1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "inode-map.h" 33 #include "check-integrity.h" 34 #include "rcu-string.h" 35 #include "dev-replace.h" 36 #include "raid56.h" 37 #include "sysfs.h" 38 #include "qgroup.h" 39 #include "compression.h" 40 #include "tree-checker.h" 41 #include "ref-verify.h" 42 #include "block-group.h" 43 #include "discard.h" 44 #include "space-info.h" 45 46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 47 BTRFS_HEADER_FLAG_RELOC |\ 48 BTRFS_SUPER_FLAG_ERROR |\ 49 BTRFS_SUPER_FLAG_SEEDING |\ 50 BTRFS_SUPER_FLAG_METADUMP |\ 51 BTRFS_SUPER_FLAG_METADUMP_V2) 52 53 static const struct extent_io_ops btree_extent_io_ops; 54 static void end_workqueue_fn(struct btrfs_work *work); 55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 57 struct btrfs_fs_info *fs_info); 58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 60 struct extent_io_tree *dirty_pages, 61 int mark); 62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 63 struct extent_io_tree *pinned_extents); 64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 66 67 /* 68 * btrfs_end_io_wq structs are used to do processing in task context when an IO 69 * is complete. This is used during reads to verify checksums, and it is used 70 * by writes to insert metadata for new file extents after IO is complete. 71 */ 72 struct btrfs_end_io_wq { 73 struct bio *bio; 74 bio_end_io_t *end_io; 75 void *private; 76 struct btrfs_fs_info *info; 77 blk_status_t status; 78 enum btrfs_wq_endio_type metadata; 79 struct btrfs_work work; 80 }; 81 82 static struct kmem_cache *btrfs_end_io_wq_cache; 83 84 int __init btrfs_end_io_wq_init(void) 85 { 86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 87 sizeof(struct btrfs_end_io_wq), 88 0, 89 SLAB_MEM_SPREAD, 90 NULL); 91 if (!btrfs_end_io_wq_cache) 92 return -ENOMEM; 93 return 0; 94 } 95 96 void __cold btrfs_end_io_wq_exit(void) 97 { 98 kmem_cache_destroy(btrfs_end_io_wq_cache); 99 } 100 101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 102 { 103 if (fs_info->csum_shash) 104 crypto_free_shash(fs_info->csum_shash); 105 } 106 107 /* 108 * async submit bios are used to offload expensive checksumming 109 * onto the worker threads. They checksum file and metadata bios 110 * just before they are sent down the IO stack. 111 */ 112 struct async_submit_bio { 113 void *private_data; 114 struct bio *bio; 115 extent_submit_bio_start_t *submit_bio_start; 116 int mirror_num; 117 /* 118 * bio_offset is optional, can be used if the pages in the bio 119 * can't tell us where in the file the bio should go 120 */ 121 u64 bio_offset; 122 struct btrfs_work work; 123 blk_status_t status; 124 }; 125 126 /* 127 * Lockdep class keys for extent_buffer->lock's in this root. For a given 128 * eb, the lockdep key is determined by the btrfs_root it belongs to and 129 * the level the eb occupies in the tree. 130 * 131 * Different roots are used for different purposes and may nest inside each 132 * other and they require separate keysets. As lockdep keys should be 133 * static, assign keysets according to the purpose of the root as indicated 134 * by btrfs_root->root_key.objectid. This ensures that all special purpose 135 * roots have separate keysets. 136 * 137 * Lock-nesting across peer nodes is always done with the immediate parent 138 * node locked thus preventing deadlock. As lockdep doesn't know this, use 139 * subclass to avoid triggering lockdep warning in such cases. 140 * 141 * The key is set by the readpage_end_io_hook after the buffer has passed 142 * csum validation but before the pages are unlocked. It is also set by 143 * btrfs_init_new_buffer on freshly allocated blocks. 144 * 145 * We also add a check to make sure the highest level of the tree is the 146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 147 * needs update as well. 148 */ 149 #ifdef CONFIG_DEBUG_LOCK_ALLOC 150 # if BTRFS_MAX_LEVEL != 8 151 # error 152 # endif 153 154 static struct btrfs_lockdep_keyset { 155 u64 id; /* root objectid */ 156 const char *name_stem; /* lock name stem */ 157 char names[BTRFS_MAX_LEVEL + 1][20]; 158 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 159 } btrfs_lockdep_keysets[] = { 160 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 161 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 162 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 163 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 164 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 165 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 166 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 167 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 168 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 169 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 170 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 171 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 172 { .id = 0, .name_stem = "tree" }, 173 }; 174 175 void __init btrfs_init_lockdep(void) 176 { 177 int i, j; 178 179 /* initialize lockdep class names */ 180 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 181 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 182 183 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 184 snprintf(ks->names[j], sizeof(ks->names[j]), 185 "btrfs-%s-%02d", ks->name_stem, j); 186 } 187 } 188 189 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 190 int level) 191 { 192 struct btrfs_lockdep_keyset *ks; 193 194 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 195 196 /* find the matching keyset, id 0 is the default entry */ 197 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 198 if (ks->id == objectid) 199 break; 200 201 lockdep_set_class_and_name(&eb->lock, 202 &ks->keys[level], ks->names[level]); 203 } 204 205 #endif 206 207 /* 208 * extents on the btree inode are pretty simple, there's one extent 209 * that covers the entire device 210 */ 211 struct extent_map *btree_get_extent(struct btrfs_inode *inode, 212 struct page *page, size_t pg_offset, 213 u64 start, u64 len) 214 { 215 struct extent_map_tree *em_tree = &inode->extent_tree; 216 struct extent_map *em; 217 int ret; 218 219 read_lock(&em_tree->lock); 220 em = lookup_extent_mapping(em_tree, start, len); 221 if (em) { 222 read_unlock(&em_tree->lock); 223 goto out; 224 } 225 read_unlock(&em_tree->lock); 226 227 em = alloc_extent_map(); 228 if (!em) { 229 em = ERR_PTR(-ENOMEM); 230 goto out; 231 } 232 em->start = 0; 233 em->len = (u64)-1; 234 em->block_len = (u64)-1; 235 em->block_start = 0; 236 237 write_lock(&em_tree->lock); 238 ret = add_extent_mapping(em_tree, em, 0); 239 if (ret == -EEXIST) { 240 free_extent_map(em); 241 em = lookup_extent_mapping(em_tree, start, len); 242 if (!em) 243 em = ERR_PTR(-EIO); 244 } else if (ret) { 245 free_extent_map(em); 246 em = ERR_PTR(ret); 247 } 248 write_unlock(&em_tree->lock); 249 250 out: 251 return em; 252 } 253 254 /* 255 * Compute the csum of a btree block and store the result to provided buffer. 256 */ 257 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 258 { 259 struct btrfs_fs_info *fs_info = buf->fs_info; 260 const int num_pages = fs_info->nodesize >> PAGE_SHIFT; 261 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 262 char *kaddr; 263 int i; 264 265 shash->tfm = fs_info->csum_shash; 266 crypto_shash_init(shash); 267 kaddr = page_address(buf->pages[0]); 268 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 269 PAGE_SIZE - BTRFS_CSUM_SIZE); 270 271 for (i = 1; i < num_pages; i++) { 272 kaddr = page_address(buf->pages[i]); 273 crypto_shash_update(shash, kaddr, PAGE_SIZE); 274 } 275 memset(result, 0, BTRFS_CSUM_SIZE); 276 crypto_shash_final(shash, result); 277 } 278 279 /* 280 * we can't consider a given block up to date unless the transid of the 281 * block matches the transid in the parent node's pointer. This is how we 282 * detect blocks that either didn't get written at all or got written 283 * in the wrong place. 284 */ 285 static int verify_parent_transid(struct extent_io_tree *io_tree, 286 struct extent_buffer *eb, u64 parent_transid, 287 int atomic) 288 { 289 struct extent_state *cached_state = NULL; 290 int ret; 291 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 292 293 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 294 return 0; 295 296 if (atomic) 297 return -EAGAIN; 298 299 if (need_lock) { 300 btrfs_tree_read_lock(eb); 301 btrfs_set_lock_blocking_read(eb); 302 } 303 304 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 305 &cached_state); 306 if (extent_buffer_uptodate(eb) && 307 btrfs_header_generation(eb) == parent_transid) { 308 ret = 0; 309 goto out; 310 } 311 btrfs_err_rl(eb->fs_info, 312 "parent transid verify failed on %llu wanted %llu found %llu", 313 eb->start, 314 parent_transid, btrfs_header_generation(eb)); 315 ret = 1; 316 317 /* 318 * Things reading via commit roots that don't have normal protection, 319 * like send, can have a really old block in cache that may point at a 320 * block that has been freed and re-allocated. So don't clear uptodate 321 * if we find an eb that is under IO (dirty/writeback) because we could 322 * end up reading in the stale data and then writing it back out and 323 * making everybody very sad. 324 */ 325 if (!extent_buffer_under_io(eb)) 326 clear_extent_buffer_uptodate(eb); 327 out: 328 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 329 &cached_state); 330 if (need_lock) 331 btrfs_tree_read_unlock_blocking(eb); 332 return ret; 333 } 334 335 static bool btrfs_supported_super_csum(u16 csum_type) 336 { 337 switch (csum_type) { 338 case BTRFS_CSUM_TYPE_CRC32: 339 case BTRFS_CSUM_TYPE_XXHASH: 340 case BTRFS_CSUM_TYPE_SHA256: 341 case BTRFS_CSUM_TYPE_BLAKE2: 342 return true; 343 default: 344 return false; 345 } 346 } 347 348 /* 349 * Return 0 if the superblock checksum type matches the checksum value of that 350 * algorithm. Pass the raw disk superblock data. 351 */ 352 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 353 char *raw_disk_sb) 354 { 355 struct btrfs_super_block *disk_sb = 356 (struct btrfs_super_block *)raw_disk_sb; 357 char result[BTRFS_CSUM_SIZE]; 358 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 359 360 shash->tfm = fs_info->csum_shash; 361 362 /* 363 * The super_block structure does not span the whole 364 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 365 * filled with zeros and is included in the checksum. 366 */ 367 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE, 368 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 369 370 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb))) 371 return 1; 372 373 return 0; 374 } 375 376 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 377 struct btrfs_key *first_key, u64 parent_transid) 378 { 379 struct btrfs_fs_info *fs_info = eb->fs_info; 380 int found_level; 381 struct btrfs_key found_key; 382 int ret; 383 384 found_level = btrfs_header_level(eb); 385 if (found_level != level) { 386 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 387 KERN_ERR "BTRFS: tree level check failed\n"); 388 btrfs_err(fs_info, 389 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 390 eb->start, level, found_level); 391 return -EIO; 392 } 393 394 if (!first_key) 395 return 0; 396 397 /* 398 * For live tree block (new tree blocks in current transaction), 399 * we need proper lock context to avoid race, which is impossible here. 400 * So we only checks tree blocks which is read from disk, whose 401 * generation <= fs_info->last_trans_committed. 402 */ 403 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 404 return 0; 405 406 /* We have @first_key, so this @eb must have at least one item */ 407 if (btrfs_header_nritems(eb) == 0) { 408 btrfs_err(fs_info, 409 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 410 eb->start); 411 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 412 return -EUCLEAN; 413 } 414 415 if (found_level) 416 btrfs_node_key_to_cpu(eb, &found_key, 0); 417 else 418 btrfs_item_key_to_cpu(eb, &found_key, 0); 419 ret = btrfs_comp_cpu_keys(first_key, &found_key); 420 421 if (ret) { 422 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 423 KERN_ERR "BTRFS: tree first key check failed\n"); 424 btrfs_err(fs_info, 425 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 426 eb->start, parent_transid, first_key->objectid, 427 first_key->type, first_key->offset, 428 found_key.objectid, found_key.type, 429 found_key.offset); 430 } 431 return ret; 432 } 433 434 /* 435 * helper to read a given tree block, doing retries as required when 436 * the checksums don't match and we have alternate mirrors to try. 437 * 438 * @parent_transid: expected transid, skip check if 0 439 * @level: expected level, mandatory check 440 * @first_key: expected key of first slot, skip check if NULL 441 */ 442 static int btree_read_extent_buffer_pages(struct extent_buffer *eb, 443 u64 parent_transid, int level, 444 struct btrfs_key *first_key) 445 { 446 struct btrfs_fs_info *fs_info = eb->fs_info; 447 struct extent_io_tree *io_tree; 448 int failed = 0; 449 int ret; 450 int num_copies = 0; 451 int mirror_num = 0; 452 int failed_mirror = 0; 453 454 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 455 while (1) { 456 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 457 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num); 458 if (!ret) { 459 if (verify_parent_transid(io_tree, eb, 460 parent_transid, 0)) 461 ret = -EIO; 462 else if (btrfs_verify_level_key(eb, level, 463 first_key, parent_transid)) 464 ret = -EUCLEAN; 465 else 466 break; 467 } 468 469 num_copies = btrfs_num_copies(fs_info, 470 eb->start, eb->len); 471 if (num_copies == 1) 472 break; 473 474 if (!failed_mirror) { 475 failed = 1; 476 failed_mirror = eb->read_mirror; 477 } 478 479 mirror_num++; 480 if (mirror_num == failed_mirror) 481 mirror_num++; 482 483 if (mirror_num > num_copies) 484 break; 485 } 486 487 if (failed && !ret && failed_mirror) 488 btrfs_repair_eb_io_failure(eb, failed_mirror); 489 490 return ret; 491 } 492 493 /* 494 * checksum a dirty tree block before IO. This has extra checks to make sure 495 * we only fill in the checksum field in the first page of a multi-page block 496 */ 497 498 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 499 { 500 u64 start = page_offset(page); 501 u64 found_start; 502 u8 result[BTRFS_CSUM_SIZE]; 503 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 504 struct extent_buffer *eb; 505 int ret; 506 507 eb = (struct extent_buffer *)page->private; 508 if (page != eb->pages[0]) 509 return 0; 510 511 found_start = btrfs_header_bytenr(eb); 512 /* 513 * Please do not consolidate these warnings into a single if. 514 * It is useful to know what went wrong. 515 */ 516 if (WARN_ON(found_start != start)) 517 return -EUCLEAN; 518 if (WARN_ON(!PageUptodate(page))) 519 return -EUCLEAN; 520 521 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 522 offsetof(struct btrfs_header, fsid), 523 BTRFS_FSID_SIZE) == 0); 524 525 csum_tree_block(eb, result); 526 527 if (btrfs_header_level(eb)) 528 ret = btrfs_check_node(eb); 529 else 530 ret = btrfs_check_leaf_full(eb); 531 532 if (ret < 0) { 533 btrfs_print_tree(eb, 0); 534 btrfs_err(fs_info, 535 "block=%llu write time tree block corruption detected", 536 eb->start); 537 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 538 return ret; 539 } 540 write_extent_buffer(eb, result, 0, csum_size); 541 542 return 0; 543 } 544 545 static int check_tree_block_fsid(struct extent_buffer *eb) 546 { 547 struct btrfs_fs_info *fs_info = eb->fs_info; 548 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 549 u8 fsid[BTRFS_FSID_SIZE]; 550 int ret = 1; 551 552 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 553 BTRFS_FSID_SIZE); 554 while (fs_devices) { 555 u8 *metadata_uuid; 556 557 /* 558 * Checking the incompat flag is only valid for the current 559 * fs. For seed devices it's forbidden to have their uuid 560 * changed so reading ->fsid in this case is fine 561 */ 562 if (fs_devices == fs_info->fs_devices && 563 btrfs_fs_incompat(fs_info, METADATA_UUID)) 564 metadata_uuid = fs_devices->metadata_uuid; 565 else 566 metadata_uuid = fs_devices->fsid; 567 568 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) { 569 ret = 0; 570 break; 571 } 572 fs_devices = fs_devices->seed; 573 } 574 return ret; 575 } 576 577 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 578 u64 phy_offset, struct page *page, 579 u64 start, u64 end, int mirror) 580 { 581 u64 found_start; 582 int found_level; 583 struct extent_buffer *eb; 584 struct btrfs_fs_info *fs_info; 585 u16 csum_size; 586 int ret = 0; 587 u8 result[BTRFS_CSUM_SIZE]; 588 int reads_done; 589 590 if (!page->private) 591 goto out; 592 593 eb = (struct extent_buffer *)page->private; 594 fs_info = eb->fs_info; 595 csum_size = btrfs_super_csum_size(fs_info->super_copy); 596 597 /* the pending IO might have been the only thing that kept this buffer 598 * in memory. Make sure we have a ref for all this other checks 599 */ 600 atomic_inc(&eb->refs); 601 602 reads_done = atomic_dec_and_test(&eb->io_pages); 603 if (!reads_done) 604 goto err; 605 606 eb->read_mirror = mirror; 607 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 608 ret = -EIO; 609 goto err; 610 } 611 612 found_start = btrfs_header_bytenr(eb); 613 if (found_start != eb->start) { 614 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 615 eb->start, found_start); 616 ret = -EIO; 617 goto err; 618 } 619 if (check_tree_block_fsid(eb)) { 620 btrfs_err_rl(fs_info, "bad fsid on block %llu", 621 eb->start); 622 ret = -EIO; 623 goto err; 624 } 625 found_level = btrfs_header_level(eb); 626 if (found_level >= BTRFS_MAX_LEVEL) { 627 btrfs_err(fs_info, "bad