xref: /linux/fs/btrfs/disk-io.c (revision 9a3853587c2bb0a38c2ce80a613ace5e84ae4337)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53 #include "tree-checker.h"
54 #include "ref-verify.h"
55 
56 #ifdef CONFIG_X86
57 #include <asm/cpufeature.h>
58 #endif
59 
60 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
61 				 BTRFS_HEADER_FLAG_RELOC |\
62 				 BTRFS_SUPER_FLAG_ERROR |\
63 				 BTRFS_SUPER_FLAG_SEEDING |\
64 				 BTRFS_SUPER_FLAG_METADUMP |\
65 				 BTRFS_SUPER_FLAG_METADUMP_V2)
66 
67 static const struct extent_io_ops btree_extent_io_ops;
68 static void end_workqueue_fn(struct btrfs_work *work);
69 static void free_fs_root(struct btrfs_root *root);
70 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
71 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
72 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
73 				      struct btrfs_fs_info *fs_info);
74 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
75 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
76 					struct extent_io_tree *dirty_pages,
77 					int mark);
78 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
79 				       struct extent_io_tree *pinned_extents);
80 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
81 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
82 
83 /*
84  * btrfs_end_io_wq structs are used to do processing in task context when an IO
85  * is complete.  This is used during reads to verify checksums, and it is used
86  * by writes to insert metadata for new file extents after IO is complete.
87  */
88 struct btrfs_end_io_wq {
89 	struct bio *bio;
90 	bio_end_io_t *end_io;
91 	void *private;
92 	struct btrfs_fs_info *info;
93 	blk_status_t status;
94 	enum btrfs_wq_endio_type metadata;
95 	struct btrfs_work work;
96 };
97 
98 static struct kmem_cache *btrfs_end_io_wq_cache;
99 
100 int __init btrfs_end_io_wq_init(void)
101 {
102 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
103 					sizeof(struct btrfs_end_io_wq),
104 					0,
105 					SLAB_MEM_SPREAD,
106 					NULL);
107 	if (!btrfs_end_io_wq_cache)
108 		return -ENOMEM;
109 	return 0;
110 }
111 
112 void btrfs_end_io_wq_exit(void)
113 {
114 	kmem_cache_destroy(btrfs_end_io_wq_cache);
115 }
116 
117 /*
118  * async submit bios are used to offload expensive checksumming
119  * onto the worker threads.  They checksum file and metadata bios
120  * just before they are sent down the IO stack.
121  */
122 struct async_submit_bio {
123 	void *private_data;
124 	struct btrfs_fs_info *fs_info;
125 	struct bio *bio;
126 	extent_submit_bio_hook_t *submit_bio_start;
127 	extent_submit_bio_hook_t *submit_bio_done;
128 	int mirror_num;
129 	unsigned long bio_flags;
130 	/*
131 	 * bio_offset is optional, can be used if the pages in the bio
132 	 * can't tell us where in the file the bio should go
133 	 */
134 	u64 bio_offset;
135 	struct btrfs_work work;
136 	blk_status_t status;
137 };
138 
139 /*
140  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
141  * eb, the lockdep key is determined by the btrfs_root it belongs to and
142  * the level the eb occupies in the tree.
143  *
144  * Different roots are used for different purposes and may nest inside each
145  * other and they require separate keysets.  As lockdep keys should be
146  * static, assign keysets according to the purpose of the root as indicated
147  * by btrfs_root->objectid.  This ensures that all special purpose roots
148  * have separate keysets.
149  *
150  * Lock-nesting across peer nodes is always done with the immediate parent
151  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
152  * subclass to avoid triggering lockdep warning in such cases.
153  *
154  * The key is set by the readpage_end_io_hook after the buffer has passed
155  * csum validation but before the pages are unlocked.  It is also set by
156  * btrfs_init_new_buffer on freshly allocated blocks.
157  *
158  * We also add a check to make sure the highest level of the tree is the
159  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
160  * needs update as well.
161  */
162 #ifdef CONFIG_DEBUG_LOCK_ALLOC
163 # if BTRFS_MAX_LEVEL != 8
164 #  error
165 # endif
166 
167 static struct btrfs_lockdep_keyset {
168 	u64			id;		/* root objectid */
169 	const char		*name_stem;	/* lock name stem */
170 	char			names[BTRFS_MAX_LEVEL + 1][20];
171 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
172 } btrfs_lockdep_keysets[] = {
173 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
174 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
175 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
176 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
177 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
178 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
179 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
180 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
181 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
182 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
183 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
184 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
185 	{ .id = 0,				.name_stem = "tree"	},
186 };
187 
188 void __init btrfs_init_lockdep(void)
189 {
190 	int i, j;
191 
192 	/* initialize lockdep class names */
193 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
194 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
195 
196 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
197 			snprintf(ks->names[j], sizeof(ks->names[j]),
198 				 "btrfs-%s-%02d", ks->name_stem, j);
199 	}
200 }
201 
202 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
203 				    int level)
204 {
205 	struct btrfs_lockdep_keyset *ks;
206 
207 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
208 
209 	/* find the matching keyset, id 0 is the default entry */
210 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
211 		if (ks->id == objectid)
212 			break;
213 
214 	lockdep_set_class_and_name(&eb->lock,
215 				   &ks->keys[level], ks->names[level]);
216 }
217 
218 #endif
219 
220 /*
221  * extents on the btree inode are pretty simple, there's one extent
222  * that covers the entire device
223  */
224 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
225 		struct page *page, size_t pg_offset, u64 start, u64 len,
226 		int create)
227 {
228 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
229 	struct extent_map_tree *em_tree = &inode->extent_tree;
230 	struct extent_map *em;
231 	int ret;
232 
233 	read_lock(&em_tree->lock);
234 	em = lookup_extent_mapping(em_tree, start, len);
235 	if (em) {
236 		em->bdev = fs_info->fs_devices->latest_bdev;
237 		read_unlock(&em_tree->lock);
238 		goto out;
239 	}
240 	read_unlock(&em_tree->lock);
241 
242 	em = alloc_extent_map();
243 	if (!em) {
244 		em = ERR_PTR(-ENOMEM);
245 		goto out;
246 	}
247 	em->start = 0;
248 	em->len = (u64)-1;
249 	em->block_len = (u64)-1;
250 	em->block_start = 0;
251 	em->bdev = fs_info->fs_devices->latest_bdev;
252 
253 	write_lock(&em_tree->lock);
254 	ret = add_extent_mapping(em_tree, em, 0);
255 	if (ret == -EEXIST) {
256 		free_extent_map(em);
257 		em = lookup_extent_mapping(em_tree, start, len);
258 		if (!em)
259 			em = ERR_PTR(-EIO);
260 	} else if (ret) {
261 		free_extent_map(em);
262 		em = ERR_PTR(ret);
263 	}
264 	write_unlock(&em_tree->lock);
265 
266 out:
267 	return em;
268 }
269 
270 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
271 {
272 	return btrfs_crc32c(seed, data, len);
273 }
274 
275 void btrfs_csum_final(u32 crc, u8 *result)
276 {
277 	put_unaligned_le32(~crc, result);
278 }
279 
280 /*
281  * compute the csum for a btree block, and either verify it or write it
282  * into the csum field of the block.
283  */
284 static int csum_tree_block(struct btrfs_fs_info *fs_info,
285 			   struct extent_buffer *buf,
286 			   int verify)
287 {
288 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
289 	char result[BTRFS_CSUM_SIZE];
290 	unsigned long len;
291 	unsigned long cur_len;
292 	unsigned long offset = BTRFS_CSUM_SIZE;
293 	char *kaddr;
294 	unsigned long map_start;
295 	unsigned long map_len;
296 	int err;
297 	u32 crc = ~(u32)0;
298 
299 	len = buf->len - offset;
300 	while (len > 0) {
301 		err = map_private_extent_buffer(buf, offset, 32,
302 					&kaddr, &map_start, &map_len);
303 		if (err)
304 			return err;
305 		cur_len = min(len, map_len - (offset - map_start));
306 		crc = btrfs_csum_data(kaddr + offset - map_start,
307 				      crc, cur_len);
308 		len -= cur_len;
309 		offset += cur_len;
310 	}
311 	memset(result, 0, BTRFS_CSUM_SIZE);
312 
313 	btrfs_csum_final(crc, result);
314 
315 	if (verify) {
316 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
317 			u32 val;
318 			u32 found = 0;
319 			memcpy(&found, result, csum_size);
320 
321 			read_extent_buffer(buf, &val, 0, csum_size);
322 			btrfs_warn_rl(fs_info,
323 				"%s checksum verify failed on %llu wanted %X found %X level %d",
324 				fs_info->sb->s_id, buf->start,
325 				val, found, btrfs_header_level(buf));
326 			return -EUCLEAN;
327 		}
328 	} else {
329 		write_extent_buffer(buf, result, 0, csum_size);
330 	}
331 
332 	return 0;
333 }
334 
335 /*
336  * we can't consider a given block up to date unless the transid of the
337  * block matches the transid in the parent node's pointer.  This is how we
338  * detect blocks that either didn't get written at all or got written
339  * in the wrong place.
340  */
341 static int verify_parent_transid(struct extent_io_tree *io_tree,
342 				 struct extent_buffer *eb, u64 parent_transid,
343 				 int atomic)
344 {
345 	struct extent_state *cached_state = NULL;
346 	int ret;
347 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
348 
349 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
350 		return 0;
351 
352 	if (atomic)
353 		return -EAGAIN;
354 
355 	if (need_lock) {
356 		btrfs_tree_read_lock(eb);
357 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
358 	}
359 
360 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
361 			 &cached_state);
362 	if (extent_buffer_uptodate(eb) &&
363 	    btrfs_header_generation(eb) == parent_transid) {
364 		ret = 0;
365 		goto out;
366 	}
367 	btrfs_err_rl(eb->fs_info,
368 		"parent transid verify failed on %llu wanted %llu found %llu",
369 			eb->start,
370 			parent_transid, btrfs_header_generation(eb));
371 	ret = 1;
372 
373 	/*
374 	 * Things reading via commit roots that don't have normal protection,
375 	 * like send, can have a really old block in cache that may point at a
376 	 * block that has been freed and re-allocated.  So don't clear uptodate
377 	 * if we find an eb that is under IO (dirty/writeback) because we could
378 	 * end up reading in the stale data and then writing it back out and
379 	 * making everybody very sad.
380 	 */
381 	if (!extent_buffer_under_io(eb))
382 		clear_extent_buffer_uptodate(eb);
383 out:
384 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
385 			     &cached_state);
386 	if (need_lock)
387 		btrfs_tree_read_unlock_blocking(eb);
388 	return ret;
389 }
390 
391 /*
392  * Return 0 if the superblock checksum type matches the checksum value of that
393  * algorithm. Pass the raw disk superblock data.
394  */
395 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
396 				  char *raw_disk_sb)
397 {
398 	struct btrfs_super_block *disk_sb =
399 		(struct btrfs_super_block *)raw_disk_sb;
400 	u16 csum_type = btrfs_super_csum_type(disk_sb);
401 	int ret = 0;
402 
403 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
404 		u32 crc = ~(u32)0;
405 		const int csum_size = sizeof(crc);
406 		char result[csum_size];
407 
408 		/*
409 		 * The super_block structure does not span the whole
410 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
411 		 * is filled with zeros and is included in the checksum.
412 		 */
413 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
414 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
415 		btrfs_csum_final(crc, result);
416 
417 		if (memcmp(raw_disk_sb, result, csum_size))
418 			ret = 1;
419 	}
420 
421 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
422 		btrfs_err(fs_info, "unsupported checksum algorithm %u",
423 				csum_type);
424 		ret = 1;
425 	}
426 
427 	return ret;
428 }
429 
430 /*
431  * helper to read a given tree block, doing retries as required when
432  * the checksums don't match and we have alternate mirrors to try.
433  */
434 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
435 					  struct extent_buffer *eb,
436 					  u64 parent_transid)
437 {
438 	struct extent_io_tree *io_tree;
439 	int failed = 0;
440 	int ret;
441 	int num_copies = 0;
442 	int mirror_num = 0;
443 	int failed_mirror = 0;
444 
445 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
446 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
447 	while (1) {
448 		ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
449 					       mirror_num);
450 		if (!ret) {
451 			if (!verify_parent_transid(io_tree, eb,
452 						   parent_transid, 0))
453 				break;
454 			else
455 				ret = -EIO;
456 		}
457 
458 		/*
459 		 * This buffer's crc is fine, but its contents are corrupted, so
460 		 * there is no reason to read the other copies, they won't be
461 		 * any less wrong.
462 		 */
463 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
464 			break;
465 
466 		num_copies = btrfs_num_copies(fs_info,
467 					      eb->start, eb->len);
468 		if (num_copies == 1)
469 			break;
470 
471 		if (!failed_mirror) {
472 			failed = 1;
473 			failed_mirror = eb->read_mirror;
474 		}
475 
476 		mirror_num++;
477 		if (mirror_num == failed_mirror)
478 			mirror_num++;
479 
480 		if (mirror_num > num_copies)
481 			break;
482 	}
483 
484 	if (failed && !ret && failed_mirror)
485 		repair_eb_io_failure(fs_info, eb, failed_mirror);
486 
487 	return ret;
488 }
489 
490 /*
491  * checksum a dirty tree block before IO.  This has extra checks to make sure
492  * we only fill in the checksum field in the first page of a multi-page block
493  */
494 
495 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
496 {
497 	u64 start = page_offset(page);
498 	u64 found_start;
499 	struct extent_buffer *eb;
500 
501 	eb = (struct extent_buffer *)page->private;
502 	if (page != eb->pages[0])
503 		return 0;
504 
505 	found_start = btrfs_header_bytenr(eb);
506 	/*
507 	 * Please do not consolidate these warnings into a single if.
508 	 * It is useful to know what went wrong.
509 	 */
510 	if (WARN_ON(found_start != start))
511 		return -EUCLEAN;
512 	if (WARN_ON(!PageUptodate(page)))
513 		return -EUCLEAN;
514 
515 	ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
516 			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
517 
518 	return csum_tree_block(fs_info, eb, 0);
519 }
520 
521 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
522 				 struct extent_buffer *eb)
523 {
524 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
525 	u8 fsid[BTRFS_FSID_SIZE];
526 	int ret = 1;
527 
528 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
529 	while (fs_devices) {
530 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
531 			ret = 0;
532 			break;
533 		}
534 		fs_devices = fs_devices->seed;
535 	}
536 	return ret;
537 }
538 
539 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
540 				      u64 phy_offset, struct page *page,
541 				      u64 start, u64 end, int mirror)
542 {
543 	u64 found_start;
544 	int found_level;
545 	struct extent_buffer *eb;
546 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
547 	struct btrfs_fs_info *fs_info = root->fs_info;
548 	int ret = 0;
549 	int reads_done;
550 
551 	if (!page->private)
552 		goto out;
553 
554 	eb = (struct extent_buffer *)page->private;
555 
556 	/* the pending IO might have been the only thing that kept this buffer
557 	 * in memory.  Make sure we have a ref for all this other checks
558 	 */
559 	extent_buffer_get(eb);
560 
561 	reads_done = atomic_dec_and_test(&eb->io_pages);
562 	if (!reads_done)
563 		goto err;
564 
565 	eb->read_mirror = mirror;
566 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
567 		ret = -EIO;
568 		goto err;
569 	}
570 
571 	found_start = btrfs_header_bytenr(eb);
572 	if (found_start != eb->start) {
573 		btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
574 			     found_start, eb->start);
575 		ret = -EIO;
576 		goto err;
577 	}
578 	if (check_tree_block_fsid(fs_info, eb)) {
579 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
580 			     eb->start);
581 		ret = -EIO;
582 		goto err;
583 	}
584 	found_level = btrfs_header_level(eb);
585 	if (found_level >= BTRFS_MAX_LEVEL) {
586 		btrfs_err(fs_info, "bad tree block level %d",
587 			  (int)btrfs_header_level(eb));
588 		ret = -EIO;
589 		goto err;
590 	}
591 
592 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
593 				       eb, found_level);
594 
595 	ret = csum_tree_block(fs_info, eb, 1);
596 	if (ret)
597 		goto err;
598 
599 	/*
600 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
601 	 * that we don't try and read the other copies of this block, just
602 	 * return -EIO.
