1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "rcu-string.h" 33 #include "dev-replace.h" 34 #include "raid56.h" 35 #include "sysfs.h" 36 #include "qgroup.h" 37 #include "compression.h" 38 #include "tree-checker.h" 39 #include "ref-verify.h" 40 #include "block-group.h" 41 #include "discard.h" 42 #include "space-info.h" 43 #include "zoned.h" 44 #include "subpage.h" 45 #include "fs.h" 46 #include "accessors.h" 47 #include "extent-tree.h" 48 #include "root-tree.h" 49 #include "defrag.h" 50 #include "uuid-tree.h" 51 #include "relocation.h" 52 #include "scrub.h" 53 #include "super.h" 54 55 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 56 BTRFS_HEADER_FLAG_RELOC |\ 57 BTRFS_SUPER_FLAG_ERROR |\ 58 BTRFS_SUPER_FLAG_SEEDING |\ 59 BTRFS_SUPER_FLAG_METADUMP |\ 60 BTRFS_SUPER_FLAG_METADUMP_V2) 61 62 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 63 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 64 65 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 66 { 67 if (fs_info->csum_shash) 68 crypto_free_shash(fs_info->csum_shash); 69 } 70 71 /* 72 * Compute the csum of a btree block and store the result to provided buffer. 73 */ 74 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 75 { 76 struct btrfs_fs_info *fs_info = buf->fs_info; 77 int num_pages; 78 u32 first_page_part; 79 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 80 char *kaddr; 81 int i; 82 83 shash->tfm = fs_info->csum_shash; 84 crypto_shash_init(shash); 85 86 if (buf->addr) { 87 /* Pages are contiguous, handle them as a big one. */ 88 kaddr = buf->addr; 89 first_page_part = fs_info->nodesize; 90 num_pages = 1; 91 } else { 92 kaddr = folio_address(buf->folios[0]); 93 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 94 num_pages = num_extent_pages(buf); 95 } 96 97 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 98 first_page_part - BTRFS_CSUM_SIZE); 99 100 /* 101 * Multiple single-page folios case would reach here. 102 * 103 * nodesize <= PAGE_SIZE and large folio all handled by above 104 * crypto_shash_update() already. 105 */ 106 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { 107 kaddr = folio_address(buf->folios[i]); 108 crypto_shash_update(shash, kaddr, PAGE_SIZE); 109 } 110 memset(result, 0, BTRFS_CSUM_SIZE); 111 crypto_shash_final(shash, result); 112 } 113 114 /* 115 * we can't consider a given block up to date unless the transid of the 116 * block matches the transid in the parent node's pointer. This is how we 117 * detect blocks that either didn't get written at all or got written 118 * in the wrong place. 119 */ 120 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic) 121 { 122 if (!extent_buffer_uptodate(eb)) 123 return 0; 124 125 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 126 return 1; 127 128 if (atomic) 129 return -EAGAIN; 130 131 if (!extent_buffer_uptodate(eb) || 132 btrfs_header_generation(eb) != parent_transid) { 133 btrfs_err_rl(eb->fs_info, 134 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 135 eb->start, eb->read_mirror, 136 parent_transid, btrfs_header_generation(eb)); 137 clear_extent_buffer_uptodate(eb); 138 return 0; 139 } 140 return 1; 141 } 142 143 static bool btrfs_supported_super_csum(u16 csum_type) 144 { 145 switch (csum_type) { 146 case BTRFS_CSUM_TYPE_CRC32: 147 case BTRFS_CSUM_TYPE_XXHASH: 148 case BTRFS_CSUM_TYPE_SHA256: 149 case BTRFS_CSUM_TYPE_BLAKE2: 150 return true; 151 default: 152 return false; 153 } 154 } 155 156 /* 157 * Return 0 if the superblock checksum type matches the checksum value of that 158 * algorithm. Pass the raw disk superblock data. 159 */ 160 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 161 const struct btrfs_super_block *disk_sb) 162 { 163 char result[BTRFS_CSUM_SIZE]; 164 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 165 166 shash->tfm = fs_info->csum_shash; 167 168 /* 169 * The super_block structure does not span the whole 170 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 171 * filled with zeros and is included in the checksum. 172 */ 173 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 174 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 175 176 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 177 return 1; 178 179 return 0; 180 } 181 182 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 183 int mirror_num) 184 { 185 struct btrfs_fs_info *fs_info = eb->fs_info; 186 int num_folios = num_extent_folios(eb); 187 int ret = 0; 188 189 if (sb_rdonly(fs_info->sb)) 190 return -EROFS; 191 192 for (int i = 0; i < num_folios; i++) { 193 struct folio *folio = eb->folios[i]; 194 u64 start = max_t(u64, eb->start, folio_pos(folio)); 195 u64 end = min_t(u64, eb->start + eb->len, 196 folio_pos(folio) + folio_size(folio)); 197 u32 len = end - start; 198 199 ret = btrfs_repair_io_failure(fs_info, 0, start, len, 200 start, folio, offset_in_folio(folio, start), 201 mirror_num); 202 if (ret) 203 break; 204 } 205 206 return ret; 207 } 208 209 /* 210 * helper to read a given tree block, doing retries as required when 211 * the checksums don't match and we have alternate mirrors to try. 212 * 213 * @check: expected tree parentness check, see the comments of the 214 * structure for details. 215 */ 216 int btrfs_read_extent_buffer(struct extent_buffer *eb, 217 struct btrfs_tree_parent_check *check) 218 { 219 struct btrfs_fs_info *fs_info = eb->fs_info; 220 int failed = 0; 221 int ret; 222 int num_copies = 0; 223 int mirror_num = 0; 224 int failed_mirror = 0; 225 226 ASSERT(check); 227 228 while (1) { 229 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 230 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check); 231 if (!ret) 232 break; 233 234 num_copies = btrfs_num_copies(fs_info, 235 eb->start, eb->len); 236 if (num_copies == 1) 237 break; 238 239 if (!failed_mirror) { 240 failed = 1; 241 failed_mirror = eb->read_mirror; 242 } 243 244 mirror_num++; 245 if (mirror_num == failed_mirror) 246 mirror_num++; 247 248 if (mirror_num > num_copies) 249 break; 250 } 251 252 if (failed && !ret && failed_mirror) 253 btrfs_repair_eb_io_failure(eb, failed_mirror); 254 255 return ret; 256 } 257 258 /* 259 * Checksum a dirty tree block before IO. 260 */ 261 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio) 262 { 263 struct extent_buffer *eb = bbio->private; 264 struct btrfs_fs_info *fs_info = eb->fs_info; 265 u64 found_start = btrfs_header_bytenr(eb); 266 u64 last_trans; 267 u8 result[BTRFS_CSUM_SIZE]; 268 int ret; 269 270 /* Btree blocks are always contiguous on disk. */ 271 if (WARN_ON_ONCE(bbio->file_offset != eb->start)) 272 return BLK_STS_IOERR; 273 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len)) 274 return BLK_STS_IOERR; 275 276 /* 277 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't 278 * checksum it but zero-out its content. This is done to preserve 279 * ordering of I/O without unnecessarily writing out data. 280 */ 281 if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) { 282 memzero_extent_buffer(eb, 0, eb->len); 283 return BLK_STS_OK; 284 } 285 286 if (WARN_ON_ONCE(found_start != eb->start)) 287 return BLK_STS_IOERR; 288 if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0], 289 eb->start, eb->len))) 290 return BLK_STS_IOERR; 291 292 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 293 offsetof(struct btrfs_header, fsid), 294 BTRFS_FSID_SIZE) == 0); 295 csum_tree_block(eb, result); 296 297 if (btrfs_header_level(eb)) 298 ret = btrfs_check_node(eb); 299 else 300 ret = btrfs_check_leaf(eb); 301 302 if (ret < 0) 303 goto error; 304 305 /* 306 * Also check the generation, the eb reached here must be newer than 307 * last committed. Or something seriously wrong happened. 308 */ 309 last_trans = btrfs_get_last_trans_committed(fs_info); 310 if (unlikely(btrfs_header_generation(eb) <= last_trans)) { 311 ret = -EUCLEAN; 312 btrfs_err(fs_info, 313 "block=%llu bad generation, have %llu expect > %llu", 314 eb->start, btrfs_header_generation(eb), last_trans); 315 goto error; 316 } 317 write_extent_buffer(eb, result, 0, fs_info->csum_size); 318 return BLK_STS_OK; 319 320 error: 321 btrfs_print_tree(eb, 0); 322 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 323 eb->start); 324 /* 325 * Be noisy if this is an extent buffer from a log tree. We don't abort 326 * a transaction in case there's a bad log tree extent buffer, we just 327 * fallback to a transaction commit. Still we want to know when there is 328 * a bad log tree extent buffer, as that may signal a bug somewhere. 329 */ 330 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 331 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 332 return errno_to_blk_status(ret); 333 } 334 335 static bool check_tree_block_fsid(struct extent_buffer *eb) 336 { 337 struct btrfs_fs_info *fs_info = eb->fs_info; 338 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 339 u8 fsid[BTRFS_FSID_SIZE]; 340 341 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 342 BTRFS_FSID_SIZE); 343 344 /* 345 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid. 346 * This is then overwritten by metadata_uuid if it is present in the 347 * device_list_add(). The same true for a seed device as well. So use of 348 * fs_devices::metadata_uuid is appropriate here. 349 */ 350 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0) 351 return false; 352 353 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 354 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 355 return false; 356 357 return true; 358 } 359 360 /* Do basic extent buffer checks at read time */ 361 int btrfs_validate_extent_buffer(struct extent_buffer *eb, 362 struct btrfs_tree_parent_check *check) 363 { 364 struct btrfs_fs_info *fs_info = eb->fs_info; 365 u64 found_start; 366 const u32 csum_size = fs_info->csum_size; 367 u8 found_level; 368 u8 result[BTRFS_CSUM_SIZE]; 369 const u8 *header_csum; 370 int ret = 0; 371 372 ASSERT(check); 373 374 found_start = btrfs_header_bytenr(eb); 375 if (found_start != eb->start) { 376 btrfs_err_rl(fs_info, 377 "bad tree block start, mirror %u want %llu have %llu", 378 eb->read_mirror, eb->start, found_start); 379 ret = -EIO; 380 goto out; 381 } 382 if (check_tree_block_fsid(eb)) { 383 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 384 eb->start, eb->read_mirror); 385 ret = -EIO; 386 goto out; 387 } 388 found_level = btrfs_header_level(eb); 389 if (found_level >= BTRFS_MAX_LEVEL) { 390 btrfs_err(fs_info, 391 "bad tree block level, mirror %u level %d on logical %llu", 392 eb->read_mirror, btrfs_header_level(eb), eb->start); 393 ret = -EIO; 394 goto out; 395 } 396 397 csum_tree_block(eb, result); 398 header_csum = folio_address(eb->folios[0]) + 399 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum)); 400 401 if (memcmp(result, header_csum, csum_size) != 0) { 402 btrfs_warn_rl(fs_info, 403 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d", 404 eb->start, eb->read_mirror, 405 CSUM_FMT_VALUE(csum_size, header_csum), 406 CSUM_FMT_VALUE(csum_size, result), 407 btrfs_header_level(eb)); 408 ret = -EUCLEAN; 409 goto out; 410 } 411 412 if (found_level != check->level) { 413 btrfs_err(fs_info, 414 "level verify failed on logical %llu mirror %u wanted %u found %u", 415 eb->start, eb->read_mirror, check->level, found_level); 416 ret = -EIO; 417 goto out; 418 } 419 if (unlikely(check->transid && 420 btrfs_header_generation(eb) != check->transid)) { 421 btrfs_err_rl(eb->fs_info, 422 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 423 eb->start, eb->read_mirror, check->transid, 424 btrfs_header_generation(eb)); 425 ret = -EIO; 426 goto out; 427 } 428 if (check->has_first_key) { 429 struct btrfs_key *expect_key = &check->first_key; 430 struct btrfs_key found_key; 431 432 if (found_level) 433 btrfs_node_key_to_cpu(eb, &found_key, 0); 434 else 435 btrfs_item_key_to_cpu(eb, &found_key, 0); 436 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 437 btrfs_err(fs_info, 438 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 439 eb->start, check->transid, 440 expect_key->objectid, 441 expect_key->type, expect_key->offset, 442 found_key.objectid, found_key.type, 443 found_key.offset); 444 ret = -EUCLEAN; 445 goto out; 446 } 447 } 448 if (check->owner_root) { 449 ret = btrfs_check_eb_owner(eb, check->owner_root); 450 if (ret < 0) 451 goto out; 452 } 453 454 /* 455 * If this is a leaf block and it is corrupt, set the corrupt bit so 456 * that we don't try and read the other copies of this block, just 457 * return -EIO. 458 */ 459 if (found_level == 0 && btrfs_check_leaf(eb)) { 460 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 461 ret = -EIO; 462 } 463 464 if (found_level > 0 && btrfs_check_node(eb)) 465 ret = -EIO; 466 467 if (ret) 468 btrfs_err(fs_info, 469 "read time tree block corruption detected on logical %llu mirror %u", 470 eb->start, eb->read_mirror); 471 out: 472 return ret; 473 } 474 475 #ifdef CONFIG_MIGRATION 476 static int btree_migrate_folio(struct address_space *mapping, 477 struct folio *dst, struct folio *src, enum migrate_mode mode) 478 { 479 /* 480 * we can't safely write a btree page from here, 481 * we haven't done the locking hook 482 */ 483 if (folio_test_dirty(src)) 484 return -EAGAIN; 485 /* 486 * Buffers may be managed in a filesystem specific way. 487 * We must have no buffers or drop them. 488 */ 489 if (folio_get_private(src) && 490 !filemap_release_folio(src, GFP_KERNEL)) 491 return -EAGAIN; 492 return migrate_folio(mapping, dst, src, mode); 493 } 494 #else 495 #define btree_migrate_folio NULL 496 #endif 497 498 static int btree_writepages(struct address_space *mapping, 499 struct writeback_control *wbc) 500 { 501 struct btrfs_fs_info *fs_info; 502 int ret; 503 504 if (wbc->sync_mode == WB_SYNC_NONE) { 505 506 if (wbc->for_kupdate) 507 return 0; 508 509 fs_info = BTRFS_I(mapping->host)->root->fs_info; 510 /* this is a bit racy, but that's ok */ 511 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 512 BTRFS_DIRTY_METADATA_THRESH, 513 fs_info->dirty_metadata_batch); 514 if (ret < 0) 515 return 0; 516 } 517 return btree_write_cache_pages(mapping, wbc); 518 } 519 520 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 521 { 522 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 523 return false; 524 525 return try_release_extent_buffer(&folio->page); 526 } 527 528 static void btree_invalidate_folio(struct folio *folio, size_t offset, 529 size_t length) 530 { 531 struct extent_io_tree *tree; 532 tree = &BTRFS_I(folio->mapping->host)->io_tree; 533 extent_invalidate_folio(tree, folio, offset); 534 btree_release_folio(folio, GFP_NOFS); 535 if (folio_get_private(folio)) { 536 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info, 537 "folio private not zero on folio %llu", 538 (unsigned long long)folio_pos(folio)); 539 folio_detach_private(folio); 540 } 541 } 542 543 #ifdef DEBUG 544 static bool btree_dirty_folio(struct address_space *mapping, 545 struct folio *folio) 546 { 547 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 548 struct btrfs_subpage_info *spi = fs_info->subpage_info; 549 struct btrfs_subpage *subpage; 550 struct extent_buffer *eb; 551 int cur_bit = 0; 552 u64 page_start = folio_pos(folio); 553 554 if (fs_info->sectorsize == PAGE_SIZE) { 555 eb = folio_get_private(folio); 556 BUG_ON(!eb); 557 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 558 BUG_ON(!atomic_read(&eb->refs)); 559 btrfs_assert_tree_write_locked(eb); 560 return filemap_dirty_folio(mapping, folio); 561 } 562 563 ASSERT(spi); 564 subpage = folio_get_private(folio); 565 566 for (cur_bit = spi->dirty_offset; 567 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits; 568 cur_bit++) { 569 unsigned long flags; 570 u64 cur; 571 572 spin_lock_irqsave(&subpage->lock, flags); 573 if (!test_bit(cur_bit, subpage->bitmaps)) { 574 spin_unlock_irqrestore(&subpage->lock, flags); 575 continue; 576 } 577 spin_unlock_irqrestore(&subpage->lock, flags); 578 cur = page_start + cur_bit * fs_info->sectorsize; 579 580 eb = find_extent_buffer(fs_info, cur); 581 ASSERT(eb); 582 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 583 ASSERT(atomic_read(&eb->refs)); 584 btrfs_assert_tree_write_locked(eb); 585 free_extent_buffer(eb); 586 587 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1; 588 } 589 return filemap_dirty_folio(mapping, folio); 590 } 591 #else 592 #define btree_dirty_folio filemap_dirty_folio 593 #endif 594 595 static const struct address_space_operations btree_aops = { 596 .writepages = btree_writepages, 597 .release_folio = btree_release_folio, 598 .invalidate_folio = btree_invalidate_folio, 599 .migrate_folio = btree_migrate_folio, 600 .dirty_folio = btree_dirty_folio, 601 }; 602 603 struct extent_buffer *btrfs_find_create_tree_block( 604 struct btrfs_fs_info *fs_info, 605 u64 bytenr, u64 owner_root, 606 int level) 607 { 608 if (btrfs_is_testing(fs_info)) 609 return alloc_test_extent_buffer(fs_info, bytenr); 610 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 611 } 612 613 /* 614 * Read tree block at logical address @bytenr and do variant basic but critical 615 * verification. 616 * 617 * @check: expected tree parentness check, see comments of the 618 * structure for details. 