1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/slab.h> 29 #include <linux/migrate.h> 30 #include <linux/ratelimit.h> 31 #include <linux/uuid.h> 32 #include <linux/semaphore.h> 33 #include <asm/unaligned.h> 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "hash.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "locking.h" 42 #include "tree-log.h" 43 #include "free-space-cache.h" 44 #include "free-space-tree.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 #include "dev-replace.h" 49 #include "raid56.h" 50 #include "sysfs.h" 51 #include "qgroup.h" 52 #include "compression.h" 53 #include "tree-checker.h" 54 #include "ref-verify.h" 55 56 #ifdef CONFIG_X86 57 #include <asm/cpufeature.h> 58 #endif 59 60 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 61 BTRFS_HEADER_FLAG_RELOC |\ 62 BTRFS_SUPER_FLAG_ERROR |\ 63 BTRFS_SUPER_FLAG_SEEDING |\ 64 BTRFS_SUPER_FLAG_METADUMP |\ 65 BTRFS_SUPER_FLAG_METADUMP_V2) 66 67 static const struct extent_io_ops btree_extent_io_ops; 68 static void end_workqueue_fn(struct btrfs_work *work); 69 static void free_fs_root(struct btrfs_root *root); 70 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info); 71 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 72 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 73 struct btrfs_fs_info *fs_info); 74 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 75 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 76 struct extent_io_tree *dirty_pages, 77 int mark); 78 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 79 struct extent_io_tree *pinned_extents); 80 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 81 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 82 83 /* 84 * btrfs_end_io_wq structs are used to do processing in task context when an IO 85 * is complete. This is used during reads to verify checksums, and it is used 86 * by writes to insert metadata for new file extents after IO is complete. 87 */ 88 struct btrfs_end_io_wq { 89 struct bio *bio; 90 bio_end_io_t *end_io; 91 void *private; 92 struct btrfs_fs_info *info; 93 blk_status_t status; 94 enum btrfs_wq_endio_type metadata; 95 struct btrfs_work work; 96 }; 97 98 static struct kmem_cache *btrfs_end_io_wq_cache; 99 100 int __init btrfs_end_io_wq_init(void) 101 { 102 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 103 sizeof(struct btrfs_end_io_wq), 104 0, 105 SLAB_MEM_SPREAD, 106 NULL); 107 if (!btrfs_end_io_wq_cache) 108 return -ENOMEM; 109 return 0; 110 } 111 112 void btrfs_end_io_wq_exit(void) 113 { 114 kmem_cache_destroy(btrfs_end_io_wq_cache); 115 } 116 117 /* 118 * async submit bios are used to offload expensive checksumming 119 * onto the worker threads. They checksum file and metadata bios 120 * just before they are sent down the IO stack. 121 */ 122 struct async_submit_bio { 123 void *private_data; 124 struct btrfs_fs_info *fs_info; 125 struct bio *bio; 126 extent_submit_bio_hook_t *submit_bio_start; 127 extent_submit_bio_hook_t *submit_bio_done; 128 int mirror_num; 129 unsigned long bio_flags; 130 /* 131 * bio_offset is optional, can be used if the pages in the bio 132 * can't tell us where in the file the bio should go 133 */ 134 u64 bio_offset; 135 struct btrfs_work work; 136 blk_status_t status; 137 }; 138 139 /* 140 * Lockdep class keys for extent_buffer->lock's in this root. For a given 141 * eb, the lockdep key is determined by the btrfs_root it belongs to and 142 * the level the eb occupies in the tree. 143 * 144 * Different roots are used for different purposes and may nest inside each 145 * other and they require separate keysets. As lockdep keys should be 146 * static, assign keysets according to the purpose of the root as indicated 147 * by btrfs_root->objectid. This ensures that all special purpose roots 148 * have separate keysets. 149 * 150 * Lock-nesting across peer nodes is always done with the immediate parent 151 * node locked thus preventing deadlock. As lockdep doesn't know this, use 152 * subclass to avoid triggering lockdep warning in such cases. 153 * 154 * The key is set by the readpage_end_io_hook after the buffer has passed 155 * csum validation but before the pages are unlocked. It is also set by 156 * btrfs_init_new_buffer on freshly allocated blocks. 157 * 158 * We also add a check to make sure the highest level of the tree is the 159 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 160 * needs update as well. 161 */ 162 #ifdef CONFIG_DEBUG_LOCK_ALLOC 163 # if BTRFS_MAX_LEVEL != 8 164 # error 165 # endif 166 167 static struct btrfs_lockdep_keyset { 168 u64 id; /* root objectid */ 169 const char *name_stem; /* lock name stem */ 170 char names[BTRFS_MAX_LEVEL + 1][20]; 171 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 172 } btrfs_lockdep_keysets[] = { 173 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 174 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 175 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 176 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 177 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 178 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 179 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 180 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 181 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 182 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 183 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 184 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 185 { .id = 0, .name_stem = "tree" }, 186 }; 187 188 void __init btrfs_init_lockdep(void) 189 { 190 int i, j; 191 192 /* initialize lockdep class names */ 193 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 194 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 195 196 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 197 snprintf(ks->names[j], sizeof(ks->names[j]), 198 "btrfs-%s-%02d", ks->name_stem, j); 199 } 200 } 201 202 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 203 int level) 204 { 205 struct btrfs_lockdep_keyset *ks; 206 207 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 208 209 /* find the matching keyset, id 0 is the default entry */ 210 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 211 if (ks->id == objectid) 212 break; 213 214 lockdep_set_class_and_name(&eb->lock, 215 &ks->keys[level], ks->names[level]); 216 } 217 218 #endif 219 220 /* 221 * extents on the btree inode are pretty simple, there's one extent 222 * that covers the entire device 223 */ 224 struct extent_map *btree_get_extent(struct btrfs_inode *inode, 225 struct page *page, size_t pg_offset, u64 start, u64 len, 226 int create) 227 { 228 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 229 struct extent_map_tree *em_tree = &inode->extent_tree; 230 struct extent_map *em; 231 int ret; 232 233 read_lock(&em_tree->lock); 234 em = lookup_extent_mapping(em_tree, start, len); 235 if (em) { 236 em->bdev = fs_info->fs_devices->latest_bdev; 237 read_unlock(&em_tree->lock); 238 goto out; 239 } 240 read_unlock(&em_tree->lock); 241 242 em = alloc_extent_map(); 243 if (!em) { 244 em = ERR_PTR(-ENOMEM); 245 goto out; 246 } 247 em->start = 0; 248 em->len = (u64)-1; 249 em->block_len = (u64)-1; 250 em->block_start = 0; 251 em->bdev = fs_info->fs_devices->latest_bdev; 252 253 write_lock(&em_tree->lock); 254 ret = add_extent_mapping(em_tree, em, 0); 255 if (ret == -EEXIST) { 256 free_extent_map(em); 257 em = lookup_extent_mapping(em_tree, start, len); 258 if (!em) 259 em = ERR_PTR(-EIO); 260 } else if (ret) { 261 free_extent_map(em); 262 em = ERR_PTR(ret); 263 } 264 write_unlock(&em_tree->lock); 265 266 out: 267 return em; 268 } 269 270 u32 btrfs_csum_data(const char *data, u32 seed, size_t len) 271 { 272 return btrfs_crc32c(seed, data, len); 273 } 274 275 void btrfs_csum_final(u32 crc, u8 *result) 276 { 277 put_unaligned_le32(~crc, result); 278 } 279 280 /* 281 * compute the csum for a btree block, and either verify it or write it 282 * into the csum field of the block. 283 */ 284 static int csum_tree_block(struct btrfs_fs_info *fs_info, 285 struct extent_buffer *buf, 286 int verify) 287 { 288 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 289 char result[BTRFS_CSUM_SIZE]; 290 unsigned long len; 291 unsigned long cur_len; 292 unsigned long offset = BTRFS_CSUM_SIZE; 293 char *kaddr; 294 unsigned long map_start; 295 unsigned long map_len; 296 int err; 297 u32 crc = ~(u32)0; 298 299 len = buf->len - offset; 300 while (len > 0) { 301 err = map_private_extent_buffer(buf, offset, 32, 302 &kaddr, &map_start, &map_len); 303 if (err) 304 return err; 305 cur_len = min(len, map_len - (offset - map_start)); 306 crc = btrfs_csum_data(kaddr + offset - map_start, 307 crc, cur_len); 308 len -= cur_len; 309 offset += cur_len; 310 } 311 memset(result, 0, BTRFS_CSUM_SIZE); 312 313 btrfs_csum_final(crc, result); 314 315 if (verify) { 316 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 317 u32 val; 318 u32 found = 0; 319 memcpy(&found, result, csum_size); 320 321 read_extent_buffer(buf, &val, 0, csum_size); 322 btrfs_warn_rl(fs_info, 323 "%s checksum verify failed on %llu wanted %X found %X level %d", 324 fs_info->sb->s_id, buf->start, 325 val, found, btrfs_header_level(buf)); 326 return -EUCLEAN; 327 } 328 } else { 329 write_extent_buffer(buf, result, 0, csum_size); 330 } 331 332 return 0; 333 } 334 335 /* 336 * we can't consider a given block up to date unless the transid of the 337 * block matches the transid in the parent node's pointer. This is how we 338 * detect blocks that either didn't get written at all or got written 339 * in the wrong place. 340 */ 341 static int verify_parent_transid(struct extent_io_tree *io_tree, 342 struct extent_buffer *eb, u64 parent_transid, 343 int atomic) 344 { 345 struct extent_state *cached_state = NULL; 346 int ret; 347 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 348 349 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 350 return 0; 351 352 if (atomic) 353 return -EAGAIN; 354 355 if (need_lock) { 356 btrfs_tree_read_lock(eb); 357 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 358 } 359 360 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 361 &cached_state); 362 if (extent_buffer_uptodate(eb) && 363 btrfs_header_generation(eb) == parent_transid) { 364 ret = 0; 365 goto out; 366 } 367 btrfs_err_rl(eb->fs_info, 368 "parent transid verify failed on %llu wanted %llu found %llu", 369 eb->start, 370 parent_transid, btrfs_header_generation(eb)); 371 ret = 1; 372 373 /* 374 * Things reading via commit roots that don't have normal protection, 375 * like send, can have a really old block in cache that may point at a 376 * block that has been freed and re-allocated. So don't clear uptodate 377 * if we find an eb that is under IO (dirty/writeback) because we could 378 * end up reading in the stale data and then writing it back out and 379 * making everybody very sad. 380 */ 381 if (!extent_buffer_under_io(eb)) 382 clear_extent_buffer_uptodate(eb); 383 out: 384 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 385 &cached_state); 386 if (need_lock) 387 btrfs_tree_read_unlock_blocking(eb); 388 return ret; 389 } 390 391 /* 392 * Return 0 if the superblock checksum type matches the checksum value of that 393 * algorithm. Pass the raw disk superblock data. 394 */ 395 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 396 char *raw_disk_sb) 397 { 398 struct btrfs_super_block *disk_sb = 399 (struct btrfs_super_block *)raw_disk_sb; 400 u16 csum_type = btrfs_super_csum_type(disk_sb); 401 int ret = 0; 402 403 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 404 u32 crc = ~(u32)0; 405 const int csum_size = sizeof(crc); 406 char result[csum_size]; 407 408 /* 409 * The super_block structure does not span the whole 410 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 411 * is filled with zeros and is included in the checksum. 412 */ 413 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 414 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 415 btrfs_csum_final(crc, result); 416 417 if (memcmp(raw_disk_sb, result, csum_size)) 418 ret = 1; 419 } 420 421 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 422 btrfs_err(fs_info, "unsupported checksum algorithm %u", 423 csum_type); 424 ret = 1; 425 } 426 427 return ret; 428 } 429 430 /* 431 * helper to read a given tree block, doing retries as required when 432 * the checksums don't match and we have alternate mirrors to try. 433 */ 434 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info, 435 struct extent_buffer *eb, 436 u64 parent_transid) 437 { 438 struct extent_io_tree *io_tree; 439 int failed = 0; 440 int ret; 441 int num_copies = 0; 442 int mirror_num = 0; 443 int failed_mirror = 0; 444 445 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 446 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 447 while (1) { 448 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE, 449 mirror_num); 450 if (!ret) { 451 if (!verify_parent_transid(io_tree, eb, 452 parent_transid, 0)) 453 break; 454 else 455 ret = -EIO; 456 } 457 458 /* 459 * This buffer's crc is fine, but its contents are corrupted, so 460 * there is no reason to read the other copies, they won't be 461 * any less wrong. 462 */ 463 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 464 break; 465 466 num_copies = btrfs_num_copies(fs_info, 467 eb->start, eb->len); 468 if (num_copies == 1) 469 break; 470 471 if (!failed_mirror) { 472 failed = 1; 473 failed_mirror = eb->read_mirror; 474 } 475 476 mirror_num++; 477 if (mirror_num == failed_mirror) 478 mirror_num++; 479 480 if (mirror_num > num_copies) 481 break; 482 } 483 484 if (failed && !ret && failed_mirror) 485 repair_eb_io_failure(fs_info, eb, failed_mirror); 486 487 return ret; 488 } 489 490 /* 491 * checksum a dirty tree block before IO. This has extra checks to make sure 492 * we only fill in the checksum field in the first page of a multi-page block 493 */ 494 495 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 496 { 497 u64 start = page_offset(page); 498 u64 found_start; 499 struct extent_buffer *eb; 500 501 eb = (struct extent_buffer *)page->private; 502 if (page != eb->pages[0]) 503 return 0; 504 505 found_start = btrfs_header_bytenr(eb); 506 /* 507 * Please do not consolidate these warnings into a single if. 508 * It is useful to know what went wrong. 