1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include <linux/slab.h> 31 #include <linux/migrate.h> 32 #include <linux/ratelimit.h> 33 #include <asm/unaligned.h> 34 #include "compat.h" 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "async-thread.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 47 static struct extent_io_ops btree_extent_io_ops; 48 static void end_workqueue_fn(struct btrfs_work *work); 49 static void free_fs_root(struct btrfs_root *root); 50 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 51 int read_only); 52 static int btrfs_destroy_ordered_operations(struct btrfs_root *root); 53 static int btrfs_destroy_ordered_extents(struct btrfs_root *root); 54 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 55 struct btrfs_root *root); 56 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t); 57 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 58 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 59 struct extent_io_tree *dirty_pages, 60 int mark); 61 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 62 struct extent_io_tree *pinned_extents); 63 static int btrfs_cleanup_transaction(struct btrfs_root *root); 64 65 /* 66 * end_io_wq structs are used to do processing in task context when an IO is 67 * complete. This is used during reads to verify checksums, and it is used 68 * by writes to insert metadata for new file extents after IO is complete. 69 */ 70 struct end_io_wq { 71 struct bio *bio; 72 bio_end_io_t *end_io; 73 void *private; 74 struct btrfs_fs_info *info; 75 int error; 76 int metadata; 77 struct list_head list; 78 struct btrfs_work work; 79 }; 80 81 /* 82 * async submit bios are used to offload expensive checksumming 83 * onto the worker threads. They checksum file and metadata bios 84 * just before they are sent down the IO stack. 85 */ 86 struct async_submit_bio { 87 struct inode *inode; 88 struct bio *bio; 89 struct list_head list; 90 extent_submit_bio_hook_t *submit_bio_start; 91 extent_submit_bio_hook_t *submit_bio_done; 92 int rw; 93 int mirror_num; 94 unsigned long bio_flags; 95 /* 96 * bio_offset is optional, can be used if the pages in the bio 97 * can't tell us where in the file the bio should go 98 */ 99 u64 bio_offset; 100 struct btrfs_work work; 101 }; 102 103 /* 104 * Lockdep class keys for extent_buffer->lock's in this root. For a given 105 * eb, the lockdep key is determined by the btrfs_root it belongs to and 106 * the level the eb occupies in the tree. 107 * 108 * Different roots are used for different purposes and may nest inside each 109 * other and they require separate keysets. As lockdep keys should be 110 * static, assign keysets according to the purpose of the root as indicated 111 * by btrfs_root->objectid. This ensures that all special purpose roots 112 * have separate keysets. 113 * 114 * Lock-nesting across peer nodes is always done with the immediate parent 115 * node locked thus preventing deadlock. As lockdep doesn't know this, use 116 * subclass to avoid triggering lockdep warning in such cases. 117 * 118 * The key is set by the readpage_end_io_hook after the buffer has passed 119 * csum validation but before the pages are unlocked. It is also set by 120 * btrfs_init_new_buffer on freshly allocated blocks. 121 * 122 * We also add a check to make sure the highest level of the tree is the 123 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 124 * needs update as well. 125 */ 126 #ifdef CONFIG_DEBUG_LOCK_ALLOC 127 # if BTRFS_MAX_LEVEL != 8 128 # error 129 # endif 130 131 static struct btrfs_lockdep_keyset { 132 u64 id; /* root objectid */ 133 const char *name_stem; /* lock name stem */ 134 char names[BTRFS_MAX_LEVEL + 1][20]; 135 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 136 } btrfs_lockdep_keysets[] = { 137 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 138 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 139 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 140 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 141 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 142 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 143 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" }, 144 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 145 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 146 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 147 { .id = 0, .name_stem = "tree" }, 148 }; 149 150 void __init btrfs_init_lockdep(void) 151 { 152 int i, j; 153 154 /* initialize lockdep class names */ 155 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 156 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 157 158 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 159 snprintf(ks->names[j], sizeof(ks->names[j]), 160 "btrfs-%s-%02d", ks->name_stem, j); 161 } 162 } 163 164 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 165 int level) 166 { 167 struct btrfs_lockdep_keyset *ks; 168 169 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 170 171 /* find the matching keyset, id 0 is the default entry */ 172 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 173 if (ks->id == objectid) 174 break; 175 176 lockdep_set_class_and_name(&eb->lock, 177 &ks->keys[level], ks->names[level]); 178 } 179 180 #endif 181 182 /* 183 * extents on the btree inode are pretty simple, there's one extent 184 * that covers the entire device 185 */ 186 static struct extent_map *btree_get_extent(struct inode *inode, 187 struct page *page, size_t pg_offset, u64 start, u64 len, 188 int create) 189 { 190 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 191 struct extent_map *em; 192 int ret; 193 194 read_lock(&em_tree->lock); 195 em = lookup_extent_mapping(em_tree, start, len); 196 if (em) { 197 em->bdev = 198 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 199 read_unlock(&em_tree->lock); 200 goto out; 201 } 202 read_unlock(&em_tree->lock); 203 204 em = alloc_extent_map(); 205 if (!em) { 206 em = ERR_PTR(-ENOMEM); 207 goto out; 208 } 209 em->start = 0; 210 em->len = (u64)-1; 211 em->block_len = (u64)-1; 212 em->block_start = 0; 213 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 214 215 write_lock(&em_tree->lock); 216 ret = add_extent_mapping(em_tree, em); 217 if (ret == -EEXIST) { 218 u64 failed_start = em->start; 219 u64 failed_len = em->len; 220 221 free_extent_map(em); 222 em = lookup_extent_mapping(em_tree, start, len); 223 if (em) { 224 ret = 0; 225 } else { 226 em = lookup_extent_mapping(em_tree, failed_start, 227 failed_len); 228 ret = -EIO; 229 } 230 } else if (ret) { 231 free_extent_map(em); 232 em = NULL; 233 } 234 write_unlock(&em_tree->lock); 235 236 if (ret) 237 em = ERR_PTR(ret); 238 out: 239 return em; 240 } 241 242 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 243 { 244 return crc32c(seed, data, len); 245 } 246 247 void btrfs_csum_final(u32 crc, char *result) 248 { 249 put_unaligned_le32(~crc, result); 250 } 251 252 /* 253 * compute the csum for a btree block, and either verify it or write it 254 * into the csum field of the block. 255 */ 256 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 257 int verify) 258 { 259 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 260 char *result = NULL; 261 unsigned long len; 262 unsigned long cur_len; 263 unsigned long offset = BTRFS_CSUM_SIZE; 264 char *kaddr; 265 unsigned long map_start; 266 unsigned long map_len; 267 int err; 268 u32 crc = ~(u32)0; 269 unsigned long inline_result; 270 271 len = buf->len - offset; 272 while (len > 0) { 273 err = map_private_extent_buffer(buf, offset, 32, 274 &kaddr, &map_start, &map_len); 275 if (err) 276 return 1; 277 cur_len = min(len, map_len - (offset - map_start)); 278 crc = btrfs_csum_data(root, kaddr + offset - map_start, 279 crc, cur_len); 280 len -= cur_len; 281 offset += cur_len; 282 } 283 if (csum_size > sizeof(inline_result)) { 284 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 285 if (!result) 286 return 1; 287 } else { 288 result = (char *)&inline_result; 289 } 290 291 btrfs_csum_final(crc, result); 292 293 if (verify) { 294 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 295 u32 val; 296 u32 found = 0; 297 memcpy(&found, result, csum_size); 298 299 read_extent_buffer(buf, &val, 0, csum_size); 300 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify " 301 "failed on %llu wanted %X found %X " 302 "level %d\n", 303 root->fs_info->sb->s_id, 304 (unsigned long long)buf->start, val, found, 305 btrfs_header_level(buf)); 306 if (result != (char *)&inline_result) 307 kfree(result); 308 return 1; 309 } 310 } else { 311 write_extent_buffer(buf, result, 0, csum_size); 312 } 313 if (result != (char *)&inline_result) 314 kfree(result); 315 return 0; 316 } 317 318 /* 319 * we can't consider a given block up to date unless the transid of the 320 * block matches the transid in the parent node's pointer. This is how we 321 * detect blocks that either didn't get written at all or got written 322 * in the wrong place. 323 */ 324 static int verify_parent_transid(struct extent_io_tree *io_tree, 325 struct extent_buffer *eb, u64 parent_transid) 326 { 327 struct extent_state *cached_state = NULL; 328 int ret; 329 330 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 331 return 0; 332 333 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 334 0, &cached_state, GFP_NOFS); 335 if (extent_buffer_uptodate(io_tree, eb, cached_state) && 336 btrfs_header_generation(eb) == parent_transid) { 337 ret = 0; 338 goto out; 339 } 340 printk_ratelimited("parent transid verify failed on %llu wanted %llu " 341 "found %llu\n", 342 (unsigned long long)eb->start, 343 (unsigned long long)parent_transid, 344 (unsigned long long)btrfs_header_generation(eb)); 345 ret = 1; 346 clear_extent_buffer_uptodate(io_tree, eb, &cached_state); 347 out: 348 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 349 &cached_state, GFP_NOFS); 350 return ret; 351 } 352 353 /* 354 * helper to read a given tree block, doing retries as required when 355 * the checksums don't match and we have alternate mirrors to try. 356 */ 357 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 358 struct extent_buffer *eb, 359 u64 start, u64 parent_transid) 360 { 361 struct extent_io_tree *io_tree; 362 int ret; 363 int num_copies = 0; 364 int mirror_num = 0; 365 366 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 367 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 368 while (1) { 369 ret = read_extent_buffer_pages(io_tree, eb, start, 370 WAIT_COMPLETE, 371 btree_get_extent, mirror_num); 372 if (!ret && 373 !verify_parent_transid(io_tree, eb, parent_transid)) 374 return ret; 375 376 /* 377 * This buffer's crc is fine, but its contents are corrupted, so 378 * there is no reason to read the other copies, they won't be 379 * any less wrong. 380 */ 381 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 382 return ret; 383 384 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 385 eb->start, eb->len); 386 if (num_copies == 1) 387 return ret; 388 389 mirror_num++; 390 if (mirror_num > num_copies) 391 return ret; 392 } 393 return -EIO; 394 } 395 396 /* 397 * checksum a dirty tree block before IO. This has extra checks to make sure 398 * we only fill in the checksum field in the first page of a multi-page block 399 */ 400 401 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 402 { 403 struct extent_io_tree *tree; 404 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 405 u64 found_start; 406 unsigned long len; 407 struct extent_buffer *eb; 408 int ret; 409 410 tree = &BTRFS_I(page->mapping->host)->io_tree; 411 412 if (page->private == EXTENT_PAGE_PRIVATE) { 413 WARN_ON(1); 414 goto out; 415 } 416 if (!page->private) { 417 WARN_ON(1); 418 goto out; 419 } 420 len = page->private >> 2; 421 WARN_ON(len == 0); 422 423 eb = alloc_extent_buffer(tree, start, len, page); 424 if (eb == NULL) { 425 WARN_ON(1); 426 goto out; 427 } 428 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE, 429 btrfs_header_generation(eb)); 430 BUG_ON(ret); 431 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN)); 432 433 found_start = btrfs_header_bytenr(eb); 434 if (found_start != start) { 435 WARN_ON(1); 436 goto err; 437 } 438 if (eb->first_page != page) { 439 WARN_ON(1); 440 goto err; 441 } 442 if (!PageUptodate(page)) { 443 WARN_ON(1); 444 goto err; 445 } 446 csum_tree_block(root, eb, 0); 447 err: 448 free_extent_buffer(eb); 449 out: 450 return 0; 451 } 452 453 static int check_tree_block_fsid(struct btrfs_root *root, 454 struct extent_buffer *eb) 455 { 456 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 457 u8 fsid[BTRFS_UUID_SIZE]; 458 int ret = 1; 459 460 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 461 BTRFS_FSID_SIZE); 462 while (fs_devices) { 463 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 464 ret = 0; 465 break; 466 } 467 fs_devices = fs_devices->seed; 468 } 469 return ret; 470 } 471 472 #define CORRUPT(reason, eb, root, slot) \ 473 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \ 474 "root=%llu, slot=%d\n", reason, \ 475 (unsigned long long)btrfs_header_bytenr(eb), \ 476 (unsigned long long)root->objectid, slot) 477 478 static noinline int check_leaf(struct btrfs_root *root, 479 struct extent_buffer *leaf) 480 { 481 struct btrfs_key key; 482 struct btrfs_key leaf_key; 483 u32 nritems = btrfs_header_nritems(leaf); 484 int slot; 485 486 if (nritems == 0) 487 return 0; 488 489 /* Check the 0 item */ 490 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 491 BTRFS_LEAF_DATA_SIZE(root)) { 492 CORRUPT("invalid item offset size pair", leaf, root, 0); 493 return -EIO; 494 } 495 496 /* 497 * Check to make sure each items keys are in the correct order and their 498 * offsets make sense. We only have to loop through nritems-1 because 499 * we check the current slot against the next slot, which verifies the 500 * next slot's offset+size makes sense and that the current's slot 501 * offset is correct. 