xref: /linux/fs/btrfs/disk-io.c (revision a9f80df4f51440303d063b55bb98720857693821)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "rcu-string.h"
33 #include "dev-replace.h"
34 #include "raid56.h"
35 #include "sysfs.h"
36 #include "qgroup.h"
37 #include "compression.h"
38 #include "tree-checker.h"
39 #include "ref-verify.h"
40 #include "block-group.h"
41 #include "discard.h"
42 #include "space-info.h"
43 #include "zoned.h"
44 #include "subpage.h"
45 #include "fs.h"
46 #include "accessors.h"
47 #include "extent-tree.h"
48 #include "root-tree.h"
49 #include "defrag.h"
50 #include "uuid-tree.h"
51 #include "relocation.h"
52 #include "scrub.h"
53 #include "super.h"
54 
55 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
56 				 BTRFS_HEADER_FLAG_RELOC |\
57 				 BTRFS_SUPER_FLAG_ERROR |\
58 				 BTRFS_SUPER_FLAG_SEEDING |\
59 				 BTRFS_SUPER_FLAG_METADUMP |\
60 				 BTRFS_SUPER_FLAG_METADUMP_V2)
61 
62 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
63 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
64 
65 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
66 {
67 	if (fs_info->csum_shash)
68 		crypto_free_shash(fs_info->csum_shash);
69 }
70 
71 /*
72  * Compute the csum of a btree block and store the result to provided buffer.
73  */
74 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
75 {
76 	struct btrfs_fs_info *fs_info = buf->fs_info;
77 	int num_pages;
78 	u32 first_page_part;
79 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
80 	char *kaddr;
81 	int i;
82 
83 	shash->tfm = fs_info->csum_shash;
84 	crypto_shash_init(shash);
85 
86 	if (buf->addr) {
87 		/* Pages are contiguous, handle them as a big one. */
88 		kaddr = buf->addr;
89 		first_page_part = fs_info->nodesize;
90 		num_pages = 1;
91 	} else {
92 		kaddr = folio_address(buf->folios[0]);
93 		first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
94 		num_pages = num_extent_pages(buf);
95 	}
96 
97 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
98 			    first_page_part - BTRFS_CSUM_SIZE);
99 
100 	/*
101 	 * Multiple single-page folios case would reach here.
102 	 *
103 	 * nodesize <= PAGE_SIZE and large folio all handled by above
104 	 * crypto_shash_update() already.
105 	 */
106 	for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
107 		kaddr = folio_address(buf->folios[i]);
108 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
109 	}
110 	memset(result, 0, BTRFS_CSUM_SIZE);
111 	crypto_shash_final(shash, result);
112 }
113 
114 /*
115  * we can't consider a given block up to date unless the transid of the
116  * block matches the transid in the parent node's pointer.  This is how we
117  * detect blocks that either didn't get written at all or got written
118  * in the wrong place.
119  */
120 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
121 {
122 	if (!extent_buffer_uptodate(eb))
123 		return 0;
124 
125 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
126 		return 1;
127 
128 	if (atomic)
129 		return -EAGAIN;
130 
131 	if (!extent_buffer_uptodate(eb) ||
132 	    btrfs_header_generation(eb) != parent_transid) {
133 		btrfs_err_rl(eb->fs_info,
134 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
135 			eb->start, eb->read_mirror,
136 			parent_transid, btrfs_header_generation(eb));
137 		clear_extent_buffer_uptodate(eb);
138 		return 0;
139 	}
140 	return 1;
141 }
142 
143 static bool btrfs_supported_super_csum(u16 csum_type)
144 {
145 	switch (csum_type) {
146 	case BTRFS_CSUM_TYPE_CRC32:
147 	case BTRFS_CSUM_TYPE_XXHASH:
148 	case BTRFS_CSUM_TYPE_SHA256:
149 	case BTRFS_CSUM_TYPE_BLAKE2:
150 		return true;
151 	default:
152 		return false;
153 	}
154 }
155 
156 /*
157  * Return 0 if the superblock checksum type matches the checksum value of that
158  * algorithm. Pass the raw disk superblock data.
159  */
160 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
161 			   const struct btrfs_super_block *disk_sb)
162 {
163 	char result[BTRFS_CSUM_SIZE];
164 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
165 
166 	shash->tfm = fs_info->csum_shash;
167 
168 	/*
169 	 * The super_block structure does not span the whole
170 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
171 	 * filled with zeros and is included in the checksum.
172 	 */
173 	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
174 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
175 
176 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
177 		return 1;
178 
179 	return 0;
180 }
181 
182 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
183 				      int mirror_num)
184 {
185 	struct btrfs_fs_info *fs_info = eb->fs_info;
186 	int num_folios = num_extent_folios(eb);
187 	int ret = 0;
188 
189 	if (sb_rdonly(fs_info->sb))
190 		return -EROFS;
191 
192 	for (int i = 0; i < num_folios; i++) {
193 		struct folio *folio = eb->folios[i];
194 		u64 start = max_t(u64, eb->start, folio_pos(folio));
195 		u64 end = min_t(u64, eb->start + eb->len,
196 				folio_pos(folio) + folio_size(folio));
197 		u32 len = end - start;
198 
199 		ret = btrfs_repair_io_failure(fs_info, 0, start, len,
200 					      start, folio, offset_in_folio(folio, start),
201 					      mirror_num);
202 		if (ret)
203 			break;
204 	}
205 
206 	return ret;
207 }
208 
209 /*
210  * helper to read a given tree block, doing retries as required when
211  * the checksums don't match and we have alternate mirrors to try.
212  *
213  * @check:		expected tree parentness check, see the comments of the
214  *			structure for details.
215  */
216 int btrfs_read_extent_buffer(struct extent_buffer *eb,
217 			     struct btrfs_tree_parent_check *check)
218 {
219 	struct btrfs_fs_info *fs_info = eb->fs_info;
220 	int failed = 0;
221 	int ret;
222 	int num_copies = 0;
223 	int mirror_num = 0;
224 	int failed_mirror = 0;
225 
226 	ASSERT(check);
227 
228 	while (1) {
229 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
230 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
231 		if (!ret)
232 			break;
233 
234 		num_copies = btrfs_num_copies(fs_info,
235 					      eb->start, eb->len);
236 		if (num_copies == 1)
237 			break;
238 
239 		if (!failed_mirror) {
240 			failed = 1;
241 			failed_mirror = eb->read_mirror;
242 		}
243 
244 		mirror_num++;
245 		if (mirror_num == failed_mirror)
246 			mirror_num++;
247 
248 		if (mirror_num > num_copies)
249 			break;
250 	}
251 
252 	if (failed && !ret && failed_mirror)
253 		btrfs_repair_eb_io_failure(eb, failed_mirror);
254 
255 	return ret;
256 }
257 
258 /*
259  * Checksum a dirty tree block before IO.
260  */
261 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
262 {
263 	struct extent_buffer *eb = bbio->private;
264 	struct btrfs_fs_info *fs_info = eb->fs_info;
265 	u64 found_start = btrfs_header_bytenr(eb);
266 	u64 last_trans;
267 	u8 result[BTRFS_CSUM_SIZE];
268 	int ret;
269 
270 	/* Btree blocks are always contiguous on disk. */
271 	if (WARN_ON_ONCE(bbio->file_offset != eb->start))
272 		return BLK_STS_IOERR;
273 	if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
274 		return BLK_STS_IOERR;
275 
276 	/*
277 	 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
278 	 * checksum it but zero-out its content. This is done to preserve
279 	 * ordering of I/O without unnecessarily writing out data.
280 	 */
281 	if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
282 		memzero_extent_buffer(eb, 0, eb->len);
283 		return BLK_STS_OK;
284 	}
285 
286 	if (WARN_ON_ONCE(found_start != eb->start))
287 		return BLK_STS_IOERR;
288 	if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0],
289 					       eb->start, eb->len)))
290 		return BLK_STS_IOERR;
291 
292 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
293 				    offsetof(struct btrfs_header, fsid),
294 				    BTRFS_FSID_SIZE) == 0);
295 	csum_tree_block(eb, result);
296 
297 	if (btrfs_header_level(eb))
298 		ret = btrfs_check_node(eb);
299 	else
300 		ret = btrfs_check_leaf(eb);
301 
302 	if (ret < 0)
303 		goto error;
304 
305 	/*
306 	 * Also check the generation, the eb reached here must be newer than
307 	 * last committed. Or something seriously wrong happened.
308 	 */
309 	last_trans = btrfs_get_last_trans_committed(fs_info);
310 	if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
311 		ret = -EUCLEAN;
312 		btrfs_err(fs_info,
313 			"block=%llu bad generation, have %llu expect > %llu",
314 			  eb->start, btrfs_header_generation(eb), last_trans);
315 		goto error;
316 	}
317 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
318 	return BLK_STS_OK;
319 
320 error:
321 	btrfs_print_tree(eb, 0);
322 	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
323 		  eb->start);
324 	/*
325 	 * Be noisy if this is an extent buffer from a log tree. We don't abort
326 	 * a transaction in case there's a bad log tree extent buffer, we just
327 	 * fallback to a transaction commit. Still we want to know when there is
328 	 * a bad log tree extent buffer, as that may signal a bug somewhere.
329 	 */
330 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
331 		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
332 	return errno_to_blk_status(ret);
333 }
334 
335 static bool check_tree_block_fsid(struct extent_buffer *eb)
336 {
337 	struct btrfs_fs_info *fs_info = eb->fs_info;
338 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
339 	u8 fsid[BTRFS_FSID_SIZE];
340 
341 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
342 			   BTRFS_FSID_SIZE);
343 
344 	/*
345 	 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
346 	 * This is then overwritten by metadata_uuid if it is present in the
347 	 * device_list_add(). The same true for a seed device as well. So use of
348 	 * fs_devices::metadata_uuid is appropriate here.
349 	 */
350 	if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
351 		return false;
352 
353 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
354 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
355 			return false;
356 
357 	return true;
358 }
359 
360 /* Do basic extent buffer checks at read time */
361 int btrfs_validate_extent_buffer(struct extent_buffer *eb,
362 				 struct btrfs_tree_parent_check *check)
363 {
364 	struct btrfs_fs_info *fs_info = eb->fs_info;
365 	u64 found_start;
366 	const u32 csum_size = fs_info->csum_size;
367 	u8 found_level;
368 	u8 result[BTRFS_CSUM_SIZE];
369 	const u8 *header_csum;
370 	int ret = 0;
371 
372 	ASSERT(check);
373 
374 	found_start = btrfs_header_bytenr(eb);
375 	if (found_start != eb->start) {
376 		btrfs_err_rl(fs_info,
377 			"bad tree block start, mirror %u want %llu have %llu",
378 			     eb->read_mirror, eb->start, found_start);
379 		ret = -EIO;
380 		goto out;
381 	}
382 	if (check_tree_block_fsid(eb)) {
383 		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
384 			     eb->start, eb->read_mirror);
385 		ret = -EIO;
386 		goto out;
387 	}
388 	found_level = btrfs_header_level(eb);
389 	if (found_level >= BTRFS_MAX_LEVEL) {
390 		btrfs_err(fs_info,
391 			"bad tree block level, mirror %u level %d on logical %llu",
392 			eb->read_mirror, btrfs_header_level(eb), eb->start);
393 		ret = -EIO;
394 		goto out;
395 	}
396 
397 	csum_tree_block(eb, result);
398 	header_csum = folio_address(eb->folios[0]) +
399 		get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
400 
401 	if (memcmp(result, header_csum, csum_size) != 0) {
402 		btrfs_warn_rl(fs_info,
403 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
404 			      eb->start, eb->read_mirror,
405 			      CSUM_FMT_VALUE(csum_size, header_csum),
406 			      CSUM_FMT_VALUE(csum_size, result),
407 			      btrfs_header_level(eb));
408 		ret = -EUCLEAN;
409 		goto out;
410 	}
411 
412 	if (found_level != check->level) {
413 		btrfs_err(fs_info,
414 		"level verify failed on logical %llu mirror %u wanted %u found %u",
415 			  eb->start, eb->read_mirror, check->level, found_level);
416 		ret = -EIO;
417 		goto out;
418 	}
419 	if (unlikely(check->transid &&
420 		     btrfs_header_generation(eb) != check->transid)) {
421 		btrfs_err_rl(eb->fs_info,
422 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
423 				eb->start, eb->read_mirror, check->transid,
424 				btrfs_header_generation(eb));
425 		ret = -EIO;
426 		goto out;
427 	}
428 	if (check->has_first_key) {
429 		struct btrfs_key *expect_key = &check->first_key;
430 		struct btrfs_key found_key;
431 
432 		if (found_level)
433 			btrfs_node_key_to_cpu(eb, &found_key, 0);
434 		else
435 			btrfs_item_key_to_cpu(eb, &found_key, 0);
436 		if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
437 			btrfs_err(fs_info,
438 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
439 				  eb->start, check->transid,
440 				  expect_key->objectid,
441 				  expect_key->type, expect_key->offset,
442 				  found_key.objectid, found_key.type,
443 				  found_key.offset);
444 			ret = -EUCLEAN;
445 			goto out;
446 		}
447 	}
448 	if (check->owner_root) {
449 		ret = btrfs_check_eb_owner(eb, check->owner_root);
450 		if (ret < 0)
451 			goto out;
452 	}
453 
454 	/*
455 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
456 	 * that we don't try and read the other copies of this block, just
457 	 * return -EIO.
458 	 */
459 	if (found_level == 0 && btrfs_check_leaf(eb)) {
460 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
461 		ret = -EIO;
462 	}
463 
464 	if (found_level > 0 && btrfs_check_node(eb))
465 		ret = -EIO;
466 
467 	if (ret)
468 		btrfs_err(fs_info,
469 		"read time tree block corruption detected on logical %llu mirror %u",
470 			  eb->start, eb->read_mirror);
471 out:
472 	return ret;
473 }
474 
475 #ifdef CONFIG_MIGRATION
476 static int btree_migrate_folio(struct address_space *mapping,
477 		struct folio *dst, struct folio *src, enum migrate_mode mode)
478 {
479 	/*
480 	 * we can't safely write a btree page from here,
481 	 * we haven't done the locking hook
482 	 */
483 	if (folio_test_dirty(src))
484 		return -EAGAIN;
485 	/*
486 	 * Buffers may be managed in a filesystem specific way.
487 	 * We must have no buffers or drop them.
488 	 */
489 	if (folio_get_private(src) &&
490 	    !filemap_release_folio(src, GFP_KERNEL))
491 		return -EAGAIN;
492 	return migrate_folio(mapping, dst, src, mode);
493 }
494 #else
495 #define btree_migrate_folio NULL
496 #endif
497 
498 static int btree_writepages(struct address_space *mapping,
499 			    struct writeback_control *wbc)
500 {
501 	struct btrfs_fs_info *fs_info;
502 	int ret;
503 
504 	if (wbc->sync_mode == WB_SYNC_NONE) {
505 
506 		if (wbc->for_kupdate)
507 			return 0;
508 
509 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
510 		/* this is a bit racy, but that's ok */
511 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
512 					     BTRFS_DIRTY_METADATA_THRESH,
513 					     fs_info->dirty_metadata_batch);
514 		if (ret < 0)
515 			return 0;
516 	}
517 	return btree_write_cache_pages(mapping, wbc);
518 }
519 
520 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
521 {
522 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
523 		return false;
524 
525 	return try_release_extent_buffer(&folio->page);
526 }
527 
528 static void btree_invalidate_folio(struct folio *folio, size_t offset,
529 				 size_t length)
530 {
531 	struct extent_io_tree *tree;
532 	tree = &BTRFS_I(folio->mapping->host)->io_tree;
533 	extent_invalidate_folio(tree, folio, offset);
534 	btree_release_folio(folio, GFP_NOFS);
535 	if (folio_get_private(folio)) {
536 		btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
537 			   "folio private not zero on folio %llu",
538 			   (unsigned long long)folio_pos(folio));
539 		folio_detach_private(folio);
540 	}
541 }
542 
543 #ifdef DEBUG
544 static bool btree_dirty_folio(struct address_space *mapping,
545 		struct folio *folio)
546 {
547 	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
548 	struct btrfs_subpage_info *spi = fs_info->subpage_info;
549 	struct btrfs_subpage *subpage;
550 	struct extent_buffer *eb;
551 	int cur_bit = 0;
552 	u64 page_start = folio_pos(folio);
553 
554 	if (fs_info->sectorsize == PAGE_SIZE) {
555 		eb = folio_get_private(folio);
556 		BUG_ON(!eb);
557 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
558 		BUG_ON(!atomic_read(&eb->refs));
559 		btrfs_assert_tree_write_locked(eb);
560 		return filemap_dirty_folio(mapping, folio);
561 	}
562 
563 	ASSERT(spi);
564 	subpage = folio_get_private(folio);
565 
566 	for (cur_bit = spi->dirty_offset;
567 	     cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
568 	     cur_bit++) {
569 		unsigned long flags;
570 		u64 cur;
571 
572 		spin_lock_irqsave(&subpage->lock, flags);
573 		if (!test_bit(cur_bit, subpage->bitmaps)) {
574 			spin_unlock_irqrestore(&subpage->lock, flags);
575 			continue;
576 		}
577 		spin_unlock_irqrestore(&subpage->lock, flags);
578 		cur = page_start + cur_bit * fs_info->sectorsize;
579 
580 		eb = find_extent_buffer(fs_info, cur);
581 		ASSERT(eb);
582 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
583 		ASSERT(atomic_read(&eb->refs));
584 		btrfs_assert_tree_write_locked(eb);
585 		free_extent_buffer(eb);
586 
587 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
588 	}
589 	return filemap_dirty_folio(mapping, folio);
590 }
591 #else
592 #define btree_dirty_folio filemap_dirty_folio
593 #endif
594 
595 static const struct address_space_operations btree_aops = {
596 	.writepages	= btree_writepages,
597 	.release_folio	= btree_release_folio,
598 	.invalidate_folio = btree_invalidate_folio,
599 	.migrate_folio	= btree_migrate_folio,
600 	.dirty_folio	= btree_dirty_folio,
601 };
602 
603 struct extent_buffer *btrfs_find_create_tree_block(
604 						struct btrfs_fs_info *fs_info,
605 						u64 bytenr, u64 owner_root,
606 						int level)
607 {
608 	if (btrfs_is_testing(fs_info))
609 		return alloc_test_extent_buffer(fs_info, bytenr);
610 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
611 }
612 
613 /*
614  * Read tree block at logical address @bytenr and do variant basic but critical
615  * verification.
616  *
617  * @check:		expected tree parentness check, see comments of the
618  *			structure for details.