619 */ 620 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 621 struct btrfs_tree_parent_check *check) 622 { 623 struct extent_buffer *buf = NULL; 624 int ret; 625 626 ASSERT(check); 627 628 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 629 check->level); 630 if (IS_ERR(buf)) 631 return buf; 632 633 ret = btrfs_read_extent_buffer(buf, check); 634 if (ret) { 635 free_extent_buffer_stale(buf); 636 return ERR_PTR(ret); 637 } 638 if (btrfs_check_eb_owner(buf, check->owner_root)) { 639 free_extent_buffer_stale(buf); 640 return ERR_PTR(-EUCLEAN); 641 } 642 return buf; 643 644 } 645 646 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 647 u64 objectid) 648 { 649 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 650 651 memset(&root->root_key, 0, sizeof(root->root_key)); 652 memset(&root->root_item, 0, sizeof(root->root_item)); 653 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 654 root->fs_info = fs_info; 655 root->root_key.objectid = objectid; 656 root->node = NULL; 657 root->commit_root = NULL; 658 root->state = 0; 659 RB_CLEAR_NODE(&root->rb_node); 660 661 root->last_trans = 0; 662 root->free_objectid = 0; 663 root->nr_delalloc_inodes = 0; 664 root->nr_ordered_extents = 0; 665 root->inode_tree = RB_ROOT; 666 /* GFP flags are compatible with XA_FLAGS_*. */ 667 xa_init_flags(&root->delayed_nodes, GFP_ATOMIC); 668 669 btrfs_init_root_block_rsv(root); 670 671 INIT_LIST_HEAD(&root->dirty_list); 672 INIT_LIST_HEAD(&root->root_list); 673 INIT_LIST_HEAD(&root->delalloc_inodes); 674 INIT_LIST_HEAD(&root->delalloc_root); 675 INIT_LIST_HEAD(&root->ordered_extents); 676 INIT_LIST_HEAD(&root->ordered_root); 677 INIT_LIST_HEAD(&root->reloc_dirty_list); 678 spin_lock_init(&root->inode_lock); 679 spin_lock_init(&root->delalloc_lock); 680 spin_lock_init(&root->ordered_extent_lock); 681 spin_lock_init(&root->accounting_lock); 682 spin_lock_init(&root->qgroup_meta_rsv_lock); 683 mutex_init(&root->objectid_mutex); 684 mutex_init(&root->log_mutex); 685 mutex_init(&root->ordered_extent_mutex); 686 mutex_init(&root->delalloc_mutex); 687 init_waitqueue_head(&root->qgroup_flush_wait); 688 init_waitqueue_head(&root->log_writer_wait); 689 init_waitqueue_head(&root->log_commit_wait[0]); 690 init_waitqueue_head(&root->log_commit_wait[1]); 691 INIT_LIST_HEAD(&root->log_ctxs[0]); 692 INIT_LIST_HEAD(&root->log_ctxs[1]); 693 atomic_set(&root->log_commit[0], 0); 694 atomic_set(&root->log_commit[1], 0); 695 atomic_set(&root->log_writers, 0); 696 atomic_set(&root->log_batch, 0); 697 refcount_set(&root->refs, 1); 698 atomic_set(&root->snapshot_force_cow, 0); 699 atomic_set(&root->nr_swapfiles, 0); 700 btrfs_set_root_log_transid(root, 0); 701 root->log_transid_committed = -1; 702 btrfs_set_root_last_log_commit(root, 0); 703 root->anon_dev = 0; 704 if (!dummy) { 705 extent_io_tree_init(fs_info, &root->dirty_log_pages, 706 IO_TREE_ROOT_DIRTY_LOG_PAGES); 707 extent_io_tree_init(fs_info, &root->log_csum_range, 708 IO_TREE_LOG_CSUM_RANGE); 709 } 710 711 spin_lock_init(&root->root_item_lock); 712 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 713 #ifdef CONFIG_BTRFS_DEBUG 714 INIT_LIST_HEAD(&root->leak_list); 715 spin_lock(&fs_info->fs_roots_radix_lock); 716 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 717 spin_unlock(&fs_info->fs_roots_radix_lock); 718 #endif 719 } 720 721 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 722 u64 objectid, gfp_t flags) 723 { 724 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 725 if (root) 726 __setup_root(root, fs_info, objectid); 727 return root; 728 } 729 730 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 731 /* Should only be used by the testing infrastructure */ 732 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 733 { 734 struct btrfs_root *root; 735 736 if (!fs_info) 737 return ERR_PTR(-EINVAL); 738 739 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 740 if (!root) 741 return ERR_PTR(-ENOMEM); 742 743 /* We don't use the stripesize in selftest, set it as sectorsize */ 744 root->alloc_bytenr = 0; 745 746 return root; 747 } 748 #endif 749 750 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 751 { 752 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 753 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 754 755 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 756 } 757 758 static int global_root_key_cmp(const void *k, const struct rb_node *node) 759 { 760 const struct btrfs_key *key = k; 761 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 762 763 return btrfs_comp_cpu_keys(key, &root->root_key); 764 } 765 766 int btrfs_global_root_insert(struct btrfs_root *root) 767 { 768 struct btrfs_fs_info *fs_info = root->fs_info; 769 struct rb_node *tmp; 770 int ret = 0; 771 772 write_lock(&fs_info->global_root_lock); 773 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 774 write_unlock(&fs_info->global_root_lock); 775 776 if (tmp) { 777 ret = -EEXIST; 778 btrfs_warn(fs_info, "global root %llu %llu already exists", 779 root->root_key.objectid, root->root_key.offset); 780 } 781 return ret; 782 } 783 784 void btrfs_global_root_delete(struct btrfs_root *root) 785 { 786 struct btrfs_fs_info *fs_info = root->fs_info; 787 788 write_lock(&fs_info->global_root_lock); 789 rb_erase(&root->rb_node, &fs_info->global_root_tree); 790 write_unlock(&fs_info->global_root_lock); 791 } 792 793 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 794 struct btrfs_key *key) 795 { 796 struct rb_node *node; 797 struct btrfs_root *root = NULL; 798 799 read_lock(&fs_info->global_root_lock); 800 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 801 if (node) 802 root = container_of(node, struct btrfs_root, rb_node); 803 read_unlock(&fs_info->global_root_lock); 804 805 return root; 806 } 807 808 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 809 { 810 struct btrfs_block_group *block_group; 811 u64 ret; 812 813 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 814 return 0; 815 816 if (bytenr) 817 block_group = btrfs_lookup_block_group(fs_info, bytenr); 818 else 819 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 820 ASSERT(block_group); 821 if (!block_group) 822 return 0; 823 ret = block_group->global_root_id; 824 btrfs_put_block_group(block_group); 825 826 return ret; 827 } 828 829 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 830 { 831 struct btrfs_key key = { 832 .objectid = BTRFS_CSUM_TREE_OBJECTID, 833 .type = BTRFS_ROOT_ITEM_KEY, 834 .offset = btrfs_global_root_id(fs_info, bytenr), 835 }; 836 837 return btrfs_global_root(fs_info, &key); 838 } 839 840 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 841 { 842 struct btrfs_key key = { 843 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 844 .type = BTRFS_ROOT_ITEM_KEY, 845 .offset = btrfs_global_root_id(fs_info, bytenr), 846 }; 847 848 return btrfs_global_root(fs_info, &key); 849 } 850 851 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) 852 { 853 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) 854 return fs_info->block_group_root; 855 return btrfs_extent_root(fs_info, 0); 856 } 857 858 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 859 u64 objectid) 860 { 861 struct btrfs_fs_info *fs_info = trans->fs_info; 862 struct extent_buffer *leaf; 863 struct btrfs_root *tree_root = fs_info->tree_root; 864 struct btrfs_root *root; 865 struct btrfs_key key; 866 unsigned int nofs_flag; 867 int ret = 0; 868 869 /* 870 * We're holding a transaction handle, so use a NOFS memory allocation 871 * context to avoid deadlock if reclaim happens. 872 */ 873 nofs_flag = memalloc_nofs_save(); 874 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 875 memalloc_nofs_restore(nofs_flag); 876 if (!root) 877 return ERR_PTR(-ENOMEM); 878 879 root->root_key.objectid = objectid; 880 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 881 root->root_key.offset = 0; 882 883 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 884 0, BTRFS_NESTING_NORMAL); 885 if (IS_ERR(leaf)) { 886 ret = PTR_ERR(leaf); 887 leaf = NULL; 888 goto fail; 889 } 890 891 root->node = leaf; 892 btrfs_mark_buffer_dirty(trans, leaf); 893 894 root->commit_root = btrfs_root_node(root); 895 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 896 897 btrfs_set_root_flags(&root->root_item, 0); 898 btrfs_set_root_limit(&root->root_item, 0); 899 btrfs_set_root_bytenr(&root->root_item, leaf->start); 900 btrfs_set_root_generation(&root->root_item, trans->transid); 901 btrfs_set_root_level(&root->root_item, 0); 902 btrfs_set_root_refs(&root->root_item, 1); 903 btrfs_set_root_used(&root->root_item, leaf->len); 904 btrfs_set_root_last_snapshot(&root->root_item, 0); 905 btrfs_set_root_dirid(&root->root_item, 0); 906 if (is_fstree(objectid)) 907 generate_random_guid(root->root_item.uuid); 908 else 909 export_guid(root->root_item.uuid, &guid_null); 910 btrfs_set_root_drop_level(&root->root_item, 0); 911 912 btrfs_tree_unlock(leaf); 913 914 key.objectid = objectid; 915 key.type = BTRFS_ROOT_ITEM_KEY; 916 key.offset = 0; 917 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 918 if (ret) 919 goto fail; 920 921 return root; 922 923 fail: 924 btrfs_put_root(root); 925 926 return ERR_PTR(ret); 927 } 928 929 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 930 struct btrfs_fs_info *fs_info) 931 { 932 struct btrfs_root *root; 933 934 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 935 if (!root) 936 return ERR_PTR(-ENOMEM); 937 938 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 939 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 940 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 941 942 return root; 943 } 944 945 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 946 struct btrfs_root *root) 947 { 948 struct extent_buffer *leaf; 949 950 /* 951 * DON'T set SHAREABLE bit for log trees. 952 * 953 * Log trees are not exposed to user space thus can't be snapshotted, 954 * and they go away before a real commit is actually done. 955 * 956 * They do store pointers to file data extents, and those reference 957 * counts still get updated (along with back refs to the log tree). 958 */ 959 960 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 961 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL); 962 if (IS_ERR(leaf)) 963 return PTR_ERR(leaf); 964 965 root->node = leaf; 966 967 btrfs_mark_buffer_dirty(trans, root->node); 968 btrfs_tree_unlock(root->node); 969 970 return 0; 971 } 972 973 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 974 struct btrfs_fs_info *fs_info) 975 { 976 struct btrfs_root *log_root; 977 978 log_root = alloc_log_tree(trans, fs_info); 979 if (IS_ERR(log_root)) 980 return PTR_ERR(log_root); 981 982 if (!btrfs_is_zoned(fs_info)) { 983 int ret = btrfs_alloc_log_tree_node(trans, log_root); 984 985 if (ret) { 986 btrfs_put_root(log_root); 987 return ret; 988 } 989 } 990 991 WARN_ON(fs_info->log_root_tree); 992 fs_info->log_root_tree = log_root; 993 return 0; 994 } 995 996 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 997 struct btrfs_root *root) 998 { 999 struct btrfs_fs_info *fs_info = root->fs_info; 1000 struct btrfs_root *log_root; 1001 struct btrfs_inode_item *inode_item; 1002 int ret; 1003 1004 log_root = alloc_log_tree(trans, fs_info); 1005 if (IS_ERR(log_root)) 1006 return PTR_ERR(log_root); 1007 1008 ret = btrfs_alloc_log_tree_node(trans, log_root); 1009 if (ret) { 1010 btrfs_put_root(log_root); 1011 return ret; 1012 } 1013 1014 log_root->last_trans = trans->transid; 1015 log_root->root_key.offset = root->root_key.objectid; 1016 1017 inode_item = &log_root->root_item.inode; 1018 btrfs_set_stack_inode_generation(inode_item, 1); 1019 btrfs_set_stack_inode_size(inode_item, 3); 1020 btrfs_set_stack_inode_nlink(inode_item, 1); 1021 btrfs_set_stack_inode_nbytes(inode_item, 1022 fs_info->nodesize); 1023 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1024 1025 btrfs_set_root_node(&log_root->root_item, log_root->node); 1026 1027 WARN_ON(root->log_root); 1028 root->log_root = log_root; 1029 btrfs_set_root_log_transid(root, 0); 1030 root->log_transid_committed = -1; 1031 btrfs_set_root_last_log_commit(root, 0); 1032 return 0; 1033 } 1034 1035 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1036 struct btrfs_path *path, 1037 struct btrfs_key *key) 1038 { 1039 struct btrfs_root *root; 1040 struct btrfs_tree_parent_check check = { 0 }; 1041 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1042 u64 generation; 1043 int ret; 1044 int level; 1045 1046 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1047 if (!root) 1048 return ERR_PTR(-ENOMEM); 1049 1050 ret = btrfs_find_root(tree_root, key, path, 1051 &root->root_item, &root->root_key); 1052 if (ret) { 1053 if (ret > 0) 1054 ret = -ENOENT; 1055 goto fail; 1056 } 1057 1058 generation = btrfs_root_generation(&root->root_item); 1059 level = btrfs_root_level(&root->root_item); 1060 check.level = level; 1061 check.transid = generation; 1062 check.owner_root = key->objectid; 1063 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1064 &check); 1065 if (IS_ERR(root->node)) { 1066 ret = PTR_ERR(root->node); 1067 root->node = NULL; 1068 goto fail; 1069 } 1070 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1071 ret = -EIO; 1072 goto fail; 1073 } 1074 1075 /* 1076 * For real fs, and not log/reloc trees, root owner must 1077 * match its root node owner 1078 */ 1079 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) && 1080 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1081 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1082 root->root_key.objectid != btrfs_header_owner(root->node)) { 1083 btrfs_crit(fs_info, 1084 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1085 root->root_key.objectid, root->node->start, 1086 btrfs_header_owner(root->node), 1087 root->root_key.objectid); 1088 ret = -EUCLEAN; 1089 goto fail; 1090 } 1091 root->commit_root = btrfs_root_node(root); 1092 return root; 1093 fail: 1094 btrfs_put_root(root); 1095 return ERR_PTR(ret); 1096 } 1097 1098 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1099 struct btrfs_key *key) 1100 { 1101 struct btrfs_root *root; 1102 struct btrfs_path *path; 1103 1104 path = btrfs_alloc_path(); 1105 if (!path) 1106 return ERR_PTR(-ENOMEM); 1107 root = read_tree_root_path(tree_root, path, key); 1108 btrfs_free_path(path); 1109 1110 return root; 1111 } 1112 1113 /* 1114 * Initialize subvolume root in-memory structure 1115 * 1116 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1117 */ 1118 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1119 { 1120 int ret; 1121 1122 btrfs_drew_lock_init(&root->snapshot_lock); 1123 1124 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1125 !btrfs_is_data_reloc_root(root) && 1126 is_fstree(root->root_key.objectid)) { 1127 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1128 btrfs_check_and_init_root_item(&root->root_item); 1129 } 1130 1131 /* 1132 * Don't assign anonymous block device to roots that are not exposed to 1133 * userspace, the id pool is limited to 1M 1134 */ 1135 if (is_fstree(root->root_key.objectid) && 1136 btrfs_root_refs(&root->root_item) > 0) { 1137 if (!anon_dev) { 1138 ret = get_anon_bdev(&root->anon_dev); 1139 if (ret) 1140 goto fail; 1141 } else { 1142 root->anon_dev = anon_dev; 1143 } 1144 } 1145 1146 mutex_lock(&root->objectid_mutex); 1147 ret = btrfs_init_root_free_objectid(root); 1148 if (ret) { 1149 mutex_unlock(&root->objectid_mutex); 1150 goto fail; 1151 } 1152 1153 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1154 1155 mutex_unlock(&root->objectid_mutex); 1156 1157 return 0; 1158 fail: 1159 /* The caller is responsible to call btrfs_free_fs_root */ 1160 return ret; 1161 } 1162 1163 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1164 u64 root_id) 1165 { 1166 struct btrfs_root *root; 1167 1168 spin_lock(&fs_info->fs_roots_radix_lock); 1169 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1170 (unsigned long)root_id); 1171 root = btrfs_grab_root(root); 1172 spin_unlock(&fs_info->fs_roots_radix_lock); 1173 return root; 1174 } 1175 1176 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1177 u64 objectid) 1178 { 1179 struct btrfs_key key = { 1180 .objectid = objectid, 1181 .type = BTRFS_ROOT_ITEM_KEY, 1182 .offset = 0, 1183 }; 1184 1185 switch (objectid) { 1186 case BTRFS_ROOT_TREE_OBJECTID: 1187 return btrfs_grab_root(fs_info->tree_root); 1188 case BTRFS_EXTENT_TREE_OBJECTID: 1189 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1190 case BTRFS_CHUNK_TREE_OBJECTID: 1191 return btrfs_grab_root(fs_info->chunk_root); 1192 case BTRFS_DEV_TREE_OBJECTID: 1193 return btrfs_grab_root(fs_info->dev_root); 1194 case BTRFS_CSUM_TREE_OBJECTID: 1195 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1196 case BTRFS_QUOTA_TREE_OBJECTID: 1197 return btrfs_grab_root(fs_info->quota_root); 1198 case BTRFS_UUID_TREE_OBJECTID: 1199 return btrfs_grab_root(fs_info->uuid_root); 1200 case BTRFS_BLOCK_GROUP_TREE_OBJECTID: 1201 return btrfs_grab_root(fs_info->block_group_root); 1202 case BTRFS_FREE_SPACE_TREE_OBJECTID: 1203 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1204 case BTRFS_RAID_STRIPE_TREE_OBJECTID: 1205 return btrfs_grab_root(fs_info->stripe_root); 1206 default: 1207 return NULL; 1208 } 1209 } 1210 1211 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1212 struct btrfs_root *root) 1213 { 1214 int ret; 1215 1216 ret = radix_tree_preload(GFP_NOFS); 1217 if (ret) 1218 return ret; 1219 1220 spin_lock(&fs_info->fs_roots_radix_lock); 1221 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1222 (unsigned long)root->root_key.objectid, 1223 root); 1224 if (ret == 0) { 1225 btrfs_grab_root(root); 1226 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1227 } 1228 spin_unlock(&fs_info->fs_roots_radix_lock); 1229 radix_tree_preload_end(); 1230 1231 return ret; 1232 } 1233 1234 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1235 { 1236 #ifdef CONFIG_BTRFS_DEBUG 1237 struct btrfs_root *root; 1238 1239 while (!list_empty(&fs_info->allocated_roots)) { 1240 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1241 1242 root = list_first_entry(&fs_info->allocated_roots, 1243 struct btrfs_root, leak_list); 1244 btrfs_err(fs_info, "leaked root %s refcount %d", 1245 btrfs_root_name(&root->root_key, buf), 1246 refcount_read(&root->refs)); 1247 while (refcount_read(&root->refs) > 1) 1248 btrfs_put_root(root); 1249 btrfs_put_root(root); 1250 } 1251 #endif 1252 } 1253 1254 static void free_global_roots(struct btrfs_fs_info *fs_info) 1255 { 1256 struct btrfs_root *root; 1257 struct rb_node *node; 1258 1259 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1260 root = rb_entry(node, struct btrfs_root, rb_node); 1261 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1262 btrfs_put_root(root); 1263 } 1264 } 1265 1266 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1267 { 1268 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1269 percpu_counter_destroy(&fs_info->delalloc_bytes); 1270 percpu_counter_destroy(&fs_info->ordered_bytes); 1271 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1272 btrfs_free_csum_hash(fs_info); 1273 btrfs_free_stripe_hash_table(fs_info); 1274 btrfs_free_ref_cache(fs_info); 1275 kfree(fs_info->balance_ctl); 1276 kfree(fs_info->delayed_root); 1277 free_global_roots(fs_info); 1278 btrfs_put_root(fs_info->tree_root); 1279 btrfs_put_root(fs_info->chunk_root); 1280 btrfs_put_root(fs_info->dev_root); 1281 btrfs_put_root(fs_info->quota_root); 1282 btrfs_put_root(fs_info->uuid_root); 1283 btrfs_put_root(fs_info->fs_root); 1284 btrfs_put_root(fs_info->data_reloc_root); 1285 btrfs_put_root(fs_info->block_group_root); 1286 btrfs_put_root(fs_info->stripe_root); 1287 btrfs_check_leaked_roots(fs_info); 1288 btrfs_extent_buffer_leak_debug_check(fs_info); 1289 kfree(fs_info->super_copy); 1290 kfree(fs_info->super_for_commit); 1291 kfree(fs_info->subpage_info); 1292 kvfree(fs_info); 1293 } 1294 1295 1296 /* 1297 * Get an in-memory reference of a root structure. 1298 * 1299 * For essential trees like root/extent tree, we grab it from fs_info directly. 1300 * For subvolume trees, we check the cached filesystem roots first. If not 1301 * found, then read it from disk and add it to cached fs roots. 1302 * 1303 * Caller should release the root by calling btrfs_put_root() after the usage. 1304 * 1305 * NOTE: Reloc and log trees can't be read by this function as they share the 1306 * same root objectid. 1307 * 1308 * @objectid: root id 1309 * @anon_dev: preallocated anonymous block device number for new roots, 1310 * pass 0 for new allocation. 