xref: /linux/fs/btrfs/disk-io.c (revision a13f2ef168cb2a033a284eb841bcc481ffbc90cf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
43 #include "discard.h"
44 #include "space-info.h"
45 
46 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
47 				 BTRFS_HEADER_FLAG_RELOC |\
48 				 BTRFS_SUPER_FLAG_ERROR |\
49 				 BTRFS_SUPER_FLAG_SEEDING |\
50 				 BTRFS_SUPER_FLAG_METADUMP |\
51 				 BTRFS_SUPER_FLAG_METADUMP_V2)
52 
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 				      struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60 					struct extent_io_tree *dirty_pages,
61 					int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63 				       struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66 
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73 	struct bio *bio;
74 	bio_end_io_t *end_io;
75 	void *private;
76 	struct btrfs_fs_info *info;
77 	blk_status_t status;
78 	enum btrfs_wq_endio_type metadata;
79 	struct btrfs_work work;
80 };
81 
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83 
84 int __init btrfs_end_io_wq_init(void)
85 {
86 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 					sizeof(struct btrfs_end_io_wq),
88 					0,
89 					SLAB_MEM_SPREAD,
90 					NULL);
91 	if (!btrfs_end_io_wq_cache)
92 		return -ENOMEM;
93 	return 0;
94 }
95 
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98 	kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100 
101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 {
103 	if (fs_info->csum_shash)
104 		crypto_free_shash(fs_info->csum_shash);
105 }
106 
107 /*
108  * async submit bios are used to offload expensive checksumming
109  * onto the worker threads.  They checksum file and metadata bios
110  * just before they are sent down the IO stack.
111  */
112 struct async_submit_bio {
113 	void *private_data;
114 	struct bio *bio;
115 	extent_submit_bio_start_t *submit_bio_start;
116 	int mirror_num;
117 	/*
118 	 * bio_offset is optional, can be used if the pages in the bio
119 	 * can't tell us where in the file the bio should go
120 	 */
121 	u64 bio_offset;
122 	struct btrfs_work work;
123 	blk_status_t status;
124 };
125 
126 /*
127  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
128  * eb, the lockdep key is determined by the btrfs_root it belongs to and
129  * the level the eb occupies in the tree.
130  *
131  * Different roots are used for different purposes and may nest inside each
132  * other and they require separate keysets.  As lockdep keys should be
133  * static, assign keysets according to the purpose of the root as indicated
134  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
135  * roots have separate keysets.
136  *
137  * Lock-nesting across peer nodes is always done with the immediate parent
138  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
139  * subclass to avoid triggering lockdep warning in such cases.
140  *
141  * The key is set by the readpage_end_io_hook after the buffer has passed
142  * csum validation but before the pages are unlocked.  It is also set by
143  * btrfs_init_new_buffer on freshly allocated blocks.
144  *
145  * We also add a check to make sure the highest level of the tree is the
146  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
147  * needs update as well.
148  */
149 #ifdef CONFIG_DEBUG_LOCK_ALLOC
150 # if BTRFS_MAX_LEVEL != 8
151 #  error
152 # endif
153 
154 static struct btrfs_lockdep_keyset {
155 	u64			id;		/* root objectid */
156 	const char		*name_stem;	/* lock name stem */
157 	char			names[BTRFS_MAX_LEVEL + 1][20];
158 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
159 } btrfs_lockdep_keysets[] = {
160 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
161 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
162 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
163 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
164 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
165 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
166 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
167 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
168 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
169 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
170 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
171 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
172 	{ .id = 0,				.name_stem = "tree"	},
173 };
174 
175 void __init btrfs_init_lockdep(void)
176 {
177 	int i, j;
178 
179 	/* initialize lockdep class names */
180 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182 
183 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184 			snprintf(ks->names[j], sizeof(ks->names[j]),
185 				 "btrfs-%s-%02d", ks->name_stem, j);
186 	}
187 }
188 
189 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190 				    int level)
191 {
192 	struct btrfs_lockdep_keyset *ks;
193 
194 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
195 
196 	/* find the matching keyset, id 0 is the default entry */
197 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198 		if (ks->id == objectid)
199 			break;
200 
201 	lockdep_set_class_and_name(&eb->lock,
202 				   &ks->keys[level], ks->names[level]);
203 }
204 
205 #endif
206 
207 /*
208  * extents on the btree inode are pretty simple, there's one extent
209  * that covers the entire device
210  */
211 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
212 				    struct page *page, size_t pg_offset,
213 				    u64 start, u64 len)
214 {
215 	struct extent_map_tree *em_tree = &inode->extent_tree;
216 	struct extent_map *em;
217 	int ret;
218 
219 	read_lock(&em_tree->lock);
220 	em = lookup_extent_mapping(em_tree, start, len);
221 	if (em) {
222 		read_unlock(&em_tree->lock);
223 		goto out;
224 	}
225 	read_unlock(&em_tree->lock);
226 
227 	em = alloc_extent_map();
228 	if (!em) {
229 		em = ERR_PTR(-ENOMEM);
230 		goto out;
231 	}
232 	em->start = 0;
233 	em->len = (u64)-1;
234 	em->block_len = (u64)-1;
235 	em->block_start = 0;
236 
237 	write_lock(&em_tree->lock);
238 	ret = add_extent_mapping(em_tree, em, 0);
239 	if (ret == -EEXIST) {
240 		free_extent_map(em);
241 		em = lookup_extent_mapping(em_tree, start, len);
242 		if (!em)
243 			em = ERR_PTR(-EIO);
244 	} else if (ret) {
245 		free_extent_map(em);
246 		em = ERR_PTR(ret);
247 	}
248 	write_unlock(&em_tree->lock);
249 
250 out:
251 	return em;
252 }
253 
254 /*
255  * Compute the csum of a btree block and store the result to provided buffer.
256  */
257 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
258 {
259 	struct btrfs_fs_info *fs_info = buf->fs_info;
260 	const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
261 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
262 	char *kaddr;
263 	int i;
264 
265 	shash->tfm = fs_info->csum_shash;
266 	crypto_shash_init(shash);
267 	kaddr = page_address(buf->pages[0]);
268 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
269 			    PAGE_SIZE - BTRFS_CSUM_SIZE);
270 
271 	for (i = 1; i < num_pages; i++) {
272 		kaddr = page_address(buf->pages[i]);
273 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
274 	}
275 	memset(result, 0, BTRFS_CSUM_SIZE);
276 	crypto_shash_final(shash, result);
277 }
278 
279 /*
280  * we can't consider a given block up to date unless the transid of the
281  * block matches the transid in the parent node's pointer.  This is how we
282  * detect blocks that either didn't get written at all or got written
283  * in the wrong place.
284  */
285 static int verify_parent_transid(struct extent_io_tree *io_tree,
286 				 struct extent_buffer *eb, u64 parent_transid,
287 				 int atomic)
288 {
289 	struct extent_state *cached_state = NULL;
290 	int ret;
291 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
292 
293 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
294 		return 0;
295 
296 	if (atomic)
297 		return -EAGAIN;
298 
299 	if (need_lock) {
300 		btrfs_tree_read_lock(eb);
301 		btrfs_set_lock_blocking_read(eb);
302 	}
303 
304 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
305 			 &cached_state);
306 	if (extent_buffer_uptodate(eb) &&
307 	    btrfs_header_generation(eb) == parent_transid) {
308 		ret = 0;
309 		goto out;
310 	}
311 	btrfs_err_rl(eb->fs_info,
312 		"parent transid verify failed on %llu wanted %llu found %llu",
313 			eb->start,
314 			parent_transid, btrfs_header_generation(eb));
315 	ret = 1;
316 
317 	/*
318 	 * Things reading via commit roots that don't have normal protection,
319 	 * like send, can have a really old block in cache that may point at a
320 	 * block that has been freed and re-allocated.  So don't clear uptodate
321 	 * if we find an eb that is under IO (dirty/writeback) because we could
322 	 * end up reading in the stale data and then writing it back out and
323 	 * making everybody very sad.
324 	 */
325 	if (!extent_buffer_under_io(eb))
326 		clear_extent_buffer_uptodate(eb);
327 out:
328 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
329 			     &cached_state);
330 	if (need_lock)
331 		btrfs_tree_read_unlock_blocking(eb);
332 	return ret;
333 }
334 
335 static bool btrfs_supported_super_csum(u16 csum_type)
336 {
337 	switch (csum_type) {
338 	case BTRFS_CSUM_TYPE_CRC32:
339 	case BTRFS_CSUM_TYPE_XXHASH:
340 	case BTRFS_CSUM_TYPE_SHA256:
341 	case BTRFS_CSUM_TYPE_BLAKE2:
342 		return true;
343 	default:
344 		return false;
345 	}
346 }
347 
348 /*
349  * Return 0 if the superblock checksum type matches the checksum value of that
350  * algorithm. Pass the raw disk superblock data.
351  */
352 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
353 				  char *raw_disk_sb)
354 {
355 	struct btrfs_super_block *disk_sb =
356 		(struct btrfs_super_block *)raw_disk_sb;
357 	char result[BTRFS_CSUM_SIZE];
358 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
359 
360 	shash->tfm = fs_info->csum_shash;
361 
362 	/*
363 	 * The super_block structure does not span the whole
364 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
365 	 * filled with zeros and is included in the checksum.
366 	 */
367 	crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
368 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
369 
370 	if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
371 		return 1;
372 
373 	return 0;
374 }
375 
376 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
377 			   struct btrfs_key *first_key, u64 parent_transid)
378 {
379 	struct btrfs_fs_info *fs_info = eb->fs_info;
380 	int found_level;
381 	struct btrfs_key found_key;
382 	int ret;
383 
384 	found_level = btrfs_header_level(eb);
385 	if (found_level != level) {
386 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
387 		     KERN_ERR "BTRFS: tree level check failed\n");
388 		btrfs_err(fs_info,
389 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
390 			  eb->start, level, found_level);
391 		return -EIO;
392 	}
393 
394 	if (!first_key)
395 		return 0;
396 
397 	/*
398 	 * For live tree block (new tree blocks in current transaction),
399 	 * we need proper lock context to avoid race, which is impossible here.
400 	 * So we only checks tree blocks which is read from disk, whose
401 	 * generation <= fs_info->last_trans_committed.
402 	 */
403 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
404 		return 0;
405 
406 	/* We have @first_key, so this @eb must have at least one item */
407 	if (btrfs_header_nritems(eb) == 0) {
408 		btrfs_err(fs_info,
409 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
410 			  eb->start);
411 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
412 		return -EUCLEAN;
413 	}
414 
415 	if (found_level)
416 		btrfs_node_key_to_cpu(eb, &found_key, 0);
417 	else
418 		btrfs_item_key_to_cpu(eb, &found_key, 0);
419 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
420 
421 	if (ret) {
422 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
423 		     KERN_ERR "BTRFS: tree first key check failed\n");
424 		btrfs_err(fs_info,
425 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
426 			  eb->start, parent_transid, first_key->objectid,
427 			  first_key->type, first_key->offset,
428 			  found_key.objectid, found_key.type,
429 			  found_key.offset);
430 	}
431 	return ret;
432 }
433 
434 /*
435  * helper to read a given tree block, doing retries as required when
436  * the checksums don't match and we have alternate mirrors to try.
437  *
438  * @parent_transid:	expected transid, skip check if 0
439  * @level:		expected level, mandatory check
440  * @first_key:		expected key of first slot, skip check if NULL
441  */
442 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
443 					  u64 parent_transid, int level,
444 					  struct btrfs_key *first_key)
445 {
446 	struct btrfs_fs_info *fs_info = eb->fs_info;
447 	struct extent_io_tree *io_tree;
448 	int failed = 0;
449 	int ret;
450 	int num_copies = 0;
451 	int mirror_num = 0;
452 	int failed_mirror = 0;
453 
454 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
455 	while (1) {
456 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
457 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
458 		if (!ret) {
459 			if (verify_parent_transid(io_tree, eb,
460 						   parent_transid, 0))
461 				ret = -EIO;
462 			else if (btrfs_verify_level_key(eb, level,
463 						first_key, parent_transid))
464 				ret = -EUCLEAN;
465 			else
466 				break;
467 		}
468 
469 		num_copies = btrfs_num_copies(fs_info,
470 					      eb->start, eb->len);
471 		if (num_copies == 1)
472 			break;
473 
474 		if (!failed_mirror) {
475 			failed = 1;
476 			failed_mirror = eb->read_mirror;
477 		}
478 
479 		mirror_num++;
480 		if (mirror_num == failed_mirror)
481 			mirror_num++;
482 
483 		if (mirror_num > num_copies)
484 			break;
485 	}
486 
487 	if (failed && !ret && failed_mirror)
488 		btrfs_repair_eb_io_failure(eb, failed_mirror);
489 
490 	return ret;
491 }
492 
493 /*
494  * checksum a dirty tree block before IO.  This has extra checks to make sure
495  * we only fill in the checksum field in the first page of a multi-page block
496  */
497 
498 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
499 {
500 	u64 start = page_offset(page);
501 	u64 found_start;
502 	u8 result[BTRFS_CSUM_SIZE];
503 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
504 	struct extent_buffer *eb;
505 	int ret;
506 
507 	eb = (struct extent_buffer *)page->private;
508 	if (page != eb->pages[0])
509 		return 0;
510 
511 	found_start = btrfs_header_bytenr(eb);
512 	/*
513 	 * Please do not consolidate these warnings into a single if.
514 	 * It is useful to know what went wrong.
515 	 */
516 	if (WARN_ON(found_start != start))
517 		return -EUCLEAN;
518 	if (WARN_ON(!PageUptodate(page)))
519 		return -EUCLEAN;
520 
521 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
522 				    offsetof(struct btrfs_header, fsid),
523 				    BTRFS_FSID_SIZE) == 0);
524 
525 	csum_tree_block(eb, result);
526 
527 	if (btrfs_header_level(eb))
528 		ret = btrfs_check_node(eb);
529 	else
530 		ret = btrfs_check_leaf_full(eb);
531 
532 	if (ret < 0) {
533 		btrfs_print_tree(eb, 0);
534 		btrfs_err(fs_info,
535 		"block=%llu write time tree block corruption detected",
536 			  eb->start);
537 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
538 		return ret;
539 	}
540 	write_extent_buffer(eb, result, 0, csum_size);
541 
542 	return 0;
543 }
544 
545 static int check_tree_block_fsid(struct extent_buffer *eb)
546 {
547 	struct btrfs_fs_info *fs_info = eb->fs_info;
548 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
549 	u8 fsid[BTRFS_FSID_SIZE];
550 	int ret = 1;
551 
552 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
553 			   BTRFS_FSID_SIZE);
554 	while (fs_devices) {
555 		u8 *metadata_uuid;
556 
557 		/*
558 		 * Checking the incompat flag is only valid for the current
559 		 * fs. For seed devices it's forbidden to have their uuid
560 		 * changed so reading ->fsid in this case is fine
561 		 */
562 		if (fs_devices == fs_info->fs_devices &&
563 		    btrfs_fs_incompat(fs_info, METADATA_UUID))
564 			metadata_uuid = fs_devices->metadata_uuid;
565 		else
566 			metadata_uuid = fs_devices->fsid;
567 
568 		if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
569 			ret = 0;
570 			break;
571 		}
572 		fs_devices = fs_devices->seed;
573 	}
574 	return ret;
575 }
576 
577 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
578 				      u64 phy_offset, struct page *page,
579 				      u64 start, u64 end, int mirror)
580 {
581 	u64 found_start;
582 	int found_level;
583 	struct extent_buffer *eb;
584 	struct btrfs_fs_info *fs_info;
585 	u16 csum_size;
586 	int ret = 0;
587 	u8 result[BTRFS_CSUM_SIZE];
588 	int reads_done;
589 
590 	if (!page->private)
591 		goto out;
592 
593 	eb = (struct extent_buffer *)page->private;
594 	fs_info = eb->fs_info;
595 	csum_size = btrfs_super_csum_size(fs_info->super_copy);
596 
597 	/* the pending IO might have been the only thing that kept this buffer
598 	 * in memory.  Make sure we have a ref for all this other checks
599 	 */
600 	atomic_inc(&eb->refs);
601 
602 	reads_done = atomic_dec_and_test(&eb->io_pages);
603 	if (!reads_done)
604 		goto err;
605 
606 	eb->read_mirror = mirror;
607 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
608 		ret = -EIO;
609 		goto err;
610 	}
611 
612 	found_start = btrfs_header_bytenr(eb);
613 	if (found_start != eb->start) {
614 		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
615 			     eb->start, found_start);
616 		ret = -EIO;
617 		goto err;
618 	}
619 	if (check_tree_block_fsid(eb)) {
620 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
621 			     eb->start);
622 		ret = -EIO;
623 		goto err;
624 	}
625 	found_level = btrfs_header_level(eb);
626 	if (found_level >= BTRFS_MAX_LEVEL) {
627 		btrfs_err(fs_info, "bad tree block level %d on %llu",
628 			  (int)btrfs_header_level(eb), eb->start);
629 		ret = -EIO;
630 		goto err;
631 	}
632 
633 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
634 				       eb, found_level);
635 
636 	csum_tree_block(eb, result);
637 
638 	if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
639 		u32 val;
640 		u32 found = 0;
641 
642 		memcpy(&found, result, csum_size);
643 
644 		read_extent_buffer(eb, &val, 0, csum_size);
645 		btrfs_warn_rl(fs_info,
646 		"%s checksum verify failed on %llu wanted %x found %x level %d",
647 			      fs_info->sb->s_id, eb->start,
648 			      val, found, btrfs_header_level(eb));
649 		ret = -EUCLEAN;
650 		goto err;
651 	}
652 
653 	/*
654 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
655 	 * that we don't try and read the other copies of this block, just
656 	 * return -EIO.