619  */
620 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
621 				      struct btrfs_tree_parent_check *check)
622 {
623 	struct extent_buffer *buf = NULL;
624 	int ret;
625 
626 	ASSERT(check);
627 
628 	buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
629 					   check->level);
630 	if (IS_ERR(buf))
631 		return buf;
632 
633 	ret = btrfs_read_extent_buffer(buf, check);
634 	if (ret) {
635 		free_extent_buffer_stale(buf);
636 		return ERR_PTR(ret);
637 	}
638 	if (btrfs_check_eb_owner(buf, check->owner_root)) {
639 		free_extent_buffer_stale(buf);
640 		return ERR_PTR(-EUCLEAN);
641 	}
642 	return buf;
643 
644 }
645 
646 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
647 			 u64 objectid)
648 {
649 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
650 
651 	memset(&root->root_key, 0, sizeof(root->root_key));
652 	memset(&root->root_item, 0, sizeof(root->root_item));
653 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
654 	root->fs_info = fs_info;
655 	root->root_key.objectid = objectid;
656 	root->node = NULL;
657 	root->commit_root = NULL;
658 	root->state = 0;
659 	RB_CLEAR_NODE(&root->rb_node);
660 
661 	root->last_trans = 0;
662 	root->free_objectid = 0;
663 	root->nr_delalloc_inodes = 0;
664 	root->nr_ordered_extents = 0;
665 	root->inode_tree = RB_ROOT;
666 	/* GFP flags are compatible with XA_FLAGS_*. */
667 	xa_init_flags(&root->delayed_nodes, GFP_ATOMIC);
668 
669 	btrfs_init_root_block_rsv(root);
670 
671 	INIT_LIST_HEAD(&root->dirty_list);
672 	INIT_LIST_HEAD(&root->root_list);
673 	INIT_LIST_HEAD(&root->delalloc_inodes);
674 	INIT_LIST_HEAD(&root->delalloc_root);
675 	INIT_LIST_HEAD(&root->ordered_extents);
676 	INIT_LIST_HEAD(&root->ordered_root);
677 	INIT_LIST_HEAD(&root->reloc_dirty_list);
678 	spin_lock_init(&root->inode_lock);
679 	spin_lock_init(&root->delalloc_lock);
680 	spin_lock_init(&root->ordered_extent_lock);
681 	spin_lock_init(&root->accounting_lock);
682 	spin_lock_init(&root->qgroup_meta_rsv_lock);
683 	mutex_init(&root->objectid_mutex);
684 	mutex_init(&root->log_mutex);
685 	mutex_init(&root->ordered_extent_mutex);
686 	mutex_init(&root->delalloc_mutex);
687 	init_waitqueue_head(&root->qgroup_flush_wait);
688 	init_waitqueue_head(&root->log_writer_wait);
689 	init_waitqueue_head(&root->log_commit_wait[0]);
690 	init_waitqueue_head(&root->log_commit_wait[1]);
691 	INIT_LIST_HEAD(&root->log_ctxs[0]);
692 	INIT_LIST_HEAD(&root->log_ctxs[1]);
693 	atomic_set(&root->log_commit[0], 0);
694 	atomic_set(&root->log_commit[1], 0);
695 	atomic_set(&root->log_writers, 0);
696 	atomic_set(&root->log_batch, 0);
697 	refcount_set(&root->refs, 1);
698 	atomic_set(&root->snapshot_force_cow, 0);
699 	atomic_set(&root->nr_swapfiles, 0);
700 	btrfs_set_root_log_transid(root, 0);
701 	root->log_transid_committed = -1;
702 	btrfs_set_root_last_log_commit(root, 0);
703 	root->anon_dev = 0;
704 	if (!dummy) {
705 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
706 				    IO_TREE_ROOT_DIRTY_LOG_PAGES);
707 		extent_io_tree_init(fs_info, &root->log_csum_range,
708 				    IO_TREE_LOG_CSUM_RANGE);
709 	}
710 
711 	spin_lock_init(&root->root_item_lock);
712 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
713 #ifdef CONFIG_BTRFS_DEBUG
714 	INIT_LIST_HEAD(&root->leak_list);
715 	spin_lock(&fs_info->fs_roots_radix_lock);
716 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
717 	spin_unlock(&fs_info->fs_roots_radix_lock);
718 #endif
719 }
720 
721 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
722 					   u64 objectid, gfp_t flags)
723 {
724 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
725 	if (root)
726 		__setup_root(root, fs_info, objectid);
727 	return root;
728 }
729 
730 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
731 /* Should only be used by the testing infrastructure */
732 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
733 {
734 	struct btrfs_root *root;
735 
736 	if (!fs_info)
737 		return ERR_PTR(-EINVAL);
738 
739 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
740 	if (!root)
741 		return ERR_PTR(-ENOMEM);
742 
743 	/* We don't use the stripesize in selftest, set it as sectorsize */
744 	root->alloc_bytenr = 0;
745 
746 	return root;
747 }
748 #endif
749 
750 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
751 {
752 	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
753 	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
754 
755 	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
756 }
757 
758 static int global_root_key_cmp(const void *k, const struct rb_node *node)
759 {
760 	const struct btrfs_key *key = k;
761 	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
762 
763 	return btrfs_comp_cpu_keys(key, &root->root_key);
764 }
765 
766 int btrfs_global_root_insert(struct btrfs_root *root)
767 {
768 	struct btrfs_fs_info *fs_info = root->fs_info;
769 	struct rb_node *tmp;
770 	int ret = 0;
771 
772 	write_lock(&fs_info->global_root_lock);
773 	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
774 	write_unlock(&fs_info->global_root_lock);
775 
776 	if (tmp) {
777 		ret = -EEXIST;
778 		btrfs_warn(fs_info, "global root %llu %llu already exists",
779 				root->root_key.objectid, root->root_key.offset);
780 	}
781 	return ret;
782 }
783 
784 void btrfs_global_root_delete(struct btrfs_root *root)
785 {
786 	struct btrfs_fs_info *fs_info = root->fs_info;
787 
788 	write_lock(&fs_info->global_root_lock);
789 	rb_erase(&root->rb_node, &fs_info->global_root_tree);
790 	write_unlock(&fs_info->global_root_lock);
791 }
792 
793 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
794 				     struct btrfs_key *key)
795 {
796 	struct rb_node *node;
797 	struct btrfs_root *root = NULL;
798 
799 	read_lock(&fs_info->global_root_lock);
800 	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
801 	if (node)
802 		root = container_of(node, struct btrfs_root, rb_node);
803 	read_unlock(&fs_info->global_root_lock);
804 
805 	return root;
806 }
807 
808 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
809 {
810 	struct btrfs_block_group *block_group;
811 	u64 ret;
812 
813 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
814 		return 0;
815 
816 	if (bytenr)
817 		block_group = btrfs_lookup_block_group(fs_info, bytenr);
818 	else
819 		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
820 	ASSERT(block_group);
821 	if (!block_group)
822 		return 0;
823 	ret = block_group->global_root_id;
824 	btrfs_put_block_group(block_group);
825 
826 	return ret;
827 }
828 
829 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
830 {
831 	struct btrfs_key key = {
832 		.objectid = BTRFS_CSUM_TREE_OBJECTID,
833 		.type = BTRFS_ROOT_ITEM_KEY,
834 		.offset = btrfs_global_root_id(fs_info, bytenr),
835 	};
836 
837 	return btrfs_global_root(fs_info, &key);
838 }
839 
840 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
841 {
842 	struct btrfs_key key = {
843 		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
844 		.type = BTRFS_ROOT_ITEM_KEY,
845 		.offset = btrfs_global_root_id(fs_info, bytenr),
846 	};
847 
848 	return btrfs_global_root(fs_info, &key);
849 }
850 
851 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
852 {
853 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
854 		return fs_info->block_group_root;
855 	return btrfs_extent_root(fs_info, 0);
856 }
857 
858 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
859 				     u64 objectid)
860 {
861 	struct btrfs_fs_info *fs_info = trans->fs_info;
862 	struct extent_buffer *leaf;
863 	struct btrfs_root *tree_root = fs_info->tree_root;
864 	struct btrfs_root *root;
865 	struct btrfs_key key;
866 	unsigned int nofs_flag;
867 	int ret = 0;
868 
869 	/*
870 	 * We're holding a transaction handle, so use a NOFS memory allocation
871 	 * context to avoid deadlock if reclaim happens.
872 	 */
873 	nofs_flag = memalloc_nofs_save();
874 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
875 	memalloc_nofs_restore(nofs_flag);
876 	if (!root)
877 		return ERR_PTR(-ENOMEM);
878 
879 	root->root_key.objectid = objectid;
880 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
881 	root->root_key.offset = 0;
882 
883 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
884 				      0, BTRFS_NESTING_NORMAL);
885 	if (IS_ERR(leaf)) {
886 		ret = PTR_ERR(leaf);
887 		leaf = NULL;
888 		goto fail;
889 	}
890 
891 	root->node = leaf;
892 	btrfs_mark_buffer_dirty(trans, leaf);
893 
894 	root->commit_root = btrfs_root_node(root);
895 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
896 
897 	btrfs_set_root_flags(&root->root_item, 0);
898 	btrfs_set_root_limit(&root->root_item, 0);
899 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
900 	btrfs_set_root_generation(&root->root_item, trans->transid);
901 	btrfs_set_root_level(&root->root_item, 0);
902 	btrfs_set_root_refs(&root->root_item, 1);
903 	btrfs_set_root_used(&root->root_item, leaf->len);
904 	btrfs_set_root_last_snapshot(&root->root_item, 0);
905 	btrfs_set_root_dirid(&root->root_item, 0);
906 	if (is_fstree(objectid))
907 		generate_random_guid(root->root_item.uuid);
908 	else
909 		export_guid(root->root_item.uuid, &guid_null);
910 	btrfs_set_root_drop_level(&root->root_item, 0);
911 
912 	btrfs_tree_unlock(leaf);
913 
914 	key.objectid = objectid;
915 	key.type = BTRFS_ROOT_ITEM_KEY;
916 	key.offset = 0;
917 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
918 	if (ret)
919 		goto fail;
920 
921 	return root;
922 
923 fail:
924 	btrfs_put_root(root);
925 
926 	return ERR_PTR(ret);
927 }
928 
929 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
930 					 struct btrfs_fs_info *fs_info)
931 {
932 	struct btrfs_root *root;
933 
934 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
935 	if (!root)
936 		return ERR_PTR(-ENOMEM);
937 
938 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
939 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
940 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
941 
942 	return root;
943 }
944 
945 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
946 			      struct btrfs_root *root)
947 {
948 	struct extent_buffer *leaf;
949 
950 	/*
951 	 * DON'T set SHAREABLE bit for log trees.
952 	 *
953 	 * Log trees are not exposed to user space thus can't be snapshotted,
954 	 * and they go away before a real commit is actually done.
955 	 *
956 	 * They do store pointers to file data extents, and those reference
957 	 * counts still get updated (along with back refs to the log tree).
958 	 */
959 
960 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
961 			NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
962 	if (IS_ERR(leaf))
963 		return PTR_ERR(leaf);
964 
965 	root->node = leaf;
966 
967 	btrfs_mark_buffer_dirty(trans, root->node);
968 	btrfs_tree_unlock(root->node);
969 
970 	return 0;
971 }
972 
973 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
974 			     struct btrfs_fs_info *fs_info)
975 {
976 	struct btrfs_root *log_root;
977 
978 	log_root = alloc_log_tree(trans, fs_info);
979 	if (IS_ERR(log_root))
980 		return PTR_ERR(log_root);
981 
982 	if (!btrfs_is_zoned(fs_info)) {
983 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
984 
985 		if (ret) {
986 			btrfs_put_root(log_root);
987 			return ret;
988 		}
989 	}
990 
991 	WARN_ON(fs_info->log_root_tree);
992 	fs_info->log_root_tree = log_root;
993 	return 0;
994 }
995 
996 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
997 		       struct btrfs_root *root)
998 {
999 	struct btrfs_fs_info *fs_info = root->fs_info;
1000 	struct btrfs_root *log_root;
1001 	struct btrfs_inode_item *inode_item;
1002 	int ret;
1003 
1004 	log_root = alloc_log_tree(trans, fs_info);
1005 	if (IS_ERR(log_root))
1006 		return PTR_ERR(log_root);
1007 
1008 	ret = btrfs_alloc_log_tree_node(trans, log_root);
1009 	if (ret) {
1010 		btrfs_put_root(log_root);
1011 		return ret;
1012 	}
1013 
1014 	log_root->last_trans = trans->transid;
1015 	log_root->root_key.offset = root->root_key.objectid;
1016 
1017 	inode_item = &log_root->root_item.inode;
1018 	btrfs_set_stack_inode_generation(inode_item, 1);
1019 	btrfs_set_stack_inode_size(inode_item, 3);
1020 	btrfs_set_stack_inode_nlink(inode_item, 1);
1021 	btrfs_set_stack_inode_nbytes(inode_item,
1022 				     fs_info->nodesize);
1023 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1024 
1025 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1026 
1027 	WARN_ON(root->log_root);
1028 	root->log_root = log_root;
1029 	btrfs_set_root_log_transid(root, 0);
1030 	root->log_transid_committed = -1;
1031 	btrfs_set_root_last_log_commit(root, 0);
1032 	return 0;
1033 }
1034 
1035 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1036 					      struct btrfs_path *path,
1037 					      struct btrfs_key *key)
1038 {
1039 	struct btrfs_root *root;
1040 	struct btrfs_tree_parent_check check = { 0 };
1041 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1042 	u64 generation;
1043 	int ret;
1044 	int level;
1045 
1046 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1047 	if (!root)
1048 		return ERR_PTR(-ENOMEM);
1049 
1050 	ret = btrfs_find_root(tree_root, key, path,
1051 			      &root->root_item, &root->root_key);
1052 	if (ret) {
1053 		if (ret > 0)
1054 			ret = -ENOENT;
1055 		goto fail;
1056 	}
1057 
1058 	generation = btrfs_root_generation(&root->root_item);
1059 	level = btrfs_root_level(&root->root_item);
1060 	check.level = level;
1061 	check.transid = generation;
1062 	check.owner_root = key->objectid;
1063 	root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1064 				     &check);
1065 	if (IS_ERR(root->node)) {
1066 		ret = PTR_ERR(root->node);
1067 		root->node = NULL;
1068 		goto fail;
1069 	}
1070 	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1071 		ret = -EIO;
1072 		goto fail;
1073 	}
1074 
1075 	/*
1076 	 * For real fs, and not log/reloc trees, root owner must
1077 	 * match its root node owner
1078 	 */
1079 	if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1080 	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1081 	    root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1082 	    root->root_key.objectid != btrfs_header_owner(root->node)) {
1083 		btrfs_crit(fs_info,
1084 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1085 			   root->root_key.objectid, root->node->start,
1086 			   btrfs_header_owner(root->node),
1087 			   root->root_key.objectid);
1088 		ret = -EUCLEAN;
1089 		goto fail;
1090 	}
1091 	root->commit_root = btrfs_root_node(root);
1092 	return root;
1093 fail:
1094 	btrfs_put_root(root);
1095 	return ERR_PTR(ret);
1096 }
1097 
1098 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1099 					struct btrfs_key *key)
1100 {
1101 	struct btrfs_root *root;
1102 	struct btrfs_path *path;
1103 
1104 	path = btrfs_alloc_path();
1105 	if (!path)
1106 		return ERR_PTR(-ENOMEM);
1107 	root = read_tree_root_path(tree_root, path, key);
1108 	btrfs_free_path(path);
1109 
1110 	return root;
1111 }
1112 
1113 /*
1114  * Initialize subvolume root in-memory structure
1115  *
1116  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1117  */
1118 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1119 {
1120 	int ret;
1121 
1122 	btrfs_drew_lock_init(&root->snapshot_lock);
1123 
1124 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1125 	    !btrfs_is_data_reloc_root(root) &&
1126 	    is_fstree(root->root_key.objectid)) {
1127 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1128 		btrfs_check_and_init_root_item(&root->root_item);
1129 	}
1130 
1131 	/*
1132 	 * Don't assign anonymous block device to roots that are not exposed to
1133 	 * userspace, the id pool is limited to 1M
1134 	 */
1135 	if (is_fstree(root->root_key.objectid) &&
1136 	    btrfs_root_refs(&root->root_item) > 0) {
1137 		if (!anon_dev) {
1138 			ret = get_anon_bdev(&root->anon_dev);
1139 			if (ret)
1140 				goto fail;
1141 		} else {
1142 			root->anon_dev = anon_dev;
1143 		}
1144 	}
1145 
1146 	mutex_lock(&root->objectid_mutex);
1147 	ret = btrfs_init_root_free_objectid(root);
1148 	if (ret) {
1149 		mutex_unlock(&root->objectid_mutex);
1150 		goto fail;
1151 	}
1152 
1153 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1154 
1155 	mutex_unlock(&root->objectid_mutex);
1156 
1157 	return 0;
1158 fail:
1159 	/* The caller is responsible to call btrfs_free_fs_root */
1160 	return ret;
1161 }
1162 
1163 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1164 					       u64 root_id)
1165 {
1166 	struct btrfs_root *root;
1167 
1168 	spin_lock(&fs_info->fs_roots_radix_lock);
1169 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1170 				 (unsigned long)root_id);
1171 	root = btrfs_grab_root(root);
1172 	spin_unlock(&fs_info->fs_roots_radix_lock);
1173 	return root;
1174 }
1175 
1176 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1177 						u64 objectid)
1178 {
1179 	struct btrfs_key key = {
1180 		.objectid = objectid,
1181 		.type = BTRFS_ROOT_ITEM_KEY,
1182 		.offset = 0,
1183 	};
1184 
1185 	switch (objectid) {
1186 	case BTRFS_ROOT_TREE_OBJECTID:
1187 		return btrfs_grab_root(fs_info->tree_root);
1188 	case BTRFS_EXTENT_TREE_OBJECTID:
1189 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1190 	case BTRFS_CHUNK_TREE_OBJECTID:
1191 		return btrfs_grab_root(fs_info->chunk_root);
1192 	case BTRFS_DEV_TREE_OBJECTID:
1193 		return btrfs_grab_root(fs_info->dev_root);
1194 	case BTRFS_CSUM_TREE_OBJECTID:
1195 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1196 	case BTRFS_QUOTA_TREE_OBJECTID:
1197 		return btrfs_grab_root(fs_info->quota_root);
1198 	case BTRFS_UUID_TREE_OBJECTID:
1199 		return btrfs_grab_root(fs_info->uuid_root);
1200 	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1201 		return btrfs_grab_root(fs_info->block_group_root);
1202 	case BTRFS_FREE_SPACE_TREE_OBJECTID:
1203 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1204 	case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1205 		return btrfs_grab_root(fs_info->stripe_root);
1206 	default:
1207 		return NULL;
1208 	}
1209 }
1210 
1211 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1212 			 struct btrfs_root *root)
1213 {
1214 	int ret;
1215 
1216 	ret = radix_tree_preload(GFP_NOFS);
1217 	if (ret)
1218 		return ret;
1219 
1220 	spin_lock(&fs_info->fs_roots_radix_lock);
1221 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1222 				(unsigned long)root->root_key.objectid,
1223 				root);
1224 	if (ret == 0) {
1225 		btrfs_grab_root(root);
1226 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1227 	}
1228 	spin_unlock(&fs_info->fs_roots_radix_lock);
1229 	radix_tree_preload_end();
1230 
1231 	return ret;
1232 }
1233 
1234 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1235 {
1236 #ifdef CONFIG_BTRFS_DEBUG
1237 	struct btrfs_root *root;
1238 
1239 	while (!list_empty(&fs_info->allocated_roots)) {
1240 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1241 
1242 		root = list_first_entry(&fs_info->allocated_roots,
1243 					struct btrfs_root, leak_list);
1244 		btrfs_err(fs_info, "leaked root %s refcount %d",
1245 			  btrfs_root_name(&root->root_key, buf),
1246 			  refcount_read(&root->refs));
1247 		while (refcount_read(&root->refs) > 1)
1248 			btrfs_put_root(root);
1249 		btrfs_put_root(root);
1250 	}
1251 #endif
1252 }
1253 
1254 static void free_global_roots(struct btrfs_fs_info *fs_info)
1255 {
1256 	struct btrfs_root *root;
1257 	struct rb_node *node;
1258 
1259 	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1260 		root = rb_entry(node, struct btrfs_root, rb_node);
1261 		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1262 		btrfs_put_root(root);
1263 	}
1264 }
1265 
1266 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1267 {
1268 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1269 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1270 	percpu_counter_destroy(&fs_info->ordered_bytes);
1271 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1272 	btrfs_free_csum_hash(fs_info);
1273 	btrfs_free_stripe_hash_table(fs_info);
1274 	btrfs_free_ref_cache(fs_info);
1275 	kfree(fs_info->balance_ctl);
1276 	kfree(fs_info->delayed_root);
1277 	free_global_roots(fs_info);
1278 	btrfs_put_root(fs_info->tree_root);
1279 	btrfs_put_root(fs_info->chunk_root);
1280 	btrfs_put_root(fs_info->dev_root);
1281 	btrfs_put_root(fs_info->quota_root);
1282 	btrfs_put_root(fs_info->uuid_root);
1283 	btrfs_put_root(fs_info->fs_root);
1284 	btrfs_put_root(fs_info->data_reloc_root);
1285 	btrfs_put_root(fs_info->block_group_root);
1286 	btrfs_put_root(fs_info->stripe_root);
1287 	btrfs_check_leaked_roots(fs_info);
1288 	btrfs_extent_buffer_leak_debug_check(fs_info);
1289 	kfree(fs_info->super_copy);
1290 	kfree(fs_info->super_for_commit);
1291 	kfree(fs_info->subpage_info);
1292 	kvfree(fs_info);
1293 }
1294 
1295 
1296 /*
1297  * Get an in-memory reference of a root structure.
