xref: /linux/fs/btrfs/disk-io.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <linux/sched/mm.h>
21 #include <asm/unaligned.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 
43 #ifdef CONFIG_X86
44 #include <asm/cpufeature.h>
45 #endif
46 
47 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
48 				 BTRFS_HEADER_FLAG_RELOC |\
49 				 BTRFS_SUPER_FLAG_ERROR |\
50 				 BTRFS_SUPER_FLAG_SEEDING |\
51 				 BTRFS_SUPER_FLAG_METADUMP |\
52 				 BTRFS_SUPER_FLAG_METADUMP_V2)
53 
54 static const struct extent_io_ops btree_extent_io_ops;
55 static void end_workqueue_fn(struct btrfs_work *work);
56 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
57 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
58 				      struct btrfs_fs_info *fs_info);
59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
60 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
61 					struct extent_io_tree *dirty_pages,
62 					int mark);
63 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
64 				       struct extent_io_tree *pinned_extents);
65 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
66 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
67 
68 /*
69  * btrfs_end_io_wq structs are used to do processing in task context when an IO
70  * is complete.  This is used during reads to verify checksums, and it is used
71  * by writes to insert metadata for new file extents after IO is complete.
72  */
73 struct btrfs_end_io_wq {
74 	struct bio *bio;
75 	bio_end_io_t *end_io;
76 	void *private;
77 	struct btrfs_fs_info *info;
78 	blk_status_t status;
79 	enum btrfs_wq_endio_type metadata;
80 	struct btrfs_work work;
81 };
82 
83 static struct kmem_cache *btrfs_end_io_wq_cache;
84 
85 int __init btrfs_end_io_wq_init(void)
86 {
87 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
88 					sizeof(struct btrfs_end_io_wq),
89 					0,
90 					SLAB_MEM_SPREAD,
91 					NULL);
92 	if (!btrfs_end_io_wq_cache)
93 		return -ENOMEM;
94 	return 0;
95 }
96 
97 void __cold btrfs_end_io_wq_exit(void)
98 {
99 	kmem_cache_destroy(btrfs_end_io_wq_cache);
100 }
101 
102 /*
103  * async submit bios are used to offload expensive checksumming
104  * onto the worker threads.  They checksum file and metadata bios
105  * just before they are sent down the IO stack.
106  */
107 struct async_submit_bio {
108 	void *private_data;
109 	struct bio *bio;
110 	extent_submit_bio_start_t *submit_bio_start;
111 	int mirror_num;
112 	/*
113 	 * bio_offset is optional, can be used if the pages in the bio
114 	 * can't tell us where in the file the bio should go
115 	 */
116 	u64 bio_offset;
117 	struct btrfs_work work;
118 	blk_status_t status;
119 };
120 
121 /*
122  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
123  * eb, the lockdep key is determined by the btrfs_root it belongs to and
124  * the level the eb occupies in the tree.
125  *
126  * Different roots are used for different purposes and may nest inside each
127  * other and they require separate keysets.  As lockdep keys should be
128  * static, assign keysets according to the purpose of the root as indicated
129  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
130  * roots have separate keysets.
131  *
132  * Lock-nesting across peer nodes is always done with the immediate parent
133  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
134  * subclass to avoid triggering lockdep warning in such cases.
135  *
136  * The key is set by the readpage_end_io_hook after the buffer has passed
137  * csum validation but before the pages are unlocked.  It is also set by
138  * btrfs_init_new_buffer on freshly allocated blocks.
139  *
140  * We also add a check to make sure the highest level of the tree is the
141  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
142  * needs update as well.
143  */
144 #ifdef CONFIG_DEBUG_LOCK_ALLOC
145 # if BTRFS_MAX_LEVEL != 8
146 #  error
147 # endif
148 
149 static struct btrfs_lockdep_keyset {
150 	u64			id;		/* root objectid */
151 	const char		*name_stem;	/* lock name stem */
152 	char			names[BTRFS_MAX_LEVEL + 1][20];
153 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
154 } btrfs_lockdep_keysets[] = {
155 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
156 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
157 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
158 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
159 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
160 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
161 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
162 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
163 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
164 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
165 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
166 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
167 	{ .id = 0,				.name_stem = "tree"	},
168 };
169 
170 void __init btrfs_init_lockdep(void)
171 {
172 	int i, j;
173 
174 	/* initialize lockdep class names */
175 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
176 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
177 
178 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
179 			snprintf(ks->names[j], sizeof(ks->names[j]),
180 				 "btrfs-%s-%02d", ks->name_stem, j);
181 	}
182 }
183 
184 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
185 				    int level)
186 {
187 	struct btrfs_lockdep_keyset *ks;
188 
189 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
190 
191 	/* find the matching keyset, id 0 is the default entry */
192 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
193 		if (ks->id == objectid)
194 			break;
195 
196 	lockdep_set_class_and_name(&eb->lock,
197 				   &ks->keys[level], ks->names[level]);
198 }
199 
200 #endif
201 
202 /*
203  * extents on the btree inode are pretty simple, there's one extent
204  * that covers the entire device
205  */
206 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
207 		struct page *page, size_t pg_offset, u64 start, u64 len,
208 		int create)
209 {
210 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
211 	struct extent_map_tree *em_tree = &inode->extent_tree;
212 	struct extent_map *em;
213 	int ret;
214 
215 	read_lock(&em_tree->lock);
216 	em = lookup_extent_mapping(em_tree, start, len);
217 	if (em) {
218 		em->bdev = fs_info->fs_devices->latest_bdev;
219 		read_unlock(&em_tree->lock);
220 		goto out;
221 	}
222 	read_unlock(&em_tree->lock);
223 
224 	em = alloc_extent_map();
225 	if (!em) {
226 		em = ERR_PTR(-ENOMEM);
227 		goto out;
228 	}
229 	em->start = 0;
230 	em->len = (u64)-1;
231 	em->block_len = (u64)-1;
232 	em->block_start = 0;
233 	em->bdev = fs_info->fs_devices->latest_bdev;
234 
235 	write_lock(&em_tree->lock);
236 	ret = add_extent_mapping(em_tree, em, 0);
237 	if (ret == -EEXIST) {
238 		free_extent_map(em);
239 		em = lookup_extent_mapping(em_tree, start, len);
240 		if (!em)
241 			em = ERR_PTR(-EIO);
242 	} else if (ret) {
243 		free_extent_map(em);
244 		em = ERR_PTR(ret);
245 	}
246 	write_unlock(&em_tree->lock);
247 
248 out:
249 	return em;
250 }
251 
252 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
253 {
254 	return crc32c(seed, data, len);
255 }
256 
257 void btrfs_csum_final(u32 crc, u8 *result)
258 {
259 	put_unaligned_le32(~crc, result);
260 }
261 
262 /*
263  * compute the csum for a btree block, and either verify it or write it
264  * into the csum field of the block.