603 	 */
604 	if (found_level == 0 && btrfs_check_leaf_full(root, eb)) {
605 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
606 		ret = -EIO;
607 	}
608 
609 	if (found_level > 0 && btrfs_check_node(root, eb))
610 		ret = -EIO;
611 
612 	if (!ret)
613 		set_extent_buffer_uptodate(eb);
614 err:
615 	if (reads_done &&
616 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
617 		btree_readahead_hook(eb, ret);
618 
619 	if (ret) {
620 		/*
621 		 * our io error hook is going to dec the io pages
622 		 * again, we have to make sure it has something
623 		 * to decrement
624 		 */
625 		atomic_inc(&eb->io_pages);
626 		clear_extent_buffer_uptodate(eb);
627 	}
628 	free_extent_buffer(eb);
629 out:
630 	return ret;
631 }
632 
633 static int btree_io_failed_hook(struct page *page, int failed_mirror)
634 {
635 	struct extent_buffer *eb;
636 
637 	eb = (struct extent_buffer *)page->private;
638 	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
639 	eb->read_mirror = failed_mirror;
640 	atomic_dec(&eb->io_pages);
641 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
642 		btree_readahead_hook(eb, -EIO);
643 	return -EIO;	/* we fixed nothing */
644 }
645 
646 static void end_workqueue_bio(struct bio *bio)
647 {
648 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
649 	struct btrfs_fs_info *fs_info;
650 	struct btrfs_workqueue *wq;
651 	btrfs_work_func_t func;
652 
653 	fs_info = end_io_wq->info;
654 	end_io_wq->status = bio->bi_status;
655 
656 	if (bio_op(bio) == REQ_OP_WRITE) {
657 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
658 			wq = fs_info->endio_meta_write_workers;
659 			func = btrfs_endio_meta_write_helper;
660 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
661 			wq = fs_info->endio_freespace_worker;
662 			func = btrfs_freespace_write_helper;
663 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
664 			wq = fs_info->endio_raid56_workers;
665 			func = btrfs_endio_raid56_helper;
666 		} else {
667 			wq = fs_info->endio_write_workers;
668 			func = btrfs_endio_write_helper;
669 		}
670 	} else {
671 		if (unlikely(end_io_wq->metadata ==
672 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
673 			wq = fs_info->endio_repair_workers;
674 			func = btrfs_endio_repair_helper;
675 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
676 			wq = fs_info->endio_raid56_workers;
677 			func = btrfs_endio_raid56_helper;
678 		} else if (end_io_wq->metadata) {
679 			wq = fs_info->endio_meta_workers;
680 			func = btrfs_endio_meta_helper;
681 		} else {
682 			wq = fs_info->endio_workers;
683 			func = btrfs_endio_helper;
684 		}
685 	}
686 
687 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
688 	btrfs_queue_work(wq, &end_io_wq->work);
689 }
690 
691 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
692 			enum btrfs_wq_endio_type metadata)
693 {
694 	struct btrfs_end_io_wq *end_io_wq;
695 
696 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
697 	if (!end_io_wq)
698 		return BLK_STS_RESOURCE;
699 
700 	end_io_wq->private = bio->bi_private;
701 	end_io_wq->end_io = bio->bi_end_io;
702 	end_io_wq->info = info;
703 	end_io_wq->status = 0;
704 	end_io_wq->bio = bio;
705 	end_io_wq->metadata = metadata;
706 
707 	bio->bi_private = end_io_wq;
708 	bio->bi_end_io = end_workqueue_bio;
709 	return 0;
710 }
711 
712 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
713 {
714 	unsigned long limit = min_t(unsigned long,
715 				    info->thread_pool_size,
716 				    info->fs_devices->open_devices);
717 	return 256 * limit;
718 }
719 
720 static void run_one_async_start(struct btrfs_work *work)
721 {
722 	struct async_submit_bio *async;
723 	blk_status_t ret;
724 
725 	async = container_of(work, struct  async_submit_bio, work);
726 	ret = async->submit_bio_start(async->private_data, async->bio,
727 				      async->mirror_num, async->bio_flags,
728 				      async->bio_offset);
729 	if (ret)
730 		async->status = ret;
731 }
732 
733 static void run_one_async_done(struct btrfs_work *work)
734 {
735 	struct async_submit_bio *async;
736 
737 	async = container_of(work, struct  async_submit_bio, work);
738 
739 	/* If an error occurred we just want to clean up the bio and move on */
740 	if (async->status) {
741 		async->bio->bi_status = async->status;
742 		bio_endio(async->bio);
743 		return;
744 	}
745 
746 	async->submit_bio_done(async->private_data, async->bio, async->mirror_num,
747 			       async->bio_flags, async->bio_offset);
748 }
749 
750 static void run_one_async_free(struct btrfs_work *work)
751 {
752 	struct async_submit_bio *async;
753 
754 	async = container_of(work, struct  async_submit_bio, work);
755 	kfree(async);
756 }
757 
758 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
759 				 int mirror_num, unsigned long bio_flags,
760 				 u64 bio_offset, void *private_data,
761 				 extent_submit_bio_hook_t *submit_bio_start,
762 				 extent_submit_bio_hook_t *submit_bio_done)
763 {
764 	struct async_submit_bio *async;
765 
766 	async = kmalloc(sizeof(*async), GFP_NOFS);
767 	if (!async)
768 		return BLK_STS_RESOURCE;
769 
770 	async->private_data = private_data;
771 	async->fs_info = fs_info;
772 	async->bio = bio;
773 	async->mirror_num = mirror_num;
774 	async->submit_bio_start = submit_bio_start;
775 	async->submit_bio_done = submit_bio_done;
776 
777 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
778 			run_one_async_done, run_one_async_free);
779 
780 	async->bio_flags = bio_flags;
781 	async->bio_offset = bio_offset;
782 
783 	async->status = 0;
784 
785 	if (op_is_sync(bio->bi_opf))
786 		btrfs_set_work_high_priority(&async->work);
787 
788 	btrfs_queue_work(fs_info->workers, &async->work);
789 	return 0;
790 }
791 
792 static blk_status_t btree_csum_one_bio(struct bio *bio)
793 {
794 	struct bio_vec *bvec;
795 	struct btrfs_root *root;
796 	int i, ret = 0;
797 
798 	ASSERT(!bio_flagged(bio, BIO_CLONED));
799 	bio_for_each_segment_all(bvec, bio, i) {
800 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
801 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
802 		if (ret)
803 			break;
804 	}
805 
806 	return errno_to_blk_status(ret);
807 }
808 
809 static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio,
810 					     int mirror_num, unsigned long bio_flags,
811 					     u64 bio_offset)
812 {
813 	/*
814 	 * when we're called for a write, we're already in the async
815 	 * submission context.  Just jump into btrfs_map_bio
816 	 */
817 	return btree_csum_one_bio(bio);
818 }
819 
820 static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio,
821 					    int mirror_num, unsigned long bio_flags,
822 					    u64 bio_offset)
823 {
824 	struct inode *inode = private_data;
825 	blk_status_t ret;
826 
827 	/*
828 	 * when we're called for a write, we're already in the async
829 	 * submission context.  Just jump into btrfs_map_bio
830 	 */
831 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
832 	if (ret) {
833 		bio->bi_status = ret;
834 		bio_endio(bio);
835 	}
836 	return ret;
837 }
838 
839 static int check_async_write(struct btrfs_inode *bi)
840 {
841 	if (atomic_read(&bi->sync_writers))
842 		return 0;
843 #ifdef CONFIG_X86
844 	if (static_cpu_has(X86_FEATURE_XMM4_2))
845 		return 0;
846 #endif
847 	return 1;
848 }
849 
850 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
851 					  int mirror_num, unsigned long bio_flags,
852 					  u64 bio_offset)
853 {
854 	struct inode *inode = private_data;
855 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
856 	int async = check_async_write(BTRFS_I(inode));
857 	blk_status_t ret;
858 
859 	if (bio_op(bio) != REQ_OP_WRITE) {
860 		/*
861 		 * called for a read, do the setup so that checksum validation
862 		 * can happen in the async kernel threads
863 		 */
864 		ret = btrfs_bio_wq_end_io(fs_info, bio,
865 					  BTRFS_WQ_ENDIO_METADATA);
866 		if (ret)
867 			goto out_w_error;
868 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
869 	} else if (!async) {
870 		ret = btree_csum_one_bio(bio);
871 		if (ret)
872 			goto out_w_error;
873 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
874 	} else {
875 		/*
876 		 * kthread helpers are used to submit writes so that
877 		 * checksumming can happen in parallel across all CPUs
878 		 */
879 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
880 					  bio_offset, private_data,
881 					  __btree_submit_bio_start,
882 					  __btree_submit_bio_done);
883 	}
884 
885 	if (ret)
886 		goto out_w_error;
887 	return 0;
888 
889 out_w_error:
890 	bio->bi_status = ret;
891 	bio_endio(bio);
892 	return ret;
893 }
894 
895 #ifdef CONFIG_MIGRATION
896 static int btree_migratepage(struct address_space *mapping,
897 			struct page *newpage, struct page *page,
898 			enum migrate_mode mode)
899 {
900 	/*
901 	 * we can't safely write a btree page from here,
902 	 * we haven't done the locking hook
903 	 */
904 	if (PageDirty(page))
905 		return -EAGAIN;
906 	/*
907 	 * Buffers may be managed in a filesystem specific way.
908 	 * We must have no buffers or drop them.
909 	 */
910 	if (page_has_private(page) &&
911 	    !try_to_release_page(page, GFP_KERNEL))
912 		return -EAGAIN;
913 	return migrate_page(mapping, newpage, page, mode);
914 }
915 #endif
916 
917 
918 static int btree_writepages(struct address_space *mapping,
919 			    struct writeback_control *wbc)
920 {
921 	struct btrfs_fs_info *fs_info;
922 	int ret;
923 
924 	if (wbc->sync_mode == WB_SYNC_NONE) {
925 
926 		if (wbc->for_kupdate)
927 			return 0;
928 
929 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
930 		/* this is a bit racy, but that's ok */
931 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
932 					     BTRFS_DIRTY_METADATA_THRESH);
933 		if (ret < 0)
934 			return 0;
935 	}
936 	return btree_write_cache_pages(mapping, wbc);
937 }
938 
939 static int btree_readpage(struct file *file, struct page *page)
940 {
941 	struct extent_io_tree *tree;
942 	tree = &BTRFS_I(page->mapping->host)->io_tree;
943 	return extent_read_full_page(tree, page, btree_get_extent, 0);
944 }
945 
946 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
947 {
948 	if (PageWriteback(page) || PageDirty(page))
949 		return 0;
950 
951 	return try_release_extent_buffer(page);
952 }
953 
954 static void btree_invalidatepage(struct page *page, unsigned int offset,
955 				 unsigned int length)
956 {
957 	struct extent_io_tree *tree;
958 	tree = &BTRFS_I(page->mapping->host)->io_tree;
959 	extent_invalidatepage(tree, page, offset);
960 	btree_releasepage(page, GFP_NOFS);
961 	if (PagePrivate(page)) {
962 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
963 			   "page private not zero on page %llu",
964 			   (unsigned long long)page_offset(page));
965 		ClearPagePrivate(page);
966 		set_page_private(page, 0);
967 		put_page(page);
968 	}
969 }
970 
971 static int btree_set_page_dirty(struct page *page)
972 {
973 #ifdef DEBUG
974 	struct extent_buffer *eb;
975 
976 	BUG_ON(!PagePrivate(page));
977 	eb = (struct extent_buffer *)page->private;
978 	BUG_ON(!eb);
979 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
980 	BUG_ON(!atomic_read(&eb->refs));
981 	btrfs_assert_tree_locked(eb);
982 #endif
983 	return __set_page_dirty_nobuffers(page);
984 }
985 
986 static const struct address_space_operations btree_aops = {
987 	.readpage	= btree_readpage,
988 	.writepages	= btree_writepages,
989 	.releasepage	= btree_releasepage,
990 	.invalidatepage = btree_invalidatepage,
991 #ifdef CONFIG_MIGRATION
992 	.migratepage	= btree_migratepage,
993 #endif
994 	.set_page_dirty = btree_set_page_dirty,
995 };
996 
997 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
998 {
999 	struct extent_buffer *buf = NULL;
1000 	struct inode *btree_inode = fs_info->btree_inode;
1001 
1002 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1003 	if (IS_ERR(buf))
1004 		return;
1005 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1006 				 buf, WAIT_NONE, 0);
1007 	free_extent_buffer(buf);
1008 }
1009 
1010 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1011 			 int mirror_num, struct extent_buffer **eb)
1012 {
1013 	struct extent_buffer *buf = NULL;
1014 	struct inode *btree_inode = fs_info->btree_inode;
1015 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1016 	int ret;
1017 
1018 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1019 	if (IS_ERR(buf))
1020 		return 0;
1021 
1022 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1023 
1024 	ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1025 				       mirror_num);
1026 	if (ret) {
1027 		free_extent_buffer(buf);
1028 		return ret;
1029 	}
1030 
1031 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1032 		free_extent_buffer(buf);
1033 		return -EIO;
1034 	} else if (extent_buffer_uptodate(buf)) {
1035 		*eb = buf;
1036 	} else {
1037 		free_extent_buffer(buf);
1038 	}
1039 	return 0;
1040 }
1041 
1042 struct extent_buffer *btrfs_find_create_tree_block(
1043 						struct btrfs_fs_info *fs_info,
1044 						u64 bytenr)
1045 {
1046 	if (btrfs_is_testing(fs_info))
1047 		return alloc_test_extent_buffer(fs_info, bytenr);
1048 	return alloc_extent_buffer(fs_info, bytenr);
1049 }
1050 
1051 
1052 int btrfs_write_tree_block(struct extent_buffer *buf)
1053 {
1054 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1055 					buf->start + buf->len - 1);
1056 }
1057 
1058 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1059 {
1060 	filemap_fdatawait_range(buf->pages[0]->mapping,
1061 			        buf->start, buf->start + buf->len - 1);
1062 }
1063 
1064 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1065 				      u64 parent_transid)
1066 {
1067 	struct extent_buffer *buf = NULL;
1068 	int ret;
1069 
1070 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1071 	if (IS_ERR(buf))
1072 		return buf;
1073 
1074 	ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
1075 	if (ret) {
1076 		free_extent_buffer(buf);
1077 		return ERR_PTR(ret);
1078 	}
1079 	return buf;
1080 
1081 }
1082 
1083 void clean_tree_block(struct btrfs_fs_info *fs_info,
1084 		      struct extent_buffer *buf)
1085 {
1086 	if (btrfs_header_generation(buf) ==
1087 	    fs_info->running_transaction->transid) {
1088 		btrfs_assert_tree_locked(buf);
1089 
1090 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1091 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1092 						 -buf->len,
1093 						 fs_info->dirty_metadata_batch);
1094 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1095 			btrfs_set_lock_blocking(buf);
1096 			clear_extent_buffer_dirty(buf);
1097 		}
1098 	}
1099 }
1100 
1101 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1102 {
1103 	struct btrfs_subvolume_writers *writers;
1104 	int ret;
1105 
1106 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1107 	if (!writers)
1108 		return ERR_PTR(-ENOMEM);
1109 
1110 	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1111 	if (ret < 0) {
1112 		kfree(writers);
1113 		return ERR_PTR(ret);
1114 	}
1115 
1116 	init_waitqueue_head(&writers->wait);
1117 	return writers;
1118 }
1119 
1120 static void
1121 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1122 {
1123 	percpu_counter_destroy(&writers->counter);
1124 	kfree(writers);
1125 }
1126 
1127 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1128 			 u64 objectid)
1129 {
1130 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1131 	root->node = NULL;
1132 	root->commit_root = NULL;
1133 	root->state = 0;
1134 	root->orphan_cleanup_state = 0;
1135 
1136 	root->objectid = objectid;
1137 	root->last_trans = 0;
1138 	root->highest_objectid = 0;
1139 	root->nr_delalloc_inodes = 0;
1140 	root->nr_ordered_extents = 0;
1141 	root->name = NULL;
1142 	root->inode_tree = RB_ROOT;
1143 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1144 	root->block_rsv = NULL;
1145 	root->orphan_block_rsv = NULL;
1146 
1147 	INIT_LIST_HEAD(&root->dirty_list);
1148 	INIT_LIST_HEAD(&root->root_list);
1149 	INIT_LIST_HEAD(&root->delalloc_inodes);
1150 	INIT_LIST_HEAD(&root->delalloc_root);
1151 	INIT_LIST_HEAD(&root->ordered_extents);
1152 	INIT_LIST_HEAD(&root->ordered_root);
1153 	INIT_LIST_HEAD(&root->logged_list[0]);
1154 	INIT_LIST_HEAD(&root->logged_list[1]);
1155 	spin_lock_init(&root->orphan_lock);
1156 	spin_lock_init(&root->inode_lock);
1157 	spin_lock_init(&root->delalloc_lock);
1158 	spin_lock_init(&root->ordered_extent_lock);
1159 	spin_lock_init(&root->accounting_lock);
1160 	spin_lock_init(&root->log_extents_lock[0]);
1161 	spin_lock_init(&root->log_extents_lock[1]);
1162 	mutex_init(&root->objectid_mutex);
1163 	mutex_init(&root->log_mutex);
1164 	mutex_init(&root->ordered_extent_mutex);
1165 	mutex_init(&root->delalloc_mutex);
1166 	init_waitqueue_head(&root->log_writer_wait);
1167 	init_waitqueue_head(&root->log_commit_wait[0]);
1168 	init_waitqueue_head(&root->log_commit_wait[1]);
1169 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1170 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1171 	atomic_set(&root->log_commit[0], 0);
1172 	atomic_set(&root->log_commit[1], 0);
1173 	atomic_set(&root->log_writers, 0);
1174 	atomic_set(&root->log_batch, 0);
1175 	atomic_set(&root->orphan_inodes, 0);
1176 	refcount_set(&root->refs, 1);
1177 	atomic_set(&root->will_be_snapshotted, 0);
1178 	atomic64_set(&root->qgroup_meta_rsv, 0);
1179 	root->log_transid = 0;
1180 	root->log_transid_committed = -1;
1181 	root->last_log_commit = 0;
1182 	if (!dummy)
1183 		extent_io_tree_init(&root->dirty_log_pages, NULL);
1184 
1185 	memset(&root->root_key, 0, sizeof(root->root_key));
1186 	memset(&root->root_item, 0, sizeof(root->root_item));
1187 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1188 	if (!dummy)
1189 		root->defrag_trans_start = fs_info->generation;
1190 	else
1191 		root->defrag_trans_start = 0;
1192 	root->root_key.objectid = objectid;
1193 	root->anon_dev = 0;
1194 
1195 	spin_lock_init(&root->root_item_lock);
1196 }
1197 
1198 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1199 		gfp_t flags)
1200 {
1201 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1202 	if (root)
1203 		root->fs_info = fs_info;
1204 	return root;
1205 }
1206 
1207 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1208 /* Should only be used by the testing infrastructure */
1209 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1210 {
1211 	struct btrfs_root *root;
1212 
1213 	if (!fs_info)
1214 		return ERR_PTR(-EINVAL);
1215 
1216 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1217 	if (!root)
1218 		return ERR_PTR(-ENOMEM);
1219 
1220 	/* We don't use the stripesize in selftest, set it as sectorsize */
1221 	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1222 	root->alloc_bytenr = 0;
1223 
1224 	return root;
1225 }
1226 #endif
1227 
1228 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1229 				     struct btrfs_fs_info *fs_info,
1230 				     u64 objectid)
1231 {
1232 	struct extent_buffer *leaf;
1233 	struct btrfs_root *tree_root = fs_info->tree_root;
1234 	struct btrfs_root *root;
1235 	struct btrfs_key key;
1236 	int ret = 0;
1237 	uuid_le uuid = NULL_UUID_LE;
1238 
1239 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1240 	if (!root)
1241 		return ERR_PTR(-ENOMEM);
1242 
1243 	__setup_root(root, fs_info, objectid);
1244 	root->root_key.objectid = objectid;
1245 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1246 	root->root_key.offset = 0;
1247 
1248 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1249 	if (IS_ERR(leaf)) {
1250 		ret = PTR_ERR(leaf);
1251 		leaf = NULL;
1252 		goto fail;
1253 	}
1254 
1255 	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1256 	btrfs_set_header_bytenr(leaf, leaf->start);
1257 	btrfs_set_header_generation(leaf, trans->transid);
1258 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1259 	btrfs_set_header_owner(leaf, objectid);
1260 	root->node = leaf;
1261 
1262 	write_extent_buffer_fsid(leaf, fs_info->fsid);
1263 	write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1264 	btrfs_mark_buffer_dirty(leaf);
1265 
1266 	root->commit_root = btrfs_root_node(root);
1267 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1268 
1269 	root->root_item.flags = 0;
1270 	root->root_item.byte_limit = 0;
1271 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1272 	btrfs_set_root_generation(&root->root_item, trans->transid);
1273 	btrfs_set_root_level(&root->root_item, 0);
1274 	btrfs_set_root_refs(&root->root_item, 1);
1275 	btrfs_set_root_used(&root->root_item, leaf->len);
1276 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1277 	btrfs_set_root_dirid(&root->root_item, 0);
1278 	if (is_fstree(objectid))
1279 		uuid_le_gen(&uuid);
1280 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1281 	root->root_item.drop_level = 0;
1282 
1283 	key.objectid = objectid;
1284 	key.type = BTRFS_ROOT_ITEM_KEY;
1285 	key.offset = 0;
1286 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1287 	if (ret)
1288 		goto fail;
1289 
1290 	btrfs_tree_unlock(leaf);
1291 
1292 	return root;
1293 
1294 fail:
1295 	if (leaf) {
1296 		btrfs_tree_unlock(leaf);
1297 		free_extent_buffer(root->commit_root);
1298 		free_extent_buffer(leaf);
1299 	}
1300 	kfree(root);
1301 
1302 	return ERR_PTR(ret);
1303 }
1304 
1305 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1306 					 struct btrfs_fs_info *fs_info)
1307 {
1308 	struct btrfs_root *root;
1309 	struct extent_buffer *leaf;
1310 
1311 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1312 	if (!root)
1313 		return ERR_PTR(-ENOMEM);
1314 
1315 	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1316 
1317 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1318 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1319 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1320 
1321 	/*
1322 	 * DON'T set REF_COWS for log trees
1323 	 *
1324 	 * log trees do not get reference counted because they go away
1325 	 * before a real commit is actually done.  They do store pointers
1326 	 * to file data extents, and those reference counts still get
1327 	 * updated (along with back refs to the log tree).