509 */ 510 if (WARN_ON(found_start != start)) 511 return -EUCLEAN; 512 if (WARN_ON(!PageUptodate(page))) 513 return -EUCLEAN; 514 515 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid, 516 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 517 518 return csum_tree_block(fs_info, eb, 0); 519 } 520 521 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 522 struct extent_buffer *eb) 523 { 524 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 525 u8 fsid[BTRFS_FSID_SIZE]; 526 int ret = 1; 527 528 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 529 while (fs_devices) { 530 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 531 ret = 0; 532 break; 533 } 534 fs_devices = fs_devices->seed; 535 } 536 return ret; 537 } 538 539 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 540 u64 phy_offset, struct page *page, 541 u64 start, u64 end, int mirror) 542 { 543 u64 found_start; 544 int found_level; 545 struct extent_buffer *eb; 546 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 547 struct btrfs_fs_info *fs_info = root->fs_info; 548 int ret = 0; 549 int reads_done; 550 551 if (!page->private) 552 goto out; 553 554 eb = (struct extent_buffer *)page->private; 555 556 /* the pending IO might have been the only thing that kept this buffer 557 * in memory. Make sure we have a ref for all this other checks 558 */ 559 extent_buffer_get(eb); 560 561 reads_done = atomic_dec_and_test(&eb->io_pages); 562 if (!reads_done) 563 goto err; 564 565 eb->read_mirror = mirror; 566 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 567 ret = -EIO; 568 goto err; 569 } 570 571 found_start = btrfs_header_bytenr(eb); 572 if (found_start != eb->start) { 573 btrfs_err_rl(fs_info, "bad tree block start %llu %llu", 574 found_start, eb->start); 575 ret = -EIO; 576 goto err; 577 } 578 if (check_tree_block_fsid(fs_info, eb)) { 579 btrfs_err_rl(fs_info, "bad fsid on block %llu", 580 eb->start); 581 ret = -EIO; 582 goto err; 583 } 584 found_level = btrfs_header_level(eb); 585 if (found_level >= BTRFS_MAX_LEVEL) { 586 btrfs_err(fs_info, "bad tree block level %d", 587 (int)btrfs_header_level(eb)); 588 ret = -EIO; 589 goto err; 590 } 591 592 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 593 eb, found_level); 594 595 ret = csum_tree_block(fs_info, eb, 1); 596 if (ret) 597 goto err; 598 599 /* 600 * If this is a leaf block and it is corrupt, set the corrupt bit so 601 * that we don't try and read the other copies of this block, just 602 * return -EIO. 603 */ 604 if (found_level == 0 && btrfs_check_leaf_full(root, eb)) { 605 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 606 ret = -EIO; 607 } 608 609 if (found_level > 0 && btrfs_check_node(root, eb)) 610 ret = -EIO; 611 612 if (!ret) 613 set_extent_buffer_uptodate(eb); 614 err: 615 if (reads_done && 616 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 617 btree_readahead_hook(eb, ret); 618 619 if (ret) { 620 /* 621 * our io error hook is going to dec the io pages 622 * again, we have to make sure it has something 623 * to decrement 624 */ 625 atomic_inc(&eb->io_pages); 626 clear_extent_buffer_uptodate(eb); 627 } 628 free_extent_buffer(eb); 629 out: 630 return ret; 631 } 632 633 static int btree_io_failed_hook(struct page *page, int failed_mirror) 634 { 635 struct extent_buffer *eb; 636 637 eb = (struct extent_buffer *)page->private; 638 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 639 eb->read_mirror = failed_mirror; 640 atomic_dec(&eb->io_pages); 641 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 642 btree_readahead_hook(eb, -EIO); 643 return -EIO; /* we fixed nothing */ 644 } 645 646 static void end_workqueue_bio(struct bio *bio) 647 { 648 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 649 struct btrfs_fs_info *fs_info; 650 struct btrfs_workqueue *wq; 651 btrfs_work_func_t func; 652 653 fs_info = end_io_wq->info; 654 end_io_wq->status = bio->bi_status; 655 656 if (bio_op(bio) == REQ_OP_WRITE) { 657 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 658 wq = fs_info->endio_meta_write_workers; 659 func = btrfs_endio_meta_write_helper; 660 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 661 wq = fs_info->endio_freespace_worker; 662 func = btrfs_freespace_write_helper; 663 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 664 wq = fs_info->endio_raid56_workers; 665 func = btrfs_endio_raid56_helper; 666 } else { 667 wq = fs_info->endio_write_workers; 668 func = btrfs_endio_write_helper; 669 } 670 } else { 671 if (unlikely(end_io_wq->metadata == 672 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 673 wq = fs_info->endio_repair_workers; 674 func = btrfs_endio_repair_helper; 675 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 676 wq = fs_info->endio_raid56_workers; 677 func = btrfs_endio_raid56_helper; 678 } else if (end_io_wq->metadata) { 679 wq = fs_info->endio_meta_workers; 680 func = btrfs_endio_meta_helper; 681 } else { 682 wq = fs_info->endio_workers; 683 func = btrfs_endio_helper; 684 } 685 } 686 687 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 688 btrfs_queue_work(wq, &end_io_wq->work); 689 } 690 691 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 692 enum btrfs_wq_endio_type metadata) 693 { 694 struct btrfs_end_io_wq *end_io_wq; 695 696 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 697 if (!end_io_wq) 698 return BLK_STS_RESOURCE; 699 700 end_io_wq->private = bio->bi_private; 701 end_io_wq->end_io = bio->bi_end_io; 702 end_io_wq->info = info; 703 end_io_wq->status = 0; 704 end_io_wq->bio = bio; 705 end_io_wq->metadata = metadata; 706 707 bio->bi_private = end_io_wq; 708 bio->bi_end_io = end_workqueue_bio; 709 return 0; 710 } 711 712 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 713 { 714 unsigned long limit = min_t(unsigned long, 715 info->thread_pool_size, 716 info->fs_devices->open_devices); 717 return 256 * limit; 718 } 719 720 static void run_one_async_start(struct btrfs_work *work) 721 { 722 struct async_submit_bio *async; 723 blk_status_t ret; 724 725 async = container_of(work, struct async_submit_bio, work); 726 ret = async->submit_bio_start(async->private_data, async->bio, 727 async->mirror_num, async->bio_flags, 728 async->bio_offset); 729 if (ret) 730 async->status = ret; 731 } 732 733 static void run_one_async_done(struct btrfs_work *work) 734 { 735 struct async_submit_bio *async; 736 737 async = container_of(work, struct async_submit_bio, work); 738 739 /* If an error occurred we just want to clean up the bio and move on */ 740 if (async->status) { 741 async->bio->bi_status = async->status; 742 bio_endio(async->bio); 743 return; 744 } 745 746 async->submit_bio_done(async->private_data, async->bio, async->mirror_num, 747 async->bio_flags, async->bio_offset); 748 } 749 750 static void run_one_async_free(struct btrfs_work *work) 751 { 752 struct async_submit_bio *async; 753 754 async = container_of(work, struct async_submit_bio, work); 755 kfree(async); 756 } 757 758 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 759 int mirror_num, unsigned long bio_flags, 760 u64 bio_offset, void *private_data, 761 extent_submit_bio_hook_t *submit_bio_start, 762 extent_submit_bio_hook_t *submit_bio_done) 763 { 764 struct async_submit_bio *async; 765 766 async = kmalloc(sizeof(*async), GFP_NOFS); 767 if (!async) 768 return BLK_STS_RESOURCE; 769 770 async->private_data = private_data; 771 async->fs_info = fs_info; 772 async->bio = bio; 773 async->mirror_num = mirror_num; 774 async->submit_bio_start = submit_bio_start; 775 async->submit_bio_done = submit_bio_done; 776 777 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 778 run_one_async_done, run_one_async_free); 779 780 async->bio_flags = bio_flags; 781 async->bio_offset = bio_offset; 782 783 async->status = 0; 784 785 if (op_is_sync(bio->bi_opf)) 786 btrfs_set_work_high_priority(&async->work); 787 788 btrfs_queue_work(fs_info->workers, &async->work); 789 return 0; 790 } 791 792 static blk_status_t btree_csum_one_bio(struct bio *bio) 793 { 794 struct bio_vec *bvec; 795 struct btrfs_root *root; 796 int i, ret = 0; 797 798 ASSERT(!bio_flagged(bio, BIO_CLONED)); 799 bio_for_each_segment_all(bvec, bio, i) { 800 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 801 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 802 if (ret) 803 break; 804 } 805 806 return errno_to_blk_status(ret); 807 } 808 809 static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio, 810 int mirror_num, unsigned long bio_flags, 811 u64 bio_offset) 812 { 813 /* 814 * when we're called for a write, we're already in the async 815 * submission context. Just jump into btrfs_map_bio 816 */ 817 return btree_csum_one_bio(bio); 818 } 819 820 static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio, 821 int mirror_num, unsigned long bio_flags, 822 u64 bio_offset) 823 { 824 struct inode *inode = private_data; 825 blk_status_t ret; 826 827 /* 828 * when we're called for a write, we're already in the async 829 * submission context. Just jump into btrfs_map_bio 830 */ 831 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1); 832 if (ret) { 833 bio->bi_status = ret; 834 bio_endio(bio); 835 } 836 return ret; 837 } 838 839 static int check_async_write(struct btrfs_inode *bi) 840 { 841 if (atomic_read(&bi->sync_writers)) 842 return 0; 843 #ifdef CONFIG_X86 844 if (static_cpu_has(X86_FEATURE_XMM4_2)) 845 return 0; 846 #endif 847 return 1; 848 } 849 850 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio, 851 int mirror_num, unsigned long bio_flags, 852 u64 bio_offset) 853 { 854 struct inode *inode = private_data; 855 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 856 int async = check_async_write(BTRFS_I(inode)); 857 blk_status_t ret; 858 859 if (bio_op(bio) != REQ_OP_WRITE) { 860 /* 861 * called for a read, do the setup so that checksum validation 862 * can happen in the async kernel threads 863 */ 864 ret = btrfs_bio_wq_end_io(fs_info, bio, 865 BTRFS_WQ_ENDIO_METADATA); 866 if (ret) 867 goto out_w_error; 868 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 869 } else if (!async) { 870 ret = btree_csum_one_bio(bio); 871 if (ret) 872 goto out_w_error; 873 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 874 } else { 875 /* 876 * kthread helpers are used to submit writes so that 877 * checksumming can happen in parallel across all CPUs 878 */ 879 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 880 bio_offset, private_data, 881 __btree_submit_bio_start, 882 __btree_submit_bio_done); 883 } 884 885 if (ret) 886 goto out_w_error; 887 return 0; 888 889 out_w_error: 890 bio->bi_status = ret; 891 bio_endio(bio); 892 return ret; 893 } 894 895 #ifdef CONFIG_MIGRATION 896 static int btree_migratepage(struct address_space *mapping, 897 struct page *newpage, struct page *page, 898 enum migrate_mode mode) 899 { 900 /* 901 * we can't safely write a btree page from here, 902 * we haven't done the locking hook 903 */ 904 if (PageDirty(page)) 905 return -EAGAIN; 906 /* 907 * Buffers may be managed in a filesystem specific way. 908 * We must have no buffers or drop them. 909 */ 910 if (page_has_private(page) && 911 !try_to_release_page(page, GFP_KERNEL)) 912 return -EAGAIN; 913 return migrate_page(mapping, newpage, page, mode); 914 } 915 #endif 916 917 918 static int btree_writepages(struct address_space *mapping, 919 struct writeback_control *wbc) 920 { 921 struct btrfs_fs_info *fs_info; 922 int ret; 923 924 if (wbc->sync_mode == WB_SYNC_NONE) { 925 926 if (wbc->for_kupdate) 927 return 0; 928 929 fs_info = BTRFS_I(mapping->host)->root->fs_info; 930 /* this is a bit racy, but that's ok */ 931 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 932 BTRFS_DIRTY_METADATA_THRESH); 933 if (ret < 0) 934 return 0; 935 } 936 return btree_write_cache_pages(mapping, wbc); 937 } 938 939 static int btree_readpage(struct file *file, struct page *page) 940 { 941 struct extent_io_tree *tree; 942 tree = &BTRFS_I(page->mapping->host)->io_tree; 943 return extent_read_full_page(tree, page, btree_get_extent, 0); 944 } 945 946 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 947 { 948 if (PageWriteback(page) || PageDirty(page)) 949 return 0; 950 951 return try_release_extent_buffer(page); 952 } 953 954 static void btree_invalidatepage(struct page *page, unsigned int offset, 955 unsigned int length) 956 { 957 struct extent_io_tree *tree; 958 tree = &BTRFS_I(page->mapping->host)->io_tree; 959 extent_invalidatepage(tree, page, offset); 960 btree_releasepage(page, GFP_NOFS); 961 if (PagePrivate(page)) { 962 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 963 "page private not zero on page %llu", 964 (unsigned long long)page_offset(page)); 965 ClearPagePrivate(page); 966 set_page_private(page, 0); 967 put_page(page); 968 } 969 } 970 971 static int btree_set_page_dirty(struct page *page) 972 { 973 #ifdef DEBUG 974 struct extent_buffer *eb; 975 976 BUG_ON(!PagePrivate(page)); 977 eb = (struct extent_buffer *)page->private; 978 BUG_ON(!eb); 979 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 980 BUG_ON(!atomic_read(&eb->refs)); 981 btrfs_assert_tree_locked(eb); 982 #endif 983 return __set_page_dirty_nobuffers(page); 984 } 985 986 static const struct address_space_operations btree_aops = { 987 .readpage = btree_readpage, 988 .writepages = btree_writepages, 989 .releasepage = btree_releasepage, 990 .invalidatepage = btree_invalidatepage, 991 #ifdef CONFIG_MIGRATION 992 .migratepage = btree_migratepage, 993 #endif 994 .set_page_dirty = btree_set_page_dirty, 995 }; 996 997 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 998 { 999 struct extent_buffer *buf = NULL; 1000 struct inode *btree_inode = fs_info->btree_inode; 1001 1002 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1003 if (IS_ERR(buf)) 1004 return; 1005 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1006 buf, WAIT_NONE, 0); 1007 free_extent_buffer(buf); 1008 } 1009 1010 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr, 1011 int mirror_num, struct extent_buffer **eb) 1012 { 1013 struct extent_buffer *buf = NULL; 1014 struct inode *btree_inode = fs_info->btree_inode; 1015 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1016 int ret; 1017 1018 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1019 if (IS_ERR(buf)) 1020 return 0; 1021 1022 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1023 1024 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK, 1025 mirror_num); 1026 if (ret) { 1027 free_extent_buffer(buf); 1028 return ret; 1029 } 1030 1031 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1032 free_extent_buffer(buf); 1033 return -EIO; 1034 } else if (extent_buffer_uptodate(buf)) { 1035 *eb = buf; 1036 } else { 1037 free_extent_buffer(buf); 1038 } 1039 return 0; 1040 } 1041 1042 struct extent_buffer *btrfs_find_create_tree_block( 1043 struct btrfs_fs_info *fs_info, 1044 u64 bytenr) 1045 { 1046 if (btrfs_is_testing(fs_info)) 1047 return alloc_test_extent_buffer(fs_info, bytenr); 1048 return alloc_extent_buffer(fs_info, bytenr); 1049 } 1050 1051 1052 int btrfs_write_tree_block(struct extent_buffer *buf) 1053 { 1054 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1055 buf->start + buf->len - 1); 1056 } 1057 1058 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1059 { 1060 filemap_fdatawait_range(buf->pages[0]->mapping, 1061 buf->start, buf->start + buf->len - 1); 1062 } 1063 1064 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1065 u64 parent_transid) 1066 { 1067 struct extent_buffer *buf = NULL; 1068 int ret; 1069 1070 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1071 if (IS_ERR(buf)) 1072 return buf; 1073 1074 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid); 1075 if (ret) { 1076 free_extent_buffer(buf); 1077 return ERR_PTR(ret); 1078 } 1079 return buf; 1080 1081 } 1082 1083 void clean_tree_block(struct btrfs_fs_info *fs_info, 1084 struct extent_buffer *buf) 1085 { 1086 if (btrfs_header_generation(buf) == 1087 fs_info->running_transaction->transid) { 1088 btrfs_assert_tree_locked(buf); 1089 1090 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1091 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1092 -buf->len, 1093 fs_info->dirty_metadata_batch); 1094 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1095 btrfs_set_lock_blocking(buf); 1096 clear_extent_buffer_dirty(buf); 1097 } 1098 } 1099 } 1100 1101 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1102 { 1103 struct btrfs_subvolume_writers *writers; 1104 int ret; 1105 1106 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1107 if (!writers) 1108 return ERR_PTR(-ENOMEM); 1109 1110 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL); 1111 if (ret < 0) { 1112 kfree(writers); 1113 return ERR_PTR(ret); 1114 } 1115 1116 init_waitqueue_head(&writers->wait); 1117 return writers; 1118 } 1119 1120 static void 1121 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1122 { 1123 percpu_counter_destroy(&writers->counter); 1124 kfree(writers); 1125 } 1126 1127 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1128 u64 objectid) 1129 { 1130 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1131 root->node = NULL; 1132 root->commit_root = NULL; 1133 root->state = 0; 1134 root->orphan_cleanup_state = 0; 1135 1136 root->objectid = objectid; 1137 root->last_trans = 0; 1138 root->highest_objectid = 0; 1139 root->nr_delalloc_inodes = 0; 1140 root->nr_ordered_extents = 0; 1141 root->name = NULL; 1142 root->inode_tree = RB_ROOT; 1143 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1144 root->block_rsv = NULL; 1145 root->orphan_block_rsv = NULL; 1146 1147 INIT_LIST_HEAD(&root->dirty_list); 1148 INIT_LIST_HEAD(&root->root_list); 1149 INIT_LIST_HEAD(&root->delalloc_inodes); 1150 INIT_LIST_HEAD(&root->delalloc_root); 1151 INIT_LIST_HEAD(&root->ordered_extents); 1152 INIT_LIST_HEAD(&root->ordered_root); 1153 INIT_LIST_HEAD(&root->logged_list[0]); 1154 INIT_LIST_HEAD(&root->logged_list[1]); 1155 spin_lock_init(&root->orphan_lock); 1156 spin_lock_init(&root->inode_lock); 1157 spin_lock_init(&root->delalloc_lock); 1158 spin_lock_init(&root->ordered_extent_lock); 1159 spin_lock_init(&root->accounting_lock); 1160 spin_lock_init(&root->log_extents_lock[0]); 1161 spin_lock_init(&root->log_extents_lock[1]); 1162 mutex_init(&root->objectid_mutex); 1163 mutex_init(&root->log_mutex); 1164 mutex_init(&root->ordered_extent_mutex); 1165 mutex_init(&root->delalloc_mutex); 1166 init_waitqueue_head(&root->log_writer_wait); 1167 init_waitqueue_head(&root->log_commit_wait[0]); 1168 init_waitqueue_head(&root->log_commit_wait[1]); 1169 INIT_LIST_HEAD(&root->log_ctxs[0]); 1170 INIT_LIST_HEAD(&root->log_ctxs[1]); 1171 atomic_set(&root->log_commit[0], 0); 1172 atomic_set(&root->log_commit[1], 0); 1173 atomic_set(&root->log_writers, 0); 1174 atomic_set(&root->log_batch, 0); 1175 atomic_set(&root->orphan_inodes, 0); 1176 refcount_set(&root->refs, 1); 1177 atomic_set(&root->will_be_snapshotted, 0); 1178 atomic64_set(&root->qgroup_meta_rsv, 0); 1179 root->log_transid = 0; 1180 root->log_transid_committed = -1; 1181 root->last_log_commit = 0; 1182 if (!dummy) 1183 extent_io_tree_init(&root->dirty_log_pages, NULL); 1184 1185 memset(&root->root_key, 0, sizeof(root->root_key)); 1186 memset(&root->root_item, 0, sizeof(root->root_item)); 1187 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1188 