1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/slab.h> 30 #include <linux/migrate.h> 31 #include <linux/ratelimit.h> 32 #include <linux/uuid.h> 33 #include <linux/semaphore.h> 34 #include <asm/unaligned.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "hash.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "volumes.h" 41 #include "print-tree.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 #include "dev-replace.h" 49 #include "raid56.h" 50 #include "sysfs.h" 51 #include "qgroup.h" 52 53 #ifdef CONFIG_X86 54 #include <asm/cpufeature.h> 55 #endif 56 57 static struct extent_io_ops btree_extent_io_ops; 58 static void end_workqueue_fn(struct btrfs_work *work); 59 static void free_fs_root(struct btrfs_root *root); 60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 61 int read_only); 62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 64 struct btrfs_root *root); 65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 66 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 67 struct extent_io_tree *dirty_pages, 68 int mark); 69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 70 struct extent_io_tree *pinned_extents); 71 static int btrfs_cleanup_transaction(struct btrfs_root *root); 72 static void btrfs_error_commit_super(struct btrfs_root *root); 73 74 /* 75 * btrfs_end_io_wq structs are used to do processing in task context when an IO 76 * is complete. This is used during reads to verify checksums, and it is used 77 * by writes to insert metadata for new file extents after IO is complete. 78 */ 79 struct btrfs_end_io_wq { 80 struct bio *bio; 81 bio_end_io_t *end_io; 82 void *private; 83 struct btrfs_fs_info *info; 84 int error; 85 enum btrfs_wq_endio_type metadata; 86 struct list_head list; 87 struct btrfs_work work; 88 }; 89 90 static struct kmem_cache *btrfs_end_io_wq_cache; 91 92 int __init btrfs_end_io_wq_init(void) 93 { 94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 95 sizeof(struct btrfs_end_io_wq), 96 0, 97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 98 NULL); 99 if (!btrfs_end_io_wq_cache) 100 return -ENOMEM; 101 return 0; 102 } 103 104 void btrfs_end_io_wq_exit(void) 105 { 106 if (btrfs_end_io_wq_cache) 107 kmem_cache_destroy(btrfs_end_io_wq_cache); 108 } 109 110 /* 111 * async submit bios are used to offload expensive checksumming 112 * onto the worker threads. They checksum file and metadata bios 113 * just before they are sent down the IO stack. 114 */ 115 struct async_submit_bio { 116 struct inode *inode; 117 struct bio *bio; 118 struct list_head list; 119 extent_submit_bio_hook_t *submit_bio_start; 120 extent_submit_bio_hook_t *submit_bio_done; 121 int rw; 122 int mirror_num; 123 unsigned long bio_flags; 124 /* 125 * bio_offset is optional, can be used if the pages in the bio 126 * can't tell us where in the file the bio should go 127 */ 128 u64 bio_offset; 129 struct btrfs_work work; 130 int error; 131 }; 132 133 /* 134 * Lockdep class keys for extent_buffer->lock's in this root. For a given 135 * eb, the lockdep key is determined by the btrfs_root it belongs to and 136 * the level the eb occupies in the tree. 137 * 138 * Different roots are used for different purposes and may nest inside each 139 * other and they require separate keysets. As lockdep keys should be 140 * static, assign keysets according to the purpose of the root as indicated 141 * by btrfs_root->objectid. This ensures that all special purpose roots 142 * have separate keysets. 143 * 144 * Lock-nesting across peer nodes is always done with the immediate parent 145 * node locked thus preventing deadlock. As lockdep doesn't know this, use 146 * subclass to avoid triggering lockdep warning in such cases. 147 * 148 * The key is set by the readpage_end_io_hook after the buffer has passed 149 * csum validation but before the pages are unlocked. It is also set by 150 * btrfs_init_new_buffer on freshly allocated blocks. 151 * 152 * We also add a check to make sure the highest level of the tree is the 153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 154 * needs update as well. 155 */ 156 #ifdef CONFIG_DEBUG_LOCK_ALLOC 157 # if BTRFS_MAX_LEVEL != 8 158 # error 159 # endif 160 161 static struct btrfs_lockdep_keyset { 162 u64 id; /* root objectid */ 163 const char *name_stem; /* lock name stem */ 164 char names[BTRFS_MAX_LEVEL + 1][20]; 165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 166 } btrfs_lockdep_keysets[] = { 167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 178 { .id = 0, .name_stem = "tree" }, 179 }; 180 181 void __init btrfs_init_lockdep(void) 182 { 183 int i, j; 184 185 /* initialize lockdep class names */ 186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 188 189 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 190 snprintf(ks->names[j], sizeof(ks->names[j]), 191 "btrfs-%s-%02d", ks->name_stem, j); 192 } 193 } 194 195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 196 int level) 197 { 198 struct btrfs_lockdep_keyset *ks; 199 200 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 201 202 /* find the matching keyset, id 0 is the default entry */ 203 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 204 if (ks->id == objectid) 205 break; 206 207 lockdep_set_class_and_name(&eb->lock, 208 &ks->keys[level], ks->names[level]); 209 } 210 211 #endif 212 213 /* 214 * extents on the btree inode are pretty simple, there's one extent 215 * that covers the entire device 216 */ 217 static struct extent_map *btree_get_extent(struct inode *inode, 218 struct page *page, size_t pg_offset, u64 start, u64 len, 219 int create) 220 { 221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 222 struct extent_map *em; 223 int ret; 224 225 read_lock(&em_tree->lock); 226 em = lookup_extent_mapping(em_tree, start, len); 227 if (em) { 228 em->bdev = 229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 230 read_unlock(&em_tree->lock); 231 goto out; 232 } 233 read_unlock(&em_tree->lock); 234 235 em = alloc_extent_map(); 236 if (!em) { 237 em = ERR_PTR(-ENOMEM); 238 goto out; 239 } 240 em->start = 0; 241 em->len = (u64)-1; 242 em->block_len = (u64)-1; 243 em->block_start = 0; 244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 245 246 write_lock(&em_tree->lock); 247 ret = add_extent_mapping(em_tree, em, 0); 248 if (ret == -EEXIST) { 249 free_extent_map(em); 250 em = lookup_extent_mapping(em_tree, start, len); 251 if (!em) 252 em = ERR_PTR(-EIO); 253 } else if (ret) { 254 free_extent_map(em); 255 em = ERR_PTR(ret); 256 } 257 write_unlock(&em_tree->lock); 258 259 out: 260 return em; 261 } 262 263 u32 btrfs_csum_data(char *data, u32 seed, size_t len) 264 { 265 return btrfs_crc32c(seed, data, len); 266 } 267 268 void btrfs_csum_final(u32 crc, char *result) 269 { 270 put_unaligned_le32(~crc, result); 271 } 272 273 /* 274 * compute the csum for a btree block, and either verify it or write it 275 * into the csum field of the block. 276 */ 277 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 278 int verify) 279 { 280 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 281 char *result = NULL; 282 unsigned long len; 283 unsigned long cur_len; 284 unsigned long offset = BTRFS_CSUM_SIZE; 285 char *kaddr; 286 unsigned long map_start; 287 unsigned long map_len; 288 int err; 289 u32 crc = ~(u32)0; 290 unsigned long inline_result; 291 292 len = buf->len - offset; 293 while (len > 0) { 294 err = map_private_extent_buffer(buf, offset, 32, 295 &kaddr, &map_start, &map_len); 296 if (err) 297 return 1; 298 cur_len = min(len, map_len - (offset - map_start)); 299 crc = btrfs_csum_data(kaddr + offset - map_start, 300 crc, cur_len); 301 len -= cur_len; 302 offset += cur_len; 303 } 304 if (csum_size > sizeof(inline_result)) { 305 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 306 if (!result) 307 return 1; 308 } else { 309 result = (char *)&inline_result; 310 } 311 312 btrfs_csum_final(crc, result); 313 314 if (verify) { 315 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 316 u32 val; 317 u32 found = 0; 318 memcpy(&found, result, csum_size); 319 320 read_extent_buffer(buf, &val, 0, csum_size); 321 printk_ratelimited(KERN_INFO 322 "BTRFS: %s checksum verify failed on %llu wanted %X found %X " 323 "level %d\n", 324 root->fs_info->sb->s_id, buf->start, 325 val, found, btrfs_header_level(buf)); 326 if (result != (char *)&inline_result) 327 kfree(result); 328 return 1; 329 } 330 } else { 331 write_extent_buffer(buf, result, 0, csum_size); 332 } 333 if (result != (char *)&inline_result) 334 kfree(result); 335 return 0; 336 } 337 338 /* 339 * we can't consider a given block up to date unless the transid of the 340 * block matches the transid in the parent node's pointer. This is how we 341 * detect blocks that either didn't get written at all or got written 342 * in the wrong place. 343 */ 344 static int verify_parent_transid(struct extent_io_tree *io_tree, 345 struct extent_buffer *eb, u64 parent_transid, 346 int atomic) 347 { 348 struct extent_state *cached_state = NULL; 349 int ret; 350 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 351 352 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 353 return 0; 354 355 if (atomic) 356 return -EAGAIN; 357 358 if (need_lock) { 359 btrfs_tree_read_lock(eb); 360 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 361 } 362 363 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 364 0, &cached_state); 365 if (extent_buffer_uptodate(eb) && 366 btrfs_header_generation(eb) == parent_transid) { 367 ret = 0; 368 goto out; 369 } 370 printk_ratelimited(KERN_INFO "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n", 371 eb->fs_info->sb->s_id, eb->start, 372 parent_transid, btrfs_header_generation(eb)); 373 ret = 1; 374 375 /* 376 * Things reading via commit roots that don't have normal protection, 377 * like send, can have a really old block in cache that may point at a 378 * block that has been free'd and re-allocated. So don't clear uptodate 379 * if we find an eb that is under IO (dirty/writeback) because we could 380 * end up reading in the stale data and then writing it back out and 381 * making everybody very sad. 382 */ 383 if (!extent_buffer_under_io(eb)) 384 clear_extent_buffer_uptodate(eb); 385 out: 386 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 387 &cached_state, GFP_NOFS); 388 if (need_lock) 389 btrfs_tree_read_unlock_blocking(eb); 390 return ret; 391 } 392 393 /* 394 * Return 0 if the superblock checksum type matches the checksum value of that 395 * algorithm. Pass the raw disk superblock data. 396 */ 397 static int btrfs_check_super_csum(char *raw_disk_sb) 398 { 399 struct btrfs_super_block *disk_sb = 400 (struct btrfs_super_block *)raw_disk_sb; 401 u16 csum_type = btrfs_super_csum_type(disk_sb); 402 int ret = 0; 403 404 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 405 u32 crc = ~(u32)0; 406 const int csum_size = sizeof(crc); 407 char result[csum_size]; 408 409 /* 410 * The super_block structure does not span the whole 411 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 412 * is filled with zeros and is included in the checkum. 413 */ 414 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 415 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 416 btrfs_csum_final(crc, result); 417 418 if (memcmp(raw_disk_sb, result, csum_size)) 419 ret = 1; 420 421 if (ret && btrfs_super_generation(disk_sb) < 10) { 422 printk(KERN_WARNING 423 "BTRFS: super block crcs don't match, older mkfs detected\n"); 424 ret = 0; 425 } 426 } 427 428 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 429 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n", 430 csum_type); 431 ret = 1; 432 } 433 434 return ret; 435 } 436 437 /* 438 * helper to read a given tree block, doing retries as required when 439 * the checksums don't match and we have alternate mirrors to try. 440 */ 441 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 442 struct extent_buffer *eb, 443 u64 start, u64 parent_transid) 444 { 445 struct extent_io_tree *io_tree; 446 int failed = 0; 447 int ret; 448 int num_copies = 0; 449 int mirror_num = 0; 450 int failed_mirror = 0; 451 452 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 453 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 454 while (1) { 455 ret = read_extent_buffer_pages(io_tree, eb, start, 456 WAIT_COMPLETE, 457 btree_get_extent, mirror_num); 458 if (!ret) { 459 if (!verify_parent_transid(io_tree, eb, 460 parent_transid, 0)) 461 break; 462 else 463 ret = -EIO; 464 } 465 466 /* 467 * This buffer's crc is fine, but its contents are corrupted, so 468 * there is no reason to read the other copies, they won't be 469 * any less wrong. 470 */ 471 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 472 break; 473 474 num_copies = btrfs_num_copies(root->fs_info, 475 eb->start, eb->len); 476 if (num_copies == 1) 477 break; 478 479 if (!failed_mirror) { 480 failed = 1; 481 failed_mirror = eb->read_mirror; 482 } 483 484 mirror_num++; 485 if (mirror_num == failed_mirror) 486 mirror_num++; 487 488 if (mirror_num > num_copies) 489 break; 490 } 491 492 if (failed && !ret && failed_mirror) 493 repair_eb_io_failure(root, eb, failed_mirror); 494 495 return ret; 496 } 497 498 /* 499 * checksum a dirty tree block before IO. This has extra checks to make sure 500 * we only fill in the checksum field in the first page of a multi-page block 501 */ 502 503 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 504 { 505 u64 start = page_offset(page); 506 u64 found_start; 507 struct extent_buffer *eb; 508 509 eb = (struct extent_buffer *)page->private; 510 if (page != eb->pages[0]) 511 return 0; 512 found_start = btrfs_header_bytenr(eb); 513 if (WARN_ON(found_start != start || !PageUptodate(page))) 514 return 0; 515 csum_tree_block(root, eb, 0); 516 return 0; 517 } 518 519 static int check_tree_block_fsid(struct btrfs_root *root, 520 struct extent_buffer *eb) 521 { 522 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 523 u8 fsid[BTRFS_UUID_SIZE]; 524 int ret = 1; 525 526 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 527 while (fs_devices) { 528 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 529 ret = 0; 530 break; 531 } 532 fs_devices = fs_devices->seed; 533 } 534 return ret; 535 } 536 537 #define CORRUPT(reason, eb, root, slot) \ 538 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \ 539 "root=%llu, slot=%d", reason, \ 540 btrfs_header_bytenr(eb), root->objectid, slot) 541 542 static noinline int check_leaf(struct btrfs_root *root, 543 struct extent_buffer *leaf) 544 { 545 struct btrfs_key key; 546 struct btrfs_key leaf_key; 547 u32 nritems = btrfs_header_nritems(leaf); 548 int slot; 549 550 if (nritems == 0) 551 return 0; 552 553 /* Check the 0 item */ 554 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 555 BTRFS_LEAF_DATA_SIZE(root)) { 556 CORRUPT("invalid item offset size pair", leaf, root, 0); 557 return -EIO; 558 } 559 560 /* 561 * Check to make sure each items keys are in the correct order and their 562 * offsets make sense. We only have to loop through nritems-1 because 563 * we check the current slot against the next slot, which verifies the 564 * next slot's offset+size makes sense and that the current's slot 565 * offset is correct. 566 */ 567 for (slot = 0; slot < nritems - 1; slot++) { 568 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 569 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 570 571 /* Make sure the keys are in the right order */ 572 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 573 CORRUPT("bad key order", leaf, root, slot); 574 return -EIO; 575 } 576 577 /* 578 * Make sure the offset and ends are right, remember that the 579 * item data starts at the end of the leaf and grows towards the 580 * front. 