1328 	 */
1329 
1330 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1331 			NULL, 0, 0, 0);
1332 	if (IS_ERR(leaf)) {
1333 		kfree(root);
1334 		return ERR_CAST(leaf);
1335 	}
1336 
1337 	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1338 	btrfs_set_header_bytenr(leaf, leaf->start);
1339 	btrfs_set_header_generation(leaf, trans->transid);
1340 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1341 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1342 	root->node = leaf;
1343 
1344 	write_extent_buffer_fsid(root->node, fs_info->fsid);
1345 	btrfs_mark_buffer_dirty(root->node);
1346 	btrfs_tree_unlock(root->node);
1347 	return root;
1348 }
1349 
1350 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1351 			     struct btrfs_fs_info *fs_info)
1352 {
1353 	struct btrfs_root *log_root;
1354 
1355 	log_root = alloc_log_tree(trans, fs_info);
1356 	if (IS_ERR(log_root))
1357 		return PTR_ERR(log_root);
1358 	WARN_ON(fs_info->log_root_tree);
1359 	fs_info->log_root_tree = log_root;
1360 	return 0;
1361 }
1362 
1363 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1364 		       struct btrfs_root *root)
1365 {
1366 	struct btrfs_fs_info *fs_info = root->fs_info;
1367 	struct btrfs_root *log_root;
1368 	struct btrfs_inode_item *inode_item;
1369 
1370 	log_root = alloc_log_tree(trans, fs_info);
1371 	if (IS_ERR(log_root))
1372 		return PTR_ERR(log_root);
1373 
1374 	log_root->last_trans = trans->transid;
1375 	log_root->root_key.offset = root->root_key.objectid;
1376 
1377 	inode_item = &log_root->root_item.inode;
1378 	btrfs_set_stack_inode_generation(inode_item, 1);
1379 	btrfs_set_stack_inode_size(inode_item, 3);
1380 	btrfs_set_stack_inode_nlink(inode_item, 1);
1381 	btrfs_set_stack_inode_nbytes(inode_item,
1382 				     fs_info->nodesize);
1383 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1384 
1385 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1386 
1387 	WARN_ON(root->log_root);
1388 	root->log_root = log_root;
1389 	root->log_transid = 0;
1390 	root->log_transid_committed = -1;
1391 	root->last_log_commit = 0;
1392 	return 0;
1393 }
1394 
1395 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1396 					       struct btrfs_key *key)
1397 {
1398 	struct btrfs_root *root;
1399 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1400 	struct btrfs_path *path;
1401 	u64 generation;
1402 	int ret;
1403 
1404 	path = btrfs_alloc_path();
1405 	if (!path)
1406 		return ERR_PTR(-ENOMEM);
1407 
1408 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1409 	if (!root) {
1410 		ret = -ENOMEM;
1411 		goto alloc_fail;
1412 	}
1413 
1414 	__setup_root(root, fs_info, key->objectid);
1415 
1416 	ret = btrfs_find_root(tree_root, key, path,
1417 			      &root->root_item, &root->root_key);
1418 	if (ret) {
1419 		if (ret > 0)
1420 			ret = -ENOENT;
1421 		goto find_fail;
1422 	}
1423 
1424 	generation = btrfs_root_generation(&root->root_item);
1425 	root->node = read_tree_block(fs_info,
1426 				     btrfs_root_bytenr(&root->root_item),
1427 				     generation);
1428 	if (IS_ERR(root->node)) {
1429 		ret = PTR_ERR(root->node);
1430 		goto find_fail;
1431 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1432 		ret = -EIO;
1433 		free_extent_buffer(root->node);
1434 		goto find_fail;
1435 	}
1436 	root->commit_root = btrfs_root_node(root);
1437 out:
1438 	btrfs_free_path(path);
1439 	return root;
1440 
1441 find_fail:
1442 	kfree(root);
1443 alloc_fail:
1444 	root = ERR_PTR(ret);
1445 	goto out;
1446 }
1447 
1448 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1449 				      struct btrfs_key *location)
1450 {
1451 	struct btrfs_root *root;
1452 
1453 	root = btrfs_read_tree_root(tree_root, location);
1454 	if (IS_ERR(root))
1455 		return root;
1456 
1457 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1458 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1459 		btrfs_check_and_init_root_item(&root->root_item);
1460 	}
1461 
1462 	return root;
1463 }
1464 
1465 int btrfs_init_fs_root(struct btrfs_root *root)
1466 {
1467 	int ret;
1468 	struct btrfs_subvolume_writers *writers;
1469 
1470 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1471 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1472 					GFP_NOFS);
1473 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1474 		ret = -ENOMEM;
1475 		goto fail;
1476 	}
1477 
1478 	writers = btrfs_alloc_subvolume_writers();
1479 	if (IS_ERR(writers)) {
1480 		ret = PTR_ERR(writers);
1481 		goto fail;
1482 	}
1483 	root->subv_writers = writers;
1484 
1485 	btrfs_init_free_ino_ctl(root);
1486 	spin_lock_init(&root->ino_cache_lock);
1487 	init_waitqueue_head(&root->ino_cache_wait);
1488 
1489 	ret = get_anon_bdev(&root->anon_dev);
1490 	if (ret)
1491 		goto fail;
1492 
1493 	mutex_lock(&root->objectid_mutex);
1494 	ret = btrfs_find_highest_objectid(root,
1495 					&root->highest_objectid);
1496 	if (ret) {
1497 		mutex_unlock(&root->objectid_mutex);
1498 		goto fail;
1499 	}
1500 
1501 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1502 
1503 	mutex_unlock(&root->objectid_mutex);
1504 
1505 	return 0;
1506 fail:
1507 	/* the caller is responsible to call free_fs_root */
1508 	return ret;
1509 }
1510 
1511 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1512 					u64 root_id)
1513 {
1514 	struct btrfs_root *root;
1515 
1516 	spin_lock(&fs_info->fs_roots_radix_lock);
1517 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1518 				 (unsigned long)root_id);
1519 	spin_unlock(&fs_info->fs_roots_radix_lock);
1520 	return root;
1521 }
1522 
1523 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1524 			 struct btrfs_root *root)
1525 {
1526 	int ret;
1527 
1528 	ret = radix_tree_preload(GFP_NOFS);
1529 	if (ret)
1530 		return ret;
1531 
1532 	spin_lock(&fs_info->fs_roots_radix_lock);
1533 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1534 				(unsigned long)root->root_key.objectid,
1535 				root);
1536 	if (ret == 0)
1537 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1538 	spin_unlock(&fs_info->fs_roots_radix_lock);
1539 	radix_tree_preload_end();
1540 
1541 	return ret;
1542 }
1543 
1544 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1545 				     struct btrfs_key *location,
1546 				     bool check_ref)
1547 {
1548 	struct btrfs_root *root;
1549 	struct btrfs_path *path;
1550 	struct btrfs_key key;
1551 	int ret;
1552 
1553 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1554 		return fs_info->tree_root;
1555 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1556 		return fs_info->extent_root;
1557 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1558 		return fs_info->chunk_root;
1559 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1560 		return fs_info->dev_root;
1561 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1562 		return fs_info->csum_root;
1563 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1564 		return fs_info->quota_root ? fs_info->quota_root :
1565 					     ERR_PTR(-ENOENT);
1566 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1567 		return fs_info->uuid_root ? fs_info->uuid_root :
1568 					    ERR_PTR(-ENOENT);
1569 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1570 		return fs_info->free_space_root ? fs_info->free_space_root :
1571 						  ERR_PTR(-ENOENT);
1572 again:
1573 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1574 	if (root) {
1575 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1576 			return ERR_PTR(-ENOENT);
1577 		return root;
1578 	}
1579 
1580 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1581 	if (IS_ERR(root))
1582 		return root;
1583 
1584 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1585 		ret = -ENOENT;
1586 		goto fail;
1587 	}
1588 
1589 	ret = btrfs_init_fs_root(root);
1590 	if (ret)
1591 		goto fail;
1592 
1593 	path = btrfs_alloc_path();
1594 	if (!path) {
1595 		ret = -ENOMEM;
1596 		goto fail;
1597 	}
1598 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1599 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1600 	key.offset = location->objectid;
1601 
1602 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1603 	btrfs_free_path(path);
1604 	if (ret < 0)
1605 		goto fail;
1606 	if (ret == 0)
1607 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1608 
1609 	ret = btrfs_insert_fs_root(fs_info, root);
1610 	if (ret) {
1611 		if (ret == -EEXIST) {
1612 			free_fs_root(root);
1613 			goto again;
1614 		}
1615 		goto fail;
1616 	}
1617 	return root;
1618 fail:
1619 	free_fs_root(root);
1620 	return ERR_PTR(ret);
1621 }
1622 
1623 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1624 {
1625 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1626 	int ret = 0;
1627 	struct btrfs_device *device;
1628 	struct backing_dev_info *bdi;
1629 
1630 	rcu_read_lock();
1631 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1632 		if (!device->bdev)
1633 			continue;
1634 		bdi = device->bdev->bd_bdi;
1635 		if (bdi_congested(bdi, bdi_bits)) {
1636 			ret = 1;
1637 			break;
1638 		}
1639 	}
1640 	rcu_read_unlock();
1641 	return ret;
1642 }
1643 
1644 /*
1645  * called by the kthread helper functions to finally call the bio end_io
1646  * functions.  This is where read checksum verification actually happens
1647  */
1648 static void end_workqueue_fn(struct btrfs_work *work)
1649 {
1650 	struct bio *bio;
1651 	struct btrfs_end_io_wq *end_io_wq;
1652 
1653 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1654 	bio = end_io_wq->bio;
1655 
1656 	bio->bi_status = end_io_wq->status;
1657 	bio->bi_private = end_io_wq->private;
1658 	bio->bi_end_io = end_io_wq->end_io;
1659 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1660 	bio_endio(bio);
1661 }
1662 
1663 static int cleaner_kthread(void *arg)
1664 {
1665 	struct btrfs_root *root = arg;
1666 	struct btrfs_fs_info *fs_info = root->fs_info;
1667 	int again;
1668 	struct btrfs_trans_handle *trans;
1669 
1670 	do {
1671 		again = 0;
1672 
1673 		/* Make the cleaner go to sleep early. */
1674 		if (btrfs_need_cleaner_sleep(fs_info))
1675 			goto sleep;
1676 
1677 		/*
1678 		 * Do not do anything if we might cause open_ctree() to block
1679 		 * before we have finished mounting the filesystem.
1680 		 */
1681 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1682 			goto sleep;
1683 
1684 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1685 			goto sleep;
1686 
1687 		/*
1688 		 * Avoid the problem that we change the status of the fs
1689 		 * during the above check and trylock.
1690 		 */
1691 		if (btrfs_need_cleaner_sleep(fs_info)) {
1692 			mutex_unlock(&fs_info->cleaner_mutex);
1693 			goto sleep;
1694 		}
1695 
1696 		mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1697 		btrfs_run_delayed_iputs(fs_info);
1698 		mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1699 
1700 		again = btrfs_clean_one_deleted_snapshot(root);
1701 		mutex_unlock(&fs_info->cleaner_mutex);
1702 
1703 		/*
1704 		 * The defragger has dealt with the R/O remount and umount,
1705 		 * needn't do anything special here.
1706 		 */
1707 		btrfs_run_defrag_inodes(fs_info);
1708 
1709 		/*
1710 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1711 		 * with relocation (btrfs_relocate_chunk) and relocation
1712 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1713 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1714 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1715 		 * unused block groups.
1716 		 */
1717 		btrfs_delete_unused_bgs(fs_info);
1718 sleep:
1719 		if (!again) {
1720 			set_current_state(TASK_INTERRUPTIBLE);
1721 			if (!kthread_should_stop())
1722 				schedule();
1723 			__set_current_state(TASK_RUNNING);
1724 		}
1725 	} while (!kthread_should_stop());
1726 
1727 	/*
1728 	 * Transaction kthread is stopped before us and wakes us up.
1729 	 * However we might have started a new transaction and COWed some
1730 	 * tree blocks when deleting unused block groups for example. So
1731 	 * make sure we commit the transaction we started to have a clean
1732 	 * shutdown when evicting the btree inode - if it has dirty pages
1733 	 * when we do the final iput() on it, eviction will trigger a
1734 	 * writeback for it which will fail with null pointer dereferences
1735 	 * since work queues and other resources were already released and
1736 	 * destroyed by the time the iput/eviction/writeback is made.
