1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "volumes.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "inode-map.h" 33 #include "check-integrity.h" 34 #include "rcu-string.h" 35 #include "dev-replace.h" 36 #include "raid56.h" 37 #include "sysfs.h" 38 #include "qgroup.h" 39 #include "compression.h" 40 #include "tree-checker.h" 41 #include "ref-verify.h" 42 #include "block-group.h" 43 #include "discard.h" 44 #include "space-info.h" 45 46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 47 BTRFS_HEADER_FLAG_RELOC |\ 48 BTRFS_SUPER_FLAG_ERROR |\ 49 BTRFS_SUPER_FLAG_SEEDING |\ 50 BTRFS_SUPER_FLAG_METADUMP |\ 51 BTRFS_SUPER_FLAG_METADUMP_V2) 52 53 static const struct extent_io_ops btree_extent_io_ops; 54 static void end_workqueue_fn(struct btrfs_work *work); 55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 57 struct btrfs_fs_info *fs_info); 58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 60 struct extent_io_tree *dirty_pages, 61 int mark); 62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 63 struct extent_io_tree *pinned_extents); 64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 66 67 /* 68 * btrfs_end_io_wq structs are used to do processing in task context when an IO 69 * is complete. This is used during reads to verify checksums, and it is used 70 * by writes to insert metadata for new file extents after IO is complete. 71 */ 72 struct btrfs_end_io_wq { 73 struct bio *bio; 74 bio_end_io_t *end_io; 75 void *private; 76 struct btrfs_fs_info *info; 77 blk_status_t status; 78 enum btrfs_wq_endio_type metadata; 79 struct btrfs_work work; 80 }; 81 82 static struct kmem_cache *btrfs_end_io_wq_cache; 83 84 int __init btrfs_end_io_wq_init(void) 85 { 86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 87 sizeof(struct btrfs_end_io_wq), 88 0, 89 SLAB_MEM_SPREAD, 90 NULL); 91 if (!btrfs_end_io_wq_cache) 92 return -ENOMEM; 93 return 0; 94 } 95 96 void __cold btrfs_end_io_wq_exit(void) 97 { 98 kmem_cache_destroy(btrfs_end_io_wq_cache); 99 } 100 101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 102 { 103 if (fs_info->csum_shash) 104 crypto_free_shash(fs_info->csum_shash); 105 } 106 107 /* 108 * async submit bios are used to offload expensive checksumming 109 * onto the worker threads. They checksum file and metadata bios 110 * just before they are sent down the IO stack. 111 */ 112 struct async_submit_bio { 113 void *private_data; 114 struct bio *bio; 115 extent_submit_bio_start_t *submit_bio_start; 116 int mirror_num; 117 /* 118 * bio_offset is optional, can be used if the pages in the bio 119 * can't tell us where in the file the bio should go 120 */ 121 u64 bio_offset; 122 struct btrfs_work work; 123 blk_status_t status; 124 }; 125 126 /* 127 * Lockdep class keys for extent_buffer->lock's in this root. For a given 128 * eb, the lockdep key is determined by the btrfs_root it belongs to and 129 * the level the eb occupies in the tree. 130 * 131 * Different roots are used for different purposes and may nest inside each 132 * other and they require separate keysets. As lockdep keys should be 133 * static, assign keysets according to the purpose of the root as indicated 134 * by btrfs_root->root_key.objectid. This ensures that all special purpose 135 * roots have separate keysets. 136 * 137 * Lock-nesting across peer nodes is always done with the immediate parent 138 * node locked thus preventing deadlock. As lockdep doesn't know this, use 139 * subclass to avoid triggering lockdep warning in such cases. 140 * 141 * The key is set by the readpage_end_io_hook after the buffer has passed 142 * csum validation but before the pages are unlocked. It is also set by 143 * btrfs_init_new_buffer on freshly allocated blocks. 144 * 145 * We also add a check to make sure the highest level of the tree is the 146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 147 * needs update as well. 148 */ 149 #ifdef CONFIG_DEBUG_LOCK_ALLOC 150 # if BTRFS_MAX_LEVEL != 8 151 # error 152 # endif 153 154 static struct btrfs_lockdep_keyset { 155 u64 id; /* root objectid */ 156 const char *name_stem; /* lock name stem */ 157 char names[BTRFS_MAX_LEVEL + 1][20]; 158 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 159 } btrfs_lockdep_keysets[] = { 160 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 161 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 162 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 163 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 164 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 165 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 166 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 167 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 168 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 169 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 170 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 171 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 172 { .id = 0, .name_stem = "tree" }, 173 }; 174 175 void __init btrfs_init_lockdep(void) 176 { 177 int i, j; 178 179 /* initialize lockdep class names */ 180 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 181 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 182 183 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 184 snprintf(ks->names[j], sizeof(ks->names[j]), 185 "btrfs-%s-%02d", ks->name_stem, j); 186 } 187 } 188 189 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 190 int level) 191 { 192 struct btrfs_lockdep_keyset *ks; 193 194 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 195 196 /* find the matching keyset, id 0 is the default entry */ 197 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 198 if (ks->id == objectid) 199 break; 200 201 lockdep_set_class_and_name(&eb->lock, 202 &ks->keys[level], ks->names[level]); 203 } 204 205 #endif 206 207 /* 208 * extents on the btree inode are pretty simple, there's one extent 209 * that covers the entire device 210 */ 211 struct extent_map *btree_get_extent(struct btrfs_inode *inode, 212 struct page *page, size_t pg_offset, 213 u64 start, u64 len) 214 { 215 struct extent_map_tree *em_tree = &inode->extent_tree; 216 struct extent_map *em; 217 int ret; 218 219 read_lock(&em_tree->lock); 220 em = lookup_extent_mapping(em_tree, start, len); 221 if (em) { 222 read_unlock(&em_tree->lock); 223 goto out; 224 } 225 read_unlock(&em_tree->lock); 226 227 em = alloc_extent_map(); 228 if (!em) { 229 em = ERR_PTR(-ENOMEM); 230 goto out; 231 } 232 em->start = 0; 233 em->len = (u64)-1; 234 em->block_len = (u64)-1; 235 em->block_start = 0; 236 237 write_lock(&em_tree->lock); 238 ret = add_extent_mapping(em_tree, em, 0); 239 if (ret == -EEXIST) { 240 free_extent_map(em); 241 em = lookup_extent_mapping(em_tree, start, len); 242 if (!em) 243 em = ERR_PTR(-EIO); 244 } else if (ret) { 245 free_extent_map(em); 246 em = ERR_PTR(ret); 247 } 248 write_unlock(&em_tree->lock); 249 250 out: 251 return em; 252 } 253 254 /* 255 * Compute the csum of a btree block and store the result to provided buffer. 256 */ 257 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 258 { 259 struct btrfs_fs_info *fs_info = buf->fs_info; 260 const int num_pages = fs_info->nodesize >> PAGE_SHIFT; 261 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 262 char *kaddr; 263 int i; 264 265 shash->tfm = fs_info->csum_shash; 266 crypto_shash_init(shash); 267 kaddr = page_address(buf->pages[0]); 268 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 269 PAGE_SIZE - BTRFS_CSUM_SIZE); 270 271 for (i = 1; i < num_pages; i++) { 272 kaddr = page_address(buf->pages[i]); 273 crypto_shash_update(shash, kaddr, PAGE_SIZE); 274 } 275 memset(result, 0, BTRFS_CSUM_SIZE); 276 crypto_shash_final(shash, result); 277 } 278 279 /* 280 * we can't consider a given block up to date unless the transid of the 281 * block matches the transid in the parent node's pointer. This is how we 282 * detect blocks that either didn't get written at all or got written 283 * in the wrong place. 284 */ 285 static int verify_parent_transid(struct extent_io_tree *io_tree, 286 struct extent_buffer *eb, u64 parent_transid, 287 int atomic) 288 { 289 struct extent_state *cached_state = NULL; 290 int ret; 291 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 292 293 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 294 return 0; 295 296 if (atomic) 297 return -EAGAIN; 298 299 if (need_lock) { 300 btrfs_tree_read_lock(eb); 301 btrfs_set_lock_blocking_read(eb); 302 } 303 304 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 305 &cached_state); 306 if (extent_buffer_uptodate(eb) && 307 btrfs_header_generation(eb) == parent_transid) { 308 ret = 0; 309 goto out; 310 } 311 btrfs_err_rl(eb->fs_info, 312 "parent transid verify failed on %llu wanted %llu found %llu", 313 eb->start, 314 parent_transid, btrfs_header_generation(eb)); 315 ret = 1; 316 317 /* 318 * Things reading via commit roots that don't have normal protection, 319 * like send, can have a really old block in cache that may point at a 320 * block that has been freed and re-allocated. So don't clear uptodate 321 * if we find an eb that is under IO (dirty/writeback) because we could 322 * end up reading in the stale data and then writing it back out and 323 * making everybody very sad. 324 */ 325 if (!extent_buffer_under_io(eb)) 326 clear_extent_buffer_uptodate(eb); 327 out: 328 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 329 &cached_state); 330 if (need_lock) 331 btrfs_tree_read_unlock_blocking(eb); 332 return ret; 333 } 334 335 static bool btrfs_supported_super_csum(u16 csum_type) 336 { 337 switch (csum_type) { 338 case BTRFS_CSUM_TYPE_CRC32: 339 case BTRFS_CSUM_TYPE_XXHASH: 340 case BTRFS_CSUM_TYPE_SHA256: 341 case BTRFS_CSUM_TYPE_BLAKE2: 342 return true; 343 default: 344 return false; 345 } 346 } 347 348 /* 349 * Return 0 if the superblock checksum type matches the checksum value of that 350 * algorithm. Pass the raw disk superblock data. 351 */ 352 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 353 char *raw_disk_sb) 354 { 355 struct btrfs_super_block *disk_sb = 356 (struct btrfs_super_block *)raw_disk_sb; 357 char result[BTRFS_CSUM_SIZE]; 358 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 359 360 shash->tfm = fs_info->csum_shash; 361 362 /* 363 * The super_block structure does not span the whole 364 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 365 * filled with zeros and is included in the checksum. 366 */ 367 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE, 368 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 369 370 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb))) 371 return 1; 372 373 return 0; 374 } 375 376 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 377 struct btrfs_key *first_key, u64 parent_transid) 378 { 379 struct btrfs_fs_info *fs_info = eb->fs_info; 380 int found_level; 381 struct btrfs_key found_key; 382 int ret; 383 384 found_level = btrfs_header_level(eb); 385 if (found_level != level) { 386 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 387 KERN_ERR "BTRFS: tree level check failed\n"); 388 btrfs_err(fs_info, 389 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 390 eb->start, level, found_level); 391 return -EIO; 392 } 393 394 if (!first_key) 395 return 0; 396 397 /* 398 * For live tree block (new tree blocks in current transaction), 399 * we need proper lock context to avoid race, which is impossible here. 400 * So we only checks tree blocks which is read from disk, whose 401 * generation <= fs_info->last_trans_committed. 402 */ 403 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 404 return 0; 405 406 /* We have @first_key, so this @eb must have at least one item */ 407 if (btrfs_header_nritems(eb) == 0) { 408 btrfs_err(fs_info, 409 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 410 eb->start); 411 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 412 return -EUCLEAN; 413 } 414 415 if (found_level) 416 btrfs_node_key_to_cpu(eb, &found_key, 0); 417 else 418 btrfs_item_key_to_cpu(eb, &found_key, 0); 419 ret = btrfs_comp_cpu_keys(first_key, &found_key); 420 421 if (ret) { 422 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 423 KERN_ERR "BTRFS: tree first key check failed\n"); 424 btrfs_err(fs_info, 425 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 426 eb->start, parent_transid, first_key->objectid, 427 first_key->type, first_key->offset, 428 found_key.objectid, found_key.type, 429 found_key.offset); 430 } 431 return ret; 432 } 433 434 /* 435 * helper to read a given tree block, doing retries as required when 436 * the checksums don't match and we have alternate mirrors to try. 437 * 438 * @parent_transid: expected transid, skip check if 0 439 * @level: expected level, mandatory check 440 * @first_key: expected key of first slot, skip check if NULL 441 */ 442 static int btree_read_extent_buffer_pages(struct extent_buffer *eb, 443 u64 parent_transid, int level, 444 struct btrfs_key *first_key) 445 { 446 struct btrfs_fs_info *fs_info = eb->fs_info; 447 struct extent_io_tree *io_tree; 448 int failed = 0; 449 int ret; 450 int num_copies = 0; 451 int mirror_num = 0; 452 int failed_mirror = 0; 453 454 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 455 while (1) { 456 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 457 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num); 458 if (!ret) { 459 if (verify_parent_transid(io_tree, eb, 460 parent_transid, 0)) 461 ret = -EIO; 462 else if (btrfs_verify_level_key(eb, level, 463 first_key, parent_transid)) 464 ret = -EUCLEAN; 465 else 466 break; 467 } 468 469 num_copies = btrfs_num_copies(fs_info, 470 eb->start, eb->len); 471 if (num_copies == 1) 472 break; 473 474 if (!failed_mirror) { 475 failed = 1; 476 failed_mirror = eb->read_mirror; 477 } 478 479 mirror_num++; 480 if (mirror_num == failed_mirror) 481 mirror_num++; 482 483 if (mirror_num > num_copies) 484 break; 485 } 486 487 if (failed && !ret && failed_mirror) 488 btrfs_repair_eb_io_failure(eb, failed_mirror); 489 490 return ret; 491 } 492 493 /* 494 * checksum a dirty tree block before IO. This has extra checks to make sure 495 * we only fill in the checksum field in the first page of a multi-page block 496 */ 497 498 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 499 { 500 u64 start = page_offset(page); 501 u64 found_start; 502 u8 result[BTRFS_CSUM_SIZE]; 503 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 504 struct extent_buffer *eb; 505 int ret; 506 507 eb = (struct extent_buffer *)page->private; 508 if (page != eb->pages[0]) 509 return 0; 510 511 found_start = btrfs_header_bytenr(eb); 512 /* 513 * Please do not consolidate these warnings into a single if. 514 * It is useful to know what went wrong. 515 */ 516 if (WARN_ON(found_start != start)) 517 return -EUCLEAN; 518 if (WARN_ON(!PageUptodate(page))) 519 return -EUCLEAN; 520 521 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 522 offsetof(struct btrfs_header, fsid), 523 BTRFS_FSID_SIZE) == 0); 524 525 csum_tree_block(eb, result); 526 527 if (btrfs_header_level(eb)) 528 ret = btrfs_check_node(eb); 529 else 530 ret = btrfs_check_leaf_full(eb); 531 532 if (ret < 0) { 533 btrfs_print_tree(eb, 0); 534 btrfs_err(fs_info, 535 "block=%llu write time tree block corruption detected", 536 eb->start); 537 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 538 return ret; 539 } 540 write_extent_buffer(eb, result, 0, csum_size); 541 542 return 0; 543 } 544 545 static int check_tree_block_fsid(struct extent_buffer *eb) 546 { 547 struct btrfs_fs_info *fs_info = eb->fs_info; 548 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 549 u8 fsid[BTRFS_FSID_SIZE]; 550 int ret = 1; 551 552 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 553 BTRFS_FSID_SIZE); 554 while (fs_devices) { 555 u8 *metadata_uuid; 556 557 /* 558 * Checking the incompat flag is only valid for the current 559 * fs. For seed devices it's forbidden to have their uuid 560 * changed so reading ->fsid in this case is fine 561 */ 562 if (fs_devices == fs_info->fs_devices && 563 btrfs_fs_incompat(fs_info, METADATA_UUID)) 564 metadata_uuid = fs_devices->metadata_uuid; 565 else 566 metadata_uuid = fs_devices->fsid; 567 568 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) { 569 ret = 0; 570 break; 571 } 572 fs_devices = fs_devices->seed; 573 } 574 return ret; 575 } 576 577 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 578 u64 phy_offset, struct page *page, 579 u64 start, u64 end, int mirror) 580 { 581 u64 found_start; 582 int found_level; 583 struct extent_buffer *eb; 584 struct btrfs_fs_info *fs_info; 585 u16 csum_size; 586 int ret = 0; 587 u8 result[BTRFS_CSUM_SIZE]; 588 int reads_done; 589 590 if (!page->private) 591 goto out; 592 593 eb = (struct extent_buffer *)page->private; 594 fs_info = eb->fs_info; 595 csum_size = btrfs_super_csum_size(fs_info->super_copy); 596 597 /* the pending IO might have been the only thing that kept this buffer 598 * in memory. Make sure we have a ref for all this other checks 599 */ 600 atomic_inc(&eb->refs); 601 602 reads_done = atomic_dec_and_test(&eb->io_pages); 603 if (!reads_done) 604 goto err; 605 606 eb->read_mirror = mirror; 607 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 608 ret = -EIO; 609 goto err; 610 } 611 612 found_start = btrfs_header_bytenr(eb); 613 if (found_start != eb->start) { 614 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 615 eb->start, found_start); 616 ret = -EIO; 617 goto err; 618 } 619 if (check_tree_block_fsid(eb)) { 620 btrfs_err_rl(fs_info, "bad fsid on block %llu", 621 eb->start); 622 ret = -EIO; 623 goto err; 624 } 625 found_level = btrfs_header_level(eb); 626 if (found_level >= BTRFS_MAX_LEVEL) { 627 btrfs_err(fs_info, "bad tree block level %d on %llu", 628 (int)btrfs_header_level(eb), eb->start); 629 ret = -EIO; 630 goto err; 631 } 632 633 