581 */ 582 if (btrfs_item_offset_nr(leaf, slot) != 583 btrfs_item_end_nr(leaf, slot + 1)) { 584 CORRUPT("slot offset bad", leaf, root, slot); 585 return -EIO; 586 } 587 588 /* 589 * Check to make sure that we don't point outside of the leaf, 590 * just incase all the items are consistent to eachother, but 591 * all point outside of the leaf. 592 */ 593 if (btrfs_item_end_nr(leaf, slot) > 594 BTRFS_LEAF_DATA_SIZE(root)) { 595 CORRUPT("slot end outside of leaf", leaf, root, slot); 596 return -EIO; 597 } 598 } 599 600 return 0; 601 } 602 603 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 604 u64 phy_offset, struct page *page, 605 u64 start, u64 end, int mirror) 606 { 607 u64 found_start; 608 int found_level; 609 struct extent_buffer *eb; 610 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 611 int ret = 0; 612 int reads_done; 613 614 if (!page->private) 615 goto out; 616 617 eb = (struct extent_buffer *)page->private; 618 619 /* the pending IO might have been the only thing that kept this buffer 620 * in memory. Make sure we have a ref for all this other checks 621 */ 622 extent_buffer_get(eb); 623 624 reads_done = atomic_dec_and_test(&eb->io_pages); 625 if (!reads_done) 626 goto err; 627 628 eb->read_mirror = mirror; 629 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 630 ret = -EIO; 631 goto err; 632 } 633 634 found_start = btrfs_header_bytenr(eb); 635 if (found_start != eb->start) { 636 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad tree block start " 637 "%llu %llu\n", 638 eb->fs_info->sb->s_id, found_start, eb->start); 639 ret = -EIO; 640 goto err; 641 } 642 if (check_tree_block_fsid(root, eb)) { 643 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad fsid on block %llu\n", 644 eb->fs_info->sb->s_id, eb->start); 645 ret = -EIO; 646 goto err; 647 } 648 found_level = btrfs_header_level(eb); 649 if (found_level >= BTRFS_MAX_LEVEL) { 650 btrfs_info(root->fs_info, "bad tree block level %d", 651 (int)btrfs_header_level(eb)); 652 ret = -EIO; 653 goto err; 654 } 655 656 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 657 eb, found_level); 658 659 ret = csum_tree_block(root, eb, 1); 660 if (ret) { 661 ret = -EIO; 662 goto err; 663 } 664 665 /* 666 * If this is a leaf block and it is corrupt, set the corrupt bit so 667 * that we don't try and read the other copies of this block, just 668 * return -EIO. 669 */ 670 if (found_level == 0 && check_leaf(root, eb)) { 671 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 672 ret = -EIO; 673 } 674 675 if (!ret) 676 set_extent_buffer_uptodate(eb); 677 err: 678 if (reads_done && 679 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 680 btree_readahead_hook(root, eb, eb->start, ret); 681 682 if (ret) { 683 /* 684 * our io error hook is going to dec the io pages 685 * again, we have to make sure it has something 686 * to decrement 687 */ 688 atomic_inc(&eb->io_pages); 689 clear_extent_buffer_uptodate(eb); 690 } 691 free_extent_buffer(eb); 692 out: 693 return ret; 694 } 695 696 static int btree_io_failed_hook(struct page *page, int failed_mirror) 697 { 698 struct extent_buffer *eb; 699 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 700 701 eb = (struct extent_buffer *)page->private; 702 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 703 eb->read_mirror = failed_mirror; 704 atomic_dec(&eb->io_pages); 705 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 706 btree_readahead_hook(root, eb, eb->start, -EIO); 707 return -EIO; /* we fixed nothing */ 708 } 709 710 static void end_workqueue_bio(struct bio *bio, int err) 711 { 712 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 713 struct btrfs_fs_info *fs_info; 714 struct btrfs_workqueue *wq; 715 btrfs_work_func_t func; 716 717 fs_info = end_io_wq->info; 718 end_io_wq->error = err; 719 720 if (bio->bi_rw & REQ_WRITE) { 721 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 722 wq = fs_info->endio_meta_write_workers; 723 func = btrfs_endio_meta_write_helper; 724 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 725 wq = fs_info->endio_freespace_worker; 726 func = btrfs_freespace_write_helper; 727 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 728 wq = fs_info->endio_raid56_workers; 729 func = btrfs_endio_raid56_helper; 730 } else { 731 wq = fs_info->endio_write_workers; 732 func = btrfs_endio_write_helper; 733 } 734 } else { 735 if (unlikely(end_io_wq->metadata == 736 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 737 wq = fs_info->endio_repair_workers; 738 func = btrfs_endio_repair_helper; 739 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 740 wq = fs_info->endio_raid56_workers; 741 func = btrfs_endio_raid56_helper; 742 } else if (end_io_wq->metadata) { 743 wq = fs_info->endio_meta_workers; 744 func = btrfs_endio_meta_helper; 745 } else { 746 wq = fs_info->endio_workers; 747 func = btrfs_endio_helper; 748 } 749 } 750 751 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 752 btrfs_queue_work(wq, &end_io_wq->work); 753 } 754 755 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 756 enum btrfs_wq_endio_type metadata) 757 { 758 struct btrfs_end_io_wq *end_io_wq; 759 760 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 761 if (!end_io_wq) 762 return -ENOMEM; 763 764 end_io_wq->private = bio->bi_private; 765 end_io_wq->end_io = bio->bi_end_io; 766 end_io_wq->info = info; 767 end_io_wq->error = 0; 768 end_io_wq->bio = bio; 769 end_io_wq->metadata = metadata; 770 771 bio->bi_private = end_io_wq; 772 bio->bi_end_io = end_workqueue_bio; 773 return 0; 774 } 775 776 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 777 { 778 unsigned long limit = min_t(unsigned long, 779 info->thread_pool_size, 780 info->fs_devices->open_devices); 781 return 256 * limit; 782 } 783 784 static void run_one_async_start(struct btrfs_work *work) 785 { 786 struct async_submit_bio *async; 787 int ret; 788 789 async = container_of(work, struct async_submit_bio, work); 790 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 791 async->mirror_num, async->bio_flags, 792 async->bio_offset); 793 if (ret) 794 async->error = ret; 795 } 796 797 static void run_one_async_done(struct btrfs_work *work) 798 { 799 struct btrfs_fs_info *fs_info; 800 struct async_submit_bio *async; 801 int limit; 802 803 async = container_of(work, struct async_submit_bio, work); 804 fs_info = BTRFS_I(async->inode)->root->fs_info; 805 806 limit = btrfs_async_submit_limit(fs_info); 807 limit = limit * 2 / 3; 808 809 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 810 waitqueue_active(&fs_info->async_submit_wait)) 811 wake_up(&fs_info->async_submit_wait); 812 813 /* If an error occured we just want to clean up the bio and move on */ 814 if (async->error) { 815 bio_endio(async->bio, async->error); 816 return; 817 } 818 819 async->submit_bio_done(async->inode, async->rw, async->bio, 820 async->mirror_num, async->bio_flags, 821 async->bio_offset); 822 } 823 824 static void run_one_async_free(struct btrfs_work *work) 825 { 826 struct async_submit_bio *async; 827 828 async = container_of(work, struct async_submit_bio, work); 829 kfree(async); 830 } 831 832 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 833 int rw, struct bio *bio, int mirror_num, 834 unsigned long bio_flags, 835 u64 bio_offset, 836 extent_submit_bio_hook_t *submit_bio_start, 837 extent_submit_bio_hook_t *submit_bio_done) 838 { 839 struct async_submit_bio *async; 840 841 async = kmalloc(sizeof(*async), GFP_NOFS); 842 if (!async) 843 return -ENOMEM; 844 845 async->inode = inode; 846 async->rw = rw; 847 async->bio = bio; 848 async->mirror_num = mirror_num; 849 async->submit_bio_start = submit_bio_start; 850 async->submit_bio_done = submit_bio_done; 851 852 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 853 run_one_async_done, run_one_async_free); 854 855 async->bio_flags = bio_flags; 856 async->bio_offset = bio_offset; 857 858 async->error = 0; 859 860 atomic_inc(&fs_info->nr_async_submits); 861 862 if (rw & REQ_SYNC) 863 btrfs_set_work_high_priority(&async->work); 864 865 btrfs_queue_work(fs_info->workers, &async->work); 866 867 while (atomic_read(&fs_info->async_submit_draining) && 868 atomic_read(&fs_info->nr_async_submits)) { 869 wait_event(fs_info->async_submit_wait, 870 (atomic_read(&fs_info->nr_async_submits) == 0)); 871 } 872 873 return 0; 874 } 875 876 static int btree_csum_one_bio(struct bio *bio) 877 { 878 struct bio_vec *bvec; 879 struct btrfs_root *root; 880 int i, ret = 0; 881 882 bio_for_each_segment_all(bvec, bio, i) { 883 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 884 ret = csum_dirty_buffer(root, bvec->bv_page); 885 if (ret) 886 break; 887 } 888 889 return ret; 890 } 891 892 static int __btree_submit_bio_start(struct inode *inode, int rw, 893 struct bio *bio, int mirror_num, 894 unsigned long bio_flags, 895 u64 bio_offset) 896 { 897 /* 898 * when we're called for a write, we're already in the async 899 * submission context. Just jump into btrfs_map_bio 900 */ 901 return btree_csum_one_bio(bio); 902 } 903 904 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 905 int mirror_num, unsigned long bio_flags, 906 u64 bio_offset) 907 { 908 int ret; 909 910 /* 911 * when we're called for a write, we're already in the async 912 * submission context. Just jump into btrfs_map_bio 913 */ 914 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 915 if (ret) 916 bio_endio(bio, ret); 917 return ret; 918 } 919 920 static int check_async_write(struct inode *inode, unsigned long bio_flags) 921 { 922 if (bio_flags & EXTENT_BIO_TREE_LOG) 923 return 0; 924 #ifdef CONFIG_X86 925 if (cpu_has_xmm4_2) 926 return 0; 927 #endif 928 return 1; 929 } 930 931 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 932 int mirror_num, unsigned long bio_flags, 933 u64 bio_offset) 934 { 935 int async = check_async_write(inode, bio_flags); 936 int ret; 937 938 if (!(rw & REQ_WRITE)) { 939 /* 940 * called for a read, do the setup so that checksum validation 941 * can happen in the async kernel threads 942 */ 943 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 944 bio, BTRFS_WQ_ENDIO_METADATA); 945 if (ret) 946 goto out_w_error; 947 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 948 mirror_num, 0); 949 } else if (!async) { 950 ret = btree_csum_one_bio(bio); 951 if (ret) 952 goto out_w_error; 953 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 954 mirror_num, 0); 955 } else { 956 /* 957 * kthread helpers are used to submit writes so that 958 * checksumming can happen in parallel across all CPUs 959 */ 960 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 961 inode, rw, bio, mirror_num, 0, 962 bio_offset, 963 __btree_submit_bio_start, 964 __btree_submit_bio_done); 965 } 966 967 if (ret) { 968 out_w_error: 969 bio_endio(bio, ret); 970 } 971 return ret; 972 } 973 974 #ifdef CONFIG_MIGRATION 975 static int btree_migratepage(struct address_space *mapping, 976 struct page *newpage, struct page *page, 977 enum migrate_mode mode) 978 { 979 /* 980 * we can't safely write a btree page from here, 981 * we haven't done the locking hook 982 */ 983 if (PageDirty(page)) 984 return -EAGAIN; 985 /* 986 * Buffers may be managed in a filesystem specific way. 987 * We must have no buffers or drop them. 988 */ 989 if (page_has_private(page) && 990 !try_to_release_page(page, GFP_KERNEL)) 991 return -EAGAIN; 992 return migrate_page(mapping, newpage, page, mode); 993 } 994 #endif 995 996 997 static int btree_writepages(struct address_space *mapping, 998 struct writeback_control *wbc) 999 { 1000 struct btrfs_fs_info *fs_info; 1001 int ret; 1002 1003 if (wbc->sync_mode == WB_SYNC_NONE) { 1004 1005 if (wbc->for_kupdate) 1006 return 0; 1007 1008 fs_info = BTRFS_I(mapping->host)->root->fs_info; 1009 /* this is a bit racy, but that's ok */ 1010 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 1011 BTRFS_DIRTY_METADATA_THRESH); 1012 if (ret < 0) 1013 return 0; 1014 } 1015 return btree_write_cache_pages(mapping, wbc); 1016 } 1017 1018 static int btree_readpage(struct file *file, struct page *page) 1019 { 1020 struct extent_io_tree *tree; 1021 tree = &BTRFS_I(page->mapping->host)->io_tree; 1022 return extent_read_full_page(tree, page, btree_get_extent, 0); 1023 } 1024 1025 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1026 { 1027 if (PageWriteback(page) || PageDirty(page)) 1028 return 0; 1029 1030 return try_release_extent_buffer(page); 1031 } 1032 1033 static void btree_invalidatepage(struct page *page, unsigned int offset, 1034 unsigned int length) 1035 { 1036 struct extent_io_tree *tree; 1037 tree = &BTRFS_I(page->mapping->host)->io_tree; 1038 extent_invalidatepage(tree, page, offset); 1039 btree_releasepage(page, GFP_NOFS); 1040 if (PagePrivate(page)) { 1041 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1042 "page private not zero on page %llu", 1043 (unsigned long long)page_offset(page)); 1044 ClearPagePrivate(page); 1045 set_page_private(page, 0); 1046 page_cache_release(page); 1047 } 1048 } 1049 1050 static int btree_set_page_dirty(struct page *page) 1051 { 1052 #ifdef DEBUG 1053 struct extent_buffer *eb; 1054 1055 BUG_ON(!PagePrivate(page)); 1056 eb = (struct extent_buffer *)page->private; 1057 BUG_ON(!eb); 1058 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1059 BUG_ON(!atomic_read(&eb->refs)); 1060 btrfs_assert_tree_locked(eb); 1061 #endif 1062 return __set_page_dirty_nobuffers(page); 1063 } 1064 1065 static const struct address_space_operations btree_aops = { 1066 .readpage = btree_readpage, 1067 .writepages = btree_writepages, 1068 .releasepage = btree_releasepage, 1069 .invalidatepage = btree_invalidatepage, 1070 #ifdef CONFIG_MIGRATION 1071 .migratepage = btree_migratepage, 1072 #endif 1073 .set_page_dirty = btree_set_page_dirty, 1074 }; 1075 1076 void readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize) 1077 { 1078 struct extent_buffer *buf = NULL; 1079 struct inode *btree_inode = root->fs_info->btree_inode; 1080 1081 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1082 if (!buf) 1083 return; 1084 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1085 buf, 0, WAIT_NONE, btree_get_extent, 0); 1086 free_extent_buffer(buf); 1087 } 1088 1089 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1090 int mirror_num, struct extent_buffer **eb) 1091 { 1092 struct extent_buffer *buf = NULL; 1093 struct inode *btree_inode = root->fs_info->btree_inode; 1094 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1095 int ret; 1096 1097 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1098 if (!buf) 1099 return 0; 1100 1101 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1102 1103 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1104 btree_get_extent, mirror_num); 1105 if (ret) { 1106 free_extent_buffer(buf); 1107 return ret; 1108 } 1109 1110 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1111 free_extent_buffer(buf); 1112 return -EIO; 1113 } else if (extent_buffer_uptodate(buf)) { 1114 *eb = buf; 1115 } else { 1116 free_extent_buffer(buf); 1117 } 1118 return 0; 1119 } 1120 1121 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 1122 u64 bytenr) 1123 { 1124 return find_extent_buffer(root->fs_info, bytenr); 1125 } 1126 1127 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1128 u64 bytenr, u32 blocksize) 1129 { 1130 if (btrfs_test_is_dummy_root(root)) 1131 return alloc_test_extent_buffer(root->fs_info, bytenr, 1132 blocksize); 1133 return alloc_extent_buffer(root->fs_info, bytenr, blocksize); 1134 } 1135 1136 1137 int btrfs_write_tree_block(struct extent_buffer *buf) 1138 { 1139 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1140 buf->start + buf->len - 1); 1141 } 1142 1143 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1144 { 1145 return filemap_fdatawait_range(buf->pages[0]->mapping, 1146 buf->start, buf->start + buf->len - 1); 1147 } 1148 1149 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1150 u64 parent_transid) 1151 { 1152 struct extent_buffer *buf = NULL; 1153 int ret; 1154 1155 buf = btrfs_find_create_tree_block(root, bytenr, root->nodesize); 1156 if (!buf) 1157 return NULL; 1158 1159 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1160 