1737 	 */
1738 	trans = btrfs_attach_transaction(root);
1739 	if (IS_ERR(trans)) {
1740 		if (PTR_ERR(trans) != -ENOENT)
1741 			btrfs_err(fs_info,
1742 				  "cleaner transaction attach returned %ld",
1743 				  PTR_ERR(trans));
1744 	} else {
1745 		int ret;
1746 
1747 		ret = btrfs_commit_transaction(trans);
1748 		if (ret)
1749 			btrfs_err(fs_info,
1750 				  "cleaner open transaction commit returned %d",
1751 				  ret);
1752 	}
1753 
1754 	return 0;
1755 }
1756 
1757 static int transaction_kthread(void *arg)
1758 {
1759 	struct btrfs_root *root = arg;
1760 	struct btrfs_fs_info *fs_info = root->fs_info;
1761 	struct btrfs_trans_handle *trans;
1762 	struct btrfs_transaction *cur;
1763 	u64 transid;
1764 	unsigned long now;
1765 	unsigned long delay;
1766 	bool cannot_commit;
1767 
1768 	do {
1769 		cannot_commit = false;
1770 		delay = HZ * fs_info->commit_interval;
1771 		mutex_lock(&fs_info->transaction_kthread_mutex);
1772 
1773 		spin_lock(&fs_info->trans_lock);
1774 		cur = fs_info->running_transaction;
1775 		if (!cur) {
1776 			spin_unlock(&fs_info->trans_lock);
1777 			goto sleep;
1778 		}
1779 
1780 		now = get_seconds();
1781 		if (cur->state < TRANS_STATE_BLOCKED &&
1782 		    (now < cur->start_time ||
1783 		     now - cur->start_time < fs_info->commit_interval)) {
1784 			spin_unlock(&fs_info->trans_lock);
1785 			delay = HZ * 5;
1786 			goto sleep;
1787 		}
1788 		transid = cur->transid;
1789 		spin_unlock(&fs_info->trans_lock);
1790 
1791 		/* If the file system is aborted, this will always fail. */
1792 		trans = btrfs_attach_transaction(root);
1793 		if (IS_ERR(trans)) {
1794 			if (PTR_ERR(trans) != -ENOENT)
1795 				cannot_commit = true;
1796 			goto sleep;
1797 		}
1798 		if (transid == trans->transid) {
1799 			btrfs_commit_transaction(trans);
1800 		} else {
1801 			btrfs_end_transaction(trans);
1802 		}
1803 sleep:
1804 		wake_up_process(fs_info->cleaner_kthread);
1805 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1806 
1807 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1808 				      &fs_info->fs_state)))
1809 			btrfs_cleanup_transaction(fs_info);
1810 		set_current_state(TASK_INTERRUPTIBLE);
1811 		if (!kthread_should_stop() &&
1812 				(!btrfs_transaction_blocked(fs_info) ||
1813 				 cannot_commit))
1814 			schedule_timeout(delay);
1815 		__set_current_state(TASK_RUNNING);
1816 	} while (!kthread_should_stop());
1817 	return 0;
1818 }
1819 
1820 /*
1821  * this will find the highest generation in the array of
1822  * root backups.  The index of the highest array is returned,
1823  * or -1 if we can't find anything.
1824  *
1825  * We check to make sure the array is valid by comparing the
1826  * generation of the latest  root in the array with the generation
1827  * in the super block.  If they don't match we pitch it.
1828  */
1829 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1830 {
1831 	u64 cur;
1832 	int newest_index = -1;
1833 	struct btrfs_root_backup *root_backup;
1834 	int i;
1835 
1836 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1837 		root_backup = info->super_copy->super_roots + i;
1838 		cur = btrfs_backup_tree_root_gen(root_backup);
1839 		if (cur == newest_gen)
1840 			newest_index = i;
1841 	}
1842 
1843 	/* check to see if we actually wrapped around */
1844 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1845 		root_backup = info->super_copy->super_roots;
1846 		cur = btrfs_backup_tree_root_gen(root_backup);
1847 		if (cur == newest_gen)
1848 			newest_index = 0;
1849 	}
1850 	return newest_index;
1851 }
1852 
1853 
1854 /*
1855  * find the oldest backup so we know where to store new entries
1856  * in the backup array.  This will set the backup_root_index
1857  * field in the fs_info struct
1858  */
1859 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1860 				     u64 newest_gen)
1861 {
1862 	int newest_index = -1;
1863 
1864 	newest_index = find_newest_super_backup(info, newest_gen);
1865 	/* if there was garbage in there, just move along */
1866 	if (newest_index == -1) {
1867 		info->backup_root_index = 0;
1868 	} else {
1869 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1870 	}
1871 }
1872 
1873 /*
1874  * copy all the root pointers into the super backup array.
1875  * this will bump the backup pointer by one when it is
1876  * done
1877  */
1878 static void backup_super_roots(struct btrfs_fs_info *info)
1879 {
1880 	int next_backup;
1881 	struct btrfs_root_backup *root_backup;
1882 	int last_backup;
1883 
1884 	next_backup = info->backup_root_index;
1885 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1886 		BTRFS_NUM_BACKUP_ROOTS;
1887 
1888 	/*
1889 	 * just overwrite the last backup if we're at the same generation
1890 	 * this happens only at umount
1891 	 */
1892 	root_backup = info->super_for_commit->super_roots + last_backup;
1893 	if (btrfs_backup_tree_root_gen(root_backup) ==
1894 	    btrfs_header_generation(info->tree_root->node))
1895 		next_backup = last_backup;
1896 
1897 	root_backup = info->super_for_commit->super_roots + next_backup;
1898 
1899 	/*
1900 	 * make sure all of our padding and empty slots get zero filled
1901 	 * regardless of which ones we use today
1902 	 */
1903 	memset(root_backup, 0, sizeof(*root_backup));
1904 
1905 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1906 
1907 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1908 	btrfs_set_backup_tree_root_gen(root_backup,
1909 			       btrfs_header_generation(info->tree_root->node));
1910 
1911 	btrfs_set_backup_tree_root_level(root_backup,
1912 			       btrfs_header_level(info->tree_root->node));
1913 
1914 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1915 	btrfs_set_backup_chunk_root_gen(root_backup,
1916 			       btrfs_header_generation(info->chunk_root->node));
1917 	btrfs_set_backup_chunk_root_level(root_backup,
1918 			       btrfs_header_level(info->chunk_root->node));
1919 
1920 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1921 	btrfs_set_backup_extent_root_gen(root_backup,
1922 			       btrfs_header_generation(info->extent_root->node));
1923 	btrfs_set_backup_extent_root_level(root_backup,
1924 			       btrfs_header_level(info->extent_root->node));
1925 
1926 	/*
1927 	 * we might commit during log recovery, which happens before we set
1928 	 * the fs_root.  Make sure it is valid before we fill it in.
1929 	 */
1930 	if (info->fs_root && info->fs_root->node) {
1931 		btrfs_set_backup_fs_root(root_backup,
1932 					 info->fs_root->node->start);
1933 		btrfs_set_backup_fs_root_gen(root_backup,
1934 			       btrfs_header_generation(info->fs_root->node));
1935 		btrfs_set_backup_fs_root_level(root_backup,
1936 			       btrfs_header_level(info->fs_root->node));
1937 	}
1938 
1939 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1940 	btrfs_set_backup_dev_root_gen(root_backup,
1941 			       btrfs_header_generation(info->dev_root->node));
1942 	btrfs_set_backup_dev_root_level(root_backup,
1943 				       btrfs_header_level(info->dev_root->node));
1944 
1945 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1946 	btrfs_set_backup_csum_root_gen(root_backup,
1947 			       btrfs_header_generation(info->csum_root->node));
1948 	btrfs_set_backup_csum_root_level(root_backup,
1949 			       btrfs_header_level(info->csum_root->node));
1950 
1951 	btrfs_set_backup_total_bytes(root_backup,
1952 			     btrfs_super_total_bytes(info->super_copy));
1953 	btrfs_set_backup_bytes_used(root_backup,
1954 			     btrfs_super_bytes_used(info->super_copy));
1955 	btrfs_set_backup_num_devices(root_backup,
1956 			     btrfs_super_num_devices(info->super_copy));
1957 
1958 	/*
1959 	 * if we don't copy this out to the super_copy, it won't get remembered
1960 	 * for the next commit
1961 	 */
1962 	memcpy(&info->super_copy->super_roots,
1963 	       &info->super_for_commit->super_roots,
1964 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1965 }
1966 
1967 /*
1968  * this copies info out of the root backup array and back into
1969  * the in-memory super block.  It is meant to help iterate through
1970  * the array, so you send it the number of backups you've already
1971  * tried and the last backup index you used.
1972  *
1973  * this returns -1 when it has tried all the backups
1974  */
1975 static noinline int next_root_backup(struct btrfs_fs_info *info,
1976 				     struct btrfs_super_block *super,
1977 				     int *num_backups_tried, int *backup_index)
1978 {
1979 	struct btrfs_root_backup *root_backup;
1980 	int newest = *backup_index;
1981 
1982 	if (*num_backups_tried == 0) {
1983 		u64 gen = btrfs_super_generation(super);
1984 
1985 		newest = find_newest_super_backup(info, gen);
1986 		if (newest == -1)
1987 			return -1;
1988 
1989 		*backup_index = newest;
1990 		*num_backups_tried = 1;
1991 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1992 		/* we've tried all the backups, all done */
1993 		return -1;
1994 	} else {
1995 		/* jump to the next oldest backup */
1996 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1997 			BTRFS_NUM_BACKUP_ROOTS;
1998 		*backup_index = newest;
1999 		*num_backups_tried += 1;
2000 	}
2001 	root_backup = super->super_roots + newest;
2002 
2003 	btrfs_set_super_generation(super,
2004 				   btrfs_backup_tree_root_gen(root_backup));
2005 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2006 	btrfs_set_super_root_level(super,
2007 				   btrfs_backup_tree_root_level(root_backup));
2008 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2009 
2010 	/*
2011 	 * fixme: the total bytes and num_devices need to match or we should
2012 	 * need a fsck
2013 	 */
2014 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2015 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2016 	return 0;
2017 }
2018 
2019 /* helper to cleanup workers */
2020 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2021 {
2022 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2023 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2024 	btrfs_destroy_workqueue(fs_info->workers);
2025 	btrfs_destroy_workqueue(fs_info->endio_workers);
2026 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2027 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2028 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2029 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2030 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2031 	btrfs_destroy_workqueue(fs_info->submit_workers);
2032 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2033 	btrfs_destroy_workqueue(fs_info->caching_workers);
2034 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2035 	btrfs_destroy_workqueue(fs_info->flush_workers);
2036 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2037 	btrfs_destroy_workqueue(fs_info->extent_workers);
2038 	/*
2039 	 * Now that all other work queues are destroyed, we can safely destroy
2040 	 * the queues used for metadata I/O, since tasks from those other work
2041 	 * queues can do metadata I/O operations.
2042 	 */
2043 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2044 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2045 }
2046 
2047 static void free_root_extent_buffers(struct btrfs_root *root)
2048 {
2049 	if (root) {
2050 		free_extent_buffer(root->node);
2051 		free_extent_buffer(root->commit_root);
2052 		root->node = NULL;
2053 		root->commit_root = NULL;
2054 	}
2055 }
2056 
2057 /* helper to cleanup tree roots */
2058 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2059 {
2060 	free_root_extent_buffers(info->tree_root);
2061 
2062 	free_root_extent_buffers(info->dev_root);
2063 	free_root_extent_buffers(info->extent_root);
2064 	free_root_extent_buffers(info->csum_root);
2065 	free_root_extent_buffers(info->quota_root);
2066 	free_root_extent_buffers(info->uuid_root);
2067 	if (chunk_root)
2068 		free_root_extent_buffers(info->chunk_root);
2069 	free_root_extent_buffers(info->free_space_root);
2070 }
2071 
2072 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2073 {
2074 	int ret;
2075 	struct btrfs_root *gang[8];
2076 	int i;
2077 
2078 	while (!list_empty(&fs_info->dead_roots)) {
2079 		gang[0] = list_entry(fs_info->dead_roots.next,
2080 				     struct btrfs_root, root_list);
2081 		list_del(&gang[0]->root_list);
2082 
2083 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2084 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2085 		} else {
2086 			free_extent_buffer(gang[0]->node);
2087 			free_extent_buffer(gang[0]->commit_root);
2088 			btrfs_put_fs_root(gang[0]);
2089 		}
2090 	}
2091 
2092 	while (1) {
2093 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2094 					     (void **)gang, 0,
2095 					     ARRAY_SIZE(gang));
2096 		if (!ret)
2097 			break;
2098 		for (i = 0; i < ret; i++)
2099 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2100 	}
2101 
2102 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2103 		btrfs_free_log_root_tree(NULL, fs_info);
2104 		btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2105 	}
2106 }
2107 
2108 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2109 {
2110 	mutex_init(&fs_info->scrub_lock);
2111 	atomic_set(&fs_info->scrubs_running, 0);
2112 	atomic_set(&fs_info->scrub_pause_req, 0);
2113 	atomic_set(&fs_info->scrubs_paused, 0);
2114 	atomic_set(&fs_info->scrub_cancel_req, 0);
2115 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2116 	fs_info->scrub_workers_refcnt = 0;
2117 }
2118 
2119 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2120 {
2121 	spin_lock_init(&fs_info->balance_lock);
2122 	mutex_init(&fs_info->balance_mutex);
2123 	atomic_set(&fs_info->balance_running, 0);
2124 	atomic_set(&fs_info->balance_pause_req, 0);
2125 	atomic_set(&fs_info->balance_cancel_req, 0);
2126 	fs_info->balance_ctl = NULL;
2127 	init_waitqueue_head(&fs_info->balance_wait_q);
2128 }
2129 
2130 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2131 {
2132 	struct inode *inode = fs_info->btree_inode;
2133 
2134 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2135 	set_nlink(inode, 1);
2136 	/*
2137 	 * we set the i_size on the btree inode to the max possible int.
