1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include <linux/slab.h> 31 #include <linux/migrate.h> 32 #include <linux/ratelimit.h> 33 #include <asm/unaligned.h> 34 #include "compat.h" 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "async-thread.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 49 static struct extent_io_ops btree_extent_io_ops; 50 static void end_workqueue_fn(struct btrfs_work *work); 51 static void free_fs_root(struct btrfs_root *root); 52 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 53 int read_only); 54 static void btrfs_destroy_ordered_operations(struct btrfs_root *root); 55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 57 struct btrfs_root *root); 58 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t); 59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 60 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 61 struct extent_io_tree *dirty_pages, 62 int mark); 63 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 64 struct extent_io_tree *pinned_extents); 65 66 /* 67 * end_io_wq structs are used to do processing in task context when an IO is 68 * complete. This is used during reads to verify checksums, and it is used 69 * by writes to insert metadata for new file extents after IO is complete. 70 */ 71 struct end_io_wq { 72 struct bio *bio; 73 bio_end_io_t *end_io; 74 void *private; 75 struct btrfs_fs_info *info; 76 int error; 77 int metadata; 78 struct list_head list; 79 struct btrfs_work work; 80 }; 81 82 /* 83 * async submit bios are used to offload expensive checksumming 84 * onto the worker threads. They checksum file and metadata bios 85 * just before they are sent down the IO stack. 86 */ 87 struct async_submit_bio { 88 struct inode *inode; 89 struct bio *bio; 90 struct list_head list; 91 extent_submit_bio_hook_t *submit_bio_start; 92 extent_submit_bio_hook_t *submit_bio_done; 93 int rw; 94 int mirror_num; 95 unsigned long bio_flags; 96 /* 97 * bio_offset is optional, can be used if the pages in the bio 98 * can't tell us where in the file the bio should go 99 */ 100 u64 bio_offset; 101 struct btrfs_work work; 102 int error; 103 }; 104 105 /* 106 * Lockdep class keys for extent_buffer->lock's in this root. For a given 107 * eb, the lockdep key is determined by the btrfs_root it belongs to and 108 * the level the eb occupies in the tree. 109 * 110 * Different roots are used for different purposes and may nest inside each 111 * other and they require separate keysets. As lockdep keys should be 112 * static, assign keysets according to the purpose of the root as indicated 113 * by btrfs_root->objectid. This ensures that all special purpose roots 114 * have separate keysets. 115 * 116 * Lock-nesting across peer nodes is always done with the immediate parent 117 * node locked thus preventing deadlock. As lockdep doesn't know this, use 118 * subclass to avoid triggering lockdep warning in such cases. 119 * 120 * The key is set by the readpage_end_io_hook after the buffer has passed 121 * csum validation but before the pages are unlocked. It is also set by 122 * btrfs_init_new_buffer on freshly allocated blocks. 123 * 124 * We also add a check to make sure the highest level of the tree is the 125 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 126 * needs update as well. 127 */ 128 #ifdef CONFIG_DEBUG_LOCK_ALLOC 129 # if BTRFS_MAX_LEVEL != 8 130 # error 131 # endif 132 133 static struct btrfs_lockdep_keyset { 134 u64 id; /* root objectid */ 135 const char *name_stem; /* lock name stem */ 136 char names[BTRFS_MAX_LEVEL + 1][20]; 137 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 138 } btrfs_lockdep_keysets[] = { 139 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 140 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 141 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 142 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 143 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 144 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 145 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" }, 146 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 147 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 148 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 149 { .id = 0, .name_stem = "tree" }, 150 }; 151 152 void __init btrfs_init_lockdep(void) 153 { 154 int i, j; 155 156 /* initialize lockdep class names */ 157 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 158 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 159 160 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 161 snprintf(ks->names[j], sizeof(ks->names[j]), 162 "btrfs-%s-%02d", ks->name_stem, j); 163 } 164 } 165 166 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 167 int level) 168 { 169 struct btrfs_lockdep_keyset *ks; 170 171 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 172 173 /* find the matching keyset, id 0 is the default entry */ 174 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 175 if (ks->id == objectid) 176 break; 177 178 lockdep_set_class_and_name(&eb->lock, 179 &ks->keys[level], ks->names[level]); 180 } 181 182 #endif 183 184 /* 185 * extents on the btree inode are pretty simple, there's one extent 186 * that covers the entire device 187 */ 188 static struct extent_map *btree_get_extent(struct inode *inode, 189 struct page *page, size_t pg_offset, u64 start, u64 len, 190 int create) 191 { 192 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 193 struct extent_map *em; 194 int ret; 195 196 read_lock(&em_tree->lock); 197 em = lookup_extent_mapping(em_tree, start, len); 198 if (em) { 199 em->bdev = 200 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 201 read_unlock(&em_tree->lock); 202 goto out; 203 } 204 read_unlock(&em_tree->lock); 205 206 em = alloc_extent_map(); 207 if (!em) { 208 em = ERR_PTR(-ENOMEM); 209 goto out; 210 } 211 em->start = 0; 212 em->len = (u64)-1; 213 em->block_len = (u64)-1; 214 em->block_start = 0; 215 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 216 217 write_lock(&em_tree->lock); 218 ret = add_extent_mapping(em_tree, em); 219 if (ret == -EEXIST) { 220 u64 failed_start = em->start; 221 u64 failed_len = em->len; 222 223 free_extent_map(em); 224 em = lookup_extent_mapping(em_tree, start, len); 225 if (em) { 226 ret = 0; 227 } else { 228 em = lookup_extent_mapping(em_tree, failed_start, 229 failed_len); 230 ret = -EIO; 231 } 232 } else if (ret) { 233 free_extent_map(em); 234 em = NULL; 235 } 236 write_unlock(&em_tree->lock); 237 238 if (ret) 239 em = ERR_PTR(ret); 240 out: 241 return em; 242 } 243 244 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 245 { 246 return crc32c(seed, data, len); 247 } 248 249 void btrfs_csum_final(u32 crc, char *result) 250 { 251 put_unaligned_le32(~crc, result); 252 } 253 254 /* 255 * compute the csum for a btree block, and either verify it or write it 256 * into the csum field of the block. 257 */ 258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 259 int verify) 260 { 261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 262 char *result = NULL; 263 unsigned long len; 264 unsigned long cur_len; 265 unsigned long offset = BTRFS_CSUM_SIZE; 266 char *kaddr; 267 unsigned long map_start; 268 unsigned long map_len; 269 int err; 270 u32 crc = ~(u32)0; 271 unsigned long inline_result; 272 273 len = buf->len - offset; 274 while (len > 0) { 275 err = map_private_extent_buffer(buf, offset, 32, 276 &kaddr, &map_start, &map_len); 277 if (err) 278 return 1; 279 cur_len = min(len, map_len - (offset - map_start)); 280 crc = btrfs_csum_data(root, kaddr + offset - map_start, 281 crc, cur_len); 282 len -= cur_len; 283 offset += cur_len; 284 } 285 if (csum_size > sizeof(inline_result)) { 286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 287 if (!result) 288 return 1; 289 } else { 290 result = (char *)&inline_result; 291 } 292 293 btrfs_csum_final(crc, result); 294 295 if (verify) { 296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 297 u32 val; 298 u32 found = 0; 299 memcpy(&found, result, csum_size); 300 301 read_extent_buffer(buf, &val, 0, csum_size); 302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify " 303 "failed on %llu wanted %X found %X " 304 "level %d\n", 305 root->fs_info->sb->s_id, 306 (unsigned long long)buf->start, val, found, 307 btrfs_header_level(buf)); 308 if (result != (char *)&inline_result) 309 kfree(result); 310 return 1; 311 } 312 } else { 313 write_extent_buffer(buf, result, 0, csum_size); 314 } 315 if (result != (char *)&inline_result) 316 kfree(result); 317 return 0; 318 } 319 320 /* 321 * we can't consider a given block up to date unless the transid of the 322 * block matches the transid in the parent node's pointer. This is how we 323 * detect blocks that either didn't get written at all or got written 324 * in the wrong place. 325 */ 326 static int verify_parent_transid(struct extent_io_tree *io_tree, 327 struct extent_buffer *eb, u64 parent_transid, 328 int atomic) 329 { 330 struct extent_state *cached_state = NULL; 331 int ret; 332 333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 334 return 0; 335 336 if (atomic) 337 return -EAGAIN; 338 339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 340 0, &cached_state); 341 if (extent_buffer_uptodate(eb) && 342 btrfs_header_generation(eb) == parent_transid) { 343 ret = 0; 344 goto out; 345 } 346 printk_ratelimited("parent transid verify failed on %llu wanted %llu " 347 "found %llu\n", 348 (unsigned long long)eb->start, 349 (unsigned long long)parent_transid, 350 (unsigned long long)btrfs_header_generation(eb)); 351 ret = 1; 352 clear_extent_buffer_uptodate(eb); 353 out: 354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 355 &cached_state, GFP_NOFS); 356 return ret; 357 } 358 359 /* 360 * helper to read a given tree block, doing retries as required when 361 * the checksums don't match and we have alternate mirrors to try. 362 */ 363 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 364 struct extent_buffer *eb, 365 u64 start, u64 parent_transid) 366 { 367 struct extent_io_tree *io_tree; 368 int failed = 0; 369 int ret; 370 int num_copies = 0; 371 int mirror_num = 0; 372 int failed_mirror = 0; 373 374 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 375 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 376 while (1) { 377 ret = read_extent_buffer_pages(io_tree, eb, start, 378 WAIT_COMPLETE, 379 btree_get_extent, mirror_num); 380 if (!ret) { 381 if (!verify_parent_transid(io_tree, eb, 382 parent_transid, 0)) 383 break; 384 else 385 ret = -EIO; 386 } 387 388 /* 389 * This buffer's crc is fine, but its contents are corrupted, so 390 * there is no reason to read the other copies, they won't be 391 * any less wrong. 392 */ 393 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 394 break; 395 396 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 397 eb->start, eb->len); 398 if (num_copies == 1) 399 break; 400 401 if (!failed_mirror) { 402 failed = 1; 403 failed_mirror = eb->read_mirror; 404 } 405 406 mirror_num++; 407 if (mirror_num == failed_mirror) 408 mirror_num++; 409 410 if (mirror_num > num_copies) 411 break; 412 } 413 414 if (failed && !ret && failed_mirror) 415 repair_eb_io_failure(root, eb, failed_mirror); 416 417 return ret; 418 } 419 420 /* 421 * checksum a dirty tree block before IO. This has extra checks to make sure 422 * we only fill in the checksum field in the first page of a multi-page block 423 */ 424 425 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 426 { 427 struct extent_io_tree *tree; 428 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 429 u64 found_start; 430 struct extent_buffer *eb; 431 432 tree = &BTRFS_I(page->mapping->host)->io_tree; 433 434 eb = (struct extent_buffer *)page->private; 435 if (page != eb->pages[0]) 436 return 0; 437 found_start = btrfs_header_bytenr(eb); 438 if (found_start != start) { 439 WARN_ON(1); 440 return 0; 441 } 442 if (eb->pages[0] != page) { 443 WARN_ON(1); 444 return 0; 445 } 446 if (!PageUptodate(page)) { 447 WARN_ON(1); 448 return 0; 449 } 450 csum_tree_block(root, eb, 0); 451 return 0; 452 } 453 454 static int check_tree_block_fsid(struct btrfs_root *root, 455 struct extent_buffer *eb) 456 { 457 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 458 u8 fsid[BTRFS_UUID_SIZE]; 459 int ret = 1; 460 461 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 462 BTRFS_FSID_SIZE); 463 while (fs_devices) { 464 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 465 ret = 0; 466 break; 467 } 468 fs_devices = fs_devices->seed; 469 } 470 return ret; 471 } 472 473 #define CORRUPT(reason, eb, root, slot) \ 474 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \ 475 "root=%llu, slot=%d\n", reason, \ 476 (unsigned long long)btrfs_header_bytenr(eb), \ 477 (unsigned long long)root->objectid, slot) 478 479 static noinline int check_leaf(struct btrfs_root *root, 480 struct extent_buffer *leaf) 481 { 482 struct btrfs_key key; 483 struct btrfs_key leaf_key; 484 u32 nritems = btrfs_header_nritems(leaf); 485 int slot; 486 487 if (nritems == 0) 488 return 0; 489 490 /* Check the 0 item */ 491 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 492 BTRFS_LEAF_DATA_SIZE(root)) { 493 CORRUPT("invalid item offset size pair", leaf, root, 0); 494 return -EIO; 495 } 496 497 /* 498 * Check to make sure each items keys are in the correct order and their 499 * offsets make sense. We only have to loop through nritems-1 because 500 * we check the current slot against the next slot, which verifies the 501 * next slot's offset+size makes sense and that the current's slot 502 * offset is correct. 503 */ 504 for (slot = 0; slot < nritems - 1; slot++) { 505 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 506 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 507 508 /* Make sure the keys are in the right order */ 509 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 510 CORRUPT("bad key order", leaf, root, slot); 511 return -EIO; 512 } 513 514 /* 515 * Make sure the offset and ends are right, remember that the 516 * item data starts at the end of the leaf and grows towards the 517 * front. 