1311 * @check_ref: whether to check root item references, If true, return -ENOENT 1312 * for orphan roots 1313 */ 1314 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1315 u64 objectid, dev_t anon_dev, 1316 bool check_ref) 1317 { 1318 struct btrfs_root *root; 1319 struct btrfs_path *path; 1320 struct btrfs_key key; 1321 int ret; 1322 1323 root = btrfs_get_global_root(fs_info, objectid); 1324 if (root) 1325 return root; 1326 1327 /* 1328 * If we're called for non-subvolume trees, and above function didn't 1329 * find one, do not try to read it from disk. 1330 * 1331 * This is namely for free-space-tree and quota tree, which can change 1332 * at runtime and should only be grabbed from fs_info. 1333 */ 1334 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) 1335 return ERR_PTR(-ENOENT); 1336 again: 1337 root = btrfs_lookup_fs_root(fs_info, objectid); 1338 if (root) { 1339 /* 1340 * Some other caller may have read out the newly inserted 1341 * subvolume already (for things like backref walk etc). Not 1342 * that common but still possible. In that case, we just need 1343 * to free the anon_dev. 1344 */ 1345 if (unlikely(anon_dev)) { 1346 free_anon_bdev(anon_dev); 1347 anon_dev = 0; 1348 } 1349 1350 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1351 btrfs_put_root(root); 1352 return ERR_PTR(-ENOENT); 1353 } 1354 return root; 1355 } 1356 1357 key.objectid = objectid; 1358 key.type = BTRFS_ROOT_ITEM_KEY; 1359 key.offset = (u64)-1; 1360 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1361 if (IS_ERR(root)) 1362 return root; 1363 1364 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1365 ret = -ENOENT; 1366 goto fail; 1367 } 1368 1369 ret = btrfs_init_fs_root(root, anon_dev); 1370 if (ret) 1371 goto fail; 1372 1373 path = btrfs_alloc_path(); 1374 if (!path) { 1375 ret = -ENOMEM; 1376 goto fail; 1377 } 1378 key.objectid = BTRFS_ORPHAN_OBJECTID; 1379 key.type = BTRFS_ORPHAN_ITEM_KEY; 1380 key.offset = objectid; 1381 1382 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1383 btrfs_free_path(path); 1384 if (ret < 0) 1385 goto fail; 1386 if (ret == 0) 1387 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1388 1389 ret = btrfs_insert_fs_root(fs_info, root); 1390 if (ret) { 1391 if (ret == -EEXIST) { 1392 btrfs_put_root(root); 1393 goto again; 1394 } 1395 goto fail; 1396 } 1397 return root; 1398 fail: 1399 /* 1400 * If our caller provided us an anonymous device, then it's his 1401 * responsibility to free it in case we fail. So we have to set our 1402 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1403 * and once again by our caller. 1404 */ 1405 if (anon_dev) 1406 root->anon_dev = 0; 1407 btrfs_put_root(root); 1408 return ERR_PTR(ret); 1409 } 1410 1411 /* 1412 * Get in-memory reference of a root structure 1413 * 1414 * @objectid: tree objectid 1415 * @check_ref: if set, verify that the tree exists and the item has at least 1416 * one reference 1417 */ 1418 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1419 u64 objectid, bool check_ref) 1420 { 1421 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1422 } 1423 1424 /* 1425 * Get in-memory reference of a root structure, created as new, optionally pass 1426 * the anonymous block device id 1427 * 1428 * @objectid: tree objectid 1429 * @anon_dev: if zero, allocate a new anonymous block device or use the 1430 * parameter value 1431 */ 1432 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1433 u64 objectid, dev_t anon_dev) 1434 { 1435 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1436 } 1437 1438 /* 1439 * Return a root for the given objectid. 1440 * 1441 * @fs_info: the fs_info 1442 * @objectid: the objectid we need to lookup 1443 * 1444 * This is exclusively used for backref walking, and exists specifically because 1445 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1446 * creation time, which means we may have to read the tree_root in order to look 1447 * up a fs root that is not in memory. If the root is not in memory we will 1448 * read the tree root commit root and look up the fs root from there. This is a 1449 * temporary root, it will not be inserted into the radix tree as it doesn't 1450 * have the most uptodate information, it'll simply be discarded once the 1451 * backref code is finished using the root. 1452 */ 1453 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1454 struct btrfs_path *path, 1455 u64 objectid) 1456 { 1457 struct btrfs_root *root; 1458 struct btrfs_key key; 1459 1460 ASSERT(path->search_commit_root && path->skip_locking); 1461 1462 /* 1463 * This can return -ENOENT if we ask for a root that doesn't exist, but 1464 * since this is called via the backref walking code we won't be looking 1465 * up a root that doesn't exist, unless there's corruption. So if root 1466 * != NULL just return it. 1467 */ 1468 root = btrfs_get_global_root(fs_info, objectid); 1469 if (root) 1470 return root; 1471 1472 root = btrfs_lookup_fs_root(fs_info, objectid); 1473 if (root) 1474 return root; 1475 1476 key.objectid = objectid; 1477 key.type = BTRFS_ROOT_ITEM_KEY; 1478 key.offset = (u64)-1; 1479 root = read_tree_root_path(fs_info->tree_root, path, &key); 1480 btrfs_release_path(path); 1481 1482 return root; 1483 } 1484 1485 static int cleaner_kthread(void *arg) 1486 { 1487 struct btrfs_fs_info *fs_info = arg; 1488 int again; 1489 1490 while (1) { 1491 again = 0; 1492 1493 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1494 1495 /* Make the cleaner go to sleep early. */ 1496 if (btrfs_need_cleaner_sleep(fs_info)) 1497 goto sleep; 1498 1499 /* 1500 * Do not do anything if we might cause open_ctree() to block 1501 * before we have finished mounting the filesystem. 1502 */ 1503 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1504 goto sleep; 1505 1506 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1507 goto sleep; 1508 1509 /* 1510 * Avoid the problem that we change the status of the fs 1511 * during the above check and trylock. 1512 */ 1513 if (btrfs_need_cleaner_sleep(fs_info)) { 1514 mutex_unlock(&fs_info->cleaner_mutex); 1515 goto sleep; 1516 } 1517 1518 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) 1519 btrfs_sysfs_feature_update(fs_info); 1520 1521 btrfs_run_delayed_iputs(fs_info); 1522 1523 again = btrfs_clean_one_deleted_snapshot(fs_info); 1524 mutex_unlock(&fs_info->cleaner_mutex); 1525 1526 /* 1527 * The defragger has dealt with the R/O remount and umount, 1528 * needn't do anything special here. 1529 */ 1530 btrfs_run_defrag_inodes(fs_info); 1531 1532 /* 1533 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1534 * with relocation (btrfs_relocate_chunk) and relocation 1535 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1536 * after acquiring fs_info->reclaim_bgs_lock. So we 1537 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1538 * unused block groups. 1539 */ 1540 btrfs_delete_unused_bgs(fs_info); 1541 1542 /* 1543 * Reclaim block groups in the reclaim_bgs list after we deleted 1544 * all unused block_groups. This possibly gives us some more free 1545 * space. 1546 */ 1547 btrfs_reclaim_bgs(fs_info); 1548 sleep: 1549 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1550 if (kthread_should_park()) 1551 kthread_parkme(); 1552 if (kthread_should_stop()) 1553 return 0; 1554 if (!again) { 1555 set_current_state(TASK_INTERRUPTIBLE); 1556 schedule(); 1557 __set_current_state(TASK_RUNNING); 1558 } 1559 } 1560 } 1561 1562 static int transaction_kthread(void *arg) 1563 { 1564 struct btrfs_root *root = arg; 1565 struct btrfs_fs_info *fs_info = root->fs_info; 1566 struct btrfs_trans_handle *trans; 1567 struct btrfs_transaction *cur; 1568 u64 transid; 1569 time64_t delta; 1570 unsigned long delay; 1571 bool cannot_commit; 1572 1573 do { 1574 cannot_commit = false; 1575 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1576 mutex_lock(&fs_info->transaction_kthread_mutex); 1577 1578 spin_lock(&fs_info->trans_lock); 1579 cur = fs_info->running_transaction; 1580 if (!cur) { 1581 spin_unlock(&fs_info->trans_lock); 1582 goto sleep; 1583 } 1584 1585 delta = ktime_get_seconds() - cur->start_time; 1586 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1587 cur->state < TRANS_STATE_COMMIT_PREP && 1588 delta < fs_info->commit_interval) { 1589 spin_unlock(&fs_info->trans_lock); 1590 delay -= msecs_to_jiffies((delta - 1) * 1000); 1591 delay = min(delay, 1592 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1593 goto sleep; 1594 } 1595 transid = cur->transid; 1596 spin_unlock(&fs_info->trans_lock); 1597 1598 /* If the file system is aborted, this will always fail. */ 1599 trans = btrfs_attach_transaction(root); 1600 if (IS_ERR(trans)) { 1601 if (PTR_ERR(trans) != -ENOENT) 1602 cannot_commit = true; 1603 goto sleep; 1604 } 1605 if (transid == trans->transid) { 1606 btrfs_commit_transaction(trans); 1607 } else { 1608 btrfs_end_transaction(trans); 1609 } 1610 sleep: 1611 wake_up_process(fs_info->cleaner_kthread); 1612 mutex_unlock(&fs_info->transaction_kthread_mutex); 1613 1614 if (BTRFS_FS_ERROR(fs_info)) 1615 btrfs_cleanup_transaction(fs_info); 1616 if (!kthread_should_stop() && 1617 (!btrfs_transaction_blocked(fs_info) || 1618 cannot_commit)) 1619 schedule_timeout_interruptible(delay); 1620 } while (!kthread_should_stop()); 1621 return 0; 1622 } 1623 1624 /* 1625 * This will find the highest generation in the array of root backups. The 1626 * index of the highest array is returned, or -EINVAL if we can't find 1627 * anything. 1628 * 1629 * We check to make sure the array is valid by comparing the 1630 * generation of the latest root in the array with the generation 1631 * in the super block. If they don't match we pitch it. 1632 */ 1633 static int find_newest_super_backup(struct btrfs_fs_info *info) 1634 { 1635 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1636 u64 cur; 1637 struct btrfs_root_backup *root_backup; 1638 int i; 1639 1640 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1641 root_backup = info->super_copy->super_roots + i; 1642 cur = btrfs_backup_tree_root_gen(root_backup); 1643 if (cur == newest_gen) 1644 return i; 1645 } 1646 1647 return -EINVAL; 1648 } 1649 1650 /* 1651 * copy all the root pointers into the super backup array. 1652 * this will bump the backup pointer by one when it is 1653 * done 1654 */ 1655 static void backup_super_roots(struct btrfs_fs_info *info) 1656 { 1657 const int next_backup = info->backup_root_index; 1658 struct btrfs_root_backup *root_backup; 1659 1660 root_backup = info->super_for_commit->super_roots + next_backup; 1661 1662 /* 1663 * make sure all of our padding and empty slots get zero filled 1664 * regardless of which ones we use today 1665 */ 1666 memset(root_backup, 0, sizeof(*root_backup)); 1667 1668 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1669 1670 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1671 btrfs_set_backup_tree_root_gen(root_backup, 1672 btrfs_header_generation(info->tree_root->node)); 1673 1674 btrfs_set_backup_tree_root_level(root_backup, 1675 btrfs_header_level(info->tree_root->node)); 1676 1677 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1678 btrfs_set_backup_chunk_root_gen(root_backup, 1679 btrfs_header_generation(info->chunk_root->node)); 1680 btrfs_set_backup_chunk_root_level(root_backup, 1681 btrfs_header_level(info->chunk_root->node)); 1682 1683 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1684 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1685 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1686 1687 btrfs_set_backup_extent_root(root_backup, 1688 extent_root->node->start); 1689 btrfs_set_backup_extent_root_gen(root_backup, 1690 btrfs_header_generation(extent_root->node)); 1691 btrfs_set_backup_extent_root_level(root_backup, 1692 btrfs_header_level(extent_root->node)); 1693 1694 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1695 btrfs_set_backup_csum_root_gen(root_backup, 1696 btrfs_header_generation(csum_root->node)); 1697 btrfs_set_backup_csum_root_level(root_backup, 1698 btrfs_header_level(csum_root->node)); 1699 } 1700 1701 /* 1702 * we might commit during log recovery, which happens before we set 1703 * the fs_root. Make sure it is valid before we fill it in. 1704 */ 1705 if (info->fs_root && info->fs_root->node) { 1706 btrfs_set_backup_fs_root(root_backup, 1707 info->fs_root->node->start); 1708 btrfs_set_backup_fs_root_gen(root_backup, 1709 btrfs_header_generation(info->fs_root->node)); 1710 btrfs_set_backup_fs_root_level(root_backup, 1711 btrfs_header_level(info->fs_root->node)); 1712 } 1713 1714 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1715 btrfs_set_backup_dev_root_gen(root_backup, 1716 btrfs_header_generation(info->dev_root->node)); 1717 btrfs_set_backup_dev_root_level(root_backup, 1718 btrfs_header_level(info->dev_root->node)); 1719 1720 btrfs_set_backup_total_bytes(root_backup, 1721 btrfs_super_total_bytes(info->super_copy)); 1722 btrfs_set_backup_bytes_used(root_backup, 1723 btrfs_super_bytes_used(info->super_copy)); 1724 btrfs_set_backup_num_devices(root_backup, 1725 btrfs_super_num_devices(info->super_copy)); 1726 1727 /* 1728 * if we don't copy this out to the super_copy, it won't get remembered 1729 * for the next commit 1730 */ 1731 memcpy(&info->super_copy->super_roots, 1732 &info->super_for_commit->super_roots, 1733 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1734 } 1735 1736 /* 1737 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio 1738 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1739 * 1740 * @fs_info: filesystem whose backup roots need to be read 1741 * @priority: priority of backup root required 1742 * 1743 * Returns backup root index on success and -EINVAL otherwise. 1744 */ 1745 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1746 { 1747 int backup_index = find_newest_super_backup(fs_info); 1748 struct btrfs_super_block *super = fs_info->super_copy; 1749 struct btrfs_root_backup *root_backup; 1750 1751 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1752 if (priority == 0) 1753 return backup_index; 1754 1755 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1756 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1757 } else { 1758 return -EINVAL; 1759 } 1760 1761 root_backup = super->super_roots + backup_index; 1762 1763 btrfs_set_super_generation(super, 1764 btrfs_backup_tree_root_gen(root_backup)); 1765 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1766 btrfs_set_super_root_level(super, 1767 btrfs_backup_tree_root_level(root_backup)); 1768 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1769 1770 /* 1771 * Fixme: the total bytes and num_devices need to match or we should 1772 * need a fsck 1773 */ 1774 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1775 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1776 1777 return backup_index; 1778 } 1779 1780 /* helper to cleanup workers */ 1781 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1782 { 1783 btrfs_destroy_workqueue(fs_info->fixup_workers); 1784 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1785 btrfs_destroy_workqueue(fs_info->workers); 1786 if (fs_info->endio_workers) 1787 destroy_workqueue(fs_info->endio_workers); 1788 if (fs_info->rmw_workers) 1789 destroy_workqueue(fs_info->rmw_workers); 1790 if (fs_info->compressed_write_workers) 1791 destroy_workqueue(fs_info->compressed_write_workers); 1792 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1793 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1794 btrfs_destroy_workqueue(fs_info->delayed_workers); 1795 btrfs_destroy_workqueue(fs_info->caching_workers); 1796 btrfs_destroy_workqueue(fs_info->flush_workers); 1797 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1798 if (fs_info->discard_ctl.discard_workers) 1799 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1800 /* 1801 * Now that all other work queues are destroyed, we can safely destroy 1802 * the queues used for metadata I/O, since tasks from those other work 1803 * queues can do metadata I/O operations. 1804 */ 1805 if (fs_info->endio_meta_workers) 1806 destroy_workqueue(fs_info->endio_meta_workers); 1807 } 1808 1809 static void free_root_extent_buffers(struct btrfs_root *root) 1810 { 1811 if (root) { 1812 free_extent_buffer(root->node); 1813 free_extent_buffer(root->commit_root); 1814 root->node = NULL; 1815 root->commit_root = NULL; 1816 } 1817 } 1818 1819 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 1820 { 1821 struct btrfs_root *root, *tmp; 1822 1823 rbtree_postorder_for_each_entry_safe(root, tmp, 1824 &fs_info->global_root_tree, 1825 rb_node) 1826 free_root_extent_buffers(root); 1827 } 1828 1829 /* helper to cleanup tree roots */ 1830 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1831 { 1832 free_root_extent_buffers(info->tree_root); 1833 1834 free_global_root_pointers(info); 1835 free_root_extent_buffers(info->dev_root); 1836 free_root_extent_buffers(info->quota_root); 1837 free_root_extent_buffers(info->uuid_root); 1838 free_root_extent_buffers(info->fs_root); 1839 free_root_extent_buffers(info->data_reloc_root); 1840 free_root_extent_buffers(info->block_group_root); 1841 free_root_extent_buffers(info->stripe_root); 1842 if (free_chunk_root) 1843 free_root_extent_buffers(info->chunk_root); 1844 } 1845 1846 void btrfs_put_root(struct btrfs_root *root) 1847 { 1848 if (!root) 1849 return; 1850 1851 if (refcount_dec_and_test(&root->refs)) { 1852 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 1853 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 1854 if (root->anon_dev) 1855 free_anon_bdev(root->anon_dev); 1856 free_root_extent_buffers(root); 1857 #ifdef CONFIG_BTRFS_DEBUG 1858 spin_lock(&root->fs_info->fs_roots_radix_lock); 1859 list_del_init(&root->leak_list); 1860 spin_unlock(&root->fs_info->fs_roots_radix_lock); 1861 #endif 1862 kfree(root); 1863 } 1864 } 1865 1866 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 1867 { 1868 int ret; 1869 struct btrfs_root *gang[8]; 1870 int i; 1871 1872 while (!list_empty(&fs_info->dead_roots)) { 1873 gang[0] = list_entry(fs_info->dead_roots.next, 1874 struct btrfs_root, root_list); 1875 list_del(&gang[0]->root_list); 1876 1877 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 1878 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 1879 btrfs_put_root(gang[0]); 1880 } 1881 1882 while (1) { 1883 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 1884 (void **)gang, 0, 1885 ARRAY_SIZE(gang)); 1886 if (!ret) 1887 break; 1888 for (i = 0; i < ret; i++) 1889 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 1890 } 1891 } 1892 1893 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 1894 { 1895 mutex_init(&fs_info->scrub_lock); 1896 atomic_set(&fs_info->scrubs_running, 0); 1897 atomic_set(&fs_info->scrub_pause_req, 0); 1898 atomic_set(&fs_info->scrubs_paused, 0); 1899 atomic_set(&fs_info->scrub_cancel_req, 0); 1900 init_waitqueue_head(&fs_info->scrub_pause_wait); 1901 refcount_set(&fs_info->scrub_workers_refcnt, 0); 1902 } 1903 1904 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 1905 { 1906 spin_lock_init(&fs_info->balance_lock); 1907 mutex_init(&fs_info->balance_mutex); 1908 atomic_set(&fs_info->balance_pause_req, 0); 1909 atomic_set(&fs_info->balance_cancel_req, 0); 1910 fs_info->balance_ctl = NULL; 1911 init_waitqueue_head(&fs_info->balance_wait_q); 1912 atomic_set(&fs_info->reloc_cancel_req, 0); 1913 } 1914 1915 static int btrfs_init_btree_inode(struct super_block *sb) 1916 { 1917 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1918 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 