xref: /linux/fs/btrfs/disk-io.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 
49 static struct extent_io_ops btree_extent_io_ops;
50 static void end_workqueue_fn(struct btrfs_work *work);
51 static void free_fs_root(struct btrfs_root *root);
52 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
53 				    int read_only);
54 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 				      struct btrfs_root *root);
58 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
60 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
61 					struct extent_io_tree *dirty_pages,
62 					int mark);
63 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
64 				       struct extent_io_tree *pinned_extents);
65 
66 /*
67  * end_io_wq structs are used to do processing in task context when an IO is
68  * complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct end_io_wq {
72 	struct bio *bio;
73 	bio_end_io_t *end_io;
74 	void *private;
75 	struct btrfs_fs_info *info;
76 	int error;
77 	int metadata;
78 	struct list_head list;
79 	struct btrfs_work work;
80 };
81 
82 /*
83  * async submit bios are used to offload expensive checksumming
84  * onto the worker threads.  They checksum file and metadata bios
85  * just before they are sent down the IO stack.
86  */
87 struct async_submit_bio {
88 	struct inode *inode;
89 	struct bio *bio;
90 	struct list_head list;
91 	extent_submit_bio_hook_t *submit_bio_start;
92 	extent_submit_bio_hook_t *submit_bio_done;
93 	int rw;
94 	int mirror_num;
95 	unsigned long bio_flags;
96 	/*
97 	 * bio_offset is optional, can be used if the pages in the bio
98 	 * can't tell us where in the file the bio should go
99 	 */
100 	u64 bio_offset;
101 	struct btrfs_work work;
102 	int error;
103 };
104 
105 /*
106  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
107  * eb, the lockdep key is determined by the btrfs_root it belongs to and
108  * the level the eb occupies in the tree.
109  *
110  * Different roots are used for different purposes and may nest inside each
111  * other and they require separate keysets.  As lockdep keys should be
112  * static, assign keysets according to the purpose of the root as indicated
113  * by btrfs_root->objectid.  This ensures that all special purpose roots
114  * have separate keysets.
115  *
116  * Lock-nesting across peer nodes is always done with the immediate parent
117  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
118  * subclass to avoid triggering lockdep warning in such cases.
119  *
120  * The key is set by the readpage_end_io_hook after the buffer has passed
121  * csum validation but before the pages are unlocked.  It is also set by
122  * btrfs_init_new_buffer on freshly allocated blocks.
123  *
124  * We also add a check to make sure the highest level of the tree is the
125  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
126  * needs update as well.
127  */
128 #ifdef CONFIG_DEBUG_LOCK_ALLOC
129 # if BTRFS_MAX_LEVEL != 8
130 #  error
131 # endif
132 
133 static struct btrfs_lockdep_keyset {
134 	u64			id;		/* root objectid */
135 	const char		*name_stem;	/* lock name stem */
136 	char			names[BTRFS_MAX_LEVEL + 1][20];
137 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
138 } btrfs_lockdep_keysets[] = {
139 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
140 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
141 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
142 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
143 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
144 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
145 	{ .id = BTRFS_ORPHAN_OBJECTID,		.name_stem = "orphan"	},
146 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
147 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
148 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
149 	{ .id = 0,				.name_stem = "tree"	},
150 };
151 
152 void __init btrfs_init_lockdep(void)
153 {
154 	int i, j;
155 
156 	/* initialize lockdep class names */
157 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
158 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
159 
160 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
161 			snprintf(ks->names[j], sizeof(ks->names[j]),
162 				 "btrfs-%s-%02d", ks->name_stem, j);
163 	}
164 }
165 
166 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
167 				    int level)
168 {
169 	struct btrfs_lockdep_keyset *ks;
170 
171 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
172 
173 	/* find the matching keyset, id 0 is the default entry */
174 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
175 		if (ks->id == objectid)
176 			break;
177 
178 	lockdep_set_class_and_name(&eb->lock,
179 				   &ks->keys[level], ks->names[level]);
180 }
181 
182 #endif
183 
184 /*
185  * extents on the btree inode are pretty simple, there's one extent
186  * that covers the entire device
187  */
188 static struct extent_map *btree_get_extent(struct inode *inode,
189 		struct page *page, size_t pg_offset, u64 start, u64 len,
190 		int create)
191 {
192 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
193 	struct extent_map *em;
194 	int ret;
195 
196 	read_lock(&em_tree->lock);
197 	em = lookup_extent_mapping(em_tree, start, len);
198 	if (em) {
199 		em->bdev =
200 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
201 		read_unlock(&em_tree->lock);
202 		goto out;
203 	}
204 	read_unlock(&em_tree->lock);
205 
206 	em = alloc_extent_map();
207 	if (!em) {
208 		em = ERR_PTR(-ENOMEM);
209 		goto out;
210 	}
211 	em->start = 0;
212 	em->len = (u64)-1;
213 	em->block_len = (u64)-1;
214 	em->block_start = 0;
215 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
216 
217 	write_lock(&em_tree->lock);
218 	ret = add_extent_mapping(em_tree, em);
219 	if (ret == -EEXIST) {
220 		u64 failed_start = em->start;
221 		u64 failed_len = em->len;
222 
223 		free_extent_map(em);
224 		em = lookup_extent_mapping(em_tree, start, len);
225 		if (em) {
226 			ret = 0;
227 		} else {
228 			em = lookup_extent_mapping(em_tree, failed_start,
229 						   failed_len);
230 			ret = -EIO;
231 		}
232 	} else if (ret) {
233 		free_extent_map(em);
234 		em = NULL;
235 	}
236 	write_unlock(&em_tree->lock);
237 
238 	if (ret)
239 		em = ERR_PTR(ret);
240 out:
241 	return em;
242 }
243 
244 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
245 {
246 	return crc32c(seed, data, len);
247 }
248 
249 void btrfs_csum_final(u32 crc, char *result)
250 {
251 	put_unaligned_le32(~crc, result);
252 }
253 
254 /*
255  * compute the csum for a btree block, and either verify it or write it
256  * into the csum field of the block.
257  */
258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 			   int verify)
260 {
261 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262 	char *result = NULL;
263 	unsigned long len;
264 	unsigned long cur_len;
265 	unsigned long offset = BTRFS_CSUM_SIZE;
266 	char *kaddr;
267 	unsigned long map_start;
268 	unsigned long map_len;
269 	int err;
270 	u32 crc = ~(u32)0;
271 	unsigned long inline_result;
272 
273 	len = buf->len - offset;
274 	while (len > 0) {
275 		err = map_private_extent_buffer(buf, offset, 32,
276 					&kaddr, &map_start, &map_len);
277 		if (err)
278 			return 1;
279 		cur_len = min(len, map_len - (offset - map_start));
280 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
281 				      crc, cur_len);
282 		len -= cur_len;
283 		offset += cur_len;
284 	}
285 	if (csum_size > sizeof(inline_result)) {
286 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 		if (!result)
288 			return 1;
289 	} else {
290 		result = (char *)&inline_result;
291 	}
292 
293 	btrfs_csum_final(crc, result);
294 
295 	if (verify) {
296 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297 			u32 val;
298 			u32 found = 0;
299 			memcpy(&found, result, csum_size);
300 
301 			read_extent_buffer(buf, &val, 0, csum_size);
302 			printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303 				       "failed on %llu wanted %X found %X "
304 				       "level %d\n",
305 				       root->fs_info->sb->s_id,
306 				       (unsigned long long)buf->start, val, found,
307 				       btrfs_header_level(buf));
308 			if (result != (char *)&inline_result)
309 				kfree(result);
310 			return 1;
311 		}
312 	} else {
313 		write_extent_buffer(buf, result, 0, csum_size);
314 	}
315 	if (result != (char *)&inline_result)
316 		kfree(result);
317 	return 0;
318 }
319 
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327 				 struct extent_buffer *eb, u64 parent_transid,
328 				 int atomic)
329 {
330 	struct extent_state *cached_state = NULL;
331 	int ret;
332 
333 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 		return 0;
335 
336 	if (atomic)
337 		return -EAGAIN;
338 
339 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340 			 0, &cached_state);
341 	if (extent_buffer_uptodate(eb) &&
342 	    btrfs_header_generation(eb) == parent_transid) {
343 		ret = 0;
344 		goto out;
345 	}
346 	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347 		       "found %llu\n",
348 		       (unsigned long long)eb->start,
349 		       (unsigned long long)parent_transid,
350 		       (unsigned long long)btrfs_header_generation(eb));
351 	ret = 1;
352 	clear_extent_buffer_uptodate(eb);
353 out:
354 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 			     &cached_state, GFP_NOFS);
356 	return ret;
357 }
358 
359 /*
360  * helper to read a given tree block, doing retries as required when
361  * the checksums don't match and we have alternate mirrors to try.
362  */
363 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
364 					  struct extent_buffer *eb,
365 					  u64 start, u64 parent_transid)
366 {
367 	struct extent_io_tree *io_tree;
368 	int failed = 0;
369 	int ret;
370 	int num_copies = 0;
371 	int mirror_num = 0;
372 	int failed_mirror = 0;
373 
374 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
375 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
376 	while (1) {
377 		ret = read_extent_buffer_pages(io_tree, eb, start,
378 					       WAIT_COMPLETE,
379 					       btree_get_extent, mirror_num);
380 		if (!ret) {
381 			if (!verify_parent_transid(io_tree, eb,
382 						   parent_transid, 0))
383 				break;
384 			else
385 				ret = -EIO;
386 		}
387 
388 		/*
389 		 * This buffer's crc is fine, but its contents are corrupted, so
390 		 * there is no reason to read the other copies, they won't be
391 		 * any less wrong.
392 		 */
393 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
394 			break;
395 
396 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
397 					      eb->start, eb->len);
398 		if (num_copies == 1)
399 			break;
400 
401 		if (!failed_mirror) {
402 			failed = 1;
403 			failed_mirror = eb->read_mirror;
404 		}
405 
406 		mirror_num++;
407 		if (mirror_num == failed_mirror)
408 			mirror_num++;
409 
410 		if (mirror_num > num_copies)
411 			break;
412 	}
413 
414 	if (failed && !ret && failed_mirror)
415 		repair_eb_io_failure(root, eb, failed_mirror);
416 
417 	return ret;
418 }
419 
420 /*
421  * checksum a dirty tree block before IO.  This has extra checks to make sure
422  * we only fill in the checksum field in the first page of a multi-page block
423  */
424 
425 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
426 {
427 	struct extent_io_tree *tree;
428 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
429 	u64 found_start;
430 	struct extent_buffer *eb;
431 
432 	tree = &BTRFS_I(page->mapping->host)->io_tree;
433 
434 	eb = (struct extent_buffer *)page->private;
435 	if (page != eb->pages[0])
436 		return 0;
437 	found_start = btrfs_header_bytenr(eb);
438 	if (found_start != start) {
439 		WARN_ON(1);
440 		return 0;
441 	}
442 	if (eb->pages[0] != page) {
443 		WARN_ON(1);
444 		return 0;
445 	}
446 	if (!PageUptodate(page)) {
447 		WARN_ON(1);
448 		return 0;
449 	}
450 	csum_tree_block(root, eb, 0);
451 	return 0;
452 }
453 
454 static int check_tree_block_fsid(struct btrfs_root *root,
455 				 struct extent_buffer *eb)
456 {
457 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
458 	u8 fsid[BTRFS_UUID_SIZE];
459 	int ret = 1;
460 
461 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
462 			   BTRFS_FSID_SIZE);
463 	while (fs_devices) {
464 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
465 			ret = 0;
466 			break;
467 		}
468 		fs_devices = fs_devices->seed;
469 	}
470 	return ret;
471 }
472 
473 #define CORRUPT(reason, eb, root, slot)				\
474 	printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu,"	\
475 	       "root=%llu, slot=%d\n", reason,			\
476 	       (unsigned long long)btrfs_header_bytenr(eb),	\
477 	       (unsigned long long)root->objectid, slot)
478 
479 static noinline int check_leaf(struct btrfs_root *root,
480 			       struct extent_buffer *leaf)
481 {
482 	struct btrfs_key key;
483 	struct btrfs_key leaf_key;
484 	u32 nritems = btrfs_header_nritems(leaf);
485 	int slot;
486 
487 	if (nritems == 0)
488 		return 0;
489 
490 	/* Check the 0 item */
491 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
492 	    BTRFS_LEAF_DATA_SIZE(root)) {
493 		CORRUPT("invalid item offset size pair", leaf, root, 0);
494 		return -EIO;
495 	}
496 
497 	/*
498 	 * Check to make sure each items keys are in the correct order and their
499 	 * offsets make sense.  We only have to loop through nritems-1 because
500 	 * we check the current slot against the next slot, which verifies the
501 	 * next slot's offset+size makes sense and that the current's slot
502 	 * offset is correct.
503 	 */
504 	for (slot = 0; slot < nritems - 1; slot++) {
505 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
506 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
507 
508 		/* Make sure the keys are in the right order */
509 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
510 			CORRUPT("bad key order", leaf, root, slot);
511 			return -EIO;
512 		}
513 
514 		/*
515 		 * Make sure the offset and ends are right, remember that the
516 		 * item data starts at the end of the leaf and grows towards the
517 		 * front.
518 		 */
519 		if (btrfs_item_offset_nr(leaf, slot) !=
520 			btrfs_item_end_nr(leaf, slot + 1)) {
521 			CORRUPT("slot offset bad", leaf, root, slot);
522 			return -EIO;
523 		}
524 
525 		/*
526 		 * Check to make sure that we don't point outside of the leaf,
527 		 * just incase all the items are consistent to eachother, but
528 		 * all point outside of the leaf.
529 		 */
530 		if (btrfs_item_end_nr(leaf, slot) >
531 		    BTRFS_LEAF_DATA_SIZE(root)) {
532 			CORRUPT("slot end outside of leaf", leaf, root, slot);
533 			return -EIO;
534 		}
535 	}
536 
537 	return 0;
538 }
539 
540 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
541 				       struct page *page, int max_walk)
542 {
543 	struct extent_buffer *eb;
544 	u64 start = page_offset(page);
545 	u64 target = start;
546 	u64 min_start;
547 
548 	if (start < max_walk)
549 		min_start = 0;
550 	else
551 		min_start = start - max_walk;
552 
553 	while (start >= min_start) {
554 		eb = find_extent_buffer(tree, start, 0);
555 		if (eb) {
556 			/*
557 			 * we found an extent buffer and it contains our page
558 			 * horray!
