				  found_key.objectid, found_key.type,
419 				  found_key.offset);
420 			ret = -EUCLEAN;
421 			goto out;
422 		}
423 	}
424 	if (check->owner_root) {
425 		ret = btrfs_check_eb_owner(eb, check->owner_root);
426 		if (ret < 0)
427 			goto out;
428 	}
429 
430 	/*
431 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
432 	 * that we don't try and read the other copies of this block, just
433 	 * return -EIO.
434 	 */
435 	if (found_level == 0 && btrfs_check_leaf(eb)) {
436 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
437 		ret = -EIO;
438 	}
439 
440 	if (found_level > 0 && btrfs_check_node(eb))
441 		ret = -EIO;
442 
443 	if (ret)
444 		btrfs_err(fs_info,
445 		"read time tree block corruption detected on logical %llu mirror %u",
446 			  eb->start, eb->read_mirror);
447 out:
448 	return ret;
449 }
450 
451 #ifdef CONFIG_MIGRATION
452 static int btree_migrate_folio(struct address_space *mapping,
453 		struct folio *dst, struct folio *src, enum migrate_mode mode)
454 {
455 	/*
456 	 * we can't safely write a btree page from here,
457 	 * we haven't done the locking hook
458 	 */
459 	if (folio_test_dirty(src))
460 		return -EAGAIN;
461 	/*
462 	 * Buffers may be managed in a filesystem specific way.
463 	 * We must have no buffers or drop them.
464 	 */
465 	if (folio_get_private(src) &&
466 	    !filemap_release_folio(src, GFP_KERNEL))
467 		return -EAGAIN;
468 	return migrate_folio(mapping, dst, src, mode);
469 }
470 #else
471 #define btree_migrate_folio NULL
472 #endif
473 
474 static int btree_writepages(struct address_space *mapping,
475 			    struct writeback_control *wbc)
476 {
477 	struct btrfs_fs_info *fs_info;
478 	int ret;
479 
480 	if (wbc->sync_mode == WB_SYNC_NONE) {
481 
482 		if (wbc->for_kupdate)
483 			return 0;
484 
485 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
486 		/* this is a bit racy, but that's ok */
487 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
488 					     BTRFS_DIRTY_METADATA_THRESH,
489 					     fs_info->dirty_metadata_batch);
490 		if (ret < 0)
491 			return 0;
492 	}
493 	return btree_write_cache_pages(mapping, wbc);
494 }
495 
496 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
497 {
498 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
499 		return false;
500 
501 	return try_release_extent_buffer(&folio->page);
502 }
503 
504 static void btree_invalidate_folio(struct folio *folio, size_t offset,
505 				 size_t length)
506 {
507 	struct extent_io_tree *tree;
508 	tree = &BTRFS_I(folio->mapping->host)->io_tree;
509 	extent_invalidate_folio(tree, folio, offset);
510 	btree_release_folio(folio, GFP_NOFS);
511 	if (folio_get_private(folio)) {
512 		btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
513 			   "folio private not zero on folio %llu",
514 			   (unsigned long long)folio_pos(folio));
515 		folio_detach_private(folio);
516 	}
517 }
518 
519 #ifdef DEBUG
520 static bool btree_dirty_folio(struct address_space *mapping,
521 		struct folio *folio)
522 {
523 	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
524 	struct btrfs_subpage_info *spi = fs_info->subpage_info;
525 	struct btrfs_subpage *subpage;
526 	struct extent_buffer *eb;
527 	int cur_bit = 0;
528 	u64 page_start = folio_pos(folio);
529 
530 	if (fs_info->sectorsize == PAGE_SIZE) {
531 		eb = folio_get_private(folio);
532 		BUG_ON(!eb);
533 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
534 		BUG_ON(!atomic_read(&eb->refs));
535 		btrfs_assert_tree_write_locked(eb);
536 		return filemap_dirty_folio(mapping, folio);
537 	}
538 
539 	ASSERT(spi);
540 	subpage = folio_get_private(folio);
541 
542 	for (cur_bit = spi->dirty_offset;
543 	     cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
544 	     cur_bit++) {
545 		unsigned long flags;
546 		u64 cur;
547 
548 		spin_lock_irqsave(&subpage->lock, flags);
549 		if (!test_bit(cur_bit, subpage->bitmaps)) {
550 			spin_unlock_irqrestore(&subpage->lock, flags);
551 			continue;
552 		}
553 		spin_unlock_irqrestore(&subpage->lock, flags);
554 		cur = page_start + cur_bit * fs_info->sectorsize;
555 
556 		eb = find_extent_buffer(fs_info, cur);
557 		ASSERT(eb);
558 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
559 		ASSERT(atomic_read(&eb->refs));
560 		btrfs_assert_tree_write_locked(eb);
561 		free_extent_buffer(eb);
562 
563 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
564 	}
565 	return filemap_dirty_folio(mapping, folio);
566 }
567 #else
568 #define btree_dirty_folio filemap_dirty_folio
569 #endif
570 
571 static const struct address_space_operations btree_aops = {
572 	.writepages	= btree_writepages,
573 	.release_folio	= btree_release_folio,
574 	.invalidate_folio = btree_invalidate_folio,
575 	.migrate_folio	= btree_migrate_folio,
576 	.dirty_folio	= btree_dirty_folio,
577 };
578 
579 struct extent_buffer *btrfs_find_create_tree_block(
580 						struct btrfs_fs_info *fs_info,
581 						u64 bytenr, u64 owner_root,
582 						int level)
583 {
584 	if (btrfs_is_testing(fs_info))
585 		return alloc_test_extent_buffer(fs_info, bytenr);
586 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
587 }
588 
589 /*
590  * Read tree block at logical address @bytenr and do variant basic but critical
591  * verification.
592  *
593  * @check:		expected tree parentness check, see comments of the
594  *			structure for details.
595  */
596 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
597 				      struct btrfs_tree_parent_check *check)
598 {
599 	struct extent_buffer *buf = NULL;
600 	int ret;
601 
602 	ASSERT(check);
603 
604 	buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
605 					   check->level);
606 	if (IS_ERR(buf))
607 		return buf;
608 
609 	ret = btrfs_read_extent_buffer(buf, check);
610 	if (ret) {
611 		free_extent_buffer_stale(buf);
612 		return ERR_PTR(ret);
613 	}
614 	if (btrfs_check_eb_owner(buf, check->owner_root)) {
615 		free_extent_buffer_stale(buf);
616 		return ERR_PTR(-EUCLEAN);
617 	}
618 	return buf;
619 
620 }
621 
622 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
623 			 u64 objectid)
624 {
625 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
626 
627 	memset(&root->root_key, 0, sizeof(root->root_key));
628 	memset(&root->root_item, 0, sizeof(root->root_item));
629 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
630 	root->fs_info = fs_info;
631 	root->root_key.objectid = objectid;
632 	root->node = NULL;
633 	root->commit_root = NULL;
634 	root->state = 0;
635 	RB_CLEAR_NODE(&root->rb_node);
636 
637 	root->last_trans = 0;
638 	root->free_objectid = 0;
639 	root->nr_delalloc_inodes = 0;
640 	root->nr_ordered_extents = 0;
641 	root->inode_tree = RB_ROOT;
642 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
643 
644 	btrfs_init_root_block_rsv(root);
645 
646 	INIT_LIST_HEAD(&root->dirty_list);
647 	INIT_LIST_HEAD(&root->root_list);
648 	INIT_LIST_HEAD(&root->delalloc_inodes);
649 	INIT_LIST_HEAD(&root->delalloc_root);
650 	INIT_LIST_HEAD(&root->ordered_extents);
651 	INIT_LIST_HEAD(&root->ordered_root);
652 	INIT_LIST_HEAD(&root->reloc_dirty_list);
653 	INIT_LIST_HEAD(&root->logged_list[0]);
654 	INIT_LIST_HEAD(&root->logged_list[1]);
655 	spin_lock_init(&root->inode_lock);
656 	spin_lock_init(&root->delalloc_lock);
657 	spin_lock_init(&root->ordered_extent_lock);
658 	spin_lock_init(&root->accounting_lock);
659 	spin_lock_init(&root->log_extents_lock[0]);
660 	spin_lock_init(&root->log_extents_lock[1]);
661 	spin_lock_init(&root->qgroup_meta_rsv_lock);
662 	mutex_init(&root->objectid_mutex);
663 	mutex_init(&root->log_mutex);
664 	mutex_init(&root->ordered_extent_mutex);
665 	mutex_init(&root->delalloc_mutex);
666 	init_waitqueue_head(&root->qgroup_flush_wait);
667 	init_waitqueue_head(&root->log_writer_wait);
668 	init_waitqueue_head(&root->log_commit_wait[0]);
669 	init_waitqueue_head(&root->log_commit_wait[1]);
670 	INIT_LIST_HEAD(&root->log_ctxs[0]);
671 	INIT_LIST_HEAD(&root->log_ctxs[1]);
672 	atomic_set(&root->log_commit[0], 0);
673 	atomic_set(&root->log_commit[1], 0);
674 	atomic_set(&root->log_writers, 0);
675 	atomic_set(&root->log_batch, 0);
676 	refcount_set(&root->refs, 1);
677 	atomic_set(&root->snapshot_force_cow, 0);
678 	atomic_set(&root->nr_swapfiles, 0);
679 	btrfs_set_root_log_transid(root, 0);
680 	root->log_transid_committed = -1;
681 	btrfs_set_root_last_log_commit(root, 0);
682 	root->anon_dev = 0;
683 	if (!dummy) {
684 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
685 				    IO_TREE_ROOT_DIRTY_LOG_PAGES);
686 		extent_io_tree_init(fs_info, &root->log_csum_range,
687 				    IO_TREE_LOG_CSUM_RANGE);
688 	}
689 
690 	spin_lock_init(&root->root_item_lock);
691 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
692 #ifdef CONFIG_BTRFS_DEBUG
693 	INIT_LIST_HEAD(&root->leak_list);
694 	spin_lock(&fs_info->fs_roots_radix_lock);
695 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
696 	spin_unlock(&fs_info->fs_roots_radix_lock);
697 #endif
698 }
699 
700 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
701 					   u64 objectid, gfp_t flags)
702 {
703 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
704 	if (root)
705 		__setup_root(root, fs_info, objectid);
706 	return root;
707 }
708 
709 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
710 /* Should only be used by the testing infrastructure */
711 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
712 {
713 	struct btrfs_root *root;
714 
715 	if (!fs_info)
716 		return ERR_PTR(-EINVAL);
717 
718 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
719 	if (!root)
720 		return ERR_PTR(-ENOMEM);
721 
722 	/* We don't use the stripesize in selftest, set it as sectorsize */
723 	root->alloc_bytenr = 0;
724 
725 	return root;
726 }
727 #endif
728 
729 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
730 {
731 	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
732 	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
733 
734 	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
735 }
736 
737 static int global_root_key_cmp(const void *k, const struct rb_node *node)
738 {
739 	const struct btrfs_key *key = k;
740 	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
741 
742 	return btrfs_comp_cpu_keys(key, &root->root_key);
743 }
744 
745 int btrfs_global_root_insert(struct btrfs_root *root)
746 {
747 	struct btrfs_fs_info *fs_info = root->fs_info;
748 	struct rb_node *tmp;
749 	int ret = 0;
750 
751 	write_lock(&fs_info->global_root_lock);
752 	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
753 	write_unlock(&fs_info->global_root_lock);
754 
755 	if (tmp) {
756 		ret = -EEXIST;
757 		btrfs_warn(fs_info, "global root %llu %llu already exists",
758 				root->root_key.objectid, root->root_key.offset);
759 	}
760 	return ret;
761 }
762 
763 void btrfs_global_root_delete(struct btrfs_root *root)
764 {
765 	struct btrfs_fs_info *fs_info = root->fs_info;
766 
767 	write_lock(&fs_info->global_root_lock);
768 	rb_erase(&root->rb_node, &fs_info->global_root_tree);
769 	write_unlock(&fs_info->global_root_lock);
770 }
771 
772 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
773 				     struct btrfs_key *key)
774 {
775 	struct rb_node *node;
776 	struct btrfs_root *root = NULL;
777 
778 	read_lock(&fs_info->global_root_lock);
779 	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
780 	if (node)
781 		root = container_of(node, struct btrfs_root, rb_node);
782 	read_unlock(&fs_info->global_root_lock);
783 
784 	return root;
785 }
786 
787 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
788 {
789 	struct btrfs_block_group *block_group;
790 	u64 ret;
791 
792 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
793 		return 0;
794 
795 	if (bytenr)
796 		block_group = btrfs_lookup_block_group(fs_info, bytenr);
797 	else
798 		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
799 	ASSERT(block_group);
800 	if (!block_group)
801 		return 0;
802 	ret = block_group->global_root_id;
803 	btrfs_put_block_group(block_group);
804 
805 	return ret;
806 }
807 
808 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
809 {
810 	struct btrfs_key key = {
811 		.objectid = BTRFS_CSUM_TREE_OBJECTID,
812 		.type = BTRFS_ROOT_ITEM_KEY,
813 		.offset = btrfs_global_root_id(fs_info, bytenr),
814 	};
815 
816 	return btrfs_global_root(fs_info, &key);
817 }
818 
819 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
820 {
821 	struct btrfs_key key = {
822 		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
823 		.type = BTRFS_ROOT_ITEM_KEY,
824 		.offset = btrfs_global_root_id(fs_info, bytenr),
825 	};
826 
827 	return btrfs_global_root(fs_info, &key);
828 }
829 
830 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
831 {
832 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
833 		return fs_info->block_group_root;
834 	return btrfs_extent_root(fs_info, 0);
835 }
836 
837 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
838 				     u64 objectid)
839 {
840 	struct btrfs_fs_info *fs_info = trans->fs_info;
841 	struct extent_buffer *leaf;
842 	struct btrfs_root *tree_root = fs_info->tree_root;
843 	struct btrfs_root *root;
844 	struct btrfs_key key;
845 	unsigned int nofs_flag;
846 	int ret = 0;
847 
848 	/*
849 	 * We're holding a transaction handle, so use a NOFS memory allocation
850 	 * context to avoid deadlock if reclaim happens.
851 	 */
852 	nofs_flag = memalloc_nofs_save();
853 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
854 	memalloc_nofs_restore(nofs_flag);
855 	if (!root)
856 		return ERR_PTR(-ENOMEM);
857 
858 	root->root_key.objectid = objectid;
859 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
860 	root->root_key.offset = 0;
861 
862 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
863 				      0, BTRFS_NESTING_NORMAL);
864 	if (IS_ERR(leaf)) {
865 		ret = PTR_ERR(leaf);
866 		leaf = NULL;
867 		goto fail;
868 	}
869 
870 	root->node = leaf;
871 	btrfs_mark_buffer_dirty(trans, leaf);
872 
873 	root->commit_root = btrfs_root_node(root);
874 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
875 
876 	btrfs_set_root_flags(&root->root_item, 0);
877 	btrfs_set_root_limit(&root->root_item, 0);
878 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
879 	btrfs_set_root_generation(&root->root_item, trans->transid);
880 	btrfs_set_root_level(&root->root_item, 0);
881 	btrfs_set_root_refs(&root->root_item, 1);
882 	btrfs_set_root_used(&root->root_item, leaf->len);
883 	btrfs_set_root_last_snapshot(&root->root_item, 0);
884 	btrfs_set_root_dirid(&root->root_item, 0);
885 	if (is_fstree(objectid))
886 		generate_random_guid(root->root_item.uuid);
887 	else
888 		export_guid(root->root_item.uuid, &guid_null);
889 	btrfs_set_root_drop_level(&root->root_item, 0);
890 
891 	btrfs_tree_unlock(leaf);
892 
893 	key.objectid = objectid;
894 	key.type = BTRFS_ROOT_ITEM_KEY;
895 	key.offset = 0;
896 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
897 	if (ret)
898 		goto fail;
899 
900 	return root;
901 
902 fail:
903 	btrfs_put_root(root);
904 
905 	return ERR_PTR(ret);
906 }
907 
908 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
909 					 struct btrfs_fs_info *fs_info)
910 {
911 	struct btrfs_root *root;
912 
913 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
914 	if (!root)
915 		return ERR_PTR(-ENOMEM);
916 
917 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
918 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
919 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
920 
921 	return root;
922 }
923 
924 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
925 			      struct btrfs_root *root)
926 {
927 	struct extent_buffer *leaf;
928 
929 	/*
930 	 * DON'T set SHAREABLE bit for log trees.
931 	 *
932 	 * Log trees are not exposed to user space thus can't be snapshotted,
933 	 * and they go away before a real commit is actually done.
934 	 *
935 	 * They do store pointers to file data extents, and those reference
936 	 * counts still get updated (along with back refs to the log tree).
