xref: /linux/fs/btrfs/disk-io.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "free-space-tree.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52 #include "qgroup.h"
53 
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57 
58 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
59 				 BTRFS_HEADER_FLAG_RELOC |\
60 				 BTRFS_SUPER_FLAG_ERROR |\
61 				 BTRFS_SUPER_FLAG_SEEDING |\
62 				 BTRFS_SUPER_FLAG_METADUMP)
63 
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68 				    int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 				      struct btrfs_root *root);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74 					struct extent_io_tree *dirty_pages,
75 					int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77 				       struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_root *root);
79 static void btrfs_error_commit_super(struct btrfs_root *root);
80 
81 /*
82  * btrfs_end_io_wq structs are used to do processing in task context when an IO
83  * is complete.  This is used during reads to verify checksums, and it is used
84  * by writes to insert metadata for new file extents after IO is complete.
85  */
86 struct btrfs_end_io_wq {
87 	struct bio *bio;
88 	bio_end_io_t *end_io;
89 	void *private;
90 	struct btrfs_fs_info *info;
91 	int error;
92 	enum btrfs_wq_endio_type metadata;
93 	struct list_head list;
94 	struct btrfs_work work;
95 };
96 
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98 
99 int __init btrfs_end_io_wq_init(void)
100 {
101 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 					sizeof(struct btrfs_end_io_wq),
103 					0,
104 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
105 					NULL);
106 	if (!btrfs_end_io_wq_cache)
107 		return -ENOMEM;
108 	return 0;
109 }
110 
111 void btrfs_end_io_wq_exit(void)
112 {
113 	if (btrfs_end_io_wq_cache)
114 		kmem_cache_destroy(btrfs_end_io_wq_cache);
115 }
116 
117 /*
118  * async submit bios are used to offload expensive checksumming
119  * onto the worker threads.  They checksum file and metadata bios
120  * just before they are sent down the IO stack.
121  */
122 struct async_submit_bio {
123 	struct inode *inode;
124 	struct bio *bio;
125 	struct list_head list;
126 	extent_submit_bio_hook_t *submit_bio_start;
127 	extent_submit_bio_hook_t *submit_bio_done;
128 	int rw;
129 	int mirror_num;
130 	unsigned long bio_flags;
131 	/*
132 	 * bio_offset is optional, can be used if the pages in the bio
133 	 * can't tell us where in the file the bio should go
134 	 */
135 	u64 bio_offset;
136 	struct btrfs_work work;
137 	int error;
138 };
139 
140 /*
141  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
142  * eb, the lockdep key is determined by the btrfs_root it belongs to and
143  * the level the eb occupies in the tree.
144  *
145  * Different roots are used for different purposes and may nest inside each
146  * other and they require separate keysets.  As lockdep keys should be
147  * static, assign keysets according to the purpose of the root as indicated
148  * by btrfs_root->objectid.  This ensures that all special purpose roots
149  * have separate keysets.
150  *
151  * Lock-nesting across peer nodes is always done with the immediate parent
152  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
153  * subclass to avoid triggering lockdep warning in such cases.
154  *
155  * The key is set by the readpage_end_io_hook after the buffer has passed
156  * csum validation but before the pages are unlocked.  It is also set by
157  * btrfs_init_new_buffer on freshly allocated blocks.
158  *
159  * We also add a check to make sure the highest level of the tree is the
160  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
161  * needs update as well.
162  */
163 #ifdef CONFIG_DEBUG_LOCK_ALLOC
164 # if BTRFS_MAX_LEVEL != 8
165 #  error
166 # endif
167 
168 static struct btrfs_lockdep_keyset {
169 	u64			id;		/* root objectid */
170 	const char		*name_stem;	/* lock name stem */
171 	char			names[BTRFS_MAX_LEVEL + 1][20];
172 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
173 } btrfs_lockdep_keysets[] = {
174 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
175 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
176 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
177 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
178 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
179 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
180 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
181 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
182 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
183 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
184 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
185 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
186 	{ .id = 0,				.name_stem = "tree"	},
187 };
188 
189 void __init btrfs_init_lockdep(void)
190 {
191 	int i, j;
192 
193 	/* initialize lockdep class names */
194 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
195 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
196 
197 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
198 			snprintf(ks->names[j], sizeof(ks->names[j]),
199 				 "btrfs-%s-%02d", ks->name_stem, j);
200 	}
201 }
202 
203 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
204 				    int level)
205 {
206 	struct btrfs_lockdep_keyset *ks;
207 
208 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
209 
210 	/* find the matching keyset, id 0 is the default entry */
211 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
212 		if (ks->id == objectid)
213 			break;
214 
215 	lockdep_set_class_and_name(&eb->lock,
216 				   &ks->keys[level], ks->names[level]);
217 }
218 
219 #endif
220 
221 /*
222  * extents on the btree inode are pretty simple, there's one extent
223  * that covers the entire device
224  */
225 static struct extent_map *btree_get_extent(struct inode *inode,
226 		struct page *page, size_t pg_offset, u64 start, u64 len,
227 		int create)
228 {
229 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
230 	struct extent_map *em;
231 	int ret;
232 
233 	read_lock(&em_tree->lock);
234 	em = lookup_extent_mapping(em_tree, start, len);
235 	if (em) {
236 		em->bdev =
237 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
238 		read_unlock(&em_tree->lock);
239 		goto out;
240 	}
241 	read_unlock(&em_tree->lock);
242 
243 	em = alloc_extent_map();
244 	if (!em) {
245 		em = ERR_PTR(-ENOMEM);
246 		goto out;
247 	}
248 	em->start = 0;
249 	em->len = (u64)-1;
250 	em->block_len = (u64)-1;
251 	em->block_start = 0;
252 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
253 
254 	write_lock(&em_tree->lock);
255 	ret = add_extent_mapping(em_tree, em, 0);
256 	if (ret == -EEXIST) {
257 		free_extent_map(em);
258 		em = lookup_extent_mapping(em_tree, start, len);
259 		if (!em)
260 			em = ERR_PTR(-EIO);
261 	} else if (ret) {
262 		free_extent_map(em);
263 		em = ERR_PTR(ret);
264 	}
265 	write_unlock(&em_tree->lock);
266 
267 out:
268 	return em;
269 }
270 
271 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
272 {
273 	return btrfs_crc32c(seed, data, len);
274 }
275 
276 void btrfs_csum_final(u32 crc, char *result)
277 {
278 	put_unaligned_le32(~crc, result);
279 }
280 
281 /*
282  * compute the csum for a btree block, and either verify it or write it
283  * into the csum field of the block.
284  */
285 static int csum_tree_block(struct btrfs_fs_info *fs_info,
286 			   struct extent_buffer *buf,
287 			   int verify)
288 {
289 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
290 	char *result = NULL;
291 	unsigned long len;
292 	unsigned long cur_len;
293 	unsigned long offset = BTRFS_CSUM_SIZE;
294 	char *kaddr;
295 	unsigned long map_start;
296 	unsigned long map_len;
297 	int err;
298 	u32 crc = ~(u32)0;
299 	unsigned long inline_result;
300 
301 	len = buf->len - offset;
302 	while (len > 0) {
303 		err = map_private_extent_buffer(buf, offset, 32,
304 					&kaddr, &map_start, &map_len);
305 		if (err)
306 			return 1;
307 		cur_len = min(len, map_len - (offset - map_start));
308 		crc = btrfs_csum_data(kaddr + offset - map_start,
309 				      crc, cur_len);
310 		len -= cur_len;
311 		offset += cur_len;
312 	}
313 	if (csum_size > sizeof(inline_result)) {
314 		result = kzalloc(csum_size, GFP_NOFS);
315 		if (!result)
316 			return 1;
317 	} else {
318 		result = (char *)&inline_result;
319 	}
320 
321 	btrfs_csum_final(crc, result);
322 
323 	if (verify) {
324 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
325 			u32 val;
326 			u32 found = 0;
327 			memcpy(&found, result, csum_size);
328 
329 			read_extent_buffer(buf, &val, 0, csum_size);
330 			btrfs_warn_rl(fs_info,
331 				"%s checksum verify failed on %llu wanted %X found %X "
332 				"level %d",
333 				fs_info->sb->s_id, buf->start,
334 				val, found, btrfs_header_level(buf));
335 			if (result != (char *)&inline_result)
336 				kfree(result);
337 			return 1;
338 		}
339 	} else {
340 		write_extent_buffer(buf, result, 0, csum_size);
341 	}
342 	if (result != (char *)&inline_result)
343 		kfree(result);
344 	return 0;
345 }
346 
347 /*
348  * we can't consider a given block up to date unless the transid of the
349  * block matches the transid in the parent node's pointer.  This is how we
350  * detect blocks that either didn't get written at all or got written
351  * in the wrong place.
352  */
353 static int verify_parent_transid(struct extent_io_tree *io_tree,
354 				 struct extent_buffer *eb, u64 parent_transid,
355 				 int atomic)
356 {
357 	struct extent_state *cached_state = NULL;
358 	int ret;
359 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
360 
361 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
362 		return 0;
363 
364 	if (atomic)
365 		return -EAGAIN;
366 
367 	if (need_lock) {
368 		btrfs_tree_read_lock(eb);
369 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
370 	}
371 
372 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
373 			 &cached_state);
374 	if (extent_buffer_uptodate(eb) &&
375 	    btrfs_header_generation(eb) == parent_transid) {
376 		ret = 0;
377 		goto out;
378 	}
379 	btrfs_err_rl(eb->fs_info,
380 		"parent transid verify failed on %llu wanted %llu found %llu",
381 			eb->start,
382 			parent_transid, btrfs_header_generation(eb));
383 	ret = 1;
384 
385 	/*
386 	 * Things reading via commit roots that don't have normal protection,
387 	 * like send, can have a really old block in cache that may point at a
388 	 * block that has been free'd and re-allocated.  So don't clear uptodate
389 	 * if we find an eb that is under IO (dirty/writeback) because we could
390 	 * end up reading in the stale data and then writing it back out and
391 	 * making everybody very sad.
392 	 */
393 	if (!extent_buffer_under_io(eb))
394 		clear_extent_buffer_uptodate(eb);
395 out:
396 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
397 			     &cached_state, GFP_NOFS);
398 	if (need_lock)
399 		btrfs_tree_read_unlock_blocking(eb);
400 	return ret;
401 }
402 
403 /*
404  * Return 0 if the superblock checksum type matches the checksum value of that
405  * algorithm. Pass the raw disk superblock data.
406  */
407 static int btrfs_check_super_csum(char *raw_disk_sb)
408 {
409 	struct btrfs_super_block *disk_sb =
410 		(struct btrfs_super_block *)raw_disk_sb;
411 	u16 csum_type = btrfs_super_csum_type(disk_sb);
412 	int ret = 0;
413 
414 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
415 		u32 crc = ~(u32)0;
416 		const int csum_size = sizeof(crc);
417 		char result[csum_size];
418 
419 		/*
420 		 * The super_block structure does not span the whole
421 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
422 		 * is filled with zeros and is included in the checkum.
423 		 */
424 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
425 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
426 		btrfs_csum_final(crc, result);
427 
428 		if (memcmp(raw_disk_sb, result, csum_size))
429 			ret = 1;
430 	}
431 
432 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
433 		printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
434 				csum_type);
435 		ret = 1;
436 	}
437 
438 	return ret;
439 }
440 
441 /*
442  * helper to read a given tree block, doing retries as required when
443  * the checksums don't match and we have alternate mirrors to try.
444  */
445 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
446 					  struct extent_buffer *eb,
447 					  u64 start, u64 parent_transid)
448 {
449 	struct extent_io_tree *io_tree;
450 	int failed = 0;
451 	int ret;
452 	int num_copies = 0;
453 	int mirror_num = 0;
454 	int failed_mirror = 0;
455 
456 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
457 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
458 	while (1) {
459 		ret = read_extent_buffer_pages(io_tree, eb, start,
460 					       WAIT_COMPLETE,
461 					       btree_get_extent, mirror_num);
462 		if (!ret) {
463 			if (!verify_parent_transid(io_tree, eb,
464 						   parent_transid, 0))
465 				break;
466 			else
467 				ret = -EIO;
468 		}
469 
470 		/*
471 		 * This buffer's crc is fine, but its contents are corrupted, so
472 		 * there is no reason to read the other copies, they won't be
473 		 * any less wrong.
474 		 */
475 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
476 			break;
477 
478 		num_copies = btrfs_num_copies(root->fs_info,
479 					      eb->start, eb->len);
480 		if (num_copies == 1)
481 			break;
482 
483 		if (!failed_mirror) {
484 			failed = 1;
485 			failed_mirror = eb->read_mirror;
486 		}
487 
488 		mirror_num++;
489 		if (mirror_num == failed_mirror)
490 			mirror_num++;
491 
492 		if (mirror_num > num_copies)
493 			break;
494 	}
495 
496 	if (failed && !ret && failed_mirror)
497 		repair_eb_io_failure(root, eb, failed_mirror);
498 
499 	return ret;
500 }
501 
502 /*
503  * checksum a dirty tree block before IO.  This has extra checks to make sure
504  * we only fill in the checksum field in the first page of a multi-page block
505  */
506 
507 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
508 {
509 	u64 start = page_offset(page);
510 	u64 found_start;
511 	struct extent_buffer *eb;
512 
513 	eb = (struct extent_buffer *)page->private;
514 	if (page != eb->pages[0])
515 		return 0;
516 	found_start = btrfs_header_bytenr(eb);
517 	if (WARN_ON(found_start != start || !PageUptodate(page)))
518 		return 0;
519 	csum_tree_block(fs_info, eb, 0);
520 	return 0;
521 }
522 
523 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
524 				 struct extent_buffer *eb)
525 {
526 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
527 	u8 fsid[BTRFS_UUID_SIZE];
528 	int ret = 1;
529 
530 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
531 	while (fs_devices) {
532 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
533 			ret = 0;
534 			break;
535 		}
536 		fs_devices = fs_devices->seed;
537 	}
538 	return ret;
539 }
540 
541 #define CORRUPT(reason, eb, root, slot)				\
542 	btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"	\
543 		   "root=%llu, slot=%d", reason,			\
544 	       btrfs_header_bytenr(eb),	root->objectid, slot)
545 
546 static noinline int check_leaf(struct btrfs_root *root,
547 			       struct extent_buffer *leaf)
548 {
549 	struct btrfs_key key;
550 	struct btrfs_key leaf_key;
551 	u32 nritems = btrfs_header_nritems(leaf);
552 	int slot;
553 
554 	if (nritems == 0)
555 		return 0;
556 
557 	/* Check the 0 item */
558 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
559 	    BTRFS_LEAF_DATA_SIZE(root)) {
560 		CORRUPT("invalid item offset size pair", leaf, root, 0);
561 		return -EIO;
562 	}
563 
564 	/*
565 	 * Check to make sure each items keys are in the correct order and their
566 	 * offsets make sense.  We only have to loop through nritems-1 because
567 	 * we check the current slot against the next slot, which verifies the
568 	 * next slot's offset+size makes sense and that the current's slot
569 	 * offset is correct.
570 	 */
571 	for (slot = 0; slot < nritems - 1; slot++) {
572 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
573 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
574 
575 		/* Make sure the keys are in the right order */
576 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
577 			CORRUPT("bad key order", leaf, root, slot);
578 			return -EIO;
579 		}
580 
581 		/*
582 		 * Make sure the offset and ends are right, remember that the
583 		 * item data starts at the end of the leaf and grows towards the
584 		 * front.
585 		 */
586 		if (btrfs_item_offset_nr(leaf, slot) !=
587 			btrfs_item_end_nr(leaf, slot + 1)) {
588 			CORRUPT("slot offset bad", leaf, root, slot);
589 			return -EIO;
590 		}
591 
592 		/*
593 		 * Check to make sure that we don't point outside of the leaf,
594 		 * just incase all the items are consistent to eachother, but
595 		 * all point outside of the leaf.
596 		 */
597 		if (btrfs_item_end_nr(leaf, slot) >
598 		    BTRFS_LEAF_DATA_SIZE(root)) {
599 			CORRUPT("slot end outside of leaf", leaf, root, slot);
600 			return -EIO;
601 		}
602 	}
603 
604 	return 0;
605 }
606 
607 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
608 				      u64 phy_offset, struct page *page,
609 				      u64 start, u64 end, int mirror)
610 {
611 	u64 found_start;
612 	int found_level;
613 	struct extent_buffer *eb;
614 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
615 	int ret = 0;
616 	int reads_done;
617 
618 	if (!page->private)
619 		goto out;
620 
621 	eb = (struct extent_buffer *)page->private;
622 
623 	/* the pending IO might have been the only thing that kept this buffer
624 	 * in memory.  Make sure we have a ref for all this other checks
625 	 */
626 	extent_buffer_get(eb);
627 
628 	reads_done = atomic_dec_and_test(&eb->io_pages);
629 	if (!reads_done)
630 		goto err;
631 
632 	eb->read_mirror = mirror;
633 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
634 		ret = -EIO;
635 		goto err;
636 	}
637 
638 	found_start = btrfs_header_bytenr(eb);
639 	if (found_start != eb->start) {
640 		btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu",
641 			       found_start, eb->start);
642 		ret = -EIO;
643 		goto err;
644 	}
645 	if (check_tree_block_fsid(root->fs_info, eb)) {
646 		btrfs_err_rl(eb->fs_info, "bad fsid on block %llu",
647 			       eb->start);
648 		ret = -EIO;
649 		goto err;
650 	}
651 	found_level = btrfs_header_level(eb);
652 	if (found_level >= BTRFS_MAX_LEVEL) {
653 		btrfs_err(root->fs_info, "bad tree block level %d",
654 			   (int)btrfs_header_level(eb));
655 		ret = -EIO;
656 		goto err;
657 	}
658 
659 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
660 				       eb, found_level);
661 
662 	ret = csum_tree_block(root->fs_info, eb, 1);
663 	if (ret) {
664 		ret = -EIO;
665 		goto err;
666 	}
667 
668 	/*
669 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
670 	 * that we don't try and read the other copies of this block, just
671 	 * return -EIO.