265  */
266 static int csum_tree_block(struct btrfs_fs_info *fs_info,
267 			   struct extent_buffer *buf,
268 			   int verify)
269 {
270 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
271 	char result[BTRFS_CSUM_SIZE];
272 	unsigned long len;
273 	unsigned long cur_len;
274 	unsigned long offset = BTRFS_CSUM_SIZE;
275 	char *kaddr;
276 	unsigned long map_start;
277 	unsigned long map_len;
278 	int err;
279 	u32 crc = ~(u32)0;
280 
281 	len = buf->len - offset;
282 	while (len > 0) {
283 		/*
284 		 * Note: we don't need to check for the err == 1 case here, as
285 		 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
286 		 * and 'min_len = 32' and the currently implemented mapping
287 		 * algorithm we cannot cross a page boundary.
288 		 */
289 		err = map_private_extent_buffer(buf, offset, 32,
290 					&kaddr, &map_start, &map_len);
291 		if (err)
292 			return err;
293 		cur_len = min(len, map_len - (offset - map_start));
294 		crc = btrfs_csum_data(kaddr + offset - map_start,
295 				      crc, cur_len);
296 		len -= cur_len;
297 		offset += cur_len;
298 	}
299 	memset(result, 0, BTRFS_CSUM_SIZE);
300 
301 	btrfs_csum_final(crc, result);
302 
303 	if (verify) {
304 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
305 			u32 val;
306 			u32 found = 0;
307 			memcpy(&found, result, csum_size);
308 
309 			read_extent_buffer(buf, &val, 0, csum_size);
310 			btrfs_warn_rl(fs_info,
311 				"%s checksum verify failed on %llu wanted %X found %X level %d",
312 				fs_info->sb->s_id, buf->start,
313 				val, found, btrfs_header_level(buf));
314 			return -EUCLEAN;
315 		}
316 	} else {
317 		write_extent_buffer(buf, result, 0, csum_size);
318 	}
319 
320 	return 0;
321 }
322 
323 /*
324  * we can't consider a given block up to date unless the transid of the
325  * block matches the transid in the parent node's pointer.  This is how we
326  * detect blocks that either didn't get written at all or got written
327  * in the wrong place.
328  */
329 static int verify_parent_transid(struct extent_io_tree *io_tree,
330 				 struct extent_buffer *eb, u64 parent_transid,
331 				 int atomic)
332 {
333 	struct extent_state *cached_state = NULL;
334 	int ret;
335 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
336 
337 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
338 		return 0;
339 
340 	if (atomic)
341 		return -EAGAIN;
342 
343 	if (need_lock) {
344 		btrfs_tree_read_lock(eb);
345 		btrfs_set_lock_blocking_read(eb);
346 	}
347 
348 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
349 			 &cached_state);
350 	if (extent_buffer_uptodate(eb) &&
351 	    btrfs_header_generation(eb) == parent_transid) {
352 		ret = 0;
353 		goto out;
354 	}
355 	btrfs_err_rl(eb->fs_info,
356 		"parent transid verify failed on %llu wanted %llu found %llu",
357 			eb->start,
358 			parent_transid, btrfs_header_generation(eb));
359 	ret = 1;
360 
361 	/*
362 	 * Things reading via commit roots that don't have normal protection,
363 	 * like send, can have a really old block in cache that may point at a
364 	 * block that has been freed and re-allocated.  So don't clear uptodate
365 	 * if we find an eb that is under IO (dirty/writeback) because we could
366 	 * end up reading in the stale data and then writing it back out and
367 	 * making everybody very sad.
368 	 */
369 	if (!extent_buffer_under_io(eb))
370 		clear_extent_buffer_uptodate(eb);
371 out:
372 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
373 			     &cached_state);
374 	if (need_lock)
375 		btrfs_tree_read_unlock_blocking(eb);
376 	return ret;
377 }
378 
379 /*
380  * Return 0 if the superblock checksum type matches the checksum value of that
381  * algorithm. Pass the raw disk superblock data.
382  */
383 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
384 				  char *raw_disk_sb)
385 {
386 	struct btrfs_super_block *disk_sb =
387 		(struct btrfs_super_block *)raw_disk_sb;
388 	u16 csum_type = btrfs_super_csum_type(disk_sb);
389 	int ret = 0;
390 
391 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
392 		u32 crc = ~(u32)0;
393 		char result[sizeof(crc)];
394 
395 		/*
396 		 * The super_block structure does not span the whole
397 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
398 		 * is filled with zeros and is included in the checksum.