1919 fs_info->tree_root); 1920 struct inode *inode; 1921 1922 inode = new_inode(sb); 1923 if (!inode) 1924 return -ENOMEM; 1925 1926 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 1927 set_nlink(inode, 1); 1928 /* 1929 * we set the i_size on the btree inode to the max possible int. 1930 * the real end of the address space is determined by all of 1931 * the devices in the system 1932 */ 1933 inode->i_size = OFFSET_MAX; 1934 inode->i_mapping->a_ops = &btree_aops; 1935 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); 1936 1937 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 1938 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 1939 IO_TREE_BTREE_INODE_IO); 1940 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 1941 1942 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 1943 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID; 1944 BTRFS_I(inode)->location.type = 0; 1945 BTRFS_I(inode)->location.offset = 0; 1946 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 1947 __insert_inode_hash(inode, hash); 1948 fs_info->btree_inode = inode; 1949 1950 return 0; 1951 } 1952 1953 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 1954 { 1955 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 1956 init_rwsem(&fs_info->dev_replace.rwsem); 1957 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 1958 } 1959 1960 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 1961 { 1962 spin_lock_init(&fs_info->qgroup_lock); 1963 mutex_init(&fs_info->qgroup_ioctl_lock); 1964 fs_info->qgroup_tree = RB_ROOT; 1965 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 1966 fs_info->qgroup_seq = 1; 1967 fs_info->qgroup_ulist = NULL; 1968 fs_info->qgroup_rescan_running = false; 1969 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL; 1970 mutex_init(&fs_info->qgroup_rescan_lock); 1971 } 1972 1973 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 1974 { 1975 u32 max_active = fs_info->thread_pool_size; 1976 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 1977 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE; 1978 1979 fs_info->workers = 1980 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 1981 1982 fs_info->delalloc_workers = 1983 btrfs_alloc_workqueue(fs_info, "delalloc", 1984 flags, max_active, 2); 1985 1986 fs_info->flush_workers = 1987 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 1988 flags, max_active, 0); 1989 1990 fs_info->caching_workers = 1991 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 1992 1993 fs_info->fixup_workers = 1994 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags); 1995 1996 fs_info->endio_workers = 1997 alloc_workqueue("btrfs-endio", flags, max_active); 1998 fs_info->endio_meta_workers = 1999 alloc_workqueue("btrfs-endio-meta", flags, max_active); 2000 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 2001 fs_info->endio_write_workers = 2002 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2003 max_active, 2); 2004 fs_info->compressed_write_workers = 2005 alloc_workqueue("btrfs-compressed-write", flags, max_active); 2006 fs_info->endio_freespace_worker = 2007 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2008 max_active, 0); 2009 fs_info->delayed_workers = 2010 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2011 max_active, 0); 2012 fs_info->qgroup_rescan_workers = 2013 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan", 2014 ordered_flags); 2015 fs_info->discard_ctl.discard_workers = 2016 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE); 2017 2018 if (!(fs_info->workers && 2019 fs_info->delalloc_workers && fs_info->flush_workers && 2020 fs_info->endio_workers && fs_info->endio_meta_workers && 2021 fs_info->compressed_write_workers && 2022 fs_info->endio_write_workers && 2023 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2024 fs_info->caching_workers && fs_info->fixup_workers && 2025 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2026 fs_info->discard_ctl.discard_workers)) { 2027 return -ENOMEM; 2028 } 2029 2030 return 0; 2031 } 2032 2033 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2034 { 2035 struct crypto_shash *csum_shash; 2036 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2037 2038 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2039 2040 if (IS_ERR(csum_shash)) { 2041 btrfs_err(fs_info, "error allocating %s hash for checksum", 2042 csum_driver); 2043 return PTR_ERR(csum_shash); 2044 } 2045 2046 fs_info->csum_shash = csum_shash; 2047 2048 /* 2049 * Check if the checksum implementation is a fast accelerated one. 2050 * As-is this is a bit of a hack and should be replaced once the csum 2051 * implementations provide that information themselves. 2052 */ 2053 switch (csum_type) { 2054 case BTRFS_CSUM_TYPE_CRC32: 2055 if (!strstr(crypto_shash_driver_name(csum_shash), "generic")) 2056 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2057 break; 2058 case BTRFS_CSUM_TYPE_XXHASH: 2059 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2060 break; 2061 default: 2062 break; 2063 } 2064 2065 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2066 btrfs_super_csum_name(csum_type), 2067 crypto_shash_driver_name(csum_shash)); 2068 return 0; 2069 } 2070 2071 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2072 struct btrfs_fs_devices *fs_devices) 2073 { 2074 int ret; 2075 struct btrfs_tree_parent_check check = { 0 }; 2076 struct btrfs_root *log_tree_root; 2077 struct btrfs_super_block *disk_super = fs_info->super_copy; 2078 u64 bytenr = btrfs_super_log_root(disk_super); 2079 int level = btrfs_super_log_root_level(disk_super); 2080 2081 if (fs_devices->rw_devices == 0) { 2082 btrfs_warn(fs_info, "log replay required on RO media"); 2083 return -EIO; 2084 } 2085 2086 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2087 GFP_KERNEL); 2088 if (!log_tree_root) 2089 return -ENOMEM; 2090 2091 check.level = level; 2092 check.transid = fs_info->generation + 1; 2093 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2094 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2095 if (IS_ERR(log_tree_root->node)) { 2096 btrfs_warn(fs_info, "failed to read log tree"); 2097 ret = PTR_ERR(log_tree_root->node); 2098 log_tree_root->node = NULL; 2099 btrfs_put_root(log_tree_root); 2100 return ret; 2101 } 2102 if (!extent_buffer_uptodate(log_tree_root->node)) { 2103 btrfs_err(fs_info, "failed to read log tree"); 2104 btrfs_put_root(log_tree_root); 2105 return -EIO; 2106 } 2107 2108 /* returns with log_tree_root freed on success */ 2109 ret = btrfs_recover_log_trees(log_tree_root); 2110 if (ret) { 2111 btrfs_handle_fs_error(fs_info, ret, 2112 "Failed to recover log tree"); 2113 btrfs_put_root(log_tree_root); 2114 return ret; 2115 } 2116 2117 if (sb_rdonly(fs_info->sb)) { 2118 ret = btrfs_commit_super(fs_info); 2119 if (ret) 2120 return ret; 2121 } 2122 2123 return 0; 2124 } 2125 2126 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2127 struct btrfs_path *path, u64 objectid, 2128 const char *name) 2129 { 2130 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2131 struct btrfs_root *root; 2132 u64 max_global_id = 0; 2133 int ret; 2134 struct btrfs_key key = { 2135 .objectid = objectid, 2136 .type = BTRFS_ROOT_ITEM_KEY, 2137 .offset = 0, 2138 }; 2139 bool found = false; 2140 2141 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2142 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2143 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2144 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2145 return 0; 2146 } 2147 2148 while (1) { 2149 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2150 if (ret < 0) 2151 break; 2152 2153 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2154 ret = btrfs_next_leaf(tree_root, path); 2155 if (ret) { 2156 if (ret > 0) 2157 ret = 0; 2158 break; 2159 } 2160 } 2161 ret = 0; 2162 2163 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2164 if (key.objectid != objectid) 2165 break; 2166 btrfs_release_path(path); 2167 2168 /* 2169 * Just worry about this for extent tree, it'll be the same for 2170 * everybody. 2171 */ 2172 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2173 max_global_id = max(max_global_id, key.offset); 2174 2175 found = true; 2176 root = read_tree_root_path(tree_root, path, &key); 2177 if (IS_ERR(root)) { 2178 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2179 ret = PTR_ERR(root); 2180 break; 2181 } 2182 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2183 ret = btrfs_global_root_insert(root); 2184 if (ret) { 2185 btrfs_put_root(root); 2186 break; 2187 } 2188 key.offset++; 2189 } 2190 btrfs_release_path(path); 2191 2192 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2193 fs_info->nr_global_roots = max_global_id + 1; 2194 2195 if (!found || ret) { 2196 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2197 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2198 2199 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2200 ret = ret ? ret : -ENOENT; 2201 else 2202 ret = 0; 2203 btrfs_err(fs_info, "failed to load root %s", name); 2204 } 2205 return ret; 2206 } 2207 2208 static int load_global_roots(struct btrfs_root *tree_root) 2209 { 2210 struct btrfs_path *path; 2211 int ret = 0; 2212 2213 path = btrfs_alloc_path(); 2214 if (!path) 2215 return -ENOMEM; 2216 2217 ret = load_global_roots_objectid(tree_root, path, 2218 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2219 if (ret) 2220 goto out; 2221 ret = load_global_roots_objectid(tree_root, path, 2222 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2223 if (ret) 2224 goto out; 2225 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2226 goto out; 2227 ret = load_global_roots_objectid(tree_root, path, 2228 BTRFS_FREE_SPACE_TREE_OBJECTID, 2229 "free space"); 2230 out: 2231 btrfs_free_path(path); 2232 return ret; 2233 } 2234 2235 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2236 { 2237 struct btrfs_root *tree_root = fs_info->tree_root; 2238 struct btrfs_root *root; 2239 struct btrfs_key location; 2240 int ret; 2241 2242 BUG_ON(!fs_info->tree_root); 2243 2244 ret = load_global_roots(tree_root); 2245 if (ret) 2246 return ret; 2247 2248 location.type = BTRFS_ROOT_ITEM_KEY; 2249 location.offset = 0; 2250 2251 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2252 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2253 root = btrfs_read_tree_root(tree_root, &location); 2254 if (IS_ERR(root)) { 2255 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2256 ret = PTR_ERR(root); 2257 goto out; 2258 } 2259 } else { 2260 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2261 fs_info->block_group_root = root; 2262 } 2263 } 2264 2265 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2266 root = btrfs_read_tree_root(tree_root, &location); 2267 if (IS_ERR(root)) { 2268 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2269 ret = PTR_ERR(root); 2270 goto out; 2271 } 2272 } else { 2273 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2274 fs_info->dev_root = root; 2275 } 2276 /* Initialize fs_info for all devices in any case */ 2277 ret = btrfs_init_devices_late(fs_info); 2278 if (ret) 2279 goto out; 2280 2281 /* 2282 * This tree can share blocks with some other fs tree during relocation 2283 * and we need a proper setup by btrfs_get_fs_root 2284 */ 2285 root = btrfs_get_fs_root(tree_root->fs_info, 2286 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2287 if (IS_ERR(root)) { 2288 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2289 ret = PTR_ERR(root); 2290 goto out; 2291 } 2292 } else { 2293 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2294 fs_info->data_reloc_root = root; 2295 } 2296 2297 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2298 root = btrfs_read_tree_root(tree_root, &location); 2299 if (!IS_ERR(root)) { 2300 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2301 fs_info->quota_root = root; 2302 } 2303 2304 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2305 root = btrfs_read_tree_root(tree_root, &location); 2306 if (IS_ERR(root)) { 2307 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2308 ret = PTR_ERR(root); 2309 if (ret != -ENOENT) 2310 goto out; 2311 } 2312 } else { 2313 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2314 fs_info->uuid_root = root; 2315 } 2316 2317 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) { 2318 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID; 2319 root = btrfs_read_tree_root(tree_root, &location); 2320 if (IS_ERR(root)) { 2321 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2322 ret = PTR_ERR(root); 2323 goto out; 2324 } 2325 } else { 2326 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2327 fs_info->stripe_root = root; 2328 } 2329 } 2330 2331 return 0; 2332 out: 2333 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2334 location.objectid, ret); 2335 return ret; 2336 } 2337 2338 /* 2339 * Real super block validation 2340 * NOTE: super csum type and incompat features will not be checked here. 2341 * 2342 * @sb: super block to check 2343 * @mirror_num: the super block number to check its bytenr: 2344 * 0 the primary (1st) sb 2345 * 1, 2 2nd and 3rd backup copy 2346 * -1 skip bytenr check 2347 */ 2348 int btrfs_validate_super(struct btrfs_fs_info *fs_info, 2349 struct btrfs_super_block *sb, int mirror_num) 2350 { 2351 u64 nodesize = btrfs_super_nodesize(sb); 2352 u64 sectorsize = btrfs_super_sectorsize(sb); 2353 int ret = 0; 2354 2355 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2356 btrfs_err(fs_info, "no valid FS found"); 2357 ret = -EINVAL; 2358 } 2359 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2360 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2361 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2362 ret = -EINVAL; 2363 } 2364 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2365 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2366 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2367 ret = -EINVAL; 2368 } 2369 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2370 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2371 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2372 ret = -EINVAL; 2373 } 2374 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2375 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2376 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2377 ret = -EINVAL; 2378 } 2379 2380 /* 2381 * Check sectorsize and nodesize first, other check will need it. 2382 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2383 */ 2384 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2385 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2386 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2387 ret = -EINVAL; 2388 } 2389 2390 /* 2391 * We only support at most two sectorsizes: 4K and PAGE_SIZE. 2392 * 2393 * We can support 16K sectorsize with 64K page size without problem, 2394 * but such sectorsize/pagesize combination doesn't make much sense. 2395 * 4K will be our future standard, PAGE_SIZE is supported from the very 2396 * beginning. 2397 */ 2398 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) { 2399 btrfs_err(fs_info, 2400 "sectorsize %llu not yet supported for page size %lu", 2401 sectorsize, PAGE_SIZE); 2402 ret = -EINVAL; 2403 } 2404 2405 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2406 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2407 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2408 ret = -EINVAL; 2409 } 2410 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2411 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2412 le32_to_cpu(sb->__unused_leafsize), nodesize); 2413 ret = -EINVAL; 2414 } 2415 2416 /* Root alignment check */ 2417 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2418 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2419 btrfs_super_root(sb)); 2420 ret = -EINVAL; 2421 } 2422 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2423 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2424 btrfs_super_chunk_root(sb)); 2425 ret = -EINVAL; 2426 } 2427 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2428 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2429 btrfs_super_log_root(sb)); 2430 ret = -EINVAL; 2431 } 2432 2433 if (!fs_info->fs_devices->temp_fsid && 2434 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) { 2435 btrfs_err(fs_info, 2436 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2437 sb->fsid, fs_info->fs_devices->fsid); 2438 ret = -EINVAL; 2439 } 2440 2441 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb), 2442 BTRFS_FSID_SIZE) != 0) { 2443 btrfs_err(fs_info, 2444 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2445 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid); 2446 ret = -EINVAL; 2447 } 2448 2449 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2450 BTRFS_FSID_SIZE) != 0) { 2451 btrfs_err(fs_info, 2452 "dev_item UUID does not match metadata fsid: %pU != %pU", 2453 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2454 ret = -EINVAL; 2455 } 2456 2457 /* 2458 * Artificial requirement for block-group-tree to force newer features 2459 * (free-space-tree, no-holes) so the test matrix is smaller. 2460 */ 2461 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2462 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2463 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2464 btrfs_err(fs_info, 2465 "block-group-tree feature requires fres-space-tree and no-holes"); 2466 ret = -EINVAL; 2467 } 2468 2469 /* 2470 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2471 * done later 2472 */ 2473 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2474 btrfs_err(fs_info, "bytes_used is too small %llu", 2475 btrfs_super_bytes_used(sb)); 2476 ret = -EINVAL; 2477 } 2478 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2479 btrfs_err(fs_info, "invalid stripesize %u", 2480 btrfs_super_stripesize(sb)); 2481 ret = -EINVAL; 2482 } 2483 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2484 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2485 btrfs_super_num_devices(sb)); 2486 if (btrfs_super_num_devices(sb) == 0) { 2487 btrfs_err(fs_info, "number of devices is 0"); 2488 ret = -EINVAL; 2489 } 2490 2491 if (mirror_num >= 0 && 2492 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2493 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2494 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2495 ret = -EINVAL; 2496 } 2497 2498 /* 2499 * Obvious sys_chunk_array corruptions, it must hold at least one key 2500 * and one chunk 2501 */ 2502 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2503 btrfs_err(fs_info, "system chunk array too big %u > %u", 2504 btrfs_super_sys_array_size(sb), 2505 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2506 ret = -EINVAL; 2507 } 2508 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2509 + sizeof(struct btrfs_chunk)) { 2510 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2511 btrfs_super_sys_array_size(sb), 2512 sizeof(struct btrfs_disk_key) 2513 + sizeof(struct btrfs_chunk)); 2514 ret = -EINVAL; 2515 } 2516 2517 /* 2518 * The generation is a global counter, we'll trust it more than the others 2519 * but it's still possible that it's the one that's wrong. 