if (ret) { 1161 free_extent_buffer(buf); 1162 return NULL; 1163 } 1164 return buf; 1165 1166 } 1167 1168 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1169 struct extent_buffer *buf) 1170 { 1171 struct btrfs_fs_info *fs_info = root->fs_info; 1172 1173 if (btrfs_header_generation(buf) == 1174 fs_info->running_transaction->transid) { 1175 btrfs_assert_tree_locked(buf); 1176 1177 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1178 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1179 -buf->len, 1180 fs_info->dirty_metadata_batch); 1181 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1182 btrfs_set_lock_blocking(buf); 1183 clear_extent_buffer_dirty(buf); 1184 } 1185 } 1186 } 1187 1188 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1189 { 1190 struct btrfs_subvolume_writers *writers; 1191 int ret; 1192 1193 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1194 if (!writers) 1195 return ERR_PTR(-ENOMEM); 1196 1197 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL); 1198 if (ret < 0) { 1199 kfree(writers); 1200 return ERR_PTR(ret); 1201 } 1202 1203 init_waitqueue_head(&writers->wait); 1204 return writers; 1205 } 1206 1207 static void 1208 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1209 { 1210 percpu_counter_destroy(&writers->counter); 1211 kfree(writers); 1212 } 1213 1214 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize, 1215 struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1216 u64 objectid) 1217 { 1218 root->node = NULL; 1219 root->commit_root = NULL; 1220 root->sectorsize = sectorsize; 1221 root->nodesize = nodesize; 1222 root->stripesize = stripesize; 1223 root->state = 0; 1224 root->orphan_cleanup_state = 0; 1225 1226 root->objectid = objectid; 1227 root->last_trans = 0; 1228 root->highest_objectid = 0; 1229 root->nr_delalloc_inodes = 0; 1230 root->nr_ordered_extents = 0; 1231 root->name = NULL; 1232 root->inode_tree = RB_ROOT; 1233 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1234 root->block_rsv = NULL; 1235 root->orphan_block_rsv = NULL; 1236 1237 INIT_LIST_HEAD(&root->dirty_list); 1238 INIT_LIST_HEAD(&root->root_list); 1239 INIT_LIST_HEAD(&root->delalloc_inodes); 1240 INIT_LIST_HEAD(&root->delalloc_root); 1241 INIT_LIST_HEAD(&root->ordered_extents); 1242 INIT_LIST_HEAD(&root->ordered_root); 1243 INIT_LIST_HEAD(&root->logged_list[0]); 1244 INIT_LIST_HEAD(&root->logged_list[1]); 1245 spin_lock_init(&root->orphan_lock); 1246 spin_lock_init(&root->inode_lock); 1247 spin_lock_init(&root->delalloc_lock); 1248 spin_lock_init(&root->ordered_extent_lock); 1249 spin_lock_init(&root->accounting_lock); 1250 spin_lock_init(&root->log_extents_lock[0]); 1251 spin_lock_init(&root->log_extents_lock[1]); 1252 mutex_init(&root->objectid_mutex); 1253 mutex_init(&root->log_mutex); 1254 mutex_init(&root->ordered_extent_mutex); 1255 mutex_init(&root->delalloc_mutex); 1256 init_waitqueue_head(&root->log_writer_wait); 1257 init_waitqueue_head(&root->log_commit_wait[0]); 1258 init_waitqueue_head(&root->log_commit_wait[1]); 1259 INIT_LIST_HEAD(&root->log_ctxs[0]); 1260 INIT_LIST_HEAD(&root->log_ctxs[1]); 1261 atomic_set(&root->log_commit[0], 0); 1262 atomic_set(&root->log_commit[1], 0); 1263 atomic_set(&root->log_writers, 0); 1264 atomic_set(&root->log_batch, 0); 1265 atomic_set(&root->orphan_inodes, 0); 1266 atomic_set(&root->refs, 1); 1267 atomic_set(&root->will_be_snapshoted, 0); 1268 root->log_transid = 0; 1269 root->log_transid_committed = -1; 1270 root->last_log_commit = 0; 1271 if (fs_info) 1272 extent_io_tree_init(&root->dirty_log_pages, 1273 fs_info->btree_inode->i_mapping); 1274 1275 memset(&root->root_key, 0, sizeof(root->root_key)); 1276 memset(&root->root_item, 0, sizeof(root->root_item)); 1277 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1278 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1279 if (fs_info) 1280 root->defrag_trans_start = fs_info->generation; 1281 else 1282 root->defrag_trans_start = 0; 1283 init_completion(&root->kobj_unregister); 1284 root->root_key.objectid = objectid; 1285 root->anon_dev = 0; 1286 1287 spin_lock_init(&root->root_item_lock); 1288 } 1289 1290 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1291 { 1292 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1293 if (root) 1294 root->fs_info = fs_info; 1295 return root; 1296 } 1297 1298 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1299 /* Should only be used by the testing infrastructure */ 1300 struct btrfs_root *btrfs_alloc_dummy_root(void) 1301 { 1302 struct btrfs_root *root; 1303 1304 root = btrfs_alloc_root(NULL); 1305 if (!root) 1306 return ERR_PTR(-ENOMEM); 1307 __setup_root(4096, 4096, 4096, root, NULL, 1); 1308 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state); 1309 root->alloc_bytenr = 0; 1310 1311 return root; 1312 } 1313 #endif 1314 1315 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1316 struct btrfs_fs_info *fs_info, 1317 u64 objectid) 1318 { 1319 struct extent_buffer *leaf; 1320 struct btrfs_root *tree_root = fs_info->tree_root; 1321 struct btrfs_root *root; 1322 struct btrfs_key key; 1323 int ret = 0; 1324 uuid_le uuid; 1325 1326 root = btrfs_alloc_root(fs_info); 1327 if (!root) 1328 return ERR_PTR(-ENOMEM); 1329 1330 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1331 tree_root->stripesize, root, fs_info, objectid); 1332 root->root_key.objectid = objectid; 1333 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1334 root->root_key.offset = 0; 1335 1336 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1337 if (IS_ERR(leaf)) { 1338 ret = PTR_ERR(leaf); 1339 leaf = NULL; 1340 goto fail; 1341 } 1342 1343 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1344 btrfs_set_header_bytenr(leaf, leaf->start); 1345 btrfs_set_header_generation(leaf, trans->transid); 1346 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1347 btrfs_set_header_owner(leaf, objectid); 1348 root->node = leaf; 1349 1350 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(), 1351 BTRFS_FSID_SIZE); 1352 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1353 btrfs_header_chunk_tree_uuid(leaf), 1354 BTRFS_UUID_SIZE); 1355 btrfs_mark_buffer_dirty(leaf); 1356 1357 root->commit_root = btrfs_root_node(root); 1358 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1359 1360 root->root_item.flags = 0; 1361 root->root_item.byte_limit = 0; 1362 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1363 btrfs_set_root_generation(&root->root_item, trans->transid); 1364 btrfs_set_root_level(&root->root_item, 0); 1365 btrfs_set_root_refs(&root->root_item, 1); 1366 btrfs_set_root_used(&root->root_item, leaf->len); 1367 btrfs_set_root_last_snapshot(&root->root_item, 0); 1368 btrfs_set_root_dirid(&root->root_item, 0); 1369 uuid_le_gen(&uuid); 1370 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1371 root->root_item.drop_level = 0; 1372 1373 key.objectid = objectid; 1374 key.type = BTRFS_ROOT_ITEM_KEY; 1375 key.offset = 0; 1376 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1377 if (ret) 1378 goto fail; 1379 1380 btrfs_tree_unlock(leaf); 1381 1382 return root; 1383 1384 fail: 1385 if (leaf) { 1386 btrfs_tree_unlock(leaf); 1387 free_extent_buffer(root->commit_root); 1388 free_extent_buffer(leaf); 1389 } 1390 kfree(root); 1391 1392 return ERR_PTR(ret); 1393 } 1394 1395 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1396 struct btrfs_fs_info *fs_info) 1397 { 1398 struct btrfs_root *root; 1399 struct btrfs_root *tree_root = fs_info->tree_root; 1400 struct extent_buffer *leaf; 1401 1402 root = btrfs_alloc_root(fs_info); 1403 if (!root) 1404 return ERR_PTR(-ENOMEM); 1405 1406 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1407 tree_root->stripesize, root, fs_info, 1408 BTRFS_TREE_LOG_OBJECTID); 1409 1410 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1411 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1412 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1413 1414 /* 1415 * DON'T set REF_COWS for log trees 1416 * 1417 * log trees do not get reference counted because they go away 1418 * before a real commit is actually done. They do store pointers 1419 * to file data extents, and those reference counts still get 1420 * updated (along with back refs to the log tree). 1421 */ 1422 1423 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1424 NULL, 0, 0, 0); 1425 if (IS_ERR(leaf)) { 1426 kfree(root); 1427 return ERR_CAST(leaf); 1428 } 1429 1430 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1431 btrfs_set_header_bytenr(leaf, leaf->start); 1432 btrfs_set_header_generation(leaf, trans->transid); 1433 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1434 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1435 root->node = leaf; 1436 1437 write_extent_buffer(root->node, root->fs_info->fsid, 1438 btrfs_header_fsid(), BTRFS_FSID_SIZE); 1439 btrfs_mark_buffer_dirty(root->node); 1440 btrfs_tree_unlock(root->node); 1441 return root; 1442 } 1443 1444 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1445 struct btrfs_fs_info *fs_info) 1446 { 1447 struct btrfs_root *log_root; 1448 1449 log_root = alloc_log_tree(trans, fs_info); 1450 if (IS_ERR(log_root)) 1451 return PTR_ERR(log_root); 1452 WARN_ON(fs_info->log_root_tree); 1453 fs_info->log_root_tree = log_root; 1454 return 0; 1455 } 1456 1457 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1458 struct btrfs_root *root) 1459 { 1460 struct btrfs_root *log_root; 1461 struct btrfs_inode_item *inode_item; 1462 1463 log_root = alloc_log_tree(trans, root->fs_info); 1464 if (IS_ERR(log_root)) 1465 return PTR_ERR(log_root); 1466 1467 log_root->last_trans = trans->transid; 1468 log_root->root_key.offset = root->root_key.objectid; 1469 1470 inode_item = &log_root->root_item.inode; 1471 btrfs_set_stack_inode_generation(inode_item, 1); 1472 btrfs_set_stack_inode_size(inode_item, 3); 1473 btrfs_set_stack_inode_nlink(inode_item, 1); 1474 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize); 1475 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1476 1477 btrfs_set_root_node(&log_root->root_item, log_root->node); 1478 1479 WARN_ON(root->log_root); 1480 root->log_root = log_root; 1481 root->log_transid = 0; 1482 root->log_transid_committed = -1; 1483 root->last_log_commit = 0; 1484 return 0; 1485 } 1486 1487 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1488 struct btrfs_key *key) 1489 { 1490 struct btrfs_root *root; 1491 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1492 struct btrfs_path *path; 1493 u64 generation; 1494 int ret; 1495 1496 path = btrfs_alloc_path(); 1497 if (!path) 1498 return ERR_PTR(-ENOMEM); 1499 1500 root = btrfs_alloc_root(fs_info); 1501 if (!root) { 1502 ret = -ENOMEM; 1503 goto alloc_fail; 1504 } 1505 1506 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1507 tree_root->stripesize, root, fs_info, key->objectid); 1508 1509 ret = btrfs_find_root(tree_root, key, path, 1510 &root->root_item, &root->root_key); 1511 if (ret) { 1512 if (ret > 0) 1513 ret = -ENOENT; 1514 goto find_fail; 1515 } 1516 1517 generation = btrfs_root_generation(&root->root_item); 1518 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1519 generation); 1520 if (!root->node) { 1521 ret = -ENOMEM; 1522 goto find_fail; 1523 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1524 ret = -EIO; 1525 goto read_fail; 1526 } 1527 root->commit_root = btrfs_root_node(root); 1528 out: 1529 btrfs_free_path(path); 1530 return root; 1531 1532 read_fail: 1533 free_extent_buffer(root->node); 1534 find_fail: 1535 kfree(root); 1536 alloc_fail: 1537 root = ERR_PTR(ret); 1538 goto out; 1539 } 1540 1541 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1542 struct btrfs_key *location) 1543 { 1544 struct btrfs_root *root; 1545 1546 root = btrfs_read_tree_root(tree_root, location); 1547 if (IS_ERR(root)) 1548 return root; 1549 1550 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1551 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1552 btrfs_check_and_init_root_item(&root->root_item); 1553 } 1554 1555 return root; 1556 } 1557 1558 int btrfs_init_fs_root(struct btrfs_root *root) 1559 { 1560 int ret; 1561 struct btrfs_subvolume_writers *writers; 1562 1563 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1564 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1565 GFP_NOFS); 1566 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1567 ret = -ENOMEM; 1568 goto fail; 1569 } 1570 1571 writers = btrfs_alloc_subvolume_writers(); 1572 if (IS_ERR(writers)) { 1573 ret = PTR_ERR(writers); 1574 goto fail; 1575 } 1576 root->subv_writers = writers; 1577 1578 btrfs_init_free_ino_ctl(root); 1579 spin_lock_init(&root->ino_cache_lock); 1580 init_waitqueue_head(&root->ino_cache_wait); 1581 1582 ret = get_anon_bdev(&root->anon_dev); 1583 if (ret) 1584 goto free_writers; 1585 return 0; 1586 1587 free_writers: 1588 btrfs_free_subvolume_writers(root->subv_writers); 1589 fail: 1590 kfree(root->free_ino_ctl); 1591 kfree(root->free_ino_pinned); 1592 return ret; 1593 } 1594 1595 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1596 u64 root_id) 1597 { 1598 struct btrfs_root *root; 1599 1600 spin_lock(&fs_info->fs_roots_radix_lock); 1601 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1602 (unsigned long)root_id); 1603 spin_unlock(&fs_info->fs_roots_radix_lock); 1604 return root; 1605 } 1606 1607 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1608 struct btrfs_root *root) 1609 { 1610 int ret; 1611 1612 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1613 if (ret) 1614 return ret; 1615 1616 spin_lock(&fs_info->fs_roots_radix_lock); 1617 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1618 (unsigned long)root->root_key.objectid, 1619 root); 1620 if (ret == 0) 1621 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1622 spin_unlock(&fs_info->fs_roots_radix_lock); 1623 radix_tree_preload_end(); 1624 1625 return ret; 1626 } 1627 1628 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1629 struct btrfs_key *location, 1630 bool check_ref) 1631 { 1632 struct btrfs_root *root; 1633 int ret; 1634 1635 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1636 return fs_info->tree_root; 1637 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1638 return fs_info->extent_root; 1639 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1640 return fs_info->chunk_root; 1641 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1642 return fs_info->dev_root; 1643 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1644 return fs_info->csum_root; 1645 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1646 return fs_info->quota_root ? fs_info->quota_root : 1647 ERR_PTR(-ENOENT); 1648 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1649 return fs_info->uuid_root ? fs_info->uuid_root : 1650 ERR_PTR(-ENOENT); 1651 again: 1652 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1653 if (root) { 1654 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1655 return ERR_PTR(-ENOENT); 1656 return root; 1657 } 1658 1659 root = btrfs_read_fs_root(fs_info->tree_root, location); 1660 if (IS_ERR(root)) 1661 return root; 1662 1663 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1664 ret = -ENOENT; 1665 goto fail; 1666 } 1667 1668 ret = btrfs_init_fs_root(root); 1669 if (ret) 1670 goto fail; 1671 1672 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID, 1673 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL); 1674 if (ret < 0) 1675 goto fail; 1676 if (ret == 0) 1677 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1678 1679 ret = btrfs_insert_fs_root(fs_info, root); 1680 if (ret) { 1681 if (ret == -EEXIST) { 1682 free_fs_root(root); 1683 goto again; 1684 } 1685 goto fail; 1686 } 1687 return root; 1688 fail: 1689 free_fs_root(root); 1690 return ERR_PTR(ret); 1691 } 1692 1693 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1694 { 1695 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1696 int ret = 0; 1697 struct btrfs_device *device; 1698 struct backing_dev_info *bdi; 1699 1700 rcu_read_lock(); 1701 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1702 if (!device->bdev) 1703 continue; 1704 bdi = blk_get_backing_dev_info(device->bdev); 1705 if (bdi_congested(bdi, bdi_bits)) { 1706 ret = 1; 1707 break; 1708 } 1709 } 1710 rcu_read_unlock(); 1711 return ret; 1712 } 1713 1714 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1715 { 1716 int err; 1717 1718 bdi->capabilities = BDI_CAP_MAP_COPY; 1719 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1720 if (err) 1721 return err; 1722 1723 bdi->ra_pages = default_backing_dev_info.ra_pages; 1724 bdi->congested_fn = btrfs_congested_fn; 1725 bdi->congested_data = info; 1726 return 0; 1727 } 1728 1729 /* 1730 * called by the kthread helper functions to finally call the bio end_io 1731 * functions. This is where read checksum verification actually happens 1732 */ 1733 static void end_workqueue_fn(struct btrfs_work *work) 1734 { 1735 struct bio *bio; 1736 struct btrfs_end_io_wq *end_io_wq; 1737 int error; 1738 1739 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1740 bio = end_io_wq->bio; 1741 1742 error = end_io_wq->error; 1743 bio->bi_private = end_io_wq->private; 1744 bio->bi_end_io = end_io_wq->end_io; 1745 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1746 bio_endio_nodec(bio, error); 1747 } 1748 1749 static int cleaner_kthread(void *arg) 1750 { 1751 struct btrfs_root *root = arg; 1752 int again; 1753 1754 do { 1755 again = 0; 1756 1757 /* Make the cleaner go to sleep early. */ 1758 if (btrfs_need_cleaner_sleep(root)) 1759 goto sleep; 1760 1761 if (!mutex_trylock(&root->fs_info->cleaner_mutex)) 1762 goto sleep; 1763 1764 /* 1765 * Avoid the problem that we change the status of the fs 1766 * during the above check and trylock. 