1298  *
1299  * For essential trees like root/extent tree, we grab it from fs_info directly.
1300  * For subvolume trees, we check the cached filesystem roots first. If not
1301  * found, then read it from disk and add it to cached fs roots.
1302  *
1303  * Caller should release the root by calling btrfs_put_root() after the usage.
1304  *
1305  * NOTE: Reloc and log trees can't be read by this function as they share the
1306  *	 same root objectid.
1307  *
1308  * @objectid:	root id
1309  * @anon_dev:	preallocated anonymous block device number for new roots,
1310  * 		pass 0 for new allocation.
1311  * @check_ref:	whether to check root item references, If true, return -ENOENT
1312  *		for orphan roots
1313  */
1314 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1315 					     u64 objectid, dev_t anon_dev,
1316 					     bool check_ref)
1317 {
1318 	struct btrfs_root *root;
1319 	struct btrfs_path *path;
1320 	struct btrfs_key key;
1321 	int ret;
1322 
1323 	root = btrfs_get_global_root(fs_info, objectid);
1324 	if (root)
1325 		return root;
1326 
1327 	/*
1328 	 * If we're called for non-subvolume trees, and above function didn't
1329 	 * find one, do not try to read it from disk.
1330 	 *
1331 	 * This is namely for free-space-tree and quota tree, which can change
1332 	 * at runtime and should only be grabbed from fs_info.
1333 	 */
1334 	if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1335 		return ERR_PTR(-ENOENT);
1336 again:
1337 	root = btrfs_lookup_fs_root(fs_info, objectid);
1338 	if (root) {
1339 		/*
1340 		 * Some other caller may have read out the newly inserted
1341 		 * subvolume already (for things like backref walk etc).  Not
1342 		 * that common but still possible.  In that case, we just need
1343 		 * to free the anon_dev.
1344 		 */
1345 		if (unlikely(anon_dev)) {
1346 			free_anon_bdev(anon_dev);
1347 			anon_dev = 0;
1348 		}
1349 
1350 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1351 			btrfs_put_root(root);
1352 			return ERR_PTR(-ENOENT);
1353 		}
1354 		return root;
1355 	}
1356 
1357 	key.objectid = objectid;
1358 	key.type = BTRFS_ROOT_ITEM_KEY;
1359 	key.offset = (u64)-1;
1360 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1361 	if (IS_ERR(root))
1362 		return root;
1363 
1364 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1365 		ret = -ENOENT;
1366 		goto fail;
1367 	}
1368 
1369 	ret = btrfs_init_fs_root(root, anon_dev);
1370 	if (ret)
1371 		goto fail;
1372 
1373 	path = btrfs_alloc_path();
1374 	if (!path) {
1375 		ret = -ENOMEM;
1376 		goto fail;
1377 	}
1378 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1379 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1380 	key.offset = objectid;
1381 
1382 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1383 	btrfs_free_path(path);
1384 	if (ret < 0)
1385 		goto fail;
1386 	if (ret == 0)
1387 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1388 
1389 	ret = btrfs_insert_fs_root(fs_info, root);
1390 	if (ret) {
1391 		if (ret == -EEXIST) {
1392 			btrfs_put_root(root);
1393 			goto again;
1394 		}
1395 		goto fail;
1396 	}
1397 	return root;
1398 fail:
1399 	/*
1400 	 * If our caller provided us an anonymous device, then it's his
1401 	 * responsibility to free it in case we fail. So we have to set our
1402 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1403 	 * and once again by our caller.
1404 	 */
1405 	if (anon_dev)
1406 		root->anon_dev = 0;
1407 	btrfs_put_root(root);
1408 	return ERR_PTR(ret);
1409 }
1410 
1411 /*
1412  * Get in-memory reference of a root structure
1413  *
1414  * @objectid:	tree objectid
1415  * @check_ref:	if set, verify that the tree exists and the item has at least
1416  *		one reference
1417  */
1418 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1419 				     u64 objectid, bool check_ref)
1420 {
1421 	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1422 }
1423 
1424 /*
1425  * Get in-memory reference of a root structure, created as new, optionally pass
1426  * the anonymous block device id
1427  *
1428  * @objectid:	tree objectid
1429  * @anon_dev:	if zero, allocate a new anonymous block device or use the
1430  *		parameter value
1431  */
1432 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1433 					 u64 objectid, dev_t anon_dev)
1434 {
1435 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1436 }
1437 
1438 /*
1439  * Return a root for the given objectid.
1440  *
1441  * @fs_info:	the fs_info
1442  * @objectid:	the objectid we need to lookup
1443  *
1444  * This is exclusively used for backref walking, and exists specifically because
1445  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1446  * creation time, which means we may have to read the tree_root in order to look
1447  * up a fs root that is not in memory.  If the root is not in memory we will
1448  * read the tree root commit root and look up the fs root from there.  This is a
1449  * temporary root, it will not be inserted into the radix tree as it doesn't
1450  * have the most uptodate information, it'll simply be discarded once the
1451  * backref code is finished using the root.
1452  */
1453 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1454 						 struct btrfs_path *path,
1455 						 u64 objectid)
1456 {
1457 	struct btrfs_root *root;
1458 	struct btrfs_key key;
1459 
1460 	ASSERT(path->search_commit_root && path->skip_locking);
1461 
1462 	/*
1463 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1464 	 * since this is called via the backref walking code we won't be looking
1465 	 * up a root that doesn't exist, unless there's corruption.  So if root
1466 	 * != NULL just return it.
1467 	 */
1468 	root = btrfs_get_global_root(fs_info, objectid);
1469 	if (root)
1470 		return root;
1471 
1472 	root = btrfs_lookup_fs_root(fs_info, objectid);
1473 	if (root)
1474 		return root;
1475 
1476 	key.objectid = objectid;
1477 	key.type = BTRFS_ROOT_ITEM_KEY;
1478 	key.offset = (u64)-1;
1479 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1480 	btrfs_release_path(path);
1481 
1482 	return root;
1483 }
1484 
1485 static int cleaner_kthread(void *arg)
1486 {
1487 	struct btrfs_fs_info *fs_info = arg;
1488 	int again;
1489 
1490 	while (1) {
1491 		again = 0;
1492 
1493 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1494 
1495 		/* Make the cleaner go to sleep early. */
1496 		if (btrfs_need_cleaner_sleep(fs_info))
1497 			goto sleep;
1498 
1499 		/*
1500 		 * Do not do anything if we might cause open_ctree() to block
1501 		 * before we have finished mounting the filesystem.
1502 		 */
1503 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1504 			goto sleep;
1505 
1506 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1507 			goto sleep;
1508 
1509 		/*
1510 		 * Avoid the problem that we change the status of the fs
1511 		 * during the above check and trylock.
1512 		 */
1513 		if (btrfs_need_cleaner_sleep(fs_info)) {
1514 			mutex_unlock(&fs_info->cleaner_mutex);
1515 			goto sleep;
1516 		}
1517 
1518 		if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1519 			btrfs_sysfs_feature_update(fs_info);
1520 
1521 		btrfs_run_delayed_iputs(fs_info);
1522 
1523 		again = btrfs_clean_one_deleted_snapshot(fs_info);
1524 		mutex_unlock(&fs_info->cleaner_mutex);
1525 
1526 		/*
1527 		 * The defragger has dealt with the R/O remount and umount,
1528 		 * needn't do anything special here.
1529 		 */
1530 		btrfs_run_defrag_inodes(fs_info);
1531 
1532 		/*
1533 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1534 		 * with relocation (btrfs_relocate_chunk) and relocation
1535 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1536 		 * after acquiring fs_info->reclaim_bgs_lock. So we
1537 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1538 		 * unused block groups.
1539 		 */
1540 		btrfs_delete_unused_bgs(fs_info);
1541 
1542 		/*
1543 		 * Reclaim block groups in the reclaim_bgs list after we deleted
1544 		 * all unused block_groups. This possibly gives us some more free
1545 		 * space.
1546 		 */
1547 		btrfs_reclaim_bgs(fs_info);
1548 sleep:
1549 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1550 		if (kthread_should_park())
1551 			kthread_parkme();
1552 		if (kthread_should_stop())
1553 			return 0;
1554 		if (!again) {
1555 			set_current_state(TASK_INTERRUPTIBLE);
1556 			schedule();
1557 			__set_current_state(TASK_RUNNING);
1558 		}
1559 	}
1560 }
1561 
1562 static int transaction_kthread(void *arg)
1563 {
1564 	struct btrfs_root *root = arg;
1565 	struct btrfs_fs_info *fs_info = root->fs_info;
1566 	struct btrfs_trans_handle *trans;
1567 	struct btrfs_transaction *cur;
1568 	u64 transid;
1569 	time64_t delta;
1570 	unsigned long delay;
1571 	bool cannot_commit;
1572 
1573 	do {
1574 		cannot_commit = false;
1575 		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1576 		mutex_lock(&fs_info->transaction_kthread_mutex);
1577 
1578 		spin_lock(&fs_info->trans_lock);
1579 		cur = fs_info->running_transaction;
1580 		if (!cur) {
1581 			spin_unlock(&fs_info->trans_lock);
1582 			goto sleep;
1583 		}
1584 
1585 		delta = ktime_get_seconds() - cur->start_time;
1586 		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1587 		    cur->state < TRANS_STATE_COMMIT_PREP &&
1588 		    delta < fs_info->commit_interval) {
1589 			spin_unlock(&fs_info->trans_lock);
1590 			delay -= msecs_to_jiffies((delta - 1) * 1000);
1591 			delay = min(delay,
1592 				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1593 			goto sleep;
1594 		}
1595 		transid = cur->transid;
1596 		spin_unlock(&fs_info->trans_lock);
1597 
1598 		/* If the file system is aborted, this will always fail. */
1599 		trans = btrfs_attach_transaction(root);
1600 		if (IS_ERR(trans)) {
1601 			if (PTR_ERR(trans) != -ENOENT)
1602 				cannot_commit = true;
1603 			goto sleep;
1604 		}
1605 		if (transid == trans->transid) {
1606 			btrfs_commit_transaction(trans);
1607 		} else {
1608 			btrfs_end_transaction(trans);
1609 		}
1610 sleep:
1611 		wake_up_process(fs_info->cleaner_kthread);
1612 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1613 
1614 		if (BTRFS_FS_ERROR(fs_info))
1615 			btrfs_cleanup_transaction(fs_info);
1616 		if (!kthread_should_stop() &&
1617 				(!btrfs_transaction_blocked(fs_info) ||
1618 				 cannot_commit))
1619 			schedule_timeout_interruptible(delay);
1620 	} while (!kthread_should_stop());
1621 	return 0;
1622 }
1623 
1624 /*
1625  * This will find the highest generation in the array of root backups.  The
1626  * index of the highest array is returned, or -EINVAL if we can't find
1627  * anything.
1628  *
1629  * We check to make sure the array is valid by comparing the
1630  * generation of the latest  root in the array with the generation
1631  * in the super block.  If they don't match we pitch it.
1632  */
1633 static int find_newest_super_backup(struct btrfs_fs_info *info)
1634 {
1635 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1636 	u64 cur;
1637 	struct btrfs_root_backup *root_backup;
1638 	int i;
1639 
1640 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1641 		root_backup = info->super_copy->super_roots + i;
1642 		cur = btrfs_backup_tree_root_gen(root_backup);
1643 		if (cur == newest_gen)
1644 			return i;
1645 	}
1646 
1647 	return -EINVAL;
1648 }
1649 
1650 /*
1651  * copy all the root pointers into the super backup array.
1652  * this will bump the backup pointer by one when it is
1653  * done
1654  */
1655 static void backup_super_roots(struct btrfs_fs_info *info)
1656 {
1657 	const int next_backup = info->backup_root_index;
1658 	struct btrfs_root_backup *root_backup;
1659 
1660 	root_backup = info->super_for_commit->super_roots + next_backup;
1661 
1662 	/*
1663 	 * make sure all of our padding and empty slots get zero filled
1664 	 * regardless of which ones we use today
1665 	 */
1666 	memset(root_backup, 0, sizeof(*root_backup));
1667 
1668 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1669 
1670 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1671 	btrfs_set_backup_tree_root_gen(root_backup,
1672 			       btrfs_header_generation(info->tree_root->node));
1673 
1674 	btrfs_set_backup_tree_root_level(root_backup,
1675 			       btrfs_header_level(info->tree_root->node));
1676 
1677 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1678 	btrfs_set_backup_chunk_root_gen(root_backup,
1679 			       btrfs_header_generation(info->chunk_root->node));
1680 	btrfs_set_backup_chunk_root_level(root_backup,
1681 			       btrfs_header_level(info->chunk_root->node));
1682 
1683 	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1684 		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1685 		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1686 
1687 		btrfs_set_backup_extent_root(root_backup,
1688 					     extent_root->node->start);
1689 		btrfs_set_backup_extent_root_gen(root_backup,
1690 				btrfs_header_generation(extent_root->node));
1691 		btrfs_set_backup_extent_root_level(root_backup,
1692 					btrfs_header_level(extent_root->node));
1693 
1694 		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1695 		btrfs_set_backup_csum_root_gen(root_backup,
1696 					       btrfs_header_generation(csum_root->node));
1697 		btrfs_set_backup_csum_root_level(root_backup,
1698 						 btrfs_header_level(csum_root->node));
1699 	}
1700 
1701 	/*
1702 	 * we might commit during log recovery, which happens before we set
1703 	 * the fs_root.  Make sure it is valid before we fill it in.
1704 	 */
1705 	if (info->fs_root && info->fs_root->node) {
1706 		btrfs_set_backup_fs_root(root_backup,
1707 					 info->fs_root->node->start);
1708 		btrfs_set_backup_fs_root_gen(root_backup,
1709 			       btrfs_header_generation(info->fs_root->node));
1710 		btrfs_set_backup_fs_root_level(root_backup,
1711 			       btrfs_header_level(info->fs_root->node));
1712 	}
1713 
1714 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1715 	btrfs_set_backup_dev_root_gen(root_backup,
1716 			       btrfs_header_generation(info->dev_root->node));
1717 	btrfs_set_backup_dev_root_level(root_backup,
1718 				       btrfs_header_level(info->dev_root->node));
1719 
1720 	btrfs_set_backup_total_bytes(root_backup,
1721 			     btrfs_super_total_bytes(info->super_copy));
1722 	btrfs_set_backup_bytes_used(root_backup,
1723 			     btrfs_super_bytes_used(info->super_copy));
1724 	btrfs_set_backup_num_devices(root_backup,
1725 			     btrfs_super_num_devices(info->super_copy));
1726 
1727 	/*
1728 	 * if we don't copy this out to the super_copy, it won't get remembered
1729 	 * for the next commit
1730 	 */
1731 	memcpy(&info->super_copy->super_roots,
1732 	       &info->super_for_commit->super_roots,
1733 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1734 }
1735 
1736 /*
1737  * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1738  * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1739  *
1740  * @fs_info:  filesystem whose backup roots need to be read
1741  * @priority: priority of backup root required
1742  *
1743  * Returns backup root index on success and -EINVAL otherwise.
1744  */
1745 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1746 {
1747 	int backup_index = find_newest_super_backup(fs_info);
1748 	struct btrfs_super_block *super = fs_info->super_copy;
1749 	struct btrfs_root_backup *root_backup;
1750 
1751 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1752 		if (priority == 0)
1753 			return backup_index;
1754 
1755 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1756 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1757 	} else {
1758 		return -EINVAL;
1759 	}
1760 
1761 	root_backup = super->super_roots + backup_index;
1762 
1763 	btrfs_set_super_generation(super,
1764 				   btrfs_backup_tree_root_gen(root_backup));
1765 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1766 	btrfs_set_super_root_level(super,
1767 				   btrfs_backup_tree_root_level(root_backup));
1768 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1769 
1770 	/*
1771 	 * Fixme: the total bytes and num_devices need to match or we should
1772 	 * need a fsck
1773 	 */
1774 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1775 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1776 
1777 	return backup_index;
1778 }
1779 
1780 /* helper to cleanup workers */
1781 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1782 {
1783 	btrfs_destroy_workqueue(fs_info->fixup_workers);
1784 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1785 	btrfs_destroy_workqueue(fs_info->workers);
1786 	if (fs_info->endio_workers)
1787 		destroy_workqueue(fs_info->endio_workers);
1788 	if (fs_info->rmw_workers)
1789 		destroy_workqueue(fs_info->rmw_workers);
1790 	if (fs_info->compressed_write_workers)
1791 		destroy_workqueue(fs_info->compressed_write_workers);
1792 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1793 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1794 	btrfs_destroy_workqueue(fs_info->delayed_workers);
1795 	btrfs_destroy_workqueue(fs_info->caching_workers);
1796 	btrfs_destroy_workqueue(fs_info->flush_workers);
1797 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1798 	if (fs_info->discard_ctl.discard_workers)
1799 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1800 	/*
1801 	 * Now that all other work queues are destroyed, we can safely destroy
1802 	 * the queues used for metadata I/O, since tasks from those other work
1803 	 * queues can do metadata I/O operations.