2138 	 * the real end of the address space is determined by all of
2139 	 * the devices in the system
2140 	 */
2141 	inode->i_size = OFFSET_MAX;
2142 	inode->i_mapping->a_ops = &btree_aops;
2143 
2144 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2145 	extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2146 	BTRFS_I(inode)->io_tree.track_uptodate = 0;
2147 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2148 
2149 	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2150 
2151 	BTRFS_I(inode)->root = fs_info->tree_root;
2152 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2153 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2154 	btrfs_insert_inode_hash(inode);
2155 }
2156 
2157 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2158 {
2159 	fs_info->dev_replace.lock_owner = 0;
2160 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2161 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2162 	rwlock_init(&fs_info->dev_replace.lock);
2163 	atomic_set(&fs_info->dev_replace.read_locks, 0);
2164 	atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2165 	init_waitqueue_head(&fs_info->replace_wait);
2166 	init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2167 }
2168 
2169 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2170 {
2171 	spin_lock_init(&fs_info->qgroup_lock);
2172 	mutex_init(&fs_info->qgroup_ioctl_lock);
2173 	fs_info->qgroup_tree = RB_ROOT;
2174 	fs_info->qgroup_op_tree = RB_ROOT;
2175 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2176 	fs_info->qgroup_seq = 1;
2177 	fs_info->qgroup_ulist = NULL;
2178 	fs_info->qgroup_rescan_running = false;
2179 	mutex_init(&fs_info->qgroup_rescan_lock);
2180 }
2181 
2182 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2183 		struct btrfs_fs_devices *fs_devices)
2184 {
2185 	int max_active = fs_info->thread_pool_size;
2186 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2187 
2188 	fs_info->workers =
2189 		btrfs_alloc_workqueue(fs_info, "worker",
2190 				      flags | WQ_HIGHPRI, max_active, 16);
2191 
2192 	fs_info->delalloc_workers =
2193 		btrfs_alloc_workqueue(fs_info, "delalloc",
2194 				      flags, max_active, 2);
2195 
2196 	fs_info->flush_workers =
2197 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2198 				      flags, max_active, 0);
2199 
2200 	fs_info->caching_workers =
2201 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2202 
2203 	/*
2204 	 * a higher idle thresh on the submit workers makes it much more
2205 	 * likely that bios will be send down in a sane order to the
2206 	 * devices
2207 	 */
2208 	fs_info->submit_workers =
2209 		btrfs_alloc_workqueue(fs_info, "submit", flags,
2210 				      min_t(u64, fs_devices->num_devices,
2211 					    max_active), 64);
2212 
2213 	fs_info->fixup_workers =
2214 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2215 
2216 	/*
2217 	 * endios are largely parallel and should have a very
2218 	 * low idle thresh
2219 	 */
2220 	fs_info->endio_workers =
2221 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2222 	fs_info->endio_meta_workers =
2223 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2224 				      max_active, 4);
2225 	fs_info->endio_meta_write_workers =
2226 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2227 				      max_active, 2);
2228 	fs_info->endio_raid56_workers =
2229 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2230 				      max_active, 4);
2231 	fs_info->endio_repair_workers =
2232 		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2233 	fs_info->rmw_workers =
2234 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2235 	fs_info->endio_write_workers =
2236 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2237 				      max_active, 2);
2238 	fs_info->endio_freespace_worker =
2239 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2240 				      max_active, 0);
2241 	fs_info->delayed_workers =
2242 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2243 				      max_active, 0);
2244 	fs_info->readahead_workers =
2245 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2246 				      max_active, 2);
2247 	fs_info->qgroup_rescan_workers =
2248 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2249 	fs_info->extent_workers =
2250 		btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2251 				      min_t(u64, fs_devices->num_devices,
2252 					    max_active), 8);
2253 
2254 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2255 	      fs_info->submit_workers && fs_info->flush_workers &&
2256 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2257 	      fs_info->endio_meta_write_workers &&
2258 	      fs_info->endio_repair_workers &&
2259 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2260 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2261 	      fs_info->caching_workers && fs_info->readahead_workers &&
2262 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2263 	      fs_info->extent_workers &&
2264 	      fs_info->qgroup_rescan_workers)) {
2265 		return -ENOMEM;
2266 	}
2267 
2268 	return 0;
2269 }
2270 
2271 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2272 			    struct btrfs_fs_devices *fs_devices)
2273 {
2274 	int ret;
2275 	struct btrfs_root *log_tree_root;
2276 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2277 	u64 bytenr = btrfs_super_log_root(disk_super);
2278 
2279 	if (fs_devices->rw_devices == 0) {
2280 		btrfs_warn(fs_info, "log replay required on RO media");
2281 		return -EIO;
2282 	}
2283 
2284 	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2285 	if (!log_tree_root)
2286 		return -ENOMEM;
2287 
2288 	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2289 
2290 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2291 					      fs_info->generation + 1);
2292 	if (IS_ERR(log_tree_root->node)) {
2293 		btrfs_warn(fs_info, "failed to read log tree");
2294 		ret = PTR_ERR(log_tree_root->node);
2295 		kfree(log_tree_root);
2296 		return ret;
2297 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2298 		btrfs_err(fs_info, "failed to read log tree");
2299 		free_extent_buffer(log_tree_root->node);
2300 		kfree(log_tree_root);
2301 		return -EIO;
2302 	}
2303 	/* returns with log_tree_root freed on success */
2304 	ret = btrfs_recover_log_trees(log_tree_root);
2305 	if (ret) {
2306 		btrfs_handle_fs_error(fs_info, ret,
2307 				      "Failed to recover log tree");
2308 		free_extent_buffer(log_tree_root->node);
2309 		kfree(log_tree_root);
2310 		return ret;
2311 	}
2312 
2313 	if (sb_rdonly(fs_info->sb)) {
2314 		ret = btrfs_commit_super(fs_info);
2315 		if (ret)
2316 			return ret;
2317 	}
2318 
2319 	return 0;
2320 }
2321 
2322 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2323 {
2324 	struct btrfs_root *tree_root = fs_info->tree_root;
2325 	struct btrfs_root *root;
2326 	struct btrfs_key location;
2327 	int ret;
2328 
2329 	BUG_ON(!fs_info->tree_root);
2330 
2331 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2332 	location.type = BTRFS_ROOT_ITEM_KEY;
2333 	location.offset = 0;
2334 
2335 	root = btrfs_read_tree_root(tree_root, &location);
2336 	if (IS_ERR(root))
2337 		return PTR_ERR(root);
2338 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2339 	fs_info->extent_root = root;
2340 
2341 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2342 	root = btrfs_read_tree_root(tree_root, &location);
2343 	if (IS_ERR(root))
2344 		return PTR_ERR(root);
2345 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2346 	fs_info->dev_root = root;
2347 	btrfs_init_devices_late(fs_info);
2348 
2349 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2350 	root = btrfs_read_tree_root(tree_root, &location);
2351 	if (IS_ERR(root))
2352 		return PTR_ERR(root);
2353 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2354 	fs_info->csum_root = root;
2355 
2356 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2357 	root = btrfs_read_tree_root(tree_root, &location);
2358 	if (!IS_ERR(root)) {
2359 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2360 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2361 		fs_info->quota_root = root;
2362 	}
2363 
2364 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2365 	root = btrfs_read_tree_root(tree_root, &location);
2366 	if (IS_ERR(root)) {
2367 		ret = PTR_ERR(root);
2368 		if (ret != -ENOENT)
2369 			return ret;
2370 	} else {
2371 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2372 		fs_info->uuid_root = root;
2373 	}
2374 
2375 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2376 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2377 		root = btrfs_read_tree_root(tree_root, &location);
2378 		if (IS_ERR(root))
2379 			return PTR_ERR(root);
2380 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2381 		fs_info->free_space_root = root;
2382 	}
2383 
2384 	return 0;
2385 }
2386 
2387 int open_ctree(struct super_block *sb,
2388 	       struct btrfs_fs_devices *fs_devices,
2389 	       char *options)
2390 {
2391 	u32 sectorsize;
2392 	u32 nodesize;
2393 	u32 stripesize;
2394 	u64 generation;
2395 	u64 features;
2396 	struct btrfs_key location;
2397 	struct buffer_head *bh;
2398 	struct btrfs_super_block *disk_super;
2399 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2400 	struct btrfs_root *tree_root;
2401 	struct btrfs_root *chunk_root;
2402 	int ret;
2403 	int err = -EINVAL;
2404 	int num_backups_tried = 0;
2405 	int backup_index = 0;
2406 	int max_active;
2407 	int clear_free_space_tree = 0;
2408 
2409 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2410 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2411 	if (!tree_root || !chunk_root) {
2412 		err = -ENOMEM;
2413 		goto fail;
2414 	}
2415 
2416 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2417 	if (ret) {
2418 		err = ret;
2419 		goto fail;
2420 	}
2421 
2422 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2423 	if (ret) {
2424 		err = ret;
2425 		goto fail_srcu;
2426 	}
2427 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2428 					(1 + ilog2(nr_cpu_ids));
2429 
2430 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2431 	if (ret) {
2432 		err = ret;
2433 		goto fail_dirty_metadata_bytes;
2434 	}
2435 
2436 	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2437 	if (ret) {
2438 		err = ret;
2439 		goto fail_delalloc_bytes;
2440 	}
2441 
2442 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2443 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2444 	INIT_LIST_HEAD(&fs_info->trans_list);
2445 	INIT_LIST_HEAD(&fs_info->dead_roots);
2446 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2447 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2448 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2449 	spin_lock_init(&fs_info->delalloc_root_lock);
2450 	spin_lock_init(&fs_info->trans_lock);
2451 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2452 	spin_lock_init(&fs_info->delayed_iput_lock);
2453 	spin_lock_init(&fs_info->defrag_inodes_lock);
2454 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2455 	spin_lock_init(&fs_info->super_lock);
2456 	spin_lock_init(&fs_info->qgroup_op_lock);
2457 	spin_lock_init(&fs_info->buffer_lock);
2458 	spin_lock_init(&fs_info->unused_bgs_lock);
2459 	rwlock_init(&fs_info->tree_mod_log_lock);
2460 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2461 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2462 	mutex_init(&fs_info->reloc_mutex);
2463 	mutex_init(&fs_info->delalloc_root_mutex);
2464 	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2465 	seqlock_init(&fs_info->profiles_lock);
2466 
2467 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2468 	INIT_LIST_HEAD(&fs_info->space_info);
2469 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2470 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2471 	btrfs_mapping_init(&fs_info->mapping_tree);
2472 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2473 			     BTRFS_BLOCK_RSV_GLOBAL);
2474 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2475 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2476 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2477 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2478 			     BTRFS_BLOCK_RSV_DELOPS);
2479 	atomic_set(&fs_info->async_delalloc_pages, 0);
2480 	atomic_set(&fs_info->defrag_running, 0);
2481 	atomic_set(&fs_info->qgroup_op_seq, 0);
2482 	atomic_set(&fs_info->reada_works_cnt, 0);
2483 	atomic64_set(&fs_info->tree_mod_seq, 0);
2484 	fs_info->sb = sb;
2485 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2486 	fs_info->metadata_ratio = 0;
2487 	fs_info->defrag_inodes = RB_ROOT;
2488 	atomic64_set(&fs_info->free_chunk_space, 0);
2489 	fs_info->tree_mod_log = RB_ROOT;
2490 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2491 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2492 	/* readahead state */
2493 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2494 	spin_lock_init(&fs_info->reada_lock);
2495 	btrfs_init_ref_verify(fs_info);
2496 
2497 	fs_info->thread_pool_size = min_t(unsigned long,
2498 					  num_online_cpus() + 2, 8);
2499 
2500 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2501 	spin_lock_init(&fs_info->ordered_root_lock);
2502 
2503 	fs_info->btree_inode = new_inode(sb);
2504 	if (!fs_info->btree_inode) {
2505 		err = -ENOMEM;
2506 		goto fail_bio_counter;
2507 	}
2508 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2509 
2510 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2511 					GFP_KERNEL);
2512 	if (!fs_info->delayed_root) {
2513 		err = -ENOMEM;
2514 		goto fail_iput;
2515 	}
2516 	btrfs_init_delayed_root(fs_info->delayed_root);
2517 
2518 	btrfs_init_scrub(fs_info);
2519 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2520 	fs_info->check_integrity_print_mask = 0;
2521 #endif
2522 	btrfs_init_balance(fs_info);
2523 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2524 
2525 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2526 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2527 
2528 	btrfs_init_btree_inode(fs_info);
2529 
2530 	spin_lock_init(&fs_info->block_group_cache_lock);
2531 	fs_info->block_group_cache_tree = RB_ROOT;
2532 	fs_info->first_logical_byte = (u64)-1;
2533 
2534 	extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2535 	extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2536 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2537 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2538 
2539 	mutex_init(&fs_info->ordered_operations_mutex);
2540 	mutex_init(&fs_info->tree_log_mutex);
2541 	mutex_init(&fs_info->chunk_mutex);
2542 	mutex_init(&fs_info->transaction_kthread_mutex);
2543 	mutex_init(&fs_info->cleaner_mutex);
2544 	mutex_init(&fs_info->volume_mutex);
2545 	mutex_init(&fs_info->ro_block_group_mutex);
2546 	init_rwsem(&fs_info->commit_root_sem);
2547 	init_rwsem(&fs_info->cleanup_work_sem);
2548 	init_rwsem(&fs_info->subvol_sem);
2549 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2550 
2551 	btrfs_init_dev_replace_locks(fs_info);
2552 	btrfs_init_qgroup(fs_info);
2553 
2554 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2555 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2556 
2557 	init_waitqueue_head(&fs_info->transaction_throttle);
2558 	init_waitqueue_head(&fs_info->transaction_wait);
2559 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2560 	init_waitqueue_head(&fs_info->async_submit_wait);
2561 
2562 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2563 
2564 	/* Usable values until the real ones are cached from the superblock */
2565 	fs_info->nodesize = 4096;
2566 	fs_info->sectorsize = 4096;
2567 	fs_info->stripesize = 4096;
2568 
2569 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2570 	if (ret) {
2571 		err = ret;
2572 		goto fail_alloc;
2573 	}
2574 
2575 	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2576 
2577 	invalidate_bdev(fs_devices->latest_bdev);
2578 
2579 	/*
2580 	 * Read super block and check the signature bytes only
2581 	 */
2582 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2583 	if (IS_ERR(bh)) {
2584 		err = PTR_ERR(bh);
2585 		goto fail_alloc;
2586 	}
2587 
2588 	/*
2589 	 * We want to check superblock checksum, the type is stored inside.
2590 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2591 	 */
2592 	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2593 		btrfs_err(fs_info, "superblock checksum mismatch");
2594 		err = -EINVAL;
2595 		brelse(bh);
2596 		goto fail_alloc;
2597 	}
2598 
2599 	/*
2600 	 * super_copy is zeroed at allocation time and we never touch the
2601 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2602 	 * the whole block of INFO_SIZE
2603 	 */
2604 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2605 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2606 	       sizeof(*fs_info->super_for_commit));
2607 	brelse(bh);
2608 
2609 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2610 
2611 	ret = btrfs_check_super_valid(fs_info);
2612 	if (ret) {
2613 		btrfs_err(fs_info, "superblock contains fatal errors");
2614 		err = -EINVAL;
2615 		goto fail_alloc;
2616 	}
2617 
2618 	disk_super = fs_info->super_copy;
2619 	if (!btrfs_super_root(disk_super))
2620 		goto fail_alloc;
2621 
2622 	/* check FS state, whether FS is broken. */
2623 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2624 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2625 
2626 	/*
2627 	 * run through our array of backup supers and setup
2628 	 * our ring pointer to the oldest one
2629 	 */
2630 	generation = btrfs_super_generation(disk_super);
2631 	find_oldest_super_backup(fs_info, generation);
2632 
2633 	/*
2634 	 * In the long term, we'll store the compression type in the super
2635 	 * block, and it'll be used for per file compression control.
2636 	 */
2637 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2638 
2639 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2640 	if (ret) {
2641 		err = ret;
2642 		goto fail_alloc;
2643 	}
2644 
2645 	features = btrfs_super_incompat_flags(disk_super) &
2646 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2647 	if (features) {
2648 		btrfs_err(fs_info,
2649 		    "cannot mount because of unsupported optional features (%llx)",
2650 		    features);
2651 		err = -EINVAL;
2652 		goto fail_alloc;
2653 	}
2654 
2655 	features = btrfs_super_incompat_flags(disk_super);
2656 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2657 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2658 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2659 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2660 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2661 
2662 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2663 		btrfs_info(fs_info, "has skinny extents");
2664 
2665 	/*
2666 	 * flag our filesystem as having big metadata blocks if
2667 	 * they are bigger than the page size
2668 	 */
2669 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2670 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2671 			btrfs_info(fs_info,
2672 				"flagging fs with big metadata feature");
2673 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2674 	}
2675 
2676 	nodesize = btrfs_super_nodesize(disk_super);
2677 	sectorsize = btrfs_super_sectorsize(disk_super);
2678 	stripesize = sectorsize;
2679 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2680 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2681 
2682 	/* Cache block sizes */
2683 	fs_info->nodesize = nodesize;
2684 	fs_info->sectorsize = sectorsize;
2685 	fs_info->stripesize = stripesize;
2686 
2687 	/*
2688 	 * mixed block groups end up with duplicate but slightly offset
2689 	 * extent buffers for the same range.  It leads to corruptions
2690 	 */
2691 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2692 	    (sectorsize != nodesize)) {
2693 		btrfs_err(fs_info,
2694 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2695 			nodesize, sectorsize);
2696 		goto fail_alloc;
2697 	}
2698 
2699 	/*
2700 	 * Needn't use the lock because there is no other task which will
2701 	 * update the flag.