657 	 */
658 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
659 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
660 		ret = -EIO;
661 	}
662 
663 	if (found_level > 0 && btrfs_check_node(eb))
664 		ret = -EIO;
665 
666 	if (!ret)
667 		set_extent_buffer_uptodate(eb);
668 	else
669 		btrfs_err(fs_info,
670 			  "block=%llu read time tree block corruption detected",
671 			  eb->start);
672 err:
673 	if (reads_done &&
674 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
675 		btree_readahead_hook(eb, ret);
676 
677 	if (ret) {
678 		/*
679 		 * our io error hook is going to dec the io pages
680 		 * again, we have to make sure it has something
681 		 * to decrement
682 		 */
683 		atomic_inc(&eb->io_pages);
684 		clear_extent_buffer_uptodate(eb);
685 	}
686 	free_extent_buffer(eb);
687 out:
688 	return ret;
689 }
690 
691 static void end_workqueue_bio(struct bio *bio)
692 {
693 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
694 	struct btrfs_fs_info *fs_info;
695 	struct btrfs_workqueue *wq;
696 
697 	fs_info = end_io_wq->info;
698 	end_io_wq->status = bio->bi_status;
699 
700 	if (bio_op(bio) == REQ_OP_WRITE) {
701 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
702 			wq = fs_info->endio_meta_write_workers;
703 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
704 			wq = fs_info->endio_freespace_worker;
705 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
706 			wq = fs_info->endio_raid56_workers;
707 		else
708 			wq = fs_info->endio_write_workers;
709 	} else {
710 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
711 			wq = fs_info->endio_raid56_workers;
712 		else if (end_io_wq->metadata)
713 			wq = fs_info->endio_meta_workers;
714 		else
715 			wq = fs_info->endio_workers;
716 	}
717 
718 	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
719 	btrfs_queue_work(wq, &end_io_wq->work);
720 }
721 
722 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
723 			enum btrfs_wq_endio_type metadata)
724 {
725 	struct btrfs_end_io_wq *end_io_wq;
726 
727 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
728 	if (!end_io_wq)
729 		return BLK_STS_RESOURCE;
730 
731 	end_io_wq->private = bio->bi_private;
732 	end_io_wq->end_io = bio->bi_end_io;
733 	end_io_wq->info = info;
734 	end_io_wq->status = 0;
735 	end_io_wq->bio = bio;
736 	end_io_wq->metadata = metadata;
737 
738 	bio->bi_private = end_io_wq;
739 	bio->bi_end_io = end_workqueue_bio;
740 	return 0;
741 }
742 
743 static void run_one_async_start(struct btrfs_work *work)
744 {
745 	struct async_submit_bio *async;
746 	blk_status_t ret;
747 
748 	async = container_of(work, struct  async_submit_bio, work);
749 	ret = async->submit_bio_start(async->private_data, async->bio,
750 				      async->bio_offset);
751 	if (ret)
752 		async->status = ret;
753 }
754 
755 /*
756  * In order to insert checksums into the metadata in large chunks, we wait
757  * until bio submission time.   All the pages in the bio are checksummed and
758  * sums are attached onto the ordered extent record.
759  *
760  * At IO completion time the csums attached on the ordered extent record are
761  * inserted into the tree.
762  */
763 static void run_one_async_done(struct btrfs_work *work)
764 {
765 	struct async_submit_bio *async;
766 	struct inode *inode;
767 	blk_status_t ret;
768 
769 	async = container_of(work, struct  async_submit_bio, work);
770 	inode = async->private_data;
771 
772 	/* If an error occurred we just want to clean up the bio and move on */
773 	if (async->status) {
774 		async->bio->bi_status = async->status;
775 		bio_endio(async->bio);
776 		return;
777 	}
778 
779 	/*
780 	 * All of the bios that pass through here are from async helpers.
781 	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
782 	 * This changes nothing when cgroups aren't in use.
783 	 */
784 	async->bio->bi_opf |= REQ_CGROUP_PUNT;
785 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
786 	if (ret) {
787 		async->bio->bi_status = ret;
788 		bio_endio(async->bio);
789 	}
790 }
791 
792 static void run_one_async_free(struct btrfs_work *work)
793 {
794 	struct async_submit_bio *async;
795 
796 	async = container_of(work, struct  async_submit_bio, work);
797 	kfree(async);
798 }
799 
800 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
801 				 int mirror_num, unsigned long bio_flags,
802 				 u64 bio_offset, void *private_data,
803 				 extent_submit_bio_start_t *submit_bio_start)
804 {
805 	struct async_submit_bio *async;
806 
807 	async = kmalloc(sizeof(*async), GFP_NOFS);
808 	if (!async)
809 		return BLK_STS_RESOURCE;
810 
811 	async->private_data = private_data;
812 	async->bio = bio;
813 	async->mirror_num = mirror_num;
814 	async->submit_bio_start = submit_bio_start;
815 
816 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
817 			run_one_async_free);
818 
819 	async->bio_offset = bio_offset;
820 
821 	async->status = 0;
822 
823 	if (op_is_sync(bio->bi_opf))
824 		btrfs_set_work_high_priority(&async->work);
825 
826 	btrfs_queue_work(fs_info->workers, &async->work);
827 	return 0;
828 }
829 
830 static blk_status_t btree_csum_one_bio(struct bio *bio)
831 {
832 	struct bio_vec *bvec;
833 	struct btrfs_root *root;
834 	int ret = 0;
835 	struct bvec_iter_all iter_all;
836 
837 	ASSERT(!bio_flagged(bio, BIO_CLONED));
838 	bio_for_each_segment_all(bvec, bio, iter_all) {
839 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
840 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
841 		if (ret)
842 			break;
843 	}
844 
845 	return errno_to_blk_status(ret);
846 }
847 
848 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
849 					     u64 bio_offset)
850 {
851 	/*
852 	 * when we're called for a write, we're already in the async
853 	 * submission context.  Just jump into btrfs_map_bio
854 	 */
855 	return btree_csum_one_bio(bio);
856 }
857 
858 static int check_async_write(struct btrfs_fs_info *fs_info,
859 			     struct btrfs_inode *bi)
860 {
861 	if (atomic_read(&bi->sync_writers))
862 		return 0;
863 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
864 		return 0;
865 	return 1;
866 }
867 
868 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
869 					  int mirror_num,
870 					  unsigned long bio_flags)
871 {
872 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
873 	int async = check_async_write(fs_info, BTRFS_I(inode));
874 	blk_status_t ret;
875 
876 	if (bio_op(bio) != REQ_OP_WRITE) {
877 		/*
878 		 * called for a read, do the setup so that checksum validation
879 		 * can happen in the async kernel threads
880 		 */
881 		ret = btrfs_bio_wq_end_io(fs_info, bio,
882 					  BTRFS_WQ_ENDIO_METADATA);
883 		if (ret)
884 			goto out_w_error;
885 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
886 	} else if (!async) {
887 		ret = btree_csum_one_bio(bio);
888 		if (ret)
889 			goto out_w_error;
890 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
891 	} else {
892 		/*
893 		 * kthread helpers are used to submit writes so that
894 		 * checksumming can happen in parallel across all CPUs
895 		 */
896 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
897 					  0, inode, btree_submit_bio_start);
898 	}
899 
900 	if (ret)
901 		goto out_w_error;
902 	return 0;
903 
904 out_w_error:
905 	bio->bi_status = ret;
906 	bio_endio(bio);
907 	return ret;
908 }
909 
910 #ifdef CONFIG_MIGRATION
911 static int btree_migratepage(struct address_space *mapping,
912 			struct page *newpage, struct page *page,
913 			enum migrate_mode mode)
914 {
915 	/*
916 	 * we can't safely write a btree page from here,
917 	 * we haven't done the locking hook
918 	 */
919 	if (PageDirty(page))
920 		return -EAGAIN;
921 	/*
922 	 * Buffers may be managed in a filesystem specific way.
923 	 * We must have no buffers or drop them.
924 	 */
925 	if (page_has_private(page) &&
926 	    !try_to_release_page(page, GFP_KERNEL))
927 		return -EAGAIN;
928 	return migrate_page(mapping, newpage, page, mode);
929 }
930 #endif
931 
932 
933 static int btree_writepages(struct address_space *mapping,
934 			    struct writeback_control *wbc)
935 {
936 	struct btrfs_fs_info *fs_info;
937 	int ret;
938 
939 	if (wbc->sync_mode == WB_SYNC_NONE) {
940 
941 		if (wbc->for_kupdate)
942 			return 0;
943 
944 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
945 		/* this is a bit racy, but that's ok */
946 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
947 					     BTRFS_DIRTY_METADATA_THRESH,
948 					     fs_info->dirty_metadata_batch);
949 		if (ret < 0)
950 			return 0;
951 	}
952 	return btree_write_cache_pages(mapping, wbc);
953 }
954 
955 static int btree_readpage(struct file *file, struct page *page)
956 {
957 	return extent_read_full_page(page, btree_get_extent, 0);
958 }
959 
960 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
961 {
962 	if (PageWriteback(page) || PageDirty(page))
963 		return 0;
964 
965 	return try_release_extent_buffer(page);
966 }
967 
968 static void btree_invalidatepage(struct page *page, unsigned int offset,
969 				 unsigned int length)
970 {
971 	struct extent_io_tree *tree;
972 	tree = &BTRFS_I(page->mapping->host)->io_tree;
973 	extent_invalidatepage(tree, page, offset);
974 	btree_releasepage(page, GFP_NOFS);
975 	if (PagePrivate(page)) {
976 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
977 			   "page private not zero on page %llu",
978 			   (unsigned long long)page_offset(page));
979 		detach_page_private(page);
980 	}
981 }
982 
983 static int btree_set_page_dirty(struct page *page)
984 {
985 #ifdef DEBUG
986 	struct extent_buffer *eb;
987 
988 	BUG_ON(!PagePrivate(page));
989 	eb = (struct extent_buffer *)page->private;
990 	BUG_ON(!eb);
991 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
992 	BUG_ON(!atomic_read(&eb->refs));
993 	btrfs_assert_tree_locked(eb);
994 #endif
995 	return __set_page_dirty_nobuffers(page);
996 }
997 
998 static const struct address_space_operations btree_aops = {
999 	.readpage	= btree_readpage,
1000 	.writepages	= btree_writepages,
1001 	.releasepage	= btree_releasepage,
1002 	.invalidatepage = btree_invalidatepage,
1003 #ifdef CONFIG_MIGRATION
1004 	.migratepage	= btree_migratepage,
1005 #endif
1006 	.set_page_dirty = btree_set_page_dirty,
1007 };
1008 
1009 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1010 {
1011 	struct extent_buffer *buf = NULL;
1012 	int ret;
1013 
1014 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1015 	if (IS_ERR(buf))
1016 		return;
1017 
1018 	ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1019 	if (ret < 0)
1020 		free_extent_buffer_stale(buf);
1021 	else
1022 		free_extent_buffer(buf);
1023 }
1024 
1025 struct extent_buffer *btrfs_find_create_tree_block(
1026 						struct btrfs_fs_info *fs_info,
1027 						u64 bytenr)
1028 {
1029 	if (btrfs_is_testing(fs_info))
1030 		return alloc_test_extent_buffer(fs_info, bytenr);
1031 	return alloc_extent_buffer(fs_info, bytenr);
1032 }
1033 
1034 /*
1035  * Read tree block at logical address @bytenr and do variant basic but critical
1036  * verification.
1037  *
1038  * @parent_transid:	expected transid of this tree block, skip check if 0
1039  * @level:		expected level, mandatory check
1040  * @first_key:		expected key in slot 0, skip check if NULL
1041  */
1042 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1043 				      u64 parent_transid, int level,
1044 				      struct btrfs_key *first_key)
1045 {
1046 	struct extent_buffer *buf = NULL;
1047 	int ret;
1048 
1049 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1050 	if (IS_ERR(buf))
1051 		return buf;
1052 
1053 	ret = btree_read_extent_buffer_pages(buf, parent_transid,
1054 					     level, first_key);
1055 	if (ret) {
1056 		free_extent_buffer_stale(buf);
1057 		return ERR_PTR(ret);
1058 	}
1059 	return buf;
1060 
1061 }
1062 
1063 void btrfs_clean_tree_block(struct extent_buffer *buf)
1064 {
1065 	struct btrfs_fs_info *fs_info = buf->fs_info;
1066 	if (btrfs_header_generation(buf) ==
1067 	    fs_info->running_transaction->transid) {
1068 		btrfs_assert_tree_locked(buf);
1069 
1070 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1071 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1072 						 -buf->len,
1073 						 fs_info->dirty_metadata_batch);
1074 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1075 			btrfs_set_lock_blocking_write(buf);
1076 			clear_extent_buffer_dirty(buf);
1077 		}
1078 	}
1079 }
1080 
1081 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1082 			 u64 objectid)
1083 {
1084 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1085 	root->fs_info = fs_info;
1086 	root->node = NULL;
1087 	root->commit_root = NULL;
1088 	root->state = 0;
1089 	root->orphan_cleanup_state = 0;
1090 
1091 	root->last_trans = 0;
1092 	root->highest_objectid = 0;
1093 	root->nr_delalloc_inodes = 0;
1094 	root->nr_ordered_extents = 0;
1095 	root->inode_tree = RB_ROOT;
1096 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1097 	root->block_rsv = NULL;
1098 
1099 	INIT_LIST_HEAD(&root->dirty_list);
1100 	INIT_LIST_HEAD(&root->root_list);
1101 	INIT_LIST_HEAD(&root->delalloc_inodes);
1102 	INIT_LIST_HEAD(&root->delalloc_root);
1103 	INIT_LIST_HEAD(&root->ordered_extents);
1104 	INIT_LIST_HEAD(&root->ordered_root);
1105 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1106 	INIT_LIST_HEAD(&root->logged_list[0]);
1107 	INIT_LIST_HEAD(&root->logged_list[1]);
1108 	spin_lock_init(&root->inode_lock);
1109 	spin_lock_init(&root->delalloc_lock);
1110 	spin_lock_init(&root->ordered_extent_lock);
1111 	spin_lock_init(&root->accounting_lock);
1112 	spin_lock_init(&root->log_extents_lock[0]);
1113 	spin_lock_init(&root->log_extents_lock[1]);
1114 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1115 	mutex_init(&root->objectid_mutex);
1116 	mutex_init(&root->log_mutex);
1117 	mutex_init(&root->ordered_extent_mutex);
1118 	mutex_init(&root->delalloc_mutex);
1119 	init_waitqueue_head(&root->log_writer_wait);
1120 	init_waitqueue_head(&root->log_commit_wait[0]);
1121 	init_waitqueue_head(&root->log_commit_wait[1]);
1122 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1123 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1124 	atomic_set(&root->log_commit[0], 0);
1125 	atomic_set(&root->log_commit[1], 0);
1126 	atomic_set(&root->log_writers, 0);
1127 	atomic_set(&root->log_batch, 0);
1128 	refcount_set(&root->refs, 1);
1129 	atomic_set(&root->snapshot_force_cow, 0);
1130 	atomic_set(&root->nr_swapfiles, 0);
1131 	root->log_transid = 0;
1132 	root->log_transid_committed = -1;
1133 	root->last_log_commit = 0;
1134 	if (!dummy) {
1135 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1136 				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1137 		extent_io_tree_init(fs_info, &root->log_csum_range,
1138 				    IO_TREE_LOG_CSUM_RANGE, NULL);
1139 	}
1140 
1141 	memset(&root->root_key, 0, sizeof(root->root_key));
1142 	memset(&root->root_item, 0, sizeof(root->root_item));
1143 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1144 	if (!dummy)
1145 		root->defrag_trans_start = fs_info->generation;
1146 	else
1147 		root->defrag_trans_start = 0;
1148 	root->root_key.objectid = objectid;
1149 	root->anon_dev = 0;
1150 
1151 	spin_lock_init(&root->root_item_lock);
1152 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1153 #ifdef CONFIG_BTRFS_DEBUG
1154 	INIT_LIST_HEAD(&root->leak_list);
1155 	spin_lock(&fs_info->fs_roots_radix_lock);
1156 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1157 	spin_unlock(&fs_info->fs_roots_radix_lock);
1158 #endif
1159 }
1160 
1161 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1162 					   u64 objectid, gfp_t flags)
1163 {
1164 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1165 	if (root)
1166 		__setup_root(root, fs_info, objectid);
1167 	return root;
1168 }
1169 
1170 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1171 /* Should only be used by the testing infrastructure */
1172 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1173 {
1174 	struct btrfs_root *root;
1175 
1176 	if (!fs_info)
1177 		return ERR_PTR(-EINVAL);
1178 
1179 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1180 	if (!root)
1181 		return ERR_PTR(-ENOMEM);
1182 
1183 	/* We don't use the stripesize in selftest, set it as sectorsize */
1184 	root->alloc_bytenr = 0;
1185 
1186 	return root;
1187 }
1188 #endif
1189 
1190 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1191 				     u64 objectid)
1192 {
1193 	struct btrfs_fs_info *fs_info = trans->fs_info;
1194 	struct extent_buffer *leaf;
1195 	struct btrfs_root *tree_root = fs_info->tree_root;
1196 	struct btrfs_root *root;
1197 	struct btrfs_key key;
1198 	unsigned int nofs_flag;
1199 	int ret = 0;
1200 
1201 	/*
1202 	 * We're holding a transaction handle, so use a NOFS memory allocation
1203 	 * context to avoid deadlock if reclaim happens.