1804 	 */
1805 	if (fs_info->endio_meta_workers)
1806 		destroy_workqueue(fs_info->endio_meta_workers);
1807 }
1808 
1809 static void free_root_extent_buffers(struct btrfs_root *root)
1810 {
1811 	if (root) {
1812 		free_extent_buffer(root->node);
1813 		free_extent_buffer(root->commit_root);
1814 		root->node = NULL;
1815 		root->commit_root = NULL;
1816 	}
1817 }
1818 
1819 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1820 {
1821 	struct btrfs_root *root, *tmp;
1822 
1823 	rbtree_postorder_for_each_entry_safe(root, tmp,
1824 					     &fs_info->global_root_tree,
1825 					     rb_node)
1826 		free_root_extent_buffers(root);
1827 }
1828 
1829 /* helper to cleanup tree roots */
1830 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1831 {
1832 	free_root_extent_buffers(info->tree_root);
1833 
1834 	free_global_root_pointers(info);
1835 	free_root_extent_buffers(info->dev_root);
1836 	free_root_extent_buffers(info->quota_root);
1837 	free_root_extent_buffers(info->uuid_root);
1838 	free_root_extent_buffers(info->fs_root);
1839 	free_root_extent_buffers(info->data_reloc_root);
1840 	free_root_extent_buffers(info->block_group_root);
1841 	free_root_extent_buffers(info->stripe_root);
1842 	if (free_chunk_root)
1843 		free_root_extent_buffers(info->chunk_root);
1844 }
1845 
1846 void btrfs_put_root(struct btrfs_root *root)
1847 {
1848 	if (!root)
1849 		return;
1850 
1851 	if (refcount_dec_and_test(&root->refs)) {
1852 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1853 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1854 		if (root->anon_dev)
1855 			free_anon_bdev(root->anon_dev);
1856 		free_root_extent_buffers(root);
1857 #ifdef CONFIG_BTRFS_DEBUG
1858 		spin_lock(&root->fs_info->fs_roots_radix_lock);
1859 		list_del_init(&root->leak_list);
1860 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
1861 #endif
1862 		kfree(root);
1863 	}
1864 }
1865 
1866 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1867 {
1868 	int ret;
1869 	struct btrfs_root *gang[8];
1870 	int i;
1871 
1872 	while (!list_empty(&fs_info->dead_roots)) {
1873 		gang[0] = list_entry(fs_info->dead_roots.next,
1874 				     struct btrfs_root, root_list);
1875 		list_del(&gang[0]->root_list);
1876 
1877 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1878 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1879 		btrfs_put_root(gang[0]);
1880 	}
1881 
1882 	while (1) {
1883 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1884 					     (void **)gang, 0,
1885 					     ARRAY_SIZE(gang));
1886 		if (!ret)
1887 			break;
1888 		for (i = 0; i < ret; i++)
1889 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1890 	}
1891 }
1892 
1893 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1894 {
1895 	mutex_init(&fs_info->scrub_lock);
1896 	atomic_set(&fs_info->scrubs_running, 0);
1897 	atomic_set(&fs_info->scrub_pause_req, 0);
1898 	atomic_set(&fs_info->scrubs_paused, 0);
1899 	atomic_set(&fs_info->scrub_cancel_req, 0);
1900 	init_waitqueue_head(&fs_info->scrub_pause_wait);
1901 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
1902 }
1903 
1904 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1905 {
1906 	spin_lock_init(&fs_info->balance_lock);
1907 	mutex_init(&fs_info->balance_mutex);
1908 	atomic_set(&fs_info->balance_pause_req, 0);
1909 	atomic_set(&fs_info->balance_cancel_req, 0);
1910 	fs_info->balance_ctl = NULL;
1911 	init_waitqueue_head(&fs_info->balance_wait_q);
1912 	atomic_set(&fs_info->reloc_cancel_req, 0);
1913 }
1914 
1915 static int btrfs_init_btree_inode(struct super_block *sb)
1916 {
1917 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1918 	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1919 					      fs_info->tree_root);
1920 	struct inode *inode;
1921 
1922 	inode = new_inode(sb);
1923 	if (!inode)
1924 		return -ENOMEM;
1925 
1926 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1927 	set_nlink(inode, 1);
1928 	/*
1929 	 * we set the i_size on the btree inode to the max possible int.
1930 	 * the real end of the address space is determined by all of
1931 	 * the devices in the system
1932 	 */
1933 	inode->i_size = OFFSET_MAX;
1934 	inode->i_mapping->a_ops = &btree_aops;
1935 	mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1936 
1937 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
1938 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1939 			    IO_TREE_BTREE_INODE_IO);
1940 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1941 
1942 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1943 	BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1944 	BTRFS_I(inode)->location.type = 0;
1945 	BTRFS_I(inode)->location.offset = 0;
1946 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1947 	__insert_inode_hash(inode, hash);
1948 	fs_info->btree_inode = inode;
1949 
1950 	return 0;
1951 }
1952 
1953 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1954 {
1955 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1956 	init_rwsem(&fs_info->dev_replace.rwsem);
1957 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1958 }
1959 
1960 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1961 {
1962 	spin_lock_init(&fs_info->qgroup_lock);
1963 	mutex_init(&fs_info->qgroup_ioctl_lock);
1964 	fs_info->qgroup_tree = RB_ROOT;
1965 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1966 	fs_info->qgroup_seq = 1;
1967 	fs_info->qgroup_ulist = NULL;
1968 	fs_info->qgroup_rescan_running = false;
1969 	fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
1970 	mutex_init(&fs_info->qgroup_rescan_lock);
1971 }
1972 
1973 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1974 {
1975 	u32 max_active = fs_info->thread_pool_size;
1976 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1977 	unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1978 
1979 	fs_info->workers =
1980 		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1981 
1982 	fs_info->delalloc_workers =
1983 		btrfs_alloc_workqueue(fs_info, "delalloc",
1984 				      flags, max_active, 2);
1985 
1986 	fs_info->flush_workers =
1987 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1988 				      flags, max_active, 0);
1989 
1990 	fs_info->caching_workers =
1991 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1992 
1993 	fs_info->fixup_workers =
1994 		btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1995 
1996 	fs_info->endio_workers =
1997 		alloc_workqueue("btrfs-endio", flags, max_active);
1998 	fs_info->endio_meta_workers =
1999 		alloc_workqueue("btrfs-endio-meta", flags, max_active);
2000 	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2001 	fs_info->endio_write_workers =
2002 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2003 				      max_active, 2);
2004 	fs_info->compressed_write_workers =
2005 		alloc_workqueue("btrfs-compressed-write", flags, max_active);
2006 	fs_info->endio_freespace_worker =
2007 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2008 				      max_active, 0);
2009 	fs_info->delayed_workers =
2010 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2011 				      max_active, 0);
2012 	fs_info->qgroup_rescan_workers =
2013 		btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
2014 					      ordered_flags);
2015 	fs_info->discard_ctl.discard_workers =
2016 		alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
2017 
2018 	if (!(fs_info->workers &&
2019 	      fs_info->delalloc_workers && fs_info->flush_workers &&
2020 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2021 	      fs_info->compressed_write_workers &&
2022 	      fs_info->endio_write_workers &&
2023 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2024 	      fs_info->caching_workers && fs_info->fixup_workers &&
2025 	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2026 	      fs_info->discard_ctl.discard_workers)) {
2027 		return -ENOMEM;
2028 	}
2029 
2030 	return 0;
2031 }
2032 
2033 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2034 {
2035 	struct crypto_shash *csum_shash;
2036 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2037 
2038 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2039 
2040 	if (IS_ERR(csum_shash)) {
2041 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2042 			  csum_driver);
2043 		return PTR_ERR(csum_shash);
2044 	}
2045 
2046 	fs_info->csum_shash = csum_shash;
2047 
2048 	/*
2049 	 * Check if the checksum implementation is a fast accelerated one.
2050 	 * As-is this is a bit of a hack and should be replaced once the csum
2051 	 * implementations provide that information themselves.
2052 	 */
2053 	switch (csum_type) {
2054 	case BTRFS_CSUM_TYPE_CRC32:
2055 		if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2056 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2057 		break;
2058 	case BTRFS_CSUM_TYPE_XXHASH:
2059 		set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2060 		break;
2061 	default:
2062 		break;
2063 	}
2064 
2065 	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2066 			btrfs_super_csum_name(csum_type),
2067 			crypto_shash_driver_name(csum_shash));
2068 	return 0;
2069 }
2070 
2071 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2072 			    struct btrfs_fs_devices *fs_devices)
2073 {
2074 	int ret;
2075 	struct btrfs_tree_parent_check check = { 0 };
2076 	struct btrfs_root *log_tree_root;
2077 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2078 	u64 bytenr = btrfs_super_log_root(disk_super);
2079 	int level = btrfs_super_log_root_level(disk_super);
2080 
2081 	if (fs_devices->rw_devices == 0) {
2082 		btrfs_warn(fs_info, "log replay required on RO media");
2083 		return -EIO;
2084 	}
2085 
2086 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2087 					 GFP_KERNEL);
2088 	if (!log_tree_root)
2089 		return -ENOMEM;
2090 
2091 	check.level = level;
2092 	check.transid = fs_info->generation + 1;
2093 	check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2094 	log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2095 	if (IS_ERR(log_tree_root->node)) {
2096 		btrfs_warn(fs_info, "failed to read log tree");
2097 		ret = PTR_ERR(log_tree_root->node);
2098 		log_tree_root->node = NULL;
2099 		btrfs_put_root(log_tree_root);
2100 		return ret;
2101 	}
2102 	if (!extent_buffer_uptodate(log_tree_root->node)) {
2103 		btrfs_err(fs_info, "failed to read log tree");
2104 		btrfs_put_root(log_tree_root);
2105 		return -EIO;
2106 	}
2107 
2108 	/* returns with log_tree_root freed on success */
2109 	ret = btrfs_recover_log_trees(log_tree_root);
2110 	if (ret) {
2111 		btrfs_handle_fs_error(fs_info, ret,
2112 				      "Failed to recover log tree");
2113 		btrfs_put_root(log_tree_root);
2114 		return ret;
2115 	}
2116 
2117 	if (sb_rdonly(fs_info->sb)) {
2118 		ret = btrfs_commit_super(fs_info);
2119 		if (ret)
2120 			return ret;
2121 	}
2122 
2123 	return 0;
2124 }
2125 
2126 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2127 				      struct btrfs_path *path, u64 objectid,
2128 				      const char *name)
2129 {
2130 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2131 	struct btrfs_root *root;
2132 	u64 max_global_id = 0;
2133 	int ret;
2134 	struct btrfs_key key = {
2135 		.objectid = objectid,
2136 		.type = BTRFS_ROOT_ITEM_KEY,
2137 		.offset = 0,
2138 	};
2139 	bool found = false;
2140 
2141 	/* If we have IGNOREDATACSUMS skip loading these roots. */
2142 	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2143 	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2144 		set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2145 		return 0;
2146 	}
2147 
2148 	while (1) {
2149 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2150 		if (ret < 0)
2151 			break;
2152 
2153 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2154 			ret = btrfs_next_leaf(tree_root, path);
2155 			if (ret) {
2156 				if (ret > 0)
2157 					ret = 0;
2158 				break;
2159 			}
2160 		}
2161 		ret = 0;
2162 
2163 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2164 		if (key.objectid != objectid)
2165 			break;
2166 		btrfs_release_path(path);
2167 
2168 		/*
2169 		 * Just worry about this for extent tree, it'll be the same for
2170 		 * everybody.
2171 		 */
2172 		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2173 			max_global_id = max(max_global_id, key.offset);
2174 
2175 		found = true;
2176 		root = read_tree_root_path(tree_root, path, &key);
2177 		if (IS_ERR(root)) {
2178 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2179 				ret = PTR_ERR(root);
2180 			break;
2181 		}
2182 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2183 		ret = btrfs_global_root_insert(root);
2184 		if (ret) {
2185 			btrfs_put_root(root);
2186 			break;
2187 		}
2188 		key.offset++;
2189 	}
2190 	btrfs_release_path(path);
2191 
2192 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2193 		fs_info->nr_global_roots = max_global_id + 1;
2194 
2195 	if (!found || ret) {
2196 		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2197 			set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2198 
2199 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2200 			ret = ret ? ret : -ENOENT;
2201 		else
2202 			ret = 0;
2203 		btrfs_err(fs_info, "failed to load root %s", name);
2204 	}
2205 	return ret;
2206 }
2207 
2208 static int load_global_roots(struct btrfs_root *tree_root)
2209 {
2210 	struct btrfs_path *path;
2211 	int ret = 0;
2212 
2213 	path = btrfs_alloc_path();
2214 	if (!path)
2215 		return -ENOMEM;
2216 
2217 	ret = load_global_roots_objectid(tree_root, path,
2218 					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2219 	if (ret)
2220 		goto out;
2221 	ret = load_global_roots_objectid(tree_root, path,
2222 					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2223 	if (ret)
2224 		goto out;
2225 	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2226 		goto out;
2227 	ret = load_global_roots_objectid(tree_root, path,
2228 					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2229 					 "free space");
2230 out:
2231 	btrfs_free_path(path);
2232 	return ret;
2233 }
2234 
2235 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2236 {
2237 	struct btrfs_root *tree_root = fs_info->tree_root;
2238 	struct btrfs_root *root;
2239 	struct btrfs_key location;
2240 	int ret;
2241 
2242 	BUG_ON(!fs_info->tree_root);
2243 
2244 	ret = load_global_roots(tree_root);
2245 	if (ret)
2246 		return ret;
2247 
2248 	location.type = BTRFS_ROOT_ITEM_KEY;
2249 	location.offset = 0;
2250 
2251 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2252 		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2253 		root = btrfs_read_tree_root(tree_root, &location);
2254 		if (IS_ERR(root)) {
2255 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2256 				ret = PTR_ERR(root);
2257 				goto out;
2258 			}
2259 		} else {
2260 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2261 			fs_info->block_group_root = root;
2262 		}
2263 	}
2264 
2265 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2266 	root = btrfs_read_tree_root(tree_root, &location);
2267 	if (IS_ERR(root)) {
2268 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2269 			ret = PTR_ERR(root);
2270 			goto out;
2271 		}
2272 	} else {
2273 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2274 		fs_info->dev_root = root;
2275 	}
2276 	/* Initialize fs_info for all devices in any case */
2277 	ret = btrfs_init_devices_late(fs_info);
2278 	if (ret)
2279 		goto out;
2280 
2281 	/*
2282 	 * This tree can share blocks with some other fs tree during relocation
2283 	 * and we need a proper setup by btrfs_get_fs_root
2284 	 */
2285 	root = btrfs_get_fs_root(tree_root->fs_info,
2286 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2287 	if (IS_ERR(root)) {
2288 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2289 			ret = PTR_ERR(root);
2290 			goto out;
2291 		}
2292 	} else {
2293 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2294 		fs_info->data_reloc_root = root;
2295 	}
2296 
2297 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2298 	root = btrfs_read_tree_root(tree_root, &location);
2299 	if (!IS_ERR(root)) {
2300 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2301 		fs_info->quota_root = root;
2302 	}
2303 
2304 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2305 	root = btrfs_read_tree_root(tree_root, &location);
2306 	if (IS_ERR(root)) {
2307 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2308 			ret = PTR_ERR(root);
2309 			if (ret != -ENOENT)
2310 				goto out;
2311 		}
2312 	} else {
2313 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2314 		fs_info->uuid_root = root;
2315 	}
2316 
2317 	if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2318 		location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2319 		root = btrfs_read_tree_root(tree_root, &location);
2320 		if (IS_ERR(root)) {
2321 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2322 				ret = PTR_ERR(root);
2323 				goto out;
2324 			}
2325 		} else {
2326 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2327 			fs_info->stripe_root = root;
2328 		}
2329 	}
2330 
2331 	return 0;
2332 out:
2333 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2334 		   location.objectid, ret);
2335 	return ret;
2336 }
2337 
2338 /*
2339  * Real super block validation
2340  * NOTE: super csum type and incompat features will not be checked here.
2341  *
2342  * @sb:		super block to check
2343  * @mirror_num:	the super block number to check its bytenr:
2344  * 		0	the primary (1st) sb
2345  * 		1, 2	2nd and 3rd backup copy
2346  * 	       -1	skip bytenr check
2347  */
2348 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2349 			 struct btrfs_super_block *sb, int mirror_num)
2350 {
2351 	u64 nodesize = btrfs_super_nodesize(sb);
2352 	u64 sectorsize = btrfs_super_sectorsize(sb);
2353 	int ret = 0;
2354 
2355 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2356 		btrfs_err(fs_info, "no valid FS found");
2357 		ret = -EINVAL;
2358 	}
2359 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2360 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2361 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2362 		ret = -EINVAL;
2363 	}
2364 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2365 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2366 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2367 		ret = -EINVAL;
2368 	}
2369 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2370 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2371 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2372 		ret = -EINVAL;
2373 	}
2374 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2375 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2376 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2377 		ret = -EINVAL;
2378 	}
2379 
2380 	/*
2381 	 * Check sectorsize and nodesize first, other check will need it.
2382 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2383 	 */
2384 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2385 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2386 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2387 		ret = -EINVAL;
2388 	}
2389 
2390 	/*
2391 	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2392 	 *
2393 	 * We can support 16K sectorsize with 64K page size without problem,
2394 	 * but such sectorsize/pagesize combination doesn't make much sense.
2395 	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2396 	 * beginning.
2397 	 */
2398 	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2399 		btrfs_err(fs_info,
2400 			"sectorsize %llu not yet supported for page size %lu",
2401 			sectorsize, PAGE_SIZE);
2402 		ret = -EINVAL;
2403 	}
2404 
2405 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2406 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2407 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2408 		ret = -EINVAL;
2409 	}
2410 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2411 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2412 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2413 		ret = -EINVAL;
2414 	}
2415 
2416 	/* Root alignment check */
2417 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2418 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2419 			   btrfs_super_root(sb));
2420 		ret = -EINVAL;
2421 	}
2422 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2423 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2424 			   btrfs_super_chunk_root(sb));
2425 		ret = -EINVAL;
2426 	}
2427 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2428 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2429 			   btrfs_super_log_root(sb));
2430 		ret = -EINVAL;
2431 	}
2432 
2433 	if (!fs_info->fs_devices->temp_fsid &&
2434 	    memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2435 		btrfs_err(fs_info,
2436 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2437 			  sb->fsid, fs_info->fs_devices->fsid);
2438 		ret = -EINVAL;
2439 	}
2440 
2441 	if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2442 		   BTRFS_FSID_SIZE) != 0) {
2443 		btrfs_err(fs_info,
2444 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2445 			  btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2446 		ret = -EINVAL;
2447 	}
2448 
2449 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2450 		   BTRFS_FSID_SIZE) != 0) {
2451 		btrfs_err(fs_info,
2452 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2453 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2454 		ret = -EINVAL;
2455 	}
2456 
2457 	/*
2458 	 * Artificial requirement for block-group-tree to force newer features
2459 	 * (free-space-tree, no-holes) so the test matrix is smaller.
2460 	 */
2461 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2462 	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2463 	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2464 		btrfs_err(fs_info,
2465 		"block-group-tree feature requires fres-space-tree and no-holes");
2466 		ret = -EINVAL;
2467 	}
2468 
2469 	/*
2470 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2471 	 * done later
2472 	 */
2473 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2474 		btrfs_err(fs_info, "bytes_used is too small %llu",
2475 			  btrfs_super_bytes_used(sb));
2476 		ret = -EINVAL;
2477 	}
2478 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2479 		btrfs_err(fs_info, "invalid stripesize %u",
2480 			  btrfs_super_stripesize(sb));
2481 		ret = -EINVAL;
2482 	}
2483 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2484 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2485 			   btrfs_super_num_devices(sb));
2486 	if (btrfs_super_num_devices(sb) == 0) {
2487 		btrfs_err(fs_info, "number of devices is 0");
2488 		ret = -EINVAL;
2489 	}
2490 
2491 	if (mirror_num >= 0 &&
2492 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2493 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2494 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2495 		ret = -EINVAL;
2496 	}
2497 
2498 	/*
2499 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2500 	 * and one chunk
2501 	 */
2502 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2503 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2504 			  btrfs_super_sys_array_size(sb),
2505 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2506 		ret = -EINVAL;
2507 	}
2508 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2509 			+ sizeof(struct btrfs_chunk)) {
2510 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2511 			  btrfs_super_sys_array_size(sb),
2512 			  sizeof(struct btrfs_disk_key)
2513 			  + sizeof(struct btrfs_chunk));
2514 		ret = -EINVAL;
2515 	}
2516 
2517 	/*
2518 	 * The generation is a global counter, we'll trust it more than the others
2519 	 * but it's still possible that it's the one that's wrong.
2520 	 */
2521 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2522 		btrfs_warn(fs_info,
2523 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2524 			btrfs_super_generation(sb),
2525 			btrfs_super_chunk_root_generation(sb));
2526 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2527 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2528 		btrfs_warn(fs_info,
2529 			"suspicious: generation < cache_generation: %llu < %llu",
2530 			btrfs_super_generation(sb),
2531 			btrfs_super_cache_generation(sb));
2532 
2533 	return ret;
2534 }
2535 
2536 /*
2537  * Validation of super block at mount time.