2520 */ 2521 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2522 btrfs_warn(fs_info, 2523 "suspicious: generation < chunk_root_generation: %llu < %llu", 2524 btrfs_super_generation(sb), 2525 btrfs_super_chunk_root_generation(sb)); 2526 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2527 && btrfs_super_cache_generation(sb) != (u64)-1) 2528 btrfs_warn(fs_info, 2529 "suspicious: generation < cache_generation: %llu < %llu", 2530 btrfs_super_generation(sb), 2531 btrfs_super_cache_generation(sb)); 2532 2533 return ret; 2534 } 2535 2536 /* 2537 * Validation of super block at mount time. 2538 * Some checks already done early at mount time, like csum type and incompat 2539 * flags will be skipped. 2540 */ 2541 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2542 { 2543 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2544 } 2545 2546 /* 2547 * Validation of super block at write time. 2548 * Some checks like bytenr check will be skipped as their values will be 2549 * overwritten soon. 2550 * Extra checks like csum type and incompat flags will be done here. 2551 */ 2552 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2553 struct btrfs_super_block *sb) 2554 { 2555 int ret; 2556 2557 ret = btrfs_validate_super(fs_info, sb, -1); 2558 if (ret < 0) 2559 goto out; 2560 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2561 ret = -EUCLEAN; 2562 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2563 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2564 goto out; 2565 } 2566 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2567 ret = -EUCLEAN; 2568 btrfs_err(fs_info, 2569 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2570 btrfs_super_incompat_flags(sb), 2571 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2572 goto out; 2573 } 2574 out: 2575 if (ret < 0) 2576 btrfs_err(fs_info, 2577 "super block corruption detected before writing it to disk"); 2578 return ret; 2579 } 2580 2581 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2582 { 2583 struct btrfs_tree_parent_check check = { 2584 .level = level, 2585 .transid = gen, 2586 .owner_root = root->root_key.objectid 2587 }; 2588 int ret = 0; 2589 2590 root->node = read_tree_block(root->fs_info, bytenr, &check); 2591 if (IS_ERR(root->node)) { 2592 ret = PTR_ERR(root->node); 2593 root->node = NULL; 2594 return ret; 2595 } 2596 if (!extent_buffer_uptodate(root->node)) { 2597 free_extent_buffer(root->node); 2598 root->node = NULL; 2599 return -EIO; 2600 } 2601 2602 btrfs_set_root_node(&root->root_item, root->node); 2603 root->commit_root = btrfs_root_node(root); 2604 btrfs_set_root_refs(&root->root_item, 1); 2605 return ret; 2606 } 2607 2608 static int load_important_roots(struct btrfs_fs_info *fs_info) 2609 { 2610 struct btrfs_super_block *sb = fs_info->super_copy; 2611 u64 gen, bytenr; 2612 int level, ret; 2613 2614 bytenr = btrfs_super_root(sb); 2615 gen = btrfs_super_generation(sb); 2616 level = btrfs_super_root_level(sb); 2617 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2618 if (ret) { 2619 btrfs_warn(fs_info, "couldn't read tree root"); 2620 return ret; 2621 } 2622 return 0; 2623 } 2624 2625 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2626 { 2627 int backup_index = find_newest_super_backup(fs_info); 2628 struct btrfs_super_block *sb = fs_info->super_copy; 2629 struct btrfs_root *tree_root = fs_info->tree_root; 2630 bool handle_error = false; 2631 int ret = 0; 2632 int i; 2633 2634 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2635 if (handle_error) { 2636 if (!IS_ERR(tree_root->node)) 2637 free_extent_buffer(tree_root->node); 2638 tree_root->node = NULL; 2639 2640 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2641 break; 2642 2643 free_root_pointers(fs_info, 0); 2644 2645 /* 2646 * Don't use the log in recovery mode, it won't be 2647 * valid 2648 */ 2649 btrfs_set_super_log_root(sb, 0); 2650 2651 btrfs_warn(fs_info, "try to load backup roots slot %d", i); 2652 ret = read_backup_root(fs_info, i); 2653 backup_index = ret; 2654 if (ret < 0) 2655 return ret; 2656 } 2657 2658 ret = load_important_roots(fs_info); 2659 if (ret) { 2660 handle_error = true; 2661 continue; 2662 } 2663 2664 /* 2665 * No need to hold btrfs_root::objectid_mutex since the fs 2666 * hasn't been fully initialised and we are the only user 2667 */ 2668 ret = btrfs_init_root_free_objectid(tree_root); 2669 if (ret < 0) { 2670 handle_error = true; 2671 continue; 2672 } 2673 2674 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2675 2676 ret = btrfs_read_roots(fs_info); 2677 if (ret < 0) { 2678 handle_error = true; 2679 continue; 2680 } 2681 2682 /* All successful */ 2683 fs_info->generation = btrfs_header_generation(tree_root->node); 2684 btrfs_set_last_trans_committed(fs_info, fs_info->generation); 2685 fs_info->last_reloc_trans = 0; 2686 2687 /* Always begin writing backup roots after the one being used */ 2688 if (backup_index < 0) { 2689 fs_info->backup_root_index = 0; 2690 } else { 2691 fs_info->backup_root_index = backup_index + 1; 2692 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2693 } 2694 break; 2695 } 2696 2697 return ret; 2698 } 2699 2700 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2701 { 2702 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2703 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2704 INIT_LIST_HEAD(&fs_info->trans_list); 2705 INIT_LIST_HEAD(&fs_info->dead_roots); 2706 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2707 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2708 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2709 spin_lock_init(&fs_info->delalloc_root_lock); 2710 spin_lock_init(&fs_info->trans_lock); 2711 spin_lock_init(&fs_info->fs_roots_radix_lock); 2712 spin_lock_init(&fs_info->delayed_iput_lock); 2713 spin_lock_init(&fs_info->defrag_inodes_lock); 2714 spin_lock_init(&fs_info->super_lock); 2715 spin_lock_init(&fs_info->buffer_lock); 2716 spin_lock_init(&fs_info->unused_bgs_lock); 2717 spin_lock_init(&fs_info->treelog_bg_lock); 2718 spin_lock_init(&fs_info->zone_active_bgs_lock); 2719 spin_lock_init(&fs_info->relocation_bg_lock); 2720 rwlock_init(&fs_info->tree_mod_log_lock); 2721 rwlock_init(&fs_info->global_root_lock); 2722 mutex_init(&fs_info->unused_bg_unpin_mutex); 2723 mutex_init(&fs_info->reclaim_bgs_lock); 2724 mutex_init(&fs_info->reloc_mutex); 2725 mutex_init(&fs_info->delalloc_root_mutex); 2726 mutex_init(&fs_info->zoned_meta_io_lock); 2727 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2728 seqlock_init(&fs_info->profiles_lock); 2729 2730 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2731 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2732 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2733 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2734 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep, 2735 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2736 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2737 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2738 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 2739 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2740 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 2741 BTRFS_LOCKDEP_TRANS_COMPLETED); 2742 2743 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2744 INIT_LIST_HEAD(&fs_info->space_info); 2745 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2746 INIT_LIST_HEAD(&fs_info->unused_bgs); 2747 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2748 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2749 #ifdef CONFIG_BTRFS_DEBUG 2750 INIT_LIST_HEAD(&fs_info->allocated_roots); 2751 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2752 spin_lock_init(&fs_info->eb_leak_lock); 2753 #endif 2754 fs_info->mapping_tree = RB_ROOT_CACHED; 2755 rwlock_init(&fs_info->mapping_tree_lock); 2756 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2757 BTRFS_BLOCK_RSV_GLOBAL); 2758 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2759 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2760 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2761 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2762 BTRFS_BLOCK_RSV_DELOPS); 2763 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2764 BTRFS_BLOCK_RSV_DELREFS); 2765 2766 atomic_set(&fs_info->async_delalloc_pages, 0); 2767 atomic_set(&fs_info->defrag_running, 0); 2768 atomic_set(&fs_info->nr_delayed_iputs, 0); 2769 atomic64_set(&fs_info->tree_mod_seq, 0); 2770 fs_info->global_root_tree = RB_ROOT; 2771 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2772 fs_info->metadata_ratio = 0; 2773 fs_info->defrag_inodes = RB_ROOT; 2774 atomic64_set(&fs_info->free_chunk_space, 0); 2775 fs_info->tree_mod_log = RB_ROOT; 2776 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2777 btrfs_init_ref_verify(fs_info); 2778 2779 fs_info->thread_pool_size = min_t(unsigned long, 2780 num_online_cpus() + 2, 8); 2781 2782 INIT_LIST_HEAD(&fs_info->ordered_roots); 2783 spin_lock_init(&fs_info->ordered_root_lock); 2784 2785 btrfs_init_scrub(fs_info); 2786 btrfs_init_balance(fs_info); 2787 btrfs_init_async_reclaim_work(fs_info); 2788 2789 rwlock_init(&fs_info->block_group_cache_lock); 2790 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 2791 2792 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2793 IO_TREE_FS_EXCLUDED_EXTENTS); 2794 2795 mutex_init(&fs_info->ordered_operations_mutex); 2796 mutex_init(&fs_info->tree_log_mutex); 2797 mutex_init(&fs_info->chunk_mutex); 2798 mutex_init(&fs_info->transaction_kthread_mutex); 2799 mutex_init(&fs_info->cleaner_mutex); 2800 mutex_init(&fs_info->ro_block_group_mutex); 2801 init_rwsem(&fs_info->commit_root_sem); 2802 init_rwsem(&fs_info->cleanup_work_sem); 2803 init_rwsem(&fs_info->subvol_sem); 2804 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2805 2806 btrfs_init_dev_replace_locks(fs_info); 2807 btrfs_init_qgroup(fs_info); 2808 btrfs_discard_init(fs_info); 2809 2810 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2811 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2812 2813 init_waitqueue_head(&fs_info->transaction_throttle); 2814 init_waitqueue_head(&fs_info->transaction_wait); 2815 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2816 init_waitqueue_head(&fs_info->async_submit_wait); 2817 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2818 2819 /* Usable values until the real ones are cached from the superblock */ 2820 fs_info->nodesize = 4096; 2821 fs_info->sectorsize = 4096; 2822 fs_info->sectorsize_bits = ilog2(4096); 2823 fs_info->stripesize = 4096; 2824 2825 /* Default compress algorithm when user does -o compress */ 2826 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2827 2828 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 2829 2830 spin_lock_init(&fs_info->swapfile_pins_lock); 2831 fs_info->swapfile_pins = RB_ROOT; 2832 2833 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 2834 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 2835 } 2836 2837 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2838 { 2839 int ret; 2840 2841 fs_info->sb = sb; 2842 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2843 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2844 2845 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 2846 if (ret) 2847 return ret; 2848 2849 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2850 if (ret) 2851 return ret; 2852 2853 fs_info->dirty_metadata_batch = PAGE_SIZE * 2854 (1 + ilog2(nr_cpu_ids)); 2855 2856 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2857 if (ret) 2858 return ret; 2859 2860 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2861 GFP_KERNEL); 2862 if (ret) 2863 return ret; 2864 2865 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2866 GFP_KERNEL); 2867 if (!fs_info->delayed_root) 2868 return -ENOMEM; 2869 btrfs_init_delayed_root(fs_info->delayed_root); 2870 2871 if (sb_rdonly(sb)) 2872 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2873 2874 return btrfs_alloc_stripe_hash_table(fs_info); 2875 } 2876 2877 static int btrfs_uuid_rescan_kthread(void *data) 2878 { 2879 struct btrfs_fs_info *fs_info = data; 2880 int ret; 2881 2882 /* 2883 * 1st step is to iterate through the existing UUID tree and 2884 * to delete all entries that contain outdated data. 2885 * 2nd step is to add all missing entries to the UUID tree. 2886 */ 2887 ret = btrfs_uuid_tree_iterate(fs_info); 2888 if (ret < 0) { 2889 if (ret != -EINTR) 2890 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2891 ret); 2892 up(&fs_info->uuid_tree_rescan_sem); 2893 return ret; 2894 } 2895 return btrfs_uuid_scan_kthread(data); 2896 } 2897 2898 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2899 { 2900 struct task_struct *task; 2901 2902 down(&fs_info->uuid_tree_rescan_sem); 2903 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2904 if (IS_ERR(task)) { 2905 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2906 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2907 up(&fs_info->uuid_tree_rescan_sem); 2908 return PTR_ERR(task); 2909 } 2910 2911 return 0; 2912 } 2913 2914 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2915 { 2916 u64 root_objectid = 0; 2917 struct btrfs_root *gang[8]; 2918 int i = 0; 2919 int err = 0; 2920 unsigned int ret = 0; 2921 2922 while (1) { 2923 spin_lock(&fs_info->fs_roots_radix_lock); 2924 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2925 (void **)gang, root_objectid, 2926 ARRAY_SIZE(gang)); 2927 if (!ret) { 2928 spin_unlock(&fs_info->fs_roots_radix_lock); 2929 break; 2930 } 2931 root_objectid = gang[ret - 1]->root_key.objectid + 1; 2932 2933 for (i = 0; i < ret; i++) { 2934 /* Avoid to grab roots in dead_roots. */ 2935 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 2936 gang[i] = NULL; 2937 continue; 2938 } 2939 /* Grab all the search result for later use. */ 2940 gang[i] = btrfs_grab_root(gang[i]); 2941 } 2942 spin_unlock(&fs_info->fs_roots_radix_lock); 2943 2944 for (i = 0; i < ret; i++) { 2945 if (!gang[i]) 2946 continue; 2947 root_objectid = gang[i]->root_key.objectid; 2948 err = btrfs_orphan_cleanup(gang[i]); 2949 if (err) 2950 goto out; 2951 btrfs_put_root(gang[i]); 2952 } 2953 root_objectid++; 2954 } 2955 out: 2956 /* Release the uncleaned roots due to error. */ 2957 for (; i < ret; i++) { 2958 if (gang[i]) 2959 btrfs_put_root(gang[i]); 2960 } 2961 return err; 2962 } 2963 2964 /* 2965 * Mounting logic specific to read-write file systems. Shared by open_ctree 2966 * and btrfs_remount when remounting from read-only to read-write. 2967 */ 2968 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 2969 { 2970 int ret; 2971 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 2972 bool rebuild_free_space_tree = false; 2973 2974 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 2975 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2976 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2977 btrfs_warn(fs_info, 2978 "'clear_cache' option is ignored with extent tree v2"); 2979 else 2980 rebuild_free_space_tree = true; 2981 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 2982 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 2983 btrfs_warn(fs_info, "free space tree is invalid"); 2984 rebuild_free_space_tree = true; 2985 } 2986 2987 if (rebuild_free_space_tree) { 2988 btrfs_info(fs_info, "rebuilding free space tree"); 2989 ret = btrfs_rebuild_free_space_tree(fs_info); 2990 if (ret) { 2991 btrfs_warn(fs_info, 2992 "failed to rebuild free space tree: %d", ret); 2993 goto out; 2994 } 2995 } 2996 2997 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 2998 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 2999 btrfs_info(fs_info, "disabling free space tree"); 3000 ret = btrfs_delete_free_space_tree(fs_info); 3001 if (ret) { 3002 btrfs_warn(fs_info, 3003 "failed to disable free space tree: %d", ret); 3004 goto out; 3005 } 3006 } 3007 3008 /* 3009 * btrfs_find_orphan_roots() is responsible for finding all the dead 3010 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3011 * them into the fs_info->fs_roots_radix tree. This must be done before 3012 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3013 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3014 * item before the root's tree is deleted - this means that if we unmount 3015 * or crash before the deletion completes, on the next mount we will not 3016 * delete what remains of the tree because the orphan item does not 3017 * exists anymore, which is what tells us we have a pending deletion. 3018 */ 3019 ret = btrfs_find_orphan_roots(fs_info); 3020 if (ret) 3021 goto out; 3022 3023 ret = btrfs_cleanup_fs_roots(fs_info); 3024 if (ret) 3025 goto out; 3026 3027 down_read(&fs_info->cleanup_work_sem); 3028 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3029 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3030 up_read(&fs_info->cleanup_work_sem); 3031 goto out; 3032 } 3033 up_read(&fs_info->cleanup_work_sem); 3034 3035 mutex_lock(&fs_info->cleaner_mutex); 3036 ret = btrfs_recover_relocation(fs_info); 3037 mutex_unlock(&fs_info->cleaner_mutex); 3038 if (ret < 0) { 3039 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3040 goto out; 3041 } 3042 3043 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3044 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3045 btrfs_info(fs_info, "creating free space tree"); 3046 ret = btrfs_create_free_space_tree(fs_info); 3047 if (ret) { 3048 btrfs_warn(fs_info, 3049 "failed to create free space tree: %d", ret); 3050 goto out; 3051 } 3052 } 3053 3054 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3055 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3056 if (ret) 3057 goto out; 3058 } 3059 3060 ret = btrfs_resume_balance_async(fs_info); 3061 if (ret) 3062 goto out; 3063 3064 ret = btrfs_resume_dev_replace_async(fs_info); 3065 if (ret) { 3066 btrfs_warn(fs_info, "failed to resume dev_replace"); 3067 goto out; 3068 } 3069 3070 btrfs_qgroup_rescan_resume(fs_info); 3071 3072 if (!fs_info->uuid_root) { 3073 btrfs_info(fs_info, "creating UUID tree"); 3074 ret = btrfs_create_uuid_tree(fs_info); 3075 if (ret) { 3076 btrfs_warn(fs_info, 3077 "failed to create the UUID tree %d", ret); 3078 goto out; 3079 } 3080 } 3081 3082 out: 3083 return ret; 3084 } 3085 3086 /* 3087 * Do various sanity and dependency checks of different features. 3088 * 3089 * @is_rw_mount: If the mount is read-write. 3090 * 3091 * This is the place for less strict checks (like for subpage or artificial 3092 * feature dependencies). 3093 * 3094 * For strict checks or possible corruption detection, see 3095 * btrfs_validate_super(). 3096 * 3097 * This should be called after btrfs_parse_options(), as some mount options 3098 * (space cache related) can modify on-disk format like free space tree and 3099 * screw up certain feature dependencies. 