672 	 */
673 	if (found_level == 0 && check_leaf(root, eb)) {
674 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
675 		ret = -EIO;
676 	}
677 
678 	if (!ret)
679 		set_extent_buffer_uptodate(eb);
680 err:
681 	if (reads_done &&
682 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
683 		btree_readahead_hook(root, eb, eb->start, ret);
684 
685 	if (ret) {
686 		/*
687 		 * our io error hook is going to dec the io pages
688 		 * again, we have to make sure it has something
689 		 * to decrement
690 		 */
691 		atomic_inc(&eb->io_pages);
692 		clear_extent_buffer_uptodate(eb);
693 	}
694 	free_extent_buffer(eb);
695 out:
696 	return ret;
697 }
698 
699 static int btree_io_failed_hook(struct page *page, int failed_mirror)
700 {
701 	struct extent_buffer *eb;
702 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
703 
704 	eb = (struct extent_buffer *)page->private;
705 	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
706 	eb->read_mirror = failed_mirror;
707 	atomic_dec(&eb->io_pages);
708 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
709 		btree_readahead_hook(root, eb, eb->start, -EIO);
710 	return -EIO;	/* we fixed nothing */
711 }
712 
713 static void end_workqueue_bio(struct bio *bio)
714 {
715 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
716 	struct btrfs_fs_info *fs_info;
717 	struct btrfs_workqueue *wq;
718 	btrfs_work_func_t func;
719 
720 	fs_info = end_io_wq->info;
721 	end_io_wq->error = bio->bi_error;
722 
723 	if (bio->bi_rw & REQ_WRITE) {
724 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
725 			wq = fs_info->endio_meta_write_workers;
726 			func = btrfs_endio_meta_write_helper;
727 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
728 			wq = fs_info->endio_freespace_worker;
729 			func = btrfs_freespace_write_helper;
730 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
731 			wq = fs_info->endio_raid56_workers;
732 			func = btrfs_endio_raid56_helper;
733 		} else {
734 			wq = fs_info->endio_write_workers;
735 			func = btrfs_endio_write_helper;
736 		}
737 	} else {
738 		if (unlikely(end_io_wq->metadata ==
739 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
740 			wq = fs_info->endio_repair_workers;
741 			func = btrfs_endio_repair_helper;
742 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
743 			wq = fs_info->endio_raid56_workers;
744 			func = btrfs_endio_raid56_helper;
745 		} else if (end_io_wq->metadata) {
746 			wq = fs_info->endio_meta_workers;
747 			func = btrfs_endio_meta_helper;
748 		} else {
749 			wq = fs_info->endio_workers;
750 			func = btrfs_endio_helper;
751 		}
752 	}
753 
754 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
755 	btrfs_queue_work(wq, &end_io_wq->work);
756 }
757 
758 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
759 			enum btrfs_wq_endio_type metadata)
760 {
761 	struct btrfs_end_io_wq *end_io_wq;
762 
763 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
764 	if (!end_io_wq)
765 		return -ENOMEM;
766 
767 	end_io_wq->private = bio->bi_private;
768 	end_io_wq->end_io = bio->bi_end_io;
769 	end_io_wq->info = info;
770 	end_io_wq->error = 0;
771 	end_io_wq->bio = bio;
772 	end_io_wq->metadata = metadata;
773 
774 	bio->bi_private = end_io_wq;
775 	bio->bi_end_io = end_workqueue_bio;
776 	return 0;
777 }
778 
779 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
780 {
781 	unsigned long limit = min_t(unsigned long,
782 				    info->thread_pool_size,
783 				    info->fs_devices->open_devices);
784 	return 256 * limit;
785 }
786 
787 static void run_one_async_start(struct btrfs_work *work)
788 {
789 	struct async_submit_bio *async;
790 	int ret;
791 
792 	async = container_of(work, struct  async_submit_bio, work);
793 	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
794 				      async->mirror_num, async->bio_flags,
795 				      async->bio_offset);
796 	if (ret)
797 		async->error = ret;
798 }
799 
800 static void run_one_async_done(struct btrfs_work *work)
801 {
802 	struct btrfs_fs_info *fs_info;
803 	struct async_submit_bio *async;
804 	int limit;
805 
806 	async = container_of(work, struct  async_submit_bio, work);
807 	fs_info = BTRFS_I(async->inode)->root->fs_info;
808 
809 	limit = btrfs_async_submit_limit(fs_info);
810 	limit = limit * 2 / 3;
811 
812 	/*
813 	 * atomic_dec_return implies a barrier for waitqueue_active
814 	 */
815 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
816 	    waitqueue_active(&fs_info->async_submit_wait))
817 		wake_up(&fs_info->async_submit_wait);
818 
819 	/* If an error occured we just want to clean up the bio and move on */
820 	if (async->error) {
821 		async->bio->bi_error = async->error;
822 		bio_endio(async->bio);
823 		return;
824 	}
825 
826 	async->submit_bio_done(async->inode, async->rw, async->bio,
827 			       async->mirror_num, async->bio_flags,
828 			       async->bio_offset);
829 }
830 
831 static void run_one_async_free(struct btrfs_work *work)
832 {
833 	struct async_submit_bio *async;
834 
835 	async = container_of(work, struct  async_submit_bio, work);
836 	kfree(async);
837 }
838 
839 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
840 			int rw, struct bio *bio, int mirror_num,
841 			unsigned long bio_flags,
842 			u64 bio_offset,
843 			extent_submit_bio_hook_t *submit_bio_start,
844 			extent_submit_bio_hook_t *submit_bio_done)
845 {
846 	struct async_submit_bio *async;
847 
848 	async = kmalloc(sizeof(*async), GFP_NOFS);
849 	if (!async)
850 		return -ENOMEM;
851 
852 	async->inode = inode;
853 	async->rw = rw;
854 	async->bio = bio;
855 	async->mirror_num = mirror_num;
856 	async->submit_bio_start = submit_bio_start;
857 	async->submit_bio_done = submit_bio_done;
858 
859 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
860 			run_one_async_done, run_one_async_free);
861 
862 	async->bio_flags = bio_flags;
863 	async->bio_offset = bio_offset;
864 
865 	async->error = 0;
866 
867 	atomic_inc(&fs_info->nr_async_submits);
868 
869 	if (rw & REQ_SYNC)
870 		btrfs_set_work_high_priority(&async->work);
871 
872 	btrfs_queue_work(fs_info->workers, &async->work);
873 
874 	while (atomic_read(&fs_info->async_submit_draining) &&
875 	      atomic_read(&fs_info->nr_async_submits)) {
876 		wait_event(fs_info->async_submit_wait,
877 			   (atomic_read(&fs_info->nr_async_submits) == 0));
878 	}
879 
880 	return 0;
881 }
882 
883 static int btree_csum_one_bio(struct bio *bio)
884 {
885 	struct bio_vec *bvec;
886 	struct btrfs_root *root;
887 	int i, ret = 0;
888 
889 	bio_for_each_segment_all(bvec, bio, i) {
890 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
891 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
892 		if (ret)
893 			break;
894 	}
895 
896 	return ret;
897 }
898 
899 static int __btree_submit_bio_start(struct inode *inode, int rw,
900 				    struct bio *bio, int mirror_num,
901 				    unsigned long bio_flags,
902 				    u64 bio_offset)
903 {
904 	/*
905 	 * when we're called for a write, we're already in the async
906 	 * submission context.  Just jump into btrfs_map_bio
907 	 */
908 	return btree_csum_one_bio(bio);
909 }
910 
911 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
912 				 int mirror_num, unsigned long bio_flags,
913 				 u64 bio_offset)
914 {
915 	int ret;
916 
917 	/*
918 	 * when we're called for a write, we're already in the async
919 	 * submission context.  Just jump into btrfs_map_bio
920 	 */
921 	ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
922 	if (ret) {
923 		bio->bi_error = ret;
924 		bio_endio(bio);
925 	}
926 	return ret;
927 }
928 
929 static int check_async_write(struct inode *inode, unsigned long bio_flags)
930 {
931 	if (bio_flags & EXTENT_BIO_TREE_LOG)
932 		return 0;
933 #ifdef CONFIG_X86
934 	if (static_cpu_has_safe(X86_FEATURE_XMM4_2))
935 		return 0;
936 #endif
937 	return 1;
938 }
939 
940 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
941 				 int mirror_num, unsigned long bio_flags,
942 				 u64 bio_offset)
943 {
944 	int async = check_async_write(inode, bio_flags);
945 	int ret;
946 
947 	if (!(rw & REQ_WRITE)) {
948 		/*
949 		 * called for a read, do the setup so that checksum validation
950 		 * can happen in the async kernel threads
951 		 */
952 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
953 					  bio, BTRFS_WQ_ENDIO_METADATA);
954 		if (ret)
955 			goto out_w_error;
956 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
957 				    mirror_num, 0);
958 	} else if (!async) {
959 		ret = btree_csum_one_bio(bio);
960 		if (ret)
961 			goto out_w_error;
962 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
963 				    mirror_num, 0);
964 	} else {
965 		/*
966 		 * kthread helpers are used to submit writes so that
967 		 * checksumming can happen in parallel across all CPUs
968 		 */
969 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
970 					  inode, rw, bio, mirror_num, 0,
971 					  bio_offset,
972 					  __btree_submit_bio_start,
973 					  __btree_submit_bio_done);
974 	}
975 
976 	if (ret)
977 		goto out_w_error;
978 	return 0;
979 
980 out_w_error:
981 	bio->bi_error = ret;
982 	bio_endio(bio);
983 	return ret;
984 }
985 
986 #ifdef CONFIG_MIGRATION
987 static int btree_migratepage(struct address_space *mapping,
988 			struct page *newpage, struct page *page,
989 			enum migrate_mode mode)
990 {
991 	/*
992 	 * we can't safely write a btree page from here,
993 	 * we haven't done the locking hook
994 	 */
995 	if (PageDirty(page))
996 		return -EAGAIN;
997 	/*
998 	 * Buffers may be managed in a filesystem specific way.
999 	 * We must have no buffers or drop them.
1000 	 */
1001 	if (page_has_private(page) &&
1002 	    !try_to_release_page(page, GFP_KERNEL))
1003 		return -EAGAIN;
1004 	return migrate_page(mapping, newpage, page, mode);
1005 }
1006 #endif
1007 
1008 
1009 static int btree_writepages(struct address_space *mapping,
1010 			    struct writeback_control *wbc)
1011 {
1012 	struct btrfs_fs_info *fs_info;
1013 	int ret;
1014 
1015 	if (wbc->sync_mode == WB_SYNC_NONE) {
1016 
1017 		if (wbc->for_kupdate)
1018 			return 0;
1019 
1020 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
1021 		/* this is a bit racy, but that's ok */
1022 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1023 					     BTRFS_DIRTY_METADATA_THRESH);
1024 		if (ret < 0)
1025 			return 0;
1026 	}
1027 	return btree_write_cache_pages(mapping, wbc);
1028 }
1029 
1030 static int btree_readpage(struct file *file, struct page *page)
1031 {
1032 	struct extent_io_tree *tree;
1033 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1034 	return extent_read_full_page(tree, page, btree_get_extent, 0);
1035 }
1036 
1037 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1038 {
1039 	if (PageWriteback(page) || PageDirty(page))
1040 		return 0;
1041 
1042 	return try_release_extent_buffer(page);
1043 }
1044 
1045 static void btree_invalidatepage(struct page *page, unsigned int offset,
1046 				 unsigned int length)
1047 {
1048 	struct extent_io_tree *tree;
1049 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1050 	extent_invalidatepage(tree, page, offset);
1051 	btree_releasepage(page, GFP_NOFS);
1052 	if (PagePrivate(page)) {
1053 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1054 			   "page private not zero on page %llu",
1055 			   (unsigned long long)page_offset(page));
1056 		ClearPagePrivate(page);
1057 		set_page_private(page, 0);
1058 		page_cache_release(page);
1059 	}
1060 }
1061 
1062 static int btree_set_page_dirty(struct page *page)
1063 {
1064 #ifdef DEBUG
1065 	struct extent_buffer *eb;
1066 
1067 	BUG_ON(!PagePrivate(page));
1068 	eb = (struct extent_buffer *)page->private;
1069 	BUG_ON(!eb);
1070 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1071 	BUG_ON(!atomic_read(&eb->refs));
1072 	btrfs_assert_tree_locked(eb);
1073 #endif
1074 	return __set_page_dirty_nobuffers(page);
1075 }
1076 
1077 static const struct address_space_operations btree_aops = {
1078 	.readpage	= btree_readpage,
1079 	.writepages	= btree_writepages,
1080 	.releasepage	= btree_releasepage,
1081 	.invalidatepage = btree_invalidatepage,
1082 #ifdef CONFIG_MIGRATION
1083 	.migratepage	= btree_migratepage,
1084 #endif
1085 	.set_page_dirty = btree_set_page_dirty,
1086 };
1087 
1088 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1089 {
1090 	struct extent_buffer *buf = NULL;
1091 	struct inode *btree_inode = root->fs_info->btree_inode;
1092 
1093 	buf = btrfs_find_create_tree_block(root, bytenr);
1094 	if (!buf)
1095 		return;
1096 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1097 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1098 	free_extent_buffer(buf);
1099 }
1100 
1101 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1102 			 int mirror_num, struct extent_buffer **eb)
1103 {
1104 	struct extent_buffer *buf = NULL;
1105 	struct inode *btree_inode = root->fs_info->btree_inode;
1106 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1107 	int ret;
1108 
1109 	buf = btrfs_find_create_tree_block(root, bytenr);
1110 	if (!buf)
1111 		return 0;
1112 
1113 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1114 
1115 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1116 				       btree_get_extent, mirror_num);
1117 	if (ret) {
1118 		free_extent_buffer(buf);
1119 		return ret;
1120 	}
1121 
1122 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1123 		free_extent_buffer(buf);
1124 		return -EIO;
1125 	} else if (extent_buffer_uptodate(buf)) {
1126 		*eb = buf;
1127 	} else {
1128 		free_extent_buffer(buf);
1129 	}
1130 	return 0;
1131 }
1132 
1133 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1134 					    u64 bytenr)
1135 {
1136 	return find_extent_buffer(fs_info, bytenr);
1137 }
1138 
1139 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1140 						 u64 bytenr)
1141 {
1142 	if (btrfs_test_is_dummy_root(root))
1143 		return alloc_test_extent_buffer(root->fs_info, bytenr);
1144 	return alloc_extent_buffer(root->fs_info, bytenr);
1145 }
1146 
1147 
1148 int btrfs_write_tree_block(struct extent_buffer *buf)
1149 {
1150 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1151 					buf->start + buf->len - 1);
1152 }
1153 
1154 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1155 {
1156 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1157 				       buf->start, buf->start + buf->len - 1);
1158 }
1159 
1160 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1161 				      u64 parent_transid)
1162 {
1163 	struct extent_buffer *buf = NULL;
1164 	int ret;
1165 
1166 	buf = btrfs_find_create_tree_block(root, bytenr);
1167 	if (!buf)
1168 		return ERR_PTR(-ENOMEM);
1169 
1170 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1171 	if (ret) {
1172 		free_extent_buffer(buf);
1173 		return ERR_PTR(ret);
1174 	}
1175 	return buf;
1176 
1177 }
1178 
1179 void clean_tree_block(struct btrfs_trans_handle *trans,
1180 		      struct btrfs_fs_info *fs_info,
1181 		      struct extent_buffer *buf)
1182 {
1183 	if (btrfs_header_generation(buf) ==
1184 	    fs_info->running_transaction->transid) {
1185 		btrfs_assert_tree_locked(buf);
1186 
1187 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1188 			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1189 					     -buf->len,
1190 					     fs_info->dirty_metadata_batch);
1191 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1192 			btrfs_set_lock_blocking(buf);
1193 			clear_extent_buffer_dirty(buf);
1194 		}
1195 	}
1196 }
1197 
1198 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1199 {
1200 	struct btrfs_subvolume_writers *writers;
1201 	int ret;
1202 
1203 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1204 	if (!writers)
1205 		return ERR_PTR(-ENOMEM);
1206 
1207 	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1208 	if (ret < 0) {
1209 		kfree(writers);
1210 		return ERR_PTR(ret);
1211 	}
1212 
1213 	init_waitqueue_head(&writers->wait);
1214 	return writers;
1215 }
1216 
1217 static void
1218 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1219 {
1220 	percpu_counter_destroy(&writers->counter);
1221 	kfree(writers);
1222 }
1223 
1224 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1225 			 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1226 			 u64 objectid)
1227 {
1228 	root->node = NULL;
1229 	root->commit_root = NULL;
1230 	root->sectorsize = sectorsize;
1231 	root->nodesize = nodesize;
1232 	root->stripesize = stripesize;
1233 	root->state = 0;
1234 	root->orphan_cleanup_state = 0;
1235 
1236 	root->objectid = objectid;
1237 	root->last_trans = 0;
1238 	root->highest_objectid = 0;
1239 	root->nr_delalloc_inodes = 0;
1240 	root->nr_ordered_extents = 0;
1241 	root->name = NULL;
1242 	root->inode_tree = RB_ROOT;
1243 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1244 	root->block_rsv = NULL;
1245 	root->orphan_block_rsv = NULL;
1246 
1247 	INIT_LIST_HEAD(&root->dirty_list);
1248 	INIT_LIST_HEAD(&root->root_list);
1249 	INIT_LIST_HEAD(&root->delalloc_inodes);
1250 	INIT_LIST_HEAD(&root->delalloc_root);