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 634 eb, found_level); 635 636 csum_tree_block(eb, result); 637 638 if (memcmp_extent_buffer(eb, result, 0, csum_size)) { 639 u32 val; 640 u32 found = 0; 641 642 memcpy(&found, result, csum_size); 643 644 read_extent_buffer(eb, &val, 0, csum_size); 645 btrfs_warn_rl(fs_info, 646 "%s checksum verify failed on %llu wanted %x found %x level %d", 647 fs_info->sb->s_id, eb->start, 648 val, found, btrfs_header_level(eb)); 649 ret = -EUCLEAN; 650 goto err; 651 } 652 653 /* 654 * If this is a leaf block and it is corrupt, set the corrupt bit so 655 * that we don't try and read the other copies of this block, just 656 * return -EIO. 657 */ 658 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 659 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 660 ret = -EIO; 661 } 662 663 if (found_level > 0 && btrfs_check_node(eb)) 664 ret = -EIO; 665 666 if (!ret) 667 set_extent_buffer_uptodate(eb); 668 else 669 btrfs_err(fs_info, 670 "block=%llu read time tree block corruption detected", 671 eb->start); 672 err: 673 if (reads_done && 674 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 675 btree_readahead_hook(eb, ret); 676 677 if (ret) { 678 /* 679 * our io error hook is going to dec the io pages 680 * again, we have to make sure it has something 681 * to decrement 682 */ 683 atomic_inc(&eb->io_pages); 684 clear_extent_buffer_uptodate(eb); 685 } 686 free_extent_buffer(eb); 687 out: 688 return ret; 689 } 690 691 static void end_workqueue_bio(struct bio *bio) 692 { 693 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 694 struct btrfs_fs_info *fs_info; 695 struct btrfs_workqueue *wq; 696 697 fs_info = end_io_wq->info; 698 end_io_wq->status = bio->bi_status; 699 700 if (bio_op(bio) == REQ_OP_WRITE) { 701 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) 702 wq = fs_info->endio_meta_write_workers; 703 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) 704 wq = fs_info->endio_freespace_worker; 705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 706 wq = fs_info->endio_raid56_workers; 707 else 708 wq = fs_info->endio_write_workers; 709 } else { 710 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 711 wq = fs_info->endio_raid56_workers; 712 else if (end_io_wq->metadata) 713 wq = fs_info->endio_meta_workers; 714 else 715 wq = fs_info->endio_workers; 716 } 717 718 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL); 719 btrfs_queue_work(wq, &end_io_wq->work); 720 } 721 722 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 723 enum btrfs_wq_endio_type metadata) 724 { 725 struct btrfs_end_io_wq *end_io_wq; 726 727 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 728 if (!end_io_wq) 729 return BLK_STS_RESOURCE; 730 731 end_io_wq->private = bio->bi_private; 732 end_io_wq->end_io = bio->bi_end_io; 733 end_io_wq->info = info; 734 end_io_wq->status = 0; 735 end_io_wq->bio = bio; 736 end_io_wq->metadata = metadata; 737 738 bio->bi_private = end_io_wq; 739 bio->bi_end_io = end_workqueue_bio; 740 return 0; 741 } 742 743 static void run_one_async_start(struct btrfs_work *work) 744 { 745 struct async_submit_bio *async; 746 blk_status_t ret; 747 748 async = container_of(work, struct async_submit_bio, work); 749 ret = async->submit_bio_start(async->private_data, async->bio, 750 async->bio_offset); 751 if (ret) 752 async->status = ret; 753 } 754 755 /* 756 * In order to insert checksums into the metadata in large chunks, we wait 757 * until bio submission time. All the pages in the bio are checksummed and 758 * sums are attached onto the ordered extent record. 759 * 760 * At IO completion time the csums attached on the ordered extent record are 761 * inserted into the tree. 762 */ 763 static void run_one_async_done(struct btrfs_work *work) 764 { 765 struct async_submit_bio *async; 766 struct inode *inode; 767 blk_status_t ret; 768 769 async = container_of(work, struct async_submit_bio, work); 770 inode = async->private_data; 771 772 /* If an error occurred we just want to clean up the bio and move on */ 773 if (async->status) { 774 async->bio->bi_status = async->status; 775 bio_endio(async->bio); 776 return; 777 } 778 779 /* 780 * All of the bios that pass through here are from async helpers. 781 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context. 782 * This changes nothing when cgroups aren't in use. 783 */ 784 async->bio->bi_opf |= REQ_CGROUP_PUNT; 785 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num); 786 if (ret) { 787 async->bio->bi_status = ret; 788 bio_endio(async->bio); 789 } 790 } 791 792 static void run_one_async_free(struct btrfs_work *work) 793 { 794 struct async_submit_bio *async; 795 796 async = container_of(work, struct async_submit_bio, work); 797 kfree(async); 798 } 799 800 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 801 int mirror_num, unsigned long bio_flags, 802 u64 bio_offset, void *private_data, 803 extent_submit_bio_start_t *submit_bio_start) 804 { 805 struct async_submit_bio *async; 806 807 async = kmalloc(sizeof(*async), GFP_NOFS); 808 if (!async) 809 return BLK_STS_RESOURCE; 810 811 async->private_data = private_data; 812 async->bio = bio; 813 async->mirror_num = mirror_num; 814 async->submit_bio_start = submit_bio_start; 815 816 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, 817 run_one_async_free); 818 819 async->bio_offset = bio_offset; 820 821 async->status = 0; 822 823 if (op_is_sync(bio->bi_opf)) 824 btrfs_set_work_high_priority(&async->work); 825 826 btrfs_queue_work(fs_info->workers, &async->work); 827 return 0; 828 } 829 830 static blk_status_t btree_csum_one_bio(struct bio *bio) 831 { 832 struct bio_vec *bvec; 833 struct btrfs_root *root; 834 int ret = 0; 835 struct bvec_iter_all iter_all; 836 837 ASSERT(!bio_flagged(bio, BIO_CLONED)); 838 bio_for_each_segment_all(bvec, bio, iter_all) { 839 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 840 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 841 if (ret) 842 break; 843 } 844 845 return errno_to_blk_status(ret); 846 } 847 848 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, 849 u64 bio_offset) 850 { 851 /* 852 * when we're called for a write, we're already in the async 853 * submission context. Just jump into btrfs_map_bio 854 */ 855 return btree_csum_one_bio(bio); 856 } 857 858 static int check_async_write(struct btrfs_fs_info *fs_info, 859 struct btrfs_inode *bi) 860 { 861 if (atomic_read(&bi->sync_writers)) 862 return 0; 863 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 864 return 0; 865 return 1; 866 } 867 868 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio, 869 int mirror_num, 870 unsigned long bio_flags) 871 { 872 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 873 int async = check_async_write(fs_info, BTRFS_I(inode)); 874 blk_status_t ret; 875 876 if (bio_op(bio) != REQ_OP_WRITE) { 877 /* 878 * called for a read, do the setup so that checksum validation 879 * can happen in the async kernel threads 880 */ 881 ret = btrfs_bio_wq_end_io(fs_info, bio, 882 BTRFS_WQ_ENDIO_METADATA); 883 if (ret) 884 goto out_w_error; 885 ret = btrfs_map_bio(fs_info, bio, mirror_num); 886 } else if (!async) { 887 ret = btree_csum_one_bio(bio); 888 if (ret) 889 goto out_w_error; 890 ret = btrfs_map_bio(fs_info, bio, mirror_num); 891 } else { 892 /* 893 * kthread helpers are used to submit writes so that 894 * checksumming can happen in parallel across all CPUs 895 */ 896 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 897 0, inode, btree_submit_bio_start); 898 } 899 900 if (ret) 901 goto out_w_error; 902 return 0; 903 904 out_w_error: 905 bio->bi_status = ret; 906 bio_endio(bio); 907 return ret; 908 } 909 910 #ifdef CONFIG_MIGRATION 911 static int btree_migratepage(struct address_space *mapping, 912 struct page *newpage, struct page *page, 913 enum migrate_mode mode) 914 { 915 /* 916 * we can't safely write a btree page from here, 917 * we haven't done the locking hook 918 */ 919 if (PageDirty(page)) 920 return -EAGAIN; 921 /* 922 * Buffers may be managed in a filesystem specific way. 923 * We must have no buffers or drop them. 924 */ 925 if (page_has_private(page) && 926 !try_to_release_page(page, GFP_KERNEL)) 927 return -EAGAIN; 928 return migrate_page(mapping, newpage, page, mode); 929 } 930 #endif 931 932 933 static int btree_writepages(struct address_space *mapping, 934 struct writeback_control *wbc) 935 { 936 struct btrfs_fs_info *fs_info; 937 int ret; 938 939 if (wbc->sync_mode == WB_SYNC_NONE) { 940 941 if (wbc->for_kupdate) 942 return 0; 943 944 fs_info = BTRFS_I(mapping->host)->root->fs_info; 945 /* this is a bit racy, but that's ok */ 946 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 947 BTRFS_DIRTY_METADATA_THRESH, 948 fs_info->dirty_metadata_batch); 949 if (ret < 0) 950 return 0; 951 } 952 return btree_write_cache_pages(mapping, wbc); 953 } 954 955 static int btree_readpage(struct file *file, struct page *page) 956 { 957 return extent_read_full_page(page, btree_get_extent, 0); 958 } 959 960 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 961 { 962 if (PageWriteback(page) || PageDirty(page)) 963 return 0; 964 965 return try_release_extent_buffer(page); 966 } 967 968 static void btree_invalidatepage(struct page *page, unsigned int offset, 969 unsigned int length) 970 { 971 struct extent_io_tree *tree; 972 tree = &BTRFS_I(page->mapping->host)->io_tree; 973 extent_invalidatepage(tree, page, offset); 974 btree_releasepage(page, GFP_NOFS); 975 if (PagePrivate(page)) { 976 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 977 "page private not zero on page %llu", 978 (unsigned long long)page_offset(page)); 979 detach_page_private(page); 980 } 981 } 982 983 static int btree_set_page_dirty(struct page *page) 984 { 985 #ifdef DEBUG 986 struct extent_buffer *eb; 987 988 BUG_ON(!PagePrivate(page)); 989 eb = (struct extent_buffer *)page->private; 990 BUG_ON(!eb); 991 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 992 BUG_ON(!atomic_read(&eb->refs)); 993 btrfs_assert_tree_locked(eb); 994 #endif 995 return __set_page_dirty_nobuffers(page); 996 } 997 998 static const struct address_space_operations btree_aops = { 999 .readpage = btree_readpage, 1000 .writepages = btree_writepages, 1001 .releasepage = btree_releasepage, 1002 .invalidatepage = btree_invalidatepage, 1003 #ifdef CONFIG_MIGRATION 1004 .migratepage = btree_migratepage, 1005 #endif 1006 .set_page_dirty = btree_set_page_dirty, 1007 }; 1008 1009 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 1010 { 1011 struct extent_buffer *buf = NULL; 1012 int ret; 1013 1014 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1015 if (IS_ERR(buf)) 1016 return; 1017 1018 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0); 1019 if (ret < 0) 1020 free_extent_buffer_stale(buf); 1021 else 1022 free_extent_buffer(buf); 1023 } 1024 1025 struct extent_buffer *btrfs_find_create_tree_block( 1026 struct btrfs_fs_info *fs_info, 1027 u64 bytenr) 1028 { 1029 if (btrfs_is_testing(fs_info)) 1030 return alloc_test_extent_buffer(fs_info, bytenr); 1031 return alloc_extent_buffer(fs_info, bytenr); 1032 } 1033 1034 /* 1035 * Read tree block at logical address @bytenr and do variant basic but critical 1036 * verification. 1037 * 1038 * @parent_transid: expected transid of this tree block, skip check if 0 1039 * @level: expected level, mandatory check 1040 * @first_key: expected key in slot 0, skip check if NULL 1041 */ 1042 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1043 u64 parent_transid, int level, 1044 struct btrfs_key *first_key) 1045 { 1046 struct extent_buffer *buf = NULL; 1047 int ret; 1048 1049 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1050 if (IS_ERR(buf)) 1051 return buf; 1052 1053 ret = btree_read_extent_buffer_pages(buf, parent_transid, 1054 level, first_key); 1055 if (ret) { 1056 free_extent_buffer_stale(buf); 1057 return ERR_PTR(ret); 1058 } 1059 return buf; 1060 1061 } 1062 1063 void btrfs_clean_tree_block(struct extent_buffer *buf) 1064 { 1065 struct btrfs_fs_info *fs_info = buf->fs_info; 1066 if (btrfs_header_generation(buf) == 1067 fs_info->running_transaction->transid) { 1068 btrfs_assert_tree_locked(buf); 1069 1070 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1071 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1072 -buf->len, 1073 fs_info->dirty_metadata_batch); 1074 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1075 btrfs_set_lock_blocking_write(buf); 1076 clear_extent_buffer_dirty(buf); 1077 } 1078 } 1079 } 1080 1081 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1082 u64 objectid) 1083 { 1084 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1085 root->fs_info = fs_info; 1086 root->node = NULL; 1087 root->commit_root = NULL; 1088 root->state = 0; 1089 root->orphan_cleanup_state = 0; 1090 1091 root->last_trans = 0; 1092 root->highest_objectid = 0; 1093 root->nr_delalloc_inodes = 0; 1094 root->nr_ordered_extents = 0; 1095 root->inode_tree = RB_ROOT; 1096 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1097 root->block_rsv = NULL; 1098 1099 INIT_LIST_HEAD(&root->dirty_list); 1100 INIT_LIST_HEAD(&root->root_list); 1101 INIT_LIST_HEAD(&root->delalloc_inodes); 1102 INIT_LIST_HEAD(&root->delalloc_root); 1103 INIT_LIST_HEAD(&root->ordered_extents); 1104 INIT_LIST_HEAD(&root->ordered_root); 1105 INIT_LIST_HEAD(&root->reloc_dirty_list); 1106 INIT_LIST_HEAD(&root->logged_list[0]); 1107 INIT_LIST_HEAD(&root->logged_list[1]); 1108 spin_lock_init(&root->inode_lock); 1109 spin_lock_init(&root->delalloc_lock); 1110 spin_lock_init(&root->ordered_extent_lock); 1111 spin_lock_init(&root->accounting_lock); 1112 spin_lock_init(&root->log_extents_lock[0]); 1113 spin_lock_init(&root->log_extents_lock[1]); 1114 spin_lock_init(&root->qgroup_meta_rsv_lock); 1115 mutex_init(&root->objectid_mutex); 1116 mutex_init(&root->log_mutex); 1117 mutex_init(&root->ordered_extent_mutex); 1118 mutex_init(&root->delalloc_mutex); 1119 init_waitqueue_head(&root->qgroup_flush_wait); 1120 init_waitqueue_head(&root->log_writer_wait); 1121 init_waitqueue_head(&root->log_commit_wait[0]); 1122 init_waitqueue_head(&root->log_commit_wait[1]); 1123 INIT_LIST_HEAD(&root->log_ctxs[0]); 1124 INIT_LIST_HEAD(&root->log_ctxs[1]); 1125 atomic_set(&root->log_commit[0], 0); 1126 atomic_set(&root->log_commit[1], 0); 1127 atomic_set(&root->log_writers, 0); 1128 atomic_set(&root->log_batch, 0); 1129 refcount_set(&root->refs, 1); 1130 atomic_set(&root->snapshot_force_cow, 0); 1131 atomic_set(&root->nr_swapfiles, 0); 1132 root->log_transid = 0; 1133 root->log_transid_committed = -1; 1134 root->last_log_commit = 0; 1135 if (!dummy) { 1136 extent_io_tree_init(fs_info, &root->dirty_log_pages, 1137 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL); 1138 extent_io_tree_init(fs_info, &root->log_csum_range, 1139 IO_TREE_LOG_CSUM_RANGE, NULL); 1140 } 1141 1142 memset(&root->root_key, 0, sizeof(root->root_key)); 1143 memset(&root->root_item, 0, sizeof(root->root_item)); 1144 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1145 root->root_key.objectid = objectid; 1146 root->anon_dev = 0; 1147 1148 spin_lock_init(&root->root_item_lock); 1149 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1150 #ifdef CONFIG_BTRFS_DEBUG 1151 INIT_LIST_HEAD(&root->leak_list); 1152 spin_lock(&fs_info->fs_roots_radix_lock); 1153 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 1154 spin_unlock(&fs_info->fs_roots_radix_lock); 1155 #endif 1156 } 1157 1158 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1159 u64 objectid, gfp_t flags) 1160 { 1161 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1162 if (root) 1163 __setup_root(root, fs_info, objectid); 1164 return root; 1165 } 1166 1167 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1168 /* Should only be used by the testing infrastructure */ 1169 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1170 { 1171 struct btrfs_root *root; 1172 1173 if (!fs_info) 1174 return ERR_PTR(-EINVAL); 1175 1176 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 1177 if (!root) 1178 return ERR_PTR(-ENOMEM); 1179 1180 /* We don't use the stripesize in selftest, set it as sectorsize */ 1181 root->alloc_bytenr = 0; 1182 1183 return root; 1184 } 1185 #endif 1186 1187 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1188 u64 objectid) 1189 { 1190 struct btrfs_fs_info *fs_info = trans->fs_info; 1191 struct extent_buffer *leaf; 1192 struct btrfs_root *tree_root = fs_info->tree_root; 1193 struct btrfs_root *root; 1194 struct btrfs_key key; 1195 unsigned int nofs_flag; 1196 int ret = 0; 1197 1198 /* 1199 * We're holding a transaction handle, so use a NOFS memory allocation 1200 * context to avoid deadlock if reclaim happens. 1201 */ 1202 nofs_flag = memalloc_nofs_save(); 1203 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 1204 memalloc_nofs_restore(nofs_flag); 1205 if (!root) 1206 return ERR_PTR(-ENOMEM); 1207 1208 root->root_key.objectid = objectid; 1209 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1210 root->root_key.offset = 0; 1211 1212 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1213 if (IS_ERR(leaf)) { 1214 ret = PTR_ERR(leaf); 1215 leaf = NULL; 1216 goto fail; 1217 } 1218 1219 root->node = leaf; 1220 btrfs_mark_buffer_dirty(leaf); 1221 1222 root->commit_root = btrfs_root_node(root); 1223 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1224 1225 root->root_item.flags = 0; 1226 root->root_item.byte_limit = 0; 1227 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1228 btrfs_set_root_generation(&root->root_item, trans->transid); 1229 btrfs_set_root_level(&root->root_item, 0); 1230 btrfs_set_root_refs(&root->root_item, 1); 1231 btrfs_set_root_used(&root->root_item, leaf->len); 1232 btrfs_set_root_last_snapshot(&root->root_item, 0); 1233 btrfs_set_root_dirid(&root->root_item, 0); 1234 if (is_fstree(objectid)) 1235 generate_random_guid(root->root_item.uuid); 1236 else 1237 export_guid(root->root_item.uuid, &guid_null); 1238 root->root_item.drop_level = 0; 1239 1240 key.objectid = objectid; 1241 key.type = BTRFS_ROOT_ITEM_KEY; 1242 key.offset = 0; 1243 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1244 if (ret) 1245 goto fail; 1246 1247 btrfs_tree_unlock(leaf); 1248 1249 return root; 1250 1251 fail: 1252 if (leaf) 1253 btrfs_tree_unlock(leaf); 1254 btrfs_put_root(root); 1255 1256 return ERR_PTR(ret); 1257 } 1258 1259 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1260 struct btrfs_fs_info *fs_info) 1261 { 1262 struct btrfs_root *root; 1263 struct extent_buffer *leaf; 1264 1265 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 1266 if (!root) 1267 return ERR_PTR(-ENOMEM); 1268 1269 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1270 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1271 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1272 1273 /* 1274 * DON'T set SHAREABLE bit for log trees. 