502 */ 503 for (slot = 0; slot < nritems - 1; slot++) { 504 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 505 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 506 507 /* Make sure the keys are in the right order */ 508 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 509 CORRUPT("bad key order", leaf, root, slot); 510 return -EIO; 511 } 512 513 /* 514 * Make sure the offset and ends are right, remember that the 515 * item data starts at the end of the leaf and grows towards the 516 * front. 517 */ 518 if (btrfs_item_offset_nr(leaf, slot) != 519 btrfs_item_end_nr(leaf, slot + 1)) { 520 CORRUPT("slot offset bad", leaf, root, slot); 521 return -EIO; 522 } 523 524 /* 525 * Check to make sure that we don't point outside of the leaf, 526 * just incase all the items are consistent to eachother, but 527 * all point outside of the leaf. 528 */ 529 if (btrfs_item_end_nr(leaf, slot) > 530 BTRFS_LEAF_DATA_SIZE(root)) { 531 CORRUPT("slot end outside of leaf", leaf, root, slot); 532 return -EIO; 533 } 534 } 535 536 return 0; 537 } 538 539 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 540 struct extent_state *state) 541 { 542 struct extent_io_tree *tree; 543 u64 found_start; 544 int found_level; 545 unsigned long len; 546 struct extent_buffer *eb; 547 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 548 int ret = 0; 549 550 tree = &BTRFS_I(page->mapping->host)->io_tree; 551 if (page->private == EXTENT_PAGE_PRIVATE) 552 goto out; 553 if (!page->private) 554 goto out; 555 556 len = page->private >> 2; 557 WARN_ON(len == 0); 558 559 eb = alloc_extent_buffer(tree, start, len, page); 560 if (eb == NULL) { 561 ret = -EIO; 562 goto out; 563 } 564 565 found_start = btrfs_header_bytenr(eb); 566 if (found_start != start) { 567 printk_ratelimited(KERN_INFO "btrfs bad tree block start " 568 "%llu %llu\n", 569 (unsigned long long)found_start, 570 (unsigned long long)eb->start); 571 ret = -EIO; 572 goto err; 573 } 574 if (eb->first_page != page) { 575 printk(KERN_INFO "btrfs bad first page %lu %lu\n", 576 eb->first_page->index, page->index); 577 WARN_ON(1); 578 ret = -EIO; 579 goto err; 580 } 581 if (check_tree_block_fsid(root, eb)) { 582 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n", 583 (unsigned long long)eb->start); 584 ret = -EIO; 585 goto err; 586 } 587 found_level = btrfs_header_level(eb); 588 589 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 590 eb, found_level); 591 592 ret = csum_tree_block(root, eb, 1); 593 if (ret) { 594 ret = -EIO; 595 goto err; 596 } 597 598 /* 599 * If this is a leaf block and it is corrupt, set the corrupt bit so 600 * that we don't try and read the other copies of this block, just 601 * return -EIO. 602 */ 603 if (found_level == 0 && check_leaf(root, eb)) { 604 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 605 ret = -EIO; 606 } 607 608 end = min_t(u64, eb->len, PAGE_CACHE_SIZE); 609 end = eb->start + end - 1; 610 err: 611 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) { 612 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags); 613 btree_readahead_hook(root, eb, eb->start, ret); 614 } 615 616 free_extent_buffer(eb); 617 out: 618 return ret; 619 } 620 621 static int btree_io_failed_hook(struct bio *failed_bio, 622 struct page *page, u64 start, u64 end, 623 u64 mirror_num, struct extent_state *state) 624 { 625 struct extent_io_tree *tree; 626 unsigned long len; 627 struct extent_buffer *eb; 628 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 629 630 tree = &BTRFS_I(page->mapping->host)->io_tree; 631 if (page->private == EXTENT_PAGE_PRIVATE) 632 goto out; 633 if (!page->private) 634 goto out; 635 636 len = page->private >> 2; 637 WARN_ON(len == 0); 638 639 eb = alloc_extent_buffer(tree, start, len, page); 640 if (eb == NULL) 641 goto out; 642 643 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) { 644 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags); 645 btree_readahead_hook(root, eb, eb->start, -EIO); 646 } 647 free_extent_buffer(eb); 648 649 out: 650 return -EIO; /* we fixed nothing */ 651 } 652 653 static void end_workqueue_bio(struct bio *bio, int err) 654 { 655 struct end_io_wq *end_io_wq = bio->bi_private; 656 struct btrfs_fs_info *fs_info; 657 658 fs_info = end_io_wq->info; 659 end_io_wq->error = err; 660 end_io_wq->work.func = end_workqueue_fn; 661 end_io_wq->work.flags = 0; 662 663 if (bio->bi_rw & REQ_WRITE) { 664 if (end_io_wq->metadata == 1) 665 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 666 &end_io_wq->work); 667 else if (end_io_wq->metadata == 2) 668 btrfs_queue_worker(&fs_info->endio_freespace_worker, 669 &end_io_wq->work); 670 else 671 btrfs_queue_worker(&fs_info->endio_write_workers, 672 &end_io_wq->work); 673 } else { 674 if (end_io_wq->metadata) 675 btrfs_queue_worker(&fs_info->endio_meta_workers, 676 &end_io_wq->work); 677 else 678 btrfs_queue_worker(&fs_info->endio_workers, 679 &end_io_wq->work); 680 } 681 } 682 683 /* 684 * For the metadata arg you want 685 * 686 * 0 - if data 687 * 1 - if normal metadta 688 * 2 - if writing to the free space cache area 689 */ 690 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 691 int metadata) 692 { 693 struct end_io_wq *end_io_wq; 694 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 695 if (!end_io_wq) 696 return -ENOMEM; 697 698 end_io_wq->private = bio->bi_private; 699 end_io_wq->end_io = bio->bi_end_io; 700 end_io_wq->info = info; 701 end_io_wq->error = 0; 702 end_io_wq->bio = bio; 703 end_io_wq->metadata = metadata; 704 705 bio->bi_private = end_io_wq; 706 bio->bi_end_io = end_workqueue_bio; 707 return 0; 708 } 709 710 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 711 { 712 unsigned long limit = min_t(unsigned long, 713 info->workers.max_workers, 714 info->fs_devices->open_devices); 715 return 256 * limit; 716 } 717 718 static void run_one_async_start(struct btrfs_work *work) 719 { 720 struct async_submit_bio *async; 721 722 async = container_of(work, struct async_submit_bio, work); 723 async->submit_bio_start(async->inode, async->rw, async->bio, 724 async->mirror_num, async->bio_flags, 725 async->bio_offset); 726 } 727 728 static void run_one_async_done(struct btrfs_work *work) 729 { 730 struct btrfs_fs_info *fs_info; 731 struct async_submit_bio *async; 732 int limit; 733 734 async = container_of(work, struct async_submit_bio, work); 735 fs_info = BTRFS_I(async->inode)->root->fs_info; 736 737 limit = btrfs_async_submit_limit(fs_info); 738 limit = limit * 2 / 3; 739 740 atomic_dec(&fs_info->nr_async_submits); 741 742 if (atomic_read(&fs_info->nr_async_submits) < limit && 743 waitqueue_active(&fs_info->async_submit_wait)) 744 wake_up(&fs_info->async_submit_wait); 745 746 async->submit_bio_done(async->inode, async->rw, async->bio, 747 async->mirror_num, async->bio_flags, 748 async->bio_offset); 749 } 750 751 static void run_one_async_free(struct btrfs_work *work) 752 { 753 struct async_submit_bio *async; 754 755 async = container_of(work, struct async_submit_bio, work); 756 kfree(async); 757 } 758 759 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 760 int rw, struct bio *bio, int mirror_num, 761 unsigned long bio_flags, 762 u64 bio_offset, 763 extent_submit_bio_hook_t *submit_bio_start, 764 extent_submit_bio_hook_t *submit_bio_done) 765 { 766 struct async_submit_bio *async; 767 768 async = kmalloc(sizeof(*async), GFP_NOFS); 769 if (!async) 770 return -ENOMEM; 771 772 async->inode = inode; 773 async->rw = rw; 774 async->bio = bio; 775 async->mirror_num = mirror_num; 776 async->submit_bio_start = submit_bio_start; 777 async->submit_bio_done = submit_bio_done; 778 779 async->work.func = run_one_async_start; 780 async->work.ordered_func = run_one_async_done; 781 async->work.ordered_free = run_one_async_free; 782 783 async->work.flags = 0; 784 async->bio_flags = bio_flags; 785 async->bio_offset = bio_offset; 786 787 atomic_inc(&fs_info->nr_async_submits); 788 789 if (rw & REQ_SYNC) 790 btrfs_set_work_high_prio(&async->work); 791 792 btrfs_queue_worker(&fs_info->workers, &async->work); 793 794 while (atomic_read(&fs_info->async_submit_draining) && 795 atomic_read(&fs_info->nr_async_submits)) { 796 wait_event(fs_info->async_submit_wait, 797 (atomic_read(&fs_info->nr_async_submits) == 0)); 798 } 799 800 return 0; 801 } 802 803 static int btree_csum_one_bio(struct bio *bio) 804 { 805 struct bio_vec *bvec = bio->bi_io_vec; 806 int bio_index = 0; 807 struct btrfs_root *root; 808 809 WARN_ON(bio->bi_vcnt <= 0); 810 while (bio_index < bio->bi_vcnt) { 811 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 812 csum_dirty_buffer(root, bvec->bv_page); 813 bio_index++; 814 bvec++; 815 } 816 return 0; 817 } 818 819 static int __btree_submit_bio_start(struct inode *inode, int rw, 820 struct bio *bio, int mirror_num, 821 unsigned long bio_flags, 822 u64 bio_offset) 823 { 824 /* 825 * when we're called for a write, we're already in the async 826 * submission context. Just jump into btrfs_map_bio 827 */ 828 btree_csum_one_bio(bio); 829 return 0; 830 } 831 832 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 833 int mirror_num, unsigned long bio_flags, 834 u64 bio_offset) 835 { 836 /* 837 * when we're called for a write, we're already in the async 838 * submission context. Just jump into btrfs_map_bio 839 */ 840 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 841 } 842 843 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 844 int mirror_num, unsigned long bio_flags, 845 u64 bio_offset) 846 { 847 int ret; 848 849 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 850 bio, 1); 851 BUG_ON(ret); 852 853 if (!(rw & REQ_WRITE)) { 854 /* 855 * called for a read, do the setup so that checksum validation 856 * can happen in the async kernel threads 857 */ 858 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 859 mirror_num, 0); 860 } 861 862 /* 863 * kthread helpers are used to submit writes so that checksumming 864 * can happen in parallel across all CPUs 865 */ 866 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 867 inode, rw, bio, mirror_num, 0, 868 bio_offset, 869 __btree_submit_bio_start, 870 __btree_submit_bio_done); 871 } 872 873 #ifdef CONFIG_MIGRATION 874 static int btree_migratepage(struct address_space *mapping, 875 struct page *newpage, struct page *page) 876 { 877 /* 878 * we can't safely write a btree page from here, 879 * we haven't done the locking hook 880 */ 881 if (PageDirty(page)) 882 return -EAGAIN; 883 /* 884 * Buffers may be managed in a filesystem specific way. 885 * We must have no buffers or drop them. 886 */ 887 if (page_has_private(page) && 888 !try_to_release_page(page, GFP_KERNEL)) 889 return -EAGAIN; 890 return migrate_page(mapping, newpage, page); 891 } 892 #endif 893 894 static int btree_writepage(struct page *page, struct writeback_control *wbc) 895 { 896 struct extent_io_tree *tree; 897 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 898 struct extent_buffer *eb; 899 int was_dirty; 900 901 tree = &BTRFS_I(page->mapping->host)->io_tree; 902 if (!