1251 	INIT_LIST_HEAD(&root->ordered_extents);
1252 	INIT_LIST_HEAD(&root->ordered_root);
1253 	INIT_LIST_HEAD(&root->logged_list[0]);
1254 	INIT_LIST_HEAD(&root->logged_list[1]);
1255 	spin_lock_init(&root->orphan_lock);
1256 	spin_lock_init(&root->inode_lock);
1257 	spin_lock_init(&root->delalloc_lock);
1258 	spin_lock_init(&root->ordered_extent_lock);
1259 	spin_lock_init(&root->accounting_lock);
1260 	spin_lock_init(&root->log_extents_lock[0]);
1261 	spin_lock_init(&root->log_extents_lock[1]);
1262 	mutex_init(&root->objectid_mutex);
1263 	mutex_init(&root->log_mutex);
1264 	mutex_init(&root->ordered_extent_mutex);
1265 	mutex_init(&root->delalloc_mutex);
1266 	init_waitqueue_head(&root->log_writer_wait);
1267 	init_waitqueue_head(&root->log_commit_wait[0]);
1268 	init_waitqueue_head(&root->log_commit_wait[1]);
1269 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1270 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1271 	atomic_set(&root->log_commit[0], 0);
1272 	atomic_set(&root->log_commit[1], 0);
1273 	atomic_set(&root->log_writers, 0);
1274 	atomic_set(&root->log_batch, 0);
1275 	atomic_set(&root->orphan_inodes, 0);
1276 	atomic_set(&root->refs, 1);
1277 	atomic_set(&root->will_be_snapshoted, 0);
1278 	atomic_set(&root->qgroup_meta_rsv, 0);
1279 	root->log_transid = 0;
1280 	root->log_transid_committed = -1;
1281 	root->last_log_commit = 0;
1282 	if (fs_info)
1283 		extent_io_tree_init(&root->dirty_log_pages,
1284 				     fs_info->btree_inode->i_mapping);
1285 
1286 	memset(&root->root_key, 0, sizeof(root->root_key));
1287 	memset(&root->root_item, 0, sizeof(root->root_item));
1288 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1289 	if (fs_info)
1290 		root->defrag_trans_start = fs_info->generation;
1291 	else
1292 		root->defrag_trans_start = 0;
1293 	root->root_key.objectid = objectid;
1294 	root->anon_dev = 0;
1295 
1296 	spin_lock_init(&root->root_item_lock);
1297 }
1298 
1299 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1300 {
1301 	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1302 	if (root)
1303 		root->fs_info = fs_info;
1304 	return root;
1305 }
1306 
1307 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1308 /* Should only be used by the testing infrastructure */
1309 struct btrfs_root *btrfs_alloc_dummy_root(void)
1310 {
1311 	struct btrfs_root *root;
1312 
1313 	root = btrfs_alloc_root(NULL);
1314 	if (!root)
1315 		return ERR_PTR(-ENOMEM);
1316 	__setup_root(4096, 4096, 4096, root, NULL, 1);
1317 	set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1318 	root->alloc_bytenr = 0;
1319 
1320 	return root;
1321 }
1322 #endif
1323 
1324 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1325 				     struct btrfs_fs_info *fs_info,
1326 				     u64 objectid)
1327 {
1328 	struct extent_buffer *leaf;
1329 	struct btrfs_root *tree_root = fs_info->tree_root;
1330 	struct btrfs_root *root;
1331 	struct btrfs_key key;
1332 	int ret = 0;
1333 	uuid_le uuid;
1334 
1335 	root = btrfs_alloc_root(fs_info);
1336 	if (!root)
1337 		return ERR_PTR(-ENOMEM);
1338 
1339 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1340 		tree_root->stripesize, root, fs_info, objectid);
1341 	root->root_key.objectid = objectid;
1342 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1343 	root->root_key.offset = 0;
1344 
1345 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1346 	if (IS_ERR(leaf)) {
1347 		ret = PTR_ERR(leaf);
1348 		leaf = NULL;
1349 		goto fail;
1350 	}
1351 
1352 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1353 	btrfs_set_header_bytenr(leaf, leaf->start);
1354 	btrfs_set_header_generation(leaf, trans->transid);
1355 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1356 	btrfs_set_header_owner(leaf, objectid);
1357 	root->node = leaf;
1358 
1359 	write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1360 			    BTRFS_FSID_SIZE);
1361 	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1362 			    btrfs_header_chunk_tree_uuid(leaf),
1363 			    BTRFS_UUID_SIZE);
1364 	btrfs_mark_buffer_dirty(leaf);
1365 
1366 	root->commit_root = btrfs_root_node(root);
1367 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1368 
1369 	root->root_item.flags = 0;
1370 	root->root_item.byte_limit = 0;
1371 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1372 	btrfs_set_root_generation(&root->root_item, trans->transid);
1373 	btrfs_set_root_level(&root->root_item, 0);
1374 	btrfs_set_root_refs(&root->root_item, 1);
1375 	btrfs_set_root_used(&root->root_item, leaf->len);
1376 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1377 	btrfs_set_root_dirid(&root->root_item, 0);
1378 	uuid_le_gen(&uuid);
1379 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1380 	root->root_item.drop_level = 0;
1381 
1382 	key.objectid = objectid;
1383 	key.type = BTRFS_ROOT_ITEM_KEY;
1384 	key.offset = 0;
1385 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1386 	if (ret)
1387 		goto fail;
1388 
1389 	btrfs_tree_unlock(leaf);
1390 
1391 	return root;
1392 
1393 fail:
1394 	if (leaf) {
1395 		btrfs_tree_unlock(leaf);
1396 		free_extent_buffer(root->commit_root);
1397 		free_extent_buffer(leaf);
1398 	}
1399 	kfree(root);
1400 
1401 	return ERR_PTR(ret);
1402 }
1403 
1404 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1405 					 struct btrfs_fs_info *fs_info)
1406 {
1407 	struct btrfs_root *root;
1408 	struct btrfs_root *tree_root = fs_info->tree_root;
1409 	struct extent_buffer *leaf;
1410 
1411 	root = btrfs_alloc_root(fs_info);
1412 	if (!root)
1413 		return ERR_PTR(-ENOMEM);
1414 
1415 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1416 		     tree_root->stripesize, root, fs_info,
1417 		     BTRFS_TREE_LOG_OBJECTID);
1418 
1419 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1420 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1421 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1422 
1423 	/*
1424 	 * DON'T set REF_COWS for log trees
1425 	 *
1426 	 * log trees do not get reference counted because they go away
1427 	 * before a real commit is actually done.  They do store pointers
1428 	 * to file data extents, and those reference counts still get
1429 	 * updated (along with back refs to the log tree).
1430 	 */
1431 
1432 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1433 			NULL, 0, 0, 0);
1434 	if (IS_ERR(leaf)) {
1435 		kfree(root);
1436 		return ERR_CAST(leaf);
1437 	}
1438 
1439 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1440 	btrfs_set_header_bytenr(leaf, leaf->start);
1441 	btrfs_set_header_generation(leaf, trans->transid);
1442 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1443 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1444 	root->node = leaf;
1445 
1446 	write_extent_buffer(root->node, root->fs_info->fsid,
1447 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
1448 	btrfs_mark_buffer_dirty(root->node);
1449 	btrfs_tree_unlock(root->node);
1450 	return root;
1451 }
1452 
1453 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1454 			     struct btrfs_fs_info *fs_info)
1455 {
1456 	struct btrfs_root *log_root;
1457 
1458 	log_root = alloc_log_tree(trans, fs_info);
1459 	if (IS_ERR(log_root))
1460 		return PTR_ERR(log_root);
1461 	WARN_ON(fs_info->log_root_tree);
1462 	fs_info->log_root_tree = log_root;
1463 	return 0;
1464 }
1465 
1466 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1467 		       struct btrfs_root *root)
1468 {
1469 	struct btrfs_root *log_root;
1470 	struct btrfs_inode_item *inode_item;
1471 
1472 	log_root = alloc_log_tree(trans, root->fs_info);
1473 	if (IS_ERR(log_root))
1474 		return PTR_ERR(log_root);
1475 
1476 	log_root->last_trans = trans->transid;
1477 	log_root->root_key.offset = root->root_key.objectid;
1478 
1479 	inode_item = &log_root->root_item.inode;
1480 	btrfs_set_stack_inode_generation(inode_item, 1);
1481 	btrfs_set_stack_inode_size(inode_item, 3);
1482 	btrfs_set_stack_inode_nlink(inode_item, 1);
1483 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1484 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1485 
1486 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1487 
1488 	WARN_ON(root->log_root);
1489 	root->log_root = log_root;
1490 	root->log_transid = 0;
1491 	root->log_transid_committed = -1;
1492 	root->last_log_commit = 0;
1493 	return 0;
1494 }
1495 
1496 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1497 					       struct btrfs_key *key)
1498 {
1499 	struct btrfs_root *root;
1500 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1501 	struct btrfs_path *path;
1502 	u64 generation;
1503 	int ret;
1504 
1505 	path = btrfs_alloc_path();
1506 	if (!path)
1507 		return ERR_PTR(-ENOMEM);
1508 
1509 	root = btrfs_alloc_root(fs_info);
1510 	if (!root) {
1511 		ret = -ENOMEM;
1512 		goto alloc_fail;
1513 	}
1514 
1515 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1516 		tree_root->stripesize, root, fs_info, key->objectid);
1517 
1518 	ret = btrfs_find_root(tree_root, key, path,
1519 			      &root->root_item, &root->root_key);
1520 	if (ret) {
1521 		if (ret > 0)
1522 			ret = -ENOENT;
1523 		goto find_fail;
1524 	}
1525 
1526 	generation = btrfs_root_generation(&root->root_item);
1527 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1528 				     generation);
1529 	if (IS_ERR(root->node)) {
1530 		ret = PTR_ERR(root->node);
1531 		goto find_fail;
1532 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1533 		ret = -EIO;
1534 		free_extent_buffer(root->node);
1535 		goto find_fail;
1536 	}
1537 	root->commit_root = btrfs_root_node(root);
1538 out:
1539 	btrfs_free_path(path);
1540 	return root;
1541 
1542 find_fail:
1543 	kfree(root);
1544 alloc_fail:
1545 	root = ERR_PTR(ret);
1546 	goto out;
1547 }
1548 
1549 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1550 				      struct btrfs_key *location)
1551 {
1552 	struct btrfs_root *root;
1553 
1554 	root = btrfs_read_tree_root(tree_root, location);
1555 	if (IS_ERR(root))
1556 		return root;
1557 
1558 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1559 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1560 		btrfs_check_and_init_root_item(&root->root_item);
1561 	}
1562 
1563 	return root;
1564 }
1565 
1566 int btrfs_init_fs_root(struct btrfs_root *root)
1567 {
1568 	int ret;
1569 	struct btrfs_subvolume_writers *writers;
1570 
1571 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1572 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1573 					GFP_NOFS);
1574 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1575 		ret = -ENOMEM;
1576 		goto fail;
1577 	}
1578 
1579 	writers = btrfs_alloc_subvolume_writers();
1580 	if (IS_ERR(writers)) {
1581 		ret = PTR_ERR(writers);
1582 		goto fail;
1583 	}
1584 	root->subv_writers = writers;
1585 
1586 	btrfs_init_free_ino_ctl(root);
1587 	spin_lock_init(&root->ino_cache_lock);
1588 	init_waitqueue_head(&root->ino_cache_wait);
1589 
1590 	ret = get_anon_bdev(&root->anon_dev);
1591 	if (ret)
1592 		goto free_writers;
1593 
1594 	mutex_lock(&root->objectid_mutex);
1595 	ret = btrfs_find_highest_objectid(root,
1596 					&root->highest_objectid);
1597 	if (ret) {
1598 		mutex_unlock(&root->objectid_mutex);
1599 		goto free_root_dev;
1600 	}
1601 
1602 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1603 
1604 	mutex_unlock(&root->objectid_mutex);
1605 
1606 	return 0;
1607 
1608 free_root_dev:
1609 	free_anon_bdev(root->anon_dev);
1610 free_writers:
1611 	btrfs_free_subvolume_writers(root->subv_writers);
1612 fail:
1613 	kfree(root->free_ino_ctl);
1614 	kfree(root->free_ino_pinned);
1615 	return ret;
1616 }
1617 
1618 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1619 					       u64 root_id)
1620 {
1621 	struct btrfs_root *root;
1622 
1623 	spin_lock(&fs_info->fs_roots_radix_lock);
1624 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1625 				 (unsigned long)root_id);
1626 	spin_unlock(&fs_info->fs_roots_radix_lock);
1627 	return root;
1628 }
1629 
1630 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1631 			 struct btrfs_root *root)
1632 {
1633 	int ret;
1634 
1635 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1636 	if (ret)
1637 		return ret;
1638 
1639 	spin_lock(&fs_info->fs_roots_radix_lock);
1640 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1641 				(unsigned long)root->root_key.objectid,
1642 				root);
1643 	if (ret == 0)
1644 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1645 	spin_unlock(&fs_info->fs_roots_radix_lock);
1646 	radix_tree_preload_end();
1647 
1648 	return ret;
1649 }
1650 
1651 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1652 				     struct btrfs_key *location,
1653 				     bool check_ref)
1654 {
1655 	struct btrfs_root *root;
1656 	struct btrfs_path *path;
1657 	struct btrfs_key key;
1658 	int ret;
1659 
1660 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1661 		return fs_info->tree_root;
1662 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1663 		return fs_info->extent_root;
1664 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1665 		return fs_info->chunk_root;
1666 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1667 		return fs_info->dev_root;
1668 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1669 		return fs_info->csum_root;
1670 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1671 		return fs_info->quota_root ? fs_info->quota_root :
1672 					     ERR_PTR(-ENOENT);
1673 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1674 		return fs_info->uuid_root ? fs_info->uuid_root :
1675 					    ERR_PTR(-ENOENT);
1676 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1677 		return fs_info->free_space_root ? fs_info->free_space_root :
1678 						  ERR_PTR(-ENOENT);
1679 again:
1680 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1681 	if (root) {
1682 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1683 			return ERR_PTR(-ENOENT);
1684 		return root;
1685 	}
1686 
1687 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1688 	if (IS_ERR(root))
1689 		return root;
1690 
1691 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1692 		ret = -ENOENT;
1693 		goto fail;
1694 	}
1695 
1696 	ret = btrfs_init_fs_root(root);
1697 	if (ret)
1698 		goto fail;
1699 
1700 	path = btrfs_alloc_path();
1701 	if (!path) {
1702 		ret = -ENOMEM;
1703 		goto fail;
1704 	}
1705 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1706 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1707 	key.offset = location->objectid;
1708 
1709 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1710 	btrfs_free_path(path);
1711 	if (ret < 0)
1712 		goto fail;
1713 	if (ret == 0)
1714 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1715 
1716 	ret = btrfs_insert_fs_root(fs_info, root);
1717 	if (ret) {
1718 		if (ret == -EEXIST) {
1719 			free_fs_root(root);
1720 			goto again;
1721 		}
1722 		goto fail;
1723 	}
1724 	return root;
1725 fail:
1726 	free_fs_root(root);
1727 	return ERR_PTR(ret);
1728 }
1729 
1730 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1731 {
1732 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1733 	int ret = 0;
1734 	struct btrfs_device *device;
1735 	struct backing_dev_info *bdi;
1736 
1737 	rcu_read_lock();
1738 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1739 		if (!device->bdev)
1740 			continue;
1741 		bdi = blk_get_backing_dev_info(device->bdev);
1742 		if (bdi_congested(bdi, bdi_bits)) {
1743 			ret = 1;
1744 			break;
1745 		}
1746 	}
1747 	rcu_read_unlock();
1748 	return ret;
1749 }
1750 
1751 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1752 {
1753 	int err;
1754 
1755 	err = bdi_setup_and_register(bdi, "btrfs");
1756 	if (err)
1757 		return err;
1758 
1759 	bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1760 	bdi->congested_fn	= btrfs_congested_fn;
1761 	bdi->congested_data	= info;
1762 	bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1763 	return 0;
1764 }
1765 
1766 /*
1767  * called by the kthread helper functions to finally call the bio end_io
1768  * functions.  This is where read checksum verification actually happens
1769  */
1770 static void end_workqueue_fn(struct btrfs_work *work)
1771 {
1772 	struct bio *bio;
1773 	struct btrfs_end_io_wq *end_io_wq;
1774 
1775 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1776 	bio = end_io_wq->bio;
1777 
1778 	bio->bi_error = end_io_wq->error;
1779 	bio->bi_private = end_io_wq->private;
1780 	bio->bi_end_io = end_io_wq->end_io;
1781 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1782 	bio_endio(bio);
1783 }
1784 
1785 static int cleaner_kthread(void *arg)
1786 {
1787 	struct btrfs_root *root = arg;
1788 	int again;
1789 	struct btrfs_trans_handle *trans;
1790 
1791 	do {
1792 		again = 0;
1793 
1794 		/* Make the cleaner go to sleep early. */
1795 		if (btrfs_need_cleaner_sleep(root))
1796 			goto sleep;
1797 
1798 		if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1799 			goto sleep;
1800 
1801 		/*
1802 		 * Avoid the problem that we change the status of the fs
1803 		 * during the above check and trylock.