1275 * 1276 * Log trees are not exposed to user space thus can't be snapshotted, 1277 * and they go away before a real commit is actually done. 1278 * 1279 * They do store pointers to file data extents, and those reference 1280 * counts still get updated (along with back refs to the log tree). 1281 */ 1282 1283 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1284 NULL, 0, 0, 0); 1285 if (IS_ERR(leaf)) { 1286 btrfs_put_root(root); 1287 return ERR_CAST(leaf); 1288 } 1289 1290 root->node = leaf; 1291 1292 btrfs_mark_buffer_dirty(root->node); 1293 btrfs_tree_unlock(root->node); 1294 return root; 1295 } 1296 1297 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1298 struct btrfs_fs_info *fs_info) 1299 { 1300 struct btrfs_root *log_root; 1301 1302 log_root = alloc_log_tree(trans, fs_info); 1303 if (IS_ERR(log_root)) 1304 return PTR_ERR(log_root); 1305 WARN_ON(fs_info->log_root_tree); 1306 fs_info->log_root_tree = log_root; 1307 return 0; 1308 } 1309 1310 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1311 struct btrfs_root *root) 1312 { 1313 struct btrfs_fs_info *fs_info = root->fs_info; 1314 struct btrfs_root *log_root; 1315 struct btrfs_inode_item *inode_item; 1316 1317 log_root = alloc_log_tree(trans, fs_info); 1318 if (IS_ERR(log_root)) 1319 return PTR_ERR(log_root); 1320 1321 log_root->last_trans = trans->transid; 1322 log_root->root_key.offset = root->root_key.objectid; 1323 1324 inode_item = &log_root->root_item.inode; 1325 btrfs_set_stack_inode_generation(inode_item, 1); 1326 btrfs_set_stack_inode_size(inode_item, 3); 1327 btrfs_set_stack_inode_nlink(inode_item, 1); 1328 btrfs_set_stack_inode_nbytes(inode_item, 1329 fs_info->nodesize); 1330 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1331 1332 btrfs_set_root_node(&log_root->root_item, log_root->node); 1333 1334 WARN_ON(root->log_root); 1335 root->log_root = log_root; 1336 root->log_transid = 0; 1337 root->log_transid_committed = -1; 1338 root->last_log_commit = 0; 1339 return 0; 1340 } 1341 1342 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1343 struct btrfs_key *key) 1344 { 1345 struct btrfs_root *root; 1346 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1347 struct btrfs_path *path; 1348 u64 generation; 1349 int ret; 1350 int level; 1351 1352 path = btrfs_alloc_path(); 1353 if (!path) 1354 return ERR_PTR(-ENOMEM); 1355 1356 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1357 if (!root) { 1358 ret = -ENOMEM; 1359 goto alloc_fail; 1360 } 1361 1362 ret = btrfs_find_root(tree_root, key, path, 1363 &root->root_item, &root->root_key); 1364 if (ret) { 1365 if (ret > 0) 1366 ret = -ENOENT; 1367 goto find_fail; 1368 } 1369 1370 generation = btrfs_root_generation(&root->root_item); 1371 level = btrfs_root_level(&root->root_item); 1372 root->node = read_tree_block(fs_info, 1373 btrfs_root_bytenr(&root->root_item), 1374 generation, level, NULL); 1375 if (IS_ERR(root->node)) { 1376 ret = PTR_ERR(root->node); 1377 root->node = NULL; 1378 goto find_fail; 1379 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1380 ret = -EIO; 1381 goto find_fail; 1382 } 1383 root->commit_root = btrfs_root_node(root); 1384 out: 1385 btrfs_free_path(path); 1386 return root; 1387 1388 find_fail: 1389 btrfs_put_root(root); 1390 alloc_fail: 1391 root = ERR_PTR(ret); 1392 goto out; 1393 } 1394 1395 /* 1396 * Initialize subvolume root in-memory structure 1397 * 1398 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1399 */ 1400 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1401 { 1402 int ret; 1403 unsigned int nofs_flag; 1404 1405 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1406 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1407 GFP_NOFS); 1408 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1409 ret = -ENOMEM; 1410 goto fail; 1411 } 1412 1413 /* 1414 * We might be called under a transaction (e.g. indirect backref 1415 * resolution) which could deadlock if it triggers memory reclaim 1416 */ 1417 nofs_flag = memalloc_nofs_save(); 1418 ret = btrfs_drew_lock_init(&root->snapshot_lock); 1419 memalloc_nofs_restore(nofs_flag); 1420 if (ret) 1421 goto fail; 1422 1423 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1424 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 1425 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1426 btrfs_check_and_init_root_item(&root->root_item); 1427 } 1428 1429 btrfs_init_free_ino_ctl(root); 1430 spin_lock_init(&root->ino_cache_lock); 1431 init_waitqueue_head(&root->ino_cache_wait); 1432 1433 /* 1434 * Don't assign anonymous block device to roots that are not exposed to 1435 * userspace, the id pool is limited to 1M 1436 */ 1437 if (is_fstree(root->root_key.objectid) && 1438 btrfs_root_refs(&root->root_item) > 0) { 1439 if (!anon_dev) { 1440 ret = get_anon_bdev(&root->anon_dev); 1441 if (ret) 1442 goto fail; 1443 } else { 1444 root->anon_dev = anon_dev; 1445 } 1446 } 1447 1448 mutex_lock(&root->objectid_mutex); 1449 ret = btrfs_find_highest_objectid(root, 1450 &root->highest_objectid); 1451 if (ret) { 1452 mutex_unlock(&root->objectid_mutex); 1453 goto fail; 1454 } 1455 1456 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1457 1458 mutex_unlock(&root->objectid_mutex); 1459 1460 return 0; 1461 fail: 1462 /* The caller is responsible to call btrfs_free_fs_root */ 1463 return ret; 1464 } 1465 1466 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1467 u64 root_id) 1468 { 1469 struct btrfs_root *root; 1470 1471 spin_lock(&fs_info->fs_roots_radix_lock); 1472 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1473 (unsigned long)root_id); 1474 if (root) 1475 root = btrfs_grab_root(root); 1476 spin_unlock(&fs_info->fs_roots_radix_lock); 1477 return root; 1478 } 1479 1480 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1481 struct btrfs_root *root) 1482 { 1483 int ret; 1484 1485 ret = radix_tree_preload(GFP_NOFS); 1486 if (ret) 1487 return ret; 1488 1489 spin_lock(&fs_info->fs_roots_radix_lock); 1490 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1491 (unsigned long)root->root_key.objectid, 1492 root); 1493 if (ret == 0) { 1494 btrfs_grab_root(root); 1495 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1496 } 1497 spin_unlock(&fs_info->fs_roots_radix_lock); 1498 radix_tree_preload_end(); 1499 1500 return ret; 1501 } 1502 1503 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1504 { 1505 #ifdef CONFIG_BTRFS_DEBUG 1506 struct btrfs_root *root; 1507 1508 while (!list_empty(&fs_info->allocated_roots)) { 1509 root = list_first_entry(&fs_info->allocated_roots, 1510 struct btrfs_root, leak_list); 1511 btrfs_err(fs_info, "leaked root %llu-%llu refcount %d", 1512 root->root_key.objectid, root->root_key.offset, 1513 refcount_read(&root->refs)); 1514 while (refcount_read(&root->refs) > 1) 1515 btrfs_put_root(root); 1516 btrfs_put_root(root); 1517 } 1518 #endif 1519 } 1520 1521 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1522 { 1523 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1524 percpu_counter_destroy(&fs_info->delalloc_bytes); 1525 percpu_counter_destroy(&fs_info->dio_bytes); 1526 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1527 btrfs_free_csum_hash(fs_info); 1528 btrfs_free_stripe_hash_table(fs_info); 1529 btrfs_free_ref_cache(fs_info); 1530 kfree(fs_info->balance_ctl); 1531 kfree(fs_info->delayed_root); 1532 btrfs_put_root(fs_info->extent_root); 1533 btrfs_put_root(fs_info->tree_root); 1534 btrfs_put_root(fs_info->chunk_root); 1535 btrfs_put_root(fs_info->dev_root); 1536 btrfs_put_root(fs_info->csum_root); 1537 btrfs_put_root(fs_info->quota_root); 1538 btrfs_put_root(fs_info->uuid_root); 1539 btrfs_put_root(fs_info->free_space_root); 1540 btrfs_put_root(fs_info->fs_root); 1541 btrfs_put_root(fs_info->data_reloc_root); 1542 btrfs_check_leaked_roots(fs_info); 1543 btrfs_extent_buffer_leak_debug_check(fs_info); 1544 kfree(fs_info->super_copy); 1545 kfree(fs_info->super_for_commit); 1546 kvfree(fs_info); 1547 } 1548 1549 1550 /* 1551 * Get an in-memory reference of a root structure. 1552 * 1553 * For essential trees like root/extent tree, we grab it from fs_info directly. 1554 * For subvolume trees, we check the cached filesystem roots first. If not 1555 * found, then read it from disk and add it to cached fs roots. 1556 * 1557 * Caller should release the root by calling btrfs_put_root() after the usage. 1558 * 1559 * NOTE: Reloc and log trees can't be read by this function as they share the 1560 * same root objectid. 1561 * 1562 * @objectid: root id 1563 * @anon_dev: preallocated anonymous block device number for new roots, 1564 * pass 0 for new allocation. 1565 * @check_ref: whether to check root item references, If true, return -ENOENT 1566 * for orphan roots 1567 */ 1568 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1569 u64 objectid, dev_t anon_dev, 1570 bool check_ref) 1571 { 1572 struct btrfs_root *root; 1573 struct btrfs_path *path; 1574 struct btrfs_key key; 1575 int ret; 1576 1577 if (objectid == BTRFS_ROOT_TREE_OBJECTID) 1578 return btrfs_grab_root(fs_info->tree_root); 1579 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 1580 return btrfs_grab_root(fs_info->extent_root); 1581 if (objectid == BTRFS_CHUNK_TREE_OBJECTID) 1582 return btrfs_grab_root(fs_info->chunk_root); 1583 if (objectid == BTRFS_DEV_TREE_OBJECTID) 1584 return btrfs_grab_root(fs_info->dev_root); 1585 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 1586 return btrfs_grab_root(fs_info->csum_root); 1587 if (objectid == BTRFS_QUOTA_TREE_OBJECTID) 1588 return btrfs_grab_root(fs_info->quota_root) ? 1589 fs_info->quota_root : ERR_PTR(-ENOENT); 1590 if (objectid == BTRFS_UUID_TREE_OBJECTID) 1591 return btrfs_grab_root(fs_info->uuid_root) ? 1592 fs_info->uuid_root : ERR_PTR(-ENOENT); 1593 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1594 return btrfs_grab_root(fs_info->free_space_root) ? 1595 fs_info->free_space_root : ERR_PTR(-ENOENT); 1596 again: 1597 root = btrfs_lookup_fs_root(fs_info, objectid); 1598 if (root) { 1599 /* Shouldn't get preallocated anon_dev for cached roots */ 1600 ASSERT(!anon_dev); 1601 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1602 btrfs_put_root(root); 1603 return ERR_PTR(-ENOENT); 1604 } 1605 return root; 1606 } 1607 1608 key.objectid = objectid; 1609 key.type = BTRFS_ROOT_ITEM_KEY; 1610 key.offset = (u64)-1; 1611 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1612 if (IS_ERR(root)) 1613 return root; 1614 1615 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1616 ret = -ENOENT; 1617 goto fail; 1618 } 1619 1620 ret = btrfs_init_fs_root(root, anon_dev); 1621 if (ret) 1622 goto fail; 1623 1624 path = btrfs_alloc_path(); 1625 if (!path) { 1626 ret = -ENOMEM; 1627 goto fail; 1628 } 1629 key.objectid = BTRFS_ORPHAN_OBJECTID; 1630 key.type = BTRFS_ORPHAN_ITEM_KEY; 1631 key.offset = objectid; 1632 1633 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1634 btrfs_free_path(path); 1635 if (ret < 0) 1636 goto fail; 1637 if (ret == 0) 1638 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1639 1640 ret = btrfs_insert_fs_root(fs_info, root); 1641 if (ret) { 1642 btrfs_put_root(root); 1643 if (ret == -EEXIST) 1644 goto again; 1645 goto fail; 1646 } 1647 return root; 1648 fail: 1649 btrfs_put_root(root); 1650 return ERR_PTR(ret); 1651 } 1652 1653 /* 1654 * Get in-memory reference of a root structure 1655 * 1656 * @objectid: tree objectid 1657 * @check_ref: if set, verify that the tree exists and the item has at least 1658 * one reference 1659 */ 1660 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1661 u64 objectid, bool check_ref) 1662 { 1663 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1664 } 1665 1666 /* 1667 * Get in-memory reference of a root structure, created as new, optionally pass 1668 * the anonymous block device id 1669 * 1670 * @objectid: tree objectid 1671 * @anon_dev: if zero, allocate a new anonymous block device or use the 1672 * parameter value 1673 */ 1674 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1675 u64 objectid, dev_t anon_dev) 1676 { 1677 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1678 } 1679 1680 /* 1681 * called by the kthread helper functions to finally call the bio end_io 1682 * functions. This is where read checksum verification actually happens 1683 */ 1684 static void end_workqueue_fn(struct btrfs_work *work) 1685 { 1686 struct bio *bio; 1687 struct btrfs_end_io_wq *end_io_wq; 1688 1689 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1690 bio = end_io_wq->bio; 1691 1692 bio->bi_status = end_io_wq->status; 1693 bio->bi_private = end_io_wq->private; 1694 bio->bi_end_io = end_io_wq->end_io; 1695 bio_endio(bio); 1696 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1697 } 1698 1699 static int cleaner_kthread(void *arg) 1700 { 1701 struct btrfs_root *root = arg; 1702 struct btrfs_fs_info *fs_info = root->fs_info; 1703 int again; 1704 1705 while (1) { 1706 again = 0; 1707 1708 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1709 1710 /* Make the cleaner go to sleep early. */ 1711 if (btrfs_need_cleaner_sleep(fs_info)) 1712 goto sleep; 1713 1714 /* 1715 * Do not do anything if we might cause open_ctree() to block 1716 * before we have finished mounting the filesystem. 1717 */ 1718 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1719 goto sleep; 1720 1721 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1722 goto sleep; 1723 1724 /* 1725 * Avoid the problem that we change the status of the fs 1726 * during the above check and trylock. 1727 */ 1728 if (btrfs_need_cleaner_sleep(fs_info)) { 1729 mutex_unlock(&fs_info->cleaner_mutex); 1730 goto sleep; 1731 } 1732 1733 btrfs_run_delayed_iputs(fs_info); 1734 1735 again = btrfs_clean_one_deleted_snapshot(root); 1736 mutex_unlock(&fs_info->cleaner_mutex); 1737 1738 /* 1739 * The defragger has dealt with the R/O remount and umount, 1740 * needn't do anything special here. 1741 */ 1742 btrfs_run_defrag_inodes(fs_info); 1743 1744 /* 1745 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1746 * with relocation (btrfs_relocate_chunk) and relocation 1747 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1748 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1749 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1750 * unused block groups. 1751 */ 1752 btrfs_delete_unused_bgs(fs_info); 1753 sleep: 1754 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1755 if (kthread_should_park()) 1756 kthread_parkme(); 1757 if (kthread_should_stop()) 1758 return 0; 1759 if (!again) { 1760 set_current_state(TASK_INTERRUPTIBLE); 1761 schedule(); 1762 __set_current_state(TASK_RUNNING); 1763 } 1764 } 1765 } 1766 1767 static int transaction_kthread(void *arg) 1768 { 1769 struct btrfs_root *root = arg; 1770 struct btrfs_fs_info *fs_info = root->fs_info; 1771 struct btrfs_trans_handle *trans; 1772 struct btrfs_transaction *cur; 1773 u64 transid; 1774 time64_t now; 1775 unsigned long delay; 1776 bool cannot_commit; 1777 1778 do { 1779 cannot_commit = false; 1780 delay = HZ * fs_info->commit_interval; 1781 mutex_lock(&fs_info->transaction_kthread_mutex); 1782 1783 spin_lock(&fs_info->trans_lock); 1784 cur = fs_info->running_transaction; 1785 if (!cur) { 1786 spin_unlock(&fs_info->trans_lock); 1787 goto sleep; 1788 } 1789 1790 now = ktime_get_seconds(); 1791 if (cur->state < TRANS_STATE_COMMIT_START && 1792 (now < cur->start_time || 1793 now - cur->start_time < fs_info->commit_interval)) { 1794 spin_unlock(&fs_info->trans_lock); 1795 delay = HZ * 5; 1796 goto sleep; 1797 } 1798 transid = cur->transid; 1799 spin_unlock(&fs_info->trans_lock); 1800 1801 /* If the file system is aborted, this will always fail. */ 1802 trans = btrfs_attach_transaction(root); 1803 if (IS_ERR(trans)) { 1804 if (PTR_ERR(trans) != -ENOENT) 1805 cannot_commit = true; 1806 goto sleep; 1807 } 1808 if (transid == trans->transid) { 1809 btrfs_commit_transaction(trans); 1810 } else { 1811 btrfs_end_transaction(trans); 1812 } 1813 sleep: 1814 wake_up_process(fs_info->cleaner_kthread); 1815 mutex_unlock(&fs_info->transaction_kthread_mutex); 1816 1817 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1818 &fs_info->fs_state))) 1819 btrfs_cleanup_transaction(fs_info); 1820 if (!kthread_should_stop() && 1821 (!btrfs_transaction_blocked(fs_info) || 1822 cannot_commit)) 1823 schedule_timeout_interruptible(delay); 1824 } while (!kthread_should_stop()); 1825 return 0; 1826 } 1827 1828 /* 1829 * This will find the highest generation in the array of root backups. The 1830 * index of the highest array is returned, or -EINVAL if we can't find 1831 * anything. 