2538  * Some checks already done early at mount time, like csum type and incompat
2539  * flags will be skipped.
2540  */
2541 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2542 {
2543 	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2544 }
2545 
2546 /*
2547  * Validation of super block at write time.
2548  * Some checks like bytenr check will be skipped as their values will be
2549  * overwritten soon.
2550  * Extra checks like csum type and incompat flags will be done here.
2551  */
2552 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2553 				      struct btrfs_super_block *sb)
2554 {
2555 	int ret;
2556 
2557 	ret = btrfs_validate_super(fs_info, sb, -1);
2558 	if (ret < 0)
2559 		goto out;
2560 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2561 		ret = -EUCLEAN;
2562 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2563 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2564 		goto out;
2565 	}
2566 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2567 		ret = -EUCLEAN;
2568 		btrfs_err(fs_info,
2569 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2570 			  btrfs_super_incompat_flags(sb),
2571 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2572 		goto out;
2573 	}
2574 out:
2575 	if (ret < 0)
2576 		btrfs_err(fs_info,
2577 		"super block corruption detected before writing it to disk");
2578 	return ret;
2579 }
2580 
2581 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2582 {
2583 	struct btrfs_tree_parent_check check = {
2584 		.level = level,
2585 		.transid = gen,
2586 		.owner_root = root->root_key.objectid
2587 	};
2588 	int ret = 0;
2589 
2590 	root->node = read_tree_block(root->fs_info, bytenr, &check);
2591 	if (IS_ERR(root->node)) {
2592 		ret = PTR_ERR(root->node);
2593 		root->node = NULL;
2594 		return ret;
2595 	}
2596 	if (!extent_buffer_uptodate(root->node)) {
2597 		free_extent_buffer(root->node);
2598 		root->node = NULL;
2599 		return -EIO;
2600 	}
2601 
2602 	btrfs_set_root_node(&root->root_item, root->node);
2603 	root->commit_root = btrfs_root_node(root);
2604 	btrfs_set_root_refs(&root->root_item, 1);
2605 	return ret;
2606 }
2607 
2608 static int load_important_roots(struct btrfs_fs_info *fs_info)
2609 {
2610 	struct btrfs_super_block *sb = fs_info->super_copy;
2611 	u64 gen, bytenr;
2612 	int level, ret;
2613 
2614 	bytenr = btrfs_super_root(sb);
2615 	gen = btrfs_super_generation(sb);
2616 	level = btrfs_super_root_level(sb);
2617 	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2618 	if (ret) {
2619 		btrfs_warn(fs_info, "couldn't read tree root");
2620 		return ret;
2621 	}
2622 	return 0;
2623 }
2624 
2625 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2626 {
2627 	int backup_index = find_newest_super_backup(fs_info);
2628 	struct btrfs_super_block *sb = fs_info->super_copy;
2629 	struct btrfs_root *tree_root = fs_info->tree_root;
2630 	bool handle_error = false;
2631 	int ret = 0;
2632 	int i;
2633 
2634 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2635 		if (handle_error) {
2636 			if (!IS_ERR(tree_root->node))
2637 				free_extent_buffer(tree_root->node);
2638 			tree_root->node = NULL;
2639 
2640 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2641 				break;
2642 
2643 			free_root_pointers(fs_info, 0);
2644 
2645 			/*
2646 			 * Don't use the log in recovery mode, it won't be
2647 			 * valid
2648 			 */
2649 			btrfs_set_super_log_root(sb, 0);
2650 
2651 			btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2652 			ret = read_backup_root(fs_info, i);
2653 			backup_index = ret;
2654 			if (ret < 0)
2655 				return ret;
2656 		}
2657 
2658 		ret = load_important_roots(fs_info);
2659 		if (ret) {
2660 			handle_error = true;
2661 			continue;
2662 		}
2663 
2664 		/*
2665 		 * No need to hold btrfs_root::objectid_mutex since the fs
2666 		 * hasn't been fully initialised and we are the only user
2667 		 */
2668 		ret = btrfs_init_root_free_objectid(tree_root);
2669 		if (ret < 0) {
2670 			handle_error = true;
2671 			continue;
2672 		}
2673 
2674 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2675 
2676 		ret = btrfs_read_roots(fs_info);
2677 		if (ret < 0) {
2678 			handle_error = true;
2679 			continue;
2680 		}
2681 
2682 		/* All successful */
2683 		fs_info->generation = btrfs_header_generation(tree_root->node);
2684 		btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2685 		fs_info->last_reloc_trans = 0;
2686 
2687 		/* Always begin writing backup roots after the one being used */
2688 		if (backup_index < 0) {
2689 			fs_info->backup_root_index = 0;
2690 		} else {
2691 			fs_info->backup_root_index = backup_index + 1;
2692 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2693 		}
2694 		break;
2695 	}
2696 
2697 	return ret;
2698 }
2699 
2700 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2701 {
2702 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2703 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2704 	INIT_LIST_HEAD(&fs_info->trans_list);
2705 	INIT_LIST_HEAD(&fs_info->dead_roots);
2706 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2707 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2708 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2709 	spin_lock_init(&fs_info->delalloc_root_lock);
2710 	spin_lock_init(&fs_info->trans_lock);
2711 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2712 	spin_lock_init(&fs_info->delayed_iput_lock);
2713 	spin_lock_init(&fs_info->defrag_inodes_lock);
2714 	spin_lock_init(&fs_info->super_lock);
2715 	spin_lock_init(&fs_info->buffer_lock);
2716 	spin_lock_init(&fs_info->unused_bgs_lock);
2717 	spin_lock_init(&fs_info->treelog_bg_lock);
2718 	spin_lock_init(&fs_info->zone_active_bgs_lock);
2719 	spin_lock_init(&fs_info->relocation_bg_lock);
2720 	rwlock_init(&fs_info->tree_mod_log_lock);
2721 	rwlock_init(&fs_info->global_root_lock);
2722 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2723 	mutex_init(&fs_info->reclaim_bgs_lock);
2724 	mutex_init(&fs_info->reloc_mutex);
2725 	mutex_init(&fs_info->delalloc_root_mutex);
2726 	mutex_init(&fs_info->zoned_meta_io_lock);
2727 	mutex_init(&fs_info->zoned_data_reloc_io_lock);
2728 	seqlock_init(&fs_info->profiles_lock);
2729 
2730 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2731 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2732 	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2733 	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2734 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2735 				     BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2736 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2737 				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2738 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2739 				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2740 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2741 				     BTRFS_LOCKDEP_TRANS_COMPLETED);
2742 
2743 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2744 	INIT_LIST_HEAD(&fs_info->space_info);
2745 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2746 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2747 	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2748 	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2749 #ifdef CONFIG_BTRFS_DEBUG
2750 	INIT_LIST_HEAD(&fs_info->allocated_roots);
2751 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2752 	spin_lock_init(&fs_info->eb_leak_lock);
2753 #endif
2754 	fs_info->mapping_tree = RB_ROOT_CACHED;
2755 	rwlock_init(&fs_info->mapping_tree_lock);
2756 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2757 			     BTRFS_BLOCK_RSV_GLOBAL);
2758 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2759 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2760 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2761 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2762 			     BTRFS_BLOCK_RSV_DELOPS);
2763 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2764 			     BTRFS_BLOCK_RSV_DELREFS);
2765 
2766 	atomic_set(&fs_info->async_delalloc_pages, 0);
2767 	atomic_set(&fs_info->defrag_running, 0);
2768 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2769 	atomic64_set(&fs_info->tree_mod_seq, 0);
2770 	fs_info->global_root_tree = RB_ROOT;
2771 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2772 	fs_info->metadata_ratio = 0;
2773 	fs_info->defrag_inodes = RB_ROOT;
2774 	atomic64_set(&fs_info->free_chunk_space, 0);
2775 	fs_info->tree_mod_log = RB_ROOT;
2776 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2777 	btrfs_init_ref_verify(fs_info);
2778 
2779 	fs_info->thread_pool_size = min_t(unsigned long,
2780 					  num_online_cpus() + 2, 8);
2781 
2782 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2783 	spin_lock_init(&fs_info->ordered_root_lock);
2784 
2785 	btrfs_init_scrub(fs_info);
2786 	btrfs_init_balance(fs_info);
2787 	btrfs_init_async_reclaim_work(fs_info);
2788 
2789 	rwlock_init(&fs_info->block_group_cache_lock);
2790 	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2791 
2792 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2793 			    IO_TREE_FS_EXCLUDED_EXTENTS);
2794 
2795 	mutex_init(&fs_info->ordered_operations_mutex);
2796 	mutex_init(&fs_info->tree_log_mutex);
2797 	mutex_init(&fs_info->chunk_mutex);
2798 	mutex_init(&fs_info->transaction_kthread_mutex);
2799 	mutex_init(&fs_info->cleaner_mutex);
2800 	mutex_init(&fs_info->ro_block_group_mutex);
2801 	init_rwsem(&fs_info->commit_root_sem);
2802 	init_rwsem(&fs_info->cleanup_work_sem);
2803 	init_rwsem(&fs_info->subvol_sem);
2804 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2805 
2806 	btrfs_init_dev_replace_locks(fs_info);
2807 	btrfs_init_qgroup(fs_info);
2808 	btrfs_discard_init(fs_info);
2809 
2810 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2811 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2812 
2813 	init_waitqueue_head(&fs_info->transaction_throttle);
2814 	init_waitqueue_head(&fs_info->transaction_wait);
2815 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2816 	init_waitqueue_head(&fs_info->async_submit_wait);
2817 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2818 
2819 	/* Usable values until the real ones are cached from the superblock */
2820 	fs_info->nodesize = 4096;
2821 	fs_info->sectorsize = 4096;
2822 	fs_info->sectorsize_bits = ilog2(4096);
2823 	fs_info->stripesize = 4096;
2824 
2825 	/* Default compress algorithm when user does -o compress */
2826 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2827 
2828 	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2829 
2830 	spin_lock_init(&fs_info->swapfile_pins_lock);
2831 	fs_info->swapfile_pins = RB_ROOT;
2832 
2833 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2834 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2835 }
2836 
2837 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2838 {
2839 	int ret;
2840 
2841 	fs_info->sb = sb;
2842 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2843 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2844 
2845 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2846 	if (ret)
2847 		return ret;
2848 
2849 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2850 	if (ret)
2851 		return ret;
2852 
2853 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2854 					(1 + ilog2(nr_cpu_ids));
2855 
2856 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2857 	if (ret)
2858 		return ret;
2859 
2860 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2861 			GFP_KERNEL);
2862 	if (ret)
2863 		return ret;
2864 
2865 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2866 					GFP_KERNEL);
2867 	if (!fs_info->delayed_root)
2868 		return -ENOMEM;
2869 	btrfs_init_delayed_root(fs_info->delayed_root);
2870 
2871 	if (sb_rdonly(sb))
2872 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2873 
2874 	return btrfs_alloc_stripe_hash_table(fs_info);
2875 }
2876 
2877 static int btrfs_uuid_rescan_kthread(void *data)
2878 {
2879 	struct btrfs_fs_info *fs_info = data;
2880 	int ret;
2881 
2882 	/*
2883 	 * 1st step is to iterate through the existing UUID tree and
2884 	 * to delete all entries that contain outdated data.
2885 	 * 2nd step is to add all missing entries to the UUID tree.
2886 	 */
2887 	ret = btrfs_uuid_tree_iterate(fs_info);
2888 	if (ret < 0) {
2889 		if (ret != -EINTR)
2890 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2891 				   ret);
2892 		up(&fs_info->uuid_tree_rescan_sem);
2893 		return ret;
2894 	}
2895 	return btrfs_uuid_scan_kthread(data);
2896 }
2897 
2898 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2899 {
2900 	struct task_struct *task;
2901 
2902 	down(&fs_info->uuid_tree_rescan_sem);
2903 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2904 	if (IS_ERR(task)) {
2905 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2906 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2907 		up(&fs_info->uuid_tree_rescan_sem);
2908 		return PTR_ERR(task);
2909 	}
2910 
2911 	return 0;
2912 }
2913 
2914 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2915 {
2916 	u64 root_objectid = 0;
2917 	struct btrfs_root *gang[8];
2918 	int i = 0;
2919 	int err = 0;
2920 	unsigned int ret = 0;
2921 
2922 	while (1) {
2923 		spin_lock(&fs_info->fs_roots_radix_lock);
2924 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2925 					     (void **)gang, root_objectid,
2926 					     ARRAY_SIZE(gang));
2927 		if (!ret) {
2928 			spin_unlock(&fs_info->fs_roots_radix_lock);
2929 			break;
2930 		}
2931 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
2932 
2933 		for (i = 0; i < ret; i++) {
2934 			/* Avoid to grab roots in dead_roots. */
2935 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2936 				gang[i] = NULL;
2937 				continue;
2938 			}
2939 			/* Grab all the search result for later use. */
2940 			gang[i] = btrfs_grab_root(gang[i]);
2941 		}
2942 		spin_unlock(&fs_info->fs_roots_radix_lock);
2943 
2944 		for (i = 0; i < ret; i++) {
2945 			if (!gang[i])
2946 				continue;
2947 			root_objectid = gang[i]->root_key.objectid;
2948 			err = btrfs_orphan_cleanup(gang[i]);
2949 			if (err)
2950 				goto out;
2951 			btrfs_put_root(gang[i]);
2952 		}
2953 		root_objectid++;
2954 	}
2955 out:
2956 	/* Release the uncleaned roots due to error. */
2957 	for (; i < ret; i++) {
2958 		if (gang[i])
2959 			btrfs_put_root(gang[i]);
2960 	}
2961 	return err;
2962 }
2963 
2964 /*
2965  * Mounting logic specific to read-write file systems. Shared by open_ctree
2966  * and btrfs_remount when remounting from read-only to read-write.
2967  */
2968 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2969 {
2970 	int ret;
2971 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2972 	bool rebuild_free_space_tree = false;
2973 
2974 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2975 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2976 		if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2977 			btrfs_warn(fs_info,
2978 				   "'clear_cache' option is ignored with extent tree v2");
2979 		else
2980 			rebuild_free_space_tree = true;
2981 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2982 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2983 		btrfs_warn(fs_info, "free space tree is invalid");
2984 		rebuild_free_space_tree = true;
2985 	}
2986 
2987 	if (rebuild_free_space_tree) {
2988 		btrfs_info(fs_info, "rebuilding free space tree");
2989 		ret = btrfs_rebuild_free_space_tree(fs_info);
2990 		if (ret) {
2991 			btrfs_warn(fs_info,
2992 				   "failed to rebuild free space tree: %d", ret);
2993 			goto out;
2994 		}
2995 	}
2996 
2997 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2998 	    !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
2999 		btrfs_info(fs_info, "disabling free space tree");
3000 		ret = btrfs_delete_free_space_tree(fs_info);
3001 		if (ret) {
3002 			btrfs_warn(fs_info,
3003 				   "failed to disable free space tree: %d", ret);
3004 			goto out;
3005 		}
3006 	}
3007 
3008 	/*
3009 	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3010 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3011 	 * them into the fs_info->fs_roots_radix tree. This must be done before
3012 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3013 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3014 	 * item before the root's tree is deleted - this means that if we unmount
3015 	 * or crash before the deletion completes, on the next mount we will not
3016 	 * delete what remains of the tree because the orphan item does not
3017 	 * exists anymore, which is what tells us we have a pending deletion.
3018 	 */
3019 	ret = btrfs_find_orphan_roots(fs_info);
3020 	if (ret)
3021 		goto out;
3022 
3023 	ret = btrfs_cleanup_fs_roots(fs_info);
3024 	if (ret)
3025 		goto out;
3026 
3027 	down_read(&fs_info->cleanup_work_sem);
3028 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3029 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3030 		up_read(&fs_info->cleanup_work_sem);
3031 		goto out;
3032 	}
3033 	up_read(&fs_info->cleanup_work_sem);
3034 
3035 	mutex_lock(&fs_info->cleaner_mutex);
3036 	ret = btrfs_recover_relocation(fs_info);
3037 	mutex_unlock(&fs_info->cleaner_mutex);
3038 	if (ret < 0) {
3039 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3040 		goto out;
3041 	}
3042 
3043 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3044 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3045 		btrfs_info(fs_info, "creating free space tree");
3046 		ret = btrfs_create_free_space_tree(fs_info);
3047 		if (ret) {
3048 			btrfs_warn(fs_info,
3049 				"failed to create free space tree: %d", ret);
3050 			goto out;
3051 		}
3052 	}
3053 
3054 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3055 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3056 		if (ret)
3057 			goto out;
3058 	}
3059 
3060 	ret = btrfs_resume_balance_async(fs_info);
3061 	if (ret)
3062 		goto out;
3063 
3064 	ret = btrfs_resume_dev_replace_async(fs_info);
3065 	if (ret) {
3066 		btrfs_warn(fs_info, "failed to resume dev_replace");
3067 		goto out;
3068 	}
3069 
3070 	btrfs_qgroup_rescan_resume(fs_info);
3071 
3072 	if (!fs_info->uuid_root) {
3073 		btrfs_info(fs_info, "creating UUID tree");
3074 		ret = btrfs_create_uuid_tree(fs_info);
3075 		if (ret) {
3076 			btrfs_warn(fs_info,
3077 				   "failed to create the UUID tree %d", ret);
3078 			goto out;
3079 		}
3080 	}
3081 
3082 out:
3083 	return ret;
3084 }
3085 
3086 /*
3087  * Do various sanity and dependency checks of different features.
3088  *
3089  * @is_rw_mount:	If the mount is read-write.
3090  *
3091  * This is the place for less strict checks (like for subpage or artificial
3092  * feature dependencies).
3093  *
3094  * For strict checks or possible corruption detection, see
3095  * btrfs_validate_super().
3096  *
3097  * This should be called after btrfs_parse_options(), as some mount options
3098  * (space cache related) can modify on-disk format like free space tree and
3099  * screw up certain feature dependencies.
3100  */
3101 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3102 {
3103 	struct btrfs_super_block *disk_super = fs_info->super_copy;
3104 	u64 incompat = btrfs_super_incompat_flags(disk_super);
3105 	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3106 	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3107 
3108 	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3109 		btrfs_err(fs_info,
3110 		"cannot mount because of unknown incompat features (0x%llx)",
3111 		    incompat);
3112 		return -EINVAL;
3113 	}
3114 
3115 	/* Runtime limitation for mixed block groups. */
3116 	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3117 	    (fs_info->sectorsize != fs_info->nodesize)) {
3118 		btrfs_err(fs_info,
3119 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3120 			fs_info->nodesize, fs_info->sectorsize);
3121 		return -EINVAL;
3122 	}
3123 
3124 	/* Mixed backref is an always-enabled feature. */
3125 	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3126 
3127 	/* Set compression related flags just in case. */
3128 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3129 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3130 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3131 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3132 
3133 	/*
3134 	 * An ancient flag, which should really be marked deprecated.
3135 	 * Such runtime limitation doesn't really need a incompat flag.
3136 	 */
3137 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3138 		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3139 
3140 	if (compat_ro_unsupp && is_rw_mount) {
3141 		btrfs_err(fs_info,
3142 	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3143 		       compat_ro);
3144 		return -EINVAL;
3145 	}
3146 
3147 	/*
3148 	 * We have unsupported RO compat features, although RO mounted, we
3149 	 * should not cause any metadata writes, including log replay.
3150 	 * Or we could screw up whatever the new feature requires.