937 	 */
938 
939 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
940 			NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
941 	if (IS_ERR(leaf))
942 		return PTR_ERR(leaf);
943 
944 	root->node = leaf;
945 
946 	btrfs_mark_buffer_dirty(trans, root->node);
947 	btrfs_tree_unlock(root->node);
948 
949 	return 0;
950 }
951 
952 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
953 			     struct btrfs_fs_info *fs_info)
954 {
955 	struct btrfs_root *log_root;
956 
957 	log_root = alloc_log_tree(trans, fs_info);
958 	if (IS_ERR(log_root))
959 		return PTR_ERR(log_root);
960 
961 	if (!btrfs_is_zoned(fs_info)) {
962 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
963 
964 		if (ret) {
965 			btrfs_put_root(log_root);
966 			return ret;
967 		}
968 	}
969 
970 	WARN_ON(fs_info->log_root_tree);
971 	fs_info->log_root_tree = log_root;
972 	return 0;
973 }
974 
975 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
976 		       struct btrfs_root *root)
977 {
978 	struct btrfs_fs_info *fs_info = root->fs_info;
979 	struct btrfs_root *log_root;
980 	struct btrfs_inode_item *inode_item;
981 	int ret;
982 
983 	log_root = alloc_log_tree(trans, fs_info);
984 	if (IS_ERR(log_root))
985 		return PTR_ERR(log_root);
986 
987 	ret = btrfs_alloc_log_tree_node(trans, log_root);
988 	if (ret) {
989 		btrfs_put_root(log_root);
990 		return ret;
991 	}
992 
993 	log_root->last_trans = trans->transid;
994 	log_root->root_key.offset = root->root_key.objectid;
995 
996 	inode_item = &log_root->root_item.inode;
997 	btrfs_set_stack_inode_generation(inode_item, 1);
998 	btrfs_set_stack_inode_size(inode_item, 3);
999 	btrfs_set_stack_inode_nlink(inode_item, 1);
1000 	btrfs_set_stack_inode_nbytes(inode_item,
1001 				     fs_info->nodesize);
1002 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1003 
1004 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1005 
1006 	WARN_ON(root->log_root);
1007 	root->log_root = log_root;
1008 	btrfs_set_root_log_transid(root, 0);
1009 	root->log_transid_committed = -1;
1010 	btrfs_set_root_last_log_commit(root, 0);
1011 	return 0;
1012 }
1013 
1014 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1015 					      struct btrfs_path *path,
1016 					      struct btrfs_key *key)
1017 {
1018 	struct btrfs_root *root;
1019 	struct btrfs_tree_parent_check check = { 0 };
1020 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1021 	u64 generation;
1022 	int ret;
1023 	int level;
1024 
1025 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1026 	if (!root)
1027 		return ERR_PTR(-ENOMEM);
1028 
1029 	ret = btrfs_find_root(tree_root, key, path,
1030 			      &root->root_item, &root->root_key);
1031 	if (ret) {
1032 		if (ret > 0)
1033 			ret = -ENOENT;
1034 		goto fail;
1035 	}
1036 
1037 	generation = btrfs_root_generation(&root->root_item);
1038 	level = btrfs_root_level(&root->root_item);
1039 	check.level = level;
1040 	check.transid = generation;
1041 	check.owner_root = key->objectid;
1042 	root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1043 				     &check);
1044 	if (IS_ERR(root->node)) {
1045 		ret = PTR_ERR(root->node);
1046 		root->node = NULL;
1047 		goto fail;
1048 	}
1049 	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1050 		ret = -EIO;
1051 		goto fail;
1052 	}
1053 
1054 	/*
1055 	 * For real fs, and not log/reloc trees, root owner must
1056 	 * match its root node owner
1057 	 */
1058 	if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1059 	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1060 	    root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1061 	    root->root_key.objectid != btrfs_header_owner(root->node)) {
1062 		btrfs_crit(fs_info,
1063 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1064 			   root->root_key.objectid, root->node->start,
1065 			   btrfs_header_owner(root->node),
1066 			   root->root_key.objectid);
1067 		ret = -EUCLEAN;
1068 		goto fail;
1069 	}
1070 	root->commit_root = btrfs_root_node(root);
1071 	return root;
1072 fail:
1073 	btrfs_put_root(root);
1074 	return ERR_PTR(ret);
1075 }
1076 
1077 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1078 					struct btrfs_key *key)
1079 {
1080 	struct btrfs_root *root;
1081 	struct btrfs_path *path;
1082 
1083 	path = btrfs_alloc_path();
1084 	if (!path)
1085 		return ERR_PTR(-ENOMEM);
1086 	root = read_tree_root_path(tree_root, path, key);
1087 	btrfs_free_path(path);
1088 
1089 	return root;
1090 }
1091 
1092 /*
1093  * Initialize subvolume root in-memory structure
1094  *
1095  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1096  */
1097 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1098 {
1099 	int ret;
1100 
1101 	btrfs_drew_lock_init(&root->snapshot_lock);
1102 
1103 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1104 	    !btrfs_is_data_reloc_root(root) &&
1105 	    is_fstree(root->root_key.objectid)) {
1106 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1107 		btrfs_check_and_init_root_item(&root->root_item);
1108 	}
1109 
1110 	/*
1111 	 * Don't assign anonymous block device to roots that are not exposed to
1112 	 * userspace, the id pool is limited to 1M
1113 	 */
1114 	if (is_fstree(root->root_key.objectid) &&
1115 	    btrfs_root_refs(&root->root_item) > 0) {
1116 		if (!anon_dev) {
1117 			ret = get_anon_bdev(&root->anon_dev);
1118 			if (ret)
1119 				goto fail;
1120 		} else {
1121 			root->anon_dev = anon_dev;
1122 		}
1123 	}
1124 
1125 	mutex_lock(&root->objectid_mutex);
1126 	ret = btrfs_init_root_free_objectid(root);
1127 	if (ret) {
1128 		mutex_unlock(&root->objectid_mutex);
1129 		goto fail;
1130 	}
1131 
1132 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1133 
1134 	mutex_unlock(&root->objectid_mutex);
1135 
1136 	return 0;
1137 fail:
1138 	/* The caller is responsible to call btrfs_free_fs_root */
1139 	return ret;
1140 }
1141 
1142 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1143 					       u64 root_id)
1144 {
1145 	struct btrfs_root *root;
1146 
1147 	spin_lock(&fs_info->fs_roots_radix_lock);
1148 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1149 				 (unsigned long)root_id);
1150 	root = btrfs_grab_root(root);
1151 	spin_unlock(&fs_info->fs_roots_radix_lock);
1152 	return root;
1153 }
1154 
1155 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1156 						u64 objectid)
1157 {
1158 	struct btrfs_key key = {
1159 		.objectid = objectid,
1160 		.type = BTRFS_ROOT_ITEM_KEY,
1161 		.offset = 0,
1162 	};
1163 
1164 	switch (objectid) {
1165 	case BTRFS_ROOT_TREE_OBJECTID:
1166 		return btrfs_grab_root(fs_info->tree_root);
1167 	case BTRFS_EXTENT_TREE_OBJECTID:
1168 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1169 	case BTRFS_CHUNK_TREE_OBJECTID:
1170 		return btrfs_grab_root(fs_info->chunk_root);
1171 	case BTRFS_DEV_TREE_OBJECTID:
1172 		return btrfs_grab_root(fs_info->dev_root);
1173 	case BTRFS_CSUM_TREE_OBJECTID:
1174 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1175 	case BTRFS_QUOTA_TREE_OBJECTID:
1176 		return btrfs_grab_root(fs_info->quota_root);
1177 	case BTRFS_UUID_TREE_OBJECTID:
1178 		return btrfs_grab_root(fs_info->uuid_root);
1179 	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1180 		return btrfs_grab_root(fs_info->block_group_root);
1181 	case BTRFS_FREE_SPACE_TREE_OBJECTID:
1182 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1183 	case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1184 		return btrfs_grab_root(fs_info->stripe_root);
1185 	default:
1186 		return NULL;
1187 	}
1188 }
1189 
1190 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1191 			 struct btrfs_root *root)
1192 {
1193 	int ret;
1194 
1195 	ret = radix_tree_preload(GFP_NOFS);
1196 	if (ret)
1197 		return ret;
1198 
1199 	spin_lock(&fs_info->fs_roots_radix_lock);
1200 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1201 				(unsigned long)root->root_key.objectid,
1202 				root);
1203 	if (ret == 0) {
1204 		btrfs_grab_root(root);
1205 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1206 	}
1207 	spin_unlock(&fs_info->fs_roots_radix_lock);
1208 	radix_tree_preload_end();
1209 
1210 	return ret;
1211 }
1212 
1213 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1214 {
1215 #ifdef CONFIG_BTRFS_DEBUG
1216 	struct btrfs_root *root;
1217 
1218 	while (!list_empty(&fs_info->allocated_roots)) {
1219 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1220 
1221 		root = list_first_entry(&fs_info->allocated_roots,
1222 					struct btrfs_root, leak_list);
1223 		btrfs_err(fs_info, "leaked root %s refcount %d",
1224 			  btrfs_root_name(&root->root_key, buf),
1225 			  refcount_read(&root->refs));
1226 		while (refcount_read(&root->refs) > 1)
1227 			btrfs_put_root(root);
1228 		btrfs_put_root(root);
1229 	}
1230 #endif
1231 }
1232 
1233 static void free_global_roots(struct btrfs_fs_info *fs_info)
1234 {
1235 	struct btrfs_root *root;
1236 	struct rb_node *node;
1237 
1238 	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1239 		root = rb_entry(node, struct btrfs_root, rb_node);
1240 		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1241 		btrfs_put_root(root);
1242 	}
1243 }
1244 
1245 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1246 {
1247 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1248 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1249 	percpu_counter_destroy(&fs_info->ordered_bytes);
1250 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1251 	btrfs_free_csum_hash(fs_info);
1252 	btrfs_free_stripe_hash_table(fs_info);
1253 	btrfs_free_ref_cache(fs_info);
1254 	kfree(fs_info->balance_ctl);
1255 	kfree(fs_info->delayed_root);
1256 	free_global_roots(fs_info);
1257 	btrfs_put_root(fs_info->tree_root);
1258 	btrfs_put_root(fs_info->chunk_root);
1259 	btrfs_put_root(fs_info->dev_root);
1260 	btrfs_put_root(fs_info->quota_root);
1261 	btrfs_put_root(fs_info->uuid_root);
1262 	btrfs_put_root(fs_info->fs_root);
1263 	btrfs_put_root(fs_info->data_reloc_root);
1264 	btrfs_put_root(fs_info->block_group_root);
1265 	btrfs_put_root(fs_info->stripe_root);
1266 	btrfs_check_leaked_roots(fs_info);
1267 	btrfs_extent_buffer_leak_debug_check(fs_info);
1268 	kfree(fs_info->super_copy);
1269 	kfree(fs_info->super_for_commit);
1270 	kfree(fs_info->subpage_info);
1271 	kvfree(fs_info);
1272 }
1273 
1274 
1275 /*
1276  * Get an in-memory reference of a root structure.
1277  *
1278  * For essential trees like root/extent tree, we grab it from fs_info directly.
1279  * For subvolume trees, we check the cached filesystem roots first. If not
1280  * found, then read it from disk and add it to cached fs roots.
1281  *
1282  * Caller should release the root by calling btrfs_put_root() after the usage.
1283  *
1284  * NOTE: Reloc and log trees can't be read by this function as they share the
1285  *	 same root objectid.
1286  *
1287  * @objectid:	root id
1288  * @anon_dev:	preallocated anonymous block device number for new roots,
1289  * 		pass 0 for new allocation.
1290  * @check_ref:	whether to check root item references, If true, return -ENOENT
1291  *		for orphan roots
1292  */
1293 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1294 					     u64 objectid, dev_t anon_dev,
1295 					     bool check_ref)
1296 {
1297 	struct btrfs_root *root;
1298 	struct btrfs_path *path;
1299 	struct btrfs_key key;
1300 	int ret;
1301 
1302 	root = btrfs_get_global_root(fs_info, objectid);
1303 	if (root)
1304 		return root;
1305 
1306 	/*
1307 	 * If we're called for non-subvolume trees, and above function didn't
1308 	 * find one, do not try to read it from disk.
1309 	 *
1310 	 * This is namely for free-space-tree and quota tree, which can change
1311 	 * at runtime and should only be grabbed from fs_info.
1312 	 */
1313 	if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1314 		return ERR_PTR(-ENOENT);
1315 again:
1316 	root = btrfs_lookup_fs_root(fs_info, objectid);
1317 	if (root) {
1318 		/* Shouldn't get preallocated anon_dev for cached roots */
1319 		ASSERT(!anon_dev);
1320 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1321 			btrfs_put_root(root);
1322 			return ERR_PTR(-ENOENT);
1323 		}
1324 		return root;
1325 	}
1326 
1327 	key.objectid = objectid;
1328 	key.type = BTRFS_ROOT_ITEM_KEY;
1329 	key.offset = (u64)-1;
1330 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1331 	if (IS_ERR(root))
1332 		return root;
1333 
1334 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1335 		ret = -ENOENT;
1336 		goto fail;
1337 	}
1338 
1339 	ret = btrfs_init_fs_root(root, anon_dev);
1340 	if (ret)
1341 		goto fail;
1342 
1343 	path = btrfs_alloc_path();
1344 	if (!path) {
1345 		ret = -ENOMEM;
1346 		goto fail;
1347 	}
1348 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1349 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1350 	key.offset = objectid;
1351 
1352 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1353 	btrfs_free_path(path);
1354 	if (ret < 0)
1355 		goto fail;
1356 	if (ret == 0)
1357 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1358 
1359 	ret = btrfs_insert_fs_root(fs_info, root);
1360 	if (ret) {
1361 		if (ret == -EEXIST) {
1362 			btrfs_put_root(root);
1363 			goto again;
1364 		}
1365 		goto fail;
1366 	}
1367 	return root;
1368 fail:
1369 	/*
1370 	 * If our caller provided us an anonymous device, then it's his
1371 	 * responsibility to free it in case we fail. So we have to set our
1372 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1373 	 * and once again by our caller.
1374 	 */
1375 	if (anon_dev)
1376 		root->anon_dev = 0;
1377 	btrfs_put_root(root);
1378 	return ERR_PTR(ret);
1379 }
1380 
1381 /*
1382  * Get in-memory reference of a root structure
1383  *
1384  * @objectid:	tree objectid
1385  * @check_ref:	if set, verify that the tree exists and the item has at least
1386  *		one reference
1387  */
1388 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1389 				     u64 objectid, bool check_ref)
1390 {
1391 	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1392 }
1393 
1394 /*
1395  * Get in-memory reference of a root structure, created as new, optionally pass
1396  * the anonymous block device id
1397  *
1398  * @objectid:	tree objectid
1399  * @anon_dev:	if zero, allocate a new anonymous block device or use the
1400  *		parameter value
1401  */
1402 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1403 					 u64 objectid, dev_t anon_dev)
1404 {
1405 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1406 }
1407 
1408 /*
1409  * Return a root for the given objectid.
1410  *
1411  * @fs_info:	the fs_info
1412  * @objectid:	the objectid we need to lookup
1413  *
1414  * This is exclusively used for backref walking, and exists specifically because
1415  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1416  * creation time, which means we may have to read the tree_root in order to look
1417  * up a fs root that is not in memory.  If the root is not in memory we will
1418  * read the tree root commit root and look up the fs root from there.  This is a
1419  * temporary root, it will not be inserted into the radix tree as it doesn't
1420  * have the most uptodate information, it'll simply be discarded once the
1421  * backref code is finished using the root.
1422  */
1423 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1424 						 struct btrfs_path *path,
1425 						 u64 objectid)
1426 {
1427 	struct btrfs_root *root;
1428 	struct btrfs_key key;
1429 
1430 	ASSERT(path->search_commit_root && path->skip_locking);
1431 
1432 	/*
1433 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1434 	 * since this is called via the backref walking code we won't be looking
1435 	 * up a root that doesn't exist, unless there's corruption.  So if root
1436 	 * != NULL just return it.
1437 	 */
1438 	root = btrfs_get_global_root(fs_info, objectid);
1439 	if (root)
1440 		return root;
1441 
1442 	root = btrfs_lookup_fs_root(fs_info, objectid);
1443 	if (root)
1444 		return root;
1445 
1446 	key.objectid = objectid;
1447 	key.type = BTRFS_ROOT_ITEM_KEY;
1448 	key.offset = (u64)-1;
1449 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1450 	btrfs_release_path(path);
1451 
1452 	return root;
1453 }
1454 
1455 static int cleaner_kthread(void *arg)
1456 {
1457 	struct btrfs_fs_info *fs_info = arg;
1458 	int again;
1459 
1460 	while (1) {
1461 		again = 0;
1462 
1463 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1464 
1465 		/* Make the cleaner go to sleep early. */
1466 		if (btrfs_need_cleaner_sleep(fs_info))
1467 			goto sleep;
1468 
1469 		/*
1470 		 * Do not do anything if we might cause open_ctree() to block
1471 		 * before we have finished mounting the filesystem.
1472 		 */
1473 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1474 			goto sleep;
1475 
1476 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1477 			goto sleep;
1478 
1479 		/*
1480 		 * Avoid the problem that we change the status of the fs
1481 		 * during the above check and trylock.
1482 		 */
1483 		if (btrfs_need_cleaner_sleep(fs_info)) {
1484 			mutex_unlock(&fs_info->cleaner_mutex);
1485 			goto sleep;
1486 		}
1487 
1488 		if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1489 			btrfs_sysfs_feature_update(fs_info);
1490 
1491 		btrfs_run_delayed_iputs(fs_info);
1492 
1493 		again = btrfs_clean_one_deleted_snapshot(fs_info);
1494 		mutex_unlock(&fs_info->cleaner_mutex);
1495 
1496 		/*
1497 		 * The defragger has dealt with the R/O remount and umount,
1498 		 * needn't do anything special here.
1499 		 */
1500 		btrfs_run_defrag_inodes(fs_info);
1501 
1502 		/*
1503 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1504 		 * with relocation (btrfs_relocate_chunk) and relocation
1505 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1506 		 * after acquiring fs_info->reclaim_bgs_lock. So we
1507 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1508 		 * unused block groups.
1509 		 */
1510 		btrfs_delete_unused_bgs(fs_info);
1511 
1512 		/*
1513 		 * Reclaim block groups in the reclaim_bgs list after we deleted
1514 		 * all unused block_groups. This possibly gives us some more free
1515 		 * space.