1204 	 */
1205 	nofs_flag = memalloc_nofs_save();
1206 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1207 	memalloc_nofs_restore(nofs_flag);
1208 	if (!root)
1209 		return ERR_PTR(-ENOMEM);
1210 
1211 	root->root_key.objectid = objectid;
1212 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1213 	root->root_key.offset = 0;
1214 
1215 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1216 	if (IS_ERR(leaf)) {
1217 		ret = PTR_ERR(leaf);
1218 		leaf = NULL;
1219 		goto fail;
1220 	}
1221 
1222 	root->node = leaf;
1223 	btrfs_mark_buffer_dirty(leaf);
1224 
1225 	root->commit_root = btrfs_root_node(root);
1226 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1227 
1228 	root->root_item.flags = 0;
1229 	root->root_item.byte_limit = 0;
1230 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1231 	btrfs_set_root_generation(&root->root_item, trans->transid);
1232 	btrfs_set_root_level(&root->root_item, 0);
1233 	btrfs_set_root_refs(&root->root_item, 1);
1234 	btrfs_set_root_used(&root->root_item, leaf->len);
1235 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1236 	btrfs_set_root_dirid(&root->root_item, 0);
1237 	if (is_fstree(objectid))
1238 		generate_random_guid(root->root_item.uuid);
1239 	else
1240 		export_guid(root->root_item.uuid, &guid_null);
1241 	root->root_item.drop_level = 0;
1242 
1243 	key.objectid = objectid;
1244 	key.type = BTRFS_ROOT_ITEM_KEY;
1245 	key.offset = 0;
1246 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1247 	if (ret)
1248 		goto fail;
1249 
1250 	btrfs_tree_unlock(leaf);
1251 
1252 	return root;
1253 
1254 fail:
1255 	if (leaf)
1256 		btrfs_tree_unlock(leaf);
1257 	btrfs_put_root(root);
1258 
1259 	return ERR_PTR(ret);
1260 }
1261 
1262 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1263 					 struct btrfs_fs_info *fs_info)
1264 {
1265 	struct btrfs_root *root;
1266 	struct extent_buffer *leaf;
1267 
1268 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1269 	if (!root)
1270 		return ERR_PTR(-ENOMEM);
1271 
1272 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1273 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1274 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1275 
1276 	/*
1277 	 * DON'T set SHAREABLE bit for log trees.
1278 	 *
1279 	 * Log trees are not exposed to user space thus can't be snapshotted,
1280 	 * and they go away before a real commit is actually done.
1281 	 *
1282 	 * They do store pointers to file data extents, and those reference
1283 	 * counts still get updated (along with back refs to the log tree).
1284 	 */
1285 
1286 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1287 			NULL, 0, 0, 0);
1288 	if (IS_ERR(leaf)) {
1289 		btrfs_put_root(root);
1290 		return ERR_CAST(leaf);
1291 	}
1292 
1293 	root->node = leaf;
1294 
1295 	btrfs_mark_buffer_dirty(root->node);
1296 	btrfs_tree_unlock(root->node);
1297 	return root;
1298 }
1299 
1300 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1301 			     struct btrfs_fs_info *fs_info)
1302 {
1303 	struct btrfs_root *log_root;
1304 
1305 	log_root = alloc_log_tree(trans, fs_info);
1306 	if (IS_ERR(log_root))
1307 		return PTR_ERR(log_root);
1308 	WARN_ON(fs_info->log_root_tree);
1309 	fs_info->log_root_tree = log_root;
1310 	return 0;
1311 }
1312 
1313 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1314 		       struct btrfs_root *root)
1315 {
1316 	struct btrfs_fs_info *fs_info = root->fs_info;
1317 	struct btrfs_root *log_root;
1318 	struct btrfs_inode_item *inode_item;
1319 
1320 	log_root = alloc_log_tree(trans, fs_info);
1321 	if (IS_ERR(log_root))
1322 		return PTR_ERR(log_root);
1323 
1324 	log_root->last_trans = trans->transid;
1325 	log_root->root_key.offset = root->root_key.objectid;
1326 
1327 	inode_item = &log_root->root_item.inode;
1328 	btrfs_set_stack_inode_generation(inode_item, 1);
1329 	btrfs_set_stack_inode_size(inode_item, 3);
1330 	btrfs_set_stack_inode_nlink(inode_item, 1);
1331 	btrfs_set_stack_inode_nbytes(inode_item,
1332 				     fs_info->nodesize);
1333 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1334 
1335 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1336 
1337 	WARN_ON(root->log_root);
1338 	root->log_root = log_root;
1339 	root->log_transid = 0;
1340 	root->log_transid_committed = -1;
1341 	root->last_log_commit = 0;
1342 	return 0;
1343 }
1344 
1345 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1346 					struct btrfs_key *key)
1347 {
1348 	struct btrfs_root *root;
1349 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1350 	struct btrfs_path *path;
1351 	u64 generation;
1352 	int ret;
1353 	int level;
1354 
1355 	path = btrfs_alloc_path();
1356 	if (!path)
1357 		return ERR_PTR(-ENOMEM);
1358 
1359 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1360 	if (!root) {
1361 		ret = -ENOMEM;
1362 		goto alloc_fail;
1363 	}
1364 
1365 	ret = btrfs_find_root(tree_root, key, path,
1366 			      &root->root_item, &root->root_key);
1367 	if (ret) {
1368 		if (ret > 0)
1369 			ret = -ENOENT;
1370 		goto find_fail;
1371 	}
1372 
1373 	generation = btrfs_root_generation(&root->root_item);
1374 	level = btrfs_root_level(&root->root_item);
1375 	root->node = read_tree_block(fs_info,
1376 				     btrfs_root_bytenr(&root->root_item),
1377 				     generation, level, NULL);
1378 	if (IS_ERR(root->node)) {
1379 		ret = PTR_ERR(root->node);
1380 		root->node = NULL;
1381 		goto find_fail;
1382 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1383 		ret = -EIO;
1384 		goto find_fail;
1385 	}
1386 	root->commit_root = btrfs_root_node(root);
1387 out:
1388 	btrfs_free_path(path);
1389 	return root;
1390 
1391 find_fail:
1392 	btrfs_put_root(root);
1393 alloc_fail:
1394 	root = ERR_PTR(ret);
1395 	goto out;
1396 }
1397 
1398 static int btrfs_init_fs_root(struct btrfs_root *root)
1399 {
1400 	int ret;
1401 	unsigned int nofs_flag;
1402 
1403 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1404 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1405 					GFP_NOFS);
1406 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1407 		ret = -ENOMEM;
1408 		goto fail;
1409 	}
1410 
1411 	/*
1412 	 * We might be called under a transaction (e.g. indirect backref
1413 	 * resolution) which could deadlock if it triggers memory reclaim
1414 	 */
1415 	nofs_flag = memalloc_nofs_save();
1416 	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1417 	memalloc_nofs_restore(nofs_flag);
1418 	if (ret)
1419 		goto fail;
1420 
1421 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1422 	    root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1423 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1424 		btrfs_check_and_init_root_item(&root->root_item);
1425 	}
1426 
1427 	btrfs_init_free_ino_ctl(root);
1428 	spin_lock_init(&root->ino_cache_lock);
1429 	init_waitqueue_head(&root->ino_cache_wait);
1430 
1431 	ret = get_anon_bdev(&root->anon_dev);
1432 	if (ret)
1433 		goto fail;
1434 
1435 	mutex_lock(&root->objectid_mutex);
1436 	ret = btrfs_find_highest_objectid(root,
1437 					&root->highest_objectid);
1438 	if (ret) {
1439 		mutex_unlock(&root->objectid_mutex);
1440 		goto fail;
1441 	}
1442 
1443 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1444 
1445 	mutex_unlock(&root->objectid_mutex);
1446 
1447 	return 0;
1448 fail:
1449 	/* The caller is responsible to call btrfs_free_fs_root */
1450 	return ret;
1451 }
1452 
1453 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1454 					       u64 root_id)
1455 {
1456 	struct btrfs_root *root;
1457 
1458 	spin_lock(&fs_info->fs_roots_radix_lock);
1459 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1460 				 (unsigned long)root_id);
1461 	if (root)
1462 		root = btrfs_grab_root(root);
1463 	spin_unlock(&fs_info->fs_roots_radix_lock);
1464 	return root;
1465 }
1466 
1467 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1468 			 struct btrfs_root *root)
1469 {
1470 	int ret;
1471 
1472 	ret = radix_tree_preload(GFP_NOFS);
1473 	if (ret)
1474 		return ret;
1475 
1476 	spin_lock(&fs_info->fs_roots_radix_lock);
1477 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1478 				(unsigned long)root->root_key.objectid,
1479 				root);
1480 	if (ret == 0) {
1481 		btrfs_grab_root(root);
1482 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1483 	}
1484 	spin_unlock(&fs_info->fs_roots_radix_lock);
1485 	radix_tree_preload_end();
1486 
1487 	return ret;
1488 }
1489 
1490 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1491 {
1492 #ifdef CONFIG_BTRFS_DEBUG
1493 	struct btrfs_root *root;
1494 
1495 	while (!list_empty(&fs_info->allocated_roots)) {
1496 		root = list_first_entry(&fs_info->allocated_roots,
1497 					struct btrfs_root, leak_list);
1498 		btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1499 			  root->root_key.objectid, root->root_key.offset,
1500 			  refcount_read(&root->refs));
1501 		while (refcount_read(&root->refs) > 1)
1502 			btrfs_put_root(root);
1503 		btrfs_put_root(root);
1504 	}
1505 #endif
1506 }
1507 
1508 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1509 {
1510 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1511 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1512 	percpu_counter_destroy(&fs_info->dio_bytes);
1513 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1514 	btrfs_free_csum_hash(fs_info);
1515 	btrfs_free_stripe_hash_table(fs_info);
1516 	btrfs_free_ref_cache(fs_info);
1517 	kfree(fs_info->balance_ctl);
1518 	kfree(fs_info->delayed_root);
1519 	btrfs_put_root(fs_info->extent_root);
1520 	btrfs_put_root(fs_info->tree_root);
1521 	btrfs_put_root(fs_info->chunk_root);
1522 	btrfs_put_root(fs_info->dev_root);
1523 	btrfs_put_root(fs_info->csum_root);
1524 	btrfs_put_root(fs_info->quota_root);
1525 	btrfs_put_root(fs_info->uuid_root);
1526 	btrfs_put_root(fs_info->free_space_root);
1527 	btrfs_put_root(fs_info->fs_root);
1528 	btrfs_put_root(fs_info->data_reloc_root);
1529 	btrfs_check_leaked_roots(fs_info);
1530 	btrfs_extent_buffer_leak_debug_check(fs_info);
1531 	kfree(fs_info->super_copy);
1532 	kfree(fs_info->super_for_commit);
1533 	kvfree(fs_info);
1534 }
1535 
1536 
1537 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1538 				     u64 objectid, bool check_ref)
1539 {
1540 	struct btrfs_root *root;
1541 	struct btrfs_path *path;
1542 	struct btrfs_key key;
1543 	int ret;
1544 
1545 	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1546 		return btrfs_grab_root(fs_info->tree_root);
1547 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1548 		return btrfs_grab_root(fs_info->extent_root);
1549 	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1550 		return btrfs_grab_root(fs_info->chunk_root);
1551 	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1552 		return btrfs_grab_root(fs_info->dev_root);
1553 	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1554 		return btrfs_grab_root(fs_info->csum_root);
1555 	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1556 		return btrfs_grab_root(fs_info->quota_root) ?
1557 			fs_info->quota_root : ERR_PTR(-ENOENT);
1558 	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1559 		return btrfs_grab_root(fs_info->uuid_root) ?
1560 			fs_info->uuid_root : ERR_PTR(-ENOENT);
1561 	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1562 		return btrfs_grab_root(fs_info->free_space_root) ?
1563 			fs_info->free_space_root : ERR_PTR(-ENOENT);
1564 again:
1565 	root = btrfs_lookup_fs_root(fs_info, objectid);
1566 	if (root) {
1567 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1568 			btrfs_put_root(root);
1569 			return ERR_PTR(-ENOENT);
1570 		}
1571 		return root;
1572 	}
1573 
1574 	key.objectid = objectid;
1575 	key.type = BTRFS_ROOT_ITEM_KEY;
1576 	key.offset = (u64)-1;
1577 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1578 	if (IS_ERR(root))
1579 		return root;
1580 
1581 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1582 		ret = -ENOENT;
1583 		goto fail;
1584 	}
1585 
1586 	ret = btrfs_init_fs_root(root);
1587 	if (ret)
1588 		goto fail;
1589 
1590 	path = btrfs_alloc_path();
1591 	if (!path) {
1592 		ret = -ENOMEM;
1593 		goto fail;
1594 	}
1595 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1596 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1597 	key.offset = objectid;
1598 
1599 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1600 	btrfs_free_path(path);
1601 	if (ret < 0)
1602 		goto fail;
1603 	if (ret == 0)
1604 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1605 
1606 	ret = btrfs_insert_fs_root(fs_info, root);
1607 	if (ret) {
1608 		btrfs_put_root(root);
1609 		if (ret == -EEXIST)
1610 			goto again;
1611 		goto fail;
1612 	}
1613 	return root;
1614 fail:
1615 	btrfs_put_root(root);
1616 	return ERR_PTR(ret);
1617 }
1618 
1619 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1620 {
1621 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1622 	int ret = 0;
1623 	struct btrfs_device *device;
1624 	struct backing_dev_info *bdi;
1625 
1626 	rcu_read_lock();
1627 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1628 		if (!device->bdev)
1629 			continue;
1630 		bdi = device->bdev->bd_bdi;
1631 		if (bdi_congested(bdi, bdi_bits)) {
1632 			ret = 1;
1633 			break;
1634 		}
1635 	}
1636 	rcu_read_unlock();
1637 	return ret;
1638 }
1639 
1640 /*
1641  * called by the kthread helper functions to finally call the bio end_io
1642  * functions.  This is where read checksum verification actually happens
1643  */
1644 static void end_workqueue_fn(struct btrfs_work *work)
1645 {
1646 	struct bio *bio;
1647 	struct btrfs_end_io_wq *end_io_wq;
1648 
1649 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1650 	bio = end_io_wq->bio;
1651 
1652 	bio->bi_status = end_io_wq->status;
1653 	bio->bi_private = end_io_wq->private;
1654 	bio->bi_end_io = end_io_wq->end_io;
1655 	bio_endio(bio);
1656 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1657 }
1658 
1659 static int cleaner_kthread(void *arg)
1660 {
1661 	struct btrfs_root *root = arg;
1662 	struct btrfs_fs_info *fs_info = root->fs_info;
1663 	int again;
1664 
1665 	while (1) {
1666 		again = 0;
1667 
1668 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1669 
1670 		/* Make the cleaner go to sleep early. */
1671 		if (btrfs_need_cleaner_sleep(fs_info))
1672 			goto sleep;
1673 
1674 		/*
1675 		 * Do not do anything if we might cause open_ctree() to block
1676 		 * before we have finished mounting the filesystem.
1677 		 */
1678 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1679 			goto sleep;
1680 
1681 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1682 			goto sleep;
1683 
1684 		/*
1685 		 * Avoid the problem that we change the status of the fs
1686 		 * during the above check and trylock.
1687 		 */
1688 		if (btrfs_need_cleaner_sleep(fs_info)) {
1689 			mutex_unlock(&fs_info->cleaner_mutex);
1690 			goto sleep;
1691 		}
1692 
1693 		btrfs_run_delayed_iputs(fs_info);
1694 
1695 		again = btrfs_clean_one_deleted_snapshot(root);
1696 		mutex_unlock(&fs_info->cleaner_mutex);
1697 
1698 		/*
1699 		 * The defragger has dealt with the R/O remount and umount,
1700 		 * needn't do anything special here.
1701 		 */
1702 		btrfs_run_defrag_inodes(fs_info);
1703 
1704 		/*
1705 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1706 		 * with relocation (btrfs_relocate_chunk) and relocation
1707 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1708 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1709 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1710 		 * unused block groups.
1711 		 */
1712 		btrfs_delete_unused_bgs(fs_info);
1713 sleep:
1714 		clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1715 		if (kthread_should_park())
1716 			kthread_parkme();
1717 		if (kthread_should_stop())
1718 			return 0;
1719 		if (!again) {
1720 			set_current_state(TASK_INTERRUPTIBLE);
1721 			schedule();
1722 			__set_current_state(TASK_RUNNING);
1723 		}
1724 	}
1725 }
1726 
1727 static int transaction_kthread(void *arg)
1728 {
1729 	struct btrfs_root *root = arg;
1730 	struct btrfs_fs_info *fs_info = root->fs_info;
1731 	struct btrfs_trans_handle *trans;
1732 	struct btrfs_transaction *cur;
1733 	u64 transid;
1734 	time64_t now;
1735 	unsigned long delay;
1736 	bool cannot_commit;
1737 
1738 	do {
1739 		cannot_commit = false;
1740 		delay = HZ * fs_info->commit_interval;
1741 		mutex_lock(&fs_info->transaction_kthread_mutex);
1742 
1743 		spin_lock(&fs_info->trans_lock);
1744 		cur = fs_info->running_transaction;
1745 		if (!cur) {
1746 			spin_unlock(&fs_info->trans_lock);
1747 			goto sleep;
1748 		}
1749 
1750 		now = ktime_get_seconds();
1751 		if (cur->state < TRANS_STATE_COMMIT_START &&
1752 		    !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1753 		    (now < cur->start_time ||
1754 		     now - cur->start_time < fs_info->commit_interval)) {
1755 			spin_unlock(&fs_info->trans_lock);
1756 			delay = HZ * 5;
1757 			goto sleep;
1758 		}
1759 		transid = cur->transid;
1760 		spin_unlock(&fs_info->trans_lock);
1761 
1762 		/* If the file system is aborted, this will always fail. */
1763 		trans = btrfs_attach_transaction(root);
1764 		if (IS_ERR(trans)) {
1765 			if (PTR_ERR(trans) != -ENOENT)
1766 				cannot_commit = true;
1767 			goto sleep;
1768 		}
1769 		if (transid == trans->transid) {
1770 			btrfs_commit_transaction(trans);
1771 		} else {
1772 			btrfs_end_transaction(trans);
1773 		}
1774 sleep:
1775 		wake_up_process(fs_info->cleaner_kthread);
1776 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1777 
1778 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1779 				      &fs_info->fs_state)))
1780 			btrfs_cleanup_transaction(fs_info);
1781 		if (!kthread_should_stop() &&
1782 				(!btrfs_transaction_blocked(fs_info) ||
1783 				 cannot_commit))
1784 			schedule_timeout_interruptible(delay);
1785 	} while (!kthread_should_stop());
1786 	return 0;
1787 }
1788 
1789 /*
1790  * This will find the highest generation in the array of root backups.  The
1791  * index of the highest array is returned, or -EINVAL if we can't find
1792  * anything.
1793  *
1794  * We check to make sure the array is valid by comparing the
1795  * generation of the latest  root in the array with the generation
1796  * in the super block.  If they don't match we pitch it.