559 			 */
560 			if (eb->start <= target &&
561 			    eb->start + eb->len > target)
562 				return eb;
563 
564 			/* we found an extent buffer that wasn't for us */
565 			free_extent_buffer(eb);
566 			return NULL;
567 		}
568 		if (start == 0)
569 			break;
570 		start -= PAGE_CACHE_SIZE;
571 	}
572 	return NULL;
573 }
574 
575 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
576 			       struct extent_state *state, int mirror)
577 {
578 	struct extent_io_tree *tree;
579 	u64 found_start;
580 	int found_level;
581 	struct extent_buffer *eb;
582 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
583 	int ret = 0;
584 	int reads_done;
585 
586 	if (!page->private)
587 		goto out;
588 
589 	tree = &BTRFS_I(page->mapping->host)->io_tree;
590 	eb = (struct extent_buffer *)page->private;
591 
592 	/* the pending IO might have been the only thing that kept this buffer
593 	 * in memory.  Make sure we have a ref for all this other checks
594 	 */
595 	extent_buffer_get(eb);
596 
597 	reads_done = atomic_dec_and_test(&eb->io_pages);
598 	if (!reads_done)
599 		goto err;
600 
601 	eb->read_mirror = mirror;
602 	if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
603 		ret = -EIO;
604 		goto err;
605 	}
606 
607 	found_start = btrfs_header_bytenr(eb);
608 	if (found_start != eb->start) {
609 		printk_ratelimited(KERN_INFO "btrfs bad tree block start "
610 			       "%llu %llu\n",
611 			       (unsigned long long)found_start,
612 			       (unsigned long long)eb->start);
613 		ret = -EIO;
614 		goto err;
615 	}
616 	if (check_tree_block_fsid(root, eb)) {
617 		printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
618 			       (unsigned long long)eb->start);
619 		ret = -EIO;
620 		goto err;
621 	}
622 	found_level = btrfs_header_level(eb);
623 
624 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
625 				       eb, found_level);
626 
627 	ret = csum_tree_block(root, eb, 1);
628 	if (ret) {
629 		ret = -EIO;
630 		goto err;
631 	}
632 
633 	/*
634 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
635 	 * that we don't try and read the other copies of this block, just
636 	 * return -EIO.
637 	 */
638 	if (found_level == 0 && check_leaf(root, eb)) {
639 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
640 		ret = -EIO;
641 	}
642 
643 	if (!ret)
644 		set_extent_buffer_uptodate(eb);
645 err:
646 	if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
647 		clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
648 		btree_readahead_hook(root, eb, eb->start, ret);
649 	}
650 
651 	if (ret)
652 		clear_extent_buffer_uptodate(eb);
653 	free_extent_buffer(eb);
654 out:
655 	return ret;
656 }
657 
658 static int btree_io_failed_hook(struct page *page, int failed_mirror)
659 {
660 	struct extent_buffer *eb;
661 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
662 
663 	eb = (struct extent_buffer *)page->private;
664 	set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
665 	eb->read_mirror = failed_mirror;
666 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
667 		btree_readahead_hook(root, eb, eb->start, -EIO);
668 	return -EIO;	/* we fixed nothing */
669 }
670 
671 static void end_workqueue_bio(struct bio *bio, int err)
672 {
673 	struct end_io_wq *end_io_wq = bio->bi_private;
674 	struct btrfs_fs_info *fs_info;
675 
676 	fs_info = end_io_wq->info;
677 	end_io_wq->error = err;
678 	end_io_wq->work.func = end_workqueue_fn;
679 	end_io_wq->work.flags = 0;
680 
681 	if (bio->bi_rw & REQ_WRITE) {
682 		if (end_io_wq->metadata == 1)
683 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
684 					   &end_io_wq->work);
685 		else if (end_io_wq->metadata == 2)
686 			btrfs_queue_worker(&fs_info->endio_freespace_worker,
687 					   &end_io_wq->work);
688 		else
689 			btrfs_queue_worker(&fs_info->endio_write_workers,
690 					   &end_io_wq->work);
691 	} else {
692 		if (end_io_wq->metadata)
693 			btrfs_queue_worker(&fs_info->endio_meta_workers,
694 					   &end_io_wq->work);
695 		else
696 			btrfs_queue_worker(&fs_info->endio_workers,
697 					   &end_io_wq->work);
698 	}
699 }
700 
701 /*
702  * For the metadata arg you want
703  *
704  * 0 - if data
705  * 1 - if normal metadta
706  * 2 - if writing to the free space cache area
707  */
708 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
709 			int metadata)
710 {
711 	struct end_io_wq *end_io_wq;
712 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
713 	if (!end_io_wq)
714 		return -ENOMEM;
715 
716 	end_io_wq->private = bio->bi_private;
717 	end_io_wq->end_io = bio->bi_end_io;
718 	end_io_wq->info = info;
719 	end_io_wq->error = 0;
720 	end_io_wq->bio = bio;
721 	end_io_wq->metadata = metadata;
722 
723 	bio->bi_private = end_io_wq;
724 	bio->bi_end_io = end_workqueue_bio;
725 	return 0;
726 }
727 
728 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
729 {
730 	unsigned long limit = min_t(unsigned long,
731 				    info->workers.max_workers,
732 				    info->fs_devices->open_devices);
733 	return 256 * limit;
734 }
735 
736 static void run_one_async_start(struct btrfs_work *work)
737 {
738 	struct async_submit_bio *async;
739 	int ret;
740 
741 	async = container_of(work, struct  async_submit_bio, work);
742 	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
743 				      async->mirror_num, async->bio_flags,
744 				      async->bio_offset);
745 	if (ret)
746 		async->error = ret;
747 }
748 
749 static void run_one_async_done(struct btrfs_work *work)
750 {
751 	struct btrfs_fs_info *fs_info;
752 	struct async_submit_bio *async;
753 	int limit;
754 
755 	async = container_of(work, struct  async_submit_bio, work);
756 	fs_info = BTRFS_I(async->inode)->root->fs_info;
757 
758 	limit = btrfs_async_submit_limit(fs_info);
759 	limit = limit * 2 / 3;
760 
761 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
762 	    waitqueue_active(&fs_info->async_submit_wait))
763 		wake_up(&fs_info->async_submit_wait);
764 
765 	/* If an error occured we just want to clean up the bio and move on */
766 	if (async->error) {
767 		bio_endio(async->bio, async->error);
768 		return;
769 	}
770 
771 	async->submit_bio_done(async->inode, async->rw, async->bio,
772 			       async->mirror_num, async->bio_flags,
773 			       async->bio_offset);
774 }
775 
776 static void run_one_async_free(struct btrfs_work *work)
777 {
778 	struct async_submit_bio *async;
779 
780 	async = container_of(work, struct  async_submit_bio, work);
781 	kfree(async);
782 }
783 
784 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
785 			int rw, struct bio *bio, int mirror_num,
786 			unsigned long bio_flags,
787 			u64 bio_offset,
788 			extent_submit_bio_hook_t *submit_bio_start,
789 			extent_submit_bio_hook_t *submit_bio_done)
790 {
791 	struct async_submit_bio *async;
792 
793 	async = kmalloc(sizeof(*async), GFP_NOFS);
794 	if (!async)
795 		return -ENOMEM;
796 
797 	async->inode = inode;
798 	async->rw = rw;
799 	async->bio = bio;
800 	async->mirror_num = mirror_num;
801 	async->submit_bio_start = submit_bio_start;
802 	async->submit_bio_done = submit_bio_done;
803 
804 	async->work.func = run_one_async_start;
805 	async->work.ordered_func = run_one_async_done;
806 	async->work.ordered_free = run_one_async_free;
807 
808 	async->work.flags = 0;
809 	async->bio_flags = bio_flags;
810 	async->bio_offset = bio_offset;
811 
812 	async->error = 0;
813 
814 	atomic_inc(&fs_info->nr_async_submits);
815 
816 	if (rw & REQ_SYNC)
817 		btrfs_set_work_high_prio(&async->work);
818 
819 	btrfs_queue_worker(&fs_info->workers, &async->work);
820 
821 	while (atomic_read(&fs_info->async_submit_draining) &&
822 	      atomic_read(&fs_info->nr_async_submits)) {
823 		wait_event(fs_info->async_submit_wait,
824 			   (atomic_read(&fs_info->nr_async_submits) == 0));
825 	}
826 
827 	return 0;
828 }
829 
830 static int btree_csum_one_bio(struct bio *bio)
831 {
832 	struct bio_vec *bvec = bio->bi_io_vec;
833 	int bio_index = 0;
834 	struct btrfs_root *root;
835 	int ret = 0;
836 
837 	WARN_ON(bio->bi_vcnt <= 0);
838 	while (bio_index < bio->bi_vcnt) {
839 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
840 		ret = csum_dirty_buffer(root, bvec->bv_page);
841 		if (ret)
842 			break;
843 		bio_index++;
844 		bvec++;
845 	}
846 	return ret;
847 }
848 
849 static int __btree_submit_bio_start(struct inode *inode, int rw,
850 				    struct bio *bio, int mirror_num,
851 				    unsigned long bio_flags,
852 				    u64 bio_offset)
853 {
854 	/*
855 	 * when we're called for a write, we're already in the async
856 	 * submission context.  Just jump into btrfs_map_bio
857 	 */
858 	return btree_csum_one_bio(bio);
859 }
860 
861 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
862 				 int mirror_num, unsigned long bio_flags,
863 				 u64 bio_offset)
864 {
865 	/*
866 	 * when we're called for a write, we're already in the async
867 	 * submission context.  Just jump into btrfs_map_bio
868 	 */
869 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
870 }
871 
872 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
873 				 int mirror_num, unsigned long bio_flags,
874 				 u64 bio_offset)
875 {
876 	int ret;
877 
878 	if (!(rw & REQ_WRITE)) {
879 
880 		/*
881 		 * called for a read, do the setup so that checksum validation
882 		 * can happen in the async kernel threads
883 		 */
884 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
885 					  bio, 1);
886 		if (ret)
887 			return ret;
888 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
889 				     mirror_num, 0);
890 	}
891 
892 	/*
893 	 * kthread helpers are used to submit writes so that checksumming
894 	 * can happen in parallel across all CPUs
895 	 */
896 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
897 				   inode, rw, bio, mirror_num, 0,
898 				   bio_offset,
899 				   __btree_submit_bio_start,
900 				   __btree_submit_bio_done);
901 }
902 
903 #ifdef CONFIG_MIGRATION
904 static int btree_migratepage(struct address_space *mapping,
905 			struct page *newpage, struct page *page,
906 			enum migrate_mode mode)
907 {
908 	/*
909 	 * we can't safely write a btree page from here,
910 	 * we haven't done the locking hook
911 	 */
912 	if (PageDirty(page))
913 		return -EAGAIN;
914 	/*
915 	 * Buffers may be managed in a filesystem specific way.
916 	 * We must have no buffers or drop them.
917 	 */
918 	if (page_has_private(page) &&
919 	    !try_to_release_page(page, GFP_KERNEL))
920 		return -EAGAIN;
921 	return migrate_page(mapping, newpage, page, mode);
922 }
923 #endif
924 
925 
926 static int btree_writepages(struct address_space *mapping,
927 			    struct writeback_control *wbc)
928 {
929 	struct extent_io_tree *tree;
930 	tree = &BTRFS_I(mapping->host)->io_tree;
931 	if (wbc->sync_mode == WB_SYNC_NONE) {
932 		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
933 		u64 num_dirty;
934 		unsigned long thresh = 32 * 1024 * 1024;
935 
936 		if (wbc->for_kupdate)
937 			return 0;
938 
939 		/* this is a bit racy, but that's ok */
940 		num_dirty = root->fs_info->dirty_metadata_bytes;
941 		if (num_dirty < thresh)
942 			return 0;
943 	}
944 	return btree_write_cache_pages(mapping, wbc);
945 }
946 
947 static int btree_readpage(struct file *file, struct page *page)
948 {
949 	struct extent_io_tree *tree;
950 	tree = &BTRFS_I(page->mapping->host)->io_tree;
951 	return extent_read_full_page(tree, page, btree_get_extent, 0);
952 }
953 
954 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
955 {
956 	if (PageWriteback(page) || PageDirty(page))
957 		return 0;
958 	/*
959 	 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
960 	 * slab allocation from alloc_extent_state down the callchain where
961 	 * it'd hit a BUG_ON as those flags are not allowed.