1516 		 */
1517 		btrfs_reclaim_bgs(fs_info);
1518 sleep:
1519 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1520 		if (kthread_should_park())
1521 			kthread_parkme();
1522 		if (kthread_should_stop())
1523 			return 0;
1524 		if (!again) {
1525 			set_current_state(TASK_INTERRUPTIBLE);
1526 			schedule();
1527 			__set_current_state(TASK_RUNNING);
1528 		}
1529 	}
1530 }
1531 
1532 static int transaction_kthread(void *arg)
1533 {
1534 	struct btrfs_root *root = arg;
1535 	struct btrfs_fs_info *fs_info = root->fs_info;
1536 	struct btrfs_trans_handle *trans;
1537 	struct btrfs_transaction *cur;
1538 	u64 transid;
1539 	time64_t delta;
1540 	unsigned long delay;
1541 	bool cannot_commit;
1542 
1543 	do {
1544 		cannot_commit = false;
1545 		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1546 		mutex_lock(&fs_info->transaction_kthread_mutex);
1547 
1548 		spin_lock(&fs_info->trans_lock);
1549 		cur = fs_info->running_transaction;
1550 		if (!cur) {
1551 			spin_unlock(&fs_info->trans_lock);
1552 			goto sleep;
1553 		}
1554 
1555 		delta = ktime_get_seconds() - cur->start_time;
1556 		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1557 		    cur->state < TRANS_STATE_COMMIT_PREP &&
1558 		    delta < fs_info->commit_interval) {
1559 			spin_unlock(&fs_info->trans_lock);
1560 			delay -= msecs_to_jiffies((delta - 1) * 1000);
1561 			delay = min(delay,
1562 				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1563 			goto sleep;
1564 		}
1565 		transid = cur->transid;
1566 		spin_unlock(&fs_info->trans_lock);
1567 
1568 		/* If the file system is aborted, this will always fail. */
1569 		trans = btrfs_attach_transaction(root);
1570 		if (IS_ERR(trans)) {
1571 			if (PTR_ERR(trans) != -ENOENT)
1572 				cannot_commit = true;
1573 			goto sleep;
1574 		}
1575 		if (transid == trans->transid) {
1576 			btrfs_commit_transaction(trans);
1577 		} else {
1578 			btrfs_end_transaction(trans);
1579 		}
1580 sleep:
1581 		wake_up_process(fs_info->cleaner_kthread);
1582 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1583 
1584 		if (BTRFS_FS_ERROR(fs_info))
1585 			btrfs_cleanup_transaction(fs_info);
1586 		if (!kthread_should_stop() &&
1587 				(!btrfs_transaction_blocked(fs_info) ||
1588 				 cannot_commit))
1589 			schedule_timeout_interruptible(delay);
1590 	} while (!kthread_should_stop());
1591 	return 0;
1592 }
1593 
1594 /*
1595  * This will find the highest generation in the array of root backups.  The
1596  * index of the highest array is returned, or -EINVAL if we can't find
1597  * anything.
1598  *
1599  * We check to make sure the array is valid by comparing the
1600  * generation of the latest  root in the array with the generation
1601  * in the super block.  If they don't match we pitch it.
1602  */
1603 static int find_newest_super_backup(struct btrfs_fs_info *info)
1604 {
1605 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1606 	u64 cur;
1607 	struct btrfs_root_backup *root_backup;
1608 	int i;
1609 
1610 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1611 		root_backup = info->super_copy->super_roots + i;
1612 		cur = btrfs_backup_tree_root_gen(root_backup);
1613 		if (cur == newest_gen)
1614 			return i;
1615 	}
1616 
1617 	return -EINVAL;
1618 }
1619 
1620 /*
1621  * copy all the root pointers into the super backup array.
1622  * this will bump the backup pointer by one when it is
1623  * done
1624  */
1625 static void backup_super_roots(struct btrfs_fs_info *info)
1626 {
1627 	const int next_backup = info->backup_root_index;
1628 	struct btrfs_root_backup *root_backup;
1629 
1630 	root_backup = info->super_for_commit->super_roots + next_backup;
1631 
1632 	/*
1633 	 * make sure all of our padding and empty slots get zero filled
1634 	 * regardless of which ones we use today
1635 	 */
1636 	memset(root_backup, 0, sizeof(*root_backup));
1637 
1638 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1639 
1640 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1641 	btrfs_set_backup_tree_root_gen(root_backup,
1642 			       btrfs_header_generation(info->tree_root->node));
1643 
1644 	btrfs_set_backup_tree_root_level(root_backup,
1645 			       btrfs_header_level(info->tree_root->node));
1646 
1647 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1648 	btrfs_set_backup_chunk_root_gen(root_backup,
1649 			       btrfs_header_generation(info->chunk_root->node));
1650 	btrfs_set_backup_chunk_root_level(root_backup,
1651 			       btrfs_header_level(info->chunk_root->node));
1652 
1653 	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1654 		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1655 		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1656 
1657 		btrfs_set_backup_extent_root(root_backup,
1658 					     extent_root->node->start);
1659 		btrfs_set_backup_extent_root_gen(root_backup,
1660 				btrfs_header_generation(extent_root->node));
1661 		btrfs_set_backup_extent_root_level(root_backup,
1662 					btrfs_header_level(extent_root->node));
1663 
1664 		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1665 		btrfs_set_backup_csum_root_gen(root_backup,
1666 					       btrfs_header_generation(csum_root->node));
1667 		btrfs_set_backup_csum_root_level(root_backup,
1668 						 btrfs_header_level(csum_root->node));
1669 	}
1670 
1671 	/*
1672 	 * we might commit during log recovery, which happens before we set
1673 	 * the fs_root.  Make sure it is valid before we fill it in.
1674 	 */
1675 	if (info->fs_root && info->fs_root->node) {
1676 		btrfs_set_backup_fs_root(root_backup,
1677 					 info->fs_root->node->start);
1678 		btrfs_set_backup_fs_root_gen(root_backup,
1679 			       btrfs_header_generation(info->fs_root->node));
1680 		btrfs_set_backup_fs_root_level(root_backup,
1681 			       btrfs_header_level(info->fs_root->node));
1682 	}
1683 
1684 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1685 	btrfs_set_backup_dev_root_gen(root_backup,
1686 			       btrfs_header_generation(info->dev_root->node));
1687 	btrfs_set_backup_dev_root_level(root_backup,
1688 				       btrfs_header_level(info->dev_root->node));
1689 
1690 	btrfs_set_backup_total_bytes(root_backup,
1691 			     btrfs_super_total_bytes(info->super_copy));
1692 	btrfs_set_backup_bytes_used(root_backup,
1693 			     btrfs_super_bytes_used(info->super_copy));
1694 	btrfs_set_backup_num_devices(root_backup,
1695 			     btrfs_super_num_devices(info->super_copy));
1696 
1697 	/*
1698 	 * if we don't copy this out to the super_copy, it won't get remembered
1699 	 * for the next commit
1700 	 */
1701 	memcpy(&info->super_copy->super_roots,
1702 	       &info->super_for_commit->super_roots,
1703 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1704 }
1705 
1706 /*
1707  * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1708  * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1709  *
1710  * @fs_info:  filesystem whose backup roots need to be read
1711  * @priority: priority of backup root required
1712  *
1713  * Returns backup root index on success and -EINVAL otherwise.
1714  */
1715 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1716 {
1717 	int backup_index = find_newest_super_backup(fs_info);
1718 	struct btrfs_super_block *super = fs_info->super_copy;
1719 	struct btrfs_root_backup *root_backup;
1720 
1721 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1722 		if (priority == 0)
1723 			return backup_index;
1724 
1725 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1726 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1727 	} else {
1728 		return -EINVAL;
1729 	}
1730 
1731 	root_backup = super->super_roots + backup_index;
1732 
1733 	btrfs_set_super_generation(super,
1734 				   btrfs_backup_tree_root_gen(root_backup));
1735 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1736 	btrfs_set_super_root_level(super,
1737 				   btrfs_backup_tree_root_level(root_backup));
1738 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1739 
1740 	/*
1741 	 * Fixme: the total bytes and num_devices need to match or we should
1742 	 * need a fsck
1743 	 */
1744 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1745 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1746 
1747 	return backup_index;
1748 }
1749 
1750 /* helper to cleanup workers */
1751 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1752 {
1753 	btrfs_destroy_workqueue(fs_info->fixup_workers);
1754 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1755 	btrfs_destroy_workqueue(fs_info->workers);
1756 	if (fs_info->endio_workers)
1757 		destroy_workqueue(fs_info->endio_workers);
1758 	if (fs_info->rmw_workers)
1759 		destroy_workqueue(fs_info->rmw_workers);
1760 	if (fs_info->compressed_write_workers)
1761 		destroy_workqueue(fs_info->compressed_write_workers);
1762 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1763 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1764 	btrfs_destroy_workqueue(fs_info->delayed_workers);
1765 	btrfs_destroy_workqueue(fs_info->caching_workers);
1766 	btrfs_destroy_workqueue(fs_info->flush_workers);
1767 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1768 	if (fs_info->discard_ctl.discard_workers)
1769 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1770 	/*
1771 	 * Now that all other work queues are destroyed, we can safely destroy
1772 	 * the queues used for metadata I/O, since tasks from those other work
1773 	 * queues can do metadata I/O operations.
1774 	 */
1775 	if (fs_info->endio_meta_workers)
1776 		destroy_workqueue(fs_info->endio_meta_workers);
1777 }
1778 
1779 static void free_root_extent_buffers(struct btrfs_root *root)
1780 {
1781 	if (root) {
1782 		free_extent_buffer(root->node);
1783 		free_extent_buffer(root->commit_root);
1784 		root->node = NULL;
1785 		root->commit_root = NULL;
1786 	}
1787 }
1788 
1789 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1790 {
1791 	struct btrfs_root *root, *tmp;
1792 
1793 	rbtree_postorder_for_each_entry_safe(root, tmp,
1794 					     &fs_info->global_root_tree,
1795 					     rb_node)
1796 		free_root_extent_buffers(root);
1797 }
1798 
1799 /* helper to cleanup tree roots */
1800 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1801 {
1802 	free_root_extent_buffers(info->tree_root);
1803 
1804 	free_global_root_pointers(info);
1805 	free_root_extent_buffers(info->dev_root);
1806 	free_root_extent_buffers(info->quota_root);
1807 	free_root_extent_buffers(info->uuid_root);
1808 	free_root_extent_buffers(info->fs_root);
1809 	free_root_extent_buffers(info->data_reloc_root);
1810 	free_root_extent_buffers(info->block_group_root);
1811 	free_root_extent_buffers(info->stripe_root);
1812 	if (free_chunk_root)
1813 		free_root_extent_buffers(info->chunk_root);
1814 }
1815 
1816 void btrfs_put_root(struct btrfs_root *root)
1817 {
1818 	if (!root)
1819 		return;
1820 
1821 	if (refcount_dec_and_test(&root->refs)) {
1822 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1823 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1824 		if (root->anon_dev)
1825 			free_anon_bdev(root->anon_dev);
1826 		free_root_extent_buffers(root);
1827 #ifdef CONFIG_BTRFS_DEBUG
1828 		spin_lock(&root->fs_info->fs_roots_radix_lock);
1829 		list_del_init(&root->leak_list);
1830 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
1831 #endif
1832 		kfree(root);
1833 	}
1834 }
1835 
1836 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1837 {
1838 	int ret;
1839 	struct btrfs_root *gang[8];
1840 	int i;
1841 
1842 	while (!list_empty(&fs_info->dead_roots)) {
1843 		gang[0] = list_entry(fs_info->dead_roots.next,
1844 				     struct btrfs_root, root_list);
1845 		list_del(&gang[0]->root_list);
1846 
1847 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1848 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1849 		btrfs_put_root(gang[0]);
1850 	}
1851 
1852 	while (1) {
1853 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1854 					     (void **)gang, 0,
1855 					     ARRAY_SIZE(gang));
1856 		if (!ret)
1857 			break;
1858 		for (i = 0; i < ret; i++)
1859 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1860 	}
1861 }
1862 
1863 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1864 {
1865 	mutex_init(&fs_info->scrub_lock);
1866 	atomic_set(&fs_info->scrubs_running, 0);
1867 	atomic_set(&fs_info->scrub_pause_req, 0);
1868 	atomic_set(&fs_info->scrubs_paused, 0);
1869 	atomic_set(&fs_info->scrub_cancel_req, 0);
1870 	init_waitqueue_head(&fs_info->scrub_pause_wait);
1871 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
1872 }
1873 
1874 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1875 {
1876 	spin_lock_init(&fs_info->balance_lock);
1877 	mutex_init(&fs_info->balance_mutex);
1878 	atomic_set(&fs_info->balance_pause_req, 0);
1879 	atomic_set(&fs_info->balance_cancel_req, 0);
1880 	fs_info->balance_ctl = NULL;
1881 	init_waitqueue_head(&fs_info->balance_wait_q);
1882 	atomic_set(&fs_info->reloc_cancel_req, 0);
1883 }
1884 
1885 static int btrfs_init_btree_inode(struct super_block *sb)
1886 {
1887 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1888 	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1889 					      fs_info->tree_root);
1890 	struct inode *inode;
1891 
1892 	inode = new_inode(sb);
1893 	if (!inode)
1894 		return -ENOMEM;
1895 
1896 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1897 	set_nlink(inode, 1);
1898 	/*
1899 	 * we set the i_size on the btree inode to the max possible int.
1900 	 * the real end of the address space is determined by all of
1901 	 * the devices in the system
1902 	 */
1903 	inode->i_size = OFFSET_MAX;
1904 	inode->i_mapping->a_ops = &btree_aops;
1905 	mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1906 
1907 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
1908 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1909 			    IO_TREE_BTREE_INODE_IO);
1910 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1911 
1912 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1913 	BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1914 	BTRFS_I(inode)->location.type = 0;
1915 	BTRFS_I(inode)->location.offset = 0;
1916 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1917 	__insert_inode_hash(inode, hash);
1918 	fs_info->btree_inode = inode;
1919 
1920 	return 0;
1921 }
1922 
1923 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1924 {
1925 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1926 	init_rwsem(&fs_info->dev_replace.rwsem);
1927 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1928 }
1929 
1930 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1931 {
1932 	spin_lock_init(&fs_info->qgroup_lock);
1933 	mutex_init(&fs_info->qgroup_ioctl_lock);
1934 	fs_info->qgroup_tree = RB_ROOT;
1935 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1936 	fs_info->qgroup_seq = 1;
1937 	fs_info->qgroup_ulist = NULL;
1938 	fs_info->qgroup_rescan_running = false;
1939 	fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
1940 	mutex_init(&fs_info->qgroup_rescan_lock);
1941 }
1942 
1943 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1944 {
1945 	u32 max_active = fs_info->thread_pool_size;
1946 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1947 	unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1948 
1949 	fs_info->workers =
1950 		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1951 
1952 	fs_info->delalloc_workers =
1953 		btrfs_alloc_workqueue(fs_info, "delalloc",
1954 				      flags, max_active, 2);
1955 
1956 	fs_info->flush_workers =
1957 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1958 				      flags, max_active, 0);
1959 
1960 	fs_info->caching_workers =
1961 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1962 
1963 	fs_info->fixup_workers =
1964 		btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1965 
1966 	fs_info->endio_workers =
1967 		alloc_workqueue("btrfs-endio", flags, max_active);
1968 	fs_info->endio_meta_workers =
1969 		alloc_workqueue("btrfs-endio-meta", flags, max_active);
1970 	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
1971 	fs_info->endio_write_workers =
1972 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1973 				      max_active, 2);
1974 	fs_info->compressed_write_workers =
1975 		alloc_workqueue("btrfs-compressed-write", flags, max_active);
1976 	fs_info->endio_freespace_worker =
1977 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
1978 				      max_active, 0);
1979 	fs_info->delayed_workers =
1980 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
1981 				      max_active, 0);
1982 	fs_info->qgroup_rescan_workers =
1983 		btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
1984 					      ordered_flags);
1985 	fs_info->discard_ctl.discard_workers =
1986 		alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
1987 
1988 	if (!(fs_info->workers &&
1989 	      fs_info->delalloc_workers && fs_info->flush_workers &&
1990 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
1991 	      fs_info->compressed_write_workers &&
1992 	      fs_info->endio_write_workers &&
1993 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
1994 	      fs_info->caching_workers && fs_info->fixup_workers &&
1995 	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
1996 	      fs_info->discard_ctl.discard_workers)) {
1997 		return -ENOMEM;
1998 	}
1999 
2000 	return 0;
2001 }
2002 
2003 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2004 {
2005 	struct crypto_shash *csum_shash;
2006 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2007 
2008 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2009 
2010 	if (IS_ERR(csum_shash)) {
2011 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2012 			  csum_driver);
2013 		return PTR_ERR(csum_shash);
2014 	}
2015 
2016 	fs_info->csum_shash = csum_shash;
2017 
2018 	/*
2019 	 * Check if the checksum implementation is a fast accelerated one.
2020 	 * As-is this is a bit of a hack and should be replaced once the csum
2021 	 * implementations provide that information themselves.
2022 	 */
2023 	switch (csum_type) {
2024 	case BTRFS_CSUM_TYPE_CRC32:
2025 		if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2026 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2027 		break;
2028 	case BTRFS_CSUM_TYPE_XXHASH:
2029 		set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2030 		break;
2031 	default:
2032 		break;
2033 	}
2034 
2035 	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2036 			btrfs_super_csum_name(csum_type),
2037 			crypto_shash_driver_name(csum_shash));
2038 	return 0;
2039 }
2040 
2041 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2042 			    struct btrfs_fs_devices *fs_devices)
2043 {
2044 	int ret;
2045 	struct btrfs_tree_parent_check check = { 0 };
2046 	struct btrfs_root *log_tree_root;
2047 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2048 	u64 bytenr = btrfs_super_log_root(disk_super);
2049 	int level = btrfs_super_log_root_level(disk_super);
2050 
2051 	if (fs_devices->rw_devices == 0) {
2052 		btrfs_warn(fs_info, "log replay required on RO media");
2053 		return -EIO;
2054 	}
2055 
2056 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2057 					 GFP_KERNEL);
2058 	if (!log_tree_root)
2059 		return -ENOMEM;
2060 
2061 	check.level = level;
2062 	check.transid = fs_info->generation + 1;
2063 	check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2064 	log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2065 	if (IS_ERR(log_tree_root->node)) {
2066 		btrfs_warn(fs_info, "failed to read log tree");
2067 		ret = PTR_ERR(log_tree_root->node);
2068 		log_tree_root->node = NULL;
2069 		btrfs_put_root(log_tree_root);
2070 		return ret;
2071 	}
2072 	if (!extent_buffer_uptodate(log_tree_root->node)) {
2073 		btrfs_err(fs_info, "failed to read log tree");
2074 		btrfs_put_root(log_tree_root);
2075 		return -EIO;
2076 	}
2077 
2078 	/* returns with log_tree_root freed on success */
2079 	ret = btrfs_recover_log_trees(log_tree_root);
2080 	if (ret) {
2081 		btrfs_handle_fs_error(fs_info, ret,
2082 				      "Failed to recover log tree");
2083 		btrfs_put_root(log_tree_root);
2084 		return ret;
2085 	}
2086 
2087 	if (sb_rdonly(fs_info->sb)) {
2088 		ret = btrfs_commit_super(fs_info);
2089 		if (ret)
2090 			return ret;
2091 	}
2092 
2093 	return 0;
2094 }
2095 
2096 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2097 				      struct btrfs_path *path, u64 objectid,
2098 				      const char *name)
2099 {
2100 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2101 	struct btrfs_root *root;
2102 	u64 max_global_id = 0;
2103 	int ret;
2104 	struct btrfs_key key = {
2105 		.objectid = objectid,
2106 		.type = BTRFS_ROOT_ITEM_KEY,
2107 		.offset = 0,
2108 	};
2109 	bool found = false;
2110 
2111 	/* If we have IGNOREDATACSUMS skip loading these roots. */
2112 	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2113 	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2114 		set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2115 		return 0;
2116 	}
2117 
2118 	while (1) {
2119 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2120 		if (ret < 0)
2121 			break;
2122 
2123 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2124 			ret = btrfs_next_leaf(tree_root, path);
2125 			if (ret) {
2126 				if (ret > 0)
2127 					ret = 0;
2128 				break;
2129 			}
2130 		}
2131 		ret = 0;
2132 
2133 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2134 		if (key.objectid != objectid)
2135 			break;
2136 		btrfs_release_path(path);
2137 
2138 		/*
2139 		 * Just worry about this for extent tree, it'll be the same for
2140 		 * everybody.