tree block level %d on %llu", 628 (int)btrfs_header_level(eb), eb->start); 629 ret = -EIO; 630 goto err; 631 } 632 633 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 634 eb, found_level); 635 636 csum_tree_block(eb, result); 637 638 if (memcmp_extent_buffer(eb, result, 0, csum_size)) { 639 u32 val; 640 u32 found = 0; 641 642 memcpy(&found, result, csum_size); 643 644 read_extent_buffer(eb, &val, 0, csum_size); 645 btrfs_warn_rl(fs_info, 646 "%s checksum verify failed on %llu wanted %x found %x level %d", 647 fs_info->sb->s_id, eb->start, 648 val, found, btrfs_header_level(eb)); 649 ret = -EUCLEAN; 650 goto err; 651 } 652 653 /* 654 * If this is a leaf block and it is corrupt, set the corrupt bit so 655 * that we don't try and read the other copies of this block, just 656 * return -EIO. 657 */ 658 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 659 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 660 ret = -EIO; 661 } 662 663 if (found_level > 0 && btrfs_check_node(eb)) 664 ret = -EIO; 665 666 if (!ret) 667 set_extent_buffer_uptodate(eb); 668 else 669 btrfs_err(fs_info, 670 "block=%llu read time tree block corruption detected", 671 eb->start); 672 err: 673 if (reads_done && 674 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 675 btree_readahead_hook(eb, ret); 676 677 if (ret) { 678 /* 679 * our io error hook is going to dec the io pages 680 * again, we have to make sure it has something 681 * to decrement 682 */ 683 atomic_inc(&eb->io_pages); 684 clear_extent_buffer_uptodate(eb); 685 } 686 free_extent_buffer(eb); 687 out: 688 return ret; 689 } 690 691 static void end_workqueue_bio(struct bio *bio) 692 { 693 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 694 struct btrfs_fs_info *fs_info; 695 struct btrfs_workqueue *wq; 696 697 fs_info = end_io_wq->info; 698 end_io_wq->status = bio->bi_status; 699 700 if (bio_op(bio) == REQ_OP_WRITE) { 701 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) 702 wq = fs_info->endio_meta_write_workers; 703 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) 704 wq = fs_info->endio_freespace_worker; 705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 706 wq = fs_info->endio_raid56_workers; 707 else 708 wq = fs_info->endio_write_workers; 709 } else { 710 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 711 wq = fs_info->endio_raid56_workers; 712 else if (end_io_wq->metadata) 713 wq = fs_info->endio_meta_workers; 714 else 715 wq = fs_info->endio_workers; 716 } 717 718 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL); 719 btrfs_queue_work(wq, &end_io_wq->work); 720 } 721 722 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 723 enum btrfs_wq_endio_type metadata) 724 { 725 struct btrfs_end_io_wq *end_io_wq; 726 727 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 728 if (!end_io_wq) 729 return BLK_STS_RESOURCE; 730 731 end_io_wq->private = bio->bi_private; 732 end_io_wq->end_io = bio->bi_end_io; 733 end_io_wq->info = info; 734 end_io_wq->status = 0; 735 end_io_wq->bio = bio; 736 end_io_wq->metadata = metadata; 737 738 bio->bi_private = end_io_wq; 739 bio->bi_end_io = end_workqueue_bio; 740 return 0; 741 } 742 743 static void run_one_async_start(struct btrfs_work *work) 744 { 745 struct async_submit_bio *async; 746 blk_status_t ret; 747 748 async = container_of(work, struct async_submit_bio, work); 749 ret = async->submit_bio_start(async->private_data, async->bio, 750 async->bio_offset); 751 if (ret) 752 async->status = ret; 753 } 754 755 /* 756 * In order to insert checksums into the metadata in large chunks, we wait 757 * until bio submission time. All the pages in the bio are checksummed and 758 * sums are attached onto the ordered extent record. 759 * 760 * At IO completion time the csums attached on the ordered extent record are 761 * inserted into the tree. 762 */ 763 static void run_one_async_done(struct btrfs_work *work) 764 { 765 struct async_submit_bio *async; 766 struct inode *inode; 767 blk_status_t ret; 768 769 async = container_of(work, struct async_submit_bio, work); 770 inode = async->private_data; 771 772 /* If an error occurred we just want to clean up the bio and move on */ 773 if (async->status) { 774 async->bio->bi_status = async->status; 775 bio_endio(async->bio); 776 return; 777 } 778 779 /* 780 * All of the bios that pass through here are from async helpers. 781 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context. 782 * This changes nothing when cgroups aren't in use. 783 */ 784 async->bio->bi_opf |= REQ_CGROUP_PUNT; 785 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num); 786 if (ret) { 787 async->bio->bi_status = ret; 788 bio_endio(async->bio); 789 } 790 } 791 792 static void run_one_async_free(struct btrfs_work *work) 793 { 794 struct async_submit_bio *async; 795 796 async = container_of(work, struct async_submit_bio, work); 797 kfree(async); 798 } 799 800 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 801 int mirror_num, unsigned long bio_flags, 802 u64 bio_offset, void *private_data, 803 extent_submit_bio_start_t *submit_bio_start) 804 { 805 struct async_submit_bio *async; 806 807 async = kmalloc(sizeof(*async), GFP_NOFS); 808 if (!async) 809 return BLK_STS_RESOURCE; 810 811 async->private_data = private_data; 812 async->bio = bio; 813 async->mirror_num = mirror_num; 814 async->submit_bio_start = submit_bio_start; 815 816 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, 817 run_one_async_free); 818 819 async->bio_offset = bio_offset; 820 821 async->status = 0; 822 823 if (op_is_sync(bio->bi_opf)) 824 btrfs_set_work_high_priority(&async->work); 825 826 btrfs_queue_work(fs_info->workers, &async->work); 827 return 0; 828 } 829 830 static blk_status_t btree_csum_one_bio(struct bio *bio) 831 { 832 struct bio_vec *bvec; 833 struct btrfs_root *root; 834 int ret = 0; 835 struct bvec_iter_all iter_all; 836 837 ASSERT(!bio_flagged(bio, BIO_CLONED)); 838 bio_for_each_segment_all(bvec, bio, iter_all) { 839 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 840 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 841 if (ret) 842 break; 843 } 844 845 return errno_to_blk_status(ret); 846 } 847 848 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, 849 u64 bio_offset) 850 { 851 /* 852 * when we're called for a write, we're already in the async 853 * submission context. Just jump into btrfs_map_bio 854 */ 855 return btree_csum_one_bio(bio); 856 } 857 858 static int check_async_write(struct btrfs_fs_info *fs_info, 859 struct btrfs_inode *bi) 860 { 861 if (atomic_read(&bi->sync_writers)) 862 return 0; 863 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 864 return 0; 865 return 1; 866 } 867 868 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio, 869 int mirror_num, 870 unsigned long bio_flags) 871 { 872 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 873 int async = check_async_write(fs_info, BTRFS_I(inode)); 874 blk_status_t ret; 875 876 if (bio_op(bio) != REQ_OP_WRITE) { 877 /* 878 * called for a read, do the setup so that checksum validation 879 * can happen in the async kernel threads 880 */ 881 ret = btrfs_bio_wq_end_io(fs_info, bio, 882 BTRFS_WQ_ENDIO_METADATA); 883 if (ret) 884 goto out_w_error; 885 ret = btrfs_map_bio(fs_info, bio, mirror_num); 886 } else if (!async) { 887 ret = btree_csum_one_bio(bio); 888 if (ret) 889 goto out_w_error; 890 ret = btrfs_map_bio(fs_info, bio, mirror_num); 891 } else { 892 /* 893 * kthread helpers are used to submit writes so that 894 * checksumming can happen in parallel across all CPUs 895 */ 896 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 897 0, inode, btree_submit_bio_start); 898 } 899 900 if (ret) 901 goto out_w_error; 902 return 0; 903 904 out_w_error: 905 bio->bi_status = ret; 906 bio_endio(bio); 907 return ret; 908 } 909 910 #ifdef CONFIG_MIGRATION 911 static int btree_migratepage(struct address_space *mapping, 912 struct page *newpage, struct page *page, 913 enum migrate_mode mode) 914 { 915 /* 916 * we can't safely write a btree page from here, 917 * we haven't done the locking hook 918 */ 919 if (PageDirty(page)) 920 return -EAGAIN; 921 /* 922 * Buffers may be managed in a filesystem specific way. 923 * We must have no buffers or drop them. 924 */ 925 if (page_has_private(page) && 926 !try_to_release_page(page, GFP_KERNEL)) 927 return -EAGAIN; 928 return migrate_page(mapping, newpage, page, mode); 929 } 930 #endif 931 932 933 static int btree_writepages(struct address_space *mapping, 934 struct writeback_control *wbc) 935 { 936 struct btrfs_fs_info *fs_info; 937 int ret; 938 939 if (wbc->sync_mode == WB_SYNC_NONE) { 940 941 if (wbc->for_kupdate) 942 return 0; 943 944 fs_info = BTRFS_I(mapping->host)->root->fs_info; 945 /* this is a bit racy, but that's ok */ 946 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 947 BTRFS_DIRTY_METADATA_THRESH, 948 fs_info->dirty_metadata_batch); 949 if (ret < 0) 950 return 0; 951 } 952 return btree_write_cache_pages(mapping, wbc); 953 } 954 955 static int btree_readpage(struct file *file, struct page *page) 956 { 957 return extent_read_full_page(page, btree_get_extent, 0); 958 } 959 960 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 961 { 962 if (PageWriteback(page) || PageDirty(page)) 963 return 0; 964 965 return try_release_extent_buffer(page); 966 } 967 968 static void btree_invalidatepage(struct page *page, unsigned int offset, 969 unsigned int length) 970 { 971 struct extent_io_tree *tree; 972 tree = &BTRFS_I(page->mapping->host)->io_tree; 973 extent_invalidatepage(tree, page, offset); 974 btree_releasepage(page, GFP_NOFS); 975 if (PagePrivate(page)) { 976 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 977 "page private not zero on page %llu", 978 (unsigned long long)page_offset(page)); 979 detach_page_private(page); 980 } 981 } 982 983 static int btree_set_page_dirty(struct page *page) 984 { 985 #ifdef DEBUG 986 struct extent_buffer *eb; 987 988 BUG_ON(!PagePrivate(page)); 989 eb = (struct extent_buffer *)page->private; 990 BUG_ON(!eb); 991 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 992 BUG_ON(!atomic_read(&eb->refs)); 993 btrfs_assert_tree_locked(eb); 994 #endif 995 return __set_page_dirty_nobuffers(page); 996 } 997 998 static const struct address_space_operations btree_aops = { 999 .readpage = btree_readpage, 1000 .writepages = btree_writepages, 1001 .releasepage = btree_releasepage, 1002 .invalidatepage = btree_invalidatepage, 1003 #ifdef CONFIG_MIGRATION 1004 .migratepage = btree_migratepage, 1005 #endif 1006 .set_page_dirty = btree_set_page_dirty, 1007 }; 1008 1009 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 1010 { 1011 struct extent_buffer *buf = NULL; 1012 int ret; 1013 1014 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1015 if (IS_ERR(buf)) 1016 return; 1017 1018 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0); 1019 if (ret < 0) 1020 free_extent_buffer_stale(buf); 1021 else 1022 free_extent_buffer(buf); 1023 } 1024 1025 struct extent_buffer *btrfs_find_create_tree_block( 1026 struct btrfs_fs_info *fs_info, 1027 u64 bytenr) 1028 { 1029 if (btrfs_is_testing(fs_info)) 1030 return alloc_test_extent_buffer(fs_info, bytenr); 1031 return alloc_extent_buffer(fs_info, bytenr); 1032 } 1033 1034 /* 1035 * Read tree block at logical address @bytenr and do variant basic but critical 1036 * verification. 1037 * 1038 * @parent_transid: expected transid of this tree block, skip check if 0 1039 * @level: expected level, mandatory check 1040 * @first_key: expected key in slot 0, skip check if NULL 1041 */ 1042 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1043 u64 parent_transid, int level, 1044 struct btrfs_key *first_key) 1045 { 1046 struct extent_buffer *buf = NULL; 1047 int ret; 1048 1049 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1050 if (IS_ERR(buf)) 1051 return buf; 1052 1053 ret = btree_read_extent_buffer_pages(buf, parent_transid, 1054 level, first_key); 1055 if (ret) { 1056 free_extent_buffer_stale(buf); 1057 return ERR_PTR(ret); 1058 } 1059 return buf; 1060 1061 } 1062 1063 void btrfs_clean_tree_block(struct extent_buffer *buf) 1064 { 1065 struct btrfs_fs_info *fs_info = buf->fs_info; 1066 if (btrfs_header_generation(buf) == 1067 fs_info->running_transaction->transid) { 1068 btrfs_assert_tree_locked(buf); 1069 1070 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1071 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1072 -buf->len, 1073 fs_info->dirty_metadata_batch); 1074 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1075 btrfs_set_lock_blocking_write(buf); 1076 clear_extent_buffer_dirty(buf); 1077 } 1078 } 1079 } 1080 1081 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1082 u64 objectid) 1083 { 1084 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1085 root->fs_info = fs_info; 1086 root->node = NULL; 1087 root->commit_root = NULL; 1088 root->state = 0; 1089 root->orphan_cleanup_state = 0; 1090 1091 root->last_trans = 0; 1092 root->highest_objectid = 0; 1093 root->nr_delalloc_inodes = 0; 1094 root->nr_ordered_extents = 0; 1095 root->inode_tree = RB_ROOT; 1096 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1097 root->block_rsv = NULL; 1098 1099 INIT_LIST_HEAD(&root->dirty_list); 1100 INIT_LIST_HEAD(&root->root_list); 1101 INIT_LIST_HEAD(&root->delalloc_inodes); 1102 INIT_LIST_HEAD(&root->delalloc_root); 1103 INIT_LIST_HEAD(&root->ordered_extents); 1104 INIT_LIST_HEAD(&root->ordered_root); 1105 INIT_LIST_HEAD(&root->reloc_dirty_list); 1106 INIT_LIST_HEAD(&root->logged_list[0]); 1107 INIT_LIST_HEAD(&root->logged_list[1]); 1108 spin_lock_init(&root->inode_lock); 1109 spin_lock_init(&root->delalloc_lock); 1110 spin_lock_init(&root->ordered_extent_lock); 1111 spin_lock_init(&root->accounting_lock); 1112 spin_lock_init(&root->log_extents_lock[0]); 1113 spin_lock_init(&root->log_extents_lock[1]); 1114 spin_lock_init(&root->qgroup_meta_rsv_lock); 1115 mutex_init(&root->objectid_mutex); 1116 mutex_init(&root->log_mutex); 1117 mutex_init(&root->ordered_extent_mutex); 1118 mutex_init(&root->delalloc_mutex); 1119 init_waitqueue_head(&root->log_writer_wait); 1120 init_waitqueue_head(&root->log_commit_wait[0]); 1121 init_waitqueue_head(&root->log_commit_wait[1]); 1122 INIT_LIST_HEAD(&root->log_ctxs[0]); 1123 INIT_LIST_HEAD(&root->log_ctxs[1]); 1124 atomic_set(&root->log_commit[0], 0); 1125 atomic_set(&root->log_commit[1], 0); 1126 atomic_set(&root->log_writers, 0); 1127 atomic_set(&root->log_batch, 0); 1128 refcount_set(&root->refs, 1); 1129 atomic_set(&root->snapshot_force_cow, 0); 1130 atomic_set(&root->nr_swapfiles, 0); 1131 root->log_transid = 0; 1132 root->log_transid_committed = -1; 1133 root->last_log_commit = 0; 1134 if (!dummy) { 1135 extent_io_tree_init(fs_info, &root->dirty_log_pages, 1136 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL); 1137 extent_io_tree_init(fs_info, &root->log_csum_range, 1138 IO_TREE_LOG_CSUM_RANGE, NULL); 1139 } 1140 1141 memset(&root->root_key, 0, sizeof(root->root_key)); 1142 memset(&root->root_item, 0, sizeof(root->root_item)); 1143 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1144 if (!dummy) 1145 root->defrag_trans_start = fs_info->generation; 1146 else 1147 root->defrag_trans_start = 0; 1148 root->root_key.objectid = objectid; 1149 root->anon_dev = 0; 1150 1151 spin_lock_init(&root->root_item_lock); 1152 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1153 #ifdef CONFIG_BTRFS_DEBUG 1154 INIT_LIST_HEAD(&root->leak_list); 1155 spin_lock(&fs_info->fs_roots_radix_lock); 1156 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 1157 spin_unlock(&fs_info->fs_roots_radix_lock); 1158 #endif 1159 } 1160 1161 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1162 u64 objectid, gfp_t flags) 1163 { 1164 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1165 if (root) 1166 __setup_root(root, fs_info, objectid); 1167 return root; 1168 } 1169 1170 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1171 /* Should only be used by the testing infrastructure */ 1172 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1173 { 1174 struct btrfs_root *root; 1175 1176 if (!fs_info) 1177 return ERR_PTR(-EINVAL); 1178 1179 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 1180 if (!root) 1181 return ERR_PTR(-ENOMEM); 1182 1183 /* We don't use the stripesize in selftest, set it as sectorsize */ 1184 root->alloc_bytenr = 0; 1185 1186 return root; 1187 } 1188 #endif 1189 1190 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1191 u64 objectid) 1192 { 1193 struct btrfs_fs_info *fs_info = trans->fs_info; 1194 struct extent_buffer *leaf; 1195 struct btrfs_root *tree_root = fs_info->tree_root; 1196 struct btrfs_root *root; 1197 struct btrfs_key key; 1198 unsigned int nofs_flag; 1199 int ret = 0; 1200 1201 /* 1202 * We're holding a transaction handle, so use a NOFS memory allocation 1203 * context to avoid deadlock if reclaim happens. 