(current->flags & PF_MEMALLOC)) { 903 return extent_write_full_page(tree, page, 904 btree_get_extent, wbc); 905 } 906 907 redirty_page_for_writepage(wbc, page); 908 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE); 909 WARN_ON(!eb); 910 911 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 912 if (!was_dirty) { 913 spin_lock(&root->fs_info->delalloc_lock); 914 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE; 915 spin_unlock(&root->fs_info->delalloc_lock); 916 } 917 free_extent_buffer(eb); 918 919 unlock_page(page); 920 return 0; 921 } 922 923 static int btree_writepages(struct address_space *mapping, 924 struct writeback_control *wbc) 925 { 926 struct extent_io_tree *tree; 927 tree = &BTRFS_I(mapping->host)->io_tree; 928 if (wbc->sync_mode == WB_SYNC_NONE) { 929 struct btrfs_root *root = BTRFS_I(mapping->host)->root; 930 u64 num_dirty; 931 unsigned long thresh = 32 * 1024 * 1024; 932 933 if (wbc->for_kupdate) 934 return 0; 935 936 /* this is a bit racy, but that's ok */ 937 num_dirty = root->fs_info->dirty_metadata_bytes; 938 if (num_dirty < thresh) 939 return 0; 940 } 941 return extent_writepages(tree, mapping, btree_get_extent, wbc); 942 } 943 944 static int btree_readpage(struct file *file, struct page *page) 945 { 946 struct extent_io_tree *tree; 947 tree = &BTRFS_I(page->mapping->host)->io_tree; 948 return extent_read_full_page(tree, page, btree_get_extent, 0); 949 } 950 951 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 952 { 953 struct extent_io_tree *tree; 954 struct extent_map_tree *map; 955 int ret; 956 957 if (PageWriteback(page) || PageDirty(page)) 958 return 0; 959 960 tree = &BTRFS_I(page->mapping->host)->io_tree; 961 map = &BTRFS_I(page->mapping->host)->extent_tree; 962 963 ret = try_release_extent_state(map, tree, page, gfp_flags); 964 if (!ret) 965 return 0; 966 967 ret = try_release_extent_buffer(tree, page); 968 if (ret == 1) { 969 ClearPagePrivate(page); 970 set_page_private(page, 0); 971 page_cache_release(page); 972 } 973 974 return ret; 975 } 976 977 static void btree_invalidatepage(struct page *page, unsigned long offset) 978 { 979 struct extent_io_tree *tree; 980 tree = &BTRFS_I(page->mapping->host)->io_tree; 981 extent_invalidatepage(tree, page, offset); 982 btree_releasepage(page, GFP_NOFS); 983 if (PagePrivate(page)) { 984 printk(KERN_WARNING "btrfs warning page private not zero " 985 "on page %llu\n", (unsigned long long)page_offset(page)); 986 ClearPagePrivate(page); 987 set_page_private(page, 0); 988 page_cache_release(page); 989 } 990 } 991 992 static const struct address_space_operations btree_aops = { 993 .readpage = btree_readpage, 994 .writepage = btree_writepage, 995 .writepages = btree_writepages, 996 .releasepage = btree_releasepage, 997 .invalidatepage = btree_invalidatepage, 998 #ifdef CONFIG_MIGRATION 999 .migratepage = btree_migratepage, 1000 #endif 1001 }; 1002 1003 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1004 u64 parent_transid) 1005 { 1006 struct extent_buffer *buf = NULL; 1007 struct inode *btree_inode = root->fs_info->btree_inode; 1008 int ret = 0; 1009 1010 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1011 if (!buf) 1012 return 0; 1013 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1014 buf, 0, WAIT_NONE, btree_get_extent, 0); 1015 free_extent_buffer(buf); 1016 return ret; 1017 } 1018 1019 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1020 int mirror_num, struct extent_buffer **eb) 1021 { 1022 struct extent_buffer *buf = NULL; 1023 struct inode *btree_inode = root->fs_info->btree_inode; 1024 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1025 int ret; 1026 1027 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1028 if (!buf) 1029 return 0; 1030 1031 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1032 1033 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1034 btree_get_extent, mirror_num); 1035 if (ret) { 1036 free_extent_buffer(buf); 1037 return ret; 1038 } 1039 1040 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1041 free_extent_buffer(buf); 1042 return -EIO; 1043 } else if (extent_buffer_uptodate(io_tree, buf, NULL)) { 1044 *eb = buf; 1045 } else { 1046 free_extent_buffer(buf); 1047 } 1048 return 0; 1049 } 1050 1051 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 1052 u64 bytenr, u32 blocksize) 1053 { 1054 struct inode *btree_inode = root->fs_info->btree_inode; 1055 struct extent_buffer *eb; 1056 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1057 bytenr, blocksize); 1058 return eb; 1059 } 1060 1061 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1062 u64 bytenr, u32 blocksize) 1063 { 1064 struct inode *btree_inode = root->fs_info->btree_inode; 1065 struct extent_buffer *eb; 1066 1067 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1068 bytenr, blocksize, NULL); 1069 return eb; 1070 } 1071 1072 1073 int btrfs_write_tree_block(struct extent_buffer *buf) 1074 { 1075 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start, 1076 buf->start + buf->len - 1); 1077 } 1078 1079 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1080 { 1081 return filemap_fdatawait_range(buf->first_page->mapping, 1082 buf->start, buf->start + buf->len - 1); 1083 } 1084 1085 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1086 u32 blocksize, u64 parent_transid) 1087 { 1088 struct extent_buffer *buf = NULL; 1089 int ret; 1090 1091 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1092 if (!buf) 1093 return NULL; 1094 1095 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1096 1097 if (ret == 0) 1098 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 1099 return buf; 1100 1101 } 1102 1103 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1104 struct extent_buffer *buf) 1105 { 1106 struct inode *btree_inode = root->fs_info->btree_inode; 1107 if (btrfs_header_generation(buf) == 1108 root->fs_info->running_transaction->transid) { 1109 btrfs_assert_tree_locked(buf); 1110 1111 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1112 spin_lock(&root->fs_info->delalloc_lock); 1113 if (root->fs_info->dirty_metadata_bytes >= buf->len) 1114 root->fs_info->dirty_metadata_bytes -= buf->len; 1115 else 1116 WARN_ON(1); 1117 spin_unlock(&root->fs_info->delalloc_lock); 1118 } 1119 1120 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1121 btrfs_set_lock_blocking(buf); 1122 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 1123 buf); 1124 } 1125 return 0; 1126 } 1127 1128 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 1129 u32 stripesize, struct btrfs_root *root, 1130 struct btrfs_fs_info *fs_info, 1131 u64 objectid) 1132 { 1133 root->node = NULL; 1134 root->commit_root = NULL; 1135 root->sectorsize = sectorsize; 1136 root->nodesize = nodesize; 1137 root->leafsize = leafsize; 1138 root->stripesize = stripesize; 1139 root->ref_cows = 0; 1140 root->track_dirty = 0; 1141 root->in_radix = 0; 1142 root->orphan_item_inserted = 0; 1143 root->orphan_cleanup_state = 0; 1144 1145 root->fs_info = fs_info; 1146 root->objectid = objectid; 1147 root->last_trans = 0; 1148 root->highest_objectid = 0; 1149 root->name = NULL; 1150 root->inode_tree = RB_ROOT; 1151 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1152 root->block_rsv = NULL; 1153 root->orphan_block_rsv = NULL; 1154 1155 INIT_LIST_HEAD(&root->dirty_list); 1156 INIT_LIST_HEAD(&root->orphan_list); 1157 INIT_LIST_HEAD(&root->root_list); 1158 spin_lock_init(&root->orphan_lock); 1159 spin_lock_init(&root->inode_lock); 1160 spin_lock_init(&root->accounting_lock); 1161 mutex_init(&root->objectid_mutex); 1162 mutex_init(&root->log_mutex); 1163 init_waitqueue_head(&root->log_writer_wait); 1164 init_waitqueue_head(&root->log_commit_wait[0]); 1165 init_waitqueue_head(&root->log_commit_wait[1]); 1166 atomic_set(&root->log_commit[0], 0); 1167 atomic_set(&root->log_commit[1], 0); 1168 atomic_set(&root->log_writers, 0); 1169 root->log_batch = 0; 1170 root->log_transid = 0; 1171 root->last_log_commit = 0; 1172 extent_io_tree_init(&root->dirty_log_pages, 1173 fs_info->btree_inode->i_mapping); 1174 1175 memset(&root->root_key, 0, sizeof(root->root_key)); 1176 memset(&root->root_item, 0, sizeof(root->root_item)); 1177 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1178 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1179 root->defrag_trans_start = fs_info->generation; 1180 init_completion(&root->kobj_unregister); 1181 root->defrag_running = 0; 1182 root->root_key.objectid = objectid; 1183 root->anon_dev = 0; 1184 return 0; 1185 } 1186 1187 static int find_and_setup_root(struct btrfs_root *tree_root, 1188 struct btrfs_fs_info *fs_info, 1189 u64 objectid, 1190 struct btrfs_root *root) 1191 { 1192 int ret; 1193 u32 blocksize; 1194 u64 generation; 1195 1196 __setup_root(tree_root->nodesize, tree_root->leafsize, 1197 tree_root->sectorsize, tree_root->stripesize, 1198 root, fs_info, objectid); 1199 ret = btrfs_find_last_root(tree_root, objectid, 1200 &root->root_item, &root->root_key); 1201 if (ret > 0) 1202 return -ENOENT; 1203 BUG_ON(ret); 1204 1205 generation = btrfs_root_generation(&root->root_item); 1206 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1207 root->commit_root = NULL; 1208 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1209 blocksize, generation); 1210 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) { 1211 free_extent_buffer(root->node); 1212 root->node = NULL; 1213 return -EIO; 1214 } 1215 root->commit_root = btrfs_root_node(root); 1216 return 0; 1217 } 1218 1219 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1220 struct btrfs_fs_info *fs_info) 1221 { 1222 struct btrfs_root *root; 1223 struct btrfs_root *tree_root = fs_info->tree_root; 1224 struct extent_buffer *leaf; 1225 1226 root = kzalloc(sizeof(*root), GFP_NOFS); 1227 if (!root) 1228 return ERR_PTR(-ENOMEM); 1229 1230 __setup_root(tree_root->nodesize, tree_root->leafsize, 1231 tree_root->sectorsize, tree_root->stripesize, 1232 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1233 1234 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1235 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1236 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1237 /* 1238 * log trees do not get reference counted because they go away 1239 * before a real commit is actually done. They do store pointers 1240 * to file data extents, and those reference counts still get 1241 * updated (along with back refs to the log tree). 1242 */ 1243 root->ref_cows = 0; 1244 1245 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1246 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0); 1247 if (IS_ERR(leaf)) { 1248 kfree(root); 1249 return ERR_CAST(leaf); 1250 } 1251 1252 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1253 btrfs_set_header_bytenr(leaf, leaf->start); 1254 btrfs_set_header_generation(leaf, trans->transid); 1255 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1256 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1257 root->node = leaf; 1258 1259 write_extent_buffer(root->node, root->fs_info->fsid, 1260 (unsigned long)btrfs_header_fsid(root->node), 1261 BTRFS_FSID_SIZE); 1262 btrfs_mark_buffer_dirty(root->node); 1263 btrfs_tree_unlock(root->node); 1264 return root; 1265 } 1266 1267 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1268 struct btrfs_fs_info *fs_info) 1269 { 1270 struct btrfs_root *log_root; 1271 1272 log_root = alloc_log_tree(trans, fs_info); 1273 if (IS_ERR(log_root)) 1274 return PTR_ERR(log_root); 1275 WARN_ON(fs_info->log_root_tree); 1276 fs_info->log_root_tree = log_root; 1277 return 0; 1278 } 1279 1280 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1281 struct btrfs_root *root) 1282 { 1283 struct btrfs_root *log_root; 1284 struct btrfs_inode_item *inode_item; 1285 1286 log_root = alloc_log_tree(trans, root->fs_info); 1287 if (IS_ERR(log_root)) 1288 return PTR_ERR(log_root); 1289 1290 log_root->last_trans = trans->transid; 1291 log_root->root_key.offset = root->root_key.objectid; 1292 1293 inode_item = &log_root->root_item.inode; 1294 inode_item->generation = cpu_to_le64(1); 1295 inode_item->size = cpu_to_le64(3); 1296 inode_item->nlink = cpu_to_le32(1); 1297 inode_item->nbytes = cpu_to_le64(root->leafsize); 1298 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1299 1300 btrfs_set_root_node(&log_root->root_item, log_root->node); 1301 1302 WARN_ON(root->log_root); 1303 root->log_root = log_root; 1304 root->log_transid = 0; 1305 root->last_log_commit = 0; 1306 return 0; 1307 } 1308 1309 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1310 struct btrfs_key *location) 1311 { 1312 struct btrfs_root *root; 1313 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1314 struct btrfs_path *path; 1315 struct extent_buffer *l; 1316 u64 generation; 1317 u32 blocksize; 1318 int ret = 0; 1319 1320 root = kzalloc(sizeof(*root), GFP_NOFS); 1321 if (!root) 1322 return ERR_PTR(-ENOMEM); 1323 if (location->offset == (u64)-1) { 1324 ret = find_and_setup_root(tree_root, fs_info, 1325 location->objectid, root); 1326 if (ret) { 1327 kfree(root); 1328 return ERR_PTR(ret); 1329 } 1330 goto out; 1331 } 1332 1333 __setup_root(tree_root->nodesize, tree_root->leafsize, 1334 tree_root->sectorsize, tree_root->stripesize, 1335 root, fs_info, location->objectid); 1336 1337 path = btrfs_alloc_path(); 1338 if (!path) { 1339 kfree(root); 1340 return ERR_PTR(-ENOMEM); 1341 } 1342 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1343 if (ret == 0) { 1344 l = path->nodes[0]; 1345 read_extent_buffer(l, &root->root_item, 1346 btrfs_item_ptr_offset(l, path->slots[0]), 1347 sizeof(root->root_item)); 1348 memcpy(&root->root_key, location, sizeof(*location)); 1349 } 1350 btrfs_free_path(path); 1351 if (ret) { 1352 kfree(root); 1353 if (ret > 0) 1354 ret = -ENOENT; 1355 return ERR_PTR(ret); 1356 } 1357 1358 generation = btrfs_root_generation(&root->root_item); 1359 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1360 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1361 blocksize, generation); 1362 root->commit_root = btrfs_root_node(root); 1363 BUG_ON(!root->node); 1364 out: 1365 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { 1366 root->ref_cows = 1; 1367 btrfs_check_and_init_root_item(&root->root_item); 1368 } 1369 1370 return root; 1371 } 1372 1373 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1374 struct btrfs_key *location) 1375 { 1376 struct btrfs_root *root; 1377 int ret; 1378 1379 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1380 return fs_info->tree_root; 1381 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1382 return fs_info->extent_root; 1383 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1384 return fs_info->chunk_root; 1385 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1386 return fs_info->dev_root; 1387 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1388 return fs_info->csum_root; 1389 again: 1390 spin_lock(&fs_info->fs_roots_radix_lock); 1391 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1392 (unsigned long)location->objectid); 1393 spin_unlock(&fs_info->fs_roots_radix_lock); 1394 if (root) 1395 return root; 1396 1397 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1398 if (IS_ERR(root)) 1399 return root; 1400 1401 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1402 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1403 GFP_NOFS); 1404 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1405 ret = -ENOMEM; 1406 goto fail; 1407 } 1408 1409 btrfs_init_free_ino_ctl(root); 1410 mutex_init(&root->fs_commit_mutex); 1411 spin_lock_init(&root->cache_lock); 1412 init_waitqueue_head(&root->cache_wait); 1413 1414 ret = get_anon_bdev(&root->anon_dev); 1415 if (ret) 1416 goto fail; 1417 1418 if (btrfs_root_refs(&root->root_item) == 0) { 1419 ret = -ENOENT; 1420 goto fail; 1421 } 1422 1423 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); 1424 if (ret < 0) 1425 goto fail; 1426 if (ret == 0) 1427 root->orphan_item_inserted = 1; 1428 1429 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1430 if (ret) 1431 goto fail; 1432 1433 spin_lock(&fs_info->fs_roots_radix_lock); 1434 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1435 (unsigned long)root->root_key.objectid, 1436 root); 1437 if (ret == 0) 1438 root->in_radix = 1; 1439 1440 spin_unlock(&fs_info->fs_roots_radix_lock); 1441 radix_tree_preload_end(); 1442 if (ret) { 1443 if (ret == -EEXIST) { 1444 free_fs_root(root); 1445 goto again; 1446 } 1447 goto fail; 1448 } 1449 1450 ret = btrfs_find_dead_roots(fs_info->tree_root, 1451 root->root_key.objectid); 1452 WARN_ON(ret); 1453 return root; 1454 fail: 1455 free_fs_root(root); 1456 return ERR_PTR(ret); 1457 } 1458 1459 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1460 { 1461 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1462 int ret = 0; 1463 struct btrfs_device *device; 1464 struct backing_dev_info *bdi; 1465 1466 rcu_read_lock(); 1467 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1468 if (!device->bdev) 1469 continue; 1470 bdi = blk_get_backing_dev_info(device->bdev); 1471 if (bdi && bdi_congested(bdi, bdi_bits)) { 1472 ret = 1; 1473 break; 1474 } 1475 } 1476 rcu_read_unlock(); 1477 return ret; 1478 } 1479 1480 /* 1481 * If this fails, caller must call bdi_destroy() to get rid of the 1482 * bdi again. 1483 */ 1484 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1485 { 1486 int err; 1487 1488 bdi->capabilities = BDI_CAP_MAP_COPY; 1489 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1490 if (err) 1491 return err; 1492 1493 bdi->ra_pages = default_backing_dev_info.ra_pages; 1494 bdi->congested_fn = btrfs_congested_fn; 1495 bdi->congested_data = info; 1496 return 0; 1497 } 1498 1499 static int bio_ready_for_csum(struct bio *bio) 1500 { 1501 u64 length = 0; 1502 u64 buf_len = 0; 1503 u64 start = 0; 1504 struct page *page; 1505 struct extent_io_tree *io_tree = NULL; 1506 struct bio_vec *bvec; 1507 int i; 1508 int ret; 1509 1510 bio_for_each_segment(bvec, bio, i) { 1511 page = bvec->bv_page; 1512 if (page->private == EXTENT_PAGE_PRIVATE) { 1513 length += bvec->bv_len; 1514 continue; 1515 } 1516 if (!page->private) { 1517 length += bvec->bv_len; 1518 continue; 1519 } 1520 length = bvec->bv_len; 1521 buf_len = page->private >> 2; 1522 start = page_offset(page) + bvec->bv_offset; 1523 io_tree = &BTRFS_I(page->mapping->host)->io_tree; 1524 } 1525 /* are we fully contained in this bio? */ 1526 if (buf_len <= length) 1527 return 1; 1528 1529 ret = extent_range_uptodate(io_tree, start + length, 1530 start + buf_len - 1); 1531 return ret; 1532 } 1533 1534 /* 1535 * called by the kthread helper functions to finally call the bio end_io 1536 * functions. This is where read checksum verification actually happens 1537 */ 1538 static void end_workqueue_fn(struct btrfs_work *work) 1539 { 1540 struct bio *bio; 1541 struct end_io_wq *end_io_wq; 1542 struct btrfs_fs_info *fs_info; 1543 int error; 1544 1545 end_io_wq = container_of(work, struct end_io_wq, work); 1546 bio = end_io_wq->bio; 1547 fs_info = end_io_wq->info; 1548 1549 /* metadata bio reads are special because the whole tree block must 1550 * be checksummed at once. This makes sure the entire block is in 1551 * ram and up to date before trying to verify things. For 1552 * blocksize <= pagesize, it is basically a noop 1553 */ 1554 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata && 1555 !bio_ready_for_csum(bio)) { 1556 btrfs_queue_worker(&fs_info->endio_meta_workers, 1557 &end_io_wq->work); 1558 return; 1559 } 1560 error = end_io_wq->error; 1561 bio->bi_private = end_io_wq->private; 1562 bio->bi_end_io = end_io_wq->end_io; 1563 kfree(end_io_wq); 1564 bio_endio(bio, error); 1565 } 1566 1567 static int cleaner_kthread(void *arg) 1568 { 1569 struct btrfs_root *root = arg; 1570 1571 do { 1572 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1573 1574 if (!(root->fs_info->sb->s_flags & MS_RDONLY) && 1575 mutex_trylock(&root->fs_info->cleaner_mutex)) { 1576 btrfs_run_delayed_iputs(root); 1577 btrfs_clean_old_snapshots(root); 1578 mutex_unlock(&root->fs_info->cleaner_mutex); 1579 btrfs_run_defrag_inodes(root->fs_info); 1580 } 1581 1582 if (freezing(current)) { 1583 refrigerator(); 1584 } else { 1585 set_current_state(TASK_INTERRUPTIBLE); 1586 if (!kthread_should_stop()) 1587 schedule(); 1588 __set_current_state(TASK_RUNNING); 1589 } 1590 } while (!kthread_should_stop()); 1591 return 0; 1592 } 1593 1594 static int transaction_kthread(void *arg) 1595 { 1596 struct btrfs_root *root = arg; 1597 struct btrfs_trans_handle *trans; 1598 struct btrfs_transaction *cur; 1599 u64 transid; 1600 unsigned long now; 1601 unsigned long delay; 1602 int ret; 1603 1604 do { 1605 delay = HZ * 30; 1606 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1607 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1608 1609 spin_lock(&root->fs_info->trans_lock); 1610 cur = root->fs_info->running_transaction; 1611 if (!cur) { 1612 spin_unlock(&root->fs_info->trans_lock); 1613 goto sleep; 1614 } 1615 1616 now = get_seconds(); 1617 if (!cur->blocked && 1618 (now < cur->start_time || now - cur->start_time < 30)) { 1619 spin_unlock(&root->fs_info->trans_lock); 1620 delay = HZ * 5; 1621 goto sleep; 1622 } 1623 transid = cur->transid; 1624 spin_unlock(&root->fs_info->trans_lock); 1625 1626 trans = btrfs_join_transaction(root); 1627 BUG_ON(IS_ERR(trans)); 1628 if (transid == trans->transid) { 1629 ret = btrfs_commit_transaction(trans, root); 1630 BUG_ON(ret); 1631 } else { 1632 btrfs_end_transaction(trans, root); 1633 } 1634 sleep: 1635 wake_up_process(root->fs_info->cleaner_kthread); 1636 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1637 1638 if (freezing(current)) { 1639 refrigerator(); 1640 } else { 1641 set_current_state(TASK_INTERRUPTIBLE); 1642 if (!kthread_should_stop() && 1643 !btrfs_transaction_blocked(root->fs_info)) 1644 schedule_timeout(delay); 1645 __set_current_state(TASK_RUNNING); 1646 } 1647 } while (!kthread_should_stop()); 1648 return 0; 1649 } 1650 1651 /* 1652 * this will find the highest generation in the array of 1653 * root backups. The index of the highest array is returned, 1654 * or -1 if we can't find anything. 1655 * 1656 * We check to make sure the array is valid by comparing the 1657 * generation of the latest root in the array with the generation 1658 * in the super block. If they don't match we pitch it. 1659 */ 1660 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1661 { 1662 u64 cur; 1663 int newest_index = -1; 1664 struct btrfs_root_backup *root_backup; 1665 int i; 1666 1667 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1668 root_backup = info->super_copy->super_roots + i; 1669 cur = btrfs_backup_tree_root_gen(root_backup); 1670 if (cur == newest_gen) 1671 newest_index = i; 1672 } 1673 1674 /* check to see if we actually wrapped around */ 1675 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1676 root_backup = info->super_copy->super_roots; 1677 cur = btrfs_backup_tree_root_gen(root_backup); 1678 if (cur == newest_gen) 1679 newest_index = 0; 1680 } 1681 return newest_index; 1682 } 1683 1684 1685 /* 1686 * find the oldest backup so we know where to store new entries 1687 * in the backup array. This will set the backup_root_index 1688 * field in the fs_info struct 1689 */ 1690 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1691 u64 newest_gen) 1692 { 1693 int newest_index = -1; 1694 1695 newest_index = find_newest_super_backup(info, newest_gen); 1696 /* if there was garbage in there, just move along */ 1697 if (newest_index == -1) { 1698 info->backup_root_index = 0; 1699 } else { 1700 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1701 } 1702 } 1703 1704 /* 1705 * copy all the root pointers into the super backup array. 1706 * this will bump the backup pointer by one when it is 1707 * done 1708 */ 1709 static void backup_super_roots(struct btrfs_fs_info *info) 1710 { 1711 int next_backup; 1712 struct btrfs_root_backup *root_backup; 1713 int last_backup; 1714 1715 next_backup = info->backup_root_index; 1716 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1717 BTRFS_NUM_BACKUP_ROOTS; 1718 1719 /* 1720 * just overwrite the last backup if we're at the same generation 1721 * this happens only at umount 1722 */ 1723 root_backup = info->super_for_commit->super_roots + last_backup; 1724 if (btrfs_backup_tree_root_gen(root_backup) == 1725 btrfs_header_generation(info->tree_root->node)) 1726 next_backup = last_backup; 1727 1728 root_backup = info->super_for_commit->super_roots + next_backup; 1729 1730 /* 1731 * make sure all of our padding and empty slots get zero filled 1732 * regardless of which ones we use today 1733 */ 1734 memset(root_backup, 0, sizeof(*root_backup)); 1735 1736 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1737 1738 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1739 btrfs_set_backup_tree_root_gen(root_backup, 1740 btrfs_header_generation(info->tree_root->node)); 1741 1742 btrfs_set_backup_tree_root_level(root_backup, 1743 btrfs_header_level(info->tree_root->node)); 1744 1745 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1746 btrfs_set_backup_chunk_root_gen(root_backup, 1747 btrfs_header_generation(info->chunk_root->node)); 1748 btrfs_set_backup_chunk_root_level(root_backup, 1749 btrfs_header_level(info->chunk_root->node)); 1750 1751 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1752 btrfs_set_backup_extent_root_gen(root_backup, 1753 btrfs_header_generation(info->extent_root->node)); 1754 btrfs_set_backup_extent_root_level(root_backup, 1755 btrfs_header_level(info->extent_root->node)); 1756 1757 /* 1758 * we might commit during log recovery, which happens before we set 1759 * the fs_root. Make sure it is valid before we fill it in. 1760 */ 1761 if (info->fs_root && info->fs_root->node) { 1762 btrfs_set_backup_fs_root(root_backup, 1763 info->fs_root->node->start); 1764 btrfs_set_backup_fs_root_gen(root_backup, 1765 btrfs_header_generation(info->fs_root->node)); 1766 btrfs_set_backup_fs_root_level(root_backup, 1767 btrfs_header_level(info->fs_root->node)); 1768 } 1769 1770 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1771 btrfs_set_backup_dev_root_gen(root_backup, 1772 btrfs_header_generation(info->dev_root->node)); 1773 btrfs_set_backup_dev_root_level(root_backup, 1774 btrfs_header_level(info->dev_root->node)); 1775 1776 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1777 btrfs_set_backup_csum_root_gen(root_backup, 1778 btrfs_header_generation(info->csum_root->node)); 1779 btrfs_set_backup_csum_root_level(root_backup, 1780 btrfs_header_level(info->csum_root->node)); 1781 1782 btrfs_set_backup_total_bytes(root_backup, 1783 btrfs_super_total_bytes(info->super_copy)); 1784 btrfs_set_backup_bytes_used(root_backup, 