518 */ 519 if (btrfs_item_offset_nr(leaf, slot) != 520 btrfs_item_end_nr(leaf, slot + 1)) { 521 CORRUPT("slot offset bad", leaf, root, slot); 522 return -EIO; 523 } 524 525 /* 526 * Check to make sure that we don't point outside of the leaf, 527 * just incase all the items are consistent to eachother, but 528 * all point outside of the leaf. 529 */ 530 if (btrfs_item_end_nr(leaf, slot) > 531 BTRFS_LEAF_DATA_SIZE(root)) { 532 CORRUPT("slot end outside of leaf", leaf, root, slot); 533 return -EIO; 534 } 535 } 536 537 return 0; 538 } 539 540 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree, 541 struct page *page, int max_walk) 542 { 543 struct extent_buffer *eb; 544 u64 start = page_offset(page); 545 u64 target = start; 546 u64 min_start; 547 548 if (start < max_walk) 549 min_start = 0; 550 else 551 min_start = start - max_walk; 552 553 while (start >= min_start) { 554 eb = find_extent_buffer(tree, start, 0); 555 if (eb) { 556 /* 557 * we found an extent buffer and it contains our page 558 * horray! 559 */ 560 if (eb->start <= target && 561 eb->start + eb->len > target) 562 return eb; 563 564 /* we found an extent buffer that wasn't for us */ 565 free_extent_buffer(eb); 566 return NULL; 567 } 568 if (start == 0) 569 break; 570 start -= PAGE_CACHE_SIZE; 571 } 572 return NULL; 573 } 574 575 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 576 struct extent_state *state, int mirror) 577 { 578 struct extent_io_tree *tree; 579 u64 found_start; 580 int found_level; 581 struct extent_buffer *eb; 582 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 583 int ret = 0; 584 int reads_done; 585 586 if (!page->private) 587 goto out; 588 589 tree = &BTRFS_I(page->mapping->host)->io_tree; 590 eb = (struct extent_buffer *)page->private; 591 592 /* the pending IO might have been the only thing that kept this buffer 593 * in memory. Make sure we have a ref for all this other checks 594 */ 595 extent_buffer_get(eb); 596 597 reads_done = atomic_dec_and_test(&eb->io_pages); 598 if (!reads_done) 599 goto err; 600 601 eb->read_mirror = mirror; 602 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 603 ret = -EIO; 604 goto err; 605 } 606 607 found_start = btrfs_header_bytenr(eb); 608 if (found_start != eb->start) { 609 printk_ratelimited(KERN_INFO "btrfs bad tree block start " 610 "%llu %llu\n", 611 (unsigned long long)found_start, 612 (unsigned long long)eb->start); 613 ret = -EIO; 614 goto err; 615 } 616 if (check_tree_block_fsid(root, eb)) { 617 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n", 618 (unsigned long long)eb->start); 619 ret = -EIO; 620 goto err; 621 } 622 found_level = btrfs_header_level(eb); 623 624 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 625 eb, found_level); 626 627 ret = csum_tree_block(root, eb, 1); 628 if (ret) { 629 ret = -EIO; 630 goto err; 631 } 632 633 /* 634 * If this is a leaf block and it is corrupt, set the corrupt bit so 635 * that we don't try and read the other copies of this block, just 636 * return -EIO. 637 */ 638 if (found_level == 0 && check_leaf(root, eb)) { 639 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 640 ret = -EIO; 641 } 642 643 if (!ret) 644 set_extent_buffer_uptodate(eb); 645 err: 646 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) { 647 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags); 648 btree_readahead_hook(root, eb, eb->start, ret); 649 } 650 651 if (ret) 652 clear_extent_buffer_uptodate(eb); 653 free_extent_buffer(eb); 654 out: 655 return ret; 656 } 657 658 static int btree_io_failed_hook(struct page *page, int failed_mirror) 659 { 660 struct extent_buffer *eb; 661 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 662 663 eb = (struct extent_buffer *)page->private; 664 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 665 eb->read_mirror = failed_mirror; 666 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 667 btree_readahead_hook(root, eb, eb->start, -EIO); 668 return -EIO; /* we fixed nothing */ 669 } 670 671 static void end_workqueue_bio(struct bio *bio, int err) 672 { 673 struct end_io_wq *end_io_wq = bio->bi_private; 674 struct btrfs_fs_info *fs_info; 675 676 fs_info = end_io_wq->info; 677 end_io_wq->error = err; 678 end_io_wq->work.func = end_workqueue_fn; 679 end_io_wq->work.flags = 0; 680 681 if (bio->bi_rw & REQ_WRITE) { 682 if (end_io_wq->metadata == 1) 683 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 684 &end_io_wq->work); 685 else if (end_io_wq->metadata == 2) 686 btrfs_queue_worker(&fs_info->endio_freespace_worker, 687 &end_io_wq->work); 688 else 689 btrfs_queue_worker(&fs_info->endio_write_workers, 690 &end_io_wq->work); 691 } else { 692 if (end_io_wq->metadata) 693 btrfs_queue_worker(&fs_info->endio_meta_workers, 694 &end_io_wq->work); 695 else 696 btrfs_queue_worker(&fs_info->endio_workers, 697 &end_io_wq->work); 698 } 699 } 700 701 /* 702 * For the metadata arg you want 703 * 704 * 0 - if data 705 * 1 - if normal metadta 706 * 2 - if writing to the free space cache area 707 */ 708 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 709 int metadata) 710 { 711 struct end_io_wq *end_io_wq; 712 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 713 if (!end_io_wq) 714 return -ENOMEM; 715 716 end_io_wq->private = bio->bi_private; 717 end_io_wq->end_io = bio->bi_end_io; 718 end_io_wq->info = info; 719 end_io_wq->error = 0; 720 end_io_wq->bio = bio; 721 end_io_wq->metadata = metadata; 722 723 bio->bi_private = end_io_wq; 724 bio->bi_end_io = end_workqueue_bio; 725 return 0; 726 } 727 728 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 729 { 730 unsigned long limit = min_t(unsigned long, 731 info->workers.max_workers, 732 info->fs_devices->open_devices); 733 return 256 * limit; 734 } 735 736 static void run_one_async_start(struct btrfs_work *work) 737 { 738 struct async_submit_bio *async; 739 int ret; 740 741 async = container_of(work, struct async_submit_bio, work); 742 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 743 async->mirror_num, async->bio_flags, 744 async->bio_offset); 745 if (ret) 746 async->error = ret; 747 } 748 749 static void run_one_async_done(struct btrfs_work *work) 750 { 751 struct btrfs_fs_info *fs_info; 752 struct async_submit_bio *async; 753 int limit; 754 755 async = container_of(work, struct async_submit_bio, work); 756 fs_info = BTRFS_I(async->inode)->root->fs_info; 757 758 limit = btrfs_async_submit_limit(fs_info); 759 limit = limit * 2 / 3; 760 761 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 762 waitqueue_active(&fs_info->async_submit_wait)) 763 wake_up(&fs_info->async_submit_wait); 764 765 /* If an error occured we just want to clean up the bio and move on */ 766 if (async->error) { 767 bio_endio(async->bio, async->error); 768 return; 769 } 770 771 async->submit_bio_done(async->inode, async->rw, async->bio, 772 async->mirror_num, async->bio_flags, 773 async->bio_offset); 774 } 775 776 static void run_one_async_free(struct btrfs_work *work) 777 { 778 struct async_submit_bio *async; 779 780 async = container_of(work, struct async_submit_bio, work); 781 kfree(async); 782 } 783 784 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 785 int rw, struct bio *bio, int mirror_num, 786 unsigned long bio_flags, 787 u64 bio_offset, 788 extent_submit_bio_hook_t *submit_bio_start, 789 extent_submit_bio_hook_t *submit_bio_done) 790 { 791 struct async_submit_bio *async; 792 793 async = kmalloc(sizeof(*async), GFP_NOFS); 794 if (!async) 795 return -ENOMEM; 796 797 async->inode = inode; 798 async->rw = rw; 799 async->bio = bio; 800 async->mirror_num = mirror_num; 801 async->submit_bio_start = submit_bio_start; 802 async->submit_bio_done = submit_bio_done; 803 804 async->work.func = run_one_async_start; 805 async->work.ordered_func = run_one_async_done; 806 async->work.ordered_free = run_one_async_free; 807 808 async->work.flags = 0; 809 async->bio_flags = bio_flags; 810 async->bio_offset = bio_offset; 811 812 async->error = 0; 813 814 atomic_inc(&fs_info->nr_async_submits); 815 816 if (rw & REQ_SYNC) 817 btrfs_set_work_high_prio(&async->work); 818 819 btrfs_queue_worker(&fs_info->workers, &async->work); 820 821 while (atomic_read(&fs_info->async_submit_draining) && 822 atomic_read(&fs_info->nr_async_submits)) { 823 wait_event(fs_info->async_submit_wait, 824 (atomic_read(&fs_info->nr_async_submits) == 0)); 825 } 826 827 return 0; 828 } 829 830 static int btree_csum_one_bio(struct bio *bio) 831 { 832 struct bio_vec *bvec = bio->bi_io_vec; 833 int bio_index = 0; 834 struct btrfs_root *root; 835 int ret = 0; 836 837 WARN_ON(bio->bi_vcnt <= 0); 838 while (bio_index < bio->bi_vcnt) { 839 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 840 ret = csum_dirty_buffer(root, bvec->bv_page); 841 if (ret) 842 break; 843 bio_index++; 844 bvec++; 845 } 846 return ret; 847 } 848 849 static int __btree_submit_bio_start(struct inode *inode, int rw, 850 struct bio *bio, int mirror_num, 851 unsigned long bio_flags, 852 u64 bio_offset) 853 { 854 /* 855 * when we're called for a write, we're already in the async 856 * submission context. Just jump into btrfs_map_bio 857 */ 858 return btree_csum_one_bio(bio); 859 } 860 861 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 862 int mirror_num, unsigned long bio_flags, 863 u64 bio_offset) 864 { 865 /* 866 * when we're called for a write, we're already in the async 867 * submission context. Just jump into btrfs_map_bio 868 */ 869 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 870 } 871 872 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 873 int mirror_num, unsigned long bio_flags, 874 u64 bio_offset) 875 { 876 int ret; 877 878 if (!(rw & REQ_WRITE)) { 879 880 /* 881 * called for a read, do the setup so that checksum validation 882 * can happen in the async kernel threads 883 */ 884 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 885 bio, 1); 886 if (ret) 887 return ret; 888 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 889 mirror_num, 0); 890 } 891 892 /* 893 * kthread helpers are used to submit writes so that checksumming 894 * can happen in parallel across all CPUs 895 */ 896 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 897 inode, rw, bio, mirror_num, 0, 898 bio_offset, 899 __btree_submit_bio_start, 900 __btree_submit_bio_done); 901 } 902 903 #ifdef CONFIG_MIGRATION 904 static int btree_migratepage(struct address_space *mapping, 905 struct page *newpage, struct page *page, 906 enum migrate_mode mode) 907 { 908 /* 909 * we can't safely write a btree page from here, 910 * we haven't done the locking hook 911 */ 912 if (PageDirty(page)) 913 return -EAGAIN; 914 /* 915 * Buffers may be managed in a filesystem specific way. 916 * We must have no buffers or drop them. 917 */ 918 if (page_has_private(page) && 919 !try_to_release_page(page, GFP_KERNEL)) 920 return -EAGAIN; 921 return migrate_page(mapping, newpage, page, mode); 922 } 923 #endif 924 925 926 static int btree_writepages(struct address_space *mapping, 927 struct writeback_control *wbc) 928 { 929 struct extent_io_tree *tree; 930 tree = &BTRFS_I(mapping->host)->io_tree; 931 if (wbc->sync_mode == WB_SYNC_NONE) { 932 struct btrfs_root *root = BTRFS_I(mapping->host)->root; 933 u64 num_dirty; 934 unsigned long thresh = 32 * 1024 * 1024; 935 936 if (wbc->for_kupdate) 937 return 0; 938 939 /* this is a bit racy, but that's ok */ 940 num_dirty = root->fs_info->dirty_metadata_bytes; 941 if (num_dirty < thresh) 942 return 0; 943 } 944 return btree_write_cache_pages(mapping, wbc); 945 } 946 947 static int btree_readpage(struct file *file, struct page *page) 948 { 949 struct extent_io_tree *tree; 950 tree = &BTRFS_I(page->mapping->host)->io_tree; 951 return extent_read_full_page(tree, page, btree_get_extent, 0); 952 } 953 954 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 955 { 956 if (PageWriteback(page) || PageDirty(page)) 957 return 0; 958 /* 959 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing 960 * slab allocation from alloc_extent_state down the callchain where 961 * it'd hit a BUG_ON as those flags are not allowed. 