if (!dummy) 1189 root->defrag_trans_start = fs_info->generation; 1190 else 1191 root->defrag_trans_start = 0; 1192 root->root_key.objectid = objectid; 1193 root->anon_dev = 0; 1194 1195 spin_lock_init(&root->root_item_lock); 1196 } 1197 1198 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1199 gfp_t flags) 1200 { 1201 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1202 if (root) 1203 root->fs_info = fs_info; 1204 return root; 1205 } 1206 1207 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1208 /* Should only be used by the testing infrastructure */ 1209 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1210 { 1211 struct btrfs_root *root; 1212 1213 if (!fs_info) 1214 return ERR_PTR(-EINVAL); 1215 1216 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1217 if (!root) 1218 return ERR_PTR(-ENOMEM); 1219 1220 /* We don't use the stripesize in selftest, set it as sectorsize */ 1221 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 1222 root->alloc_bytenr = 0; 1223 1224 return root; 1225 } 1226 #endif 1227 1228 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1229 struct btrfs_fs_info *fs_info, 1230 u64 objectid) 1231 { 1232 struct extent_buffer *leaf; 1233 struct btrfs_root *tree_root = fs_info->tree_root; 1234 struct btrfs_root *root; 1235 struct btrfs_key key; 1236 int ret = 0; 1237 uuid_le uuid = NULL_UUID_LE; 1238 1239 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1240 if (!root) 1241 return ERR_PTR(-ENOMEM); 1242 1243 __setup_root(root, fs_info, objectid); 1244 root->root_key.objectid = objectid; 1245 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1246 root->root_key.offset = 0; 1247 1248 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1249 if (IS_ERR(leaf)) { 1250 ret = PTR_ERR(leaf); 1251 leaf = NULL; 1252 goto fail; 1253 } 1254 1255 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 1256 btrfs_set_header_bytenr(leaf, leaf->start); 1257 btrfs_set_header_generation(leaf, trans->transid); 1258 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1259 btrfs_set_header_owner(leaf, objectid); 1260 root->node = leaf; 1261 1262 write_extent_buffer_fsid(leaf, fs_info->fsid); 1263 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid); 1264 btrfs_mark_buffer_dirty(leaf); 1265 1266 root->commit_root = btrfs_root_node(root); 1267 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1268 1269 root->root_item.flags = 0; 1270 root->root_item.byte_limit = 0; 1271 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1272 btrfs_set_root_generation(&root->root_item, trans->transid); 1273 btrfs_set_root_level(&root->root_item, 0); 1274 btrfs_set_root_refs(&root->root_item, 1); 1275 btrfs_set_root_used(&root->root_item, leaf->len); 1276 btrfs_set_root_last_snapshot(&root->root_item, 0); 1277 btrfs_set_root_dirid(&root->root_item, 0); 1278 if (is_fstree(objectid)) 1279 uuid_le_gen(&uuid); 1280 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1281 root->root_item.drop_level = 0; 1282 1283 key.objectid = objectid; 1284 key.type = BTRFS_ROOT_ITEM_KEY; 1285 key.offset = 0; 1286 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1287 if (ret) 1288 goto fail; 1289 1290 btrfs_tree_unlock(leaf); 1291 1292 return root; 1293 1294 fail: 1295 if (leaf) { 1296 btrfs_tree_unlock(leaf); 1297 free_extent_buffer(root->commit_root); 1298 free_extent_buffer(leaf); 1299 } 1300 kfree(root); 1301 1302 return ERR_PTR(ret); 1303 } 1304 1305 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1306 struct btrfs_fs_info *fs_info) 1307 { 1308 struct btrfs_root *root; 1309 struct extent_buffer *leaf; 1310 1311 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1312 if (!root) 1313 return ERR_PTR(-ENOMEM); 1314 1315 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1316 1317 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1318 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1319 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1320 1321 /* 1322 * DON'T set REF_COWS for log trees 1323 * 1324 * log trees do not get reference counted because they go away 1325 * before a real commit is actually done. They do store pointers 1326 * to file data extents, and those reference counts still get 1327 * updated (along with back refs to the log tree). 1328 */ 1329 1330 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1331 NULL, 0, 0, 0); 1332 if (IS_ERR(leaf)) { 1333 kfree(root); 1334 return ERR_CAST(leaf); 1335 } 1336 1337 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 1338 btrfs_set_header_bytenr(leaf, leaf->start); 1339 btrfs_set_header_generation(leaf, trans->transid); 1340 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1341 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1342 root->node = leaf; 1343 1344 write_extent_buffer_fsid(root->node, fs_info->fsid); 1345 btrfs_mark_buffer_dirty(root->node); 1346 btrfs_tree_unlock(root->node); 1347 return root; 1348 } 1349 1350 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1351 struct btrfs_fs_info *fs_info) 1352 { 1353 struct btrfs_root *log_root; 1354 1355 log_root = alloc_log_tree(trans, fs_info); 1356 if (IS_ERR(log_root)) 1357 return PTR_ERR(log_root); 1358 WARN_ON(fs_info->log_root_tree); 1359 fs_info->log_root_tree = log_root; 1360 return 0; 1361 } 1362 1363 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1364 struct btrfs_root *root) 1365 { 1366 struct btrfs_fs_info *fs_info = root->fs_info; 1367 struct btrfs_root *log_root; 1368 struct btrfs_inode_item *inode_item; 1369 1370 log_root = alloc_log_tree(trans, fs_info); 1371 if (IS_ERR(log_root)) 1372 return PTR_ERR(log_root); 1373 1374 log_root->last_trans = trans->transid; 1375 log_root->root_key.offset = root->root_key.objectid; 1376 1377 inode_item = &log_root->root_item.inode; 1378 btrfs_set_stack_inode_generation(inode_item, 1); 1379 btrfs_set_stack_inode_size(inode_item, 3); 1380 btrfs_set_stack_inode_nlink(inode_item, 1); 1381 btrfs_set_stack_inode_nbytes(inode_item, 1382 fs_info->nodesize); 1383 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1384 1385 btrfs_set_root_node(&log_root->root_item, log_root->node); 1386 1387 WARN_ON(root->log_root); 1388 root->log_root = log_root; 1389 root->log_transid = 0; 1390 root->log_transid_committed = -1; 1391 root->last_log_commit = 0; 1392 return 0; 1393 } 1394 1395 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1396 struct btrfs_key *key) 1397 { 1398 struct btrfs_root *root; 1399 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1400 struct btrfs_path *path; 1401 u64 generation; 1402 int ret; 1403 1404 path = btrfs_alloc_path(); 1405 if (!path) 1406 return ERR_PTR(-ENOMEM); 1407 1408 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1409 if (!root) { 1410 ret = -ENOMEM; 1411 goto alloc_fail; 1412 } 1413 1414 __setup_root(root, fs_info, key->objectid); 1415 1416 ret = btrfs_find_root(tree_root, key, path, 1417 &root->root_item, &root->root_key); 1418 if (ret) { 1419 if (ret > 0) 1420 ret = -ENOENT; 1421 goto find_fail; 1422 } 1423 1424 generation = btrfs_root_generation(&root->root_item); 1425 root->node = read_tree_block(fs_info, 1426 btrfs_root_bytenr(&root->root_item), 1427 generation); 1428 if (IS_ERR(root->node)) { 1429 ret = PTR_ERR(root->node); 1430 goto find_fail; 1431 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1432 ret = -EIO; 1433 free_extent_buffer(root->node); 1434 goto find_fail; 1435 } 1436 root->commit_root = btrfs_root_node(root); 1437 out: 1438 btrfs_free_path(path); 1439 return root; 1440 1441 find_fail: 1442 kfree(root); 1443 alloc_fail: 1444 root = ERR_PTR(ret); 1445 goto out; 1446 } 1447 1448 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1449 struct btrfs_key *location) 1450 { 1451 struct btrfs_root *root; 1452 1453 root = btrfs_read_tree_root(tree_root, location); 1454 if (IS_ERR(root)) 1455 return root; 1456 1457 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1458 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1459 btrfs_check_and_init_root_item(&root->root_item); 1460 } 1461 1462 return root; 1463 } 1464 1465 int btrfs_init_fs_root(struct btrfs_root *root) 1466 { 1467 int ret; 1468 struct btrfs_subvolume_writers *writers; 1469 1470 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1471 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1472 GFP_NOFS); 1473 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1474 ret = -ENOMEM; 1475 goto fail; 1476 } 1477 1478 writers = btrfs_alloc_subvolume_writers(); 1479 if (IS_ERR(writers)) { 1480 ret = PTR_ERR(writers); 1481 goto fail; 1482 } 1483 root->subv_writers = writers; 1484 1485 btrfs_init_free_ino_ctl(root); 1486 spin_lock_init(&root->ino_cache_lock); 1487 init_waitqueue_head(&root->ino_cache_wait); 1488 1489 ret = get_anon_bdev(&root->anon_dev); 1490 if (ret) 1491 goto fail; 1492 1493 mutex_lock(&root->objectid_mutex); 1494 ret = btrfs_find_highest_objectid(root, 1495 &root->highest_objectid); 1496 if (ret) { 1497 mutex_unlock(&root->objectid_mutex); 1498 goto fail; 1499 } 1500 1501 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1502 1503 mutex_unlock(&root->objectid_mutex); 1504 1505 return 0; 1506 fail: 1507 /* the caller is responsible to call free_fs_root */ 1508 return ret; 1509 } 1510 1511 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1512 u64 root_id) 1513 { 1514 struct btrfs_root *root; 1515 1516 spin_lock(&fs_info->fs_roots_radix_lock); 1517 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1518 (unsigned long)root_id); 1519 spin_unlock(&fs_info->fs_roots_radix_lock); 1520 return root; 1521 } 1522 1523 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1524 struct btrfs_root *root) 1525 { 1526 int ret; 1527 1528 ret = radix_tree_preload(GFP_NOFS); 1529 if (ret) 1530 return ret; 1531 1532 spin_lock(&fs_info->fs_roots_radix_lock); 1533 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1534 (unsigned long)root->root_key.objectid, 1535 root); 1536 if (ret == 0) 1537 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1538 spin_unlock(&fs_info->fs_roots_radix_lock); 1539 radix_tree_preload_end(); 1540 1541 return ret; 1542 } 1543 1544 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1545 struct btrfs_key *location, 1546 bool check_ref) 1547 { 1548 struct btrfs_root *root; 1549 struct btrfs_path *path; 1550 struct btrfs_key key; 1551 int ret; 1552 1553 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1554 return fs_info->tree_root; 1555 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1556 return fs_info->extent_root; 1557 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1558 return fs_info->chunk_root; 1559 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1560 return fs_info->dev_root; 1561 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1562 return fs_info->csum_root; 1563 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1564 return fs_info->quota_root ? fs_info->quota_root : 1565 ERR_PTR(-ENOENT); 1566 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1567 return fs_info->uuid_root ? fs_info->uuid_root : 1568 ERR_PTR(-ENOENT); 1569 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1570 return fs_info->free_space_root ? fs_info->free_space_root : 1571 ERR_PTR(-ENOENT); 1572 again: 1573 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1574 if (root) { 1575 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1576 return ERR_PTR(-ENOENT); 1577 return root; 1578 } 1579 1580 root = btrfs_read_fs_root(fs_info->tree_root, location); 1581 if (IS_ERR(root)) 1582 return root; 1583 1584 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1585 ret = -ENOENT; 1586 goto fail; 1587 } 1588 1589 ret = btrfs_init_fs_root(root); 1590 if (ret) 1591 goto fail; 1592 1593 path = btrfs_alloc_path(); 1594 if (!path) { 1595 ret = -ENOMEM; 1596 goto fail; 1597 } 1598 key.objectid = BTRFS_ORPHAN_OBJECTID; 1599 key.type = BTRFS_ORPHAN_ITEM_KEY; 1600 key.offset = location->objectid; 1601 1602 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1603 btrfs_free_path(path); 1604 if (ret < 0) 1605 goto fail; 1606 if (ret == 0) 1607 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1608 1609 ret = btrfs_insert_fs_root(fs_info, root); 1610 if (ret) { 1611 if (ret == -EEXIST) { 1612 free_fs_root(root); 1613 goto again; 1614 } 1615 goto fail; 1616 } 1617 return root; 1618 fail: 1619 free_fs_root(root); 1620 return ERR_PTR(ret); 1621 } 1622 1623 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1624 { 1625 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1626 int ret = 0; 1627 struct btrfs_device *device; 1628 struct backing_dev_info *bdi; 1629 1630 rcu_read_lock(); 1631 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1632 if (!device->bdev) 1633 continue; 1634 bdi = device->bdev->bd_bdi; 1635 if (bdi_congested(bdi, bdi_bits)) { 1636 ret = 1; 1637 break; 1638 } 1639 } 1640 rcu_read_unlock(); 1641 return ret; 1642 } 1643 1644 /* 1645 * called by the kthread helper functions to finally call the bio end_io 1646 * functions. This is where read checksum verification actually happens 1647 */ 1648 static void end_workqueue_fn(struct btrfs_work *work) 1649 { 1650 struct bio *bio; 1651 struct btrfs_end_io_wq *end_io_wq; 1652 1653 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1654 bio = end_io_wq->bio; 1655 1656 bio->bi_status = end_io_wq->status; 1657 bio->bi_private = end_io_wq->private; 1658 bio->bi_end_io = end_io_wq->end_io; 1659 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1660 bio_endio(bio); 1661 } 1662 1663 static int cleaner_kthread(void *arg) 1664 { 1665 struct btrfs_root *root = arg; 1666 struct btrfs_fs_info *fs_info = root->fs_info; 1667 int again; 1668 struct btrfs_trans_handle *trans; 1669 1670 do { 1671 again = 0; 1672 1673 /* Make the cleaner go to sleep early. */ 1674 if (btrfs_need_cleaner_sleep(fs_info)) 1675 goto sleep; 1676 1677 /* 1678 * Do not do anything if we might cause open_ctree() to block 1679 * before we have finished mounting the filesystem. 1680 */ 1681 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1682 goto sleep; 1683 1684 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1685 goto sleep; 1686 1687 /* 1688 * Avoid the problem that we change the status of the fs 1689 * during the above check and trylock. 1690 */ 1691 if (btrfs_need_cleaner_sleep(fs_info)) { 1692 mutex_unlock(&fs_info->cleaner_mutex); 1693 goto sleep; 1694 } 1695 1696 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 1697 btrfs_run_delayed_iputs(fs_info); 1698 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 1699 1700 again = btrfs_clean_one_deleted_snapshot(root); 1701 mutex_unlock(&fs_info->cleaner_mutex); 1702 1703 /* 1704 * The defragger has dealt with the R/O remount and umount, 1705 * needn't do anything special here. 1706 */ 1707 btrfs_run_defrag_inodes(fs_info); 1708 1709 /* 1710 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1711 * with relocation (btrfs_relocate_chunk) and relocation 1712 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1713 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1714 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1715 * unused block groups. 1716 */ 1717 btrfs_delete_unused_bgs(fs_info); 1718 sleep: 1719 if (!again) { 1720 set_current_state(TASK_INTERRUPTIBLE); 1721 if (!kthread_should_stop()) 1722 schedule(); 1723 __set_current_state(TASK_RUNNING); 1724 } 1725 } while (!kthread_should_stop()); 1726 1727 /* 1728 * Transaction kthread is stopped before us and wakes us up. 1729 * However we might have started a new transaction and COWed some 1730 * tree blocks when deleting unused block groups for example. So 1731 * make sure we commit the transaction we started to have a clean 1732 * shutdown when evicting the btree inode - if it has dirty pages 1733 * when we do the final iput() on it, eviction will trigger a 1734 * writeback for it which will fail with null pointer dereferences 1735 * since work queues and other resources were already released and 1736 * destroyed by the time the iput/eviction/writeback is made. 1737 */ 1738 trans = btrfs_attach_transaction(root); 1739 if (IS_ERR(trans)) { 1740 if (PTR_ERR(trans) != -ENOENT) 1741 btrfs_err(fs_info, 1742 "cleaner transaction attach returned %ld", 1743 PTR_ERR(trans)); 1744 } else { 1745 int ret; 1746 1747 ret = btrfs_commit_transaction(trans); 1748 if (ret) 1749 btrfs_err(fs_info, 1750 "cleaner open transaction commit returned %d", 1751 ret); 1752 } 1753 1754 return 0; 1755 } 1756 1757 static int transaction_kthread(void *arg) 1758 { 1759 struct btrfs_root *root = arg; 1760 struct btrfs_fs_info *fs_info = root->fs_info; 1761 struct btrfs_trans_handle *trans; 1762 struct btrfs_transaction *cur; 1763 u64 transid; 1764 unsigned long now; 1765 unsigned long delay; 1766 bool cannot_commit; 1767 1768 do { 1769 cannot_commit = false; 1770 delay = HZ * fs_info->commit_interval; 1771 mutex_lock(&fs_info->transaction_kthread_mutex); 1772 1773 spin_lock(&fs_info->trans_lock); 1774 cur = fs_info->running_transaction; 1775 if (!cur) { 1776 spin_unlock(&fs_info->trans_lock); 1777 goto sleep; 1778 } 1779 1780 now = get_seconds(); 1781 if (cur->state < TRANS_STATE_BLOCKED && 1782 (now < cur->start_time || 1783 now - cur->start_time < fs_info->commit_interval)) { 1784 spin_unlock(&fs_info->trans_lock); 1785 delay = HZ * 5; 1786 goto sleep; 1787 } 1788 transid = cur->transid; 1789 spin_unlock(&fs_info->trans_lock); 1790 1791 /* If the file system is aborted, this will always fail. */ 1792 trans = btrfs_attach_transaction(root); 1793 if (IS_ERR(trans)) { 1794 if (PTR_ERR(trans) != -ENOENT) 1795 cannot_commit = true; 1796 goto sleep; 1797 } 1798 if (transid == trans->transid) { 1799 btrfs_commit_transaction(trans); 1800 } else { 1801 btrfs_end_transaction(trans); 1802 } 1803 sleep: 1804 wake_up_process(fs_info->cleaner_kthread); 1805 mutex_unlock(&fs_info->transaction_kthread_mutex); 1806 1807 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1808 &fs_info->fs_state))) 1809 btrfs_cleanup_transaction(fs_info); 1810 set_current_state(TASK_INTERRUPTIBLE); 1811 if (!kthread_should_stop() && 1812 (!btrfs_transaction_blocked(fs_info) || 1813 cannot_commit)) 1814 schedule_timeout(delay); 1815 __set_current_state(TASK_RUNNING); 1816 } while (!kthread_should_stop()); 1817 return 0; 1818 } 1819 1820 /* 1821 * this will find the highest generation in the array of 1822 * root backups. The index of the highest array is returned, 1823 * or -1 if we can't find anything. 