962 	 */
963 	gfp_flags &= ~GFP_SLAB_BUG_MASK;
964 
965 	return try_release_extent_buffer(page, gfp_flags);
966 }
967 
968 static void btree_invalidatepage(struct page *page, unsigned long offset)
969 {
970 	struct extent_io_tree *tree;
971 	tree = &BTRFS_I(page->mapping->host)->io_tree;
972 	extent_invalidatepage(tree, page, offset);
973 	btree_releasepage(page, GFP_NOFS);
974 	if (PagePrivate(page)) {
975 		printk(KERN_WARNING "btrfs warning page private not zero "
976 		       "on page %llu\n", (unsigned long long)page_offset(page));
977 		ClearPagePrivate(page);
978 		set_page_private(page, 0);
979 		page_cache_release(page);
980 	}
981 }
982 
983 static int btree_set_page_dirty(struct page *page)
984 {
985 	struct extent_buffer *eb;
986 
987 	BUG_ON(!PagePrivate(page));
988 	eb = (struct extent_buffer *)page->private;
989 	BUG_ON(!eb);
990 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
991 	BUG_ON(!atomic_read(&eb->refs));
992 	btrfs_assert_tree_locked(eb);
993 	return __set_page_dirty_nobuffers(page);
994 }
995 
996 static const struct address_space_operations btree_aops = {
997 	.readpage	= btree_readpage,
998 	.writepages	= btree_writepages,
999 	.releasepage	= btree_releasepage,
1000 	.invalidatepage = btree_invalidatepage,
1001 #ifdef CONFIG_MIGRATION
1002 	.migratepage	= btree_migratepage,
1003 #endif
1004 	.set_page_dirty = btree_set_page_dirty,
1005 };
1006 
1007 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1008 			 u64 parent_transid)
1009 {
1010 	struct extent_buffer *buf = NULL;
1011 	struct inode *btree_inode = root->fs_info->btree_inode;
1012 	int ret = 0;
1013 
1014 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1015 	if (!buf)
1016 		return 0;
1017 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1018 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1019 	free_extent_buffer(buf);
1020 	return ret;
1021 }
1022 
1023 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1024 			 int mirror_num, struct extent_buffer **eb)
1025 {
1026 	struct extent_buffer *buf = NULL;
1027 	struct inode *btree_inode = root->fs_info->btree_inode;
1028 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1029 	int ret;
1030 
1031 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1032 	if (!buf)
1033 		return 0;
1034 
1035 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1036 
1037 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1038 				       btree_get_extent, mirror_num);
1039 	if (ret) {
1040 		free_extent_buffer(buf);
1041 		return ret;
1042 	}
1043 
1044 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1045 		free_extent_buffer(buf);
1046 		return -EIO;
1047 	} else if (extent_buffer_uptodate(buf)) {
1048 		*eb = buf;
1049 	} else {
1050 		free_extent_buffer(buf);
1051 	}
1052 	return 0;
1053 }
1054 
1055 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1056 					    u64 bytenr, u32 blocksize)
1057 {
1058 	struct inode *btree_inode = root->fs_info->btree_inode;
1059 	struct extent_buffer *eb;
1060 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1061 				bytenr, blocksize);
1062 	return eb;
1063 }
1064 
1065 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1066 						 u64 bytenr, u32 blocksize)
1067 {
1068 	struct inode *btree_inode = root->fs_info->btree_inode;
1069 	struct extent_buffer *eb;
1070 
1071 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1072 				 bytenr, blocksize);
1073 	return eb;
1074 }
1075 
1076 
1077 int btrfs_write_tree_block(struct extent_buffer *buf)
1078 {
1079 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1080 					buf->start + buf->len - 1);
1081 }
1082 
1083 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1084 {
1085 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1086 				       buf->start, buf->start + buf->len - 1);
1087 }
1088 
1089 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1090 				      u32 blocksize, u64 parent_transid)
1091 {
1092 	struct extent_buffer *buf = NULL;
1093 	int ret;
1094 
1095 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1096 	if (!buf)
1097 		return NULL;
1098 
1099 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1100 	return buf;
1101 
1102 }
1103 
1104 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1105 		      struct extent_buffer *buf)
1106 {
1107 	if (btrfs_header_generation(buf) ==
1108 	    root->fs_info->running_transaction->transid) {
1109 		btrfs_assert_tree_locked(buf);
1110 
1111 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1112 			spin_lock(&root->fs_info->delalloc_lock);
1113 			if (root->fs_info->dirty_metadata_bytes >= buf->len)
1114 				root->fs_info->dirty_metadata_bytes -= buf->len;
1115 			else {
1116 				spin_unlock(&root->fs_info->delalloc_lock);
1117 				btrfs_panic(root->fs_info, -EOVERFLOW,
1118 					  "Can't clear %lu bytes from "
1119 					  " dirty_mdatadata_bytes (%llu)",
1120 					  buf->len,
1121 					  root->fs_info->dirty_metadata_bytes);
1122 			}
1123 			spin_unlock(&root->fs_info->delalloc_lock);
1124 		}
1125 
1126 		/* ugh, clear_extent_buffer_dirty needs to lock the page */
1127 		btrfs_set_lock_blocking(buf);
1128 		clear_extent_buffer_dirty(buf);
1129 	}
1130 }
1131 
1132 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1133 			 u32 stripesize, struct btrfs_root *root,
1134 			 struct btrfs_fs_info *fs_info,
1135 			 u64 objectid)
1136 {
1137 	root->node = NULL;
1138 	root->commit_root = NULL;
1139 	root->sectorsize = sectorsize;
1140 	root->nodesize = nodesize;
1141 	root->leafsize = leafsize;
1142 	root->stripesize = stripesize;
1143 	root->ref_cows = 0;
1144 	root->track_dirty = 0;
1145 	root->in_radix = 0;
1146 	root->orphan_item_inserted = 0;
1147 	root->orphan_cleanup_state = 0;
1148 
1149 	root->objectid = objectid;
1150 	root->last_trans = 0;
1151 	root->highest_objectid = 0;
1152 	root->name = NULL;
1153 	root->inode_tree = RB_ROOT;
1154 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1155 	root->block_rsv = NULL;
1156 	root->orphan_block_rsv = NULL;
1157 
1158 	INIT_LIST_HEAD(&root->dirty_list);
1159 	INIT_LIST_HEAD(&root->root_list);
1160 	spin_lock_init(&root->orphan_lock);
1161 	spin_lock_init(&root->inode_lock);
1162 	spin_lock_init(&root->accounting_lock);
1163 	mutex_init(&root->objectid_mutex);
1164 	mutex_init(&root->log_mutex);
1165 	init_waitqueue_head(&root->log_writer_wait);
1166 	init_waitqueue_head(&root->log_commit_wait[0]);
1167 	init_waitqueue_head(&root->log_commit_wait[1]);
1168 	atomic_set(&root->log_commit[0], 0);
1169 	atomic_set(&root->log_commit[1], 0);
1170 	atomic_set(&root->log_writers, 0);
1171 	atomic_set(&root->orphan_inodes, 0);
1172 	root->log_batch = 0;
1173 	root->log_transid = 0;
1174 	root->last_log_commit = 0;
1175 	extent_io_tree_init(&root->dirty_log_pages,
1176 			     fs_info->btree_inode->i_mapping);
1177 
1178 	memset(&root->root_key, 0, sizeof(root->root_key));
1179 	memset(&root->root_item, 0, sizeof(root->root_item));
1180 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1181 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1182 	root->defrag_trans_start = fs_info->generation;
1183 	init_completion(&root->kobj_unregister);
1184 	root->defrag_running = 0;
1185 	root->root_key.objectid = objectid;
1186 	root->anon_dev = 0;
1187 
1188 	spin_lock_init(&root->root_times_lock);
1189 }
1190 
1191 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1192 					    struct btrfs_fs_info *fs_info,
1193 					    u64 objectid,
1194 					    struct btrfs_root *root)
1195 {
1196 	int ret;
1197 	u32 blocksize;
1198 	u64 generation;
1199 
1200 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1201 		     tree_root->sectorsize, tree_root->stripesize,
1202 		     root, fs_info, objectid);
1203 	ret = btrfs_find_last_root(tree_root, objectid,
1204 				   &root->root_item, &root->root_key);
1205 	if (ret > 0)
1206 		return -ENOENT;
1207 	else if (ret < 0)
1208 		return ret;
1209 
1210 	generation = btrfs_root_generation(&root->root_item);
1211 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1212 	root->commit_root = NULL;
1213 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1214 				     blocksize, generation);
1215 	if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1216 		free_extent_buffer(root->node);
1217 		root->node = NULL;
1218 		return -EIO;
1219 	}
1220 	root->commit_root = btrfs_root_node(root);
1221 	return 0;
1222 }
1223 
1224 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1225 {
1226 	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1227 	if (root)
1228 		root->fs_info = fs_info;
1229 	return root;
1230 }
1231 
1232 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1233 				     struct btrfs_fs_info *fs_info,
1234 				     u64 objectid)
1235 {
1236 	struct extent_buffer *leaf;
1237 	struct btrfs_root *tree_root = fs_info->tree_root;
1238 	struct btrfs_root *root;
1239 	struct btrfs_key key;
1240 	int ret = 0;
1241 	u64 bytenr;
1242 
1243 	root = btrfs_alloc_root(fs_info);
1244 	if (!root)
1245 		return ERR_PTR(-ENOMEM);
1246 
1247 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1248 		     tree_root->sectorsize, tree_root->stripesize,
1249 		     root, fs_info, objectid);
1250 	root->root_key.objectid = objectid;
1251 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1252 	root->root_key.offset = 0;
1253 
1254 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1255 				      0, objectid, NULL, 0, 0, 0);
1256 	if (IS_ERR(leaf)) {
1257 		ret = PTR_ERR(leaf);
1258 		goto fail;
1259 	}
1260 
1261 	bytenr = leaf->start;
1262 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1263 	btrfs_set_header_bytenr(leaf, leaf->start);
1264 	btrfs_set_header_generation(leaf, trans->transid);
1265 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1266 	btrfs_set_header_owner(leaf, objectid);
1267 	root->node = leaf;
1268 
1269 	write_extent_buffer(leaf, fs_info->fsid,
1270 			    (unsigned long)btrfs_header_fsid(leaf),
1271 			    BTRFS_FSID_SIZE);
1272 	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1273 			    (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1274 			    BTRFS_UUID_SIZE);
1275 	btrfs_mark_buffer_dirty(leaf);
1276 
1277 	root->commit_root = btrfs_root_node(root);
1278 	root->track_dirty = 1;
1279 
1280 
1281 	root->root_item.flags = 0;
1282 	root->root_item.byte_limit = 0;
1283 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1284 	btrfs_set_root_generation(&root->root_item, trans->transid);
1285 	btrfs_set_root_level(&root->root_item, 0);
1286 	btrfs_set_root_refs(&root->root_item, 1);
1287 	btrfs_set_root_used(&root->root_item, leaf->len);
1288 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1289 	btrfs_set_root_dirid(&root->root_item, 0);
1290 	root->root_item.drop_level = 0;
1291 
1292 	key.objectid = objectid;
1293 	key.type = BTRFS_ROOT_ITEM_KEY;
1294 	key.offset = 0;
1295 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1296 	if (ret)
1297 		goto fail;
1298 
1299 	btrfs_tree_unlock(leaf);
1300 
1301 fail:
1302 	if (ret)
1303 		return ERR_PTR(ret);
1304 
1305 	return root;
1306 }
1307 
1308 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1309 					 struct btrfs_fs_info *fs_info)
1310 {
1311 	struct btrfs_root *root;
1312 	struct btrfs_root *tree_root = fs_info->tree_root;
1313 	struct extent_buffer *leaf;
1314 
1315 	root = btrfs_alloc_root(fs_info);
1316 	if (!root)
1317 		return ERR_PTR(-ENOMEM);
1318 
1319 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1320 		     tree_root->sectorsize, tree_root->stripesize,
1321 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1322 
1323 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1324 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1325 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1326 	/*
1327 	 * log trees do not get reference counted because they go away
1328 	 * before a real commit is actually done.  They do store pointers
1329 	 * to file data extents, and those reference counts still get
1330 	 * updated (along with back refs to the log tree).
1331 	 */
1332 	root->ref_cows = 0;
1333 
1334 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1335 				      BTRFS_TREE_LOG_OBJECTID, NULL,
1336 				      0, 0, 0);
1337 	if (IS_ERR(leaf)) {
1338 		kfree(root);
1339 		return ERR_CAST(leaf);
1340 	}
1341 
1342 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1343 	btrfs_set_header_bytenr(leaf, leaf->start);
1344 	btrfs_set_header_generation(leaf, trans->transid);
1345 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1346 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1347 	root->node = leaf;
1348 
1349 	write_extent_buffer(root->node, root->fs_info->fsid,
1350 			    (unsigned long)btrfs_header_fsid(root->node),
1351 			    BTRFS_FSID_SIZE);
1352 	btrfs_mark_buffer_dirty(root->node);
1353 	btrfs_tree_unlock(root->node);
1354 	return root;
1355 }
1356 
1357 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1358 			     struct btrfs_fs_info *fs_info)
1359 {
1360 	struct btrfs_root *log_root;
1361 
1362 	log_root = alloc_log_tree(trans, fs_info);
1363 	if (IS_ERR(log_root))
1364 		return PTR_ERR(log_root);
1365 	WARN_ON(fs_info->log_root_tree);
1366 	fs_info->log_root_tree = log_root;
1367 	return 0;
1368 }
1369 
1370 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1371 		       struct btrfs_root *root)
1372 {
1373 	struct btrfs_root *log_root;
1374 	struct btrfs_inode_item *inode_item;
1375 
1376 	log_root = alloc_log_tree(trans, root->fs_info);
1377 	if (IS_ERR(log_root))
1378 		return PTR_ERR(log_root);
1379 
1380 	log_root->last_trans = trans->transid;
1381 	log_root->root_key.offset = root->root_key.objectid;
1382 
1383 	inode_item = &log_root->root_item.inode;
1384 	inode_item->generation = cpu_to_le64(1);
1385 	inode_item->size = cpu_to_le64(3);
1386 	inode_item->nlink = cpu_to_le32(1);
1387 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1388 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1389 
1390 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1391 
1392 	WARN_ON(root->log_root);
1393 	root->log_root = log_root;
1394 	root->log_transid = 0;
1395 	root->last_log_commit = 0;
1396 	return 0;
1397 }
1398 
1399 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1400 					       struct btrfs_key *location)
1401 {
1402 	struct btrfs_root *root;
1403 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1404 	struct btrfs_path *path;
1405 	struct extent_buffer *l;
1406 	u64 generation;
1407 	u32 blocksize;
1408 	int ret = 0;
1409 	int slot;
1410 
1411 	root = btrfs_alloc_root(fs_info);
1412 	if (!root)
1413 		return ERR_PTR(-ENOMEM);
1414 	if (location->offset == (u64)-1) {
1415 		ret = find_and_setup_root(tree_root, fs_info,
1416 					  location->objectid, root);
1417 		if (ret) {
1418 			kfree(root);
1419 			return ERR_PTR(ret);
1420 		}
1421 		goto out;
1422 	}
1423 
1424 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1425 		     tree_root->sectorsize, tree_root->stripesize,
1426 		     root, fs_info, location->objectid);
1427 
1428 	path = btrfs_alloc_path();
1429 	if (!path) {
1430 		kfree(root);
1431 		return ERR_PTR(-ENOMEM);
1432 	}
1433 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1434 	if (ret == 0) {
1435 		l = path->nodes[0];
1436 		slot = path->slots[0];
1437 		btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1438 		memcpy(&root->root_key, location, sizeof(*location));
1439 	}
1440 	btrfs_free_path(path);
1441 	if (ret) {
1442 		kfree(root);
1443 		if (ret > 0)
1444 			ret = -ENOENT;
1445 		return ERR_PTR(ret);
1446 	}
1447 
1448 	generation = btrfs_root_generation(&root->root_item);
1449 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1450 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1451 				     blocksize, generation);
1452 	root->commit_root = btrfs_root_node(root);
1453 	BUG_ON(!root->node); /* -ENOMEM */
1454 out:
1455 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1456 		root->ref_cows = 1;
1457 		btrfs_check_and_init_root_item(&root->root_item);
1458 	}
1459 
1460 	return root;
1461 }
1462 
1463 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1464 					      struct btrfs_key *location)
1465 {
1466 	struct btrfs_root *root;
1467 	int ret;
1468 
1469 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1470 		return fs_info->tree_root;
1471 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1472 		return fs_info->extent_root;
1473 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1474 		return fs_info->chunk_root;
1475 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1476 		return fs_info->dev_root;
1477 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1478 		return fs_info->csum_root;
1479 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1480 		return fs_info->quota_root ? fs_info->quota_root :
1481 					     ERR_PTR(-ENOENT);
1482 again:
1483 	spin_lock(&fs_info->fs_roots_radix_lock);
1484 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1485 				 (unsigned long)location->objectid);
1486 	spin_unlock(&fs_info->fs_roots_radix_lock);
1487 	if (root)
1488 		return root;
1489 
1490 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1491 	if (IS_ERR(root))
1492 		return root;
1493 
1494 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1495 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1496 					GFP_NOFS);
1497 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1498 		ret = -ENOMEM;
1499 		goto fail;
1500 	}
1501 
1502 	btrfs_init_free_ino_ctl(root);
1503 	mutex_init(&root->fs_commit_mutex);
1504 	spin_lock_init(&root->cache_lock);
1505 	init_waitqueue_head(&root->cache_wait);
1506 
1507 	ret = get_anon_bdev(&root->anon_dev);
1508 	if (ret)
1509 		goto fail;
1510 
1511 	if (btrfs_root_refs(&root->root_item) == 0) {
1512 		ret = -ENOENT;
1513 		goto fail;
1514 	}
1515 
1516 	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1517 	if (ret < 0)
1518 		goto fail;
1519 	if (ret == 0)
1520 		root->orphan_item_inserted = 1;
1521 
1522 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1523 	if (ret)
1524 		goto fail;
1525 
1526 	spin_lock(&fs_info->fs_roots_radix_lock);
1527 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1528 				(unsigned long)root->root_key.objectid,
1529 				root);
1530 	if (ret == 0)
1531 		root->in_radix = 1;
1532 
1533 	spin_unlock(&fs_info->fs_roots_radix_lock);
1534 	radix_tree_preload_end();
1535 	if (ret) {
1536 		if (ret == -EEXIST) {
1537 			free_fs_root(root);
1538 			goto again;
1539 		}
1540 		goto fail;
1541 	}
1542 
1543 	ret = btrfs_find_dead_roots(fs_info->tree_root,
1544 				    root->root_key.objectid);
1545 	WARN_ON(ret);
1546 	return root;
1547 fail:
1548 	free_fs_root(root);
1549 	return ERR_PTR(ret);
1550 }
1551 
1552 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1553 {
1554 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1555 	int ret = 0;
1556 	struct btrfs_device *device;
1557 	struct backing_dev_info *bdi;
1558 
1559 	rcu_read_lock();
1560 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1561 		if (!device->bdev)
1562 			continue;
1563 		bdi = blk_get_backing_dev_info(device->bdev);
1564 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1565 			ret = 1;
1566 			break;
1567 		}
1568 	}
1569 	rcu_read_unlock();
1570 	return ret;
1571 }
1572 
1573 /*
1574  * If this fails, caller must call bdi_destroy() to get rid of the
1575  * bdi again.