2141 		 */
2142 		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2143 			max_global_id = max(max_global_id, key.offset);
2144 
2145 		found = true;
2146 		root = read_tree_root_path(tree_root, path, &key);
2147 		if (IS_ERR(root)) {
2148 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2149 				ret = PTR_ERR(root);
2150 			break;
2151 		}
2152 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2153 		ret = btrfs_global_root_insert(root);
2154 		if (ret) {
2155 			btrfs_put_root(root);
2156 			break;
2157 		}
2158 		key.offset++;
2159 	}
2160 	btrfs_release_path(path);
2161 
2162 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2163 		fs_info->nr_global_roots = max_global_id + 1;
2164 
2165 	if (!found || ret) {
2166 		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2167 			set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2168 
2169 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2170 			ret = ret ? ret : -ENOENT;
2171 		else
2172 			ret = 0;
2173 		btrfs_err(fs_info, "failed to load root %s", name);
2174 	}
2175 	return ret;
2176 }
2177 
2178 static int load_global_roots(struct btrfs_root *tree_root)
2179 {
2180 	struct btrfs_path *path;
2181 	int ret = 0;
2182 
2183 	path = btrfs_alloc_path();
2184 	if (!path)
2185 		return -ENOMEM;
2186 
2187 	ret = load_global_roots_objectid(tree_root, path,
2188 					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2189 	if (ret)
2190 		goto out;
2191 	ret = load_global_roots_objectid(tree_root, path,
2192 					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2193 	if (ret)
2194 		goto out;
2195 	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2196 		goto out;
2197 	ret = load_global_roots_objectid(tree_root, path,
2198 					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2199 					 "free space");
2200 out:
2201 	btrfs_free_path(path);
2202 	return ret;
2203 }
2204 
2205 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2206 {
2207 	struct btrfs_root *tree_root = fs_info->tree_root;
2208 	struct btrfs_root *root;
2209 	struct btrfs_key location;
2210 	int ret;
2211 
2212 	BUG_ON(!fs_info->tree_root);
2213 
2214 	ret = load_global_roots(tree_root);
2215 	if (ret)
2216 		return ret;
2217 
2218 	location.type = BTRFS_ROOT_ITEM_KEY;
2219 	location.offset = 0;
2220 
2221 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2222 		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2223 		root = btrfs_read_tree_root(tree_root, &location);
2224 		if (IS_ERR(root)) {
2225 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2226 				ret = PTR_ERR(root);
2227 				goto out;
2228 			}
2229 		} else {
2230 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2231 			fs_info->block_group_root = root;
2232 		}
2233 	}
2234 
2235 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2236 	root = btrfs_read_tree_root(tree_root, &location);
2237 	if (IS_ERR(root)) {
2238 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2239 			ret = PTR_ERR(root);
2240 			goto out;
2241 		}
2242 	} else {
2243 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2244 		fs_info->dev_root = root;
2245 	}
2246 	/* Initialize fs_info for all devices in any case */
2247 	ret = btrfs_init_devices_late(fs_info);
2248 	if (ret)
2249 		goto out;
2250 
2251 	/*
2252 	 * This tree can share blocks with some other fs tree during relocation
2253 	 * and we need a proper setup by btrfs_get_fs_root
2254 	 */
2255 	root = btrfs_get_fs_root(tree_root->fs_info,
2256 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2257 	if (IS_ERR(root)) {
2258 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2259 			ret = PTR_ERR(root);
2260 			goto out;
2261 		}
2262 	} else {
2263 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2264 		fs_info->data_reloc_root = root;
2265 	}
2266 
2267 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2268 	root = btrfs_read_tree_root(tree_root, &location);
2269 	if (!IS_ERR(root)) {
2270 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2271 		fs_info->quota_root = root;
2272 	}
2273 
2274 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2275 	root = btrfs_read_tree_root(tree_root, &location);
2276 	if (IS_ERR(root)) {
2277 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2278 			ret = PTR_ERR(root);
2279 			if (ret != -ENOENT)
2280 				goto out;
2281 		}
2282 	} else {
2283 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2284 		fs_info->uuid_root = root;
2285 	}
2286 
2287 	if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2288 		location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2289 		root = btrfs_read_tree_root(tree_root, &location);
2290 		if (IS_ERR(root)) {
2291 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2292 				ret = PTR_ERR(root);
2293 				goto out;
2294 			}
2295 		} else {
2296 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2297 			fs_info->stripe_root = root;
2298 		}
2299 	}
2300 
2301 	return 0;
2302 out:
2303 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2304 		   location.objectid, ret);
2305 	return ret;
2306 }
2307 
2308 /*
2309  * Real super block validation
2310  * NOTE: super csum type and incompat features will not be checked here.
2311  *
2312  * @sb:		super block to check
2313  * @mirror_num:	the super block number to check its bytenr:
2314  * 		0	the primary (1st) sb
2315  * 		1, 2	2nd and 3rd backup copy
2316  * 	       -1	skip bytenr check
2317  */
2318 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2319 			 struct btrfs_super_block *sb, int mirror_num)
2320 {
2321 	u64 nodesize = btrfs_super_nodesize(sb);
2322 	u64 sectorsize = btrfs_super_sectorsize(sb);
2323 	int ret = 0;
2324 
2325 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2326 		btrfs_err(fs_info, "no valid FS found");
2327 		ret = -EINVAL;
2328 	}
2329 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2330 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2331 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2332 		ret = -EINVAL;
2333 	}
2334 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2335 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2336 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2337 		ret = -EINVAL;
2338 	}
2339 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2340 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2341 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2342 		ret = -EINVAL;
2343 	}
2344 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2345 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2346 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2347 		ret = -EINVAL;
2348 	}
2349 
2350 	/*
2351 	 * Check sectorsize and nodesize first, other check will need it.
2352 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2353 	 */
2354 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2355 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2356 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2357 		ret = -EINVAL;
2358 	}
2359 
2360 	/*
2361 	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2362 	 *
2363 	 * We can support 16K sectorsize with 64K page size without problem,
2364 	 * but such sectorsize/pagesize combination doesn't make much sense.
2365 	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2366 	 * beginning.
2367 	 */
2368 	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2369 		btrfs_err(fs_info,
2370 			"sectorsize %llu not yet supported for page size %lu",
2371 			sectorsize, PAGE_SIZE);
2372 		ret = -EINVAL;
2373 	}
2374 
2375 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2376 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2377 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2378 		ret = -EINVAL;
2379 	}
2380 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2381 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2382 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2383 		ret = -EINVAL;
2384 	}
2385 
2386 	/* Root alignment check */
2387 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2388 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2389 			   btrfs_super_root(sb));
2390 		ret = -EINVAL;
2391 	}
2392 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2393 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2394 			   btrfs_super_chunk_root(sb));
2395 		ret = -EINVAL;
2396 	}
2397 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2398 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2399 			   btrfs_super_log_root(sb));
2400 		ret = -EINVAL;
2401 	}
2402 
2403 	if (!fs_info->fs_devices->temp_fsid &&
2404 	    memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2405 		btrfs_err(fs_info,
2406 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2407 			  sb->fsid, fs_info->fs_devices->fsid);
2408 		ret = -EINVAL;
2409 	}
2410 
2411 	if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2412 		   BTRFS_FSID_SIZE) != 0) {
2413 		btrfs_err(fs_info,
2414 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2415 			  btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2416 		ret = -EINVAL;
2417 	}
2418 
2419 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2420 		   BTRFS_FSID_SIZE) != 0) {
2421 		btrfs_err(fs_info,
2422 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2423 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2424 		ret = -EINVAL;
2425 	}
2426 
2427 	/*
2428 	 * Artificial requirement for block-group-tree to force newer features
2429 	 * (free-space-tree, no-holes) so the test matrix is smaller.
2430 	 */
2431 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2432 	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2433 	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2434 		btrfs_err(fs_info,
2435 		"block-group-tree feature requires fres-space-tree and no-holes");
2436 		ret = -EINVAL;
2437 	}
2438 
2439 	/*
2440 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2441 	 * done later
2442 	 */
2443 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2444 		btrfs_err(fs_info, "bytes_used is too small %llu",
2445 			  btrfs_super_bytes_used(sb));
2446 		ret = -EINVAL;
2447 	}
2448 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2449 		btrfs_err(fs_info, "invalid stripesize %u",
2450 			  btrfs_super_stripesize(sb));
2451 		ret = -EINVAL;
2452 	}
2453 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2454 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2455 			   btrfs_super_num_devices(sb));
2456 	if (btrfs_super_num_devices(sb) == 0) {
2457 		btrfs_err(fs_info, "number of devices is 0");
2458 		ret = -EINVAL;
2459 	}
2460 
2461 	if (mirror_num >= 0 &&
2462 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2463 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2464 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2465 		ret = -EINVAL;
2466 	}
2467 
2468 	/*
2469 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2470 	 * and one chunk
2471 	 */
2472 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2473 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2474 			  btrfs_super_sys_array_size(sb),
2475 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2476 		ret = -EINVAL;
2477 	}
2478 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2479 			+ sizeof(struct btrfs_chunk)) {
2480 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2481 			  btrfs_super_sys_array_size(sb),
2482 			  sizeof(struct btrfs_disk_key)
2483 			  + sizeof(struct btrfs_chunk));
2484 		ret = -EINVAL;
2485 	}
2486 
2487 	/*
2488 	 * The generation is a global counter, we'll trust it more than the others
2489 	 * but it's still possible that it's the one that's wrong.
2490 	 */
2491 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2492 		btrfs_warn(fs_info,
2493 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2494 			btrfs_super_generation(sb),
2495 			btrfs_super_chunk_root_generation(sb));
2496 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2497 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2498 		btrfs_warn(fs_info,
2499 			"suspicious: generation < cache_generation: %llu < %llu",
2500 			btrfs_super_generation(sb),
2501 			btrfs_super_cache_generation(sb));
2502 
2503 	return ret;
2504 }
2505 
2506 /*
2507  * Validation of super block at mount time.
2508  * Some checks already done early at mount time, like csum type and incompat
2509  * flags will be skipped.
2510  */
2511 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2512 {
2513 	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2514 }
2515 
2516 /*
2517  * Validation of super block at write time.
2518  * Some checks like bytenr check will be skipped as their values will be
2519  * overwritten soon.
2520  * Extra checks like csum type and incompat flags will be done here.
2521  */
2522 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2523 				      struct btrfs_super_block *sb)
2524 {
2525 	int ret;
2526 
2527 	ret = btrfs_validate_super(fs_info, sb, -1);
2528 	if (ret < 0)
2529 		goto out;
2530 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2531 		ret = -EUCLEAN;
2532 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2533 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2534 		goto out;
2535 	}
2536 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2537 		ret = -EUCLEAN;
2538 		btrfs_err(fs_info,
2539 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2540 			  btrfs_super_incompat_flags(sb),
2541 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2542 		goto out;
2543 	}
2544 out:
2545 	if (ret < 0)
2546 		btrfs_err(fs_info,
2547 		"super block corruption detected before writing it to disk");
2548 	return ret;
2549 }
2550 
2551 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2552 {
2553 	struct btrfs_tree_parent_check check = {
2554 		.level = level,
2555 		.transid = gen,
2556 		.owner_root = root->root_key.objectid
2557 	};
2558 	int ret = 0;
2559 
2560 	root->node = read_tree_block(root->fs_info, bytenr, &check);
2561 	if (IS_ERR(root->node)) {
2562 		ret = PTR_ERR(root->node);
2563 		root->node = NULL;
2564 		return ret;
2565 	}
2566 	if (!extent_buffer_uptodate(root->node)) {
2567 		free_extent_buffer(root->node);
2568 		root->node = NULL;
2569 		return -EIO;
2570 	}
2571 
2572 	btrfs_set_root_node(&root->root_item, root->node);
2573 	root->commit_root = btrfs_root_node(root);
2574 	btrfs_set_root_refs(&root->root_item, 1);
2575 	return ret;
2576 }
2577 
2578 static int load_important_roots(struct btrfs_fs_info *fs_info)
2579 {
2580 	struct btrfs_super_block *sb = fs_info->super_copy;
2581 	u64 gen, bytenr;
2582 	int level, ret;
2583 
2584 	bytenr = btrfs_super_root(sb);
2585 	gen = btrfs_super_generation(sb);
2586 	level = btrfs_super_root_level(sb);
2587 	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2588 	if (ret) {
2589 		btrfs_warn(fs_info, "couldn't read tree root");
2590 		return ret;
2591 	}
2592 	return 0;
2593 }
2594 
2595 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2596 {
2597 	int backup_index = find_newest_super_backup(fs_info);
2598 	struct btrfs_super_block *sb = fs_info->super_copy;
2599 	struct btrfs_root *tree_root = fs_info->tree_root;
2600 	bool handle_error = false;
2601 	int ret = 0;
2602 	int i;
2603 
2604 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2605 		if (handle_error) {
2606 			if (!IS_ERR(tree_root->node))
2607 				free_extent_buffer(tree_root->node);
2608 			tree_root->node = NULL;
2609 
2610 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2611 				break;
2612 
2613 			free_root_pointers(fs_info, 0);
2614 
2615 			/*
2616 			 * Don't use the log in recovery mode, it won't be
2617 			 * valid
2618 			 */
2619 			btrfs_set_super_log_root(sb, 0);
2620 
2621 			/* We can't trust the free space cache either */
2622 			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2623 
2624 			btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2625 			ret = read_backup_root(fs_info, i);
2626 			backup_index = ret;
2627 			if (ret < 0)
2628 				return ret;
2629 		}
2630 
2631 		ret = load_important_roots(fs_info);
2632 		if (ret) {
2633 			handle_error = true;
2634 			continue;
2635 		}
2636 
2637 		/*
2638 		 * No need to hold btrfs_root::objectid_mutex since the fs
2639 		 * hasn't been fully initialised and we are the only user
2640 		 */
2641 		ret = btrfs_init_root_free_objectid(tree_root);
2642 		if (ret < 0) {
2643 			handle_error = true;
2644 			continue;
2645 		}
2646 
2647 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2648 
2649 		ret = btrfs_read_roots(fs_info);
2650 		if (ret < 0) {
2651 			handle_error = true;
2652 			continue;
2653 		}
2654 
2655 		/* All successful */
2656 		fs_info->generation = btrfs_header_generation(tree_root->node);
2657 		btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2658 		fs_info->last_reloc_trans = 0;
2659 
2660 		/* Always begin writing backup roots after the one being used */
2661 		if (backup_index < 0) {
2662 			fs_info->backup_root_index = 0;
2663 		} else {
2664 			fs_info->backup_root_index = backup_index + 1;
2665 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2666 		}
2667 		break;
2668 	}
2669 
2670 	return ret;
2671 }
2672 
2673 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2674 {
2675 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2676 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2677 	INIT_LIST_HEAD(&fs_info->trans_list);
2678 	INIT_LIST_HEAD(&fs_info->dead_roots);
2679 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2680 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2681 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2682 	spin_lock_init(&fs_info->delalloc_root_lock);
2683 	spin_lock_init(&fs_info->trans_lock);
2684 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2685 	spin_lock_init(&fs_info->delayed_iput_lock);
2686 	spin_lock_init(&fs_info->defrag_inodes_lock);
2687 	spin_lock_init(&fs_info->super_lock);
2688 	spin_lock_init(&fs_info->buffer_lock);
2689 	spin_lock_init(&fs_info->unused_bgs_lock);
2690 	spin_lock_init(&fs_info->treelog_bg_lock);
2691 	spin_lock_init(&fs_info->zone_active_bgs_lock);
2692 	spin_lock_init(&fs_info->relocation_bg_lock);
2693 	rwlock_init(&fs_info->tree_mod_log_lock);
2694 	rwlock_init(&fs_info->global_root_lock);
2695 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2696 	mutex_init(&fs_info->reclaim_bgs_lock);
2697 	mutex_init(&fs_info->reloc_mutex);
2698 	mutex_init(&fs_info->delalloc_root_mutex);
2699 	mutex_init(&fs_info->zoned_meta_io_lock);
2700 	mutex_init(&fs_info->zoned_data_reloc_io_lock);
2701 	seqlock_init(&fs_info->profiles_lock);
2702 
2703 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2704 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2705 	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2706 	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2707 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2708 				     BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2709 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2710 				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2711 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2712 				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2713 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2714 				     BTRFS_LOCKDEP_TRANS_COMPLETED);
2715 
2716 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2717 	INIT_LIST_HEAD(&fs_info->space_info);
2718 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2719 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2720 	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2721 	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2722 #ifdef CONFIG_BTRFS_DEBUG
2723 	INIT_LIST_HEAD(&fs_info->allocated_roots);
2724 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2725 	spin_lock_init(&fs_info->eb_leak_lock);
2726 #endif
2727 	extent_map_tree_init(&fs_info->mapping_tree);
2728 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2729 			     BTRFS_BLOCK_RSV_GLOBAL);
2730 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2731 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2732 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2733 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2734 			     BTRFS_BLOCK_RSV_DELOPS);
2735 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2736 			     BTRFS_BLOCK_RSV_DELREFS);
2737 
2738 	atomic_set(&fs_info->async_delalloc_pages, 0);
2739 	atomic_set(&fs_info->defrag_running, 0);
2740 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2741 	atomic64_set(&fs_info->tree_mod_seq, 0);
2742 	fs_info->global_root_tree = RB_ROOT;
2743 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2744 	fs_info->metadata_ratio = 0;
2745 	fs_info->defrag_inodes = RB_ROOT;
2746 	atomic64_set(&fs_info->free_chunk_space, 0);
2747 	fs_info->tree_mod_log = RB_ROOT;
2748 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2749 	btrfs_init_ref_verify(fs_info);
2750 
2751 	fs_info->thread_pool_size = min_t(unsigned long,
2752 					  num_online_cpus() + 2, 8);
2753 
2754 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2755 	spin_lock_init(&fs_info->ordered_root_lock);
2756 
2757 	btrfs_init_scrub(fs_info);
2758 	btrfs_init_balance(fs_info);
2759 	btrfs_init_async_reclaim_work(fs_info);
2760 
2761 	rwlock_init(&fs_info->block_group_cache_lock);
2762 	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2763 
2764 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2765 			    IO_TREE_FS_EXCLUDED_EXTENTS);
2766 
2767 	mutex_init(&fs_info->ordered_operations_mutex);
2768 	mutex_init(&fs_info->tree_log_mutex);
2769 	mutex_init(&fs_info->chunk_mutex);
2770 	mutex_init(&fs_info->transaction_kthread_mutex);
2771 	mutex_init(&fs_info->cleaner_mutex);
2772 	mutex_init(&fs_info->ro_block_group_mutex);
2773 	init_rwsem(&fs_info->commit_root_sem);
2774 	init_rwsem(&fs_info->cleanup_work_sem);
2775 	init_rwsem(&fs_info->subvol_sem);
2776 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2777 
2778 	btrfs_init_dev_replace_locks(fs_info);
2779 	btrfs_init_qgroup(fs_info);
2780 	btrfs_discard_init(fs_info);
2781 
2782 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2783 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2784 
2785 	init_waitqueue_head(&fs_info->transaction_throttle);
2786 	init_waitqueue_head(&fs_info->transaction_wait);
2787 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2788 	init_waitqueue_head(&fs_info->async_submit_wait);
2789 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2790 
2791 	/* Usable values until the real ones are cached from the superblock */
2792 	fs_info->nodesize = 4096;
2793 	fs_info->sectorsize = 4096;
2794 	fs_info->sectorsize_bits = ilog2(4096);
2795 	fs_info->stripesize = 4096;
2796 
2797 	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2798 
2799 	spin_lock_init(&fs_info->swapfile_pins_lock);
2800 	fs_info->swapfile_pins = RB_ROOT;
2801 
2802 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2803 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2804 }
2805 
2806 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2807 {
2808 	int ret;
2809 
2810 	fs_info->sb = sb;
2811 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2812 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2813 
2814 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2815 	if (ret)
2816 		return ret;
2817 
2818 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2819 	if (ret)
2820 		return ret;
2821 
2822 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2823 					(1 + ilog2(nr_cpu_ids));
2824 
2825 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2826 	if (ret)
2827 		return ret;
2828 
2829 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2830 			GFP_KERNEL);
2831 	if (ret)
2832 		return ret;
2833 
2834 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2835 					GFP_KERNEL);
2836 	if (!fs_info->delayed_root)
2837 		return -ENOMEM;
2838 	btrfs_init_delayed_root(fs_info->delayed_root);
2839 
2840 	if (sb_rdonly(sb))
2841 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2842 
2843 	return btrfs_alloc_stripe_hash_table(fs_info);
2844 }
2845 
2846 static int btrfs_uuid_rescan_kthread(void *data)
2847 {
2848 	struct btrfs_fs_info *fs_info = data;
2849 	int ret;
2850 
2851 	/*
2852 	 * 1st step is to iterate through the existing UUID tree and
2853 	 * to delete all entries that contain outdated data.