1824 * 1825 * We check to make sure the array is valid by comparing the 1826 * generation of the latest root in the array with the generation 1827 * in the super block. If they don't match we pitch it. 1828 */ 1829 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1830 { 1831 u64 cur; 1832 int newest_index = -1; 1833 struct btrfs_root_backup *root_backup; 1834 int i; 1835 1836 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1837 root_backup = info->super_copy->super_roots + i; 1838 cur = btrfs_backup_tree_root_gen(root_backup); 1839 if (cur == newest_gen) 1840 newest_index = i; 1841 } 1842 1843 /* check to see if we actually wrapped around */ 1844 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1845 root_backup = info->super_copy->super_roots; 1846 cur = btrfs_backup_tree_root_gen(root_backup); 1847 if (cur == newest_gen) 1848 newest_index = 0; 1849 } 1850 return newest_index; 1851 } 1852 1853 1854 /* 1855 * find the oldest backup so we know where to store new entries 1856 * in the backup array. This will set the backup_root_index 1857 * field in the fs_info struct 1858 */ 1859 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1860 u64 newest_gen) 1861 { 1862 int newest_index = -1; 1863 1864 newest_index = find_newest_super_backup(info, newest_gen); 1865 /* if there was garbage in there, just move along */ 1866 if (newest_index == -1) { 1867 info->backup_root_index = 0; 1868 } else { 1869 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1870 } 1871 } 1872 1873 /* 1874 * copy all the root pointers into the super backup array. 1875 * this will bump the backup pointer by one when it is 1876 * done 1877 */ 1878 static void backup_super_roots(struct btrfs_fs_info *info) 1879 { 1880 int next_backup; 1881 struct btrfs_root_backup *root_backup; 1882 int last_backup; 1883 1884 next_backup = info->backup_root_index; 1885 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1886 BTRFS_NUM_BACKUP_ROOTS; 1887 1888 /* 1889 * just overwrite the last backup if we're at the same generation 1890 * this happens only at umount 1891 */ 1892 root_backup = info->super_for_commit->super_roots + last_backup; 1893 if (btrfs_backup_tree_root_gen(root_backup) == 1894 btrfs_header_generation(info->tree_root->node)) 1895 next_backup = last_backup; 1896 1897 root_backup = info->super_for_commit->super_roots + next_backup; 1898 1899 /* 1900 * make sure all of our padding and empty slots get zero filled 1901 * regardless of which ones we use today 1902 */ 1903 memset(root_backup, 0, sizeof(*root_backup)); 1904 1905 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1906 1907 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1908 btrfs_set_backup_tree_root_gen(root_backup, 1909 btrfs_header_generation(info->tree_root->node)); 1910 1911 btrfs_set_backup_tree_root_level(root_backup, 1912 btrfs_header_level(info->tree_root->node)); 1913 1914 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1915 btrfs_set_backup_chunk_root_gen(root_backup, 1916 btrfs_header_generation(info->chunk_root->node)); 1917 btrfs_set_backup_chunk_root_level(root_backup, 1918 btrfs_header_level(info->chunk_root->node)); 1919 1920 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1921 btrfs_set_backup_extent_root_gen(root_backup, 1922 btrfs_header_generation(info->extent_root->node)); 1923 btrfs_set_backup_extent_root_level(root_backup, 1924 btrfs_header_level(info->extent_root->node)); 1925 1926 /* 1927 * we might commit during log recovery, which happens before we set 1928 * the fs_root. Make sure it is valid before we fill it in. 1929 */ 1930 if (info->fs_root && info->fs_root->node) { 1931 btrfs_set_backup_fs_root(root_backup, 1932 info->fs_root->node->start); 1933 btrfs_set_backup_fs_root_gen(root_backup, 1934 btrfs_header_generation(info->fs_root->node)); 1935 btrfs_set_backup_fs_root_level(root_backup, 1936 btrfs_header_level(info->fs_root->node)); 1937 } 1938 1939 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1940 btrfs_set_backup_dev_root_gen(root_backup, 1941 btrfs_header_generation(info->dev_root->node)); 1942 btrfs_set_backup_dev_root_level(root_backup, 1943 btrfs_header_level(info->dev_root->node)); 1944 1945 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1946 btrfs_set_backup_csum_root_gen(root_backup, 1947 btrfs_header_generation(info->csum_root->node)); 1948 btrfs_set_backup_csum_root_level(root_backup, 1949 btrfs_header_level(info->csum_root->node)); 1950 1951 btrfs_set_backup_total_bytes(root_backup, 1952 btrfs_super_total_bytes(info->super_copy)); 1953 btrfs_set_backup_bytes_used(root_backup, 1954 btrfs_super_bytes_used(info->super_copy)); 1955 btrfs_set_backup_num_devices(root_backup, 1956 btrfs_super_num_devices(info->super_copy)); 1957 1958 /* 1959 * if we don't copy this out to the super_copy, it won't get remembered 1960 * for the next commit 1961 */ 1962 memcpy(&info->super_copy->super_roots, 1963 &info->super_for_commit->super_roots, 1964 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1965 } 1966 1967 /* 1968 * this copies info out of the root backup array and back into 1969 * the in-memory super block. It is meant to help iterate through 1970 * the array, so you send it the number of backups you've already 1971 * tried and the last backup index you used. 1972 * 1973 * this returns -1 when it has tried all the backups 1974 */ 1975 static noinline int next_root_backup(struct btrfs_fs_info *info, 1976 struct btrfs_super_block *super, 1977 int *num_backups_tried, int *backup_index) 1978 { 1979 struct btrfs_root_backup *root_backup; 1980 int newest = *backup_index; 1981 1982 if (*num_backups_tried == 0) { 1983 u64 gen = btrfs_super_generation(super); 1984 1985 newest = find_newest_super_backup(info, gen); 1986 if (newest == -1) 1987 return -1; 1988 1989 *backup_index = newest; 1990 *num_backups_tried = 1; 1991 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1992 /* we've tried all the backups, all done */ 1993 return -1; 1994 } else { 1995 /* jump to the next oldest backup */ 1996 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1997 BTRFS_NUM_BACKUP_ROOTS; 1998 *backup_index = newest; 1999 *num_backups_tried += 1; 2000 } 2001 root_backup = super->super_roots + newest; 2002 2003 btrfs_set_super_generation(super, 2004 btrfs_backup_tree_root_gen(root_backup)); 2005 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2006 btrfs_set_super_root_level(super, 2007 btrfs_backup_tree_root_level(root_backup)); 2008 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2009 2010 /* 2011 * fixme: the total bytes and num_devices need to match or we should 2012 * need a fsck 2013 */ 2014 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2015 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2016 return 0; 2017 } 2018 2019 /* helper to cleanup workers */ 2020 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2021 { 2022 btrfs_destroy_workqueue(fs_info->fixup_workers); 2023 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2024 btrfs_destroy_workqueue(fs_info->workers); 2025 btrfs_destroy_workqueue(fs_info->endio_workers); 2026 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2027 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2028 btrfs_destroy_workqueue(fs_info->rmw_workers); 2029 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2030 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2031 btrfs_destroy_workqueue(fs_info->submit_workers); 2032 btrfs_destroy_workqueue(fs_info->delayed_workers); 2033 btrfs_destroy_workqueue(fs_info->caching_workers); 2034 btrfs_destroy_workqueue(fs_info->readahead_workers); 2035 btrfs_destroy_workqueue(fs_info->flush_workers); 2036 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2037 btrfs_destroy_workqueue(fs_info->extent_workers); 2038 /* 2039 * Now that all other work queues are destroyed, we can safely destroy 2040 * the queues used for metadata I/O, since tasks from those other work 2041 * queues can do metadata I/O operations. 2042 */ 2043 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2044 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2045 } 2046 2047 static void free_root_extent_buffers(struct btrfs_root *root) 2048 { 2049 if (root) { 2050 free_extent_buffer(root->node); 2051 free_extent_buffer(root->commit_root); 2052 root->node = NULL; 2053 root->commit_root = NULL; 2054 } 2055 } 2056 2057 /* helper to cleanup tree roots */ 2058 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2059 { 2060 free_root_extent_buffers(info->tree_root); 2061 2062 free_root_extent_buffers(info->dev_root); 2063 free_root_extent_buffers(info->extent_root); 2064 free_root_extent_buffers(info->csum_root); 2065 free_root_extent_buffers(info->quota_root); 2066 free_root_extent_buffers(info->uuid_root); 2067 if (chunk_root) 2068 free_root_extent_buffers(info->chunk_root); 2069 free_root_extent_buffers(info->free_space_root); 2070 } 2071 2072 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2073 { 2074 int ret; 2075 struct btrfs_root *gang[8]; 2076 int i; 2077 2078 while (!list_empty(&fs_info->dead_roots)) { 2079 gang[0] = list_entry(fs_info->dead_roots.next, 2080 struct btrfs_root, root_list); 2081 list_del(&gang[0]->root_list); 2082 2083 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2084 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2085 } else { 2086 free_extent_buffer(gang[0]->node); 2087 free_extent_buffer(gang[0]->commit_root); 2088 btrfs_put_fs_root(gang[0]); 2089 } 2090 } 2091 2092 while (1) { 2093 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2094 (void **)gang, 0, 2095 ARRAY_SIZE(gang)); 2096 if (!ret) 2097 break; 2098 for (i = 0; i < ret; i++) 2099 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2100 } 2101 2102 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2103 btrfs_free_log_root_tree(NULL, fs_info); 2104 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 2105 } 2106 } 2107 2108 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2109 { 2110 mutex_init(&fs_info->scrub_lock); 2111 atomic_set(&fs_info->scrubs_running, 0); 2112 atomic_set(&fs_info->scrub_pause_req, 0); 2113 atomic_set(&fs_info->scrubs_paused, 0); 2114 atomic_set(&fs_info->scrub_cancel_req, 0); 2115 init_waitqueue_head(&fs_info->scrub_pause_wait); 2116 fs_info->scrub_workers_refcnt = 0; 2117 } 2118 2119 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2120 { 2121 spin_lock_init(&fs_info->balance_lock); 2122 mutex_init(&fs_info->balance_mutex); 2123 atomic_set(&fs_info->balance_running, 0); 2124 atomic_set(&fs_info->balance_pause_req, 0); 2125 atomic_set(&fs_info->balance_cancel_req, 0); 2126 fs_info->balance_ctl = NULL; 2127 init_waitqueue_head(&fs_info->balance_wait_q); 2128 } 2129 2130 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2131 { 2132 struct inode *inode = fs_info->btree_inode; 2133 2134 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2135 set_nlink(inode, 1); 2136 /* 2137 * we set the i_size on the btree inode to the max possible int. 2138 * the real end of the address space is determined by all of 2139 * the devices in the system 2140 */ 2141 inode->i_size = OFFSET_MAX; 2142 inode->i_mapping->a_ops = &btree_aops; 2143 2144 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2145 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode); 2146 BTRFS_I(inode)->io_tree.track_uptodate = 0; 2147 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2148 2149 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2150 2151 BTRFS_I(inode)->root = fs_info->tree_root; 2152 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2153 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2154 btrfs_insert_inode_hash(inode); 2155 } 2156 2157 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2158 { 2159 fs_info->dev_replace.lock_owner = 0; 2160 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2161 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2162 rwlock_init(&fs_info->dev_replace.lock); 2163 atomic_set(&fs_info->dev_replace.read_locks, 0); 2164 atomic_set(&fs_info->dev_replace.blocking_readers, 0); 2165 init_waitqueue_head(&fs_info->replace_wait); 2166 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq); 2167 } 2168 2169 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2170 { 2171 spin_lock_init(&fs_info->qgroup_lock); 2172 mutex_init(&fs_info->qgroup_ioctl_lock); 2173 fs_info->qgroup_tree = RB_ROOT; 2174 fs_info->qgroup_op_tree = RB_ROOT; 2175 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2176 fs_info->qgroup_seq = 1; 2177 fs_info->qgroup_ulist = NULL; 2178 fs_info->qgroup_rescan_running = false; 2179 mutex_init(&fs_info->qgroup_rescan_lock); 2180 } 2181 2182 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2183 struct btrfs_fs_devices *fs_devices) 2184 { 2185 int max_active = fs_info->thread_pool_size; 2186 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2187 2188 fs_info->workers = 2189 btrfs_alloc_workqueue(fs_info, "worker", 2190 flags | WQ_HIGHPRI, max_active, 16); 2191 2192 fs_info->delalloc_workers = 2193 btrfs_alloc_workqueue(fs_info, "delalloc", 2194 flags, max_active, 2); 2195 2196 fs_info->flush_workers = 2197 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2198 flags, max_active, 0); 2199 2200 fs_info->caching_workers = 2201 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2202 2203 /* 2204 * a higher idle thresh on the submit workers makes it much more 2205 * likely that bios will be send down in a sane order to the 2206 * devices 2207 */ 2208 fs_info->submit_workers = 2209 btrfs_alloc_workqueue(fs_info, "submit", flags, 2210 min_t(u64, fs_devices->num_devices, 2211 max_active), 64); 2212 2213 fs_info->fixup_workers = 2214 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2215 2216 /* 2217 * endios are largely parallel and should have a very 2218 * low idle thresh 2219 */ 2220 fs_info->endio_workers = 2221 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2222 fs_info->endio_meta_workers = 2223 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2224 max_active, 4); 2225 fs_info->endio_meta_write_workers = 2226 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2227 max_active, 2); 2228 fs_info->endio_raid56_workers = 2229 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2230 max_active, 4); 2231 fs_info->endio_repair_workers = 2232 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2233 fs_info->rmw_workers = 2234 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2235 fs_info->endio_write_workers = 2236 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2237 max_active, 2); 2238 fs_info->endio_freespace_worker = 2239 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2240 max_active, 0); 2241 fs_info->delayed_workers = 2242 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2243 max_active, 0); 2244 fs_info->readahead_workers = 2245 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2246 max_active, 2); 2247 fs_info->qgroup_rescan_workers = 2248 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2249 fs_info->extent_workers = 2250 btrfs_alloc_workqueue(fs_info, "extent-refs", flags, 2251 min_t(u64, fs_devices->num_devices, 2252 max_active), 8); 2253 2254 if (!