1576  */
1577 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1578 {
1579 	int err;
1580 
1581 	bdi->capabilities = BDI_CAP_MAP_COPY;
1582 	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1583 	if (err)
1584 		return err;
1585 
1586 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1587 	bdi->congested_fn	= btrfs_congested_fn;
1588 	bdi->congested_data	= info;
1589 	return 0;
1590 }
1591 
1592 /*
1593  * called by the kthread helper functions to finally call the bio end_io
1594  * functions.  This is where read checksum verification actually happens
1595  */
1596 static void end_workqueue_fn(struct btrfs_work *work)
1597 {
1598 	struct bio *bio;
1599 	struct end_io_wq *end_io_wq;
1600 	struct btrfs_fs_info *fs_info;
1601 	int error;
1602 
1603 	end_io_wq = container_of(work, struct end_io_wq, work);
1604 	bio = end_io_wq->bio;
1605 	fs_info = end_io_wq->info;
1606 
1607 	error = end_io_wq->error;
1608 	bio->bi_private = end_io_wq->private;
1609 	bio->bi_end_io = end_io_wq->end_io;
1610 	kfree(end_io_wq);
1611 	bio_endio(bio, error);
1612 }
1613 
1614 static int cleaner_kthread(void *arg)
1615 {
1616 	struct btrfs_root *root = arg;
1617 
1618 	do {
1619 		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1620 		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
1621 			btrfs_run_delayed_iputs(root);
1622 			btrfs_clean_old_snapshots(root);
1623 			mutex_unlock(&root->fs_info->cleaner_mutex);
1624 			btrfs_run_defrag_inodes(root->fs_info);
1625 		}
1626 
1627 		if (!try_to_freeze()) {
1628 			set_current_state(TASK_INTERRUPTIBLE);
1629 			if (!kthread_should_stop())
1630 				schedule();
1631 			__set_current_state(TASK_RUNNING);
1632 		}
1633 	} while (!kthread_should_stop());
1634 	return 0;
1635 }
1636 
1637 static int transaction_kthread(void *arg)
1638 {
1639 	struct btrfs_root *root = arg;
1640 	struct btrfs_trans_handle *trans;
1641 	struct btrfs_transaction *cur;
1642 	u64 transid;
1643 	unsigned long now;
1644 	unsigned long delay;
1645 	bool cannot_commit;
1646 
1647 	do {
1648 		cannot_commit = false;
1649 		delay = HZ * 30;
1650 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1651 
1652 		spin_lock(&root->fs_info->trans_lock);
1653 		cur = root->fs_info->running_transaction;
1654 		if (!cur) {
1655 			spin_unlock(&root->fs_info->trans_lock);
1656 			goto sleep;
1657 		}
1658 
1659 		now = get_seconds();
1660 		if (!cur->blocked &&
1661 		    (now < cur->start_time || now - cur->start_time < 30)) {
1662 			spin_unlock(&root->fs_info->trans_lock);
1663 			delay = HZ * 5;
1664 			goto sleep;
1665 		}
1666 		transid = cur->transid;
1667 		spin_unlock(&root->fs_info->trans_lock);
1668 
1669 		/* If the file system is aborted, this will always fail. */
1670 		trans = btrfs_join_transaction(root);
1671 		if (IS_ERR(trans)) {
1672 			cannot_commit = true;
1673 			goto sleep;
1674 		}
1675 		if (transid == trans->transid) {
1676 			btrfs_commit_transaction(trans, root);
1677 		} else {
1678 			btrfs_end_transaction(trans, root);
1679 		}
1680 sleep:
1681 		wake_up_process(root->fs_info->cleaner_kthread);
1682 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1683 
1684 		if (!try_to_freeze()) {
1685 			set_current_state(TASK_INTERRUPTIBLE);
1686 			if (!kthread_should_stop() &&
1687 			    (!btrfs_transaction_blocked(root->fs_info) ||
1688 			     cannot_commit))
1689 				schedule_timeout(delay);
1690 			__set_current_state(TASK_RUNNING);
1691 		}
1692 	} while (!kthread_should_stop());
1693 	return 0;
1694 }
1695 
1696 /*
1697  * this will find the highest generation in the array of
1698  * root backups.  The index of the highest array is returned,
1699  * or -1 if we can't find anything.
1700  *
1701  * We check to make sure the array is valid by comparing the
1702  * generation of the latest  root in the array with the generation
1703  * in the super block.  If they don't match we pitch it.
1704  */
1705 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1706 {
1707 	u64 cur;
1708 	int newest_index = -1;
1709 	struct btrfs_root_backup *root_backup;
1710 	int i;
1711 
1712 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1713 		root_backup = info->super_copy->super_roots + i;
1714 		cur = btrfs_backup_tree_root_gen(root_backup);
1715 		if (cur == newest_gen)
1716 			newest_index = i;
1717 	}
1718 
1719 	/* check to see if we actually wrapped around */
1720 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1721 		root_backup = info->super_copy->super_roots;
1722 		cur = btrfs_backup_tree_root_gen(root_backup);
1723 		if (cur == newest_gen)
1724 			newest_index = 0;
1725 	}
1726 	return newest_index;
1727 }
1728 
1729 
1730 /*
1731  * find the oldest backup so we know where to store new entries
1732  * in the backup array.  This will set the backup_root_index
1733  * field in the fs_info struct
1734  */
1735 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1736 				     u64 newest_gen)
1737 {
1738 	int newest_index = -1;
1739 
1740 	newest_index = find_newest_super_backup(info, newest_gen);
1741 	/* if there was garbage in there, just move along */
1742 	if (newest_index == -1) {
1743 		info->backup_root_index = 0;
1744 	} else {
1745 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1746 	}
1747 }
1748 
1749 /*
1750  * copy all the root pointers into the super backup array.
1751  * this will bump the backup pointer by one when it is
1752  * done
1753  */
1754 static void backup_super_roots(struct btrfs_fs_info *info)
1755 {
1756 	int next_backup;
1757 	struct btrfs_root_backup *root_backup;
1758 	int last_backup;
1759 
1760 	next_backup = info->backup_root_index;
1761 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1762 		BTRFS_NUM_BACKUP_ROOTS;
1763 
1764 	/*
1765 	 * just overwrite the last backup if we're at the same generation
1766 	 * this happens only at umount
1767 	 */
1768 	root_backup = info->super_for_commit->super_roots + last_backup;
1769 	if (btrfs_backup_tree_root_gen(root_backup) ==
1770 	    btrfs_header_generation(info->tree_root->node))
1771 		next_backup = last_backup;
1772 
1773 	root_backup = info->super_for_commit->super_roots + next_backup;
1774 
1775 	/*
1776 	 * make sure all of our padding and empty slots get zero filled
1777 	 * regardless of which ones we use today
1778 	 */
1779 	memset(root_backup, 0, sizeof(*root_backup));
1780 
1781 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1782 
1783 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1784 	btrfs_set_backup_tree_root_gen(root_backup,
1785 			       btrfs_header_generation(info->tree_root->node));
1786 
1787 	btrfs_set_backup_tree_root_level(root_backup,
1788 			       btrfs_header_level(info->tree_root->node));
1789 
1790 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1791 	btrfs_set_backup_chunk_root_gen(root_backup,
1792 			       btrfs_header_generation(info->chunk_root->node));
1793 	btrfs_set_backup_chunk_root_level(root_backup,
1794 			       btrfs_header_level(info->chunk_root->node));
1795 
1796 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1797 	btrfs_set_backup_extent_root_gen(root_backup,
1798 			       btrfs_header_generation(info->extent_root->node));
1799 	btrfs_set_backup_extent_root_level(root_backup,
1800 			       btrfs_header_level(info->extent_root->node));
1801 
1802 	/*
1803 	 * we might commit during log recovery, which happens before we set
1804 	 * the fs_root.  Make sure it is valid before we fill it in.
1805 	 */
1806 	if (info->fs_root && info->fs_root->node) {
1807 		btrfs_set_backup_fs_root(root_backup,
1808 					 info->fs_root->node->start);
1809 		btrfs_set_backup_fs_root_gen(root_backup,
1810 			       btrfs_header_generation(info->fs_root->node));
1811 		btrfs_set_backup_fs_root_level(root_backup,
1812 			       btrfs_header_level(info->fs_root->node));
1813 	}
1814 
1815 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1816 	btrfs_set_backup_dev_root_gen(root_backup,
1817 			       btrfs_header_generation(info->dev_root->node));
1818 	btrfs_set_backup_dev_root_level(root_backup,
1819 				       btrfs_header_level(info->dev_root->node));
1820 
1821 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1822 	btrfs_set_backup_csum_root_gen(root_backup,
1823 			       btrfs_header_generation(info->csum_root->node));
1824 	btrfs_set_backup_csum_root_level(root_backup,
1825 			       btrfs_header_level(info->csum_root->node));
1826 
1827 	btrfs_set_backup_total_bytes(root_backup,
1828 			     btrfs_super_total_bytes(info->super_copy));
1829 	btrfs_set_backup_bytes_used(root_backup,
1830 			     btrfs_super_bytes_used(info->super_copy));
1831 	btrfs_set_backup_num_devices(root_backup,
1832 			     btrfs_super_num_devices(info->super_copy));
1833 
1834 	/*
1835 	 * if we don't copy this out to the super_copy, it won't get remembered
1836 	 * for the next commit
1837 	 */
1838 	memcpy(&info->super_copy->super_roots,
1839 	       &info->super_for_commit->super_roots,
1840 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1841 }
1842 
1843 /*
1844  * this copies info out of the root backup array and back into
1845  * the in-memory super block.  It is meant to help iterate through
1846  * the array, so you send it the number of backups you've already
1847  * tried and the last backup index you used.
1848  *
1849  * this returns -1 when it has tried all the backups
1850  */
1851 static noinline int next_root_backup(struct btrfs_fs_info *info,
1852 				     struct btrfs_super_block *super,
1853 				     int *num_backups_tried, int *backup_index)
1854 {
1855 	struct btrfs_root_backup *root_backup;
1856 	int newest = *backup_index;
1857 
1858 	if (*num_backups_tried == 0) {
1859 		u64 gen = btrfs_super_generation(super);
1860 
1861 		newest = find_newest_super_backup(info, gen);
1862 		if (newest == -1)
1863 			return -1;
1864 
1865 		*backup_index = newest;
1866 		*num_backups_tried = 1;
1867 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1868 		/* we've tried all the backups, all done */
1869 		return -1;
1870 	} else {
1871 		/* jump to the next oldest backup */
1872 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1873 			BTRFS_NUM_BACKUP_ROOTS;
1874 		*backup_index = newest;
1875 		*num_backups_tried += 1;
1876 	}
1877 	root_backup = super->super_roots + newest;
1878 
1879 	btrfs_set_super_generation(super,
1880 				   btrfs_backup_tree_root_gen(root_backup));
1881 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1882 	btrfs_set_super_root_level(super,
1883 				   btrfs_backup_tree_root_level(root_backup));
1884 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1885 
1886 	/*
1887 	 * fixme: the total bytes and num_devices need to match or we should
1888 	 * need a fsck
1889 	 */
1890 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1891 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1892 	return 0;
1893 }
1894 
1895 /* helper to cleanup tree roots */
1896 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1897 {
1898 	free_extent_buffer(info->tree_root->node);
1899 	free_extent_buffer(info->tree_root->commit_root);
1900 	free_extent_buffer(info->dev_root->node);
1901 	free_extent_buffer(info->dev_root->commit_root);
1902 	free_extent_buffer(info->extent_root->node);
1903 	free_extent_buffer(info->extent_root->commit_root);
1904 	free_extent_buffer(info->csum_root->node);
1905 	free_extent_buffer(info->csum_root->commit_root);
1906 	if (info->quota_root) {
1907 		free_extent_buffer(info->quota_root->node);
1908 		free_extent_buffer(info->quota_root->commit_root);
1909 	}
1910 
1911 	info->tree_root->node = NULL;
1912 	info->tree_root->commit_root = NULL;
1913 	info->dev_root->node = NULL;
1914 	info->dev_root->commit_root = NULL;
1915 	info->extent_root->node = NULL;
1916 	info->extent_root->commit_root = NULL;
1917 	info->csum_root->node = NULL;
1918 	info->csum_root->commit_root = NULL;
1919 	if (info->quota_root) {
1920 		info->quota_root->node = NULL;
1921 		info->quota_root->commit_root = NULL;
1922 	}
1923 
1924 	if (chunk_root) {
1925 		free_extent_buffer(info->chunk_root->node);
1926 		free_extent_buffer(info->chunk_root->commit_root);
1927 		info->chunk_root->node = NULL;
1928 		info->chunk_root->commit_root = NULL;
1929 	}
1930 }
1931 
1932 
1933 int open_ctree(struct super_block *sb,
1934 	       struct btrfs_fs_devices *fs_devices,
1935 	       char *options)
1936 {
1937 	u32 sectorsize;
1938 	u32 nodesize;
1939 	u32 leafsize;
1940 	u32 blocksize;
1941 	u32 stripesize;
1942 	u64 generation;
1943 	u64 features;
1944 	struct btrfs_key location;
1945 	struct buffer_head *bh;
1946 	struct btrfs_super_block *disk_super;
1947 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1948 	struct btrfs_root *tree_root;
1949 	struct btrfs_root *extent_root;
1950 	struct btrfs_root *csum_root;
1951 	struct btrfs_root *chunk_root;
1952 	struct btrfs_root *dev_root;
1953 	struct btrfs_root *quota_root;
1954 	struct btrfs_root *log_tree_root;
1955 	int ret;
1956 	int err = -EINVAL;
1957 	int num_backups_tried = 0;
1958 	int backup_index = 0;
1959 
1960 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1961 	extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1962 	csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1963 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1964 	dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1965 	quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
1966 
1967 	if (!tree_root || !extent_root || !csum_root ||
1968 	    !chunk_root || !dev_root || !quota_root) {
1969 		err = -ENOMEM;
1970 		goto fail;
1971 	}
1972 
1973 	ret = init_srcu_struct(&fs_info->subvol_srcu);
1974 	if (ret) {
1975 		err = ret;
1976 		goto fail;
1977 	}
1978 
1979 	ret = setup_bdi(fs_info, &fs_info->bdi);
1980 	if (ret) {
1981 		err = ret;
1982 		goto fail_srcu;
1983 	}
1984 
1985 	fs_info->btree_inode = new_inode(sb);
1986 	if (!fs_info->btree_inode) {
1987 		err = -ENOMEM;
1988 		goto fail_bdi;
1989 	}
1990 
1991 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1992 
1993 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1994 	INIT_LIST_HEAD(&fs_info->trans_list);
1995 	INIT_LIST_HEAD(&fs_info->dead_roots);
1996 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
1997 	INIT_LIST_HEAD(&fs_info->hashers);
1998 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1999 	INIT_LIST_HEAD(&fs_info->ordered_operations);
2000 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2001 	spin_lock_init(&fs_info->delalloc_lock);
2002 	spin_lock_init(&fs_info->trans_lock);
2003 	spin_lock_init(&fs_info->ref_cache_lock);
2004 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2005 	spin_lock_init(&fs_info->delayed_iput_lock);
2006 	spin_lock_init(&fs_info->defrag_inodes_lock);
2007 	spin_lock_init(&fs_info->free_chunk_lock);
2008 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2009 	rwlock_init(&fs_info->tree_mod_log_lock);
2010 	mutex_init(&fs_info->reloc_mutex);
2011 
2012 	init_completion(&fs_info->kobj_unregister);
2013 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2014 	INIT_LIST_HEAD(&fs_info->space_info);
2015 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2016 	btrfs_mapping_init(&fs_info->mapping_tree);
2017 	btrfs_init_block_rsv(&fs_info->global_block_rsv);
2018 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
2019 	btrfs_init_block_rsv(&fs_info->trans_block_rsv);
2020 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
2021 	btrfs_init_block_rsv(&fs_info->empty_block_rsv);
2022 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
2023 	atomic_set(&fs_info->nr_async_submits, 0);
2024 	atomic_set(&fs_info->async_delalloc_pages, 0);
2025 	atomic_set(&fs_info->async_submit_draining, 0);
2026 	atomic_set(&fs_info->nr_async_bios, 0);
2027 	atomic_set(&fs_info->defrag_running, 0);
2028 	atomic_set(&fs_info->tree_mod_seq, 0);
2029 	fs_info->sb = sb;
2030 	fs_info->max_inline = 8192 * 1024;
2031 	fs_info->metadata_ratio = 0;
2032 	fs_info->defrag_inodes = RB_ROOT;
2033 	fs_info->trans_no_join = 0;
2034 	fs_info->free_chunk_space = 0;
2035 	fs_info->tree_mod_log = RB_ROOT;
2036 
2037 	/* readahead state */
2038 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2039 	spin_lock_init(&fs_info->reada_lock);
2040 
2041 	fs_info->thread_pool_size = min_t(unsigned long,
2042 					  num_online_cpus() + 2, 8);
2043 
2044 	INIT_LIST_HEAD(&fs_info->ordered_extents);
2045 	spin_lock_init(&fs_info->ordered_extent_lock);
2046 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2047 					GFP_NOFS);
2048 	if (!fs_info->delayed_root) {
2049 		err = -ENOMEM;
2050 		goto fail_iput;
2051 	}
2052 	btrfs_init_delayed_root(fs_info->delayed_root);
2053 
2054 	mutex_init(&fs_info->scrub_lock);
2055 	atomic_set(&fs_info->scrubs_running, 0);
2056 	atomic_set(&fs_info->scrub_pause_req, 0);
2057 	atomic_set(&fs_info->scrubs_paused, 0);
2058 	atomic_set(&fs_info->scrub_cancel_req, 0);
2059 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2060 	init_rwsem(&fs_info->scrub_super_lock);
2061 	fs_info->scrub_workers_refcnt = 0;
2062 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2063 	fs_info->check_integrity_print_mask = 0;
2064 #endif
2065 
2066 	spin_lock_init(&fs_info->balance_lock);
2067 	mutex_init(&fs_info->balance_mutex);
2068 	atomic_set(&fs_info->balance_running, 0);
2069 	atomic_set(&fs_info->balance_pause_req, 0);
2070 	atomic_set(&fs_info->balance_cancel_req, 0);
2071 	fs_info->balance_ctl = NULL;
2072 	init_waitqueue_head(&fs_info->balance_wait_q);
2073 
2074 	sb->s_blocksize = 4096;
2075 	sb->s_blocksize_bits = blksize_bits(4096);
2076 	sb->s_bdi = &fs_info->bdi;
2077 
2078 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2079 	set_nlink(fs_info->btree_inode, 1);
2080 	/*
2081 	 * we set the i_size on the btree inode to the max possible int.