1804 		 */
1805 		if (btrfs_need_cleaner_sleep(root)) {
1806 			mutex_unlock(&root->fs_info->cleaner_mutex);
1807 			goto sleep;
1808 		}
1809 
1810 		mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1811 		btrfs_run_delayed_iputs(root);
1812 		mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1813 
1814 		again = btrfs_clean_one_deleted_snapshot(root);
1815 		mutex_unlock(&root->fs_info->cleaner_mutex);
1816 
1817 		/*
1818 		 * The defragger has dealt with the R/O remount and umount,
1819 		 * needn't do anything special here.
1820 		 */
1821 		btrfs_run_defrag_inodes(root->fs_info);
1822 
1823 		/*
1824 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1825 		 * with relocation (btrfs_relocate_chunk) and relocation
1826 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1827 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1828 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1829 		 * unused block groups.
1830 		 */
1831 		btrfs_delete_unused_bgs(root->fs_info);
1832 sleep:
1833 		if (!try_to_freeze() && !again) {
1834 			set_current_state(TASK_INTERRUPTIBLE);
1835 			if (!kthread_should_stop())
1836 				schedule();
1837 			__set_current_state(TASK_RUNNING);
1838 		}
1839 	} while (!kthread_should_stop());
1840 
1841 	/*
1842 	 * Transaction kthread is stopped before us and wakes us up.
1843 	 * However we might have started a new transaction and COWed some
1844 	 * tree blocks when deleting unused block groups for example. So
1845 	 * make sure we commit the transaction we started to have a clean
1846 	 * shutdown when evicting the btree inode - if it has dirty pages
1847 	 * when we do the final iput() on it, eviction will trigger a
1848 	 * writeback for it which will fail with null pointer dereferences
1849 	 * since work queues and other resources were already released and
1850 	 * destroyed by the time the iput/eviction/writeback is made.
1851 	 */
1852 	trans = btrfs_attach_transaction(root);
1853 	if (IS_ERR(trans)) {
1854 		if (PTR_ERR(trans) != -ENOENT)
1855 			btrfs_err(root->fs_info,
1856 				  "cleaner transaction attach returned %ld",
1857 				  PTR_ERR(trans));
1858 	} else {
1859 		int ret;
1860 
1861 		ret = btrfs_commit_transaction(trans, root);
1862 		if (ret)
1863 			btrfs_err(root->fs_info,
1864 				  "cleaner open transaction commit returned %d",
1865 				  ret);
1866 	}
1867 
1868 	return 0;
1869 }
1870 
1871 static int transaction_kthread(void *arg)
1872 {
1873 	struct btrfs_root *root = arg;
1874 	struct btrfs_trans_handle *trans;
1875 	struct btrfs_transaction *cur;
1876 	u64 transid;
1877 	unsigned long now;
1878 	unsigned long delay;
1879 	bool cannot_commit;
1880 
1881 	do {
1882 		cannot_commit = false;
1883 		delay = HZ * root->fs_info->commit_interval;
1884 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1885 
1886 		spin_lock(&root->fs_info->trans_lock);
1887 		cur = root->fs_info->running_transaction;
1888 		if (!cur) {
1889 			spin_unlock(&root->fs_info->trans_lock);
1890 			goto sleep;
1891 		}
1892 
1893 		now = get_seconds();
1894 		if (cur->state < TRANS_STATE_BLOCKED &&
1895 		    (now < cur->start_time ||
1896 		     now - cur->start_time < root->fs_info->commit_interval)) {
1897 			spin_unlock(&root->fs_info->trans_lock);
1898 			delay = HZ * 5;
1899 			goto sleep;
1900 		}
1901 		transid = cur->transid;
1902 		spin_unlock(&root->fs_info->trans_lock);
1903 
1904 		/* If the file system is aborted, this will always fail. */
1905 		trans = btrfs_attach_transaction(root);
1906 		if (IS_ERR(trans)) {
1907 			if (PTR_ERR(trans) != -ENOENT)
1908 				cannot_commit = true;
1909 			goto sleep;
1910 		}
1911 		if (transid == trans->transid) {
1912 			btrfs_commit_transaction(trans, root);
1913 		} else {
1914 			btrfs_end_transaction(trans, root);
1915 		}
1916 sleep:
1917 		wake_up_process(root->fs_info->cleaner_kthread);
1918 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1919 
1920 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1921 				      &root->fs_info->fs_state)))
1922 			btrfs_cleanup_transaction(root);
1923 		if (!try_to_freeze()) {
1924 			set_current_state(TASK_INTERRUPTIBLE);
1925 			if (!kthread_should_stop() &&
1926 			    (!btrfs_transaction_blocked(root->fs_info) ||
1927 			     cannot_commit))
1928 				schedule_timeout(delay);
1929 			__set_current_state(TASK_RUNNING);
1930 		}
1931 	} while (!kthread_should_stop());
1932 	return 0;
1933 }
1934 
1935 /*
1936  * this will find the highest generation in the array of
1937  * root backups.  The index of the highest array is returned,
1938  * or -1 if we can't find anything.
1939  *
1940  * We check to make sure the array is valid by comparing the
1941  * generation of the latest  root in the array with the generation
1942  * in the super block.  If they don't match we pitch it.
1943  */
1944 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1945 {
1946 	u64 cur;
1947 	int newest_index = -1;
1948 	struct btrfs_root_backup *root_backup;
1949 	int i;
1950 
1951 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1952 		root_backup = info->super_copy->super_roots + i;
1953 		cur = btrfs_backup_tree_root_gen(root_backup);
1954 		if (cur == newest_gen)
1955 			newest_index = i;
1956 	}
1957 
1958 	/* check to see if we actually wrapped around */
1959 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1960 		root_backup = info->super_copy->super_roots;
1961 		cur = btrfs_backup_tree_root_gen(root_backup);
1962 		if (cur == newest_gen)
1963 			newest_index = 0;
1964 	}
1965 	return newest_index;
1966 }
1967 
1968 
1969 /*
1970  * find the oldest backup so we know where to store new entries
1971  * in the backup array.  This will set the backup_root_index
1972  * field in the fs_info struct
1973  */
1974 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1975 				     u64 newest_gen)
1976 {
1977 	int newest_index = -1;
1978 
1979 	newest_index = find_newest_super_backup(info, newest_gen);
1980 	/* if there was garbage in there, just move along */
1981 	if (newest_index == -1) {
1982 		info->backup_root_index = 0;
1983 	} else {
1984 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1985 	}
1986 }
1987 
1988 /*
1989  * copy all the root pointers into the super backup array.
1990  * this will bump the backup pointer by one when it is
1991  * done
1992  */
1993 static void backup_super_roots(struct btrfs_fs_info *info)
1994 {
1995 	int next_backup;
1996 	struct btrfs_root_backup *root_backup;
1997 	int last_backup;
1998 
1999 	next_backup = info->backup_root_index;
2000 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2001 		BTRFS_NUM_BACKUP_ROOTS;
2002 
2003 	/*
2004 	 * just overwrite the last backup if we're at the same generation
2005 	 * this happens only at umount
2006 	 */
2007 	root_backup = info->super_for_commit->super_roots + last_backup;
2008 	if (btrfs_backup_tree_root_gen(root_backup) ==
2009 	    btrfs_header_generation(info->tree_root->node))
2010 		next_backup = last_backup;
2011 
2012 	root_backup = info->super_for_commit->super_roots + next_backup;
2013 
2014 	/*
2015 	 * make sure all of our padding and empty slots get zero filled
2016 	 * regardless of which ones we use today
2017 	 */
2018 	memset(root_backup, 0, sizeof(*root_backup));
2019 
2020 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2021 
2022 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2023 	btrfs_set_backup_tree_root_gen(root_backup,
2024 			       btrfs_header_generation(info->tree_root->node));
2025 
2026 	btrfs_set_backup_tree_root_level(root_backup,
2027 			       btrfs_header_level(info->tree_root->node));
2028 
2029 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2030 	btrfs_set_backup_chunk_root_gen(root_backup,
2031 			       btrfs_header_generation(info->chunk_root->node));
2032 	btrfs_set_backup_chunk_root_level(root_backup,
2033 			       btrfs_header_level(info->chunk_root->node));
2034 
2035 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2036 	btrfs_set_backup_extent_root_gen(root_backup,
2037 			       btrfs_header_generation(info->extent_root->node));
2038 	btrfs_set_backup_extent_root_level(root_backup,
2039 			       btrfs_header_level(info->extent_root->node));
2040 
2041 	/*
2042 	 * we might commit during log recovery, which happens before we set
2043 	 * the fs_root.  Make sure it is valid before we fill it in.
2044 	 */
2045 	if (info->fs_root && info->fs_root->node) {
2046 		btrfs_set_backup_fs_root(root_backup,
2047 					 info->fs_root->node->start);
2048 		btrfs_set_backup_fs_root_gen(root_backup,
2049 			       btrfs_header_generation(info->fs_root->node));
2050 		btrfs_set_backup_fs_root_level(root_backup,
2051 			       btrfs_header_level(info->fs_root->node));
2052 	}
2053 
2054 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2055 	btrfs_set_backup_dev_root_gen(root_backup,
2056 			       btrfs_header_generation(info->dev_root->node));
2057 	btrfs_set_backup_dev_root_level(root_backup,
2058 				       btrfs_header_level(info->dev_root->node));
2059 
2060 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2061 	btrfs_set_backup_csum_root_gen(root_backup,
2062 			       btrfs_header_generation(info->csum_root->node));
2063 	btrfs_set_backup_csum_root_level(root_backup,
2064 			       btrfs_header_level(info->csum_root->node));
2065 
2066 	btrfs_set_backup_total_bytes(root_backup,
2067 			     btrfs_super_total_bytes(info->super_copy));
2068 	btrfs_set_backup_bytes_used(root_backup,
2069 			     btrfs_super_bytes_used(info->super_copy));
2070 	btrfs_set_backup_num_devices(root_backup,
2071 			     btrfs_super_num_devices(info->super_copy));
2072 
2073 	/*
2074 	 * if we don't copy this out to the super_copy, it won't get remembered
2075 	 * for the next commit
2076 	 */
2077 	memcpy(&info->super_copy->super_roots,
2078 	       &info->super_for_commit->super_roots,
2079 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2080 }
2081 
2082 /*
2083  * this copies info out of the root backup array and back into
2084  * the in-memory super block.  It is meant to help iterate through
2085  * the array, so you send it the number of backups you've already
2086  * tried and the last backup index you used.
2087  *
2088  * this returns -1 when it has tried all the backups
2089  */
2090 static noinline int next_root_backup(struct btrfs_fs_info *info,
2091 				     struct btrfs_super_block *super,
2092 				     int *num_backups_tried, int *backup_index)
2093 {
2094 	struct btrfs_root_backup *root_backup;
2095 	int newest = *backup_index;
2096 
2097 	if (*num_backups_tried == 0) {
2098 		u64 gen = btrfs_super_generation(super);
2099 
2100 		newest = find_newest_super_backup(info, gen);
2101 		if (newest == -1)
2102 			return -1;
2103 
2104 		*backup_index = newest;
2105 		*num_backups_tried = 1;
2106 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2107 		/* we've tried all the backups, all done */
2108 		return -1;
2109 	} else {
2110 		/* jump to the next oldest backup */
2111 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2112 			BTRFS_NUM_BACKUP_ROOTS;
2113 		*backup_index = newest;
2114 		*num_backups_tried += 1;
2115 	}
2116 	root_backup = super->super_roots + newest;
2117 
2118 	btrfs_set_super_generation(super,
2119 				   btrfs_backup_tree_root_gen(root_backup));
2120 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2121 	btrfs_set_super_root_level(super,
2122 				   btrfs_backup_tree_root_level(root_backup));
2123 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2124 
2125 	/*
2126 	 * fixme: the total bytes and num_devices need to match or we should
2127 	 * need a fsck
2128 	 */
2129 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2130 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2131 	return 0;
2132 }
2133 
2134 /* helper to cleanup workers */
2135 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2136 {
2137 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2138 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2139 	btrfs_destroy_workqueue(fs_info->workers);
2140 	btrfs_destroy_workqueue(fs_info->endio_workers);
2141 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2142 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2143 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2144 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2145 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2146 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2147 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2148 	btrfs_destroy_workqueue(fs_info->submit_workers);
2149 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2150 	btrfs_destroy_workqueue(fs_info->caching_workers);
2151 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2152 	btrfs_destroy_workqueue(fs_info->flush_workers);
2153 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2154 	btrfs_destroy_workqueue(fs_info->extent_workers);
2155 }
2156 
2157 static void free_root_extent_buffers(struct btrfs_root *root)
2158 {
2159 	if (root) {
2160 		free_extent_buffer(root->node);
2161 		free_extent_buffer(root->commit_root);
2162 		root->node = NULL;
2163 		root->commit_root = NULL;
2164 	}
2165 }
2166 
2167 /* helper to cleanup tree roots */
2168 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2169 {
2170 	free_root_extent_buffers(info->tree_root);
2171 
2172 	free_root_extent_buffers(info->dev_root);
2173 	free_root_extent_buffers(info->extent_root);
2174 	free_root_extent_buffers(info->csum_root);
2175 	free_root_extent_buffers(info->quota_root);
2176 	free_root_extent_buffers(info->uuid_root);
2177 	if (chunk_root)
2178 		free_root_extent_buffers(info->chunk_root);
2179 	free_root_extent_buffers(info->free_space_root);
2180 }
2181 
2182 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2183 {
2184 	int ret;
2185 	struct btrfs_root *gang[8];
2186 	int i;
2187 
2188 	while (!list_empty(&fs_info->dead_roots)) {
2189 		gang[0] = list_entry(fs_info->dead_roots.next,
2190 				     struct btrfs_root, root_list);
2191 		list_del(&gang[0]->root_list);
2192 
2193 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2194 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2195 		} else {
2196 			free_extent_buffer(gang[0]->node);
2197 			free_extent_buffer(gang[0]->commit_root);
2198 			btrfs_put_fs_root(gang[0]);
2199 		}
2200 	}
2201 
2202 	while (1) {
2203 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2204 					     (void **)gang, 0,
2205 					     ARRAY_SIZE(gang));
2206 		if (!ret)
2207 			break;
2208 		for (i = 0; i < ret; i++)
2209 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2210 	}
2211 
2212 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2213 		btrfs_free_log_root_tree(NULL, fs_info);
2214 		btrfs_destroy_pinned_extent(fs_info->tree_root,
2215 					    fs_info->pinned_extents);
2216 	}
2217 }
2218 
2219 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2220 {
2221 	mutex_init(&fs_info->scrub_lock);
2222 	atomic_set(&fs_info->scrubs_running, 0);
2223 	atomic_set(&fs_info->scrub_pause_req, 0);
2224 	atomic_set(&fs_info->scrubs_paused, 0);
2225 	atomic_set(&fs_info->scrub_cancel_req, 0);
2226 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2227 	fs_info->scrub_workers_refcnt = 0;
2228 }
2229 
2230 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2231 {
2232 	spin_lock_init(&fs_info->balance_lock);
2233 	mutex_init(&fs_info->balance_mutex);
2234 	atomic_set(&fs_info->balance_running, 0);
2235 	atomic_set(&fs_info->balance_pause_req, 0);
2236 	atomic_set(&fs_info->balance_cancel_req, 0);
2237 	fs_info->balance_ctl = NULL;
2238 	init_waitqueue_head(&fs_info->balance_wait_q);
2239 }
2240 
2241 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2242 				   struct btrfs_root *tree_root)
2243 {
2244 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2245 	set_nlink(fs_info->btree_inode, 1);
2246 	/*
2247 	 * we set the i_size on the btree inode to the max possible int.