1767 */ 1768 if (btrfs_need_cleaner_sleep(root)) { 1769 mutex_unlock(&root->fs_info->cleaner_mutex); 1770 goto sleep; 1771 } 1772 1773 btrfs_run_delayed_iputs(root); 1774 btrfs_delete_unused_bgs(root->fs_info); 1775 again = btrfs_clean_one_deleted_snapshot(root); 1776 mutex_unlock(&root->fs_info->cleaner_mutex); 1777 1778 /* 1779 * The defragger has dealt with the R/O remount and umount, 1780 * needn't do anything special here. 1781 */ 1782 btrfs_run_defrag_inodes(root->fs_info); 1783 sleep: 1784 if (!try_to_freeze() && !again) { 1785 set_current_state(TASK_INTERRUPTIBLE); 1786 if (!kthread_should_stop()) 1787 schedule(); 1788 __set_current_state(TASK_RUNNING); 1789 } 1790 } while (!kthread_should_stop()); 1791 return 0; 1792 } 1793 1794 static int transaction_kthread(void *arg) 1795 { 1796 struct btrfs_root *root = arg; 1797 struct btrfs_trans_handle *trans; 1798 struct btrfs_transaction *cur; 1799 u64 transid; 1800 unsigned long now; 1801 unsigned long delay; 1802 bool cannot_commit; 1803 1804 do { 1805 cannot_commit = false; 1806 delay = HZ * root->fs_info->commit_interval; 1807 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1808 1809 spin_lock(&root->fs_info->trans_lock); 1810 cur = root->fs_info->running_transaction; 1811 if (!cur) { 1812 spin_unlock(&root->fs_info->trans_lock); 1813 goto sleep; 1814 } 1815 1816 now = get_seconds(); 1817 if (cur->state < TRANS_STATE_BLOCKED && 1818 (now < cur->start_time || 1819 now - cur->start_time < root->fs_info->commit_interval)) { 1820 spin_unlock(&root->fs_info->trans_lock); 1821 delay = HZ * 5; 1822 goto sleep; 1823 } 1824 transid = cur->transid; 1825 spin_unlock(&root->fs_info->trans_lock); 1826 1827 /* If the file system is aborted, this will always fail. */ 1828 trans = btrfs_attach_transaction(root); 1829 if (IS_ERR(trans)) { 1830 if (PTR_ERR(trans) != -ENOENT) 1831 cannot_commit = true; 1832 goto sleep; 1833 } 1834 if (transid == trans->transid) { 1835 btrfs_commit_transaction(trans, root); 1836 } else { 1837 btrfs_end_transaction(trans, root); 1838 } 1839 sleep: 1840 wake_up_process(root->fs_info->cleaner_kthread); 1841 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1842 1843 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1844 &root->fs_info->fs_state))) 1845 btrfs_cleanup_transaction(root); 1846 if (!try_to_freeze()) { 1847 set_current_state(TASK_INTERRUPTIBLE); 1848 if (!kthread_should_stop() && 1849 (!btrfs_transaction_blocked(root->fs_info) || 1850 cannot_commit)) 1851 schedule_timeout(delay); 1852 __set_current_state(TASK_RUNNING); 1853 } 1854 } while (!kthread_should_stop()); 1855 return 0; 1856 } 1857 1858 /* 1859 * this will find the highest generation in the array of 1860 * root backups. The index of the highest array is returned, 1861 * or -1 if we can't find anything. 1862 * 1863 * We check to make sure the array is valid by comparing the 1864 * generation of the latest root in the array with the generation 1865 * in the super block. If they don't match we pitch it. 1866 */ 1867 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1868 { 1869 u64 cur; 1870 int newest_index = -1; 1871 struct btrfs_root_backup *root_backup; 1872 int i; 1873 1874 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1875 root_backup = info->super_copy->super_roots + i; 1876 cur = btrfs_backup_tree_root_gen(root_backup); 1877 if (cur == newest_gen) 1878 newest_index = i; 1879 } 1880 1881 /* check to see if we actually wrapped around */ 1882 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1883 root_backup = info->super_copy->super_roots; 1884 cur = btrfs_backup_tree_root_gen(root_backup); 1885 if (cur == newest_gen) 1886 newest_index = 0; 1887 } 1888 return newest_index; 1889 } 1890 1891 1892 /* 1893 * find the oldest backup so we know where to store new entries 1894 * in the backup array. This will set the backup_root_index 1895 * field in the fs_info struct 1896 */ 1897 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1898 u64 newest_gen) 1899 { 1900 int newest_index = -1; 1901 1902 newest_index = find_newest_super_backup(info, newest_gen); 1903 /* if there was garbage in there, just move along */ 1904 if (newest_index == -1) { 1905 info->backup_root_index = 0; 1906 } else { 1907 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1908 } 1909 } 1910 1911 /* 1912 * copy all the root pointers into the super backup array. 1913 * this will bump the backup pointer by one when it is 1914 * done 1915 */ 1916 static void backup_super_roots(struct btrfs_fs_info *info) 1917 { 1918 int next_backup; 1919 struct btrfs_root_backup *root_backup; 1920 int last_backup; 1921 1922 next_backup = info->backup_root_index; 1923 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1924 BTRFS_NUM_BACKUP_ROOTS; 1925 1926 /* 1927 * just overwrite the last backup if we're at the same generation 1928 * this happens only at umount 1929 */ 1930 root_backup = info->super_for_commit->super_roots + last_backup; 1931 if (btrfs_backup_tree_root_gen(root_backup) == 1932 btrfs_header_generation(info->tree_root->node)) 1933 next_backup = last_backup; 1934 1935 root_backup = info->super_for_commit->super_roots + next_backup; 1936 1937 /* 1938 * make sure all of our padding and empty slots get zero filled 1939 * regardless of which ones we use today 1940 */ 1941 memset(root_backup, 0, sizeof(*root_backup)); 1942 1943 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1944 1945 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1946 btrfs_set_backup_tree_root_gen(root_backup, 1947 btrfs_header_generation(info->tree_root->node)); 1948 1949 btrfs_set_backup_tree_root_level(root_backup, 1950 btrfs_header_level(info->tree_root->node)); 1951 1952 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1953 btrfs_set_backup_chunk_root_gen(root_backup, 1954 btrfs_header_generation(info->chunk_root->node)); 1955 btrfs_set_backup_chunk_root_level(root_backup, 1956 btrfs_header_level(info->chunk_root->node)); 1957 1958 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1959 btrfs_set_backup_extent_root_gen(root_backup, 1960 btrfs_header_generation(info->extent_root->node)); 1961 btrfs_set_backup_extent_root_level(root_backup, 1962 btrfs_header_level(info->extent_root->node)); 1963 1964 /* 1965 * we might commit during log recovery, which happens before we set 1966 * the fs_root. Make sure it is valid before we fill it in. 1967 */ 1968 if (info->fs_root && info->fs_root->node) { 1969 btrfs_set_backup_fs_root(root_backup, 1970 info->fs_root->node->start); 1971 btrfs_set_backup_fs_root_gen(root_backup, 1972 btrfs_header_generation(info->fs_root->node)); 1973 btrfs_set_backup_fs_root_level(root_backup, 1974 btrfs_header_level(info->fs_root->node)); 1975 } 1976 1977 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1978 btrfs_set_backup_dev_root_gen(root_backup, 1979 btrfs_header_generation(info->dev_root->node)); 1980 btrfs_set_backup_dev_root_level(root_backup, 1981 btrfs_header_level(info->dev_root->node)); 1982 1983 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1984 btrfs_set_backup_csum_root_gen(root_backup, 1985 btrfs_header_generation(info->csum_root->node)); 1986 btrfs_set_backup_csum_root_level(root_backup, 1987 btrfs_header_level(info->csum_root->node)); 1988 1989 btrfs_set_backup_total_bytes(root_backup, 1990 btrfs_super_total_bytes(info->super_copy)); 1991 btrfs_set_backup_bytes_used(root_backup, 1992 btrfs_super_bytes_used(info->super_copy)); 1993 btrfs_set_backup_num_devices(root_backup, 1994 btrfs_super_num_devices(info->super_copy)); 1995 1996 /* 1997 * if we don't copy this out to the super_copy, it won't get remembered 1998 * for the next commit 1999 */ 2000 memcpy(&info->super_copy->super_roots, 2001 &info->super_for_commit->super_roots, 2002 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2003 } 2004 2005 /* 2006 * this copies info out of the root backup array and back into 2007 * the in-memory super block. It is meant to help iterate through 2008 * the array, so you send it the number of backups you've already 2009 * tried and the last backup index you used. 2010 * 2011 * this returns -1 when it has tried all the backups 2012 */ 2013 static noinline int next_root_backup(struct btrfs_fs_info *info, 2014 struct btrfs_super_block *super, 2015 int *num_backups_tried, int *backup_index) 2016 { 2017 struct btrfs_root_backup *root_backup; 2018 int newest = *backup_index; 2019 2020 if (*num_backups_tried == 0) { 2021 u64 gen = btrfs_super_generation(super); 2022 2023 newest = find_newest_super_backup(info, gen); 2024 if (newest == -1) 2025 return -1; 2026 2027 *backup_index = newest; 2028 *num_backups_tried = 1; 2029 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2030 /* we've tried all the backups, all done */ 2031 return -1; 2032 } else { 2033 /* jump to the next oldest backup */ 2034 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2035 BTRFS_NUM_BACKUP_ROOTS; 2036 *backup_index = newest; 2037 *num_backups_tried += 1; 2038 } 2039 root_backup = super->super_roots + newest; 2040 2041 btrfs_set_super_generation(super, 2042 btrfs_backup_tree_root_gen(root_backup)); 2043 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2044 btrfs_set_super_root_level(super, 2045 btrfs_backup_tree_root_level(root_backup)); 2046 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2047 2048 /* 2049 * fixme: the total bytes and num_devices need to match or we should 2050 * need a fsck 2051 */ 2052 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2053 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2054 return 0; 2055 } 2056 2057 /* helper to cleanup workers */ 2058 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2059 { 2060 btrfs_destroy_workqueue(fs_info->fixup_workers); 2061 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2062 btrfs_destroy_workqueue(fs_info->workers); 2063 btrfs_destroy_workqueue(fs_info->endio_workers); 2064 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2065 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2066 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2067 btrfs_destroy_workqueue(fs_info->rmw_workers); 2068 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2069 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2070 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2071 btrfs_destroy_workqueue(fs_info->submit_workers); 2072 btrfs_destroy_workqueue(fs_info->delayed_workers); 2073 btrfs_destroy_workqueue(fs_info->caching_workers); 2074 btrfs_destroy_workqueue(fs_info->readahead_workers); 2075 btrfs_destroy_workqueue(fs_info->flush_workers); 2076 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2077 btrfs_destroy_workqueue(fs_info->extent_workers); 2078 } 2079 2080 static void free_root_extent_buffers(struct btrfs_root *root) 2081 { 2082 if (root) { 2083 free_extent_buffer(root->node); 2084 free_extent_buffer(root->commit_root); 2085 root->node = NULL; 2086 root->commit_root = NULL; 2087 } 2088 } 2089 2090 /* helper to cleanup tree roots */ 2091 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2092 { 2093 free_root_extent_buffers(info->tree_root); 2094 2095 free_root_extent_buffers(info->dev_root); 2096 free_root_extent_buffers(info->extent_root); 2097 free_root_extent_buffers(info->csum_root); 2098 free_root_extent_buffers(info->quota_root); 2099 free_root_extent_buffers(info->uuid_root); 2100 if (chunk_root) 2101 free_root_extent_buffers(info->chunk_root); 2102 } 2103 2104 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2105 { 2106 int ret; 2107 struct btrfs_root *gang[8]; 2108 int i; 2109 2110 while (!list_empty(&fs_info->dead_roots)) { 2111 gang[0] = list_entry(fs_info->dead_roots.next, 2112 struct btrfs_root, root_list); 2113 list_del(&gang[0]->root_list); 2114 2115 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2116 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2117 } else { 2118 free_extent_buffer(gang[0]->node); 2119 free_extent_buffer(gang[0]->commit_root); 2120 btrfs_put_fs_root(gang[0]); 2121 } 2122 } 2123 2124 while (1) { 2125 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2126 (void **)gang, 0, 2127 ARRAY_SIZE(gang)); 2128 if (!ret) 2129 break; 2130 for (i = 0; i < ret; i++) 2131 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2132 } 2133 2134 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2135 btrfs_free_log_root_tree(NULL, fs_info); 2136 btrfs_destroy_pinned_extent(fs_info->tree_root, 2137 fs_info->pinned_extents); 2138 } 2139 } 2140 2141 int open_ctree(struct super_block *sb, 2142 struct btrfs_fs_devices *fs_devices, 2143 char *options) 2144 { 2145 u32 sectorsize; 2146 u32 nodesize; 2147 u32 stripesize; 2148 u64 generation; 2149 u64 features; 2150 struct btrfs_key location; 2151 struct buffer_head *bh; 2152 struct btrfs_super_block *disk_super; 2153 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2154 struct btrfs_root *tree_root; 2155 struct btrfs_root *extent_root; 2156 struct btrfs_root *csum_root; 2157 struct btrfs_root *chunk_root; 2158 struct btrfs_root *dev_root; 2159 struct btrfs_root *quota_root; 2160 struct btrfs_root *uuid_root; 2161 struct btrfs_root *log_tree_root; 2162 int ret; 2163 int err = -EINVAL; 2164 int num_backups_tried = 0; 2165 int backup_index = 0; 2166 int max_active; 2167 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2168 bool create_uuid_tree; 2169 bool check_uuid_tree; 2170 2171 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 2172 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 2173 if (!tree_root || !chunk_root) { 2174 err = -ENOMEM; 2175 goto fail; 2176 } 2177 2178 ret = init_srcu_struct(&fs_info->subvol_srcu); 2179 if (ret) { 2180 err = ret; 2181 goto fail; 2182 } 2183 2184 ret = setup_bdi(fs_info, &fs_info->bdi); 2185 if (ret) { 2186 err = ret; 2187 goto fail_srcu; 2188 } 2189 2190 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2191 if (ret) { 2192 err = ret; 2193 goto fail_bdi; 2194 } 2195 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE * 2196 (1 + ilog2(nr_cpu_ids)); 2197 2198 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2199 if (ret) { 2200 err = ret; 2201 goto fail_dirty_metadata_bytes; 2202 } 2203 2204 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); 2205 if (ret) { 2206 err = ret; 2207 goto fail_delalloc_bytes; 2208 } 2209 2210 fs_info->btree_inode = new_inode(sb); 2211 if (!fs_info->btree_inode) { 2212 err = -ENOMEM; 2213 goto fail_bio_counter; 2214 } 2215 2216 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2217 2218 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2219 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2220 INIT_LIST_HEAD(&fs_info->trans_list); 2221 INIT_LIST_HEAD(&fs_info->dead_roots); 2222 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2223 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2224 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2225 spin_lock_init(&fs_info->delalloc_root_lock); 2226 spin_lock_init(&fs_info->trans_lock); 2227 spin_lock_init(&fs_info->fs_roots_radix_lock); 2228 spin_lock_init(&fs_info->delayed_iput_lock); 2229 spin_lock_init(&fs_info->defrag_inodes_lock); 2230 spin_lock_init(&fs_info->free_chunk_lock); 2231 spin_lock_init(&fs_info->tree_mod_seq_lock); 2232 spin_lock_init(&fs_info->super_lock); 2233 spin_lock_init(&fs_info->qgroup_op_lock); 2234 spin_lock_init(&fs_info->buffer_lock); 2235 spin_lock_init(&fs_info->unused_bgs_lock); 2236 rwlock_init(&fs_info->tree_mod_log_lock); 2237 mutex_init(&fs_info->reloc_mutex); 2238 mutex_init(&fs_info->delalloc_root_mutex); 2239 seqlock_init(&fs_info->profiles_lock); 2240 2241 init_completion(&fs_info->kobj_unregister); 2242 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2243 INIT_LIST_HEAD(&fs_info->space_info); 2244 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2245 INIT_LIST_HEAD(&fs_info->unused_bgs); 2246 btrfs_mapping_init(&fs_info->mapping_tree); 2247 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2248 BTRFS_BLOCK_RSV_GLOBAL); 2249 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2250 BTRFS_BLOCK_RSV_DELALLOC); 2251 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2252 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2253 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2254 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2255 BTRFS_BLOCK_RSV_DELOPS); 2256 atomic_set(&fs_info->nr_async_submits, 0); 2257 atomic_set(&fs_info->async_delalloc_pages, 0); 2258 atomic_set(&fs_info->async_submit_draining, 0); 2259 atomic_set(&fs_info->nr_async_bios, 0); 2260 atomic_set(&fs_info->defrag_running, 0); 2261 atomic_set(&fs_info->qgroup_op_seq, 0); 2262 atomic64_set(&fs_info->tree_mod_seq, 0); 2263 fs_info->sb = sb; 2264 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2265 fs_info->metadata_ratio = 0; 2266 fs_info->defrag_inodes = RB_ROOT; 2267 fs_info->free_chunk_space = 0; 2268 fs_info->tree_mod_log = RB_ROOT; 2269 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2270 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64); 2271 /* readahead state */ 2272 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 2273 spin_lock_init(&fs_info->reada_lock); 2274 2275 fs_info->thread_pool_size = min_t(unsigned long, 2276 num_online_cpus() + 2, 8); 2277 2278 INIT_LIST_HEAD(&fs_info->ordered_roots); 2279 spin_lock_init(&fs_info->ordered_root_lock); 2280 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2281 GFP_NOFS); 2282 if (!fs_info->delayed_root) { 2283 err = -ENOMEM; 2284 goto fail_iput; 2285 } 2286 btrfs_init_delayed_root(fs_info->delayed_root); 2287 2288 mutex_init(&fs_info->scrub_lock); 2289 atomic_set(&fs_info->scrubs_running, 0); 2290 atomic_set(&fs_info->scrub_pause_req, 0); 2291 atomic_set(&fs_info->scrubs_paused, 0); 2292 atomic_set(&fs_info->scrub_cancel_req, 0); 2293 init_waitqueue_head(&fs_info->replace_wait); 2294 init_waitqueue_head(&fs_info->scrub_pause_wait); 2295 fs_info->scrub_workers_refcnt = 0; 2296 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2297 fs_info->check_integrity_print_mask = 0; 2298 #endif 2299 2300 spin_lock_init(&fs_info->balance_lock); 2301 mutex_init(&fs_info->balance_mutex); 2302 atomic_set(&fs_info->balance_running, 0); 2303 atomic_set(&fs_info->balance_pause_req, 0); 2304 atomic_set(&fs_info->balance_cancel_req, 0); 2305 fs_info->balance_ctl = NULL; 2306 init_waitqueue_head(&fs_info->balance_wait_q); 2307 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2308 2309 sb->s_blocksize = 4096; 2310 sb->s_blocksize_bits = blksize_bits(4096); 2311 sb->s_bdi = &fs_info->bdi; 2312 2313 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2314 set_nlink(fs_info->btree_inode, 1); 2315 /* 2316 * we set the i_size on the btree inode to the max possible int. 2317 * the real end of the address space is determined by all of 2318 * the devices in the system 2319 */ 2320 fs_info->btree_inode->i_size = OFFSET_MAX; 2321 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2322 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 2323 2324 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2325 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2326 fs_info->btree_inode->i_mapping); 2327 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2328 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2329 2330 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2331 2332 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2333 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2334 sizeof(struct btrfs_key)); 2335 set_bit(BTRFS_INODE_DUMMY, 2336 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2337 btrfs_insert_inode_hash(fs_info->btree_inode); 2338 2339 spin_lock_init(&fs_info->block_group_cache_lock); 2340 fs_info->block_group_cache_tree = RB_ROOT; 2341 fs_info->first_logical_byte = (u64)-1; 2342 2343 extent_io_tree_init(&fs_info->freed_extents[0], 2344 fs_info->btree_inode->i_mapping); 2345 extent_io_tree_init(&fs_info->freed_extents[1], 2346 fs_info->btree_inode->i_mapping); 2347 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2348 fs_info->do_barriers = 1; 2349 2350 2351 mutex_init(&fs_info->ordered_operations_mutex); 2352 mutex_init(&fs_info->ordered_extent_flush_mutex); 2353 mutex_init(&fs_info->tree_log_mutex); 2354 mutex_init(&fs_info->chunk_mutex); 2355 mutex_init(&fs_info->transaction_kthread_mutex); 2356 mutex_init(&fs_info->cleaner_mutex); 2357 mutex_init(&fs_info->volume_mutex); 2358 init_rwsem(&fs_info->commit_root_sem); 2359 init_rwsem(&fs_info->cleanup_work_sem); 2360 init_rwsem(&fs_info->subvol_sem); 2361 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2362 fs_info->dev_replace.lock_owner = 0; 2363 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2364 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2365 mutex_init(&fs_info->dev_replace.lock_management_lock); 2366 mutex_init(&fs_info->dev_replace.lock); 2367 2368 spin_lock_init(&fs_info->qgroup_lock); 2369 mutex_init(&fs_info->qgroup_ioctl_lock); 2370 fs_info->qgroup_tree = RB_ROOT; 2371 fs_info->qgroup_op_tree = RB_ROOT; 2372 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2373 fs_info->qgroup_seq = 1; 2374 fs_info->quota_enabled = 0; 2375 fs_info->pending_quota_state = 0; 2376 fs_info->qgroup_ulist = NULL; 2377 mutex_init(&fs_info->qgroup_rescan_lock); 2378 2379 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2380 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2381 2382 init_waitqueue_head(&fs_info->transaction_throttle); 2383 init_waitqueue_head(&fs_info->transaction_wait); 2384 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2385 init_waitqueue_head(&fs_info->async_submit_wait); 2386 2387 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2388 2389 ret = btrfs_alloc_stripe_hash_table(fs_info); 2390 if (ret) { 2391 err = ret; 2392 goto fail_alloc; 2393 } 2394 2395 __setup_root(4096, 4096, 4096, tree_root, 2396 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2397 2398 invalidate_bdev(fs_devices->latest_bdev); 2399 2400 /* 2401 * Read super block and check the signature bytes only 2402 */ 2403 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2404 if (!bh) { 2405 err = -EINVAL; 2406 goto fail_alloc; 2407 } 2408 2409 /* 2410 * We want to check superblock checksum, the type is stored inside. 2411 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2412 */ 2413 if (btrfs_check_super_csum(bh->b_data)) { 2414 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n"); 2415 err = -EINVAL; 2416 goto fail_alloc; 2417 } 2418 2419 /* 2420 * super_copy is zeroed at allocation time and we never touch the 2421 * following bytes up to INFO_SIZE, the checksum is calculated from 2422 * the whole block of INFO_SIZE 2423 */ 2424 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2425 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2426 sizeof(*fs_info->super_for_commit)); 2427 brelse(bh); 2428 2429 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2430 2431 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2432 if (ret) { 2433 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n"); 2434 err = -EINVAL; 2435 goto fail_alloc; 2436 } 2437 2438 disk_super = fs_info->super_copy; 2439 if (!btrfs_super_root(disk_super)) 2440 goto fail_alloc; 2441 2442 /* check FS state, whether FS is broken. */ 2443 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2444 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2445 2446 /* 2447 * run through our array of backup supers and setup 2448 * our ring pointer to the oldest one 2449 */ 2450 generation = btrfs_super_generation(disk_super); 2451 find_oldest_super_backup(fs_info, generation); 2452 2453 /* 2454 * In the long term, we'll store the compression type in the super 2455 * block, and it'll be used for per file compression control. 2456 */ 2457 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2458 2459 ret = btrfs_parse_options(tree_root, options); 2460 if (ret) { 2461 err = ret; 2462 goto fail_alloc; 2463 } 2464 2465 features = btrfs_super_incompat_flags(disk_super) & 2466 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2467 if (features) { 2468 printk(KERN_ERR "BTRFS: couldn't mount because of " 2469 "unsupported optional features (%Lx).\n", 2470 features); 2471 err = -EINVAL; 2472 goto fail_alloc; 2473 } 2474 2475 /* 2476 * Leafsize and nodesize were always equal, this is only a sanity check. 2477 */ 2478 if (le32_to_cpu(disk_super->__unused_leafsize) != 2479 btrfs_super_nodesize(disk_super)) { 2480 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2481 "blocksizes don't match. node %d leaf %d\n", 2482 btrfs_super_nodesize(disk_super), 2483 le32_to_cpu(disk_super->__unused_leafsize)); 2484 err = -EINVAL; 2485 goto fail_alloc; 2486 } 2487 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2488 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2489 "blocksize (%d) was too large\n", 2490 btrfs_super_nodesize(disk_super)); 2491 err = -EINVAL; 2492 goto fail_alloc; 2493 } 2494 2495 features = btrfs_super_incompat_flags(disk_super); 2496 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2497 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2498 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2499 2500 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2501 printk(KERN_ERR "BTRFS: has skinny extents\n"); 2502 2503 /* 2504 * flag our filesystem as having big metadata blocks if 2505 * they are bigger than the page size 2506 */ 2507 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) { 2508 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2509 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n"); 2510 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2511 } 2512 2513 nodesize = btrfs_super_nodesize(disk_super); 2514 sectorsize = btrfs_super_sectorsize(disk_super); 2515 stripesize = btrfs_super_stripesize(disk_super); 2516 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2517 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2518 2519 /* 2520 * mixed block groups end up with duplicate but slightly offset 2521 * extent buffers for the same range. It leads to corruptions 2522 */ 2523 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2524 (sectorsize != nodesize)) { 2525 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes " 2526 "are not allowed for mixed block groups on %s\n", 2527 sb->s_id); 2528 goto fail_alloc; 2529 } 2530 2531 /* 2532 * Needn't use the lock because there is no other task which will 2533 * update the flag. 2534 */ 2535 btrfs_set_super_incompat_flags(disk_super, features); 2536 2537 features = btrfs_super_compat_ro_flags(disk_super) & 2538 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2539 if (!(sb->s_flags & MS_RDONLY) && features) { 2540 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2541 "unsupported option features (%Lx).\n", 2542 features); 2543 err = -EINVAL; 2544 goto fail_alloc; 2545 } 2546 2547 max_active = fs_info->thread_pool_size; 2548 2549 fs_info->workers = 2550 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI, 2551 max_active, 16); 2552 2553 fs_info->delalloc_workers = 2554 btrfs_alloc_workqueue("delalloc", flags, max_active, 2); 2555 2556 fs_info->flush_workers = 2557 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0); 2558 2559 fs_info->caching_workers = 2560 btrfs_alloc_workqueue("cache", flags, max_active, 0); 2561 2562 /* 2563 * a higher idle thresh on the submit workers makes it much more 2564 * likely that bios will be send down in a sane order to the 2565 * devices 2566 */ 2567 fs_info->submit_workers = 2568 btrfs_alloc_workqueue("submit", flags, 2569 min_t(u64, fs_devices->num_devices, 2570 max_active), 64); 2571 2572 fs_info->fixup_workers = 2573 btrfs_alloc_workqueue("fixup", flags, 1, 0); 2574 2575 /* 2576 * endios are largely parallel and should have a very 2577 * low idle thresh 2578 */ 2579 fs_info->endio_workers = 2580 btrfs_alloc_workqueue("endio", flags, max_active, 4); 2581 fs_info->endio_meta_workers = 2582 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4); 2583 fs_info->endio_meta_write_workers = 2584 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2); 2585 fs_info->endio_raid56_workers = 2586 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4); 2587 fs_info->endio_repair_workers = 2588 btrfs_alloc_workqueue("endio-repair", flags, 1, 0); 2589 fs_info->rmw_workers = 2590 btrfs_alloc_workqueue("rmw", flags, max_active, 2); 2591 fs_info->endio_write_workers = 2592 btrfs_alloc_workqueue("endio-write", flags, max_active, 2); 2593 fs_info->endio_freespace_worker = 2594 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0); 2595 fs_info->delayed_workers = 2596 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0); 2597 fs_info->readahead_workers = 2598 btrfs_alloc_workqueue("readahead", flags, max_active, 2); 2599 fs_info->qgroup_rescan_workers = 2600 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0); 2601 fs_info->extent_workers = 2602 btrfs_alloc_workqueue("extent-refs", flags, 2603 min_t(u64, fs_devices->num_devices, 2604 max_active), 8); 2605 2606 if (!