2082 	 * the real end of the address space is determined by all of
2083 	 * the devices in the system
2084 	 */
2085 	fs_info->btree_inode->i_size = OFFSET_MAX;
2086 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2087 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2088 
2089 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2090 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2091 			     fs_info->btree_inode->i_mapping);
2092 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2093 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2094 
2095 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2096 
2097 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2098 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2099 	       sizeof(struct btrfs_key));
2100 	set_bit(BTRFS_INODE_DUMMY,
2101 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2102 	insert_inode_hash(fs_info->btree_inode);
2103 
2104 	spin_lock_init(&fs_info->block_group_cache_lock);
2105 	fs_info->block_group_cache_tree = RB_ROOT;
2106 
2107 	extent_io_tree_init(&fs_info->freed_extents[0],
2108 			     fs_info->btree_inode->i_mapping);
2109 	extent_io_tree_init(&fs_info->freed_extents[1],
2110 			     fs_info->btree_inode->i_mapping);
2111 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2112 	fs_info->do_barriers = 1;
2113 
2114 
2115 	mutex_init(&fs_info->ordered_operations_mutex);
2116 	mutex_init(&fs_info->tree_log_mutex);
2117 	mutex_init(&fs_info->chunk_mutex);
2118 	mutex_init(&fs_info->transaction_kthread_mutex);
2119 	mutex_init(&fs_info->cleaner_mutex);
2120 	mutex_init(&fs_info->volume_mutex);
2121 	init_rwsem(&fs_info->extent_commit_sem);
2122 	init_rwsem(&fs_info->cleanup_work_sem);
2123 	init_rwsem(&fs_info->subvol_sem);
2124 
2125 	spin_lock_init(&fs_info->qgroup_lock);
2126 	fs_info->qgroup_tree = RB_ROOT;
2127 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2128 	fs_info->qgroup_seq = 1;
2129 	fs_info->quota_enabled = 0;
2130 	fs_info->pending_quota_state = 0;
2131 
2132 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2133 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2134 
2135 	init_waitqueue_head(&fs_info->transaction_throttle);
2136 	init_waitqueue_head(&fs_info->transaction_wait);
2137 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2138 	init_waitqueue_head(&fs_info->async_submit_wait);
2139 
2140 	__setup_root(4096, 4096, 4096, 4096, tree_root,
2141 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2142 
2143 	invalidate_bdev(fs_devices->latest_bdev);
2144 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2145 	if (!bh) {
2146 		err = -EINVAL;
2147 		goto fail_alloc;
2148 	}
2149 
2150 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2151 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2152 	       sizeof(*fs_info->super_for_commit));
2153 	brelse(bh);
2154 
2155 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2156 
2157 	disk_super = fs_info->super_copy;
2158 	if (!btrfs_super_root(disk_super))
2159 		goto fail_alloc;
2160 
2161 	/* check FS state, whether FS is broken. */
2162 	fs_info->fs_state |= btrfs_super_flags(disk_super);
2163 
2164 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2165 	if (ret) {
2166 		printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2167 		err = ret;
2168 		goto fail_alloc;
2169 	}
2170 
2171 	/*
2172 	 * run through our array of backup supers and setup
2173 	 * our ring pointer to the oldest one
2174 	 */
2175 	generation = btrfs_super_generation(disk_super);
2176 	find_oldest_super_backup(fs_info, generation);
2177 
2178 	/*
2179 	 * In the long term, we'll store the compression type in the super
2180 	 * block, and it'll be used for per file compression control.
2181 	 */
2182 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2183 
2184 	ret = btrfs_parse_options(tree_root, options);
2185 	if (ret) {
2186 		err = ret;
2187 		goto fail_alloc;
2188 	}
2189 
2190 	features = btrfs_super_incompat_flags(disk_super) &
2191 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2192 	if (features) {
2193 		printk(KERN_ERR "BTRFS: couldn't mount because of "
2194 		       "unsupported optional features (%Lx).\n",
2195 		       (unsigned long long)features);
2196 		err = -EINVAL;
2197 		goto fail_alloc;
2198 	}
2199 
2200 	if (btrfs_super_leafsize(disk_super) !=
2201 	    btrfs_super_nodesize(disk_super)) {
2202 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2203 		       "blocksizes don't match.  node %d leaf %d\n",
2204 		       btrfs_super_nodesize(disk_super),
2205 		       btrfs_super_leafsize(disk_super));
2206 		err = -EINVAL;
2207 		goto fail_alloc;
2208 	}
2209 	if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2210 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2211 		       "blocksize (%d) was too large\n",
2212 		       btrfs_super_leafsize(disk_super));
2213 		err = -EINVAL;
2214 		goto fail_alloc;
2215 	}
2216 
2217 	features = btrfs_super_incompat_flags(disk_super);
2218 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2219 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2220 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2221 
2222 	/*
2223 	 * flag our filesystem as having big metadata blocks if
2224 	 * they are bigger than the page size
2225 	 */
2226 	if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2227 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2228 			printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2229 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2230 	}
2231 
2232 	nodesize = btrfs_super_nodesize(disk_super);
2233 	leafsize = btrfs_super_leafsize(disk_super);
2234 	sectorsize = btrfs_super_sectorsize(disk_super);
2235 	stripesize = btrfs_super_stripesize(disk_super);
2236 
2237 	/*
2238 	 * mixed block groups end up with duplicate but slightly offset
2239 	 * extent buffers for the same range.  It leads to corruptions
2240 	 */
2241 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2242 	    (sectorsize != leafsize)) {
2243 		printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2244 				"are not allowed for mixed block groups on %s\n",
2245 				sb->s_id);
2246 		goto fail_alloc;
2247 	}
2248 
2249 	btrfs_set_super_incompat_flags(disk_super, features);
2250 
2251 	features = btrfs_super_compat_ro_flags(disk_super) &
2252 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2253 	if (!(sb->s_flags & MS_RDONLY) && features) {
2254 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2255 		       "unsupported option features (%Lx).\n",
2256 		       (unsigned long long)features);
2257 		err = -EINVAL;
2258 		goto fail_alloc;
2259 	}
2260 
2261 	btrfs_init_workers(&fs_info->generic_worker,
2262 			   "genwork", 1, NULL);
2263 
2264 	btrfs_init_workers(&fs_info->workers, "worker",
2265 			   fs_info->thread_pool_size,
2266 			   &fs_info->generic_worker);
2267 
2268 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2269 			   fs_info->thread_pool_size,
2270 			   &fs_info->generic_worker);
2271 
2272 	btrfs_init_workers(&fs_info->submit_workers, "submit",
2273 			   min_t(u64, fs_devices->num_devices,
2274 			   fs_info->thread_pool_size),
2275 			   &fs_info->generic_worker);
2276 
2277 	btrfs_init_workers(&fs_info->caching_workers, "cache",
2278 			   2, &fs_info->generic_worker);
2279 
2280 	/* a higher idle thresh on the submit workers makes it much more
2281 	 * likely that bios will be send down in a sane order to the
2282 	 * devices
2283 	 */
2284 	fs_info->submit_workers.idle_thresh = 64;
2285 
2286 	fs_info->workers.idle_thresh = 16;
2287 	fs_info->workers.ordered = 1;
2288 
2289 	fs_info->delalloc_workers.idle_thresh = 2;
2290 	fs_info->delalloc_workers.ordered = 1;
2291 
2292 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2293 			   &fs_info->generic_worker);
2294 	btrfs_init_workers(&fs_info->endio_workers, "endio",
2295 			   fs_info->thread_pool_size,
2296 			   &fs_info->generic_worker);
2297 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2298 			   fs_info->thread_pool_size,
2299 			   &fs_info->generic_worker);
2300 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
2301 			   "endio-meta-write", fs_info->thread_pool_size,
2302 			   &fs_info->generic_worker);
2303 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2304 			   fs_info->thread_pool_size,
2305 			   &fs_info->generic_worker);
2306 	btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2307 			   1, &fs_info->generic_worker);
2308 	btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2309 			   fs_info->thread_pool_size,
2310 			   &fs_info->generic_worker);
2311 	btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2312 			   fs_info->thread_pool_size,
2313 			   &fs_info->generic_worker);
2314 
2315 	/*
2316 	 * endios are largely parallel and should have a very
2317 	 * low idle thresh
2318 	 */
2319 	fs_info->endio_workers.idle_thresh = 4;
2320 	fs_info->endio_meta_workers.idle_thresh = 4;
2321 
2322 	fs_info->endio_write_workers.idle_thresh = 2;
2323 	fs_info->endio_meta_write_workers.idle_thresh = 2;
2324 	fs_info->readahead_workers.idle_thresh = 2;
2325 
2326 	/*
2327 	 * btrfs_start_workers can really only fail because of ENOMEM so just
2328 	 * return -ENOMEM if any of these fail.