(fs_info->workers && fs_info->delalloc_workers && 2255 fs_info->submit_workers && fs_info->flush_workers && 2256 fs_info->endio_workers && fs_info->endio_meta_workers && 2257 fs_info->endio_meta_write_workers && 2258 fs_info->endio_repair_workers && 2259 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2260 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2261 fs_info->caching_workers && fs_info->readahead_workers && 2262 fs_info->fixup_workers && fs_info->delayed_workers && 2263 fs_info->extent_workers && 2264 fs_info->qgroup_rescan_workers)) { 2265 return -ENOMEM; 2266 } 2267 2268 return 0; 2269 } 2270 2271 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2272 struct btrfs_fs_devices *fs_devices) 2273 { 2274 int ret; 2275 struct btrfs_root *log_tree_root; 2276 struct btrfs_super_block *disk_super = fs_info->super_copy; 2277 u64 bytenr = btrfs_super_log_root(disk_super); 2278 2279 if (fs_devices->rw_devices == 0) { 2280 btrfs_warn(fs_info, "log replay required on RO media"); 2281 return -EIO; 2282 } 2283 2284 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2285 if (!log_tree_root) 2286 return -ENOMEM; 2287 2288 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2289 2290 log_tree_root->node = read_tree_block(fs_info, bytenr, 2291 fs_info->generation + 1); 2292 if (IS_ERR(log_tree_root->node)) { 2293 btrfs_warn(fs_info, "failed to read log tree"); 2294 ret = PTR_ERR(log_tree_root->node); 2295 kfree(log_tree_root); 2296 return ret; 2297 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2298 btrfs_err(fs_info, "failed to read log tree"); 2299 free_extent_buffer(log_tree_root->node); 2300 kfree(log_tree_root); 2301 return -EIO; 2302 } 2303 /* returns with log_tree_root freed on success */ 2304 ret = btrfs_recover_log_trees(log_tree_root); 2305 if (ret) { 2306 btrfs_handle_fs_error(fs_info, ret, 2307 "Failed to recover log tree"); 2308 free_extent_buffer(log_tree_root->node); 2309 kfree(log_tree_root); 2310 return ret; 2311 } 2312 2313 if (sb_rdonly(fs_info->sb)) { 2314 ret = btrfs_commit_super(fs_info); 2315 if (ret) 2316 return ret; 2317 } 2318 2319 return 0; 2320 } 2321 2322 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2323 { 2324 struct btrfs_root *tree_root = fs_info->tree_root; 2325 struct btrfs_root *root; 2326 struct btrfs_key location; 2327 int ret; 2328 2329 BUG_ON(!fs_info->tree_root); 2330 2331 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2332 location.type = BTRFS_ROOT_ITEM_KEY; 2333 location.offset = 0; 2334 2335 root = btrfs_read_tree_root(tree_root, &location); 2336 if (IS_ERR(root)) 2337 return PTR_ERR(root); 2338 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2339 fs_info->extent_root = root; 2340 2341 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2342 root = btrfs_read_tree_root(tree_root, &location); 2343 if (IS_ERR(root)) 2344 return PTR_ERR(root); 2345 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2346 fs_info->dev_root = root; 2347 btrfs_init_devices_late(fs_info); 2348 2349 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2350 root = btrfs_read_tree_root(tree_root, &location); 2351 if (IS_ERR(root)) 2352 return PTR_ERR(root); 2353 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2354 fs_info->csum_root = root; 2355 2356 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2357 root = btrfs_read_tree_root(tree_root, &location); 2358 if (!IS_ERR(root)) { 2359 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2360 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2361 fs_info->quota_root = root; 2362 } 2363 2364 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2365 root = btrfs_read_tree_root(tree_root, &location); 2366 if (IS_ERR(root)) { 2367 ret = PTR_ERR(root); 2368 if (ret != -ENOENT) 2369 return ret; 2370 } else { 2371 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2372 fs_info->uuid_root = root; 2373 } 2374 2375 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2376 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2377 root = btrfs_read_tree_root(tree_root, &location); 2378 if (IS_ERR(root)) 2379 return PTR_ERR(root); 2380 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2381 fs_info->free_space_root = root; 2382 } 2383 2384 return 0; 2385 } 2386 2387 int open_ctree(struct super_block *sb, 2388 struct btrfs_fs_devices *fs_devices, 2389 char *options) 2390 { 2391 u32 sectorsize; 2392 u32 nodesize; 2393 u32 stripesize; 2394 u64 generation; 2395 u64 features; 2396 struct btrfs_key location; 2397 struct buffer_head *bh; 2398 struct btrfs_super_block *disk_super; 2399 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2400 struct btrfs_root *tree_root; 2401 struct btrfs_root *chunk_root; 2402 int ret; 2403 int err = -EINVAL; 2404 int num_backups_tried = 0; 2405 int backup_index = 0; 2406 int max_active; 2407 int clear_free_space_tree = 0; 2408 2409 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2410 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2411 if (!tree_root || !chunk_root) { 2412 err = -ENOMEM; 2413 goto fail; 2414 } 2415 2416 ret = init_srcu_struct(&fs_info->subvol_srcu); 2417 if (ret) { 2418 err = ret; 2419 goto fail; 2420 } 2421 2422 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2423 if (ret) { 2424 err = ret; 2425 goto fail_srcu; 2426 } 2427 fs_info->dirty_metadata_batch = PAGE_SIZE * 2428 (1 + ilog2(nr_cpu_ids)); 2429 2430 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2431 if (ret) { 2432 err = ret; 2433 goto fail_dirty_metadata_bytes; 2434 } 2435 2436 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); 2437 if (ret) { 2438 err = ret; 2439 goto fail_delalloc_bytes; 2440 } 2441 2442 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2443 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2444 INIT_LIST_HEAD(&fs_info->trans_list); 2445 INIT_LIST_HEAD(&fs_info->dead_roots); 2446 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2447 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2448 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2449 spin_lock_init(&fs_info->delalloc_root_lock); 2450 spin_lock_init(&fs_info->trans_lock); 2451 spin_lock_init(&fs_info->fs_roots_radix_lock); 2452 spin_lock_init(&fs_info->delayed_iput_lock); 2453 spin_lock_init(&fs_info->defrag_inodes_lock); 2454 spin_lock_init(&fs_info->tree_mod_seq_lock); 2455 spin_lock_init(&fs_info->super_lock); 2456 spin_lock_init(&fs_info->qgroup_op_lock); 2457 spin_lock_init(&fs_info->buffer_lock); 2458 spin_lock_init(&fs_info->unused_bgs_lock); 2459 rwlock_init(&fs_info->tree_mod_log_lock); 2460 mutex_init(&fs_info->unused_bg_unpin_mutex); 2461 mutex_init(&fs_info->delete_unused_bgs_mutex); 2462 mutex_init(&fs_info->reloc_mutex); 2463 mutex_init(&fs_info->delalloc_root_mutex); 2464 mutex_init(&fs_info->cleaner_delayed_iput_mutex); 2465 seqlock_init(&fs_info->profiles_lock); 2466 2467 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2468 INIT_LIST_HEAD(&fs_info->space_info); 2469 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2470 INIT_LIST_HEAD(&fs_info->unused_bgs); 2471 btrfs_mapping_init(&fs_info->mapping_tree); 2472 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2473 BTRFS_BLOCK_RSV_GLOBAL); 2474 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2475 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2476 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2477 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2478 BTRFS_BLOCK_RSV_DELOPS); 2479 atomic_set(&fs_info->async_delalloc_pages, 0); 2480 atomic_set(&fs_info->defrag_running, 0); 2481 atomic_set(&fs_info->qgroup_op_seq, 0); 2482 atomic_set(&fs_info->reada_works_cnt, 0); 2483 atomic64_set(&fs_info->tree_mod_seq, 0); 2484 fs_info->sb = sb; 2485 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2486 fs_info->metadata_ratio = 0; 2487 fs_info->defrag_inodes = RB_ROOT; 2488 atomic64_set(&fs_info->free_chunk_space, 0); 2489 fs_info->tree_mod_log = RB_ROOT; 2490 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2491 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2492 /* readahead state */ 2493 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2494 spin_lock_init(&fs_info->reada_lock); 2495 btrfs_init_ref_verify(fs_info); 2496 2497 fs_info->thread_pool_size = min_t(unsigned long, 2498 num_online_cpus() + 2, 8); 2499 2500 INIT_LIST_HEAD(&fs_info->ordered_roots); 2501 spin_lock_init(&fs_info->ordered_root_lock); 2502 2503 fs_info->btree_inode = new_inode(sb); 2504 if (!fs_info->btree_inode) { 2505 err = -ENOMEM; 2506 goto fail_bio_counter; 2507 } 2508 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2509 2510 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2511 GFP_KERNEL); 2512 if (!fs_info->delayed_root) { 2513 err = -ENOMEM; 2514 goto fail_iput; 2515 } 2516 btrfs_init_delayed_root(fs_info->delayed_root); 2517 2518 btrfs_init_scrub(fs_info); 2519 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2520 fs_info->check_integrity_print_mask = 0; 2521 #endif 2522 btrfs_init_balance(fs_info); 2523 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2524 2525 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2526 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2527 2528 btrfs_init_btree_inode(fs_info); 2529 2530 spin_lock_init(&fs_info->block_group_cache_lock); 2531 fs_info->block_group_cache_tree = RB_ROOT; 2532 fs_info->first_logical_byte = (u64)-1; 2533 2534 extent_io_tree_init(&fs_info->freed_extents[0], NULL); 2535 extent_io_tree_init(&fs_info->freed_extents[1], NULL); 2536 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2537 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2538 2539 mutex_init(&fs_info->ordered_operations_mutex); 2540 mutex_init(&fs_info->tree_log_mutex); 2541 mutex_init(&fs_info->chunk_mutex); 2542 mutex_init(&fs_info->transaction_kthread_mutex); 2543 mutex_init(&fs_info->cleaner_mutex); 2544 mutex_init(&fs_info->volume_mutex); 2545 mutex_init(&fs_info->ro_block_group_mutex); 2546 init_rwsem(&fs_info->commit_root_sem); 2547 init_rwsem(&fs_info->cleanup_work_sem); 2548 init_rwsem(&fs_info->subvol_sem); 2549 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2550 2551 btrfs_init_dev_replace_locks(fs_info); 2552 btrfs_init_qgroup(fs_info); 2553 2554 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2555 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2556 2557 init_waitqueue_head(&fs_info->transaction_throttle); 2558 init_waitqueue_head(&fs_info->transaction_wait); 2559 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2560 init_waitqueue_head(&fs_info->async_submit_wait); 2561 2562 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2563 2564 /* Usable values until the real ones are cached from the superblock */ 2565 fs_info->nodesize = 4096; 2566 fs_info->sectorsize = 4096; 2567 fs_info->stripesize = 4096; 2568 2569 ret = btrfs_alloc_stripe_hash_table(fs_info); 2570 if (ret) { 2571 err = ret; 2572 goto fail_alloc; 2573 } 2574 2575 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 2576 2577 invalidate_bdev(fs_devices->latest_bdev); 2578 2579 /* 2580 * Read super block and check the signature bytes only 2581 */ 2582 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2583 if (IS_ERR(bh)) { 2584 err = PTR_ERR(bh); 2585 goto fail_alloc; 2586 } 2587 2588 /* 2589 * We want to check superblock checksum, the type is stored inside. 2590 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2591 */ 2592 if (btrfs_check_super_csum(fs_info, bh->b_data)) { 2593 btrfs_err(fs_info, "superblock checksum mismatch"); 2594 err = -EINVAL; 2595 brelse(bh); 2596 goto fail_alloc; 2597 } 2598 2599 /* 2600 * super_copy is zeroed at allocation time and we never touch the 2601 * following bytes up to INFO_SIZE, the checksum is calculated from 2602 * the whole block of INFO_SIZE 2603 */ 2604 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2605 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2606 sizeof(*fs_info->super_for_commit)); 2607 brelse(bh); 2608 2609 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2610 2611 ret = btrfs_check_super_valid(fs_info); 2612 if (ret) { 2613 btrfs_err(fs_info, "superblock contains fatal errors"); 2614 err = -EINVAL; 2615 goto fail_alloc; 2616 } 2617 2618 disk_super = fs_info->super_copy; 2619 if (!btrfs_super_root(disk_super)) 2620 goto fail_alloc; 2621 2622 /* check FS state, whether FS is broken. */ 2623 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2624 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2625 2626 /* 2627 * run through our array of backup supers and setup 2628 * our ring pointer to the oldest one 2629 */ 2630 generation = btrfs_super_generation(disk_super); 2631 find_oldest_super_backup(fs_info, generation); 2632 2633 /* 2634 * In the long term, we'll store the compression type in the super 2635 * block, and it'll be used for per file compression control. 2636 */ 2637 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2638 2639 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2640 if (ret) { 2641 err = ret; 2642 goto fail_alloc; 2643 } 2644 2645 features = btrfs_super_incompat_flags(disk_super) & 2646 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2647 if (features) { 2648 btrfs_err(fs_info, 2649 "cannot mount because of unsupported optional features (%llx)", 2650 features); 2651 err = -EINVAL; 2652 goto fail_alloc; 2653 } 2654 2655 features = btrfs_super_incompat_flags(disk_super); 2656 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2657 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2658 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2659 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 2660 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 2661 2662 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2663 btrfs_info(fs_info, "has skinny extents"); 2664 2665 /* 2666 * flag our filesystem as having big metadata blocks if 2667 * they are bigger than the page size 2668 */ 2669 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2670 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2671 btrfs_info(fs_info, 2672 "flagging fs with big metadata feature"); 2673 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2674 } 2675 2676 nodesize = btrfs_super_nodesize(disk_super); 2677 sectorsize = btrfs_super_sectorsize(disk_super); 2678 stripesize = sectorsize; 2679 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2680 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2681 2682 /* Cache block sizes */ 2683 fs_info->nodesize = nodesize; 2684 fs_info->sectorsize = sectorsize; 2685 fs_info->stripesize = stripesize; 2686 2687 /* 2688 * mixed block groups end up with duplicate but slightly offset 2689 * extent buffers for the same range. It leads to corruptions 2690 */ 2691 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2692 (sectorsize != nodesize)) { 2693 btrfs_err(fs_info, 2694 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2695 nodesize, sectorsize); 2696 goto fail_alloc; 2697 } 2698 2699 /* 2700 * Needn't use the lock because there is no other task which will 2701 * update the flag. 2702 */ 2703 btrfs_set_super_incompat_flags(disk_super, features); 2704 2705 features = btrfs_super_compat_ro_flags(disk_super) & 2706 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2707 if (!sb_rdonly(sb) && features) { 2708 btrfs_err(fs_info, 2709 "cannot mount read-write because of unsupported optional features (%llx)", 2710 features); 2711 err = -EINVAL; 2712 goto fail_alloc; 2713 } 2714 2715 max_active = fs_info->thread_pool_size; 2716 2717 ret = btrfs_init_workqueues(fs_info, fs_devices); 2718 if (ret) { 2719 err = ret; 2720 goto fail_sb_buffer; 2721 } 2722 2723 sb->s_bdi->congested_fn = btrfs_congested_fn; 2724 sb->s_bdi->congested_data = fs_info; 2725 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 2726 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE; 2727 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 2728 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 2729 2730 sb->s_blocksize = sectorsize; 2731 sb->s_blocksize_bits = blksize_bits(sectorsize); 2732 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE); 2733 2734 mutex_lock(&fs_info->chunk_mutex); 2735 ret = btrfs_read_sys_array(fs_info); 2736 mutex_unlock(&fs_info->chunk_mutex); 2737 if (ret) { 2738 btrfs_err(fs_info, "failed to read the system array: %d", ret); 2739 goto fail_sb_buffer; 2740 } 2741 2742 generation = btrfs_super_chunk_root_generation(disk_super); 2743 2744 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2745 2746 chunk_root->node = read_tree_block(fs_info, 2747 btrfs_super_chunk_root(disk_super), 2748 generation); 2749 if (IS_ERR(chunk_root->node) || 2750 !extent_buffer_uptodate(chunk_root->node)) { 2751 btrfs_err(fs_info, "failed to read chunk root"); 2752 if (!IS_ERR(chunk_root->node)) 2753 free_extent_buffer(chunk_root->node); 2754 