1832 * 1833 * We check to make sure the array is valid by comparing the 1834 * generation of the latest root in the array with the generation 1835 * in the super block. If they don't match we pitch it. 1836 */ 1837 static int find_newest_super_backup(struct btrfs_fs_info *info) 1838 { 1839 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1840 u64 cur; 1841 struct btrfs_root_backup *root_backup; 1842 int i; 1843 1844 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1845 root_backup = info->super_copy->super_roots + i; 1846 cur = btrfs_backup_tree_root_gen(root_backup); 1847 if (cur == newest_gen) 1848 return i; 1849 } 1850 1851 return -EINVAL; 1852 } 1853 1854 /* 1855 * copy all the root pointers into the super backup array. 1856 * this will bump the backup pointer by one when it is 1857 * done 1858 */ 1859 static void backup_super_roots(struct btrfs_fs_info *info) 1860 { 1861 const int next_backup = info->backup_root_index; 1862 struct btrfs_root_backup *root_backup; 1863 1864 root_backup = info->super_for_commit->super_roots + next_backup; 1865 1866 /* 1867 * make sure all of our padding and empty slots get zero filled 1868 * regardless of which ones we use today 1869 */ 1870 memset(root_backup, 0, sizeof(*root_backup)); 1871 1872 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1873 1874 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1875 btrfs_set_backup_tree_root_gen(root_backup, 1876 btrfs_header_generation(info->tree_root->node)); 1877 1878 btrfs_set_backup_tree_root_level(root_backup, 1879 btrfs_header_level(info->tree_root->node)); 1880 1881 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1882 btrfs_set_backup_chunk_root_gen(root_backup, 1883 btrfs_header_generation(info->chunk_root->node)); 1884 btrfs_set_backup_chunk_root_level(root_backup, 1885 btrfs_header_level(info->chunk_root->node)); 1886 1887 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1888 btrfs_set_backup_extent_root_gen(root_backup, 1889 btrfs_header_generation(info->extent_root->node)); 1890 btrfs_set_backup_extent_root_level(root_backup, 1891 btrfs_header_level(info->extent_root->node)); 1892 1893 /* 1894 * we might commit during log recovery, which happens before we set 1895 * the fs_root. Make sure it is valid before we fill it in. 1896 */ 1897 if (info->fs_root && info->fs_root->node) { 1898 btrfs_set_backup_fs_root(root_backup, 1899 info->fs_root->node->start); 1900 btrfs_set_backup_fs_root_gen(root_backup, 1901 btrfs_header_generation(info->fs_root->node)); 1902 btrfs_set_backup_fs_root_level(root_backup, 1903 btrfs_header_level(info->fs_root->node)); 1904 } 1905 1906 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1907 btrfs_set_backup_dev_root_gen(root_backup, 1908 btrfs_header_generation(info->dev_root->node)); 1909 btrfs_set_backup_dev_root_level(root_backup, 1910 btrfs_header_level(info->dev_root->node)); 1911 1912 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1913 btrfs_set_backup_csum_root_gen(root_backup, 1914 btrfs_header_generation(info->csum_root->node)); 1915 btrfs_set_backup_csum_root_level(root_backup, 1916 btrfs_header_level(info->csum_root->node)); 1917 1918 btrfs_set_backup_total_bytes(root_backup, 1919 btrfs_super_total_bytes(info->super_copy)); 1920 btrfs_set_backup_bytes_used(root_backup, 1921 btrfs_super_bytes_used(info->super_copy)); 1922 btrfs_set_backup_num_devices(root_backup, 1923 btrfs_super_num_devices(info->super_copy)); 1924 1925 /* 1926 * if we don't copy this out to the super_copy, it won't get remembered 1927 * for the next commit 1928 */ 1929 memcpy(&info->super_copy->super_roots, 1930 &info->super_for_commit->super_roots, 1931 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1932 } 1933 1934 /* 1935 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 1936 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1937 * 1938 * fs_info - filesystem whose backup roots need to be read 1939 * priority - priority of backup root required 1940 * 1941 * Returns backup root index on success and -EINVAL otherwise. 1942 */ 1943 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1944 { 1945 int backup_index = find_newest_super_backup(fs_info); 1946 struct btrfs_super_block *super = fs_info->super_copy; 1947 struct btrfs_root_backup *root_backup; 1948 1949 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1950 if (priority == 0) 1951 return backup_index; 1952 1953 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1954 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1955 } else { 1956 return -EINVAL; 1957 } 1958 1959 root_backup = super->super_roots + backup_index; 1960 1961 btrfs_set_super_generation(super, 1962 btrfs_backup_tree_root_gen(root_backup)); 1963 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1964 btrfs_set_super_root_level(super, 1965 btrfs_backup_tree_root_level(root_backup)); 1966 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1967 1968 /* 1969 * Fixme: the total bytes and num_devices need to match or we should 1970 * need a fsck 1971 */ 1972 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1973 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1974 1975 return backup_index; 1976 } 1977 1978 /* helper to cleanup workers */ 1979 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1980 { 1981 btrfs_destroy_workqueue(fs_info->fixup_workers); 1982 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1983 btrfs_destroy_workqueue(fs_info->workers); 1984 btrfs_destroy_workqueue(fs_info->endio_workers); 1985 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 1986 btrfs_destroy_workqueue(fs_info->rmw_workers); 1987 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1988 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1989 btrfs_destroy_workqueue(fs_info->delayed_workers); 1990 btrfs_destroy_workqueue(fs_info->caching_workers); 1991 btrfs_destroy_workqueue(fs_info->readahead_workers); 1992 btrfs_destroy_workqueue(fs_info->flush_workers); 1993 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1994 if (fs_info->discard_ctl.discard_workers) 1995 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1996 /* 1997 * Now that all other work queues are destroyed, we can safely destroy 1998 * the queues used for metadata I/O, since tasks from those other work 1999 * queues can do metadata I/O operations. 2000 */ 2001 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2002 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2003 } 2004 2005 static void free_root_extent_buffers(struct btrfs_root *root) 2006 { 2007 if (root) { 2008 free_extent_buffer(root->node); 2009 free_extent_buffer(root->commit_root); 2010 root->node = NULL; 2011 root->commit_root = NULL; 2012 } 2013 } 2014 2015 /* helper to cleanup tree roots */ 2016 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 2017 { 2018 free_root_extent_buffers(info->tree_root); 2019 2020 free_root_extent_buffers(info->dev_root); 2021 free_root_extent_buffers(info->extent_root); 2022 free_root_extent_buffers(info->csum_root); 2023 free_root_extent_buffers(info->quota_root); 2024 free_root_extent_buffers(info->uuid_root); 2025 free_root_extent_buffers(info->fs_root); 2026 free_root_extent_buffers(info->data_reloc_root); 2027 if (free_chunk_root) 2028 free_root_extent_buffers(info->chunk_root); 2029 free_root_extent_buffers(info->free_space_root); 2030 } 2031 2032 void btrfs_put_root(struct btrfs_root *root) 2033 { 2034 if (!root) 2035 return; 2036 2037 if (refcount_dec_and_test(&root->refs)) { 2038 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2039 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 2040 if (root->anon_dev) 2041 free_anon_bdev(root->anon_dev); 2042 btrfs_drew_lock_destroy(&root->snapshot_lock); 2043 free_root_extent_buffers(root); 2044 kfree(root->free_ino_ctl); 2045 kfree(root->free_ino_pinned); 2046 #ifdef CONFIG_BTRFS_DEBUG 2047 spin_lock(&root->fs_info->fs_roots_radix_lock); 2048 list_del_init(&root->leak_list); 2049 spin_unlock(&root->fs_info->fs_roots_radix_lock); 2050 #endif 2051 kfree(root); 2052 } 2053 } 2054 2055 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2056 { 2057 int ret; 2058 struct btrfs_root *gang[8]; 2059 int i; 2060 2061 while (!list_empty(&fs_info->dead_roots)) { 2062 gang[0] = list_entry(fs_info->dead_roots.next, 2063 struct btrfs_root, root_list); 2064 list_del(&gang[0]->root_list); 2065 2066 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 2067 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2068 btrfs_put_root(gang[0]); 2069 } 2070 2071 while (1) { 2072 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2073 (void **)gang, 0, 2074 ARRAY_SIZE(gang)); 2075 if (!ret) 2076 break; 2077 for (i = 0; i < ret; i++) 2078 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2079 } 2080 } 2081 2082 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2083 { 2084 mutex_init(&fs_info->scrub_lock); 2085 atomic_set(&fs_info->scrubs_running, 0); 2086 atomic_set(&fs_info->scrub_pause_req, 0); 2087 atomic_set(&fs_info->scrubs_paused, 0); 2088 atomic_set(&fs_info->scrub_cancel_req, 0); 2089 init_waitqueue_head(&fs_info->scrub_pause_wait); 2090 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2091 } 2092 2093 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2094 { 2095 spin_lock_init(&fs_info->balance_lock); 2096 mutex_init(&fs_info->balance_mutex); 2097 atomic_set(&fs_info->balance_pause_req, 0); 2098 atomic_set(&fs_info->balance_cancel_req, 0); 2099 fs_info->balance_ctl = NULL; 2100 init_waitqueue_head(&fs_info->balance_wait_q); 2101 } 2102 2103 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2104 { 2105 struct inode *inode = fs_info->btree_inode; 2106 2107 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2108 set_nlink(inode, 1); 2109 /* 2110 * we set the i_size on the btree inode to the max possible int. 2111 * the real end of the address space is determined by all of 2112 * the devices in the system 2113 */ 2114 inode->i_size = OFFSET_MAX; 2115 inode->i_mapping->a_ops = &btree_aops; 2116 2117 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2118 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2119 IO_TREE_INODE_IO, inode); 2120 BTRFS_I(inode)->io_tree.track_uptodate = false; 2121 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2122 2123 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2124 2125 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 2126 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2127 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2128 btrfs_insert_inode_hash(inode); 2129 } 2130 2131 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2132 { 2133 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2134 init_rwsem(&fs_info->dev_replace.rwsem); 2135 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2136 } 2137 2138 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2139 { 2140 spin_lock_init(&fs_info->qgroup_lock); 2141 mutex_init(&fs_info->qgroup_ioctl_lock); 2142 fs_info->qgroup_tree = RB_ROOT; 2143 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2144 fs_info->qgroup_seq = 1; 2145 fs_info->qgroup_ulist = NULL; 2146 fs_info->qgroup_rescan_running = false; 2147 mutex_init(&fs_info->qgroup_rescan_lock); 2148 } 2149 2150 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2151 struct btrfs_fs_devices *fs_devices) 2152 { 2153 u32 max_active = fs_info->thread_pool_size; 2154 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2155 2156 fs_info->workers = 2157 btrfs_alloc_workqueue(fs_info, "worker", 2158 flags | WQ_HIGHPRI, max_active, 16); 2159 2160 fs_info->delalloc_workers = 2161 btrfs_alloc_workqueue(fs_info, "delalloc", 2162 flags, max_active, 2); 2163 2164 fs_info->flush_workers = 2165 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2166 flags, max_active, 0); 2167 2168 fs_info->caching_workers = 2169 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2170 2171 fs_info->fixup_workers = 2172 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2173 2174 /* 2175 * endios are largely parallel and should have a very 2176 * low idle thresh 2177 */ 2178 fs_info->endio_workers = 2179 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2180 fs_info->endio_meta_workers = 2181 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2182 max_active, 4); 2183 fs_info->endio_meta_write_workers = 2184 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2185 max_active, 2); 2186 fs_info->endio_raid56_workers = 2187 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2188 max_active, 4); 2189 fs_info->rmw_workers = 2190 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2191 fs_info->endio_write_workers = 2192 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2193 max_active, 2); 2194 fs_info->endio_freespace_worker = 2195 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2196 max_active, 0); 2197 fs_info->delayed_workers = 2198 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2199 max_active, 0); 2200 fs_info->readahead_workers = 2201 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2202 max_active, 2); 2203 fs_info->qgroup_rescan_workers = 2204 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2205 fs_info->discard_ctl.discard_workers = 2206 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2207 2208 if (!(fs_info->workers && fs_info->delalloc_workers && 2209 fs_info->flush_workers && 2210 fs_info->endio_workers && fs_info->endio_meta_workers && 2211 fs_info->endio_meta_write_workers && 2212 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2213 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2214 fs_info->caching_workers && fs_info->readahead_workers && 2215 fs_info->fixup_workers && fs_info->delayed_workers && 2216 fs_info->qgroup_rescan_workers && 2217 fs_info->discard_ctl.discard_workers)) { 2218 return -ENOMEM; 2219 } 2220 2221 return 0; 2222 } 2223 2224 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2225 { 2226 struct crypto_shash *csum_shash; 2227 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2228 2229 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2230 2231 if (IS_ERR(csum_shash)) { 2232 btrfs_err(fs_info, "error allocating %s hash for checksum", 2233 csum_driver); 2234 return PTR_ERR(csum_shash); 2235 } 2236 2237 fs_info->csum_shash = csum_shash; 2238 2239 return 0; 2240 } 2241 2242 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2243 struct btrfs_fs_devices *fs_devices) 2244 { 2245 int ret; 2246 struct btrfs_root *log_tree_root; 2247 struct btrfs_super_block *disk_super = fs_info->super_copy; 2248 u64 bytenr = btrfs_super_log_root(disk_super); 2249 int level = btrfs_super_log_root_level(disk_super); 2250 2251 if (fs_devices->rw_devices == 0) { 2252 btrfs_warn(fs_info, "log replay required on RO media"); 2253 return -EIO; 2254 } 2255 2256 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2257 GFP_KERNEL); 2258 if (!log_tree_root) 2259 return -ENOMEM; 2260 2261 log_tree_root->node = read_tree_block(fs_info, bytenr, 2262 fs_info->generation + 1, 2263 level, NULL); 2264 if (IS_ERR(log_tree_root->node)) { 2265 btrfs_warn(fs_info, "failed to read log tree"); 2266 ret = PTR_ERR(log_tree_root->node); 2267 log_tree_root->node = NULL; 2268 btrfs_put_root(log_tree_root); 2269 return ret; 2270 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2271 btrfs_err(fs_info, "failed to read log tree"); 2272 btrfs_put_root(log_tree_root); 2273 return -EIO; 2274 } 2275 /* returns with log_tree_root freed on success */ 2276 ret = btrfs_recover_log_trees(log_tree_root); 2277 if (ret) { 2278 btrfs_handle_fs_error(fs_info, ret, 2279 "Failed to recover log tree"); 2280 btrfs_put_root(log_tree_root); 2281 return ret; 2282 } 2283 2284 if (sb_rdonly(fs_info->sb)) { 2285 ret = btrfs_commit_super(fs_info); 2286 if (ret) 2287 return ret; 2288 } 2289 2290 return 0; 2291 } 2292 2293 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2294 { 2295 struct btrfs_root *tree_root = fs_info->tree_root; 2296 struct btrfs_root *root; 2297 struct btrfs_key location; 2298 int ret; 2299 2300 BUG_ON(!fs_info->tree_root); 2301 2302 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2303 location.type = BTRFS_ROOT_ITEM_KEY; 2304 location.offset = 0; 2305 2306 root = btrfs_read_tree_root(tree_root, &location); 2307 if (IS_ERR(root)) { 2308 ret = PTR_ERR(root); 2309 goto out; 2310 } 2311 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2312 fs_info->extent_root = root; 2313 2314 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2315 root = btrfs_read_tree_root(tree_root, &location); 2316 if (IS_ERR(root)) { 2317 ret = PTR_ERR(root); 2318 goto out; 2319 } 2320 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2321 fs_info->dev_root = root; 2322 btrfs_init_devices_late(fs_info); 2323 2324 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2325 root = btrfs_read_tree_root(tree_root, &location); 2326 if (IS_ERR(root)) { 2327 ret = PTR_ERR(root); 2328 goto out; 2329 } 2330 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2331 fs_info->csum_root = root; 2332 2333 /* 2334 * This tree can share blocks with some other fs tree during relocation 2335 * and we need a proper setup by btrfs_get_fs_root 2336 */ 2337 root = btrfs_get_fs_root(tree_root->fs_info, 2338 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2339 if (IS_ERR(root)) { 2340 ret = PTR_ERR(root); 2341 goto out; 2342 } 2343 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2344 fs_info->data_reloc_root = root; 2345 2346 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2347 root = btrfs_read_tree_root(tree_root, &location); 2348 if (!IS_ERR(root)) { 2349 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2350 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2351 fs_info->quota_root = root; 2352 } 2353 2354 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2355 root = btrfs_read_tree_root(tree_root, &location); 2356 if (IS_ERR(root)) { 2357 ret = PTR_ERR(root); 2358 if (ret != -ENOENT) 2359 goto out; 2360 } else { 2361 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2362 fs_info->uuid_root = root; 2363 } 2364 2365 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2366 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2367 root = btrfs_read_tree_root(tree_root, &location); 