2248 	 * the real end of the address space is determined by all of
2249 	 * the devices in the system
2250 	 */
2251 	fs_info->btree_inode->i_size = OFFSET_MAX;
2252 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2253 
2254 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2255 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2256 			     fs_info->btree_inode->i_mapping);
2257 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2258 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2259 
2260 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2261 
2262 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2263 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2264 	       sizeof(struct btrfs_key));
2265 	set_bit(BTRFS_INODE_DUMMY,
2266 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2267 	btrfs_insert_inode_hash(fs_info->btree_inode);
2268 }
2269 
2270 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2271 {
2272 	fs_info->dev_replace.lock_owner = 0;
2273 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2274 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2275 	mutex_init(&fs_info->dev_replace.lock_management_lock);
2276 	mutex_init(&fs_info->dev_replace.lock);
2277 	init_waitqueue_head(&fs_info->replace_wait);
2278 }
2279 
2280 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2281 {
2282 	spin_lock_init(&fs_info->qgroup_lock);
2283 	mutex_init(&fs_info->qgroup_ioctl_lock);
2284 	fs_info->qgroup_tree = RB_ROOT;
2285 	fs_info->qgroup_op_tree = RB_ROOT;
2286 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2287 	fs_info->qgroup_seq = 1;
2288 	fs_info->quota_enabled = 0;
2289 	fs_info->pending_quota_state = 0;
2290 	fs_info->qgroup_ulist = NULL;
2291 	mutex_init(&fs_info->qgroup_rescan_lock);
2292 }
2293 
2294 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2295 		struct btrfs_fs_devices *fs_devices)
2296 {
2297 	int max_active = fs_info->thread_pool_size;
2298 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2299 
2300 	fs_info->workers =
2301 		btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2302 				      max_active, 16);
2303 
2304 	fs_info->delalloc_workers =
2305 		btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2306 
2307 	fs_info->flush_workers =
2308 		btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2309 
2310 	fs_info->caching_workers =
2311 		btrfs_alloc_workqueue("cache", flags, max_active, 0);
2312 
2313 	/*
2314 	 * a higher idle thresh on the submit workers makes it much more
2315 	 * likely that bios will be send down in a sane order to the
2316 	 * devices
2317 	 */
2318 	fs_info->submit_workers =
2319 		btrfs_alloc_workqueue("submit", flags,
2320 				      min_t(u64, fs_devices->num_devices,
2321 					    max_active), 64);
2322 
2323 	fs_info->fixup_workers =
2324 		btrfs_alloc_workqueue("fixup", flags, 1, 0);
2325 
2326 	/*
2327 	 * endios are largely parallel and should have a very
2328 	 * low idle thresh
2329 	 */
2330 	fs_info->endio_workers =
2331 		btrfs_alloc_workqueue("endio", flags, max_active, 4);
2332 	fs_info->endio_meta_workers =
2333 		btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2334 	fs_info->endio_meta_write_workers =
2335 		btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2336 	fs_info->endio_raid56_workers =
2337 		btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2338 	fs_info->endio_repair_workers =
2339 		btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2340 	fs_info->rmw_workers =
2341 		btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2342 	fs_info->endio_write_workers =
2343 		btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2344 	fs_info->endio_freespace_worker =
2345 		btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2346 	fs_info->delayed_workers =
2347 		btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2348 	fs_info->readahead_workers =
2349 		btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2350 	fs_info->qgroup_rescan_workers =
2351 		btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2352 	fs_info->extent_workers =
2353 		btrfs_alloc_workqueue("extent-refs", flags,
2354 				      min_t(u64, fs_devices->num_devices,
2355 					    max_active), 8);
2356 
2357 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2358 	      fs_info->submit_workers && fs_info->flush_workers &&
2359 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2360 	      fs_info->endio_meta_write_workers &&
2361 	      fs_info->endio_repair_workers &&
2362 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2363 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2364 	      fs_info->caching_workers && fs_info->readahead_workers &&
2365 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2366 	      fs_info->extent_workers &&
2367 	      fs_info->qgroup_rescan_workers)) {
2368 		return -ENOMEM;
2369 	}
2370 
2371 	return 0;
2372 }
2373 
2374 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2375 			    struct btrfs_fs_devices *fs_devices)
2376 {
2377 	int ret;
2378 	struct btrfs_root *tree_root = fs_info->tree_root;
2379 	struct btrfs_root *log_tree_root;
2380 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2381 	u64 bytenr = btrfs_super_log_root(disk_super);
2382 
2383 	if (fs_devices->rw_devices == 0) {
2384 		btrfs_warn(fs_info, "log replay required on RO media");
2385 		return -EIO;
2386 	}
2387 
2388 	log_tree_root = btrfs_alloc_root(fs_info);
2389 	if (!log_tree_root)
2390 		return -ENOMEM;
2391 
2392 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
2393 			tree_root->stripesize, log_tree_root, fs_info,
2394 			BTRFS_TREE_LOG_OBJECTID);
2395 
2396 	log_tree_root->node = read_tree_block(tree_root, bytenr,
2397 			fs_info->generation + 1);
2398 	if (IS_ERR(log_tree_root->node)) {
2399 		btrfs_warn(fs_info, "failed to read log tree");
2400 		ret = PTR_ERR(log_tree_root->node);
2401 		kfree(log_tree_root);
2402 		return ret;
2403 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2404 		btrfs_err(fs_info, "failed to read log tree");
2405 		free_extent_buffer(log_tree_root->node);
2406 		kfree(log_tree_root);
2407 		return -EIO;
2408 	}
2409 	/* returns with log_tree_root freed on success */
2410 	ret = btrfs_recover_log_trees(log_tree_root);
2411 	if (ret) {
2412 		btrfs_std_error(tree_root->fs_info, ret,
2413 			    "Failed to recover log tree");
2414 		free_extent_buffer(log_tree_root->node);
2415 		kfree(log_tree_root);
2416 		return ret;
2417 	}
2418 
2419 	if (fs_info->sb->s_flags & MS_RDONLY) {
2420 		ret = btrfs_commit_super(tree_root);
2421 		if (ret)
2422 			return ret;
2423 	}
2424 
2425 	return 0;
2426 }
2427 
2428 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2429 			    struct btrfs_root *tree_root)
2430 {
2431 	struct btrfs_root *root;
2432 	struct btrfs_key location;
2433 	int ret;
2434 
2435 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2436 	location.type = BTRFS_ROOT_ITEM_KEY;
2437 	location.offset = 0;
2438 
2439 	root = btrfs_read_tree_root(tree_root, &location);
2440 	if (IS_ERR(root))
2441 		return PTR_ERR(root);
2442 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2443 	fs_info->extent_root = root;
2444 
2445 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2446 	root = btrfs_read_tree_root(tree_root, &location);
2447 	if (IS_ERR(root))
2448 		return PTR_ERR(root);
2449 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2450 	fs_info->dev_root = root;
2451 	btrfs_init_devices_late(fs_info);
2452 
2453 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2454 	root = btrfs_read_tree_root(tree_root, &location);
2455 	if (IS_ERR(root))
2456 		return PTR_ERR(root);
2457 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2458 	fs_info->csum_root = root;
2459 
2460 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2461 	root = btrfs_read_tree_root(tree_root, &location);
2462 	if (!IS_ERR(root)) {
2463 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2464 		fs_info->quota_enabled = 1;
2465 		fs_info->pending_quota_state = 1;
2466 		fs_info->quota_root = root;
2467 	}
2468 
2469 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2470 	root = btrfs_read_tree_root(tree_root, &location);
2471 	if (IS_ERR(root)) {
2472 		ret = PTR_ERR(root);
2473 		if (ret != -ENOENT)
2474 			return ret;
2475 	} else {
2476 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2477 		fs_info->uuid_root = root;
2478 	}
2479 
2480 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2481 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2482 		root = btrfs_read_tree_root(tree_root, &location);
2483 		if (IS_ERR(root))
2484 			return PTR_ERR(root);
2485 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2486 		fs_info->free_space_root = root;
2487 	}
2488 
2489 	return 0;
2490 }
2491 
2492 int open_ctree(struct super_block *sb,
2493 	       struct btrfs_fs_devices *fs_devices,
2494 	       char *options)
2495 {
2496 	u32 sectorsize;
2497 	u32 nodesize;
2498 	u32 stripesize;
2499 	u64 generation;
2500 	u64 features;
2501 	struct btrfs_key location;
2502 	struct buffer_head *bh;
2503 	struct btrfs_super_block *disk_super;
2504 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2505 	struct btrfs_root *tree_root;
2506 	struct btrfs_root *chunk_root;
2507 	int ret;
2508 	int err = -EINVAL;
2509 	int num_backups_tried = 0;
2510 	int backup_index = 0;
2511 	int max_active;
2512 
2513 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2514 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2515 	if (!tree_root || !chunk_root) {
2516 		err = -ENOMEM;
2517 		goto fail;
2518 	}
2519 
2520 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2521 	if (ret) {
2522 		err = ret;
2523 		goto fail;
2524 	}
2525 
2526 	ret = setup_bdi(fs_info, &fs_info->bdi);
2527 	if (ret) {
2528 		err = ret;
2529 		goto fail_srcu;
2530 	}
2531 
2532 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2533 	if (ret) {
2534 		err = ret;
2535 		goto fail_bdi;
2536 	}
2537 	fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2538 					(1 + ilog2(nr_cpu_ids));
2539 
2540 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2541 	if (ret) {
2542 		err = ret;
2543 		goto fail_dirty_metadata_bytes;
2544 	}
2545 
2546 	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2547 	if (ret) {
2548 		err = ret;
2549 		goto fail_delalloc_bytes;
2550 	}
2551 
2552 	fs_info->btree_inode = new_inode(sb);
2553 	if (!fs_info->btree_inode) {
2554 		err = -ENOMEM;
2555 		goto fail_bio_counter;
2556 	}
2557 
2558 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2559 
2560 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2561 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2562 	INIT_LIST_HEAD(&fs_info->trans_list);
2563 	INIT_LIST_HEAD(&fs_info->dead_roots);
2564 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2565 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2566 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2567 	spin_lock_init(&fs_info->delalloc_root_lock);
2568 	spin_lock_init(&fs_info->trans_lock);
2569 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2570 	spin_lock_init(&fs_info->delayed_iput_lock);
2571 	spin_lock_init(&fs_info->defrag_inodes_lock);
2572 	spin_lock_init(&fs_info->free_chunk_lock);
2573 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2574 	spin_lock_init(&fs_info->super_lock);
2575 	spin_lock_init(&fs_info->qgroup_op_lock);
2576 	spin_lock_init(&fs_info->buffer_lock);
2577 	spin_lock_init(&fs_info->unused_bgs_lock);
2578 	rwlock_init(&fs_info->tree_mod_log_lock);
2579 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2580 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2581 	mutex_init(&fs_info->reloc_mutex);
2582 	mutex_init(&fs_info->delalloc_root_mutex);
2583 	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2584 	seqlock_init(&fs_info->profiles_lock);
2585 
2586 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2587 	INIT_LIST_HEAD(&fs_info->space_info);
2588 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2589 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2590 	btrfs_mapping_init(&fs_info->mapping_tree);
2591 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2592 			     BTRFS_BLOCK_RSV_GLOBAL);
2593 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2594 			     BTRFS_BLOCK_RSV_DELALLOC);
2595 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2596 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2597 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2598 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2599 			     BTRFS_BLOCK_RSV_DELOPS);
2600 	atomic_set(&fs_info->nr_async_submits, 0);
2601 	atomic_set(&fs_info->async_delalloc_pages, 0);
2602 	atomic_set(&fs_info->async_submit_draining, 0);
2603 	atomic_set(&fs_info->nr_async_bios, 0);
2604 	atomic_set(&fs_info->defrag_running, 0);
2605 	atomic_set(&fs_info->qgroup_op_seq, 0);
2606 	atomic64_set(&fs_info->tree_mod_seq, 0);
2607 	fs_info->sb = sb;
2608 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2609 	fs_info->metadata_ratio = 0;
2610 	fs_info->defrag_inodes = RB_ROOT;
2611 	fs_info->free_chunk_space = 0;
2612 	fs_info->tree_mod_log = RB_ROOT;
2613 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2614 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2615 	/* readahead state */
2616 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2617 	spin_lock_init(&fs_info->reada_lock);
2618 
2619 	fs_info->thread_pool_size = min_t(unsigned long,
2620 					  num_online_cpus() + 2, 8);
2621 
2622 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2623 	spin_lock_init(&fs_info->ordered_root_lock);
2624 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2625 					GFP_NOFS);
2626 	if (!fs_info->delayed_root) {
2627 		err = -ENOMEM;
2628 		goto fail_iput;
2629 	}
2630 	btrfs_init_delayed_root(fs_info->delayed_root);
2631 
2632 	btrfs_init_scrub(fs_info);
2633 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2634 	fs_info->check_integrity_print_mask = 0;
2635 #endif
2636 	btrfs_init_balance(fs_info);
2637 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2638 
2639 	sb->s_blocksize = 4096;
2640 	sb->s_blocksize_bits = blksize_bits(4096);
2641 	sb->s_bdi = &fs_info->bdi;
2642 
2643 	btrfs_init_btree_inode(fs_info, tree_root);
2644 
2645 	spin_lock_init(&fs_info->block_group_cache_lock);
2646 	fs_info->block_group_cache_tree = RB_ROOT;
2647 	fs_info->first_logical_byte = (u64)-1;
2648 
2649 	extent_io_tree_init(&fs_info->freed_extents[0],
2650 			     fs_info->btree_inode->i_mapping);
2651 	extent_io_tree_init(&fs_info->freed_extents[1],
2652 			     fs_info->btree_inode->i_mapping);
2653 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2654 	fs_info->do_barriers = 1;
2655 
2656 
2657 	mutex_init(&fs_info->ordered_operations_mutex);
2658 	mutex_init(&fs_info->tree_log_mutex);
2659 	mutex_init(&fs_info->chunk_mutex);
2660 	mutex_init(&fs_info->transaction_kthread_mutex);
2661 	mutex_init(&fs_info->cleaner_mutex);
2662 	mutex_init(&fs_info->volume_mutex);
2663 	mutex_init(&fs_info->ro_block_group_mutex);
2664 	init_rwsem(&fs_info->commit_root_sem);
2665 	init_rwsem(&fs_info->cleanup_work_sem);
2666 	init_rwsem(&fs_info->subvol_sem);
2667 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2668 
2669 	btrfs_init_dev_replace_locks(fs_info);
2670 	btrfs_init_qgroup(fs_info);
2671 
2672 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2673 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2674 
2675 	init_waitqueue_head(&fs_info->transaction_throttle);
2676 	init_waitqueue_head(&fs_info->transaction_wait);
2677 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2678 	init_waitqueue_head(&fs_info->async_submit_wait);
2679 
2680 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2681 
2682 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2683 	if (ret) {
2684 		err = ret;
2685 		goto fail_alloc;
2686 	}
2687 
2688 	__setup_root(4096, 4096, 4096, tree_root,
2689 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2690 
2691 	invalidate_bdev(fs_devices->latest_bdev);
2692 
2693 	/*
2694 	 * Read super block and check the signature bytes only
2695 	 */
2696 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2697 	if (IS_ERR(bh)) {
2698 		err = PTR_ERR(bh);
2699 		goto fail_alloc;
2700 	}
2701 
2702 	/*
2703 	 * We want to check superblock checksum, the type is stored inside.
2704 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2705 	 */
2706 	if (btrfs_check_super_csum(bh->b_data)) {
2707 		printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2708 		err = -EINVAL;
2709 		brelse(bh);
2710 		goto fail_alloc;
2711 	}
2712 
2713 	/*
2714 	 * super_copy is zeroed at allocation time and we never touch the
2715 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2716 	 * the whole block of INFO_SIZE
2717 	 */
2718 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2719 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2720 	       sizeof(*fs_info->super_for_commit));
2721 	brelse(bh);
2722 
2723 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2724 
2725 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2726 	if (ret) {
2727 		printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2728 		err = -EINVAL;
2729 		goto fail_alloc;
2730 	}
2731 
2732 	disk_super = fs_info->super_copy;
2733 	if (!btrfs_super_root(disk_super))
2734 		goto fail_alloc;
2735 
2736 	/* check FS state, whether FS is broken. */
2737 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2738 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2739 
2740 	/*
2741 	 * run through our array of backup supers and setup
2742 	 * our ring pointer to the oldest one
2743 	 */
2744 	generation = btrfs_super_generation(disk_super);
2745 	find_oldest_super_backup(fs_info, generation);
2746 
2747 	/*
2748 	 * In the long term, we'll store the compression type in the super
2749 	 * block, and it'll be used for per file compression control.
2750 	 */
2751 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2752 
2753 	ret = btrfs_parse_options(tree_root, options);
2754 	if (ret) {
2755 		err = ret;
2756 		goto fail_alloc;
2757 	}
2758 
2759 	features = btrfs_super_incompat_flags(disk_super) &
2760 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2761 	if (features) {
2762 		printk(KERN_ERR "BTRFS: couldn't mount because of "
2763 		       "unsupported optional features (%Lx).\n",
2764 		       features);
2765 		err = -EINVAL;
2766 		goto fail_alloc;
2767 	}
2768 
2769 	features = btrfs_super_incompat_flags(disk_super);
2770 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2771 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2772 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2773 
2774 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2775 		printk(KERN_INFO "BTRFS: has skinny extents\n");
2776 
2777 	/*
2778 	 * flag our filesystem as having big metadata blocks if
2779 	 * they are bigger than the page size
2780 	 */
2781 	if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2782 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2783 			printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2784 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2785 	}
2786 
2787 	nodesize = btrfs_super_nodesize(disk_super);
2788 	sectorsize = btrfs_super_sectorsize(disk_super);
2789 	stripesize = btrfs_super_stripesize(disk_super);
2790 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2791 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2792 
2793 	/*
2794 	 * mixed block groups end up with duplicate but slightly offset
2795 	 * extent buffers for the same range.  It leads to corruptions
2796 	 */
2797 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2798 	    (sectorsize != nodesize)) {
2799 		printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2800 				"are not allowed for mixed block groups on %s\n",
2801 				sb->s_id);
2802 		goto fail_alloc;
2803 	}
2804 
2805 	/*
2806 	 * Needn't use the lock because there is no other task which will
2807 	 * update the flag.