1204 */ 1205 nofs_flag = memalloc_nofs_save(); 1206 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 1207 memalloc_nofs_restore(nofs_flag); 1208 if (!root) 1209 return ERR_PTR(-ENOMEM); 1210 1211 root->root_key.objectid = objectid; 1212 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1213 root->root_key.offset = 0; 1214 1215 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1216 if (IS_ERR(leaf)) { 1217 ret = PTR_ERR(leaf); 1218 leaf = NULL; 1219 goto fail; 1220 } 1221 1222 root->node = leaf; 1223 btrfs_mark_buffer_dirty(leaf); 1224 1225 root->commit_root = btrfs_root_node(root); 1226 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1227 1228 root->root_item.flags = 0; 1229 root->root_item.byte_limit = 0; 1230 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1231 btrfs_set_root_generation(&root->root_item, trans->transid); 1232 btrfs_set_root_level(&root->root_item, 0); 1233 btrfs_set_root_refs(&root->root_item, 1); 1234 btrfs_set_root_used(&root->root_item, leaf->len); 1235 btrfs_set_root_last_snapshot(&root->root_item, 0); 1236 btrfs_set_root_dirid(&root->root_item, 0); 1237 if (is_fstree(objectid)) 1238 generate_random_guid(root->root_item.uuid); 1239 else 1240 export_guid(root->root_item.uuid, &guid_null); 1241 root->root_item.drop_level = 0; 1242 1243 key.objectid = objectid; 1244 key.type = BTRFS_ROOT_ITEM_KEY; 1245 key.offset = 0; 1246 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1247 if (ret) 1248 goto fail; 1249 1250 btrfs_tree_unlock(leaf); 1251 1252 return root; 1253 1254 fail: 1255 if (leaf) 1256 btrfs_tree_unlock(leaf); 1257 btrfs_put_root(root); 1258 1259 return ERR_PTR(ret); 1260 } 1261 1262 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1263 struct btrfs_fs_info *fs_info) 1264 { 1265 struct btrfs_root *root; 1266 struct extent_buffer *leaf; 1267 1268 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 1269 if (!root) 1270 return ERR_PTR(-ENOMEM); 1271 1272 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1273 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1274 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1275 1276 /* 1277 * DON'T set SHAREABLE bit for log trees. 1278 * 1279 * Log trees are not exposed to user space thus can't be snapshotted, 1280 * and they go away before a real commit is actually done. 1281 * 1282 * They do store pointers to file data extents, and those reference 1283 * counts still get updated (along with back refs to the log tree). 1284 */ 1285 1286 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1287 NULL, 0, 0, 0); 1288 if (IS_ERR(leaf)) { 1289 btrfs_put_root(root); 1290 return ERR_CAST(leaf); 1291 } 1292 1293 root->node = leaf; 1294 1295 btrfs_mark_buffer_dirty(root->node); 1296 btrfs_tree_unlock(root->node); 1297 return root; 1298 } 1299 1300 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1301 struct btrfs_fs_info *fs_info) 1302 { 1303 struct btrfs_root *log_root; 1304 1305 log_root = alloc_log_tree(trans, fs_info); 1306 if (IS_ERR(log_root)) 1307 return PTR_ERR(log_root); 1308 WARN_ON(fs_info->log_root_tree); 1309 fs_info->log_root_tree = log_root; 1310 return 0; 1311 } 1312 1313 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1314 struct btrfs_root *root) 1315 { 1316 struct btrfs_fs_info *fs_info = root->fs_info; 1317 struct btrfs_root *log_root; 1318 struct btrfs_inode_item *inode_item; 1319 1320 log_root = alloc_log_tree(trans, fs_info); 1321 if (IS_ERR(log_root)) 1322 return PTR_ERR(log_root); 1323 1324 log_root->last_trans = trans->transid; 1325 log_root->root_key.offset = root->root_key.objectid; 1326 1327 inode_item = &log_root->root_item.inode; 1328 btrfs_set_stack_inode_generation(inode_item, 1); 1329 btrfs_set_stack_inode_size(inode_item, 3); 1330 btrfs_set_stack_inode_nlink(inode_item, 1); 1331 btrfs_set_stack_inode_nbytes(inode_item, 1332 fs_info->nodesize); 1333 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1334 1335 btrfs_set_root_node(&log_root->root_item, log_root->node); 1336 1337 WARN_ON(root->log_root); 1338 root->log_root = log_root; 1339 root->log_transid = 0; 1340 root->log_transid_committed = -1; 1341 root->last_log_commit = 0; 1342 return 0; 1343 } 1344 1345 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1346 struct btrfs_key *key) 1347 { 1348 struct btrfs_root *root; 1349 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1350 struct btrfs_path *path; 1351 u64 generation; 1352 int ret; 1353 int level; 1354 1355 path = btrfs_alloc_path(); 1356 if (!path) 1357 return ERR_PTR(-ENOMEM); 1358 1359 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1360 if (!root) { 1361 ret = -ENOMEM; 1362 goto alloc_fail; 1363 } 1364 1365 ret = btrfs_find_root(tree_root, key, path, 1366 &root->root_item, &root->root_key); 1367 if (ret) { 1368 if (ret > 0) 1369 ret = -ENOENT; 1370 goto find_fail; 1371 } 1372 1373 generation = btrfs_root_generation(&root->root_item); 1374 level = btrfs_root_level(&root->root_item); 1375 root->node = read_tree_block(fs_info, 1376 btrfs_root_bytenr(&root->root_item), 1377 generation, level, NULL); 1378 if (IS_ERR(root->node)) { 1379 ret = PTR_ERR(root->node); 1380 root->node = NULL; 1381 goto find_fail; 1382 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1383 ret = -EIO; 1384 goto find_fail; 1385 } 1386 root->commit_root = btrfs_root_node(root); 1387 out: 1388 btrfs_free_path(path); 1389 return root; 1390 1391 find_fail: 1392 btrfs_put_root(root); 1393 alloc_fail: 1394 root = ERR_PTR(ret); 1395 goto out; 1396 } 1397 1398 static int btrfs_init_fs_root(struct btrfs_root *root) 1399 { 1400 int ret; 1401 unsigned int nofs_flag; 1402 1403 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1404 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1405 GFP_NOFS); 1406 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1407 ret = -ENOMEM; 1408 goto fail; 1409 } 1410 1411 /* 1412 * We might be called under a transaction (e.g. indirect backref 1413 * resolution) which could deadlock if it triggers memory reclaim 1414 */ 1415 nofs_flag = memalloc_nofs_save(); 1416 ret = btrfs_drew_lock_init(&root->snapshot_lock); 1417 memalloc_nofs_restore(nofs_flag); 1418 if (ret) 1419 goto fail; 1420 1421 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1422 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 1423 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1424 btrfs_check_and_init_root_item(&root->root_item); 1425 } 1426 1427 btrfs_init_free_ino_ctl(root); 1428 spin_lock_init(&root->ino_cache_lock); 1429 init_waitqueue_head(&root->ino_cache_wait); 1430 1431 ret = get_anon_bdev(&root->anon_dev); 1432 if (ret) 1433 goto fail; 1434 1435 mutex_lock(&root->objectid_mutex); 1436 ret = btrfs_find_highest_objectid(root, 1437 &root->highest_objectid); 1438 if (ret) { 1439 mutex_unlock(&root->objectid_mutex); 1440 goto fail; 1441 } 1442 1443 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1444 1445 mutex_unlock(&root->objectid_mutex); 1446 1447 return 0; 1448 fail: 1449 /* The caller is responsible to call btrfs_free_fs_root */ 1450 return ret; 1451 } 1452 1453 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1454 u64 root_id) 1455 { 1456 struct btrfs_root *root; 1457 1458 spin_lock(&fs_info->fs_roots_radix_lock); 1459 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1460 (unsigned long)root_id); 1461 if (root) 1462 root = btrfs_grab_root(root); 1463 spin_unlock(&fs_info->fs_roots_radix_lock); 1464 return root; 1465 } 1466 1467 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1468 struct btrfs_root *root) 1469 { 1470 int ret; 1471 1472 ret = radix_tree_preload(GFP_NOFS); 1473 if (ret) 1474 return ret; 1475 1476 spin_lock(&fs_info->fs_roots_radix_lock); 1477 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1478 (unsigned long)root->root_key.objectid, 1479 root); 1480 if (ret == 0) { 1481 btrfs_grab_root(root); 1482 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1483 } 1484 spin_unlock(&fs_info->fs_roots_radix_lock); 1485 radix_tree_preload_end(); 1486 1487 return ret; 1488 } 1489 1490 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1491 { 1492 #ifdef CONFIG_BTRFS_DEBUG 1493 struct btrfs_root *root; 1494 1495 while (!list_empty(&fs_info->allocated_roots)) { 1496 root = list_first_entry(&fs_info->allocated_roots, 1497 struct btrfs_root, leak_list); 1498 btrfs_err(fs_info, "leaked root %llu-%llu refcount %d", 1499 root->root_key.objectid, root->root_key.offset, 1500 refcount_read(&root->refs)); 1501 while (refcount_read(&root->refs) > 1) 1502 btrfs_put_root(root); 1503 btrfs_put_root(root); 1504 } 1505 #endif 1506 } 1507 1508 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1509 { 1510 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1511 percpu_counter_destroy(&fs_info->delalloc_bytes); 1512 percpu_counter_destroy(&fs_info->dio_bytes); 1513 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1514 btrfs_free_csum_hash(fs_info); 1515 btrfs_free_stripe_hash_table(fs_info); 1516 btrfs_free_ref_cache(fs_info); 1517 kfree(fs_info->balance_ctl); 1518 kfree(fs_info->delayed_root); 1519 btrfs_put_root(fs_info->extent_root); 1520 btrfs_put_root(fs_info->tree_root); 1521 btrfs_put_root(fs_info->chunk_root); 1522 btrfs_put_root(fs_info->dev_root); 1523 btrfs_put_root(fs_info->csum_root); 1524 btrfs_put_root(fs_info->quota_root); 1525 btrfs_put_root(fs_info->uuid_root); 1526 btrfs_put_root(fs_info->free_space_root); 1527 btrfs_put_root(fs_info->fs_root); 1528 btrfs_put_root(fs_info->data_reloc_root); 1529 btrfs_check_leaked_roots(fs_info); 1530 btrfs_extent_buffer_leak_debug_check(fs_info); 1531 kfree(fs_info->super_copy); 1532 kfree(fs_info->super_for_commit); 1533 kvfree(fs_info); 1534 } 1535 1536 1537 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1538 u64 objectid, bool check_ref) 1539 { 1540 struct btrfs_root *root; 1541 struct btrfs_path *path; 1542 struct btrfs_key key; 1543 int ret; 1544 1545 if (objectid == BTRFS_ROOT_TREE_OBJECTID) 1546 return btrfs_grab_root(fs_info->tree_root); 1547 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 1548 return btrfs_grab_root(fs_info->extent_root); 1549 if (objectid == BTRFS_CHUNK_TREE_OBJECTID) 1550 return btrfs_grab_root(fs_info->chunk_root); 1551 if (objectid == BTRFS_DEV_TREE_OBJECTID) 1552 return btrfs_grab_root(fs_info->dev_root); 1553 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 1554 return btrfs_grab_root(fs_info->csum_root); 1555 if (objectid == BTRFS_QUOTA_TREE_OBJECTID) 1556 return btrfs_grab_root(fs_info->quota_root) ? 1557 fs_info->quota_root : ERR_PTR(-ENOENT); 1558 if (objectid == BTRFS_UUID_TREE_OBJECTID) 1559 return btrfs_grab_root(fs_info->uuid_root) ? 1560 fs_info->uuid_root : ERR_PTR(-ENOENT); 1561 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1562 return btrfs_grab_root(fs_info->free_space_root) ? 1563 fs_info->free_space_root : ERR_PTR(-ENOENT); 1564 again: 1565 root = btrfs_lookup_fs_root(fs_info, objectid); 1566 if (root) { 1567 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1568 btrfs_put_root(root); 1569 return ERR_PTR(-ENOENT); 1570 } 1571 return root; 1572 } 1573 1574 key.objectid = objectid; 1575 key.type = BTRFS_ROOT_ITEM_KEY; 1576 key.offset = (u64)-1; 1577 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1578 if (IS_ERR(root)) 1579 return root; 1580 1581 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1582 ret = -ENOENT; 1583 goto fail; 1584 } 1585 1586 ret = btrfs_init_fs_root(root); 1587 if (ret) 1588 goto fail; 1589 1590 path = btrfs_alloc_path(); 1591 if (!path) { 1592 ret = -ENOMEM; 1593 goto fail; 1594 } 1595 key.objectid = BTRFS_ORPHAN_OBJECTID; 1596 key.type = BTRFS_ORPHAN_ITEM_KEY; 1597 key.offset = objectid; 1598 1599 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1600 btrfs_free_path(path); 1601 if (ret < 0) 1602 goto fail; 1603 if (ret == 0) 1604 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1605 1606 ret = btrfs_insert_fs_root(fs_info, root); 1607 if (ret) { 1608 btrfs_put_root(root); 1609 if (ret == -EEXIST) 1610 goto again; 1611 goto fail; 1612 } 1613 return root; 1614 fail: 1615 btrfs_put_root(root); 1616 return ERR_PTR(ret); 1617 } 1618 1619 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1620 { 1621 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1622 int ret = 0; 1623 struct btrfs_device *device; 1624 struct backing_dev_info *bdi; 1625 1626 rcu_read_lock(); 1627 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1628 if (!device->bdev) 1629 continue; 1630 bdi = device->bdev->bd_bdi; 1631 if (bdi_congested(bdi, bdi_bits)) { 1632 ret = 1; 1633 break; 1634 } 1635 } 1636 rcu_read_unlock(); 1637 return ret; 1638 } 1639 1640 /* 1641 * called by the kthread helper functions to finally call the bio end_io 1642 * functions. This is where read checksum verification actually happens 1643 */ 1644 static void end_workqueue_fn(struct btrfs_work *work) 1645 { 1646 struct bio *bio; 1647 struct btrfs_end_io_wq *end_io_wq; 1648 1649 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1650 bio = end_io_wq->bio; 1651 1652 bio->bi_status = end_io_wq->status; 1653 bio->bi_private = end_io_wq->private; 1654 bio->bi_end_io = end_io_wq->end_io; 1655 bio_endio(bio); 1656 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1657 } 1658 1659 static int cleaner_kthread(void *arg) 1660 { 1661 struct btrfs_root *root = arg; 1662 struct btrfs_fs_info *fs_info = root->fs_info; 1663 int again; 1664 1665 while (1) { 1666 again = 0; 1667 1668 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1669 1670 /* Make the cleaner go to sleep early. */ 1671 if (btrfs_need_cleaner_sleep(fs_info)) 1672 goto sleep; 1673 1674 /* 1675 * Do not do anything if we might cause open_ctree() to block 1676 * before we have finished mounting the filesystem. 1677 */ 1678 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1679 goto sleep; 1680 1681 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1682 goto sleep; 1683 1684 /* 1685 * Avoid the problem that we change the status of the fs 1686 * during the above check and trylock. 1687 */ 1688 if (btrfs_need_cleaner_sleep(fs_info)) { 1689 mutex_unlock(&fs_info->cleaner_mutex); 1690 goto sleep; 1691 } 1692 1693 btrfs_run_delayed_iputs(fs_info); 1694 1695 again = btrfs_clean_one_deleted_snapshot(root); 1696 mutex_unlock(&fs_info->cleaner_mutex); 1697 1698 /* 1699 * The defragger has dealt with the R/O remount and umount, 1700 * needn't do anything special here. 1701 */ 1702 btrfs_run_defrag_inodes(fs_info); 1703 1704 /* 1705 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1706 * with relocation (btrfs_relocate_chunk) and relocation 1707 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1708 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1709 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1710 * unused block groups. 1711 */ 1712 btrfs_delete_unused_bgs(fs_info); 1713 sleep: 1714 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1715 if (kthread_should_park()) 1716 kthread_parkme(); 1717 if (kthread_should_stop()) 1718 return 0; 1719 if (!again) { 1720 set_current_state(TASK_INTERRUPTIBLE); 1721 schedule(); 1722 __set_current_state(TASK_RUNNING); 1723 } 1724 } 1725 } 1726 1727 static int transaction_kthread(void *arg) 1728 { 1729 struct btrfs_root *root = arg; 1730 struct btrfs_fs_info *fs_info = root->fs_info; 1731 struct btrfs_trans_handle *trans; 1732 struct btrfs_transaction *cur; 1733 u64 transid; 1734 time64_t now; 1735 unsigned long delay; 1736 bool cannot_commit; 1737 1738 do { 1739 cannot_commit = false; 1740 delay = HZ * fs_info->commit_interval; 1741 mutex_lock(&fs_info->transaction_kthread_mutex); 1742 1743 spin_lock(&fs_info->trans_lock); 1744 cur = fs_info->running_transaction; 1745 if (!cur) { 1746 spin_unlock(&fs_info->trans_lock); 1747 goto sleep; 1748 } 1749 1750 now = ktime_get_seconds(); 1751 if (cur->state < TRANS_STATE_COMMIT_START && 1752 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) && 1753 (now < cur->start_time || 1754 now - cur->start_time < fs_info->commit_interval)) { 1755 spin_unlock(&fs_info->trans_lock); 1756 delay = HZ * 5; 1757 goto sleep; 1758 } 1759 transid = cur->transid; 1760 spin_unlock(&fs_info->trans_lock); 1761 1762 /* If the file system is aborted, this will always fail. */ 1763 trans = btrfs_attach_transaction(root); 1764 if (IS_ERR(trans)) { 1765 if (PTR_ERR(trans) != -ENOENT) 1766 cannot_commit = true; 1767 goto sleep; 1768 } 1769 if (transid == trans->transid) { 1770 btrfs_commit_transaction(trans); 1771 } else { 1772 btrfs_end_transaction(trans); 1773 } 1774 sleep: 1775 wake_up_process(fs_info->cleaner_kthread); 1776 mutex_unlock(&fs_info->transaction_kthread_mutex); 1777 1778 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1779 &fs_info->fs_state))) 1780 btrfs_cleanup_transaction(fs_info); 1781 if (!kthread_should_stop() && 1782 (!btrfs_transaction_blocked(fs_info) || 1783 cannot_commit)) 1784 schedule_timeout_interruptible(delay); 1785 } while (!kthread_should_stop()); 1786 return 0; 1787 } 1788 1789 /* 1790 * This will find the highest generation in the array of root backups. The 1791 * index of the highest array is returned, or -EINVAL if we can't find 1792 * anything. 1793 * 1794 * We check to make sure the array is valid by comparing the 1795 * generation of the latest root in the array with the generation 1796 * in the super block. If they don't match we pitch it. 1797 */ 1798 static int find_newest_super_backup(struct btrfs_fs_info *info) 1799 { 1800 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1801 u64 cur; 1802 struct btrfs_root_backup *root_backup; 1803 int i; 1804 1805 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1806 root_backup = info->super_copy->super_roots + i; 1807 cur = btrfs_backup_tree_root_gen(root_backup); 1808 if (cur == newest_gen) 1809 return i; 1810 } 1811 1812 return -EINVAL; 1813 } 1814 1815 /* 1816 * copy all the root pointers into the super backup array. 