2329 	 */
2330 	ret = btrfs_start_workers(&fs_info->workers);
2331 	ret |= btrfs_start_workers(&fs_info->generic_worker);
2332 	ret |= btrfs_start_workers(&fs_info->submit_workers);
2333 	ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2334 	ret |= btrfs_start_workers(&fs_info->fixup_workers);
2335 	ret |= btrfs_start_workers(&fs_info->endio_workers);
2336 	ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2337 	ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2338 	ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2339 	ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2340 	ret |= btrfs_start_workers(&fs_info->delayed_workers);
2341 	ret |= btrfs_start_workers(&fs_info->caching_workers);
2342 	ret |= btrfs_start_workers(&fs_info->readahead_workers);
2343 	if (ret) {
2344 		err = -ENOMEM;
2345 		goto fail_sb_buffer;
2346 	}
2347 
2348 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2349 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2350 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2351 
2352 	tree_root->nodesize = nodesize;
2353 	tree_root->leafsize = leafsize;
2354 	tree_root->sectorsize = sectorsize;
2355 	tree_root->stripesize = stripesize;
2356 
2357 	sb->s_blocksize = sectorsize;
2358 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2359 
2360 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2361 		    sizeof(disk_super->magic))) {
2362 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2363 		goto fail_sb_buffer;
2364 	}
2365 
2366 	if (sectorsize != PAGE_SIZE) {
2367 		printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2368 		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2369 		goto fail_sb_buffer;
2370 	}
2371 
2372 	mutex_lock(&fs_info->chunk_mutex);
2373 	ret = btrfs_read_sys_array(tree_root);
2374 	mutex_unlock(&fs_info->chunk_mutex);
2375 	if (ret) {
2376 		printk(KERN_WARNING "btrfs: failed to read the system "
2377 		       "array on %s\n", sb->s_id);
2378 		goto fail_sb_buffer;
2379 	}
2380 
2381 	blocksize = btrfs_level_size(tree_root,
2382 				     btrfs_super_chunk_root_level(disk_super));
2383 	generation = btrfs_super_chunk_root_generation(disk_super);
2384 
2385 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
2386 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2387 
2388 	chunk_root->node = read_tree_block(chunk_root,
2389 					   btrfs_super_chunk_root(disk_super),
2390 					   blocksize, generation);
2391 	BUG_ON(!chunk_root->node); /* -ENOMEM */
2392 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2393 		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2394 		       sb->s_id);
2395 		goto fail_tree_roots;
2396 	}
2397 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2398 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2399 
2400 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2401 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2402 	   BTRFS_UUID_SIZE);
2403 
2404 	ret = btrfs_read_chunk_tree(chunk_root);
2405 	if (ret) {
2406 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2407 		       sb->s_id);
2408 		goto fail_tree_roots;
2409 	}
2410 
2411 	btrfs_close_extra_devices(fs_devices);
2412 
2413 	if (!fs_devices->latest_bdev) {
2414 		printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2415 		       sb->s_id);
2416 		goto fail_tree_roots;
2417 	}
2418 
2419 retry_root_backup:
2420 	blocksize = btrfs_level_size(tree_root,
2421 				     btrfs_super_root_level(disk_super));
2422 	generation = btrfs_super_generation(disk_super);
2423 
2424 	tree_root->node = read_tree_block(tree_root,
2425 					  btrfs_super_root(disk_super),
2426 					  blocksize, generation);
2427 	if (!tree_root->node ||
2428 	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2429 		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2430 		       sb->s_id);
2431 
2432 		goto recovery_tree_root;
2433 	}
2434 
2435 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2436 	tree_root->commit_root = btrfs_root_node(tree_root);
2437 
2438 	ret = find_and_setup_root(tree_root, fs_info,
2439 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2440 	if (ret)
2441 		goto recovery_tree_root;
2442 	extent_root->track_dirty = 1;
2443 
2444 	ret = find_and_setup_root(tree_root, fs_info,
2445 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
2446 	if (ret)
2447 		goto recovery_tree_root;
2448 	dev_root->track_dirty = 1;
2449 
2450 	ret = find_and_setup_root(tree_root, fs_info,
2451 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
2452 	if (ret)
2453 		goto recovery_tree_root;
2454 	csum_root->track_dirty = 1;
2455 
2456 	ret = find_and_setup_root(tree_root, fs_info,
2457 				  BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2458 	if (ret) {
2459 		kfree(quota_root);
2460 		quota_root = fs_info->quota_root = NULL;
2461 	} else {
2462 		quota_root->track_dirty = 1;
2463 		fs_info->quota_enabled = 1;
2464 		fs_info->pending_quota_state = 1;
2465 	}
2466 
2467 	fs_info->generation = generation;
2468 	fs_info->last_trans_committed = generation;
2469 
2470 	ret = btrfs_recover_balance(fs_info);
2471 	if (ret) {
2472 		printk(KERN_WARNING "btrfs: failed to recover balance\n");
2473 		goto fail_block_groups;
2474 	}
2475 
2476 	ret = btrfs_init_dev_stats(fs_info);
2477 	if (ret) {
2478 		printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2479 		       ret);
2480 		goto fail_block_groups;
2481 	}
2482 
2483 	ret = btrfs_init_space_info(fs_info);
2484 	if (ret) {
2485 		printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2486 		goto fail_block_groups;
2487 	}
2488 
2489 	ret = btrfs_read_block_groups(extent_root);
2490 	if (ret) {
2491 		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2492 		goto fail_block_groups;
2493 	}
2494 
2495 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2496 					       "btrfs-cleaner");
2497 	if (IS_ERR(fs_info->cleaner_kthread))
2498 		goto fail_block_groups;
2499 
2500 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2501 						   tree_root,
2502 						   "btrfs-transaction");
2503 	if (IS_ERR(fs_info->transaction_kthread))
2504 		goto fail_cleaner;
2505 
2506 	if (!btrfs_test_opt(tree_root, SSD) &&
2507 	    !btrfs_test_opt(tree_root, NOSSD) &&
2508 	    !fs_info->fs_devices->rotating) {
2509 		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2510 		       "mode\n");
2511 		btrfs_set_opt(fs_info->mount_opt, SSD);
2512 	}
2513 
2514 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2515 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2516 		ret = btrfsic_mount(tree_root, fs_devices,
2517 				    btrfs_test_opt(tree_root,
2518 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2519 				    1 : 0,
2520 				    fs_info->check_integrity_print_mask);
2521 		if (ret)
2522 			printk(KERN_WARNING "btrfs: failed to initialize"
2523 			       " integrity check module %s\n", sb->s_id);
2524 	}
2525 #endif
2526 	ret = btrfs_read_qgroup_config(fs_info);
2527 	if (ret)
2528 		goto fail_trans_kthread;
2529 
2530 	/* do not make disk changes in broken FS */
2531 	if (btrfs_super_log_root(disk_super) != 0) {
2532 		u64 bytenr = btrfs_super_log_root(disk_super);
2533 
2534 		if (fs_devices->rw_devices == 0) {
2535 			printk(KERN_WARNING "Btrfs log replay required "
2536 			       "on RO media\n");
2537 			err = -EIO;
2538 			goto fail_qgroup;
2539 		}
2540 		blocksize =
2541 		     btrfs_level_size(tree_root,
2542 				      btrfs_super_log_root_level(disk_super));
2543 
2544 		log_tree_root = btrfs_alloc_root(fs_info);
2545 		if (!log_tree_root) {
2546 			err = -ENOMEM;
2547 			goto fail_qgroup;
2548 		}
2549 
2550 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2551 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2552 
2553 		log_tree_root->node = read_tree_block(tree_root, bytenr,
2554 						      blocksize,
2555 						      generation + 1);
2556 		/* returns with log_tree_root freed on success */
2557 		ret = btrfs_recover_log_trees(log_tree_root);
2558 		if (ret) {
2559 			btrfs_error(tree_root->fs_info, ret,
2560 				    "Failed to recover log tree");
2561 			free_extent_buffer(log_tree_root->node);
2562 			kfree(log_tree_root);
2563 			goto fail_trans_kthread;
2564 		}
2565 
2566 		if (sb->s_flags & MS_RDONLY) {
2567 			ret = btrfs_commit_super(tree_root);
2568 			if (ret)
2569 				goto fail_trans_kthread;
2570 		}
2571 	}
2572 
2573 	ret = btrfs_find_orphan_roots(tree_root);
2574 	if (ret)
2575 		goto fail_trans_kthread;
2576 
2577 	if (!(sb->s_flags & MS_RDONLY)) {
2578 		ret = btrfs_cleanup_fs_roots(fs_info);
2579 		if (ret)
2580 			goto fail_trans_kthread;
2581 
2582 		ret = btrfs_recover_relocation(tree_root);
2583 		if (ret < 0) {
2584 			printk(KERN_WARNING
2585 			       "btrfs: failed to recover relocation\n");
2586 			err = -EINVAL;
2587 			goto fail_qgroup;
2588 		}
2589 	}
2590 
2591 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2592 	location.type = BTRFS_ROOT_ITEM_KEY;
2593 	location.offset = (u64)-1;
2594 
2595 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2596 	if (!fs_info->fs_root)
2597 		goto fail_qgroup;
2598 	if (IS_ERR(fs_info->fs_root)) {
2599 		err = PTR_ERR(fs_info->fs_root);
2600 		goto fail_qgroup;
2601 	}
2602 
2603 	if (sb->s_flags & MS_RDONLY)
2604 		return 0;
2605 
2606 	down_read(&fs_info->cleanup_work_sem);
2607 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2608 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2609 		up_read(&fs_info->cleanup_work_sem);
2610 		close_ctree(tree_root);
2611 		return ret;
2612 	}
2613 	up_read(&fs_info->cleanup_work_sem);
2614 
2615 	ret = btrfs_resume_balance_async(fs_info);
2616 	if (ret) {
2617 		printk(KERN_WARNING "btrfs: failed to resume balance\n");
2618 		close_ctree(tree_root);
2619 		return ret;
2620 	}
2621 
2622 	return 0;
2623 
2624 fail_qgroup:
2625 	btrfs_free_qgroup_config(fs_info);
2626 fail_trans_kthread:
2627 	kthread_stop(fs_info->transaction_kthread);
2628 fail_cleaner:
2629 	kthread_stop(fs_info->cleaner_kthread);
2630 
2631 	/*
2632 	 * make sure we're done with the btree inode before we stop our
2633 	 * kthreads
2634 	 */
2635 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2636 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2637 
2638 fail_block_groups:
2639 	btrfs_free_block_groups(fs_info);
2640 
2641 fail_tree_roots:
2642 	free_root_pointers(fs_info, 1);
2643 
2644 fail_sb_buffer:
2645 	btrfs_stop_workers(&fs_info->generic_worker);
2646 	btrfs_stop_workers(&fs_info->readahead_workers);
2647 	btrfs_stop_workers(&fs_info->fixup_workers);
2648 	btrfs_stop_workers(&fs_info->delalloc_workers);
2649 	btrfs_stop_workers(&fs_info->workers);
2650 	btrfs_stop_workers(&fs_info->endio_workers);
2651 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2652 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2653 	btrfs_stop_workers(&fs_info->endio_write_workers);
2654 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2655 	btrfs_stop_workers(&fs_info->submit_workers);
2656 	btrfs_stop_workers(&fs_info->delayed_workers);
2657 	btrfs_stop_workers(&fs_info->caching_workers);
2658 fail_alloc:
2659 fail_iput:
2660 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2661 
2662 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2663 	iput(fs_info->btree_inode);
2664 fail_bdi:
2665 	bdi_destroy(&fs_info->bdi);
2666 fail_srcu:
2667 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2668 fail:
2669 	btrfs_close_devices(fs_info->fs_devices);
2670 	return err;
2671 
2672 recovery_tree_root:
2673 	if (!btrfs_test_opt(tree_root, RECOVERY))
2674 		goto fail_tree_roots;
2675 
2676 	free_root_pointers(fs_info, 0);
2677 
2678 	/* don't use the log in recovery mode, it won't be valid */
2679 	btrfs_set_super_log_root(disk_super, 0);
2680 
2681 	/* we can't trust the free space cache either */
2682 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2683 
2684 	ret = next_root_backup(fs_info, fs_info->super_copy,
2685 			       &num_backups_tried, &backup_index);
2686 	if (ret == -1)
2687 		goto fail_block_groups;
2688 	goto retry_root_backup;
2689 }
2690 
2691 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2692 {
2693 	if (uptodate) {
2694 		set_buffer_uptodate(bh);
2695 	} else {
2696 		struct btrfs_device *device = (struct btrfs_device *)
2697 			bh->b_private;
2698 
2699 		printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2700 					  "I/O error on %s\n",
2701 					  rcu_str_deref(device->name));
2702 		/* note, we dont' set_buffer_write_io_error because we have
2703 		 * our own ways of dealing with the IO errors
2704 		 */
2705 		clear_buffer_uptodate(bh);
2706 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2707 	}
2708 	unlock_buffer(bh);
2709 	put_bh(bh);
2710 }
2711 
2712 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2713 {
2714 	struct buffer_head *bh;
2715 	struct buffer_head *latest = NULL;
2716 	struct btrfs_super_block *super;
2717 	int i;
2718 	u64 transid = 0;
2719 	u64 bytenr;
2720 
2721 	/* we would like to check all the supers, but that would make
2722 	 * a btrfs mount succeed after a mkfs from a different FS.
2723 	 * So, we need to add a special mount option to scan for
2724 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2725 	 */
2726 	for (i = 0; i < 1; i++) {
2727 		bytenr = btrfs_sb_offset(i);
2728 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2729 			break;
2730 		bh = __bread(bdev, bytenr / 4096, 4096);
2731 		if (!bh)
2732 			continue;
2733 
2734 		super = (struct btrfs_super_block *)bh->b_data;
2735 		if (btrfs_super_bytenr(super) != bytenr ||
2736 		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2737 			    sizeof(super->magic))) {
2738 			brelse(bh);
2739 			continue;
2740 		}
2741 
2742 		if (!latest || btrfs_super_generation(super) > transid) {
2743 			brelse(latest);
2744 			latest = bh;
2745 			transid = btrfs_super_generation(super);
2746 		} else {
2747 			brelse(bh);
2748 		}
2749 	}
2750 	return latest;
2751 }
2752 
2753 /*
2754  * this should be called twice, once with wait == 0 and
2755  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2756  * we write are pinned.
2757  *
2758  * They are released when wait == 1 is done.
2759  * max_mirrors must be the same for both runs, and it indicates how
2760  * many supers on this one device should be written.
2761  *
2762  * max_mirrors == 0 means to write them all.
2763  */
2764 static int write_dev_supers(struct btrfs_device *device,
2765 			    struct btrfs_super_block *sb,
2766 			    int do_barriers, int wait, int max_mirrors)
2767 {
2768 	struct buffer_head *bh;
2769 	int i;
2770 	int ret;
2771 	int errors = 0;
2772 	u32 crc;
2773 	u64 bytenr;
2774 
2775 	if (max_mirrors == 0)
2776 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2777 
2778 	for (i = 0; i < max_mirrors; i++) {
2779 		bytenr = btrfs_sb_offset(i);
2780 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2781 			break;
2782 
2783 		if (wait) {
2784 			bh = __find_get_block(device->bdev, bytenr / 4096,
2785 					      BTRFS_SUPER_INFO_SIZE);
2786 			BUG_ON(!bh);
2787 			wait_on_buffer(bh);
2788 			if (!buffer_uptodate(bh))
2789 				errors++;
2790 
2791 			/* drop our reference */
2792 			brelse(bh);
2793 
2794 			/* drop the reference from the wait == 0 run */
2795 			brelse(bh);
2796 			continue;
2797 		} else {
2798 			btrfs_set_super_bytenr(sb, bytenr);
2799 
2800 			crc = ~(u32)0;
2801 			crc = btrfs_csum_data(NULL, (char *)sb +
2802 					      BTRFS_CSUM_SIZE, crc,
2803 					      BTRFS_SUPER_INFO_SIZE -
2804 					      BTRFS_CSUM_SIZE);
2805 			btrfs_csum_final(crc, sb->csum);
2806 
2807 			/*
2808 			 * one reference for us, and we leave it for the
2809 			 * caller
2810 			 */
2811 			bh = __getblk(device->bdev, bytenr / 4096,
2812 				      BTRFS_SUPER_INFO_SIZE);
2813 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2814 
2815 			/* one reference for submit_bh */
2816 			get_bh(bh);
2817 
2818 			set_buffer_uptodate(bh);
2819 			lock_buffer(bh);
2820 			bh->b_end_io = btrfs_end_buffer_write_sync;
2821 			bh->b_private = device;
2822 		}
2823 
2824 		/*
2825 		 * we fua the first super.  The others we allow
2826 		 * to go down lazy.
2827 		 */
2828 		ret = btrfsic_submit_bh(WRITE_FUA, bh);
2829 		if (ret)
2830 			errors++;
2831 	}
2832 	return errors < i ? 0 : -1;
2833 }
2834 
2835 /*
2836  * endio for the write_dev_flush, this will wake anyone waiting
2837  * for the barrier when it is done
2838  */
2839 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2840 {
2841 	if (err) {
2842 		if (err == -EOPNOTSUPP)
2843 			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2844 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
2845 	}
2846 	if (bio->bi_private)
2847 		complete(bio->bi_private);
2848 	bio_put(bio);
2849 }
2850 
2851 /*
2852  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2853  * sent down.  With wait == 1, it waits for the previous flush.