2854 	 * 2nd step is to add all missing entries to the UUID tree.
2855 	 */
2856 	ret = btrfs_uuid_tree_iterate(fs_info);
2857 	if (ret < 0) {
2858 		if (ret != -EINTR)
2859 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2860 				   ret);
2861 		up(&fs_info->uuid_tree_rescan_sem);
2862 		return ret;
2863 	}
2864 	return btrfs_uuid_scan_kthread(data);
2865 }
2866 
2867 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2868 {
2869 	struct task_struct *task;
2870 
2871 	down(&fs_info->uuid_tree_rescan_sem);
2872 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2873 	if (IS_ERR(task)) {
2874 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2875 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2876 		up(&fs_info->uuid_tree_rescan_sem);
2877 		return PTR_ERR(task);
2878 	}
2879 
2880 	return 0;
2881 }
2882 
2883 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2884 {
2885 	u64 root_objectid = 0;
2886 	struct btrfs_root *gang[8];
2887 	int i = 0;
2888 	int err = 0;
2889 	unsigned int ret = 0;
2890 
2891 	while (1) {
2892 		spin_lock(&fs_info->fs_roots_radix_lock);
2893 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2894 					     (void **)gang, root_objectid,
2895 					     ARRAY_SIZE(gang));
2896 		if (!ret) {
2897 			spin_unlock(&fs_info->fs_roots_radix_lock);
2898 			break;
2899 		}
2900 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
2901 
2902 		for (i = 0; i < ret; i++) {
2903 			/* Avoid to grab roots in dead_roots. */
2904 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2905 				gang[i] = NULL;
2906 				continue;
2907 			}
2908 			/* Grab all the search result for later use. */
2909 			gang[i] = btrfs_grab_root(gang[i]);
2910 		}
2911 		spin_unlock(&fs_info->fs_roots_radix_lock);
2912 
2913 		for (i = 0; i < ret; i++) {
2914 			if (!gang[i])
2915 				continue;
2916 			root_objectid = gang[i]->root_key.objectid;
2917 			err = btrfs_orphan_cleanup(gang[i]);
2918 			if (err)
2919 				goto out;
2920 			btrfs_put_root(gang[i]);
2921 		}
2922 		root_objectid++;
2923 	}
2924 out:
2925 	/* Release the uncleaned roots due to error. */
2926 	for (; i < ret; i++) {
2927 		if (gang[i])
2928 			btrfs_put_root(gang[i]);
2929 	}
2930 	return err;
2931 }
2932 
2933 /*
2934  * Some options only have meaning at mount time and shouldn't persist across
2935  * remounts, or be displayed. Clear these at the end of mount and remount
2936  * code paths.
2937  */
2938 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
2939 {
2940 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
2941 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
2942 }
2943 
2944 /*
2945  * Mounting logic specific to read-write file systems. Shared by open_ctree
2946  * and btrfs_remount when remounting from read-only to read-write.
2947  */
2948 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2949 {
2950 	int ret;
2951 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2952 	bool rebuild_free_space_tree = false;
2953 
2954 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2955 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2956 		rebuild_free_space_tree = true;
2957 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2958 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2959 		btrfs_warn(fs_info, "free space tree is invalid");
2960 		rebuild_free_space_tree = true;
2961 	}
2962 
2963 	if (rebuild_free_space_tree) {
2964 		btrfs_info(fs_info, "rebuilding free space tree");
2965 		ret = btrfs_rebuild_free_space_tree(fs_info);
2966 		if (ret) {
2967 			btrfs_warn(fs_info,
2968 				   "failed to rebuild free space tree: %d", ret);
2969 			goto out;
2970 		}
2971 	}
2972 
2973 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2974 	    !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
2975 		btrfs_info(fs_info, "disabling free space tree");
2976 		ret = btrfs_delete_free_space_tree(fs_info);
2977 		if (ret) {
2978 			btrfs_warn(fs_info,
2979 				   "failed to disable free space tree: %d", ret);
2980 			goto out;
2981 		}
2982 	}
2983 
2984 	/*
2985 	 * btrfs_find_orphan_roots() is responsible for finding all the dead
2986 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
2987 	 * them into the fs_info->fs_roots_radix tree. This must be done before
2988 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
2989 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
2990 	 * item before the root's tree is deleted - this means that if we unmount
2991 	 * or crash before the deletion completes, on the next mount we will not
2992 	 * delete what remains of the tree because the orphan item does not
2993 	 * exists anymore, which is what tells us we have a pending deletion.
2994 	 */
2995 	ret = btrfs_find_orphan_roots(fs_info);
2996 	if (ret)
2997 		goto out;
2998 
2999 	ret = btrfs_cleanup_fs_roots(fs_info);
3000 	if (ret)
3001 		goto out;
3002 
3003 	down_read(&fs_info->cleanup_work_sem);
3004 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3005 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3006 		up_read(&fs_info->cleanup_work_sem);
3007 		goto out;
3008 	}
3009 	up_read(&fs_info->cleanup_work_sem);
3010 
3011 	mutex_lock(&fs_info->cleaner_mutex);
3012 	ret = btrfs_recover_relocation(fs_info);
3013 	mutex_unlock(&fs_info->cleaner_mutex);
3014 	if (ret < 0) {
3015 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3016 		goto out;
3017 	}
3018 
3019 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3020 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3021 		btrfs_info(fs_info, "creating free space tree");
3022 		ret = btrfs_create_free_space_tree(fs_info);
3023 		if (ret) {
3024 			btrfs_warn(fs_info,
3025 				"failed to create free space tree: %d", ret);
3026 			goto out;
3027 		}
3028 	}
3029 
3030 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3031 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3032 		if (ret)
3033 			goto out;
3034 	}
3035 
3036 	ret = btrfs_resume_balance_async(fs_info);
3037 	if (ret)
3038 		goto out;
3039 
3040 	ret = btrfs_resume_dev_replace_async(fs_info);
3041 	if (ret) {
3042 		btrfs_warn(fs_info, "failed to resume dev_replace");
3043 		goto out;
3044 	}
3045 
3046 	btrfs_qgroup_rescan_resume(fs_info);
3047 
3048 	if (!fs_info->uuid_root) {
3049 		btrfs_info(fs_info, "creating UUID tree");
3050 		ret = btrfs_create_uuid_tree(fs_info);
3051 		if (ret) {
3052 			btrfs_warn(fs_info,
3053 				   "failed to create the UUID tree %d", ret);
3054 			goto out;
3055 		}
3056 	}
3057 
3058 out:
3059 	return ret;
3060 }
3061 
3062 /*
3063  * Do various sanity and dependency checks of different features.
3064  *
3065  * @is_rw_mount:	If the mount is read-write.
3066  *
3067  * This is the place for less strict checks (like for subpage or artificial
3068  * feature dependencies).
3069  *
3070  * For strict checks or possible corruption detection, see
3071  * btrfs_validate_super().
3072  *
3073  * This should be called after btrfs_parse_options(), as some mount options
3074  * (space cache related) can modify on-disk format like free space tree and
3075  * screw up certain feature dependencies.
3076  */
3077 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3078 {
3079 	struct btrfs_super_block *disk_super = fs_info->super_copy;
3080 	u64 incompat = btrfs_super_incompat_flags(disk_super);
3081 	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3082 	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3083 
3084 	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3085 		btrfs_err(fs_info,
3086 		"cannot mount because of unknown incompat features (0x%llx)",
3087 		    incompat);
3088 		return -EINVAL;
3089 	}
3090 
3091 	/* Runtime limitation for mixed block groups. */
3092 	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3093 	    (fs_info->sectorsize != fs_info->nodesize)) {
3094 		btrfs_err(fs_info,
3095 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3096 			fs_info->nodesize, fs_info->sectorsize);
3097 		return -EINVAL;
3098 	}
3099 
3100 	/* Mixed backref is an always-enabled feature. */
3101 	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3102 
3103 	/* Set compression related flags just in case. */
3104 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3105 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3106 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3107 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3108 
3109 	/*
3110 	 * An ancient flag, which should really be marked deprecated.
3111 	 * Such runtime limitation doesn't really need a incompat flag.
3112 	 */
3113 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3114 		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3115 
3116 	if (compat_ro_unsupp && is_rw_mount) {
3117 		btrfs_err(fs_info,
3118 	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3119 		       compat_ro);
3120 		return -EINVAL;
3121 	}
3122 
3123 	/*
3124 	 * We have unsupported RO compat features, although RO mounted, we
3125 	 * should not cause any metadata writes, including log replay.
3126 	 * Or we could screw up whatever the new feature requires.
3127 	 */
3128 	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3129 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3130 		btrfs_err(fs_info,
3131 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3132 			  compat_ro);
3133 		return -EINVAL;
3134 	}
3135 
3136 	/*
3137 	 * Artificial limitations for block group tree, to force
3138 	 * block-group-tree to rely on no-holes and free-space-tree.
3139 	 */
3140 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3141 	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3142 	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3143 		btrfs_err(fs_info,
3144 "block-group-tree feature requires no-holes and free-space-tree features");
3145 		return -EINVAL;
3146 	}
3147 
3148 	/*
3149 	 * Subpage runtime limitation on v1 cache.
3150 	 *
3151 	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3152 	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3153 	 * going to be deprecated anyway.
3154 	 */
3155 	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3156 		btrfs_warn(fs_info,
3157 	"v1 space cache is not supported for page size %lu with sectorsize %u",
3158 			   PAGE_SIZE, fs_info->sectorsize);
3159 		return -EINVAL;
3160 	}
3161 
3162 	/* This can be called by remount, we need to protect the super block. */
3163 	spin_lock(&fs_info->super_lock);
3164 	btrfs_set_super_incompat_flags(disk_super, incompat);
3165 	spin_unlock(&fs_info->super_lock);
3166 
3167 	return 0;
3168 }
3169 
3170 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3171 		      char *options)
3172 {
3173 	u32 sectorsize;
3174 	u32 nodesize;
3175 	u32 stripesize;
3176 	u64 generation;
3177 	u16 csum_type;
3178 	struct btrfs_super_block *disk_super;
3179 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3180 	struct btrfs_root *tree_root;
3181 	struct btrfs_root *chunk_root;
3182 	int ret;
3183 	int level;
3184 
3185 	ret = init_mount_fs_info(fs_info, sb);
3186 	if (ret)
3187 		goto fail;
3188 
3189 	/* These need to be init'ed before we start creating inodes and such. */
3190 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3191 				     GFP_KERNEL);
3192 	fs_info->tree_root = tree_root;
3193 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3194 				      GFP_KERNEL);
3195 	fs_info->chunk_root = chunk_root;
3196 	if (!tree_root || !chunk_root) {
3197 		ret = -ENOMEM;
3198 		goto fail;
3199 	}
3200 
3201 	ret = btrfs_init_btree_inode(sb);
3202 	if (ret)
3203 		goto fail;
3204 
3205 	invalidate_bdev(fs_devices->latest_dev->bdev);
3206 
3207 	/*
3208 	 * Read super block and check the signature bytes only
3209 	 */
3210 	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3211 	if (IS_ERR(disk_super)) {
3212 		ret = PTR_ERR(disk_super);
3213 		goto fail_alloc;
3214 	}
3215 
3216 	/*
3217 	 * Verify the type first, if that or the checksum value are
3218 	 * corrupted, we'll find out
3219 	 */
3220 	csum_type = btrfs_super_csum_type(disk_super);
3221 	if (!btrfs_supported_super_csum(csum_type)) {
3222 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3223 			  csum_type);
3224 		ret = -EINVAL;
3225 		btrfs_release_disk_super(disk_super);
3226 		goto fail_alloc;
3227 	}
3228 
3229 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3230 
3231 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3232 	if (ret) {
3233 		btrfs_release_disk_super(disk_super);
3234 		goto fail_alloc;
3235 	}
3236 
3237 	/*
3238 	 * We want to check superblock checksum, the type is stored inside.
3239 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3240 	 */
3241 	if (btrfs_check_super_csum(fs_info, disk_super)) {
3242 		btrfs_err(fs_info, "superblock checksum mismatch");
3243 		ret = -EINVAL;
3244 		btrfs_release_disk_super(disk_super);
3245 		goto fail_alloc;
3246 	}
3247 
3248 	/*
3249 	 * super_copy is zeroed at allocation time and we never touch the
3250 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3251 	 * the whole block of INFO_SIZE
3252 	 */
3253 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3254 	btrfs_release_disk_super(disk_super);
3255 
3256 	disk_super = fs_info->super_copy;
3257 
3258 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3259 	       sizeof(*fs_info->super_for_commit));
3260 
3261 	ret = btrfs_validate_mount_super(fs_info);
3262 	if (ret) {
3263 		btrfs_err(fs_info, "superblock contains fatal errors");
3264 		ret = -EINVAL;
3265 		goto fail_alloc;
3266 	}
3267 
3268 	if (!btrfs_super_root(disk_super)) {
3269 		btrfs_err(fs_info, "invalid superblock tree root bytenr");
3270 		ret = -EINVAL;
3271 		goto fail_alloc;
3272 	}
3273 
3274 	/* check FS state, whether FS is broken. */
3275 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3276 		WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3277 
3278 	/*
3279 	 * In the long term, we'll store the compression type in the super
3280 	 * block, and it'll be used for per file compression control.