2808 	 */
2809 	btrfs_set_super_incompat_flags(disk_super, features);
2810 
2811 	features = btrfs_super_compat_ro_flags(disk_super) &
2812 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2813 	if (!(sb->s_flags & MS_RDONLY) && features) {
2814 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2815 		       "unsupported option features (%Lx).\n",
2816 		       features);
2817 		err = -EINVAL;
2818 		goto fail_alloc;
2819 	}
2820 
2821 	max_active = fs_info->thread_pool_size;
2822 
2823 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2824 	if (ret) {
2825 		err = ret;
2826 		goto fail_sb_buffer;
2827 	}
2828 
2829 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2830 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2831 				    SZ_4M / PAGE_CACHE_SIZE);
2832 
2833 	tree_root->nodesize = nodesize;
2834 	tree_root->sectorsize = sectorsize;
2835 	tree_root->stripesize = stripesize;
2836 
2837 	sb->s_blocksize = sectorsize;
2838 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2839 
2840 	mutex_lock(&fs_info->chunk_mutex);
2841 	ret = btrfs_read_sys_array(tree_root);
2842 	mutex_unlock(&fs_info->chunk_mutex);
2843 	if (ret) {
2844 		printk(KERN_ERR "BTRFS: failed to read the system "
2845 		       "array on %s\n", sb->s_id);
2846 		goto fail_sb_buffer;
2847 	}
2848 
2849 	generation = btrfs_super_chunk_root_generation(disk_super);
2850 
2851 	__setup_root(nodesize, sectorsize, stripesize, chunk_root,
2852 		     fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2853 
2854 	chunk_root->node = read_tree_block(chunk_root,
2855 					   btrfs_super_chunk_root(disk_super),
2856 					   generation);
2857 	if (IS_ERR(chunk_root->node) ||
2858 	    !extent_buffer_uptodate(chunk_root->node)) {
2859 		printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2860 		       sb->s_id);
2861 		if (!IS_ERR(chunk_root->node))
2862 			free_extent_buffer(chunk_root->node);
2863 		chunk_root->node = NULL;
2864 		goto fail_tree_roots;
2865 	}
2866 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2867 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2868 
2869 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2870 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2871 
2872 	ret = btrfs_read_chunk_tree(chunk_root);
2873 	if (ret) {
2874 		printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2875 		       sb->s_id);
2876 		goto fail_tree_roots;
2877 	}
2878 
2879 	/*
2880 	 * keep the device that is marked to be the target device for the
2881 	 * dev_replace procedure
2882 	 */
2883 	btrfs_close_extra_devices(fs_devices, 0);
2884 
2885 	if (!fs_devices->latest_bdev) {
2886 		printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2887 		       sb->s_id);
2888 		goto fail_tree_roots;
2889 	}
2890 
2891 retry_root_backup:
2892 	generation = btrfs_super_generation(disk_super);
2893 
2894 	tree_root->node = read_tree_block(tree_root,
2895 					  btrfs_super_root(disk_super),
2896 					  generation);
2897 	if (IS_ERR(tree_root->node) ||
2898 	    !extent_buffer_uptodate(tree_root->node)) {
2899 		printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2900 		       sb->s_id);
2901 		if (!IS_ERR(tree_root->node))
2902 			free_extent_buffer(tree_root->node);
2903 		tree_root->node = NULL;
2904 		goto recovery_tree_root;
2905 	}
2906 
2907 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2908 	tree_root->commit_root = btrfs_root_node(tree_root);
2909 	btrfs_set_root_refs(&tree_root->root_item, 1);
2910 
2911 	mutex_lock(&tree_root->objectid_mutex);
2912 	ret = btrfs_find_highest_objectid(tree_root,
2913 					&tree_root->highest_objectid);
2914 	if (ret) {
2915 		mutex_unlock(&tree_root->objectid_mutex);
2916 		goto recovery_tree_root;
2917 	}
2918 
2919 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2920 
2921 	mutex_unlock(&tree_root->objectid_mutex);
2922 
2923 	ret = btrfs_read_roots(fs_info, tree_root);
2924 	if (ret)
2925 		goto recovery_tree_root;
2926 
2927 	fs_info->generation = generation;
2928 	fs_info->last_trans_committed = generation;
2929 
2930 	ret = btrfs_recover_balance(fs_info);
2931 	if (ret) {
2932 		printk(KERN_ERR "BTRFS: failed to recover balance\n");
2933 		goto fail_block_groups;
2934 	}
2935 
2936 	ret = btrfs_init_dev_stats(fs_info);
2937 	if (ret) {
2938 		printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2939 		       ret);
2940 		goto fail_block_groups;
2941 	}
2942 
2943 	ret = btrfs_init_dev_replace(fs_info);
2944 	if (ret) {
2945 		pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2946 		goto fail_block_groups;
2947 	}
2948 
2949 	btrfs_close_extra_devices(fs_devices, 1);
2950 
2951 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2952 	if (ret) {
2953 		pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2954 		goto fail_block_groups;
2955 	}
2956 
2957 	ret = btrfs_sysfs_add_device(fs_devices);
2958 	if (ret) {
2959 		pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2960 		goto fail_fsdev_sysfs;
2961 	}
2962 
2963 	ret = btrfs_sysfs_add_mounted(fs_info);
2964 	if (ret) {
2965 		pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2966 		goto fail_fsdev_sysfs;
2967 	}
2968 
2969 	ret = btrfs_init_space_info(fs_info);
2970 	if (ret) {
2971 		printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2972 		goto fail_sysfs;
2973 	}
2974 
2975 	ret = btrfs_read_block_groups(fs_info->extent_root);
2976 	if (ret) {
2977 		printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2978 		goto fail_sysfs;
2979 	}
2980 	fs_info->num_tolerated_disk_barrier_failures =
2981 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2982 	if (fs_info->fs_devices->missing_devices >
2983 	     fs_info->num_tolerated_disk_barrier_failures &&
2984 	    !(sb->s_flags & MS_RDONLY)) {
2985 		pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2986 			fs_info->fs_devices->missing_devices,
2987 			fs_info->num_tolerated_disk_barrier_failures);
2988 		goto fail_sysfs;
2989 	}
2990 
2991 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2992 					       "btrfs-cleaner");
2993 	if (IS_ERR(fs_info->cleaner_kthread))
2994 		goto fail_sysfs;
2995 
2996 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2997 						   tree_root,
2998 						   "btrfs-transaction");
2999 	if (IS_ERR(fs_info->transaction_kthread))
3000 		goto fail_cleaner;
3001 
3002 	if (!btrfs_test_opt(tree_root, SSD) &&
3003 	    !btrfs_test_opt(tree_root, NOSSD) &&
3004 	    !fs_info->fs_devices->rotating) {
3005 		printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
3006 		       "mode\n");
3007 		btrfs_set_opt(fs_info->mount_opt, SSD);
3008 	}
3009 
3010 	/*
3011 	 * Mount does not set all options immediatelly, we can do it now and do
3012 	 * not have to wait for transaction commit
3013 	 */
3014 	btrfs_apply_pending_changes(fs_info);
3015 
3016 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3017 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3018 		ret = btrfsic_mount(tree_root, fs_devices,
3019 				    btrfs_test_opt(tree_root,
3020 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3021 				    1 : 0,
3022 				    fs_info->check_integrity_print_mask);
3023 		if (ret)
3024 			printk(KERN_WARNING "BTRFS: failed to initialize"
3025 			       " integrity check module %s\n", sb->s_id);
3026 	}
3027 #endif
3028 	ret = btrfs_read_qgroup_config(fs_info);
3029 	if (ret)
3030 		goto fail_trans_kthread;
3031 
3032 	/* do not make disk changes in broken FS */
3033 	if (btrfs_super_log_root(disk_super) != 0) {
3034 		ret = btrfs_replay_log(fs_info, fs_devices);
3035 		if (ret) {
3036 			err = ret;
3037 			goto fail_qgroup;
3038 		}
3039 	}
3040 
3041 	ret = btrfs_find_orphan_roots(tree_root);
3042 	if (ret)
3043 		goto fail_qgroup;
3044 
3045 	if (!(sb->s_flags & MS_RDONLY)) {
3046 		ret = btrfs_cleanup_fs_roots(fs_info);
3047 		if (ret)
3048 			goto fail_qgroup;
3049 
3050 		mutex_lock(&fs_info->cleaner_mutex);
3051 		ret = btrfs_recover_relocation(tree_root);
3052 		mutex_unlock(&fs_info->cleaner_mutex);
3053 		if (ret < 0) {
3054 			printk(KERN_WARNING
3055 			       "BTRFS: failed to recover relocation\n");
3056 			err = -EINVAL;
3057 			goto fail_qgroup;
3058 		}
3059 	}
3060 
3061 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3062 	location.type = BTRFS_ROOT_ITEM_KEY;
3063 	location.offset = 0;
3064 
3065 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3066 	if (IS_ERR(fs_info->fs_root)) {
3067 		err = PTR_ERR(fs_info->fs_root);
3068 		goto fail_qgroup;
3069 	}
3070 
3071 	if (sb->s_flags & MS_RDONLY)
3072 		return 0;
3073 
3074 	if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
3075 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3076 		pr_info("BTRFS: creating free space tree\n");
3077 		ret = btrfs_create_free_space_tree(fs_info);
3078 		if (ret) {
3079 			pr_warn("BTRFS: failed to create free space tree %d\n",
3080 				ret);
3081 			close_ctree(tree_root);
3082 			return ret;
3083 		}
3084 	}
3085 
3086 	down_read(&fs_info->cleanup_work_sem);
3087 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3088 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3089 		up_read(&fs_info->cleanup_work_sem);
3090 		close_ctree(tree_root);
3091 		return ret;
3092 	}
3093 	up_read(&fs_info->cleanup_work_sem);
3094 
3095 	ret = btrfs_resume_balance_async(fs_info);
3096 	if (ret) {
3097 		printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3098 		close_ctree(tree_root);
3099 		return ret;
3100 	}
3101 
3102 	ret = btrfs_resume_dev_replace_async(fs_info);
3103 	if (ret) {
3104 		pr_warn("BTRFS: failed to resume dev_replace\n");
3105 		close_ctree(tree_root);
3106 		return ret;
3107 	}
3108 
3109 	btrfs_qgroup_rescan_resume(fs_info);
3110 
3111 	if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
3112 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3113 		pr_info("BTRFS: clearing free space tree\n");
3114 		ret = btrfs_clear_free_space_tree(fs_info);
3115 		if (ret) {
3116 			pr_warn("BTRFS: failed to clear free space tree %d\n",
3117 				ret);
3118 			close_ctree(tree_root);
3119 			return ret;
3120 		}
3121 	}
3122 
3123 	if (!fs_info->uuid_root) {
3124 		pr_info("BTRFS: creating UUID tree\n");
3125 		ret = btrfs_create_uuid_tree(fs_info);
3126 		if (ret) {
3127 			pr_warn("BTRFS: failed to create the UUID tree %d\n",
3128 				ret);
3129 			close_ctree(tree_root);
3130 			return ret;
3131 		}
3132 	} else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3133 		   fs_info->generation !=
3134 				btrfs_super_uuid_tree_generation(disk_super)) {
3135 		pr_info("BTRFS: checking UUID tree\n");
3136 		ret = btrfs_check_uuid_tree(fs_info);
3137 		if (ret) {
3138 			pr_warn("BTRFS: failed to check the UUID tree %d\n",
3139 				ret);
3140 			close_ctree(tree_root);
3141 			return ret;
3142 		}
3143 	} else {
3144 		fs_info->update_uuid_tree_gen = 1;
3145 	}
3146 
3147 	fs_info->open = 1;
3148 
3149 	return 0;
3150 
3151 fail_qgroup:
3152 	btrfs_free_qgroup_config(fs_info);
3153 fail_trans_kthread:
3154 	kthread_stop(fs_info->transaction_kthread);
3155 	btrfs_cleanup_transaction(fs_info->tree_root);
3156 	btrfs_free_fs_roots(fs_info);
3157 fail_cleaner:
3158 	kthread_stop(fs_info->cleaner_kthread);
3159 
3160 	/*
3161 	 * make sure we're done with the btree inode before we stop our
3162 	 * kthreads
3163 	 */
3164 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3165 
3166 fail_sysfs:
3167 	btrfs_sysfs_remove_mounted(fs_info);
3168 
3169 fail_fsdev_sysfs:
3170 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3171 
3172 fail_block_groups:
3173 	btrfs_put_block_group_cache(fs_info);
3174 	btrfs_free_block_groups(fs_info);
3175 
3176 fail_tree_roots:
3177 	free_root_pointers(fs_info, 1);
3178 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3179 
3180 fail_sb_buffer:
3181 	btrfs_stop_all_workers(fs_info);
3182 fail_alloc:
3183 fail_iput:
3184 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3185 
3186 	iput(fs_info->btree_inode);
3187 fail_bio_counter:
3188 	percpu_counter_destroy(&fs_info->bio_counter);
3189 fail_delalloc_bytes:
3190 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3191 fail_dirty_metadata_bytes:
3192 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3193 fail_bdi:
3194 	bdi_destroy(&fs_info->bdi);
3195 fail_srcu:
3196 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3197 fail:
3198 	btrfs_free_stripe_hash_table(fs_info);
3199 	btrfs_close_devices(fs_info->fs_devices);
3200 	return err;
3201 
3202 recovery_tree_root:
3203 	if (!btrfs_test_opt(tree_root, RECOVERY))
3204 		goto fail_tree_roots;
3205 
3206 	free_root_pointers(fs_info, 0);
3207 
3208 	/* don't use the log in recovery mode, it won't be valid */
3209 	btrfs_set_super_log_root(disk_super, 0);
3210 
3211 	/* we can't trust the free space cache either */
3212 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3213 
3214 	ret = next_root_backup(fs_info, fs_info->super_copy,
3215 			       &num_backups_tried, &backup_index);
3216 	if (ret == -1)
3217 		goto fail_block_groups;
3218 	goto retry_root_backup;
3219 }
3220 
3221 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3222 {
3223 	if (uptodate) {
3224 		set_buffer_uptodate(bh);
3225 	} else {
3226 		struct btrfs_device *device = (struct btrfs_device *)
3227 			bh->b_private;
3228 
3229 		btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3230 				"lost page write due to IO error on %s",
3231 					  rcu_str_deref(device->name));
3232 		/* note, we dont' set_buffer_write_io_error because we have
3233 		 * our own ways of dealing with the IO errors
3234 		 */
3235 		clear_buffer_uptodate(bh);
3236 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3237 	}
3238 	unlock_buffer(bh);
3239 	put_bh(bh);
3240 }
3241 
3242 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3243 			struct buffer_head **bh_ret)
3244 {
3245 	struct buffer_head *bh;
3246 	struct btrfs_super_block *super;
3247 	u64 bytenr;
3248 
3249 	bytenr = btrfs_sb_offset(copy_num);
3250 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3251 		return -EINVAL;
3252 
3253 	bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3254 	/*
3255 	 * If we fail to read from the underlying devices, as of now
3256 	 * the best option we have is to mark it EIO.
3257 	 */
3258 	if (!bh)
3259 		return -EIO;
3260 
3261 	super = (struct btrfs_super_block *)bh->b_data;
3262 	if (btrfs_super_bytenr(super) != bytenr ||
3263 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3264 		brelse(bh);
3265 		return -EINVAL;
3266 	}
3267 
3268 	*bh_ret = bh;
3269 	return 0;
3270 }
3271 
3272 
3273 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3274 {
3275 	struct buffer_head *bh;
3276 	struct buffer_head *latest = NULL;
3277 	struct btrfs_super_block *super;
3278 	int i;
3279 	u64 transid = 0;
3280 	int ret = -EINVAL;
3281 
3282 	/* we would like to check all the supers, but that would make
3283 	 * a btrfs mount succeed after a mkfs from a different FS.
3284 	 * So, we need to add a special mount option to scan for
3285 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3286 	 */
3287 	for (i = 0; i < 1; i++) {
3288 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3289 		if (ret)
3290 			continue;
3291 
3292 		super = (struct btrfs_super_block *)bh->b_data;
3293 
3294 		if (!latest || btrfs_super_generation(super) > transid) {
3295 			brelse(latest);
3296 			latest = bh;
3297 			transid = btrfs_super_generation(super);
3298 		} else {
3299 			brelse(bh);
3300 		}
3301 	}
3302 
3303 	if (!latest)
3304 		return ERR_PTR(ret);
3305 
3306 	return latest;
3307 }
3308 
3309 /*
3310  * this should be called twice, once with wait == 0 and
3311  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3312  * we write are pinned.
3313  *
3314  * They are released when wait == 1 is done.
3315  * max_mirrors must be the same for both runs, and it indicates how
3316  * many supers on this one device should be written.
3317  *
3318  * max_mirrors == 0 means to write them all.
3319  */
3320 static int write_dev_supers(struct btrfs_device *device,
3321 			    struct btrfs_super_block *sb,
3322 			    int do_barriers, int wait, int max_mirrors)
3323 {
3324 	struct buffer_head *bh;
3325 	int i;
3326 	int ret;
3327 	int errors = 0;
3328 	u32 crc;
3329 	u64 bytenr;
3330 
3331 	if (max_mirrors == 0)
3332 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3333 
3334 	for (i = 0; i < max_mirrors; i++) {
3335 		bytenr = btrfs_sb_offset(i);
3336 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3337 		    device->commit_total_bytes)
3338 			break;
3339 
3340 		if (wait) {
3341 			bh = __find_get_block(device->bdev, bytenr / 4096,
3342 					      BTRFS_SUPER_INFO_SIZE);
3343 			if (!bh) {
3344 				errors++;
3345 				continue;
3346 			}
3347 			wait_on_buffer(bh);
3348 			if (!buffer_uptodate(bh))
3349 				errors++;
3350 
3351 			/* drop our reference */
3352 			brelse(bh);
3353 
3354 			/* drop the reference from the wait == 0 run */
3355 			brelse(bh);
3356 			continue;
3357 		} else {
3358 			btrfs_set_super_bytenr(sb, bytenr);
3359 
3360 			crc = ~(u32)0;
3361 			crc = btrfs_csum_data((char *)sb +
3362 					      BTRFS_CSUM_SIZE, crc,
3363 					      BTRFS_SUPER_INFO_SIZE -
3364 					      BTRFS_CSUM_SIZE);
3365 			btrfs_csum_final(crc, sb->csum);
3366 
3367 			/*
3368 			 * one reference for us, and we leave it for the
3369 			 * caller
3370 			 */
3371 			bh = __getblk(device->bdev, bytenr / 4096,
3372 				      BTRFS_SUPER_INFO_SIZE);
3373 			if (!bh) {
3374 				btrfs_err(device->dev_root->fs_info,
3375 				    "couldn't get super buffer head for bytenr %llu",
3376 				    bytenr);
3377 				errors++;
3378 				continue;
3379 			}
3380 
3381 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3382 
3383 			/* one reference for submit_bh */
3384 			get_bh(bh);
3385 
3386 			set_buffer_uptodate(bh);
3387 			lock_buffer(bh);
3388 			bh->b_end_io = btrfs_end_buffer_write_sync;
3389 			bh->b_private = device;
3390 		}
3391 
3392 		/*
3393 		 * we fua the first super.  The others we allow
3394 		 * to go down lazy.