3151 	 */
3152 	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3153 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3154 		btrfs_err(fs_info,
3155 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3156 			  compat_ro);
3157 		return -EINVAL;
3158 	}
3159 
3160 	/*
3161 	 * Artificial limitations for block group tree, to force
3162 	 * block-group-tree to rely on no-holes and free-space-tree.
3163 	 */
3164 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3165 	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3166 	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3167 		btrfs_err(fs_info,
3168 "block-group-tree feature requires no-holes and free-space-tree features");
3169 		return -EINVAL;
3170 	}
3171 
3172 	/*
3173 	 * Subpage runtime limitation on v1 cache.
3174 	 *
3175 	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3176 	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3177 	 * going to be deprecated anyway.
3178 	 */
3179 	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3180 		btrfs_warn(fs_info,
3181 	"v1 space cache is not supported for page size %lu with sectorsize %u",
3182 			   PAGE_SIZE, fs_info->sectorsize);
3183 		return -EINVAL;
3184 	}
3185 
3186 	/* This can be called by remount, we need to protect the super block. */
3187 	spin_lock(&fs_info->super_lock);
3188 	btrfs_set_super_incompat_flags(disk_super, incompat);
3189 	spin_unlock(&fs_info->super_lock);
3190 
3191 	return 0;
3192 }
3193 
3194 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3195 		      char *options)
3196 {
3197 	u32 sectorsize;
3198 	u32 nodesize;
3199 	u32 stripesize;
3200 	u64 generation;
3201 	u16 csum_type;
3202 	struct btrfs_super_block *disk_super;
3203 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3204 	struct btrfs_root *tree_root;
3205 	struct btrfs_root *chunk_root;
3206 	int ret;
3207 	int level;
3208 
3209 	ret = init_mount_fs_info(fs_info, sb);
3210 	if (ret)
3211 		goto fail;
3212 
3213 	/* These need to be init'ed before we start creating inodes and such. */
3214 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3215 				     GFP_KERNEL);
3216 	fs_info->tree_root = tree_root;
3217 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3218 				      GFP_KERNEL);
3219 	fs_info->chunk_root = chunk_root;
3220 	if (!tree_root || !chunk_root) {
3221 		ret = -ENOMEM;
3222 		goto fail;
3223 	}
3224 
3225 	ret = btrfs_init_btree_inode(sb);
3226 	if (ret)
3227 		goto fail;
3228 
3229 	invalidate_bdev(fs_devices->latest_dev->bdev);
3230 
3231 	/*
3232 	 * Read super block and check the signature bytes only
3233 	 */
3234 	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3235 	if (IS_ERR(disk_super)) {
3236 		ret = PTR_ERR(disk_super);
3237 		goto fail_alloc;
3238 	}
3239 
3240 	btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3241 	/*
3242 	 * Verify the type first, if that or the checksum value are
3243 	 * corrupted, we'll find out
3244 	 */
3245 	csum_type = btrfs_super_csum_type(disk_super);
3246 	if (!btrfs_supported_super_csum(csum_type)) {
3247 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3248 			  csum_type);
3249 		ret = -EINVAL;
3250 		btrfs_release_disk_super(disk_super);
3251 		goto fail_alloc;
3252 	}
3253 
3254 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3255 
3256 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3257 	if (ret) {
3258 		btrfs_release_disk_super(disk_super);
3259 		goto fail_alloc;
3260 	}
3261 
3262 	/*
3263 	 * We want to check superblock checksum, the type is stored inside.
3264 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3265 	 */
3266 	if (btrfs_check_super_csum(fs_info, disk_super)) {
3267 		btrfs_err(fs_info, "superblock checksum mismatch");
3268 		ret = -EINVAL;
3269 		btrfs_release_disk_super(disk_super);
3270 		goto fail_alloc;
3271 	}
3272 
3273 	/*
3274 	 * super_copy is zeroed at allocation time and we never touch the
3275 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3276 	 * the whole block of INFO_SIZE
3277 	 */
3278 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3279 	btrfs_release_disk_super(disk_super);
3280 
3281 	disk_super = fs_info->super_copy;
3282 
3283 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3284 	       sizeof(*fs_info->super_for_commit));
3285 
3286 	ret = btrfs_validate_mount_super(fs_info);
3287 	if (ret) {
3288 		btrfs_err(fs_info, "superblock contains fatal errors");
3289 		ret = -EINVAL;
3290 		goto fail_alloc;
3291 	}
3292 
3293 	if (!btrfs_super_root(disk_super)) {
3294 		btrfs_err(fs_info, "invalid superblock tree root bytenr");
3295 		ret = -EINVAL;
3296 		goto fail_alloc;
3297 	}
3298 
3299 	/* check FS state, whether FS is broken. */
3300 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3301 		WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3302 
3303 	/* Set up fs_info before parsing mount options */
3304 	nodesize = btrfs_super_nodesize(disk_super);
3305 	sectorsize = btrfs_super_sectorsize(disk_super);
3306 	stripesize = sectorsize;
3307 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3308 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3309 
3310 	fs_info->nodesize = nodesize;
3311 	fs_info->sectorsize = sectorsize;
3312 	fs_info->sectorsize_bits = ilog2(sectorsize);
3313 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3314 	fs_info->stripesize = stripesize;
3315 
3316 	/*
3317 	 * Handle the space caching options appropriately now that we have the
3318 	 * super block loaded and validated.
3319 	 */
3320 	btrfs_set_free_space_cache_settings(fs_info);
3321 
3322 	if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3323 		ret = -EINVAL;
3324 		goto fail_alloc;
3325 	}
3326 
3327 	ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3328 	if (ret < 0)
3329 		goto fail_alloc;
3330 
3331 	/*
3332 	 * At this point our mount options are validated, if we set ->max_inline
3333 	 * to something non-standard make sure we truncate it to sectorsize.
3334 	 */
3335 	fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3336 
3337 	if (sectorsize < PAGE_SIZE) {
3338 		struct btrfs_subpage_info *subpage_info;
3339 
3340 		btrfs_warn(fs_info,
3341 		"read-write for sector size %u with page size %lu is experimental",
3342 			   sectorsize, PAGE_SIZE);
3343 		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3344 		if (!subpage_info) {
3345 			ret = -ENOMEM;
3346 			goto fail_alloc;
3347 		}
3348 		btrfs_init_subpage_info(subpage_info, sectorsize);
3349 		fs_info->subpage_info = subpage_info;
3350 	}
3351 
3352 	ret = btrfs_init_workqueues(fs_info);
3353 	if (ret)
3354 		goto fail_sb_buffer;
3355 
3356 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3357 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3358 
3359 	sb->s_blocksize = sectorsize;
3360 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3361 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3362 
3363 	mutex_lock(&fs_info->chunk_mutex);
3364 	ret = btrfs_read_sys_array(fs_info);
3365 	mutex_unlock(&fs_info->chunk_mutex);
3366 	if (ret) {
3367 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3368 		goto fail_sb_buffer;
3369 	}
3370 
3371 	generation = btrfs_super_chunk_root_generation(disk_super);
3372 	level = btrfs_super_chunk_root_level(disk_super);
3373 	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3374 			      generation, level);
3375 	if (ret) {
3376 		btrfs_err(fs_info, "failed to read chunk root");
3377 		goto fail_tree_roots;
3378 	}
3379 
3380 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3381 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3382 			   BTRFS_UUID_SIZE);
3383 
3384 	ret = btrfs_read_chunk_tree(fs_info);
3385 	if (ret) {
3386 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3387 		goto fail_tree_roots;
3388 	}
3389 
3390 	/*
3391 	 * At this point we know all the devices that make this filesystem,
3392 	 * including the seed devices but we don't know yet if the replace
3393 	 * target is required. So free devices that are not part of this
3394 	 * filesystem but skip the replace target device which is checked
3395 	 * below in btrfs_init_dev_replace().
3396 	 */
3397 	btrfs_free_extra_devids(fs_devices);
3398 	if (!fs_devices->latest_dev->bdev) {
3399 		btrfs_err(fs_info, "failed to read devices");
3400 		ret = -EIO;
3401 		goto fail_tree_roots;
3402 	}
3403 
3404 	ret = init_tree_roots(fs_info);
3405 	if (ret)
3406 		goto fail_tree_roots;
3407 
3408 	/*
3409 	 * Get zone type information of zoned block devices. This will also
3410 	 * handle emulation of a zoned filesystem if a regular device has the
3411 	 * zoned incompat feature flag set.
3412 	 */
3413 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3414 	if (ret) {
3415 		btrfs_err(fs_info,
3416 			  "zoned: failed to read device zone info: %d", ret);
3417 		goto fail_block_groups;
3418 	}
3419 
3420 	/*
3421 	 * If we have a uuid root and we're not being told to rescan we need to
3422 	 * check the generation here so we can set the
3423 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3424 	 * transaction during a balance or the log replay without updating the
3425 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3426 	 * even though it was perfectly fine.
3427 	 */
3428 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3429 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3430 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3431 
3432 	ret = btrfs_verify_dev_extents(fs_info);
3433 	if (ret) {
3434 		btrfs_err(fs_info,
3435 			  "failed to verify dev extents against chunks: %d",
3436 			  ret);
3437 		goto fail_block_groups;
3438 	}
3439 	ret = btrfs_recover_balance(fs_info);
3440 	if (ret) {
3441 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3442 		goto fail_block_groups;
3443 	}
3444 
3445 	ret = btrfs_init_dev_stats(fs_info);
3446 	if (ret) {
3447 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3448 		goto fail_block_groups;
3449 	}
3450 
3451 	ret = btrfs_init_dev_replace(fs_info);
3452 	if (ret) {
3453 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3454 		goto fail_block_groups;
3455 	}
3456 
3457 	ret = btrfs_check_zoned_mode(fs_info);
3458 	if (ret) {
3459 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3460 			  ret);
3461 		goto fail_block_groups;
3462 	}
3463 
3464 	ret = btrfs_sysfs_add_fsid(fs_devices);
3465 	if (ret) {
3466 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3467 				ret);
3468 		goto fail_block_groups;
3469 	}
3470 
3471 	ret = btrfs_sysfs_add_mounted(fs_info);
3472 	if (ret) {
3473 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3474 		goto fail_fsdev_sysfs;
3475 	}
3476 
3477 	ret = btrfs_init_space_info(fs_info);
3478 	if (ret) {
3479 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3480 		goto fail_sysfs;
3481 	}
3482 
3483 	ret = btrfs_read_block_groups(fs_info);
3484 	if (ret) {
3485 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3486 		goto fail_sysfs;
3487 	}
3488 
3489 	btrfs_free_zone_cache(fs_info);
3490 
3491 	btrfs_check_active_zone_reservation(fs_info);
3492 
3493 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3494 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3495 		btrfs_warn(fs_info,
3496 		"writable mount is not allowed due to too many missing devices");
3497 		ret = -EINVAL;
3498 		goto fail_sysfs;
3499 	}
3500 
3501 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3502 					       "btrfs-cleaner");
3503 	if (IS_ERR(fs_info->cleaner_kthread)) {
3504 		ret = PTR_ERR(fs_info->cleaner_kthread);
3505 		goto fail_sysfs;
3506 	}
3507 
3508 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3509 						   tree_root,
3510 						   "btrfs-transaction");
3511 	if (IS_ERR(fs_info->transaction_kthread)) {
3512 		ret = PTR_ERR(fs_info->transaction_kthread);
3513 		goto fail_cleaner;
3514 	}
3515 
3516 	ret = btrfs_read_qgroup_config(fs_info);
3517 	if (ret)
3518 		goto fail_trans_kthread;
3519 
3520 	if (btrfs_build_ref_tree(fs_info))
3521 		btrfs_err(fs_info, "couldn't build ref tree");
3522 
3523 	/* do not make disk changes in broken FS or nologreplay is given */
3524 	if (btrfs_super_log_root(disk_super) != 0 &&
3525 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3526 		btrfs_info(fs_info, "start tree-log replay");
3527 		ret = btrfs_replay_log(fs_info, fs_devices);
3528 		if (ret)
3529 			goto fail_qgroup;
3530 	}
3531 
3532 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3533 	if (IS_ERR(fs_info->fs_root)) {
3534 		ret = PTR_ERR(fs_info->fs_root);
3535 		btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3536 		fs_info->fs_root = NULL;
3537 		goto fail_qgroup;
3538 	}
3539 
3540 	if (sb_rdonly(sb))
3541 		return 0;
3542 
3543 	ret = btrfs_start_pre_rw_mount(fs_info);
3544 	if (ret) {
3545 		close_ctree(fs_info);
3546 		return ret;
3547 	}
3548 	btrfs_discard_resume(fs_info);
3549 
3550 	if (fs_info->uuid_root &&
3551 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3552 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3553 		btrfs_info(fs_info, "checking UUID tree");
3554 		ret = btrfs_check_uuid_tree(fs_info);
3555 		if (ret) {
3556 			btrfs_warn(fs_info,
3557 				"failed to check the UUID tree: %d", ret);
3558 			close_ctree(fs_info);
3559 			return ret;
3560 		}
3561 	}
3562 
3563 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3564 
3565 	/* Kick the cleaner thread so it'll start deleting snapshots. */
3566 	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3567 		wake_up_process(fs_info->cleaner_kthread);
3568 
3569 	return 0;
3570 
3571 fail_qgroup:
3572 	btrfs_free_qgroup_config(fs_info);
3573 fail_trans_kthread:
3574 	kthread_stop(fs_info->transaction_kthread);
3575 	btrfs_cleanup_transaction(fs_info);
3576 	btrfs_free_fs_roots(fs_info);
3577 fail_cleaner:
3578 	kthread_stop(fs_info->cleaner_kthread);
3579 
3580 	/*
3581 	 * make sure we're done with the btree inode before we stop our
3582 	 * kthreads
3583 	 */
3584 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3585 
3586 fail_sysfs:
3587 	btrfs_sysfs_remove_mounted(fs_info);
3588 
3589 fail_fsdev_sysfs:
3590 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3591 
3592 fail_block_groups:
3593 	btrfs_put_block_group_cache(fs_info);
3594 
3595 fail_tree_roots:
3596 	if (fs_info->data_reloc_root)
3597 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3598 	free_root_pointers(fs_info, true);
3599 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3600 
3601 fail_sb_buffer:
3602 	btrfs_stop_all_workers(fs_info);
3603 	btrfs_free_block_groups(fs_info);
3604 fail_alloc:
3605 	btrfs_mapping_tree_free(fs_info);
3606 
3607 	iput(fs_info->btree_inode);
3608 fail:
3609 	btrfs_close_devices(fs_info->fs_devices);
3610 	ASSERT(ret < 0);
3611 	return ret;
3612 }
3613 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3614 
3615 static void btrfs_end_super_write(struct bio *bio)
3616 {
3617 	struct btrfs_device *device = bio->bi_private;
3618 	struct bio_vec *bvec;
3619 	struct bvec_iter_all iter_all;
3620 	struct page *page;
3621 
3622 	bio_for_each_segment_all(bvec, bio, iter_all) {
3623 		page = bvec->bv_page;
3624 
3625 		if (bio->bi_status) {
3626 			btrfs_warn_rl_in_rcu(device->fs_info,
3627 				"lost page write due to IO error on %s (%d)",
3628 				btrfs_dev_name(device),
3629 				blk_status_to_errno(bio->bi_status));
3630 			ClearPageUptodate(page);
3631 			SetPageError(page);
3632 			btrfs_dev_stat_inc_and_print(device,
3633 						     BTRFS_DEV_STAT_WRITE_ERRS);
3634 		} else {
3635 			SetPageUptodate(page);
3636 		}
3637 
3638 		put_page(page);
3639 		unlock_page(page);
3640 	}
3641 
3642 	bio_put(bio);
3643 }
3644 
3645 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3646 						   int copy_num, bool drop_cache)
3647 {
3648 	struct btrfs_super_block *super;
3649 	struct page *page;
3650 	u64 bytenr, bytenr_orig;
3651 	struct address_space *mapping = bdev->bd_inode->i_mapping;
3652 	int ret;
3653 
3654 	bytenr_orig = btrfs_sb_offset(copy_num);
3655 	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3656 	if (ret == -ENOENT)
3657 		return ERR_PTR(-EINVAL);
3658 	else if (ret)
3659 		return ERR_PTR(ret);
3660 
3661 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3662 		return ERR_PTR(-EINVAL);
3663 
3664 	if (drop_cache) {
3665 		/* This should only be called with the primary sb. */
3666 		ASSERT(copy_num == 0);
3667 
3668 		/*
3669 		 * Drop the page of the primary superblock, so later read will
3670 		 * always read from the device.
3671 		 */
3672 		invalidate_inode_pages2_range(mapping,
3673 				bytenr >> PAGE_SHIFT,
3674 				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3675 	}
3676 
3677 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3678 	if (IS_ERR(page))
3679 		return ERR_CAST(page);
3680 
3681 	super = page_address(page);
3682 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3683 		btrfs_release_disk_super(super);
3684 		return ERR_PTR(-ENODATA);
3685 	}
3686 
3687 	if (btrfs_super_bytenr(super) != bytenr_orig) {
3688 		btrfs_release_disk_super(super);
3689 		return ERR_PTR(-EINVAL);
3690 	}
3691 
3692 	return super;
3693 }
3694 
3695 
3696 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3697 {
3698 	struct btrfs_super_block *super, *latest = NULL;
3699 	int i;
3700 	u64 transid = 0;
3701 
3702 	/* we would like to check all the supers, but that would make
3703 	 * a btrfs mount succeed after a mkfs from a different FS.
3704 	 * So, we need to add a special mount option to scan for
3705 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3706 	 */
3707 	for (i = 0; i < 1; i++) {
3708 		super = btrfs_read_dev_one_super(bdev, i, false);
3709 		if (IS_ERR(super))
3710 			continue;
3711 
3712 		if (!latest || btrfs_super_generation(super) > transid) {
3713 			if (latest)
3714 				btrfs_release_disk_super(super);
3715 
3716 			latest = super;
3717 			transid = btrfs_super_generation(super);
3718 		}
3719 	}
3720 
3721 	return super;
3722 }
3723 
3724 /*
3725  * Write superblock @sb to the @device. Do not wait for completion, all the
3726  * pages we use for writing are locked.
3727  *
3728  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3729  * the expected device size at commit time. Note that max_mirrors must be
3730  * same for write and wait phases.
3731  *
3732  * Return number of errors when page is not found or submission fails.
3733  */
3734 static int write_dev_supers(struct btrfs_device *device,
3735 			    struct btrfs_super_block *sb, int max_mirrors)
3736 {
3737 	struct btrfs_fs_info *fs_info = device->fs_info;
3738 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3739 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3740 	int i;
3741 	int errors = 0;
3742 	int ret;
3743 	u64 bytenr, bytenr_orig;
3744 
3745 	if (max_mirrors == 0)
3746 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3747 
3748 	shash->tfm = fs_info->csum_shash;
3749 
3750 	for (i = 0; i < max_mirrors; i++) {
3751 		struct page *page;
3752 		struct bio *bio;
3753 		struct btrfs_super_block *disk_super;
3754 
3755 		bytenr_orig = btrfs_sb_offset(i);
3756 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3757 		if (ret == -ENOENT) {
3758 			continue;
3759 		} else if (ret < 0) {
3760 			btrfs_err(device->fs_info,
3761 				"couldn't get super block location for mirror %d",
3762 				i);
3763 			errors++;
3764 			continue;
3765 		}
3766 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3767 		    device->commit_total_bytes)
3768 			break;
3769 
3770 		btrfs_set_super_bytenr(sb, bytenr_orig);
3771 
3772 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3773 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3774 				    sb->csum);
3775 
3776 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3777 					   GFP_NOFS);
3778 		if (!page) {
3779 			btrfs_err(device->fs_info,
3780 			    "couldn't get super block page for bytenr %llu",
3781 			    bytenr);
3782 			errors++;
3783 			continue;
3784 		}
3785 
3786 		/* Bump the refcount for wait_dev_supers() */
3787 		get_page(page);
3788 
3789 		disk_super = page_address(page);
3790 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3791 
3792 		/*
3793 		 * Directly use bios here instead of relying on the page cache
3794 		 * to do I/O, so we don't lose the ability to do integrity
3795 		 * checking.