1785 btrfs_super_bytes_used(info->super_copy)); 1786 btrfs_set_backup_num_devices(root_backup, 1787 btrfs_super_num_devices(info->super_copy)); 1788 1789 /* 1790 * if we don't copy this out to the super_copy, it won't get remembered 1791 * for the next commit 1792 */ 1793 memcpy(&info->super_copy->super_roots, 1794 &info->super_for_commit->super_roots, 1795 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1796 } 1797 1798 /* 1799 * this copies info out of the root backup array and back into 1800 * the in-memory super block. It is meant to help iterate through 1801 * the array, so you send it the number of backups you've already 1802 * tried and the last backup index you used. 1803 * 1804 * this returns -1 when it has tried all the backups 1805 */ 1806 static noinline int next_root_backup(struct btrfs_fs_info *info, 1807 struct btrfs_super_block *super, 1808 int *num_backups_tried, int *backup_index) 1809 { 1810 struct btrfs_root_backup *root_backup; 1811 int newest = *backup_index; 1812 1813 if (*num_backups_tried == 0) { 1814 u64 gen = btrfs_super_generation(super); 1815 1816 newest = find_newest_super_backup(info, gen); 1817 if (newest == -1) 1818 return -1; 1819 1820 *backup_index = newest; 1821 *num_backups_tried = 1; 1822 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1823 /* we've tried all the backups, all done */ 1824 return -1; 1825 } else { 1826 /* jump to the next oldest backup */ 1827 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1828 BTRFS_NUM_BACKUP_ROOTS; 1829 *backup_index = newest; 1830 *num_backups_tried += 1; 1831 } 1832 root_backup = super->super_roots + newest; 1833 1834 btrfs_set_super_generation(super, 1835 btrfs_backup_tree_root_gen(root_backup)); 1836 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1837 btrfs_set_super_root_level(super, 1838 btrfs_backup_tree_root_level(root_backup)); 1839 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1840 1841 /* 1842 * fixme: the total bytes and num_devices need to match or we should 1843 * need a fsck 1844 */ 1845 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1846 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1847 return 0; 1848 } 1849 1850 /* helper to cleanup tree roots */ 1851 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 1852 { 1853 free_extent_buffer(info->tree_root->node); 1854 free_extent_buffer(info->tree_root->commit_root); 1855 free_extent_buffer(info->dev_root->node); 1856 free_extent_buffer(info->dev_root->commit_root); 1857 free_extent_buffer(info->extent_root->node); 1858 free_extent_buffer(info->extent_root->commit_root); 1859 free_extent_buffer(info->csum_root->node); 1860 free_extent_buffer(info->csum_root->commit_root); 1861 1862 info->tree_root->node = NULL; 1863 info->tree_root->commit_root = NULL; 1864 info->dev_root->node = NULL; 1865 info->dev_root->commit_root = NULL; 1866 info->extent_root->node = NULL; 1867 info->extent_root->commit_root = NULL; 1868 info->csum_root->node = NULL; 1869 info->csum_root->commit_root = NULL; 1870 1871 if (chunk_root) { 1872 free_extent_buffer(info->chunk_root->node); 1873 free_extent_buffer(info->chunk_root->commit_root); 1874 info->chunk_root->node = NULL; 1875 info->chunk_root->commit_root = NULL; 1876 } 1877 } 1878 1879 1880 struct btrfs_root *open_ctree(struct super_block *sb, 1881 struct btrfs_fs_devices *fs_devices, 1882 char *options) 1883 { 1884 u32 sectorsize; 1885 u32 nodesize; 1886 u32 leafsize; 1887 u32 blocksize; 1888 u32 stripesize; 1889 u64 generation; 1890 u64 features; 1891 struct btrfs_key location; 1892 struct buffer_head *bh; 1893 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root), 1894 GFP_NOFS); 1895 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root), 1896 GFP_NOFS); 1897 struct btrfs_root *tree_root = btrfs_sb(sb); 1898 struct btrfs_fs_info *fs_info = NULL; 1899 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root), 1900 GFP_NOFS); 1901 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root), 1902 GFP_NOFS); 1903 struct btrfs_root *log_tree_root; 1904 1905 int ret; 1906 int err = -EINVAL; 1907 int num_backups_tried = 0; 1908 int backup_index = 0; 1909 1910 struct btrfs_super_block *disk_super; 1911 1912 if (!extent_root || !tree_root || !tree_root->fs_info || 1913 !chunk_root || !dev_root || !csum_root) { 1914 err = -ENOMEM; 1915 goto fail; 1916 } 1917 fs_info = tree_root->fs_info; 1918 1919 ret = init_srcu_struct(&fs_info->subvol_srcu); 1920 if (ret) { 1921 err = ret; 1922 goto fail; 1923 } 1924 1925 ret = setup_bdi(fs_info, &fs_info->bdi); 1926 if (ret) { 1927 err = ret; 1928 goto fail_srcu; 1929 } 1930 1931 fs_info->btree_inode = new_inode(sb); 1932 if (!fs_info->btree_inode) { 1933 err = -ENOMEM; 1934 goto fail_bdi; 1935 } 1936 1937 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 1938 1939 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 1940 INIT_LIST_HEAD(&fs_info->trans_list); 1941 INIT_LIST_HEAD(&fs_info->dead_roots); 1942 INIT_LIST_HEAD(&fs_info->delayed_iputs); 1943 INIT_LIST_HEAD(&fs_info->hashers); 1944 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 1945 INIT_LIST_HEAD(&fs_info->ordered_operations); 1946 INIT_LIST_HEAD(&fs_info->caching_block_groups); 1947 spin_lock_init(&fs_info->delalloc_lock); 1948 spin_lock_init(&fs_info->trans_lock); 1949 spin_lock_init(&fs_info->ref_cache_lock); 1950 spin_lock_init(&fs_info->fs_roots_radix_lock); 1951 spin_lock_init(&fs_info->delayed_iput_lock); 1952 spin_lock_init(&fs_info->defrag_inodes_lock); 1953 spin_lock_init(&fs_info->free_chunk_lock); 1954 mutex_init(&fs_info->reloc_mutex); 1955 1956 init_completion(&fs_info->kobj_unregister); 1957 fs_info->tree_root = tree_root; 1958 fs_info->extent_root = extent_root; 1959 fs_info->csum_root = csum_root; 1960 fs_info->chunk_root = chunk_root; 1961 fs_info->dev_root = dev_root; 1962 fs_info->fs_devices = fs_devices; 1963 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 1964 INIT_LIST_HEAD(&fs_info->space_info); 1965 btrfs_mapping_init(&fs_info->mapping_tree); 1966 btrfs_init_block_rsv(&fs_info->global_block_rsv); 1967 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv); 1968 btrfs_init_block_rsv(&fs_info->trans_block_rsv); 1969 btrfs_init_block_rsv(&fs_info->chunk_block_rsv); 1970 btrfs_init_block_rsv(&fs_info->empty_block_rsv); 1971 btrfs_init_block_rsv(&fs_info->delayed_block_rsv); 1972 atomic_set(&fs_info->nr_async_submits, 0); 1973 atomic_set(&fs_info->async_delalloc_pages, 0); 1974 atomic_set(&fs_info->async_submit_draining, 0); 1975 atomic_set(&fs_info->nr_async_bios, 0); 1976 atomic_set(&fs_info->defrag_running, 0); 1977 fs_info->sb = sb; 1978 fs_info->max_inline = 8192 * 1024; 1979 fs_info->metadata_ratio = 0; 1980 fs_info->defrag_inodes = RB_ROOT; 1981 fs_info->trans_no_join = 0; 1982 fs_info->free_chunk_space = 0; 1983 1984 /* readahead state */ 1985 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 1986 spin_lock_init(&fs_info->reada_lock); 1987 1988 fs_info->thread_pool_size = min_t(unsigned long, 1989 num_online_cpus() + 2, 8); 1990 1991 INIT_LIST_HEAD(&fs_info->ordered_extents); 1992 spin_lock_init(&fs_info->ordered_extent_lock); 1993 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 1994 GFP_NOFS); 1995 if (!fs_info->delayed_root) { 1996 err = -ENOMEM; 1997 goto fail_iput; 1998 } 1999 btrfs_init_delayed_root(fs_info->delayed_root); 2000 2001 mutex_init(&fs_info->scrub_lock); 2002 atomic_set(&fs_info->scrubs_running, 0); 2003 atomic_set(&fs_info->scrub_pause_req, 0); 2004 atomic_set(&fs_info->scrubs_paused, 0); 2005 atomic_set(&fs_info->scrub_cancel_req, 0); 2006 init_waitqueue_head(&fs_info->scrub_pause_wait); 2007 init_rwsem(&fs_info->scrub_super_lock); 2008 fs_info->scrub_workers_refcnt = 0; 2009 2010 sb->s_blocksize = 4096; 2011 sb->s_blocksize_bits = blksize_bits(4096); 2012 sb->s_bdi = &fs_info->bdi; 2013 2014 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2015 set_nlink(fs_info->btree_inode, 1); 2016 /* 2017 * we set the i_size on the btree inode to the max possible int. 2018 * the real end of the address space is determined by all of 2019 * the devices in the system 2020 */ 2021 fs_info->btree_inode->i_size = OFFSET_MAX; 2022 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2023 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 2024 2025 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2026 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2027 fs_info->btree_inode->i_mapping); 2028 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2029 2030 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2031 2032 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2033 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2034 sizeof(struct btrfs_key)); 2035 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1; 2036 insert_inode_hash(fs_info->btree_inode); 2037 2038 spin_lock_init(&fs_info->block_group_cache_lock); 2039 fs_info->block_group_cache_tree = RB_ROOT; 2040 2041 extent_io_tree_init(&fs_info->freed_extents[0], 2042 fs_info->btree_inode->i_mapping); 2043 extent_io_tree_init(&fs_info->freed_extents[1], 2044 fs_info->btree_inode->i_mapping); 2045 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2046 fs_info->do_barriers = 1; 2047 2048 2049 mutex_init(&fs_info->ordered_operations_mutex); 2050 mutex_init(&fs_info->tree_log_mutex); 2051 mutex_init(&fs_info->chunk_mutex); 2052 mutex_init(&fs_info->transaction_kthread_mutex); 2053 mutex_init(&fs_info->cleaner_mutex); 2054 mutex_init(&fs_info->volume_mutex); 2055 init_rwsem(&fs_info->extent_commit_sem); 2056 init_rwsem(&fs_info->cleanup_work_sem); 2057 init_rwsem(&fs_info->subvol_sem); 2058 2059 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2060 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2061 2062 init_waitqueue_head(&fs_info->transaction_throttle); 2063 init_waitqueue_head(&fs_info->transaction_wait); 2064 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2065 init_waitqueue_head(&fs_info->async_submit_wait); 2066 2067 __setup_root(4096, 4096, 4096, 4096, tree_root, 2068 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2069 2070 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2071 if (!bh) { 2072 err = -EINVAL; 2073 goto fail_alloc; 2074 } 2075 2076 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2077 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2078 sizeof(*fs_info->super_for_commit)); 2079 brelse(bh); 2080 2081 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2082 2083 disk_super = fs_info->super_copy; 2084 if (!btrfs_super_root(disk_super)) 2085 goto fail_alloc; 2086 2087 /* check FS state, whether FS is broken. */ 2088 fs_info->fs_state |= btrfs_super_flags(disk_super); 2089 2090 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2091 2092 /* 2093 * run through our array of backup supers and setup 2094 * our ring pointer to the oldest one 2095 */ 2096 generation = btrfs_super_generation(disk_super); 2097 find_oldest_super_backup(fs_info, generation); 2098 2099 /* 2100 * In the long term, we'll store the compression type in the super 2101 * block, and it'll be used for per file compression control. 2102 */ 2103 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2104 2105 ret = btrfs_parse_options(tree_root, options); 2106 if (ret) { 2107 err = ret; 2108 goto fail_alloc; 2109 } 2110 2111 features = btrfs_super_incompat_flags(disk_super) & 2112 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2113 if (features) { 2114 printk(KERN_ERR "BTRFS: couldn't mount because of " 2115 "unsupported optional features (%Lx).\n", 2116 (unsigned long long)features); 2117 err = -EINVAL; 2118 goto fail_alloc; 2119 } 2120 2121 features = btrfs_super_incompat_flags(disk_super); 2122 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2123 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO) 2124 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2125 btrfs_set_super_incompat_flags(disk_super, features); 2126 2127 features = btrfs_super_compat_ro_flags(disk_super) & 2128 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2129 if (!(sb->s_flags & MS_RDONLY) && features) { 2130 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2131 "unsupported option features (%Lx).