1797  */
1798 static int find_newest_super_backup(struct btrfs_fs_info *info)
1799 {
1800 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1801 	u64 cur;
1802 	struct btrfs_root_backup *root_backup;
1803 	int i;
1804 
1805 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1806 		root_backup = info->super_copy->super_roots + i;
1807 		cur = btrfs_backup_tree_root_gen(root_backup);
1808 		if (cur == newest_gen)
1809 			return i;
1810 	}
1811 
1812 	return -EINVAL;
1813 }
1814 
1815 /*
1816  * copy all the root pointers into the super backup array.
1817  * this will bump the backup pointer by one when it is
1818  * done
1819  */
1820 static void backup_super_roots(struct btrfs_fs_info *info)
1821 {
1822 	const int next_backup = info->backup_root_index;
1823 	struct btrfs_root_backup *root_backup;
1824 
1825 	root_backup = info->super_for_commit->super_roots + next_backup;
1826 
1827 	/*
1828 	 * make sure all of our padding and empty slots get zero filled
1829 	 * regardless of which ones we use today
1830 	 */
1831 	memset(root_backup, 0, sizeof(*root_backup));
1832 
1833 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1834 
1835 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1836 	btrfs_set_backup_tree_root_gen(root_backup,
1837 			       btrfs_header_generation(info->tree_root->node));
1838 
1839 	btrfs_set_backup_tree_root_level(root_backup,
1840 			       btrfs_header_level(info->tree_root->node));
1841 
1842 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1843 	btrfs_set_backup_chunk_root_gen(root_backup,
1844 			       btrfs_header_generation(info->chunk_root->node));
1845 	btrfs_set_backup_chunk_root_level(root_backup,
1846 			       btrfs_header_level(info->chunk_root->node));
1847 
1848 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1849 	btrfs_set_backup_extent_root_gen(root_backup,
1850 			       btrfs_header_generation(info->extent_root->node));
1851 	btrfs_set_backup_extent_root_level(root_backup,
1852 			       btrfs_header_level(info->extent_root->node));
1853 
1854 	/*
1855 	 * we might commit during log recovery, which happens before we set
1856 	 * the fs_root.  Make sure it is valid before we fill it in.
1857 	 */
1858 	if (info->fs_root && info->fs_root->node) {
1859 		btrfs_set_backup_fs_root(root_backup,
1860 					 info->fs_root->node->start);
1861 		btrfs_set_backup_fs_root_gen(root_backup,
1862 			       btrfs_header_generation(info->fs_root->node));
1863 		btrfs_set_backup_fs_root_level(root_backup,
1864 			       btrfs_header_level(info->fs_root->node));
1865 	}
1866 
1867 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1868 	btrfs_set_backup_dev_root_gen(root_backup,
1869 			       btrfs_header_generation(info->dev_root->node));
1870 	btrfs_set_backup_dev_root_level(root_backup,
1871 				       btrfs_header_level(info->dev_root->node));
1872 
1873 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1874 	btrfs_set_backup_csum_root_gen(root_backup,
1875 			       btrfs_header_generation(info->csum_root->node));
1876 	btrfs_set_backup_csum_root_level(root_backup,
1877 			       btrfs_header_level(info->csum_root->node));
1878 
1879 	btrfs_set_backup_total_bytes(root_backup,
1880 			     btrfs_super_total_bytes(info->super_copy));
1881 	btrfs_set_backup_bytes_used(root_backup,
1882 			     btrfs_super_bytes_used(info->super_copy));
1883 	btrfs_set_backup_num_devices(root_backup,
1884 			     btrfs_super_num_devices(info->super_copy));
1885 
1886 	/*
1887 	 * if we don't copy this out to the super_copy, it won't get remembered
1888 	 * for the next commit
1889 	 */
1890 	memcpy(&info->super_copy->super_roots,
1891 	       &info->super_for_commit->super_roots,
1892 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1893 }
1894 
1895 /*
1896  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1897  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1898  *
1899  * fs_info - filesystem whose backup roots need to be read
1900  * priority - priority of backup root required
1901  *
1902  * Returns backup root index on success and -EINVAL otherwise.
1903  */
1904 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1905 {
1906 	int backup_index = find_newest_super_backup(fs_info);
1907 	struct btrfs_super_block *super = fs_info->super_copy;
1908 	struct btrfs_root_backup *root_backup;
1909 
1910 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1911 		if (priority == 0)
1912 			return backup_index;
1913 
1914 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1915 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1916 	} else {
1917 		return -EINVAL;
1918 	}
1919 
1920 	root_backup = super->super_roots + backup_index;
1921 
1922 	btrfs_set_super_generation(super,
1923 				   btrfs_backup_tree_root_gen(root_backup));
1924 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1925 	btrfs_set_super_root_level(super,
1926 				   btrfs_backup_tree_root_level(root_backup));
1927 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1928 
1929 	/*
1930 	 * Fixme: the total bytes and num_devices need to match or we should
1931 	 * need a fsck
1932 	 */
1933 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1934 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1935 
1936 	return backup_index;
1937 }
1938 
1939 /* helper to cleanup workers */
1940 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1941 {
1942 	btrfs_destroy_workqueue(fs_info->fixup_workers);
1943 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1944 	btrfs_destroy_workqueue(fs_info->workers);
1945 	btrfs_destroy_workqueue(fs_info->endio_workers);
1946 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1947 	btrfs_destroy_workqueue(fs_info->rmw_workers);
1948 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1949 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1950 	btrfs_destroy_workqueue(fs_info->delayed_workers);
1951 	btrfs_destroy_workqueue(fs_info->caching_workers);
1952 	btrfs_destroy_workqueue(fs_info->readahead_workers);
1953 	btrfs_destroy_workqueue(fs_info->flush_workers);
1954 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1955 	if (fs_info->discard_ctl.discard_workers)
1956 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1957 	/*
1958 	 * Now that all other work queues are destroyed, we can safely destroy
1959 	 * the queues used for metadata I/O, since tasks from those other work
1960 	 * queues can do metadata I/O operations.
1961 	 */
1962 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1963 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
1964 }
1965 
1966 static void free_root_extent_buffers(struct btrfs_root *root)
1967 {
1968 	if (root) {
1969 		free_extent_buffer(root->node);
1970 		free_extent_buffer(root->commit_root);
1971 		root->node = NULL;
1972 		root->commit_root = NULL;
1973 	}
1974 }
1975 
1976 /* helper to cleanup tree roots */
1977 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1978 {
1979 	free_root_extent_buffers(info->tree_root);
1980 
1981 	free_root_extent_buffers(info->dev_root);
1982 	free_root_extent_buffers(info->extent_root);
1983 	free_root_extent_buffers(info->csum_root);
1984 	free_root_extent_buffers(info->quota_root);
1985 	free_root_extent_buffers(info->uuid_root);
1986 	free_root_extent_buffers(info->fs_root);
1987 	free_root_extent_buffers(info->data_reloc_root);
1988 	if (free_chunk_root)
1989 		free_root_extent_buffers(info->chunk_root);
1990 	free_root_extent_buffers(info->free_space_root);
1991 }
1992 
1993 void btrfs_put_root(struct btrfs_root *root)
1994 {
1995 	if (!root)
1996 		return;
1997 
1998 	if (refcount_dec_and_test(&root->refs)) {
1999 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2000 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2001 		if (root->anon_dev)
2002 			free_anon_bdev(root->anon_dev);
2003 		btrfs_drew_lock_destroy(&root->snapshot_lock);
2004 		free_extent_buffer(root->node);
2005 		free_extent_buffer(root->commit_root);
2006 		kfree(root->free_ino_ctl);
2007 		kfree(root->free_ino_pinned);
2008 #ifdef CONFIG_BTRFS_DEBUG
2009 		spin_lock(&root->fs_info->fs_roots_radix_lock);
2010 		list_del_init(&root->leak_list);
2011 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2012 #endif
2013 		kfree(root);
2014 	}
2015 }
2016 
2017 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2018 {
2019 	int ret;
2020 	struct btrfs_root *gang[8];
2021 	int i;
2022 
2023 	while (!list_empty(&fs_info->dead_roots)) {
2024 		gang[0] = list_entry(fs_info->dead_roots.next,
2025 				     struct btrfs_root, root_list);
2026 		list_del(&gang[0]->root_list);
2027 
2028 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2029 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2030 		btrfs_put_root(gang[0]);
2031 	}
2032 
2033 	while (1) {
2034 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2035 					     (void **)gang, 0,
2036 					     ARRAY_SIZE(gang));
2037 		if (!ret)
2038 			break;
2039 		for (i = 0; i < ret; i++)
2040 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2041 	}
2042 }
2043 
2044 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2045 {
2046 	mutex_init(&fs_info->scrub_lock);
2047 	atomic_set(&fs_info->scrubs_running, 0);
2048 	atomic_set(&fs_info->scrub_pause_req, 0);
2049 	atomic_set(&fs_info->scrubs_paused, 0);
2050 	atomic_set(&fs_info->scrub_cancel_req, 0);
2051 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2052 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2053 }
2054 
2055 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2056 {
2057 	spin_lock_init(&fs_info->balance_lock);
2058 	mutex_init(&fs_info->balance_mutex);
2059 	atomic_set(&fs_info->balance_pause_req, 0);
2060 	atomic_set(&fs_info->balance_cancel_req, 0);
2061 	fs_info->balance_ctl = NULL;
2062 	init_waitqueue_head(&fs_info->balance_wait_q);
2063 }
2064 
2065 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2066 {
2067 	struct inode *inode = fs_info->btree_inode;
2068 
2069 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2070 	set_nlink(inode, 1);
2071 	/*
2072 	 * we set the i_size on the btree inode to the max possible int.
2073 	 * the real end of the address space is determined by all of
2074 	 * the devices in the system
2075 	 */
2076 	inode->i_size = OFFSET_MAX;
2077 	inode->i_mapping->a_ops = &btree_aops;
2078 
2079 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2080 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2081 			    IO_TREE_INODE_IO, inode);
2082 	BTRFS_I(inode)->io_tree.track_uptodate = false;
2083 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2084 
2085 	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2086 
2087 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2088 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2089 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2090 	btrfs_insert_inode_hash(inode);
2091 }
2092 
2093 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2094 {
2095 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2096 	init_rwsem(&fs_info->dev_replace.rwsem);
2097 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2098 }
2099 
2100 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2101 {
2102 	spin_lock_init(&fs_info->qgroup_lock);
2103 	mutex_init(&fs_info->qgroup_ioctl_lock);
2104 	fs_info->qgroup_tree = RB_ROOT;
2105 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2106 	fs_info->qgroup_seq = 1;
2107 	fs_info->qgroup_ulist = NULL;
2108 	fs_info->qgroup_rescan_running = false;
2109 	mutex_init(&fs_info->qgroup_rescan_lock);
2110 }
2111 
2112 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2113 		struct btrfs_fs_devices *fs_devices)
2114 {
2115 	u32 max_active = fs_info->thread_pool_size;
2116 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2117 
2118 	fs_info->workers =
2119 		btrfs_alloc_workqueue(fs_info, "worker",
2120 				      flags | WQ_HIGHPRI, max_active, 16);
2121 
2122 	fs_info->delalloc_workers =
2123 		btrfs_alloc_workqueue(fs_info, "delalloc",
2124 				      flags, max_active, 2);
2125 
2126 	fs_info->flush_workers =
2127 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2128 				      flags, max_active, 0);
2129 
2130 	fs_info->caching_workers =
2131 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2132 
2133 	fs_info->fixup_workers =
2134 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2135 
2136 	/*
2137 	 * endios are largely parallel and should have a very
2138 	 * low idle thresh
2139 	 */
2140 	fs_info->endio_workers =
2141 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2142 	fs_info->endio_meta_workers =
2143 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2144 				      max_active, 4);
2145 	fs_info->endio_meta_write_workers =
2146 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2147 				      max_active, 2);
2148 	fs_info->endio_raid56_workers =
2149 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2150 				      max_active, 4);
2151 	fs_info->rmw_workers =
2152 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2153 	fs_info->endio_write_workers =
2154 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2155 				      max_active, 2);
2156 	fs_info->endio_freespace_worker =
2157 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2158 				      max_active, 0);
2159 	fs_info->delayed_workers =
2160 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2161 				      max_active, 0);
2162 	fs_info->readahead_workers =
2163 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2164 				      max_active, 2);
2165 	fs_info->qgroup_rescan_workers =
2166 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2167 	fs_info->discard_ctl.discard_workers =
2168 		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2169 
2170 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2171 	      fs_info->flush_workers &&
2172 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2173 	      fs_info->endio_meta_write_workers &&
2174 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2175 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2176 	      fs_info->caching_workers && fs_info->readahead_workers &&
2177 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2178 	      fs_info->qgroup_rescan_workers &&
2179 	      fs_info->discard_ctl.discard_workers)) {
2180 		return -ENOMEM;
2181 	}
2182 
2183 	return 0;
2184 }
2185 
2186 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2187 {
2188 	struct crypto_shash *csum_shash;
2189 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2190 
2191 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2192 
2193 	if (IS_ERR(csum_shash)) {
2194 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2195 			  csum_driver);
2196 		return PTR_ERR(csum_shash);
2197 	}
2198 
2199 	fs_info->csum_shash = csum_shash;
2200 
2201 	return 0;
2202 }
2203 
2204 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2205 			    struct btrfs_fs_devices *fs_devices)
2206 {
2207 	int ret;
2208 	struct btrfs_root *log_tree_root;
2209 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2210 	u64 bytenr = btrfs_super_log_root(disk_super);
2211 	int level = btrfs_super_log_root_level(disk_super);
2212 
2213 	if (fs_devices->rw_devices == 0) {
2214 		btrfs_warn(fs_info, "log replay required on RO media");
2215 		return -EIO;
2216 	}
2217 
2218 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2219 					 GFP_KERNEL);
2220 	if (!log_tree_root)
2221 		return -ENOMEM;
2222 
2223 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2224 					      fs_info->generation + 1,
2225 					      level, NULL);
2226 	if (IS_ERR(log_tree_root->node)) {
2227 		btrfs_warn(fs_info, "failed to read log tree");
2228 		ret = PTR_ERR(log_tree_root->node);
2229 		log_tree_root->node = NULL;
2230 		btrfs_put_root(log_tree_root);
2231 		return ret;
2232 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2233 		btrfs_err(fs_info, "failed to read log tree");
2234 		btrfs_put_root(log_tree_root);
2235 		return -EIO;
2236 	}
2237 	/* returns with log_tree_root freed on success */
2238 	ret = btrfs_recover_log_trees(log_tree_root);
2239 	if (ret) {
2240 		btrfs_handle_fs_error(fs_info, ret,
2241 				      "Failed to recover log tree");
2242 		btrfs_put_root(log_tree_root);
2243 		return ret;
2244 	}
2245 
2246 	if (sb_rdonly(fs_info->sb)) {
2247 		ret = btrfs_commit_super(fs_info);
2248 		if (ret)
2249 			return ret;
2250 	}
2251 
2252 	return 0;
2253 }
2254 
2255 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2256 {
2257 	struct btrfs_root *tree_root = fs_info->tree_root;
2258 	struct btrfs_root *root;
2259 	struct btrfs_key location;
2260 	int ret;
2261 
2262 	BUG_ON(!fs_info->tree_root);
2263 
2264 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2265 	location.type = BTRFS_ROOT_ITEM_KEY;
2266 	location.offset = 0;
2267 
2268 	root = btrfs_read_tree_root(tree_root, &location);
2269 	if (IS_ERR(root)) {
2270 		ret = PTR_ERR(root);
2271 		goto out;
2272 	}
2273 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2274 	fs_info->extent_root = root;
2275 
2276 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2277 	root = btrfs_read_tree_root(tree_root, &location);
2278 	if (IS_ERR(root)) {
2279 		ret = PTR_ERR(root);
2280 		goto out;
2281 	}
2282 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2283 	fs_info->dev_root = root;
2284 	btrfs_init_devices_late(fs_info);
2285 
2286 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2287 	root = btrfs_read_tree_root(tree_root, &location);
2288 	if (IS_ERR(root)) {
2289 		ret = PTR_ERR(root);
2290 		goto out;
2291 	}
2292 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2293 	fs_info->csum_root = root;
2294 
2295 	/*
2296 	 * This tree can share blocks with some other fs tree during relocation
2297 	 * and we need a proper setup by btrfs_get_fs_root
2298 	 */
2299 	root = btrfs_get_fs_root(tree_root->fs_info,
2300 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2301 	if (IS_ERR(root)) {
2302 		ret = PTR_ERR(root);
2303 		goto out;
2304 	}
2305 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2306 	fs_info->data_reloc_root = root;
2307 
2308 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2309 	root = btrfs_read_tree_root(tree_root, &location);
2310 	if (!IS_ERR(root)) {
2311 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2312 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2313 		fs_info->quota_root = root;
2314 	}
2315 
2316 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2317 	root = btrfs_read_tree_root(tree_root, &location);
2318 	if (IS_ERR(root)) {
2319 		ret = PTR_ERR(root);
2320 		if (ret != -ENOENT)
2321 			goto out;
2322 	} else {
2323 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2324 		fs_info->uuid_root = root;
2325 	}
2326 
2327 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2328 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2329 		root = btrfs_read_tree_root(tree_root, &location);
2330 		if (IS_ERR(root)) {
2331 			ret = PTR_ERR(root);
2332 			goto out;
2333 		}
2334 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2335 		fs_info->free_space_root = root;
2336 	}
2337 
2338 	return 0;
2339 out:
2340 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2341 		   location.objectid, ret);
2342 	return ret;
2343 }
2344 
2345 /*
2346  * Real super block validation
2347  * NOTE: super csum type and incompat features will not be checked here.