3100 */ 3101 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3102 { 3103 struct btrfs_super_block *disk_super = fs_info->super_copy; 3104 u64 incompat = btrfs_super_incompat_flags(disk_super); 3105 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3106 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3107 3108 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3109 btrfs_err(fs_info, 3110 "cannot mount because of unknown incompat features (0x%llx)", 3111 incompat); 3112 return -EINVAL; 3113 } 3114 3115 /* Runtime limitation for mixed block groups. */ 3116 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3117 (fs_info->sectorsize != fs_info->nodesize)) { 3118 btrfs_err(fs_info, 3119 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3120 fs_info->nodesize, fs_info->sectorsize); 3121 return -EINVAL; 3122 } 3123 3124 /* Mixed backref is an always-enabled feature. */ 3125 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3126 3127 /* Set compression related flags just in case. */ 3128 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3129 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3130 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3131 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3132 3133 /* 3134 * An ancient flag, which should really be marked deprecated. 3135 * Such runtime limitation doesn't really need a incompat flag. 3136 */ 3137 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3138 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3139 3140 if (compat_ro_unsupp && is_rw_mount) { 3141 btrfs_err(fs_info, 3142 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3143 compat_ro); 3144 return -EINVAL; 3145 } 3146 3147 /* 3148 * We have unsupported RO compat features, although RO mounted, we 3149 * should not cause any metadata writes, including log replay. 3150 * Or we could screw up whatever the new feature requires. 3151 */ 3152 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3153 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3154 btrfs_err(fs_info, 3155 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3156 compat_ro); 3157 return -EINVAL; 3158 } 3159 3160 /* 3161 * Artificial limitations for block group tree, to force 3162 * block-group-tree to rely on no-holes and free-space-tree. 3163 */ 3164 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3165 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3166 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3167 btrfs_err(fs_info, 3168 "block-group-tree feature requires no-holes and free-space-tree features"); 3169 return -EINVAL; 3170 } 3171 3172 /* 3173 * Subpage runtime limitation on v1 cache. 3174 * 3175 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3176 * we're already defaulting to v2 cache, no need to bother v1 as it's 3177 * going to be deprecated anyway. 3178 */ 3179 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3180 btrfs_warn(fs_info, 3181 "v1 space cache is not supported for page size %lu with sectorsize %u", 3182 PAGE_SIZE, fs_info->sectorsize); 3183 return -EINVAL; 3184 } 3185 3186 /* This can be called by remount, we need to protect the super block. */ 3187 spin_lock(&fs_info->super_lock); 3188 btrfs_set_super_incompat_flags(disk_super, incompat); 3189 spin_unlock(&fs_info->super_lock); 3190 3191 return 0; 3192 } 3193 3194 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3195 char *options) 3196 { 3197 u32 sectorsize; 3198 u32 nodesize; 3199 u32 stripesize; 3200 u64 generation; 3201 u16 csum_type; 3202 struct btrfs_super_block *disk_super; 3203 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3204 struct btrfs_root *tree_root; 3205 struct btrfs_root *chunk_root; 3206 int ret; 3207 int level; 3208 3209 ret = init_mount_fs_info(fs_info, sb); 3210 if (ret) 3211 goto fail; 3212 3213 /* These need to be init'ed before we start creating inodes and such. */ 3214 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3215 GFP_KERNEL); 3216 fs_info->tree_root = tree_root; 3217 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3218 GFP_KERNEL); 3219 fs_info->chunk_root = chunk_root; 3220 if (!tree_root || !chunk_root) { 3221 ret = -ENOMEM; 3222 goto fail; 3223 } 3224 3225 ret = btrfs_init_btree_inode(sb); 3226 if (ret) 3227 goto fail; 3228 3229 invalidate_bdev(fs_devices->latest_dev->bdev); 3230 3231 /* 3232 * Read super block and check the signature bytes only 3233 */ 3234 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3235 if (IS_ERR(disk_super)) { 3236 ret = PTR_ERR(disk_super); 3237 goto fail_alloc; 3238 } 3239 3240 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid); 3241 /* 3242 * Verify the type first, if that or the checksum value are 3243 * corrupted, we'll find out 3244 */ 3245 csum_type = btrfs_super_csum_type(disk_super); 3246 if (!btrfs_supported_super_csum(csum_type)) { 3247 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3248 csum_type); 3249 ret = -EINVAL; 3250 btrfs_release_disk_super(disk_super); 3251 goto fail_alloc; 3252 } 3253 3254 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3255 3256 ret = btrfs_init_csum_hash(fs_info, csum_type); 3257 if (ret) { 3258 btrfs_release_disk_super(disk_super); 3259 goto fail_alloc; 3260 } 3261 3262 /* 3263 * We want to check superblock checksum, the type is stored inside. 3264 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3265 */ 3266 if (btrfs_check_super_csum(fs_info, disk_super)) { 3267 btrfs_err(fs_info, "superblock checksum mismatch"); 3268 ret = -EINVAL; 3269 btrfs_release_disk_super(disk_super); 3270 goto fail_alloc; 3271 } 3272 3273 /* 3274 * super_copy is zeroed at allocation time and we never touch the 3275 * following bytes up to INFO_SIZE, the checksum is calculated from 3276 * the whole block of INFO_SIZE 3277 */ 3278 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3279 btrfs_release_disk_super(disk_super); 3280 3281 disk_super = fs_info->super_copy; 3282 3283 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3284 sizeof(*fs_info->super_for_commit)); 3285 3286 ret = btrfs_validate_mount_super(fs_info); 3287 if (ret) { 3288 btrfs_err(fs_info, "superblock contains fatal errors"); 3289 ret = -EINVAL; 3290 goto fail_alloc; 3291 } 3292 3293 if (!btrfs_super_root(disk_super)) { 3294 btrfs_err(fs_info, "invalid superblock tree root bytenr"); 3295 ret = -EINVAL; 3296 goto fail_alloc; 3297 } 3298 3299 /* check FS state, whether FS is broken. */ 3300 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3301 WRITE_ONCE(fs_info->fs_error, -EUCLEAN); 3302 3303 /* Set up fs_info before parsing mount options */ 3304 nodesize = btrfs_super_nodesize(disk_super); 3305 sectorsize = btrfs_super_sectorsize(disk_super); 3306 stripesize = sectorsize; 3307 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3308 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3309 3310 fs_info->nodesize = nodesize; 3311 fs_info->sectorsize = sectorsize; 3312 fs_info->sectorsize_bits = ilog2(sectorsize); 3313 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3314 fs_info->stripesize = stripesize; 3315 3316 /* 3317 * Handle the space caching options appropriately now that we have the 3318 * super block loaded and validated. 3319 */ 3320 btrfs_set_free_space_cache_settings(fs_info); 3321 3322 if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) { 3323 ret = -EINVAL; 3324 goto fail_alloc; 3325 } 3326 3327 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3328 if (ret < 0) 3329 goto fail_alloc; 3330 3331 /* 3332 * At this point our mount options are validated, if we set ->max_inline 3333 * to something non-standard make sure we truncate it to sectorsize. 3334 */ 3335 fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize); 3336 3337 if (sectorsize < PAGE_SIZE) { 3338 struct btrfs_subpage_info *subpage_info; 3339 3340 btrfs_warn(fs_info, 3341 "read-write for sector size %u with page size %lu is experimental", 3342 sectorsize, PAGE_SIZE); 3343 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL); 3344 if (!subpage_info) { 3345 ret = -ENOMEM; 3346 goto fail_alloc; 3347 } 3348 btrfs_init_subpage_info(subpage_info, sectorsize); 3349 fs_info->subpage_info = subpage_info; 3350 } 3351 3352 ret = btrfs_init_workqueues(fs_info); 3353 if (ret) 3354 goto fail_sb_buffer; 3355 3356 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3357 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3358 3359 sb->s_blocksize = sectorsize; 3360 sb->s_blocksize_bits = blksize_bits(sectorsize); 3361 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3362 3363 mutex_lock(&fs_info->chunk_mutex); 3364 ret = btrfs_read_sys_array(fs_info); 3365 mutex_unlock(&fs_info->chunk_mutex); 3366 if (ret) { 3367 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3368 goto fail_sb_buffer; 3369 } 3370 3371 generation = btrfs_super_chunk_root_generation(disk_super); 3372 level = btrfs_super_chunk_root_level(disk_super); 3373 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3374 generation, level); 3375 if (ret) { 3376 btrfs_err(fs_info, "failed to read chunk root"); 3377 goto fail_tree_roots; 3378 } 3379 3380 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3381 offsetof(struct btrfs_header, chunk_tree_uuid), 3382 BTRFS_UUID_SIZE); 3383 3384 ret = btrfs_read_chunk_tree(fs_info); 3385 if (ret) { 3386 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3387 goto fail_tree_roots; 3388 } 3389 3390 /* 3391 * At this point we know all the devices that make this filesystem, 3392 * including the seed devices but we don't know yet if the replace 3393 * target is required. So free devices that are not part of this 3394 * filesystem but skip the replace target device which is checked 3395 * below in btrfs_init_dev_replace(). 3396 */ 3397 btrfs_free_extra_devids(fs_devices); 3398 if (!fs_devices->latest_dev->bdev) { 3399 btrfs_err(fs_info, "failed to read devices"); 3400 ret = -EIO; 3401 goto fail_tree_roots; 3402 } 3403 3404 ret = init_tree_roots(fs_info); 3405 if (ret) 3406 goto fail_tree_roots; 3407 3408 /* 3409 * Get zone type information of zoned block devices. This will also 3410 * handle emulation of a zoned filesystem if a regular device has the 3411 * zoned incompat feature flag set. 3412 */ 3413 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3414 if (ret) { 3415 btrfs_err(fs_info, 3416 "zoned: failed to read device zone info: %d", ret); 3417 goto fail_block_groups; 3418 } 3419 3420 /* 3421 * If we have a uuid root and we're not being told to rescan we need to 3422 * check the generation here so we can set the 3423 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3424 * transaction during a balance or the log replay without updating the 3425 * uuid generation, and then if we crash we would rescan the uuid tree, 3426 * even though it was perfectly fine. 3427 */ 3428 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3429 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3430 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3431 3432 ret = btrfs_verify_dev_extents(fs_info); 3433 if (ret) { 3434 btrfs_err(fs_info, 3435 "failed to verify dev extents against chunks: %d", 3436 ret); 3437 goto fail_block_groups; 3438 } 3439 ret = btrfs_recover_balance(fs_info); 3440 if (ret) { 3441 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3442 goto fail_block_groups; 3443 } 3444 3445 ret = btrfs_init_dev_stats(fs_info); 3446 if (ret) { 3447 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3448 goto fail_block_groups; 3449 } 3450 3451 ret = btrfs_init_dev_replace(fs_info); 3452 if (ret) { 3453 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3454 goto fail_block_groups; 3455 } 3456 3457 ret = btrfs_check_zoned_mode(fs_info); 3458 if (ret) { 3459 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3460 ret); 3461 goto fail_block_groups; 3462 } 3463 3464 ret = btrfs_sysfs_add_fsid(fs_devices); 3465 if (ret) { 3466 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3467 ret); 3468 goto fail_block_groups; 3469 } 3470 3471 ret = btrfs_sysfs_add_mounted(fs_info); 3472 if (ret) { 3473 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3474 goto fail_fsdev_sysfs; 3475 } 3476 3477 ret = btrfs_init_space_info(fs_info); 3478 if (ret) { 3479 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3480 goto fail_sysfs; 3481 } 3482 3483 ret = btrfs_read_block_groups(fs_info); 3484 if (ret) { 3485 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3486 goto fail_sysfs; 3487 } 3488 3489 btrfs_free_zone_cache(fs_info); 3490 3491 btrfs_check_active_zone_reservation(fs_info); 3492 3493 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3494 !btrfs_check_rw_degradable(fs_info, NULL)) { 3495 btrfs_warn(fs_info, 3496 "writable mount is not allowed due to too many missing devices"); 3497 ret = -EINVAL; 3498 goto fail_sysfs; 3499 } 3500 3501 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3502 "btrfs-cleaner"); 3503 if (IS_ERR(fs_info->cleaner_kthread)) { 3504 ret = PTR_ERR(fs_info->cleaner_kthread); 3505 goto fail_sysfs; 3506 } 3507 3508 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3509 tree_root, 3510 "btrfs-transaction"); 3511 if (IS_ERR(fs_info->transaction_kthread)) { 3512 ret = PTR_ERR(fs_info->transaction_kthread); 3513 goto fail_cleaner; 3514 } 3515 3516 ret = btrfs_read_qgroup_config(fs_info); 3517 if (ret) 3518 goto fail_trans_kthread; 3519 3520 if (btrfs_build_ref_tree(fs_info)) 3521 btrfs_err(fs_info, "couldn't build ref tree"); 3522 3523 /* do not make disk changes in broken FS or nologreplay is given */ 3524 if (btrfs_super_log_root(disk_super) != 0 && 3525 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3526 btrfs_info(fs_info, "start tree-log replay"); 3527 ret = btrfs_replay_log(fs_info, fs_devices); 3528 if (ret) 3529 goto fail_qgroup; 3530 } 3531 3532 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3533 if (IS_ERR(fs_info->fs_root)) { 3534 ret = PTR_ERR(fs_info->fs_root); 3535 btrfs_warn(fs_info, "failed to read fs tree: %d", ret); 3536 fs_info->fs_root = NULL; 3537 goto fail_qgroup; 3538 } 3539 3540 if (sb_rdonly(sb)) 3541 return 0; 3542 3543 ret = btrfs_start_pre_rw_mount(fs_info); 3544 if (ret) { 3545 close_ctree(fs_info); 3546 return ret; 3547 } 3548 btrfs_discard_resume(fs_info); 3549 3550 if (fs_info->uuid_root && 3551 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3552 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3553 btrfs_info(fs_info, "checking UUID tree"); 3554 ret = btrfs_check_uuid_tree(fs_info); 3555 if (ret) { 3556 btrfs_warn(fs_info, 3557 "failed to check the UUID tree: %d", ret); 3558 close_ctree(fs_info); 3559 return ret; 3560 } 3561 } 3562 3563 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3564 3565 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3566 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3567 wake_up_process(fs_info->cleaner_kthread); 3568 3569 return 0; 3570 3571 fail_qgroup: 3572 btrfs_free_qgroup_config(fs_info); 3573 fail_trans_kthread: 3574 kthread_stop(fs_info->transaction_kthread); 3575 btrfs_cleanup_transaction(fs_info); 3576 btrfs_free_fs_roots(fs_info); 3577 fail_cleaner: 3578 kthread_stop(fs_info->cleaner_kthread); 3579 3580 /* 3581 * make sure we're done with the btree inode before we stop our 3582 * kthreads 3583 */ 3584 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3585 3586 fail_sysfs: 3587 btrfs_sysfs_remove_mounted(fs_info); 3588 3589 fail_fsdev_sysfs: 3590 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3591 3592 fail_block_groups: 3593 btrfs_put_block_group_cache(fs_info); 3594 3595 fail_tree_roots: 3596 if (fs_info->data_reloc_root) 3597 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3598 free_root_pointers(fs_info, true); 3599 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3600 3601 fail_sb_buffer: 3602 btrfs_stop_all_workers(fs_info); 3603 btrfs_free_block_groups(fs_info); 3604 fail_alloc: 3605 btrfs_mapping_tree_free(fs_info); 3606 3607 iput(fs_info->btree_inode); 3608 fail: 3609 btrfs_close_devices(fs_info->fs_devices); 3610 ASSERT(ret < 0); 3611 return ret; 3612 } 3613 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3614 3615 static void btrfs_end_super_write(struct bio *bio) 3616 { 3617 struct btrfs_device *device = bio->bi_private; 3618 struct bio_vec *bvec; 3619 struct bvec_iter_all iter_all; 3620 struct page *page; 3621 3622 bio_for_each_segment_all(bvec, bio, iter_all) { 3623 page = bvec->bv_page; 3624 3625 if (bio->bi_status) { 3626 btrfs_warn_rl_in_rcu(device->fs_info, 3627 "lost page write due to IO error on %s (%d)", 3628 btrfs_dev_name(device), 3629 blk_status_to_errno(bio->bi_status)); 3630 ClearPageUptodate(page); 3631 SetPageError(page); 3632 btrfs_dev_stat_inc_and_print(device, 3633 BTRFS_DEV_STAT_WRITE_ERRS); 3634 } else { 3635 SetPageUptodate(page); 3636 } 3637 3638 put_page(page); 3639 unlock_page(page); 3640 } 3641 3642 bio_put(bio); 3643 } 3644 3645 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3646 int copy_num, bool drop_cache) 3647 { 3648 struct btrfs_super_block *super; 3649 struct page *page; 3650 u64 bytenr, bytenr_orig; 3651 struct address_space *mapping = bdev->bd_inode->i_mapping; 3652 int ret; 3653 3654 bytenr_orig = btrfs_sb_offset(copy_num); 3655 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3656 if (ret == -ENOENT) 3657 return ERR_PTR(-EINVAL); 3658 else if (ret) 3659 return ERR_PTR(ret); 3660 3661 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 3662 return ERR_PTR(-EINVAL); 3663 3664 if (drop_cache) { 3665 /* This should only be called with the primary sb. */ 3666 ASSERT(copy_num == 0); 3667 3668 /* 3669 * Drop the page of the primary superblock, so later read will 3670 * always read from the device. 3671 */ 3672 invalidate_inode_pages2_range(mapping, 3673 bytenr >> PAGE_SHIFT, 3674 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 3675 } 3676 3677 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3678 if (IS_ERR(page)) 3679 return ERR_CAST(page); 3680 3681 super = page_address(page); 3682 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3683 btrfs_release_disk_super(super); 3684 return ERR_PTR(-ENODATA); 3685 } 3686 3687 if (btrfs_super_bytenr(super) != bytenr_orig) { 3688 btrfs_release_disk_super(super); 3689 return ERR_PTR(-EINVAL); 3690 } 3691 3692 return super; 3693 } 3694 3695 3696 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3697 { 3698 struct btrfs_super_block *super, *latest = NULL; 3699 int i; 3700 u64 transid = 0; 3701 3702 /* we would like to check all the supers, but that would make 3703 * a btrfs mount succeed after a mkfs from a different FS. 3704 * So, we need to add a special mount option to scan for 3705 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3706 */ 3707 for (i = 0; i < 1; i++) { 3708 super = btrfs_read_dev_one_super(bdev, i, false); 3709 if (IS_ERR(super)) 3710 continue; 3711 3712 if (!latest || btrfs_super_generation(super) > transid) { 3713 if (latest) 3714 btrfs_release_disk_super(super); 3715 3716 latest = super; 3717 transid = btrfs_super_generation(super); 3718 } 3719 } 3720 3721 return super; 3722 } 3723 3724 /* 3725 * Write superblock @sb to the @device. Do not wait for completion, all the 3726 * pages we use for writing are locked. 