3281 	 */
3282 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3283 
3284 
3285 	/* Set up fs_info before parsing mount options */
3286 	nodesize = btrfs_super_nodesize(disk_super);
3287 	sectorsize = btrfs_super_sectorsize(disk_super);
3288 	stripesize = sectorsize;
3289 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3290 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3291 
3292 	fs_info->nodesize = nodesize;
3293 	fs_info->sectorsize = sectorsize;
3294 	fs_info->sectorsize_bits = ilog2(sectorsize);
3295 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3296 	fs_info->stripesize = stripesize;
3297 
3298 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3299 	if (ret)
3300 		goto fail_alloc;
3301 
3302 	ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3303 	if (ret < 0)
3304 		goto fail_alloc;
3305 
3306 	if (sectorsize < PAGE_SIZE) {
3307 		struct btrfs_subpage_info *subpage_info;
3308 
3309 		/*
3310 		 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3311 		 * going to be deprecated.
3312 		 *
3313 		 * Force to use v2 cache for subpage case.
3314 		 */
3315 		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3316 		btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3317 			"forcing free space tree for sector size %u with page size %lu",
3318 			sectorsize, PAGE_SIZE);
3319 
3320 		btrfs_warn(fs_info,
3321 		"read-write for sector size %u with page size %lu is experimental",
3322 			   sectorsize, PAGE_SIZE);
3323 		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3324 		if (!subpage_info) {
3325 			ret = -ENOMEM;
3326 			goto fail_alloc;
3327 		}
3328 		btrfs_init_subpage_info(subpage_info, sectorsize);
3329 		fs_info->subpage_info = subpage_info;
3330 	}
3331 
3332 	ret = btrfs_init_workqueues(fs_info);
3333 	if (ret)
3334 		goto fail_sb_buffer;
3335 
3336 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3337 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3338 
3339 	sb->s_blocksize = sectorsize;
3340 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3341 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3342 
3343 	mutex_lock(&fs_info->chunk_mutex);
3344 	ret = btrfs_read_sys_array(fs_info);
3345 	mutex_unlock(&fs_info->chunk_mutex);
3346 	if (ret) {
3347 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3348 		goto fail_sb_buffer;
3349 	}
3350 
3351 	generation = btrfs_super_chunk_root_generation(disk_super);
3352 	level = btrfs_super_chunk_root_level(disk_super);
3353 	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3354 			      generation, level);
3355 	if (ret) {
3356 		btrfs_err(fs_info, "failed to read chunk root");
3357 		goto fail_tree_roots;
3358 	}
3359 
3360 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3361 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3362 			   BTRFS_UUID_SIZE);
3363 
3364 	ret = btrfs_read_chunk_tree(fs_info);
3365 	if (ret) {
3366 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3367 		goto fail_tree_roots;
3368 	}
3369 
3370 	/*
3371 	 * At this point we know all the devices that make this filesystem,
3372 	 * including the seed devices but we don't know yet if the replace
3373 	 * target is required. So free devices that are not part of this
3374 	 * filesystem but skip the replace target device which is checked
3375 	 * below in btrfs_init_dev_replace().
3376 	 */
3377 	btrfs_free_extra_devids(fs_devices);
3378 	if (!fs_devices->latest_dev->bdev) {
3379 		btrfs_err(fs_info, "failed to read devices");
3380 		ret = -EIO;
3381 		goto fail_tree_roots;
3382 	}
3383 
3384 	ret = init_tree_roots(fs_info);
3385 	if (ret)
3386 		goto fail_tree_roots;
3387 
3388 	/*
3389 	 * Get zone type information of zoned block devices. This will also
3390 	 * handle emulation of a zoned filesystem if a regular device has the
3391 	 * zoned incompat feature flag set.
3392 	 */
3393 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3394 	if (ret) {
3395 		btrfs_err(fs_info,
3396 			  "zoned: failed to read device zone info: %d", ret);
3397 		goto fail_block_groups;
3398 	}
3399 
3400 	/*
3401 	 * If we have a uuid root and we're not being told to rescan we need to
3402 	 * check the generation here so we can set the
3403 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3404 	 * transaction during a balance or the log replay without updating the
3405 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3406 	 * even though it was perfectly fine.
3407 	 */
3408 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3409 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3410 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3411 
3412 	ret = btrfs_verify_dev_extents(fs_info);
3413 	if (ret) {
3414 		btrfs_err(fs_info,
3415 			  "failed to verify dev extents against chunks: %d",
3416 			  ret);
3417 		goto fail_block_groups;
3418 	}
3419 	ret = btrfs_recover_balance(fs_info);
3420 	if (ret) {
3421 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3422 		goto fail_block_groups;
3423 	}
3424 
3425 	ret = btrfs_init_dev_stats(fs_info);
3426 	if (ret) {
3427 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3428 		goto fail_block_groups;
3429 	}
3430 
3431 	ret = btrfs_init_dev_replace(fs_info);
3432 	if (ret) {
3433 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3434 		goto fail_block_groups;
3435 	}
3436 
3437 	ret = btrfs_check_zoned_mode(fs_info);
3438 	if (ret) {
3439 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3440 			  ret);
3441 		goto fail_block_groups;
3442 	}
3443 
3444 	ret = btrfs_sysfs_add_fsid(fs_devices);
3445 	if (ret) {
3446 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3447 				ret);
3448 		goto fail_block_groups;
3449 	}
3450 
3451 	ret = btrfs_sysfs_add_mounted(fs_info);
3452 	if (ret) {
3453 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3454 		goto fail_fsdev_sysfs;
3455 	}
3456 
3457 	ret = btrfs_init_space_info(fs_info);
3458 	if (ret) {
3459 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3460 		goto fail_sysfs;
3461 	}
3462 
3463 	ret = btrfs_read_block_groups(fs_info);
3464 	if (ret) {
3465 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3466 		goto fail_sysfs;
3467 	}
3468 
3469 	btrfs_free_zone_cache(fs_info);
3470 
3471 	btrfs_check_active_zone_reservation(fs_info);
3472 
3473 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3474 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3475 		btrfs_warn(fs_info,
3476 		"writable mount is not allowed due to too many missing devices");
3477 		ret = -EINVAL;
3478 		goto fail_sysfs;
3479 	}
3480 
3481 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3482 					       "btrfs-cleaner");
3483 	if (IS_ERR(fs_info->cleaner_kthread)) {
3484 		ret = PTR_ERR(fs_info->cleaner_kthread);
3485 		goto fail_sysfs;
3486 	}
3487 
3488 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3489 						   tree_root,
3490 						   "btrfs-transaction");
3491 	if (IS_ERR(fs_info->transaction_kthread)) {
3492 		ret = PTR_ERR(fs_info->transaction_kthread);
3493 		goto fail_cleaner;
3494 	}
3495 
3496 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3497 	    !fs_info->fs_devices->rotating) {
3498 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3499 	}
3500 
3501 	/*
3502 	 * For devices supporting discard turn on discard=async automatically,
3503 	 * unless it's already set or disabled. This could be turned off by
3504 	 * nodiscard for the same mount.
3505 	 *
3506 	 * The zoned mode piggy backs on the discard functionality for
3507 	 * resetting a zone. There is no reason to delay the zone reset as it is
3508 	 * fast enough. So, do not enable async discard for zoned mode.
3509 	 */
3510 	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
3511 	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
3512 	      btrfs_test_opt(fs_info, NODISCARD)) &&
3513 	    fs_info->fs_devices->discardable &&
3514 	    !btrfs_is_zoned(fs_info)) {
3515 		btrfs_set_and_info(fs_info, DISCARD_ASYNC,
3516 				   "auto enabling async discard");
3517 	}
3518 
3519 	ret = btrfs_read_qgroup_config(fs_info);
3520 	if (ret)
3521 		goto fail_trans_kthread;
3522 
3523 	if (btrfs_build_ref_tree(fs_info))
3524 		btrfs_err(fs_info, "couldn't build ref tree");
3525 
3526 	/* do not make disk changes in broken FS or nologreplay is given */
3527 	if (btrfs_super_log_root(disk_super) != 0 &&
3528 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3529 		btrfs_info(fs_info, "start tree-log replay");
3530 		ret = btrfs_replay_log(fs_info, fs_devices);
3531 		if (ret)
3532 			goto fail_qgroup;
3533 	}
3534 
3535 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3536 	if (IS_ERR(fs_info->fs_root)) {
3537 		ret = PTR_ERR(fs_info->fs_root);
3538 		btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3539 		fs_info->fs_root = NULL;
3540 		goto fail_qgroup;
3541 	}
3542 
3543 	if (sb_rdonly(sb))
3544 		goto clear_oneshot;
3545 
3546 	ret = btrfs_start_pre_rw_mount(fs_info);
3547 	if (ret) {
3548 		close_ctree(fs_info);
3549 		return ret;
3550 	}
3551 	btrfs_discard_resume(fs_info);
3552 
3553 	if (fs_info->uuid_root &&
3554 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3555 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3556 		btrfs_info(fs_info, "checking UUID tree");
3557 		ret = btrfs_check_uuid_tree(fs_info);
3558 		if (ret) {
3559 			btrfs_warn(fs_info,
3560 				"failed to check the UUID tree: %d", ret);
3561 			close_ctree(fs_info);
3562 			return ret;
3563 		}
3564 	}
3565 
3566 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3567 
3568 	/* Kick the cleaner thread so it'll start deleting snapshots. */
3569 	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3570 		wake_up_process(fs_info->cleaner_kthread);
3571 
3572 clear_oneshot:
3573 	btrfs_clear_oneshot_options(fs_info);
3574 	return 0;
3575 
3576 fail_qgroup:
3577 	btrfs_free_qgroup_config(fs_info);
3578 fail_trans_kthread:
3579 	kthread_stop(fs_info->transaction_kthread);
3580 	btrfs_cleanup_transaction(fs_info);
3581 	btrfs_free_fs_roots(fs_info);
3582 fail_cleaner:
3583 	kthread_stop(fs_info->cleaner_kthread);
3584 
3585 	/*
3586 	 * make sure we're done with the btree inode before we stop our
3587 	 * kthreads
3588 	 */
3589 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3590 
3591 fail_sysfs:
3592 	btrfs_sysfs_remove_mounted(fs_info);
3593 
3594 fail_fsdev_sysfs:
3595 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3596 
3597 fail_block_groups:
3598 	btrfs_put_block_group_cache(fs_info);
3599 
3600 fail_tree_roots:
3601 	if (fs_info->data_reloc_root)
3602 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3603 	free_root_pointers(fs_info, true);
3604 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3605 
3606 fail_sb_buffer:
3607 	btrfs_stop_all_workers(fs_info);
3608 	btrfs_free_block_groups(fs_info);
3609 fail_alloc:
3610 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3611 
3612 	iput(fs_info->btree_inode);
3613 fail:
3614 	btrfs_close_devices(fs_info->fs_devices);
3615 	ASSERT(ret < 0);
3616 	return ret;
3617 }
3618 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3619 
3620 static void btrfs_end_super_write(struct bio *bio)
3621 {
3622 	struct btrfs_device *device = bio->bi_private;
3623 	struct bio_vec *bvec;
3624 	struct bvec_iter_all iter_all;
3625 	struct page *page;
3626 
3627 	bio_for_each_segment_all(bvec, bio, iter_all) {
3628 		page = bvec->bv_page;
3629 
3630 		if (bio->bi_status) {
3631 			btrfs_warn_rl_in_rcu(device->fs_info,
3632 				"lost page write due to IO error on %s (%d)",
3633 				btrfs_dev_name(device),
3634 				blk_status_to_errno(bio->bi_status));
3635 			ClearPageUptodate(page);
3636 			SetPageError(page);
3637 			btrfs_dev_stat_inc_and_print(device,
3638 						     BTRFS_DEV_STAT_WRITE_ERRS);
3639 		} else {
3640 			SetPageUptodate(page);
3641 		}
3642 
3643 		put_page(page);
3644 		unlock_page(page);
3645 	}
3646 
3647 	bio_put(bio);
3648 }
3649 
3650 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3651 						   int copy_num, bool drop_cache)
3652 {
3653 	struct btrfs_super_block *super;
3654 	struct page *page;
3655 	u64 bytenr, bytenr_orig;
3656 	struct address_space *mapping = bdev->bd_inode->i_mapping;
3657 	int ret;
3658 
3659 	bytenr_orig = btrfs_sb_offset(copy_num);
3660 	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3661 	if (ret == -ENOENT)
3662 		return ERR_PTR(-EINVAL);
3663 	else if (ret)
3664 		return ERR_PTR(ret);
3665 
3666 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3667 		return ERR_PTR(-EINVAL);
3668 
3669 	if (drop_cache) {
3670 		/* This should only be called with the primary sb. */
3671 		ASSERT(copy_num == 0);
3672 
3673 		/*
3674 		 * Drop the page of the primary superblock, so later read will
3675 		 * always read from the device.
3676 		 */
3677 		invalidate_inode_pages2_range(mapping,
3678 				bytenr >> PAGE_SHIFT,
3679 				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3680 	}
3681 
3682 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3683 	if (IS_ERR(page))
3684 		return ERR_CAST(page);
3685 
3686 	super = page_address(page);
3687 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3688 		btrfs_release_disk_super(super);
3689 		return ERR_PTR(-ENODATA);
3690 	}
3691 
3692 	if (btrfs_super_bytenr(super) != bytenr_orig) {
3693 		btrfs_release_disk_super(super);
3694 		return ERR_PTR(-EINVAL);
3695 	}
3696 
3697 	return super;
3698 }
3699 
3700 
3701 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3702 {
3703 	struct btrfs_super_block *super, *latest = NULL;
3704 	int i;
3705 	u64 transid = 0;
3706 
3707 	/* we would like to check all the supers, but that would make
3708 	 * a btrfs mount succeed after a mkfs from a different FS.
3709 	 * So, we need to add a special mount option to scan for
3710 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3711 	 */
3712 	for (i = 0; i < 1; i++) {
3713 		super = btrfs_read_dev_one_super(bdev, i, false);
3714 		if (IS_ERR(super))
3715 			continue;
3716 
3717 		if (!latest || btrfs_super_generation(super) > transid) {
3718 			if (latest)
3719 				btrfs_release_disk_super(super);
3720 
3721 			latest = super;
3722 			transid = btrfs_super_generation(super);
3723 		}
3724 	}
3725 
3726 	return super;
3727 }
3728 
3729 /*
3730  * Write superblock @sb to the @device. Do not wait for completion, all the
3731  * pages we use for writing are locked.
3732  *
3733  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3734  * the expected device size at commit time. Note that max_mirrors must be
3735  * same for write and wait phases.
3736  *
3737  * Return number of errors when page is not found or submission fails.
3738  */
3739 static int write_dev_supers(struct btrfs_device *device,
3740 			    struct btrfs_super_block *sb, int max_mirrors)
3741 {
3742 	struct btrfs_fs_info *fs_info = device->fs_info;
3743 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3744 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3745 	int i;
3746 	int errors = 0;
3747 	int ret;
3748 	u64 bytenr, bytenr_orig;
3749 
3750 	if (max_mirrors == 0)
3751 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3752 
3753 	shash->tfm = fs_info->csum_shash;
3754 
3755 	for (i = 0; i < max_mirrors; i++) {
3756 		struct page *page;
3757 		struct bio *bio;
3758 		struct btrfs_super_block *disk_super;
3759 
3760 		bytenr_orig = btrfs_sb_offset(i);
3761 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3762 		if (ret == -ENOENT) {
3763 			continue;
3764 		} else if (ret < 0) {
3765 			btrfs_err(device->fs_info,
3766 				"couldn't get super block location for mirror %d",
3767 				i);
3768 			errors++;
3769 			continue;
3770 		}
3771 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3772 		    device->commit_total_bytes)
3773 			break;
3774 
3775 		btrfs_set_super_bytenr(sb, bytenr_orig);
3776 
3777 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3778 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3779 				    sb->csum);
3780 
3781 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3782 					   GFP_NOFS);
3783 		if (!page) {
3784 			btrfs_err(device->fs_info,
3785 			    "couldn't get super block page for bytenr %llu",
3786 			    bytenr);
3787 			errors++;
3788 			continue;
3789 		}
3790 
3791 		/* Bump the refcount for wait_dev_supers() */
3792 		get_page(page);
3793 
3794 		disk_super = page_address(page);
3795 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3796 
3797 		/*
3798 		 * Directly use bios here instead of relying on the page cache
3799 		 * to do I/O, so we don't lose the ability to do integrity
3800 		 * checking.
3801 		 */
3802 		bio = bio_alloc(device->bdev, 1,
3803 				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3804 				GFP_NOFS);
3805 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3806 		bio->bi_private = device;
3807 		bio->bi_end_io = btrfs_end_super_write;
3808 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3809 			       offset_in_page(bytenr));
3810 
3811 		/*
3812 		 * We FUA only the first super block.  The others we allow to
3813 		 * go down lazy and there's a short window where the on-disk
3814 		 * copies might still contain the older version.
3815 		 */
3816 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3817 			bio->bi_opf |= REQ_FUA;
3818 		submit_bio(bio);
3819 
3820 		if (btrfs_advance_sb_log(device, i))
3821 			errors++;
3822 	}
3823 	return errors < i ? 0 : -1;
3824 }
3825 
3826 /*
3827  * Wait for write completion of superblocks done by write_dev_supers,
3828  * @max_mirrors same for write and wait phases.
3829  *
3830  * Return number of errors when page is not found or not marked up to
3831  * date.