399 		 */
400 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
401 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
402 		btrfs_csum_final(crc, result);
403 
404 		if (memcmp(raw_disk_sb, result, sizeof(result)))
405 			ret = 1;
406 	}
407 
408 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
409 		btrfs_err(fs_info, "unsupported checksum algorithm %u",
410 				csum_type);
411 		ret = 1;
412 	}
413 
414 	return ret;
415 }
416 
417 static int verify_level_key(struct btrfs_fs_info *fs_info,
418 			    struct extent_buffer *eb, int level,
419 			    struct btrfs_key *first_key, u64 parent_transid)
420 {
421 	int found_level;
422 	struct btrfs_key found_key;
423 	int ret;
424 
425 	found_level = btrfs_header_level(eb);
426 	if (found_level != level) {
427 #ifdef CONFIG_BTRFS_DEBUG
428 		WARN_ON(1);
429 		btrfs_err(fs_info,
430 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
431 			  eb->start, level, found_level);
432 #endif
433 		return -EIO;
434 	}
435 
436 	if (!first_key)
437 		return 0;
438 
439 	/*
440 	 * For live tree block (new tree blocks in current transaction),
441 	 * we need proper lock context to avoid race, which is impossible here.
442 	 * So we only checks tree blocks which is read from disk, whose
443 	 * generation <= fs_info->last_trans_committed.
444 	 */
445 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
446 		return 0;
447 	if (found_level)
448 		btrfs_node_key_to_cpu(eb, &found_key, 0);
449 	else
450 		btrfs_item_key_to_cpu(eb, &found_key, 0);
451 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
452 
453 #ifdef CONFIG_BTRFS_DEBUG
454 	if (ret) {
455 		WARN_ON(1);
456 		btrfs_err(fs_info,
457 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
458 			  eb->start, parent_transid, first_key->objectid,
459 			  first_key->type, first_key->offset,
460 			  found_key.objectid, found_key.type,
461 			  found_key.offset);
462 	}
463 #endif
464 	return ret;
465 }
466 
467 /*
468  * helper to read a given tree block, doing retries as required when
469  * the checksums don't match and we have alternate mirrors to try.
470  *
471  * @parent_transid:	expected transid, skip check if 0
472  * @level:		expected level, mandatory check
473  * @first_key:		expected key of first slot, skip check if NULL
474  */
475 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
476 					  struct extent_buffer *eb,
477 					  u64 parent_transid, int level,
478 					  struct btrfs_key *first_key)
479 {
480 	struct extent_io_tree *io_tree;
481 	int failed = 0;
482 	int ret;
483 	int num_copies = 0;
484 	int mirror_num = 0;
485 	int failed_mirror = 0;
486 
487 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
488 	while (1) {
489 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
490 		ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
491 					       mirror_num);
492 		if (!ret) {
493 			if (verify_parent_transid(io_tree, eb,
494 						   parent_transid, 0))
495 				ret = -EIO;
496 			else if (verify_level_key(fs_info, eb, level,
497 						  first_key, parent_transid))
498 				ret = -EUCLEAN;
499 			else
500 				break;
501 		}
502 
503 		num_copies = btrfs_num_copies(fs_info,
504 					      eb->start, eb->len);
505 		if (num_copies == 1)
506 			break;
507 
508 		if (!failed_mirror) {
509 			failed = 1;
510 			failed_mirror = eb->read_mirror;
511 		}
512 
513 		mirror_num++;
514 		if (mirror_num == failed_mirror)
515 			mirror_num++;
516 
517 		if (mirror_num > num_copies)
518 			break;
519 	}
520 
521 	if (failed && !ret && failed_mirror)
522 		repair_eb_io_failure(fs_info, eb, failed_mirror);
523 
524 	return ret;
525 }
526 
527 /*
528  * checksum a dirty tree block before IO.  This has extra checks to make sure
529  * we only fill in the checksum field in the first page of a multi-page block
530  */
531 
532 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
533 {
534 	u64 start = page_offset(page);
535 	u64 found_start;
536 	struct extent_buffer *eb;
537 
538 	eb = (struct extent_buffer *)page->private;
539 	if (page != eb->pages[0])
540 		return 0;
541 
542 	found_start = btrfs_header_bytenr(eb);
543 	/*
544 	 * Please do not consolidate these warnings into a single if.
545 	 * It is useful to know what went wrong.
546 	 */
547 	if (WARN_ON(found_start != start))
548 		return -EUCLEAN;
549 	if (WARN_ON(!PageUptodate(page)))
550 		return -EUCLEAN;
551 
552 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
553 			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
554 
555 	return csum_tree_block(fs_info, eb, 0);
556 }
557 
558 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
559 				 struct extent_buffer *eb)
560 {
561 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
562 	u8 fsid[BTRFS_FSID_SIZE];
563 	int ret = 1;
564 
565 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
566 	while (fs_devices) {
567 		u8 *metadata_uuid;
568 
569 		/*
570 		 * Checking the incompat flag is only valid for the current
571 		 * fs. For seed devices it's forbidden to have their uuid
572 		 * changed so reading ->fsid in this case is fine
573 		 */
574 		if (fs_devices == fs_info->fs_devices &&
575 		    btrfs_fs_incompat(fs_info, METADATA_UUID))
576 			metadata_uuid = fs_devices->metadata_uuid;
577 		else
578 			metadata_uuid = fs_devices->fsid;
579 
580 		if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
581 			ret = 0;
582 			break;
583 		}
584 		fs_devices = fs_devices->seed;
585 	}
586 	return ret;
587 }
588 
589 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
590 				      u64 phy_offset, struct page *page,
591 				      u64 start, u64 end, int mirror)
592 {
593 	u64 found_start;
594 	int found_level;
595 	struct extent_buffer *eb;
596 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
597 	struct btrfs_fs_info *fs_info = root->fs_info;
598 	int ret = 0;
599 	int reads_done;
600 
601 	if (!page->private)
602 		goto out;
603 
604 	eb = (struct extent_buffer *)page->private;
605 
606 	/* the pending IO might have been the only thing that kept this buffer
607 	 * in memory.  Make sure we have a ref for all this other checks
608 	 */
609 	extent_buffer_get(eb);
610 
611 	reads_done = atomic_dec_and_test(&eb->io_pages);
612 	if (!reads_done)
613 		goto err;
614 
615 	eb->read_mirror = mirror;
616 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
617 		ret = -EIO;
618 		goto err;
619 	}
620 
621 	found_start = btrfs_header_bytenr(eb);
622 	if (found_start != eb->start) {
623 		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
624 			     eb->start, found_start);
625 		ret = -EIO;
626 		goto err;
627 	}
628 	if (check_tree_block_fsid(fs_info, eb)) {
629 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
630 			     eb->start);
631 		ret = -EIO;
632 		goto err;
633 	}
634 	found_level = btrfs_header_level(eb);
635 	if (found_level >= BTRFS_MAX_LEVEL) {
636 		btrfs_err(fs_info, "bad tree block level %d on %llu",
637 			  (int)btrfs_header_level(eb), eb->start);
638 		ret = -EIO;
639 		goto err;
640 	}
641 
642 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
643 				       eb, found_level);
644 
645 	ret = csum_tree_block(fs_info, eb, 1);
646 	if (ret)
647 		goto err;
648 
649 	/*
650 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
651 	 * that we don't try and read the other copies of this block, just
652 	 * return -EIO.