3796 		 */
3797 		bio = bio_alloc(device->bdev, 1,
3798 				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3799 				GFP_NOFS);
3800 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3801 		bio->bi_private = device;
3802 		bio->bi_end_io = btrfs_end_super_write;
3803 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3804 			       offset_in_page(bytenr));
3805 
3806 		/*
3807 		 * We FUA only the first super block.  The others we allow to
3808 		 * go down lazy and there's a short window where the on-disk
3809 		 * copies might still contain the older version.
3810 		 */
3811 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3812 			bio->bi_opf |= REQ_FUA;
3813 		submit_bio(bio);
3814 
3815 		if (btrfs_advance_sb_log(device, i))
3816 			errors++;
3817 	}
3818 	return errors < i ? 0 : -1;
3819 }
3820 
3821 /*
3822  * Wait for write completion of superblocks done by write_dev_supers,
3823  * @max_mirrors same for write and wait phases.
3824  *
3825  * Return number of errors when page is not found or not marked up to
3826  * date.
3827  */
3828 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3829 {
3830 	int i;
3831 	int errors = 0;
3832 	bool primary_failed = false;
3833 	int ret;
3834 	u64 bytenr;
3835 
3836 	if (max_mirrors == 0)
3837 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3838 
3839 	for (i = 0; i < max_mirrors; i++) {
3840 		struct page *page;
3841 
3842 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3843 		if (ret == -ENOENT) {
3844 			break;
3845 		} else if (ret < 0) {
3846 			errors++;
3847 			if (i == 0)
3848 				primary_failed = true;
3849 			continue;
3850 		}
3851 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3852 		    device->commit_total_bytes)
3853 			break;
3854 
3855 		page = find_get_page(device->bdev->bd_inode->i_mapping,
3856 				     bytenr >> PAGE_SHIFT);
3857 		if (!page) {
3858 			errors++;
3859 			if (i == 0)
3860 				primary_failed = true;
3861 			continue;
3862 		}
3863 		/* Page is submitted locked and unlocked once the IO completes */
3864 		wait_on_page_locked(page);
3865 		if (PageError(page)) {
3866 			errors++;
3867 			if (i == 0)
3868 				primary_failed = true;
3869 		}
3870 
3871 		/* Drop our reference */
3872 		put_page(page);
3873 
3874 		/* Drop the reference from the writing run */
3875 		put_page(page);
3876 	}
3877 
3878 	/* log error, force error return */
3879 	if (primary_failed) {
3880 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3881 			  device->devid);
3882 		return -1;
3883 	}
3884 
3885 	return errors < i ? 0 : -1;
3886 }
3887 
3888 /*
3889  * endio for the write_dev_flush, this will wake anyone waiting
3890  * for the barrier when it is done
3891  */
3892 static void btrfs_end_empty_barrier(struct bio *bio)
3893 {
3894 	bio_uninit(bio);
3895 	complete(bio->bi_private);
3896 }
3897 
3898 /*
3899  * Submit a flush request to the device if it supports it. Error handling is
3900  * done in the waiting counterpart.
3901  */
3902 static void write_dev_flush(struct btrfs_device *device)
3903 {
3904 	struct bio *bio = &device->flush_bio;
3905 
3906 	device->last_flush_error = BLK_STS_OK;
3907 
3908 	bio_init(bio, device->bdev, NULL, 0,
3909 		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3910 	bio->bi_end_io = btrfs_end_empty_barrier;
3911 	init_completion(&device->flush_wait);
3912 	bio->bi_private = &device->flush_wait;
3913 	submit_bio(bio);
3914 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3915 }
3916 
3917 /*
3918  * If the flush bio has been submitted by write_dev_flush, wait for it.
3919  * Return true for any error, and false otherwise.
3920  */
3921 static bool wait_dev_flush(struct btrfs_device *device)
3922 {
3923 	struct bio *bio = &device->flush_bio;
3924 
3925 	if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3926 		return false;
3927 
3928 	wait_for_completion_io(&device->flush_wait);
3929 
3930 	if (bio->bi_status) {
3931 		device->last_flush_error = bio->bi_status;
3932 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3933 		return true;
3934 	}
3935 
3936 	return false;
3937 }
3938 
3939 /*
3940  * send an empty flush down to each device in parallel,
3941  * then wait for them
3942  */
3943 static int barrier_all_devices(struct btrfs_fs_info *info)
3944 {
3945 	struct list_head *head;
3946 	struct btrfs_device *dev;
3947 	int errors_wait = 0;
3948 
3949 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3950 	/* send down all the barriers */
3951 	head = &info->fs_devices->devices;
3952 	list_for_each_entry(dev, head, dev_list) {
3953 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3954 			continue;
3955 		if (!dev->bdev)
3956 			continue;
3957 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3958 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3959 			continue;
3960 
3961 		write_dev_flush(dev);
3962 	}
3963 
3964 	/* wait for all the barriers */
3965 	list_for_each_entry(dev, head, dev_list) {
3966 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3967 			continue;
3968 		if (!dev->bdev) {
3969 			errors_wait++;
3970 			continue;
3971 		}
3972 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3973 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3974 			continue;
3975 
3976 		if (wait_dev_flush(dev))
3977 			errors_wait++;
3978 	}
3979 
3980 	/*
3981 	 * Checks last_flush_error of disks in order to determine the device
3982 	 * state.
3983 	 */
3984 	if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3985 		return -EIO;
3986 
3987 	return 0;
3988 }
3989 
3990 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3991 {
3992 	int raid_type;
3993 	int min_tolerated = INT_MAX;
3994 
3995 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3996 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3997 		min_tolerated = min_t(int, min_tolerated,
3998 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3999 				    tolerated_failures);
4000 
4001 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4002 		if (raid_type == BTRFS_RAID_SINGLE)
4003 			continue;
4004 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4005 			continue;
4006 		min_tolerated = min_t(int, min_tolerated,
4007 				    btrfs_raid_array[raid_type].
4008 				    tolerated_failures);
4009 	}
4010 
4011 	if (min_tolerated == INT_MAX) {
4012 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4013 		min_tolerated = 0;
4014 	}
4015 
4016 	return min_tolerated;
4017 }
4018 
4019 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4020 {
4021 	struct list_head *head;
4022 	struct btrfs_device *dev;
4023 	struct btrfs_super_block *sb;
4024 	struct btrfs_dev_item *dev_item;
4025 	int ret;
4026 	int do_barriers;
4027 	int max_errors;
4028 	int total_errors = 0;
4029 	u64 flags;
4030 
4031 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4032 
4033 	/*
4034 	 * max_mirrors == 0 indicates we're from commit_transaction,
4035 	 * not from fsync where the tree roots in fs_info have not
4036 	 * been consistent on disk.
4037 	 */
4038 	if (max_mirrors == 0)
4039 		backup_super_roots(fs_info);
4040 
4041 	sb = fs_info->super_for_commit;
4042 	dev_item = &sb->dev_item;
4043 
4044 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4045 	head = &fs_info->fs_devices->devices;
4046 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4047 
4048 	if (do_barriers) {
4049 		ret = barrier_all_devices(fs_info);
4050 		if (ret) {
4051 			mutex_unlock(
4052 				&fs_info->fs_devices->device_list_mutex);
4053 			btrfs_handle_fs_error(fs_info, ret,
4054 					      "errors while submitting device barriers.");
4055 			return ret;
4056 		}
4057 	}
4058 
4059 	list_for_each_entry(dev, head, dev_list) {
4060 		if (!dev->bdev) {
4061 			total_errors++;
4062 			continue;
4063 		}
4064 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4065 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4066 			continue;
4067 
4068 		btrfs_set_stack_device_generation(dev_item, 0);
4069 		btrfs_set_stack_device_type(dev_item, dev->type);
4070 		btrfs_set_stack_device_id(dev_item, dev->devid);
4071 		btrfs_set_stack_device_total_bytes(dev_item,
4072 						   dev->commit_total_bytes);
4073 		btrfs_set_stack_device_bytes_used(dev_item,
4074 						  dev->commit_bytes_used);
4075 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4076 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4077 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4078 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4079 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4080 		       BTRFS_FSID_SIZE);
4081 
4082 		flags = btrfs_super_flags(sb);
4083 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4084 
4085 		ret = btrfs_validate_write_super(fs_info, sb);
4086 		if (ret < 0) {
4087 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4088 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4089 				"unexpected superblock corruption detected");
4090 			return -EUCLEAN;
4091 		}
4092 
4093 		ret = write_dev_supers(dev, sb, max_mirrors);
4094 		if (ret)
4095 			total_errors++;
4096 	}
4097 	if (total_errors > max_errors) {
4098 		btrfs_err(fs_info, "%d errors while writing supers",
4099 			  total_errors);
4100 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4101 
4102 		/* FUA is masked off if unsupported and can't be the reason */
4103 		btrfs_handle_fs_error(fs_info, -EIO,
4104 				      "%d errors while writing supers",
4105 				      total_errors);
4106 		return -EIO;
4107 	}
4108 
4109 	total_errors = 0;
4110 	list_for_each_entry(dev, head, dev_list) {
4111 		if (!dev->bdev)
4112 			continue;
4113 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4114 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4115 			continue;
4116 
4117 		ret = wait_dev_supers(dev, max_mirrors);
4118 		if (ret)
4119 			total_errors++;
4120 	}
4121 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4122 	if (total_errors > max_errors) {
4123 		btrfs_handle_fs_error(fs_info, -EIO,
4124 				      "%d errors while writing supers",
4125 				      total_errors);
4126 		return -EIO;
4127 	}
4128 	return 0;
4129 }
4130 
4131 /* Drop a fs root from the radix tree and free it. */
4132 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4133 				  struct btrfs_root *root)
4134 {
4135 	bool drop_ref = false;
4136 
4137 	spin_lock(&fs_info->fs_roots_radix_lock);
4138 	radix_tree_delete(&fs_info->fs_roots_radix,
4139 			  (unsigned long)root->root_key.objectid);
4140 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4141 		drop_ref = true;
4142 	spin_unlock(&fs_info->fs_roots_radix_lock);
4143 
4144 	if (BTRFS_FS_ERROR(fs_info)) {
4145 		ASSERT(root->log_root == NULL);
4146 		if (root->reloc_root) {
4147 			btrfs_put_root(root->reloc_root);
4148 			root->reloc_root = NULL;
4149 		}
4150 	}
4151 
4152 	if (drop_ref)
4153 		btrfs_put_root(root);
4154 }
4155 
4156 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4157 {
4158 	struct btrfs_root *root = fs_info->tree_root;
4159 	struct btrfs_trans_handle *trans;
4160 
4161 	mutex_lock(&fs_info->cleaner_mutex);
4162 	btrfs_run_delayed_iputs(fs_info);
4163 	mutex_unlock(&fs_info->cleaner_mutex);
4164 	wake_up_process(fs_info->cleaner_kthread);
4165 
4166 	/* wait until ongoing cleanup work done */
4167 	down_write(&fs_info->cleanup_work_sem);
4168 	up_write(&fs_info->cleanup_work_sem);
4169 
4170 	trans = btrfs_join_transaction(root);
4171 	if (IS_ERR(trans))
4172 		return PTR_ERR(trans);
4173 	return btrfs_commit_transaction(trans);
4174 }
4175 
4176 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4177 {
4178 	struct btrfs_transaction *trans;
4179 	struct btrfs_transaction *tmp;
4180 	bool found = false;
4181 
4182 	if (list_empty(&fs_info->trans_list))
4183 		return;
4184 
4185 	/*
4186 	 * This function is only called at the very end of close_ctree(),
4187 	 * thus no other running transaction, no need to take trans_lock.
4188 	 */
4189 	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4190 	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4191 		struct extent_state *cached = NULL;
4192 		u64 dirty_bytes = 0;
4193 		u64 cur = 0;
4194 		u64 found_start;
4195 		u64 found_end;
4196 
4197 		found = true;
4198 		while (find_first_extent_bit(&trans->dirty_pages, cur,
4199 			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4200 			dirty_bytes += found_end + 1 - found_start;
4201 			cur = found_end + 1;
4202 		}
4203 		btrfs_warn(fs_info,
4204 	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4205 			   trans->transid, dirty_bytes);
4206 		btrfs_cleanup_one_transaction(trans, fs_info);
4207 
4208 		if (trans == fs_info->running_transaction)
4209 			fs_info->running_transaction = NULL;
4210 		list_del_init(&trans->list);
4211 
4212 		btrfs_put_transaction(trans);
4213 		trace_btrfs_transaction_commit(fs_info);
4214 	}
4215 	ASSERT(!found);
4216 }
4217 
4218 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4219 {
4220 	int ret;
4221 
4222 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4223 
4224 	/*
4225 	 * If we had UNFINISHED_DROPS we could still be processing them, so
4226 	 * clear that bit and wake up relocation so it can stop.
4227 	 * We must do this before stopping the block group reclaim task, because
4228 	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4229 	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4230 	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4231 	 * return 1.
4232 	 */
4233 	btrfs_wake_unfinished_drop(fs_info);
4234 
4235 	/*
4236 	 * We may have the reclaim task running and relocating a data block group,
4237 	 * in which case it may create delayed iputs. So stop it before we park
4238 	 * the cleaner kthread otherwise we can get new delayed iputs after
4239 	 * parking the cleaner, and that can make the async reclaim task to hang
4240 	 * if it's waiting for delayed iputs to complete, since the cleaner is
4241 	 * parked and can not run delayed iputs - this will make us hang when
4242 	 * trying to stop the async reclaim task.
4243 	 */
4244 	cancel_work_sync(&fs_info->reclaim_bgs_work);
4245 	/*
4246 	 * We don't want the cleaner to start new transactions, add more delayed
4247 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4248 	 * because that frees the task_struct, and the transaction kthread might
4249 	 * still try to wake up the cleaner.
4250 	 */
4251 	kthread_park(fs_info->cleaner_kthread);
4252 
4253 	/* wait for the qgroup rescan worker to stop */
4254 	btrfs_qgroup_wait_for_completion(fs_info, false);
4255 
4256 	/* wait for the uuid_scan task to finish */
4257 	down(&fs_info->uuid_tree_rescan_sem);
4258 	/* avoid complains from lockdep et al., set sem back to initial state */
4259 	up(&fs_info->uuid_tree_rescan_sem);
4260 
4261 	/* pause restriper - we want to resume on mount */
4262 	btrfs_pause_balance(fs_info);
4263 
4264 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4265 
4266 	btrfs_scrub_cancel(fs_info);
4267 
4268 	/* wait for any defraggers to finish */
4269 	wait_event(fs_info->transaction_wait,
4270 		   (atomic_read(&fs_info->defrag_running) == 0));
4271 
4272 	/* clear out the rbtree of defraggable inodes */
4273 	btrfs_cleanup_defrag_inodes(fs_info);
4274 
4275 	/*
4276 	 * After we parked the cleaner kthread, ordered extents may have
4277 	 * completed and created new delayed iputs. If one of the async reclaim
4278 	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4279 	 * can hang forever trying to stop it, because if a delayed iput is
4280 	 * added after it ran btrfs_run_delayed_iputs() and before it called
4281 	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4282 	 * no one else to run iputs.
4283 	 *
4284 	 * So wait for all ongoing ordered extents to complete and then run
4285 	 * delayed iputs. This works because once we reach this point no one
4286 	 * can either create new ordered extents nor create delayed iputs
4287 	 * through some other means.
4288 	 *
4289 	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4290 	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4291 	 * but the delayed iput for the respective inode is made only when doing
4292 	 * the final btrfs_put_ordered_extent() (which must happen at
4293 	 * btrfs_finish_ordered_io() when we are unmounting).
4294 	 */
4295 	btrfs_flush_workqueue(fs_info->endio_write_workers);
4296 	/* Ordered extents for free space inodes. */
4297 	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4298 	btrfs_run_delayed_iputs(fs_info);
4299 
4300 	cancel_work_sync(&fs_info->async_reclaim_work);
4301 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4302 	cancel_work_sync(&fs_info->preempt_reclaim_work);
4303 
4304 	/* Cancel or finish ongoing discard work */
4305 	btrfs_discard_cleanup(fs_info);
4306 
4307 	if (!sb_rdonly(fs_info->sb)) {
4308 		/*
4309 		 * The cleaner kthread is stopped, so do one final pass over
4310 		 * unused block groups.
4311 		 */
4312 		btrfs_delete_unused_bgs(fs_info);
4313 
4314 		/*
4315 		 * There might be existing delayed inode workers still running
4316 		 * and holding an empty delayed inode item. We must wait for
4317 		 * them to complete first because they can create a transaction.
4318 		 * This happens when someone calls btrfs_balance_delayed_items()
4319 		 * and then a transaction commit runs the same delayed nodes
4320 		 * before any delayed worker has done something with the nodes.
4321 		 * We must wait for any worker here and not at transaction
4322 		 * commit time since that could cause a deadlock.
4323 		 * This is a very rare case.
4324 		 */
4325 		btrfs_flush_workqueue(fs_info->delayed_workers);
4326 
4327 		ret = btrfs_commit_super(fs_info);
4328 		if (ret)
4329 			btrfs_err(fs_info, "commit super ret %d", ret);
4330 	}
4331 
4332 	if (BTRFS_FS_ERROR(fs_info))
4333 		btrfs_error_commit_super(fs_info);
4334 
4335 	kthread_stop(fs_info->transaction_kthread);
4336 	kthread_stop(fs_info->cleaner_kthread);
4337 
4338 	ASSERT(list_empty(&fs_info->delayed_iputs));
4339 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4340 
4341 	if (btrfs_check_quota_leak(fs_info)) {
4342 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4343 		btrfs_err(fs_info, "qgroup reserved space leaked");
4344 	}
4345 
4346 	btrfs_free_qgroup_config(fs_info);
4347 	ASSERT(list_empty(&fs_info->delalloc_roots));
4348 
4349 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4350 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4351 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4352 	}
4353 
4354 	if (percpu_counter_sum(&fs_info->ordered_bytes))
4355 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4356 			   percpu_counter_sum(&fs_info->ordered_bytes));
4357 
4358 	btrfs_sysfs_remove_mounted(fs_info);
4359 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4360 
4361 	btrfs_put_block_group_cache(fs_info);
4362 
4363 	/*
4364 	 * we must make sure there is not any read request to
4365 	 * submit after we stopping all workers.
4366 	 */
4367 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4368 	btrfs_stop_all_workers(fs_info);
4369 
4370 	/* We shouldn't have any transaction open at this point */
4371 	warn_about_uncommitted_trans(fs_info);
4372 
4373 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4374 	free_root_pointers(fs_info, true);
4375 	btrfs_free_fs_roots(fs_info);
4376 
4377 	/*
4378 	 * We must free the block groups after dropping the fs_roots as we could
4379 	 * have had an IO error and have left over tree log blocks that aren't
4380 	 * cleaned up until the fs roots are freed.  This makes the block group
4381 	 * accounting appear to be wrong because there's pending reserved bytes,
4382 	 * so make sure we do the block group cleanup afterwards.