3727 * 3728 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3729 * the expected device size at commit time. Note that max_mirrors must be 3730 * same for write and wait phases. 3731 * 3732 * Return number of errors when page is not found or submission fails. 3733 */ 3734 static int write_dev_supers(struct btrfs_device *device, 3735 struct btrfs_super_block *sb, int max_mirrors) 3736 { 3737 struct btrfs_fs_info *fs_info = device->fs_info; 3738 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3739 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3740 int i; 3741 int errors = 0; 3742 int ret; 3743 u64 bytenr, bytenr_orig; 3744 3745 if (max_mirrors == 0) 3746 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3747 3748 shash->tfm = fs_info->csum_shash; 3749 3750 for (i = 0; i < max_mirrors; i++) { 3751 struct page *page; 3752 struct bio *bio; 3753 struct btrfs_super_block *disk_super; 3754 3755 bytenr_orig = btrfs_sb_offset(i); 3756 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3757 if (ret == -ENOENT) { 3758 continue; 3759 } else if (ret < 0) { 3760 btrfs_err(device->fs_info, 3761 "couldn't get super block location for mirror %d", 3762 i); 3763 errors++; 3764 continue; 3765 } 3766 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3767 device->commit_total_bytes) 3768 break; 3769 3770 btrfs_set_super_bytenr(sb, bytenr_orig); 3771 3772 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3773 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3774 sb->csum); 3775 3776 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 3777 GFP_NOFS); 3778 if (!page) { 3779 btrfs_err(device->fs_info, 3780 "couldn't get super block page for bytenr %llu", 3781 bytenr); 3782 errors++; 3783 continue; 3784 } 3785 3786 /* Bump the refcount for wait_dev_supers() */ 3787 get_page(page); 3788 3789 disk_super = page_address(page); 3790 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3791 3792 /* 3793 * Directly use bios here instead of relying on the page cache 3794 * to do I/O, so we don't lose the ability to do integrity 3795 * checking. 3796 */ 3797 bio = bio_alloc(device->bdev, 1, 3798 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 3799 GFP_NOFS); 3800 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3801 bio->bi_private = device; 3802 bio->bi_end_io = btrfs_end_super_write; 3803 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 3804 offset_in_page(bytenr)); 3805 3806 /* 3807 * We FUA only the first super block. The others we allow to 3808 * go down lazy and there's a short window where the on-disk 3809 * copies might still contain the older version. 3810 */ 3811 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3812 bio->bi_opf |= REQ_FUA; 3813 submit_bio(bio); 3814 3815 if (btrfs_advance_sb_log(device, i)) 3816 errors++; 3817 } 3818 return errors < i ? 0 : -1; 3819 } 3820 3821 /* 3822 * Wait for write completion of superblocks done by write_dev_supers, 3823 * @max_mirrors same for write and wait phases. 3824 * 3825 * Return number of errors when page is not found or not marked up to 3826 * date. 3827 */ 3828 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3829 { 3830 int i; 3831 int errors = 0; 3832 bool primary_failed = false; 3833 int ret; 3834 u64 bytenr; 3835 3836 if (max_mirrors == 0) 3837 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3838 3839 for (i = 0; i < max_mirrors; i++) { 3840 struct page *page; 3841 3842 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 3843 if (ret == -ENOENT) { 3844 break; 3845 } else if (ret < 0) { 3846 errors++; 3847 if (i == 0) 3848 primary_failed = true; 3849 continue; 3850 } 3851 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3852 device->commit_total_bytes) 3853 break; 3854 3855 page = find_get_page(device->bdev->bd_inode->i_mapping, 3856 bytenr >> PAGE_SHIFT); 3857 if (!page) { 3858 errors++; 3859 if (i == 0) 3860 primary_failed = true; 3861 continue; 3862 } 3863 /* Page is submitted locked and unlocked once the IO completes */ 3864 wait_on_page_locked(page); 3865 if (PageError(page)) { 3866 errors++; 3867 if (i == 0) 3868 primary_failed = true; 3869 } 3870 3871 /* Drop our reference */ 3872 put_page(page); 3873 3874 /* Drop the reference from the writing run */ 3875 put_page(page); 3876 } 3877 3878 /* log error, force error return */ 3879 if (primary_failed) { 3880 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3881 device->devid); 3882 return -1; 3883 } 3884 3885 return errors < i ? 0 : -1; 3886 } 3887 3888 /* 3889 * endio for the write_dev_flush, this will wake anyone waiting 3890 * for the barrier when it is done 3891 */ 3892 static void btrfs_end_empty_barrier(struct bio *bio) 3893 { 3894 bio_uninit(bio); 3895 complete(bio->bi_private); 3896 } 3897 3898 /* 3899 * Submit a flush request to the device if it supports it. Error handling is 3900 * done in the waiting counterpart. 3901 */ 3902 static void write_dev_flush(struct btrfs_device *device) 3903 { 3904 struct bio *bio = &device->flush_bio; 3905 3906 device->last_flush_error = BLK_STS_OK; 3907 3908 bio_init(bio, device->bdev, NULL, 0, 3909 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 3910 bio->bi_end_io = btrfs_end_empty_barrier; 3911 init_completion(&device->flush_wait); 3912 bio->bi_private = &device->flush_wait; 3913 submit_bio(bio); 3914 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3915 } 3916 3917 /* 3918 * If the flush bio has been submitted by write_dev_flush, wait for it. 3919 * Return true for any error, and false otherwise. 3920 */ 3921 static bool wait_dev_flush(struct btrfs_device *device) 3922 { 3923 struct bio *bio = &device->flush_bio; 3924 3925 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3926 return false; 3927 3928 wait_for_completion_io(&device->flush_wait); 3929 3930 if (bio->bi_status) { 3931 device->last_flush_error = bio->bi_status; 3932 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); 3933 return true; 3934 } 3935 3936 return false; 3937 } 3938 3939 /* 3940 * send an empty flush down to each device in parallel, 3941 * then wait for them 3942 */ 3943 static int barrier_all_devices(struct btrfs_fs_info *info) 3944 { 3945 struct list_head *head; 3946 struct btrfs_device *dev; 3947 int errors_wait = 0; 3948 3949 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3950 /* send down all the barriers */ 3951 head = &info->fs_devices->devices; 3952 list_for_each_entry(dev, head, dev_list) { 3953 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3954 continue; 3955 if (!dev->bdev) 3956 continue; 3957 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3958 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3959 continue; 3960 3961 write_dev_flush(dev); 3962 } 3963 3964 /* wait for all the barriers */ 3965 list_for_each_entry(dev, head, dev_list) { 3966 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3967 continue; 3968 if (!dev->bdev) { 3969 errors_wait++; 3970 continue; 3971 } 3972 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3973 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3974 continue; 3975 3976 if (wait_dev_flush(dev)) 3977 errors_wait++; 3978 } 3979 3980 /* 3981 * Checks last_flush_error of disks in order to determine the device 3982 * state. 3983 */ 3984 if (errors_wait && !btrfs_check_rw_degradable(info, NULL)) 3985 return -EIO; 3986 3987 return 0; 3988 } 3989 3990 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3991 { 3992 int raid_type; 3993 int min_tolerated = INT_MAX; 3994 3995 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3996 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3997 min_tolerated = min_t(int, min_tolerated, 3998 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3999 tolerated_failures); 4000 4001 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4002 if (raid_type == BTRFS_RAID_SINGLE) 4003 continue; 4004 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 4005 continue; 4006 min_tolerated = min_t(int, min_tolerated, 4007 btrfs_raid_array[raid_type]. 4008 tolerated_failures); 4009 } 4010 4011 if (min_tolerated == INT_MAX) { 4012 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4013 min_tolerated = 0; 4014 } 4015 4016 return min_tolerated; 4017 } 4018 4019 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4020 { 4021 struct list_head *head; 4022 struct btrfs_device *dev; 4023 struct btrfs_super_block *sb; 4024 struct btrfs_dev_item *dev_item; 4025 int ret; 4026 int do_barriers; 4027 int max_errors; 4028 int total_errors = 0; 4029 u64 flags; 4030 4031 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4032 4033 /* 4034 * max_mirrors == 0 indicates we're from commit_transaction, 4035 * not from fsync where the tree roots in fs_info have not 4036 * been consistent on disk. 4037 */ 4038 if (max_mirrors == 0) 4039 backup_super_roots(fs_info); 4040 4041 sb = fs_info->super_for_commit; 4042 dev_item = &sb->dev_item; 4043 4044 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4045 head = &fs_info->fs_devices->devices; 4046 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4047 4048 if (do_barriers) { 4049 ret = barrier_all_devices(fs_info); 4050 if (ret) { 4051 mutex_unlock( 4052 &fs_info->fs_devices->device_list_mutex); 4053 btrfs_handle_fs_error(fs_info, ret, 4054 "errors while submitting device barriers."); 4055 return ret; 4056 } 4057 } 4058 4059 list_for_each_entry(dev, head, dev_list) { 4060 if (!dev->bdev) { 4061 total_errors++; 4062 continue; 4063 } 4064 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4065 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4066 continue; 4067 4068 btrfs_set_stack_device_generation(dev_item, 0); 4069 btrfs_set_stack_device_type(dev_item, dev->type); 4070 btrfs_set_stack_device_id(dev_item, dev->devid); 4071 btrfs_set_stack_device_total_bytes(dev_item, 4072 dev->commit_total_bytes); 4073 btrfs_set_stack_device_bytes_used(dev_item, 4074 dev->commit_bytes_used); 4075 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4076 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4077 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4078 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4079 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4080 BTRFS_FSID_SIZE); 4081 4082 flags = btrfs_super_flags(sb); 4083 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4084 4085 ret = btrfs_validate_write_super(fs_info, sb); 4086 if (ret < 0) { 4087 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4088 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4089 "unexpected superblock corruption detected"); 4090 return -EUCLEAN; 4091 } 4092 4093 ret = write_dev_supers(dev, sb, max_mirrors); 4094 if (ret) 4095 total_errors++; 4096 } 4097 if (total_errors > max_errors) { 4098 btrfs_err(fs_info, "%d errors while writing supers", 4099 total_errors); 4100 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4101 4102 /* FUA is masked off if unsupported and can't be the reason */ 4103 btrfs_handle_fs_error(fs_info, -EIO, 4104 "%d errors while writing supers", 4105 total_errors); 4106 return -EIO; 4107 } 4108 4109 total_errors = 0; 4110 list_for_each_entry(dev, head, dev_list) { 4111 if (!dev->bdev) 4112 continue; 4113 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4114 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4115 continue; 4116 4117 ret = wait_dev_supers(dev, max_mirrors); 4118 if (ret) 4119 total_errors++; 4120 } 4121 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4122 if (total_errors > max_errors) { 4123 btrfs_handle_fs_error(fs_info, -EIO, 4124 "%d errors while writing supers", 4125 total_errors); 4126 return -EIO; 4127 } 4128 return 0; 4129 } 4130 4131 /* Drop a fs root from the radix tree and free it. */ 4132 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4133 struct btrfs_root *root) 4134 { 4135 bool drop_ref = false; 4136 4137 spin_lock(&fs_info->fs_roots_radix_lock); 4138 radix_tree_delete(&fs_info->fs_roots_radix, 4139 (unsigned long)root->root_key.objectid); 4140 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4141 drop_ref = true; 4142 spin_unlock(&fs_info->fs_roots_radix_lock); 4143 4144 if (BTRFS_FS_ERROR(fs_info)) { 4145 ASSERT(root->log_root == NULL); 4146 if (root->reloc_root) { 4147 btrfs_put_root(root->reloc_root); 4148 root->reloc_root = NULL; 4149 } 4150 } 4151 4152 if (drop_ref) 4153 btrfs_put_root(root); 4154 } 4155 4156 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4157 { 4158 struct btrfs_root *root = fs_info->tree_root; 4159 struct btrfs_trans_handle *trans; 4160 4161 mutex_lock(&fs_info->cleaner_mutex); 4162 btrfs_run_delayed_iputs(fs_info); 4163 mutex_unlock(&fs_info->cleaner_mutex); 4164 wake_up_process(fs_info->cleaner_kthread); 4165 4166 /* wait until ongoing cleanup work done */ 4167 down_write(&fs_info->cleanup_work_sem); 4168 up_write(&fs_info->cleanup_work_sem); 4169 4170 trans = btrfs_join_transaction(root); 4171 if (IS_ERR(trans)) 4172 return PTR_ERR(trans); 4173 return btrfs_commit_transaction(trans); 4174 } 4175 4176 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4177 { 4178 struct btrfs_transaction *trans; 4179 struct btrfs_transaction *tmp; 4180 bool found = false; 4181 4182 if (list_empty(&fs_info->trans_list)) 4183 return; 4184 4185 /* 4186 * This function is only called at the very end of close_ctree(), 4187 * thus no other running transaction, no need to take trans_lock. 4188 */ 4189 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4190 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4191 struct extent_state *cached = NULL; 4192 u64 dirty_bytes = 0; 4193 u64 cur = 0; 4194 u64 found_start; 4195 u64 found_end; 4196 4197 found = true; 4198 while (find_first_extent_bit(&trans->dirty_pages, cur, 4199 &found_start, &found_end, EXTENT_DIRTY, &cached)) { 4200 dirty_bytes += found_end + 1 - found_start; 4201 cur = found_end + 1; 4202 } 4203 btrfs_warn(fs_info, 4204 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4205 trans->transid, dirty_bytes); 4206 btrfs_cleanup_one_transaction(trans, fs_info); 4207 4208 if (trans == fs_info->running_transaction) 4209 fs_info->running_transaction = NULL; 4210 list_del_init(&trans->list); 4211 4212 btrfs_put_transaction(trans); 4213 trace_btrfs_transaction_commit(fs_info); 4214 } 4215 ASSERT(!found); 4216 } 4217 4218 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4219 { 4220 int ret; 4221 4222 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4223 4224 /* 4225 * If we had UNFINISHED_DROPS we could still be processing them, so 4226 * clear that bit and wake up relocation so it can stop. 4227 * We must do this before stopping the block group reclaim task, because 4228 * at btrfs_relocate_block_group() we wait for this bit, and after the 4229 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4230 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4231 * return 1. 4232 */ 4233 btrfs_wake_unfinished_drop(fs_info); 4234 4235 /* 4236 * We may have the reclaim task running and relocating a data block group, 4237 * in which case it may create delayed iputs. So stop it before we park 4238 * the cleaner kthread otherwise we can get new delayed iputs after 4239 * parking the cleaner, and that can make the async reclaim task to hang 4240 * if it's waiting for delayed iputs to complete, since the cleaner is 4241 * parked and can not run delayed iputs - this will make us hang when 4242 * trying to stop the async reclaim task. 4243 */ 4244 cancel_work_sync(&fs_info->reclaim_bgs_work); 4245 /* 4246 * We don't want the cleaner to start new transactions, add more delayed 4247 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4248 * because that frees the task_struct, and the transaction kthread might 4249 * still try to wake up the cleaner. 4250 */ 4251 kthread_park(fs_info->cleaner_kthread); 4252 4253 /* wait for the qgroup rescan worker to stop */ 4254 btrfs_qgroup_wait_for_completion(fs_info, false); 4255 4256 /* wait for the uuid_scan task to finish */ 4257 down(&fs_info->uuid_tree_rescan_sem); 4258 /* avoid complains from lockdep et al., set sem back to initial state */ 4259 up(&fs_info->uuid_tree_rescan_sem); 4260 4261 /* pause restriper - we want to resume on mount */ 4262 btrfs_pause_balance(fs_info); 4263 4264 btrfs_dev_replace_suspend_for_unmount(fs_info); 4265 4266 btrfs_scrub_cancel(fs_info); 4267 4268 /* wait for any defraggers to finish */ 4269 wait_event(fs_info->transaction_wait, 4270 (atomic_read(&fs_info->defrag_running) == 0)); 4271 4272 /* clear out the rbtree of defraggable inodes */ 4273 btrfs_cleanup_defrag_inodes(fs_info); 4274 4275 /* 4276 * After we parked the cleaner kthread, ordered extents may have 4277 * completed and created new delayed iputs. If one of the async reclaim 4278 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4279 * can hang forever trying to stop it, because if a delayed iput is 4280 * added after it ran btrfs_run_delayed_iputs() and before it called 4281 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4282 * no one else to run iputs. 4283 * 4284 * So wait for all ongoing ordered extents to complete and then run 4285 * delayed iputs. This works because once we reach this point no one 4286 * can either create new ordered extents nor create delayed iputs 4287 * through some other means. 4288 * 4289 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4290 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4291 * but the delayed iput for the respective inode is made only when doing 4292 * the final btrfs_put_ordered_extent() (which must happen at 4293 * btrfs_finish_ordered_io() when we are unmounting). 4294 */ 4295 btrfs_flush_workqueue(fs_info->endio_write_workers); 4296 /* Ordered extents for free space inodes. */ 4297 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4298 btrfs_run_delayed_iputs(fs_info); 4299 4300 cancel_work_sync(&fs_info->async_reclaim_work); 4301 cancel_work_sync(&fs_info->async_data_reclaim_work); 4302 cancel_work_sync(&fs_info->preempt_reclaim_work); 4303 4304 /* Cancel or finish ongoing discard work */ 4305 btrfs_discard_cleanup(fs_info); 4306 4307 if (!sb_rdonly(fs_info->sb)) { 4308 /* 4309 * The cleaner kthread is stopped, so do one final pass over 4310 * unused block groups. 4311 */ 4312 btrfs_delete_unused_bgs(fs_info); 4313 4314 /* 4315 * There might be existing delayed inode workers still running 4316 * and holding an empty delayed inode item. We must wait for 4317 * them to complete first because they can create a transaction. 4318 * This happens when someone calls btrfs_balance_delayed_items() 4319 * and then a transaction commit runs the same delayed nodes 4320 * before any delayed worker has done something with the nodes. 4321 * We must wait for any worker here and not at transaction 4322 * commit time since that could cause a deadlock. 