653 	 */
654 	if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
655 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
656 		ret = -EIO;
657 	}
658 
659 	if (found_level > 0 && btrfs_check_node(fs_info, eb))
660 		ret = -EIO;
661 
662 	if (!ret)
663 		set_extent_buffer_uptodate(eb);
664 err:
665 	if (reads_done &&
666 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
667 		btree_readahead_hook(eb, ret);
668 
669 	if (ret) {
670 		/*
671 		 * our io error hook is going to dec the io pages
672 		 * again, we have to make sure it has something
673 		 * to decrement
674 		 */
675 		atomic_inc(&eb->io_pages);
676 		clear_extent_buffer_uptodate(eb);
677 	}
678 	free_extent_buffer(eb);
679 out:
680 	return ret;
681 }
682 
683 static void end_workqueue_bio(struct bio *bio)
684 {
685 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
686 	struct btrfs_fs_info *fs_info;
687 	struct btrfs_workqueue *wq;
688 	btrfs_work_func_t func;
689 
690 	fs_info = end_io_wq->info;
691 	end_io_wq->status = bio->bi_status;
692 
693 	if (bio_op(bio) == REQ_OP_WRITE) {
694 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
695 			wq = fs_info->endio_meta_write_workers;
696 			func = btrfs_endio_meta_write_helper;
697 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
698 			wq = fs_info->endio_freespace_worker;
699 			func = btrfs_freespace_write_helper;
700 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
701 			wq = fs_info->endio_raid56_workers;
702 			func = btrfs_endio_raid56_helper;
703 		} else {
704 			wq = fs_info->endio_write_workers;
705 			func = btrfs_endio_write_helper;
706 		}
707 	} else {
708 		if (unlikely(end_io_wq->metadata ==
709 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
710 			wq = fs_info->endio_repair_workers;
711 			func = btrfs_endio_repair_helper;
712 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
713 			wq = fs_info->endio_raid56_workers;
714 			func = btrfs_endio_raid56_helper;
715 		} else if (end_io_wq->metadata) {
716 			wq = fs_info->endio_meta_workers;
717 			func = btrfs_endio_meta_helper;
718 		} else {
719 			wq = fs_info->endio_workers;
720 			func = btrfs_endio_helper;
721 		}
722 	}
723 
724 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
725 	btrfs_queue_work(wq, &end_io_wq->work);
726 }
727 
728 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
729 			enum btrfs_wq_endio_type metadata)
730 {
731 	struct btrfs_end_io_wq *end_io_wq;
732 
733 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
734 	if (!end_io_wq)
735 		return BLK_STS_RESOURCE;
736 
737 	end_io_wq->private = bio->bi_private;
738 	end_io_wq->end_io = bio->bi_end_io;
739 	end_io_wq->info = info;
740 	end_io_wq->status = 0;
741 	end_io_wq->bio = bio;
742 	end_io_wq->metadata = metadata;
743 
744 	bio->bi_private = end_io_wq;
745 	bio->bi_end_io = end_workqueue_bio;
746 	return 0;
747 }
748 
749 static void run_one_async_start(struct btrfs_work *work)
750 {
751 	struct async_submit_bio *async;
752 	blk_status_t ret;
753 
754 	async = container_of(work, struct  async_submit_bio, work);
755 	ret = async->submit_bio_start(async->private_data, async->bio,
756 				      async->bio_offset);
757 	if (ret)
758 		async->status = ret;
759 }
760 
761 /*
762  * In order to insert checksums into the metadata in large chunks, we wait
763  * until bio submission time.   All the pages in the bio are checksummed and
764  * sums are attached onto the ordered extent record.
765  *
766  * At IO completion time the csums attached on the ordered extent record are
767  * inserted into the tree.