2702 	 */
2703 	btrfs_set_super_incompat_flags(disk_super, features);
2704 
2705 	features = btrfs_super_compat_ro_flags(disk_super) &
2706 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2707 	if (!sb_rdonly(sb) && features) {
2708 		btrfs_err(fs_info,
2709 	"cannot mount read-write because of unsupported optional features (%llx)",
2710 		       features);
2711 		err = -EINVAL;
2712 		goto fail_alloc;
2713 	}
2714 
2715 	max_active = fs_info->thread_pool_size;
2716 
2717 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2718 	if (ret) {
2719 		err = ret;
2720 		goto fail_sb_buffer;
2721 	}
2722 
2723 	sb->s_bdi->congested_fn = btrfs_congested_fn;
2724 	sb->s_bdi->congested_data = fs_info;
2725 	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2726 	sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2727 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2728 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2729 
2730 	sb->s_blocksize = sectorsize;
2731 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2732 	memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2733 
2734 	mutex_lock(&fs_info->chunk_mutex);
2735 	ret = btrfs_read_sys_array(fs_info);
2736 	mutex_unlock(&fs_info->chunk_mutex);
2737 	if (ret) {
2738 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
2739 		goto fail_sb_buffer;
2740 	}
2741 
2742 	generation = btrfs_super_chunk_root_generation(disk_super);
2743 
2744 	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2745 
2746 	chunk_root->node = read_tree_block(fs_info,
2747 					   btrfs_super_chunk_root(disk_super),
2748 					   generation);
2749 	if (IS_ERR(chunk_root->node) ||
2750 	    !extent_buffer_uptodate(chunk_root->node)) {
2751 		btrfs_err(fs_info, "failed to read chunk root");
2752 		if (!IS_ERR(chunk_root->node))
2753 			free_extent_buffer(chunk_root->node);
2754 		chunk_root->node = NULL;
2755 		goto fail_tree_roots;
2756 	}
2757 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2758 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2759 
2760 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2761 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2762 
2763 	ret = btrfs_read_chunk_tree(fs_info);
2764 	if (ret) {
2765 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2766 		goto fail_tree_roots;
2767 	}
2768 
2769 	/*
2770 	 * keep the device that is marked to be the target device for the
2771 	 * dev_replace procedure
2772 	 */
2773 	btrfs_close_extra_devices(fs_devices, 0);
2774 
2775 	if (!fs_devices->latest_bdev) {
2776 		btrfs_err(fs_info, "failed to read devices");
2777 		goto fail_tree_roots;
2778 	}
2779 
2780 retry_root_backup:
2781 	generation = btrfs_super_generation(disk_super);
2782 
2783 	tree_root->node = read_tree_block(fs_info,
2784 					  btrfs_super_root(disk_super),
2785 					  generation);
2786 	if (IS_ERR(tree_root->node) ||
2787 	    !extent_buffer_uptodate(tree_root->node)) {
2788 		btrfs_warn(fs_info, "failed to read tree root");
2789 		if (!IS_ERR(tree_root->node))
2790 			free_extent_buffer(tree_root->node);
2791 		tree_root->node = NULL;
2792 		goto recovery_tree_root;
2793 	}
2794 
2795 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2796 	tree_root->commit_root = btrfs_root_node(tree_root);
2797 	btrfs_set_root_refs(&tree_root->root_item, 1);
2798 
2799 	mutex_lock(&tree_root->objectid_mutex);
2800 	ret = btrfs_find_highest_objectid(tree_root,
2801 					&tree_root->highest_objectid);
2802 	if (ret) {
2803 		mutex_unlock(&tree_root->objectid_mutex);
2804 		goto recovery_tree_root;
2805 	}
2806 
2807 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2808 
2809 	mutex_unlock(&tree_root->objectid_mutex);
2810 
2811 	ret = btrfs_read_roots(fs_info);
2812 	if (ret)
2813 		goto recovery_tree_root;
2814 
2815 	fs_info->generation = generation;
2816 	fs_info->last_trans_committed = generation;
2817 
2818 	ret = btrfs_recover_balance(fs_info);
2819 	if (ret) {
2820 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
2821 		goto fail_block_groups;
2822 	}
2823 
2824 	ret = btrfs_init_dev_stats(fs_info);
2825 	if (ret) {
2826 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2827 		goto fail_block_groups;
2828 	}
2829 
2830 	ret = btrfs_init_dev_replace(fs_info);
2831 	if (ret) {
2832 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2833 		goto fail_block_groups;
2834 	}
2835 
2836 	btrfs_close_extra_devices(fs_devices, 1);
2837 
2838 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2839 	if (ret) {
2840 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2841 				ret);
2842 		goto fail_block_groups;
2843 	}
2844 
2845 	ret = btrfs_sysfs_add_device(fs_devices);
2846 	if (ret) {
2847 		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2848 				ret);
2849 		goto fail_fsdev_sysfs;
2850 	}
2851 
2852 	ret = btrfs_sysfs_add_mounted(fs_info);
2853 	if (ret) {
2854 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2855 		goto fail_fsdev_sysfs;
2856 	}
2857 
2858 	ret = btrfs_init_space_info(fs_info);
2859 	if (ret) {
2860 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2861 		goto fail_sysfs;
2862 	}
2863 
2864 	ret = btrfs_read_block_groups(fs_info);
2865 	if (ret) {
2866 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
2867 		goto fail_sysfs;
2868 	}
2869 
2870 	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
2871 		btrfs_warn(fs_info,
2872 		"writeable mount is not allowed due to too many missing devices");
2873 		goto fail_sysfs;
2874 	}
2875 
2876 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2877 					       "btrfs-cleaner");
2878 	if (IS_ERR(fs_info->cleaner_kthread))
2879 		goto fail_sysfs;
2880 
2881 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2882 						   tree_root,
2883 						   "btrfs-transaction");
2884 	if (IS_ERR(fs_info->transaction_kthread))
2885 		goto fail_cleaner;
2886 
2887 	if (!btrfs_test_opt(fs_info, NOSSD) &&
2888 	    !fs_info->fs_devices->rotating) {
2889 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
2890 	}
2891 
2892 	/*
2893 	 * Mount does not set all options immediately, we can do it now and do
2894 	 * not have to wait for transaction commit
2895 	 */
2896 	btrfs_apply_pending_changes(fs_info);
2897 
2898 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2899 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2900 		ret = btrfsic_mount(fs_info, fs_devices,
2901 				    btrfs_test_opt(fs_info,
2902 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2903 				    1 : 0,
2904 				    fs_info->check_integrity_print_mask);
2905 		if (ret)
2906 			btrfs_warn(fs_info,
2907 				"failed to initialize integrity check module: %d",
2908 				ret);
2909 	}
2910 #endif
2911 	ret = btrfs_read_qgroup_config(fs_info);
2912 	if (ret)
2913 		goto fail_trans_kthread;
2914 
2915 	if (btrfs_build_ref_tree(fs_info))
2916 		btrfs_err(fs_info, "couldn't build ref tree");
2917 
2918 	/* do not make disk changes in broken FS or nologreplay is given */
2919 	if (btrfs_super_log_root(disk_super) != 0 &&
2920 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
2921 		ret = btrfs_replay_log(fs_info, fs_devices);
2922 		if (ret) {
2923 			err = ret;
2924 			goto fail_qgroup;
2925 		}
2926 	}
2927 
2928 	ret = btrfs_find_orphan_roots(fs_info);
2929 	if (ret)
2930 		goto fail_qgroup;
2931 
2932 	if (!sb_rdonly(sb)) {
2933 		ret = btrfs_cleanup_fs_roots(fs_info);
2934 		if (ret)
2935 			goto fail_qgroup;
2936 
2937 		mutex_lock(&fs_info->cleaner_mutex);
2938 		ret = btrfs_recover_relocation(tree_root);
2939 		mutex_unlock(&fs_info->cleaner_mutex);
2940 		if (ret < 0) {
2941 			btrfs_warn(fs_info, "failed to recover relocation: %d",
2942 					ret);
2943 			err = -EINVAL;
2944 			goto fail_qgroup;
2945 		}
2946 	}
2947 
2948 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2949 	location.type = BTRFS_ROOT_ITEM_KEY;
2950 	location.offset = 0;
2951 
2952 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2953 	if (IS_ERR(fs_info->fs_root)) {
2954 		err = PTR_ERR(fs_info->fs_root);
2955 		goto fail_qgroup;
2956 	}
2957 
2958 	if (sb_rdonly(sb))
2959 		return 0;
2960 
2961 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2962 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2963 		clear_free_space_tree = 1;
2964 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2965 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2966 		btrfs_warn(fs_info, "free space tree is invalid");
2967 		clear_free_space_tree = 1;
2968 	}
2969 
2970 	if (clear_free_space_tree) {
2971 		btrfs_info(fs_info, "clearing free space tree");
2972 		ret = btrfs_clear_free_space_tree(fs_info);
2973 		if (ret) {
2974 			btrfs_warn(fs_info,
2975 				   "failed to clear free space tree: %d", ret);
2976 			close_ctree(fs_info);
2977 			return ret;
2978 		}
2979 	}
2980 
2981 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
2982 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2983 		btrfs_info(fs_info, "creating free space tree");
2984 		ret = btrfs_create_free_space_tree(fs_info);
2985 		if (ret) {
2986 			btrfs_warn(fs_info,
2987 				"failed to create free space tree: %d", ret);
2988 			close_ctree(fs_info);
2989 			return ret;
2990 		}
2991 	}
2992 
2993 	down_read(&fs_info->cleanup_work_sem);
2994 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2995 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2996 		up_read(&fs_info->cleanup_work_sem);
2997 		close_ctree(fs_info);
2998 		return ret;
2999 	}
3000 	up_read(&fs_info->cleanup_work_sem);
3001 
3002 	ret = btrfs_resume_balance_async(fs_info);
3003 	if (ret) {
3004 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3005 		close_ctree(fs_info);
3006 		return ret;
3007 	}
3008 
3009 	ret = btrfs_resume_dev_replace_async(fs_info);
3010 	if (ret) {
3011 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3012 		close_ctree(fs_info);
3013 		return ret;
3014 	}
3015 
3016 	btrfs_qgroup_rescan_resume(fs_info);
3017 
3018 	if (!fs_info->uuid_root) {
3019 		btrfs_info(fs_info, "creating UUID tree");
3020 		ret = btrfs_create_uuid_tree(fs_info);
3021 		if (ret) {
3022 			btrfs_warn(fs_info,
3023 				"failed to create the UUID tree: %d", ret);
3024 			close_ctree(fs_info);
3025 			return ret;
3026 		}
3027 	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3028 		   fs_info->generation !=
3029 				btrfs_super_uuid_tree_generation(disk_super)) {
3030 		btrfs_info(fs_info, "checking UUID tree");
3031 		ret = btrfs_check_uuid_tree(fs_info);
3032 		if (ret) {
3033 			btrfs_warn(fs_info,
3034 				"failed to check the UUID tree: %d", ret);
3035 			close_ctree(fs_info);
3036 			return ret;
3037 		}
3038 	} else {
3039 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3040 	}
3041 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3042 
3043 	/*
3044 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3045 	 * no need to keep the flag
3046 	 */
3047 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3048 
3049 	return 0;
3050 
3051 fail_qgroup:
3052 	btrfs_free_qgroup_config(fs_info);
3053 fail_trans_kthread:
3054 	kthread_stop(fs_info->transaction_kthread);
3055 	btrfs_cleanup_transaction(fs_info);
3056 	btrfs_free_fs_roots(fs_info);
3057 fail_cleaner:
3058 	kthread_stop(fs_info->cleaner_kthread);
3059 
3060 	/*
3061 	 * make sure we're done with the btree inode before we stop our
3062 	 * kthreads
3063 	 */
3064 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3065 
3066 fail_sysfs:
3067 	btrfs_sysfs_remove_mounted(fs_info);
3068 
3069 fail_fsdev_sysfs:
3070 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3071 
3072 fail_block_groups:
3073 	btrfs_put_block_group_cache(fs_info);
3074 
3075 fail_tree_roots:
3076 	free_root_pointers(fs_info, 1);
3077 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3078 
3079 fail_sb_buffer:
3080 	btrfs_stop_all_workers(fs_info);
3081 	btrfs_free_block_groups(fs_info);
3082 fail_alloc:
3083 fail_iput:
3084 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3085 
3086 	iput(fs_info->btree_inode);
3087 fail_bio_counter:
3088 	percpu_counter_destroy(&fs_info->bio_counter);
3089 fail_delalloc_bytes:
3090 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3091 fail_dirty_metadata_bytes:
3092 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3093 fail_srcu:
3094 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3095 fail:
3096 	btrfs_free_stripe_hash_table(fs_info);
3097 	btrfs_close_devices(fs_info->fs_devices);
3098 	return err;
3099 
3100 recovery_tree_root:
3101 	if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3102 		goto fail_tree_roots;
3103 
3104 	free_root_pointers(fs_info, 0);
3105 
3106 	/* don't use the log in recovery mode, it won't be valid */
3107 	btrfs_set_super_log_root(disk_super, 0);
3108 
3109 	/* we can't trust the free space cache either */
3110 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3111 
3112 	ret = next_root_backup(fs_info, fs_info->super_copy,
3113 			       &num_backups_tried, &backup_index);
3114 	if (ret == -1)
3115 		goto fail_block_groups;
3116 	goto retry_root_backup;
3117 }
3118 
3119 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3120 {
3121 	if (uptodate) {
3122 		set_buffer_uptodate(bh);
3123 	} else {
3124 		struct btrfs_device *device = (struct btrfs_device *)
3125 			bh->b_private;
3126 
3127 		btrfs_warn_rl_in_rcu(device->fs_info,
3128 				"lost page write due to IO error on %s",
3129 					  rcu_str_deref(device->name));
3130 		/* note, we don't set_buffer_write_io_error because we have
3131 		 * our own ways of dealing with the IO errors
3132 		 */
3133 		clear_buffer_uptodate(bh);
3134 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3135 	}
3136 	unlock_buffer(bh);
3137 	put_bh(bh);
3138 }
3139 
3140 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3141 			struct buffer_head **bh_ret)
3142 {
3143 	struct buffer_head *bh;
3144 	struct btrfs_super_block *super;
3145 	u64 bytenr;
3146 
3147 	bytenr = btrfs_sb_offset(copy_num);
3148 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3149 		return -EINVAL;
3150 
3151 	bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3152 	/*
3153 	 * If we fail to read from the underlying devices, as of now
3154 	 * the best option we have is to mark it EIO.
3155 	 */
3156 	if (!bh)
3157 		return -EIO;
3158 
3159 	super = (struct btrfs_super_block *)bh->b_data;
3160 	if (btrfs_super_bytenr(super) != bytenr ||
3161 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3162 		brelse(bh);
3163 		return -EINVAL;
3164 	}
3165 
3166 	*bh_ret = bh;
3167 	return 0;
3168 }
3169 
3170 
3171 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3172 {
3173 	struct buffer_head *bh;
3174 	struct buffer_head *latest = NULL;
3175 	struct btrfs_super_block *super;
3176 	int i;
3177 	u64 transid = 0;
3178 	int ret = -EINVAL;
3179 
3180 	/* we would like to check all the supers, but that would make
3181 	 * a btrfs mount succeed after a mkfs from a different FS.
3182 	 * So, we need to add a special mount option to scan for
3183 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3184 	 */
3185 	for (i = 0; i < 1; i++) {
3186 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3187 		if (ret)
3188 			continue;
3189 
3190 		super = (struct btrfs_super_block *)bh->b_data;
3191 
3192 		if (!latest || btrfs_super_generation(super) > transid) {
3193 			brelse(latest);
3194 			latest = bh;
3195 			transid = btrfs_super_generation(super);
3196 		} else {
3197 			brelse(bh);
3198 		}
3199 	}
3200 
3201 	if (!latest)
3202 		return ERR_PTR(ret);
3203 
3204 	return latest;
3205 }
3206 
3207 /*
3208  * Write superblock @sb to the @device. Do not wait for completion, all the
3209  * buffer heads we write are pinned.
3210  *
3211  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3212  * the expected device size at commit time. Note that max_mirrors must be
3213  * same for write and wait phases.
3214  *
3215  * Return number of errors when buffer head is not found or submission fails.
3216  */
3217 static int write_dev_supers(struct btrfs_device *device,
3218 			    struct btrfs_super_block *sb, int max_mirrors)
3219 {
3220 	struct buffer_head *bh;
3221 	int i;
3222 	int ret;
3223 	int errors = 0;
3224 	u32 crc;
3225 	u64 bytenr;
3226 	int op_flags;
3227 
3228 	if (max_mirrors == 0)
3229 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3230 
3231 	for (i = 0; i < max_mirrors; i++) {
3232 		bytenr = btrfs_sb_offset(i);
3233 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3234 		    device->commit_total_bytes)
3235 			break;
3236 
3237 		btrfs_set_super_bytenr(sb, bytenr);
3238 
3239 		crc = ~(u32)0;
3240 		crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3241 				      BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3242 		btrfs_csum_final(crc, sb->csum);
3243 
3244 		/* One reference for us, and we leave it for the caller */
3245 		bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3246 			      BTRFS_SUPER_INFO_SIZE);
3247 		if (!bh) {
3248 			btrfs_err(device->fs_info,
3249 			    "couldn't get super buffer head for bytenr %llu",
3250 			    bytenr);
3251 			errors++;
3252 			continue;
3253 		}
3254 
3255 		memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3256 
3257 		/* one reference for submit_bh */
3258 		get_bh(bh);
3259 
3260 		set_buffer_uptodate(bh);
3261 		lock_buffer(bh);
3262 		bh->b_end_io = btrfs_end_buffer_write_sync;
3263 		bh->b_private = device;
3264 
3265 		/*
3266 		 * we fua the first super.  The others we allow
3267 		 * to go down lazy.
3268 		 */
3269 		op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3270 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3271 			op_flags |= REQ_FUA;
3272 		ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3273 		if (ret)
3274 			errors++;
3275 	}
3276 	return errors < i ? 0 : -1;
3277 }
3278 
3279 /*
3280  * Wait for write completion of superblocks done by write_dev_supers,
3281  * @max_mirrors same for write and wait phases.
3282  *
3283  * Return number of errors when buffer head is not found or not marked up to
3284  * date.
3285  */
3286 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3287 {
3288 	struct buffer_head *bh;
3289 	int i;
3290 	int errors = 0;
3291 	u64 bytenr;
3292 
3293 	if (max_mirrors == 0)
3294 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3295 
3296 	for (i = 0; i < max_mirrors; i++) {
3297 		bytenr = btrfs_sb_offset(i);
3298 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3299 		    device->commit_total_bytes)
3300 			break;
3301 
3302 		bh = __find_get_block(device->bdev,
3303 				      bytenr / BTRFS_BDEV_BLOCKSIZE,
3304 				      BTRFS_SUPER_INFO_SIZE);
3305 		if (!bh) {
3306 			errors++;
3307 			continue;
3308 		}
3309 		wait_on_buffer(bh);
3310 		if (!buffer_uptodate(bh))
3311 			errors++;
3312 
3313 		/* drop our reference */
3314 		brelse(bh);
3315 
3316 		/* drop the reference from the writing run */
3317 		brelse(bh);
3318 	}
3319 
3320 	return errors < i ? 0 : -1;
3321 }
3322 
3323 /*
3324  * endio for the write_dev_flush, this will wake anyone waiting
3325  * for the barrier when it is done
3326  */
3327 static void btrfs_end_empty_barrier(struct bio *bio)
3328 {
3329 	complete(bio->bi_private);
3330 }
3331 
3332 /*
3333  * Submit a flush request to the device if it supports it. Error handling is
3334  * done in the waiting counterpart.
3335  */
3336 static void write_dev_flush(struct btrfs_device *device)
3337 {
3338 	struct request_queue *q = bdev_get_queue(device->bdev);
3339 	struct bio *bio = device->flush_bio;
3340 
3341 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3342 		return;
3343 
3344 	bio_reset(bio);
3345 	bio->bi_end_io = btrfs_end_empty_barrier;
3346 	bio_set_dev(bio, device->bdev);
3347 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3348 	init_completion(&device->flush_wait);
3349 	bio->bi_private = &device->flush_wait;
3350 
3351 	btrfsic_submit_bio(bio);
3352 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3353 }
3354 
3355 /*
3356  * If the flush bio has been submitted by write_dev_flush, wait for it.