1817 * this will bump the backup pointer by one when it is 1818 * done 1819 */ 1820 static void backup_super_roots(struct btrfs_fs_info *info) 1821 { 1822 const int next_backup = info->backup_root_index; 1823 struct btrfs_root_backup *root_backup; 1824 1825 root_backup = info->super_for_commit->super_roots + next_backup; 1826 1827 /* 1828 * make sure all of our padding and empty slots get zero filled 1829 * regardless of which ones we use today 1830 */ 1831 memset(root_backup, 0, sizeof(*root_backup)); 1832 1833 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1834 1835 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1836 btrfs_set_backup_tree_root_gen(root_backup, 1837 btrfs_header_generation(info->tree_root->node)); 1838 1839 btrfs_set_backup_tree_root_level(root_backup, 1840 btrfs_header_level(info->tree_root->node)); 1841 1842 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1843 btrfs_set_backup_chunk_root_gen(root_backup, 1844 btrfs_header_generation(info->chunk_root->node)); 1845 btrfs_set_backup_chunk_root_level(root_backup, 1846 btrfs_header_level(info->chunk_root->node)); 1847 1848 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1849 btrfs_set_backup_extent_root_gen(root_backup, 1850 btrfs_header_generation(info->extent_root->node)); 1851 btrfs_set_backup_extent_root_level(root_backup, 1852 btrfs_header_level(info->extent_root->node)); 1853 1854 /* 1855 * we might commit during log recovery, which happens before we set 1856 * the fs_root. Make sure it is valid before we fill it in. 1857 */ 1858 if (info->fs_root && info->fs_root->node) { 1859 btrfs_set_backup_fs_root(root_backup, 1860 info->fs_root->node->start); 1861 btrfs_set_backup_fs_root_gen(root_backup, 1862 btrfs_header_generation(info->fs_root->node)); 1863 btrfs_set_backup_fs_root_level(root_backup, 1864 btrfs_header_level(info->fs_root->node)); 1865 } 1866 1867 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1868 btrfs_set_backup_dev_root_gen(root_backup, 1869 btrfs_header_generation(info->dev_root->node)); 1870 btrfs_set_backup_dev_root_level(root_backup, 1871 btrfs_header_level(info->dev_root->node)); 1872 1873 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1874 btrfs_set_backup_csum_root_gen(root_backup, 1875 btrfs_header_generation(info->csum_root->node)); 1876 btrfs_set_backup_csum_root_level(root_backup, 1877 btrfs_header_level(info->csum_root->node)); 1878 1879 btrfs_set_backup_total_bytes(root_backup, 1880 btrfs_super_total_bytes(info->super_copy)); 1881 btrfs_set_backup_bytes_used(root_backup, 1882 btrfs_super_bytes_used(info->super_copy)); 1883 btrfs_set_backup_num_devices(root_backup, 1884 btrfs_super_num_devices(info->super_copy)); 1885 1886 /* 1887 * if we don't copy this out to the super_copy, it won't get remembered 1888 * for the next commit 1889 */ 1890 memcpy(&info->super_copy->super_roots, 1891 &info->super_for_commit->super_roots, 1892 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1893 } 1894 1895 /* 1896 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 1897 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1898 * 1899 * fs_info - filesystem whose backup roots need to be read 1900 * priority - priority of backup root required 1901 * 1902 * Returns backup root index on success and -EINVAL otherwise. 1903 */ 1904 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1905 { 1906 int backup_index = find_newest_super_backup(fs_info); 1907 struct btrfs_super_block *super = fs_info->super_copy; 1908 struct btrfs_root_backup *root_backup; 1909 1910 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1911 if (priority == 0) 1912 return backup_index; 1913 1914 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1915 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1916 } else { 1917 return -EINVAL; 1918 } 1919 1920 root_backup = super->super_roots + backup_index; 1921 1922 btrfs_set_super_generation(super, 1923 btrfs_backup_tree_root_gen(root_backup)); 1924 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1925 btrfs_set_super_root_level(super, 1926 btrfs_backup_tree_root_level(root_backup)); 1927 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1928 1929 /* 1930 * Fixme: the total bytes and num_devices need to match or we should 1931 * need a fsck 1932 */ 1933 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1934 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1935 1936 return backup_index; 1937 } 1938 1939 /* helper to cleanup workers */ 1940 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1941 { 1942 btrfs_destroy_workqueue(fs_info->fixup_workers); 1943 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1944 btrfs_destroy_workqueue(fs_info->workers); 1945 btrfs_destroy_workqueue(fs_info->endio_workers); 1946 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 1947 btrfs_destroy_workqueue(fs_info->rmw_workers); 1948 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1949 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1950 btrfs_destroy_workqueue(fs_info->delayed_workers); 1951 btrfs_destroy_workqueue(fs_info->caching_workers); 1952 btrfs_destroy_workqueue(fs_info->readahead_workers); 1953 btrfs_destroy_workqueue(fs_info->flush_workers); 1954 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1955 if (fs_info->discard_ctl.discard_workers) 1956 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1957 /* 1958 * Now that all other work queues are destroyed, we can safely destroy 1959 * the queues used for metadata I/O, since tasks from those other work 1960 * queues can do metadata I/O operations. 1961 */ 1962 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 1963 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 1964 } 1965 1966 static void free_root_extent_buffers(struct btrfs_root *root) 1967 { 1968 if (root) { 1969 free_extent_buffer(root->node); 1970 free_extent_buffer(root->commit_root); 1971 root->node = NULL; 1972 root->commit_root = NULL; 1973 } 1974 } 1975 1976 /* helper to cleanup tree roots */ 1977 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1978 { 1979 free_root_extent_buffers(info->tree_root); 1980 1981 free_root_extent_buffers(info->dev_root); 1982 free_root_extent_buffers(info->extent_root); 1983 free_root_extent_buffers(info->csum_root); 1984 free_root_extent_buffers(info->quota_root); 1985 free_root_extent_buffers(info->uuid_root); 1986 free_root_extent_buffers(info->fs_root); 1987 free_root_extent_buffers(info->data_reloc_root); 1988 if (free_chunk_root) 1989 free_root_extent_buffers(info->chunk_root); 1990 free_root_extent_buffers(info->free_space_root); 1991 } 1992 1993 void btrfs_put_root(struct btrfs_root *root) 1994 { 1995 if (!root) 1996 return; 1997 1998 if (refcount_dec_and_test(&root->refs)) { 1999 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2000 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 2001 if (root->anon_dev) 2002 free_anon_bdev(root->anon_dev); 2003 btrfs_drew_lock_destroy(&root->snapshot_lock); 2004 free_extent_buffer(root->node); 2005 free_extent_buffer(root->commit_root); 2006 kfree(root->free_ino_ctl); 2007 kfree(root->free_ino_pinned); 2008 #ifdef CONFIG_BTRFS_DEBUG 2009 spin_lock(&root->fs_info->fs_roots_radix_lock); 2010 list_del_init(&root->leak_list); 2011 spin_unlock(&root->fs_info->fs_roots_radix_lock); 2012 #endif 2013 kfree(root); 2014 } 2015 } 2016 2017 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2018 { 2019 int ret; 2020 struct btrfs_root *gang[8]; 2021 int i; 2022 2023 while (!list_empty(&fs_info->dead_roots)) { 2024 gang[0] = list_entry(fs_info->dead_roots.next, 2025 struct btrfs_root, root_list); 2026 list_del(&gang[0]->root_list); 2027 2028 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 2029 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2030 btrfs_put_root(gang[0]); 2031 } 2032 2033 while (1) { 2034 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2035 (void **)gang, 0, 2036 ARRAY_SIZE(gang)); 2037 if (!ret) 2038 break; 2039 for (i = 0; i < ret; i++) 2040 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2041 } 2042 } 2043 2044 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2045 { 2046 mutex_init(&fs_info->scrub_lock); 2047 atomic_set(&fs_info->scrubs_running, 0); 2048 atomic_set(&fs_info->scrub_pause_req, 0); 2049 atomic_set(&fs_info->scrubs_paused, 0); 2050 atomic_set(&fs_info->scrub_cancel_req, 0); 2051 init_waitqueue_head(&fs_info->scrub_pause_wait); 2052 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2053 } 2054 2055 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2056 { 2057 spin_lock_init(&fs_info->balance_lock); 2058 mutex_init(&fs_info->balance_mutex); 2059 atomic_set(&fs_info->balance_pause_req, 0); 2060 atomic_set(&fs_info->balance_cancel_req, 0); 2061 fs_info->balance_ctl = NULL; 2062 init_waitqueue_head(&fs_info->balance_wait_q); 2063 } 2064 2065 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2066 { 2067 struct inode *inode = fs_info->btree_inode; 2068 2069 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2070 set_nlink(inode, 1); 2071 /* 2072 * we set the i_size on the btree inode to the max possible int. 2073 * the real end of the address space is determined by all of 2074 * the devices in the system 2075 */ 2076 inode->i_size = OFFSET_MAX; 2077 inode->i_mapping->a_ops = &btree_aops; 2078 2079 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2080 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2081 IO_TREE_INODE_IO, inode); 2082 BTRFS_I(inode)->io_tree.track_uptodate = false; 2083 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2084 2085 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2086 2087 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 2088 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2089 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2090 btrfs_insert_inode_hash(inode); 2091 } 2092 2093 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2094 { 2095 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2096 init_rwsem(&fs_info->dev_replace.rwsem); 2097 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2098 } 2099 2100 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2101 { 2102 spin_lock_init(&fs_info->qgroup_lock); 2103 mutex_init(&fs_info->qgroup_ioctl_lock); 2104 fs_info->qgroup_tree = RB_ROOT; 2105 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2106 fs_info->qgroup_seq = 1; 2107 fs_info->qgroup_ulist = NULL; 2108 fs_info->qgroup_rescan_running = false; 2109 mutex_init(&fs_info->qgroup_rescan_lock); 2110 } 2111 2112 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2113 struct btrfs_fs_devices *fs_devices) 2114 { 2115 u32 max_active = fs_info->thread_pool_size; 2116 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2117 2118 fs_info->workers = 2119 btrfs_alloc_workqueue(fs_info, "worker", 2120 flags | WQ_HIGHPRI, max_active, 16); 2121 2122 fs_info->delalloc_workers = 2123 btrfs_alloc_workqueue(fs_info, "delalloc", 2124 flags, max_active, 2); 2125 2126 fs_info->flush_workers = 2127 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2128 flags, max_active, 0); 2129 2130 fs_info->caching_workers = 2131 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2132 2133 fs_info->fixup_workers = 2134 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2135 2136 /* 2137 * endios are largely parallel and should have a very 2138 * low idle thresh 2139 */ 2140 fs_info->endio_workers = 2141 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2142 fs_info->endio_meta_workers = 2143 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2144 max_active, 4); 2145 fs_info->endio_meta_write_workers = 2146 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2147 max_active, 2); 2148 fs_info->endio_raid56_workers = 2149 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2150 max_active, 4); 2151 fs_info->rmw_workers = 2152 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2153 fs_info->endio_write_workers = 2154 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2155 max_active, 2); 2156 fs_info->endio_freespace_worker = 2157 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2158 max_active, 0); 2159 fs_info->delayed_workers = 2160 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2161 max_active, 0); 2162 fs_info->readahead_workers = 2163 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2164 max_active, 2); 2165 fs_info->qgroup_rescan_workers = 2166 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2167 fs_info->discard_ctl.discard_workers = 2168 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2169 2170 if (!(fs_info->workers && fs_info->delalloc_workers && 2171 fs_info->flush_workers && 2172 fs_info->endio_workers && fs_info->endio_meta_workers && 2173 fs_info->endio_meta_write_workers && 2174 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2175 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2176 fs_info->caching_workers && fs_info->readahead_workers && 2177 fs_info->fixup_workers && fs_info->delayed_workers && 2178 fs_info->qgroup_rescan_workers && 2179 fs_info->discard_ctl.discard_workers)) { 2180 return -ENOMEM; 2181 } 2182 2183 return 0; 2184 } 2185 2186 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2187 { 2188 struct crypto_shash *csum_shash; 2189 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2190 2191 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2192 2193 if (IS_ERR(csum_shash)) { 2194 btrfs_err(fs_info, "error allocating %s hash for checksum", 2195 csum_driver); 2196 return PTR_ERR(csum_shash); 2197 } 2198 2199 fs_info->csum_shash = csum_shash; 2200 2201 return 0; 2202 } 2203 2204 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2205 struct btrfs_fs_devices *fs_devices) 2206 { 2207 int ret; 2208 struct btrfs_root *log_tree_root; 2209 struct btrfs_super_block *disk_super = fs_info->super_copy; 2210 u64 bytenr = btrfs_super_log_root(disk_super); 2211 int level = btrfs_super_log_root_level(disk_super); 2212 2213 if (fs_devices->rw_devices == 0) { 2214 btrfs_warn(fs_info, "log replay required on RO media"); 2215 return -EIO; 2216 } 2217 2218 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2219 GFP_KERNEL); 2220 if (!log_tree_root) 2221 return -ENOMEM; 2222 2223 log_tree_root->node = read_tree_block(fs_info, bytenr, 2224 fs_info->generation + 1, 2225 level, NULL); 2226 if (IS_ERR(log_tree_root->node)) { 2227 btrfs_warn(fs_info, "failed to read log tree"); 2228 ret = PTR_ERR(log_tree_root->node); 2229 log_tree_root->node = NULL; 2230 btrfs_put_root(log_tree_root); 2231 return ret; 2232 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2233 btrfs_err(fs_info, "failed to read log tree"); 2234 btrfs_put_root(log_tree_root); 2235 return -EIO; 2236 } 2237 /* returns with log_tree_root freed on success */ 2238 ret = btrfs_recover_log_trees(log_tree_root); 2239 if (ret) { 2240 btrfs_handle_fs_error(fs_info, ret, 2241 "Failed to recover log tree"); 2242 btrfs_put_root(log_tree_root); 2243 return ret; 2244 } 2245 2246 if (sb_rdonly(fs_info->sb)) { 2247 ret = btrfs_commit_super(fs_info); 2248 if (ret) 2249 return ret; 2250 } 2251 2252 return 0; 2253 } 2254 2255 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2256 { 2257 struct btrfs_root *tree_root = fs_info->tree_root; 2258 struct btrfs_root *root; 2259 struct btrfs_key location; 2260 int ret; 2261 2262 BUG_ON(!fs_info->tree_root); 2263 2264 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2265 location.type = BTRFS_ROOT_ITEM_KEY; 2266 location.offset = 0; 2267 2268 root = btrfs_read_tree_root(tree_root, &location); 2269 if (IS_ERR(root)) { 2270 ret = PTR_ERR(root); 2271 goto out; 2272 } 2273 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2274 fs_info->extent_root = root; 2275 2276 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2277 root = btrfs_read_tree_root(tree_root, &location); 2278 if (IS_ERR(root)) { 2279 ret = PTR_ERR(root); 2280 goto out; 2281 } 2282 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2283 fs_info->dev_root = root; 2284 btrfs_init_devices_late(fs_info); 2285 2286 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2287 root = btrfs_read_tree_root(tree_root, &location); 2288 if (IS_ERR(root)) { 2289 ret = PTR_ERR(root); 2290 goto out; 2291 } 2292 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2293 fs_info->csum_root = root; 2294 2295 /* 2296 * This tree can share blocks with some other fs tree during relocation 2297 * and we need a proper setup by btrfs_get_fs_root 2298 */ 2299 root = btrfs_get_fs_root(tree_root->fs_info, 2300 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2301 if (IS_ERR(root)) { 2302 ret = PTR_ERR(root); 2303 goto out; 2304 } 2305 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2306 fs_info->data_reloc_root = root; 2307 2308 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2309 root = btrfs_read_tree_root(tree_root, &location); 2310 if (!IS_ERR(root)) { 2311 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2312 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2313 fs_info->quota_root = root; 2314 } 2315 2316 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2317 root = btrfs_read_tree_root(tree_root, &location); 2318 if (IS_ERR(root)) { 2319 ret = PTR_ERR(root); 2320 if (ret != -ENOENT) 2321 goto out; 2322 } else { 2323 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2324 fs_info->uuid_root = root; 2325 } 2326 2327 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2328 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2329 root = btrfs_read_tree_root(tree_root, &location); 2330 if (IS_ERR(root)) { 2331 ret = PTR_ERR(root); 2332 goto out; 2333 } 2334 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2335 fs_info->free_space_root = root; 2336 } 2337 2338 return 0; 2339 out: 2340 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2341 location.objectid, ret); 2342 return ret; 2343 } 2344 2345 /* 2346 * Real super block validation 2347 * NOTE: super csum type and incompat features will not be checked here. 2348 * 2349 * @sb: super block to check 2350 * @mirror_num: the super block number to check its bytenr: 2351 * 0 the primary (1st) sb 2352 * 1, 2 2nd and 3rd backup copy 2353 * -1 skip bytenr check 2354 */ 2355 static int validate_super(struct btrfs_fs_info *fs_info, 2356 struct btrfs_super_block *sb, int mirror_num) 2357 { 2358 u64 nodesize = btrfs_super_nodesize(sb); 2359 u64 sectorsize = btrfs_super_sectorsize(sb); 2360 int ret = 0; 2361 2362 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2363 btrfs_err(fs_info, "no valid FS found"); 2364 ret = -EINVAL; 2365 } 2366 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2367 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2368 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2369 ret = -EINVAL; 2370 } 2371 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2372 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2373 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2374 ret = -EINVAL; 2375 } 2376 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2377 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2378 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2379 ret = -EINVAL; 2380 } 2381 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2382 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2383 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2384 ret = -EINVAL; 2385 } 2386 2387 /* 2388 * Check sectorsize and nodesize first, other check will need it. 2389 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2390 */ 2391 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2392 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2393 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2394 ret = -EINVAL; 2395 } 2396 /* Only PAGE SIZE is supported yet */ 2397 if (sectorsize != PAGE_SIZE) { 2398 btrfs_err(fs_info, 2399 "sectorsize %llu not supported yet, only support %lu", 2400 sectorsize, PAGE_SIZE); 2401 ret = -EINVAL; 2402 } 2403 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2404 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2405 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2406 ret = -EINVAL; 2407 } 2408 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2409 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2410 le32_to_cpu(sb->__unused_leafsize), nodesize); 2411 ret = -EINVAL; 2412 } 2413 2414 /* Root alignment check */ 2415 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2416 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2417 btrfs_super_root(sb)); 2418 ret = -EINVAL; 2419 } 2420 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2421 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2422 btrfs_super_chunk_root(sb)); 2423 ret = -EINVAL; 2424 } 2425 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2426 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2427 btrfs_super_log_root(sb)); 2428 ret = -EINVAL; 2429 } 2430 2431 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2432 BTRFS_FSID_SIZE) != 0) { 2433 btrfs_err(fs_info, 2434 "dev_item UUID does not match metadata fsid: %pU != %pU", 2435 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2436 ret = -EINVAL; 2437 } 2438 2439 /* 2440 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2441 * done later 2442 */ 2443 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2444 btrfs_err(fs_info, "bytes_used is too small %llu", 2445 btrfs_super_bytes_used(sb)); 2446 ret = -EINVAL; 2447 } 2448 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2449 btrfs_err(fs_info, "invalid stripesize %u", 2450 btrfs_super_stripesize(sb)); 2451 ret = -EINVAL; 2452 } 2453 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2454 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2455 btrfs_super_num_devices(sb)); 2456 if (btrfs_super_num_devices(sb) == 0) { 2457 btrfs_err(fs_info, "number of devices is 0"); 2458 ret = -EINVAL; 2459 } 2460 2461 if (mirror_num >= 0 && 2462 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2463 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2464 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2465 ret = -EINVAL; 2466 } 2467 2468 /* 2469 * Obvious sys_chunk_array corruptions, it must hold at least one key 2470 * and one chunk 2471 */ 2472 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2473 btrfs_err(fs_info, "system chunk array too big %u > %u", 2474 btrfs_super_sys_array_size(sb), 2475 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2476 ret = -EINVAL; 2477 } 2478 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2479 + sizeof(struct btrfs_chunk)) { 2480 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2481 btrfs_super_sys_array_size(sb), 2482 sizeof(struct btrfs_disk_key) 2483 + sizeof(struct btrfs_chunk)); 2484 ret = -EINVAL; 2485 } 2486 2487 /* 2488 * The generation is a global counter, we'll trust it more than the others 2489 * but it's still possible that it's the one that's wrong. 2490 */ 2491 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2492 btrfs_warn(fs_info, 2493 "suspicious: generation < chunk_root_generation: %llu < %llu", 2494 btrfs_super_generation(sb), 2495 btrfs_super_chunk_root_generation(sb)); 2496 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2497 && btrfs_super_cache_generation(sb) != (u64)-1) 2498 btrfs_warn(fs_info, 2499 "suspicious: generation < cache_generation: %llu < %llu", 2500 btrfs_super_generation(sb), 2501 btrfs_super_cache_generation(sb)); 2502 2503 return ret; 2504 } 2505 2506 /* 2507 * Validation of super block at mount time. 2508 * Some checks already done early at mount time, like csum type and incompat 2509 * flags will be skipped. 2510 */ 2511 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2512 { 2513 return validate_super(fs_info, fs_info->super_copy, 0); 2514 } 2515 2516 /* 2517 * Validation of super block at write time. 2518 * Some checks like bytenr check will be skipped as their values will be 2519 * overwritten soon. 2520 * Extra checks like csum type and incompat flags will be done here. 2521 */ 2522 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2523 struct btrfs_super_block *sb) 2524 { 2525 int ret; 2526 2527 ret = validate_super(fs_info, sb, -1); 2528 if (ret < 0) 2529 goto out; 2530 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2531 ret = -EUCLEAN; 2532 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2533 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2534 goto out; 2535 } 2536 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2537 ret = -EUCLEAN; 2538 btrfs_err(fs_info, 2539 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2540 btrfs_super_incompat_flags(sb), 2541 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2542 goto out; 2543 } 2544 out: 2545 if (ret < 0) 2546 btrfs_err(fs_info, 2547 "super block corruption detected before writing it to disk"); 2548 return ret; 2549 } 2550 2551 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2552 { 2553 int backup_index = find_newest_super_backup(fs_info); 2554 struct btrfs_super_block *sb = fs_info->super_copy; 2555 struct btrfs_root *tree_root = fs_info->tree_root; 2556 bool handle_error = false; 2557 int ret = 0; 2558 int i; 2559 2560 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2561 u64 generation; 2562 int level; 2563 2564 if (handle_error) { 2565 if (!IS_ERR(tree_root->node)) 2566 free_extent_buffer(tree_root->node); 2567 tree_root->node = NULL; 2568 2569 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2570 break; 2571 2572 free_root_pointers(fs_info, 0); 2573 2574 /* 2575 * Don't use the log in recovery mode, it won't be 2576 * valid 2577 */ 2578 btrfs_set_super_log_root(sb, 0); 2579 2580 /* We can't trust the free space cache either */ 2581 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2582 2583 ret = read_backup_root(fs_info, i); 2584 backup_index = ret; 2585 if (ret < 0) 2586 return ret; 2587 } 2588 generation = btrfs_super_generation(sb); 2589 level = btrfs_super_root_level(sb); 2590 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb), 2591 generation, level, NULL); 2592 if (IS_ERR(tree_root->node) || 2593 !extent_buffer_uptodate(tree_root->node)) { 2594 handle_error = true; 2595 2596 if (IS_ERR(tree_root->node)) { 2597 ret = PTR_ERR(tree_root->node); 2598 tree_root->node = NULL; 2599 } else if (!extent_buffer_uptodate(tree_root->node)) { 2600 ret = -EUCLEAN; 2601 } 2602 2603 btrfs_warn(fs_info, "failed to read tree root"); 2604 continue; 2605 } 2606 2607 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2608 tree_root->commit_root = btrfs_root_node(tree_root); 2609 btrfs_set_root_refs(&tree_root->root_item, 1); 2610 2611 /* 2612 * No need to hold btrfs_root::objectid_mutex since the fs 2613 * hasn't been fully initialised and we are the only user 2614 */ 2615 ret = btrfs_find_highest_objectid(tree_root, 2616 &tree_root->highest_objectid); 2617 if (ret < 0) { 2618 handle_error = true; 2619 continue; 2620 } 2621 2622 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2623 2624 ret = btrfs_read_roots(fs_info); 2625 if (ret < 0) { 2626 handle_error = true; 2627 continue; 2628 } 2629 2630 /* All successful */ 2631 fs_info->generation = generation; 2632 fs_info->last_trans_committed = generation; 2633 2634 /* Always begin writing backup roots after the one being used */ 2635 if (backup_index < 0) { 2636 fs_info->backup_root_index = 0; 2637 } else { 2638 fs_info->backup_root_index = backup_index + 1; 2639 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2640 } 2641 break; 2642 } 2643 2644 return ret; 2645 } 2646 2647 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2648 { 2649 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2650 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2651 INIT_LIST_HEAD(&fs_info->trans_list); 2652 INIT_LIST_HEAD(&fs_info->dead_roots); 2653 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2654 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2655 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2656 spin_lock_init(&fs_info->delalloc_root_lock); 2657 spin_lock_init(&fs_info->trans_lock); 2658 spin_lock_init(&fs_info->fs_roots_radix_lock); 2659 spin_lock_init(&fs_info->delayed_iput_lock); 2660 spin_lock_init(&fs_info->defrag_inodes_lock); 2661 spin_lock_init(&fs_info->super_lock); 2662 spin_lock_init(&fs_info->buffer_lock); 2663 spin_lock_init(&fs_info->unused_bgs_lock); 2664 rwlock_init(&fs_info->tree_mod_log_lock); 2665 mutex_init(&fs_info->unused_bg_unpin_mutex); 2666 mutex_init(&fs_info->delete_unused_bgs_mutex); 2667 mutex_init(&fs_info->reloc_mutex); 2668 mutex_init(&fs_info->delalloc_root_mutex); 2669 seqlock_init(&fs_info->profiles_lock); 2670 2671 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2672 INIT_LIST_HEAD(&fs_info->space_info); 2673 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2674 INIT_LIST_HEAD(&fs_info->unused_bgs); 2675 #ifdef CONFIG_BTRFS_DEBUG 2676 INIT_LIST_HEAD(&fs_info->allocated_roots); 2677 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2678 spin_lock_init(&fs_info->eb_leak_lock); 2679 #endif 2680 extent_map_tree_init(&fs_info->mapping_tree); 2681 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2682 BTRFS_BLOCK_RSV_GLOBAL); 2683 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2684 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2685 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2686 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2687 BTRFS_BLOCK_RSV_DELOPS); 2688 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2689 BTRFS_BLOCK_RSV_DELREFS); 2690 2691 atomic_set(&fs_info->async_delalloc_pages, 0); 2692 atomic_set(&fs_info->defrag_running, 0); 2693 atomic_set(&fs_info->reada_works_cnt, 0); 2694 atomic_set(&fs_info->nr_delayed_iputs, 0); 2695 atomic64_set(&fs_info->tree_mod_seq, 0); 2696 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2697 fs_info->metadata_ratio = 0; 2698 fs_info->defrag_inodes = RB_ROOT; 2699 atomic64_set(&fs_info->free_chunk_space, 0); 2700 fs_info->tree_mod_log = RB_ROOT; 2701 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2702 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2703 /* readahead state */ 2704 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2705 spin_lock_init(&fs_info->reada_lock); 2706 btrfs_init_ref_verify(fs_info); 2707 2708 fs_info->thread_pool_size = min_t(unsigned long, 2709 num_online_cpus() + 2, 8); 2710 2711 INIT_LIST_HEAD(&fs_info->ordered_roots); 2712 spin_lock_init(&fs_info->ordered_root_lock); 2713 2714 btrfs_init_scrub(fs_info); 2715 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2716 fs_info->check_integrity_print_mask = 0; 2717 #endif 2718 btrfs_init_balance(fs_info); 2719 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2720 2721 spin_lock_init(&fs_info->block_group_cache_lock); 2722 fs_info->block_group_cache_tree = RB_ROOT; 2723 fs_info->first_logical_byte = (u64)-1; 2724 2725 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2726 IO_TREE_FS_EXCLUDED_EXTENTS, NULL); 2727 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2728 2729 mutex_init(&fs_info->ordered_operations_mutex); 2730 mutex_init(&fs_info->tree_log_mutex); 2731 mutex_init(&fs_info->chunk_mutex); 2732 mutex_init(&fs_info->transaction_kthread_mutex); 2733 mutex_init(&fs_info->cleaner_mutex); 2734 mutex_init(&fs_info->ro_block_group_mutex); 2735 init_rwsem(&fs_info->commit_root_sem); 2736 init_rwsem(&fs_info->cleanup_work_sem); 2737 init_rwsem(&fs_info->subvol_sem); 2738 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2739 2740 btrfs_init_dev_replace_locks(fs_info); 2741 btrfs_init_qgroup(fs_info); 2742 btrfs_discard_init(fs_info); 2743 2744 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2745 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2746 2747 init_waitqueue_head(&fs_info->transaction_throttle); 2748 init_waitqueue_head(&fs_info->transaction_wait); 2749 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2750 init_waitqueue_head(&fs_info->async_submit_wait); 2751 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2752 2753 /* Usable values until the real ones are cached from the superblock */ 2754 fs_info->nodesize = 4096; 2755 fs_info->sectorsize = 4096; 2756 fs_info->stripesize = 4096; 2757 2758 spin_lock_init(&fs_info->swapfile_pins_lock); 2759 fs_info->swapfile_pins = RB_ROOT; 2760 2761 fs_info->send_in_progress = 0; 2762 } 2763 2764 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2765 { 2766 int ret; 2767 2768 fs_info->sb = sb; 2769 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2770 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2771 2772 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL); 2773 if (ret) 2774 return ret; 2775 2776 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2777 if (ret) 2778 return ret; 2779 2780 fs_info->dirty_metadata_batch = PAGE_SIZE * 2781 (1 + ilog2(nr_cpu_ids)); 2782 2783 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2784 if (ret) 2785 return ret; 2786 2787 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2788 GFP_KERNEL); 2789 if (ret) 2790 return ret; 2791 2792 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2793 GFP_KERNEL); 2794 if (!fs_info->delayed_root) 2795 return -ENOMEM; 2796 btrfs_init_delayed_root(fs_info->delayed_root); 2797 2798 return btrfs_alloc_stripe_hash_table(fs_info); 2799 } 2800 2801 static int btrfs_uuid_rescan_kthread(void *data) 2802 { 2803 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 2804 int ret; 2805 2806 /* 2807 * 1st step is to iterate through the existing UUID tree and 2808 * to delete all entries that contain outdated data. 2809 * 2nd step is to add all missing entries to the UUID tree. 2810 */ 2811 ret = btrfs_uuid_tree_iterate(fs_info); 2812 if (ret < 0) { 2813 if (ret != -EINTR) 2814 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2815 ret); 2816 up(&fs_info->uuid_tree_rescan_sem); 2817 return ret; 2818 } 2819 return btrfs_uuid_scan_kthread(data); 2820 } 2821 2822 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2823 { 2824 struct task_struct *task; 2825 2826 down(&fs_info->uuid_tree_rescan_sem); 2827 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2828 if (IS_ERR(task)) { 2829 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2830 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2831 up(&fs_info->uuid_tree_rescan_sem); 2832 return PTR_ERR(task); 2833 } 2834 2835 return 0; 2836 } 2837 2838 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 2839 char *options) 2840 { 2841 u32 sectorsize; 2842 u32 nodesize; 2843 u32 stripesize; 2844 u64 generation; 2845 u64 features; 2846 u16 csum_type; 2847 struct btrfs_super_block *disk_super; 2848 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2849 struct btrfs_root *tree_root; 2850 struct btrfs_root *chunk_root; 2851 int ret; 2852 int err = -EINVAL; 2853 int clear_free_space_tree = 0; 2854 int level; 2855 2856 ret = init_mount_fs_info(fs_info, sb); 2857 if (ret) { 2858 err = ret; 2859 goto fail; 2860 } 2861 2862 /* These need to be init'ed before we start creating inodes and such. */ 2863 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 2864 GFP_KERNEL); 2865 fs_info->tree_root = tree_root; 2866 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 2867 GFP_KERNEL); 2868 fs_info->chunk_root = chunk_root; 2869 if (!tree_root || !chunk_root) { 2870 err = -ENOMEM; 2871 goto fail; 2872 } 2873 2874 fs_info->btree_inode = new_inode(sb); 2875 if (!fs_info->btree_inode) { 2876 err = -ENOMEM; 2877 goto fail; 2878 } 2879 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2880 btrfs_init_btree_inode(fs_info); 2881 2882 invalidate_bdev(fs_devices->latest_bdev); 2883 2884 /* 2885 * Read super block and check the signature bytes only 2886 */ 2887 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev); 2888 if (IS_ERR(disk_super)) { 2889 err = PTR_ERR(disk_super); 2890 goto fail_alloc; 2891 } 2892 2893 /* 2894 * Verify the type first, if that or the the checksum value are 2895 * corrupted, we'll find out 2896 */ 2897 csum_type = btrfs_super_csum_type(disk_super); 2898 if (!btrfs_supported_super_csum(csum_type)) { 2899 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 2900 csum_type); 2901 err = -EINVAL; 2902 btrfs_release_disk_super(disk_super); 2903 goto fail_alloc; 2904 } 2905 2906 ret = btrfs_init_csum_hash(fs_info, csum_type); 2907 if (ret) { 2908 err = ret; 2909 btrfs_release_disk_super(disk_super); 2910 goto fail_alloc; 2911 } 2912 2913 /* 2914 * We want to check superblock checksum, the type is stored inside. 