962 */ 963 gfp_flags &= ~GFP_SLAB_BUG_MASK; 964 965 return try_release_extent_buffer(page, gfp_flags); 966 } 967 968 static void btree_invalidatepage(struct page *page, unsigned long offset) 969 { 970 struct extent_io_tree *tree; 971 tree = &BTRFS_I(page->mapping->host)->io_tree; 972 extent_invalidatepage(tree, page, offset); 973 btree_releasepage(page, GFP_NOFS); 974 if (PagePrivate(page)) { 975 printk(KERN_WARNING "btrfs warning page private not zero " 976 "on page %llu\n", (unsigned long long)page_offset(page)); 977 ClearPagePrivate(page); 978 set_page_private(page, 0); 979 page_cache_release(page); 980 } 981 } 982 983 static int btree_set_page_dirty(struct page *page) 984 { 985 struct extent_buffer *eb; 986 987 BUG_ON(!PagePrivate(page)); 988 eb = (struct extent_buffer *)page->private; 989 BUG_ON(!eb); 990 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 991 BUG_ON(!atomic_read(&eb->refs)); 992 btrfs_assert_tree_locked(eb); 993 return __set_page_dirty_nobuffers(page); 994 } 995 996 static const struct address_space_operations btree_aops = { 997 .readpage = btree_readpage, 998 .writepages = btree_writepages, 999 .releasepage = btree_releasepage, 1000 .invalidatepage = btree_invalidatepage, 1001 #ifdef CONFIG_MIGRATION 1002 .migratepage = btree_migratepage, 1003 #endif 1004 .set_page_dirty = btree_set_page_dirty, 1005 }; 1006 1007 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1008 u64 parent_transid) 1009 { 1010 struct extent_buffer *buf = NULL; 1011 struct inode *btree_inode = root->fs_info->btree_inode; 1012 int ret = 0; 1013 1014 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1015 if (!buf) 1016 return 0; 1017 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1018 buf, 0, WAIT_NONE, btree_get_extent, 0); 1019 free_extent_buffer(buf); 1020 return ret; 1021 } 1022 1023 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1024 int mirror_num, struct extent_buffer **eb) 1025 { 1026 struct extent_buffer *buf = NULL; 1027 struct inode *btree_inode = root->fs_info->btree_inode; 1028 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1029 int ret; 1030 1031 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1032 if (!buf) 1033 return 0; 1034 1035 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1036 1037 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1038 btree_get_extent, mirror_num); 1039 if (ret) { 1040 free_extent_buffer(buf); 1041 return ret; 1042 } 1043 1044 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1045 free_extent_buffer(buf); 1046 return -EIO; 1047 } else if (extent_buffer_uptodate(buf)) { 1048 *eb = buf; 1049 } else { 1050 free_extent_buffer(buf); 1051 } 1052 return 0; 1053 } 1054 1055 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 1056 u64 bytenr, u32 blocksize) 1057 { 1058 struct inode *btree_inode = root->fs_info->btree_inode; 1059 struct extent_buffer *eb; 1060 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1061 bytenr, blocksize); 1062 return eb; 1063 } 1064 1065 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1066 u64 bytenr, u32 blocksize) 1067 { 1068 struct inode *btree_inode = root->fs_info->btree_inode; 1069 struct extent_buffer *eb; 1070 1071 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1072 bytenr, blocksize); 1073 return eb; 1074 } 1075 1076 1077 int btrfs_write_tree_block(struct extent_buffer *buf) 1078 { 1079 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1080 buf->start + buf->len - 1); 1081 } 1082 1083 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1084 { 1085 return filemap_fdatawait_range(buf->pages[0]->mapping, 1086 buf->start, buf->start + buf->len - 1); 1087 } 1088 1089 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1090 u32 blocksize, u64 parent_transid) 1091 { 1092 struct extent_buffer *buf = NULL; 1093 int ret; 1094 1095 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1096 if (!buf) 1097 return NULL; 1098 1099 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1100 return buf; 1101 1102 } 1103 1104 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1105 struct extent_buffer *buf) 1106 { 1107 if (btrfs_header_generation(buf) == 1108 root->fs_info->running_transaction->transid) { 1109 btrfs_assert_tree_locked(buf); 1110 1111 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1112 spin_lock(&root->fs_info->delalloc_lock); 1113 if (root->fs_info->dirty_metadata_bytes >= buf->len) 1114 root->fs_info->dirty_metadata_bytes -= buf->len; 1115 else { 1116 spin_unlock(&root->fs_info->delalloc_lock); 1117 btrfs_panic(root->fs_info, -EOVERFLOW, 1118 "Can't clear %lu bytes from " 1119 " dirty_mdatadata_bytes (%llu)", 1120 buf->len, 1121 root->fs_info->dirty_metadata_bytes); 1122 } 1123 spin_unlock(&root->fs_info->delalloc_lock); 1124 } 1125 1126 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1127 btrfs_set_lock_blocking(buf); 1128 clear_extent_buffer_dirty(buf); 1129 } 1130 } 1131 1132 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 1133 u32 stripesize, struct btrfs_root *root, 1134 struct btrfs_fs_info *fs_info, 1135 u64 objectid) 1136 { 1137 root->node = NULL; 1138 root->commit_root = NULL; 1139 root->sectorsize = sectorsize; 1140 root->nodesize = nodesize; 1141 root->leafsize = leafsize; 1142 root->stripesize = stripesize; 1143 root->ref_cows = 0; 1144 root->track_dirty = 0; 1145 root->in_radix = 0; 1146 root->orphan_item_inserted = 0; 1147 root->orphan_cleanup_state = 0; 1148 1149 root->objectid = objectid; 1150 root->last_trans = 0; 1151 root->highest_objectid = 0; 1152 root->name = NULL; 1153 root->inode_tree = RB_ROOT; 1154 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1155 root->block_rsv = NULL; 1156 root->orphan_block_rsv = NULL; 1157 1158 INIT_LIST_HEAD(&root->dirty_list); 1159 INIT_LIST_HEAD(&root->root_list); 1160 spin_lock_init(&root->orphan_lock); 1161 spin_lock_init(&root->inode_lock); 1162 spin_lock_init(&root->accounting_lock); 1163 mutex_init(&root->objectid_mutex); 1164 mutex_init(&root->log_mutex); 1165 init_waitqueue_head(&root->log_writer_wait); 1166 init_waitqueue_head(&root->log_commit_wait[0]); 1167 init_waitqueue_head(&root->log_commit_wait[1]); 1168 atomic_set(&root->log_commit[0], 0); 1169 atomic_set(&root->log_commit[1], 0); 1170 atomic_set(&root->log_writers, 0); 1171 atomic_set(&root->orphan_inodes, 0); 1172 root->log_batch = 0; 1173 root->log_transid = 0; 1174 root->last_log_commit = 0; 1175 extent_io_tree_init(&root->dirty_log_pages, 1176 fs_info->btree_inode->i_mapping); 1177 1178 memset(&root->root_key, 0, sizeof(root->root_key)); 1179 memset(&root->root_item, 0, sizeof(root->root_item)); 1180 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1181 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1182 root->defrag_trans_start = fs_info->generation; 1183 init_completion(&root->kobj_unregister); 1184 root->defrag_running = 0; 1185 root->root_key.objectid = objectid; 1186 root->anon_dev = 0; 1187 1188 spin_lock_init(&root->root_times_lock); 1189 } 1190 1191 static int __must_check find_and_setup_root(struct btrfs_root *tree_root, 1192 struct btrfs_fs_info *fs_info, 1193 u64 objectid, 1194 struct btrfs_root *root) 1195 { 1196 int ret; 1197 u32 blocksize; 1198 u64 generation; 1199 1200 __setup_root(tree_root->nodesize, tree_root->leafsize, 1201 tree_root->sectorsize, tree_root->stripesize, 1202 root, fs_info, objectid); 1203 ret = btrfs_find_last_root(tree_root, objectid, 1204 &root->root_item, &root->root_key); 1205 if (ret > 0) 1206 return -ENOENT; 1207 else if (ret < 0) 1208 return ret; 1209 1210 generation = btrfs_root_generation(&root->root_item); 1211 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1212 root->commit_root = NULL; 1213 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1214 blocksize, generation); 1215 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) { 1216 free_extent_buffer(root->node); 1217 root->node = NULL; 1218 return -EIO; 1219 } 1220 root->commit_root = btrfs_root_node(root); 1221 return 0; 1222 } 1223 1224 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1225 { 1226 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1227 if (root) 1228 root->fs_info = fs_info; 1229 return root; 1230 } 1231 1232 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1233 struct btrfs_fs_info *fs_info, 1234 u64 objectid) 1235 { 1236 struct extent_buffer *leaf; 1237 struct btrfs_root *tree_root = fs_info->tree_root; 1238 struct btrfs_root *root; 1239 struct btrfs_key key; 1240 int ret = 0; 1241 u64 bytenr; 1242 1243 root = btrfs_alloc_root(fs_info); 1244 if (!root) 1245 return ERR_PTR(-ENOMEM); 1246 1247 __setup_root(tree_root->nodesize, tree_root->leafsize, 1248 tree_root->sectorsize, tree_root->stripesize, 1249 root, fs_info, objectid); 1250 root->root_key.objectid = objectid; 1251 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1252 root->root_key.offset = 0; 1253 1254 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 1255 0, objectid, NULL, 0, 0, 0); 1256 if (IS_ERR(leaf)) { 1257 ret = PTR_ERR(leaf); 1258 goto fail; 1259 } 1260 1261 bytenr = leaf->start; 1262 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1263 btrfs_set_header_bytenr(leaf, leaf->start); 1264 btrfs_set_header_generation(leaf, trans->transid); 1265 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1266 btrfs_set_header_owner(leaf, objectid); 1267 root->node = leaf; 1268 1269 write_extent_buffer(leaf, fs_info->fsid, 1270 (unsigned long)btrfs_header_fsid(leaf), 1271 BTRFS_FSID_SIZE); 1272 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1273 (unsigned long)btrfs_header_chunk_tree_uuid(leaf), 1274 BTRFS_UUID_SIZE); 1275 btrfs_mark_buffer_dirty(leaf); 1276 1277 root->commit_root = btrfs_root_node(root); 1278 root->track_dirty = 1; 1279 1280 1281 root->root_item.flags = 0; 1282 root->root_item.byte_limit = 0; 1283 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1284 btrfs_set_root_generation(&root->root_item, trans->transid); 1285 btrfs_set_root_level(&root->root_item, 0); 1286 btrfs_set_root_refs(&root->root_item, 1); 1287 btrfs_set_root_used(&root->root_item, leaf->len); 1288 btrfs_set_root_last_snapshot(&root->root_item, 0); 1289 btrfs_set_root_dirid(&root->root_item, 0); 1290 root->root_item.drop_level = 0; 1291 1292 key.objectid = objectid; 1293 key.type = BTRFS_ROOT_ITEM_KEY; 1294 key.offset = 0; 1295 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1296 if (ret) 1297 goto fail; 1298 1299 btrfs_tree_unlock(leaf); 1300 1301 fail: 1302 if (ret) 1303 return ERR_PTR(ret); 1304 1305 return root; 1306 } 1307 1308 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1309 struct btrfs_fs_info *fs_info) 1310 { 1311 struct btrfs_root *root; 1312 struct btrfs_root *tree_root = fs_info->tree_root; 1313 struct extent_buffer *leaf; 1314 1315 root = btrfs_alloc_root(fs_info); 1316 if (!root) 1317 return ERR_PTR(-ENOMEM); 1318 1319 __setup_root(tree_root->nodesize, tree_root->leafsize, 1320 tree_root->sectorsize, tree_root->stripesize, 1321 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1322 1323 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1324 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1325 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1326 /* 1327 * log trees do not get reference counted because they go away 1328 * before a real commit is actually done. They do store pointers 1329 * to file data extents, and those reference counts still get 1330 * updated (along with back refs to the log tree). 1331 */ 1332 root->ref_cows = 0; 1333 1334 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1335 BTRFS_TREE_LOG_OBJECTID, NULL, 1336 0, 0, 0); 1337 if (IS_ERR(leaf)) { 1338 kfree(root); 1339 return ERR_CAST(leaf); 1340 } 1341 1342 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1343 btrfs_set_header_bytenr(leaf, leaf->start); 1344 btrfs_set_header_generation(leaf, trans->transid); 1345 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1346 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1347 root->node = leaf; 1348 1349 write_extent_buffer(root->node, root->fs_info->fsid, 1350 (unsigned long)btrfs_header_fsid(root->node), 1351 BTRFS_FSID_SIZE); 1352 btrfs_mark_buffer_dirty(root->node); 1353 btrfs_tree_unlock(root->node); 1354 return root; 1355 } 1356 1357 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1358 struct btrfs_fs_info *fs_info) 1359 { 1360 struct btrfs_root *log_root; 1361 1362 log_root = alloc_log_tree(trans, fs_info); 1363 if (IS_ERR(log_root)) 1364 return PTR_ERR(log_root); 1365 WARN_ON(fs_info->log_root_tree); 1366 fs_info->log_root_tree = log_root; 1367 return 0; 1368 } 1369 1370 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1371 struct btrfs_root *root) 1372 { 1373 struct btrfs_root *log_root; 1374 struct btrfs_inode_item *inode_item; 1375 1376 log_root = alloc_log_tree(trans, root->fs_info); 1377 if (IS_ERR(log_root)) 1378 return PTR_ERR(log_root); 1379 1380 log_root->last_trans = trans->transid; 1381 log_root->root_key.offset = root->root_key.objectid; 1382 1383 inode_item = &log_root->root_item.inode; 1384 inode_item->generation = cpu_to_le64(1); 1385 inode_item->size = cpu_to_le64(3); 1386 inode_item->nlink = cpu_to_le32(1); 1387 inode_item->nbytes = cpu_to_le64(root->leafsize); 1388 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1389 1390 btrfs_set_root_node(&log_root->root_item, log_root->node); 1391 1392 WARN_ON(root->log_root); 1393 root->log_root = log_root; 1394 root->log_transid = 0; 1395 root->last_log_commit = 0; 1396 return 0; 1397 } 1398 1399 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1400 struct btrfs_key *location) 1401 { 1402 struct btrfs_root *root; 1403 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1404 struct btrfs_path *path; 1405 struct extent_buffer *l; 1406 u64 generation; 1407 u32 blocksize; 1408 int ret = 0; 1409 int slot; 1410 1411 root = btrfs_alloc_root(fs_info); 1412 if (!root) 1413 return ERR_PTR(-ENOMEM); 1414 if (location->offset == (u64)-1) { 1415 ret = find_and_setup_root(tree_root, fs_info, 1416 location->objectid, root); 1417 if (ret) { 1418 kfree(root); 1419 return ERR_PTR(ret); 1420 } 1421 goto out; 1422 } 1423 1424 __setup_root(tree_root->nodesize, tree_root->leafsize, 1425 tree_root->sectorsize, tree_root->stripesize, 1426 root, fs_info, location->objectid); 1427 1428 path = btrfs_alloc_path(); 1429 if (!path) { 1430 kfree(root); 1431 return ERR_PTR(-ENOMEM); 1432 } 1433 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1434 if (ret == 0) { 1435 l = path->nodes[0]; 1436 slot = path->slots[0]; 1437 btrfs_read_root_item(tree_root, l, slot, &root->root_item); 1438 memcpy(&root->root_key, location, sizeof(*location)); 1439 } 1440 btrfs_free_path(path); 1441 if (ret) { 1442 kfree(root); 1443 if (ret > 0) 1444 ret = -ENOENT; 1445 return ERR_PTR(ret); 1446 } 1447 1448 generation = btrfs_root_generation(&root->root_item); 1449 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1450 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1451 blocksize, generation); 1452 root->commit_root = btrfs_root_node(root); 1453 BUG_ON(!root->node); /* -ENOMEM */ 1454 out: 1455 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { 1456 root->ref_cows = 1; 1457 btrfs_check_and_init_root_item(&root->root_item); 1458 } 1459 1460 return root; 1461 } 1462 1463 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1464 struct btrfs_key *location) 1465 { 1466 struct btrfs_root *root; 1467 int ret; 1468 1469 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1470 return fs_info->tree_root; 1471 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1472 return fs_info->extent_root; 1473 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1474 return fs_info->chunk_root; 1475 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1476 return fs_info->dev_root; 1477 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1478 return fs_info->csum_root; 1479 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1480 return fs_info->quota_root ? fs_info->quota_root : 1481 ERR_PTR(-ENOENT); 1482 again: 1483 spin_lock(&fs_info->fs_roots_radix_lock); 1484 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1485 (unsigned long)location->objectid); 