768  */
769 static void run_one_async_done(struct btrfs_work *work)
770 {
771 	struct async_submit_bio *async;
772 	struct inode *inode;
773 	blk_status_t ret;
774 
775 	async = container_of(work, struct  async_submit_bio, work);
776 	inode = async->private_data;
777 
778 	/* If an error occurred we just want to clean up the bio and move on */
779 	if (async->status) {
780 		async->bio->bi_status = async->status;
781 		bio_endio(async->bio);
782 		return;
783 	}
784 
785 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
786 			async->mirror_num, 1);
787 	if (ret) {
788 		async->bio->bi_status = ret;
789 		bio_endio(async->bio);
790 	}
791 }
792 
793 static void run_one_async_free(struct btrfs_work *work)
794 {
795 	struct async_submit_bio *async;
796 
797 	async = container_of(work, struct  async_submit_bio, work);
798 	kfree(async);
799 }
800 
801 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
802 				 int mirror_num, unsigned long bio_flags,
803 				 u64 bio_offset, void *private_data,
804 				 extent_submit_bio_start_t *submit_bio_start)
805 {
806 	struct async_submit_bio *async;
807 
808 	async = kmalloc(sizeof(*async), GFP_NOFS);
809 	if (!async)
810 		return BLK_STS_RESOURCE;
811 
812 	async->private_data = private_data;
813 	async->bio = bio;
814 	async->mirror_num = mirror_num;
815 	async->submit_bio_start = submit_bio_start;
816 
817 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
818 			run_one_async_done, run_one_async_free);
819 
820 	async->bio_offset = bio_offset;
821 
822 	async->status = 0;
823 
824 	if (op_is_sync(bio->bi_opf))
825 		btrfs_set_work_high_priority(&async->work);
826 
827 	btrfs_queue_work(fs_info->workers, &async->work);
828 	return 0;
829 }
830 
831 static blk_status_t btree_csum_one_bio(struct bio *bio)
832 {
833 	struct bio_vec *bvec;
834 	struct btrfs_root *root;
835 	int i, ret = 0;
836 	struct bvec_iter_all iter_all;
837 
838 	ASSERT(!bio_flagged(bio, BIO_CLONED));
839 	bio_for_each_segment_all(bvec, bio, i, iter_all) {
840 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
841 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
842 		if (ret)
843 			break;
844 	}
845 
846 	return errno_to_blk_status(ret);
847 }
848 
849 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
850 					     u64 bio_offset)
851 {
852 	/*
853 	 * when we're called for a write, we're already in the async
854 	 * submission context.  Just jump into btrfs_map_bio
855 	 */
856 	return btree_csum_one_bio(bio);
857 }
858 
859 static int check_async_write(struct btrfs_inode *bi)
860 {
861 	if (atomic_read(&bi->sync_writers))
862 		return 0;
863 #ifdef CONFIG_X86
864 	if (static_cpu_has(X86_FEATURE_XMM4_2))
865 		return 0;
866 #endif
867 	return 1;
868 }
869 
870 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
871 					  int mirror_num, unsigned long bio_flags,
872 					  u64 bio_offset)
873 {
874 	struct inode *inode = private_data;
875 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
876 	int async = check_async_write(BTRFS_I(inode));
877 	blk_status_t ret;
878 
879 	if (bio_op(bio) != REQ_OP_WRITE) {
880 		/*
881 		 * called for a read, do the setup so that checksum validation
882 		 * can happen in the async kernel threads
883 		 */
884 		ret = btrfs_bio_wq_end_io(fs_info, bio,
885 					  BTRFS_WQ_ENDIO_METADATA);
886 		if (ret)
887 			goto out_w_error;
888 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
889 	} else if (!async) {
890 		ret = btree_csum_one_bio(bio);
891 		if (ret)
892 			goto out_w_error;
893 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
894 	} else {
895 		/*
896 		 * kthread helpers are used to submit writes so that
897 		 * checksumming can happen in parallel across all CPUs
898 		 */
899 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
900 					  bio_offset, private_data,
901 					  btree_submit_bio_start);
902 	}
903 
904 	if (ret)
905 		goto out_w_error;
906 	return 0;
907 
908 out_w_error:
909 	bio->bi_status = ret;
910 	bio_endio(bio);
911 	return ret;
912 }
913 
914 #ifdef CONFIG_MIGRATION
915 static int btree_migratepage(struct address_space *mapping,
916 			struct page *newpage, struct page *page,
917 			enum migrate_mode mode)
918 {
919 	/*
920 	 * we can't safely write a btree page from here,
921 	 * we haven't done the locking hook
922 	 */
923 	if (PageDirty(page))
924 		return -EAGAIN;
925 	/*
926 	 * Buffers may be managed in a filesystem specific way.
927 	 * We must have no buffers or drop them.
928 	 */
929 	if (page_has_private(page) &&
930 	    !try_to_release_page(page, GFP_KERNEL))
931 		return -EAGAIN;
932 	return migrate_page(mapping, newpage, page, mode);
933 }
934 #endif
935 
936 
937 static int btree_writepages(struct address_space *mapping,
938 			    struct writeback_control *wbc)
939 {
940 	struct btrfs_fs_info *fs_info;
941 	int ret;
942 
943 	if (wbc->sync_mode == WB_SYNC_NONE) {
944 
945 		if (wbc->for_kupdate)
946 			return 0;
947 
948 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
949 		/* this is a bit racy, but that's ok */
950 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
951 					     BTRFS_DIRTY_METADATA_THRESH,
952 					     fs_info->dirty_metadata_batch);
953 		if (ret < 0)
954 			return 0;
955 	}
956 	return btree_write_cache_pages(mapping, wbc);
957 }
958 
959 static int btree_readpage(struct file *file, struct page *page)
960 {
961 	struct extent_io_tree *tree;
962 	tree = &BTRFS_I(page->mapping->host)->io_tree;
963 	return extent_read_full_page(tree, page, btree_get_extent, 0);
964 }
965 
966 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
967 {
968 	if (PageWriteback(page) || PageDirty(page))
969 		return 0;
970 
971 	return try_release_extent_buffer(page);
972 }
973 
974 static void btree_invalidatepage(struct page *page, unsigned int offset,
975 				 unsigned int length)
976 {
977 	struct extent_io_tree *tree;
978 	tree = &BTRFS_I(page->mapping->host)->io_tree;
979 	extent_invalidatepage(tree, page, offset);