3357  */
3358 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3359 {
3360 	struct bio *bio = device->flush_bio;
3361 
3362 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3363 		return BLK_STS_OK;
3364 
3365 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3366 	wait_for_completion_io(&device->flush_wait);
3367 
3368 	return bio->bi_status;
3369 }
3370 
3371 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3372 {
3373 	if (!btrfs_check_rw_degradable(fs_info, NULL))
3374 		return -EIO;
3375 	return 0;
3376 }
3377 
3378 /*
3379  * send an empty flush down to each device in parallel,
3380  * then wait for them
3381  */
3382 static int barrier_all_devices(struct btrfs_fs_info *info)
3383 {
3384 	struct list_head *head;
3385 	struct btrfs_device *dev;
3386 	int errors_wait = 0;
3387 	blk_status_t ret;
3388 
3389 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3390 	/* send down all the barriers */
3391 	head = &info->fs_devices->devices;
3392 	list_for_each_entry(dev, head, dev_list) {
3393 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3394 			continue;
3395 		if (!dev->bdev)
3396 			continue;
3397 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3398 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3399 			continue;
3400 
3401 		write_dev_flush(dev);
3402 		dev->last_flush_error = BLK_STS_OK;
3403 	}
3404 
3405 	/* wait for all the barriers */
3406 	list_for_each_entry(dev, head, dev_list) {
3407 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3408 			continue;
3409 		if (!dev->bdev) {
3410 			errors_wait++;
3411 			continue;
3412 		}
3413 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3414 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3415 			continue;
3416 
3417 		ret = wait_dev_flush(dev);
3418 		if (ret) {
3419 			dev->last_flush_error = ret;
3420 			btrfs_dev_stat_inc_and_print(dev,
3421 					BTRFS_DEV_STAT_FLUSH_ERRS);
3422 			errors_wait++;
3423 		}
3424 	}
3425 
3426 	if (errors_wait) {
3427 		/*
3428 		 * At some point we need the status of all disks
3429 		 * to arrive at the volume status. So error checking
3430 		 * is being pushed to a separate loop.
3431 		 */
3432 		return check_barrier_error(info);
3433 	}
3434 	return 0;
3435 }
3436 
3437 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3438 {
3439 	int raid_type;
3440 	int min_tolerated = INT_MAX;
3441 
3442 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3443 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3444 		min_tolerated = min(min_tolerated,
3445 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3446 				    tolerated_failures);
3447 
3448 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3449 		if (raid_type == BTRFS_RAID_SINGLE)
3450 			continue;
3451 		if (!(flags & btrfs_raid_group[raid_type]))
3452 			continue;
3453 		min_tolerated = min(min_tolerated,
3454 				    btrfs_raid_array[raid_type].
3455 				    tolerated_failures);
3456 	}
3457 
3458 	if (min_tolerated == INT_MAX) {
3459 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3460 		min_tolerated = 0;
3461 	}
3462 
3463 	return min_tolerated;
3464 }
3465 
3466 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3467 {
3468 	struct list_head *head;
3469 	struct btrfs_device *dev;
3470 	struct btrfs_super_block *sb;
3471 	struct btrfs_dev_item *dev_item;
3472 	int ret;
3473 	int do_barriers;
3474 	int max_errors;
3475 	int total_errors = 0;
3476 	u64 flags;
3477 
3478 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3479 
3480 	/*
3481 	 * max_mirrors == 0 indicates we're from commit_transaction,
3482 	 * not from fsync where the tree roots in fs_info have not
3483 	 * been consistent on disk.
3484 	 */
3485 	if (max_mirrors == 0)
3486 		backup_super_roots(fs_info);
3487 
3488 	sb = fs_info->super_for_commit;
3489 	dev_item = &sb->dev_item;
3490 
3491 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3492 	head = &fs_info->fs_devices->devices;
3493 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3494 
3495 	if (do_barriers) {
3496 		ret = barrier_all_devices(fs_info);
3497 		if (ret) {
3498 			mutex_unlock(
3499 				&fs_info->fs_devices->device_list_mutex);
3500 			btrfs_handle_fs_error(fs_info, ret,
3501 					      "errors while submitting device barriers.");
3502 			return ret;
3503 		}
3504 	}
3505 
3506 	list_for_each_entry(dev, head, dev_list) {
3507 		if (!dev->bdev) {
3508 			total_errors++;
3509 			continue;
3510 		}
3511 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3512 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3513 			continue;
3514 
3515 		btrfs_set_stack_device_generation(dev_item, 0);
3516 		btrfs_set_stack_device_type(dev_item, dev->type);
3517 		btrfs_set_stack_device_id(dev_item, dev->devid);
3518 		btrfs_set_stack_device_total_bytes(dev_item,
3519 						   dev->commit_total_bytes);
3520 		btrfs_set_stack_device_bytes_used(dev_item,
3521 						  dev->commit_bytes_used);
3522 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3523 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3524 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3525 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3526 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3527 
3528 		flags = btrfs_super_flags(sb);
3529 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3530 
3531 		ret = write_dev_supers(dev, sb, max_mirrors);
3532 		if (ret)
3533 			total_errors++;
3534 	}
3535 	if (total_errors > max_errors) {
3536 		btrfs_err(fs_info, "%d errors while writing supers",
3537 			  total_errors);
3538 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3539 
3540 		/* FUA is masked off if unsupported and can't be the reason */
3541 		btrfs_handle_fs_error(fs_info, -EIO,
3542 				      "%d errors while writing supers",
3543 				      total_errors);
3544 		return -EIO;
3545 	}
3546 
3547 	total_errors = 0;
3548 	list_for_each_entry(dev, head, dev_list) {
3549 		if (!dev->bdev)
3550 			continue;
3551 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3552 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3553 			continue;
3554 
3555 		ret = wait_dev_supers(dev, max_mirrors);
3556 		if (ret)
3557 			total_errors++;
3558 	}
3559 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3560 	if (total_errors > max_errors) {
3561 		btrfs_handle_fs_error(fs_info, -EIO,
3562 				      "%d errors while writing supers",
3563 				      total_errors);
3564 		return -EIO;
3565 	}
3566 	return 0;
3567 }
3568 
3569 /* Drop a fs root from the radix tree and free it. */
3570 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3571 				  struct btrfs_root *root)
3572 {
3573 	spin_lock(&fs_info->fs_roots_radix_lock);
3574 	radix_tree_delete(&fs_info->fs_roots_radix,
3575 			  (unsigned long)root->root_key.objectid);
3576 	spin_unlock(&fs_info->fs_roots_radix_lock);
3577 
3578 	if (btrfs_root_refs(&root->root_item) == 0)
3579 		synchronize_srcu(&fs_info->subvol_srcu);
3580 
3581 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3582 		btrfs_free_log(NULL, root);
3583 		if (root->reloc_root) {
3584 			free_extent_buffer(root->reloc_root->node);
3585 			free_extent_buffer(root->reloc_root->commit_root);
3586 			btrfs_put_fs_root(root->reloc_root);
3587 			root->reloc_root = NULL;
3588 		}
3589 	}
3590 
3591 	if (root->free_ino_pinned)
3592 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3593 	if (root->free_ino_ctl)
3594 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3595 	free_fs_root(root);
3596 }
3597 
3598 static void free_fs_root(struct btrfs_root *root)
3599 {
3600 	iput(root->ino_cache_inode);
3601 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3602 	btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3603 	root->orphan_block_rsv = NULL;
3604 	if (root->anon_dev)
3605 		free_anon_bdev(root->anon_dev);
3606 	if (root->subv_writers)
3607 		btrfs_free_subvolume_writers(root->subv_writers);
3608 	free_extent_buffer(root->node);
3609 	free_extent_buffer(root->commit_root);
3610 	kfree(root->free_ino_ctl);
3611 	kfree(root->free_ino_pinned);
3612 	kfree(root->name);
3613 	btrfs_put_fs_root(root);
3614 }
3615 
3616 void btrfs_free_fs_root(struct btrfs_root *root)
3617 {
3618 	free_fs_root(root);
3619 }
3620 
3621 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3622 {
3623 	u64 root_objectid = 0;
3624 	struct btrfs_root *gang[8];
3625 	int i = 0;
3626 	int err = 0;
3627 	unsigned int ret = 0;
3628 	int index;
3629 
3630 	while (1) {
3631 		index = srcu_read_lock(&fs_info->subvol_srcu);
3632 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3633 					     (void **)gang, root_objectid,
3634 					     ARRAY_SIZE(gang));
3635 		if (!ret) {
3636 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3637 			break;
3638 		}
3639 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3640 
3641 		for (i = 0; i < ret; i++) {
3642 			/* Avoid to grab roots in dead_roots */
3643 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3644 				gang[i] = NULL;
3645 				continue;
3646 			}
3647 			/* grab all the search result for later use */
3648 			gang[i] = btrfs_grab_fs_root(gang[i]);
3649 		}
3650 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3651 
3652 		for (i = 0; i < ret; i++) {
3653 			if (!gang[i])
3654 				continue;
3655 			root_objectid = gang[i]->root_key.objectid;
3656 			err = btrfs_orphan_cleanup(gang[i]);
3657 			if (err)
3658 				break;
3659 			btrfs_put_fs_root(gang[i]);
3660 		}
3661 		root_objectid++;
3662 	}
3663 
3664 	/* release the uncleaned roots due to error */
3665 	for (; i < ret; i++) {
3666 		if (gang[i])
3667 			btrfs_put_fs_root(gang[i]);
3668 	}
3669 	return err;
3670 }
3671 
3672 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3673 {
3674 	struct btrfs_root *root = fs_info->tree_root;
3675 	struct btrfs_trans_handle *trans;
3676 
3677 	mutex_lock(&fs_info->cleaner_mutex);
3678 	btrfs_run_delayed_iputs(fs_info);
3679 	mutex_unlock(&fs_info->cleaner_mutex);
3680 	wake_up_process(fs_info->cleaner_kthread);
3681 
3682 	/* wait until ongoing cleanup work done */
3683 	down_write(&fs_info->cleanup_work_sem);
3684 	up_write(&fs_info->cleanup_work_sem);
3685 
3686 	trans = btrfs_join_transaction(root);
3687 	if (IS_ERR(trans))
3688 		return PTR_ERR(trans);
3689 	return btrfs_commit_transaction(trans);
3690 }
3691 
3692 void close_ctree(struct btrfs_fs_info *fs_info)
3693 {
3694 	struct btrfs_root *root = fs_info->tree_root;
3695 	int ret;
3696 
3697 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3698 
3699 	/* wait for the qgroup rescan worker to stop */
3700 	btrfs_qgroup_wait_for_completion(fs_info, false);
3701 
3702 	/* wait for the uuid_scan task to finish */
3703 	down(&fs_info->uuid_tree_rescan_sem);
3704 	/* avoid complains from lockdep et al., set sem back to initial state */
3705 	up(&fs_info->uuid_tree_rescan_sem);
3706 
3707 	/* pause restriper - we want to resume on mount */
3708 	btrfs_pause_balance(fs_info);
3709 
3710 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3711 
3712 	btrfs_scrub_cancel(fs_info);
3713 
3714 	/* wait for any defraggers to finish */
3715 	wait_event(fs_info->transaction_wait,
3716 		   (atomic_read(&fs_info->defrag_running) == 0));
3717 
3718 	/* clear out the rbtree of defraggable inodes */
3719 	btrfs_cleanup_defrag_inodes(fs_info);
3720 
3721 	cancel_work_sync(&fs_info->async_reclaim_work);
3722 
3723 	if (!sb_rdonly(fs_info->sb)) {
3724 		/*
3725 		 * If the cleaner thread is stopped and there are
3726 		 * block groups queued for removal, the deletion will be
3727 		 * skipped when we quit the cleaner thread.
3728 		 */
3729 		btrfs_delete_unused_bgs(fs_info);
3730 
3731 		ret = btrfs_commit_super(fs_info);
3732 		if (ret)
3733 			btrfs_err(fs_info, "commit super ret %d", ret);
3734 	}
3735 
3736 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3737 		btrfs_error_commit_super(fs_info);
3738 
3739 	kthread_stop(fs_info->transaction_kthread);
3740 	kthread_stop(fs_info->cleaner_kthread);
3741 
3742 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3743 
3744 	btrfs_free_qgroup_config(fs_info);
3745 
3746 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3747 		btrfs_info(fs_info, "at unmount delalloc count %lld",
3748 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3749 	}
3750 
3751 	btrfs_sysfs_remove_mounted(fs_info);
3752 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3753 
3754 	btrfs_free_fs_roots(fs_info);
3755 
3756 	btrfs_put_block_group_cache(fs_info);
3757 
3758 	/*
3759 	 * we must make sure there is not any read request to
3760 	 * submit after we stopping all workers.
3761 	 */
3762 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3763 	btrfs_stop_all_workers(fs_info);
3764 
3765 	btrfs_free_block_groups(fs_info);
3766 
3767 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3768 	free_root_pointers(fs_info, 1);
3769 
3770 	iput(fs_info->btree_inode);
3771 
3772 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3773 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
3774 		btrfsic_unmount(fs_info->fs_devices);
3775 #endif
3776 
3777 	btrfs_close_devices(fs_info->fs_devices);
3778 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3779 
3780 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3781 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3782 	percpu_counter_destroy(&fs_info->bio_counter);
3783 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3784 
3785 	btrfs_free_stripe_hash_table(fs_info);
3786 	btrfs_free_ref_cache(fs_info);
3787 
3788 	__btrfs_free_block_rsv(root->orphan_block_rsv);
3789 	root->orphan_block_rsv = NULL;
3790 
3791 	while (!list_empty(&fs_info->pinned_chunks)) {
3792 		struct extent_map *em;
3793 
3794 		em = list_first_entry(&fs_info->pinned_chunks,
3795 				      struct extent_map, list);
3796 		list_del_init(&em->list);
3797 		free_extent_map(em);
3798 	}
3799 }
3800 
3801 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3802 			  int atomic)
3803 {
3804 	int ret;
3805 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3806 
3807 	ret = extent_buffer_uptodate(buf);
3808 	if (!ret)
3809 		return ret;
3810 
3811 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3812 				    parent_transid, atomic);
3813 	if (ret == -EAGAIN)
3814 		return ret;
3815 	return !ret;
3816 }
3817 
3818 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3819 {
3820 	struct btrfs_fs_info *fs_info;
3821 	struct btrfs_root *root;
3822 	u64 transid = btrfs_header_generation(buf);
3823 	int was_dirty;
3824 
3825 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3826 	/*
3827 	 * This is a fast path so only do this check if we have sanity tests
3828 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3829 	 * outside of the sanity tests.
3830 	 */
3831 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3832 		return;
3833 #endif
3834 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3835 	fs_info = root->fs_info;
3836 	btrfs_assert_tree_locked(buf);
3837 	if (transid != fs_info->generation)
3838 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
3839 			buf->start, transid, fs_info->generation);
3840 	was_dirty = set_extent_buffer_dirty(buf);
3841 	if (!was_dirty)
3842 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3843 					 buf->len,
3844 					 fs_info->dirty_metadata_batch);
3845 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3846 	/*
3847 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
3848 	 * but item data not updated.
3849 	 * So here we should only check item pointers, not item data.
3850 	 */
3851 	if (btrfs_header_level(buf) == 0 &&
3852 	    btrfs_check_leaf_relaxed(root, buf)) {
3853 		btrfs_print_leaf(buf);
3854 		ASSERT(0);
3855 	}
3856 #endif
3857 }
3858 
3859 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
3860 					int flush_delayed)
3861 {
3862 	/*
3863 	 * looks as though older kernels can get into trouble with
3864 	 * this code, they end up stuck in balance_dirty_pages forever
3865 	 */
3866 	int ret;
3867 
3868 	if (current->flags & PF_MEMALLOC)
3869 		return;
3870 
3871 	if (flush_delayed)
3872 		btrfs_balance_delayed_items(fs_info);
3873 
3874 	ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
3875 				     BTRFS_DIRTY_METADATA_THRESH);
3876 	if (ret > 0) {
3877 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
3878 	}
3879 }
3880 
3881 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
3882 {
3883 	__btrfs_btree_balance_dirty(fs_info, 1);
3884 }
3885 
3886 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
3887 {
3888 	__btrfs_btree_balance_dirty(fs_info, 0);
3889 }
3890 
3891 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3892 {
3893 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3894 	struct btrfs_fs_info *fs_info = root->fs_info;
3895 
3896 	return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
3897 }
3898 
3899 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
3900 {
3901 	struct btrfs_super_block *sb = fs_info->super_copy;
3902 	u64 nodesize = btrfs_super_nodesize(sb);
3903 	u64 sectorsize = btrfs_super_sectorsize(sb);
3904 	int ret = 0;
3905 
3906 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
3907 		btrfs_err(fs_info, "no valid FS found");
3908 		ret = -EINVAL;
3909 	}
3910 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
3911 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
3912 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
3913 		ret = -EINVAL;
3914 	}
3915 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3916 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
3917 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3918 		ret = -EINVAL;
3919 	}
3920 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3921 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
3922 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3923 		ret = -EINVAL;
3924 	}
3925 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3926 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
3927 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3928 		ret = -EINVAL;
3929 	}
3930 
3931 	/*
3932 	 * Check sectorsize and nodesize first, other check will need it.