4383 	 */
4384 	btrfs_free_block_groups(fs_info);
4385 
4386 	iput(fs_info->btree_inode);
4387 
4388 	btrfs_mapping_tree_free(fs_info);
4389 	btrfs_close_devices(fs_info->fs_devices);
4390 }
4391 
4392 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4393 			     struct extent_buffer *buf)
4394 {
4395 	struct btrfs_fs_info *fs_info = buf->fs_info;
4396 	u64 transid = btrfs_header_generation(buf);
4397 
4398 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4399 	/*
4400 	 * This is a fast path so only do this check if we have sanity tests
4401 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4402 	 * outside of the sanity tests.
4403 	 */
4404 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4405 		return;
4406 #endif
4407 	/* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4408 	ASSERT(trans->transid == fs_info->generation);
4409 	btrfs_assert_tree_write_locked(buf);
4410 	if (unlikely(transid != fs_info->generation)) {
4411 		btrfs_abort_transaction(trans, -EUCLEAN);
4412 		btrfs_crit(fs_info,
4413 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4414 			   buf->start, transid, fs_info->generation);
4415 	}
4416 	set_extent_buffer_dirty(buf);
4417 }
4418 
4419 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4420 					int flush_delayed)
4421 {
4422 	/*
4423 	 * looks as though older kernels can get into trouble with
4424 	 * this code, they end up stuck in balance_dirty_pages forever
4425 	 */
4426 	int ret;
4427 
4428 	if (current->flags & PF_MEMALLOC)
4429 		return;
4430 
4431 	if (flush_delayed)
4432 		btrfs_balance_delayed_items(fs_info);
4433 
4434 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4435 				     BTRFS_DIRTY_METADATA_THRESH,
4436 				     fs_info->dirty_metadata_batch);
4437 	if (ret > 0) {
4438 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4439 	}
4440 }
4441 
4442 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4443 {
4444 	__btrfs_btree_balance_dirty(fs_info, 1);
4445 }
4446 
4447 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4448 {
4449 	__btrfs_btree_balance_dirty(fs_info, 0);
4450 }
4451 
4452 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4453 {
4454 	/* cleanup FS via transaction */
4455 	btrfs_cleanup_transaction(fs_info);
4456 
4457 	mutex_lock(&fs_info->cleaner_mutex);
4458 	btrfs_run_delayed_iputs(fs_info);
4459 	mutex_unlock(&fs_info->cleaner_mutex);
4460 
4461 	down_write(&fs_info->cleanup_work_sem);
4462 	up_write(&fs_info->cleanup_work_sem);
4463 }
4464 
4465 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4466 {
4467 	struct btrfs_root *gang[8];
4468 	u64 root_objectid = 0;
4469 	int ret;
4470 
4471 	spin_lock(&fs_info->fs_roots_radix_lock);
4472 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4473 					     (void **)gang, root_objectid,
4474 					     ARRAY_SIZE(gang))) != 0) {
4475 		int i;
4476 
4477 		for (i = 0; i < ret; i++)
4478 			gang[i] = btrfs_grab_root(gang[i]);
4479 		spin_unlock(&fs_info->fs_roots_radix_lock);
4480 
4481 		for (i = 0; i < ret; i++) {
4482 			if (!gang[i])
4483 				continue;
4484 			root_objectid = gang[i]->root_key.objectid;
4485 			btrfs_free_log(NULL, gang[i]);
4486 			btrfs_put_root(gang[i]);
4487 		}
4488 		root_objectid++;
4489 		spin_lock(&fs_info->fs_roots_radix_lock);
4490 	}
4491 	spin_unlock(&fs_info->fs_roots_radix_lock);
4492 	btrfs_free_log_root_tree(NULL, fs_info);
4493 }
4494 
4495 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4496 {
4497 	struct btrfs_ordered_extent *ordered;
4498 
4499 	spin_lock(&root->ordered_extent_lock);
4500 	/*
4501 	 * This will just short circuit the ordered completion stuff which will
4502 	 * make sure the ordered extent gets properly cleaned up.
4503 	 */
4504 	list_for_each_entry(ordered, &root->ordered_extents,
4505 			    root_extent_list)
4506 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4507 	spin_unlock(&root->ordered_extent_lock);
4508 }
4509 
4510 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4511 {
4512 	struct btrfs_root *root;
4513 	LIST_HEAD(splice);
4514 
4515 	spin_lock(&fs_info->ordered_root_lock);
4516 	list_splice_init(&fs_info->ordered_roots, &splice);
4517 	while (!list_empty(&splice)) {
4518 		root = list_first_entry(&splice, struct btrfs_root,
4519 					ordered_root);
4520 		list_move_tail(&root->ordered_root,
4521 			       &fs_info->ordered_roots);
4522 
4523 		spin_unlock(&fs_info->ordered_root_lock);
4524 		btrfs_destroy_ordered_extents(root);
4525 
4526 		cond_resched();
4527 		spin_lock(&fs_info->ordered_root_lock);
4528 	}
4529 	spin_unlock(&fs_info->ordered_root_lock);
4530 
4531 	/*
4532 	 * We need this here because if we've been flipped read-only we won't
4533 	 * get sync() from the umount, so we need to make sure any ordered
4534 	 * extents that haven't had their dirty pages IO start writeout yet
4535 	 * actually get run and error out properly.
4536 	 */
4537 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4538 }
4539 
4540 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4541 				       struct btrfs_fs_info *fs_info)
4542 {
4543 	struct rb_node *node;
4544 	struct btrfs_delayed_ref_root *delayed_refs;
4545 	struct btrfs_delayed_ref_node *ref;
4546 
4547 	delayed_refs = &trans->delayed_refs;
4548 
4549 	spin_lock(&delayed_refs->lock);
4550 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4551 		spin_unlock(&delayed_refs->lock);
4552 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4553 		return;
4554 	}
4555 
4556 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4557 		struct btrfs_delayed_ref_head *head;
4558 		struct rb_node *n;
4559 		bool pin_bytes = false;
4560 
4561 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4562 				href_node);
4563 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4564 			continue;
4565 
4566 		spin_lock(&head->lock);
4567 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4568 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4569 				       ref_node);
4570 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4571 			RB_CLEAR_NODE(&ref->ref_node);
4572 			if (!list_empty(&ref->add_list))
4573 				list_del(&ref->add_list);
4574 			atomic_dec(&delayed_refs->num_entries);
4575 			btrfs_put_delayed_ref(ref);
4576 			btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
4577 		}
4578 		if (head->must_insert_reserved)
4579 			pin_bytes = true;
4580 		btrfs_free_delayed_extent_op(head->extent_op);
4581 		btrfs_delete_ref_head(delayed_refs, head);
4582 		spin_unlock(&head->lock);
4583 		spin_unlock(&delayed_refs->lock);
4584 		mutex_unlock(&head->mutex);
4585 
4586 		if (pin_bytes) {
4587 			struct btrfs_block_group *cache;
4588 
4589 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4590 			BUG_ON(!cache);
4591 
4592 			spin_lock(&cache->space_info->lock);
4593 			spin_lock(&cache->lock);
4594 			cache->pinned += head->num_bytes;
4595 			btrfs_space_info_update_bytes_pinned(fs_info,
4596 				cache->space_info, head->num_bytes);
4597 			cache->reserved -= head->num_bytes;
4598 			cache->space_info->bytes_reserved -= head->num_bytes;
4599 			spin_unlock(&cache->lock);
4600 			spin_unlock(&cache->space_info->lock);
4601 
4602 			btrfs_put_block_group(cache);
4603 
4604 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4605 				head->bytenr + head->num_bytes - 1);
4606 		}
4607 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4608 		btrfs_put_delayed_ref_head(head);
4609 		cond_resched();
4610 		spin_lock(&delayed_refs->lock);
4611 	}
4612 	btrfs_qgroup_destroy_extent_records(trans);
4613 
4614 	spin_unlock(&delayed_refs->lock);
4615 }
4616 
4617 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4618 {
4619 	struct btrfs_inode *btrfs_inode;
4620 	LIST_HEAD(splice);
4621 
4622 	spin_lock(&root->delalloc_lock);
4623 	list_splice_init(&root->delalloc_inodes, &splice);
4624 
4625 	while (!list_empty(&splice)) {
4626 		struct inode *inode = NULL;
4627 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4628 					       delalloc_inodes);
4629 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4630 		spin_unlock(&root->delalloc_lock);
4631 
4632 		/*
4633 		 * Make sure we get a live inode and that it'll not disappear
4634 		 * meanwhile.
4635 		 */
4636 		inode = igrab(&btrfs_inode->vfs_inode);
4637 		if (inode) {
4638 			unsigned int nofs_flag;
4639 
4640 			nofs_flag = memalloc_nofs_save();
4641 			invalidate_inode_pages2(inode->i_mapping);
4642 			memalloc_nofs_restore(nofs_flag);
4643 			iput(inode);
4644 		}
4645 		spin_lock(&root->delalloc_lock);
4646 	}
4647 	spin_unlock(&root->delalloc_lock);
4648 }
4649 
4650 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4651 {
4652 	struct btrfs_root *root;
4653 	LIST_HEAD(splice);
4654 
4655 	spin_lock(&fs_info->delalloc_root_lock);
4656 	list_splice_init(&fs_info->delalloc_roots, &splice);
4657 	while (!list_empty(&splice)) {
4658 		root = list_first_entry(&splice, struct btrfs_root,
4659 					 delalloc_root);
4660 		root = btrfs_grab_root(root);
4661 		BUG_ON(!root);
4662 		spin_unlock(&fs_info->delalloc_root_lock);
4663 
4664 		btrfs_destroy_delalloc_inodes(root);
4665 		btrfs_put_root(root);
4666 
4667 		spin_lock(&fs_info->delalloc_root_lock);
4668 	}
4669 	spin_unlock(&fs_info->delalloc_root_lock);
4670 }
4671 
4672 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4673 					 struct extent_io_tree *dirty_pages,
4674 					 int mark)
4675 {
4676 	struct extent_buffer *eb;
4677 	u64 start = 0;
4678 	u64 end;
4679 
4680 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
4681 				     mark, NULL)) {
4682 		clear_extent_bits(dirty_pages, start, end, mark);
4683 		while (start <= end) {
4684 			eb = find_extent_buffer(fs_info, start);
4685 			start += fs_info->nodesize;
4686 			if (!eb)
4687 				continue;
4688 
4689 			btrfs_tree_lock(eb);
4690 			wait_on_extent_buffer_writeback(eb);
4691 			btrfs_clear_buffer_dirty(NULL, eb);
4692 			btrfs_tree_unlock(eb);
4693 
4694 			free_extent_buffer_stale(eb);
4695 		}
4696 	}
4697 }
4698 
4699 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4700 					struct extent_io_tree *unpin)
4701 {
4702 	u64 start;
4703 	u64 end;
4704 
4705 	while (1) {
4706 		struct extent_state *cached_state = NULL;
4707 
4708 		/*
4709 		 * The btrfs_finish_extent_commit() may get the same range as
4710 		 * ours between find_first_extent_bit and clear_extent_dirty.
4711 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4712 		 * the same extent range.
4713 		 */
4714 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4715 		if (!find_first_extent_bit(unpin, 0, &start, &end,
4716 					   EXTENT_DIRTY, &cached_state)) {
4717 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4718 			break;
4719 		}
4720 
4721 		clear_extent_dirty(unpin, start, end, &cached_state);
4722 		free_extent_state(cached_state);
4723 		btrfs_error_unpin_extent_range(fs_info, start, end);
4724 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4725 		cond_resched();
4726 	}
4727 }
4728 
4729 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4730 {
4731 	struct inode *inode;
4732 
4733 	inode = cache->io_ctl.inode;
4734 	if (inode) {
4735 		unsigned int nofs_flag;
4736 
4737 		nofs_flag = memalloc_nofs_save();
4738 		invalidate_inode_pages2(inode->i_mapping);
4739 		memalloc_nofs_restore(nofs_flag);
4740 
4741 		BTRFS_I(inode)->generation = 0;
4742 		cache->io_ctl.inode = NULL;
4743 		iput(inode);
4744 	}
4745 	ASSERT(cache->io_ctl.pages == NULL);
4746 	btrfs_put_block_group(cache);
4747 }
4748 
4749 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4750 			     struct btrfs_fs_info *fs_info)
4751 {
4752 	struct btrfs_block_group *cache;
4753 
4754 	spin_lock(&cur_trans->dirty_bgs_lock);
4755 	while (!list_empty(&cur_trans->dirty_bgs)) {
4756 		cache = list_first_entry(&cur_trans->dirty_bgs,
4757 					 struct btrfs_block_group,
4758 					 dirty_list);
4759 
4760 		if (!list_empty(&cache->io_list)) {
4761 			spin_unlock(&cur_trans->dirty_bgs_lock);
4762 			list_del_init(&cache->io_list);
4763 			btrfs_cleanup_bg_io(cache);
4764 			spin_lock(&cur_trans->dirty_bgs_lock);
4765 		}
4766 
4767 		list_del_init(&cache->dirty_list);
4768 		spin_lock(&cache->lock);
4769 		cache->disk_cache_state = BTRFS_DC_ERROR;
4770 		spin_unlock(&cache->lock);
4771 
4772 		spin_unlock(&cur_trans->dirty_bgs_lock);
4773 		btrfs_put_block_group(cache);
4774 		btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4775 		spin_lock(&cur_trans->dirty_bgs_lock);
4776 	}
4777 	spin_unlock(&cur_trans->dirty_bgs_lock);
4778 
4779 	/*
4780 	 * Refer to the definition of io_bgs member for details why it's safe
4781 	 * to use it without any locking
4782 	 */
4783 	while (!list_empty(&cur_trans->io_bgs)) {
4784 		cache = list_first_entry(&cur_trans->io_bgs,
4785 					 struct btrfs_block_group,
4786 					 io_list);
4787 
4788 		list_del_init(&cache->io_list);
4789 		spin_lock(&cache->lock);
4790 		cache->disk_cache_state = BTRFS_DC_ERROR;
4791 		spin_unlock(&cache->lock);
4792 		btrfs_cleanup_bg_io(cache);
4793 	}
4794 }
4795 
4796 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4797 {
4798 	struct btrfs_root *gang[8];
4799 	int i;
4800 	int ret;
4801 
4802 	spin_lock(&fs_info->fs_roots_radix_lock);
4803 	while (1) {
4804 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4805 						 (void **)gang, 0,
4806 						 ARRAY_SIZE(gang),
4807 						 BTRFS_ROOT_TRANS_TAG);
4808 		if (ret == 0)
4809 			break;
4810 		for (i = 0; i < ret; i++) {
4811 			struct btrfs_root *root = gang[i];
4812 
4813 			btrfs_qgroup_free_meta_all_pertrans(root);
4814 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
4815 					(unsigned long)root->root_key.objectid,
4816 					BTRFS_ROOT_TRANS_TAG);
4817 		}
4818 	}
4819 	spin_unlock(&fs_info->fs_roots_radix_lock);
4820 }
4821 
4822 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4823 				   struct btrfs_fs_info *fs_info)
4824 {
4825 	struct btrfs_device *dev, *tmp;
4826 
4827 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4828 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4829 	ASSERT(list_empty(&cur_trans->io_bgs));
4830 
4831 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4832 				 post_commit_list) {
4833 		list_del_init(&dev->post_commit_list);
4834 	}
4835 
4836 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4837 
4838 	cur_trans->state = TRANS_STATE_COMMIT_START;
4839 	wake_up(&fs_info->transaction_blocked_wait);
4840 
4841 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4842 	wake_up(&fs_info->transaction_wait);
4843 
4844 	btrfs_destroy_delayed_inodes(fs_info);
4845 
4846 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4847 				     EXTENT_DIRTY);
4848 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4849 
4850 	btrfs_free_all_qgroup_pertrans(fs_info);
4851 
4852 	cur_trans->state =TRANS_STATE_COMPLETED;
4853 	wake_up(&cur_trans->commit_wait);
4854 }
4855 
4856 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4857 {
4858 	struct btrfs_transaction *t;
4859 
4860 	mutex_lock(&fs_info->transaction_kthread_mutex);
4861 
4862 	spin_lock(&fs_info->trans_lock);
4863 	while (!list_empty(&fs_info->trans_list)) {
4864 		t = list_first_entry(&fs_info->trans_list,
4865 				     struct btrfs_transaction, list);
4866 		if (t->state >= TRANS_STATE_COMMIT_PREP) {
4867 			refcount_inc(&t->use_count);
4868 			spin_unlock(&fs_info->trans_lock);
4869 			btrfs_wait_for_commit(fs_info, t->transid);
4870 			btrfs_put_transaction(t);
4871 			spin_lock(&fs_info->trans_lock);
4872 			continue;
4873 		}
4874 		if (t == fs_info->running_transaction) {
4875 			t->state = TRANS_STATE_COMMIT_DOING;
4876 			spin_unlock(&fs_info->trans_lock);
4877 			/*
4878 			 * We wait for 0 num_writers since we don't hold a trans
4879 			 * handle open currently for this transaction.
4880 			 */
4881 			wait_event(t->writer_wait,
4882 				   atomic_read(&t->num_writers) == 0);
4883 		} else {
4884 			spin_unlock(&fs_info->trans_lock);
4885 		}
4886 		btrfs_cleanup_one_transaction(t, fs_info);
4887 
4888 		spin_lock(&fs_info->trans_lock);
4889 		if (t == fs_info->running_transaction)
4890 			fs_info->running_transaction = NULL;
4891 		list_del_init(&t->list);
4892 		spin_unlock(&fs_info->trans_lock);
4893 
4894 		btrfs_put_transaction(t);
4895 		trace_btrfs_transaction_commit(fs_info);
4896 		spin_lock(&fs_info->trans_lock);
4897 	}
4898 	spin_unlock(&fs_info->trans_lock);
4899 	btrfs_destroy_all_ordered_extents(fs_info);
4900 	btrfs_destroy_delayed_inodes(fs_info);
4901 	btrfs_assert_delayed_root_empty(fs_info);
4902 	btrfs_destroy_all_delalloc_inodes(fs_info);
4903 	btrfs_drop_all_logs(fs_info);
4904 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4905 
4906 	return 0;
4907 }
4908 
4909 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4910 {
4911 	struct btrfs_path *path;
4912 	int ret;
4913 	struct extent_buffer *l;
4914 	struct btrfs_key search_key;
4915 	struct btrfs_key found_key;
4916 	int slot;
4917 
4918 	path = btrfs_alloc_path();
4919 	if (!path)
4920 		return -ENOMEM;
4921 
4922 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4923 	search_key.type = -1;
4924 	search_key.offset = (u64)-1;
4925 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4926 	if (ret < 0)
4927 		goto error;
4928 	BUG_ON(ret == 0); /* Corruption */
4929 	if (path->slots[0] > 0) {
4930 		slot = path->slots[0] - 1;
4931 		l = path->nodes[0];
4932 		btrfs_item_key_to_cpu(l, &found_key, slot);
4933 		root->free_objectid = max_t(u64, found_key.objectid + 1,
4934 					    BTRFS_FIRST_FREE_OBJECTID);
4935 	} else {
4936 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4937 	}
4938 	ret = 0;
4939 error:
4940 	btrfs_free_path(path);
4941 	return ret;
4942 }
4943 
4944 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4945 {
4946 	int ret;
4947 	mutex_lock(&root->objectid_mutex);
4948 
4949 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4950 		btrfs_warn(root->fs_info,
4951 			   "the objectid of root %llu reaches its highest value",
4952 			   root->root_key.objectid);
4953 		ret = -ENOSPC;
4954 		goto out;
4955 	}
4956 
4957 	*objectid = root->free_objectid++;
4958 	ret = 0;
4959 out:
4960 	mutex_unlock(&root->objectid_mutex);
4961 	return ret;
4962 }
4963