2368 if (IS_ERR(root)) { 2369 ret = PTR_ERR(root); 2370 goto out; 2371 } 2372 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2373 fs_info->free_space_root = root; 2374 } 2375 2376 return 0; 2377 out: 2378 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2379 location.objectid, ret); 2380 return ret; 2381 } 2382 2383 /* 2384 * Real super block validation 2385 * NOTE: super csum type and incompat features will not be checked here. 2386 * 2387 * @sb: super block to check 2388 * @mirror_num: the super block number to check its bytenr: 2389 * 0 the primary (1st) sb 2390 * 1, 2 2nd and 3rd backup copy 2391 * -1 skip bytenr check 2392 */ 2393 static int validate_super(struct btrfs_fs_info *fs_info, 2394 struct btrfs_super_block *sb, int mirror_num) 2395 { 2396 u64 nodesize = btrfs_super_nodesize(sb); 2397 u64 sectorsize = btrfs_super_sectorsize(sb); 2398 int ret = 0; 2399 2400 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2401 btrfs_err(fs_info, "no valid FS found"); 2402 ret = -EINVAL; 2403 } 2404 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2405 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2406 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2407 ret = -EINVAL; 2408 } 2409 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2410 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2411 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2412 ret = -EINVAL; 2413 } 2414 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2415 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2416 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2417 ret = -EINVAL; 2418 } 2419 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2420 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2421 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2422 ret = -EINVAL; 2423 } 2424 2425 /* 2426 * Check sectorsize and nodesize first, other check will need it. 2427 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2428 */ 2429 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2430 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2431 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2432 ret = -EINVAL; 2433 } 2434 /* Only PAGE SIZE is supported yet */ 2435 if (sectorsize != PAGE_SIZE) { 2436 btrfs_err(fs_info, 2437 "sectorsize %llu not supported yet, only support %lu", 2438 sectorsize, PAGE_SIZE); 2439 ret = -EINVAL; 2440 } 2441 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2442 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2443 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2444 ret = -EINVAL; 2445 } 2446 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2447 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2448 le32_to_cpu(sb->__unused_leafsize), nodesize); 2449 ret = -EINVAL; 2450 } 2451 2452 /* Root alignment check */ 2453 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2454 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2455 btrfs_super_root(sb)); 2456 ret = -EINVAL; 2457 } 2458 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2459 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2460 btrfs_super_chunk_root(sb)); 2461 ret = -EINVAL; 2462 } 2463 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2464 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2465 btrfs_super_log_root(sb)); 2466 ret = -EINVAL; 2467 } 2468 2469 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2470 BTRFS_FSID_SIZE) != 0) { 2471 btrfs_err(fs_info, 2472 "dev_item UUID does not match metadata fsid: %pU != %pU", 2473 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2474 ret = -EINVAL; 2475 } 2476 2477 /* 2478 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2479 * done later 2480 */ 2481 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2482 btrfs_err(fs_info, "bytes_used is too small %llu", 2483 btrfs_super_bytes_used(sb)); 2484 ret = -EINVAL; 2485 } 2486 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2487 btrfs_err(fs_info, "invalid stripesize %u", 2488 btrfs_super_stripesize(sb)); 2489 ret = -EINVAL; 2490 } 2491 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2492 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2493 btrfs_super_num_devices(sb)); 2494 if (btrfs_super_num_devices(sb) == 0) { 2495 btrfs_err(fs_info, "number of devices is 0"); 2496 ret = -EINVAL; 2497 } 2498 2499 if (mirror_num >= 0 && 2500 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2501 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2502 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2503 ret = -EINVAL; 2504 } 2505 2506 /* 2507 * Obvious sys_chunk_array corruptions, it must hold at least one key 2508 * and one chunk 2509 */ 2510 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2511 btrfs_err(fs_info, "system chunk array too big %u > %u", 2512 btrfs_super_sys_array_size(sb), 2513 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2514 ret = -EINVAL; 2515 } 2516 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2517 + sizeof(struct btrfs_chunk)) { 2518 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2519 btrfs_super_sys_array_size(sb), 2520 sizeof(struct btrfs_disk_key) 2521 + sizeof(struct btrfs_chunk)); 2522 ret = -EINVAL; 2523 } 2524 2525 /* 2526 * The generation is a global counter, we'll trust it more than the others 2527 * but it's still possible that it's the one that's wrong. 2528 */ 2529 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2530 btrfs_warn(fs_info, 2531 "suspicious: generation < chunk_root_generation: %llu < %llu", 2532 btrfs_super_generation(sb), 2533 btrfs_super_chunk_root_generation(sb)); 2534 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2535 && btrfs_super_cache_generation(sb) != (u64)-1) 2536 btrfs_warn(fs_info, 2537 "suspicious: generation < cache_generation: %llu < %llu", 2538 btrfs_super_generation(sb), 2539 btrfs_super_cache_generation(sb)); 2540 2541 return ret; 2542 } 2543 2544 /* 2545 * Validation of super block at mount time. 2546 * Some checks already done early at mount time, like csum type and incompat 2547 * flags will be skipped. 2548 */ 2549 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2550 { 2551 return validate_super(fs_info, fs_info->super_copy, 0); 2552 } 2553 2554 /* 2555 * Validation of super block at write time. 2556 * Some checks like bytenr check will be skipped as their values will be 2557 * overwritten soon. 2558 * Extra checks like csum type and incompat flags will be done here. 2559 */ 2560 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2561 struct btrfs_super_block *sb) 2562 { 2563 int ret; 2564 2565 ret = validate_super(fs_info, sb, -1); 2566 if (ret < 0) 2567 goto out; 2568 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2569 ret = -EUCLEAN; 2570 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2571 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2572 goto out; 2573 } 2574 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2575 ret = -EUCLEAN; 2576 btrfs_err(fs_info, 2577 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2578 btrfs_super_incompat_flags(sb), 2579 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2580 goto out; 2581 } 2582 out: 2583 if (ret < 0) 2584 btrfs_err(fs_info, 2585 "super block corruption detected before writing it to disk"); 2586 return ret; 2587 } 2588 2589 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2590 { 2591 int backup_index = find_newest_super_backup(fs_info); 2592 struct btrfs_super_block *sb = fs_info->super_copy; 2593 struct btrfs_root *tree_root = fs_info->tree_root; 2594 bool handle_error = false; 2595 int ret = 0; 2596 int i; 2597 2598 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2599 u64 generation; 2600 int level; 2601 2602 if (handle_error) { 2603 if (!IS_ERR(tree_root->node)) 2604 free_extent_buffer(tree_root->node); 2605 tree_root->node = NULL; 2606 2607 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2608 break; 2609 2610 free_root_pointers(fs_info, 0); 2611 2612 /* 2613 * Don't use the log in recovery mode, it won't be 2614 * valid 2615 */ 2616 btrfs_set_super_log_root(sb, 0); 2617 2618 /* We can't trust the free space cache either */ 2619 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2620 2621 ret = read_backup_root(fs_info, i); 2622 backup_index = ret; 2623 if (ret < 0) 2624 return ret; 2625 } 2626 generation = btrfs_super_generation(sb); 2627 level = btrfs_super_root_level(sb); 2628 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb), 2629 generation, level, NULL); 2630 if (IS_ERR(tree_root->node) || 2631 !extent_buffer_uptodate(tree_root->node)) { 2632 handle_error = true; 2633 2634 if (IS_ERR(tree_root->node)) { 2635 ret = PTR_ERR(tree_root->node); 2636 tree_root->node = NULL; 2637 } else if (!extent_buffer_uptodate(tree_root->node)) { 2638 ret = -EUCLEAN; 2639 } 2640 2641 btrfs_warn(fs_info, "failed to read tree root"); 2642 continue; 2643 } 2644 2645 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2646 tree_root->commit_root = btrfs_root_node(tree_root); 2647 btrfs_set_root_refs(&tree_root->root_item, 1); 2648 2649 /* 2650 * No need to hold btrfs_root::objectid_mutex since the fs 2651 * hasn't been fully initialised and we are the only user 2652 */ 2653 ret = btrfs_find_highest_objectid(tree_root, 2654 &tree_root->highest_objectid); 2655 if (ret < 0) { 2656 handle_error = true; 2657 continue; 2658 } 2659 2660 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2661 2662 ret = btrfs_read_roots(fs_info); 2663 if (ret < 0) { 2664 handle_error = true; 2665 continue; 2666 } 2667 2668 /* All successful */ 2669 fs_info->generation = generation; 2670 fs_info->last_trans_committed = generation; 2671 2672 /* Always begin writing backup roots after the one being used */ 2673 if (backup_index < 0) { 2674 fs_info->backup_root_index = 0; 2675 } else { 2676 fs_info->backup_root_index = backup_index + 1; 2677 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2678 } 2679 break; 2680 } 2681 2682 return ret; 2683 } 2684 2685 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2686 { 2687 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2688 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2689 INIT_LIST_HEAD(&fs_info->trans_list); 2690 INIT_LIST_HEAD(&fs_info->dead_roots); 2691 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2692 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2693 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2694 spin_lock_init(&fs_info->delalloc_root_lock); 2695 spin_lock_init(&fs_info->trans_lock); 2696 spin_lock_init(&fs_info->fs_roots_radix_lock); 2697 spin_lock_init(&fs_info->delayed_iput_lock); 2698 spin_lock_init(&fs_info->defrag_inodes_lock); 2699 spin_lock_init(&fs_info->super_lock); 2700 spin_lock_init(&fs_info->buffer_lock); 2701 spin_lock_init(&fs_info->unused_bgs_lock); 2702 rwlock_init(&fs_info->tree_mod_log_lock); 2703 mutex_init(&fs_info->unused_bg_unpin_mutex); 2704 mutex_init(&fs_info->delete_unused_bgs_mutex); 2705 mutex_init(&fs_info->reloc_mutex); 2706 mutex_init(&fs_info->delalloc_root_mutex); 2707 seqlock_init(&fs_info->profiles_lock); 2708 2709 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2710 INIT_LIST_HEAD(&fs_info->space_info); 2711 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2712 INIT_LIST_HEAD(&fs_info->unused_bgs); 2713 #ifdef CONFIG_BTRFS_DEBUG 2714 INIT_LIST_HEAD(&fs_info->allocated_roots); 2715 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2716 spin_lock_init(&fs_info->eb_leak_lock); 2717 #endif 2718 extent_map_tree_init(&fs_info->mapping_tree); 2719 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2720 BTRFS_BLOCK_RSV_GLOBAL); 2721 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2722 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2723 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2724 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2725 BTRFS_BLOCK_RSV_DELOPS); 2726 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2727 BTRFS_BLOCK_RSV_DELREFS); 2728 2729 atomic_set(&fs_info->async_delalloc_pages, 0); 2730 atomic_set(&fs_info->defrag_running, 0); 2731 atomic_set(&fs_info->reada_works_cnt, 0); 2732 atomic_set(&fs_info->nr_delayed_iputs, 0); 2733 atomic64_set(&fs_info->tree_mod_seq, 0); 2734 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2735 fs_info->metadata_ratio = 0; 2736 fs_info->defrag_inodes = RB_ROOT; 2737 atomic64_set(&fs_info->free_chunk_space, 0); 2738 fs_info->tree_mod_log = RB_ROOT; 2739 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2740 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2741 /* readahead state */ 2742 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2743 spin_lock_init(&fs_info->reada_lock); 2744 btrfs_init_ref_verify(fs_info); 2745 2746 fs_info->thread_pool_size = min_t(unsigned long, 2747 num_online_cpus() + 2, 8); 2748 2749 INIT_LIST_HEAD(&fs_info->ordered_roots); 2750 spin_lock_init(&fs_info->ordered_root_lock); 2751 2752 btrfs_init_scrub(fs_info); 2753 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2754 fs_info->check_integrity_print_mask = 0; 2755 #endif 2756 btrfs_init_balance(fs_info); 2757 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2758 2759 spin_lock_init(&fs_info->block_group_cache_lock); 2760 fs_info->block_group_cache_tree = RB_ROOT; 2761 fs_info->first_logical_byte = (u64)-1; 2762 2763 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2764 IO_TREE_FS_EXCLUDED_EXTENTS, NULL); 2765 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2766 2767 mutex_init(&fs_info->ordered_operations_mutex); 2768 mutex_init(&fs_info->tree_log_mutex); 2769 mutex_init(&fs_info->chunk_mutex); 2770 mutex_init(&fs_info->transaction_kthread_mutex); 2771 mutex_init(&fs_info->cleaner_mutex); 2772 mutex_init(&fs_info->ro_block_group_mutex); 2773 init_rwsem(&fs_info->commit_root_sem); 2774 init_rwsem(&fs_info->cleanup_work_sem); 2775 init_rwsem(&fs_info->subvol_sem); 2776 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2777 2778 btrfs_init_dev_replace_locks(fs_info); 2779 btrfs_init_qgroup(fs_info); 2780 btrfs_discard_init(fs_info); 2781 2782 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2783 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2784 2785 init_waitqueue_head(&fs_info->transaction_throttle); 2786 init_waitqueue_head(&fs_info->transaction_wait); 2787 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2788 init_waitqueue_head(&fs_info->async_submit_wait); 2789 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2790 2791 /* Usable values until the real ones are cached from the superblock */ 2792 fs_info->nodesize = 4096; 2793 fs_info->sectorsize = 4096; 2794 fs_info->stripesize = 4096; 2795 2796 spin_lock_init(&fs_info->swapfile_pins_lock); 2797 fs_info->swapfile_pins = RB_ROOT; 2798 2799 fs_info->send_in_progress = 0; 2800 } 2801 2802 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2803 { 2804 int ret; 2805 2806 fs_info->sb = sb; 2807 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2808 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2809 2810 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL); 2811 if (ret) 2812 return ret; 2813 2814 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2815 if (ret) 2816 return ret; 2817 2818 fs_info->dirty_metadata_batch = PAGE_SIZE * 2819 (1 + ilog2(nr_cpu_ids)); 2820 2821 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2822 if (ret) 2823 return ret; 2824 2825 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2826 GFP_KERNEL); 2827 if (ret) 2828 return ret; 2829 2830 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2831 GFP_KERNEL); 2832 if (!fs_info->delayed_root) 2833 return -ENOMEM; 2834 btrfs_init_delayed_root(fs_info->delayed_root); 2835 2836 return btrfs_alloc_stripe_hash_table(fs_info); 2837 } 2838 2839 static int btrfs_uuid_rescan_kthread(void *data) 2840 { 2841 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 2842 int ret; 2843 2844 /* 2845 * 1st step is to iterate through the existing UUID tree and 2846 * to delete all entries that contain outdated data. 2847 * 2nd step is to add all missing entries to the UUID tree. 2848 */ 2849 ret = btrfs_uuid_tree_iterate(fs_info); 2850 if (ret < 0) { 2851 if (ret != -EINTR) 2852 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2853 ret); 2854 up(&fs_info->uuid_tree_rescan_sem); 2855 return ret; 2856 } 2857 return btrfs_uuid_scan_kthread(data); 2858 } 2859 2860 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2861 { 2862 struct task_struct *task; 2863 2864 down(&fs_info->uuid_tree_rescan_sem); 2865 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2866 if (IS_ERR(task)) { 2867 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2868 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2869 up(&fs_info->uuid_tree_rescan_sem); 2870 return PTR_ERR(task); 2871 } 2872 2873 return 0; 2874 } 2875 2876 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 2877 char *options) 2878 { 2879 u32 sectorsize; 2880 u32 nodesize; 2881 u32 stripesize; 2882 u64 generation; 2883 u64 features; 2884 u16 csum_type; 2885 struct btrfs_super_block *disk_super; 2886 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2887 struct btrfs_root *tree_root; 2888 struct btrfs_root *chunk_root; 2889 int ret; 2890 int err = -EINVAL; 2891 int clear_free_space_tree = 0; 2892 int level; 2893 2894 ret = init_mount_fs_info(fs_info, sb); 2895 if (ret) { 2896 err = ret; 2897 goto fail; 2898 } 2899 2900 /* These need to be init'ed before we start creating inodes and such. */ 2901 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 2902 GFP_KERNEL); 2903 fs_info->tree_root = tree_root; 2904 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 2905 GFP_KERNEL); 2906 fs_info->chunk_root = chunk_root; 2907 if (!tree_root || !chunk_root) { 2908 err = -ENOMEM; 2909 goto fail; 2910 } 2911 2912 fs_info->btree_inode = new_inode(sb); 2913 if (!fs_info->btree_inode) { 2914 err = -ENOMEM; 2915 goto fail; 2916 } 2917 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2918 btrfs_init_btree_inode(fs_info); 2919 2920 invalidate_bdev(fs_devices->latest_bdev); 2921 2922 /* 2923 * Read super block and check the signature bytes only 2924 */ 2925 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev); 2926 if (IS_ERR(disk_super)) { 2927 err = PTR_ERR(disk_super); 2928 goto fail_alloc; 2929 } 2930 2931 /* 2932 * Verify the type first, if that or the the checksum value are 2933 * corrupted, we'll find out 2934 */ 2935 csum_type = btrfs_super_csum_type(disk_super); 2936 if (!btrfs_supported_super_csum(csum_type)) { 2937 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 2938 csum_type); 2939 err = -EINVAL; 2940 btrfs_release_disk_super(disk_super); 2941 goto fail_alloc; 2942 } 2943 2944 ret = btrfs_init_csum_hash(fs_info, csum_type); 2945 if (ret) { 2946 err = ret; 2947 btrfs_release_disk_super(disk_super); 2948 goto fail_alloc; 2949 } 2950 2951 /* 2952 * We want to check superblock checksum, the type is stored inside. 