\n", 2132 (unsigned long long)features); 2133 err = -EINVAL; 2134 goto fail_alloc; 2135 } 2136 2137 btrfs_init_workers(&fs_info->generic_worker, 2138 "genwork", 1, NULL); 2139 2140 btrfs_init_workers(&fs_info->workers, "worker", 2141 fs_info->thread_pool_size, 2142 &fs_info->generic_worker); 2143 2144 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 2145 fs_info->thread_pool_size, 2146 &fs_info->generic_worker); 2147 2148 btrfs_init_workers(&fs_info->submit_workers, "submit", 2149 min_t(u64, fs_devices->num_devices, 2150 fs_info->thread_pool_size), 2151 &fs_info->generic_worker); 2152 2153 btrfs_init_workers(&fs_info->caching_workers, "cache", 2154 2, &fs_info->generic_worker); 2155 2156 /* a higher idle thresh on the submit workers makes it much more 2157 * likely that bios will be send down in a sane order to the 2158 * devices 2159 */ 2160 fs_info->submit_workers.idle_thresh = 64; 2161 2162 fs_info->workers.idle_thresh = 16; 2163 fs_info->workers.ordered = 1; 2164 2165 fs_info->delalloc_workers.idle_thresh = 2; 2166 fs_info->delalloc_workers.ordered = 1; 2167 2168 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, 2169 &fs_info->generic_worker); 2170 btrfs_init_workers(&fs_info->endio_workers, "endio", 2171 fs_info->thread_pool_size, 2172 &fs_info->generic_worker); 2173 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 2174 fs_info->thread_pool_size, 2175 &fs_info->generic_worker); 2176 btrfs_init_workers(&fs_info->endio_meta_write_workers, 2177 "endio-meta-write", fs_info->thread_pool_size, 2178 &fs_info->generic_worker); 2179 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 2180 fs_info->thread_pool_size, 2181 &fs_info->generic_worker); 2182 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", 2183 1, &fs_info->generic_worker); 2184 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta", 2185 fs_info->thread_pool_size, 2186 &fs_info->generic_worker); 2187 btrfs_init_workers(&fs_info->readahead_workers, "readahead", 2188 fs_info->thread_pool_size, 2189 &fs_info->generic_worker); 2190 2191 /* 2192 * endios are largely parallel and should have a very 2193 * low idle thresh 2194 */ 2195 fs_info->endio_workers.idle_thresh = 4; 2196 fs_info->endio_meta_workers.idle_thresh = 4; 2197 2198 fs_info->endio_write_workers.idle_thresh = 2; 2199 fs_info->endio_meta_write_workers.idle_thresh = 2; 2200 fs_info->readahead_workers.idle_thresh = 2; 2201 2202 btrfs_start_workers(&fs_info->workers, 1); 2203 btrfs_start_workers(&fs_info->generic_worker, 1); 2204 btrfs_start_workers(&fs_info->submit_workers, 1); 2205 btrfs_start_workers(&fs_info->delalloc_workers, 1); 2206 btrfs_start_workers(&fs_info->fixup_workers, 1); 2207 btrfs_start_workers(&fs_info->endio_workers, 1); 2208 btrfs_start_workers(&fs_info->endio_meta_workers, 1); 2209 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1); 2210 btrfs_start_workers(&fs_info->endio_write_workers, 1); 2211 btrfs_start_workers(&fs_info->endio_freespace_worker, 1); 2212 btrfs_start_workers(&fs_info->delayed_workers, 1); 2213 btrfs_start_workers(&fs_info->caching_workers, 1); 2214 btrfs_start_workers(&fs_info->readahead_workers, 1); 2215 2216 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2217 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2218 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2219 2220 nodesize = btrfs_super_nodesize(disk_super); 2221 leafsize = btrfs_super_leafsize(disk_super); 2222 sectorsize = btrfs_super_sectorsize(disk_super); 2223 stripesize = btrfs_super_stripesize(disk_super); 2224 tree_root->nodesize = nodesize; 2225 tree_root->leafsize = leafsize; 2226 tree_root->sectorsize = sectorsize; 2227 tree_root->stripesize = stripesize; 2228 2229 sb->s_blocksize = sectorsize; 2230 sb->s_blocksize_bits = blksize_bits(sectorsize); 2231 2232 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 2233 sizeof(disk_super->magic))) { 2234 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 2235 goto fail_sb_buffer; 2236 } 2237 2238 mutex_lock(&fs_info->chunk_mutex); 2239 ret = btrfs_read_sys_array(tree_root); 2240 mutex_unlock(&fs_info->chunk_mutex); 2241 if (ret) { 2242 printk(KERN_WARNING "btrfs: failed to read the system " 2243 "array on %s\n", sb->s_id); 2244 goto fail_sb_buffer; 2245 } 2246 2247 blocksize = btrfs_level_size(tree_root, 2248 btrfs_super_chunk_root_level(disk_super)); 2249 generation = btrfs_super_chunk_root_generation(disk_super); 2250 2251 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2252 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2253 2254 chunk_root->node = read_tree_block(chunk_root, 2255 btrfs_super_chunk_root(disk_super), 2256 blocksize, generation); 2257 BUG_ON(!chunk_root->node); 2258 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 2259 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 2260 sb->s_id); 2261 goto fail_tree_roots; 2262 } 2263 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2264 chunk_root->commit_root = btrfs_root_node(chunk_root); 2265 2266 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2267 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 2268 BTRFS_UUID_SIZE); 2269 2270 mutex_lock(&fs_info->chunk_mutex); 2271 ret = btrfs_read_chunk_tree(chunk_root); 2272 mutex_unlock(&fs_info->chunk_mutex); 2273 if (ret) { 2274 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 2275 sb->s_id); 2276 goto fail_tree_roots; 2277 } 2278 2279 btrfs_close_extra_devices(fs_devices); 2280 2281 retry_root_backup: 2282 blocksize = btrfs_level_size(tree_root, 2283 btrfs_super_root_level(disk_super)); 2284 generation = btrfs_super_generation(disk_super); 2285 2286 tree_root->node = read_tree_block(tree_root, 2287 btrfs_super_root(disk_super), 2288 blocksize, generation); 2289 if (!tree_root->node || 2290 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 2291 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 2292 sb->s_id); 2293 2294 goto recovery_tree_root; 2295 } 2296 2297 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2298 tree_root->commit_root = btrfs_root_node(tree_root); 2299 2300 ret = find_and_setup_root(tree_root, fs_info, 2301 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 2302 if (ret) 2303 goto recovery_tree_root; 2304 extent_root->track_dirty = 1; 2305 2306 ret = find_and_setup_root(tree_root, fs_info, 2307 BTRFS_DEV_TREE_OBJECTID, dev_root); 2308 if (ret) 2309 goto recovery_tree_root; 2310 dev_root->track_dirty = 1; 2311 2312 ret = find_and_setup_root(tree_root, fs_info, 2313 BTRFS_CSUM_TREE_OBJECTID, csum_root); 2314 if (ret) 2315 goto recovery_tree_root; 2316 2317 csum_root->track_dirty = 1; 2318 2319 fs_info->generation = generation; 2320 fs_info->last_trans_committed = generation; 2321 fs_info->data_alloc_profile = (u64)-1; 2322 fs_info->metadata_alloc_profile = (u64)-1; 2323 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile; 2324 2325 ret = btrfs_init_space_info(fs_info); 2326 if (ret) { 2327 printk(KERN_ERR "Failed to initial space info: %d\n", ret); 2328 goto fail_block_groups; 2329 } 2330 2331 ret = btrfs_read_block_groups(extent_root); 2332 if (ret) { 2333 printk(KERN_ERR "Failed to read block groups: %d\n", ret); 2334 goto fail_block_groups; 2335 } 2336 2337 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2338 "btrfs-cleaner"); 2339 if (IS_ERR(fs_info->cleaner_kthread)) 2340 goto fail_block_groups; 2341 2342 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2343 tree_root, 2344 "btrfs-transaction"); 2345 if (IS_ERR(fs_info->transaction_kthread)) 2346 goto fail_cleaner; 2347 2348 if (!btrfs_test_opt(tree_root, SSD) && 2349 !btrfs_test_opt(tree_root, NOSSD) && 2350 !fs_info->fs_devices->rotating) { 2351 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 2352 "mode\n"); 2353 btrfs_set_opt(fs_info->mount_opt, SSD); 2354 } 2355 2356 /* do not make disk changes in broken FS */ 2357 if (btrfs_super_log_root(disk_super) != 0 && 2358 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) { 2359 u64 bytenr = btrfs_super_log_root(disk_super); 2360 2361 if (fs_devices->rw_devices == 0) { 2362 printk(KERN_WARNING "Btrfs log replay required " 2363 "on RO media\n"); 2364 err = -EIO; 2365 goto fail_trans_kthread; 2366 } 2367 blocksize = 2368 btrfs_level_size(tree_root, 2369 btrfs_super_log_root_level(disk_super)); 2370 2371 log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS); 2372 if (!log_tree_root) { 2373 err = -ENOMEM; 2374 goto fail_trans_kthread; 2375 } 2376 2377 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2378 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2379 2380 log_tree_root->node = read_tree_block(tree_root, bytenr, 2381 blocksize, 2382 generation + 1); 2383 ret = btrfs_recover_log_trees(log_tree_root); 2384 BUG_ON(ret); 2385 2386 if (sb->s_flags & MS_RDONLY) { 2387 ret = btrfs_commit_super(tree_root); 2388 BUG_ON(ret); 2389 } 2390 } 2391 2392 ret = btrfs_find_orphan_roots(tree_root); 2393 BUG_ON(ret); 2394 2395 if (!(sb->s_flags & MS_RDONLY)) { 2396 ret = btrfs_cleanup_fs_roots(fs_info); 2397 BUG_ON(ret); 2398 2399 ret = btrfs_recover_relocation(tree_root); 2400 if (ret < 0) { 2401 printk(KERN_WARNING 2402 "btrfs: failed to recover relocation\n"); 2403 err = -EINVAL; 2404 goto fail_trans_kthread; 2405 } 2406 } 2407 2408 location.objectid = BTRFS_FS_TREE_OBJECTID; 2409 location.type = BTRFS_ROOT_ITEM_KEY; 2410 location.offset = (u64)-1; 2411 2412 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2413 if (!fs_info->fs_root) 2414 goto fail_trans_kthread; 2415 if (IS_ERR(fs_info->fs_root)) { 2416 err = PTR_ERR(fs_info->fs_root); 2417 goto fail_trans_kthread; 2418 } 2419 2420 if (!(sb->s_flags & MS_RDONLY)) { 2421 down_read(&fs_info->cleanup_work_sem); 2422 err = btrfs_orphan_cleanup(fs_info->fs_root); 2423 if (!err) 2424 err = btrfs_orphan_cleanup(fs_info->tree_root); 2425 up_read(&fs_info->cleanup_work_sem); 2426 if (err) { 2427 close_ctree(tree_root); 2428 return ERR_PTR(err); 2429 } 2430 } 2431 2432 return tree_root; 2433 2434 fail_trans_kthread: 2435 kthread_stop(fs_info->transaction_kthread); 2436 fail_cleaner: 2437 kthread_stop(fs_info->cleaner_kthread); 2438 2439 /* 2440 * make sure we're done with the btree inode before we stop our 2441 * kthreads 2442 */ 2443 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2444 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2445 2446 fail_block_groups: 2447 btrfs_free_block_groups(fs_info); 2448 2449 fail_tree_roots: 2450 free_root_pointers(fs_info, 1); 2451 2452 fail_sb_buffer: 2453 btrfs_stop_workers(&fs_info->generic_worker); 2454 btrfs_stop_workers(&fs_info->readahead_workers); 2455 btrfs_stop_workers(&fs_info->fixup_workers); 2456 btrfs_stop_workers(&fs_info->delalloc_workers); 2457 btrfs_stop_workers(&fs_info->workers); 2458 btrfs_stop_workers(&fs_info->endio_workers); 2459 btrfs_stop_workers(&fs_info->endio_meta_workers); 2460 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2461 btrfs_stop_workers(&fs_info->endio_write_workers); 2462 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2463 btrfs_stop_workers(&fs_info->submit_workers); 2464 btrfs_stop_workers(&fs_info->delayed_workers); 2465 btrfs_stop_workers(&fs_info->caching_workers); 2466 fail_alloc: 2467 fail_iput: 2468 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2469 iput(fs_info->btree_inode); 2470 2471 btrfs_close_devices(fs_info->fs_devices); 2472 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2473 fail_bdi: 2474 bdi_destroy(&fs_info->bdi); 2475 fail_srcu: 2476 cleanup_srcu_struct(&fs_info->subvol_srcu); 2477 fail: 2478 free_fs_info(fs_info); 2479 return ERR_PTR(err); 2480 2481 recovery_tree_root: 2482 2483 if (!btrfs_test_opt(tree_root, RECOVERY)) 2484 goto fail_tree_roots; 2485 2486 free_root_pointers(fs_info, 0); 2487 2488 /* don't use the log in recovery mode, it won't be valid */ 2489 btrfs_set_super_log_root(disk_super, 0); 2490 2491 /* we can't trust the free space cache either */ 2492 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2493 2494 ret = next_root_backup(fs_info, fs_info->super_copy, 2495 &num_backups_tried, &backup_index); 2496 if (ret == -1) 2497 goto fail_block_groups; 2498 goto retry_root_backup; 2499 } 2500 2501 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 2502 { 2503 char b[BDEVNAME_SIZE]; 2504 2505 if (uptodate) { 2506 set_buffer_uptodate(bh); 2507 } else { 2508 printk_ratelimited(KERN_WARNING "lost page write due to " 2509 "I/O error on %s\n", 2510 bdevname(bh->b_bdev, b)); 2511 /* note, we dont' set_buffer_write_io_error because we have 2512 * our own ways of dealing with the IO errors 2513 */ 2514 clear_buffer_uptodate(bh); 2515 } 2516 unlock_buffer(bh); 2517 put_bh(bh); 2518 } 2519 2520 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 2521 { 2522 struct buffer_head *bh; 2523 struct buffer_head *latest = NULL; 2524 struct btrfs_super_block *super; 2525 int i; 2526 u64 transid = 0; 2527 u64 bytenr; 2528 2529 /* we would like to check all the supers, but that would make 2530 * a btrfs mount succeed after a mkfs from a different FS. 2531 * So, we need to add a special mount option to scan for 2532 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 2533 */ 2534 for (i = 0; i < 1; i++) { 2535 bytenr = btrfs_sb_offset(i); 2536 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 2537 break; 2538 bh = __bread(bdev, bytenr / 4096, 4096); 2539 if (!bh) 2540 continue; 2541 2542 super = (struct btrfs_super_block *)bh->b_data; 2543 if (btrfs_super_bytenr(super) != bytenr || 2544 strncmp((char *)(&super->magic), BTRFS_MAGIC, 2545 sizeof(super->magic))) { 2546 brelse(bh); 2547 continue; 2548 } 2549 2550 if (!latest || btrfs_super_generation(super) > transid) { 2551 brelse(latest); 2552 latest = bh; 2553 transid = btrfs_super_generation(super); 2554 } else { 2555 brelse(bh); 2556 } 2557 } 2558 return latest; 2559 } 2560 2561 /* 2562 * this should be called twice, once with wait == 0 and 2563 * once with wait == 1. When wait == 0 is done, all the buffer heads 2564 * we write are pinned. 