chunk_root->node = NULL; 2755 goto fail_tree_roots; 2756 } 2757 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2758 chunk_root->commit_root = btrfs_root_node(chunk_root); 2759 2760 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2761 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2762 2763 ret = btrfs_read_chunk_tree(fs_info); 2764 if (ret) { 2765 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 2766 goto fail_tree_roots; 2767 } 2768 2769 /* 2770 * keep the device that is marked to be the target device for the 2771 * dev_replace procedure 2772 */ 2773 btrfs_close_extra_devices(fs_devices, 0); 2774 2775 if (!fs_devices->latest_bdev) { 2776 btrfs_err(fs_info, "failed to read devices"); 2777 goto fail_tree_roots; 2778 } 2779 2780 retry_root_backup: 2781 generation = btrfs_super_generation(disk_super); 2782 2783 tree_root->node = read_tree_block(fs_info, 2784 btrfs_super_root(disk_super), 2785 generation); 2786 if (IS_ERR(tree_root->node) || 2787 !extent_buffer_uptodate(tree_root->node)) { 2788 btrfs_warn(fs_info, "failed to read tree root"); 2789 if (!IS_ERR(tree_root->node)) 2790 free_extent_buffer(tree_root->node); 2791 tree_root->node = NULL; 2792 goto recovery_tree_root; 2793 } 2794 2795 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2796 tree_root->commit_root = btrfs_root_node(tree_root); 2797 btrfs_set_root_refs(&tree_root->root_item, 1); 2798 2799 mutex_lock(&tree_root->objectid_mutex); 2800 ret = btrfs_find_highest_objectid(tree_root, 2801 &tree_root->highest_objectid); 2802 if (ret) { 2803 mutex_unlock(&tree_root->objectid_mutex); 2804 goto recovery_tree_root; 2805 } 2806 2807 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2808 2809 mutex_unlock(&tree_root->objectid_mutex); 2810 2811 ret = btrfs_read_roots(fs_info); 2812 if (ret) 2813 goto recovery_tree_root; 2814 2815 fs_info->generation = generation; 2816 fs_info->last_trans_committed = generation; 2817 2818 ret = btrfs_recover_balance(fs_info); 2819 if (ret) { 2820 btrfs_err(fs_info, "failed to recover balance: %d", ret); 2821 goto fail_block_groups; 2822 } 2823 2824 ret = btrfs_init_dev_stats(fs_info); 2825 if (ret) { 2826 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 2827 goto fail_block_groups; 2828 } 2829 2830 ret = btrfs_init_dev_replace(fs_info); 2831 if (ret) { 2832 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 2833 goto fail_block_groups; 2834 } 2835 2836 btrfs_close_extra_devices(fs_devices, 1); 2837 2838 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 2839 if (ret) { 2840 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 2841 ret); 2842 goto fail_block_groups; 2843 } 2844 2845 ret = btrfs_sysfs_add_device(fs_devices); 2846 if (ret) { 2847 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 2848 ret); 2849 goto fail_fsdev_sysfs; 2850 } 2851 2852 ret = btrfs_sysfs_add_mounted(fs_info); 2853 if (ret) { 2854 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 2855 goto fail_fsdev_sysfs; 2856 } 2857 2858 ret = btrfs_init_space_info(fs_info); 2859 if (ret) { 2860 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 2861 goto fail_sysfs; 2862 } 2863 2864 ret = btrfs_read_block_groups(fs_info); 2865 if (ret) { 2866 btrfs_err(fs_info, "failed to read block groups: %d", ret); 2867 goto fail_sysfs; 2868 } 2869 2870 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 2871 btrfs_warn(fs_info, 2872 "writeable mount is not allowed due to too many missing devices"); 2873 goto fail_sysfs; 2874 } 2875 2876 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2877 "btrfs-cleaner"); 2878 if (IS_ERR(fs_info->cleaner_kthread)) 2879 goto fail_sysfs; 2880 2881 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2882 tree_root, 2883 "btrfs-transaction"); 2884 if (IS_ERR(fs_info->transaction_kthread)) 2885 goto fail_cleaner; 2886 2887 if (!btrfs_test_opt(fs_info, NOSSD) && 2888 !fs_info->fs_devices->rotating) { 2889 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 2890 } 2891 2892 /* 2893 * Mount does not set all options immediately, we can do it now and do 2894 * not have to wait for transaction commit 2895 */ 2896 btrfs_apply_pending_changes(fs_info); 2897 2898 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2899 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 2900 ret = btrfsic_mount(fs_info, fs_devices, 2901 btrfs_test_opt(fs_info, 2902 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2903 1 : 0, 2904 fs_info->check_integrity_print_mask); 2905 if (ret) 2906 btrfs_warn(fs_info, 2907 "failed to initialize integrity check module: %d", 2908 ret); 2909 } 2910 #endif 2911 ret = btrfs_read_qgroup_config(fs_info); 2912 if (ret) 2913 goto fail_trans_kthread; 2914 2915 if (btrfs_build_ref_tree(fs_info)) 2916 btrfs_err(fs_info, "couldn't build ref tree"); 2917 2918 /* do not make disk changes in broken FS or nologreplay is given */ 2919 if (btrfs_super_log_root(disk_super) != 0 && 2920 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 2921 ret = btrfs_replay_log(fs_info, fs_devices); 2922 if (ret) { 2923 err = ret; 2924 goto fail_qgroup; 2925 } 2926 } 2927 2928 ret = btrfs_find_orphan_roots(fs_info); 2929 if (ret) 2930 goto fail_qgroup; 2931 2932 if (!sb_rdonly(sb)) { 2933 ret = btrfs_cleanup_fs_roots(fs_info); 2934 if (ret) 2935 goto fail_qgroup; 2936 2937 mutex_lock(&fs_info->cleaner_mutex); 2938 ret = btrfs_recover_relocation(tree_root); 2939 mutex_unlock(&fs_info->cleaner_mutex); 2940 if (ret < 0) { 2941 btrfs_warn(fs_info, "failed to recover relocation: %d", 2942 ret); 2943 err = -EINVAL; 2944 goto fail_qgroup; 2945 } 2946 } 2947 2948 location.objectid = BTRFS_FS_TREE_OBJECTID; 2949 location.type = BTRFS_ROOT_ITEM_KEY; 2950 location.offset = 0; 2951 2952 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2953 if (IS_ERR(fs_info->fs_root)) { 2954 err = PTR_ERR(fs_info->fs_root); 2955 goto fail_qgroup; 2956 } 2957 2958 if (sb_rdonly(sb)) 2959 return 0; 2960 2961 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 2962 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2963 clear_free_space_tree = 1; 2964 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 2965 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 2966 btrfs_warn(fs_info, "free space tree is invalid"); 2967 clear_free_space_tree = 1; 2968 } 2969 2970 if (clear_free_space_tree) { 2971 btrfs_info(fs_info, "clearing free space tree"); 2972 ret = btrfs_clear_free_space_tree(fs_info); 2973 if (ret) { 2974 btrfs_warn(fs_info, 2975 "failed to clear free space tree: %d", ret); 2976 close_ctree(fs_info); 2977 return ret; 2978 } 2979 } 2980 2981 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 2982 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2983 btrfs_info(fs_info, "creating free space tree"); 2984 ret = btrfs_create_free_space_tree(fs_info); 2985 if (ret) { 2986 btrfs_warn(fs_info, 2987 "failed to create free space tree: %d", ret); 2988 close_ctree(fs_info); 2989 return ret; 2990 } 2991 } 2992 2993 down_read(&fs_info->cleanup_work_sem); 2994 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 2995 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 2996 up_read(&fs_info->cleanup_work_sem); 2997 close_ctree(fs_info); 2998 return ret; 2999 } 3000 up_read(&fs_info->cleanup_work_sem); 3001 3002 ret = btrfs_resume_balance_async(fs_info); 3003 if (ret) { 3004 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3005 close_ctree(fs_info); 3006 return ret; 3007 } 3008 3009 ret = btrfs_resume_dev_replace_async(fs_info); 3010 if (ret) { 3011 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3012 close_ctree(fs_info); 3013 return ret; 3014 } 3015 3016 btrfs_qgroup_rescan_resume(fs_info); 3017 3018 if (!fs_info->uuid_root) { 3019 btrfs_info(fs_info, "creating UUID tree"); 3020 ret = btrfs_create_uuid_tree(fs_info); 3021 if (ret) { 3022 btrfs_warn(fs_info, 3023 "failed to create the UUID tree: %d", ret); 3024 close_ctree(fs_info); 3025 return ret; 3026 } 3027 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3028 fs_info->generation != 3029 btrfs_super_uuid_tree_generation(disk_super)) { 3030 btrfs_info(fs_info, "checking UUID tree"); 3031 ret = btrfs_check_uuid_tree(fs_info); 3032 if (ret) { 3033 btrfs_warn(fs_info, 3034 "failed to check the UUID tree: %d", ret); 3035 close_ctree(fs_info); 3036 return ret; 3037 } 3038 } else { 3039 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3040 } 3041 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3042 3043 /* 3044 * backuproot only affect mount behavior, and if open_ctree succeeded, 3045 * no need to keep the flag 3046 */ 3047 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3048 3049 return 0; 3050 3051 fail_qgroup: 3052 btrfs_free_qgroup_config(fs_info); 3053 fail_trans_kthread: 3054 kthread_stop(fs_info->transaction_kthread); 3055 btrfs_cleanup_transaction(fs_info); 3056 btrfs_free_fs_roots(fs_info); 3057 fail_cleaner: 3058 kthread_stop(fs_info->cleaner_kthread); 3059 3060 /* 3061 * make sure we're done with the btree inode before we stop our 3062 * kthreads 3063 */ 3064 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3065 3066 fail_sysfs: 3067 btrfs_sysfs_remove_mounted(fs_info); 3068 3069 fail_fsdev_sysfs: 3070 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3071 3072 fail_block_groups: 3073 btrfs_put_block_group_cache(fs_info); 3074 3075 fail_tree_roots: 3076 free_root_pointers(fs_info, 1); 3077 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3078 3079 fail_sb_buffer: 3080 btrfs_stop_all_workers(fs_info); 3081 btrfs_free_block_groups(fs_info); 3082 fail_alloc: 3083 fail_iput: 3084 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3085 3086 iput(fs_info->btree_inode); 3087 fail_bio_counter: 3088 percpu_counter_destroy(&fs_info->bio_counter); 3089 fail_delalloc_bytes: 3090 percpu_counter_destroy(&fs_info->delalloc_bytes); 3091 fail_dirty_metadata_bytes: 3092 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3093 fail_srcu: 3094 cleanup_srcu_struct(&fs_info->subvol_srcu); 3095 fail: 3096 btrfs_free_stripe_hash_table(fs_info); 3097 btrfs_close_devices(fs_info->fs_devices); 3098 return err; 3099 3100 recovery_tree_root: 3101 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 3102 goto fail_tree_roots; 3103 3104 free_root_pointers(fs_info, 0); 3105 3106 /* don't use the log in recovery mode, it won't be valid */ 3107 btrfs_set_super_log_root(disk_super, 0); 3108 3109 /* we can't trust the free space cache either */ 3110 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3111 3112 ret = next_root_backup(fs_info, fs_info->super_copy, 3113 &num_backups_tried, &backup_index); 3114 if (ret == -1) 3115 goto fail_block_groups; 3116 goto retry_root_backup; 3117 } 3118 3119 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3120 { 3121 if (uptodate) { 3122 set_buffer_uptodate(bh); 3123 } else { 3124 struct btrfs_device *device = (struct btrfs_device *) 3125 bh->b_private; 3126 3127 btrfs_warn_rl_in_rcu(device->fs_info, 3128 "lost page write due to IO error on %s", 3129 rcu_str_deref(device->name)); 3130 /* note, we don't set_buffer_write_io_error because we have 3131 * our own ways of dealing with the IO errors 3132 */ 3133 clear_buffer_uptodate(bh); 3134 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3135 } 3136 unlock_buffer(bh); 3137 put_bh(bh); 3138 } 3139 3140 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3141 struct buffer_head **bh_ret) 3142 { 3143 struct buffer_head *bh; 3144 struct btrfs_super_block *super; 3145 u64 bytenr; 3146 3147 bytenr = btrfs_sb_offset(copy_num); 3148 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3149 return -EINVAL; 3150 3151 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE); 3152 /* 3153 * If we fail to read from the underlying devices, as of now 3154 * the best option we have is to mark it EIO. 3155 */ 3156 if (!bh) 3157 return -EIO; 3158 3159 super = (struct btrfs_super_block *)bh->b_data; 3160 if (btrfs_super_bytenr(super) != bytenr || 3161 btrfs_super_magic(super) != BTRFS_MAGIC) { 3162 brelse(bh); 3163 return -EINVAL; 3164 } 3165 3166 *bh_ret = bh; 3167 return 0; 3168 } 3169 3170 3171 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3172 { 3173 struct buffer_head *bh; 3174 struct buffer_head *latest = NULL; 3175 struct btrfs_super_block *super; 3176 int i; 3177 u64 transid = 0; 3178 int ret = -EINVAL; 3179 3180 /* we would like to check all the supers, but that would make 3181 * a btrfs mount succeed after a mkfs from a different FS. 3182 * So, we need to add a special mount option to scan for 3183 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3184 */ 3185 for (i = 0; i < 1; i++) { 3186 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3187 if (ret) 3188 continue; 3189 3190 super = (struct btrfs_super_block *)bh->b_data; 3191 3192 if (!latest || btrfs_super_generation(super) > transid) { 3193 brelse(latest); 3194 latest = bh; 3195 transid = btrfs_super_generation(super); 3196 } else { 3197 brelse(bh); 3198 } 3199 } 3200 3201 if (!latest) 3202 return ERR_PTR(ret); 3203 3204 return latest; 3205 } 3206 3207 /* 3208 * Write superblock @sb to the @device. Do not wait for completion, all the 3209 * buffer heads we write are pinned. 3210 * 3211 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3212 * the expected device size at commit time. Note that max_mirrors must be 3213 * same for write and wait phases. 3214 * 3215 * Return number of errors when buffer head is not found or submission fails. 3216 */ 3217 static int write_dev_supers(struct btrfs_device *device, 3218 struct btrfs_super_block *sb, int max_mirrors) 3219 { 3220 struct buffer_head *bh; 3221 int i; 3222 int ret; 3223 int errors = 0; 3224 u32 crc; 3225 u64 bytenr; 3226 int op_flags; 3227 3228 if (max_mirrors == 0) 3229 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3230 3231 for (i = 0; i < max_mirrors; i++) { 3232 bytenr = btrfs_sb_offset(i); 3233 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3234 device->commit_total_bytes) 3235 break; 3236 3237 btrfs_set_super_bytenr(sb, bytenr); 3238 3239 crc = ~(u32)0; 3240 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc, 3241 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 3242 btrfs_csum_final(crc, sb->csum); 3243 3244 /* One reference for us, and we leave it for the caller */ 3245 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, 3246 BTRFS_SUPER_INFO_SIZE); 3247 if (!bh) { 3248 btrfs_err(device->fs_info, 3249 "couldn't get super buffer head for bytenr %llu", 3250 bytenr); 3251 errors++; 3252 continue; 3253 } 3254 3255 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3256 3257 /* one reference for submit_bh */ 3258 get_bh(bh); 3259 3260 set_buffer_uptodate(bh); 3261 lock_buffer(bh); 3262 bh->b_end_io = btrfs_end_buffer_write_sync; 3263 bh->b_private = device; 3264 3265 /* 3266 * we fua the first super. The others we allow 3267 * to go down lazy. 3268 */ 3269 op_flags = REQ_SYNC | REQ_META | REQ_PRIO; 3270 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3271 op_flags |= REQ_FUA; 3272 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh); 3273 if (ret) 3274 errors++; 3275 } 3276 return errors < i ? 0 : -1; 3277 } 3278 3279 /* 3280 * Wait for write completion of superblocks done by write_dev_supers, 3281 * @max_mirrors same for write and wait phases. 3282 * 3283 * Return number of errors when buffer head is not found or not marked up to 3284 * date. 3285 */ 3286 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3287 { 3288 struct buffer_head *bh; 3289 int i; 3290 int errors = 0; 3291 u64 bytenr; 3292 3293 if (max_mirrors == 0) 3294 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3295 3296 for (i = 0; i < max_mirrors; i++) { 3297 bytenr = btrfs_sb_offset(i); 3298 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3299 device->commit_total_bytes) 3300 break; 3301 3302 bh = __find_get_block(device->bdev, 3303 bytenr / BTRFS_BDEV_BLOCKSIZE, 3304 BTRFS_SUPER_INFO_SIZE); 3305 if (!bh) { 3306 errors++; 3307 continue; 3308 } 3309 wait_on_buffer(bh); 3310 if (!buffer_uptodate(bh)) 3311 errors++; 3312 3313 /* drop our reference */ 3314 brelse(bh); 3315 3316 /* drop the reference from the writing run */ 3317 brelse(bh); 3318 } 3319 3320 return errors < i ? 0 : -1; 3321 } 3322 3323 /* 3324 * endio for the write_dev_flush, this will wake anyone waiting 3325 * for the barrier when it is done 3326 */ 3327 static void btrfs_end_empty_barrier(struct bio *bio) 3328 { 3329 complete(bio->bi_private); 3330 } 3331 3332 /* 3333 * Submit a flush request to the device if it supports it. Error handling is 3334 * done in the waiting counterpart. 