3832  */
3833 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3834 {
3835 	int i;
3836 	int errors = 0;
3837 	bool primary_failed = false;
3838 	int ret;
3839 	u64 bytenr;
3840 
3841 	if (max_mirrors == 0)
3842 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3843 
3844 	for (i = 0; i < max_mirrors; i++) {
3845 		struct page *page;
3846 
3847 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3848 		if (ret == -ENOENT) {
3849 			break;
3850 		} else if (ret < 0) {
3851 			errors++;
3852 			if (i == 0)
3853 				primary_failed = true;
3854 			continue;
3855 		}
3856 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3857 		    device->commit_total_bytes)
3858 			break;
3859 
3860 		page = find_get_page(device->bdev->bd_inode->i_mapping,
3861 				     bytenr >> PAGE_SHIFT);
3862 		if (!page) {
3863 			errors++;
3864 			if (i == 0)
3865 				primary_failed = true;
3866 			continue;
3867 		}
3868 		/* Page is submitted locked and unlocked once the IO completes */
3869 		wait_on_page_locked(page);
3870 		if (PageError(page)) {
3871 			errors++;
3872 			if (i == 0)
3873 				primary_failed = true;
3874 		}
3875 
3876 		/* Drop our reference */
3877 		put_page(page);
3878 
3879 		/* Drop the reference from the writing run */
3880 		put_page(page);
3881 	}
3882 
3883 	/* log error, force error return */
3884 	if (primary_failed) {
3885 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3886 			  device->devid);
3887 		return -1;
3888 	}
3889 
3890 	return errors < i ? 0 : -1;
3891 }
3892 
3893 /*
3894  * endio for the write_dev_flush, this will wake anyone waiting
3895  * for the barrier when it is done
3896  */
3897 static void btrfs_end_empty_barrier(struct bio *bio)
3898 {
3899 	bio_uninit(bio);
3900 	complete(bio->bi_private);
3901 }
3902 
3903 /*
3904  * Submit a flush request to the device if it supports it. Error handling is
3905  * done in the waiting counterpart.
3906  */
3907 static void write_dev_flush(struct btrfs_device *device)
3908 {
3909 	struct bio *bio = &device->flush_bio;
3910 
3911 	device->last_flush_error = BLK_STS_OK;
3912 
3913 	bio_init(bio, device->bdev, NULL, 0,
3914 		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3915 	bio->bi_end_io = btrfs_end_empty_barrier;
3916 	init_completion(&device->flush_wait);
3917 	bio->bi_private = &device->flush_wait;
3918 	submit_bio(bio);
3919 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3920 }
3921 
3922 /*
3923  * If the flush bio has been submitted by write_dev_flush, wait for it.
3924  * Return true for any error, and false otherwise.
3925  */
3926 static bool wait_dev_flush(struct btrfs_device *device)
3927 {
3928 	struct bio *bio = &device->flush_bio;
3929 
3930 	if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3931 		return false;
3932 
3933 	wait_for_completion_io(&device->flush_wait);
3934 
3935 	if (bio->bi_status) {
3936 		device->last_flush_error = bio->bi_status;
3937 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3938 		return true;
3939 	}
3940 
3941 	return false;
3942 }
3943 
3944 /*
3945  * send an empty flush down to each device in parallel,
3946  * then wait for them
3947  */
3948 static int barrier_all_devices(struct btrfs_fs_info *info)
3949 {
3950 	struct list_head *head;
3951 	struct btrfs_device *dev;
3952 	int errors_wait = 0;
3953 
3954 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3955 	/* send down all the barriers */
3956 	head = &info->fs_devices->devices;
3957 	list_for_each_entry(dev, head, dev_list) {
3958 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3959 			continue;
3960 		if (!dev->bdev)
3961 			continue;
3962 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3963 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3964 			continue;
3965 
3966 		write_dev_flush(dev);
3967 	}
3968 
3969 	/* wait for all the barriers */
3970 	list_for_each_entry(dev, head, dev_list) {
3971 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3972 			continue;
3973 		if (!dev->bdev) {
3974 			errors_wait++;
3975 			continue;
3976 		}
3977 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3978 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3979 			continue;
3980 
3981 		if (wait_dev_flush(dev))
3982 			errors_wait++;
3983 	}
3984 
3985 	/*
3986 	 * Checks last_flush_error of disks in order to determine the device
3987 	 * state.
3988 	 */
3989 	if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3990 		return -EIO;
3991 
3992 	return 0;
3993 }
3994 
3995 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3996 {
3997 	int raid_type;
3998 	int min_tolerated = INT_MAX;
3999 
4000 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4001 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4002 		min_tolerated = min_t(int, min_tolerated,
4003 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
4004 				    tolerated_failures);
4005 
4006 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4007 		if (raid_type == BTRFS_RAID_SINGLE)
4008 			continue;
4009 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4010 			continue;
4011 		min_tolerated = min_t(int, min_tolerated,
4012 				    btrfs_raid_array[raid_type].
4013 				    tolerated_failures);
4014 	}
4015 
4016 	if (min_tolerated == INT_MAX) {
4017 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4018 		min_tolerated = 0;
4019 	}
4020 
4021 	return min_tolerated;
4022 }
4023 
4024 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4025 {
4026 	struct list_head *head;
4027 	struct btrfs_device *dev;
4028 	struct btrfs_super_block *sb;
4029 	struct btrfs_dev_item *dev_item;
4030 	int ret;
4031 	int do_barriers;
4032 	int max_errors;
4033 	int total_errors = 0;
4034 	u64 flags;
4035 
4036 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4037 
4038 	/*
4039 	 * max_mirrors == 0 indicates we're from commit_transaction,
4040 	 * not from fsync where the tree roots in fs_info have not
4041 	 * been consistent on disk.
4042 	 */
4043 	if (max_mirrors == 0)
4044 		backup_super_roots(fs_info);
4045 
4046 	sb = fs_info->super_for_commit;
4047 	dev_item = &sb->dev_item;
4048 
4049 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4050 	head = &fs_info->fs_devices->devices;
4051 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4052 
4053 	if (do_barriers) {
4054 		ret = barrier_all_devices(fs_info);
4055 		if (ret) {
4056 			mutex_unlock(
4057 				&fs_info->fs_devices->device_list_mutex);
4058 			btrfs_handle_fs_error(fs_info, ret,
4059 					      "errors while submitting device barriers.");
4060 			return ret;
4061 		}
4062 	}
4063 
4064 	list_for_each_entry(dev, head, dev_list) {
4065 		if (!dev->bdev) {
4066 			total_errors++;
4067 			continue;
4068 		}
4069 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4070 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4071 			continue;
4072 
4073 		btrfs_set_stack_device_generation(dev_item, 0);
4074 		btrfs_set_stack_device_type(dev_item, dev->type);
4075 		btrfs_set_stack_device_id(dev_item, dev->devid);
4076 		btrfs_set_stack_device_total_bytes(dev_item,
4077 						   dev->commit_total_bytes);
4078 		btrfs_set_stack_device_bytes_used(dev_item,
4079 						  dev->commit_bytes_used);
4080 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4081 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4082 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4083 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4084 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4085 		       BTRFS_FSID_SIZE);
4086 
4087 		flags = btrfs_super_flags(sb);
4088 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4089 
4090 		ret = btrfs_validate_write_super(fs_info, sb);
4091 		if (ret < 0) {
4092 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4093 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4094 				"unexpected superblock corruption detected");
4095 			return -EUCLEAN;
4096 		}
4097 
4098 		ret = write_dev_supers(dev, sb, max_mirrors);
4099 		if (ret)
4100 			total_errors++;
4101 	}
4102 	if (total_errors > max_errors) {
4103 		btrfs_err(fs_info, "%d errors while writing supers",
4104 			  total_errors);
4105 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4106 
4107 		/* FUA is masked off if unsupported and can't be the reason */
4108 		btrfs_handle_fs_error(fs_info, -EIO,
4109 				      "%d errors while writing supers",
4110 				      total_errors);
4111 		return -EIO;
4112 	}
4113 
4114 	total_errors = 0;
4115 	list_for_each_entry(dev, head, dev_list) {
4116 		if (!dev->bdev)
4117 			continue;
4118 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4119 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4120 			continue;
4121 
4122 		ret = wait_dev_supers(dev, max_mirrors);
4123 		if (ret)
4124 			total_errors++;
4125 	}
4126 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4127 	if (total_errors > max_errors) {
4128 		btrfs_handle_fs_error(fs_info, -EIO,
4129 				      "%d errors while writing supers",
4130 				      total_errors);
4131 		return -EIO;
4132 	}
4133 	return 0;
4134 }
4135 
4136 /* Drop a fs root from the radix tree and free it. */
4137 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4138 				  struct btrfs_root *root)
4139 {
4140 	bool drop_ref = false;
4141 
4142 	spin_lock(&fs_info->fs_roots_radix_lock);
4143 	radix_tree_delete(&fs_info->fs_roots_radix,
4144 			  (unsigned long)root->root_key.objectid);
4145 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4146 		drop_ref = true;
4147 	spin_unlock(&fs_info->fs_roots_radix_lock);
4148 
4149 	if (BTRFS_FS_ERROR(fs_info)) {
4150 		ASSERT(root->log_root == NULL);
4151 		if (root->reloc_root) {
4152 			btrfs_put_root(root->reloc_root);
4153 			root->reloc_root = NULL;
4154 		}
4155 	}
4156 
4157 	if (drop_ref)
4158 		btrfs_put_root(root);
4159 }
4160 
4161 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4162 {
4163 	struct btrfs_root *root = fs_info->tree_root;
4164 	struct btrfs_trans_handle *trans;
4165 
4166 	mutex_lock(&fs_info->cleaner_mutex);
4167 	btrfs_run_delayed_iputs(fs_info);
4168 	mutex_unlock(&fs_info->cleaner_mutex);
4169 	wake_up_process(fs_info->cleaner_kthread);
4170 
4171 	/* wait until ongoing cleanup work done */
4172 	down_write(&fs_info->cleanup_work_sem);
4173 	up_write(&fs_info->cleanup_work_sem);
4174 
4175 	trans = btrfs_join_transaction(root);
4176 	if (IS_ERR(trans))
4177 		return PTR_ERR(trans);
4178 	return btrfs_commit_transaction(trans);
4179 }
4180 
4181 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4182 {
4183 	struct btrfs_transaction *trans;
4184 	struct btrfs_transaction *tmp;
4185 	bool found = false;
4186 
4187 	if (list_empty(&fs_info->trans_list))
4188 		return;
4189 
4190 	/*
4191 	 * This function is only called at the very end of close_ctree(),
4192 	 * thus no other running transaction, no need to take trans_lock.
4193 	 */
4194 	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4195 	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4196 		struct extent_state *cached = NULL;
4197 		u64 dirty_bytes = 0;
4198 		u64 cur = 0;
4199 		u64 found_start;
4200 		u64 found_end;
4201 
4202 		found = true;
4203 		while (find_first_extent_bit(&trans->dirty_pages, cur,
4204 			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4205 			dirty_bytes += found_end + 1 - found_start;
4206 			cur = found_end + 1;
4207 		}
4208 		btrfs_warn(fs_info,
4209 	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4210 			   trans->transid, dirty_bytes);
4211 		btrfs_cleanup_one_transaction(trans, fs_info);
4212 
4213 		if (trans == fs_info->running_transaction)
4214 			fs_info->running_transaction = NULL;
4215 		list_del_init(&trans->list);
4216 
4217 		btrfs_put_transaction(trans);
4218 		trace_btrfs_transaction_commit(fs_info);
4219 	}
4220 	ASSERT(!found);
4221 }
4222 
4223 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4224 {
4225 	int ret;
4226 
4227 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4228 
4229 	/*
4230 	 * If we had UNFINISHED_DROPS we could still be processing them, so
4231 	 * clear that bit and wake up relocation so it can stop.
4232 	 * We must do this before stopping the block group reclaim task, because
4233 	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4234 	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4235 	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4236 	 * return 1.
4237 	 */
4238 	btrfs_wake_unfinished_drop(fs_info);
4239 
4240 	/*
4241 	 * We may have the reclaim task running and relocating a data block group,
4242 	 * in which case it may create delayed iputs. So stop it before we park
4243 	 * the cleaner kthread otherwise we can get new delayed iputs after
4244 	 * parking the cleaner, and that can make the async reclaim task to hang
4245 	 * if it's waiting for delayed iputs to complete, since the cleaner is
4246 	 * parked and can not run delayed iputs - this will make us hang when
4247 	 * trying to stop the async reclaim task.
4248 	 */
4249 	cancel_work_sync(&fs_info->reclaim_bgs_work);
4250 	/*
4251 	 * We don't want the cleaner to start new transactions, add more delayed
4252 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4253 	 * because that frees the task_struct, and the transaction kthread might
4254 	 * still try to wake up the cleaner.
4255 	 */
4256 	kthread_park(fs_info->cleaner_kthread);
4257 
4258 	/* wait for the qgroup rescan worker to stop */
4259 	btrfs_qgroup_wait_for_completion(fs_info, false);
4260 
4261 	/* wait for the uuid_scan task to finish */
4262 	down(&fs_info->uuid_tree_rescan_sem);
4263 	/* avoid complains from lockdep et al., set sem back to initial state */
4264 	up(&fs_info->uuid_tree_rescan_sem);
4265 
4266 	/* pause restriper - we want to resume on mount */
4267 	btrfs_pause_balance(fs_info);
4268 
4269 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4270 
4271 	btrfs_scrub_cancel(fs_info);
4272 
4273 	/* wait for any defraggers to finish */
4274 	wait_event(fs_info->transaction_wait,
4275 		   (atomic_read(&fs_info->defrag_running) == 0));
4276 
4277 	/* clear out the rbtree of defraggable inodes */
4278 	btrfs_cleanup_defrag_inodes(fs_info);
4279 
4280 	/*
4281 	 * After we parked the cleaner kthread, ordered extents may have
4282 	 * completed and created new delayed iputs. If one of the async reclaim
4283 	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4284 	 * can hang forever trying to stop it, because if a delayed iput is
4285 	 * added after it ran btrfs_run_delayed_iputs() and before it called
4286 	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4287 	 * no one else to run iputs.
4288 	 *
4289 	 * So wait for all ongoing ordered extents to complete and then run
4290 	 * delayed iputs. This works because once we reach this point no one
4291 	 * can either create new ordered extents nor create delayed iputs
4292 	 * through some other means.
4293 	 *
4294 	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4295 	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4296 	 * but the delayed iput for the respective inode is made only when doing
4297 	 * the final btrfs_put_ordered_extent() (which must happen at
4298 	 * btrfs_finish_ordered_io() when we are unmounting).
4299 	 */
4300 	btrfs_flush_workqueue(fs_info->endio_write_workers);
4301 	/* Ordered extents for free space inodes. */
4302 	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4303 	btrfs_run_delayed_iputs(fs_info);
4304 
4305 	cancel_work_sync(&fs_info->async_reclaim_work);
4306 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4307 	cancel_work_sync(&fs_info->preempt_reclaim_work);
4308 
4309 	/* Cancel or finish ongoing discard work */
4310 	btrfs_discard_cleanup(fs_info);
4311 
4312 	if (!sb_rdonly(fs_info->sb)) {
4313 		/*
4314 		 * The cleaner kthread is stopped, so do one final pass over
4315 		 * unused block groups.
4316 		 */
4317 		btrfs_delete_unused_bgs(fs_info);
4318 
4319 		/*
4320 		 * There might be existing delayed inode workers still running
4321 		 * and holding an empty delayed inode item. We must wait for
4322 		 * them to complete first because they can create a transaction.
4323 		 * This happens when someone calls btrfs_balance_delayed_items()
4324 		 * and then a transaction commit runs the same delayed nodes
4325 		 * before any delayed worker has done something with the nodes.
4326 		 * We must wait for any worker here and not at transaction
4327 		 * commit time since that could cause a deadlock.
4328 		 * This is a very rare case.
4329 		 */
4330 		btrfs_flush_workqueue(fs_info->delayed_workers);
4331 
4332 		ret = btrfs_commit_super(fs_info);
4333 		if (ret)
4334 			btrfs_err(fs_info, "commit super ret %d", ret);
4335 	}
4336 
4337 	if (BTRFS_FS_ERROR(fs_info))
4338 		btrfs_error_commit_super(fs_info);
4339 
4340 	kthread_stop(fs_info->transaction_kthread);
4341 	kthread_stop(fs_info->cleaner_kthread);
4342 
4343 	ASSERT(list_empty(&fs_info->delayed_iputs));
4344 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4345 
4346 	if (btrfs_check_quota_leak(fs_info)) {
4347 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4348 		btrfs_err(fs_info, "qgroup reserved space leaked");
4349 	}
4350 
4351 	btrfs_free_qgroup_config(fs_info);
4352 	ASSERT(list_empty(&fs_info->delalloc_roots));
4353 
4354 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4355 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4356 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4357 	}
4358 
4359 	if (percpu_counter_sum(&fs_info->ordered_bytes))
4360 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4361 			   percpu_counter_sum(&fs_info->ordered_bytes));
4362 
4363 	btrfs_sysfs_remove_mounted(fs_info);
4364 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4365 
4366 	btrfs_put_block_group_cache(fs_info);
4367 
4368 	/*
4369 	 * we must make sure there is not any read request to
4370 	 * submit after we stopping all workers.
4371 	 */
4372 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4373 	btrfs_stop_all_workers(fs_info);
4374 
4375 	/* We shouldn't have any transaction open at this point */
4376 	warn_about_uncommitted_trans(fs_info);
4377 
4378 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4379 	free_root_pointers(fs_info, true);
4380 	btrfs_free_fs_roots(fs_info);
4381 
4382 	/*
4383 	 * We must free the block groups after dropping the fs_roots as we could
4384 	 * have had an IO error and have left over tree log blocks that aren't
4385 	 * cleaned up until the fs roots are freed.  This makes the block group
4386 	 * accounting appear to be wrong because there's pending reserved bytes,
4387 	 * so make sure we do the block group cleanup afterwards.
4388 	 */
4389 	btrfs_free_block_groups(fs_info);
4390 
4391 	iput(fs_info->btree_inode);
4392 
4393 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4394 	btrfs_close_devices(fs_info->fs_devices);
4395 }
4396 
4397 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4398 			     struct extent_buffer *buf)
4399 {
4400 	struct btrfs_fs_info *fs_info = buf->fs_info;
4401 	u64 transid = btrfs_header_generation(buf);
4402 
4403 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4404 	/*
4405 	 * This is a fast path so only do this check if we have sanity tests
4406 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4407 	 * outside of the sanity tests.