2565 * 2566 * They are released when wait == 1 is done. 2567 * max_mirrors must be the same for both runs, and it indicates how 2568 * many supers on this one device should be written. 2569 * 2570 * max_mirrors == 0 means to write them all. 2571 */ 2572 static int write_dev_supers(struct btrfs_device *device, 2573 struct btrfs_super_block *sb, 2574 int do_barriers, int wait, int max_mirrors) 2575 { 2576 struct buffer_head *bh; 2577 int i; 2578 int ret; 2579 int errors = 0; 2580 u32 crc; 2581 u64 bytenr; 2582 int last_barrier = 0; 2583 2584 if (max_mirrors == 0) 2585 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2586 2587 /* make sure only the last submit_bh does a barrier */ 2588 if (do_barriers) { 2589 for (i = 0; i < max_mirrors; i++) { 2590 bytenr = btrfs_sb_offset(i); 2591 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 2592 device->total_bytes) 2593 break; 2594 last_barrier = i; 2595 } 2596 } 2597 2598 for (i = 0; i < max_mirrors; i++) { 2599 bytenr = btrfs_sb_offset(i); 2600 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2601 break; 2602 2603 if (wait) { 2604 bh = __find_get_block(device->bdev, bytenr / 4096, 2605 BTRFS_SUPER_INFO_SIZE); 2606 BUG_ON(!bh); 2607 wait_on_buffer(bh); 2608 if (!buffer_uptodate(bh)) 2609 errors++; 2610 2611 /* drop our reference */ 2612 brelse(bh); 2613 2614 /* drop the reference from the wait == 0 run */ 2615 brelse(bh); 2616 continue; 2617 } else { 2618 btrfs_set_super_bytenr(sb, bytenr); 2619 2620 crc = ~(u32)0; 2621 crc = btrfs_csum_data(NULL, (char *)sb + 2622 BTRFS_CSUM_SIZE, crc, 2623 BTRFS_SUPER_INFO_SIZE - 2624 BTRFS_CSUM_SIZE); 2625 btrfs_csum_final(crc, sb->csum); 2626 2627 /* 2628 * one reference for us, and we leave it for the 2629 * caller 2630 */ 2631 bh = __getblk(device->bdev, bytenr / 4096, 2632 BTRFS_SUPER_INFO_SIZE); 2633 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2634 2635 /* one reference for submit_bh */ 2636 get_bh(bh); 2637 2638 set_buffer_uptodate(bh); 2639 lock_buffer(bh); 2640 bh->b_end_io = btrfs_end_buffer_write_sync; 2641 } 2642 2643 if (i == last_barrier && do_barriers) 2644 ret = submit_bh(WRITE_FLUSH_FUA, bh); 2645 else 2646 ret = submit_bh(WRITE_SYNC, bh); 2647 2648 if (ret) 2649 errors++; 2650 } 2651 return errors < i ? 0 : -1; 2652 } 2653 2654 int write_all_supers(struct btrfs_root *root, int max_mirrors) 2655 { 2656 struct list_head *head; 2657 struct btrfs_device *dev; 2658 struct btrfs_super_block *sb; 2659 struct btrfs_dev_item *dev_item; 2660 int ret; 2661 int do_barriers; 2662 int max_errors; 2663 int total_errors = 0; 2664 u64 flags; 2665 2666 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 2667 do_barriers = !btrfs_test_opt(root, NOBARRIER); 2668 backup_super_roots(root->fs_info); 2669 2670 sb = root->fs_info->super_for_commit; 2671 dev_item = &sb->dev_item; 2672 2673 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2674 head = &root->fs_info->fs_devices->devices; 2675 list_for_each_entry_rcu(dev, head, dev_list) { 2676 if (!dev->bdev) { 2677 total_errors++; 2678 continue; 2679 } 2680 if (!dev->in_fs_metadata || !dev->writeable) 2681 continue; 2682 2683 btrfs_set_stack_device_generation(dev_item, 0); 2684 btrfs_set_stack_device_type(dev_item, dev->type); 2685 btrfs_set_stack_device_id(dev_item, dev->devid); 2686 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 2687 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 2688 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 2689 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 2690 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 2691 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 2692 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2693 2694 flags = btrfs_super_flags(sb); 2695 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 2696 2697 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 2698 if (ret) 2699 total_errors++; 2700 } 2701 if (total_errors > max_errors) { 2702 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2703 total_errors); 2704 BUG(); 2705 } 2706 2707 total_errors = 0; 2708 list_for_each_entry_rcu(dev, head, dev_list) { 2709 if (!dev->bdev) 2710 continue; 2711 if (!dev->in_fs_metadata || !dev->writeable) 2712 continue; 2713 2714 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 2715 if (ret) 2716 total_errors++; 2717 } 2718 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2719 if (total_errors > max_errors) { 2720 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2721 total_errors); 2722 BUG(); 2723 } 2724 return 0; 2725 } 2726 2727 int write_ctree_super(struct btrfs_trans_handle *trans, 2728 struct btrfs_root *root, int max_mirrors) 2729 { 2730 int ret; 2731 2732 ret = write_all_supers(root, max_mirrors); 2733 return ret; 2734 } 2735 2736 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2737 { 2738 spin_lock(&fs_info->fs_roots_radix_lock); 2739 radix_tree_delete(&fs_info->fs_roots_radix, 2740 (unsigned long)root->root_key.objectid); 2741 spin_unlock(&fs_info->fs_roots_radix_lock); 2742 2743 if (btrfs_root_refs(&root->root_item) == 0) 2744 synchronize_srcu(&fs_info->subvol_srcu); 2745 2746 __btrfs_remove_free_space_cache(root->free_ino_pinned); 2747 __btrfs_remove_free_space_cache(root->free_ino_ctl); 2748 free_fs_root(root); 2749 return 0; 2750 } 2751 2752 static void free_fs_root(struct btrfs_root *root) 2753 { 2754 iput(root->cache_inode); 2755 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2756 if (root->anon_dev) 2757 free_anon_bdev(root->anon_dev); 2758 free_extent_buffer(root->node); 2759 free_extent_buffer(root->commit_root); 2760 kfree(root->free_ino_ctl); 2761 kfree(root->free_ino_pinned); 2762 kfree(root->name); 2763 kfree(root); 2764 } 2765 2766 static int del_fs_roots(struct btrfs_fs_info *fs_info) 2767 { 2768 int ret; 2769 struct btrfs_root *gang[8]; 2770 int i; 2771 2772 while (!list_empty(&fs_info->dead_roots)) { 2773 gang[0] = list_entry(fs_info->dead_roots.next, 2774 struct btrfs_root, root_list); 2775 list_del(&gang[0]->root_list); 2776 2777 if (gang[0]->in_radix) { 2778 btrfs_free_fs_root(fs_info, gang[0]); 2779 } else { 2780 free_extent_buffer(gang[0]->node); 2781 free_extent_buffer(gang[0]->commit_root); 2782 kfree(gang[0]); 2783 } 2784 } 2785 2786 while (1) { 2787 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2788 (void **)gang, 0, 2789 ARRAY_SIZE(gang)); 2790 if (!ret) 2791 break; 2792 for (i = 0; i < ret; i++) 2793 btrfs_free_fs_root(fs_info, gang[i]); 2794 } 2795 return 0; 2796 } 2797 2798 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2799 { 2800 u64 root_objectid = 0; 2801 struct btrfs_root *gang[8]; 2802 int i; 2803 int ret; 2804 2805 while (1) { 2806 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2807 (void **)gang, root_objectid, 2808 ARRAY_SIZE(gang)); 2809 if (!ret) 2810 break; 2811 2812 root_objectid = gang[ret - 1]->root_key.objectid + 1; 2813 for (i = 0; i < ret; i++) { 2814 int err; 2815 2816 root_objectid = gang[i]->root_key.objectid; 2817 err = btrfs_orphan_cleanup(gang[i]); 2818 if (err) 2819 return err; 2820 } 2821 root_objectid++; 2822 } 2823 return 0; 2824 } 2825 2826 int btrfs_commit_super(struct btrfs_root *root) 2827 { 2828 struct btrfs_trans_handle *trans; 2829 int ret; 2830 2831 mutex_lock(&root->fs_info->cleaner_mutex); 2832 btrfs_run_delayed_iputs(root); 2833 btrfs_clean_old_snapshots(root); 2834 mutex_unlock(&root->fs_info->cleaner_mutex); 2835 2836 /* wait until ongoing cleanup work done */ 2837 down_write(&root->fs_info->cleanup_work_sem); 2838 up_write(&root->fs_info->cleanup_work_sem); 2839 2840 trans = btrfs_join_transaction(root); 2841 if (IS_ERR(trans)) 2842 return PTR_ERR(trans); 2843 ret = btrfs_commit_transaction(trans, root); 2844 BUG_ON(ret); 2845 /* run commit again to drop the original snapshot */ 2846 trans = btrfs_join_transaction(root); 2847 if (IS_ERR(trans)) 2848 return PTR_ERR(trans); 2849 btrfs_commit_transaction(trans, root); 2850 ret = btrfs_write_and_wait_transaction(NULL, root); 2851 BUG_ON(ret); 2852 2853 ret = write_ctree_super(NULL, root, 0); 2854 return ret; 2855 } 2856 2857 int close_ctree(struct btrfs_root *root) 2858 { 2859 struct btrfs_fs_info *fs_info = root->fs_info; 2860 int ret; 2861 2862 fs_info->closing = 1; 2863 smp_mb(); 2864 2865 btrfs_scrub_cancel(root); 2866 2867 /* wait for any defraggers to finish */ 2868 wait_event(fs_info->transaction_wait, 2869 (atomic_read(&fs_info->defrag_running) == 0)); 2870 2871 /* clear out the rbtree of defraggable inodes */ 2872 btrfs_run_defrag_inodes(root->fs_info); 2873 2874 /* 2875 * Here come 2 situations when btrfs is broken to flip readonly: 2876 * 2877 * 1. when btrfs flips readonly somewhere else before 2878 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag, 2879 * and btrfs will skip to write sb directly to keep 2880 * ERROR state on disk. 2881 * 2882 * 2. when btrfs flips readonly just in btrfs_commit_super, 2883 * and in such case, btrfs cannot write sb via btrfs_commit_super, 2884 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag, 2885 * btrfs will cleanup all FS resources first and write sb then. 2886 */ 2887 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 2888 ret = btrfs_commit_super(root); 2889 if (ret) 2890 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 2891 } 2892 2893 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 2894 ret = btrfs_error_commit_super(root); 2895 if (ret) 2896 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 2897 } 2898 2899 btrfs_put_block_group_cache(fs_info); 2900 2901 kthread_stop(root->fs_info->transaction_kthread); 2902 kthread_stop(root->fs_info->cleaner_kthread); 2903 2904 fs_info->closing = 2; 2905 smp_mb(); 2906 2907 if (fs_info->delalloc_bytes) { 2908 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 2909 (unsigned long long)fs_info->delalloc_bytes); 2910 } 2911 if (fs_info->total_ref_cache_size) { 2912 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", 2913 (unsigned long long)fs_info->total_ref_cache_size); 2914 } 2915 2916 free_extent_buffer(fs_info->extent_root->node); 2917 free_extent_buffer(fs_info->extent_root->commit_root); 2918 free_extent_buffer(fs_info->tree_root->node); 2919 free_extent_buffer(fs_info->tree_root->commit_root); 2920 free_extent_buffer(root->fs_info->chunk_root->node); 2921 free_extent_buffer(root->fs_info->chunk_root->commit_root); 2922 free_extent_buffer(root->fs_info->dev_root->node); 2923 free_extent_buffer(root->fs_info->dev_root->commit_root); 2924 free_extent_buffer(root->fs_info->csum_root->node); 2925 free_extent_buffer(root->fs_info->csum_root->commit_root); 2926 2927 btrfs_free_block_groups(root->fs_info); 2928 2929 del_fs_roots(fs_info); 2930 2931 iput(fs_info->btree_inode); 2932 2933 btrfs_stop_workers(&fs_info->generic_worker); 2934 btrfs_stop_workers(&fs_info->fixup_workers); 2935 btrfs_stop_workers(&fs_info->delalloc_workers); 2936 btrfs_stop_workers(&fs_info->workers); 2937 btrfs_stop_workers(&fs_info->endio_workers); 2938 btrfs_stop_workers(&fs_info->endio_meta_workers); 2939 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2940 btrfs_stop_workers(&fs_info->endio_write_workers); 2941 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2942 btrfs_stop_workers(&fs_info->submit_workers); 2943 btrfs_stop_workers(&fs_info->delayed_workers); 2944 btrfs_stop_workers(&fs_info->caching_workers); 2945 btrfs_stop_workers(&fs_info->readahead_workers); 2946 2947 btrfs_close_devices(fs_info->fs_devices); 2948 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2949 2950 bdi_destroy(&fs_info->bdi); 2951 cleanup_srcu_struct(&fs_info->subvol_srcu); 2952 2953 free_fs_info(fs_info); 2954 2955 return 0; 2956 } 2957 2958 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) 2959 { 2960 int ret; 2961 struct inode *btree_inode = buf->first_page->mapping->host; 2962 2963 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf, 2964 NULL); 2965 if (!ret) 2966 return ret; 2967 2968 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 2969 parent_transid); 2970 return !ret; 2971 } 2972 2973 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 2974 { 2975 struct inode *btree_inode = buf->first_page->mapping->host; 2976 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, 2977 buf); 2978 } 2979 2980 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 2981 { 2982 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2983 u64 transid = btrfs_header_generation(buf); 2984 struct inode *btree_inode = root->fs_info->btree_inode; 2985 int was_dirty; 2986 2987 btrfs_assert_tree_locked(buf); 2988 if (transid != root->fs_info->generation) { 2989 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 2990 "found %llu running %llu\n", 2991 (unsigned long long)buf->start, 2992 (unsigned long long)transid, 2993 (unsigned long long)root->fs_info->generation); 2994 WARN_ON(1); 2995 } 2996 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 2997 buf); 2998 if (!was_dirty) { 2999 spin_lock(&root->fs_info->delalloc_lock); 3000 root->fs_info->dirty_metadata_bytes += buf->len; 3001 spin_unlock(&root->fs_info->delalloc_lock); 3002 } 3003 } 3004 3005 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 3006 { 3007 /* 3008 * looks as though older kernels can get into trouble with 3009 * this code, they end up stuck in balance_dirty_pages forever 3010 */ 3011 u64 num_dirty; 3012 unsigned long thresh = 32 * 1024 * 1024; 3013 3014 if (current->flags & PF_MEMALLOC) 3015 return; 3016 3017 btrfs_balance_delayed_items(root); 3018 3019 num_dirty = root->fs_info->dirty_metadata_bytes; 3020 3021 if (num_dirty > thresh) { 3022 balance_dirty_pages_ratelimited_nr( 3023 root->fs_info->btree_inode->i_mapping, 1); 3024 } 3025 return; 3026 } 3027 3028 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 3029 { 3030 /* 3031 * looks as though older kernels can get into trouble with 3032 * this code, they end up stuck in balance_dirty_pages forever 3033 */ 3034 u64 num_dirty; 3035 unsigned long thresh = 32 * 1024 * 1024; 3036 3037 if (current->flags & PF_MEMALLOC) 3038 return; 3039 3040 num_dirty = root->fs_info->dirty_metadata_bytes; 3041 3042 if (num_dirty > thresh) { 3043 balance_dirty_pages_ratelimited_nr( 3044 root->fs_info->btree_inode->i_mapping, 1); 3045 } 3046 return; 3047 } 3048 3049 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3050 { 3051 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 3052 int ret; 3053 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3054 if (ret == 0) 3055 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 3056 return ret; 3057 } 3058 3059 static int btree_lock_page_hook(struct page *page, void *data, 3060 void (*flush_fn)(void *)) 3061 { 3062 struct inode *inode = page->mapping->host; 3063 struct btrfs_root *root = BTRFS_I(inode)->root; 3064 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3065 struct extent_buffer *eb; 3066 unsigned long len; 3067 u64 bytenr = page_offset(page); 3068 3069 if (page->private == EXTENT_PAGE_PRIVATE) 3070 goto out; 3071 3072 len = page->private >> 2; 3073 eb = find_extent_buffer(io_tree, bytenr, len); 3074 if (!eb) 3075 goto out; 3076 3077 if (!btrfs_try_tree_write_lock(eb)) { 3078 flush_fn(data); 3079 btrfs_tree_lock(eb); 3080 } 3081 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3082 3083 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3084 spin_lock(&root->fs_info->delalloc_lock); 3085 if (root->fs_info->dirty_metadata_bytes >= eb->len) 3086 root->fs_info->dirty_metadata_bytes -= eb->len; 3087 else 3088 WARN_ON(1); 3089 spin_unlock(&root->fs_info->delalloc_lock); 3090 } 3091 3092 btrfs_tree_unlock(eb); 3093 free_extent_buffer(eb); 3094 out: 3095 if (!trylock_page(page)) { 3096 flush_fn(data); 3097 lock_page(page); 3098 } 3099 return 0; 3100 } 3101 3102 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3103 int read_only) 3104 { 3105 if (read_only) 3106 return; 3107 3108 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) 3109 printk(KERN_WARNING "warning: mount fs with errors, " 3110 "running btrfsck is recommended\n"); 3111 } 3112 3113 int btrfs_error_commit_super(struct btrfs_root *root) 3114 { 3115 int ret; 3116 3117 mutex_lock(&root->fs_info->cleaner_mutex); 3118 btrfs_run_delayed_iputs(root); 3119 mutex_unlock(&root->fs_info->cleaner_mutex); 3120 3121 down_write(&root->fs_info->cleanup_work_sem); 3122 up_write(&root->fs_info->cleanup_work_sem); 3123 3124 /* cleanup FS via transaction */ 3125 btrfs_cleanup_transaction(root); 3126 3127 ret = write_ctree_super(NULL, root, 0); 3128 3129 return ret; 3130 } 3131 3132 static int btrfs_destroy_ordered_operations(struct btrfs_root *root) 3133 { 3134 struct btrfs_inode *btrfs_inode; 3135 struct list_head splice; 3136 3137 INIT_LIST_HEAD(&splice); 3138 3139 mutex_lock(&root->fs_info->ordered_operations_mutex); 3140 spin_lock(&root->fs_info->ordered_extent_lock); 3141 3142 list_splice_init(&root->fs_info->ordered_operations, &splice); 3143 while (!list_empty(&splice)) { 3144 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3145 ordered_operations); 3146 3147 list_del_init(&btrfs_inode->ordered_operations); 3148 3149 btrfs_invalidate_inodes(btrfs_inode->root); 3150 } 3151 3152 spin_unlock(&root->fs_info->ordered_extent_lock); 3153 mutex_unlock(&root->fs_info->ordered_operations_mutex); 3154 3155 return 0; 3156 } 3157 3158 static int btrfs_destroy_ordered_extents(struct btrfs_root *root) 3159 { 3160 struct list_head splice; 3161 struct btrfs_ordered_extent *ordered; 3162 struct inode *inode; 3163 3164 INIT_LIST_HEAD(&splice); 3165 3166 spin_lock(&root->fs_info->ordered_extent_lock); 3167 3168 list_splice_init(&root->fs_info->ordered_extents, &splice); 3169 while (!list_empty(&splice)) { 3170 ordered = list_entry(splice.next, struct btrfs_ordered_extent, 3171 root_extent_list); 3172 3173 list_del_init(&ordered->root_extent_list); 3174 atomic_inc(&ordered->refs); 3175 3176 /* the inode may be getting freed (in sys_unlink path). */ 3177 inode = igrab(ordered->inode); 3178 3179 spin_unlock(&root->fs_info->ordered_extent_lock); 3180 if (inode) 3181 iput(inode); 3182 3183 atomic_set(&ordered->refs, 1); 3184 btrfs_put_ordered_extent(ordered); 3185 3186 spin_lock(&root->fs_info->ordered_extent_lock); 3187 } 3188 3189 spin_unlock(&root->fs_info->ordered_extent_lock); 3190 3191 return 0; 3192 } 3193 3194 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 3195 struct btrfs_root *root) 3196 { 3197 struct rb_node *node; 3198 struct btrfs_delayed_ref_root *delayed_refs; 3199 struct btrfs_delayed_ref_node *ref; 3200 int ret = 0; 3201 3202 delayed_refs = &trans->delayed_refs; 3203 3204 spin_lock(&delayed_refs->lock); 3205 if (delayed_refs->num_entries == 0) { 3206 spin_unlock(&delayed_refs->lock); 3207 printk(KERN_INFO "delayed_refs has NO entry\n"); 3208 return ret; 3209 } 3210 3211 node = rb_first(&delayed_refs->root); 3212 while (node) { 3213 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 3214 node = rb_next(node); 3215 3216 ref->in_tree = 0; 3217 rb_erase(&ref->rb_node, &delayed_refs->root); 3218 delayed_refs->num_entries--; 3219 3220 atomic_set(&ref->refs, 1); 3221 if (btrfs_delayed_ref_is_head(ref)) { 3222 struct btrfs_delayed_ref_head *head; 3223 3224 head = btrfs_delayed_node_to_head(ref); 3225 mutex_lock(&head->mutex); 3226 kfree(head->extent_op); 3227 delayed_refs->num_heads--; 3228 if (list_empty(&head->cluster)) 3229 delayed_refs->num_heads_ready--; 3230 list_del_init(&head->cluster); 3231 mutex_unlock(&head->mutex); 3232 } 3233 3234 spin_unlock(&delayed_refs->lock); 3235 btrfs_put_delayed_ref(ref); 3236 3237 cond_resched(); 3238 spin_lock(&delayed_refs->lock); 3239 } 3240 3241 spin_unlock(&delayed_refs->lock); 3242 3243 return ret; 3244 } 3245 3246 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t) 3247 { 3248 struct btrfs_pending_snapshot *snapshot; 3249 struct list_head splice; 3250 3251 INIT_LIST_HEAD(&splice); 3252 3253 list_splice_init(&t->pending_snapshots, &splice); 3254 3255 while (!list_empty(&splice)) { 3256 snapshot = list_entry(splice.next, 3257 struct btrfs_pending_snapshot, 3258 list); 3259 3260 list_del_init(&snapshot->list); 3261 3262 kfree(snapshot); 3263 } 3264 3265 return 0; 3266 } 3267 3268 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 3269 { 3270 struct btrfs_inode *btrfs_inode; 3271 struct list_head splice; 3272 3273 INIT_LIST_HEAD(&splice); 3274 3275 spin_lock(&root->fs_info->delalloc_lock); 3276 list_splice_init(&root->fs_info->delalloc_inodes, &splice); 3277 3278 while (!list_empty(&splice)) { 3279 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3280 delalloc_inodes); 3281 3282 list_del_init(&btrfs_inode->delalloc_inodes); 3283 3284 btrfs_invalidate_inodes(btrfs_inode->root); 3285 } 3286 3287 spin_unlock(&root->fs_info->delalloc_lock); 3288 3289 return 0; 3290 } 3291 3292 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 3293 struct extent_io_tree *dirty_pages, 3294 int mark) 3295 { 3296 int ret; 3297 struct page *page; 3298 struct inode *btree_inode = root->fs_info->btree_inode; 3299 struct extent_buffer *eb; 3300 u64 start = 0; 3301 u64 end; 3302 u64 offset; 3303 unsigned long index; 3304 3305 while (1) { 3306 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 3307 mark); 3308 if (ret) 3309 break; 3310 3311 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 3312 while (start <= end) { 3313 index = start >> PAGE_CACHE_SHIFT; 3314 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 3315 page = find_get_page(btree_inode->i_mapping, index); 3316 if (!page) 3317 continue; 3318 offset = page_offset(page); 3319 3320 spin_lock(&dirty_pages->buffer_lock); 3321 eb = radix_tree_lookup( 3322 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer, 3323 offset >> PAGE_CACHE_SHIFT); 3324 spin_unlock(&dirty_pages->buffer_lock); 3325 if (eb) { 3326 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY, 3327 &eb->bflags); 3328 atomic_set(&eb->refs, 1); 3329 } 3330 if (PageWriteback(page)) 3331 end_page_writeback(page); 3332 3333 lock_page(page); 3334 if (PageDirty(page)) { 3335 clear_page_dirty_for_io(page); 3336 spin_lock_irq(&page->mapping->tree_lock); 3337 radix_tree_tag_clear(&page->mapping->page_tree, 3338 page_index(page), 3339 PAGECACHE_TAG_DIRTY); 3340 spin_unlock_irq(&page->mapping->tree_lock); 3341 } 3342 3343 page->mapping->a_ops->invalidatepage(page, 0); 3344 unlock_page(page); 3345 } 3346 } 3347 3348 return ret; 3349 } 3350 3351 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 3352 struct extent_io_tree *pinned_extents) 3353 { 3354 struct extent_io_tree *unpin; 3355 u64 start; 3356 u64 end; 3357 int ret; 3358 3359 unpin = pinned_extents; 3360 while (1) { 3361 ret = find_first_extent_bit(unpin, 0, &start, &end, 3362 EXTENT_DIRTY); 3363 if (ret) 3364 break; 3365 3366 /* opt_discard */ 3367 if (btrfs_test_opt(root, DISCARD)) 3368 ret = btrfs_error_discard_extent(root, start, 3369 end + 1 - start, 3370 NULL); 3371 3372 clear_extent_dirty(unpin, start, end, GFP_NOFS); 3373 btrfs_error_unpin_extent_range(root, start, end); 3374 cond_resched(); 3375 } 3376 3377 return 0; 3378 } 3379 3380 static int btrfs_cleanup_transaction(struct btrfs_root *root) 3381 { 3382 struct btrfs_transaction *t; 3383 LIST_HEAD(list); 3384 3385 WARN_ON(1); 3386 3387 mutex_lock(&root->fs_info->transaction_kthread_mutex); 3388 3389 spin_lock(&root->fs_info->trans_lock); 3390 list_splice_init(&root->fs_info->trans_list, &list); 3391 root->fs_info->trans_no_join = 1; 3392 spin_unlock(&root->fs_info->trans_lock); 3393 3394 while (!list_empty(&list)) { 3395 t = list_entry(list.next, struct btrfs_transaction, list); 3396 if (!t) 3397 break; 3398 3399 btrfs_destroy_ordered_operations(root); 3400 3401 btrfs_destroy_ordered_extents(root); 3402 3403 btrfs_destroy_delayed_refs(t, root); 3404 3405 btrfs_block_rsv_release(root, 3406 &root->fs_info->trans_block_rsv, 3407 t->dirty_pages.dirty_bytes); 3408 3409 /* FIXME: cleanup wait for commit */ 3410 t->in_commit = 1; 3411 t->blocked = 1; 3412 if (waitqueue_active(&root->fs_info->transaction_blocked_wait)) 3413 wake_up(&root->fs_info->transaction_blocked_wait); 3414 3415 t->blocked = 0; 3416 if (waitqueue_active(&root->fs_info->transaction_wait)) 3417 wake_up(&root->fs_info->transaction_wait); 3418 3419 t->commit_done = 1; 3420 if (waitqueue_active(&t->commit_wait)) 3421 wake_up(&t->commit_wait); 3422 3423 btrfs_destroy_pending_snapshots(t); 3424 3425 btrfs_destroy_delalloc_inodes(root); 3426 3427 spin_lock(&root->fs_info->trans_lock); 3428 root->fs_info->running_transaction = NULL; 3429 spin_unlock(&root->fs_info->trans_lock); 3430 3431 btrfs_destroy_marked_extents(root, &t->dirty_pages, 3432 EXTENT_DIRTY); 3433 3434 btrfs_destroy_pinned_extent(root, 3435 root->fs_info->pinned_extents); 3436 3437 atomic_set(&t->use_count, 0); 3438 list_del_init(&t->list); 3439 memset(t, 0, sizeof(*t)); 3440 kmem_cache_free(btrfs_transaction_cachep, t); 3441 } 3442 3443 spin_lock(&root->fs_info->trans_lock); 3444 root->fs_info->trans_no_join = 0; 3445 spin_unlock(&root->fs_info->trans_lock); 3446 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 3447 3448 return 0; 3449 } 3450 3451 static struct extent_io_ops btree_extent_io_ops = { 3452 .write_cache_pages_lock_hook = btree_lock_page_hook, 3453 .readpage_end_io_hook = btree_readpage_end_io_hook, 3454 .readpage_io_failed_hook = btree_io_failed_hook, 3455 .submit_bio_hook = btree_submit_bio_hook, 3456 /* note we're sharing with inode.c for the merge bio hook */ 3457 .merge_bio_hook = btrfs_merge_bio_hook, 3458 }; 3459