2915 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2916 */ 2917 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) { 2918 btrfs_err(fs_info, "superblock checksum mismatch"); 2919 err = -EINVAL; 2920 btrfs_release_disk_super(disk_super); 2921 goto fail_alloc; 2922 } 2923 2924 /* 2925 * super_copy is zeroed at allocation time and we never touch the 2926 * following bytes up to INFO_SIZE, the checksum is calculated from 2927 * the whole block of INFO_SIZE 2928 */ 2929 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 2930 btrfs_release_disk_super(disk_super); 2931 2932 disk_super = fs_info->super_copy; 2933 2934 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2935 BTRFS_FSID_SIZE)); 2936 2937 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) { 2938 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid, 2939 fs_info->super_copy->metadata_uuid, 2940 BTRFS_FSID_SIZE)); 2941 } 2942 2943 features = btrfs_super_flags(disk_super); 2944 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 2945 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 2946 btrfs_set_super_flags(disk_super, features); 2947 btrfs_info(fs_info, 2948 "found metadata UUID change in progress flag, clearing"); 2949 } 2950 2951 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2952 sizeof(*fs_info->super_for_commit)); 2953 2954 ret = btrfs_validate_mount_super(fs_info); 2955 if (ret) { 2956 btrfs_err(fs_info, "superblock contains fatal errors"); 2957 err = -EINVAL; 2958 goto fail_alloc; 2959 } 2960 2961 if (!btrfs_super_root(disk_super)) 2962 goto fail_alloc; 2963 2964 /* check FS state, whether FS is broken. */ 2965 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2966 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2967 2968 /* 2969 * In the long term, we'll store the compression type in the super 2970 * block, and it'll be used for per file compression control. 2971 */ 2972 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2973 2974 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2975 if (ret) { 2976 err = ret; 2977 goto fail_alloc; 2978 } 2979 2980 features = btrfs_super_incompat_flags(disk_super) & 2981 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2982 if (features) { 2983 btrfs_err(fs_info, 2984 "cannot mount because of unsupported optional features (%llx)", 2985 features); 2986 err = -EINVAL; 2987 goto fail_alloc; 2988 } 2989 2990 features = btrfs_super_incompat_flags(disk_super); 2991 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2992 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2993 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2994 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 2995 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 2996 2997 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2998 btrfs_info(fs_info, "has skinny extents"); 2999 3000 /* 3001 * flag our filesystem as having big metadata blocks if 3002 * they are bigger than the page size 3003 */ 3004 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 3005 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 3006 btrfs_info(fs_info, 3007 "flagging fs with big metadata feature"); 3008 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3009 } 3010 3011 nodesize = btrfs_super_nodesize(disk_super); 3012 sectorsize = btrfs_super_sectorsize(disk_super); 3013 stripesize = sectorsize; 3014 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3015 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3016 3017 /* Cache block sizes */ 3018 fs_info->nodesize = nodesize; 3019 fs_info->sectorsize = sectorsize; 3020 fs_info->stripesize = stripesize; 3021 3022 /* 3023 * mixed block groups end up with duplicate but slightly offset 3024 * extent buffers for the same range. It leads to corruptions 3025 */ 3026 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3027 (sectorsize != nodesize)) { 3028 btrfs_err(fs_info, 3029 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3030 nodesize, sectorsize); 3031 goto fail_alloc; 3032 } 3033 3034 /* 3035 * Needn't use the lock because there is no other task which will 3036 * update the flag. 3037 */ 3038 btrfs_set_super_incompat_flags(disk_super, features); 3039 3040 features = btrfs_super_compat_ro_flags(disk_super) & 3041 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 3042 if (!sb_rdonly(sb) && features) { 3043 btrfs_err(fs_info, 3044 "cannot mount read-write because of unsupported optional features (%llx)", 3045 features); 3046 err = -EINVAL; 3047 goto fail_alloc; 3048 } 3049 3050 ret = btrfs_init_workqueues(fs_info, fs_devices); 3051 if (ret) { 3052 err = ret; 3053 goto fail_sb_buffer; 3054 } 3055 3056 sb->s_bdi->congested_fn = btrfs_congested_fn; 3057 sb->s_bdi->congested_data = fs_info; 3058 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 3059 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES; 3060 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3061 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3062 3063 sb->s_blocksize = sectorsize; 3064 sb->s_blocksize_bits = blksize_bits(sectorsize); 3065 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3066 3067 mutex_lock(&fs_info->chunk_mutex); 3068 ret = btrfs_read_sys_array(fs_info); 3069 mutex_unlock(&fs_info->chunk_mutex); 3070 if (ret) { 3071 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3072 goto fail_sb_buffer; 3073 } 3074 3075 generation = btrfs_super_chunk_root_generation(disk_super); 3076 level = btrfs_super_chunk_root_level(disk_super); 3077 3078 chunk_root->node = read_tree_block(fs_info, 3079 btrfs_super_chunk_root(disk_super), 3080 generation, level, NULL); 3081 if (IS_ERR(chunk_root->node) || 3082 !extent_buffer_uptodate(chunk_root->node)) { 3083 btrfs_err(fs_info, "failed to read chunk root"); 3084 if (!IS_ERR(chunk_root->node)) 3085 free_extent_buffer(chunk_root->node); 3086 chunk_root->node = NULL; 3087 goto fail_tree_roots; 3088 } 3089 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 3090 chunk_root->commit_root = btrfs_root_node(chunk_root); 3091 3092 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3093 offsetof(struct btrfs_header, chunk_tree_uuid), 3094 BTRFS_UUID_SIZE); 3095 3096 ret = btrfs_read_chunk_tree(fs_info); 3097 if (ret) { 3098 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3099 goto fail_tree_roots; 3100 } 3101 3102 /* 3103 * Keep the devid that is marked to be the target device for the 3104 * device replace procedure 3105 */ 3106 btrfs_free_extra_devids(fs_devices, 0); 3107 3108 if (!fs_devices->latest_bdev) { 3109 btrfs_err(fs_info, "failed to read devices"); 3110 goto fail_tree_roots; 3111 } 3112 3113 ret = init_tree_roots(fs_info); 3114 if (ret) 3115 goto fail_tree_roots; 3116 3117 /* 3118 * If we have a uuid root and we're not being told to rescan we need to 3119 * check the generation here so we can set the 3120 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3121 * transaction during a balance or the log replay without updating the 3122 * uuid generation, and then if we crash we would rescan the uuid tree, 3123 * even though it was perfectly fine. 3124 */ 3125 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3126 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3127 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3128 3129 ret = btrfs_verify_dev_extents(fs_info); 3130 if (ret) { 3131 btrfs_err(fs_info, 3132 "failed to verify dev extents against chunks: %d", 3133 ret); 3134 goto fail_block_groups; 3135 } 3136 ret = btrfs_recover_balance(fs_info); 3137 if (ret) { 3138 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3139 goto fail_block_groups; 3140 } 3141 3142 ret = btrfs_init_dev_stats(fs_info); 3143 if (ret) { 3144 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3145 goto fail_block_groups; 3146 } 3147 3148 ret = btrfs_init_dev_replace(fs_info); 3149 if (ret) { 3150 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3151 goto fail_block_groups; 3152 } 3153 3154 btrfs_free_extra_devids(fs_devices, 1); 3155 3156 ret = btrfs_sysfs_add_fsid(fs_devices); 3157 if (ret) { 3158 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3159 ret); 3160 goto fail_block_groups; 3161 } 3162 3163 ret = btrfs_sysfs_add_mounted(fs_info); 3164 if (ret) { 3165 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3166 goto fail_fsdev_sysfs; 3167 } 3168 3169 ret = btrfs_init_space_info(fs_info); 3170 if (ret) { 3171 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3172 goto fail_sysfs; 3173 } 3174 3175 ret = btrfs_read_block_groups(fs_info); 3176 if (ret) { 3177 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3178 goto fail_sysfs; 3179 } 3180 3181 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 3182 btrfs_warn(fs_info, 3183 "writable mount is not allowed due to too many missing devices"); 3184 goto fail_sysfs; 3185 } 3186 3187 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3188 "btrfs-cleaner"); 3189 if (IS_ERR(fs_info->cleaner_kthread)) 3190 goto fail_sysfs; 3191 3192 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3193 tree_root, 3194 "btrfs-transaction"); 3195 if (IS_ERR(fs_info->transaction_kthread)) 3196 goto fail_cleaner; 3197 3198 if (!btrfs_test_opt(fs_info, NOSSD) && 3199 !fs_info->fs_devices->rotating) { 3200 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3201 } 3202 3203 /* 3204 * Mount does not set all options immediately, we can do it now and do 3205 * not have to wait for transaction commit 3206 */ 3207 btrfs_apply_pending_changes(fs_info); 3208 3209 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3210 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3211 ret = btrfsic_mount(fs_info, fs_devices, 3212 btrfs_test_opt(fs_info, 3213 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3214 1 : 0, 3215 fs_info->check_integrity_print_mask); 3216 if (ret) 3217 btrfs_warn(fs_info, 3218 "failed to initialize integrity check module: %d", 3219 ret); 3220 } 3221 #endif 3222 ret = btrfs_read_qgroup_config(fs_info); 3223 if (ret) 3224 goto fail_trans_kthread; 3225 3226 if (btrfs_build_ref_tree(fs_info)) 3227 btrfs_err(fs_info, "couldn't build ref tree"); 3228 3229 /* do not make disk changes in broken FS or nologreplay is given */ 3230 if (btrfs_super_log_root(disk_super) != 0 && 3231 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3232 btrfs_info(fs_info, "start tree-log replay"); 3233 ret = btrfs_replay_log(fs_info, fs_devices); 3234 if (ret) { 3235 err = ret; 3236 goto fail_qgroup; 3237 } 3238 } 3239 3240 ret = btrfs_find_orphan_roots(fs_info); 3241 if (ret) 3242 goto fail_qgroup; 3243 3244 if (!sb_rdonly(sb)) { 3245 ret = btrfs_cleanup_fs_roots(fs_info); 3246 if (ret) 3247 goto fail_qgroup; 3248 3249 mutex_lock(&fs_info->cleaner_mutex); 3250 ret = btrfs_recover_relocation(tree_root); 3251 mutex_unlock(&fs_info->cleaner_mutex); 3252 if (ret < 0) { 3253 btrfs_warn(fs_info, "failed to recover relocation: %d", 3254 ret); 3255 err = -EINVAL; 3256 goto fail_qgroup; 3257 } 3258 } 3259 3260 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3261 if (IS_ERR(fs_info->fs_root)) { 3262 err = PTR_ERR(fs_info->fs_root); 3263 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3264 fs_info->fs_root = NULL; 3265 goto fail_qgroup; 3266 } 3267 3268 if (sb_rdonly(sb)) 3269 return 0; 3270 3271 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3272 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3273 clear_free_space_tree = 1; 3274 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3275 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3276 btrfs_warn(fs_info, "free space tree is invalid"); 3277 clear_free_space_tree = 1; 3278 } 3279 3280 if (clear_free_space_tree) { 3281 btrfs_info(fs_info, "clearing free space tree"); 3282 ret = btrfs_clear_free_space_tree(fs_info); 3283 if (ret) { 3284 btrfs_warn(fs_info, 3285 "failed to clear free space tree: %d", ret); 3286 close_ctree(fs_info); 3287 return ret; 3288 } 3289 } 3290 3291 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3292 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3293 btrfs_info(fs_info, "creating free space tree"); 3294 ret = btrfs_create_free_space_tree(fs_info); 3295 if (ret) { 3296 btrfs_warn(fs_info, 3297 "failed to create free space tree: %d", ret); 3298 close_ctree(fs_info); 3299 return ret; 3300 } 3301 } 3302 3303 down_read(&fs_info->cleanup_work_sem); 3304 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3305 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3306 up_read(&fs_info->cleanup_work_sem); 3307 close_ctree(fs_info); 3308 return ret; 3309 } 3310 up_read(&fs_info->cleanup_work_sem); 3311 3312 ret = btrfs_resume_balance_async(fs_info); 3313 if (ret) { 3314 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3315 close_ctree(fs_info); 3316 return ret; 3317 } 3318 3319 ret = btrfs_resume_dev_replace_async(fs_info); 3320 if (ret) { 3321 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3322 close_ctree(fs_info); 3323 return ret; 3324 } 3325 3326 btrfs_qgroup_rescan_resume(fs_info); 3327 btrfs_discard_resume(fs_info); 3328 3329 if (!fs_info->uuid_root) { 3330 btrfs_info(fs_info, "creating UUID tree"); 3331 ret = btrfs_create_uuid_tree(fs_info); 3332 if (ret) { 3333 btrfs_warn(fs_info, 3334 "failed to create the UUID tree: %d", ret); 3335 close_ctree(fs_info); 3336 return ret; 3337 } 3338 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3339 fs_info->generation != 3340 btrfs_super_uuid_tree_generation(disk_super)) { 3341 btrfs_info(fs_info, "checking UUID tree"); 3342 ret = btrfs_check_uuid_tree(fs_info); 3343 if (ret) { 3344 btrfs_warn(fs_info, 3345 "failed to check the UUID tree: %d", ret); 3346 close_ctree(fs_info); 3347 return ret; 3348 } 3349 } 3350 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3351 3352 /* 3353 * backuproot only affect mount behavior, and if open_ctree succeeded, 3354 * no need to keep the flag 3355 */ 3356 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3357 3358 return 0; 3359 3360 fail_qgroup: 3361 btrfs_free_qgroup_config(fs_info); 3362 fail_trans_kthread: 3363 kthread_stop(fs_info->transaction_kthread); 3364 btrfs_cleanup_transaction(fs_info); 3365 btrfs_free_fs_roots(fs_info); 3366 fail_cleaner: 3367 kthread_stop(fs_info->cleaner_kthread); 3368 3369 /* 3370 * make sure we're done with the btree inode before we stop our 3371 * kthreads 3372 */ 3373 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3374 3375 fail_sysfs: 3376 btrfs_sysfs_remove_mounted(fs_info); 3377 3378 fail_fsdev_sysfs: 3379 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3380 3381 fail_block_groups: 3382 btrfs_put_block_group_cache(fs_info); 3383 3384 fail_tree_roots: 3385 free_root_pointers(fs_info, true); 3386 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3387 3388 fail_sb_buffer: 3389 btrfs_stop_all_workers(fs_info); 3390 btrfs_free_block_groups(fs_info); 3391 fail_alloc: 3392 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3393 3394 iput(fs_info->btree_inode); 3395 fail: 3396 btrfs_close_devices(fs_info->fs_devices); 3397 return err; 3398 } 3399 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3400 3401 static void btrfs_end_super_write(struct bio *bio) 3402 { 3403 struct btrfs_device *device = bio->bi_private; 3404 struct bio_vec *bvec; 3405 struct bvec_iter_all iter_all; 3406 struct page *page; 3407 3408 bio_for_each_segment_all(bvec, bio, iter_all) { 3409 page = bvec->bv_page; 3410 3411 if (bio->bi_status) { 3412 btrfs_warn_rl_in_rcu(device->fs_info, 3413 "lost page write due to IO error on %s (%d)", 3414 rcu_str_deref(device->name), 3415 blk_status_to_errno(bio->bi_status)); 3416 ClearPageUptodate(page); 3417 SetPageError(page); 3418 btrfs_dev_stat_inc_and_print(device, 3419 BTRFS_DEV_STAT_WRITE_ERRS); 3420 } else { 3421 SetPageUptodate(page); 3422 } 3423 3424 put_page(page); 3425 unlock_page(page); 3426 } 3427 3428 bio_put(bio); 3429 } 3430 3431 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3432 int copy_num) 3433 { 3434 struct btrfs_super_block *super; 3435 struct page *page; 3436 u64 bytenr; 3437 struct address_space *mapping = bdev->bd_inode->i_mapping; 3438 3439 bytenr = btrfs_sb_offset(copy_num); 3440 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3441 return ERR_PTR(-EINVAL); 3442 3443 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3444 if (IS_ERR(page)) 3445 return ERR_CAST(page); 3446 3447 super = page_address(page); 3448 if (btrfs_super_bytenr(super) != bytenr || 3449 btrfs_super_magic(super) != BTRFS_MAGIC) { 3450 btrfs_release_disk_super(super); 3451 return ERR_PTR(-EINVAL); 3452 } 3453 3454 return super; 3455 } 3456 3457 3458 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3459 { 3460 struct btrfs_super_block *super, *latest = NULL; 3461 int i; 3462 u64 transid = 0; 3463 3464 /* we would like to check all the supers, but that would make 3465 * a btrfs mount succeed after a mkfs from a different FS. 3466 * So, we need to add a special mount option to scan for 3467 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3468 */ 3469 for (i = 0; i < 1; i++) { 3470 super = btrfs_read_dev_one_super(bdev, i); 3471 if (IS_ERR(super)) 3472 continue; 3473 3474 if (!latest || btrfs_super_generation(super) > transid) { 3475 if (latest) 3476 btrfs_release_disk_super(super); 3477 3478 latest = super; 3479 transid = btrfs_super_generation(super); 3480 } 3481 } 3482 3483 return super; 3484 } 3485 3486 /* 3487 * Write superblock @sb to the @device. Do not wait for completion, all the 3488 * pages we use for writing are locked. 