980 	btree_releasepage(page, GFP_NOFS);
981 	if (PagePrivate(page)) {
982 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
983 			   "page private not zero on page %llu",
984 			   (unsigned long long)page_offset(page));
985 		ClearPagePrivate(page);
986 		set_page_private(page, 0);
987 		put_page(page);
988 	}
989 }
990 
991 static int btree_set_page_dirty(struct page *page)
992 {
993 #ifdef DEBUG
994 	struct extent_buffer *eb;
995 
996 	BUG_ON(!PagePrivate(page));
997 	eb = (struct extent_buffer *)page->private;
998 	BUG_ON(!eb);
999 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1000 	BUG_ON(!atomic_read(&eb->refs));
1001 	btrfs_assert_tree_locked(eb);
1002 #endif
1003 	return __set_page_dirty_nobuffers(page);
1004 }
1005 
1006 static const struct address_space_operations btree_aops = {
1007 	.readpage	= btree_readpage,
1008 	.writepages	= btree_writepages,
1009 	.releasepage	= btree_releasepage,
1010 	.invalidatepage = btree_invalidatepage,
1011 #ifdef CONFIG_MIGRATION
1012 	.migratepage	= btree_migratepage,
1013 #endif
1014 	.set_page_dirty = btree_set_page_dirty,
1015 };
1016 
1017 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1018 {
1019 	struct extent_buffer *buf = NULL;
1020 	struct inode *btree_inode = fs_info->btree_inode;
1021 
1022 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1023 	if (IS_ERR(buf))
1024 		return;
1025 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1026 				 buf, WAIT_NONE, 0);
1027 	free_extent_buffer(buf);
1028 }
1029 
1030 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1031 			 int mirror_num, struct extent_buffer **eb)
1032 {
1033 	struct extent_buffer *buf = NULL;
1034 	struct inode *btree_inode = fs_info->btree_inode;
1035 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1036 	int ret;
1037 
1038 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1039 	if (IS_ERR(buf))
1040 		return 0;
1041 
1042 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1043 
1044 	ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1045 				       mirror_num);
1046 	if (ret) {
1047 		free_extent_buffer(buf);
1048 		return ret;
1049 	}
1050 
1051 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1052 		free_extent_buffer(buf);
1053 		return -EIO;
1054 	} else if (extent_buffer_uptodate(buf)) {
1055 		*eb = buf;
1056 	} else {
1057 		free_extent_buffer(buf);
1058 	}
1059 	return 0;
1060 }
1061 
1062 struct extent_buffer *btrfs_find_create_tree_block(
1063 						struct btrfs_fs_info *fs_info,
1064 						u64 bytenr)
1065 {
1066 	if (btrfs_is_testing(fs_info))
1067 		return alloc_test_extent_buffer(fs_info, bytenr);
1068 	return alloc_extent_buffer(fs_info, bytenr);
1069 }
1070 
1071 
1072 int btrfs_write_tree_block(struct extent_buffer *buf)
1073 {
1074 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1075 					buf->start + buf->len - 1);
1076 }
1077 
1078 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1079 {
1080 	filemap_fdatawait_range(buf->pages[0]->mapping,
1081 			        buf->start, buf->start + buf->len - 1);
1082 }
1083 
1084 /*
1085  * Read tree block at logical address @bytenr and do variant basic but critical
1086  * verification.
1087  *
1088  * @parent_transid:	expected transid of this tree block, skip check if 0
1089  * @level:		expected level, mandatory check
1090  * @first_key:		expected key in slot 0, skip check if NULL
1091  */
1092 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1093 				      u64 parent_transid, int level,
1094 				      struct btrfs_key *first_key)
1095 {
1096 	struct extent_buffer *buf = NULL;
1097 	int ret;
1098 
1099 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1100 	if (IS_ERR(buf))
1101 		return buf;
1102 
1103 	ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1104 					     level, first_key);
1105 	if (ret) {
1106 		free_extent_buffer(buf);
1107 		return ERR_PTR(ret);
1108 	}
1109 	return buf;
1110 
1111 }
1112 
1113 void clean_tree_block(struct btrfs_fs_info *fs_info,
1114 		      struct extent_buffer *buf)
1115 {
1116 	if (btrfs_header_generation(buf) ==
1117 	    fs_info->running_transaction->transid) {
1118 		btrfs_assert_tree_locked(buf);
1119 
1120 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1121 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1122 						 -buf->len,
1123 						 fs_info->dirty_metadata_batch);
1124 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1125 			btrfs_set_lock_blocking_write(buf);
1126 			clear_extent_buffer_dirty(buf);
1127 		}
1128 	}
1129 }
1130 
1131 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1132 {
1133 	struct btrfs_subvolume_writers *writers;
1134 	int ret;
1135 
1136 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1137 	if (!writers)
1138 		return ERR_PTR(-ENOMEM);
1139 
1140 	ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1141 	if (ret < 0) {
1142 		kfree(writers);
1143 		return ERR_PTR(ret);
1144 	}
1145 
1146 	init_waitqueue_head(&writers->wait);
1147 	return writers;
1148 }
1149 
1150 static void
1151 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1152 {
1153 	percpu_counter_destroy(&writers->counter);
1154 	kfree(writers);
1155 }
1156 
1157 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1158 			 u64 objectid)
1159 {
1160 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1161 	root->node = NULL;
1162 	root->commit_root = NULL;
1163 	root->state = 0;
1164 	root->orphan_cleanup_state = 0;
1165 
1166 	root->last_trans = 0;
1167 	root->highest_objectid = 0;
1168 	root->nr_delalloc_inodes = 0;
1169 	root->nr_ordered_extents = 0;
1170 	root->inode_tree = RB_ROOT;
1171 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1172 	root->block_rsv = NULL;
1173 
1174 	INIT_LIST_HEAD(&root->dirty_list);
1175 	INIT_LIST_HEAD(&root->root_list);
1176 	INIT_LIST_HEAD(&root->delalloc_inodes);
1177 	INIT_LIST_HEAD(&root->delalloc_root);
1178 	INIT_LIST_HEAD(&root->ordered_extents);
1179 	INIT_LIST_HEAD(&root->ordered_root);