3395 		 */
3396 		if (i == 0)
3397 			ret = btrfsic_submit_bh(WRITE_FUA, bh);
3398 		else
3399 			ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3400 		if (ret)
3401 			errors++;
3402 	}
3403 	return errors < i ? 0 : -1;
3404 }
3405 
3406 /*
3407  * endio for the write_dev_flush, this will wake anyone waiting
3408  * for the barrier when it is done
3409  */
3410 static void btrfs_end_empty_barrier(struct bio *bio)
3411 {
3412 	if (bio->bi_private)
3413 		complete(bio->bi_private);
3414 	bio_put(bio);
3415 }
3416 
3417 /*
3418  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3419  * sent down.  With wait == 1, it waits for the previous flush.
3420  *
3421  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3422  * capable
3423  */
3424 static int write_dev_flush(struct btrfs_device *device, int wait)
3425 {
3426 	struct bio *bio;
3427 	int ret = 0;
3428 
3429 	if (device->nobarriers)
3430 		return 0;
3431 
3432 	if (wait) {
3433 		bio = device->flush_bio;
3434 		if (!bio)
3435 			return 0;
3436 
3437 		wait_for_completion(&device->flush_wait);
3438 
3439 		if (bio->bi_error) {
3440 			ret = bio->bi_error;
3441 			btrfs_dev_stat_inc_and_print(device,
3442 				BTRFS_DEV_STAT_FLUSH_ERRS);
3443 		}
3444 
3445 		/* drop the reference from the wait == 0 run */
3446 		bio_put(bio);
3447 		device->flush_bio = NULL;
3448 
3449 		return ret;
3450 	}
3451 
3452 	/*
3453 	 * one reference for us, and we leave it for the
3454 	 * caller
3455 	 */
3456 	device->flush_bio = NULL;
3457 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3458 	if (!bio)
3459 		return -ENOMEM;
3460 
3461 	bio->bi_end_io = btrfs_end_empty_barrier;
3462 	bio->bi_bdev = device->bdev;
3463 	init_completion(&device->flush_wait);
3464 	bio->bi_private = &device->flush_wait;
3465 	device->flush_bio = bio;
3466 
3467 	bio_get(bio);
3468 	btrfsic_submit_bio(WRITE_FLUSH, bio);
3469 
3470 	return 0;
3471 }
3472 
3473 /*
3474  * send an empty flush down to each device in parallel,
3475  * then wait for them
3476  */
3477 static int barrier_all_devices(struct btrfs_fs_info *info)
3478 {
3479 	struct list_head *head;
3480 	struct btrfs_device *dev;
3481 	int errors_send = 0;
3482 	int errors_wait = 0;
3483 	int ret;
3484 
3485 	/* send down all the barriers */
3486 	head = &info->fs_devices->devices;
3487 	list_for_each_entry_rcu(dev, head, dev_list) {
3488 		if (dev->missing)
3489 			continue;
3490 		if (!dev->bdev) {
3491 			errors_send++;
3492 			continue;
3493 		}
3494 		if (!dev->in_fs_metadata || !dev->writeable)
3495 			continue;
3496 
3497 		ret = write_dev_flush(dev, 0);
3498 		if (ret)
3499 			errors_send++;
3500 	}
3501 
3502 	/* wait for all the barriers */
3503 	list_for_each_entry_rcu(dev, head, dev_list) {
3504 		if (dev->missing)
3505 			continue;
3506 		if (!dev->bdev) {
3507 			errors_wait++;
3508 			continue;
3509 		}
3510 		if (!dev->in_fs_metadata || !dev->writeable)
3511 			continue;
3512 
3513 		ret = write_dev_flush(dev, 1);
3514 		if (ret)
3515 			errors_wait++;
3516 	}
3517 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3518 	    errors_wait > info->num_tolerated_disk_barrier_failures)
3519 		return -EIO;
3520 	return 0;
3521 }
3522 
3523 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3524 {
3525 	int raid_type;
3526 	int min_tolerated = INT_MAX;
3527 
3528 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3529 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3530 		min_tolerated = min(min_tolerated,
3531 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3532 				    tolerated_failures);
3533 
3534 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3535 		if (raid_type == BTRFS_RAID_SINGLE)
3536 			continue;
3537 		if (!(flags & btrfs_raid_group[raid_type]))
3538 			continue;
3539 		min_tolerated = min(min_tolerated,
3540 				    btrfs_raid_array[raid_type].
3541 				    tolerated_failures);
3542 	}
3543 
3544 	if (min_tolerated == INT_MAX) {
3545 		pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3546 		min_tolerated = 0;
3547 	}
3548 
3549 	return min_tolerated;
3550 }
3551 
3552 int btrfs_calc_num_tolerated_disk_barrier_failures(
3553 	struct btrfs_fs_info *fs_info)
3554 {
3555 	struct btrfs_ioctl_space_info space;
3556 	struct btrfs_space_info *sinfo;
3557 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3558 		       BTRFS_BLOCK_GROUP_SYSTEM,
3559 		       BTRFS_BLOCK_GROUP_METADATA,
3560 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3561 	int i;
3562 	int c;
3563 	int num_tolerated_disk_barrier_failures =
3564 		(int)fs_info->fs_devices->num_devices;
3565 
3566 	for (i = 0; i < ARRAY_SIZE(types); i++) {
3567 		struct btrfs_space_info *tmp;
3568 
3569 		sinfo = NULL;
3570 		rcu_read_lock();
3571 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3572 			if (tmp->flags == types[i]) {
3573 				sinfo = tmp;
3574 				break;
3575 			}
3576 		}
3577 		rcu_read_unlock();
3578 
3579 		if (!sinfo)
3580 			continue;
3581 
3582 		down_read(&sinfo->groups_sem);
3583 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3584 			u64 flags;
3585 
3586 			if (list_empty(&sinfo->block_groups[c]))
3587 				continue;
3588 
3589 			btrfs_get_block_group_info(&sinfo->block_groups[c],
3590 						   &space);
3591 			if (space.total_bytes == 0 || space.used_bytes == 0)
3592 				continue;
3593 			flags = space.flags;
3594 
3595 			num_tolerated_disk_barrier_failures = min(
3596 				num_tolerated_disk_barrier_failures,
3597 				btrfs_get_num_tolerated_disk_barrier_failures(
3598 					flags));
3599 		}
3600 		up_read(&sinfo->groups_sem);
3601 	}
3602 
3603 	return num_tolerated_disk_barrier_failures;
3604 }
3605 
3606 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3607 {
3608 	struct list_head *head;
3609 	struct btrfs_device *dev;
3610 	struct btrfs_super_block *sb;
3611 	struct btrfs_dev_item *dev_item;
3612 	int ret;
3613 	int do_barriers;
3614 	int max_errors;
3615 	int total_errors = 0;
3616 	u64 flags;
3617 
3618 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
3619 	backup_super_roots(root->fs_info);
3620 
3621 	sb = root->fs_info->super_for_commit;
3622 	dev_item = &sb->dev_item;
3623 
3624 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3625 	head = &root->fs_info->fs_devices->devices;
3626 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3627 
3628 	if (do_barriers) {
3629 		ret = barrier_all_devices(root->fs_info);
3630 		if (ret) {
3631 			mutex_unlock(
3632 				&root->fs_info->fs_devices->device_list_mutex);
3633 			btrfs_std_error(root->fs_info, ret,
3634 				    "errors while submitting device barriers.");
3635 			return ret;
3636 		}
3637 	}
3638 
3639 	list_for_each_entry_rcu(dev, head, dev_list) {
3640 		if (!dev->bdev) {
3641 			total_errors++;
3642 			continue;
3643 		}
3644 		if (!dev->in_fs_metadata || !dev->writeable)
3645 			continue;
3646 
3647 		btrfs_set_stack_device_generation(dev_item, 0);
3648 		btrfs_set_stack_device_type(dev_item, dev->type);
3649 		btrfs_set_stack_device_id(dev_item, dev->devid);
3650 		btrfs_set_stack_device_total_bytes(dev_item,
3651 						   dev->commit_total_bytes);
3652 		btrfs_set_stack_device_bytes_used(dev_item,
3653 						  dev->commit_bytes_used);
3654 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3655 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3656 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3657 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3658 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3659 
3660 		flags = btrfs_super_flags(sb);
3661 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3662 
3663 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3664 		if (ret)
3665 			total_errors++;
3666 	}
3667 	if (total_errors > max_errors) {
3668 		btrfs_err(root->fs_info, "%d errors while writing supers",
3669 		       total_errors);
3670 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3671 
3672 		/* FUA is masked off if unsupported and can't be the reason */
3673 		btrfs_std_error(root->fs_info, -EIO,
3674 			    "%d errors while writing supers", total_errors);
3675 		return -EIO;
3676 	}
3677 
3678 	total_errors = 0;
3679 	list_for_each_entry_rcu(dev, head, dev_list) {
3680 		if (!dev->bdev)
3681 			continue;
3682 		if (!dev->in_fs_metadata || !dev->writeable)
3683 			continue;
3684 
3685 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3686 		if (ret)
3687 			total_errors++;
3688 	}
3689 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3690 	if (total_errors > max_errors) {
3691 		btrfs_std_error(root->fs_info, -EIO,
3692 			    "%d errors while writing supers", total_errors);
3693 		return -EIO;
3694 	}
3695 	return 0;
3696 }
3697 
3698 int write_ctree_super(struct btrfs_trans_handle *trans,
3699 		      struct btrfs_root *root, int max_mirrors)
3700 {
3701 	return write_all_supers(root, max_mirrors);
3702 }
3703 
3704 /* Drop a fs root from the radix tree and free it. */
3705 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3706 				  struct btrfs_root *root)
3707 {
3708 	spin_lock(&fs_info->fs_roots_radix_lock);
3709 	radix_tree_delete(&fs_info->fs_roots_radix,
3710 			  (unsigned long)root->root_key.objectid);
3711 	spin_unlock(&fs_info->fs_roots_radix_lock);
3712 
3713 	if (btrfs_root_refs(&root->root_item) == 0)
3714 		synchronize_srcu(&fs_info->subvol_srcu);
3715 
3716 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3717 		btrfs_free_log(NULL, root);
3718 
3719 	if (root->free_ino_pinned)
3720 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3721 	if (root->free_ino_ctl)
3722 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3723 	free_fs_root(root);
3724 }
3725 
3726 static void free_fs_root(struct btrfs_root *root)
3727 {
3728 	iput(root->ino_cache_inode);
3729 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3730 	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3731 	root->orphan_block_rsv = NULL;
3732 	if (root->anon_dev)
3733 		free_anon_bdev(root->anon_dev);
3734 	if (root->subv_writers)
3735 		btrfs_free_subvolume_writers(root->subv_writers);
3736 	free_extent_buffer(root->node);
3737 	free_extent_buffer(root->commit_root);
3738 	kfree(root->free_ino_ctl);
3739 	kfree(root->free_ino_pinned);
3740 	kfree(root->name);
3741 	btrfs_put_fs_root(root);
3742 }
3743 
3744 void btrfs_free_fs_root(struct btrfs_root *root)
3745 {
3746 	free_fs_root(root);
3747 }
3748 
3749 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3750 {
3751 	u64 root_objectid = 0;
3752 	struct btrfs_root *gang[8];
3753 	int i = 0;
3754 	int err = 0;
3755 	unsigned int ret = 0;
3756 	int index;
3757 
3758 	while (1) {
3759 		index = srcu_read_lock(&fs_info->subvol_srcu);
3760 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3761 					     (void **)gang, root_objectid,
3762 					     ARRAY_SIZE(gang));
3763 		if (!ret) {
3764 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3765 			break;
3766 		}
3767 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3768 
3769 		for (i = 0; i < ret; i++) {
3770 			/* Avoid to grab roots in dead_roots */
3771 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3772 				gang[i] = NULL;
3773 				continue;
3774 			}
3775 			/* grab all the search result for later use */
3776 			gang[i] = btrfs_grab_fs_root(gang[i]);
3777 		}
3778 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3779 
3780 		for (i = 0; i < ret; i++) {
3781 			if (!gang[i])
3782 				continue;
3783 			root_objectid = gang[i]->root_key.objectid;
3784 			err = btrfs_orphan_cleanup(gang[i]);
3785 			if (err)
3786 				break;
3787 			btrfs_put_fs_root(gang[i]);
3788 		}
3789 		root_objectid++;
3790 	}
3791 
3792 	/* release the uncleaned roots due to error */
3793 	for (; i < ret; i++) {
3794 		if (gang[i])
3795 			btrfs_put_fs_root(gang[i]);
3796 	}
3797 	return err;
3798 }
3799 
3800 int btrfs_commit_super(struct btrfs_root *root)
3801 {
3802 	struct btrfs_trans_handle *trans;
3803 
3804 	mutex_lock(&root->fs_info->cleaner_mutex);
3805 	btrfs_run_delayed_iputs(root);
3806 	mutex_unlock(&root->fs_info->cleaner_mutex);
3807 	wake_up_process(root->fs_info->cleaner_kthread);
3808 
3809 	/* wait until ongoing cleanup work done */
3810 	down_write(&root->fs_info->cleanup_work_sem);
3811 	up_write(&root->fs_info->cleanup_work_sem);
3812 
3813 	trans = btrfs_join_transaction(root);
3814 	if (IS_ERR(trans))
3815 		return PTR_ERR(trans);
3816 	return btrfs_commit_transaction(trans, root);
3817 }
3818 
3819 void close_ctree(struct btrfs_root *root)
3820 {
3821 	struct btrfs_fs_info *fs_info = root->fs_info;
3822 	int ret;
3823 
3824 	fs_info->closing = 1;
3825 	smp_mb();
3826 
3827 	/* wait for the qgroup rescan worker to stop */
3828 	btrfs_qgroup_wait_for_completion(fs_info);
3829 
3830 	/* wait for the uuid_scan task to finish */
3831 	down(&fs_info->uuid_tree_rescan_sem);
3832 	/* avoid complains from lockdep et al., set sem back to initial state */
3833 	up(&fs_info->uuid_tree_rescan_sem);
3834 
3835 	/* pause restriper - we want to resume on mount */
3836 	btrfs_pause_balance(fs_info);
3837 
3838 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3839 
3840 	btrfs_scrub_cancel(fs_info);
3841 
3842 	/* wait for any defraggers to finish */
3843 	wait_event(fs_info->transaction_wait,
3844 		   (atomic_read(&fs_info->defrag_running) == 0));
3845 
3846 	/* clear out the rbtree of defraggable inodes */
3847 	btrfs_cleanup_defrag_inodes(fs_info);
3848 
3849 	cancel_work_sync(&fs_info->async_reclaim_work);
3850 
3851 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3852 		/*
3853 		 * If the cleaner thread is stopped and there are
3854 		 * block groups queued for removal, the deletion will be
3855 		 * skipped when we quit the cleaner thread.
3856 		 */
3857 		btrfs_delete_unused_bgs(root->fs_info);
3858 
3859 		ret = btrfs_commit_super(root);
3860 		if (ret)
3861 			btrfs_err(fs_info, "commit super ret %d", ret);
3862 	}
3863 
3864 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3865 		btrfs_error_commit_super(root);
3866 
3867 	kthread_stop(fs_info->transaction_kthread);
3868 	kthread_stop(fs_info->cleaner_kthread);
3869 
3870 	fs_info->closing = 2;
3871 	smp_mb();
3872 
3873 	btrfs_free_qgroup_config(fs_info);
3874 
3875 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3876 		btrfs_info(fs_info, "at unmount delalloc count %lld",
3877 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3878 	}
3879 
3880 	btrfs_sysfs_remove_mounted(fs_info);
3881 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3882 
3883 	btrfs_free_fs_roots(fs_info);
3884 
3885 	btrfs_put_block_group_cache(fs_info);
3886 
3887 	btrfs_free_block_groups(fs_info);
3888 
3889 	/*
3890 	 * we must make sure there is not any read request to
3891 	 * submit after we stopping all workers.