4323 * This is a very rare case. 4324 */ 4325 btrfs_flush_workqueue(fs_info->delayed_workers); 4326 4327 ret = btrfs_commit_super(fs_info); 4328 if (ret) 4329 btrfs_err(fs_info, "commit super ret %d", ret); 4330 } 4331 4332 if (BTRFS_FS_ERROR(fs_info)) 4333 btrfs_error_commit_super(fs_info); 4334 4335 kthread_stop(fs_info->transaction_kthread); 4336 kthread_stop(fs_info->cleaner_kthread); 4337 4338 ASSERT(list_empty(&fs_info->delayed_iputs)); 4339 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4340 4341 if (btrfs_check_quota_leak(fs_info)) { 4342 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4343 btrfs_err(fs_info, "qgroup reserved space leaked"); 4344 } 4345 4346 btrfs_free_qgroup_config(fs_info); 4347 ASSERT(list_empty(&fs_info->delalloc_roots)); 4348 4349 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4350 btrfs_info(fs_info, "at unmount delalloc count %lld", 4351 percpu_counter_sum(&fs_info->delalloc_bytes)); 4352 } 4353 4354 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4355 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4356 percpu_counter_sum(&fs_info->ordered_bytes)); 4357 4358 btrfs_sysfs_remove_mounted(fs_info); 4359 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4360 4361 btrfs_put_block_group_cache(fs_info); 4362 4363 /* 4364 * we must make sure there is not any read request to 4365 * submit after we stopping all workers. 4366 */ 4367 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4368 btrfs_stop_all_workers(fs_info); 4369 4370 /* We shouldn't have any transaction open at this point */ 4371 warn_about_uncommitted_trans(fs_info); 4372 4373 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4374 free_root_pointers(fs_info, true); 4375 btrfs_free_fs_roots(fs_info); 4376 4377 /* 4378 * We must free the block groups after dropping the fs_roots as we could 4379 * have had an IO error and have left over tree log blocks that aren't 4380 * cleaned up until the fs roots are freed. This makes the block group 4381 * accounting appear to be wrong because there's pending reserved bytes, 4382 * so make sure we do the block group cleanup afterwards. 4383 */ 4384 btrfs_free_block_groups(fs_info); 4385 4386 iput(fs_info->btree_inode); 4387 4388 btrfs_mapping_tree_free(fs_info); 4389 btrfs_close_devices(fs_info->fs_devices); 4390 } 4391 4392 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans, 4393 struct extent_buffer *buf) 4394 { 4395 struct btrfs_fs_info *fs_info = buf->fs_info; 4396 u64 transid = btrfs_header_generation(buf); 4397 4398 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4399 /* 4400 * This is a fast path so only do this check if we have sanity tests 4401 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4402 * outside of the sanity tests. 4403 */ 4404 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4405 return; 4406 #endif 4407 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */ 4408 ASSERT(trans->transid == fs_info->generation); 4409 btrfs_assert_tree_write_locked(buf); 4410 if (unlikely(transid != fs_info->generation)) { 4411 btrfs_abort_transaction(trans, -EUCLEAN); 4412 btrfs_crit(fs_info, 4413 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu", 4414 buf->start, transid, fs_info->generation); 4415 } 4416 set_extent_buffer_dirty(buf); 4417 } 4418 4419 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4420 int flush_delayed) 4421 { 4422 /* 4423 * looks as though older kernels can get into trouble with 4424 * this code, they end up stuck in balance_dirty_pages forever 4425 */ 4426 int ret; 4427 4428 if (current->flags & PF_MEMALLOC) 4429 return; 4430 4431 if (flush_delayed) 4432 btrfs_balance_delayed_items(fs_info); 4433 4434 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4435 BTRFS_DIRTY_METADATA_THRESH, 4436 fs_info->dirty_metadata_batch); 4437 if (ret > 0) { 4438 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4439 } 4440 } 4441 4442 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4443 { 4444 __btrfs_btree_balance_dirty(fs_info, 1); 4445 } 4446 4447 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4448 { 4449 __btrfs_btree_balance_dirty(fs_info, 0); 4450 } 4451 4452 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4453 { 4454 /* cleanup FS via transaction */ 4455 btrfs_cleanup_transaction(fs_info); 4456 4457 mutex_lock(&fs_info->cleaner_mutex); 4458 btrfs_run_delayed_iputs(fs_info); 4459 mutex_unlock(&fs_info->cleaner_mutex); 4460 4461 down_write(&fs_info->cleanup_work_sem); 4462 up_write(&fs_info->cleanup_work_sem); 4463 } 4464 4465 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4466 { 4467 struct btrfs_root *gang[8]; 4468 u64 root_objectid = 0; 4469 int ret; 4470 4471 spin_lock(&fs_info->fs_roots_radix_lock); 4472 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4473 (void **)gang, root_objectid, 4474 ARRAY_SIZE(gang))) != 0) { 4475 int i; 4476 4477 for (i = 0; i < ret; i++) 4478 gang[i] = btrfs_grab_root(gang[i]); 4479 spin_unlock(&fs_info->fs_roots_radix_lock); 4480 4481 for (i = 0; i < ret; i++) { 4482 if (!gang[i]) 4483 continue; 4484 root_objectid = gang[i]->root_key.objectid; 4485 btrfs_free_log(NULL, gang[i]); 4486 btrfs_put_root(gang[i]); 4487 } 4488 root_objectid++; 4489 spin_lock(&fs_info->fs_roots_radix_lock); 4490 } 4491 spin_unlock(&fs_info->fs_roots_radix_lock); 4492 btrfs_free_log_root_tree(NULL, fs_info); 4493 } 4494 4495 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4496 { 4497 struct btrfs_ordered_extent *ordered; 4498 4499 spin_lock(&root->ordered_extent_lock); 4500 /* 4501 * This will just short circuit the ordered completion stuff which will 4502 * make sure the ordered extent gets properly cleaned up. 4503 */ 4504 list_for_each_entry(ordered, &root->ordered_extents, 4505 root_extent_list) 4506 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4507 spin_unlock(&root->ordered_extent_lock); 4508 } 4509 4510 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4511 { 4512 struct btrfs_root *root; 4513 LIST_HEAD(splice); 4514 4515 spin_lock(&fs_info->ordered_root_lock); 4516 list_splice_init(&fs_info->ordered_roots, &splice); 4517 while (!list_empty(&splice)) { 4518 root = list_first_entry(&splice, struct btrfs_root, 4519 ordered_root); 4520 list_move_tail(&root->ordered_root, 4521 &fs_info->ordered_roots); 4522 4523 spin_unlock(&fs_info->ordered_root_lock); 4524 btrfs_destroy_ordered_extents(root); 4525 4526 cond_resched(); 4527 spin_lock(&fs_info->ordered_root_lock); 4528 } 4529 spin_unlock(&fs_info->ordered_root_lock); 4530 4531 /* 4532 * We need this here because if we've been flipped read-only we won't 4533 * get sync() from the umount, so we need to make sure any ordered 4534 * extents that haven't had their dirty pages IO start writeout yet 4535 * actually get run and error out properly. 4536 */ 4537 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4538 } 4539 4540 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4541 struct btrfs_fs_info *fs_info) 4542 { 4543 struct rb_node *node; 4544 struct btrfs_delayed_ref_root *delayed_refs; 4545 struct btrfs_delayed_ref_node *ref; 4546 4547 delayed_refs = &trans->delayed_refs; 4548 4549 spin_lock(&delayed_refs->lock); 4550 if (atomic_read(&delayed_refs->num_entries) == 0) { 4551 spin_unlock(&delayed_refs->lock); 4552 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4553 return; 4554 } 4555 4556 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4557 struct btrfs_delayed_ref_head *head; 4558 struct rb_node *n; 4559 bool pin_bytes = false; 4560 4561 head = rb_entry(node, struct btrfs_delayed_ref_head, 4562 href_node); 4563 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4564 continue; 4565 4566 spin_lock(&head->lock); 4567 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4568 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4569 ref_node); 4570 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4571 RB_CLEAR_NODE(&ref->ref_node); 4572 if (!list_empty(&ref->add_list)) 4573 list_del(&ref->add_list); 4574 atomic_dec(&delayed_refs->num_entries); 4575 btrfs_put_delayed_ref(ref); 4576 btrfs_delayed_refs_rsv_release(fs_info, 1, 0); 4577 } 4578 if (head->must_insert_reserved) 4579 pin_bytes = true; 4580 btrfs_free_delayed_extent_op(head->extent_op); 4581 btrfs_delete_ref_head(delayed_refs, head); 4582 spin_unlock(&head->lock); 4583 spin_unlock(&delayed_refs->lock); 4584 mutex_unlock(&head->mutex); 4585 4586 if (pin_bytes) { 4587 struct btrfs_block_group *cache; 4588 4589 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4590 BUG_ON(!cache); 4591 4592 spin_lock(&cache->space_info->lock); 4593 spin_lock(&cache->lock); 4594 cache->pinned += head->num_bytes; 4595 btrfs_space_info_update_bytes_pinned(fs_info, 4596 cache->space_info, head->num_bytes); 4597 cache->reserved -= head->num_bytes; 4598 cache->space_info->bytes_reserved -= head->num_bytes; 4599 spin_unlock(&cache->lock); 4600 spin_unlock(&cache->space_info->lock); 4601 4602 btrfs_put_block_group(cache); 4603 4604 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4605 head->bytenr + head->num_bytes - 1); 4606 } 4607 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4608 btrfs_put_delayed_ref_head(head); 4609 cond_resched(); 4610 spin_lock(&delayed_refs->lock); 4611 } 4612 btrfs_qgroup_destroy_extent_records(trans); 4613 4614 spin_unlock(&delayed_refs->lock); 4615 } 4616 4617 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4618 { 4619 struct btrfs_inode *btrfs_inode; 4620 LIST_HEAD(splice); 4621 4622 spin_lock(&root->delalloc_lock); 4623 list_splice_init(&root->delalloc_inodes, &splice); 4624 4625 while (!list_empty(&splice)) { 4626 struct inode *inode = NULL; 4627 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4628 delalloc_inodes); 4629 __btrfs_del_delalloc_inode(root, btrfs_inode); 4630 spin_unlock(&root->delalloc_lock); 4631 4632 /* 4633 * Make sure we get a live inode and that it'll not disappear 4634 * meanwhile. 4635 */ 4636 inode = igrab(&btrfs_inode->vfs_inode); 4637 if (inode) { 4638 unsigned int nofs_flag; 4639 4640 nofs_flag = memalloc_nofs_save(); 4641 invalidate_inode_pages2(inode->i_mapping); 4642 memalloc_nofs_restore(nofs_flag); 4643 iput(inode); 4644 } 4645 spin_lock(&root->delalloc_lock); 4646 } 4647 spin_unlock(&root->delalloc_lock); 4648 } 4649 4650 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4651 { 4652 struct btrfs_root *root; 4653 LIST_HEAD(splice); 4654 4655 spin_lock(&fs_info->delalloc_root_lock); 4656 list_splice_init(&fs_info->delalloc_roots, &splice); 4657 while (!list_empty(&splice)) { 4658 root = list_first_entry(&splice, struct btrfs_root, 4659 delalloc_root); 4660 root = btrfs_grab_root(root); 4661 BUG_ON(!root); 4662 spin_unlock(&fs_info->delalloc_root_lock); 4663 4664 btrfs_destroy_delalloc_inodes(root); 4665 btrfs_put_root(root); 4666 4667 spin_lock(&fs_info->delalloc_root_lock); 4668 } 4669 spin_unlock(&fs_info->delalloc_root_lock); 4670 } 4671 4672 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4673 struct extent_io_tree *dirty_pages, 4674 int mark) 4675 { 4676 struct extent_buffer *eb; 4677 u64 start = 0; 4678 u64 end; 4679 4680 while (find_first_extent_bit(dirty_pages, start, &start, &end, 4681 mark, NULL)) { 4682 clear_extent_bits(dirty_pages, start, end, mark); 4683 while (start <= end) { 4684 eb = find_extent_buffer(fs_info, start); 4685 start += fs_info->nodesize; 4686 if (!eb) 4687 continue; 4688 4689 btrfs_tree_lock(eb); 4690 wait_on_extent_buffer_writeback(eb); 4691 btrfs_clear_buffer_dirty(NULL, eb); 4692 btrfs_tree_unlock(eb); 4693 4694 free_extent_buffer_stale(eb); 4695 } 4696 } 4697 } 4698 4699 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4700 struct extent_io_tree *unpin) 4701 { 4702 u64 start; 4703 u64 end; 4704 4705 while (1) { 4706 struct extent_state *cached_state = NULL; 4707 4708 /* 4709 * The btrfs_finish_extent_commit() may get the same range as 4710 * ours between find_first_extent_bit and clear_extent_dirty. 4711 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4712 * the same extent range. 4713 */ 4714 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4715 if (!find_first_extent_bit(unpin, 0, &start, &end, 4716 EXTENT_DIRTY, &cached_state)) { 4717 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4718 break; 4719 } 4720 4721 clear_extent_dirty(unpin, start, end, &cached_state); 4722 free_extent_state(cached_state); 4723 btrfs_error_unpin_extent_range(fs_info, start, end); 4724 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4725 cond_resched(); 4726 } 4727 } 4728 4729 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4730 { 4731 struct inode *inode; 4732 4733 inode = cache->io_ctl.inode; 4734 if (inode) { 4735 unsigned int nofs_flag; 4736 4737 nofs_flag = memalloc_nofs_save(); 4738 invalidate_inode_pages2(inode->i_mapping); 4739 memalloc_nofs_restore(nofs_flag); 4740 4741 BTRFS_I(inode)->generation = 0; 4742 cache->io_ctl.inode = NULL; 4743 iput(inode); 4744 } 4745 ASSERT(cache->io_ctl.pages == NULL); 4746 btrfs_put_block_group(cache); 4747 } 4748 4749 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4750 struct btrfs_fs_info *fs_info) 4751 { 4752 struct btrfs_block_group *cache; 4753 4754 spin_lock(&cur_trans->dirty_bgs_lock); 4755 while (!list_empty(&cur_trans->dirty_bgs)) { 4756 cache = list_first_entry(&cur_trans->dirty_bgs, 4757 struct btrfs_block_group, 4758 dirty_list); 4759 4760 if (!list_empty(&cache->io_list)) { 4761 spin_unlock(&cur_trans->dirty_bgs_lock); 4762 list_del_init(&cache->io_list); 4763 btrfs_cleanup_bg_io(cache); 4764 spin_lock(&cur_trans->dirty_bgs_lock); 4765 } 4766 4767 list_del_init(&cache->dirty_list); 4768 spin_lock(&cache->lock); 4769 cache->disk_cache_state = BTRFS_DC_ERROR; 4770 spin_unlock(&cache->lock); 4771 4772 spin_unlock(&cur_trans->dirty_bgs_lock); 4773 btrfs_put_block_group(cache); 4774 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 4775 spin_lock(&cur_trans->dirty_bgs_lock); 4776 } 4777 spin_unlock(&cur_trans->dirty_bgs_lock); 4778 4779 /* 4780 * Refer to the definition of io_bgs member for details why it's safe 4781 * to use it without any locking 4782 */ 4783 while (!list_empty(&cur_trans->io_bgs)) { 4784 cache = list_first_entry(&cur_trans->io_bgs, 4785 struct btrfs_block_group, 4786 io_list); 4787 4788 list_del_init(&cache->io_list); 4789 spin_lock(&cache->lock); 4790 cache->disk_cache_state = BTRFS_DC_ERROR; 4791 spin_unlock(&cache->lock); 4792 btrfs_cleanup_bg_io(cache); 4793 } 4794 } 4795 4796 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info) 4797 { 4798 struct btrfs_root *gang[8]; 4799 int i; 4800 int ret; 4801 4802 spin_lock(&fs_info->fs_roots_radix_lock); 4803 while (1) { 4804 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 4805 (void **)gang, 0, 4806 ARRAY_SIZE(gang), 4807 BTRFS_ROOT_TRANS_TAG); 4808 if (ret == 0) 4809 break; 4810 for (i = 0; i < ret; i++) { 4811 struct btrfs_root *root = gang[i]; 4812 4813 btrfs_qgroup_free_meta_all_pertrans(root); 4814 radix_tree_tag_clear(&fs_info->fs_roots_radix, 4815 (unsigned long)root->root_key.objectid, 4816 BTRFS_ROOT_TRANS_TAG); 4817 } 4818 } 4819 spin_unlock(&fs_info->fs_roots_radix_lock); 4820 } 4821 4822 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4823 struct btrfs_fs_info *fs_info) 4824 { 4825 struct btrfs_device *dev, *tmp; 4826 4827 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4828 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4829 ASSERT(list_empty(&cur_trans->io_bgs)); 4830 4831 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4832 post_commit_list) { 4833 list_del_init(&dev->post_commit_list); 4834 } 4835 4836 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4837 4838 cur_trans->state = TRANS_STATE_COMMIT_START; 4839 wake_up(&fs_info->transaction_blocked_wait); 4840 4841 cur_trans->state = TRANS_STATE_UNBLOCKED; 4842 wake_up(&fs_info->transaction_wait); 4843 4844 btrfs_destroy_delayed_inodes(fs_info); 4845 4846 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4847 EXTENT_DIRTY); 4848 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4849 4850 btrfs_free_all_qgroup_pertrans(fs_info); 4851 4852 cur_trans->state =TRANS_STATE_COMPLETED; 4853 wake_up(&cur_trans->commit_wait); 4854 } 4855 4856 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4857 { 4858 struct btrfs_transaction *t; 4859 4860 mutex_lock(&fs_info->transaction_kthread_mutex); 4861 4862 spin_lock(&fs_info->trans_lock); 4863 while (!list_empty(&fs_info->trans_list)) { 4864 t = list_first_entry(&fs_info->trans_list, 4865 struct btrfs_transaction, list); 4866 if (t->state >= TRANS_STATE_COMMIT_PREP) { 4867 refcount_inc(&t->use_count); 4868 spin_unlock(&fs_info->trans_lock); 4869 btrfs_wait_for_commit(fs_info, t->transid); 4870 btrfs_put_transaction(t); 4871 spin_lock(&fs_info->trans_lock); 4872 continue; 4873 } 4874 if (t == fs_info->running_transaction) { 4875 t->state = TRANS_STATE_COMMIT_DOING; 4876 spin_unlock(&fs_info->trans_lock); 4877 /* 4878 * We wait for 0 num_writers since we don't hold a trans 4879 * handle open currently for this transaction. 4880 */ 4881 wait_event(t->writer_wait, 4882 atomic_read(&t->num_writers) == 0); 4883 } else { 4884 spin_unlock(&fs_info->trans_lock); 4885 } 4886 btrfs_cleanup_one_transaction(t, fs_info); 4887 4888 spin_lock(&fs_info->trans_lock); 4889 if (t == fs_info->running_transaction) 4890 fs_info->running_transaction = NULL; 4891 list_del_init(&t->list); 4892 spin_unlock(&fs_info->trans_lock); 4893 4894 btrfs_put_transaction(t); 4895 trace_btrfs_transaction_commit(fs_info); 4896 spin_lock(&fs_info->trans_lock); 4897 } 4898 spin_unlock(&fs_info->trans_lock); 4899 btrfs_destroy_all_ordered_extents(fs_info); 4900 btrfs_destroy_delayed_inodes(fs_info); 4901 btrfs_assert_delayed_root_empty(fs_info); 4902 btrfs_destroy_all_delalloc_inodes(fs_info); 4903 btrfs_drop_all_logs(fs_info); 4904 mutex_unlock(&fs_info->transaction_kthread_mutex); 4905 4906 return 0; 4907 } 4908 4909 int btrfs_init_root_free_objectid(struct btrfs_root *root) 4910 { 4911 struct btrfs_path *path; 4912 int ret; 4913 struct extent_buffer *l; 4914 struct btrfs_key search_key; 4915 struct btrfs_key found_key; 4916 int slot; 4917 4918 path = btrfs_alloc_path(); 4919 if (!path) 4920 return -ENOMEM; 4921 4922 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 4923 search_key.type = -1; 4924 search_key.offset = (u64)-1; 4925 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 4926 if (ret < 0) 4927 goto error; 4928 BUG_ON(ret == 0); /* Corruption */ 4929 if (path->slots[0] > 0) { 4930 slot = path->slots[0] - 1; 4931 l = path->nodes[0]; 4932 btrfs_item_key_to_cpu(l, &found_key, slot); 4933 root->free_objectid = max_t(u64, found_key.objectid + 1, 4934 BTRFS_FIRST_FREE_OBJECTID); 4935 } else { 4936 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 4937 } 4938 ret = 0; 4939 error: 4940 btrfs_free_path(path); 4941 return ret; 4942 } 4943 4944 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 4945 { 4946 int ret; 4947 mutex_lock(&root->objectid_mutex); 4948 4949 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 4950 btrfs_warn(root->fs_info, 4951 "the objectid of root %llu reaches its highest value", 4952 root->root_key.objectid); 4953 ret = -ENOSPC; 4954 goto out; 4955 } 4956 4957 *objectid = root->free_objectid++; 4958 ret = 0; 4959 out: 4960 mutex_unlock(&root->objectid_mutex); 4961 return ret; 4962 } 4963