(fs_info->workers && fs_info->delalloc_workers && 2607 fs_info->submit_workers && fs_info->flush_workers && 2608 fs_info->endio_workers && fs_info->endio_meta_workers && 2609 fs_info->endio_meta_write_workers && 2610 fs_info->endio_repair_workers && 2611 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2612 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2613 fs_info->caching_workers && fs_info->readahead_workers && 2614 fs_info->fixup_workers && fs_info->delayed_workers && 2615 fs_info->extent_workers && 2616 fs_info->qgroup_rescan_workers)) { 2617 err = -ENOMEM; 2618 goto fail_sb_buffer; 2619 } 2620 2621 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2622 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2623 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2624 2625 tree_root->nodesize = nodesize; 2626 tree_root->sectorsize = sectorsize; 2627 tree_root->stripesize = stripesize; 2628 2629 sb->s_blocksize = sectorsize; 2630 sb->s_blocksize_bits = blksize_bits(sectorsize); 2631 2632 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 2633 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id); 2634 goto fail_sb_buffer; 2635 } 2636 2637 if (sectorsize != PAGE_SIZE) { 2638 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) " 2639 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2640 goto fail_sb_buffer; 2641 } 2642 2643 mutex_lock(&fs_info->chunk_mutex); 2644 ret = btrfs_read_sys_array(tree_root); 2645 mutex_unlock(&fs_info->chunk_mutex); 2646 if (ret) { 2647 printk(KERN_WARNING "BTRFS: failed to read the system " 2648 "array on %s\n", sb->s_id); 2649 goto fail_sb_buffer; 2650 } 2651 2652 generation = btrfs_super_chunk_root_generation(disk_super); 2653 2654 __setup_root(nodesize, sectorsize, stripesize, chunk_root, 2655 fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2656 2657 chunk_root->node = read_tree_block(chunk_root, 2658 btrfs_super_chunk_root(disk_super), 2659 generation); 2660 if (!chunk_root->node || 2661 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 2662 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n", 2663 sb->s_id); 2664 goto fail_tree_roots; 2665 } 2666 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2667 chunk_root->commit_root = btrfs_root_node(chunk_root); 2668 2669 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2670 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2671 2672 ret = btrfs_read_chunk_tree(chunk_root); 2673 if (ret) { 2674 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n", 2675 sb->s_id); 2676 goto fail_tree_roots; 2677 } 2678 2679 /* 2680 * keep the device that is marked to be the target device for the 2681 * dev_replace procedure 2682 */ 2683 btrfs_close_extra_devices(fs_info, fs_devices, 0); 2684 2685 if (!fs_devices->latest_bdev) { 2686 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n", 2687 sb->s_id); 2688 goto fail_tree_roots; 2689 } 2690 2691 retry_root_backup: 2692 generation = btrfs_super_generation(disk_super); 2693 2694 tree_root->node = read_tree_block(tree_root, 2695 btrfs_super_root(disk_super), 2696 generation); 2697 if (!tree_root->node || 2698 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 2699 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n", 2700 sb->s_id); 2701 2702 goto recovery_tree_root; 2703 } 2704 2705 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2706 tree_root->commit_root = btrfs_root_node(tree_root); 2707 btrfs_set_root_refs(&tree_root->root_item, 1); 2708 2709 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2710 location.type = BTRFS_ROOT_ITEM_KEY; 2711 location.offset = 0; 2712 2713 extent_root = btrfs_read_tree_root(tree_root, &location); 2714 if (IS_ERR(extent_root)) { 2715 ret = PTR_ERR(extent_root); 2716 goto recovery_tree_root; 2717 } 2718 set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state); 2719 fs_info->extent_root = extent_root; 2720 2721 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2722 dev_root = btrfs_read_tree_root(tree_root, &location); 2723 if (IS_ERR(dev_root)) { 2724 ret = PTR_ERR(dev_root); 2725 goto recovery_tree_root; 2726 } 2727 set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state); 2728 fs_info->dev_root = dev_root; 2729 btrfs_init_devices_late(fs_info); 2730 2731 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2732 csum_root = btrfs_read_tree_root(tree_root, &location); 2733 if (IS_ERR(csum_root)) { 2734 ret = PTR_ERR(csum_root); 2735 goto recovery_tree_root; 2736 } 2737 set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state); 2738 fs_info->csum_root = csum_root; 2739 2740 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2741 quota_root = btrfs_read_tree_root(tree_root, &location); 2742 if (!IS_ERR(quota_root)) { 2743 set_bit(BTRFS_ROOT_TRACK_DIRTY, "a_root->state); 2744 fs_info->quota_enabled = 1; 2745 fs_info->pending_quota_state = 1; 2746 fs_info->quota_root = quota_root; 2747 } 2748 2749 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2750 uuid_root = btrfs_read_tree_root(tree_root, &location); 2751 if (IS_ERR(uuid_root)) { 2752 ret = PTR_ERR(uuid_root); 2753 if (ret != -ENOENT) 2754 goto recovery_tree_root; 2755 create_uuid_tree = true; 2756 check_uuid_tree = false; 2757 } else { 2758 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state); 2759 fs_info->uuid_root = uuid_root; 2760 create_uuid_tree = false; 2761 check_uuid_tree = 2762 generation != btrfs_super_uuid_tree_generation(disk_super); 2763 } 2764 2765 fs_info->generation = generation; 2766 fs_info->last_trans_committed = generation; 2767 2768 ret = btrfs_recover_balance(fs_info); 2769 if (ret) { 2770 printk(KERN_WARNING "BTRFS: failed to recover balance\n"); 2771 goto fail_block_groups; 2772 } 2773 2774 ret = btrfs_init_dev_stats(fs_info); 2775 if (ret) { 2776 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n", 2777 ret); 2778 goto fail_block_groups; 2779 } 2780 2781 ret = btrfs_init_dev_replace(fs_info); 2782 if (ret) { 2783 pr_err("BTRFS: failed to init dev_replace: %d\n", ret); 2784 goto fail_block_groups; 2785 } 2786 2787 btrfs_close_extra_devices(fs_info, fs_devices, 1); 2788 2789 ret = btrfs_sysfs_add_one(fs_info); 2790 if (ret) { 2791 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret); 2792 goto fail_block_groups; 2793 } 2794 2795 ret = btrfs_init_space_info(fs_info); 2796 if (ret) { 2797 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret); 2798 goto fail_sysfs; 2799 } 2800 2801 ret = btrfs_read_block_groups(extent_root); 2802 if (ret) { 2803 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret); 2804 goto fail_sysfs; 2805 } 2806 fs_info->num_tolerated_disk_barrier_failures = 2807 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2808 if (fs_info->fs_devices->missing_devices > 2809 fs_info->num_tolerated_disk_barrier_failures && 2810 !(sb->s_flags & MS_RDONLY)) { 2811 printk(KERN_WARNING "BTRFS: " 2812 "too many missing devices, writeable mount is not allowed\n"); 2813 goto fail_sysfs; 2814 } 2815 2816 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2817 "btrfs-cleaner"); 2818 if (IS_ERR(fs_info->cleaner_kthread)) 2819 goto fail_sysfs; 2820 2821 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2822 tree_root, 2823 "btrfs-transaction"); 2824 if (IS_ERR(fs_info->transaction_kthread)) 2825 goto fail_cleaner; 2826 2827 if (!btrfs_test_opt(tree_root, SSD) && 2828 !btrfs_test_opt(tree_root, NOSSD) && 2829 !fs_info->fs_devices->rotating) { 2830 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD " 2831 "mode\n"); 2832 btrfs_set_opt(fs_info->mount_opt, SSD); 2833 } 2834 2835 /* 2836 * Mount does not set all options immediatelly, we can do it now and do 2837 * not have to wait for transaction commit 2838 */ 2839 btrfs_apply_pending_changes(fs_info); 2840 2841 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2842 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2843 ret = btrfsic_mount(tree_root, fs_devices, 2844 btrfs_test_opt(tree_root, 2845 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2846 1 : 0, 2847 fs_info->check_integrity_print_mask); 2848 if (ret) 2849 printk(KERN_WARNING "BTRFS: failed to initialize" 2850 " integrity check module %s\n", sb->s_id); 2851 } 2852 #endif 2853 ret = btrfs_read_qgroup_config(fs_info); 2854 if (ret) 2855 goto fail_trans_kthread; 2856 2857 /* do not make disk changes in broken FS */ 2858 if (btrfs_super_log_root(disk_super) != 0) { 2859 u64 bytenr = btrfs_super_log_root(disk_super); 2860 2861 if (fs_devices->rw_devices == 0) { 2862 printk(KERN_WARNING "BTRFS: log replay required " 2863 "on RO media\n"); 2864 err = -EIO; 2865 goto fail_qgroup; 2866 } 2867 2868 log_tree_root = btrfs_alloc_root(fs_info); 2869 if (!log_tree_root) { 2870 err = -ENOMEM; 2871 goto fail_qgroup; 2872 } 2873 2874 __setup_root(nodesize, sectorsize, stripesize, 2875 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2876 2877 log_tree_root->node = read_tree_block(tree_root, bytenr, 2878 generation + 1); 2879 if (!log_tree_root->node || 2880 !extent_buffer_uptodate(log_tree_root->node)) { 2881 printk(KERN_ERR "BTRFS: failed to read log tree\n"); 2882 free_extent_buffer(log_tree_root->node); 2883 kfree(log_tree_root); 2884 goto fail_qgroup; 2885 } 2886 /* returns with log_tree_root freed on success */ 2887 ret = btrfs_recover_log_trees(log_tree_root); 2888 if (ret) { 2889 btrfs_error(tree_root->fs_info, ret, 2890 "Failed to recover log tree"); 2891 free_extent_buffer(log_tree_root->node); 2892 kfree(log_tree_root); 2893 goto fail_qgroup; 2894 } 2895 2896 if (sb->s_flags & MS_RDONLY) { 2897 ret = btrfs_commit_super(tree_root); 2898 if (ret) 2899 goto fail_qgroup; 2900 } 2901 } 2902 2903 ret = btrfs_find_orphan_roots(tree_root); 2904 if (ret) 2905 goto fail_qgroup; 2906 2907 if (!(sb->s_flags & MS_RDONLY)) { 2908 ret = btrfs_cleanup_fs_roots(fs_info); 2909 if (ret) 2910 goto fail_qgroup; 2911 2912 mutex_lock(&fs_info->cleaner_mutex); 2913 ret = btrfs_recover_relocation(tree_root); 2914 mutex_unlock(&fs_info->cleaner_mutex); 2915 if (ret < 0) { 2916 printk(KERN_WARNING 2917 "BTRFS: failed to recover relocation\n"); 2918 err = -EINVAL; 2919 goto fail_qgroup; 2920 } 2921 } 2922 2923 location.objectid = BTRFS_FS_TREE_OBJECTID; 2924 location.type = BTRFS_ROOT_ITEM_KEY; 2925 location.offset = 0; 2926 2927 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2928 if (IS_ERR(fs_info->fs_root)) { 2929 err = PTR_ERR(fs_info->fs_root); 2930 goto fail_qgroup; 2931 } 2932 2933 if (sb->s_flags & MS_RDONLY) 2934 return 0; 2935 2936 down_read(&fs_info->cleanup_work_sem); 2937 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 2938 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 2939 up_read(&fs_info->cleanup_work_sem); 2940 close_ctree(tree_root); 2941 return ret; 2942 } 2943 up_read(&fs_info->cleanup_work_sem); 2944 2945 ret = btrfs_resume_balance_async(fs_info); 2946 if (ret) { 2947 printk(KERN_WARNING "BTRFS: failed to resume balance\n"); 2948 close_ctree(tree_root); 2949 return ret; 2950 } 2951 2952 ret = btrfs_resume_dev_replace_async(fs_info); 2953 if (ret) { 2954 pr_warn("BTRFS: failed to resume dev_replace\n"); 2955 close_ctree(tree_root); 2956 return ret; 2957 } 2958 2959 btrfs_qgroup_rescan_resume(fs_info); 2960 2961 if (create_uuid_tree) { 2962 pr_info("BTRFS: creating UUID tree\n"); 2963 ret = btrfs_create_uuid_tree(fs_info); 2964 if (ret) { 2965 pr_warn("BTRFS: failed to create the UUID tree %d\n", 2966 ret); 2967 close_ctree(tree_root); 2968 return ret; 2969 } 2970 } else if (check_uuid_tree || 2971 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) { 2972 pr_info("BTRFS: checking UUID tree\n"); 2973 ret = btrfs_check_uuid_tree(fs_info); 2974 if (ret) { 2975 pr_warn("BTRFS: failed to check the UUID tree %d\n", 2976 ret); 2977 close_ctree(tree_root); 2978 return ret; 2979 } 2980 } else { 2981 fs_info->update_uuid_tree_gen = 1; 2982 } 2983 2984 fs_info->open = 1; 2985 2986 return 0; 2987 2988 fail_qgroup: 2989 btrfs_free_qgroup_config(fs_info); 2990 fail_trans_kthread: 2991 kthread_stop(fs_info->transaction_kthread); 2992 btrfs_cleanup_transaction(fs_info->tree_root); 2993 btrfs_free_fs_roots(fs_info); 2994 fail_cleaner: 2995 kthread_stop(fs_info->cleaner_kthread); 2996 2997 /* 2998 * make sure we're done with the btree inode before we stop our 2999 * kthreads 3000 */ 3001 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3002 3003 fail_sysfs: 3004 btrfs_sysfs_remove_one(fs_info); 3005 3006 fail_block_groups: 3007 btrfs_put_block_group_cache(fs_info); 3008 btrfs_free_block_groups(fs_info); 3009 3010 fail_tree_roots: 3011 free_root_pointers(fs_info, 1); 3012 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3013 3014 fail_sb_buffer: 3015 btrfs_stop_all_workers(fs_info); 3016 fail_alloc: 3017 fail_iput: 3018 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3019 3020 iput(fs_info->btree_inode); 3021 fail_bio_counter: 3022 percpu_counter_destroy(&fs_info->bio_counter); 3023 fail_delalloc_bytes: 3024 percpu_counter_destroy(&fs_info->delalloc_bytes); 3025 fail_dirty_metadata_bytes: 3026 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3027 fail_bdi: 3028 bdi_destroy(&fs_info->bdi); 3029 fail_srcu: 3030 cleanup_srcu_struct(&fs_info->subvol_srcu); 3031 fail: 3032 btrfs_free_stripe_hash_table(fs_info); 3033 btrfs_close_devices(fs_info->fs_devices); 3034 return err; 3035 3036 recovery_tree_root: 3037 if (!btrfs_test_opt(tree_root, RECOVERY)) 3038 goto fail_tree_roots; 3039 3040 free_root_pointers(fs_info, 0); 3041 3042 /* don't use the log in recovery mode, it won't be valid */ 3043 btrfs_set_super_log_root(disk_super, 0); 3044 3045 /* we can't trust the free space cache either */ 3046 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3047 3048 ret = next_root_backup(fs_info, fs_info->super_copy, 3049 &num_backups_tried, &backup_index); 3050 if (ret == -1) 3051 goto fail_block_groups; 3052 goto retry_root_backup; 3053 } 3054 3055 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3056 { 3057 if (uptodate) { 3058 set_buffer_uptodate(bh); 3059 } else { 3060 struct btrfs_device *device = (struct btrfs_device *) 3061 bh->b_private; 3062 3063 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to " 3064 "I/O error on %s\n", 3065 rcu_str_deref(device->name)); 3066 /* note, we dont' set_buffer_write_io_error because we have 3067 * our own ways of dealing with the IO errors 3068 */ 3069 clear_buffer_uptodate(bh); 3070 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3071 } 3072 unlock_buffer(bh); 3073 put_bh(bh); 3074 } 3075 3076 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3077 { 3078 struct buffer_head *bh; 3079 struct buffer_head *latest = NULL; 3080 struct btrfs_super_block *super; 3081 int i; 3082 u64 transid = 0; 3083 u64 bytenr; 3084 3085 /* we would like to check all the supers, but that would make 3086 * a btrfs mount succeed after a mkfs from a different FS. 3087 * So, we need to add a special mount option to scan for 3088 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3089 */ 3090 for (i = 0; i < 1; i++) { 3091 bytenr = btrfs_sb_offset(i); 3092 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3093 i_size_read(bdev->bd_inode)) 3094 break; 3095 bh = __bread(bdev, bytenr / 4096, 3096 BTRFS_SUPER_INFO_SIZE); 3097 if (!bh) 3098 continue; 3099 3100 super = (struct btrfs_super_block *)bh->b_data; 3101 if (btrfs_super_bytenr(super) != bytenr || 3102 btrfs_super_magic(super) != BTRFS_MAGIC) { 3103 brelse(bh); 3104 continue; 3105 } 3106 3107 if (!latest || btrfs_super_generation(super) > transid) { 3108 brelse(latest); 3109 latest = bh; 3110 transid = btrfs_super_generation(super); 3111 } else { 3112 brelse(bh); 3113 } 3114 } 3115 return latest; 3116 } 3117 3118 /* 3119 * this should be called twice, once with wait == 0 and 3120 * once with wait == 1. When wait == 0 is done, all the buffer heads 3121 * we write are pinned. 3122 * 3123 * They are released when wait == 1 is done. 3124 * max_mirrors must be the same for both runs, and it indicates how 3125 * many supers on this one device should be written. 