4408 	 */
4409 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4410 		return;
4411 #endif
4412 	/* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4413 	ASSERT(trans->transid == fs_info->generation);
4414 	btrfs_assert_tree_write_locked(buf);
4415 	if (unlikely(transid != fs_info->generation)) {
4416 		btrfs_abort_transaction(trans, -EUCLEAN);
4417 		btrfs_crit(fs_info,
4418 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4419 			   buf->start, transid, fs_info->generation);
4420 	}
4421 	set_extent_buffer_dirty(buf);
4422 }
4423 
4424 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4425 					int flush_delayed)
4426 {
4427 	/*
4428 	 * looks as though older kernels can get into trouble with
4429 	 * this code, they end up stuck in balance_dirty_pages forever
4430 	 */
4431 	int ret;
4432 
4433 	if (current->flags & PF_MEMALLOC)
4434 		return;
4435 
4436 	if (flush_delayed)
4437 		btrfs_balance_delayed_items(fs_info);
4438 
4439 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4440 				     BTRFS_DIRTY_METADATA_THRESH,
4441 				     fs_info->dirty_metadata_batch);
4442 	if (ret > 0) {
4443 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4444 	}
4445 }
4446 
4447 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4448 {
4449 	__btrfs_btree_balance_dirty(fs_info, 1);
4450 }
4451 
4452 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4453 {
4454 	__btrfs_btree_balance_dirty(fs_info, 0);
4455 }
4456 
4457 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4458 {
4459 	/* cleanup FS via transaction */
4460 	btrfs_cleanup_transaction(fs_info);
4461 
4462 	mutex_lock(&fs_info->cleaner_mutex);
4463 	btrfs_run_delayed_iputs(fs_info);
4464 	mutex_unlock(&fs_info->cleaner_mutex);
4465 
4466 	down_write(&fs_info->cleanup_work_sem);
4467 	up_write(&fs_info->cleanup_work_sem);
4468 }
4469 
4470 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4471 {
4472 	struct btrfs_root *gang[8];
4473 	u64 root_objectid = 0;
4474 	int ret;
4475 
4476 	spin_lock(&fs_info->fs_roots_radix_lock);
4477 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4478 					     (void **)gang, root_objectid,
4479 					     ARRAY_SIZE(gang))) != 0) {
4480 		int i;
4481 
4482 		for (i = 0; i < ret; i++)
4483 			gang[i] = btrfs_grab_root(gang[i]);
4484 		spin_unlock(&fs_info->fs_roots_radix_lock);
4485 
4486 		for (i = 0; i < ret; i++) {
4487 			if (!gang[i])
4488 				continue;
4489 			root_objectid = gang[i]->root_key.objectid;
4490 			btrfs_free_log(NULL, gang[i]);
4491 			btrfs_put_root(gang[i]);
4492 		}
4493 		root_objectid++;
4494 		spin_lock(&fs_info->fs_roots_radix_lock);
4495 	}
4496 	spin_unlock(&fs_info->fs_roots_radix_lock);
4497 	btrfs_free_log_root_tree(NULL, fs_info);
4498 }
4499 
4500 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4501 {
4502 	struct btrfs_ordered_extent *ordered;
4503 
4504 	spin_lock(&root->ordered_extent_lock);
4505 	/*
4506 	 * This will just short circuit the ordered completion stuff which will
4507 	 * make sure the ordered extent gets properly cleaned up.
4508 	 */
4509 	list_for_each_entry(ordered, &root->ordered_extents,
4510 			    root_extent_list)
4511 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4512 	spin_unlock(&root->ordered_extent_lock);
4513 }
4514 
4515 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4516 {
4517 	struct btrfs_root *root;
4518 	LIST_HEAD(splice);
4519 
4520 	spin_lock(&fs_info->ordered_root_lock);
4521 	list_splice_init(&fs_info->ordered_roots, &splice);
4522 	while (!list_empty(&splice)) {
4523 		root = list_first_entry(&splice, struct btrfs_root,
4524 					ordered_root);
4525 		list_move_tail(&root->ordered_root,
4526 			       &fs_info->ordered_roots);
4527 
4528 		spin_unlock(&fs_info->ordered_root_lock);
4529 		btrfs_destroy_ordered_extents(root);
4530 
4531 		cond_resched();
4532 		spin_lock(&fs_info->ordered_root_lock);
4533 	}
4534 	spin_unlock(&fs_info->ordered_root_lock);
4535 
4536 	/*
4537 	 * We need this here because if we've been flipped read-only we won't
4538 	 * get sync() from the umount, so we need to make sure any ordered
4539 	 * extents that haven't had their dirty pages IO start writeout yet
4540 	 * actually get run and error out properly.
4541 	 */
4542 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4543 }
4544 
4545 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4546 				       struct btrfs_fs_info *fs_info)
4547 {
4548 	struct rb_node *node;
4549 	struct btrfs_delayed_ref_root *delayed_refs;
4550 	struct btrfs_delayed_ref_node *ref;
4551 
4552 	delayed_refs = &trans->delayed_refs;
4553 
4554 	spin_lock(&delayed_refs->lock);
4555 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4556 		spin_unlock(&delayed_refs->lock);
4557 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4558 		return;
4559 	}
4560 
4561 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4562 		struct btrfs_delayed_ref_head *head;
4563 		struct rb_node *n;
4564 		bool pin_bytes = false;
4565 
4566 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4567 				href_node);
4568 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4569 			continue;
4570 
4571 		spin_lock(&head->lock);
4572 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4573 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4574 				       ref_node);
4575 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4576 			RB_CLEAR_NODE(&ref->ref_node);
4577 			if (!list_empty(&ref->add_list))
4578 				list_del(&ref->add_list);
4579 			atomic_dec(&delayed_refs->num_entries);
4580 			btrfs_put_delayed_ref(ref);
4581 			btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
4582 		}
4583 		if (head->must_insert_reserved)
4584 			pin_bytes = true;
4585 		btrfs_free_delayed_extent_op(head->extent_op);
4586 		btrfs_delete_ref_head(delayed_refs, head);
4587 		spin_unlock(&head->lock);
4588 		spin_unlock(&delayed_refs->lock);
4589 		mutex_unlock(&head->mutex);
4590 
4591 		if (pin_bytes) {
4592 			struct btrfs_block_group *cache;
4593 
4594 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4595 			BUG_ON(!cache);
4596 
4597 			spin_lock(&cache->space_info->lock);
4598 			spin_lock(&cache->lock);
4599 			cache->pinned += head->num_bytes;
4600 			btrfs_space_info_update_bytes_pinned(fs_info,
4601 				cache->space_info, head->num_bytes);
4602 			cache->reserved -= head->num_bytes;
4603 			cache->space_info->bytes_reserved -= head->num_bytes;
4604 			spin_unlock(&cache->lock);
4605 			spin_unlock(&cache->space_info->lock);
4606 
4607 			btrfs_put_block_group(cache);
4608 
4609 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4610 				head->bytenr + head->num_bytes - 1);
4611 		}
4612 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4613 		btrfs_put_delayed_ref_head(head);
4614 		cond_resched();
4615 		spin_lock(&delayed_refs->lock);
4616 	}
4617 	btrfs_qgroup_destroy_extent_records(trans);
4618 
4619 	spin_unlock(&delayed_refs->lock);
4620 }
4621 
4622 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4623 {
4624 	struct btrfs_inode *btrfs_inode;
4625 	LIST_HEAD(splice);
4626 
4627 	spin_lock(&root->delalloc_lock);
4628 	list_splice_init(&root->delalloc_inodes, &splice);
4629 
4630 	while (!list_empty(&splice)) {
4631 		struct inode *inode = NULL;
4632 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4633 					       delalloc_inodes);
4634 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4635 		spin_unlock(&root->delalloc_lock);
4636 
4637 		/*
4638 		 * Make sure we get a live inode and that it'll not disappear
4639 		 * meanwhile.
4640 		 */
4641 		inode = igrab(&btrfs_inode->vfs_inode);
4642 		if (inode) {
4643 			unsigned int nofs_flag;
4644 
4645 			nofs_flag = memalloc_nofs_save();
4646 			invalidate_inode_pages2(inode->i_mapping);
4647 			memalloc_nofs_restore(nofs_flag);
4648 			iput(inode);
4649 		}
4650 		spin_lock(&root->delalloc_lock);
4651 	}
4652 	spin_unlock(&root->delalloc_lock);
4653 }
4654 
4655 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4656 {
4657 	struct btrfs_root *root;
4658 	LIST_HEAD(splice);
4659 
4660 	spin_lock(&fs_info->delalloc_root_lock);
4661 	list_splice_init(&fs_info->delalloc_roots, &splice);
4662 	while (!list_empty(&splice)) {
4663 		root = list_first_entry(&splice, struct btrfs_root,
4664 					 delalloc_root);
4665 		root = btrfs_grab_root(root);
4666 		BUG_ON(!root);
4667 		spin_unlock(&fs_info->delalloc_root_lock);
4668 
4669 		btrfs_destroy_delalloc_inodes(root);
4670 		btrfs_put_root(root);
4671 
4672 		spin_lock(&fs_info->delalloc_root_lock);
4673 	}
4674 	spin_unlock(&fs_info->delalloc_root_lock);
4675 }
4676 
4677 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4678 					 struct extent_io_tree *dirty_pages,
4679 					 int mark)
4680 {
4681 	struct extent_buffer *eb;
4682 	u64 start = 0;
4683 	u64 end;
4684 
4685 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
4686 				     mark, NULL)) {
4687 		clear_extent_bits(dirty_pages, start, end, mark);
4688 		while (start <= end) {
4689 			eb = find_extent_buffer(fs_info, start);
4690 			start += fs_info->nodesize;
4691 			if (!eb)
4692 				continue;
4693 
4694 			btrfs_tree_lock(eb);
4695 			wait_on_extent_buffer_writeback(eb);
4696 			btrfs_clear_buffer_dirty(NULL, eb);
4697 			btrfs_tree_unlock(eb);
4698 
4699 			free_extent_buffer_stale(eb);
4700 		}
4701 	}
4702 }
4703 
4704 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4705 					struct extent_io_tree *unpin)
4706 {
4707 	u64 start;
4708 	u64 end;
4709 
4710 	while (1) {
4711 		struct extent_state *cached_state = NULL;
4712 
4713 		/*
4714 		 * The btrfs_finish_extent_commit() may get the same range as
4715 		 * ours between find_first_extent_bit and clear_extent_dirty.
4716 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4717 		 * the same extent range.
4718 		 */
4719 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4720 		if (!find_first_extent_bit(unpin, 0, &start, &end,
4721 					   EXTENT_DIRTY, &cached_state)) {
4722 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4723 			break;
4724 		}
4725 
4726 		clear_extent_dirty(unpin, start, end, &cached_state);
4727 		free_extent_state(cached_state);
4728 		btrfs_error_unpin_extent_range(fs_info, start, end);
4729 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4730 		cond_resched();
4731 	}
4732 }
4733 
4734 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4735 {
4736 	struct inode *inode;
4737 
4738 	inode = cache->io_ctl.inode;
4739 	if (inode) {
4740 		unsigned int nofs_flag;
4741 
4742 		nofs_flag = memalloc_nofs_save();
4743 		invalidate_inode_pages2(inode->i_mapping);
4744 		memalloc_nofs_restore(nofs_flag);
4745 
4746 		BTRFS_I(inode)->generation = 0;
4747 		cache->io_ctl.inode = NULL;
4748 		iput(inode);
4749 	}
4750 	ASSERT(cache->io_ctl.pages == NULL);
4751 	btrfs_put_block_group(cache);
4752 }
4753 
4754 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4755 			     struct btrfs_fs_info *fs_info)
4756 {
4757 	struct btrfs_block_group *cache;
4758 
4759 	spin_lock(&cur_trans->dirty_bgs_lock);
4760 	while (!list_empty(&cur_trans->dirty_bgs)) {
4761 		cache = list_first_entry(&cur_trans->dirty_bgs,
4762 					 struct btrfs_block_group,
4763 					 dirty_list);
4764 
4765 		if (!list_empty(&cache->io_list)) {
4766 			spin_unlock(&cur_trans->dirty_bgs_lock);
4767 			list_del_init(&cache->io_list);
4768 			btrfs_cleanup_bg_io(cache);
4769 			spin_lock(&cur_trans->dirty_bgs_lock);
4770 		}
4771 
4772 		list_del_init(&cache->dirty_list);
4773 		spin_lock(&cache->lock);
4774 		cache->disk_cache_state = BTRFS_DC_ERROR;
4775 		spin_unlock(&cache->lock);
4776 
4777 		spin_unlock(&cur_trans->dirty_bgs_lock);
4778 		btrfs_put_block_group(cache);
4779 		btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4780 		spin_lock(&cur_trans->dirty_bgs_lock);
4781 	}
4782 	spin_unlock(&cur_trans->dirty_bgs_lock);
4783 
4784 	/*
4785 	 * Refer to the definition of io_bgs member for details why it's safe
4786 	 * to use it without any locking
4787 	 */
4788 	while (!list_empty(&cur_trans->io_bgs)) {
4789 		cache = list_first_entry(&cur_trans->io_bgs,
4790 					 struct btrfs_block_group,
4791 					 io_list);
4792 
4793 		list_del_init(&cache->io_list);
4794 		spin_lock(&cache->lock);
4795 		cache->disk_cache_state = BTRFS_DC_ERROR;
4796 		spin_unlock(&cache->lock);
4797 		btrfs_cleanup_bg_io(cache);
4798 	}
4799 }
4800 
4801 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4802 				   struct btrfs_fs_info *fs_info)
4803 {
4804 	struct btrfs_device *dev, *tmp;
4805 
4806 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4807 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4808 	ASSERT(list_empty(&cur_trans->io_bgs));
4809 
4810 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4811 				 post_commit_list) {
4812 		list_del_init(&dev->post_commit_list);
4813 	}
4814 
4815 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4816 
4817 	cur_trans->state = TRANS_STATE_COMMIT_START;
4818 	wake_up(&fs_info->transaction_blocked_wait);
4819 
4820 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4821 	wake_up(&fs_info->transaction_wait);
4822 
4823 	btrfs_destroy_delayed_inodes(fs_info);
4824 
4825 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4826 				     EXTENT_DIRTY);
4827 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4828 
4829 	cur_trans->state =TRANS_STATE_COMPLETED;
4830 	wake_up(&cur_trans->commit_wait);
4831 }
4832 
4833 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4834 {
4835 	struct btrfs_transaction *t;
4836 
4837 	mutex_lock(&fs_info->transaction_kthread_mutex);
4838 
4839 	spin_lock(&fs_info->trans_lock);
4840 	while (!list_empty(&fs_info->trans_list)) {
4841 		t = list_first_entry(&fs_info->trans_list,
4842 				     struct btrfs_transaction, list);
4843 		if (t->state >= TRANS_STATE_COMMIT_PREP) {
4844 			refcount_inc(&t->use_count);
4845 			spin_unlock(&fs_info->trans_lock);
4846 			btrfs_wait_for_commit(fs_info, t->transid);
4847 			btrfs_put_transaction(t);
4848 			spin_lock(&fs_info->trans_lock);
4849 			continue;
4850 		}
4851 		if (t == fs_info->running_transaction) {
4852 			t->state = TRANS_STATE_COMMIT_DOING;
4853 			spin_unlock(&fs_info->trans_lock);
4854 			/*
4855 			 * We wait for 0 num_writers since we don't hold a trans
4856 			 * handle open currently for this transaction.
4857 			 */
4858 			wait_event(t->writer_wait,
4859 				   atomic_read(&t->num_writers) == 0);
4860 		} else {
4861 			spin_unlock(&fs_info->trans_lock);
4862 		}
4863 		btrfs_cleanup_one_transaction(t, fs_info);
4864 
4865 		spin_lock(&fs_info->trans_lock);
4866 		if (t == fs_info->running_transaction)
4867 			fs_info->running_transaction = NULL;
4868 		list_del_init(&t->list);
4869 		spin_unlock(&fs_info->trans_lock);
4870 
4871 		btrfs_put_transaction(t);
4872 		trace_btrfs_transaction_commit(fs_info);
4873 		spin_lock(&fs_info->trans_lock);
4874 	}
4875 	spin_unlock(&fs_info->trans_lock);
4876 	btrfs_destroy_all_ordered_extents(fs_info);
4877 	btrfs_destroy_delayed_inodes(fs_info);
4878 	btrfs_assert_delayed_root_empty(fs_info);
4879 	btrfs_destroy_all_delalloc_inodes(fs_info);
4880 	btrfs_drop_all_logs(fs_info);
4881 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4882 
4883 	return 0;
4884 }
4885 
4886 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4887 {
4888 	struct btrfs_path *path;
4889 	int ret;
4890 	struct extent_buffer *l;
4891 	struct btrfs_key search_key;
4892 	struct btrfs_key found_key;
4893 	int slot;
4894 
4895 	path = btrfs_alloc_path();
4896 	if (!path)
4897 		return -ENOMEM;
4898 
4899 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4900 	search_key.type = -1;
4901 	search_key.offset = (u64)-1;
4902 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4903 	if (ret < 0)
4904 		goto error;
4905 	BUG_ON(ret == 0); /* Corruption */
4906 	if (path->slots[0] > 0) {
4907 		slot = path->slots[0] - 1;
4908 		l = path->nodes[0];
4909 		btrfs_item_key_to_cpu(l, &found_key, slot);
4910 		root->free_objectid = max_t(u64, found_key.objectid + 1,
4911 					    BTRFS_FIRST_FREE_OBJECTID);
4912 	} else {
4913 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4914 	}
4915 	ret = 0;
4916 error:
4917 	btrfs_free_path(path);
4918 	return ret;
4919 }
4920 
4921 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4922 {
4923 	int ret;
4924 	mutex_lock(&root->objectid_mutex);
4925 
4926 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4927 		btrfs_warn(root->fs_info,
4928 			   "the objectid of root %llu reaches its highest value",
4929 			   root->root_key.objectid);
4930 		ret = -ENOSPC;
4931 		goto out;
4932 	}
4933 
4934 	*objectid = root->free_objectid++;
4935 	ret = 0;
4936 out:
4937 	mutex_unlock(&root->objectid_mutex);
4938 	return ret;
4939 }
4940