3489 * 3490 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3491 * the expected device size at commit time. Note that max_mirrors must be 3492 * same for write and wait phases. 3493 * 3494 * Return number of errors when page is not found or submission fails. 3495 */ 3496 static int write_dev_supers(struct btrfs_device *device, 3497 struct btrfs_super_block *sb, int max_mirrors) 3498 { 3499 struct btrfs_fs_info *fs_info = device->fs_info; 3500 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3501 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3502 int i; 3503 int errors = 0; 3504 u64 bytenr; 3505 3506 if (max_mirrors == 0) 3507 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3508 3509 shash->tfm = fs_info->csum_shash; 3510 3511 for (i = 0; i < max_mirrors; i++) { 3512 struct page *page; 3513 struct bio *bio; 3514 struct btrfs_super_block *disk_super; 3515 3516 bytenr = btrfs_sb_offset(i); 3517 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3518 device->commit_total_bytes) 3519 break; 3520 3521 btrfs_set_super_bytenr(sb, bytenr); 3522 3523 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3524 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3525 sb->csum); 3526 3527 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 3528 GFP_NOFS); 3529 if (!page) { 3530 btrfs_err(device->fs_info, 3531 "couldn't get super block page for bytenr %llu", 3532 bytenr); 3533 errors++; 3534 continue; 3535 } 3536 3537 /* Bump the refcount for wait_dev_supers() */ 3538 get_page(page); 3539 3540 disk_super = page_address(page); 3541 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3542 3543 /* 3544 * Directly use bios here instead of relying on the page cache 3545 * to do I/O, so we don't lose the ability to do integrity 3546 * checking. 3547 */ 3548 bio = bio_alloc(GFP_NOFS, 1); 3549 bio_set_dev(bio, device->bdev); 3550 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3551 bio->bi_private = device; 3552 bio->bi_end_io = btrfs_end_super_write; 3553 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 3554 offset_in_page(bytenr)); 3555 3556 /* 3557 * We FUA only the first super block. The others we allow to 3558 * go down lazy and there's a short window where the on-disk 3559 * copies might still contain the older version. 3560 */ 3561 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO; 3562 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3563 bio->bi_opf |= REQ_FUA; 3564 3565 btrfsic_submit_bio(bio); 3566 } 3567 return errors < i ? 0 : -1; 3568 } 3569 3570 /* 3571 * Wait for write completion of superblocks done by write_dev_supers, 3572 * @max_mirrors same for write and wait phases. 3573 * 3574 * Return number of errors when page is not found or not marked up to 3575 * date. 3576 */ 3577 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3578 { 3579 int i; 3580 int errors = 0; 3581 bool primary_failed = false; 3582 u64 bytenr; 3583 3584 if (max_mirrors == 0) 3585 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3586 3587 for (i = 0; i < max_mirrors; i++) { 3588 struct page *page; 3589 3590 bytenr = btrfs_sb_offset(i); 3591 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3592 device->commit_total_bytes) 3593 break; 3594 3595 page = find_get_page(device->bdev->bd_inode->i_mapping, 3596 bytenr >> PAGE_SHIFT); 3597 if (!page) { 3598 errors++; 3599 if (i == 0) 3600 primary_failed = true; 3601 continue; 3602 } 3603 /* Page is submitted locked and unlocked once the IO completes */ 3604 wait_on_page_locked(page); 3605 if (PageError(page)) { 3606 errors++; 3607 if (i == 0) 3608 primary_failed = true; 3609 } 3610 3611 /* Drop our reference */ 3612 put_page(page); 3613 3614 /* Drop the reference from the writing run */ 3615 put_page(page); 3616 } 3617 3618 /* log error, force error return */ 3619 if (primary_failed) { 3620 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3621 device->devid); 3622 return -1; 3623 } 3624 3625 return errors < i ? 0 : -1; 3626 } 3627 3628 /* 3629 * endio for the write_dev_flush, this will wake anyone waiting 3630 * for the barrier when it is done 3631 */ 3632 static void btrfs_end_empty_barrier(struct bio *bio) 3633 { 3634 complete(bio->bi_private); 3635 } 3636 3637 /* 3638 * Submit a flush request to the device if it supports it. Error handling is 3639 * done in the waiting counterpart. 3640 */ 3641 static void write_dev_flush(struct btrfs_device *device) 3642 { 3643 struct request_queue *q = bdev_get_queue(device->bdev); 3644 struct bio *bio = device->flush_bio; 3645 3646 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3647 return; 3648 3649 bio_reset(bio); 3650 bio->bi_end_io = btrfs_end_empty_barrier; 3651 bio_set_dev(bio, device->bdev); 3652 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3653 init_completion(&device->flush_wait); 3654 bio->bi_private = &device->flush_wait; 3655 3656 btrfsic_submit_bio(bio); 3657 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3658 } 3659 3660 /* 3661 * If the flush bio has been submitted by write_dev_flush, wait for it. 3662 */ 3663 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3664 { 3665 struct bio *bio = device->flush_bio; 3666 3667 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3668 return BLK_STS_OK; 3669 3670 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3671 wait_for_completion_io(&device->flush_wait); 3672 3673 return bio->bi_status; 3674 } 3675 3676 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3677 { 3678 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3679 return -EIO; 3680 return 0; 3681 } 3682 3683 /* 3684 * send an empty flush down to each device in parallel, 3685 * then wait for them 3686 */ 3687 static int barrier_all_devices(struct btrfs_fs_info *info) 3688 { 3689 struct list_head *head; 3690 struct btrfs_device *dev; 3691 int errors_wait = 0; 3692 blk_status_t ret; 3693 3694 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3695 /* send down all the barriers */ 3696 head = &info->fs_devices->devices; 3697 list_for_each_entry(dev, head, dev_list) { 3698 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3699 continue; 3700 if (!dev->bdev) 3701 continue; 3702 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3703 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3704 continue; 3705 3706 write_dev_flush(dev); 3707 dev->last_flush_error = BLK_STS_OK; 3708 } 3709 3710 /* wait for all the barriers */ 3711 list_for_each_entry(dev, head, dev_list) { 3712 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3713 continue; 3714 if (!dev->bdev) { 3715 errors_wait++; 3716 continue; 3717 } 3718 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3719 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3720 continue; 3721 3722 ret = wait_dev_flush(dev); 3723 if (ret) { 3724 dev->last_flush_error = ret; 3725 btrfs_dev_stat_inc_and_print(dev, 3726 BTRFS_DEV_STAT_FLUSH_ERRS); 3727 errors_wait++; 3728 } 3729 } 3730 3731 if (errors_wait) { 3732 /* 3733 * At some point we need the status of all disks 3734 * to arrive at the volume status. So error checking 3735 * is being pushed to a separate loop. 3736 */ 3737 return check_barrier_error(info); 3738 } 3739 return 0; 3740 } 3741 3742 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3743 { 3744 int raid_type; 3745 int min_tolerated = INT_MAX; 3746 3747 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3748 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3749 min_tolerated = min_t(int, min_tolerated, 3750 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3751 tolerated_failures); 3752 3753 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3754 if (raid_type == BTRFS_RAID_SINGLE) 3755 continue; 3756 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3757 continue; 3758 min_tolerated = min_t(int, min_tolerated, 3759 btrfs_raid_array[raid_type]. 3760 tolerated_failures); 3761 } 3762 3763 if (min_tolerated == INT_MAX) { 3764 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3765 min_tolerated = 0; 3766 } 3767 3768 return min_tolerated; 3769 } 3770 3771 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3772 { 3773 struct list_head *head; 3774 struct btrfs_device *dev; 3775 struct btrfs_super_block *sb; 3776 struct btrfs_dev_item *dev_item; 3777 int ret; 3778 int do_barriers; 3779 int max_errors; 3780 int total_errors = 0; 3781 u64 flags; 3782 3783 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3784 3785 /* 3786 * max_mirrors == 0 indicates we're from commit_transaction, 3787 * not from fsync where the tree roots in fs_info have not 3788 * been consistent on disk. 3789 */ 3790 if (max_mirrors == 0) 3791 backup_super_roots(fs_info); 3792 3793 sb = fs_info->super_for_commit; 3794 dev_item = &sb->dev_item; 3795 3796 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3797 head = &fs_info->fs_devices->devices; 3798 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3799 3800 if (do_barriers) { 3801 ret = barrier_all_devices(fs_info); 3802 if (ret) { 3803 mutex_unlock( 3804 &fs_info->fs_devices->device_list_mutex); 3805 btrfs_handle_fs_error(fs_info, ret, 3806 "errors while submitting device barriers."); 3807 return ret; 3808 } 3809 } 3810 3811 list_for_each_entry(dev, head, dev_list) { 3812 if (!dev->bdev) { 3813 total_errors++; 3814 continue; 3815 } 3816 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3817 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3818 continue; 3819 3820 btrfs_set_stack_device_generation(dev_item, 0); 3821 btrfs_set_stack_device_type(dev_item, dev->type); 3822 btrfs_set_stack_device_id(dev_item, dev->devid); 3823 btrfs_set_stack_device_total_bytes(dev_item, 3824 dev->commit_total_bytes); 3825 btrfs_set_stack_device_bytes_used(dev_item, 3826 dev->commit_bytes_used); 3827 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3828 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3829 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3830 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3831 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 3832 BTRFS_FSID_SIZE); 3833 3834 flags = btrfs_super_flags(sb); 3835 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3836 3837 ret = btrfs_validate_write_super(fs_info, sb); 3838 if (ret < 0) { 3839 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3840 btrfs_handle_fs_error(fs_info, -EUCLEAN, 3841 "unexpected superblock corruption detected"); 3842 return -EUCLEAN; 3843 } 3844 3845 ret = write_dev_supers(dev, sb, max_mirrors); 3846 if (ret) 3847 total_errors++; 3848 } 3849 if (total_errors > max_errors) { 3850 btrfs_err(fs_info, "%d errors while writing supers", 3851 total_errors); 3852 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3853 3854 /* FUA is masked off if unsupported and can't be the reason */ 3855 btrfs_handle_fs_error(fs_info, -EIO, 3856 "%d errors while writing supers", 3857 total_errors); 3858 return -EIO; 3859 } 3860 3861 total_errors = 0; 3862 list_for_each_entry(dev, head, dev_list) { 3863 if (!dev->bdev) 3864 continue; 3865 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3866 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3867 continue; 3868 3869 ret = wait_dev_supers(dev, max_mirrors); 3870 if (ret) 3871 total_errors++; 3872 } 3873 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3874 if (total_errors > max_errors) { 3875 btrfs_handle_fs_error(fs_info, -EIO, 3876 "%d errors while writing supers", 3877 total_errors); 3878 return -EIO; 3879 } 3880 return 0; 3881 } 3882 3883 /* Drop a fs root from the radix tree and free it. */ 3884 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3885 struct btrfs_root *root) 3886 { 3887 bool drop_ref = false; 3888 3889 spin_lock(&fs_info->fs_roots_radix_lock); 3890 radix_tree_delete(&fs_info->fs_roots_radix, 3891 (unsigned long)root->root_key.objectid); 3892 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 3893 drop_ref = true; 3894 spin_unlock(&fs_info->fs_roots_radix_lock); 3895 3896 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3897 ASSERT(root->log_root == NULL); 3898 if (root->reloc_root) { 3899 btrfs_put_root(root->reloc_root); 3900 root->reloc_root = NULL; 3901 } 3902 } 3903 3904 if (root->free_ino_pinned) 3905 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3906 if (root->free_ino_ctl) 3907 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3908 if (root->ino_cache_inode) { 3909 iput(root->ino_cache_inode); 3910 root->ino_cache_inode = NULL; 3911 } 3912 if (drop_ref) 3913 btrfs_put_root(root); 3914 } 3915 3916 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3917 { 3918 u64 root_objectid = 0; 3919 struct btrfs_root *gang[8]; 3920 int i = 0; 3921 int err = 0; 3922 unsigned int ret = 0; 3923 3924 while (1) { 3925 spin_lock(&fs_info->fs_roots_radix_lock); 3926 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3927 (void **)gang, root_objectid, 3928 ARRAY_SIZE(gang)); 3929 if (!ret) { 3930 spin_unlock(&fs_info->fs_roots_radix_lock); 3931 break; 3932 } 3933 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3934 3935 for (i = 0; i < ret; i++) { 3936 /* Avoid to grab roots in dead_roots */ 3937 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3938 gang[i] = NULL; 3939 continue; 3940 } 3941 /* grab all the search result for later use */ 3942 gang[i] = btrfs_grab_root(gang[i]); 3943 } 3944 spin_unlock(&fs_info->fs_roots_radix_lock); 3945 3946 for (i = 0; i < ret; i++) { 3947 if (!gang[i]) 3948 continue; 3949 root_objectid = gang[i]->root_key.objectid; 3950 err = btrfs_orphan_cleanup(gang[i]); 3951 if (err) 3952 break; 3953 btrfs_put_root(gang[i]); 3954 } 3955 root_objectid++; 3956 } 3957 3958 /* release the uncleaned roots due to error */ 3959 for (; i < ret; i++) { 3960 if (gang[i]) 3961 btrfs_put_root(gang[i]); 3962 } 3963 return err; 3964 } 3965 3966 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3967 { 3968 struct btrfs_root *root = fs_info->tree_root; 3969 struct btrfs_trans_handle *trans; 3970 3971 mutex_lock(&fs_info->cleaner_mutex); 3972 btrfs_run_delayed_iputs(fs_info); 3973 mutex_unlock(&fs_info->cleaner_mutex); 3974 wake_up_process(fs_info->cleaner_kthread); 3975 3976 /* wait until ongoing cleanup work done */ 3977 down_write(&fs_info->cleanup_work_sem); 3978 up_write(&fs_info->cleanup_work_sem); 3979 3980 trans = btrfs_join_transaction(root); 3981 if (IS_ERR(trans)) 3982 return PTR_ERR(trans); 3983 return btrfs_commit_transaction(trans); 3984 } 3985 3986 void __cold close_ctree(struct btrfs_fs_info *fs_info) 3987 { 3988 int ret; 3989 3990 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3991 /* 3992 * We don't want the cleaner to start new transactions, add more delayed 3993 * iputs, etc. while we're closing. We can't use kthread_stop() yet 3994 * because that frees the task_struct, and the transaction kthread might 3995 * still try to wake up the cleaner. 3996 */ 3997 kthread_park(fs_info->cleaner_kthread); 3998 3999 /* wait for the qgroup rescan worker to stop */ 4000 btrfs_qgroup_wait_for_completion(fs_info, false); 4001 4002 /* wait for the uuid_scan task to finish */ 4003 down(&fs_info->uuid_tree_rescan_sem); 4004 /* avoid complains from lockdep et al., set sem back to initial state */ 4005 up(&fs_info->uuid_tree_rescan_sem); 4006 4007 /* pause restriper - we want to resume on mount */ 4008 btrfs_pause_balance(fs_info); 4009 4010 btrfs_dev_replace_suspend_for_unmount(fs_info); 4011 4012 btrfs_scrub_cancel(fs_info); 4013 4014 /* wait for any defraggers to finish */ 4015 wait_event(fs_info->transaction_wait, 4016 (atomic_read(&fs_info->defrag_running) == 0)); 4017 4018 /* clear out the rbtree of defraggable inodes */ 4019 btrfs_cleanup_defrag_inodes(fs_info); 4020 4021 cancel_work_sync(&fs_info->async_reclaim_work); 4022 4023 /* Cancel or finish ongoing discard work */ 4024 btrfs_discard_cleanup(fs_info); 4025 4026 if (!sb_rdonly(fs_info->sb)) { 4027 /* 4028 * The cleaner kthread is stopped, so do one final pass over 4029 * unused block groups. 4030 */ 4031 btrfs_delete_unused_bgs(fs_info); 4032 4033 /* 4034 * There might be existing delayed inode workers still running 4035 * and holding an empty delayed inode item. We must wait for 4036 * them to complete first because they can create a transaction. 4037 * This happens when someone calls btrfs_balance_delayed_items() 4038 * and then a transaction commit runs the same delayed nodes 4039 * before any delayed worker has done something with the nodes. 4040 * We must wait for any worker here and not at transaction 4041 * commit time since that could cause a deadlock. 4042 * This is a very rare case. 4043 */ 4044 btrfs_flush_workqueue(fs_info->delayed_workers); 4045 4046 ret = btrfs_commit_super(fs_info); 4047 if (ret) 4048 btrfs_err(fs_info, "commit super ret %d", ret); 4049 } 4050 4051 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 4052 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 4053 btrfs_error_commit_super(fs_info); 4054 4055 kthread_stop(fs_info->transaction_kthread); 4056 kthread_stop(fs_info->cleaner_kthread); 4057 4058 ASSERT(list_empty(&fs_info->delayed_iputs)); 4059 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4060 4061 btrfs_free_qgroup_config(fs_info); 4062 ASSERT(list_empty(&fs_info->delalloc_roots)); 4063 4064 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4065 btrfs_info(fs_info, "at unmount delalloc count %lld", 4066 percpu_counter_sum(&fs_info->delalloc_bytes)); 4067 } 4068 4069 if (percpu_counter_sum(&fs_info->dio_bytes)) 4070 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4071 percpu_counter_sum(&fs_info->dio_bytes)); 4072 4073 btrfs_sysfs_remove_mounted(fs_info); 4074 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4075 4076 btrfs_put_block_group_cache(fs_info); 4077 4078 /* 4079 * we must make sure there is not any read request to 4080 * submit after we stopping all workers. 