3126 * 3127 * max_mirrors == 0 means to write them all. 3128 */ 3129 static int write_dev_supers(struct btrfs_device *device, 3130 struct btrfs_super_block *sb, 3131 int do_barriers, int wait, int max_mirrors) 3132 { 3133 struct buffer_head *bh; 3134 int i; 3135 int ret; 3136 int errors = 0; 3137 u32 crc; 3138 u64 bytenr; 3139 3140 if (max_mirrors == 0) 3141 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3142 3143 for (i = 0; i < max_mirrors; i++) { 3144 bytenr = btrfs_sb_offset(i); 3145 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3146 device->commit_total_bytes) 3147 break; 3148 3149 if (wait) { 3150 bh = __find_get_block(device->bdev, bytenr / 4096, 3151 BTRFS_SUPER_INFO_SIZE); 3152 if (!bh) { 3153 errors++; 3154 continue; 3155 } 3156 wait_on_buffer(bh); 3157 if (!buffer_uptodate(bh)) 3158 errors++; 3159 3160 /* drop our reference */ 3161 brelse(bh); 3162 3163 /* drop the reference from the wait == 0 run */ 3164 brelse(bh); 3165 continue; 3166 } else { 3167 btrfs_set_super_bytenr(sb, bytenr); 3168 3169 crc = ~(u32)0; 3170 crc = btrfs_csum_data((char *)sb + 3171 BTRFS_CSUM_SIZE, crc, 3172 BTRFS_SUPER_INFO_SIZE - 3173 BTRFS_CSUM_SIZE); 3174 btrfs_csum_final(crc, sb->csum); 3175 3176 /* 3177 * one reference for us, and we leave it for the 3178 * caller 3179 */ 3180 bh = __getblk(device->bdev, bytenr / 4096, 3181 BTRFS_SUPER_INFO_SIZE); 3182 if (!bh) { 3183 printk(KERN_ERR "BTRFS: couldn't get super " 3184 "buffer head for bytenr %Lu\n", bytenr); 3185 errors++; 3186 continue; 3187 } 3188 3189 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3190 3191 /* one reference for submit_bh */ 3192 get_bh(bh); 3193 3194 set_buffer_uptodate(bh); 3195 lock_buffer(bh); 3196 bh->b_end_io = btrfs_end_buffer_write_sync; 3197 bh->b_private = device; 3198 } 3199 3200 /* 3201 * we fua the first super. The others we allow 3202 * to go down lazy. 3203 */ 3204 if (i == 0) 3205 ret = btrfsic_submit_bh(WRITE_FUA, bh); 3206 else 3207 ret = btrfsic_submit_bh(WRITE_SYNC, bh); 3208 if (ret) 3209 errors++; 3210 } 3211 return errors < i ? 0 : -1; 3212 } 3213 3214 /* 3215 * endio for the write_dev_flush, this will wake anyone waiting 3216 * for the barrier when it is done 3217 */ 3218 static void btrfs_end_empty_barrier(struct bio *bio, int err) 3219 { 3220 if (err) { 3221 if (err == -EOPNOTSUPP) 3222 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 3223 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3224 } 3225 if (bio->bi_private) 3226 complete(bio->bi_private); 3227 bio_put(bio); 3228 } 3229 3230 /* 3231 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3232 * sent down. With wait == 1, it waits for the previous flush. 3233 * 3234 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3235 * capable 3236 */ 3237 static int write_dev_flush(struct btrfs_device *device, int wait) 3238 { 3239 struct bio *bio; 3240 int ret = 0; 3241 3242 if (device->nobarriers) 3243 return 0; 3244 3245 if (wait) { 3246 bio = device->flush_bio; 3247 if (!bio) 3248 return 0; 3249 3250 wait_for_completion(&device->flush_wait); 3251 3252 if (bio_flagged(bio, BIO_EOPNOTSUPP)) { 3253 printk_in_rcu("BTRFS: disabling barriers on dev %s\n", 3254 rcu_str_deref(device->name)); 3255 device->nobarriers = 1; 3256 } else if (!bio_flagged(bio, BIO_UPTODATE)) { 3257 ret = -EIO; 3258 btrfs_dev_stat_inc_and_print(device, 3259 BTRFS_DEV_STAT_FLUSH_ERRS); 3260 } 3261 3262 /* drop the reference from the wait == 0 run */ 3263 bio_put(bio); 3264 device->flush_bio = NULL; 3265 3266 return ret; 3267 } 3268 3269 /* 3270 * one reference for us, and we leave it for the 3271 * caller 3272 */ 3273 device->flush_bio = NULL; 3274 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3275 if (!bio) 3276 return -ENOMEM; 3277 3278 bio->bi_end_io = btrfs_end_empty_barrier; 3279 bio->bi_bdev = device->bdev; 3280 init_completion(&device->flush_wait); 3281 bio->bi_private = &device->flush_wait; 3282 device->flush_bio = bio; 3283 3284 bio_get(bio); 3285 btrfsic_submit_bio(WRITE_FLUSH, bio); 3286 3287 return 0; 3288 } 3289 3290 /* 3291 * send an empty flush down to each device in parallel, 3292 * then wait for them 3293 */ 3294 static int barrier_all_devices(struct btrfs_fs_info *info) 3295 { 3296 struct list_head *head; 3297 struct btrfs_device *dev; 3298 int errors_send = 0; 3299 int errors_wait = 0; 3300 int ret; 3301 3302 /* send down all the barriers */ 3303 head = &info->fs_devices->devices; 3304 list_for_each_entry_rcu(dev, head, dev_list) { 3305 if (dev->missing) 3306 continue; 3307 if (!dev->bdev) { 3308 errors_send++; 3309 continue; 3310 } 3311 if (!dev->in_fs_metadata || !dev->writeable) 3312 continue; 3313 3314 ret = write_dev_flush(dev, 0); 3315 if (ret) 3316 errors_send++; 3317 } 3318 3319 /* wait for all the barriers */ 3320 list_for_each_entry_rcu(dev, head, dev_list) { 3321 if (dev->missing) 3322 continue; 3323 if (!dev->bdev) { 3324 errors_wait++; 3325 continue; 3326 } 3327 if (!dev->in_fs_metadata || !dev->writeable) 3328 continue; 3329 3330 ret = write_dev_flush(dev, 1); 3331 if (ret) 3332 errors_wait++; 3333 } 3334 if (errors_send > info->num_tolerated_disk_barrier_failures || 3335 errors_wait > info->num_tolerated_disk_barrier_failures) 3336 return -EIO; 3337 return 0; 3338 } 3339 3340 int btrfs_calc_num_tolerated_disk_barrier_failures( 3341 struct btrfs_fs_info *fs_info) 3342 { 3343 struct btrfs_ioctl_space_info space; 3344 struct btrfs_space_info *sinfo; 3345 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3346 BTRFS_BLOCK_GROUP_SYSTEM, 3347 BTRFS_BLOCK_GROUP_METADATA, 3348 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3349 int num_types = 4; 3350 int i; 3351 int c; 3352 int num_tolerated_disk_barrier_failures = 3353 (int)fs_info->fs_devices->num_devices; 3354 3355 for (i = 0; i < num_types; i++) { 3356 struct btrfs_space_info *tmp; 3357 3358 sinfo = NULL; 3359 rcu_read_lock(); 3360 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3361 if (tmp->flags == types[i]) { 3362 sinfo = tmp; 3363 break; 3364 } 3365 } 3366 rcu_read_unlock(); 3367 3368 if (!sinfo) 3369 continue; 3370 3371 down_read(&sinfo->groups_sem); 3372 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3373 if (!list_empty(&sinfo->block_groups[c])) { 3374 u64 flags; 3375 3376 btrfs_get_block_group_info( 3377 &sinfo->block_groups[c], &space); 3378 if (space.total_bytes == 0 || 3379 space.used_bytes == 0) 3380 continue; 3381 flags = space.flags; 3382 /* 3383 * return 3384 * 0: if dup, single or RAID0 is configured for 3385 * any of metadata, system or data, else 3386 * 1: if RAID5 is configured, or if RAID1 or 3387 * RAID10 is configured and only two mirrors 3388 * are used, else 3389 * 2: if RAID6 is configured, else 3390 * num_mirrors - 1: if RAID1 or RAID10 is 3391 * configured and more than 3392 * 2 mirrors are used. 3393 */ 3394 if (num_tolerated_disk_barrier_failures > 0 && 3395 ((flags & (BTRFS_BLOCK_GROUP_DUP | 3396 BTRFS_BLOCK_GROUP_RAID0)) || 3397 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) 3398 == 0))) 3399 num_tolerated_disk_barrier_failures = 0; 3400 else if (num_tolerated_disk_barrier_failures > 1) { 3401 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3402 BTRFS_BLOCK_GROUP_RAID5 | 3403 BTRFS_BLOCK_GROUP_RAID10)) { 3404 num_tolerated_disk_barrier_failures = 1; 3405 } else if (flags & 3406 BTRFS_BLOCK_GROUP_RAID6) { 3407 num_tolerated_disk_barrier_failures = 2; 3408 } 3409 } 3410 } 3411 } 3412 up_read(&sinfo->groups_sem); 3413 } 3414 3415 return num_tolerated_disk_barrier_failures; 3416 } 3417 3418 static int write_all_supers(struct btrfs_root *root, int max_mirrors) 3419 { 3420 struct list_head *head; 3421 struct btrfs_device *dev; 3422 struct btrfs_super_block *sb; 3423 struct btrfs_dev_item *dev_item; 3424 int ret; 3425 int do_barriers; 3426 int max_errors; 3427 int total_errors = 0; 3428 u64 flags; 3429 3430 do_barriers = !btrfs_test_opt(root, NOBARRIER); 3431 backup_super_roots(root->fs_info); 3432 3433 sb = root->fs_info->super_for_commit; 3434 dev_item = &sb->dev_item; 3435 3436 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3437 head = &root->fs_info->fs_devices->devices; 3438 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3439 3440 if (do_barriers) { 3441 ret = barrier_all_devices(root->fs_info); 3442 if (ret) { 3443 mutex_unlock( 3444 &root->fs_info->fs_devices->device_list_mutex); 3445 btrfs_error(root->fs_info, ret, 3446 "errors while submitting device barriers."); 3447 return ret; 3448 } 3449 } 3450 3451 list_for_each_entry_rcu(dev, head, dev_list) { 3452 if (!dev->bdev) { 3453 total_errors++; 3454 continue; 3455 } 3456 if (!dev->in_fs_metadata || !dev->writeable) 3457 continue; 3458 3459 btrfs_set_stack_device_generation(dev_item, 0); 3460 btrfs_set_stack_device_type(dev_item, dev->type); 3461 btrfs_set_stack_device_id(dev_item, dev->devid); 3462 btrfs_set_stack_device_total_bytes(dev_item, 3463 dev->commit_total_bytes); 3464 btrfs_set_stack_device_bytes_used(dev_item, 3465 dev->commit_bytes_used); 3466 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3467 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3468 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3469 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3470 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3471 3472 flags = btrfs_super_flags(sb); 3473 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3474 3475 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3476 if (ret) 3477 total_errors++; 3478 } 3479 if (total_errors > max_errors) { 3480 btrfs_err(root->fs_info, "%d errors while writing supers", 3481 total_errors); 3482 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3483 3484 /* FUA is masked off if unsupported and can't be the reason */ 3485 btrfs_error(root->fs_info, -EIO, 3486 "%d errors while writing supers", total_errors); 3487 return -EIO; 3488 } 3489 3490 total_errors = 0; 3491 list_for_each_entry_rcu(dev, head, dev_list) { 3492 if (!dev->bdev) 3493 continue; 3494 if (!dev->in_fs_metadata || !dev->writeable) 3495 continue; 3496 3497 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3498 if (ret) 3499 total_errors++; 3500 } 3501 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3502 if (total_errors > max_errors) { 3503 btrfs_error(root->fs_info, -EIO, 3504 "%d errors while writing supers", total_errors); 3505 return -EIO; 3506 } 3507 return 0; 3508 } 3509 3510 int write_ctree_super(struct btrfs_trans_handle *trans, 3511 struct btrfs_root *root, int max_mirrors) 3512 { 3513 return write_all_supers(root, max_mirrors); 3514 } 3515 3516 /* Drop a fs root from the radix tree and free it. */ 3517 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3518 struct btrfs_root *root) 3519 { 3520 spin_lock(&fs_info->fs_roots_radix_lock); 3521 radix_tree_delete(&fs_info->fs_roots_radix, 3522 (unsigned long)root->root_key.objectid); 3523 spin_unlock(&fs_info->fs_roots_radix_lock); 3524 3525 if (btrfs_root_refs(&root->root_item) == 0) 3526 synchronize_srcu(&fs_info->subvol_srcu); 3527 3528 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3529 btrfs_free_log(NULL, root); 3530 3531 if (root->free_ino_pinned) 3532 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3533 if (root->free_ino_ctl) 3534 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3535 free_fs_root(root); 3536 } 3537 3538 static void free_fs_root(struct btrfs_root *root) 3539 { 3540 iput(root->ino_cache_inode); 3541 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3542 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3543 root->orphan_block_rsv = NULL; 3544 if (root->anon_dev) 3545 free_anon_bdev(root->anon_dev); 3546 if (root->subv_writers) 3547 btrfs_free_subvolume_writers(root->subv_writers); 3548 free_extent_buffer(root->node); 3549 free_extent_buffer(root->commit_root); 3550 kfree(root->free_ino_ctl); 3551 kfree(root->free_ino_pinned); 3552 kfree(root->name); 3553 btrfs_put_fs_root(root); 3554 } 3555 3556 void btrfs_free_fs_root(struct btrfs_root *root) 3557 { 3558 free_fs_root(root); 3559 } 3560 3561 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3562 { 3563 u64 root_objectid = 0; 3564 struct btrfs_root *gang[8]; 3565 int i = 0; 3566 int err = 0; 3567 unsigned int ret = 0; 3568 int index; 3569 3570 while (1) { 3571 index = srcu_read_lock(&fs_info->subvol_srcu); 3572 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3573 (void **)gang, root_objectid, 3574 ARRAY_SIZE(gang)); 3575 if (!ret) { 3576 srcu_read_unlock(&fs_info->subvol_srcu, index); 3577 break; 3578 } 3579 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3580 3581 for (i = 0; i < ret; i++) { 3582 /* Avoid to grab roots in dead_roots */ 3583 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3584 gang[i] = NULL; 3585 continue; 3586 } 3587 /* grab all the search result for later use */ 3588 gang[i] = btrfs_grab_fs_root(gang[i]); 3589 } 3590 srcu_read_unlock(&fs_info->subvol_srcu, index); 3591 3592 for (i = 0; i < ret; i++) { 3593 if (!gang[i]) 3594 continue; 3595 root_objectid = gang[i]->root_key.objectid; 3596 err = btrfs_orphan_cleanup(gang[i]); 3597 if (err) 3598 break; 3599 btrfs_put_fs_root(gang[i]); 3600 } 3601 root_objectid++; 3602 } 3603 3604 /* release the uncleaned roots due to error */ 3605 for (; i < ret; i++) { 3606 if (gang[i]) 3607 btrfs_put_fs_root(gang[i]); 3608 } 3609 return err; 3610 } 3611 3612 int btrfs_commit_super(struct btrfs_root *root) 3613 { 3614 struct btrfs_trans_handle *trans; 3615 3616 mutex_lock(&root->fs_info->cleaner_mutex); 3617 btrfs_run_delayed_iputs(root); 3618 mutex_unlock(&root->fs_info->cleaner_mutex); 3619 wake_up_process(root->fs_info->cleaner_kthread); 3620 3621 /* wait until ongoing cleanup work done */ 3622 down_write(&root->fs_info->cleanup_work_sem); 3623 up_write(&root->fs_info->cleanup_work_sem); 3624 3625 trans = btrfs_join_transaction(root); 3626 if (IS_ERR(trans)) 3627 return PTR_ERR(trans); 3628 return btrfs_commit_transaction(trans, root); 3629 } 3630 3631 void close_ctree(struct btrfs_root *root) 3632 { 3633 struct btrfs_fs_info *fs_info = root->fs_info; 3634 int ret; 3635 3636 fs_info->closing = 1; 3637 smp_mb(); 3638 3639 /* wait for the uuid_scan task to finish */ 3640 down(&fs_info->uuid_tree_rescan_sem); 3641 /* avoid complains from lockdep et al., set sem back to initial state */ 3642 up(&fs_info->uuid_tree_rescan_sem); 3643 3644 /* pause restriper - we want to resume on mount */ 3645 btrfs_pause_balance(fs_info); 3646 3647 btrfs_dev_replace_suspend_for_unmount(fs_info); 3648 3649 btrfs_scrub_cancel(fs_info); 3650 3651 /* wait for any defraggers to finish */ 3652 wait_event(fs_info->transaction_wait, 3653 (atomic_read(&fs_info->defrag_running) == 0)); 3654 3655 /* clear out the rbtree of defraggable inodes */ 3656 btrfs_cleanup_defrag_inodes(fs_info); 3657 3658 cancel_work_sync(&fs_info->async_reclaim_work); 3659 3660 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3661 ret = btrfs_commit_super(root); 3662 if (ret) 3663 btrfs_err(root->fs_info, "commit super ret %d", ret); 3664 } 3665 3666 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3667 btrfs_error_commit_super(root); 3668 3669 kthread_stop(fs_info->transaction_kthread); 3670 kthread_stop(fs_info->cleaner_kthread); 3671 3672 fs_info->closing = 2; 3673 smp_mb(); 3674 3675 btrfs_free_qgroup_config(root->fs_info); 3676 3677 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3678 btrfs_info(root->fs_info, "at unmount delalloc count %lld", 3679 percpu_counter_sum(&fs_info->delalloc_bytes)); 3680 } 3681 3682 btrfs_sysfs_remove_one(fs_info); 3683 3684 btrfs_free_fs_roots(fs_info); 3685 3686 btrfs_put_block_group_cache(fs_info); 3687 3688 btrfs_free_block_groups(fs_info); 3689 3690 /* 3691 * we must make sure there is not any read request to 3692 * submit after we stopping all workers. 3693 */ 3694 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3695 btrfs_stop_all_workers(fs_info); 3696 3697 fs_info->open = 0; 3698 free_root_pointers(fs_info, 1); 3699 3700 iput(fs_info->btree_inode); 3701 3702 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3703 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3704 btrfsic_unmount(root, fs_info->fs_devices); 3705 #endif 3706 3707 btrfs_close_devices(fs_info->fs_devices); 3708 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3709 3710 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3711 percpu_counter_destroy(&fs_info->delalloc_bytes); 3712 percpu_counter_destroy(&fs_info->bio_counter); 3713 bdi_destroy(&fs_info->bdi); 3714 cleanup_srcu_struct(&fs_info->subvol_srcu); 3715 3716 btrfs_free_stripe_hash_table(fs_info); 3717 3718 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3719 root->orphan_block_rsv = NULL; 3720 3721 lock_chunks(root); 3722 while (!list_empty(&fs_info->pinned_chunks)) { 3723 struct extent_map *em; 3724 3725 em = list_first_entry(&fs_info->pinned_chunks, 3726 struct extent_map, list); 3727 list_del_init(&em->list); 3728 free_extent_map(em); 3729 } 3730 unlock_chunks(root); 3731 } 3732 3733 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3734 int atomic) 3735 { 3736 int ret; 3737 struct inode *btree_inode = buf->pages[0]->mapping->host; 3738 3739 ret = extent_buffer_uptodate(buf); 3740 if (!ret) 3741 return ret; 3742 3743 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3744 parent_transid, atomic); 3745 if (ret == -EAGAIN) 3746 return ret; 3747 return !ret; 3748 } 3749 3750 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3751 { 3752 return set_extent_buffer_uptodate(buf); 3753 } 3754 3755 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3756 { 3757 struct btrfs_root *root; 3758 u64 transid = btrfs_header_generation(buf); 3759 int was_dirty; 3760 3761 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3762 /* 3763 * This is a fast path so only do this check if we have sanity tests 3764 * enabled. Normal people shouldn't be marking dummy buffers as dirty 3765 * outside of the sanity tests. 