3335 */ 3336 static void write_dev_flush(struct btrfs_device *device) 3337 { 3338 struct request_queue *q = bdev_get_queue(device->bdev); 3339 struct bio *bio = device->flush_bio; 3340 3341 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3342 return; 3343 3344 bio_reset(bio); 3345 bio->bi_end_io = btrfs_end_empty_barrier; 3346 bio_set_dev(bio, device->bdev); 3347 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3348 init_completion(&device->flush_wait); 3349 bio->bi_private = &device->flush_wait; 3350 3351 btrfsic_submit_bio(bio); 3352 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3353 } 3354 3355 /* 3356 * If the flush bio has been submitted by write_dev_flush, wait for it. 3357 */ 3358 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3359 { 3360 struct bio *bio = device->flush_bio; 3361 3362 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3363 return BLK_STS_OK; 3364 3365 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3366 wait_for_completion_io(&device->flush_wait); 3367 3368 return bio->bi_status; 3369 } 3370 3371 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3372 { 3373 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3374 return -EIO; 3375 return 0; 3376 } 3377 3378 /* 3379 * send an empty flush down to each device in parallel, 3380 * then wait for them 3381 */ 3382 static int barrier_all_devices(struct btrfs_fs_info *info) 3383 { 3384 struct list_head *head; 3385 struct btrfs_device *dev; 3386 int errors_wait = 0; 3387 blk_status_t ret; 3388 3389 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3390 /* send down all the barriers */ 3391 head = &info->fs_devices->devices; 3392 list_for_each_entry(dev, head, dev_list) { 3393 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3394 continue; 3395 if (!dev->bdev) 3396 continue; 3397 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3398 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3399 continue; 3400 3401 write_dev_flush(dev); 3402 dev->last_flush_error = BLK_STS_OK; 3403 } 3404 3405 /* wait for all the barriers */ 3406 list_for_each_entry(dev, head, dev_list) { 3407 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3408 continue; 3409 if (!dev->bdev) { 3410 errors_wait++; 3411 continue; 3412 } 3413 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3414 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3415 continue; 3416 3417 ret = wait_dev_flush(dev); 3418 if (ret) { 3419 dev->last_flush_error = ret; 3420 btrfs_dev_stat_inc_and_print(dev, 3421 BTRFS_DEV_STAT_FLUSH_ERRS); 3422 errors_wait++; 3423 } 3424 } 3425 3426 if (errors_wait) { 3427 /* 3428 * At some point we need the status of all disks 3429 * to arrive at the volume status. So error checking 3430 * is being pushed to a separate loop. 3431 */ 3432 return check_barrier_error(info); 3433 } 3434 return 0; 3435 } 3436 3437 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3438 { 3439 int raid_type; 3440 int min_tolerated = INT_MAX; 3441 3442 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3443 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3444 min_tolerated = min(min_tolerated, 3445 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3446 tolerated_failures); 3447 3448 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3449 if (raid_type == BTRFS_RAID_SINGLE) 3450 continue; 3451 if (!(flags & btrfs_raid_group[raid_type])) 3452 continue; 3453 min_tolerated = min(min_tolerated, 3454 btrfs_raid_array[raid_type]. 3455 tolerated_failures); 3456 } 3457 3458 if (min_tolerated == INT_MAX) { 3459 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3460 min_tolerated = 0; 3461 } 3462 3463 return min_tolerated; 3464 } 3465 3466 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3467 { 3468 struct list_head *head; 3469 struct btrfs_device *dev; 3470 struct btrfs_super_block *sb; 3471 struct btrfs_dev_item *dev_item; 3472 int ret; 3473 int do_barriers; 3474 int max_errors; 3475 int total_errors = 0; 3476 u64 flags; 3477 3478 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3479 3480 /* 3481 * max_mirrors == 0 indicates we're from commit_transaction, 3482 * not from fsync where the tree roots in fs_info have not 3483 * been consistent on disk. 3484 */ 3485 if (max_mirrors == 0) 3486 backup_super_roots(fs_info); 3487 3488 sb = fs_info->super_for_commit; 3489 dev_item = &sb->dev_item; 3490 3491 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3492 head = &fs_info->fs_devices->devices; 3493 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3494 3495 if (do_barriers) { 3496 ret = barrier_all_devices(fs_info); 3497 if (ret) { 3498 mutex_unlock( 3499 &fs_info->fs_devices->device_list_mutex); 3500 btrfs_handle_fs_error(fs_info, ret, 3501 "errors while submitting device barriers."); 3502 return ret; 3503 } 3504 } 3505 3506 list_for_each_entry(dev, head, dev_list) { 3507 if (!dev->bdev) { 3508 total_errors++; 3509 continue; 3510 } 3511 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3512 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3513 continue; 3514 3515 btrfs_set_stack_device_generation(dev_item, 0); 3516 btrfs_set_stack_device_type(dev_item, dev->type); 3517 btrfs_set_stack_device_id(dev_item, dev->devid); 3518 btrfs_set_stack_device_total_bytes(dev_item, 3519 dev->commit_total_bytes); 3520 btrfs_set_stack_device_bytes_used(dev_item, 3521 dev->commit_bytes_used); 3522 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3523 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3524 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3525 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3526 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE); 3527 3528 flags = btrfs_super_flags(sb); 3529 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3530 3531 ret = write_dev_supers(dev, sb, max_mirrors); 3532 if (ret) 3533 total_errors++; 3534 } 3535 if (total_errors > max_errors) { 3536 btrfs_err(fs_info, "%d errors while writing supers", 3537 total_errors); 3538 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3539 3540 /* FUA is masked off if unsupported and can't be the reason */ 3541 btrfs_handle_fs_error(fs_info, -EIO, 3542 "%d errors while writing supers", 3543 total_errors); 3544 return -EIO; 3545 } 3546 3547 total_errors = 0; 3548 list_for_each_entry(dev, head, dev_list) { 3549 if (!dev->bdev) 3550 continue; 3551 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3552 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3553 continue; 3554 3555 ret = wait_dev_supers(dev, max_mirrors); 3556 if (ret) 3557 total_errors++; 3558 } 3559 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3560 if (total_errors > max_errors) { 3561 btrfs_handle_fs_error(fs_info, -EIO, 3562 "%d errors while writing supers", 3563 total_errors); 3564 return -EIO; 3565 } 3566 return 0; 3567 } 3568 3569 /* Drop a fs root from the radix tree and free it. */ 3570 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3571 struct btrfs_root *root) 3572 { 3573 spin_lock(&fs_info->fs_roots_radix_lock); 3574 radix_tree_delete(&fs_info->fs_roots_radix, 3575 (unsigned long)root->root_key.objectid); 3576 spin_unlock(&fs_info->fs_roots_radix_lock); 3577 3578 if (btrfs_root_refs(&root->root_item) == 0) 3579 synchronize_srcu(&fs_info->subvol_srcu); 3580 3581 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3582 btrfs_free_log(NULL, root); 3583 if (root->reloc_root) { 3584 free_extent_buffer(root->reloc_root->node); 3585 free_extent_buffer(root->reloc_root->commit_root); 3586 btrfs_put_fs_root(root->reloc_root); 3587 root->reloc_root = NULL; 3588 } 3589 } 3590 3591 if (root->free_ino_pinned) 3592 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3593 if (root->free_ino_ctl) 3594 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3595 free_fs_root(root); 3596 } 3597 3598 static void free_fs_root(struct btrfs_root *root) 3599 { 3600 iput(root->ino_cache_inode); 3601 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3602 btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv); 3603 root->orphan_block_rsv = NULL; 3604 if (root->anon_dev) 3605 free_anon_bdev(root->anon_dev); 3606 if (root->subv_writers) 3607 btrfs_free_subvolume_writers(root->subv_writers); 3608 free_extent_buffer(root->node); 3609 free_extent_buffer(root->commit_root); 3610 kfree(root->free_ino_ctl); 3611 kfree(root->free_ino_pinned); 3612 kfree(root->name); 3613 btrfs_put_fs_root(root); 3614 } 3615 3616 void btrfs_free_fs_root(struct btrfs_root *root) 3617 { 3618 free_fs_root(root); 3619 } 3620 3621 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3622 { 3623 u64 root_objectid = 0; 3624 struct btrfs_root *gang[8]; 3625 int i = 0; 3626 int err = 0; 3627 unsigned int ret = 0; 3628 int index; 3629 3630 while (1) { 3631 index = srcu_read_lock(&fs_info->subvol_srcu); 3632 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3633 (void **)gang, root_objectid, 3634 ARRAY_SIZE(gang)); 3635 if (!ret) { 3636 srcu_read_unlock(&fs_info->subvol_srcu, index); 3637 break; 3638 } 3639 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3640 3641 for (i = 0; i < ret; i++) { 3642 /* Avoid to grab roots in dead_roots */ 3643 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3644 gang[i] = NULL; 3645 continue; 3646 } 3647 /* grab all the search result for later use */ 3648 gang[i] = btrfs_grab_fs_root(gang[i]); 3649 } 3650 srcu_read_unlock(&fs_info->subvol_srcu, index); 3651 3652 for (i = 0; i < ret; i++) { 3653 if (!gang[i]) 3654 continue; 3655 root_objectid = gang[i]->root_key.objectid; 3656 err = btrfs_orphan_cleanup(gang[i]); 3657 if (err) 3658 break; 3659 btrfs_put_fs_root(gang[i]); 3660 } 3661 root_objectid++; 3662 } 3663 3664 /* release the uncleaned roots due to error */ 3665 for (; i < ret; i++) { 3666 if (gang[i]) 3667 btrfs_put_fs_root(gang[i]); 3668 } 3669 return err; 3670 } 3671 3672 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3673 { 3674 struct btrfs_root *root = fs_info->tree_root; 3675 struct btrfs_trans_handle *trans; 3676 3677 mutex_lock(&fs_info->cleaner_mutex); 3678 btrfs_run_delayed_iputs(fs_info); 3679 mutex_unlock(&fs_info->cleaner_mutex); 3680 wake_up_process(fs_info->cleaner_kthread); 3681 3682 /* wait until ongoing cleanup work done */ 3683 down_write(&fs_info->cleanup_work_sem); 3684 up_write(&fs_info->cleanup_work_sem); 3685 3686 trans = btrfs_join_transaction(root); 3687 if (IS_ERR(trans)) 3688 return PTR_ERR(trans); 3689 return btrfs_commit_transaction(trans); 3690 } 3691 3692 void close_ctree(struct btrfs_fs_info *fs_info) 3693 { 3694 struct btrfs_root *root = fs_info->tree_root; 3695 int ret; 3696 3697 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3698 3699 /* wait for the qgroup rescan worker to stop */ 3700 btrfs_qgroup_wait_for_completion(fs_info, false); 3701 3702 /* wait for the uuid_scan task to finish */ 3703 down(&fs_info->uuid_tree_rescan_sem); 3704 /* avoid complains from lockdep et al., set sem back to initial state */ 3705 up(&fs_info->uuid_tree_rescan_sem); 3706 3707 /* pause restriper - we want to resume on mount */ 3708 btrfs_pause_balance(fs_info); 3709 3710 btrfs_dev_replace_suspend_for_unmount(fs_info); 3711 3712 btrfs_scrub_cancel(fs_info); 3713 3714 /* wait for any defraggers to finish */ 3715 wait_event(fs_info->transaction_wait, 3716 (atomic_read(&fs_info->defrag_running) == 0)); 3717 3718 /* clear out the rbtree of defraggable inodes */ 3719 btrfs_cleanup_defrag_inodes(fs_info); 3720 3721 cancel_work_sync(&fs_info->async_reclaim_work); 3722 3723 if (!sb_rdonly(fs_info->sb)) { 3724 /* 3725 * If the cleaner thread is stopped and there are 3726 * block groups queued for removal, the deletion will be 3727 * skipped when we quit the cleaner thread. 3728 */ 3729 btrfs_delete_unused_bgs(fs_info); 3730 3731 ret = btrfs_commit_super(fs_info); 3732 if (ret) 3733 btrfs_err(fs_info, "commit super ret %d", ret); 3734 } 3735 3736 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3737 btrfs_error_commit_super(fs_info); 3738 3739 kthread_stop(fs_info->transaction_kthread); 3740 kthread_stop(fs_info->cleaner_kthread); 3741 3742 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 3743 3744 btrfs_free_qgroup_config(fs_info); 3745 3746 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3747 btrfs_info(fs_info, "at unmount delalloc count %lld", 3748 percpu_counter_sum(&fs_info->delalloc_bytes)); 3749 } 3750 3751 btrfs_sysfs_remove_mounted(fs_info); 3752 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3753 3754 btrfs_free_fs_roots(fs_info); 3755 3756 btrfs_put_block_group_cache(fs_info); 3757 3758 /* 3759 * we must make sure there is not any read request to 3760 * submit after we stopping all workers. 3761 */ 3762 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3763 btrfs_stop_all_workers(fs_info); 3764 3765 btrfs_free_block_groups(fs_info); 3766 3767 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 3768 free_root_pointers(fs_info, 1); 3769 3770 iput(fs_info->btree_inode); 3771 3772 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3773 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 3774 btrfsic_unmount(fs_info->fs_devices); 3775 #endif 3776 3777 btrfs_close_devices(fs_info->fs_devices); 3778 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3779 3780 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3781 percpu_counter_destroy(&fs_info->delalloc_bytes); 3782 percpu_counter_destroy(&fs_info->bio_counter); 3783 cleanup_srcu_struct(&fs_info->subvol_srcu); 3784 3785 btrfs_free_stripe_hash_table(fs_info); 3786 btrfs_free_ref_cache(fs_info); 3787 3788 __btrfs_free_block_rsv(root->orphan_block_rsv); 3789 root->orphan_block_rsv = NULL; 3790 3791 while (!list_empty(&fs_info->pinned_chunks)) { 3792 struct extent_map *em; 3793 3794 em = list_first_entry(&fs_info->pinned_chunks, 3795 struct extent_map, list); 3796 list_del_init(&em->list); 3797 free_extent_map(em); 3798 } 3799 } 3800 3801 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3802 int atomic) 3803 { 3804 int ret; 3805 struct inode *btree_inode = buf->pages[0]->mapping->host; 3806 3807 ret = extent_buffer_uptodate(buf); 3808 if (!ret) 3809 return ret; 3810 3811 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3812 parent_transid, atomic); 3813 if (ret == -EAGAIN) 3814 return ret; 3815 return !ret; 3816 } 3817 3818 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3819 { 3820 struct btrfs_fs_info *fs_info; 3821 struct btrfs_root *root; 3822 u64 transid = btrfs_header_generation(buf); 3823 int was_dirty; 3824 3825 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3826 /* 3827 * This is a fast path so only do this check if we have sanity tests 3828 * enabled. Normal people shouldn't be marking dummy buffers as dirty 3829 * outside of the sanity tests. 3830 */ 3831 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 3832 return; 3833 #endif 3834 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3835 fs_info = root->fs_info; 3836 btrfs_assert_tree_locked(buf); 3837 if (transid != fs_info->generation) 3838 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 3839 buf->start, transid, fs_info->generation); 3840 was_dirty = set_extent_buffer_dirty(buf); 3841 if (!was_dirty) 3842 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 3843 buf->len, 3844 fs_info->dirty_metadata_batch); 3845 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3846 /* 3847 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 3848 * but item data not updated. 