1486 spin_unlock(&fs_info->fs_roots_radix_lock); 1487 if (root) 1488 return root; 1489 1490 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1491 if (IS_ERR(root)) 1492 return root; 1493 1494 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1495 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1496 GFP_NOFS); 1497 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1498 ret = -ENOMEM; 1499 goto fail; 1500 } 1501 1502 btrfs_init_free_ino_ctl(root); 1503 mutex_init(&root->fs_commit_mutex); 1504 spin_lock_init(&root->cache_lock); 1505 init_waitqueue_head(&root->cache_wait); 1506 1507 ret = get_anon_bdev(&root->anon_dev); 1508 if (ret) 1509 goto fail; 1510 1511 if (btrfs_root_refs(&root->root_item) == 0) { 1512 ret = -ENOENT; 1513 goto fail; 1514 } 1515 1516 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); 1517 if (ret < 0) 1518 goto fail; 1519 if (ret == 0) 1520 root->orphan_item_inserted = 1; 1521 1522 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1523 if (ret) 1524 goto fail; 1525 1526 spin_lock(&fs_info->fs_roots_radix_lock); 1527 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1528 (unsigned long)root->root_key.objectid, 1529 root); 1530 if (ret == 0) 1531 root->in_radix = 1; 1532 1533 spin_unlock(&fs_info->fs_roots_radix_lock); 1534 radix_tree_preload_end(); 1535 if (ret) { 1536 if (ret == -EEXIST) { 1537 free_fs_root(root); 1538 goto again; 1539 } 1540 goto fail; 1541 } 1542 1543 ret = btrfs_find_dead_roots(fs_info->tree_root, 1544 root->root_key.objectid); 1545 WARN_ON(ret); 1546 return root; 1547 fail: 1548 free_fs_root(root); 1549 return ERR_PTR(ret); 1550 } 1551 1552 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1553 { 1554 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1555 int ret = 0; 1556 struct btrfs_device *device; 1557 struct backing_dev_info *bdi; 1558 1559 rcu_read_lock(); 1560 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1561 if (!device->bdev) 1562 continue; 1563 bdi = blk_get_backing_dev_info(device->bdev); 1564 if (bdi && bdi_congested(bdi, bdi_bits)) { 1565 ret = 1; 1566 break; 1567 } 1568 } 1569 rcu_read_unlock(); 1570 return ret; 1571 } 1572 1573 /* 1574 * If this fails, caller must call bdi_destroy() to get rid of the 1575 * bdi again. 1576 */ 1577 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1578 { 1579 int err; 1580 1581 bdi->capabilities = BDI_CAP_MAP_COPY; 1582 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1583 if (err) 1584 return err; 1585 1586 bdi->ra_pages = default_backing_dev_info.ra_pages; 1587 bdi->congested_fn = btrfs_congested_fn; 1588 bdi->congested_data = info; 1589 return 0; 1590 } 1591 1592 /* 1593 * called by the kthread helper functions to finally call the bio end_io 1594 * functions. This is where read checksum verification actually happens 1595 */ 1596 static void end_workqueue_fn(struct btrfs_work *work) 1597 { 1598 struct bio *bio; 1599 struct end_io_wq *end_io_wq; 1600 struct btrfs_fs_info *fs_info; 1601 int error; 1602 1603 end_io_wq = container_of(work, struct end_io_wq, work); 1604 bio = end_io_wq->bio; 1605 fs_info = end_io_wq->info; 1606 1607 error = end_io_wq->error; 1608 bio->bi_private = end_io_wq->private; 1609 bio->bi_end_io = end_io_wq->end_io; 1610 kfree(end_io_wq); 1611 bio_endio(bio, error); 1612 } 1613 1614 static int cleaner_kthread(void *arg) 1615 { 1616 struct btrfs_root *root = arg; 1617 1618 do { 1619 if (!(root->fs_info->sb->s_flags & MS_RDONLY) && 1620 mutex_trylock(&root->fs_info->cleaner_mutex)) { 1621 btrfs_run_delayed_iputs(root); 1622 btrfs_clean_old_snapshots(root); 1623 mutex_unlock(&root->fs_info->cleaner_mutex); 1624 btrfs_run_defrag_inodes(root->fs_info); 1625 } 1626 1627 if (!try_to_freeze()) { 1628 set_current_state(TASK_INTERRUPTIBLE); 1629 if (!kthread_should_stop()) 1630 schedule(); 1631 __set_current_state(TASK_RUNNING); 1632 } 1633 } while (!kthread_should_stop()); 1634 return 0; 1635 } 1636 1637 static int transaction_kthread(void *arg) 1638 { 1639 struct btrfs_root *root = arg; 1640 struct btrfs_trans_handle *trans; 1641 struct btrfs_transaction *cur; 1642 u64 transid; 1643 unsigned long now; 1644 unsigned long delay; 1645 bool cannot_commit; 1646 1647 do { 1648 cannot_commit = false; 1649 delay = HZ * 30; 1650 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1651 1652 spin_lock(&root->fs_info->trans_lock); 1653 cur = root->fs_info->running_transaction; 1654 if (!cur) { 1655 spin_unlock(&root->fs_info->trans_lock); 1656 goto sleep; 1657 } 1658 1659 now = get_seconds(); 1660 if (!cur->blocked && 1661 (now < cur->start_time || now - cur->start_time < 30)) { 1662 spin_unlock(&root->fs_info->trans_lock); 1663 delay = HZ * 5; 1664 goto sleep; 1665 } 1666 transid = cur->transid; 1667 spin_unlock(&root->fs_info->trans_lock); 1668 1669 /* If the file system is aborted, this will always fail. */ 1670 trans = btrfs_join_transaction(root); 1671 if (IS_ERR(trans)) { 1672 cannot_commit = true; 1673 goto sleep; 1674 } 1675 if (transid == trans->transid) { 1676 btrfs_commit_transaction(trans, root); 1677 } else { 1678 btrfs_end_transaction(trans, root); 1679 } 1680 sleep: 1681 wake_up_process(root->fs_info->cleaner_kthread); 1682 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1683 1684 if (!try_to_freeze()) { 1685 set_current_state(TASK_INTERRUPTIBLE); 1686 if (!kthread_should_stop() && 1687 (!btrfs_transaction_blocked(root->fs_info) || 1688 cannot_commit)) 1689 schedule_timeout(delay); 1690 __set_current_state(TASK_RUNNING); 1691 } 1692 } while (!kthread_should_stop()); 1693 return 0; 1694 } 1695 1696 /* 1697 * this will find the highest generation in the array of 1698 * root backups. The index of the highest array is returned, 1699 * or -1 if we can't find anything. 1700 * 1701 * We check to make sure the array is valid by comparing the 1702 * generation of the latest root in the array with the generation 1703 * in the super block. If they don't match we pitch it. 1704 */ 1705 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1706 { 1707 u64 cur; 1708 int newest_index = -1; 1709 struct btrfs_root_backup *root_backup; 1710 int i; 1711 1712 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1713 root_backup = info->super_copy->super_roots + i; 1714 cur = btrfs_backup_tree_root_gen(root_backup); 1715 if (cur == newest_gen) 1716 newest_index = i; 1717 } 1718 1719 /* check to see if we actually wrapped around */ 1720 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1721 root_backup = info->super_copy->super_roots; 1722 cur = btrfs_backup_tree_root_gen(root_backup); 1723 if (cur == newest_gen) 1724 newest_index = 0; 1725 } 1726 return newest_index; 1727 } 1728 1729 1730 /* 1731 * find the oldest backup so we know where to store new entries 1732 * in the backup array. This will set the backup_root_index 1733 * field in the fs_info struct 1734 */ 1735 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1736 u64 newest_gen) 1737 { 1738 int newest_index = -1; 1739 1740 newest_index = find_newest_super_backup(info, newest_gen); 1741 /* if there was garbage in there, just move along */ 1742 if (newest_index == -1) { 1743 info->backup_root_index = 0; 1744 } else { 1745 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1746 } 1747 } 1748 1749 /* 1750 * copy all the root pointers into the super backup array. 1751 * this will bump the backup pointer by one when it is 1752 * done 1753 */ 1754 static void backup_super_roots(struct btrfs_fs_info *info) 1755 { 1756 int next_backup; 1757 struct btrfs_root_backup *root_backup; 1758 int last_backup; 1759 1760 next_backup = info->backup_root_index; 1761 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1762 BTRFS_NUM_BACKUP_ROOTS; 1763 1764 /* 1765 * just overwrite the last backup if we're at the same generation 1766 * this happens only at umount 1767 */ 1768 root_backup = info->super_for_commit->super_roots + last_backup; 1769 if (btrfs_backup_tree_root_gen(root_backup) == 1770 btrfs_header_generation(info->tree_root->node)) 1771 next_backup = last_backup; 1772 1773 root_backup = info->super_for_commit->super_roots + next_backup; 1774 1775 /* 1776 * make sure all of our padding and empty slots get zero filled 1777 * regardless of which ones we use today 1778 */ 1779 memset(root_backup, 0, sizeof(*root_backup)); 1780 1781 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1782 1783 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1784 btrfs_set_backup_tree_root_gen(root_backup, 1785 btrfs_header_generation(info->tree_root->node)); 1786 1787 btrfs_set_backup_tree_root_level(root_backup, 1788 btrfs_header_level(info->tree_root->node)); 1789 1790 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1791 btrfs_set_backup_chunk_root_gen(root_backup, 1792 btrfs_header_generation(info->chunk_root->node)); 1793 btrfs_set_backup_chunk_root_level(root_backup, 1794 btrfs_header_level(info->chunk_root->node)); 1795 1796 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1797 btrfs_set_backup_extent_root_gen(root_backup, 1798 btrfs_header_generation(info->extent_root->node)); 1799 btrfs_set_backup_extent_root_level(root_backup, 1800 btrfs_header_level(info->extent_root->node)); 1801 1802 /* 1803 * we might commit during log recovery, which happens before we set 1804 * the fs_root. Make sure it is valid before we fill it in. 1805 */ 1806 if (info->fs_root && info->fs_root->node) { 1807 btrfs_set_backup_fs_root(root_backup, 1808 info->fs_root->node->start); 1809 btrfs_set_backup_fs_root_gen(root_backup, 1810 btrfs_header_generation(info->fs_root->node)); 1811 btrfs_set_backup_fs_root_level(root_backup, 1812 btrfs_header_level(info->fs_root->node)); 1813 } 1814 1815 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1816 btrfs_set_backup_dev_root_gen(root_backup, 1817 btrfs_header_generation(info->dev_root->node)); 1818 btrfs_set_backup_dev_root_level(root_backup, 1819 btrfs_header_level(info->dev_root->node)); 1820 1821 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1822 btrfs_set_backup_csum_root_gen(root_backup, 1823 btrfs_header_generation(info->csum_root->node)); 1824 btrfs_set_backup_csum_root_level(root_backup, 1825 btrfs_header_level(info->csum_root->node)); 1826 1827 btrfs_set_backup_total_bytes(root_backup, 1828 btrfs_super_total_bytes(info->super_copy)); 1829 btrfs_set_backup_bytes_used(root_backup, 1830 btrfs_super_bytes_used(info->super_copy)); 1831 btrfs_set_backup_num_devices(root_backup, 1832 btrfs_super_num_devices(info->super_copy)); 1833 1834 /* 1835 * if we don't copy this out to the super_copy, it won't get remembered 1836 * for the next commit 1837 */ 1838 memcpy(&info->super_copy->super_roots, 1839 &info->super_for_commit->super_roots, 1840 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1841 } 1842 1843 /* 1844 * this copies info out of the root backup array and back into 1845 * the in-memory super block. It is meant to help iterate through 1846 * the array, so you send it the number of backups you've already 1847 * tried and the last backup index you used. 1848 * 1849 * this returns -1 when it has tried all the backups 1850 */ 1851 static noinline int next_root_backup(struct btrfs_fs_info *info, 1852 struct btrfs_super_block *super, 1853 int *num_backups_tried, int *backup_index) 1854 { 1855 struct btrfs_root_backup *root_backup; 1856 int newest = *backup_index; 1857 1858 if (*num_backups_tried == 0) { 1859 u64 gen = btrfs_super_generation(super); 1860 1861 newest = find_newest_super_backup(info, gen); 1862 if (newest == -1) 1863 return -1; 1864 1865 *backup_index = newest; 1866 *num_backups_tried = 1; 1867 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1868 /* we've tried all the backups, all done */ 1869 return -1; 1870 } else { 1871 /* jump to the next oldest backup */ 1872 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1873 BTRFS_NUM_BACKUP_ROOTS; 1874 *backup_index = newest; 1875 *num_backups_tried += 1; 1876 } 1877 root_backup = super->super_roots + newest; 1878 1879 btrfs_set_super_generation(super, 1880 btrfs_backup_tree_root_gen(root_backup)); 1881 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1882 btrfs_set_super_root_level(super, 1883 btrfs_backup_tree_root_level(root_backup)); 1884 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1885 1886 /* 1887 * fixme: the total bytes and num_devices need to match or we should 1888 * need a fsck 1889 */ 1890 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1891 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1892 return 0; 1893 } 1894 1895 /* helper to cleanup tree roots */ 1896 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 1897 { 1898 free_extent_buffer(info->tree_root->node); 1899 free_extent_buffer(info->tree_root->commit_root); 1900 free_extent_buffer(info->dev_root->node); 1901 free_extent_buffer(info->dev_root->commit_root); 1902 free_extent_buffer(info->extent_root->node); 1903 free_extent_buffer(info->extent_root->commit_root); 1904 free_extent_buffer(info->csum_root->node); 1905 free_extent_buffer(info->csum_root->commit_root); 1906 if (info->quota_root) { 1907 free_extent_buffer(info->quota_root->node); 1908 free_extent_buffer(info->quota_root->commit_root); 1909 } 1910 1911 info->tree_root->node = NULL; 1912 info->tree_root->commit_root = NULL; 1913 info->dev_root->node = NULL; 1914 info->dev_root->commit_root = NULL; 1915 info->extent_root->node = NULL; 1916 info->extent_root->commit_root = NULL; 1917 info->csum_root->node = NULL; 1918 info->csum_root->commit_root = NULL; 1919 if (info->quota_root) { 1920 info->quota_root->node = NULL; 1921 info->quota_root->commit_root = NULL; 1922 } 1923 1924 if (chunk_root) { 1925 free_extent_buffer(info->chunk_root->node); 1926 free_extent_buffer(info->chunk_root->commit_root); 1927 info->chunk_root->node = NULL; 1928 info->chunk_root->commit_root = NULL; 1929 } 1930 } 1931 1932 1933 int open_ctree(struct super_block *sb, 1934 struct btrfs_fs_devices *fs_devices, 1935 char *options) 1936 { 1937 u32 sectorsize; 1938 u32 nodesize; 1939 u32 leafsize; 1940 u32 blocksize; 1941 u32 stripesize; 1942 u64 generation; 1943 u64 features; 1944 struct btrfs_key