1180 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1181 	INIT_LIST_HEAD(&root->logged_list[0]);
1182 	INIT_LIST_HEAD(&root->logged_list[1]);
1183 	spin_lock_init(&root->inode_lock);
1184 	spin_lock_init(&root->delalloc_lock);
1185 	spin_lock_init(&root->ordered_extent_lock);
1186 	spin_lock_init(&root->accounting_lock);
1187 	spin_lock_init(&root->log_extents_lock[0]);
1188 	spin_lock_init(&root->log_extents_lock[1]);
1189 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1190 	mutex_init(&root->objectid_mutex);
1191 	mutex_init(&root->log_mutex);
1192 	mutex_init(&root->ordered_extent_mutex);
1193 	mutex_init(&root->delalloc_mutex);
1194 	init_waitqueue_head(&root->log_writer_wait);
1195 	init_waitqueue_head(&root->log_commit_wait[0]);
1196 	init_waitqueue_head(&root->log_commit_wait[1]);
1197 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1198 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1199 	atomic_set(&root->log_commit[0], 0);
1200 	atomic_set(&root->log_commit[1], 0);
1201 	atomic_set(&root->log_writers, 0);
1202 	atomic_set(&root->log_batch, 0);
1203 	refcount_set(&root->refs, 1);
1204 	atomic_set(&root->will_be_snapshotted, 0);
1205 	atomic_set(&root->snapshot_force_cow, 0);
1206 	atomic_set(&root->nr_swapfiles, 0);
1207 	root->log_transid = 0;
1208 	root->log_transid_committed = -1;
1209 	root->last_log_commit = 0;
1210 	if (!dummy)
1211 		extent_io_tree_init(&root->dirty_log_pages, NULL);
1212 
1213 	memset(&root->root_key, 0, sizeof(root->root_key));
1214 	memset(&root->root_item, 0, sizeof(root->root_item));
1215 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1216 	if (!dummy)
1217 		root->defrag_trans_start = fs_info->generation;
1218 	else
1219 		root->defrag_trans_start = 0;
1220 	root->root_key.objectid = objectid;
1221 	root->anon_dev = 0;
1222 
1223 	spin_lock_init(&root->root_item_lock);
1224 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1225 }
1226 
1227 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1228 		gfp_t flags)
1229 {
1230 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1231 	if (root)
1232 		root->fs_info = fs_info;
1233 	return root;
1234 }
1235 
1236 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1237 /* Should only be used by the testing infrastructure */
1238 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1239 {
1240 	struct btrfs_root *root;
1241 
1242 	if (!fs_info)
1243 		return ERR_PTR(-EINVAL);
1244 
1245 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1246 	if (!root)
1247 		return ERR_PTR(-ENOMEM);
1248 
1249 	/* We don't use the stripesize in selftest, set it as sectorsize */
1250 	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1251 	root->alloc_bytenr = 0;
1252 
1253 	return root;
1254 }
1255 #endif
1256 
1257 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1258 				     struct btrfs_fs_info *fs_info,
1259 				     u64 objectid)
1260 {
1261 	struct extent_buffer *leaf;
1262 	struct btrfs_root *tree_root = fs_info->tree_root;
1263 	struct btrfs_root *root;
1264 	struct btrfs_key key;
1265 	unsigned int nofs_flag;
1266 	int ret = 0;
1267 	uuid_le uuid = NULL_UUID_LE;
1268 
1269 	/*
1270 	 * We're holding a transaction handle, so use a NOFS memory allocation
1271 	 * context to avoid deadlock if reclaim happens.
1272 	 */
1273 	nofs_flag = memalloc_nofs_save();
1274 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1275 	memalloc_nofs_restore(nofs_flag);
1276 	if (!root)
1277 		return ERR_PTR(-ENOMEM);
1278 
1279 	__setup_root(root, fs_info, objectid);
1280 	root->root_key.objectid = objectid;
1281 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1282 	root->root_key.offset = 0;
1283 
1284 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1285 	if (IS_ERR(leaf)) {
1286 		ret = PTR_ERR(leaf);
1287 		leaf = NULL;
1288 		goto fail;
1289 	}
1290 
1291 	root->node = leaf;
1292 	btrfs_mark_buffer_dirty(leaf);
1293 
1294 	root->commit_root = btrfs_root_node(root);
1295 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1296 
1297 	root->root_item.flags = 0;
1298 	root->root_item.byte_limit = 0;
1299 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1300 	btrfs_set_root_generation(&root->root_item, trans->transid);
1301 	btrfs_set_root_level(&root->root_item, 0);
1302 	btrfs_set_root_refs(&root->root_item, 1);
1303 	btrfs_set_root_used(&root->root_item, leaf->len);
1304 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1305 	btrfs_set_root_dirid(&root->root_item, 0);
1306 	if (is_fstree(objectid))
1307 		uuid_le_gen(&uuid);
1308 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1309 	root->root_item.drop_level = 0;
1310 
1311 	key.objectid = objectid;
1312 	key.type = BTRFS_ROOT_ITEM_KEY;
1313 	key.offset = 0;
1314 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1315 	if (ret)
1316 		goto fail;
1317 
1318 	btrfs_tree_unlock(leaf);
1319 
1320 	return root;
1321 
1322 fail:
1323 	if (leaf) {
1324 		btrfs_tree_unlock(leaf);
1325 		free_extent_buffer(root->commit_root);
1326 		free_extent_buffer(leaf);
1327 	}
1328 	kfree(root);
1329 
1330 	return ERR_PTR(ret);
1331 }
1332 
1333 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1334 					 struct btrfs_fs_info *fs_info)
1335 {
1336 	struct btrfs_root *root;
1337 	struct extent_buffer *leaf;
1338 
1339 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1340 	if (!root)
1341 		return ERR_PTR(-ENOMEM);
1342 
1343 	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1344 
1345 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1346 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1347 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1348 
1349 	/*
1350 	 * DON'T set REF_COWS for log trees
1351 	 *
1352 	 * log trees do not get reference counted because they go away
1353 	 * before a real commit is actually done.  They do store pointers
1354 	 * to file data extents, and those reference counts still get
1355 	 * updated (along with back refs to the log tree).