2348  *
2349  * @sb:		super block to check
2350  * @mirror_num:	the super block number to check its bytenr:
2351  * 		0	the primary (1st) sb
2352  * 		1, 2	2nd and 3rd backup copy
2353  * 	       -1	skip bytenr check
2354  */
2355 static int validate_super(struct btrfs_fs_info *fs_info,
2356 			    struct btrfs_super_block *sb, int mirror_num)
2357 {
2358 	u64 nodesize = btrfs_super_nodesize(sb);
2359 	u64 sectorsize = btrfs_super_sectorsize(sb);
2360 	int ret = 0;
2361 
2362 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2363 		btrfs_err(fs_info, "no valid FS found");
2364 		ret = -EINVAL;
2365 	}
2366 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2367 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2368 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2369 		ret = -EINVAL;
2370 	}
2371 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2372 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2373 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2374 		ret = -EINVAL;
2375 	}
2376 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2377 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2378 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2379 		ret = -EINVAL;
2380 	}
2381 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2382 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2383 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2384 		ret = -EINVAL;
2385 	}
2386 
2387 	/*
2388 	 * Check sectorsize and nodesize first, other check will need it.
2389 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2390 	 */
2391 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2392 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2393 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2394 		ret = -EINVAL;
2395 	}
2396 	/* Only PAGE SIZE is supported yet */
2397 	if (sectorsize != PAGE_SIZE) {
2398 		btrfs_err(fs_info,
2399 			"sectorsize %llu not supported yet, only support %lu",
2400 			sectorsize, PAGE_SIZE);
2401 		ret = -EINVAL;
2402 	}
2403 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2404 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2405 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2406 		ret = -EINVAL;
2407 	}
2408 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2409 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2410 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2411 		ret = -EINVAL;
2412 	}
2413 
2414 	/* Root alignment check */
2415 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2416 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2417 			   btrfs_super_root(sb));
2418 		ret = -EINVAL;
2419 	}
2420 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2421 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2422 			   btrfs_super_chunk_root(sb));
2423 		ret = -EINVAL;
2424 	}
2425 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2426 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2427 			   btrfs_super_log_root(sb));
2428 		ret = -EINVAL;
2429 	}
2430 
2431 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2432 		   BTRFS_FSID_SIZE) != 0) {
2433 		btrfs_err(fs_info,
2434 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2435 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2436 		ret = -EINVAL;
2437 	}
2438 
2439 	/*
2440 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2441 	 * done later
2442 	 */
2443 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2444 		btrfs_err(fs_info, "bytes_used is too small %llu",
2445 			  btrfs_super_bytes_used(sb));
2446 		ret = -EINVAL;
2447 	}
2448 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2449 		btrfs_err(fs_info, "invalid stripesize %u",
2450 			  btrfs_super_stripesize(sb));
2451 		ret = -EINVAL;
2452 	}
2453 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2454 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2455 			   btrfs_super_num_devices(sb));
2456 	if (btrfs_super_num_devices(sb) == 0) {
2457 		btrfs_err(fs_info, "number of devices is 0");
2458 		ret = -EINVAL;
2459 	}
2460 
2461 	if (mirror_num >= 0 &&
2462 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2463 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2464 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2465 		ret = -EINVAL;
2466 	}
2467 
2468 	/*
2469 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2470 	 * and one chunk
2471 	 */
2472 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2473 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2474 			  btrfs_super_sys_array_size(sb),
2475 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2476 		ret = -EINVAL;
2477 	}
2478 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2479 			+ sizeof(struct btrfs_chunk)) {
2480 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2481 			  btrfs_super_sys_array_size(sb),
2482 			  sizeof(struct btrfs_disk_key)
2483 			  + sizeof(struct btrfs_chunk));
2484 		ret = -EINVAL;
2485 	}
2486 
2487 	/*
2488 	 * The generation is a global counter, we'll trust it more than the others
2489 	 * but it's still possible that it's the one that's wrong.
2490 	 */
2491 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2492 		btrfs_warn(fs_info,
2493 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2494 			btrfs_super_generation(sb),
2495 			btrfs_super_chunk_root_generation(sb));
2496 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2497 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2498 		btrfs_warn(fs_info,
2499 			"suspicious: generation < cache_generation: %llu < %llu",
2500 			btrfs_super_generation(sb),
2501 			btrfs_super_cache_generation(sb));
2502 
2503 	return ret;
2504 }
2505 
2506 /*
2507  * Validation of super block at mount time.
2508  * Some checks already done early at mount time, like csum type and incompat
2509  * flags will be skipped.
2510  */
2511 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2512 {
2513 	return validate_super(fs_info, fs_info->super_copy, 0);
2514 }
2515 
2516 /*
2517  * Validation of super block at write time.
2518  * Some checks like bytenr check will be skipped as their values will be
2519  * overwritten soon.
2520  * Extra checks like csum type and incompat flags will be done here.
2521  */
2522 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2523 				      struct btrfs_super_block *sb)
2524 {
2525 	int ret;
2526 
2527 	ret = validate_super(fs_info, sb, -1);
2528 	if (ret < 0)
2529 		goto out;
2530 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2531 		ret = -EUCLEAN;
2532 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2533 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2534 		goto out;
2535 	}
2536 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2537 		ret = -EUCLEAN;
2538 		btrfs_err(fs_info,
2539 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2540 			  btrfs_super_incompat_flags(sb),
2541 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2542 		goto out;
2543 	}
2544 out:
2545 	if (ret < 0)
2546 		btrfs_err(fs_info,
2547 		"super block corruption detected before writing it to disk");
2548 	return ret;
2549 }
2550 
2551 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2552 {
2553 	int backup_index = find_newest_super_backup(fs_info);
2554 	struct btrfs_super_block *sb = fs_info->super_copy;
2555 	struct btrfs_root *tree_root = fs_info->tree_root;
2556 	bool handle_error = false;
2557 	int ret = 0;
2558 	int i;
2559 
2560 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2561 		u64 generation;
2562 		int level;
2563 
2564 		if (handle_error) {
2565 			if (!IS_ERR(tree_root->node))
2566 				free_extent_buffer(tree_root->node);
2567 			tree_root->node = NULL;
2568 
2569 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2570 				break;
2571 
2572 			free_root_pointers(fs_info, 0);
2573 
2574 			/*
2575 			 * Don't use the log in recovery mode, it won't be
2576 			 * valid
2577 			 */
2578 			btrfs_set_super_log_root(sb, 0);
2579 
2580 			/* We can't trust the free space cache either */
2581 			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2582 
2583 			ret = read_backup_root(fs_info, i);
2584 			backup_index = ret;
2585 			if (ret < 0)
2586 				return ret;
2587 		}
2588 		generation = btrfs_super_generation(sb);
2589 		level = btrfs_super_root_level(sb);
2590 		tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2591 						  generation, level, NULL);
2592 		if (IS_ERR(tree_root->node) ||
2593 		    !extent_buffer_uptodate(tree_root->node)) {
2594 			handle_error = true;
2595 
2596 			if (IS_ERR(tree_root->node)) {
2597 				ret = PTR_ERR(tree_root->node);
2598 				tree_root->node = NULL;
2599 			} else if (!extent_buffer_uptodate(tree_root->node)) {
2600 				ret = -EUCLEAN;
2601 			}
2602 
2603 			btrfs_warn(fs_info, "failed to read tree root");
2604 			continue;
2605 		}
2606 
2607 		btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2608 		tree_root->commit_root = btrfs_root_node(tree_root);
2609 		btrfs_set_root_refs(&tree_root->root_item, 1);
2610 
2611 		/*
2612 		 * No need to hold btrfs_root::objectid_mutex since the fs
2613 		 * hasn't been fully initialised and we are the only user
2614 		 */
2615 		ret = btrfs_find_highest_objectid(tree_root,
2616 						&tree_root->highest_objectid);
2617 		if (ret < 0) {
2618 			handle_error = true;
2619 			continue;
2620 		}
2621 
2622 		ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2623 
2624 		ret = btrfs_read_roots(fs_info);
2625 		if (ret < 0) {
2626 			handle_error = true;
2627 			continue;
2628 		}
2629 
2630 		/* All successful */
2631 		fs_info->generation = generation;
2632 		fs_info->last_trans_committed = generation;
2633 
2634 		/* Always begin writing backup roots after the one being used */
2635 		if (backup_index < 0) {
2636 			fs_info->backup_root_index = 0;
2637 		} else {
2638 			fs_info->backup_root_index = backup_index + 1;
2639 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2640 		}
2641 		break;
2642 	}
2643 
2644 	return ret;
2645 }
2646 
2647 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2648 {
2649 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2650 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2651 	INIT_LIST_HEAD(&fs_info->trans_list);
2652 	INIT_LIST_HEAD(&fs_info->dead_roots);
2653 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2654 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2655 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2656 	spin_lock_init(&fs_info->delalloc_root_lock);
2657 	spin_lock_init(&fs_info->trans_lock);
2658 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2659 	spin_lock_init(&fs_info->delayed_iput_lock);
2660 	spin_lock_init(&fs_info->defrag_inodes_lock);
2661 	spin_lock_init(&fs_info->super_lock);
2662 	spin_lock_init(&fs_info->buffer_lock);
2663 	spin_lock_init(&fs_info->unused_bgs_lock);
2664 	rwlock_init(&fs_info->tree_mod_log_lock);
2665 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2666 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2667 	mutex_init(&fs_info->reloc_mutex);
2668 	mutex_init(&fs_info->delalloc_root_mutex);
2669 	seqlock_init(&fs_info->profiles_lock);
2670 
2671 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2672 	INIT_LIST_HEAD(&fs_info->space_info);
2673 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2674 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2675 #ifdef CONFIG_BTRFS_DEBUG
2676 	INIT_LIST_HEAD(&fs_info->allocated_roots);
2677 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2678 	spin_lock_init(&fs_info->eb_leak_lock);
2679 #endif
2680 	extent_map_tree_init(&fs_info->mapping_tree);
2681 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2682 			     BTRFS_BLOCK_RSV_GLOBAL);
2683 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2684 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2685 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2686 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2687 			     BTRFS_BLOCK_RSV_DELOPS);
2688 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2689 			     BTRFS_BLOCK_RSV_DELREFS);
2690 
2691 	atomic_set(&fs_info->async_delalloc_pages, 0);
2692 	atomic_set(&fs_info->defrag_running, 0);
2693 	atomic_set(&fs_info->reada_works_cnt, 0);
2694 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2695 	atomic64_set(&fs_info->tree_mod_seq, 0);
2696 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2697 	fs_info->metadata_ratio = 0;
2698 	fs_info->defrag_inodes = RB_ROOT;
2699 	atomic64_set(&fs_info->free_chunk_space, 0);
2700 	fs_info->tree_mod_log = RB_ROOT;
2701 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2702 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2703 	/* readahead state */
2704 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2705 	spin_lock_init(&fs_info->reada_lock);
2706 	btrfs_init_ref_verify(fs_info);
2707 
2708 	fs_info->thread_pool_size = min_t(unsigned long,
2709 					  num_online_cpus() + 2, 8);
2710 
2711 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2712 	spin_lock_init(&fs_info->ordered_root_lock);
2713 
2714 	btrfs_init_scrub(fs_info);
2715 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2716 	fs_info->check_integrity_print_mask = 0;
2717 #endif
2718 	btrfs_init_balance(fs_info);
2719 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2720 
2721 	spin_lock_init(&fs_info->block_group_cache_lock);
2722 	fs_info->block_group_cache_tree = RB_ROOT;
2723 	fs_info->first_logical_byte = (u64)-1;
2724 
2725 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2726 			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2727 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2728 
2729 	mutex_init(&fs_info->ordered_operations_mutex);
2730 	mutex_init(&fs_info->tree_log_mutex);
2731 	mutex_init(&fs_info->chunk_mutex);
2732 	mutex_init(&fs_info->transaction_kthread_mutex);
2733 	mutex_init(&fs_info->cleaner_mutex);
2734 	mutex_init(&fs_info->ro_block_group_mutex);
2735 	init_rwsem(&fs_info->commit_root_sem);
2736 	init_rwsem(&fs_info->cleanup_work_sem);
2737 	init_rwsem(&fs_info->subvol_sem);
2738 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2739 
2740 	btrfs_init_dev_replace_locks(fs_info);
2741 	btrfs_init_qgroup(fs_info);
2742 	btrfs_discard_init(fs_info);
2743 
2744 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2745 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2746 
2747 	init_waitqueue_head(&fs_info->transaction_throttle);
2748 	init_waitqueue_head(&fs_info->transaction_wait);
2749 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2750 	init_waitqueue_head(&fs_info->async_submit_wait);
2751 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2752 
2753 	/* Usable values until the real ones are cached from the superblock */
2754 	fs_info->nodesize = 4096;
2755 	fs_info->sectorsize = 4096;
2756 	fs_info->stripesize = 4096;
2757 
2758 	spin_lock_init(&fs_info->swapfile_pins_lock);
2759 	fs_info->swapfile_pins = RB_ROOT;
2760 
2761 	fs_info->send_in_progress = 0;
2762 }
2763 
2764 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2765 {
2766 	int ret;
2767 
2768 	fs_info->sb = sb;
2769 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2770 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2771 
2772 	ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2773 	if (ret)
2774 		return ret;
2775 
2776 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2777 	if (ret)
2778 		return ret;
2779 
2780 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2781 					(1 + ilog2(nr_cpu_ids));
2782 
2783 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2784 	if (ret)
2785 		return ret;
2786 
2787 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2788 			GFP_KERNEL);
2789 	if (ret)
2790 		return ret;
2791 
2792 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2793 					GFP_KERNEL);
2794 	if (!fs_info->delayed_root)
2795 		return -ENOMEM;
2796 	btrfs_init_delayed_root(fs_info->delayed_root);
2797 
2798 	return btrfs_alloc_stripe_hash_table(fs_info);
2799 }
2800 
2801 static int btrfs_uuid_rescan_kthread(void *data)
2802 {
2803 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2804 	int ret;
2805 
2806 	/*
2807 	 * 1st step is to iterate through the existing UUID tree and
2808 	 * to delete all entries that contain outdated data.
2809 	 * 2nd step is to add all missing entries to the UUID tree.
2810 	 */
2811 	ret = btrfs_uuid_tree_iterate(fs_info);
2812 	if (ret < 0) {
2813 		if (ret != -EINTR)
2814 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2815 				   ret);
2816 		up(&fs_info->uuid_tree_rescan_sem);
2817 		return ret;
2818 	}
2819 	return btrfs_uuid_scan_kthread(data);
2820 }
2821 
2822 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2823 {
2824 	struct task_struct *task;
2825 
2826 	down(&fs_info->uuid_tree_rescan_sem);
2827 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2828 	if (IS_ERR(task)) {
2829 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2830 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2831 		up(&fs_info->uuid_tree_rescan_sem);
2832 		return PTR_ERR(task);
2833 	}
2834 
2835 	return 0;
2836 }
2837 
2838 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2839 		      char *options)
2840 {
2841 	u32 sectorsize;
2842 	u32 nodesize;
2843 	u32 stripesize;
2844 	u64 generation;
2845 	u64 features;
2846 	u16 csum_type;
2847 	struct btrfs_super_block *disk_super;
2848 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2849 	struct btrfs_root *tree_root;
2850 	struct btrfs_root *chunk_root;
2851 	int ret;
2852 	int err = -EINVAL;
2853 	int clear_free_space_tree = 0;
2854 	int level;
2855 
2856 	ret = init_mount_fs_info(fs_info, sb);
2857 	if (ret) {
2858 		err = ret;
2859 		goto fail;
2860 	}
2861 
2862 	/* These need to be init'ed before we start creating inodes and such. */
2863 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2864 				     GFP_KERNEL);
2865 	fs_info->tree_root = tree_root;
2866 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2867 				      GFP_KERNEL);
2868 	fs_info->chunk_root = chunk_root;
2869 	if (!tree_root || !chunk_root) {
2870 		err = -ENOMEM;
2871 		goto fail;
2872 	}
2873 
2874 	fs_info->btree_inode = new_inode(sb);
2875 	if (!fs_info->btree_inode) {
2876 		err = -ENOMEM;
2877 		goto fail;
2878 	}
2879 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2880 	btrfs_init_btree_inode(fs_info);
2881 
2882 	invalidate_bdev(fs_devices->latest_bdev);
2883 
2884 	/*
2885 	 * Read super block and check the signature bytes only
2886 	 */
2887 	disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2888 	if (IS_ERR(disk_super)) {
2889 		err = PTR_ERR(disk_super);
2890 		goto fail_alloc;
2891 	}
2892 
2893 	/*
2894 	 * Verify the type first, if that or the the checksum value are
2895 	 * corrupted, we'll find out
2896 	 */
2897 	csum_type = btrfs_super_csum_type(disk_super);
2898 	if (!btrfs_supported_super_csum(csum_type)) {
2899 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2900 			  csum_type);
2901 		err = -EINVAL;
2902 		btrfs_release_disk_super(disk_super);
2903 		goto fail_alloc;
2904 	}
2905 
2906 	ret = btrfs_init_csum_hash(fs_info, csum_type);
2907 	if (ret) {
2908 		err = ret;
2909 		btrfs_release_disk_super(disk_super);
2910 		goto fail_alloc;
2911 	}
2912 
2913 	/*
2914 	 * We want to check superblock checksum, the type is stored inside.
2915 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2916 	 */
2917 	if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2918 		btrfs_err(fs_info, "superblock checksum mismatch");
2919 		err = -EINVAL;
2920 		btrfs_release_disk_super(disk_super);
2921 		goto fail_alloc;
2922 	}
2923 
2924 	/*
2925 	 * super_copy is zeroed at allocation time and we never touch the
2926 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2927 	 * the whole block of INFO_SIZE
2928 	 */
2929 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2930 	btrfs_release_disk_super(disk_super);
2931 
2932 	disk_super = fs_info->super_copy;
2933 
2934 	ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2935 		       BTRFS_FSID_SIZE));
2936 
2937 	if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2938 		ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2939 				fs_info->super_copy->metadata_uuid,
2940 				BTRFS_FSID_SIZE));
2941 	}
2942 
2943 	features = btrfs_super_flags(disk_super);
2944 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2945 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2946 		btrfs_set_super_flags(disk_super, features);
2947 		btrfs_info(fs_info,
2948 			"found metadata UUID change in progress flag, clearing");
2949 	}
2950 
2951 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2952 	       sizeof(*fs_info->super_for_commit));
2953 
2954 	ret = btrfs_validate_mount_super(fs_info);
2955 	if (ret) {
2956 		btrfs_err(fs_info, "superblock contains fatal errors");
2957 		err = -EINVAL;
2958 		goto fail_alloc;
2959 	}
2960 
2961 	if (!btrfs_super_root(disk_super))
2962 		goto fail_alloc;
2963 
2964 	/* check FS state, whether FS is broken. */
2965 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2966 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2967 
2968 	/*
2969 	 * In the long term, we'll store the compression type in the super
2970 	 * block, and it'll be used for per file compression control.