3933 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
3934 	 */
3935 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
3936 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
3937 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
3938 		ret = -EINVAL;
3939 	}
3940 	/* Only PAGE SIZE is supported yet */
3941 	if (sectorsize != PAGE_SIZE) {
3942 		btrfs_err(fs_info,
3943 			"sectorsize %llu not supported yet, only support %lu",
3944 			sectorsize, PAGE_SIZE);
3945 		ret = -EINVAL;
3946 	}
3947 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
3948 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
3949 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
3950 		ret = -EINVAL;
3951 	}
3952 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
3953 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
3954 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
3955 		ret = -EINVAL;
3956 	}
3957 
3958 	/* Root alignment check */
3959 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
3960 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
3961 			   btrfs_super_root(sb));
3962 		ret = -EINVAL;
3963 	}
3964 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
3965 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
3966 			   btrfs_super_chunk_root(sb));
3967 		ret = -EINVAL;
3968 	}
3969 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
3970 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
3971 			   btrfs_super_log_root(sb));
3972 		ret = -EINVAL;
3973 	}
3974 
3975 	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
3976 		btrfs_err(fs_info,
3977 			   "dev_item UUID does not match fsid: %pU != %pU",
3978 			   fs_info->fsid, sb->dev_item.fsid);
3979 		ret = -EINVAL;
3980 	}
3981 
3982 	/*
3983 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3984 	 * done later
3985 	 */
3986 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
3987 		btrfs_err(fs_info, "bytes_used is too small %llu",
3988 			  btrfs_super_bytes_used(sb));
3989 		ret = -EINVAL;
3990 	}
3991 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
3992 		btrfs_err(fs_info, "invalid stripesize %u",
3993 			  btrfs_super_stripesize(sb));
3994 		ret = -EINVAL;
3995 	}
3996 	if (btrfs_super_num_devices(sb) > (1UL << 31))
3997 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
3998 			   btrfs_super_num_devices(sb));
3999 	if (btrfs_super_num_devices(sb) == 0) {
4000 		btrfs_err(fs_info, "number of devices is 0");
4001 		ret = -EINVAL;
4002 	}
4003 
4004 	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4005 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
4006 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4007 		ret = -EINVAL;
4008 	}
4009 
4010 	/*
4011 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
4012 	 * and one chunk
4013 	 */
4014 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4015 		btrfs_err(fs_info, "system chunk array too big %u > %u",
4016 			  btrfs_super_sys_array_size(sb),
4017 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4018 		ret = -EINVAL;
4019 	}
4020 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4021 			+ sizeof(struct btrfs_chunk)) {
4022 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
4023 			  btrfs_super_sys_array_size(sb),
4024 			  sizeof(struct btrfs_disk_key)
4025 			  + sizeof(struct btrfs_chunk));
4026 		ret = -EINVAL;
4027 	}
4028 
4029 	/*
4030 	 * The generation is a global counter, we'll trust it more than the others
4031 	 * but it's still possible that it's the one that's wrong.
4032 	 */
4033 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4034 		btrfs_warn(fs_info,
4035 			"suspicious: generation < chunk_root_generation: %llu < %llu",
4036 			btrfs_super_generation(sb),
4037 			btrfs_super_chunk_root_generation(sb));
4038 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4039 	    && btrfs_super_cache_generation(sb) != (u64)-1)
4040 		btrfs_warn(fs_info,
4041 			"suspicious: generation < cache_generation: %llu < %llu",
4042 			btrfs_super_generation(sb),
4043 			btrfs_super_cache_generation(sb));
4044 
4045 	return ret;
4046 }
4047 
4048 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4049 {
4050 	mutex_lock(&fs_info->cleaner_mutex);
4051 	btrfs_run_delayed_iputs(fs_info);
4052 	mutex_unlock(&fs_info->cleaner_mutex);
4053 
4054 	down_write(&fs_info->cleanup_work_sem);
4055 	up_write(&fs_info->cleanup_work_sem);
4056 
4057 	/* cleanup FS via transaction */
4058 	btrfs_cleanup_transaction(fs_info);
4059 }
4060 
4061 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4062 {
4063 	struct btrfs_ordered_extent *ordered;
4064 
4065 	spin_lock(&root->ordered_extent_lock);
4066 	/*
4067 	 * This will just short circuit the ordered completion stuff which will
4068 	 * make sure the ordered extent gets properly cleaned up.
4069 	 */
4070 	list_for_each_entry(ordered, &root->ordered_extents,
4071 			    root_extent_list)
4072 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4073 	spin_unlock(&root->ordered_extent_lock);
4074 }
4075 
4076 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4077 {
4078 	struct btrfs_root *root;
4079 	struct list_head splice;
4080 
4081 	INIT_LIST_HEAD(&splice);
4082 
4083 	spin_lock(&fs_info->ordered_root_lock);
4084 	list_splice_init(&fs_info->ordered_roots, &splice);
4085 	while (!list_empty(&splice)) {
4086 		root = list_first_entry(&splice, struct btrfs_root,
4087 					ordered_root);
4088 		list_move_tail(&root->ordered_root,
4089 			       &fs_info->ordered_roots);
4090 
4091 		spin_unlock(&fs_info->ordered_root_lock);
4092 		btrfs_destroy_ordered_extents(root);
4093 
4094 		cond_resched();
4095 		spin_lock(&fs_info->ordered_root_lock);
4096 	}
4097 	spin_unlock(&fs_info->ordered_root_lock);
4098 }
4099 
4100 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4101 				      struct btrfs_fs_info *fs_info)
4102 {
4103 	struct rb_node *node;
4104 	struct btrfs_delayed_ref_root *delayed_refs;
4105 	struct btrfs_delayed_ref_node *ref;
4106 	int ret = 0;
4107 
4108 	delayed_refs = &trans->delayed_refs;
4109 
4110 	spin_lock(&delayed_refs->lock);
4111 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4112 		spin_unlock(&delayed_refs->lock);
4113 		btrfs_info(fs_info, "delayed_refs has NO entry");
4114 		return ret;
4115 	}
4116 
4117 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4118 		struct btrfs_delayed_ref_head *head;
4119 		struct rb_node *n;
4120 		bool pin_bytes = false;
4121 
4122 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4123 				href_node);
4124 		if (!mutex_trylock(&head->mutex)) {
4125 			refcount_inc(&head->refs);
4126 			spin_unlock(&delayed_refs->lock);
4127 
4128 			mutex_lock(&head->mutex);
4129 			mutex_unlock(&head->mutex);
4130 			btrfs_put_delayed_ref_head(head);
4131 			spin_lock(&delayed_refs->lock);
4132 			continue;
4133 		}
4134 		spin_lock(&head->lock);
4135 		while ((n = rb_first(&head->ref_tree)) != NULL) {
4136 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4137 				       ref_node);
4138 			ref->in_tree = 0;
4139 			rb_erase(&ref->ref_node, &head->ref_tree);
4140 			RB_CLEAR_NODE(&ref->ref_node);
4141 			if (!list_empty(&ref->add_list))
4142 				list_del(&ref->add_list);
4143 			atomic_dec(&delayed_refs->num_entries);
4144 			btrfs_put_delayed_ref(ref);
4145 		}
4146 		if (head->must_insert_reserved)
4147 			pin_bytes = true;
4148 		btrfs_free_delayed_extent_op(head->extent_op);
4149 		delayed_refs->num_heads--;
4150 		if (head->processing == 0)
4151 			delayed_refs->num_heads_ready--;
4152 		atomic_dec(&delayed_refs->num_entries);
4153 		rb_erase(&head->href_node, &delayed_refs->href_root);
4154 		RB_CLEAR_NODE(&head->href_node);
4155 		spin_unlock(&head->lock);
4156 		spin_unlock(&delayed_refs->lock);
4157 		mutex_unlock(&head->mutex);
4158 
4159 		if (pin_bytes)
4160 			btrfs_pin_extent(fs_info, head->bytenr,
4161 					 head->num_bytes, 1);
4162 		btrfs_put_delayed_ref_head(head);
4163 		cond_resched();
4164 		spin_lock(&delayed_refs->lock);
4165 	}
4166 
4167 	spin_unlock(&delayed_refs->lock);
4168 
4169 	return ret;
4170 }
4171 
4172 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4173 {
4174 	struct btrfs_inode *btrfs_inode;
4175 	struct list_head splice;
4176 
4177 	INIT_LIST_HEAD(&splice);
4178 
4179 	spin_lock(&root->delalloc_lock);
4180 	list_splice_init(&root->delalloc_inodes, &splice);
4181 
4182 	while (!list_empty(&splice)) {
4183 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4184 					       delalloc_inodes);
4185 
4186 		list_del_init(&btrfs_inode->delalloc_inodes);
4187 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4188 			  &btrfs_inode->runtime_flags);
4189 		spin_unlock(&root->delalloc_lock);
4190 
4191 		btrfs_invalidate_inodes(btrfs_inode->root);
4192 
4193 		spin_lock(&root->delalloc_lock);
4194 	}
4195 
4196 	spin_unlock(&root->delalloc_lock);
4197 }
4198 
4199 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4200 {
4201 	struct btrfs_root *root;
4202 	struct list_head splice;
4203 
4204 	INIT_LIST_HEAD(&splice);
4205 
4206 	spin_lock(&fs_info->delalloc_root_lock);
4207 	list_splice_init(&fs_info->delalloc_roots, &splice);
4208 	while (!list_empty(&splice)) {
4209 		root = list_first_entry(&splice, struct btrfs_root,
4210 					 delalloc_root);
4211 		list_del_init(&root->delalloc_root);
4212 		root = btrfs_grab_fs_root(root);
4213 		BUG_ON(!root);
4214 		spin_unlock(&fs_info->delalloc_root_lock);
4215 
4216 		btrfs_destroy_delalloc_inodes(root);
4217 		btrfs_put_fs_root(root);
4218 
4219 		spin_lock(&fs_info->delalloc_root_lock);
4220 	}
4221 	spin_unlock(&fs_info->delalloc_root_lock);
4222 }
4223 
4224 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4225 					struct extent_io_tree *dirty_pages,
4226 					int mark)
4227 {
4228 	int ret;
4229 	struct extent_buffer *eb;
4230 	u64 start = 0;
4231 	u64 end;
4232 
4233 	while (1) {
4234 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4235 					    mark, NULL);
4236 		if (ret)
4237 			break;
4238 
4239 		clear_extent_bits(dirty_pages, start, end, mark);
4240 		while (start <= end) {
4241 			eb = find_extent_buffer(fs_info, start);
4242 			start += fs_info->nodesize;
4243 			if (!eb)
4244 				continue;
4245 			wait_on_extent_buffer_writeback(eb);
4246 
4247 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4248 					       &eb->bflags))
4249 				clear_extent_buffer_dirty(eb);
4250 			free_extent_buffer_stale(eb);
4251 		}
4252 	}
4253 
4254 	return ret;
4255 }
4256 
4257 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4258 				       struct extent_io_tree *pinned_extents)
4259 {
4260 	struct extent_io_tree *unpin;
4261 	u64 start;
4262 	u64 end;
4263 	int ret;
4264 	bool loop = true;
4265 
4266 	unpin = pinned_extents;
4267 again:
4268 	while (1) {
4269 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4270 					    EXTENT_DIRTY, NULL);
4271 		if (ret)
4272 			break;
4273 
4274 		clear_extent_dirty(unpin, start, end);
4275 		btrfs_error_unpin_extent_range(fs_info, start, end);
4276 		cond_resched();
4277 	}
4278 
4279 	if (loop) {
4280 		if (unpin == &fs_info->freed_extents[0])
4281 			unpin = &fs_info->freed_extents[1];
4282 		else
4283 			unpin = &fs_info->freed_extents[0];
4284 		loop = false;
4285 		goto again;
4286 	}
4287 
4288 	return 0;
4289 }
4290 
4291 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4292 {
4293 	struct inode *inode;
4294 
4295 	inode = cache->io_ctl.inode;
4296 	if (inode) {
4297 		invalidate_inode_pages2(inode->i_mapping);
4298 		BTRFS_I(inode)->generation = 0;
4299 		cache->io_ctl.inode = NULL;
4300 		iput(inode);
4301 	}
4302 	btrfs_put_block_group(cache);
4303 }
4304 
4305 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4306 			     struct btrfs_fs_info *fs_info)
4307 {
4308 	struct btrfs_block_group_cache *cache;
4309 
4310 	spin_lock(&cur_trans->dirty_bgs_lock);
4311 	while (!list_empty(&cur_trans->dirty_bgs)) {
4312 		cache = list_first_entry(&cur_trans->dirty_bgs,
4313 					 struct btrfs_block_group_cache,
4314 					 dirty_list);
4315 		if (!cache) {
4316 			btrfs_err(fs_info, "orphan block group dirty_bgs list");
4317 			spin_unlock(&cur_trans->dirty_bgs_lock);
4318 			return;
4319 		}
4320 
4321 		if (!list_empty(&cache->io_list)) {
4322 			spin_unlock(&cur_trans->dirty_bgs_lock);
4323 			list_del_init(&cache->io_list);
4324 			btrfs_cleanup_bg_io(cache);
4325 			spin_lock(&cur_trans->dirty_bgs_lock);
4326 		}
4327 
4328 		list_del_init(&cache->dirty_list);
4329 		spin_lock(&cache->lock);
4330 		cache->disk_cache_state = BTRFS_DC_ERROR;
4331 		spin_unlock(&cache->lock);
4332 
4333 		spin_unlock(&cur_trans->dirty_bgs_lock);
4334 		btrfs_put_block_group(cache);
4335 		spin_lock(&cur_trans->dirty_bgs_lock);
4336 	}
4337 	spin_unlock(&cur_trans->dirty_bgs_lock);
4338 
4339 	while (!list_empty(&cur_trans->io_bgs)) {
4340 		cache = list_first_entry(&cur_trans->io_bgs,
4341 					 struct btrfs_block_group_cache,
4342 					 io_list);
4343 		if (!cache) {
4344 			btrfs_err(fs_info, "orphan block group on io_bgs list");
4345 			return;
4346 		}
4347 
4348 		list_del_init(&cache->io_list);
4349 		spin_lock(&cache->lock);
4350 		cache->disk_cache_state = BTRFS_DC_ERROR;
4351 		spin_unlock(&cache->lock);
4352 		btrfs_cleanup_bg_io(cache);
4353 	}
4354 }
4355 
4356 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4357 				   struct btrfs_fs_info *fs_info)
4358 {
4359 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4360 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4361 	ASSERT(list_empty(&cur_trans->io_bgs));
4362 
4363 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4364 
4365 	cur_trans->state = TRANS_STATE_COMMIT_START;
4366 	wake_up(&fs_info->transaction_blocked_wait);
4367 
4368 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4369 	wake_up(&fs_info->transaction_wait);
4370 
4371 	btrfs_destroy_delayed_inodes(fs_info);
4372 	btrfs_assert_delayed_root_empty(fs_info);
4373 
4374 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4375 				     EXTENT_DIRTY);
4376 	btrfs_destroy_pinned_extent(fs_info,
4377 				    fs_info->pinned_extents);
4378 
4379 	cur_trans->state =TRANS_STATE_COMPLETED;
4380 	wake_up(&cur_trans->commit_wait);
4381 }
4382 
4383 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4384 {
4385 	struct btrfs_transaction *t;
4386 
4387 	mutex_lock(&fs_info->transaction_kthread_mutex);
4388 
4389 	spin_lock(&fs_info->trans_lock);
4390 	while (!list_empty(&fs_info->trans_list)) {
4391 		t = list_first_entry(&fs_info->trans_list,
4392 				     struct btrfs_transaction, list);
4393 		if (t->state >= TRANS_STATE_COMMIT_START) {
4394 			refcount_inc(&t->use_count);
4395 			spin_unlock(&fs_info->trans_lock);
4396 			btrfs_wait_for_commit(fs_info, t->transid);
4397 			btrfs_put_transaction(t);
4398 			spin_lock(&fs_info->trans_lock);
4399 			continue;
4400 		}
4401 		if (t == fs_info->running_transaction) {
4402 			t->state = TRANS_STATE_COMMIT_DOING;
4403 			spin_unlock(&fs_info->trans_lock);
4404 			/*
4405 			 * We wait for 0 num_writers since we don't hold a trans
4406 			 * handle open currently for this transaction.
4407 			 */
4408 			wait_event(t->writer_wait,
4409 				   atomic_read(&t->num_writers) == 0);
4410 		} else {
4411 			spin_unlock(&fs_info->trans_lock);
4412 		}
4413 		btrfs_cleanup_one_transaction(t, fs_info);
4414 
4415 		spin_lock(&fs_info->trans_lock);
4416 		if (t == fs_info->running_transaction)
4417 			fs_info->running_transaction = NULL;
4418 		list_del_init(&t->list);
4419 		spin_unlock(&fs_info->trans_lock);
4420 
4421 		btrfs_put_transaction(t);
4422 		trace_btrfs_transaction_commit(fs_info->tree_root);
4423 		spin_lock(&fs_info->trans_lock);
4424 	}
4425 	spin_unlock(&fs_info->trans_lock);
4426 	btrfs_destroy_all_ordered_extents(fs_info);
4427 	btrfs_destroy_delayed_inodes(fs_info);
4428 	btrfs_assert_delayed_root_empty(fs_info);
4429 	btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4430 	btrfs_destroy_all_delalloc_inodes(fs_info);
4431 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4432 
4433 	return 0;
4434 }
4435 
4436 static struct btrfs_fs_info *btree_fs_info(void *private_data)
4437 {
4438 	struct inode *inode = private_data;
4439 	return btrfs_sb(inode->i_sb);
4440 }
4441 
4442 static const struct extent_io_ops btree_extent_io_ops = {
4443 	/* mandatory callbacks */
4444 	.submit_bio_hook = btree_submit_bio_hook,
4445 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4446 	/* note we're sharing with inode.c for the merge bio hook */
4447 	.merge_bio_hook = btrfs_merge_bio_hook,
4448 	.readpage_io_failed_hook = btree_io_failed_hook,
4449 	.set_range_writeback = btrfs_set_range_writeback,
4450 	.tree_fs_info = btree_fs_info,
4451 
4452 	/* optional callbacks */
4453 };
4454