2953 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2954 */ 2955 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) { 2956 btrfs_err(fs_info, "superblock checksum mismatch"); 2957 err = -EINVAL; 2958 btrfs_release_disk_super(disk_super); 2959 goto fail_alloc; 2960 } 2961 2962 /* 2963 * super_copy is zeroed at allocation time and we never touch the 2964 * following bytes up to INFO_SIZE, the checksum is calculated from 2965 * the whole block of INFO_SIZE 2966 */ 2967 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 2968 btrfs_release_disk_super(disk_super); 2969 2970 disk_super = fs_info->super_copy; 2971 2972 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2973 BTRFS_FSID_SIZE)); 2974 2975 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) { 2976 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid, 2977 fs_info->super_copy->metadata_uuid, 2978 BTRFS_FSID_SIZE)); 2979 } 2980 2981 features = btrfs_super_flags(disk_super); 2982 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 2983 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 2984 btrfs_set_super_flags(disk_super, features); 2985 btrfs_info(fs_info, 2986 "found metadata UUID change in progress flag, clearing"); 2987 } 2988 2989 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2990 sizeof(*fs_info->super_for_commit)); 2991 2992 ret = btrfs_validate_mount_super(fs_info); 2993 if (ret) { 2994 btrfs_err(fs_info, "superblock contains fatal errors"); 2995 err = -EINVAL; 2996 goto fail_alloc; 2997 } 2998 2999 if (!btrfs_super_root(disk_super)) 3000 goto fail_alloc; 3001 3002 /* check FS state, whether FS is broken. */ 3003 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3004 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 3005 3006 /* 3007 * In the long term, we'll store the compression type in the super 3008 * block, and it'll be used for per file compression control. 3009 */ 3010 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 3011 3012 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 3013 if (ret) { 3014 err = ret; 3015 goto fail_alloc; 3016 } 3017 3018 features = btrfs_super_incompat_flags(disk_super) & 3019 ~BTRFS_FEATURE_INCOMPAT_SUPP; 3020 if (features) { 3021 btrfs_err(fs_info, 3022 "cannot mount because of unsupported optional features (%llx)", 3023 features); 3024 err = -EINVAL; 3025 goto fail_alloc; 3026 } 3027 3028 features = btrfs_super_incompat_flags(disk_super); 3029 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3030 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3031 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3032 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3033 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3034 3035 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 3036 btrfs_info(fs_info, "has skinny extents"); 3037 3038 /* 3039 * flag our filesystem as having big metadata blocks if 3040 * they are bigger than the page size 3041 */ 3042 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 3043 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 3044 btrfs_info(fs_info, 3045 "flagging fs with big metadata feature"); 3046 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3047 } 3048 3049 nodesize = btrfs_super_nodesize(disk_super); 3050 sectorsize = btrfs_super_sectorsize(disk_super); 3051 stripesize = sectorsize; 3052 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3053 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3054 3055 /* Cache block sizes */ 3056 fs_info->nodesize = nodesize; 3057 fs_info->sectorsize = sectorsize; 3058 fs_info->stripesize = stripesize; 3059 3060 /* 3061 * mixed block groups end up with duplicate but slightly offset 3062 * extent buffers for the same range. It leads to corruptions 3063 */ 3064 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3065 (sectorsize != nodesize)) { 3066 btrfs_err(fs_info, 3067 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3068 nodesize, sectorsize); 3069 goto fail_alloc; 3070 } 3071 3072 /* 3073 * Needn't use the lock because there is no other task which will 3074 * update the flag. 3075 */ 3076 btrfs_set_super_incompat_flags(disk_super, features); 3077 3078 features = btrfs_super_compat_ro_flags(disk_super) & 3079 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 3080 if (!sb_rdonly(sb) && features) { 3081 btrfs_err(fs_info, 3082 "cannot mount read-write because of unsupported optional features (%llx)", 3083 features); 3084 err = -EINVAL; 3085 goto fail_alloc; 3086 } 3087 3088 ret = btrfs_init_workqueues(fs_info, fs_devices); 3089 if (ret) { 3090 err = ret; 3091 goto fail_sb_buffer; 3092 } 3093 3094 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 3095 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES; 3096 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3097 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3098 3099 sb->s_blocksize = sectorsize; 3100 sb->s_blocksize_bits = blksize_bits(sectorsize); 3101 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3102 3103 mutex_lock(&fs_info->chunk_mutex); 3104 ret = btrfs_read_sys_array(fs_info); 3105 mutex_unlock(&fs_info->chunk_mutex); 3106 if (ret) { 3107 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3108 goto fail_sb_buffer; 3109 } 3110 3111 generation = btrfs_super_chunk_root_generation(disk_super); 3112 level = btrfs_super_chunk_root_level(disk_super); 3113 3114 chunk_root->node = read_tree_block(fs_info, 3115 btrfs_super_chunk_root(disk_super), 3116 generation, level, NULL); 3117 if (IS_ERR(chunk_root->node) || 3118 !extent_buffer_uptodate(chunk_root->node)) { 3119 btrfs_err(fs_info, "failed to read chunk root"); 3120 if (!IS_ERR(chunk_root->node)) 3121 free_extent_buffer(chunk_root->node); 3122 chunk_root->node = NULL; 3123 goto fail_tree_roots; 3124 } 3125 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 3126 chunk_root->commit_root = btrfs_root_node(chunk_root); 3127 3128 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3129 offsetof(struct btrfs_header, chunk_tree_uuid), 3130 BTRFS_UUID_SIZE); 3131 3132 ret = btrfs_read_chunk_tree(fs_info); 3133 if (ret) { 3134 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3135 goto fail_tree_roots; 3136 } 3137 3138 /* 3139 * Keep the devid that is marked to be the target device for the 3140 * device replace procedure 3141 */ 3142 btrfs_free_extra_devids(fs_devices, 0); 3143 3144 if (!fs_devices->latest_bdev) { 3145 btrfs_err(fs_info, "failed to read devices"); 3146 goto fail_tree_roots; 3147 } 3148 3149 ret = init_tree_roots(fs_info); 3150 if (ret) 3151 goto fail_tree_roots; 3152 3153 /* 3154 * If we have a uuid root and we're not being told to rescan we need to 3155 * check the generation here so we can set the 3156 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3157 * transaction during a balance or the log replay without updating the 3158 * uuid generation, and then if we crash we would rescan the uuid tree, 3159 * even though it was perfectly fine. 3160 */ 3161 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3162 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3163 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3164 3165 ret = btrfs_verify_dev_extents(fs_info); 3166 if (ret) { 3167 btrfs_err(fs_info, 3168 "failed to verify dev extents against chunks: %d", 3169 ret); 3170 goto fail_block_groups; 3171 } 3172 ret = btrfs_recover_balance(fs_info); 3173 if (ret) { 3174 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3175 goto fail_block_groups; 3176 } 3177 3178 ret = btrfs_init_dev_stats(fs_info); 3179 if (ret) { 3180 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3181 goto fail_block_groups; 3182 } 3183 3184 ret = btrfs_init_dev_replace(fs_info); 3185 if (ret) { 3186 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3187 goto fail_block_groups; 3188 } 3189 3190 btrfs_free_extra_devids(fs_devices, 1); 3191 3192 ret = btrfs_sysfs_add_fsid(fs_devices); 3193 if (ret) { 3194 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3195 ret); 3196 goto fail_block_groups; 3197 } 3198 3199 ret = btrfs_sysfs_add_mounted(fs_info); 3200 if (ret) { 3201 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3202 goto fail_fsdev_sysfs; 3203 } 3204 3205 ret = btrfs_init_space_info(fs_info); 3206 if (ret) { 3207 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3208 goto fail_sysfs; 3209 } 3210 3211 ret = btrfs_read_block_groups(fs_info); 3212 if (ret) { 3213 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3214 goto fail_sysfs; 3215 } 3216 3217 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 3218 btrfs_warn(fs_info, 3219 "writable mount is not allowed due to too many missing devices"); 3220 goto fail_sysfs; 3221 } 3222 3223 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3224 "btrfs-cleaner"); 3225 if (IS_ERR(fs_info->cleaner_kthread)) 3226 goto fail_sysfs; 3227 3228 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3229 tree_root, 3230 "btrfs-transaction"); 3231 if (IS_ERR(fs_info->transaction_kthread)) 3232 goto fail_cleaner; 3233 3234 if (!btrfs_test_opt(fs_info, NOSSD) && 3235 !fs_info->fs_devices->rotating) { 3236 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3237 } 3238 3239 /* 3240 * Mount does not set all options immediately, we can do it now and do 3241 * not have to wait for transaction commit 3242 */ 3243 btrfs_apply_pending_changes(fs_info); 3244 3245 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3246 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3247 ret = btrfsic_mount(fs_info, fs_devices, 3248 btrfs_test_opt(fs_info, 3249 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3250 1 : 0, 3251 fs_info->check_integrity_print_mask); 3252 if (ret) 3253 btrfs_warn(fs_info, 3254 "failed to initialize integrity check module: %d", 3255 ret); 3256 } 3257 #endif 3258 ret = btrfs_read_qgroup_config(fs_info); 3259 if (ret) 3260 goto fail_trans_kthread; 3261 3262 if (btrfs_build_ref_tree(fs_info)) 3263 btrfs_err(fs_info, "couldn't build ref tree"); 3264 3265 /* do not make disk changes in broken FS or nologreplay is given */ 3266 if (btrfs_super_log_root(disk_super) != 0 && 3267 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3268 btrfs_info(fs_info, "start tree-log replay"); 3269 ret = btrfs_replay_log(fs_info, fs_devices); 3270 if (ret) { 3271 err = ret; 3272 goto fail_qgroup; 3273 } 3274 } 3275 3276 ret = btrfs_find_orphan_roots(fs_info); 3277 if (ret) 3278 goto fail_qgroup; 3279 3280 if (!sb_rdonly(sb)) { 3281 ret = btrfs_cleanup_fs_roots(fs_info); 3282 if (ret) 3283 goto fail_qgroup; 3284 3285 mutex_lock(&fs_info->cleaner_mutex); 3286 ret = btrfs_recover_relocation(tree_root); 3287 mutex_unlock(&fs_info->cleaner_mutex); 3288 if (ret < 0) { 3289 btrfs_warn(fs_info, "failed to recover relocation: %d", 3290 ret); 3291 err = -EINVAL; 3292 goto fail_qgroup; 3293 } 3294 } 3295 3296 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3297 if (IS_ERR(fs_info->fs_root)) { 3298 err = PTR_ERR(fs_info->fs_root); 3299 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3300 fs_info->fs_root = NULL; 3301 goto fail_qgroup; 3302 } 3303 3304 if (sb_rdonly(sb)) 3305 return 0; 3306 3307 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3308 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3309 clear_free_space_tree = 1; 3310 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3311 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3312 btrfs_warn(fs_info, "free space tree is invalid"); 3313 clear_free_space_tree = 1; 3314 } 3315 3316 if (clear_free_space_tree) { 3317 btrfs_info(fs_info, "clearing free space tree"); 3318 ret = btrfs_clear_free_space_tree(fs_info); 3319 if (ret) { 3320 btrfs_warn(fs_info, 3321 "failed to clear free space tree: %d", ret); 3322 close_ctree(fs_info); 3323 return ret; 3324 } 3325 } 3326 3327 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3328 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3329 btrfs_info(fs_info, "creating free space tree"); 3330 ret = btrfs_create_free_space_tree(fs_info); 3331 if (ret) { 3332 btrfs_warn(fs_info, 3333 "failed to create free space tree: %d", ret); 3334 close_ctree(fs_info); 3335 return ret; 3336 } 3337 } 3338 3339 down_read(&fs_info->cleanup_work_sem); 3340 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3341 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3342 up_read(&fs_info->cleanup_work_sem); 3343 close_ctree(fs_info); 3344 return ret; 3345 } 3346 up_read(&fs_info->cleanup_work_sem); 3347 3348 ret = btrfs_resume_balance_async(fs_info); 3349 if (ret) { 3350 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3351 close_ctree(fs_info); 3352 return ret; 3353 } 3354 3355 ret = btrfs_resume_dev_replace_async(fs_info); 3356 if (ret) { 3357 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3358 close_ctree(fs_info); 3359 return ret; 3360 } 3361 3362 btrfs_qgroup_rescan_resume(fs_info); 3363 btrfs_discard_resume(fs_info); 3364 3365 if (!fs_info->uuid_root) { 3366 btrfs_info(fs_info, "creating UUID tree"); 3367 ret = btrfs_create_uuid_tree(fs_info); 3368 if (ret) { 3369 btrfs_warn(fs_info, 3370 "failed to create the UUID tree: %d", ret); 3371 close_ctree(fs_info); 3372 return ret; 3373 } 3374 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3375 fs_info->generation != 3376 btrfs_super_uuid_tree_generation(disk_super)) { 3377 btrfs_info(fs_info, "checking UUID tree"); 3378 ret = btrfs_check_uuid_tree(fs_info); 3379 if (ret) { 3380 btrfs_warn(fs_info, 3381 "failed to check the UUID tree: %d", ret); 3382 close_ctree(fs_info); 3383 return ret; 3384 } 3385 } 3386 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3387 3388 /* 3389 * backuproot only affect mount behavior, and if open_ctree succeeded, 3390 * no need to keep the flag 3391 */ 3392 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3393 3394 return 0; 3395 3396 fail_qgroup: 3397 btrfs_free_qgroup_config(fs_info); 3398 fail_trans_kthread: 3399 kthread_stop(fs_info->transaction_kthread); 3400 btrfs_cleanup_transaction(fs_info); 3401 btrfs_free_fs_roots(fs_info); 3402 fail_cleaner: 3403 kthread_stop(fs_info->cleaner_kthread); 3404 3405 /* 3406 * make sure we're done with the btree inode before we stop our 3407 * kthreads 3408 */ 3409 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3410 3411 fail_sysfs: 3412 btrfs_sysfs_remove_mounted(fs_info); 3413 3414 fail_fsdev_sysfs: 3415 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3416 3417 fail_block_groups: 3418 btrfs_put_block_group_cache(fs_info); 3419 3420 fail_tree_roots: 3421 free_root_pointers(fs_info, true); 3422 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3423 3424 fail_sb_buffer: 3425 btrfs_stop_all_workers(fs_info); 3426 btrfs_free_block_groups(fs_info); 3427 fail_alloc: 3428 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3429 3430 iput(fs_info->btree_inode); 3431 fail: 3432 btrfs_close_devices(fs_info->fs_devices); 3433 return err; 3434 } 3435 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3436 3437 static void btrfs_end_super_write(struct bio *bio) 3438 { 3439 struct btrfs_device *device = bio->bi_private; 3440 struct bio_vec *bvec; 3441 struct bvec_iter_all iter_all; 3442 struct page *page; 3443 3444 bio_for_each_segment_all(bvec, bio, iter_all) { 3445 page = bvec->bv_page; 3446 3447 if (bio->bi_status) { 3448 btrfs_warn_rl_in_rcu(device->fs_info, 3449 "lost page write due to IO error on %s (%d)", 3450 rcu_str_deref(device->name), 3451 blk_status_to_errno(bio->bi_status)); 3452 ClearPageUptodate(page); 3453 SetPageError(page); 3454 btrfs_dev_stat_inc_and_print(device, 3455 BTRFS_DEV_STAT_WRITE_ERRS); 3456 } else { 3457 SetPageUptodate(page); 3458 } 3459 3460 put_page(page); 3461 unlock_page(page); 3462 } 3463 3464 bio_put(bio); 3465 } 3466 3467 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3468 int copy_num) 3469 { 3470 struct btrfs_super_block *super; 3471 struct page *page; 3472 u64 bytenr; 3473 struct address_space *mapping = bdev->bd_inode->i_mapping; 3474 3475 bytenr = btrfs_sb_offset(copy_num); 3476 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3477 return ERR_PTR(-EINVAL); 3478 3479 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3480 if (IS_ERR(page)) 3481 return ERR_CAST(page); 3482 3483 super = page_address(page); 3484 if (btrfs_super_bytenr(super) != bytenr || 3485 btrfs_super_magic(super) != BTRFS_MAGIC) { 3486 btrfs_release_disk_super(super); 3487 return ERR_PTR(-EINVAL); 3488 } 3489 3490 return super; 3491 } 3492 3493 3494 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3495 { 3496 struct btrfs_super_block *super, *latest = NULL; 3497 int i; 3498 u64 transid = 0; 3499 3500 /* we would like to check all the supers, but that would make 3501 * a btrfs mount succeed after a mkfs from a different FS. 3502 * So, we need to add a special mount option to scan for 3503 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3504 */ 3505 for (i = 0; i < 1; i++) { 3506 super = btrfs_read_dev_one_super(bdev, i); 3507 if (IS_ERR(super)) 3508 continue; 3509 3510 if (!latest || btrfs_super_generation(super) > transid) { 3511 if (latest) 3512 btrfs_release_disk_super(super); 3513 3514 latest = super; 3515 transid = btrfs_super_generation(super); 3516 } 3517 } 3518 3519 return super; 3520 } 3521 3522 /* 3523 * Write superblock @sb to the @device. Do not wait for completion, all the 3524 * pages we use for writing are locked. 