2854  *
2855  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2856  * capable
2857  */
2858 static int write_dev_flush(struct btrfs_device *device, int wait)
2859 {
2860 	struct bio *bio;
2861 	int ret = 0;
2862 
2863 	if (device->nobarriers)
2864 		return 0;
2865 
2866 	if (wait) {
2867 		bio = device->flush_bio;
2868 		if (!bio)
2869 			return 0;
2870 
2871 		wait_for_completion(&device->flush_wait);
2872 
2873 		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2874 			printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2875 				      rcu_str_deref(device->name));
2876 			device->nobarriers = 1;
2877 		}
2878 		if (!bio_flagged(bio, BIO_UPTODATE)) {
2879 			ret = -EIO;
2880 			if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2881 				btrfs_dev_stat_inc_and_print(device,
2882 					BTRFS_DEV_STAT_FLUSH_ERRS);
2883 		}
2884 
2885 		/* drop the reference from the wait == 0 run */
2886 		bio_put(bio);
2887 		device->flush_bio = NULL;
2888 
2889 		return ret;
2890 	}
2891 
2892 	/*
2893 	 * one reference for us, and we leave it for the
2894 	 * caller
2895 	 */
2896 	device->flush_bio = NULL;
2897 	bio = bio_alloc(GFP_NOFS, 0);
2898 	if (!bio)
2899 		return -ENOMEM;
2900 
2901 	bio->bi_end_io = btrfs_end_empty_barrier;
2902 	bio->bi_bdev = device->bdev;
2903 	init_completion(&device->flush_wait);
2904 	bio->bi_private = &device->flush_wait;
2905 	device->flush_bio = bio;
2906 
2907 	bio_get(bio);
2908 	btrfsic_submit_bio(WRITE_FLUSH, bio);
2909 
2910 	return 0;
2911 }
2912 
2913 /*
2914  * send an empty flush down to each device in parallel,
2915  * then wait for them
2916  */
2917 static int barrier_all_devices(struct btrfs_fs_info *info)
2918 {
2919 	struct list_head *head;
2920 	struct btrfs_device *dev;
2921 	int errors = 0;
2922 	int ret;
2923 
2924 	/* send down all the barriers */
2925 	head = &info->fs_devices->devices;
2926 	list_for_each_entry_rcu(dev, head, dev_list) {
2927 		if (!dev->bdev) {
2928 			errors++;
2929 			continue;
2930 		}
2931 		if (!dev->in_fs_metadata || !dev->writeable)
2932 			continue;
2933 
2934 		ret = write_dev_flush(dev, 0);
2935 		if (ret)
2936 			errors++;
2937 	}
2938 
2939 	/* wait for all the barriers */
2940 	list_for_each_entry_rcu(dev, head, dev_list) {
2941 		if (!dev->bdev) {
2942 			errors++;
2943 			continue;
2944 		}
2945 		if (!dev->in_fs_metadata || !dev->writeable)
2946 			continue;
2947 
2948 		ret = write_dev_flush(dev, 1);
2949 		if (ret)
2950 			errors++;
2951 	}
2952 	if (errors)
2953 		return -EIO;
2954 	return 0;
2955 }
2956 
2957 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2958 {
2959 	struct list_head *head;
2960 	struct btrfs_device *dev;
2961 	struct btrfs_super_block *sb;
2962 	struct btrfs_dev_item *dev_item;
2963 	int ret;
2964 	int do_barriers;
2965 	int max_errors;
2966 	int total_errors = 0;
2967 	u64 flags;
2968 
2969 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2970 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2971 	backup_super_roots(root->fs_info);
2972 
2973 	sb = root->fs_info->super_for_commit;
2974 	dev_item = &sb->dev_item;
2975 
2976 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2977 	head = &root->fs_info->fs_devices->devices;
2978 
2979 	if (do_barriers)
2980 		barrier_all_devices(root->fs_info);
2981 
2982 	list_for_each_entry_rcu(dev, head, dev_list) {
2983 		if (!dev->bdev) {
2984 			total_errors++;
2985 			continue;
2986 		}
2987 		if (!dev->in_fs_metadata || !dev->writeable)
2988 			continue;
2989 
2990 		btrfs_set_stack_device_generation(dev_item, 0);
2991 		btrfs_set_stack_device_type(dev_item, dev->type);
2992 		btrfs_set_stack_device_id(dev_item, dev->devid);
2993 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2994 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2995 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2996 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2997 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2998 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2999 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3000 
3001 		flags = btrfs_super_flags(sb);
3002 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3003 
3004 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3005 		if (ret)
3006 			total_errors++;
3007 	}
3008 	if (total_errors > max_errors) {
3009 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3010 		       total_errors);
3011 
3012 		/* This shouldn't happen. FUA is masked off if unsupported */
3013 		BUG();
3014 	}
3015 
3016 	total_errors = 0;
3017 	list_for_each_entry_rcu(dev, head, dev_list) {
3018 		if (!dev->bdev)
3019 			continue;
3020 		if (!dev->in_fs_metadata || !dev->writeable)
3021 			continue;
3022 
3023 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3024 		if (ret)
3025 			total_errors++;
3026 	}
3027 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3028 	if (total_errors > max_errors) {
3029 		btrfs_error(root->fs_info, -EIO,
3030 			    "%d errors while writing supers", total_errors);
3031 		return -EIO;
3032 	}
3033 	return 0;
3034 }
3035 
3036 int write_ctree_super(struct btrfs_trans_handle *trans,
3037 		      struct btrfs_root *root, int max_mirrors)
3038 {
3039 	int ret;
3040 
3041 	ret = write_all_supers(root, max_mirrors);
3042 	return ret;
3043 }
3044 
3045 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3046 {
3047 	spin_lock(&fs_info->fs_roots_radix_lock);
3048 	radix_tree_delete(&fs_info->fs_roots_radix,
3049 			  (unsigned long)root->root_key.objectid);
3050 	spin_unlock(&fs_info->fs_roots_radix_lock);
3051 
3052 	if (btrfs_root_refs(&root->root_item) == 0)
3053 		synchronize_srcu(&fs_info->subvol_srcu);
3054 
3055 	__btrfs_remove_free_space_cache(root->free_ino_pinned);
3056 	__btrfs_remove_free_space_cache(root->free_ino_ctl);
3057 	free_fs_root(root);
3058 }
3059 
3060 static void free_fs_root(struct btrfs_root *root)
3061 {
3062 	iput(root->cache_inode);
3063 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3064 	if (root->anon_dev)
3065 		free_anon_bdev(root->anon_dev);
3066 	free_extent_buffer(root->node);
3067 	free_extent_buffer(root->commit_root);
3068 	kfree(root->free_ino_ctl);
3069 	kfree(root->free_ino_pinned);
3070 	kfree(root->name);
3071 	kfree(root);
3072 }
3073 
3074 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3075 {
3076 	int ret;
3077 	struct btrfs_root *gang[8];
3078 	int i;
3079 
3080 	while (!list_empty(&fs_info->dead_roots)) {
3081 		gang[0] = list_entry(fs_info->dead_roots.next,
3082 				     struct btrfs_root, root_list);
3083 		list_del(&gang[0]->root_list);
3084 
3085 		if (gang[0]->in_radix) {
3086 			btrfs_free_fs_root(fs_info, gang[0]);
3087 		} else {
3088 			free_extent_buffer(gang[0]->node);
3089 			free_extent_buffer(gang[0]->commit_root);
3090 			kfree(gang[0]);
3091 		}
3092 	}
3093 
3094 	while (1) {
3095 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3096 					     (void **)gang, 0,
3097 					     ARRAY_SIZE(gang));
3098 		if (!ret)
3099 			break;
3100 		for (i = 0; i < ret; i++)
3101 			btrfs_free_fs_root(fs_info, gang[i]);
3102 	}
3103 }
3104 
3105 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3106 {
3107 	u64 root_objectid = 0;
3108 	struct btrfs_root *gang[8];
3109 	int i;
3110 	int ret;
3111 
3112 	while (1) {
3113 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3114 					     (void **)gang, root_objectid,
3115 					     ARRAY_SIZE(gang));
3116 		if (!ret)
3117 			break;
3118 
3119 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3120 		for (i = 0; i < ret; i++) {
3121 			int err;
3122 
3123 			root_objectid = gang[i]->root_key.objectid;
3124 			err = btrfs_orphan_cleanup(gang[i]);
3125 			if (err)
3126 				return err;
3127 		}
3128 		root_objectid++;
3129 	}
3130 	return 0;
3131 }
3132 
3133 int btrfs_commit_super(struct btrfs_root *root)
3134 {
3135 	struct btrfs_trans_handle *trans;
3136 	int ret;
3137 
3138 	mutex_lock(&root->fs_info->cleaner_mutex);
3139 	btrfs_run_delayed_iputs(root);
3140 	btrfs_clean_old_snapshots(root);
3141 	mutex_unlock(&root->fs_info->cleaner_mutex);
3142 
3143 	/* wait until ongoing cleanup work done */
3144 	down_write(&root->fs_info->cleanup_work_sem);
3145 	up_write(&root->fs_info->cleanup_work_sem);
3146 
3147 	trans = btrfs_join_transaction(root);
3148 	if (IS_ERR(trans))
3149 		return PTR_ERR(trans);
3150 	ret = btrfs_commit_transaction(trans, root);
3151 	if (ret)
3152 		return ret;
3153 	/* run commit again to drop the original snapshot */
3154 	trans = btrfs_join_transaction(root);
3155 	if (IS_ERR(trans))
3156 		return PTR_ERR(trans);
3157 	ret = btrfs_commit_transaction(trans, root);
3158 	if (ret)
3159 		return ret;
3160 	ret = btrfs_write_and_wait_transaction(NULL, root);
3161 	if (ret) {
3162 		btrfs_error(root->fs_info, ret,
3163 			    "Failed to sync btree inode to disk.");
3164 		return ret;
3165 	}
3166 
3167 	ret = write_ctree_super(NULL, root, 0);
3168 	return ret;
3169 }
3170 
3171 int close_ctree(struct btrfs_root *root)
3172 {
3173 	struct btrfs_fs_info *fs_info = root->fs_info;
3174 	int ret;
3175 
3176 	fs_info->closing = 1;
3177 	smp_mb();
3178 
3179 	/* pause restriper - we want to resume on mount */
3180 	btrfs_pause_balance(root->fs_info);
3181 
3182 	btrfs_scrub_cancel(root);
3183 
3184 	/* wait for any defraggers to finish */
3185 	wait_event(fs_info->transaction_wait,
3186 		   (atomic_read(&fs_info->defrag_running) == 0));
3187 
3188 	/* clear out the rbtree of defraggable inodes */
3189 	btrfs_run_defrag_inodes(fs_info);
3190 
3191 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3192 		ret = btrfs_commit_super(root);
3193 		if (ret)
3194 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3195 	}
3196 
3197 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3198 		btrfs_error_commit_super(root);
3199 
3200 	btrfs_put_block_group_cache(fs_info);
3201 
3202 	kthread_stop(fs_info->transaction_kthread);
3203 	kthread_stop(fs_info->cleaner_kthread);
3204 
3205 	fs_info->closing = 2;
3206 	smp_mb();
3207 
3208 	btrfs_free_qgroup_config(root->fs_info);
3209 
3210 	if (fs_info->delalloc_bytes) {
3211 		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3212 		       (unsigned long long)fs_info->delalloc_bytes);
3213 	}
3214 	if (fs_info->total_ref_cache_size) {
3215 		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3216 		       (unsigned long long)fs_info->total_ref_cache_size);
3217 	}
3218 
3219 	free_extent_buffer(fs_info->extent_root->node);
3220 	free_extent_buffer(fs_info->extent_root->commit_root);
3221 	free_extent_buffer(fs_info->tree_root->node);
3222 	free_extent_buffer(fs_info->tree_root->commit_root);
3223 	free_extent_buffer(fs_info->chunk_root->node);
3224 	free_extent_buffer(fs_info->chunk_root->commit_root);
3225 	free_extent_buffer(fs_info->dev_root->node);
3226 	free_extent_buffer(fs_info->dev_root->commit_root);
3227 	free_extent_buffer(fs_info->csum_root->node);
3228 	free_extent_buffer(fs_info->csum_root->commit_root);
3229 	if (fs_info->quota_root) {
3230 		free_extent_buffer(fs_info->quota_root->node);
3231 		free_extent_buffer(fs_info->quota_root->commit_root);
3232 	}
3233 
3234 	btrfs_free_block_groups(fs_info);
3235 
3236 	del_fs_roots(fs_info);
3237 
3238 	iput(fs_info->btree_inode);
3239 
3240 	btrfs_stop_workers(&fs_info->generic_worker);
3241 	btrfs_stop_workers(&fs_info->fixup_workers);
3242 	btrfs_stop_workers(&fs_info->delalloc_workers);
3243 	btrfs_stop_workers(&fs_info->workers);
3244 	btrfs_stop_workers(&fs_info->endio_workers);
3245 	btrfs_stop_workers(&fs_info->endio_meta_workers);
3246 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3247 	btrfs_stop_workers(&fs_info->endio_write_workers);
3248 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
3249 	btrfs_stop_workers(&fs_info->submit_workers);
3250 	btrfs_stop_workers(&fs_info->delayed_workers);
3251 	btrfs_stop_workers(&fs_info->caching_workers);
3252 	btrfs_stop_workers(&fs_info->readahead_workers);
3253 
3254 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3255 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3256 		btrfsic_unmount(root, fs_info->fs_devices);
3257 #endif
3258 
3259 	btrfs_close_devices(fs_info->fs_devices);
3260 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3261 
3262 	bdi_destroy(&fs_info->bdi);
3263 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3264 
3265 	return 0;
3266 }
3267 
3268 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3269 			  int atomic)
3270 {
3271 	int ret;
3272 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3273 
3274 	ret = extent_buffer_uptodate(buf);
3275 	if (!ret)
3276 		return ret;
3277 
3278 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3279 				    parent_transid, atomic);
3280 	if (ret == -EAGAIN)
3281 		return ret;
3282 	return !ret;
3283 }
3284 
3285 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3286 {
3287 	return set_extent_buffer_uptodate(buf);
3288 }
3289 
3290 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3291 {
3292 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3293 	u64 transid = btrfs_header_generation(buf);
3294 	int was_dirty;
3295 
3296 	btrfs_assert_tree_locked(buf);
3297 	if (transid != root->fs_info->generation) {
3298 		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3299 		       "found %llu running %llu\n",
3300 			(unsigned long long)buf->start,
3301 			(unsigned long long)transid,
3302 			(unsigned long long)root->fs_info->generation);
3303 		WARN_ON(1);
3304 	}
3305 	was_dirty = set_extent_buffer_dirty(buf);
3306 	if (!was_dirty) {
3307 		spin_lock(&root->fs_info->delalloc_lock);
3308 		root->fs_info->dirty_metadata_bytes += buf->len;
3309 		spin_unlock(&root->fs_info->delalloc_lock);
3310 	}
3311 }
3312 
3313 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3314 {
3315 	/*
3316 	 * looks as though older kernels can get into trouble with
3317 	 * this code, they end up stuck in balance_dirty_pages forever
3318 	 */
3319 	u64 num_dirty;
3320 	unsigned long thresh = 32 * 1024 * 1024;
3321 
3322 	if (current->flags & PF_MEMALLOC)
3323 		return;
3324 
3325 	btrfs_balance_delayed_items(root);
3326 
3327 	num_dirty = root->fs_info->dirty_metadata_bytes;
3328 
3329 	if (num_dirty > thresh) {
3330 		balance_dirty_pages_ratelimited_nr(
3331 				   root->fs_info->btree_inode->i_mapping, 1);
3332 	}
3333 	return;
3334 }
3335 
3336 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3337 {
3338 	/*
3339 	 * looks as though older kernels can get into trouble with
3340 	 * this code, they end up stuck in balance_dirty_pages forever
3341 	 */
3342 	u64 num_dirty;
3343 	unsigned long thresh = 32 * 1024 * 1024;
3344 
3345 	if (current->flags & PF_MEMALLOC)
3346 		return;
3347 
3348 	num_dirty = root->fs_info->dirty_metadata_bytes;
3349 
3350 	if (num_dirty > thresh) {
3351 		balance_dirty_pages_ratelimited_nr(
3352 				   root->fs_info->btree_inode->i_mapping, 1);
3353 	}
3354 	return;
3355 }
3356 
3357 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3358 {
3359 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3360 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3361 }
3362 
3363 int btree_lock_page_hook(struct page *page, void *data,
3364 				void (*flush_fn)(void *))
3365 {
3366 	struct inode *inode = page->mapping->host;
3367 	struct btrfs_root *root = BTRFS_I(inode)->root;
3368 	struct extent_buffer *eb;
3369 
3370 	/*
3371 	 * We culled this eb but the page is still hanging out on the mapping,
3372 	 * carry on.