2971 	 */
2972 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2973 
2974 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2975 	if (ret) {
2976 		err = ret;
2977 		goto fail_alloc;
2978 	}
2979 
2980 	features = btrfs_super_incompat_flags(disk_super) &
2981 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2982 	if (features) {
2983 		btrfs_err(fs_info,
2984 		    "cannot mount because of unsupported optional features (%llx)",
2985 		    features);
2986 		err = -EINVAL;
2987 		goto fail_alloc;
2988 	}
2989 
2990 	features = btrfs_super_incompat_flags(disk_super);
2991 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2992 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2993 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2994 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2995 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2996 
2997 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2998 		btrfs_info(fs_info, "has skinny extents");
2999 
3000 	/*
3001 	 * flag our filesystem as having big metadata blocks if
3002 	 * they are bigger than the page size
3003 	 */
3004 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3005 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3006 			btrfs_info(fs_info,
3007 				"flagging fs with big metadata feature");
3008 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3009 	}
3010 
3011 	nodesize = btrfs_super_nodesize(disk_super);
3012 	sectorsize = btrfs_super_sectorsize(disk_super);
3013 	stripesize = sectorsize;
3014 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3015 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3016 
3017 	/* Cache block sizes */
3018 	fs_info->nodesize = nodesize;
3019 	fs_info->sectorsize = sectorsize;
3020 	fs_info->stripesize = stripesize;
3021 
3022 	/*
3023 	 * mixed block groups end up with duplicate but slightly offset
3024 	 * extent buffers for the same range.  It leads to corruptions
3025 	 */
3026 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3027 	    (sectorsize != nodesize)) {
3028 		btrfs_err(fs_info,
3029 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3030 			nodesize, sectorsize);
3031 		goto fail_alloc;
3032 	}
3033 
3034 	/*
3035 	 * Needn't use the lock because there is no other task which will
3036 	 * update the flag.
3037 	 */
3038 	btrfs_set_super_incompat_flags(disk_super, features);
3039 
3040 	features = btrfs_super_compat_ro_flags(disk_super) &
3041 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
3042 	if (!sb_rdonly(sb) && features) {
3043 		btrfs_err(fs_info,
3044 	"cannot mount read-write because of unsupported optional features (%llx)",
3045 		       features);
3046 		err = -EINVAL;
3047 		goto fail_alloc;
3048 	}
3049 
3050 	ret = btrfs_init_workqueues(fs_info, fs_devices);
3051 	if (ret) {
3052 		err = ret;
3053 		goto fail_sb_buffer;
3054 	}
3055 
3056 	sb->s_bdi->congested_fn = btrfs_congested_fn;
3057 	sb->s_bdi->congested_data = fs_info;
3058 	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3059 	sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3060 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3061 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3062 
3063 	sb->s_blocksize = sectorsize;
3064 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3065 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3066 
3067 	mutex_lock(&fs_info->chunk_mutex);
3068 	ret = btrfs_read_sys_array(fs_info);
3069 	mutex_unlock(&fs_info->chunk_mutex);
3070 	if (ret) {
3071 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3072 		goto fail_sb_buffer;
3073 	}
3074 
3075 	generation = btrfs_super_chunk_root_generation(disk_super);
3076 	level = btrfs_super_chunk_root_level(disk_super);
3077 
3078 	chunk_root->node = read_tree_block(fs_info,
3079 					   btrfs_super_chunk_root(disk_super),
3080 					   generation, level, NULL);
3081 	if (IS_ERR(chunk_root->node) ||
3082 	    !extent_buffer_uptodate(chunk_root->node)) {
3083 		btrfs_err(fs_info, "failed to read chunk root");
3084 		if (!IS_ERR(chunk_root->node))
3085 			free_extent_buffer(chunk_root->node);
3086 		chunk_root->node = NULL;
3087 		goto fail_tree_roots;
3088 	}
3089 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3090 	chunk_root->commit_root = btrfs_root_node(chunk_root);
3091 
3092 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3093 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3094 			   BTRFS_UUID_SIZE);
3095 
3096 	ret = btrfs_read_chunk_tree(fs_info);
3097 	if (ret) {
3098 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3099 		goto fail_tree_roots;
3100 	}
3101 
3102 	/*
3103 	 * Keep the devid that is marked to be the target device for the
3104 	 * device replace procedure
3105 	 */
3106 	btrfs_free_extra_devids(fs_devices, 0);
3107 
3108 	if (!fs_devices->latest_bdev) {
3109 		btrfs_err(fs_info, "failed to read devices");
3110 		goto fail_tree_roots;
3111 	}
3112 
3113 	ret = init_tree_roots(fs_info);
3114 	if (ret)
3115 		goto fail_tree_roots;
3116 
3117 	/*
3118 	 * If we have a uuid root and we're not being told to rescan we need to
3119 	 * check the generation here so we can set the
3120 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3121 	 * transaction during a balance or the log replay without updating the
3122 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3123 	 * even though it was perfectly fine.
3124 	 */
3125 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3126 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3127 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3128 
3129 	ret = btrfs_verify_dev_extents(fs_info);
3130 	if (ret) {
3131 		btrfs_err(fs_info,
3132 			  "failed to verify dev extents against chunks: %d",
3133 			  ret);
3134 		goto fail_block_groups;
3135 	}
3136 	ret = btrfs_recover_balance(fs_info);
3137 	if (ret) {
3138 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3139 		goto fail_block_groups;
3140 	}
3141 
3142 	ret = btrfs_init_dev_stats(fs_info);
3143 	if (ret) {
3144 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3145 		goto fail_block_groups;
3146 	}
3147 
3148 	ret = btrfs_init_dev_replace(fs_info);
3149 	if (ret) {
3150 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3151 		goto fail_block_groups;
3152 	}
3153 
3154 	btrfs_free_extra_devids(fs_devices, 1);
3155 
3156 	ret = btrfs_sysfs_add_fsid(fs_devices);
3157 	if (ret) {
3158 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3159 				ret);
3160 		goto fail_block_groups;
3161 	}
3162 
3163 	ret = btrfs_sysfs_add_mounted(fs_info);
3164 	if (ret) {
3165 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3166 		goto fail_fsdev_sysfs;
3167 	}
3168 
3169 	ret = btrfs_init_space_info(fs_info);
3170 	if (ret) {
3171 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3172 		goto fail_sysfs;
3173 	}
3174 
3175 	ret = btrfs_read_block_groups(fs_info);
3176 	if (ret) {
3177 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3178 		goto fail_sysfs;
3179 	}
3180 
3181 	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3182 		btrfs_warn(fs_info,
3183 		"writable mount is not allowed due to too many missing devices");
3184 		goto fail_sysfs;
3185 	}
3186 
3187 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3188 					       "btrfs-cleaner");
3189 	if (IS_ERR(fs_info->cleaner_kthread))
3190 		goto fail_sysfs;
3191 
3192 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3193 						   tree_root,
3194 						   "btrfs-transaction");
3195 	if (IS_ERR(fs_info->transaction_kthread))
3196 		goto fail_cleaner;
3197 
3198 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3199 	    !fs_info->fs_devices->rotating) {
3200 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3201 	}
3202 
3203 	/*
3204 	 * Mount does not set all options immediately, we can do it now and do
3205 	 * not have to wait for transaction commit
3206 	 */
3207 	btrfs_apply_pending_changes(fs_info);
3208 
3209 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3210 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3211 		ret = btrfsic_mount(fs_info, fs_devices,
3212 				    btrfs_test_opt(fs_info,
3213 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3214 				    1 : 0,
3215 				    fs_info->check_integrity_print_mask);
3216 		if (ret)
3217 			btrfs_warn(fs_info,
3218 				"failed to initialize integrity check module: %d",
3219 				ret);
3220 	}
3221 #endif
3222 	ret = btrfs_read_qgroup_config(fs_info);
3223 	if (ret)
3224 		goto fail_trans_kthread;
3225 
3226 	if (btrfs_build_ref_tree(fs_info))
3227 		btrfs_err(fs_info, "couldn't build ref tree");
3228 
3229 	/* do not make disk changes in broken FS or nologreplay is given */
3230 	if (btrfs_super_log_root(disk_super) != 0 &&
3231 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3232 		btrfs_info(fs_info, "start tree-log replay");
3233 		ret = btrfs_replay_log(fs_info, fs_devices);
3234 		if (ret) {
3235 			err = ret;
3236 			goto fail_qgroup;
3237 		}
3238 	}
3239 
3240 	ret = btrfs_find_orphan_roots(fs_info);
3241 	if (ret)
3242 		goto fail_qgroup;
3243 
3244 	if (!sb_rdonly(sb)) {
3245 		ret = btrfs_cleanup_fs_roots(fs_info);
3246 		if (ret)
3247 			goto fail_qgroup;
3248 
3249 		mutex_lock(&fs_info->cleaner_mutex);
3250 		ret = btrfs_recover_relocation(tree_root);
3251 		mutex_unlock(&fs_info->cleaner_mutex);
3252 		if (ret < 0) {
3253 			btrfs_warn(fs_info, "failed to recover relocation: %d",
3254 					ret);
3255 			err = -EINVAL;
3256 			goto fail_qgroup;
3257 		}
3258 	}
3259 
3260 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3261 	if (IS_ERR(fs_info->fs_root)) {
3262 		err = PTR_ERR(fs_info->fs_root);
3263 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3264 		fs_info->fs_root = NULL;
3265 		goto fail_qgroup;
3266 	}
3267 
3268 	if (sb_rdonly(sb))
3269 		return 0;
3270 
3271 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3272 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3273 		clear_free_space_tree = 1;
3274 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3275 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3276 		btrfs_warn(fs_info, "free space tree is invalid");
3277 		clear_free_space_tree = 1;
3278 	}
3279 
3280 	if (clear_free_space_tree) {
3281 		btrfs_info(fs_info, "clearing free space tree");
3282 		ret = btrfs_clear_free_space_tree(fs_info);
3283 		if (ret) {
3284 			btrfs_warn(fs_info,
3285 				   "failed to clear free space tree: %d", ret);
3286 			close_ctree(fs_info);
3287 			return ret;
3288 		}
3289 	}
3290 
3291 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3292 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3293 		btrfs_info(fs_info, "creating free space tree");
3294 		ret = btrfs_create_free_space_tree(fs_info);
3295 		if (ret) {
3296 			btrfs_warn(fs_info,
3297 				"failed to create free space tree: %d", ret);
3298 			close_ctree(fs_info);
3299 			return ret;
3300 		}
3301 	}
3302 
3303 	down_read(&fs_info->cleanup_work_sem);
3304 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3305 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3306 		up_read(&fs_info->cleanup_work_sem);
3307 		close_ctree(fs_info);
3308 		return ret;
3309 	}
3310 	up_read(&fs_info->cleanup_work_sem);
3311 
3312 	ret = btrfs_resume_balance_async(fs_info);
3313 	if (ret) {
3314 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3315 		close_ctree(fs_info);
3316 		return ret;
3317 	}
3318 
3319 	ret = btrfs_resume_dev_replace_async(fs_info);
3320 	if (ret) {
3321 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3322 		close_ctree(fs_info);
3323 		return ret;
3324 	}
3325 
3326 	btrfs_qgroup_rescan_resume(fs_info);
3327 	btrfs_discard_resume(fs_info);
3328 
3329 	if (!fs_info->uuid_root) {
3330 		btrfs_info(fs_info, "creating UUID tree");
3331 		ret = btrfs_create_uuid_tree(fs_info);
3332 		if (ret) {
3333 			btrfs_warn(fs_info,
3334 				"failed to create the UUID tree: %d", ret);
3335 			close_ctree(fs_info);
3336 			return ret;
3337 		}
3338 	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3339 		   fs_info->generation !=
3340 				btrfs_super_uuid_tree_generation(disk_super)) {
3341 		btrfs_info(fs_info, "checking UUID tree");
3342 		ret = btrfs_check_uuid_tree(fs_info);
3343 		if (ret) {
3344 			btrfs_warn(fs_info,
3345 				"failed to check the UUID tree: %d", ret);
3346 			close_ctree(fs_info);
3347 			return ret;
3348 		}
3349 	}
3350 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3351 
3352 	/*
3353 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3354 	 * no need to keep the flag
3355 	 */
3356 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3357 
3358 	return 0;
3359 
3360 fail_qgroup:
3361 	btrfs_free_qgroup_config(fs_info);
3362 fail_trans_kthread:
3363 	kthread_stop(fs_info->transaction_kthread);
3364 	btrfs_cleanup_transaction(fs_info);
3365 	btrfs_free_fs_roots(fs_info);
3366 fail_cleaner:
3367 	kthread_stop(fs_info->cleaner_kthread);
3368 
3369 	/*
3370 	 * make sure we're done with the btree inode before we stop our
3371 	 * kthreads
3372 	 */
3373 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3374 
3375 fail_sysfs:
3376 	btrfs_sysfs_remove_mounted(fs_info);
3377 
3378 fail_fsdev_sysfs:
3379 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3380 
3381 fail_block_groups:
3382 	btrfs_put_block_group_cache(fs_info);
3383 
3384 fail_tree_roots:
3385 	free_root_pointers(fs_info, true);
3386 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3387 
3388 fail_sb_buffer:
3389 	btrfs_stop_all_workers(fs_info);
3390 	btrfs_free_block_groups(fs_info);
3391 fail_alloc:
3392 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3393 
3394 	iput(fs_info->btree_inode);
3395 fail:
3396 	btrfs_close_devices(fs_info->fs_devices);
3397 	return err;
3398 }
3399 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3400 
3401 static void btrfs_end_super_write(struct bio *bio)
3402 {
3403 	struct btrfs_device *device = bio->bi_private;
3404 	struct bio_vec *bvec;
3405 	struct bvec_iter_all iter_all;
3406 	struct page *page;
3407 
3408 	bio_for_each_segment_all(bvec, bio, iter_all) {
3409 		page = bvec->bv_page;
3410 
3411 		if (bio->bi_status) {
3412 			btrfs_warn_rl_in_rcu(device->fs_info,
3413 				"lost page write due to IO error on %s (%d)",
3414 				rcu_str_deref(device->name),
3415 				blk_status_to_errno(bio->bi_status));
3416 			ClearPageUptodate(page);
3417 			SetPageError(page);
3418 			btrfs_dev_stat_inc_and_print(device,
3419 						     BTRFS_DEV_STAT_WRITE_ERRS);
3420 		} else {
3421 			SetPageUptodate(page);
3422 		}
3423 
3424 		put_page(page);
3425 		unlock_page(page);
3426 	}
3427 
3428 	bio_put(bio);
3429 }
3430 
3431 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3432 						   int copy_num)
3433 {
3434 	struct btrfs_super_block *super;
3435 	struct page *page;
3436 	u64 bytenr;
3437 	struct address_space *mapping = bdev->bd_inode->i_mapping;
3438 
3439 	bytenr = btrfs_sb_offset(copy_num);
3440 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3441 		return ERR_PTR(-EINVAL);
3442 
3443 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3444 	if (IS_ERR(page))
3445 		return ERR_CAST(page);
3446 
3447 	super = page_address(page);
3448 	if (btrfs_super_bytenr(super) != bytenr ||
3449 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3450 		btrfs_release_disk_super(super);
3451 		return ERR_PTR(-EINVAL);
3452 	}
3453 
3454 	return super;
3455 }
3456 
3457 
3458 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3459 {
3460 	struct btrfs_super_block *super, *latest = NULL;
3461 	int i;
3462 	u64 transid = 0;
3463 
3464 	/* we would like to check all the supers, but that would make
3465 	 * a btrfs mount succeed after a mkfs from a different FS.
3466 	 * So, we need to add a special mount option to scan for
3467 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3468 	 */
3469 	for (i = 0; i < 1; i++) {
3470 		super = btrfs_read_dev_one_super(bdev, i);
3471 		if (IS_ERR(super))
3472 			continue;
3473 
3474 		if (!latest || btrfs_super_generation(super) > transid) {
3475 			if (latest)
3476 				btrfs_release_disk_super(super);
3477 
3478 			latest = super;
3479 			transid = btrfs_super_generation(super);
3480 		}
3481 	}
3482 
3483 	return super;
3484 }
3485 
3486 /*
3487  * Write superblock @sb to the @device. Do not wait for completion, all the
3488  * pages we use for writing are locked.
3489  *
3490  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3491  * the expected device size at commit time. Note that max_mirrors must be
3492  * same for write and wait phases.
3493  *
3494  * Return number of errors when page is not found or submission fails.
3495  */
3496 static int write_dev_supers(struct btrfs_device *device,
3497 			    struct btrfs_super_block *sb, int max_mirrors)
3498 {
3499 	struct btrfs_fs_info *fs_info = device->fs_info;
3500 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3501 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3502 	int i;
3503 	int errors = 0;
3504 	u64 bytenr;
3505 
3506 	if (max_mirrors == 0)
3507 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3508 
3509 	shash->tfm = fs_info->csum_shash;
3510 
3511 	for (i = 0; i < max_mirrors; i++) {
3512 		struct page *page;
3513 		struct bio *bio;
3514 		struct btrfs_super_block *disk_super;
3515 
3516 		bytenr = btrfs_sb_offset(i);
3517 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3518 		    device->commit_total_bytes)
3519 			break;
3520 
3521 		btrfs_set_super_bytenr(sb, bytenr);
3522 
3523 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3524 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3525 				    sb->csum);
3526 
3527 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3528 					   GFP_NOFS);
3529 		if (!page) {
3530 			btrfs_err(device->fs_info,
3531 			    "couldn't get super block page for bytenr %llu",
3532 			    bytenr);
3533 			errors++;
3534 			continue;
3535 		}
3536 
3537 		/* Bump the refcount for wait_dev_supers() */
3538 		get_page(page);
3539 
3540 		disk_super = page_address(page);
3541 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3542 
3543 		/*
3544 		 * Directly use bios here instead of relying on the page cache
3545 		 * to do I/O, so we don't lose the ability to do integrity
3546 		 * checking.