3525 * 3526 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3527 * the expected device size at commit time. Note that max_mirrors must be 3528 * same for write and wait phases. 3529 * 3530 * Return number of errors when page is not found or submission fails. 3531 */ 3532 static int write_dev_supers(struct btrfs_device *device, 3533 struct btrfs_super_block *sb, int max_mirrors) 3534 { 3535 struct btrfs_fs_info *fs_info = device->fs_info; 3536 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3537 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3538 int i; 3539 int errors = 0; 3540 u64 bytenr; 3541 3542 if (max_mirrors == 0) 3543 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3544 3545 shash->tfm = fs_info->csum_shash; 3546 3547 for (i = 0; i < max_mirrors; i++) { 3548 struct page *page; 3549 struct bio *bio; 3550 struct btrfs_super_block *disk_super; 3551 3552 bytenr = btrfs_sb_offset(i); 3553 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3554 device->commit_total_bytes) 3555 break; 3556 3557 btrfs_set_super_bytenr(sb, bytenr); 3558 3559 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3560 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3561 sb->csum); 3562 3563 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 3564 GFP_NOFS); 3565 if (!page) { 3566 btrfs_err(device->fs_info, 3567 "couldn't get super block page for bytenr %llu", 3568 bytenr); 3569 errors++; 3570 continue; 3571 } 3572 3573 /* Bump the refcount for wait_dev_supers() */ 3574 get_page(page); 3575 3576 disk_super = page_address(page); 3577 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3578 3579 /* 3580 * Directly use bios here instead of relying on the page cache 3581 * to do I/O, so we don't lose the ability to do integrity 3582 * checking. 3583 */ 3584 bio = bio_alloc(GFP_NOFS, 1); 3585 bio_set_dev(bio, device->bdev); 3586 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3587 bio->bi_private = device; 3588 bio->bi_end_io = btrfs_end_super_write; 3589 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 3590 offset_in_page(bytenr)); 3591 3592 /* 3593 * We FUA only the first super block. The others we allow to 3594 * go down lazy and there's a short window where the on-disk 3595 * copies might still contain the older version. 3596 */ 3597 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO; 3598 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3599 bio->bi_opf |= REQ_FUA; 3600 3601 btrfsic_submit_bio(bio); 3602 } 3603 return errors < i ? 0 : -1; 3604 } 3605 3606 /* 3607 * Wait for write completion of superblocks done by write_dev_supers, 3608 * @max_mirrors same for write and wait phases. 3609 * 3610 * Return number of errors when page is not found or not marked up to 3611 * date. 3612 */ 3613 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3614 { 3615 int i; 3616 int errors = 0; 3617 bool primary_failed = false; 3618 u64 bytenr; 3619 3620 if (max_mirrors == 0) 3621 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3622 3623 for (i = 0; i < max_mirrors; i++) { 3624 struct page *page; 3625 3626 bytenr = btrfs_sb_offset(i); 3627 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3628 device->commit_total_bytes) 3629 break; 3630 3631 page = find_get_page(device->bdev->bd_inode->i_mapping, 3632 bytenr >> PAGE_SHIFT); 3633 if (!page) { 3634 errors++; 3635 if (i == 0) 3636 primary_failed = true; 3637 continue; 3638 } 3639 /* Page is submitted locked and unlocked once the IO completes */ 3640 wait_on_page_locked(page); 3641 if (PageError(page)) { 3642 errors++; 3643 if (i == 0) 3644 primary_failed = true; 3645 } 3646 3647 /* Drop our reference */ 3648 put_page(page); 3649 3650 /* Drop the reference from the writing run */ 3651 put_page(page); 3652 } 3653 3654 /* log error, force error return */ 3655 if (primary_failed) { 3656 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3657 device->devid); 3658 return -1; 3659 } 3660 3661 return errors < i ? 0 : -1; 3662 } 3663 3664 /* 3665 * endio for the write_dev_flush, this will wake anyone waiting 3666 * for the barrier when it is done 3667 */ 3668 static void btrfs_end_empty_barrier(struct bio *bio) 3669 { 3670 complete(bio->bi_private); 3671 } 3672 3673 /* 3674 * Submit a flush request to the device if it supports it. Error handling is 3675 * done in the waiting counterpart. 3676 */ 3677 static void write_dev_flush(struct btrfs_device *device) 3678 { 3679 struct request_queue *q = bdev_get_queue(device->bdev); 3680 struct bio *bio = device->flush_bio; 3681 3682 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3683 return; 3684 3685 bio_reset(bio); 3686 bio->bi_end_io = btrfs_end_empty_barrier; 3687 bio_set_dev(bio, device->bdev); 3688 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3689 init_completion(&device->flush_wait); 3690 bio->bi_private = &device->flush_wait; 3691 3692 btrfsic_submit_bio(bio); 3693 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3694 } 3695 3696 /* 3697 * If the flush bio has been submitted by write_dev_flush, wait for it. 3698 */ 3699 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3700 { 3701 struct bio *bio = device->flush_bio; 3702 3703 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3704 return BLK_STS_OK; 3705 3706 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3707 wait_for_completion_io(&device->flush_wait); 3708 3709 return bio->bi_status; 3710 } 3711 3712 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3713 { 3714 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3715 return -EIO; 3716 return 0; 3717 } 3718 3719 /* 3720 * send an empty flush down to each device in parallel, 3721 * then wait for them 3722 */ 3723 static int barrier_all_devices(struct btrfs_fs_info *info) 3724 { 3725 struct list_head *head; 3726 struct btrfs_device *dev; 3727 int errors_wait = 0; 3728 blk_status_t ret; 3729 3730 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3731 /* send down all the barriers */ 3732 head = &info->fs_devices->devices; 3733 list_for_each_entry(dev, head, dev_list) { 3734 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3735 continue; 3736 if (!dev->bdev) 3737 continue; 3738 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3739 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3740 continue; 3741 3742 write_dev_flush(dev); 3743 dev->last_flush_error = BLK_STS_OK; 3744 } 3745 3746 /* wait for all the barriers */ 3747 list_for_each_entry(dev, head, dev_list) { 3748 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3749 continue; 3750 if (!dev->bdev) { 3751 errors_wait++; 3752 continue; 3753 } 3754 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3755 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3756 continue; 3757 3758 ret = wait_dev_flush(dev); 3759 if (ret) { 3760 dev->last_flush_error = ret; 3761 btrfs_dev_stat_inc_and_print(dev, 3762 BTRFS_DEV_STAT_FLUSH_ERRS); 3763 errors_wait++; 3764 } 3765 } 3766 3767 if (errors_wait) { 3768 /* 3769 * At some point we need the status of all disks 3770 * to arrive at the volume status. So error checking 3771 * is being pushed to a separate loop. 3772 */ 3773 return check_barrier_error(info); 3774 } 3775 return 0; 3776 } 3777 3778 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3779 { 3780 int raid_type; 3781 int min_tolerated = INT_MAX; 3782 3783 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3784 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3785 min_tolerated = min_t(int, min_tolerated, 3786 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3787 tolerated_failures); 3788 3789 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3790 if (raid_type == BTRFS_RAID_SINGLE) 3791 continue; 3792 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3793 continue; 3794 min_tolerated = min_t(int, min_tolerated, 3795 btrfs_raid_array[raid_type]. 3796 tolerated_failures); 3797 } 3798 3799 if (min_tolerated == INT_MAX) { 3800 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3801 min_tolerated = 0; 3802 } 3803 3804 return min_tolerated; 3805 } 3806 3807 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3808 { 3809 struct list_head *head; 3810 struct btrfs_device *dev; 3811 struct btrfs_super_block *sb; 3812 struct btrfs_dev_item *dev_item; 3813 int ret; 3814 int do_barriers; 3815 int max_errors; 3816 int total_errors = 0; 3817 u64 flags; 3818 3819 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3820 3821 /* 3822 * max_mirrors == 0 indicates we're from commit_transaction, 3823 * not from fsync where the tree roots in fs_info have not 3824 * been consistent on disk. 3825 */ 3826 if (max_mirrors == 0) 3827 backup_super_roots(fs_info); 3828 3829 sb = fs_info->super_for_commit; 3830 dev_item = &sb->dev_item; 3831 3832 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3833 head = &fs_info->fs_devices->devices; 3834 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3835 3836 if (do_barriers) { 3837 ret = barrier_all_devices(fs_info); 3838 if (ret) { 3839 mutex_unlock( 3840 &fs_info->fs_devices->device_list_mutex); 3841 btrfs_handle_fs_error(fs_info, ret, 3842 "errors while submitting device barriers."); 3843 return ret; 3844 } 3845 } 3846 3847 list_for_each_entry(dev, head, dev_list) { 3848 if (!dev->bdev) { 3849 total_errors++; 3850 continue; 3851 } 3852 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3853 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3854 continue; 3855 3856 btrfs_set_stack_device_generation(dev_item, 0); 3857 btrfs_set_stack_device_type(dev_item, dev->type); 3858 btrfs_set_stack_device_id(dev_item, dev->devid); 3859 btrfs_set_stack_device_total_bytes(dev_item, 3860 dev->commit_total_bytes); 3861 btrfs_set_stack_device_bytes_used(dev_item, 3862 dev->commit_bytes_used); 3863 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3864 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3865 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3866 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3867 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 3868 BTRFS_FSID_SIZE); 3869 3870 flags = btrfs_super_flags(sb); 3871 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3872 3873 ret = btrfs_validate_write_super(fs_info, sb); 3874 if (ret < 0) { 3875 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3876 btrfs_handle_fs_error(fs_info, -EUCLEAN, 3877 "unexpected superblock corruption detected"); 3878 return -EUCLEAN; 3879 } 3880 3881 ret = write_dev_supers(dev, sb, max_mirrors); 3882 if (ret) 3883 total_errors++; 3884 } 3885 if (total_errors > max_errors) { 3886 btrfs_err(fs_info, "%d errors while writing supers", 3887 total_errors); 3888 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3889 3890 /* FUA is masked off if unsupported and can't be the reason */ 3891 btrfs_handle_fs_error(fs_info, -EIO, 3892 "%d errors while writing supers", 3893 total_errors); 3894 return -EIO; 3895 } 3896 3897 total_errors = 0; 3898 list_for_each_entry(dev, head, dev_list) { 3899 if (!dev->bdev) 3900 continue; 3901 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3902 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3903 continue; 3904 3905 ret = wait_dev_supers(dev, max_mirrors); 3906 if (ret) 3907 total_errors++; 3908 } 3909 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3910 if (total_errors > max_errors) { 3911 btrfs_handle_fs_error(fs_info, -EIO, 3912 "%d errors while writing supers", 3913 total_errors); 3914 return -EIO; 3915 } 3916 return 0; 3917 } 3918 3919 /* Drop a fs root from the radix tree and free it. */ 3920 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3921 struct btrfs_root *root) 3922 { 3923 bool drop_ref = false; 3924 3925 spin_lock(&fs_info->fs_roots_radix_lock); 3926 radix_tree_delete(&fs_info->fs_roots_radix, 3927 (unsigned long)root->root_key.objectid); 3928 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 3929 drop_ref = true; 3930 spin_unlock(&fs_info->fs_roots_radix_lock); 3931 3932 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3933 ASSERT(root->log_root == NULL); 3934 if (root->reloc_root) { 3935 btrfs_put_root(root->reloc_root); 3936 root->reloc_root = NULL; 3937 } 3938 } 3939 3940 if (root->free_ino_pinned) 3941 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3942 if (root->free_ino_ctl) 3943 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3944 if (root->ino_cache_inode) { 3945 iput(root->ino_cache_inode); 3946 root->ino_cache_inode = NULL; 3947 } 3948 if (drop_ref) 3949 btrfs_put_root(root); 3950 } 3951 3952 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3953 { 3954 u64 root_objectid = 0; 3955 struct btrfs_root *gang[8]; 3956 int i = 0; 3957 int err = 0; 3958 unsigned int ret = 0; 3959 3960 while (1) { 3961 spin_lock(&fs_info->fs_roots_radix_lock); 3962 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3963 (void **)gang, root_objectid, 3964 ARRAY_SIZE(gang)); 3965 if (!ret) { 3966 spin_unlock(&fs_info->fs_roots_radix_lock); 3967 break; 3968 } 3969 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3970 3971 for (i = 0; i < ret; i++) { 3972 /* Avoid to grab roots in dead_roots */ 3973 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3974 gang[i] = NULL; 3975 continue; 3976 } 3977 /* grab all the search result for later use */ 3978 gang[i] = btrfs_grab_root(gang[i]); 3979 } 3980 spin_unlock(&fs_info->fs_roots_radix_lock); 3981 3982 for (i = 0; i < ret; i++) { 3983 if (!gang[i]) 3984 continue; 3985 root_objectid = gang[i]->root_key.objectid; 3986 err = btrfs_orphan_cleanup(gang[i]); 3987 if (err) 3988 break; 3989 btrfs_put_root(gang[i]); 3990 } 3991 root_objectid++; 3992 } 3993 3994 /* release the uncleaned roots due to error */ 3995 for (; i < ret; i++) { 3996 if (gang[i]) 3997 btrfs_put_root(gang[i]); 3998 } 3999 return err; 4000 } 4001 4002 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4003 { 4004 struct btrfs_root *root = fs_info->tree_root; 4005 struct btrfs_trans_handle *trans; 4006 4007 mutex_lock(&fs_info->cleaner_mutex); 4008 btrfs_run_delayed_iputs(fs_info); 4009 mutex_unlock(&fs_info->cleaner_mutex); 4010 wake_up_process(fs_info->cleaner_kthread); 4011 4012 /* wait until ongoing cleanup work done */ 4013 down_write(&fs_info->cleanup_work_sem); 4014 up_write(&fs_info->cleanup_work_sem); 4015 4016 trans = btrfs_join_transaction(root); 4017 if (IS_ERR(trans)) 4018 return PTR_ERR(trans); 4019 return btrfs_commit_transaction(trans); 4020 } 4021 4022 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4023 { 4024 int ret; 4025 4026 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4027 /* 4028 * We don't want the cleaner to start new transactions, add more delayed 4029 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4030 * because that frees the task_struct, and the transaction kthread might 4031 * still try to wake up the cleaner. 4032 */ 4033 kthread_park(fs_info->cleaner_kthread); 4034 4035 /* wait for the qgroup rescan worker to stop */ 4036 btrfs_qgroup_wait_for_completion(fs_info, false); 4037 4038 /* wait for the uuid_scan task to finish */ 4039 down(&fs_info->uuid_tree_rescan_sem); 4040 /* avoid complains from lockdep et al., set sem back to initial state */ 4041 up(&fs_info->uuid_tree_rescan_sem); 4042 4043 /* pause restriper - we want to resume on mount */ 4044 btrfs_pause_balance(fs_info); 4045 4046 btrfs_dev_replace_suspend_for_unmount(fs_info); 4047 4048 btrfs_scrub_cancel(fs_info); 4049 4050 /* wait for any defraggers to finish */ 4051 wait_event(fs_info->transaction_wait, 4052 (atomic_read(&fs_info->defrag_running) == 0)); 4053 4054 /* clear out the rbtree of defraggable inodes */ 4055 btrfs_cleanup_defrag_inodes(fs_info); 4056 4057 cancel_work_sync(&fs_info->async_reclaim_work); 4058 4059 /* Cancel or finish ongoing discard work */ 4060 btrfs_discard_cleanup(fs_info); 4061 4062 if (!sb_rdonly(fs_info->sb)) { 4063 /* 4064 * The cleaner kthread is stopped, so do one final pass over 4065 * unused block groups. 4066 */ 4067 btrfs_delete_unused_bgs(fs_info); 4068 4069 /* 4070 * There might be existing delayed inode workers still running 4071 * and holding an empty delayed inode item. We must wait for 4072 * them to complete first because they can create a transaction. 4073 * This happens when someone calls btrfs_balance_delayed_items() 4074 * and then a transaction commit runs the same delayed nodes 4075 * before any delayed worker has done something with the nodes. 4076 * We must wait for any worker here and not at transaction 4077 * commit time since that could cause a deadlock. 4078 * This is a very rare case. 4079 */ 4080 btrfs_flush_workqueue(fs_info->delayed_workers); 4081 4082 ret = btrfs_commit_super(fs_info); 4083 if (ret) 4084 btrfs_err(fs_info, "commit super ret %d", ret); 4085 } 4086 4087 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 4088 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 4089 btrfs_error_commit_super(fs_info); 4090 4091 kthread_stop(fs_info->transaction_kthread); 4092 kthread_stop(fs_info->cleaner_kthread); 4093 4094 ASSERT(list_empty(&fs_info->delayed_iputs)); 4095 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4096 4097 if (btrfs_check_quota_leak(fs_info)) { 4098 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4099 btrfs_err(fs_info, "qgroup reserved space leaked"); 4100 } 4101 4102 btrfs_free_qgroup_config(fs_info); 4103 ASSERT(list_empty(&fs_info->delalloc_roots)); 4104 4105 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4106 btrfs_info(fs_info, "at unmount delalloc count %lld", 4107 percpu_counter_sum(&fs_info->delalloc_bytes)); 4108 } 4109 4110 if (percpu_counter_sum(&fs_info->dio_bytes)) 4111 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4112 percpu_counter_sum(&fs_info->dio_bytes)); 4113 4114 btrfs_sysfs_remove_mounted(fs_info); 4115 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4116 4117 btrfs_put_block_group_cache(fs_info); 4118 4119 /* 4120 * we must make sure there is not any read request to 4121 * submit after we stopping all workers. 