location; 1945 struct buffer_head *bh; 1946 struct btrfs_super_block *disk_super; 1947 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1948 struct btrfs_root *tree_root; 1949 struct btrfs_root *extent_root; 1950 struct btrfs_root *csum_root; 1951 struct btrfs_root *chunk_root; 1952 struct btrfs_root *dev_root; 1953 struct btrfs_root *quota_root; 1954 struct btrfs_root *log_tree_root; 1955 int ret; 1956 int err = -EINVAL; 1957 int num_backups_tried = 0; 1958 int backup_index = 0; 1959 1960 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 1961 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info); 1962 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info); 1963 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 1964 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info); 1965 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info); 1966 1967 if (!tree_root || !extent_root || !csum_root || 1968 !chunk_root || !dev_root || !quota_root) { 1969 err = -ENOMEM; 1970 goto fail; 1971 } 1972 1973 ret = init_srcu_struct(&fs_info->subvol_srcu); 1974 if (ret) { 1975 err = ret; 1976 goto fail; 1977 } 1978 1979 ret = setup_bdi(fs_info, &fs_info->bdi); 1980 if (ret) { 1981 err = ret; 1982 goto fail_srcu; 1983 } 1984 1985 fs_info->btree_inode = new_inode(sb); 1986 if (!fs_info->btree_inode) { 1987 err = -ENOMEM; 1988 goto fail_bdi; 1989 } 1990 1991 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 1992 1993 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 1994 INIT_LIST_HEAD(&fs_info->trans_list); 1995 INIT_LIST_HEAD(&fs_info->dead_roots); 1996 INIT_LIST_HEAD(&fs_info->delayed_iputs); 1997 INIT_LIST_HEAD(&fs_info->hashers); 1998 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 1999 INIT_LIST_HEAD(&fs_info->ordered_operations); 2000 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2001 spin_lock_init(&fs_info->delalloc_lock); 2002 spin_lock_init(&fs_info->trans_lock); 2003 spin_lock_init(&fs_info->ref_cache_lock); 2004 spin_lock_init(&fs_info->fs_roots_radix_lock); 2005 spin_lock_init(&fs_info->delayed_iput_lock); 2006 spin_lock_init(&fs_info->defrag_inodes_lock); 2007 spin_lock_init(&fs_info->free_chunk_lock); 2008 spin_lock_init(&fs_info->tree_mod_seq_lock); 2009 rwlock_init(&fs_info->tree_mod_log_lock); 2010 mutex_init(&fs_info->reloc_mutex); 2011 2012 init_completion(&fs_info->kobj_unregister); 2013 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2014 INIT_LIST_HEAD(&fs_info->space_info); 2015 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2016 btrfs_mapping_init(&fs_info->mapping_tree); 2017 btrfs_init_block_rsv(&fs_info->global_block_rsv); 2018 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv); 2019 btrfs_init_block_rsv(&fs_info->trans_block_rsv); 2020 btrfs_init_block_rsv(&fs_info->chunk_block_rsv); 2021 btrfs_init_block_rsv(&fs_info->empty_block_rsv); 2022 btrfs_init_block_rsv(&fs_info->delayed_block_rsv); 2023 atomic_set(&fs_info->nr_async_submits, 0); 2024 atomic_set(&fs_info->async_delalloc_pages, 0); 2025 atomic_set(&fs_info->async_submit_draining, 0); 2026 atomic_set(&fs_info->nr_async_bios, 0); 2027 atomic_set(&fs_info->defrag_running, 0); 2028 atomic_set(&fs_info->tree_mod_seq, 0); 2029 fs_info->sb = sb; 2030 fs_info->max_inline = 8192 * 1024; 2031 fs_info->metadata_ratio = 0; 2032 fs_info->defrag_inodes = RB_ROOT; 2033 fs_info->trans_no_join = 0; 2034 fs_info->free_chunk_space = 0; 2035 fs_info->tree_mod_log = RB_ROOT; 2036 2037 /* readahead state */ 2038 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 2039 spin_lock_init(&fs_info->reada_lock); 2040 2041 fs_info->thread_pool_size = min_t(unsigned long, 2042 num_online_cpus() + 2, 8); 2043 2044 INIT_LIST_HEAD(&fs_info->ordered_extents); 2045 spin_lock_init(&fs_info->ordered_extent_lock); 2046 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2047 GFP_NOFS); 2048 if (!fs_info->delayed_root) { 2049 err = -ENOMEM; 2050 goto fail_iput; 2051 } 2052 btrfs_init_delayed_root(fs_info->delayed_root); 2053 2054 mutex_init(&fs_info->scrub_lock); 2055 atomic_set(&fs_info->scrubs_running, 0); 2056 atomic_set(&fs_info->scrub_pause_req, 0); 2057 atomic_set(&fs_info->scrubs_paused, 0); 2058 atomic_set(&fs_info->scrub_cancel_req, 0); 2059 init_waitqueue_head(&fs_info->scrub_pause_wait); 2060 init_rwsem(&fs_info->scrub_super_lock); 2061 fs_info->scrub_workers_refcnt = 0; 2062 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2063 fs_info->check_integrity_print_mask = 0; 2064 #endif 2065 2066 spin_lock_init(&fs_info->balance_lock); 2067 mutex_init(&fs_info->balance_mutex); 2068 atomic_set(&fs_info->balance_running, 0); 2069 atomic_set(&fs_info->balance_pause_req, 0); 2070 atomic_set(&fs_info->balance_cancel_req, 0); 2071 fs_info->balance_ctl = NULL; 2072 init_waitqueue_head(&fs_info->balance_wait_q); 2073 2074 sb->s_blocksize = 4096; 2075 sb->s_blocksize_bits = blksize_bits(4096); 2076 sb->s_bdi = &fs_info->bdi; 2077 2078 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2079 set_nlink(fs_info->btree_inode, 1); 2080 /* 2081 * we set the i_size on the btree inode to the max possible int. 2082 * the real end of the address space is determined by all of 2083 * the devices in the system 2084 */ 2085 fs_info->btree_inode->i_size = OFFSET_MAX; 2086 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2087 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 2088 2089 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2090 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2091 fs_info->btree_inode->i_mapping); 2092 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2093 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2094 2095 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2096 2097 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2098 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2099 sizeof(struct btrfs_key)); 2100 set_bit(BTRFS_INODE_DUMMY, 2101 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2102 insert_inode_hash(fs_info->btree_inode); 2103 2104 spin_lock_init(&fs_info->block_group_cache_lock); 2105 fs_info->block_group_cache_tree = RB_ROOT; 2106 2107 extent_io_tree_init(&fs_info->freed_extents[0], 2108 fs_info->btree_inode->i_mapping); 2109 extent_io_tree_init(&fs_info->freed_extents[1], 2110 fs_info->btree_inode->i_mapping); 2111 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2112 fs_info->do_barriers = 1; 2113 2114 2115 mutex_init(&fs_info->ordered_operations_mutex); 2116 mutex_init(&fs_info->tree_log_mutex); 2117 mutex_init(&fs_info->chunk_mutex); 2118 mutex_init(&fs_info->transaction_kthread_mutex); 2119 mutex_init(&fs_info->cleaner_mutex); 2120 mutex_init(&fs_info->volume_mutex); 2121 init_rwsem(&fs_info->extent_commit_sem); 2122 init_rwsem(&fs_info->cleanup_work_sem); 2123 init_rwsem(&fs_info->subvol_sem); 2124 2125 spin_lock_init(&fs_info->qgroup_lock); 2126 fs_info->qgroup_tree = RB_ROOT; 2127 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2128 fs_info->qgroup_seq = 1; 2129 fs_info->quota_enabled = 0; 2130 fs_info->pending_quota_state = 0; 2131 2132 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2133 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2134 2135 init_waitqueue_head(&fs_info->transaction_throttle); 2136 init_waitqueue_head(&fs_info->transaction_wait); 2137 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2138 init_waitqueue_head(&fs_info->async_submit_wait); 2139 2140 __setup_root(4096, 4096, 4096, 4096, tree_root, 2141 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2142 2143 invalidate_bdev(fs_devices->latest_bdev); 2144 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2145 if (!bh) { 2146 err = -EINVAL; 2147 goto fail_alloc; 2148 } 2149 2150 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2151 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2152 sizeof(*fs_info->super_for_commit)); 2153 brelse(bh); 2154 2155 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2156 2157 disk_super = fs_info->super_copy; 2158 if (!btrfs_super_root(disk_super)) 2159 goto fail_alloc; 2160 2161 /* check FS state, whether FS is broken. */ 2162 fs_info->fs_state |= btrfs_super_flags(disk_super); 2163 2164 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2165 if (ret) { 2166 printk(KERN_ERR "btrfs: superblock contains fatal errors\n"); 2167 err = ret; 2168 goto fail_alloc; 2169 } 2170 2171 /* 2172 * run through our array of backup supers and setup 2173 * our ring pointer to the oldest one 2174 */ 2175 generation = btrfs_super_generation(disk_super); 2176 find_oldest_super_backup(fs_info, generation); 2177 2178 /* 2179 * In the long term, we'll store the compression type in the super 2180 * block, and it'll be used for per file compression control. 2181 */ 2182 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2183 2184 ret = btrfs_parse_options(tree_root, options); 2185 if (ret) { 2186 err = ret; 2187 goto fail_alloc; 2188 } 2189 2190 features = btrfs_super_incompat_flags(disk_super) & 2191 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2192 if (features) { 2193 printk(KERN_ERR "BTRFS: couldn't mount because of " 2194 "unsupported optional features (%Lx).\n", 2195 (unsigned long long)features); 2196 err = -EINVAL; 2197 goto fail_alloc; 2198 } 2199 2200 if (btrfs_super_leafsize(disk_super) != 2201 btrfs_super_nodesize(disk_super)) { 2202 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2203 "blocksizes don't match. node %d leaf %d\n", 2204 btrfs_super_nodesize(disk_super), 2205 btrfs_super_leafsize(disk_super)); 2206 err = -EINVAL; 2207 goto fail_alloc; 2208 } 2209 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2210 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2211 "blocksize (%d) was too large\n", 2212 btrfs_super_leafsize(disk_super)); 2213 err = -EINVAL; 2214 goto fail_alloc; 2215 } 2216 2217 features = btrfs_super_incompat_flags(disk_super); 2218 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2219 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2220 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2221 2222 /* 2223 * flag our filesystem as having big metadata blocks if 2224 * they are bigger than the page size 2225 */ 2226 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) { 2227 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2228 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n"); 2229 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2230 } 2231 2232 nodesize = btrfs_super_nodesize(disk_super); 2233 leafsize = btrfs_super_leafsize(disk_super); 2234 sectorsize = btrfs_super_sectorsize(disk_super); 2235 stripesize = btrfs_super_stripesize(disk_super); 2236 2237 /* 2238 * mixed block groups end up with duplicate but slightly offset 2239 * extent buffers for the same range. It leads to corruptions 2240 */ 2241 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2242 (sectorsize != leafsize)) { 2243 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes " 2244 "are not allowed for mixed block groups on %s\n", 2245 sb->s_id); 2246 goto fail_alloc; 2247 } 2248 2249 btrfs_set_super_incompat_flags(disk_super, features); 2250 2251 features = btrfs_super_compat_ro_flags(disk_super) & 2252 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2253 if (!(sb->s_flags & MS_RDONLY) && features) { 2254 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2255 "unsupported option features (%Lx).\n", 2256 (unsigned long long)features); 2257 err = -EINVAL; 2258 goto fail_alloc; 2259 } 2260 2261 btrfs_init_workers(&fs_info->generic_worker, 2262 "genwork", 1, NULL); 2263 2264 btrfs_init_workers(&fs_info->workers, "worker", 2265 fs_info->thread_pool_size, 2266 &fs_info->generic_worker); 2267 2268 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 2269 fs_info->thread_pool_size, 2270 &fs_info->generic_worker); 2271 2272 btrfs_init_workers(&fs_info->submit_workers, "submit", 2273 min_t(u64, fs_devices->num_devices, 2274 fs_info->thread_pool_size), 2275 &fs_info->generic_worker); 2276 2277 btrfs_init_workers(&fs_info->caching_workers, "cache", 2278 2, &fs_info->generic_worker); 2279 2280 /* a higher idle thresh on the submit workers makes it much more 2281 * likely that bios will be send down in a sane order to the 2282 * devices 2283 */ 2284 fs_info->submit_workers.idle_thresh = 64; 2285 2286 fs_info->workers.idle_thresh = 16; 2287 fs_info->workers.ordered = 1; 2288 2289 fs_info->delalloc_workers.idle_thresh = 2; 2290 fs_info->delalloc_workers.ordered = 1; 2291 2292 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, 2293 &fs_info->generic_worker); 2294 btrfs_init_workers(&fs_info->endio_workers, "endio", 2295 fs_info->thread_pool_size, 2296 &fs_info->generic_worker); 2297 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 2298 fs_info->thread_pool_size, 2299 &fs_info->generic_worker); 2300 btrfs_init_workers(&fs_info->endio_meta_write_workers, 2301 "endio-meta-write", fs_info->thread_pool_size, 2302 &fs_info->generic_worker); 2303 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 2304 fs_info->thread_pool_size, 2305 &fs_info->generic_worker); 2306 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", 2307 1, &fs_info->generic_worker); 2308 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta", 2309 fs_info->thread_pool_size, 2310 &fs_info->generic_worker); 2311 btrfs_init_workers(&fs_info->readahead_workers, "readahead", 2312 fs_info->thread_pool_size, 2313 &fs_info->generic_worker); 2314 2315 /* 2316 * endios are largely parallel and should have a very 2317 * low idle thresh 2318 */ 2319 fs_info->endio_workers.idle_thresh = 4; 2320 fs_info->endio_meta_workers.idle_thresh = 4; 2321 2322 fs_info->endio_write_workers.idle_thresh = 2; 2323 fs_info->endio_meta_write_workers.idle_thresh = 2; 2324 fs_info->readahead_workers.idle_thresh = 2; 2325 2326 /* 2327 * btrfs_start_workers can really only fail because of ENOMEM so just 2328 * return -ENOMEM if any of these fail. 2329 */ 2330 ret = btrfs_start_workers(&fs_info->workers); 2331 ret |= btrfs_start_workers(&fs_info->generic_worker); 2332 ret |= btrfs_start_workers(&fs_info->submit_workers); 2333 ret |= btrfs_start_workers(&fs_info->delalloc_workers); 