3547 		 */
3548 		bio = bio_alloc(GFP_NOFS, 1);
3549 		bio_set_dev(bio, device->bdev);
3550 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3551 		bio->bi_private = device;
3552 		bio->bi_end_io = btrfs_end_super_write;
3553 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3554 			       offset_in_page(bytenr));
3555 
3556 		/*
3557 		 * We FUA only the first super block.  The others we allow to
3558 		 * go down lazy and there's a short window where the on-disk
3559 		 * copies might still contain the older version.
3560 		 */
3561 		bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3562 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3563 			bio->bi_opf |= REQ_FUA;
3564 
3565 		btrfsic_submit_bio(bio);
3566 	}
3567 	return errors < i ? 0 : -1;
3568 }
3569 
3570 /*
3571  * Wait for write completion of superblocks done by write_dev_supers,
3572  * @max_mirrors same for write and wait phases.
3573  *
3574  * Return number of errors when page is not found or not marked up to
3575  * date.
3576  */
3577 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3578 {
3579 	int i;
3580 	int errors = 0;
3581 	bool primary_failed = false;
3582 	u64 bytenr;
3583 
3584 	if (max_mirrors == 0)
3585 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3586 
3587 	for (i = 0; i < max_mirrors; i++) {
3588 		struct page *page;
3589 
3590 		bytenr = btrfs_sb_offset(i);
3591 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3592 		    device->commit_total_bytes)
3593 			break;
3594 
3595 		page = find_get_page(device->bdev->bd_inode->i_mapping,
3596 				     bytenr >> PAGE_SHIFT);
3597 		if (!page) {
3598 			errors++;
3599 			if (i == 0)
3600 				primary_failed = true;
3601 			continue;
3602 		}
3603 		/* Page is submitted locked and unlocked once the IO completes */
3604 		wait_on_page_locked(page);
3605 		if (PageError(page)) {
3606 			errors++;
3607 			if (i == 0)
3608 				primary_failed = true;
3609 		}
3610 
3611 		/* Drop our reference */
3612 		put_page(page);
3613 
3614 		/* Drop the reference from the writing run */
3615 		put_page(page);
3616 	}
3617 
3618 	/* log error, force error return */
3619 	if (primary_failed) {
3620 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3621 			  device->devid);
3622 		return -1;
3623 	}
3624 
3625 	return errors < i ? 0 : -1;
3626 }
3627 
3628 /*
3629  * endio for the write_dev_flush, this will wake anyone waiting
3630  * for the barrier when it is done
3631  */
3632 static void btrfs_end_empty_barrier(struct bio *bio)
3633 {
3634 	complete(bio->bi_private);
3635 }
3636 
3637 /*
3638  * Submit a flush request to the device if it supports it. Error handling is
3639  * done in the waiting counterpart.
3640  */
3641 static void write_dev_flush(struct btrfs_device *device)
3642 {
3643 	struct request_queue *q = bdev_get_queue(device->bdev);
3644 	struct bio *bio = device->flush_bio;
3645 
3646 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3647 		return;
3648 
3649 	bio_reset(bio);
3650 	bio->bi_end_io = btrfs_end_empty_barrier;
3651 	bio_set_dev(bio, device->bdev);
3652 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3653 	init_completion(&device->flush_wait);
3654 	bio->bi_private = &device->flush_wait;
3655 
3656 	btrfsic_submit_bio(bio);
3657 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3658 }
3659 
3660 /*
3661  * If the flush bio has been submitted by write_dev_flush, wait for it.
3662  */
3663 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3664 {
3665 	struct bio *bio = device->flush_bio;
3666 
3667 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3668 		return BLK_STS_OK;
3669 
3670 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3671 	wait_for_completion_io(&device->flush_wait);
3672 
3673 	return bio->bi_status;
3674 }
3675 
3676 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3677 {
3678 	if (!btrfs_check_rw_degradable(fs_info, NULL))
3679 		return -EIO;
3680 	return 0;
3681 }
3682 
3683 /*
3684  * send an empty flush down to each device in parallel,
3685  * then wait for them
3686  */
3687 static int barrier_all_devices(struct btrfs_fs_info *info)
3688 {
3689 	struct list_head *head;
3690 	struct btrfs_device *dev;
3691 	int errors_wait = 0;
3692 	blk_status_t ret;
3693 
3694 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3695 	/* send down all the barriers */
3696 	head = &info->fs_devices->devices;
3697 	list_for_each_entry(dev, head, dev_list) {
3698 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3699 			continue;
3700 		if (!dev->bdev)
3701 			continue;
3702 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3703 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3704 			continue;
3705 
3706 		write_dev_flush(dev);
3707 		dev->last_flush_error = BLK_STS_OK;
3708 	}
3709 
3710 	/* wait for all the barriers */
3711 	list_for_each_entry(dev, head, dev_list) {
3712 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3713 			continue;
3714 		if (!dev->bdev) {
3715 			errors_wait++;
3716 			continue;
3717 		}
3718 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3719 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3720 			continue;
3721 
3722 		ret = wait_dev_flush(dev);
3723 		if (ret) {
3724 			dev->last_flush_error = ret;
3725 			btrfs_dev_stat_inc_and_print(dev,
3726 					BTRFS_DEV_STAT_FLUSH_ERRS);
3727 			errors_wait++;
3728 		}
3729 	}
3730 
3731 	if (errors_wait) {
3732 		/*
3733 		 * At some point we need the status of all disks
3734 		 * to arrive at the volume status. So error checking
3735 		 * is being pushed to a separate loop.
3736 		 */
3737 		return check_barrier_error(info);
3738 	}
3739 	return 0;
3740 }
3741 
3742 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3743 {
3744 	int raid_type;
3745 	int min_tolerated = INT_MAX;
3746 
3747 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3748 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3749 		min_tolerated = min_t(int, min_tolerated,
3750 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3751 				    tolerated_failures);
3752 
3753 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3754 		if (raid_type == BTRFS_RAID_SINGLE)
3755 			continue;
3756 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3757 			continue;
3758 		min_tolerated = min_t(int, min_tolerated,
3759 				    btrfs_raid_array[raid_type].
3760 				    tolerated_failures);
3761 	}
3762 
3763 	if (min_tolerated == INT_MAX) {
3764 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3765 		min_tolerated = 0;
3766 	}
3767 
3768 	return min_tolerated;
3769 }
3770 
3771 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3772 {
3773 	struct list_head *head;
3774 	struct btrfs_device *dev;
3775 	struct btrfs_super_block *sb;
3776 	struct btrfs_dev_item *dev_item;
3777 	int ret;
3778 	int do_barriers;
3779 	int max_errors;
3780 	int total_errors = 0;
3781 	u64 flags;
3782 
3783 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3784 
3785 	/*
3786 	 * max_mirrors == 0 indicates we're from commit_transaction,
3787 	 * not from fsync where the tree roots in fs_info have not
3788 	 * been consistent on disk.
3789 	 */
3790 	if (max_mirrors == 0)
3791 		backup_super_roots(fs_info);
3792 
3793 	sb = fs_info->super_for_commit;
3794 	dev_item = &sb->dev_item;
3795 
3796 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3797 	head = &fs_info->fs_devices->devices;
3798 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3799 
3800 	if (do_barriers) {
3801 		ret = barrier_all_devices(fs_info);
3802 		if (ret) {
3803 			mutex_unlock(
3804 				&fs_info->fs_devices->device_list_mutex);
3805 			btrfs_handle_fs_error(fs_info, ret,
3806 					      "errors while submitting device barriers.");
3807 			return ret;
3808 		}
3809 	}
3810 
3811 	list_for_each_entry(dev, head, dev_list) {
3812 		if (!dev->bdev) {
3813 			total_errors++;
3814 			continue;
3815 		}
3816 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3817 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3818 			continue;
3819 
3820 		btrfs_set_stack_device_generation(dev_item, 0);
3821 		btrfs_set_stack_device_type(dev_item, dev->type);
3822 		btrfs_set_stack_device_id(dev_item, dev->devid);
3823 		btrfs_set_stack_device_total_bytes(dev_item,
3824 						   dev->commit_total_bytes);
3825 		btrfs_set_stack_device_bytes_used(dev_item,
3826 						  dev->commit_bytes_used);
3827 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3828 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3829 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3830 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3831 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3832 		       BTRFS_FSID_SIZE);
3833 
3834 		flags = btrfs_super_flags(sb);
3835 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3836 
3837 		ret = btrfs_validate_write_super(fs_info, sb);
3838 		if (ret < 0) {
3839 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3840 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
3841 				"unexpected superblock corruption detected");
3842 			return -EUCLEAN;
3843 		}
3844 
3845 		ret = write_dev_supers(dev, sb, max_mirrors);
3846 		if (ret)
3847 			total_errors++;
3848 	}
3849 	if (total_errors > max_errors) {
3850 		btrfs_err(fs_info, "%d errors while writing supers",
3851 			  total_errors);
3852 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3853 
3854 		/* FUA is masked off if unsupported and can't be the reason */
3855 		btrfs_handle_fs_error(fs_info, -EIO,
3856 				      "%d errors while writing supers",
3857 				      total_errors);
3858 		return -EIO;
3859 	}
3860 
3861 	total_errors = 0;
3862 	list_for_each_entry(dev, head, dev_list) {
3863 		if (!dev->bdev)
3864 			continue;
3865 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3866 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3867 			continue;
3868 
3869 		ret = wait_dev_supers(dev, max_mirrors);
3870 		if (ret)
3871 			total_errors++;
3872 	}
3873 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3874 	if (total_errors > max_errors) {
3875 		btrfs_handle_fs_error(fs_info, -EIO,
3876 				      "%d errors while writing supers",
3877 				      total_errors);
3878 		return -EIO;
3879 	}
3880 	return 0;
3881 }
3882 
3883 /* Drop a fs root from the radix tree and free it. */
3884 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3885 				  struct btrfs_root *root)
3886 {
3887 	bool drop_ref = false;
3888 
3889 	spin_lock(&fs_info->fs_roots_radix_lock);
3890 	radix_tree_delete(&fs_info->fs_roots_radix,
3891 			  (unsigned long)root->root_key.objectid);
3892 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3893 		drop_ref = true;
3894 	spin_unlock(&fs_info->fs_roots_radix_lock);
3895 
3896 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3897 		ASSERT(root->log_root == NULL);
3898 		if (root->reloc_root) {
3899 			btrfs_put_root(root->reloc_root);
3900 			root->reloc_root = NULL;
3901 		}
3902 	}
3903 
3904 	if (root->free_ino_pinned)
3905 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3906 	if (root->free_ino_ctl)
3907 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3908 	if (root->ino_cache_inode) {
3909 		iput(root->ino_cache_inode);
3910 		root->ino_cache_inode = NULL;
3911 	}
3912 	if (drop_ref)
3913 		btrfs_put_root(root);
3914 }
3915 
3916 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3917 {
3918 	u64 root_objectid = 0;
3919 	struct btrfs_root *gang[8];
3920 	int i = 0;
3921 	int err = 0;
3922 	unsigned int ret = 0;
3923 
3924 	while (1) {
3925 		spin_lock(&fs_info->fs_roots_radix_lock);
3926 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3927 					     (void **)gang, root_objectid,
3928 					     ARRAY_SIZE(gang));
3929 		if (!ret) {
3930 			spin_unlock(&fs_info->fs_roots_radix_lock);
3931 			break;
3932 		}
3933 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3934 
3935 		for (i = 0; i < ret; i++) {
3936 			/* Avoid to grab roots in dead_roots */
3937 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3938 				gang[i] = NULL;
3939 				continue;
3940 			}
3941 			/* grab all the search result for later use */
3942 			gang[i] = btrfs_grab_root(gang[i]);
3943 		}
3944 		spin_unlock(&fs_info->fs_roots_radix_lock);
3945 
3946 		for (i = 0; i < ret; i++) {
3947 			if (!gang[i])
3948 				continue;
3949 			root_objectid = gang[i]->root_key.objectid;
3950 			err = btrfs_orphan_cleanup(gang[i]);
3951 			if (err)
3952 				break;
3953 			btrfs_put_root(gang[i]);
3954 		}
3955 		root_objectid++;
3956 	}
3957 
3958 	/* release the uncleaned roots due to error */
3959 	for (; i < ret; i++) {
3960 		if (gang[i])
3961 			btrfs_put_root(gang[i]);
3962 	}
3963 	return err;
3964 }
3965 
3966 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3967 {
3968 	struct btrfs_root *root = fs_info->tree_root;
3969 	struct btrfs_trans_handle *trans;
3970 
3971 	mutex_lock(&fs_info->cleaner_mutex);
3972 	btrfs_run_delayed_iputs(fs_info);
3973 	mutex_unlock(&fs_info->cleaner_mutex);
3974 	wake_up_process(fs_info->cleaner_kthread);
3975 
3976 	/* wait until ongoing cleanup work done */
3977 	down_write(&fs_info->cleanup_work_sem);
3978 	up_write(&fs_info->cleanup_work_sem);
3979 
3980 	trans = btrfs_join_transaction(root);
3981 	if (IS_ERR(trans))
3982 		return PTR_ERR(trans);
3983 	return btrfs_commit_transaction(trans);
3984 }
3985 
3986 void __cold close_ctree(struct btrfs_fs_info *fs_info)
3987 {
3988 	int ret;
3989 
3990 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3991 	/*
3992 	 * We don't want the cleaner to start new transactions, add more delayed
3993 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3994 	 * because that frees the task_struct, and the transaction kthread might
3995 	 * still try to wake up the cleaner.
3996 	 */
3997 	kthread_park(fs_info->cleaner_kthread);
3998 
3999 	/* wait for the qgroup rescan worker to stop */
4000 	btrfs_qgroup_wait_for_completion(fs_info, false);
4001 
4002 	/* wait for the uuid_scan task to finish */
4003 	down(&fs_info->uuid_tree_rescan_sem);
4004 	/* avoid complains from lockdep et al., set sem back to initial state */
4005 	up(&fs_info->uuid_tree_rescan_sem);
4006 
4007 	/* pause restriper - we want to resume on mount */
4008 	btrfs_pause_balance(fs_info);
4009 
4010 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4011 
4012 	btrfs_scrub_cancel(fs_info);
4013 
4014 	/* wait for any defraggers to finish */
4015 	wait_event(fs_info->transaction_wait,
4016 		   (atomic_read(&fs_info->defrag_running) == 0));
4017 
4018 	/* clear out the rbtree of defraggable inodes */
4019 	btrfs_cleanup_defrag_inodes(fs_info);
4020 
4021 	cancel_work_sync(&fs_info->async_reclaim_work);
4022 
4023 	/* Cancel or finish ongoing discard work */
4024 	btrfs_discard_cleanup(fs_info);
4025 
4026 	if (!sb_rdonly(fs_info->sb)) {
4027 		/*
4028 		 * The cleaner kthread is stopped, so do one final pass over
4029 		 * unused block groups.
4030 		 */
4031 		btrfs_delete_unused_bgs(fs_info);
4032 
4033 		/*
4034 		 * There might be existing delayed inode workers still running
4035 		 * and holding an empty delayed inode item. We must wait for
4036 		 * them to complete first because they can create a transaction.
4037 		 * This happens when someone calls btrfs_balance_delayed_items()
4038 		 * and then a transaction commit runs the same delayed nodes
4039 		 * before any delayed worker has done something with the nodes.
4040 		 * We must wait for any worker here and not at transaction
4041 		 * commit time since that could cause a deadlock.
4042 		 * This is a very rare case.
4043 		 */
4044 		btrfs_flush_workqueue(fs_info->delayed_workers);
4045 
4046 		ret = btrfs_commit_super(fs_info);
4047 		if (ret)
4048 			btrfs_err(fs_info, "commit super ret %d", ret);
4049 	}
4050 
4051 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4052 	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4053 		btrfs_error_commit_super(fs_info);
4054 
4055 	kthread_stop(fs_info->transaction_kthread);
4056 	kthread_stop(fs_info->cleaner_kthread);
4057 
4058 	ASSERT(list_empty(&fs_info->delayed_iputs));
4059 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4060 
4061 	btrfs_free_qgroup_config(fs_info);
4062 	ASSERT(list_empty(&fs_info->delalloc_roots));
4063 
4064 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4065 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4066 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4067 	}
4068 
4069 	if (percpu_counter_sum(&fs_info->dio_bytes))
4070 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4071 			   percpu_counter_sum(&fs_info->dio_bytes));
4072 
4073 	btrfs_sysfs_remove_mounted(fs_info);
4074 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4075 
4076 	btrfs_put_block_group_cache(fs_info);
4077 
4078 	/*
4079 	 * we must make sure there is not any read request to
4080 	 * submit after we stopping all workers.
4081 	 */
4082 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4083 	btrfs_stop_all_workers(fs_info);
4084 
4085 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4086 	free_root_pointers(fs_info, true);
4087 	btrfs_free_fs_roots(fs_info);
4088 
4089 	/*
4090 	 * We must free the block groups after dropping the fs_roots as we could
4091 	 * have had an IO error and have left over tree log blocks that aren't
4092 	 * cleaned up until the fs roots are freed.  This makes the block group
4093 	 * accounting appear to be wrong because there's pending reserved bytes,
4094 	 * so make sure we do the block group cleanup afterwards.