4122 */ 4123 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4124 btrfs_stop_all_workers(fs_info); 4125 4126 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4127 free_root_pointers(fs_info, true); 4128 btrfs_free_fs_roots(fs_info); 4129 4130 /* 4131 * We must free the block groups after dropping the fs_roots as we could 4132 * have had an IO error and have left over tree log blocks that aren't 4133 * cleaned up until the fs roots are freed. This makes the block group 4134 * accounting appear to be wrong because there's pending reserved bytes, 4135 * so make sure we do the block group cleanup afterwards. 4136 */ 4137 btrfs_free_block_groups(fs_info); 4138 4139 iput(fs_info->btree_inode); 4140 4141 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4142 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4143 btrfsic_unmount(fs_info->fs_devices); 4144 #endif 4145 4146 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4147 btrfs_close_devices(fs_info->fs_devices); 4148 } 4149 4150 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4151 int atomic) 4152 { 4153 int ret; 4154 struct inode *btree_inode = buf->pages[0]->mapping->host; 4155 4156 ret = extent_buffer_uptodate(buf); 4157 if (!ret) 4158 return ret; 4159 4160 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4161 parent_transid, atomic); 4162 if (ret == -EAGAIN) 4163 return ret; 4164 return !ret; 4165 } 4166 4167 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4168 { 4169 struct btrfs_fs_info *fs_info; 4170 struct btrfs_root *root; 4171 u64 transid = btrfs_header_generation(buf); 4172 int was_dirty; 4173 4174 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4175 /* 4176 * This is a fast path so only do this check if we have sanity tests 4177 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4178 * outside of the sanity tests. 4179 */ 4180 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4181 return; 4182 #endif 4183 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4184 fs_info = root->fs_info; 4185 btrfs_assert_tree_locked(buf); 4186 if (transid != fs_info->generation) 4187 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4188 buf->start, transid, fs_info->generation); 4189 was_dirty = set_extent_buffer_dirty(buf); 4190 if (!was_dirty) 4191 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4192 buf->len, 4193 fs_info->dirty_metadata_batch); 4194 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4195 /* 4196 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4197 * but item data not updated. 4198 * So here we should only check item pointers, not item data. 4199 */ 4200 if (btrfs_header_level(buf) == 0 && 4201 btrfs_check_leaf_relaxed(buf)) { 4202 btrfs_print_leaf(buf); 4203 ASSERT(0); 4204 } 4205 #endif 4206 } 4207 4208 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4209 int flush_delayed) 4210 { 4211 /* 4212 * looks as though older kernels can get into trouble with 4213 * this code, they end up stuck in balance_dirty_pages forever 4214 */ 4215 int ret; 4216 4217 if (current->flags & PF_MEMALLOC) 4218 return; 4219 4220 if (flush_delayed) 4221 btrfs_balance_delayed_items(fs_info); 4222 4223 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4224 BTRFS_DIRTY_METADATA_THRESH, 4225 fs_info->dirty_metadata_batch); 4226 if (ret > 0) { 4227 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4228 } 4229 } 4230 4231 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4232 { 4233 __btrfs_btree_balance_dirty(fs_info, 1); 4234 } 4235 4236 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4237 { 4238 __btrfs_btree_balance_dirty(fs_info, 0); 4239 } 4240 4241 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4242 struct btrfs_key *first_key) 4243 { 4244 return btree_read_extent_buffer_pages(buf, parent_transid, 4245 level, first_key); 4246 } 4247 4248 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4249 { 4250 /* cleanup FS via transaction */ 4251 btrfs_cleanup_transaction(fs_info); 4252 4253 mutex_lock(&fs_info->cleaner_mutex); 4254 btrfs_run_delayed_iputs(fs_info); 4255 mutex_unlock(&fs_info->cleaner_mutex); 4256 4257 down_write(&fs_info->cleanup_work_sem); 4258 up_write(&fs_info->cleanup_work_sem); 4259 } 4260 4261 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4262 { 4263 struct btrfs_root *gang[8]; 4264 u64 root_objectid = 0; 4265 int ret; 4266 4267 spin_lock(&fs_info->fs_roots_radix_lock); 4268 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4269 (void **)gang, root_objectid, 4270 ARRAY_SIZE(gang))) != 0) { 4271 int i; 4272 4273 for (i = 0; i < ret; i++) 4274 gang[i] = btrfs_grab_root(gang[i]); 4275 spin_unlock(&fs_info->fs_roots_radix_lock); 4276 4277 for (i = 0; i < ret; i++) { 4278 if (!gang[i]) 4279 continue; 4280 root_objectid = gang[i]->root_key.objectid; 4281 btrfs_free_log(NULL, gang[i]); 4282 btrfs_put_root(gang[i]); 4283 } 4284 root_objectid++; 4285 spin_lock(&fs_info->fs_roots_radix_lock); 4286 } 4287 spin_unlock(&fs_info->fs_roots_radix_lock); 4288 btrfs_free_log_root_tree(NULL, fs_info); 4289 } 4290 4291 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4292 { 4293 struct btrfs_ordered_extent *ordered; 4294 4295 spin_lock(&root->ordered_extent_lock); 4296 /* 4297 * This will just short circuit the ordered completion stuff which will 4298 * make sure the ordered extent gets properly cleaned up. 4299 */ 4300 list_for_each_entry(ordered, &root->ordered_extents, 4301 root_extent_list) 4302 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4303 spin_unlock(&root->ordered_extent_lock); 4304 } 4305 4306 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4307 { 4308 struct btrfs_root *root; 4309 struct list_head splice; 4310 4311 INIT_LIST_HEAD(&splice); 4312 4313 spin_lock(&fs_info->ordered_root_lock); 4314 list_splice_init(&fs_info->ordered_roots, &splice); 4315 while (!list_empty(&splice)) { 4316 root = list_first_entry(&splice, struct btrfs_root, 4317 ordered_root); 4318 list_move_tail(&root->ordered_root, 4319 &fs_info->ordered_roots); 4320 4321 spin_unlock(&fs_info->ordered_root_lock); 4322 btrfs_destroy_ordered_extents(root); 4323 4324 cond_resched(); 4325 spin_lock(&fs_info->ordered_root_lock); 4326 } 4327 spin_unlock(&fs_info->ordered_root_lock); 4328 4329 /* 4330 * We need this here because if we've been flipped read-only we won't 4331 * get sync() from the umount, so we need to make sure any ordered 4332 * extents that haven't had their dirty pages IO start writeout yet 4333 * actually get run and error out properly. 4334 */ 4335 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4336 } 4337 4338 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4339 struct btrfs_fs_info *fs_info) 4340 { 4341 struct rb_node *node; 4342 struct btrfs_delayed_ref_root *delayed_refs; 4343 struct btrfs_delayed_ref_node *ref; 4344 int ret = 0; 4345 4346 delayed_refs = &trans->delayed_refs; 4347 4348 spin_lock(&delayed_refs->lock); 4349 if (atomic_read(&delayed_refs->num_entries) == 0) { 4350 spin_unlock(&delayed_refs->lock); 4351 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4352 return ret; 4353 } 4354 4355 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4356 struct btrfs_delayed_ref_head *head; 4357 struct rb_node *n; 4358 bool pin_bytes = false; 4359 4360 head = rb_entry(node, struct btrfs_delayed_ref_head, 4361 href_node); 4362 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4363 continue; 4364 4365 spin_lock(&head->lock); 4366 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4367 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4368 ref_node); 4369 ref->in_tree = 0; 4370 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4371 RB_CLEAR_NODE(&ref->ref_node); 4372 if (!list_empty(&ref->add_list)) 4373 list_del(&ref->add_list); 4374 atomic_dec(&delayed_refs->num_entries); 4375 btrfs_put_delayed_ref(ref); 4376 } 4377 if (head->must_insert_reserved) 4378 pin_bytes = true; 4379 btrfs_free_delayed_extent_op(head->extent_op); 4380 btrfs_delete_ref_head(delayed_refs, head); 4381 spin_unlock(&head->lock); 4382 spin_unlock(&delayed_refs->lock); 4383 mutex_unlock(&head->mutex); 4384 4385 if (pin_bytes) { 4386 struct btrfs_block_group *cache; 4387 4388 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4389 BUG_ON(!cache); 4390 4391 spin_lock(&cache->space_info->lock); 4392 spin_lock(&cache->lock); 4393 cache->pinned += head->num_bytes; 4394 btrfs_space_info_update_bytes_pinned(fs_info, 4395 cache->space_info, head->num_bytes); 4396 cache->reserved -= head->num_bytes; 4397 cache->space_info->bytes_reserved -= head->num_bytes; 4398 spin_unlock(&cache->lock); 4399 spin_unlock(&cache->space_info->lock); 4400 percpu_counter_add_batch( 4401 &cache->space_info->total_bytes_pinned, 4402 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH); 4403 4404 btrfs_put_block_group(cache); 4405 4406 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4407 head->bytenr + head->num_bytes - 1); 4408 } 4409 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4410 btrfs_put_delayed_ref_head(head); 4411 cond_resched(); 4412 spin_lock(&delayed_refs->lock); 4413 } 4414 btrfs_qgroup_destroy_extent_records(trans); 4415 4416 spin_unlock(&delayed_refs->lock); 4417 4418 return ret; 4419 } 4420 4421 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4422 { 4423 struct btrfs_inode *btrfs_inode; 4424 struct list_head splice; 4425 4426 INIT_LIST_HEAD(&splice); 4427 4428 spin_lock(&root->delalloc_lock); 4429 list_splice_init(&root->delalloc_inodes, &splice); 4430 4431 while (!list_empty(&splice)) { 4432 struct inode *inode = NULL; 4433 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4434 delalloc_inodes); 4435 __btrfs_del_delalloc_inode(root, btrfs_inode); 4436 spin_unlock(&root->delalloc_lock); 4437 4438 /* 4439 * Make sure we get a live inode and that it'll not disappear 4440 * meanwhile. 4441 */ 4442 inode = igrab(&btrfs_inode->vfs_inode); 4443 if (inode) { 4444 invalidate_inode_pages2(inode->i_mapping); 4445 iput(inode); 4446 } 4447 spin_lock(&root->delalloc_lock); 4448 } 4449 spin_unlock(&root->delalloc_lock); 4450 } 4451 4452 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4453 { 4454 struct btrfs_root *root; 4455 struct list_head splice; 4456 4457 INIT_LIST_HEAD(&splice); 4458 4459 spin_lock(&fs_info->delalloc_root_lock); 4460 list_splice_init(&fs_info->delalloc_roots, &splice); 4461 while (!list_empty(&splice)) { 4462 root = list_first_entry(&splice, struct btrfs_root, 4463 delalloc_root); 4464 root = btrfs_grab_root(root); 4465 BUG_ON(!root); 4466 spin_unlock(&fs_info->delalloc_root_lock); 4467 4468 btrfs_destroy_delalloc_inodes(root); 4469 btrfs_put_root(root); 4470 4471 spin_lock(&fs_info->delalloc_root_lock); 4472 } 4473 spin_unlock(&fs_info->delalloc_root_lock); 4474 } 4475 4476 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4477 struct extent_io_tree *dirty_pages, 4478 int mark) 4479 { 4480 int ret; 4481 struct extent_buffer *eb; 4482 u64 start = 0; 4483 u64 end; 4484 4485 while (1) { 4486 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4487 mark, NULL); 4488 if (ret) 4489 break; 4490 4491 clear_extent_bits(dirty_pages, start, end, mark); 4492 while (start <= end) { 4493 eb = find_extent_buffer(fs_info, start); 4494 start += fs_info->nodesize; 4495 if (!eb) 4496 continue; 4497 wait_on_extent_buffer_writeback(eb); 4498 4499 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4500 &eb->bflags)) 4501 clear_extent_buffer_dirty(eb); 4502 free_extent_buffer_stale(eb); 4503 } 4504 } 4505 4506 return ret; 4507 } 4508 4509 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4510 struct extent_io_tree *unpin) 4511 { 4512 u64 start; 4513 u64 end; 4514 int ret; 4515 4516 while (1) { 4517 struct extent_state *cached_state = NULL; 4518 4519 /* 4520 * The btrfs_finish_extent_commit() may get the same range as 4521 * ours between find_first_extent_bit and clear_extent_dirty. 4522 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4523 * the same extent range. 4524 */ 4525 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4526 ret = find_first_extent_bit(unpin, 0, &start, &end, 4527 EXTENT_DIRTY, &cached_state); 4528 if (ret) { 4529 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4530 break; 4531 } 4532 4533 clear_extent_dirty(unpin, start, end, &cached_state); 4534 free_extent_state(cached_state); 4535 btrfs_error_unpin_extent_range(fs_info, start, end); 4536 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4537 cond_resched(); 4538 } 4539 4540 return 0; 4541 } 4542 4543 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4544 { 4545 struct inode *inode; 4546 4547 inode = cache->io_ctl.inode; 4548 if (inode) { 4549 invalidate_inode_pages2(inode->i_mapping); 4550 BTRFS_I(inode)->generation = 0; 4551 cache->io_ctl.inode = NULL; 4552 iput(inode); 4553 } 4554 btrfs_put_block_group(cache); 4555 } 4556 4557 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4558 struct btrfs_fs_info *fs_info) 4559 { 4560 struct btrfs_block_group *cache; 4561 4562 spin_lock(&cur_trans->dirty_bgs_lock); 4563 while (!list_empty(&cur_trans->dirty_bgs)) { 4564 cache = list_first_entry(&cur_trans->dirty_bgs, 4565 struct btrfs_block_group, 4566 dirty_list); 4567 4568 if (!list_empty(&cache->io_list)) { 4569 spin_unlock(&cur_trans->dirty_bgs_lock); 4570 list_del_init(&cache->io_list); 4571 btrfs_cleanup_bg_io(cache); 4572 spin_lock(&cur_trans->dirty_bgs_lock); 4573 } 4574 4575 list_del_init(&cache->dirty_list); 4576 spin_lock(&cache->lock); 4577 cache->disk_cache_state = BTRFS_DC_ERROR; 4578 spin_unlock(&cache->lock); 4579 4580 spin_unlock(&cur_trans->dirty_bgs_lock); 4581 btrfs_put_block_group(cache); 4582 btrfs_delayed_refs_rsv_release(fs_info, 1); 4583 spin_lock(&cur_trans->dirty_bgs_lock); 4584 } 4585 spin_unlock(&cur_trans->dirty_bgs_lock); 4586 4587 /* 4588 * Refer to the definition of io_bgs member for details why it's safe 4589 * to use it without any locking 4590 */ 4591 while (!list_empty(&cur_trans->io_bgs)) { 4592 cache = list_first_entry(&cur_trans->io_bgs, 4593 struct btrfs_block_group, 4594 io_list); 4595 4596 list_del_init(&cache->io_list); 4597 spin_lock(&cache->lock); 4598 cache->disk_cache_state = BTRFS_DC_ERROR; 4599 spin_unlock(&cache->lock); 4600 btrfs_cleanup_bg_io(cache); 4601 } 4602 } 4603 4604 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4605 struct btrfs_fs_info *fs_info) 4606 { 4607 struct btrfs_device *dev, *tmp; 4608 4609 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4610 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4611 ASSERT(list_empty(&cur_trans->io_bgs)); 4612 4613 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4614 post_commit_list) { 4615 list_del_init(&dev->post_commit_list); 4616 } 4617 4618 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4619 4620 cur_trans->state = TRANS_STATE_COMMIT_START; 4621 wake_up(&fs_info->transaction_blocked_wait); 4622 4623 cur_trans->state = TRANS_STATE_UNBLOCKED; 4624 wake_up(&fs_info->transaction_wait); 4625 4626 btrfs_destroy_delayed_inodes(fs_info); 4627 4628 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4629 EXTENT_DIRTY); 4630 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4631 4632 cur_trans->state =TRANS_STATE_COMPLETED; 4633 wake_up(&cur_trans->commit_wait); 4634 } 4635 4636 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4637 { 4638 struct btrfs_transaction *t; 4639 4640 mutex_lock(&fs_info->transaction_kthread_mutex); 4641 4642 spin_lock(&fs_info->trans_lock); 4643 while (!list_empty(&fs_info->trans_list)) { 4644 t = list_first_entry(&fs_info->trans_list, 4645 struct btrfs_transaction, list); 4646 if (t->state >= TRANS_STATE_COMMIT_START) { 4647 refcount_inc(&t->use_count); 4648 spin_unlock(&fs_info->trans_lock); 4649 btrfs_wait_for_commit(fs_info, t->transid); 4650 btrfs_put_transaction(t); 4651 spin_lock(&fs_info->trans_lock); 4652 continue; 4653 } 4654 if (t == fs_info->running_transaction) { 4655 t->state = TRANS_STATE_COMMIT_DOING; 4656 spin_unlock(&fs_info->trans_lock); 4657 /* 4658 * We wait for 0 num_writers since we don't hold a trans 4659 * handle open currently for this transaction. 4660 */ 4661 wait_event(t->writer_wait, 4662 atomic_read(&t->num_writers) == 0); 4663 } else { 4664 spin_unlock(&fs_info->trans_lock); 4665 } 4666 btrfs_cleanup_one_transaction(t, fs_info); 4667 4668 spin_lock(&fs_info->trans_lock); 4669 if (t == fs_info->running_transaction) 4670 fs_info->running_transaction = NULL; 4671 list_del_init(&t->list); 4672 spin_unlock(&fs_info->trans_lock); 4673 4674 btrfs_put_transaction(t); 4675 trace_btrfs_transaction_commit(fs_info->tree_root); 4676 spin_lock(&fs_info->trans_lock); 4677 } 4678 spin_unlock(&fs_info->trans_lock); 4679 btrfs_destroy_all_ordered_extents(fs_info); 4680 btrfs_destroy_delayed_inodes(fs_info); 4681 btrfs_assert_delayed_root_empty(fs_info); 4682 btrfs_destroy_all_delalloc_inodes(fs_info); 4683 btrfs_drop_all_logs(fs_info); 4684 mutex_unlock(&fs_info->transaction_kthread_mutex); 4685 4686 return 0; 4687 } 4688 4689 static const struct extent_io_ops btree_extent_io_ops = { 4690 /* mandatory callbacks */ 4691 .submit_bio_hook = btree_submit_bio_hook, 4692 .readpage_end_io_hook = btree_readpage_end_io_hook, 4693 }; 4694