2334 ret |= btrfs_start_workers(&fs_info->fixup_workers); 2335 ret |= btrfs_start_workers(&fs_info->endio_workers); 2336 ret |= btrfs_start_workers(&fs_info->endio_meta_workers); 2337 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers); 2338 ret |= btrfs_start_workers(&fs_info->endio_write_workers); 2339 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker); 2340 ret |= btrfs_start_workers(&fs_info->delayed_workers); 2341 ret |= btrfs_start_workers(&fs_info->caching_workers); 2342 ret |= btrfs_start_workers(&fs_info->readahead_workers); 2343 if (ret) { 2344 err = -ENOMEM; 2345 goto fail_sb_buffer; 2346 } 2347 2348 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2349 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2350 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2351 2352 tree_root->nodesize = nodesize; 2353 tree_root->leafsize = leafsize; 2354 tree_root->sectorsize = sectorsize; 2355 tree_root->stripesize = stripesize; 2356 2357 sb->s_blocksize = sectorsize; 2358 sb->s_blocksize_bits = blksize_bits(sectorsize); 2359 2360 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 2361 sizeof(disk_super->magic))) { 2362 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 2363 goto fail_sb_buffer; 2364 } 2365 2366 if (sectorsize != PAGE_SIZE) { 2367 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) " 2368 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2369 goto fail_sb_buffer; 2370 } 2371 2372 mutex_lock(&fs_info->chunk_mutex); 2373 ret = btrfs_read_sys_array(tree_root); 2374 mutex_unlock(&fs_info->chunk_mutex); 2375 if (ret) { 2376 printk(KERN_WARNING "btrfs: failed to read the system " 2377 "array on %s\n", sb->s_id); 2378 goto fail_sb_buffer; 2379 } 2380 2381 blocksize = btrfs_level_size(tree_root, 2382 btrfs_super_chunk_root_level(disk_super)); 2383 generation = btrfs_super_chunk_root_generation(disk_super); 2384 2385 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2386 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2387 2388 chunk_root->node = read_tree_block(chunk_root, 2389 btrfs_super_chunk_root(disk_super), 2390 blocksize, generation); 2391 BUG_ON(!chunk_root->node); /* -ENOMEM */ 2392 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 2393 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 2394 sb->s_id); 2395 goto fail_tree_roots; 2396 } 2397 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2398 chunk_root->commit_root = btrfs_root_node(chunk_root); 2399 2400 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2401 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 2402 BTRFS_UUID_SIZE); 2403 2404 ret = btrfs_read_chunk_tree(chunk_root); 2405 if (ret) { 2406 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 2407 sb->s_id); 2408 goto fail_tree_roots; 2409 } 2410 2411 btrfs_close_extra_devices(fs_devices); 2412 2413 if (!fs_devices->latest_bdev) { 2414 printk(KERN_CRIT "btrfs: failed to read devices on %s\n", 2415 sb->s_id); 2416 goto fail_tree_roots; 2417 } 2418 2419 retry_root_backup: 2420 blocksize = btrfs_level_size(tree_root, 2421 btrfs_super_root_level(disk_super)); 2422 generation = btrfs_super_generation(disk_super); 2423 2424 tree_root->node = read_tree_block(tree_root, 2425 btrfs_super_root(disk_super), 2426 blocksize, generation); 2427 if (!tree_root->node || 2428 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 2429 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 2430 sb->s_id); 2431 2432 goto recovery_tree_root; 2433 } 2434 2435 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2436 tree_root->commit_root = btrfs_root_node(tree_root); 2437 2438 ret = find_and_setup_root(tree_root, fs_info, 2439 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 2440 if (ret) 2441 goto recovery_tree_root; 2442 extent_root->track_dirty = 1; 2443 2444 ret = find_and_setup_root(tree_root, fs_info, 2445 BTRFS_DEV_TREE_OBJECTID, dev_root); 2446 if (ret) 2447 goto recovery_tree_root; 2448 dev_root->track_dirty = 1; 2449 2450 ret = find_and_setup_root(tree_root, fs_info, 2451 BTRFS_CSUM_TREE_OBJECTID, csum_root); 2452 if (ret) 2453 goto recovery_tree_root; 2454 csum_root->track_dirty = 1; 2455 2456 ret = find_and_setup_root(tree_root, fs_info, 2457 BTRFS_QUOTA_TREE_OBJECTID, quota_root); 2458 if (ret) { 2459 kfree(quota_root); 2460 quota_root = fs_info->quota_root = NULL; 2461 } else { 2462 quota_root->track_dirty = 1; 2463 fs_info->quota_enabled = 1; 2464 fs_info->pending_quota_state = 1; 2465 } 2466 2467 fs_info->generation = generation; 2468 fs_info->last_trans_committed = generation; 2469 2470 ret = btrfs_recover_balance(fs_info); 2471 if (ret) { 2472 printk(KERN_WARNING "btrfs: failed to recover balance\n"); 2473 goto fail_block_groups; 2474 } 2475 2476 ret = btrfs_init_dev_stats(fs_info); 2477 if (ret) { 2478 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n", 2479 ret); 2480 goto fail_block_groups; 2481 } 2482 2483 ret = btrfs_init_space_info(fs_info); 2484 if (ret) { 2485 printk(KERN_ERR "Failed to initial space info: %d\n", ret); 2486 goto fail_block_groups; 2487 } 2488 2489 ret = btrfs_read_block_groups(extent_root); 2490 if (ret) { 2491 printk(KERN_ERR "Failed to read block groups: %d\n", ret); 2492 goto fail_block_groups; 2493 } 2494 2495 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2496 "btrfs-cleaner"); 2497 if (IS_ERR(fs_info->cleaner_kthread)) 2498 goto fail_block_groups; 2499 2500 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2501 tree_root, 2502 "btrfs-transaction"); 2503 if (IS_ERR(fs_info->transaction_kthread)) 2504 goto fail_cleaner; 2505 2506 if (!btrfs_test_opt(tree_root, SSD) && 2507 !btrfs_test_opt(tree_root, NOSSD) && 2508 !fs_info->fs_devices->rotating) { 2509 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 2510 "mode\n"); 2511 btrfs_set_opt(fs_info->mount_opt, SSD); 2512 } 2513 2514 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2515 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2516 ret = btrfsic_mount(tree_root, fs_devices, 2517 btrfs_test_opt(tree_root, 2518 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2519 1 : 0, 2520 fs_info->check_integrity_print_mask); 2521 if (ret) 2522 printk(KERN_WARNING "btrfs: failed to initialize" 2523 " integrity check module %s\n", sb->s_id); 2524 } 2525 #endif 2526 ret = btrfs_read_qgroup_config(fs_info); 2527 if (ret) 2528 goto fail_trans_kthread; 2529 2530 /* do not make disk changes in broken FS */ 2531 if (btrfs_super_log_root(disk_super) != 0) { 2532 u64 bytenr = btrfs_super_log_root(disk_super); 2533 2534 if (fs_devices->rw_devices == 0) { 2535 printk(KERN_WARNING "Btrfs log replay required " 2536 "on RO media\n"); 2537 err = -EIO; 2538 goto fail_qgroup; 2539 } 2540 blocksize = 2541 btrfs_level_size(tree_root, 2542 btrfs_super_log_root_level(disk_super)); 2543 2544 log_tree_root = btrfs_alloc_root(fs_info); 2545 if (!log_tree_root) { 2546 err = -ENOMEM; 2547 goto fail_qgroup; 2548 } 2549 2550 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2551 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2552 2553 log_tree_root->node = read_tree_block(tree_root, bytenr, 2554 blocksize, 2555 generation + 1); 2556 /* returns with log_tree_root freed on success */ 2557 ret = btrfs_recover_log_trees(log_tree_root); 2558 if (ret) { 2559 btrfs_error(tree_root->fs_info, ret, 2560 "Failed to recover log tree"); 2561 free_extent_buffer(log_tree_root->node); 2562 kfree(log_tree_root); 2563 goto fail_trans_kthread; 2564 } 2565 2566 if (sb->s_flags & MS_RDONLY) { 2567 ret = btrfs_commit_super(tree_root); 2568 if (ret) 2569 goto fail_trans_kthread; 2570 } 2571 } 2572 2573 ret = btrfs_find_orphan_roots(tree_root); 2574 if (ret) 2575 goto fail_trans_kthread; 2576 2577 if (!(sb->s_flags & MS_RDONLY)) { 2578 ret = btrfs_cleanup_fs_roots(fs_info); 2579 if (ret) 2580 goto fail_trans_kthread; 2581 2582 ret = btrfs_recover_relocation(tree_root); 2583 if (ret < 0) { 2584 printk(KERN_WARNING 2585 "btrfs: failed to recover relocation\n"); 2586 err = -EINVAL; 2587 goto fail_qgroup; 2588 } 2589 } 2590 2591 location.objectid = BTRFS_FS_TREE_OBJECTID; 2592 location.type = BTRFS_ROOT_ITEM_KEY; 2593 location.offset = (u64)-1; 2594 2595 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2596 if (!fs_info->fs_root) 2597 goto fail_qgroup; 2598 if (IS_ERR(fs_info->fs_root)) { 2599 err = PTR_ERR(fs_info->fs_root); 2600 goto fail_qgroup; 2601 } 2602 2603 if (sb->s_flags & MS_RDONLY) 2604 return 0; 2605 2606 down_read(&fs_info->cleanup_work_sem); 2607 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 2608 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 2609 up_read(&fs_info->cleanup_work_sem); 2610 close_ctree(tree_root); 2611 return ret; 2612 } 2613 up_read(&fs_info->cleanup_work_sem); 2614 2615 ret = btrfs_resume_balance_async(fs_info); 2616 if (ret) { 2617 printk(KERN_WARNING "btrfs: failed to resume balance\n"); 2618 close_ctree(tree_root); 2619 return ret; 2620 } 2621 2622 return 0; 2623 2624 fail_qgroup: 2625 btrfs_free_qgroup_config(fs_info); 2626 fail_trans_kthread: 2627 kthread_stop(fs_info->transaction_kthread); 2628 fail_cleaner: 2629 kthread_stop(fs_info->cleaner_kthread); 2630 2631 /* 2632 * make sure we're done with the btree inode before we stop our 2633 * kthreads 2634 */ 2635 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2636 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2637 2638 fail_block_groups: 2639 btrfs_free_block_groups(fs_info); 2640 2641 fail_tree_roots: 2642 free_root_pointers(fs_info, 1); 2643 2644 fail_sb_buffer: 2645 btrfs_stop_workers(&fs_info->generic_worker); 2646 btrfs_stop_workers(&fs_info->readahead_workers); 2647 btrfs_stop_workers(&fs_info->fixup_workers); 2648 btrfs_stop_workers(&fs_info->delalloc_workers); 2649 btrfs_stop_workers(&fs_info->workers); 2650 btrfs_stop_workers(&fs_info->endio_workers); 2651 btrfs_stop_workers(&fs_info->endio_meta_workers); 2652 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2653 btrfs_stop_workers(&fs_info->endio_write_workers); 2654 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2655 btrfs_stop_workers(&fs_info->submit_workers); 2656 btrfs_stop_workers(&fs_info->delayed_workers); 2657 btrfs_stop_workers(&fs_info->caching_workers); 2658 fail_alloc: 2659 fail_iput: 2660 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2661 2662 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2663 iput(fs_info->btree_inode); 2664 fail_bdi: 2665 bdi_destroy(&fs_info->bdi); 2666 fail_srcu: 2667 cleanup_srcu_struct(&fs_info->subvol_srcu); 2668 fail: 2669 btrfs_close_devices(fs_info->fs_devices); 2670 return err; 2671 2672 recovery_tree_root: 2673 if (!btrfs_test_opt(tree_root, RECOVERY)) 2674 goto fail_tree_roots; 2675 2676 free_root_pointers(fs_info, 0); 2677 2678 /* don't use the log in recovery mode, it won't be valid */ 2679 btrfs_set_super_log_root(disk_super, 0); 2680 2681 /* we can't trust the free space cache either */ 2682 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2683 2684 ret = next_root_backup(fs_info, fs_info->super_copy, 2685 &num_backups_tried, &backup_index); 2686 if (ret == -1) 2687 goto fail_block_groups; 2688 goto retry_root_backup; 2689 } 2690 2691 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 2692 { 2693 if (uptodate) { 2694 set_buffer_uptodate(bh); 2695 } else { 2696 struct btrfs_device *device = (struct btrfs_device *) 2697 bh->b_private; 2698 2699 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to " 2700 "I/O error on %s\n", 2701 rcu_str_deref(device->name)); 2702 /* note, we dont' set_buffer_write_io_error because we have 2703 * our own ways of dealing with the IO errors 2704 */ 2705 clear_buffer_uptodate(bh); 2706 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 2707 } 2708 unlock_buffer(bh); 2709 put_bh(bh); 2710 } 2711 2712 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 2713 { 2714 struct buffer_head *bh; 2715 struct buffer_head *latest = NULL; 2716 struct btrfs_super_block *super; 2717 int i; 2718 u64 transid = 0; 2719 u64 bytenr; 2720 2721 /* we would like to check all the supers, but that would make 2722 * a btrfs mount succeed after a mkfs from a different FS. 2723 * So, we need to add a special mount option to scan for 2724 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 2725 */ 2726 for (i = 0; i < 1; i++) { 2727 bytenr = btrfs_sb_offset(i); 2728 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 2729 break; 2730 bh = __bread(bdev, bytenr / 4096, 4096); 2731 if (!bh) 2732 continue; 2733 2734 super = (struct btrfs_super_block *)bh->b_data; 2735 if (btrfs_super_bytenr(super) != bytenr || 2736 strncmp((char *)(&super->magic), BTRFS_MAGIC, 2737 sizeof(super->magic))) { 2738 brelse(bh); 2739 continue; 2740 } 2741 2742 if (!latest || btrfs_super_generation(super) > transid) { 2743 brelse(latest); 2744 latest = bh; 2745 transid = btrfs_super_generation(super); 2746 } else { 2747 brelse(bh); 2748 } 2749 } 2750 return latest; 2751 } 2752 2753 /* 2754 * this should be called twice, once with wait == 0 and 2755 * once with wait == 1. When wait == 0 is done, all the buffer heads 2756 * we write are pinned. 2757 * 2758 * They are released when wait == 1 is done. 2759 * max_mirrors must be the same for both runs, and it indicates how 2760 * many supers on this one device should be written. 