4095 	 */
4096 	btrfs_free_block_groups(fs_info);
4097 
4098 	iput(fs_info->btree_inode);
4099 
4100 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4101 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4102 		btrfsic_unmount(fs_info->fs_devices);
4103 #endif
4104 
4105 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4106 	btrfs_close_devices(fs_info->fs_devices);
4107 }
4108 
4109 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4110 			  int atomic)
4111 {
4112 	int ret;
4113 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4114 
4115 	ret = extent_buffer_uptodate(buf);
4116 	if (!ret)
4117 		return ret;
4118 
4119 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4120 				    parent_transid, atomic);
4121 	if (ret == -EAGAIN)
4122 		return ret;
4123 	return !ret;
4124 }
4125 
4126 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4127 {
4128 	struct btrfs_fs_info *fs_info;
4129 	struct btrfs_root *root;
4130 	u64 transid = btrfs_header_generation(buf);
4131 	int was_dirty;
4132 
4133 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4134 	/*
4135 	 * This is a fast path so only do this check if we have sanity tests
4136 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4137 	 * outside of the sanity tests.
4138 	 */
4139 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4140 		return;
4141 #endif
4142 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4143 	fs_info = root->fs_info;
4144 	btrfs_assert_tree_locked(buf);
4145 	if (transid != fs_info->generation)
4146 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4147 			buf->start, transid, fs_info->generation);
4148 	was_dirty = set_extent_buffer_dirty(buf);
4149 	if (!was_dirty)
4150 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4151 					 buf->len,
4152 					 fs_info->dirty_metadata_batch);
4153 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4154 	/*
4155 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4156 	 * but item data not updated.
4157 	 * So here we should only check item pointers, not item data.
4158 	 */
4159 	if (btrfs_header_level(buf) == 0 &&
4160 	    btrfs_check_leaf_relaxed(buf)) {
4161 		btrfs_print_leaf(buf);
4162 		ASSERT(0);
4163 	}
4164 #endif
4165 }
4166 
4167 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4168 					int flush_delayed)
4169 {
4170 	/*
4171 	 * looks as though older kernels can get into trouble with
4172 	 * this code, they end up stuck in balance_dirty_pages forever
4173 	 */
4174 	int ret;
4175 
4176 	if (current->flags & PF_MEMALLOC)
4177 		return;
4178 
4179 	if (flush_delayed)
4180 		btrfs_balance_delayed_items(fs_info);
4181 
4182 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4183 				     BTRFS_DIRTY_METADATA_THRESH,
4184 				     fs_info->dirty_metadata_batch);
4185 	if (ret > 0) {
4186 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4187 	}
4188 }
4189 
4190 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4191 {
4192 	__btrfs_btree_balance_dirty(fs_info, 1);
4193 }
4194 
4195 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4196 {
4197 	__btrfs_btree_balance_dirty(fs_info, 0);
4198 }
4199 
4200 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4201 		      struct btrfs_key *first_key)
4202 {
4203 	return btree_read_extent_buffer_pages(buf, parent_transid,
4204 					      level, first_key);
4205 }
4206 
4207 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4208 {
4209 	/* cleanup FS via transaction */
4210 	btrfs_cleanup_transaction(fs_info);
4211 
4212 	mutex_lock(&fs_info->cleaner_mutex);
4213 	btrfs_run_delayed_iputs(fs_info);
4214 	mutex_unlock(&fs_info->cleaner_mutex);
4215 
4216 	down_write(&fs_info->cleanup_work_sem);
4217 	up_write(&fs_info->cleanup_work_sem);
4218 }
4219 
4220 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4221 {
4222 	struct btrfs_root *gang[8];
4223 	u64 root_objectid = 0;
4224 	int ret;
4225 
4226 	spin_lock(&fs_info->fs_roots_radix_lock);
4227 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4228 					     (void **)gang, root_objectid,
4229 					     ARRAY_SIZE(gang))) != 0) {
4230 		int i;
4231 
4232 		for (i = 0; i < ret; i++)
4233 			gang[i] = btrfs_grab_root(gang[i]);
4234 		spin_unlock(&fs_info->fs_roots_radix_lock);
4235 
4236 		for (i = 0; i < ret; i++) {
4237 			if (!gang[i])
4238 				continue;
4239 			root_objectid = gang[i]->root_key.objectid;
4240 			btrfs_free_log(NULL, gang[i]);
4241 			btrfs_put_root(gang[i]);
4242 		}
4243 		root_objectid++;
4244 		spin_lock(&fs_info->fs_roots_radix_lock);
4245 	}
4246 	spin_unlock(&fs_info->fs_roots_radix_lock);
4247 	btrfs_free_log_root_tree(NULL, fs_info);
4248 }
4249 
4250 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4251 {
4252 	struct btrfs_ordered_extent *ordered;
4253 
4254 	spin_lock(&root->ordered_extent_lock);
4255 	/*
4256 	 * This will just short circuit the ordered completion stuff which will
4257 	 * make sure the ordered extent gets properly cleaned up.
4258 	 */
4259 	list_for_each_entry(ordered, &root->ordered_extents,
4260 			    root_extent_list)
4261 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4262 	spin_unlock(&root->ordered_extent_lock);
4263 }
4264 
4265 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4266 {
4267 	struct btrfs_root *root;
4268 	struct list_head splice;
4269 
4270 	INIT_LIST_HEAD(&splice);
4271 
4272 	spin_lock(&fs_info->ordered_root_lock);
4273 	list_splice_init(&fs_info->ordered_roots, &splice);
4274 	while (!list_empty(&splice)) {
4275 		root = list_first_entry(&splice, struct btrfs_root,
4276 					ordered_root);
4277 		list_move_tail(&root->ordered_root,
4278 			       &fs_info->ordered_roots);
4279 
4280 		spin_unlock(&fs_info->ordered_root_lock);
4281 		btrfs_destroy_ordered_extents(root);
4282 
4283 		cond_resched();
4284 		spin_lock(&fs_info->ordered_root_lock);
4285 	}
4286 	spin_unlock(&fs_info->ordered_root_lock);
4287 
4288 	/*
4289 	 * We need this here because if we've been flipped read-only we won't
4290 	 * get sync() from the umount, so we need to make sure any ordered
4291 	 * extents that haven't had their dirty pages IO start writeout yet
4292 	 * actually get run and error out properly.
4293 	 */
4294 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4295 }
4296 
4297 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4298 				      struct btrfs_fs_info *fs_info)
4299 {
4300 	struct rb_node *node;
4301 	struct btrfs_delayed_ref_root *delayed_refs;
4302 	struct btrfs_delayed_ref_node *ref;
4303 	int ret = 0;
4304 
4305 	delayed_refs = &trans->delayed_refs;
4306 
4307 	spin_lock(&delayed_refs->lock);
4308 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4309 		spin_unlock(&delayed_refs->lock);
4310 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4311 		return ret;
4312 	}
4313 
4314 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4315 		struct btrfs_delayed_ref_head *head;
4316 		struct rb_node *n;
4317 		bool pin_bytes = false;
4318 
4319 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4320 				href_node);
4321 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4322 			continue;
4323 
4324 		spin_lock(&head->lock);
4325 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4326 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4327 				       ref_node);
4328 			ref->in_tree = 0;
4329 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4330 			RB_CLEAR_NODE(&ref->ref_node);
4331 			if (!list_empty(&ref->add_list))
4332 				list_del(&ref->add_list);
4333 			atomic_dec(&delayed_refs->num_entries);
4334 			btrfs_put_delayed_ref(ref);
4335 		}
4336 		if (head->must_insert_reserved)
4337 			pin_bytes = true;
4338 		btrfs_free_delayed_extent_op(head->extent_op);
4339 		btrfs_delete_ref_head(delayed_refs, head);
4340 		spin_unlock(&head->lock);
4341 		spin_unlock(&delayed_refs->lock);
4342 		mutex_unlock(&head->mutex);
4343 
4344 		if (pin_bytes) {
4345 			struct btrfs_block_group *cache;
4346 
4347 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4348 			BUG_ON(!cache);
4349 
4350 			spin_lock(&cache->space_info->lock);
4351 			spin_lock(&cache->lock);
4352 			cache->pinned += head->num_bytes;
4353 			btrfs_space_info_update_bytes_pinned(fs_info,
4354 				cache->space_info, head->num_bytes);
4355 			cache->reserved -= head->num_bytes;
4356 			cache->space_info->bytes_reserved -= head->num_bytes;
4357 			spin_unlock(&cache->lock);
4358 			spin_unlock(&cache->space_info->lock);
4359 			percpu_counter_add_batch(
4360 				&cache->space_info->total_bytes_pinned,
4361 				head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4362 
4363 			btrfs_put_block_group(cache);
4364 
4365 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4366 				head->bytenr + head->num_bytes - 1);
4367 		}
4368 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4369 		btrfs_put_delayed_ref_head(head);
4370 		cond_resched();
4371 		spin_lock(&delayed_refs->lock);
4372 	}
4373 	btrfs_qgroup_destroy_extent_records(trans);
4374 
4375 	spin_unlock(&delayed_refs->lock);
4376 
4377 	return ret;
4378 }
4379 
4380 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4381 {
4382 	struct btrfs_inode *btrfs_inode;
4383 	struct list_head splice;
4384 
4385 	INIT_LIST_HEAD(&splice);
4386 
4387 	spin_lock(&root->delalloc_lock);
4388 	list_splice_init(&root->delalloc_inodes, &splice);
4389 
4390 	while (!list_empty(&splice)) {
4391 		struct inode *inode = NULL;
4392 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4393 					       delalloc_inodes);
4394 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4395 		spin_unlock(&root->delalloc_lock);
4396 
4397 		/*
4398 		 * Make sure we get a live inode and that it'll not disappear
4399 		 * meanwhile.
4400 		 */
4401 		inode = igrab(&btrfs_inode->vfs_inode);
4402 		if (inode) {
4403 			invalidate_inode_pages2(inode->i_mapping);
4404 			iput(inode);
4405 		}
4406 		spin_lock(&root->delalloc_lock);
4407 	}
4408 	spin_unlock(&root->delalloc_lock);
4409 }
4410 
4411 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4412 {
4413 	struct btrfs_root *root;
4414 	struct list_head splice;
4415 
4416 	INIT_LIST_HEAD(&splice);
4417 
4418 	spin_lock(&fs_info->delalloc_root_lock);
4419 	list_splice_init(&fs_info->delalloc_roots, &splice);
4420 	while (!list_empty(&splice)) {
4421 		root = list_first_entry(&splice, struct btrfs_root,
4422 					 delalloc_root);
4423 		root = btrfs_grab_root(root);
4424 		BUG_ON(!root);
4425 		spin_unlock(&fs_info->delalloc_root_lock);
4426 
4427 		btrfs_destroy_delalloc_inodes(root);
4428 		btrfs_put_root(root);
4429 
4430 		spin_lock(&fs_info->delalloc_root_lock);
4431 	}
4432 	spin_unlock(&fs_info->delalloc_root_lock);
4433 }
4434 
4435 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4436 					struct extent_io_tree *dirty_pages,
4437 					int mark)
4438 {
4439 	int ret;
4440 	struct extent_buffer *eb;
4441 	u64 start = 0;
4442 	u64 end;
4443 
4444 	while (1) {
4445 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4446 					    mark, NULL);
4447 		if (ret)
4448 			break;
4449 
4450 		clear_extent_bits(dirty_pages, start, end, mark);
4451 		while (start <= end) {
4452 			eb = find_extent_buffer(fs_info, start);
4453 			start += fs_info->nodesize;
4454 			if (!eb)
4455 				continue;
4456 			wait_on_extent_buffer_writeback(eb);
4457 
4458 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4459 					       &eb->bflags))
4460 				clear_extent_buffer_dirty(eb);
4461 			free_extent_buffer_stale(eb);
4462 		}
4463 	}
4464 
4465 	return ret;
4466 }
4467 
4468 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4469 				       struct extent_io_tree *unpin)
4470 {
4471 	u64 start;
4472 	u64 end;
4473 	int ret;
4474 
4475 	while (1) {
4476 		struct extent_state *cached_state = NULL;
4477 
4478 		/*
4479 		 * The btrfs_finish_extent_commit() may get the same range as
4480 		 * ours between find_first_extent_bit and clear_extent_dirty.
4481 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4482 		 * the same extent range.
4483 		 */
4484 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4485 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4486 					    EXTENT_DIRTY, &cached_state);
4487 		if (ret) {
4488 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4489 			break;
4490 		}
4491 
4492 		clear_extent_dirty(unpin, start, end, &cached_state);
4493 		free_extent_state(cached_state);
4494 		btrfs_error_unpin_extent_range(fs_info, start, end);
4495 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4496 		cond_resched();
4497 	}
4498 
4499 	return 0;
4500 }
4501 
4502 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4503 {
4504 	struct inode *inode;
4505 
4506 	inode = cache->io_ctl.inode;
4507 	if (inode) {
4508 		invalidate_inode_pages2(inode->i_mapping);
4509 		BTRFS_I(inode)->generation = 0;
4510 		cache->io_ctl.inode = NULL;
4511 		iput(inode);
4512 	}
4513 	btrfs_put_block_group(cache);
4514 }
4515 
4516 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4517 			     struct btrfs_fs_info *fs_info)
4518 {
4519 	struct btrfs_block_group *cache;
4520 
4521 	spin_lock(&cur_trans->dirty_bgs_lock);
4522 	while (!list_empty(&cur_trans->dirty_bgs)) {
4523 		cache = list_first_entry(&cur_trans->dirty_bgs,
4524 					 struct btrfs_block_group,
4525 					 dirty_list);
4526 
4527 		if (!list_empty(&cache->io_list)) {
4528 			spin_unlock(&cur_trans->dirty_bgs_lock);
4529 			list_del_init(&cache->io_list);
4530 			btrfs_cleanup_bg_io(cache);
4531 			spin_lock(&cur_trans->dirty_bgs_lock);
4532 		}
4533 
4534 		list_del_init(&cache->dirty_list);
4535 		spin_lock(&cache->lock);
4536 		cache->disk_cache_state = BTRFS_DC_ERROR;
4537 		spin_unlock(&cache->lock);
4538 
4539 		spin_unlock(&cur_trans->dirty_bgs_lock);
4540 		btrfs_put_block_group(cache);
4541 		btrfs_delayed_refs_rsv_release(fs_info, 1);
4542 		spin_lock(&cur_trans->dirty_bgs_lock);
4543 	}
4544 	spin_unlock(&cur_trans->dirty_bgs_lock);
4545 
4546 	/*
4547 	 * Refer to the definition of io_bgs member for details why it's safe
4548 	 * to use it without any locking
4549 	 */
4550 	while (!list_empty(&cur_trans->io_bgs)) {
4551 		cache = list_first_entry(&cur_trans->io_bgs,
4552 					 struct btrfs_block_group,
4553 					 io_list);
4554 
4555 		list_del_init(&cache->io_list);
4556 		spin_lock(&cache->lock);
4557 		cache->disk_cache_state = BTRFS_DC_ERROR;
4558 		spin_unlock(&cache->lock);
4559 		btrfs_cleanup_bg_io(cache);
4560 	}
4561 }
4562 
4563 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4564 				   struct btrfs_fs_info *fs_info)
4565 {
4566 	struct btrfs_device *dev, *tmp;
4567 
4568 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4569 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4570 	ASSERT(list_empty(&cur_trans->io_bgs));
4571 
4572 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4573 				 post_commit_list) {
4574 		list_del_init(&dev->post_commit_list);
4575 	}
4576 
4577 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4578 
4579 	cur_trans->state = TRANS_STATE_COMMIT_START;
4580 	wake_up(&fs_info->transaction_blocked_wait);
4581 
4582 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4583 	wake_up(&fs_info->transaction_wait);
4584 
4585 	btrfs_destroy_delayed_inodes(fs_info);
4586 
4587 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4588 				     EXTENT_DIRTY);
4589 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4590 
4591 	cur_trans->state =TRANS_STATE_COMPLETED;
4592 	wake_up(&cur_trans->commit_wait);
4593 }
4594 
4595 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4596 {
4597 	struct btrfs_transaction *t;
4598 
4599 	mutex_lock(&fs_info->transaction_kthread_mutex);
4600 
4601 	spin_lock(&fs_info->trans_lock);
4602 	while (!list_empty(&fs_info->trans_list)) {
4603 		t = list_first_entry(&fs_info->trans_list,
4604 				     struct btrfs_transaction, list);
4605 		if (t->state >= TRANS_STATE_COMMIT_START) {
4606 			refcount_inc(&t->use_count);
4607 			spin_unlock(&fs_info->trans_lock);
4608 			btrfs_wait_for_commit(fs_info, t->transid);
4609 			btrfs_put_transaction(t);
4610 			spin_lock(&fs_info->trans_lock);
4611 			continue;
4612 		}
4613 		if (t == fs_info->running_transaction) {
4614 			t->state = TRANS_STATE_COMMIT_DOING;
4615 			spin_unlock(&fs_info->trans_lock);
4616 			/*
4617 			 * We wait for 0 num_writers since we don't hold a trans
4618 			 * handle open currently for this transaction.
4619 			 */
4620 			wait_event(t->writer_wait,
4621 				   atomic_read(&t->num_writers) == 0);
4622 		} else {
4623 			spin_unlock(&fs_info->trans_lock);
4624 		}
4625 		btrfs_cleanup_one_transaction(t, fs_info);
4626 
4627 		spin_lock(&fs_info->trans_lock);
4628 		if (t == fs_info->running_transaction)
4629 			fs_info->running_transaction = NULL;
4630 		list_del_init(&t->list);
4631 		spin_unlock(&fs_info->trans_lock);
4632 
4633 		btrfs_put_transaction(t);
4634 		trace_btrfs_transaction_commit(fs_info->tree_root);
4635 		spin_lock(&fs_info->trans_lock);
4636 	}
4637 	spin_unlock(&fs_info->trans_lock);
4638 	btrfs_destroy_all_ordered_extents(fs_info);
4639 	btrfs_destroy_delayed_inodes(fs_info);
4640 	btrfs_assert_delayed_root_empty(fs_info);
4641 	btrfs_destroy_all_delalloc_inodes(fs_info);
4642 	btrfs_drop_all_logs(fs_info);
4643 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4644 
4645 	return 0;
4646 }
4647 
4648 static const struct extent_io_ops btree_extent_io_ops = {
4649 	/* mandatory callbacks */
4650 	.submit_bio_hook = btree_submit_bio_hook,
4651 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4652 };
4653