3373 	 */
3374 	if (!PagePrivate(page))
3375 		goto out;
3376 
3377 	eb = (struct extent_buffer *)page->private;
3378 	if (!eb) {
3379 		WARN_ON(1);
3380 		goto out;
3381 	}
3382 	if (page != eb->pages[0])
3383 		goto out;
3384 
3385 	if (!btrfs_try_tree_write_lock(eb)) {
3386 		flush_fn(data);
3387 		btrfs_tree_lock(eb);
3388 	}
3389 	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3390 
3391 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3392 		spin_lock(&root->fs_info->delalloc_lock);
3393 		if (root->fs_info->dirty_metadata_bytes >= eb->len)
3394 			root->fs_info->dirty_metadata_bytes -= eb->len;
3395 		else
3396 			WARN_ON(1);
3397 		spin_unlock(&root->fs_info->delalloc_lock);
3398 	}
3399 
3400 	btrfs_tree_unlock(eb);
3401 out:
3402 	if (!trylock_page(page)) {
3403 		flush_fn(data);
3404 		lock_page(page);
3405 	}
3406 	return 0;
3407 }
3408 
3409 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3410 			      int read_only)
3411 {
3412 	if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3413 		printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3414 		return -EINVAL;
3415 	}
3416 
3417 	if (read_only)
3418 		return 0;
3419 
3420 	return 0;
3421 }
3422 
3423 void btrfs_error_commit_super(struct btrfs_root *root)
3424 {
3425 	mutex_lock(&root->fs_info->cleaner_mutex);
3426 	btrfs_run_delayed_iputs(root);
3427 	mutex_unlock(&root->fs_info->cleaner_mutex);
3428 
3429 	down_write(&root->fs_info->cleanup_work_sem);
3430 	up_write(&root->fs_info->cleanup_work_sem);
3431 
3432 	/* cleanup FS via transaction */
3433 	btrfs_cleanup_transaction(root);
3434 }
3435 
3436 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3437 {
3438 	struct btrfs_inode *btrfs_inode;
3439 	struct list_head splice;
3440 
3441 	INIT_LIST_HEAD(&splice);
3442 
3443 	mutex_lock(&root->fs_info->ordered_operations_mutex);
3444 	spin_lock(&root->fs_info->ordered_extent_lock);
3445 
3446 	list_splice_init(&root->fs_info->ordered_operations, &splice);
3447 	while (!list_empty(&splice)) {
3448 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3449 					 ordered_operations);
3450 
3451 		list_del_init(&btrfs_inode->ordered_operations);
3452 
3453 		btrfs_invalidate_inodes(btrfs_inode->root);
3454 	}
3455 
3456 	spin_unlock(&root->fs_info->ordered_extent_lock);
3457 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
3458 }
3459 
3460 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3461 {
3462 	struct list_head splice;
3463 	struct btrfs_ordered_extent *ordered;
3464 	struct inode *inode;
3465 
3466 	INIT_LIST_HEAD(&splice);
3467 
3468 	spin_lock(&root->fs_info->ordered_extent_lock);
3469 
3470 	list_splice_init(&root->fs_info->ordered_extents, &splice);
3471 	while (!list_empty(&splice)) {
3472 		ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3473 				     root_extent_list);
3474 
3475 		list_del_init(&ordered->root_extent_list);
3476 		atomic_inc(&ordered->refs);
3477 
3478 		/* the inode may be getting freed (in sys_unlink path). */
3479 		inode = igrab(ordered->inode);
3480 
3481 		spin_unlock(&root->fs_info->ordered_extent_lock);
3482 		if (inode)
3483 			iput(inode);
3484 
3485 		atomic_set(&ordered->refs, 1);
3486 		btrfs_put_ordered_extent(ordered);
3487 
3488 		spin_lock(&root->fs_info->ordered_extent_lock);
3489 	}
3490 
3491 	spin_unlock(&root->fs_info->ordered_extent_lock);
3492 }
3493 
3494 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3495 			       struct btrfs_root *root)
3496 {
3497 	struct rb_node *node;
3498 	struct btrfs_delayed_ref_root *delayed_refs;
3499 	struct btrfs_delayed_ref_node *ref;
3500 	int ret = 0;
3501 
3502 	delayed_refs = &trans->delayed_refs;
3503 
3504 	spin_lock(&delayed_refs->lock);
3505 	if (delayed_refs->num_entries == 0) {
3506 		spin_unlock(&delayed_refs->lock);
3507 		printk(KERN_INFO "delayed_refs has NO entry\n");
3508 		return ret;
3509 	}
3510 
3511 	while ((node = rb_first(&delayed_refs->root)) != NULL) {
3512 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3513 
3514 		atomic_set(&ref->refs, 1);
3515 		if (btrfs_delayed_ref_is_head(ref)) {
3516 			struct btrfs_delayed_ref_head *head;
3517 
3518 			head = btrfs_delayed_node_to_head(ref);
3519 			if (!mutex_trylock(&head->mutex)) {
3520 				atomic_inc(&ref->refs);
3521 				spin_unlock(&delayed_refs->lock);
3522 
3523 				/* Need to wait for the delayed ref to run */
3524 				mutex_lock(&head->mutex);
3525 				mutex_unlock(&head->mutex);
3526 				btrfs_put_delayed_ref(ref);
3527 
3528 				spin_lock(&delayed_refs->lock);
3529 				continue;
3530 			}
3531 
3532 			kfree(head->extent_op);
3533 			delayed_refs->num_heads--;
3534 			if (list_empty(&head->cluster))
3535 				delayed_refs->num_heads_ready--;
3536 			list_del_init(&head->cluster);
3537 		}
3538 		ref->in_tree = 0;
3539 		rb_erase(&ref->rb_node, &delayed_refs->root);
3540 		delayed_refs->num_entries--;
3541 
3542 		spin_unlock(&delayed_refs->lock);
3543 		btrfs_put_delayed_ref(ref);
3544 
3545 		cond_resched();
3546 		spin_lock(&delayed_refs->lock);
3547 	}
3548 
3549 	spin_unlock(&delayed_refs->lock);
3550 
3551 	return ret;
3552 }
3553 
3554 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3555 {
3556 	struct btrfs_pending_snapshot *snapshot;
3557 	struct list_head splice;
3558 
3559 	INIT_LIST_HEAD(&splice);
3560 
3561 	list_splice_init(&t->pending_snapshots, &splice);
3562 
3563 	while (!list_empty(&splice)) {
3564 		snapshot = list_entry(splice.next,
3565 				      struct btrfs_pending_snapshot,
3566 				      list);
3567 
3568 		list_del_init(&snapshot->list);
3569 
3570 		kfree(snapshot);
3571 	}
3572 }
3573 
3574 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3575 {
3576 	struct btrfs_inode *btrfs_inode;
3577 	struct list_head splice;
3578 
3579 	INIT_LIST_HEAD(&splice);
3580 
3581 	spin_lock(&root->fs_info->delalloc_lock);
3582 	list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3583 
3584 	while (!list_empty(&splice)) {
3585 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3586 				    delalloc_inodes);
3587 
3588 		list_del_init(&btrfs_inode->delalloc_inodes);
3589 
3590 		btrfs_invalidate_inodes(btrfs_inode->root);
3591 	}
3592 
3593 	spin_unlock(&root->fs_info->delalloc_lock);
3594 }
3595 
3596 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3597 					struct extent_io_tree *dirty_pages,
3598 					int mark)
3599 {
3600 	int ret;
3601 	struct page *page;
3602 	struct inode *btree_inode = root->fs_info->btree_inode;
3603 	struct extent_buffer *eb;
3604 	u64 start = 0;
3605 	u64 end;
3606 	u64 offset;
3607 	unsigned long index;
3608 
3609 	while (1) {
3610 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3611 					    mark);
3612 		if (ret)
3613 			break;
3614 
3615 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3616 		while (start <= end) {
3617 			index = start >> PAGE_CACHE_SHIFT;
3618 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3619 			page = find_get_page(btree_inode->i_mapping, index);
3620 			if (!page)
3621 				continue;
3622 			offset = page_offset(page);
3623 
3624 			spin_lock(&dirty_pages->buffer_lock);
3625 			eb = radix_tree_lookup(
3626 			     &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3627 					       offset >> PAGE_CACHE_SHIFT);
3628 			spin_unlock(&dirty_pages->buffer_lock);
3629 			if (eb)
3630 				ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3631 							 &eb->bflags);
3632 			if (PageWriteback(page))
3633 				end_page_writeback(page);
3634 
3635 			lock_page(page);
3636 			if (PageDirty(page)) {
3637 				clear_page_dirty_for_io(page);
3638 				spin_lock_irq(&page->mapping->tree_lock);
3639 				radix_tree_tag_clear(&page->mapping->page_tree,
3640 							page_index(page),
3641 							PAGECACHE_TAG_DIRTY);
3642 				spin_unlock_irq(&page->mapping->tree_lock);
3643 			}
3644 
3645 			unlock_page(page);
3646 			page_cache_release(page);
3647 		}
3648 	}
3649 
3650 	return ret;
3651 }
3652 
3653 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3654 				       struct extent_io_tree *pinned_extents)
3655 {
3656 	struct extent_io_tree *unpin;
3657 	u64 start;
3658 	u64 end;
3659 	int ret;
3660 	bool loop = true;
3661 
3662 	unpin = pinned_extents;
3663 again:
3664 	while (1) {
3665 		ret = find_first_extent_bit(unpin, 0, &start, &end,
3666 					    EXTENT_DIRTY);
3667 		if (ret)
3668 			break;
3669 
3670 		/* opt_discard */
3671 		if (btrfs_test_opt(root, DISCARD))
3672 			ret = btrfs_error_discard_extent(root, start,
3673 							 end + 1 - start,
3674 							 NULL);
3675 
3676 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
3677 		btrfs_error_unpin_extent_range(root, start, end);
3678 		cond_resched();
3679 	}
3680 
3681 	if (loop) {
3682 		if (unpin == &root->fs_info->freed_extents[0])
3683 			unpin = &root->fs_info->freed_extents[1];
3684 		else
3685 			unpin = &root->fs_info->freed_extents[0];
3686 		loop = false;
3687 		goto again;
3688 	}
3689 
3690 	return 0;
3691 }
3692 
3693 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3694 				   struct btrfs_root *root)
3695 {
3696 	btrfs_destroy_delayed_refs(cur_trans, root);
3697 	btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3698 				cur_trans->dirty_pages.dirty_bytes);
3699 
3700 	/* FIXME: cleanup wait for commit */
3701 	cur_trans->in_commit = 1;
3702 	cur_trans->blocked = 1;
3703 	wake_up(&root->fs_info->transaction_blocked_wait);
3704 
3705 	cur_trans->blocked = 0;
3706 	wake_up(&root->fs_info->transaction_wait);
3707 
3708 	cur_trans->commit_done = 1;
3709 	wake_up(&cur_trans->commit_wait);
3710 
3711 	btrfs_destroy_delayed_inodes(root);
3712 	btrfs_assert_delayed_root_empty(root);
3713 
3714 	btrfs_destroy_pending_snapshots(cur_trans);
3715 
3716 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3717 				     EXTENT_DIRTY);
3718 	btrfs_destroy_pinned_extent(root,
3719 				    root->fs_info->pinned_extents);
3720 
3721 	/*
3722 	memset(cur_trans, 0, sizeof(*cur_trans));
3723 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3724 	*/
3725 }
3726 
3727 int btrfs_cleanup_transaction(struct btrfs_root *root)
3728 {
3729 	struct btrfs_transaction *t;
3730 	LIST_HEAD(list);
3731 
3732 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
3733 
3734 	spin_lock(&root->fs_info->trans_lock);
3735 	list_splice_init(&root->fs_info->trans_list, &list);
3736 	root->fs_info->trans_no_join = 1;
3737 	spin_unlock(&root->fs_info->trans_lock);
3738 
3739 	while (!list_empty(&list)) {
3740 		t = list_entry(list.next, struct btrfs_transaction, list);
3741 		if (!t)
3742 			break;
3743 
3744 		btrfs_destroy_ordered_operations(root);
3745 
3746 		btrfs_destroy_ordered_extents(root);
3747 
3748 		btrfs_destroy_delayed_refs(t, root);
3749 
3750 		btrfs_block_rsv_release(root,
3751 					&root->fs_info->trans_block_rsv,
3752 					t->dirty_pages.dirty_bytes);
3753 
3754 		/* FIXME: cleanup wait for commit */
3755 		t->in_commit = 1;
3756 		t->blocked = 1;
3757 		smp_mb();
3758 		if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3759 			wake_up(&root->fs_info->transaction_blocked_wait);
3760 
3761 		t->blocked = 0;
3762 		smp_mb();
3763 		if (waitqueue_active(&root->fs_info->transaction_wait))
3764 			wake_up(&root->fs_info->transaction_wait);
3765 
3766 		t->commit_done = 1;
3767 		smp_mb();
3768 		if (waitqueue_active(&t->commit_wait))
3769 			wake_up(&t->commit_wait);
3770 
3771 		btrfs_destroy_delayed_inodes(root);
3772 		btrfs_assert_delayed_root_empty(root);
3773 
3774 		btrfs_destroy_pending_snapshots(t);
3775 
3776 		btrfs_destroy_delalloc_inodes(root);
3777 
3778 		spin_lock(&root->fs_info->trans_lock);
3779 		root->fs_info->running_transaction = NULL;
3780 		spin_unlock(&root->fs_info->trans_lock);
3781 
3782 		btrfs_destroy_marked_extents(root, &t->dirty_pages,
3783 					     EXTENT_DIRTY);
3784 
3785 		btrfs_destroy_pinned_extent(root,
3786 					    root->fs_info->pinned_extents);
3787 
3788 		atomic_set(&t->use_count, 0);
3789 		list_del_init(&t->list);
3790 		memset(t, 0, sizeof(*t));
3791 		kmem_cache_free(btrfs_transaction_cachep, t);
3792 	}
3793 
3794 	spin_lock(&root->fs_info->trans_lock);
3795 	root->fs_info->trans_no_join = 0;
3796 	spin_unlock(&root->fs_info->trans_lock);
3797 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3798 
3799 	return 0;
3800 }
3801 
3802 static struct extent_io_ops btree_extent_io_ops = {
3803 	.write_cache_pages_lock_hook = btree_lock_page_hook,
3804 	.readpage_end_io_hook = btree_readpage_end_io_hook,
3805 	.readpage_io_failed_hook = btree_io_failed_hook,
3806 	.submit_bio_hook = btree_submit_bio_hook,
3807 	/* note we're sharing with inode.c for the merge bio hook */
3808 	.merge_bio_hook = btrfs_merge_bio_hook,
3809 };
3810