2761 * 2762 * max_mirrors == 0 means to write them all. 2763 */ 2764 static int write_dev_supers(struct btrfs_device *device, 2765 struct btrfs_super_block *sb, 2766 int do_barriers, int wait, int max_mirrors) 2767 { 2768 struct buffer_head *bh; 2769 int i; 2770 int ret; 2771 int errors = 0; 2772 u32 crc; 2773 u64 bytenr; 2774 2775 if (max_mirrors == 0) 2776 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2777 2778 for (i = 0; i < max_mirrors; i++) { 2779 bytenr = btrfs_sb_offset(i); 2780 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2781 break; 2782 2783 if (wait) { 2784 bh = __find_get_block(device->bdev, bytenr / 4096, 2785 BTRFS_SUPER_INFO_SIZE); 2786 BUG_ON(!bh); 2787 wait_on_buffer(bh); 2788 if (!buffer_uptodate(bh)) 2789 errors++; 2790 2791 /* drop our reference */ 2792 brelse(bh); 2793 2794 /* drop the reference from the wait == 0 run */ 2795 brelse(bh); 2796 continue; 2797 } else { 2798 btrfs_set_super_bytenr(sb, bytenr); 2799 2800 crc = ~(u32)0; 2801 crc = btrfs_csum_data(NULL, (char *)sb + 2802 BTRFS_CSUM_SIZE, crc, 2803 BTRFS_SUPER_INFO_SIZE - 2804 BTRFS_CSUM_SIZE); 2805 btrfs_csum_final(crc, sb->csum); 2806 2807 /* 2808 * one reference for us, and we leave it for the 2809 * caller 2810 */ 2811 bh = __getblk(device->bdev, bytenr / 4096, 2812 BTRFS_SUPER_INFO_SIZE); 2813 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2814 2815 /* one reference for submit_bh */ 2816 get_bh(bh); 2817 2818 set_buffer_uptodate(bh); 2819 lock_buffer(bh); 2820 bh->b_end_io = btrfs_end_buffer_write_sync; 2821 bh->b_private = device; 2822 } 2823 2824 /* 2825 * we fua the first super. The others we allow 2826 * to go down lazy. 2827 */ 2828 ret = btrfsic_submit_bh(WRITE_FUA, bh); 2829 if (ret) 2830 errors++; 2831 } 2832 return errors < i ? 0 : -1; 2833 } 2834 2835 /* 2836 * endio for the write_dev_flush, this will wake anyone waiting 2837 * for the barrier when it is done 2838 */ 2839 static void btrfs_end_empty_barrier(struct bio *bio, int err) 2840 { 2841 if (err) { 2842 if (err == -EOPNOTSUPP) 2843 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2844 clear_bit(BIO_UPTODATE, &bio->bi_flags); 2845 } 2846 if (bio->bi_private) 2847 complete(bio->bi_private); 2848 bio_put(bio); 2849 } 2850 2851 /* 2852 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 2853 * sent down. With wait == 1, it waits for the previous flush. 2854 * 2855 * any device where the flush fails with eopnotsupp are flagged as not-barrier 2856 * capable 2857 */ 2858 static int write_dev_flush(struct btrfs_device *device, int wait) 2859 { 2860 struct bio *bio; 2861 int ret = 0; 2862 2863 if (device->nobarriers) 2864 return 0; 2865 2866 if (wait) { 2867 bio = device->flush_bio; 2868 if (!bio) 2869 return 0; 2870 2871 wait_for_completion(&device->flush_wait); 2872 2873 if (bio_flagged(bio, BIO_EOPNOTSUPP)) { 2874 printk_in_rcu("btrfs: disabling barriers on dev %s\n", 2875 rcu_str_deref(device->name)); 2876 device->nobarriers = 1; 2877 } 2878 if (!bio_flagged(bio, BIO_UPTODATE)) { 2879 ret = -EIO; 2880 if (!bio_flagged(bio, BIO_EOPNOTSUPP)) 2881 btrfs_dev_stat_inc_and_print(device, 2882 BTRFS_DEV_STAT_FLUSH_ERRS); 2883 } 2884 2885 /* drop the reference from the wait == 0 run */ 2886 bio_put(bio); 2887 device->flush_bio = NULL; 2888 2889 return ret; 2890 } 2891 2892 /* 2893 * one reference for us, and we leave it for the 2894 * caller 2895 */ 2896 device->flush_bio = NULL; 2897 bio = bio_alloc(GFP_NOFS, 0); 2898 if (!bio) 2899 return -ENOMEM; 2900 2901 bio->bi_end_io = btrfs_end_empty_barrier; 2902 bio->bi_bdev = device->bdev; 2903 init_completion(&device->flush_wait); 2904 bio->bi_private = &device->flush_wait; 2905 device->flush_bio = bio; 2906 2907 bio_get(bio); 2908 btrfsic_submit_bio(WRITE_FLUSH, bio); 2909 2910 return 0; 2911 } 2912 2913 /* 2914 * send an empty flush down to each device in parallel, 2915 * then wait for them 2916 */ 2917 static int barrier_all_devices(struct btrfs_fs_info *info) 2918 { 2919 struct list_head *head; 2920 struct btrfs_device *dev; 2921 int errors = 0; 2922 int ret; 2923 2924 /* send down all the barriers */ 2925 head = &info->fs_devices->devices; 2926 list_for_each_entry_rcu(dev, head, dev_list) { 2927 if (!dev->bdev) { 2928 errors++; 2929 continue; 2930 } 2931 if (!dev->in_fs_metadata || !dev->writeable) 2932 continue; 2933 2934 ret = write_dev_flush(dev, 0); 2935 if (ret) 2936 errors++; 2937 } 2938 2939 /* wait for all the barriers */ 2940 list_for_each_entry_rcu(dev, head, dev_list) { 2941 if (!dev->bdev) { 2942 errors++; 2943 continue; 2944 } 2945 if (!dev->in_fs_metadata || !dev->writeable) 2946 continue; 2947 2948 ret = write_dev_flush(dev, 1); 2949 if (ret) 2950 errors++; 2951 } 2952 if (errors) 2953 return -EIO; 2954 return 0; 2955 } 2956 2957 int write_all_supers(struct btrfs_root *root, int max_mirrors) 2958 { 2959 struct list_head *head; 2960 struct btrfs_device *dev; 2961 struct btrfs_super_block *sb; 2962 struct btrfs_dev_item *dev_item; 2963 int ret; 2964 int do_barriers; 2965 int max_errors; 2966 int total_errors = 0; 2967 u64 flags; 2968 2969 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 2970 do_barriers = !btrfs_test_opt(root, NOBARRIER); 2971 backup_super_roots(root->fs_info); 2972 2973 sb = root->fs_info->super_for_commit; 2974 dev_item = &sb->dev_item; 2975 2976 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2977 head = &root->fs_info->fs_devices->devices; 2978 2979 if (do_barriers) 2980 barrier_all_devices(root->fs_info); 2981 2982 list_for_each_entry_rcu(dev, head, dev_list) { 2983 if (!dev->bdev) { 2984 total_errors++; 2985 continue; 2986 } 2987 if (!dev->in_fs_metadata || !dev->writeable) 2988 continue; 2989 2990 btrfs_set_stack_device_generation(dev_item, 0); 2991 btrfs_set_stack_device_type(dev_item, dev->type); 2992 btrfs_set_stack_device_id(dev_item, dev->devid); 2993 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 2994 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 2995 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 2996 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 2997 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 2998 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 2999 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3000 3001 flags = btrfs_super_flags(sb); 3002 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3003 3004 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3005 if (ret) 3006 total_errors++; 3007 } 3008 if (total_errors > max_errors) { 3009 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 3010 total_errors); 3011 3012 /* This shouldn't happen. FUA is masked off if unsupported */ 3013 BUG(); 3014 } 3015 3016 total_errors = 0; 3017 list_for_each_entry_rcu(dev, head, dev_list) { 3018 if (!dev->bdev) 3019 continue; 3020 if (!dev->in_fs_metadata || !dev->writeable) 3021 continue; 3022 3023 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3024 if (ret) 3025 total_errors++; 3026 } 3027 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3028 if (total_errors > max_errors) { 3029 btrfs_error(root->fs_info, -EIO, 3030 "%d errors while writing supers", total_errors); 3031 return -EIO; 3032 } 3033 return 0; 3034 } 3035 3036 int write_ctree_super(struct btrfs_trans_handle *trans, 3037 struct btrfs_root *root, int max_mirrors) 3038 { 3039 int ret; 3040 3041 ret = write_all_supers(root, max_mirrors); 3042 return ret; 3043 } 3044 3045 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 3046 { 3047 spin_lock(&fs_info->fs_roots_radix_lock); 3048 radix_tree_delete(&fs_info->fs_roots_radix, 3049 (unsigned long)root->root_key.objectid); 3050 spin_unlock(&fs_info->fs_roots_radix_lock); 3051 3052 if (btrfs_root_refs(&root->root_item) == 0) 3053 synchronize_srcu(&fs_info->subvol_srcu); 3054 3055 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3056 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3057 free_fs_root(root); 3058 } 3059 3060 static void free_fs_root(struct btrfs_root *root) 3061 { 3062 iput(root->cache_inode); 3063 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3064 if (root->anon_dev) 3065 free_anon_bdev(root->anon_dev); 3066 free_extent_buffer(root->node); 3067 free_extent_buffer(root->commit_root); 3068 kfree(root->free_ino_ctl); 3069 kfree(root->free_ino_pinned); 3070 kfree(root->name); 3071 kfree(root); 3072 } 3073 3074 static void del_fs_roots(struct btrfs_fs_info *fs_info) 3075 { 3076 int ret; 3077 struct btrfs_root *gang[8]; 3078 int i; 3079 3080 while (!list_empty(&fs_info->dead_roots)) { 3081 gang[0] = list_entry(fs_info->dead_roots.next, 3082 struct btrfs_root, root_list); 3083 list_del(&gang[0]->root_list); 3084 3085 if (gang[0]->in_radix) { 3086 btrfs_free_fs_root(fs_info, gang[0]); 3087 } else { 3088 free_extent_buffer(gang[0]->node); 3089 free_extent_buffer(gang[0]->commit_root); 3090 kfree(gang[0]); 3091 } 3092 } 3093 3094 while (1) { 3095 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3096 (void **)gang, 0, 3097 ARRAY_SIZE(gang)); 3098 if (!ret) 3099 break; 3100 for (i = 0; i < ret; i++) 3101 btrfs_free_fs_root(fs_info, gang[i]); 3102 } 3103 } 3104 3105 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3106 { 3107 u64 root_objectid = 0; 3108 struct btrfs_root *gang[8]; 3109 int i; 3110 int ret; 3111 3112 while (1) { 3113 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3114 (void **)gang, root_objectid, 3115 ARRAY_SIZE(gang)); 3116 if (!ret) 3117 break; 3118 3119 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3120 for (i = 0; i < ret; i++) { 3121 int err; 3122 3123 root_objectid = gang[i]->root_key.objectid; 3124 err = btrfs_orphan_cleanup(gang[i]); 3125 if (err) 3126 return err; 3127 } 3128 root_objectid++; 3129 } 3130 return 0; 3131 } 3132 3133 int btrfs_commit_super(struct btrfs_root *root) 3134 { 3135 struct btrfs_trans_handle *trans; 3136 int ret; 3137 3138 mutex_lock(&root->fs_info->cleaner_mutex); 3139 btrfs_run_delayed_iputs(root); 3140 btrfs_clean_old_snapshots(root); 3141 mutex_unlock(&root->fs_info->cleaner_mutex); 3142 3143 /* wait until ongoing cleanup work done */ 3144 down_write(&root->fs_info->cleanup_work_sem); 3145 up_write(&root->fs_info->cleanup_work_sem); 3146 3147 trans = btrfs_join_transaction(root); 3148 if (IS_ERR(trans)) 3149 return PTR_ERR(trans); 3150 ret = btrfs_commit_transaction(trans, root); 3151 if (ret) 3152 return ret; 3153 /* run commit again to drop the original snapshot */ 3154 trans = btrfs_join_transaction(root); 3155 if (IS_ERR(trans)) 3156 return PTR_ERR(trans); 3157 ret = btrfs_commit_transaction(trans, root); 3158 if (ret) 3159 return ret; 3160 ret = btrfs_write_and_wait_transaction(NULL, root); 3161 if (ret) { 3162 btrfs_error(root->fs_info, ret, 3163 "Failed to sync btree inode to disk."); 3164 return ret; 3165 } 3166 3167 ret = write_ctree_super(NULL, root, 0); 3168 return ret; 3169 } 3170 3171 int close_ctree(struct btrfs_root *root) 3172 { 3173 struct btrfs_fs_info *fs_info = root->fs_info; 3174 int ret; 3175 3176 fs_info->closing = 1; 3177 smp_mb(); 3178 3179 /* pause restriper - we want to resume on mount */ 3180 btrfs_pause_balance(root->fs_info); 3181 3182 btrfs_scrub_cancel(root); 3183 3184 /* wait for any defraggers to finish */ 3185 wait_event(fs_info->transaction_wait, 3186 (atomic_read(&fs_info->defrag_running) == 0)); 3187 3188 /* clear out the rbtree of defraggable inodes */ 3189 btrfs_run_defrag_inodes(fs_info); 3190 3191 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3192 ret = btrfs_commit_super(root); 3193 if (ret) 3194 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 3195 } 3196 3197 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) 3198 btrfs_error_commit_super(root); 3199 3200 btrfs_put_block_group_cache(fs_info); 3201 3202 kthread_stop(fs_info->transaction_kthread); 3203 kthread_stop(fs_info->cleaner_kthread); 3204 3205 fs_info->closing = 2; 3206 smp_mb(); 3207 3208 btrfs_free_qgroup_config(root->fs_info); 3209 3210 if (fs_info->delalloc_bytes) { 3211 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 3212 (unsigned long long)fs_info->delalloc_bytes); 3213 } 3214 if (fs_info->total_ref_cache_size) { 3215 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", 3216 (unsigned long long)fs_info->total_ref_cache_size); 3217 } 3218 3219 free_extent_buffer(fs_info->extent_root->node); 3220 free_extent_buffer(fs_info->extent_root->commit_root); 3221 free_extent_buffer(fs_info->tree_root->node); 3222 free_extent_buffer(fs_info->tree_root->commit_root); 3223 free_extent_buffer(fs_info->chunk_root->node); 3224 free_extent_buffer(fs_info->chunk_root->commit_root); 3225 free_extent_buffer(fs_info->dev_root->node); 3226 free_extent_buffer(fs_info->dev_root->commit_root); 3227 free_extent_buffer(fs_info->csum_root->node); 3228 free_extent_buffer(fs_info->csum_root->commit_root); 3229 if (fs_info->quota_root) { 3230 free_extent_buffer(fs_info->quota_root->node); 3231 free_extent_buffer(fs_info->quota_root->commit_root); 3232 } 3233 3234 btrfs_free_block_groups(fs_info); 3235 3236 del_fs_roots(fs_info); 3237 3238 iput(fs_info->btree_inode); 3239 3240 btrfs_stop_workers(&fs_info->generic_worker); 3241 btrfs_stop_workers(&fs_info->fixup_workers); 3242 btrfs_stop_workers(&fs_info->delalloc_workers); 3243 btrfs_stop_workers(&fs_info->workers); 3244 btrfs_stop_workers(&fs_info->endio_workers); 3245 btrfs_stop_workers(&fs_info->endio_meta_workers); 3246 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 3247 btrfs_stop_workers(&fs_info->endio_write_workers); 3248 btrfs_stop_workers(&fs_info->endio_freespace_worker); 3249 btrfs_stop_workers(&fs_info->submit_workers); 3250 btrfs_stop_workers(&fs_info->delayed_workers); 3251 btrfs_stop_workers(&fs_info->caching_workers); 3252 btrfs_stop_workers(&fs_info->readahead_workers); 3253 3254 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3255 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3256 btrfsic_unmount(root, fs_info->fs_devices); 3257 #endif 3258 3259 btrfs_close_devices(fs_info->fs_devices); 3260 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3261 3262 bdi_destroy(&fs_info->bdi); 3263 cleanup_srcu_struct(&fs_info->subvol_srcu); 3264 3265 return 0; 3266 } 3267 3268 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3269 int atomic) 3270 { 3271 int ret; 3272 struct inode *btree_inode = buf->pages[0]->mapping->host; 3273 3274 ret = extent_buffer_uptodate(buf); 3275 if (!ret) 3276 return ret; 3277 3278 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3279 parent_transid, atomic); 3280 if (ret == -EAGAIN) 3281 return ret; 3282 return !ret; 3283 } 3284 3285 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3286 { 3287 return set_extent_buffer_uptodate(buf); 3288 } 3289 3290 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3291 { 3292 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3293 u64 transid = btrfs_header_generation(buf); 3294 int was_dirty; 3295 3296 btrfs_assert_tree_locked(buf); 3297 if (transid != root->fs_info->generation) { 3298 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 3299 "found %llu running %llu\n", 3300 (unsigned long long)buf->start, 3301 (unsigned long long)transid, 3302 (unsigned long long)root->fs_info->generation); 3303 WARN_ON(1); 3304 } 3305 was_dirty = set_extent_buffer_dirty(buf); 3306 if (!was_dirty) { 3307 spin_lock(&root->fs_info->delalloc_lock); 3308 root->fs_info->dirty_metadata_bytes += buf->len; 3309 spin_unlock(&root->fs_info->delalloc_lock); 3310 } 3311 } 3312 3313 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 3314 { 3315 /* 3316 * looks as though older kernels can get into trouble with 3317 * this code, they end up stuck in balance_dirty_pages forever 3318 */ 3319 u64 num_dirty; 3320 unsigned long thresh = 32 * 1024 * 1024; 3321 3322 if (current->flags & PF_MEMALLOC) 3323 return; 3324 3325 btrfs_balance_delayed_items(root); 3326 3327 num_dirty = root->fs_info->dirty_metadata_bytes; 3328 3329 if (num_dirty > thresh) { 3330 balance_dirty_pages_ratelimited_nr( 3331 root->fs_info->btree_inode->i_mapping, 1); 3332 } 3333 return; 3334 } 3335 3336 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 3337 { 3338 /* 3339 * looks as though older kernels can get into trouble with 3340 * this code, they end up stuck in balance_dirty_pages forever 3341 */ 3342 u64 num_dirty; 3343 unsigned long thresh = 32 * 1024 * 1024; 3344 3345 if (current->flags & PF_MEMALLOC) 3346 return; 3347 3348 num_dirty = root->fs_info->dirty_metadata_bytes; 3349 3350 if (num_dirty > thresh) { 3351 balance_dirty_pages_ratelimited_nr( 3352 root->fs_info->btree_inode->i_mapping, 1); 3353 } 3354 return; 3355 } 3356 3357 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3358 { 3359 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3360 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3361 } 3362 3363 int btree_lock_page_hook(struct page *page, void *data, 3364 void (*flush_fn)(void *)) 3365 { 3366 struct inode *inode = page->mapping->host; 3367 struct btrfs_root *root = BTRFS_I(inode)->root; 3368 struct extent_buffer *eb; 3369 3370 /* 3371 * We culled this eb but the page is still hanging out on the mapping, 3372 * carry on. 3373 */ 3374 if (!PagePrivate(page)) 3375 goto out; 3376 3377 eb = (struct extent_buffer *)page->private; 3378 if (!eb) { 3379 WARN_ON(1); 3380 goto out; 3381 } 3382 if (page != eb->pages[0]) 3383 goto out; 3384 3385 if (!btrfs_try_tree_write_lock(eb)) { 3386 flush_fn(data); 3387 btrfs_tree_lock(eb); 3388 } 3389 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3390 3391 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3392 spin_lock(&root->fs_info->delalloc_lock); 3393 if (root->fs_info->dirty_metadata_bytes >= eb->len) 3394 root->fs_info->dirty_metadata_bytes -= eb->len; 3395 else 3396 WARN_ON(1); 3397 spin_unlock(&root->fs_info->delalloc_lock); 3398 } 3399 3400 btrfs_tree_unlock(eb); 3401 out: 3402 if (!trylock_page(page)) { 3403 flush_fn(data); 3404 lock_page(page); 3405 } 3406 return 0; 3407 } 3408 3409 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3410 int read_only) 3411 { 3412 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) { 3413 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n"); 3414 return -EINVAL; 3415 } 3416 3417 if (read_only) 3418 return 0; 3419 3420 return 0; 3421 } 3422 3423 void btrfs_error_commit_super(struct btrfs_root *root) 3424 { 3425 mutex_lock(&root->fs_info->cleaner_mutex); 3426 btrfs_run_delayed_iputs(root); 3427 mutex_unlock(&root->fs_info->cleaner_mutex); 3428 3429 down_write(&root->fs_info->cleanup_work_sem); 3430 up_write(&root->fs_info->cleanup_work_sem); 3431 3432 /* cleanup FS via transaction */ 3433 btrfs_cleanup_transaction(root); 3434 } 3435 3436 static void btrfs_destroy_ordered_operations(struct btrfs_root *root) 3437 { 3438 struct btrfs_inode *btrfs_inode; 3439 struct list_head splice; 3440 3441 INIT_LIST_HEAD(&splice); 3442 3443 mutex_lock(&root->fs_info->ordered_operations_mutex); 3444 spin_lock(&root->fs_info->ordered_extent_lock); 3445 3446 list_splice_init(&root->fs_info->ordered_operations, &splice); 3447 while (!list_empty(&splice)) { 3448 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3449 ordered_operations); 3450 3451 list_del_init(&btrfs_inode->ordered_operations); 3452 3453 btrfs_invalidate_inodes(btrfs_inode->root); 3454 } 3455 3456 spin_unlock(&root->fs_info->ordered_extent_lock); 3457 mutex_unlock(&root->fs_info->ordered_operations_mutex); 3458 } 3459 3460 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 3461 { 3462 struct list_head splice; 3463 struct btrfs_ordered_extent *ordered; 3464 struct inode *inode; 3465 3466 INIT_LIST_HEAD(&splice); 3467 3468 spin_lock(&root->fs_info->ordered_extent_lock); 3469 3470 list_splice_init(&root->fs_info->ordered_extents, &splice); 3471 while (!list_empty(&splice)) { 3472 ordered = list_entry(splice.next, struct btrfs_ordered_extent, 3473 root_extent_list); 3474 3475 list_del_init(&ordered->root_extent_list); 3476 atomic_inc(&ordered->refs); 3477 3478 /* the inode may be getting freed (in sys_unlink path). */ 3479 inode = igrab(ordered->inode); 3480 3481 spin_unlock(&root->fs_info->ordered_extent_lock); 3482 if (inode) 3483 iput(inode); 3484 3485 atomic_set(&ordered->refs, 1); 3486 btrfs_put_ordered_extent(ordered); 3487 3488 spin_lock(&root->fs_info->ordered_extent_lock); 3489 } 3490 3491 spin_unlock(&root->fs_info->ordered_extent_lock); 3492 } 3493 3494 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 3495 struct btrfs_root *root) 3496 { 3497 struct rb_node *node; 3498 struct btrfs_delayed_ref_root *delayed_refs; 3499 struct btrfs_delayed_ref_node *ref; 3500 int ret = 0; 3501 3502 delayed_refs = &trans->delayed_refs; 3503 3504 spin_lock(&delayed_refs->lock); 3505 if (delayed_refs->num_entries == 0) { 3506 spin_unlock(&delayed_refs->lock); 3507 printk(KERN_INFO "delayed_refs has NO entry\n"); 3508 return ret; 3509 } 3510 3511 while ((node = rb_first(&delayed_refs->root)) != NULL) { 3512 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 3513 3514 atomic_set(&ref->refs, 1); 3515 if (btrfs_delayed_ref_is_head(ref)) { 3516 struct btrfs_delayed_ref_head *head; 3517 3518 head = btrfs_delayed_node_to_head(ref); 3519 if (!mutex_trylock(&head->mutex)) { 3520 atomic_inc(&ref->refs); 3521 spin_unlock(&delayed_refs->lock); 3522 3523 /* Need to wait for the delayed ref to run */ 3524 mutex_lock(&head->mutex); 3525 mutex_unlock(&head->mutex); 3526 btrfs_put_delayed_ref(ref); 3527 3528 spin_lock(&delayed_refs->lock); 3529 continue; 3530 } 3531 3532 kfree(head->extent_op); 3533 delayed_refs->num_heads--; 3534 if (list_empty(&head->cluster)) 3535 delayed_refs->num_heads_ready--; 3536 list_del_init(&head->cluster); 3537 } 3538 ref->in_tree = 0; 3539 rb_erase(&ref->rb_node, &delayed_refs->root); 3540 delayed_refs->num_entries--; 3541 3542 spin_unlock(&delayed_refs->lock); 3543 btrfs_put_delayed_ref(ref); 3544 3545 cond_resched(); 3546 spin_lock(&delayed_refs->lock); 3547 } 3548 3549 spin_unlock(&delayed_refs->lock); 3550 3551 return ret; 3552 } 3553 3554 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t) 3555 { 3556 struct btrfs_pending_snapshot *snapshot; 3557 struct list_head splice; 3558 3559 INIT_LIST_HEAD(&splice); 3560 3561 list_splice_init(&t->pending_snapshots, &splice); 3562 3563 while (!list_empty(&splice)) { 3564 snapshot = list_entry(splice.next, 3565 struct btrfs_pending_snapshot, 3566 list); 3567 3568 list_del_init(&snapshot->list); 3569 3570 kfree(snapshot); 3571 } 3572 } 3573 3574 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 3575 { 3576 struct btrfs_inode *btrfs_inode; 3577 struct list_head splice; 3578 3579 INIT_LIST_HEAD(&splice); 3580 3581 spin_lock(&root->fs_info->delalloc_lock); 3582 list_splice_init(&root->fs_info->delalloc_inodes, &splice); 3583 3584 while (!list_empty(&splice)) { 3585 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3586 delalloc_inodes); 3587 3588 list_del_init(&btrfs_inode->delalloc_inodes); 3589 3590 btrfs_invalidate_inodes(btrfs_inode->root); 3591 } 3592 3593 spin_unlock(&root->fs_info->delalloc_lock); 3594 } 3595 3596 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 3597 struct extent_io_tree *dirty_pages, 3598 int mark) 3599 { 3600 int ret; 3601 struct page *page; 3602 struct inode *btree_inode = root->fs_info->btree_inode; 3603 struct extent_buffer *eb; 3604 u64 start = 0; 3605 u64 end; 3606 u64 offset; 3607 unsigned long index; 3608 3609 while (1) { 3610 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 3611 mark); 3612 if (ret) 3613 break; 3614 3615 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 3616 while (start <= end) { 3617 index = start >> PAGE_CACHE_SHIFT; 3618 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 3619 page = find_get_page(btree_inode->i_mapping, index); 3620 if (!page) 3621 continue; 3622 offset = page_offset(page); 3623 3624 spin_lock(&dirty_pages->buffer_lock); 3625 eb = radix_tree_lookup( 3626 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer, 3627 offset >> PAGE_CACHE_SHIFT); 3628 spin_unlock(&dirty_pages->buffer_lock); 3629 if (eb) 3630 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY, 3631 &eb->bflags); 3632 if (PageWriteback(page)) 3633 end_page_writeback(page); 3634 3635 lock_page(page); 3636 if (PageDirty(page)) { 3637 clear_page_dirty_for_io(page); 3638 spin_lock_irq(&page->mapping->tree_lock); 3639 radix_tree_tag_clear(&page->mapping->page_tree, 3640 page_index(page), 3641 PAGECACHE_TAG_DIRTY); 3642 spin_unlock_irq(&page->mapping->tree_lock); 3643 } 3644 3645 unlock_page(page); 3646 page_cache_release(page); 3647 } 3648 } 3649 3650 return ret; 3651 } 3652 3653 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 3654 struct extent_io_tree *pinned_extents) 3655 { 3656 struct extent_io_tree *unpin; 3657 u64 start; 3658 u64 end; 3659 int ret; 3660 bool loop = true; 3661 3662 unpin = pinned_extents; 3663 again: 3664 while (1) { 3665 ret = find_first_extent_bit(unpin, 0, &start, &end, 3666 EXTENT_DIRTY); 3667 if (ret) 3668 break; 3669 3670 /* opt_discard */ 3671 if (btrfs_test_opt(root, DISCARD)) 3672 ret = btrfs_error_discard_extent(root, start, 3673 end + 1 - start, 3674 NULL); 3675 3676 clear_extent_dirty(unpin, start, end, GFP_NOFS); 3677 btrfs_error_unpin_extent_range(root, start, end); 3678 cond_resched(); 3679 } 3680 3681 if (loop) { 3682 if (unpin == &root->fs_info->freed_extents[0]) 3683 unpin = &root->fs_info->freed_extents[1]; 3684 else 3685 unpin = &root->fs_info->freed_extents[0]; 3686 loop = false; 3687 goto again; 3688 } 3689 3690 return 0; 3691 } 3692 3693 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 3694 struct btrfs_root *root) 3695 { 3696 btrfs_destroy_delayed_refs(cur_trans, root); 3697 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 3698 cur_trans->dirty_pages.dirty_bytes); 3699 3700 /* FIXME: cleanup wait for commit */ 3701 cur_trans->in_commit = 1; 3702 cur_trans->blocked = 1; 3703 wake_up(&root->fs_info->transaction_blocked_wait); 3704 3705 cur_trans->blocked = 0; 3706 wake_up(&root->fs_info->transaction_wait); 3707 3708 cur_trans->commit_done = 1; 3709 wake_up(&cur_trans->commit_wait); 3710 3711 btrfs_destroy_delayed_inodes(root); 3712 btrfs_assert_delayed_root_empty(root); 3713 3714 btrfs_destroy_pending_snapshots(cur_trans); 3715 3716 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 3717 EXTENT_DIRTY); 3718 btrfs_destroy_pinned_extent(root, 3719 root->fs_info->pinned_extents); 3720 3721 /* 3722 memset(cur_trans, 0, sizeof(*cur_trans)); 3723 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 3724 */ 3725 } 3726 3727 int btrfs_cleanup_transaction(struct btrfs_root *root) 3728 { 3729 struct btrfs_transaction *t; 3730 LIST_HEAD(list); 3731 3732 mutex_lock(&root->fs_info->transaction_kthread_mutex); 3733 3734 spin_lock(&root->fs_info->trans_lock); 3735 list_splice_init(&root->fs_info->trans_list, &list); 3736 root->fs_info->trans_no_join = 1; 3737 spin_unlock(&root->fs_info->trans_lock); 3738 3739 while (!list_empty(&list)) { 3740 t = list_entry(list.next, struct btrfs_transaction, list); 3741 if (!t) 3742 break; 3743 3744 btrfs_destroy_ordered_operations(root); 3745 3746 btrfs_destroy_ordered_extents(root); 3747 3748 btrfs_destroy_delayed_refs(t, root); 3749 3750 btrfs_block_rsv_release(root, 3751 &root->fs_info->trans_block_rsv, 3752 t->dirty_pages.dirty_bytes); 3753 3754 /* FIXME: cleanup wait for commit */ 3755 t->in_commit = 1; 3756 t->blocked = 1; 3757 smp_mb(); 3758 if (waitqueue_active(&root->fs_info->transaction_blocked_wait)) 3759 wake_up(&root->fs_info->transaction_blocked_wait); 3760 3761 t->blocked = 0; 3762 smp_mb(); 3763 if (waitqueue_active(&root->fs_info->transaction_wait)) 3764 wake_up(&root->fs_info->transaction_wait); 3765 3766 t->commit_done = 1; 3767 smp_mb(); 3768 if (waitqueue_active(&t->commit_wait)) 3769 wake_up(&t->commit_wait); 3770 3771 btrfs_destroy_delayed_inodes(root); 3772 btrfs_assert_delayed_root_empty(root); 3773 3774 btrfs_destroy_pending_snapshots(t); 3775 3776 btrfs_destroy_delalloc_inodes(root); 3777 3778 spin_lock(&root->fs_info->trans_lock); 3779 root->fs_info->running_transaction = NULL; 3780 spin_unlock(&root->fs_info->trans_lock); 3781 3782 btrfs_destroy_marked_extents(root, &t->dirty_pages, 3783 EXTENT_DIRTY); 3784 3785 btrfs_destroy_pinned_extent(root, 3786 root->fs_info->pinned_extents); 3787 3788 atomic_set(&t->use_count, 0); 3789 list_del_init(&t->list); 3790 memset(t, 0, sizeof(*t)); 3791 kmem_cache_free(btrfs_transaction_cachep, t); 3792 } 3793 3794 spin_lock(&root->fs_info->trans_lock); 3795 root->fs_info->trans_no_join = 0; 3796 spin_unlock(&root->fs_info->trans_lock); 3797 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 3798 3799 return 0; 3800 } 3801 3802 static struct extent_io_ops btree_extent_io_ops = { 3803 .write_cache_pages_lock_hook = btree_lock_page_hook, 3804 .readpage_end_io_hook = btree_readpage_end_io_hook, 3805 .readpage_io_failed_hook = btree_io_failed_hook, 3806 .submit_bio_hook = btree_submit_bio_hook, 3807 /* note we're sharing with inode.c for the merge bio hook */ 3808 .merge_bio_hook = btrfs_merge_bio_hook, 3809 }; 3810