3766 */ 3767 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 3768 return; 3769 #endif 3770 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3771 btrfs_assert_tree_locked(buf); 3772 if (transid != root->fs_info->generation) 3773 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " 3774 "found %llu running %llu\n", 3775 buf->start, transid, root->fs_info->generation); 3776 was_dirty = set_extent_buffer_dirty(buf); 3777 if (!was_dirty) 3778 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, 3779 buf->len, 3780 root->fs_info->dirty_metadata_batch); 3781 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3782 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) { 3783 btrfs_print_leaf(root, buf); 3784 ASSERT(0); 3785 } 3786 #endif 3787 } 3788 3789 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 3790 int flush_delayed) 3791 { 3792 /* 3793 * looks as though older kernels can get into trouble with 3794 * this code, they end up stuck in balance_dirty_pages forever 3795 */ 3796 int ret; 3797 3798 if (current->flags & PF_MEMALLOC) 3799 return; 3800 3801 if (flush_delayed) 3802 btrfs_balance_delayed_items(root); 3803 3804 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, 3805 BTRFS_DIRTY_METADATA_THRESH); 3806 if (ret > 0) { 3807 balance_dirty_pages_ratelimited( 3808 root->fs_info->btree_inode->i_mapping); 3809 } 3810 return; 3811 } 3812 3813 void btrfs_btree_balance_dirty(struct btrfs_root *root) 3814 { 3815 __btrfs_btree_balance_dirty(root, 1); 3816 } 3817 3818 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 3819 { 3820 __btrfs_btree_balance_dirty(root, 0); 3821 } 3822 3823 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3824 { 3825 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3826 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3827 } 3828 3829 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3830 int read_only) 3831 { 3832 struct btrfs_super_block *sb = fs_info->super_copy; 3833 int ret = 0; 3834 3835 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 3836 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n", 3837 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 3838 ret = -EINVAL; 3839 } 3840 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 3841 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n", 3842 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 3843 ret = -EINVAL; 3844 } 3845 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 3846 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n", 3847 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 3848 ret = -EINVAL; 3849 } 3850 3851 /* 3852 * The common minimum, we don't know if we can trust the nodesize/sectorsize 3853 * items yet, they'll be verified later. Issue just a warning. 3854 */ 3855 if (!IS_ALIGNED(btrfs_super_root(sb), 4096)) 3856 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n", 3857 btrfs_super_root(sb)); 3858 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096)) 3859 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n", 3860 btrfs_super_chunk_root(sb)); 3861 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096)) 3862 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n", 3863 btrfs_super_log_root(sb)); 3864 3865 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) { 3866 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n", 3867 fs_info->fsid, sb->dev_item.fsid); 3868 ret = -EINVAL; 3869 } 3870 3871 /* 3872 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 3873 * done later 3874 */ 3875 if (btrfs_super_num_devices(sb) > (1UL << 31)) 3876 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n", 3877 btrfs_super_num_devices(sb)); 3878 3879 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) { 3880 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n", 3881 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 3882 ret = -EINVAL; 3883 } 3884 3885 /* 3886 * The generation is a global counter, we'll trust it more than the others 3887 * but it's still possible that it's the one that's wrong. 3888 */ 3889 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 3890 printk(KERN_WARNING 3891 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n", 3892 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb)); 3893 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 3894 && btrfs_super_cache_generation(sb) != (u64)-1) 3895 printk(KERN_WARNING 3896 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n", 3897 btrfs_super_generation(sb), btrfs_super_cache_generation(sb)); 3898 3899 return ret; 3900 } 3901 3902 static void btrfs_error_commit_super(struct btrfs_root *root) 3903 { 3904 mutex_lock(&root->fs_info->cleaner_mutex); 3905 btrfs_run_delayed_iputs(root); 3906 mutex_unlock(&root->fs_info->cleaner_mutex); 3907 3908 down_write(&root->fs_info->cleanup_work_sem); 3909 up_write(&root->fs_info->cleanup_work_sem); 3910 3911 /* cleanup FS via transaction */ 3912 btrfs_cleanup_transaction(root); 3913 } 3914 3915 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 3916 { 3917 struct btrfs_ordered_extent *ordered; 3918 3919 spin_lock(&root->ordered_extent_lock); 3920 /* 3921 * This will just short circuit the ordered completion stuff which will 3922 * make sure the ordered extent gets properly cleaned up. 3923 */ 3924 list_for_each_entry(ordered, &root->ordered_extents, 3925 root_extent_list) 3926 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 3927 spin_unlock(&root->ordered_extent_lock); 3928 } 3929 3930 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 3931 { 3932 struct btrfs_root *root; 3933 struct list_head splice; 3934 3935 INIT_LIST_HEAD(&splice); 3936 3937 spin_lock(&fs_info->ordered_root_lock); 3938 list_splice_init(&fs_info->ordered_roots, &splice); 3939 while (!list_empty(&splice)) { 3940 root = list_first_entry(&splice, struct btrfs_root, 3941 ordered_root); 3942 list_move_tail(&root->ordered_root, 3943 &fs_info->ordered_roots); 3944 3945 spin_unlock(&fs_info->ordered_root_lock); 3946 btrfs_destroy_ordered_extents(root); 3947 3948 cond_resched(); 3949 spin_lock(&fs_info->ordered_root_lock); 3950 } 3951 spin_unlock(&fs_info->ordered_root_lock); 3952 } 3953 3954 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 3955 struct btrfs_root *root) 3956 { 3957 struct rb_node *node; 3958 struct btrfs_delayed_ref_root *delayed_refs; 3959 struct btrfs_delayed_ref_node *ref; 3960 int ret = 0; 3961 3962 delayed_refs = &trans->delayed_refs; 3963 3964 spin_lock(&delayed_refs->lock); 3965 if (atomic_read(&delayed_refs->num_entries) == 0) { 3966 spin_unlock(&delayed_refs->lock); 3967 btrfs_info(root->fs_info, "delayed_refs has NO entry"); 3968 return ret; 3969 } 3970 3971 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 3972 struct btrfs_delayed_ref_head *head; 3973 bool pin_bytes = false; 3974 3975 head = rb_entry(node, struct btrfs_delayed_ref_head, 3976 href_node); 3977 if (!mutex_trylock(&head->mutex)) { 3978 atomic_inc(&head->node.refs); 3979 spin_unlock(&delayed_refs->lock); 3980 3981 mutex_lock(&head->mutex); 3982 mutex_unlock(&head->mutex); 3983 btrfs_put_delayed_ref(&head->node); 3984 spin_lock(&delayed_refs->lock); 3985 continue; 3986 } 3987 spin_lock(&head->lock); 3988 while ((node = rb_first(&head->ref_root)) != NULL) { 3989 ref = rb_entry(node, struct btrfs_delayed_ref_node, 3990 rb_node); 3991 ref->in_tree = 0; 3992 rb_erase(&ref->rb_node, &head->ref_root); 3993 atomic_dec(&delayed_refs->num_entries); 3994 btrfs_put_delayed_ref(ref); 3995 } 3996 if (head->must_insert_reserved) 3997 pin_bytes = true; 3998 btrfs_free_delayed_extent_op(head->extent_op); 3999 delayed_refs->num_heads--; 4000 if (head->processing == 0) 4001 delayed_refs->num_heads_ready--; 4002 atomic_dec(&delayed_refs->num_entries); 4003 head->node.in_tree = 0; 4004 rb_erase(&head->href_node, &delayed_refs->href_root); 4005 spin_unlock(&head->lock); 4006 spin_unlock(&delayed_refs->lock); 4007 mutex_unlock(&head->mutex); 4008 4009 if (pin_bytes) 4010 btrfs_pin_extent(root, head->node.bytenr, 4011 head->node.num_bytes, 1); 4012 btrfs_put_delayed_ref(&head->node); 4013 cond_resched(); 4014 spin_lock(&delayed_refs->lock); 4015 } 4016 4017 spin_unlock(&delayed_refs->lock); 4018 4019 return ret; 4020 } 4021 4022 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4023 { 4024 struct btrfs_inode *btrfs_inode; 4025 struct list_head splice; 4026 4027 INIT_LIST_HEAD(&splice); 4028 4029 spin_lock(&root->delalloc_lock); 4030 list_splice_init(&root->delalloc_inodes, &splice); 4031 4032 while (!list_empty(&splice)) { 4033 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4034 delalloc_inodes); 4035 4036 list_del_init(&btrfs_inode->delalloc_inodes); 4037 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 4038 &btrfs_inode->runtime_flags); 4039 spin_unlock(&root->delalloc_lock); 4040 4041 btrfs_invalidate_inodes(btrfs_inode->root); 4042 4043 spin_lock(&root->delalloc_lock); 4044 } 4045 4046 spin_unlock(&root->delalloc_lock); 4047 } 4048 4049 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4050 { 4051 struct btrfs_root *root; 4052 struct list_head splice; 4053 4054 INIT_LIST_HEAD(&splice); 4055 4056 spin_lock(&fs_info->delalloc_root_lock); 4057 list_splice_init(&fs_info->delalloc_roots, &splice); 4058 while (!list_empty(&splice)) { 4059 root = list_first_entry(&splice, struct btrfs_root, 4060 delalloc_root); 4061 list_del_init(&root->delalloc_root); 4062 root = btrfs_grab_fs_root(root); 4063 BUG_ON(!root); 4064 spin_unlock(&fs_info->delalloc_root_lock); 4065 4066 btrfs_destroy_delalloc_inodes(root); 4067 btrfs_put_fs_root(root); 4068 4069 spin_lock(&fs_info->delalloc_root_lock); 4070 } 4071 spin_unlock(&fs_info->delalloc_root_lock); 4072 } 4073 4074 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 4075 struct extent_io_tree *dirty_pages, 4076 int mark) 4077 { 4078 int ret; 4079 struct extent_buffer *eb; 4080 u64 start = 0; 4081 u64 end; 4082 4083 while (1) { 4084 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4085 mark, NULL); 4086 if (ret) 4087 break; 4088 4089 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 4090 while (start <= end) { 4091 eb = btrfs_find_tree_block(root, start); 4092 start += root->nodesize; 4093 if (!eb) 4094 continue; 4095 wait_on_extent_buffer_writeback(eb); 4096 4097 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4098 &eb->bflags)) 4099 clear_extent_buffer_dirty(eb); 4100 free_extent_buffer_stale(eb); 4101 } 4102 } 4103 4104 return ret; 4105 } 4106 4107 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 4108 struct extent_io_tree *pinned_extents) 4109 { 4110 struct extent_io_tree *unpin; 4111 u64 start; 4112 u64 end; 4113 int ret; 4114 bool loop = true; 4115 4116 unpin = pinned_extents; 4117 again: 4118 while (1) { 4119 ret = find_first_extent_bit(unpin, 0, &start, &end, 4120 EXTENT_DIRTY, NULL); 4121 if (ret) 4122 break; 4123 4124 clear_extent_dirty(unpin, start, end, GFP_NOFS); 4125 btrfs_error_unpin_extent_range(root, start, end); 4126 cond_resched(); 4127 } 4128 4129 if (loop) { 4130 if (unpin == &root->fs_info->freed_extents[0]) 4131 unpin = &root->fs_info->freed_extents[1]; 4132 else 4133 unpin = &root->fs_info->freed_extents[0]; 4134 loop = false; 4135 goto again; 4136 } 4137 4138 return 0; 4139 } 4140 4141 static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans, 4142 struct btrfs_fs_info *fs_info) 4143 { 4144 struct btrfs_ordered_extent *ordered; 4145 4146 spin_lock(&fs_info->trans_lock); 4147 while (!list_empty(&cur_trans->pending_ordered)) { 4148 ordered = list_first_entry(&cur_trans->pending_ordered, 4149 struct btrfs_ordered_extent, 4150 trans_list); 4151 list_del_init(&ordered->trans_list); 4152 spin_unlock(&fs_info->trans_lock); 4153 4154 btrfs_put_ordered_extent(ordered); 4155 spin_lock(&fs_info->trans_lock); 4156 } 4157 spin_unlock(&fs_info->trans_lock); 4158 } 4159 4160 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4161 struct btrfs_root *root) 4162 { 4163 btrfs_destroy_delayed_refs(cur_trans, root); 4164 4165 cur_trans->state = TRANS_STATE_COMMIT_START; 4166 wake_up(&root->fs_info->transaction_blocked_wait); 4167 4168 cur_trans->state = TRANS_STATE_UNBLOCKED; 4169 wake_up(&root->fs_info->transaction_wait); 4170 4171 btrfs_free_pending_ordered(cur_trans, root->fs_info); 4172 btrfs_destroy_delayed_inodes(root); 4173 btrfs_assert_delayed_root_empty(root); 4174 4175 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 4176 EXTENT_DIRTY); 4177 btrfs_destroy_pinned_extent(root, 4178 root->fs_info->pinned_extents); 4179 4180 cur_trans->state =TRANS_STATE_COMPLETED; 4181 wake_up(&cur_trans->commit_wait); 4182 4183 /* 4184 memset(cur_trans, 0, sizeof(*cur_trans)); 4185 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4186 */ 4187 } 4188 4189 static int btrfs_cleanup_transaction(struct btrfs_root *root) 4190 { 4191 struct btrfs_transaction *t; 4192 4193 mutex_lock(&root->fs_info->transaction_kthread_mutex); 4194 4195 spin_lock(&root->fs_info->trans_lock); 4196 while (!list_empty(&root->fs_info->trans_list)) { 4197 t = list_first_entry(&root->fs_info->trans_list, 4198 struct btrfs_transaction, list); 4199 if (t->state >= TRANS_STATE_COMMIT_START) { 4200 atomic_inc(&t->use_count); 4201 spin_unlock(&root->fs_info->trans_lock); 4202 btrfs_wait_for_commit(root, t->transid); 4203 btrfs_put_transaction(t); 4204 spin_lock(&root->fs_info->trans_lock); 4205 continue; 4206 } 4207 if (t == root->fs_info->running_transaction) { 4208 t->state = TRANS_STATE_COMMIT_DOING; 4209 spin_unlock(&root->fs_info->trans_lock); 4210 /* 4211 * We wait for 0 num_writers since we don't hold a trans 4212 * handle open currently for this transaction. 4213 */ 4214 wait_event(t->writer_wait, 4215 atomic_read(&t->num_writers) == 0); 4216 } else { 4217 spin_unlock(&root->fs_info->trans_lock); 4218 } 4219 btrfs_cleanup_one_transaction(t, root); 4220 4221 spin_lock(&root->fs_info->trans_lock); 4222 if (t == root->fs_info->running_transaction) 4223 root->fs_info->running_transaction = NULL; 4224 list_del_init(&t->list); 4225 spin_unlock(&root->fs_info->trans_lock); 4226 4227 btrfs_put_transaction(t); 4228 trace_btrfs_transaction_commit(root); 4229 spin_lock(&root->fs_info->trans_lock); 4230 } 4231 spin_unlock(&root->fs_info->trans_lock); 4232 btrfs_destroy_all_ordered_extents(root->fs_info); 4233 btrfs_destroy_delayed_inodes(root); 4234 btrfs_assert_delayed_root_empty(root); 4235 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents); 4236 btrfs_destroy_all_delalloc_inodes(root->fs_info); 4237 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 4238 4239 return 0; 4240 } 4241 4242 static struct extent_io_ops btree_extent_io_ops = { 4243 .readpage_end_io_hook = btree_readpage_end_io_hook, 4244 .readpage_io_failed_hook = btree_io_failed_hook, 4245 .submit_bio_hook = btree_submit_bio_hook, 4246 /* note we're sharing with inode.c for the merge bio hook */ 4247 .merge_bio_hook = btrfs_merge_bio_hook, 4248 }; 4249