3892 	 */
3893 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3894 	btrfs_stop_all_workers(fs_info);
3895 
3896 	fs_info->open = 0;
3897 	free_root_pointers(fs_info, 1);
3898 
3899 	iput(fs_info->btree_inode);
3900 
3901 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3902 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3903 		btrfsic_unmount(root, fs_info->fs_devices);
3904 #endif
3905 
3906 	btrfs_close_devices(fs_info->fs_devices);
3907 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3908 
3909 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3910 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3911 	percpu_counter_destroy(&fs_info->bio_counter);
3912 	bdi_destroy(&fs_info->bdi);
3913 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3914 
3915 	btrfs_free_stripe_hash_table(fs_info);
3916 
3917 	__btrfs_free_block_rsv(root->orphan_block_rsv);
3918 	root->orphan_block_rsv = NULL;
3919 
3920 	lock_chunks(root);
3921 	while (!list_empty(&fs_info->pinned_chunks)) {
3922 		struct extent_map *em;
3923 
3924 		em = list_first_entry(&fs_info->pinned_chunks,
3925 				      struct extent_map, list);
3926 		list_del_init(&em->list);
3927 		free_extent_map(em);
3928 	}
3929 	unlock_chunks(root);
3930 }
3931 
3932 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3933 			  int atomic)
3934 {
3935 	int ret;
3936 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3937 
3938 	ret = extent_buffer_uptodate(buf);
3939 	if (!ret)
3940 		return ret;
3941 
3942 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3943 				    parent_transid, atomic);
3944 	if (ret == -EAGAIN)
3945 		return ret;
3946 	return !ret;
3947 }
3948 
3949 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3950 {
3951 	struct btrfs_root *root;
3952 	u64 transid = btrfs_header_generation(buf);
3953 	int was_dirty;
3954 
3955 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3956 	/*
3957 	 * This is a fast path so only do this check if we have sanity tests
3958 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3959 	 * outside of the sanity tests.
3960 	 */
3961 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3962 		return;
3963 #endif
3964 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3965 	btrfs_assert_tree_locked(buf);
3966 	if (transid != root->fs_info->generation)
3967 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3968 		       "found %llu running %llu\n",
3969 			buf->start, transid, root->fs_info->generation);
3970 	was_dirty = set_extent_buffer_dirty(buf);
3971 	if (!was_dirty)
3972 		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3973 				     buf->len,
3974 				     root->fs_info->dirty_metadata_batch);
3975 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3976 	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3977 		btrfs_print_leaf(root, buf);
3978 		ASSERT(0);
3979 	}
3980 #endif
3981 }
3982 
3983 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3984 					int flush_delayed)
3985 {
3986 	/*
3987 	 * looks as though older kernels can get into trouble with
3988 	 * this code, they end up stuck in balance_dirty_pages forever
3989 	 */
3990 	int ret;
3991 
3992 	if (current->flags & PF_MEMALLOC)
3993 		return;
3994 
3995 	if (flush_delayed)
3996 		btrfs_balance_delayed_items(root);
3997 
3998 	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3999 				     BTRFS_DIRTY_METADATA_THRESH);
4000 	if (ret > 0) {
4001 		balance_dirty_pages_ratelimited(
4002 				   root->fs_info->btree_inode->i_mapping);
4003 	}
4004 }
4005 
4006 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4007 {
4008 	__btrfs_btree_balance_dirty(root, 1);
4009 }
4010 
4011 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4012 {
4013 	__btrfs_btree_balance_dirty(root, 0);
4014 }
4015 
4016 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4017 {
4018 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4019 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4020 }
4021 
4022 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4023 			      int read_only)
4024 {
4025 	struct btrfs_super_block *sb = fs_info->super_copy;
4026 	u64 nodesize = btrfs_super_nodesize(sb);
4027 	u64 sectorsize = btrfs_super_sectorsize(sb);
4028 	int ret = 0;
4029 
4030 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4031 		printk(KERN_ERR "BTRFS: no valid FS found\n");
4032 		ret = -EINVAL;
4033 	}
4034 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4035 		printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4036 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4037 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4038 		printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4039 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4040 		ret = -EINVAL;
4041 	}
4042 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4043 		printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4044 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4045 		ret = -EINVAL;
4046 	}
4047 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4048 		printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4049 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4050 		ret = -EINVAL;
4051 	}
4052 
4053 	/*
4054 	 * Check sectorsize and nodesize first, other check will need it.
4055 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4056 	 */
4057 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4058 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4059 		printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4060 		ret = -EINVAL;
4061 	}
4062 	/* Only PAGE SIZE is supported yet */
4063 	if (sectorsize != PAGE_CACHE_SIZE) {
4064 		printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4065 				sectorsize, PAGE_CACHE_SIZE);
4066 		ret = -EINVAL;
4067 	}
4068 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4069 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4070 		printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4071 		ret = -EINVAL;
4072 	}
4073 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4074 		printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4075 				le32_to_cpu(sb->__unused_leafsize),
4076 				nodesize);
4077 		ret = -EINVAL;
4078 	}
4079 
4080 	/* Root alignment check */
4081 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4082 		printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4083 				btrfs_super_root(sb));
4084 		ret = -EINVAL;
4085 	}
4086 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4087 		printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4088 				btrfs_super_chunk_root(sb));
4089 		ret = -EINVAL;
4090 	}
4091 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4092 		printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4093 				btrfs_super_log_root(sb));
4094 		ret = -EINVAL;
4095 	}
4096 
4097 	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4098 		printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4099 				fs_info->fsid, sb->dev_item.fsid);
4100 		ret = -EINVAL;
4101 	}
4102 
4103 	/*
4104 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4105 	 * done later
4106 	 */
4107 	if (btrfs_super_num_devices(sb) > (1UL << 31))
4108 		printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4109 				btrfs_super_num_devices(sb));
4110 	if (btrfs_super_num_devices(sb) == 0) {
4111 		printk(KERN_ERR "BTRFS: number of devices is 0\n");
4112 		ret = -EINVAL;
4113 	}
4114 
4115 	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4116 		printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4117 				btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4118 		ret = -EINVAL;
4119 	}
4120 
4121 	/*
4122 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
4123 	 * and one chunk
4124 	 */
4125 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4126 		printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4127 				btrfs_super_sys_array_size(sb),
4128 				BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4129 		ret = -EINVAL;
4130 	}
4131 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4132 			+ sizeof(struct btrfs_chunk)) {
4133 		printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4134 				btrfs_super_sys_array_size(sb),
4135 				sizeof(struct btrfs_disk_key)
4136 				+ sizeof(struct btrfs_chunk));
4137 		ret = -EINVAL;
4138 	}
4139 
4140 	/*
4141 	 * The generation is a global counter, we'll trust it more than the others
4142 	 * but it's still possible that it's the one that's wrong.
4143 	 */
4144 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4145 		printk(KERN_WARNING
4146 			"BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4147 			btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4148 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4149 	    && btrfs_super_cache_generation(sb) != (u64)-1)
4150 		printk(KERN_WARNING
4151 			"BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4152 			btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4153 
4154 	return ret;
4155 }
4156 
4157 static void btrfs_error_commit_super(struct btrfs_root *root)
4158 {
4159 	mutex_lock(&root->fs_info->cleaner_mutex);
4160 	btrfs_run_delayed_iputs(root);
4161 	mutex_unlock(&root->fs_info->cleaner_mutex);
4162 
4163 	down_write(&root->fs_info->cleanup_work_sem);
4164 	up_write(&root->fs_info->cleanup_work_sem);
4165 
4166 	/* cleanup FS via transaction */
4167 	btrfs_cleanup_transaction(root);
4168 }
4169 
4170 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4171 {
4172 	struct btrfs_ordered_extent *ordered;
4173 
4174 	spin_lock(&root->ordered_extent_lock);
4175 	/*
4176 	 * This will just short circuit the ordered completion stuff which will
4177 	 * make sure the ordered extent gets properly cleaned up.
4178 	 */
4179 	list_for_each_entry(ordered, &root->ordered_extents,
4180 			    root_extent_list)
4181 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4182 	spin_unlock(&root->ordered_extent_lock);
4183 }
4184 
4185 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4186 {
4187 	struct btrfs_root *root;
4188 	struct list_head splice;
4189 
4190 	INIT_LIST_HEAD(&splice);
4191 
4192 	spin_lock(&fs_info->ordered_root_lock);
4193 	list_splice_init(&fs_info->ordered_roots, &splice);
4194 	while (!list_empty(&splice)) {
4195 		root = list_first_entry(&splice, struct btrfs_root,
4196 					ordered_root);
4197 		list_move_tail(&root->ordered_root,
4198 			       &fs_info->ordered_roots);
4199 
4200 		spin_unlock(&fs_info->ordered_root_lock);
4201 		btrfs_destroy_ordered_extents(root);
4202 
4203 		cond_resched();
4204 		spin_lock(&fs_info->ordered_root_lock);
4205 	}
4206 	spin_unlock(&fs_info->ordered_root_lock);
4207 }
4208 
4209 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4210 				      struct btrfs_root *root)
4211 {
4212 	struct rb_node *node;
4213 	struct btrfs_delayed_ref_root *delayed_refs;
4214 	struct btrfs_delayed_ref_node *ref;
4215 	int ret = 0;
4216 
4217 	delayed_refs = &trans->delayed_refs;
4218 
4219 	spin_lock(&delayed_refs->lock);
4220 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4221 		spin_unlock(&delayed_refs->lock);
4222 		btrfs_info(root->fs_info, "delayed_refs has NO entry");
4223 		return ret;
4224 	}
4225 
4226 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4227 		struct btrfs_delayed_ref_head *head;
4228 		struct btrfs_delayed_ref_node *tmp;
4229 		bool pin_bytes = false;
4230 
4231 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4232 				href_node);
4233 		if (!mutex_trylock(&head->mutex)) {
4234 			atomic_inc(&head->node.refs);
4235 			spin_unlock(&delayed_refs->lock);
4236 
4237 			mutex_lock(&head->mutex);
4238 			mutex_unlock(&head->mutex);
4239 			btrfs_put_delayed_ref(&head->node);
4240 			spin_lock(&delayed_refs->lock);
4241 			continue;
4242 		}
4243 		spin_lock(&head->lock);
4244 		list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4245 						 list) {
4246 			ref->in_tree = 0;
4247 			list_del(&ref->list);
4248 			atomic_dec(&delayed_refs->num_entries);
4249 			btrfs_put_delayed_ref(ref);
4250 		}
4251 		if (head->must_insert_reserved)
4252 			pin_bytes = true;
4253 		btrfs_free_delayed_extent_op(head->extent_op);
4254 		delayed_refs->num_heads--;
4255 		if (head->processing == 0)
4256 			delayed_refs->num_heads_ready--;
4257 		atomic_dec(&delayed_refs->num_entries);
4258 		head->node.in_tree = 0;
4259 		rb_erase(&head->href_node, &delayed_refs->href_root);
4260 		spin_unlock(&head->lock);
4261 		spin_unlock(&delayed_refs->lock);
4262 		mutex_unlock(&head->mutex);
4263 
4264 		if (pin_bytes)
4265 			btrfs_pin_extent(root, head->node.bytenr,
4266 					 head->node.num_bytes, 1);
4267 		btrfs_put_delayed_ref(&head->node);
4268 		cond_resched();
4269 		spin_lock(&delayed_refs->lock);
4270 	}
4271 
4272 	spin_unlock(&delayed_refs->lock);
4273 
4274 	return ret;
4275 }
4276 
4277 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4278 {
4279 	struct btrfs_inode *btrfs_inode;
4280 	struct list_head splice;
4281 
4282 	INIT_LIST_HEAD(&splice);
4283 
4284 	spin_lock(&root->delalloc_lock);
4285 	list_splice_init(&root->delalloc_inodes, &splice);
4286 
4287 	while (!list_empty(&splice)) {
4288 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4289 					       delalloc_inodes);
4290 
4291 		list_del_init(&btrfs_inode->delalloc_inodes);
4292 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4293 			  &btrfs_inode->runtime_flags);
4294 		spin_unlock(&root->delalloc_lock);
4295 
4296 		btrfs_invalidate_inodes(btrfs_inode->root);
4297 
4298 		spin_lock(&root->delalloc_lock);
4299 	}
4300 
4301 	spin_unlock(&root->delalloc_lock);
4302 }
4303 
4304 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4305 {
4306 	struct btrfs_root *root;
4307 	struct list_head splice;
4308 
4309 	INIT_LIST_HEAD(&splice);
4310 
4311 	spin_lock(&fs_info->delalloc_root_lock);
4312 	list_splice_init(&fs_info->delalloc_roots, &splice);
4313 	while (!list_empty(&splice)) {
4314 		root = list_first_entry(&splice, struct btrfs_root,
4315 					 delalloc_root);
4316 		list_del_init(&root->delalloc_root);
4317 		root = btrfs_grab_fs_root(root);
4318 		BUG_ON(!root);
4319 		spin_unlock(&fs_info->delalloc_root_lock);
4320 
4321 		btrfs_destroy_delalloc_inodes(root);
4322 		btrfs_put_fs_root(root);
4323 
4324 		spin_lock(&fs_info->delalloc_root_lock);
4325 	}
4326 	spin_unlock(&fs_info->delalloc_root_lock);
4327 }
4328 
4329 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4330 					struct extent_io_tree *dirty_pages,
4331 					int mark)
4332 {
4333 	int ret;
4334 	struct extent_buffer *eb;
4335 	u64 start = 0;
4336 	u64 end;
4337 
4338 	while (1) {
4339 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4340 					    mark, NULL);
4341 		if (ret)
4342 			break;
4343 
4344 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4345 		while (start <= end) {
4346 			eb = btrfs_find_tree_block(root->fs_info, start);
4347 			start += root->nodesize;
4348 			if (!eb)
4349 				continue;
4350 			wait_on_extent_buffer_writeback(eb);
4351 
4352 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4353 					       &eb->bflags))
4354 				clear_extent_buffer_dirty(eb);
4355 			free_extent_buffer_stale(eb);
4356 		}
4357 	}
4358 
4359 	return ret;
4360 }
4361 
4362 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4363 				       struct extent_io_tree *pinned_extents)
4364 {
4365 	struct extent_io_tree *unpin;
4366 	u64 start;
4367 	u64 end;
4368 	int ret;
4369 	bool loop = true;
4370 
4371 	unpin = pinned_extents;
4372 again:
4373 	while (1) {
4374 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4375 					    EXTENT_DIRTY, NULL);
4376 		if (ret)
4377 			break;
4378 
4379 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
4380 		btrfs_error_unpin_extent_range(root, start, end);
4381 		cond_resched();
4382 	}
4383 
4384 	if (loop) {
4385 		if (unpin == &root->fs_info->freed_extents[0])
4386 			unpin = &root->fs_info->freed_extents[1];
4387 		else
4388 			unpin = &root->fs_info->freed_extents[0];
4389 		loop = false;
4390 		goto again;
4391 	}
4392 
4393 	return 0;
4394 }
4395 
4396 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4397 				   struct btrfs_root *root)
4398 {
4399 	btrfs_destroy_delayed_refs(cur_trans, root);
4400 
4401 	cur_trans->state = TRANS_STATE_COMMIT_START;
4402 	wake_up(&root->fs_info->transaction_blocked_wait);
4403 
4404 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4405 	wake_up(&root->fs_info->transaction_wait);
4406 
4407 	btrfs_destroy_delayed_inodes(root);
4408 	btrfs_assert_delayed_root_empty(root);
4409 
4410 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4411 				     EXTENT_DIRTY);
4412 	btrfs_destroy_pinned_extent(root,
4413 				    root->fs_info->pinned_extents);
4414 
4415 	cur_trans->state =TRANS_STATE_COMPLETED;
4416 	wake_up(&cur_trans->commit_wait);
4417 
4418 	/*
4419 	memset(cur_trans, 0, sizeof(*cur_trans));
4420 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4421 	*/
4422 }
4423 
4424 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4425 {
4426 	struct btrfs_transaction *t;
4427 
4428 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
4429 
4430 	spin_lock(&root->fs_info->trans_lock);
4431 	while (!list_empty(&root->fs_info->trans_list)) {
4432 		t = list_first_entry(&root->fs_info->trans_list,
4433 				     struct btrfs_transaction, list);
4434 		if (t->state >= TRANS_STATE_COMMIT_START) {
4435 			atomic_inc(&t->use_count);
4436 			spin_unlock(&root->fs_info->trans_lock);
4437 			btrfs_wait_for_commit(root, t->transid);
4438 			btrfs_put_transaction(t);
4439 			spin_lock(&root->fs_info->trans_lock);
4440 			continue;
4441 		}
4442 		if (t == root->fs_info->running_transaction) {
4443 			t->state = TRANS_STATE_COMMIT_DOING;
4444 			spin_unlock(&root->fs_info->trans_lock);
4445 			/*
4446 			 * We wait for 0 num_writers since we don't hold a trans
4447 			 * handle open currently for this transaction.
4448 			 */
4449 			wait_event(t->writer_wait,
4450 				   atomic_read(&t->num_writers) == 0);
4451 		} else {
4452 			spin_unlock(&root->fs_info->trans_lock);
4453 		}
4454 		btrfs_cleanup_one_transaction(t, root);
4455 
4456 		spin_lock(&root->fs_info->trans_lock);
4457 		if (t == root->fs_info->running_transaction)
4458 			root->fs_info->running_transaction = NULL;
4459 		list_del_init(&t->list);
4460 		spin_unlock(&root->fs_info->trans_lock);
4461 
4462 		btrfs_put_transaction(t);
4463 		trace_btrfs_transaction_commit(root);
4464 		spin_lock(&root->fs_info->trans_lock);
4465 	}
4466 	spin_unlock(&root->fs_info->trans_lock);
4467 	btrfs_destroy_all_ordered_extents(root->fs_info);
4468 	btrfs_destroy_delayed_inodes(root);
4469 	btrfs_assert_delayed_root_empty(root);
4470 	btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4471 	btrfs_destroy_all_delalloc_inodes(root->fs_info);
4472 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4473 
4474 	return 0;
4475 }
4476 
4477 static const struct extent_io_ops btree_extent_io_ops = {
4478 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4479 	.readpage_io_failed_hook = btree_io_failed_hook,
4480 	.submit_bio_hook = btree_submit_bio_hook,
4481 	/* note we're sharing with inode.c for the merge bio hook */
4482 	.merge_bio_hook = btrfs_merge_bio_hook,
4483 };
4484