3849 * So here we should only check item pointers, not item data. 3850 */ 3851 if (btrfs_header_level(buf) == 0 && 3852 btrfs_check_leaf_relaxed(root, buf)) { 3853 btrfs_print_leaf(buf); 3854 ASSERT(0); 3855 } 3856 #endif 3857 } 3858 3859 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 3860 int flush_delayed) 3861 { 3862 /* 3863 * looks as though older kernels can get into trouble with 3864 * this code, they end up stuck in balance_dirty_pages forever 3865 */ 3866 int ret; 3867 3868 if (current->flags & PF_MEMALLOC) 3869 return; 3870 3871 if (flush_delayed) 3872 btrfs_balance_delayed_items(fs_info); 3873 3874 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 3875 BTRFS_DIRTY_METADATA_THRESH); 3876 if (ret > 0) { 3877 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 3878 } 3879 } 3880 3881 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 3882 { 3883 __btrfs_btree_balance_dirty(fs_info, 1); 3884 } 3885 3886 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 3887 { 3888 __btrfs_btree_balance_dirty(fs_info, 0); 3889 } 3890 3891 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3892 { 3893 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3894 struct btrfs_fs_info *fs_info = root->fs_info; 3895 3896 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid); 3897 } 3898 3899 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info) 3900 { 3901 struct btrfs_super_block *sb = fs_info->super_copy; 3902 u64 nodesize = btrfs_super_nodesize(sb); 3903 u64 sectorsize = btrfs_super_sectorsize(sb); 3904 int ret = 0; 3905 3906 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 3907 btrfs_err(fs_info, "no valid FS found"); 3908 ret = -EINVAL; 3909 } 3910 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 3911 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 3912 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 3913 ret = -EINVAL; 3914 } 3915 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 3916 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 3917 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 3918 ret = -EINVAL; 3919 } 3920 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 3921 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 3922 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 3923 ret = -EINVAL; 3924 } 3925 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 3926 btrfs_err(fs_info, "log_root level too big: %d >= %d", 3927 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 3928 ret = -EINVAL; 3929 } 3930 3931 /* 3932 * Check sectorsize and nodesize first, other check will need it. 3933 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 3934 */ 3935 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 3936 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 3937 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 3938 ret = -EINVAL; 3939 } 3940 /* Only PAGE SIZE is supported yet */ 3941 if (sectorsize != PAGE_SIZE) { 3942 btrfs_err(fs_info, 3943 "sectorsize %llu not supported yet, only support %lu", 3944 sectorsize, PAGE_SIZE); 3945 ret = -EINVAL; 3946 } 3947 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 3948 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 3949 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 3950 ret = -EINVAL; 3951 } 3952 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 3953 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 3954 le32_to_cpu(sb->__unused_leafsize), nodesize); 3955 ret = -EINVAL; 3956 } 3957 3958 /* Root alignment check */ 3959 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 3960 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 3961 btrfs_super_root(sb)); 3962 ret = -EINVAL; 3963 } 3964 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 3965 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 3966 btrfs_super_chunk_root(sb)); 3967 ret = -EINVAL; 3968 } 3969 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 3970 btrfs_warn(fs_info, "log_root block unaligned: %llu", 3971 btrfs_super_log_root(sb)); 3972 ret = -EINVAL; 3973 } 3974 3975 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) { 3976 btrfs_err(fs_info, 3977 "dev_item UUID does not match fsid: %pU != %pU", 3978 fs_info->fsid, sb->dev_item.fsid); 3979 ret = -EINVAL; 3980 } 3981 3982 /* 3983 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 3984 * done later 3985 */ 3986 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 3987 btrfs_err(fs_info, "bytes_used is too small %llu", 3988 btrfs_super_bytes_used(sb)); 3989 ret = -EINVAL; 3990 } 3991 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 3992 btrfs_err(fs_info, "invalid stripesize %u", 3993 btrfs_super_stripesize(sb)); 3994 ret = -EINVAL; 3995 } 3996 if (btrfs_super_num_devices(sb) > (1UL << 31)) 3997 btrfs_warn(fs_info, "suspicious number of devices: %llu", 3998 btrfs_super_num_devices(sb)); 3999 if (btrfs_super_num_devices(sb) == 0) { 4000 btrfs_err(fs_info, "number of devices is 0"); 4001 ret = -EINVAL; 4002 } 4003 4004 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) { 4005 btrfs_err(fs_info, "super offset mismatch %llu != %u", 4006 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 4007 ret = -EINVAL; 4008 } 4009 4010 /* 4011 * Obvious sys_chunk_array corruptions, it must hold at least one key 4012 * and one chunk 4013 */ 4014 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4015 btrfs_err(fs_info, "system chunk array too big %u > %u", 4016 btrfs_super_sys_array_size(sb), 4017 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 4018 ret = -EINVAL; 4019 } 4020 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 4021 + sizeof(struct btrfs_chunk)) { 4022 btrfs_err(fs_info, "system chunk array too small %u < %zu", 4023 btrfs_super_sys_array_size(sb), 4024 sizeof(struct btrfs_disk_key) 4025 + sizeof(struct btrfs_chunk)); 4026 ret = -EINVAL; 4027 } 4028 4029 /* 4030 * The generation is a global counter, we'll trust it more than the others 4031 * but it's still possible that it's the one that's wrong. 4032 */ 4033 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 4034 btrfs_warn(fs_info, 4035 "suspicious: generation < chunk_root_generation: %llu < %llu", 4036 btrfs_super_generation(sb), 4037 btrfs_super_chunk_root_generation(sb)); 4038 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 4039 && btrfs_super_cache_generation(sb) != (u64)-1) 4040 btrfs_warn(fs_info, 4041 "suspicious: generation < cache_generation: %llu < %llu", 4042 btrfs_super_generation(sb), 4043 btrfs_super_cache_generation(sb)); 4044 4045 return ret; 4046 } 4047 4048 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4049 { 4050 mutex_lock(&fs_info->cleaner_mutex); 4051 btrfs_run_delayed_iputs(fs_info); 4052 mutex_unlock(&fs_info->cleaner_mutex); 4053 4054 down_write(&fs_info->cleanup_work_sem); 4055 up_write(&fs_info->cleanup_work_sem); 4056 4057 /* cleanup FS via transaction */ 4058 btrfs_cleanup_transaction(fs_info); 4059 } 4060 4061 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4062 { 4063 struct btrfs_ordered_extent *ordered; 4064 4065 spin_lock(&root->ordered_extent_lock); 4066 /* 4067 * This will just short circuit the ordered completion stuff which will 4068 * make sure the ordered extent gets properly cleaned up. 4069 */ 4070 list_for_each_entry(ordered, &root->ordered_extents, 4071 root_extent_list) 4072 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4073 spin_unlock(&root->ordered_extent_lock); 4074 } 4075 4076 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4077 { 4078 struct btrfs_root *root; 4079 struct list_head splice; 4080 4081 INIT_LIST_HEAD(&splice); 4082 4083 spin_lock(&fs_info->ordered_root_lock); 4084 list_splice_init(&fs_info->ordered_roots, &splice); 4085 while (!list_empty(&splice)) { 4086 root = list_first_entry(&splice, struct btrfs_root, 4087 ordered_root); 4088 list_move_tail(&root->ordered_root, 4089 &fs_info->ordered_roots); 4090 4091 spin_unlock(&fs_info->ordered_root_lock); 4092 btrfs_destroy_ordered_extents(root); 4093 4094 cond_resched(); 4095 spin_lock(&fs_info->ordered_root_lock); 4096 } 4097 spin_unlock(&fs_info->ordered_root_lock); 4098 } 4099 4100 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4101 struct btrfs_fs_info *fs_info) 4102 { 4103 struct rb_node *node; 4104 struct btrfs_delayed_ref_root *delayed_refs; 4105 struct btrfs_delayed_ref_node *ref; 4106 int ret = 0; 4107 4108 delayed_refs = &trans->delayed_refs; 4109 4110 spin_lock(&delayed_refs->lock); 4111 if (atomic_read(&delayed_refs->num_entries) == 0) { 4112 spin_unlock(&delayed_refs->lock); 4113 btrfs_info(fs_info, "delayed_refs has NO entry"); 4114 return ret; 4115 } 4116 4117 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 4118 struct btrfs_delayed_ref_head *head; 4119 struct rb_node *n; 4120 bool pin_bytes = false; 4121 4122 head = rb_entry(node, struct btrfs_delayed_ref_head, 4123 href_node); 4124 if (!mutex_trylock(&head->mutex)) { 4125 refcount_inc(&head->refs); 4126 spin_unlock(&delayed_refs->lock); 4127 4128 mutex_lock(&head->mutex); 4129 mutex_unlock(&head->mutex); 4130 btrfs_put_delayed_ref_head(head); 4131 spin_lock(&delayed_refs->lock); 4132 continue; 4133 } 4134 spin_lock(&head->lock); 4135 while ((n = rb_first(&head->ref_tree)) != NULL) { 4136 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4137 ref_node); 4138 ref->in_tree = 0; 4139 rb_erase(&ref->ref_node, &head->ref_tree); 4140 RB_CLEAR_NODE(&ref->ref_node); 4141 if (!list_empty(&ref->add_list)) 4142 list_del(&ref->add_list); 4143 atomic_dec(&delayed_refs->num_entries); 4144 btrfs_put_delayed_ref(ref); 4145 } 4146 if (head->must_insert_reserved) 4147 pin_bytes = true; 4148 btrfs_free_delayed_extent_op(head->extent_op); 4149 delayed_refs->num_heads--; 4150 if (head->processing == 0) 4151 delayed_refs->num_heads_ready--; 4152 atomic_dec(&delayed_refs->num_entries); 4153 rb_erase(&head->href_node, &delayed_refs->href_root); 4154 RB_CLEAR_NODE(&head->href_node); 4155 spin_unlock(&head->lock); 4156 spin_unlock(&delayed_refs->lock); 4157 mutex_unlock(&head->mutex); 4158 4159 if (pin_bytes) 4160 btrfs_pin_extent(fs_info, head->bytenr, 4161 head->num_bytes, 1); 4162 btrfs_put_delayed_ref_head(head); 4163 cond_resched(); 4164 spin_lock(&delayed_refs->lock); 4165 } 4166 4167 spin_unlock(&delayed_refs->lock); 4168 4169 return ret; 4170 } 4171 4172 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4173 { 4174 struct btrfs_inode *btrfs_inode; 4175 struct list_head splice; 4176 4177 INIT_LIST_HEAD(&splice); 4178 4179 spin_lock(&root->delalloc_lock); 4180 list_splice_init(&root->delalloc_inodes, &splice); 4181 4182 while (!list_empty(&splice)) { 4183 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4184 delalloc_inodes); 4185 4186 list_del_init(&btrfs_inode->delalloc_inodes); 4187 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 4188 &btrfs_inode->runtime_flags); 4189 spin_unlock(&root->delalloc_lock); 4190 4191 btrfs_invalidate_inodes(btrfs_inode->root); 4192 4193 spin_lock(&root->delalloc_lock); 4194 } 4195 4196 spin_unlock(&root->delalloc_lock); 4197 } 4198 4199 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4200 { 4201 struct btrfs_root *root; 4202 struct list_head splice; 4203 4204 INIT_LIST_HEAD(&splice); 4205 4206 spin_lock(&fs_info->delalloc_root_lock); 4207 list_splice_init(&fs_info->delalloc_roots, &splice); 4208 while (!list_empty(&splice)) { 4209 root = list_first_entry(&splice, struct btrfs_root, 4210 delalloc_root); 4211 list_del_init(&root->delalloc_root); 4212 root = btrfs_grab_fs_root(root); 4213 BUG_ON(!root); 4214 spin_unlock(&fs_info->delalloc_root_lock); 4215 4216 btrfs_destroy_delalloc_inodes(root); 4217 btrfs_put_fs_root(root); 4218 4219 spin_lock(&fs_info->delalloc_root_lock); 4220 } 4221 spin_unlock(&fs_info->delalloc_root_lock); 4222 } 4223 4224 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4225 struct extent_io_tree *dirty_pages, 4226 int mark) 4227 { 4228 int ret; 4229 struct extent_buffer *eb; 4230 u64 start = 0; 4231 u64 end; 4232 4233 while (1) { 4234 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4235 mark, NULL); 4236 if (ret) 4237 break; 4238 4239 clear_extent_bits(dirty_pages, start, end, mark); 4240 while (start <= end) { 4241 eb = find_extent_buffer(fs_info, start); 4242 start += fs_info->nodesize; 4243 if (!eb) 4244 continue; 4245 wait_on_extent_buffer_writeback(eb); 4246 4247 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4248 &eb->bflags)) 4249 clear_extent_buffer_dirty(eb); 4250 free_extent_buffer_stale(eb); 4251 } 4252 } 4253 4254 return ret; 4255 } 4256 4257 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4258 struct extent_io_tree *pinned_extents) 4259 { 4260 struct extent_io_tree *unpin; 4261 u64 start; 4262 u64 end; 4263 int ret; 4264 bool loop = true; 4265 4266 unpin = pinned_extents; 4267 again: 4268 while (1) { 4269 ret = find_first_extent_bit(unpin, 0, &start, &end, 4270 EXTENT_DIRTY, NULL); 4271 if (ret) 4272 break; 4273 4274 clear_extent_dirty(unpin, start, end); 4275 btrfs_error_unpin_extent_range(fs_info, start, end); 4276 cond_resched(); 4277 } 4278 4279 if (loop) { 4280 if (unpin == &fs_info->freed_extents[0]) 4281 unpin = &fs_info->freed_extents[1]; 4282 else 4283 unpin = &fs_info->freed_extents[0]; 4284 loop = false; 4285 goto again; 4286 } 4287 4288 return 0; 4289 } 4290 4291 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache) 4292 { 4293 struct inode *inode; 4294 4295 inode = cache->io_ctl.inode; 4296 if (inode) { 4297 invalidate_inode_pages2(inode->i_mapping); 4298 BTRFS_I(inode)->generation = 0; 4299 cache->io_ctl.inode = NULL; 4300 iput(inode); 4301 } 4302 btrfs_put_block_group(cache); 4303 } 4304 4305 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4306 struct btrfs_fs_info *fs_info) 4307 { 4308 struct btrfs_block_group_cache *cache; 4309 4310 spin_lock(&cur_trans->dirty_bgs_lock); 4311 while (!list_empty(&cur_trans->dirty_bgs)) { 4312 cache = list_first_entry(&cur_trans->dirty_bgs, 4313 struct btrfs_block_group_cache, 4314 dirty_list); 4315 if (!cache) { 4316 btrfs_err(fs_info, "orphan block group dirty_bgs list"); 4317 spin_unlock(&cur_trans->dirty_bgs_lock); 4318 return; 4319 } 4320 4321 if (!list_empty(&cache->io_list)) { 4322 spin_unlock(&cur_trans->dirty_bgs_lock); 4323 list_del_init(&cache->io_list); 4324 btrfs_cleanup_bg_io(cache); 4325 spin_lock(&cur_trans->dirty_bgs_lock); 4326 } 4327 4328 list_del_init(&cache->dirty_list); 4329 spin_lock(&cache->lock); 4330 cache->disk_cache_state = BTRFS_DC_ERROR; 4331 spin_unlock(&cache->lock); 4332 4333 spin_unlock(&cur_trans->dirty_bgs_lock); 4334 btrfs_put_block_group(cache); 4335 spin_lock(&cur_trans->dirty_bgs_lock); 4336 } 4337 spin_unlock(&cur_trans->dirty_bgs_lock); 4338 4339 while (!list_empty(&cur_trans->io_bgs)) { 4340 cache = list_first_entry(&cur_trans->io_bgs, 4341 struct btrfs_block_group_cache, 4342 io_list); 4343 if (!cache) { 4344 btrfs_err(fs_info, "orphan block group on io_bgs list"); 4345 return; 4346 } 4347 4348 list_del_init(&cache->io_list); 4349 spin_lock(&cache->lock); 4350 cache->disk_cache_state = BTRFS_DC_ERROR; 4351 spin_unlock(&cache->lock); 4352 btrfs_cleanup_bg_io(cache); 4353 } 4354 } 4355 4356 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4357 struct btrfs_fs_info *fs_info) 4358 { 4359 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4360 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4361 ASSERT(list_empty(&cur_trans->io_bgs)); 4362 4363 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4364 4365 cur_trans->state = TRANS_STATE_COMMIT_START; 4366 wake_up(&fs_info->transaction_blocked_wait); 4367 4368 cur_trans->state = TRANS_STATE_UNBLOCKED; 4369 wake_up(&fs_info->transaction_wait); 4370 4371 btrfs_destroy_delayed_inodes(fs_info); 4372 btrfs_assert_delayed_root_empty(fs_info); 4373 4374 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4375 EXTENT_DIRTY); 4376 btrfs_destroy_pinned_extent(fs_info, 4377 fs_info->pinned_extents); 4378 4379 cur_trans->state =TRANS_STATE_COMPLETED; 4380 wake_up(&cur_trans->commit_wait); 4381 } 4382 4383 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4384 { 4385 struct btrfs_transaction *t; 4386 4387 mutex_lock(&fs_info->transaction_kthread_mutex); 4388 4389 spin_lock(&fs_info->trans_lock); 4390 while (!list_empty(&fs_info->trans_list)) { 4391 t = list_first_entry(&fs_info->trans_list, 4392 struct btrfs_transaction, list); 4393 if (t->state >= TRANS_STATE_COMMIT_START) { 4394 refcount_inc(&t->use_count); 4395 spin_unlock(&fs_info->trans_lock); 4396 btrfs_wait_for_commit(fs_info, t->transid); 4397 btrfs_put_transaction(t); 4398 spin_lock(&fs_info->trans_lock); 4399 continue; 4400 } 4401 if (t == fs_info->running_transaction) { 4402 t->state = TRANS_STATE_COMMIT_DOING; 4403 spin_unlock(&fs_info->trans_lock); 4404 /* 4405 * We wait for 0 num_writers since we don't hold a trans 4406 * handle open currently for this transaction. 4407 */ 4408 wait_event(t->writer_wait, 4409 atomic_read(&t->num_writers) == 0); 4410 } else { 4411 spin_unlock(&fs_info->trans_lock); 4412 } 4413 btrfs_cleanup_one_transaction(t, fs_info); 4414 4415 spin_lock(&fs_info->trans_lock); 4416 if (t == fs_info->running_transaction) 4417 fs_info->running_transaction = NULL; 4418 list_del_init(&t->list); 4419 spin_unlock(&fs_info->trans_lock); 4420 4421 btrfs_put_transaction(t); 4422 trace_btrfs_transaction_commit(fs_info->tree_root); 4423 spin_lock(&fs_info->trans_lock); 4424 } 4425 spin_unlock(&fs_info->trans_lock); 4426 btrfs_destroy_all_ordered_extents(fs_info); 4427 btrfs_destroy_delayed_inodes(fs_info); 4428 btrfs_assert_delayed_root_empty(fs_info); 4429 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 4430 btrfs_destroy_all_delalloc_inodes(fs_info); 4431 mutex_unlock(&fs_info->transaction_kthread_mutex); 4432 4433 return 0; 4434 } 4435 4436 static struct btrfs_fs_info *btree_fs_info(void *private_data) 4437 { 4438 struct inode *inode = private_data; 4439 return btrfs_sb(inode->i_sb); 4440 } 4441 4442 static const struct extent_io_ops btree_extent_io_ops = { 4443 /* mandatory callbacks */ 4444 .submit_bio_hook = btree_submit_bio_hook, 4445 .readpage_end_io_hook = btree_readpage_end_io_hook, 4446 /* note we're sharing with inode.c for the merge bio hook */ 4447 .merge_bio_hook = btrfs_merge_bio_hook, 4448 .readpage_io_failed_hook = btree_io_failed_hook, 4449 .set_range_writeback = btrfs_set_range_writeback, 4450 .tree_fs_info = btree_fs_info, 4451 4452 /* optional callbacks */ 4453 }; 4454