4081 */ 4082 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4083 btrfs_stop_all_workers(fs_info); 4084 4085 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4086 free_root_pointers(fs_info, true); 4087 btrfs_free_fs_roots(fs_info); 4088 4089 /* 4090 * We must free the block groups after dropping the fs_roots as we could 4091 * have had an IO error and have left over tree log blocks that aren't 4092 * cleaned up until the fs roots are freed. This makes the block group 4093 * accounting appear to be wrong because there's pending reserved bytes, 4094 * so make sure we do the block group cleanup afterwards. 4095 */ 4096 btrfs_free_block_groups(fs_info); 4097 4098 iput(fs_info->btree_inode); 4099 4100 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4101 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4102 btrfsic_unmount(fs_info->fs_devices); 4103 #endif 4104 4105 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4106 btrfs_close_devices(fs_info->fs_devices); 4107 } 4108 4109 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4110 int atomic) 4111 { 4112 int ret; 4113 struct inode *btree_inode = buf->pages[0]->mapping->host; 4114 4115 ret = extent_buffer_uptodate(buf); 4116 if (!ret) 4117 return ret; 4118 4119 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4120 parent_transid, atomic); 4121 if (ret == -EAGAIN) 4122 return ret; 4123 return !ret; 4124 } 4125 4126 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4127 { 4128 struct btrfs_fs_info *fs_info; 4129 struct btrfs_root *root; 4130 u64 transid = btrfs_header_generation(buf); 4131 int was_dirty; 4132 4133 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4134 /* 4135 * This is a fast path so only do this check if we have sanity tests 4136 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4137 * outside of the sanity tests. 4138 */ 4139 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4140 return; 4141 #endif 4142 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4143 fs_info = root->fs_info; 4144 btrfs_assert_tree_locked(buf); 4145 if (transid != fs_info->generation) 4146 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4147 buf->start, transid, fs_info->generation); 4148 was_dirty = set_extent_buffer_dirty(buf); 4149 if (!was_dirty) 4150 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4151 buf->len, 4152 fs_info->dirty_metadata_batch); 4153 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4154 /* 4155 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4156 * but item data not updated. 4157 * So here we should only check item pointers, not item data. 4158 */ 4159 if (btrfs_header_level(buf) == 0 && 4160 btrfs_check_leaf_relaxed(buf)) { 4161 btrfs_print_leaf(buf); 4162 ASSERT(0); 4163 } 4164 #endif 4165 } 4166 4167 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4168 int flush_delayed) 4169 { 4170 /* 4171 * looks as though older kernels can get into trouble with 4172 * this code, they end up stuck in balance_dirty_pages forever 4173 */ 4174 int ret; 4175 4176 if (current->flags & PF_MEMALLOC) 4177 return; 4178 4179 if (flush_delayed) 4180 btrfs_balance_delayed_items(fs_info); 4181 4182 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4183 BTRFS_DIRTY_METADATA_THRESH, 4184 fs_info->dirty_metadata_batch); 4185 if (ret > 0) { 4186 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4187 } 4188 } 4189 4190 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4191 { 4192 __btrfs_btree_balance_dirty(fs_info, 1); 4193 } 4194 4195 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4196 { 4197 __btrfs_btree_balance_dirty(fs_info, 0); 4198 } 4199 4200 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4201 struct btrfs_key *first_key) 4202 { 4203 return btree_read_extent_buffer_pages(buf, parent_transid, 4204 level, first_key); 4205 } 4206 4207 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4208 { 4209 /* cleanup FS via transaction */ 4210 btrfs_cleanup_transaction(fs_info); 4211 4212 mutex_lock(&fs_info->cleaner_mutex); 4213 btrfs_run_delayed_iputs(fs_info); 4214 mutex_unlock(&fs_info->cleaner_mutex); 4215 4216 down_write(&fs_info->cleanup_work_sem); 4217 up_write(&fs_info->cleanup_work_sem); 4218 } 4219 4220 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4221 { 4222 struct btrfs_root *gang[8]; 4223 u64 root_objectid = 0; 4224 int ret; 4225 4226 spin_lock(&fs_info->fs_roots_radix_lock); 4227 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4228 (void **)gang, root_objectid, 4229 ARRAY_SIZE(gang))) != 0) { 4230 int i; 4231 4232 for (i = 0; i < ret; i++) 4233 gang[i] = btrfs_grab_root(gang[i]); 4234 spin_unlock(&fs_info->fs_roots_radix_lock); 4235 4236 for (i = 0; i < ret; i++) { 4237 if (!gang[i]) 4238 continue; 4239 root_objectid = gang[i]->root_key.objectid; 4240 btrfs_free_log(NULL, gang[i]); 4241 btrfs_put_root(gang[i]); 4242 } 4243 root_objectid++; 4244 spin_lock(&fs_info->fs_roots_radix_lock); 4245 } 4246 spin_unlock(&fs_info->fs_roots_radix_lock); 4247 btrfs_free_log_root_tree(NULL, fs_info); 4248 } 4249 4250 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4251 { 4252 struct btrfs_ordered_extent *ordered; 4253 4254 spin_lock(&root->ordered_extent_lock); 4255 /* 4256 * This will just short circuit the ordered completion stuff which will 4257 * make sure the ordered extent gets properly cleaned up. 4258 */ 4259 list_for_each_entry(ordered, &root->ordered_extents, 4260 root_extent_list) 4261 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4262 spin_unlock(&root->ordered_extent_lock); 4263 } 4264 4265 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4266 { 4267 struct btrfs_root *root; 4268 struct list_head splice; 4269 4270 INIT_LIST_HEAD(&splice); 4271 4272 spin_lock(&fs_info->ordered_root_lock); 4273 list_splice_init(&fs_info->ordered_roots, &splice); 4274 while (!list_empty(&splice)) { 4275 root = list_first_entry(&splice, struct btrfs_root, 4276 ordered_root); 4277 list_move_tail(&root->ordered_root, 4278 &fs_info->ordered_roots); 4279 4280 spin_unlock(&fs_info->ordered_root_lock); 4281 btrfs_destroy_ordered_extents(root); 4282 4283 cond_resched(); 4284 spin_lock(&fs_info->ordered_root_lock); 4285 } 4286 spin_unlock(&fs_info->ordered_root_lock); 4287 4288 /* 4289 * We need this here because if we've been flipped read-only we won't 4290 * get sync() from the umount, so we need to make sure any ordered 4291 * extents that haven't had their dirty pages IO start writeout yet 4292 * actually get run and error out properly. 4293 */ 4294 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4295 } 4296 4297 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4298 struct btrfs_fs_info *fs_info) 4299 { 4300 struct rb_node *node; 4301 struct btrfs_delayed_ref_root *delayed_refs; 4302 struct btrfs_delayed_ref_node *ref; 4303 int ret = 0; 4304 4305 delayed_refs = &trans->delayed_refs; 4306 4307 spin_lock(&delayed_refs->lock); 4308 if (atomic_read(&delayed_refs->num_entries) == 0) { 4309 spin_unlock(&delayed_refs->lock); 4310 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4311 return ret; 4312 } 4313 4314 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4315 struct btrfs_delayed_ref_head *head; 4316 struct rb_node *n; 4317 bool pin_bytes = false; 4318 4319 head = rb_entry(node, struct btrfs_delayed_ref_head, 4320 href_node); 4321 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4322 continue; 4323 4324 spin_lock(&head->lock); 4325 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4326 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4327 ref_node); 4328 ref->in_tree = 0; 4329 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4330 RB_CLEAR_NODE(&ref->ref_node); 4331 if (!list_empty(&ref->add_list)) 4332 list_del(&ref->add_list); 4333 atomic_dec(&delayed_refs->num_entries); 4334 btrfs_put_delayed_ref(ref); 4335 } 4336 if (head->must_insert_reserved) 4337 pin_bytes = true; 4338 btrfs_free_delayed_extent_op(head->extent_op); 4339 btrfs_delete_ref_head(delayed_refs, head); 4340 spin_unlock(&head->lock); 4341 spin_unlock(&delayed_refs->lock); 4342 mutex_unlock(&head->mutex); 4343 4344 if (pin_bytes) { 4345 struct btrfs_block_group *cache; 4346 4347 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4348 BUG_ON(!cache); 4349 4350 spin_lock(&cache->space_info->lock); 4351 spin_lock(&cache->lock); 4352 cache->pinned += head->num_bytes; 4353 btrfs_space_info_update_bytes_pinned(fs_info, 4354 cache->space_info, head->num_bytes); 4355 cache->reserved -= head->num_bytes; 4356 cache->space_info->bytes_reserved -= head->num_bytes; 4357 spin_unlock(&cache->lock); 4358 spin_unlock(&cache->space_info->lock); 4359 percpu_counter_add_batch( 4360 &cache->space_info->total_bytes_pinned, 4361 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH); 4362 4363 btrfs_put_block_group(cache); 4364 4365 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4366 head->bytenr + head->num_bytes - 1); 4367 } 4368 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4369 btrfs_put_delayed_ref_head(head); 4370 cond_resched(); 4371 spin_lock(&delayed_refs->lock); 4372 } 4373 btrfs_qgroup_destroy_extent_records(trans); 4374 4375 spin_unlock(&delayed_refs->lock); 4376 4377 return ret; 4378 } 4379 4380 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4381 { 4382 struct btrfs_inode *btrfs_inode; 4383 struct list_head splice; 4384 4385 INIT_LIST_HEAD(&splice); 4386 4387 spin_lock(&root->delalloc_lock); 4388 list_splice_init(&root->delalloc_inodes, &splice); 4389 4390 while (!list_empty(&splice)) { 4391 struct inode *inode = NULL; 4392 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4393 delalloc_inodes); 4394 __btrfs_del_delalloc_inode(root, btrfs_inode); 4395 spin_unlock(&root->delalloc_lock); 4396 4397 /* 4398 * Make sure we get a live inode and that it'll not disappear 4399 * meanwhile. 4400 */ 4401 inode = igrab(&btrfs_inode->vfs_inode); 4402 if (inode) { 4403 invalidate_inode_pages2(inode->i_mapping); 4404 iput(inode); 4405 } 4406 spin_lock(&root->delalloc_lock); 4407 } 4408 spin_unlock(&root->delalloc_lock); 4409 } 4410 4411 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4412 { 4413 struct btrfs_root *root; 4414 struct list_head splice; 4415 4416 INIT_LIST_HEAD(&splice); 4417 4418 spin_lock(&fs_info->delalloc_root_lock); 4419 list_splice_init(&fs_info->delalloc_roots, &splice); 4420 while (!list_empty(&splice)) { 4421 root = list_first_entry(&splice, struct btrfs_root, 4422 delalloc_root); 4423 root = btrfs_grab_root(root); 4424 BUG_ON(!root); 4425 spin_unlock(&fs_info->delalloc_root_lock); 4426 4427 btrfs_destroy_delalloc_inodes(root); 4428 btrfs_put_root(root); 4429 4430 spin_lock(&fs_info->delalloc_root_lock); 4431 } 4432 spin_unlock(&fs_info->delalloc_root_lock); 4433 } 4434 4435 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4436 struct extent_io_tree *dirty_pages, 4437 int mark) 4438 { 4439 int ret; 4440 struct extent_buffer *eb; 4441 u64 start = 0; 4442 u64 end; 4443 4444 while (1) { 4445 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4446 mark, NULL); 4447 if (ret) 4448 break; 4449 4450 clear_extent_bits(dirty_pages, start, end, mark); 4451 while (start <= end) { 4452 eb = find_extent_buffer(fs_info, start); 4453 start += fs_info->nodesize; 4454 if (!eb) 4455 continue; 4456 wait_on_extent_buffer_writeback(eb); 4457 4458 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4459 &eb->bflags)) 4460 clear_extent_buffer_dirty(eb); 4461 free_extent_buffer_stale(eb); 4462 } 4463 } 4464 4465 return ret; 4466 } 4467 4468 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4469 struct extent_io_tree *unpin) 4470 { 4471 u64 start; 4472 u64 end; 4473 int ret; 4474 4475 while (1) { 4476 struct extent_state *cached_state = NULL; 4477 4478 /* 4479 * The btrfs_finish_extent_commit() may get the same range as 4480 * ours between find_first_extent_bit and clear_extent_dirty. 4481 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4482 * the same extent range. 4483 */ 4484 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4485 ret = find_first_extent_bit(unpin, 0, &start, &end, 4486 EXTENT_DIRTY, &cached_state); 4487 if (ret) { 4488 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4489 break; 4490 } 4491 4492 clear_extent_dirty(unpin, start, end, &cached_state); 4493 free_extent_state(cached_state); 4494 btrfs_error_unpin_extent_range(fs_info, start, end); 4495 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4496 cond_resched(); 4497 } 4498 4499 return 0; 4500 } 4501 4502 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4503 { 4504 struct inode *inode; 4505 4506 inode = cache->io_ctl.inode; 4507 if (inode) { 4508 invalidate_inode_pages2(inode->i_mapping); 4509 BTRFS_I(inode)->generation = 0; 4510 cache->io_ctl.inode = NULL; 4511 iput(inode); 4512 } 4513 btrfs_put_block_group(cache); 4514 } 4515 4516 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4517 struct btrfs_fs_info *fs_info) 4518 { 4519 struct btrfs_block_group *cache; 4520 4521 spin_lock(&cur_trans->dirty_bgs_lock); 4522 while (!list_empty(&cur_trans->dirty_bgs)) { 4523 cache = list_first_entry(&cur_trans->dirty_bgs, 4524 struct btrfs_block_group, 4525 dirty_list); 4526 4527 if (!list_empty(&cache->io_list)) { 4528 spin_unlock(&cur_trans->dirty_bgs_lock); 4529 list_del_init(&cache->io_list); 4530 btrfs_cleanup_bg_io(cache); 4531 spin_lock(&cur_trans->dirty_bgs_lock); 4532 } 4533 4534 list_del_init(&cache->dirty_list); 4535 spin_lock(&cache->lock); 4536 cache->disk_cache_state = BTRFS_DC_ERROR; 4537 spin_unlock(&cache->lock); 4538 4539 spin_unlock(&cur_trans->dirty_bgs_lock); 4540 btrfs_put_block_group(cache); 4541 btrfs_delayed_refs_rsv_release(fs_info, 1); 4542 spin_lock(&cur_trans->dirty_bgs_lock); 4543 } 4544 spin_unlock(&cur_trans->dirty_bgs_lock); 4545 4546 /* 4547 * Refer to the definition of io_bgs member for details why it's safe 4548 * to use it without any locking 4549 */ 4550 while (!list_empty(&cur_trans->io_bgs)) { 4551 cache = list_first_entry(&cur_trans->io_bgs, 4552 struct btrfs_block_group, 4553 io_list); 4554 4555 list_del_init(&cache->io_list); 4556 spin_lock(&cache->lock); 4557 cache->disk_cache_state = BTRFS_DC_ERROR; 4558 spin_unlock(&cache->lock); 4559 btrfs_cleanup_bg_io(cache); 4560 } 4561 } 4562 4563 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4564 struct btrfs_fs_info *fs_info) 4565 { 4566 struct btrfs_device *dev, *tmp; 4567 4568 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4569 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4570 ASSERT(list_empty(&cur_trans->io_bgs)); 4571 4572 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4573 post_commit_list) { 4574 list_del_init(&dev->post_commit_list); 4575 } 4576 4577 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4578 4579 cur_trans->state = TRANS_STATE_COMMIT_START; 4580 wake_up(&fs_info->transaction_blocked_wait); 4581 4582 cur_trans->state = TRANS_STATE_UNBLOCKED; 4583 wake_up(&fs_info->transaction_wait); 4584 4585 btrfs_destroy_delayed_inodes(fs_info); 4586 4587 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4588 EXTENT_DIRTY); 4589 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4590 4591 cur_trans->state =TRANS_STATE_COMPLETED; 4592 wake_up(&cur_trans->commit_wait); 4593 } 4594 4595 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4596 { 4597 struct btrfs_transaction *t; 4598 4599 mutex_lock(&fs_info->transaction_kthread_mutex); 4600 4601 spin_lock(&fs_info->trans_lock); 4602 while (!list_empty(&fs_info->trans_list)) { 4603 t = list_first_entry(&fs_info->trans_list, 4604 struct btrfs_transaction, list); 4605 if (t->state >= TRANS_STATE_COMMIT_START) { 4606 refcount_inc(&t->use_count); 4607 spin_unlock(&fs_info->trans_lock); 4608 btrfs_wait_for_commit(fs_info, t->transid); 4609 btrfs_put_transaction(t); 4610 spin_lock(&fs_info->trans_lock); 4611 continue; 4612 } 4613 if (t == fs_info->running_transaction) { 4614 t->state = TRANS_STATE_COMMIT_DOING; 4615 spin_unlock(&fs_info->trans_lock); 4616 /* 4617 * We wait for 0 num_writers since we don't hold a trans 4618 * handle open currently for this transaction. 4619 */ 4620 wait_event(t->writer_wait, 4621 atomic_read(&t->num_writers) == 0); 4622 } else { 4623 spin_unlock(&fs_info->trans_lock); 4624 } 4625 btrfs_cleanup_one_transaction(t, fs_info); 4626 4627 spin_lock(&fs_info->trans_lock); 4628 if (t == fs_info->running_transaction) 4629 fs_info->running_transaction = NULL; 4630 list_del_init(&t->list); 4631 spin_unlock(&fs_info->trans_lock); 4632 4633 btrfs_put_transaction(t); 4634 trace_btrfs_transaction_commit(fs_info->tree_root); 4635 spin_lock(&fs_info->trans_lock); 4636 } 4637 spin_unlock(&fs_info->trans_lock); 4638 btrfs_destroy_all_ordered_extents(fs_info); 4639 btrfs_destroy_delayed_inodes(fs_info); 4640 btrfs_assert_delayed_root_empty(fs_info); 4641 btrfs_destroy_all_delalloc_inodes(fs_info); 4642 btrfs_drop_all_logs(fs_info); 4643 mutex_unlock(&fs_info->transaction_kthread_mutex); 4644 4645 return 0; 4646 } 4647 4648 static const struct extent_io_ops btree_extent_io_ops = { 4649 /* mandatory callbacks */ 4650 .submit_bio_hook = btree_submit_bio_hook, 4651 .readpage_end_io_hook = btree_readpage_end_io_hook, 4652 }; 4653