1356 	 */
1357 
1358 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1359 			NULL, 0, 0, 0);
1360 	if (IS_ERR(leaf)) {
1361 		kfree(root);
1362 		return ERR_CAST(leaf);
1363 	}
1364 
1365 	root->node = leaf;
1366 
1367 	btrfs_mark_buffer_dirty(root->node);
1368 	btrfs_tree_unlock(root->node);
1369 	return root;
1370 }
1371 
1372 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1373 			     struct btrfs_fs_info *fs_info)
1374 {
1375 	struct btrfs_root *log_root;
1376 
1377 	log_root = alloc_log_tree(trans, fs_info);
1378 	if (IS_ERR(log_root))
1379 		return PTR_ERR(log_root);
1380 	WARN_ON(fs_info->log_root_tree);
1381 	fs_info->log_root_tree = log_root;
1382 	return 0;
1383 }
1384 
1385 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1386 		       struct btrfs_root *root)
1387 {
1388 	struct btrfs_fs_info *fs_info = root->fs_info;
1389 	struct btrfs_root *log_root;
1390 	struct btrfs_inode_item *inode_item;
1391 
1392 	log_root = alloc_log_tree(trans, fs_info);
1393 	if (IS_ERR(log_root))
1394 		return PTR_ERR(log_root);
1395 
1396 	log_root->last_trans = trans->transid;
1397 	log_root->root_key.offset = root->root_key.objectid;
1398 
1399 	inode_item = &log_root->root_item.inode;
1400 	btrfs_set_stack_inode_generation(inode_item, 1);
1401 	btrfs_set_stack_inode_size(inode_item, 3);
1402 	btrfs_set_stack_inode_nlink(inode_item, 1);
1403 	btrfs_set_stack_inode_nbytes(inode_item,
1404 				     fs_info->nodesize);
1405 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1406 
1407 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1408 
1409 	WARN_ON(root->log_root);
1410 	root->log_root = log_root;
1411 	root->log_transid = 0;
1412 	root->log_transid_committed = -1;
1413 	root->last_log_commit = 0;
1414 	return 0;
1415 }
1416 
1417 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1418 					       struct btrfs_key *key)
1419 {
1420 	struct btrfs_root *root;
1421 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1422 	struct btrfs_path *path;
1423 	u64 generation;
1424 	int ret;
1425 	int level;
1426 
1427 	path = btrfs_alloc_path();
1428 	if (!path)
1429 		return ERR_PTR(-ENOMEM);
1430 
1431 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1432 	if (!root) {
1433 		ret = -ENOMEM;
1434 		goto alloc_fail;
1435 	}
1436 
1437 	__setup_root(root, fs_info, key->objectid);
1438 
1439 	ret = btrfs_find_root(tree_root, key, path,
1440 			      &root->root_item, &root->root_key);
1441 	if (ret) {
1442 		if (ret > 0)
1443 			ret = -ENOENT;
1444 		goto find_fail;
1445 	}
1446 
1447 	generation = btrfs_root_generation(&root->root_item);
1448 	level = btrfs_root_level(&root->root_item);
1449 	root->node = read_tree_block(fs_info,
1450 				     btrfs_root_bytenr(&root->root_item),
1451 				     generation, level, NULL);
1452 	if (IS_ERR(root->node)) {
1453 		ret = PTR_ERR(root->node);
1454 		goto find_fail;
1455 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1456 		ret = -EIO;
1457 		free_extent_buffer(root->node);
1458 		goto find_fail;
1459 	}
1460 	root->commit_root = btrfs_root_node(root);
1461 out:
1462 	btrfs_free_path(path);
1463 	return root;
1464 
1465 find_fail:
1466 	kfree(root);
1467 alloc_fail:
1468 	root = ERR_PTR(ret);
1469 	goto out;
1470 }
1471 
1472 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1473 				      struct btrfs_key *location)
1474 {
1475 	struct btrfs_root *root;
1476 
1477 	root = btrfs_read_tree_root(tree_root, location);
1478 	if (IS_ERR(root))
1479 		return root;
1480 
1481 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1482 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1483 		btrfs_check_and_init_root_item(&root->root_item);
1484 	}
1485 
1486 	return root;
1487 }
1488 
1489 int btrfs_init_fs_root(struct btrfs_root *root)
1490 {
1491 	int ret;
1492 	struct btrfs_subvolume_writers *writers;
1493 
1494 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1495 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1496 					GFP_NOFS);
1497 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1498 		ret = -ENOMEM;
1499 		goto fail;
1500 	}
1501 
1502 	writers = btrfs_alloc_subvolume_writers();
1503 	if (IS_ERR(writers)) {
1504 		ret = PTR_ERR(writers);
1505 		goto fail;
1506 	}
1507 	root->subv_writers = writers;
1508 
1509 	btrfs_init_free_ino_ctl(root);
1510 	spin_lock_init(&root->ino_cache_lock);
1511 	init_waitqueue_head(&root->ino_cache_wait);
1512 
1513 	ret = get_anon_bdev(&root->anon_dev);
1514 	if (ret)
1515 		goto fail;
1516 
1517 	mutex_lock(&root->objectid_mutex);
1518 	ret = btrfs_find_highest_objectid(root,
1519 					&root->highest_objectid);
1520 	if (ret) {
1521 		mutex_unlock(&root->objectid_mutex);
1522 		goto fail;
1523 	}
1524 
1525 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1526 
1527 	mutex_unlock(&root->objectid_mutex);
1528 
1529 	return 0;
1530 fail:
1531 	/* The caller is responsible to call btrfs_free_fs_root */
1532 	return ret;
1533 }
1534 
1535 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1536 					u64 root_id)
1537 {
1538 	struct btrfs_root *root;
1539 
1540 	spin_lock(&fs_info->fs_roots_radix_lock);
1541 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1542 				 (unsigned long)root_id);
1543 	spin_unlock(&fs_info->fs_roots_radix_lock);
1544 	return root;
1545 }
1546 
1547 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1548 			 struct btrfs_root *root)
1549 {
1550 	int ret;
1551 
1552 	ret = radix_tree_preload(GFP_NOFS);
1553 	if (ret)
1554 		return ret;
1555 
1556 	spin_lock(&fs_info->fs_roots_radix_lock);
1557 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1558 				(unsigned long)root->root_key.objectid,
1559 				root);
1560 	if (ret == 0)
1561 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1562 	spin_unlock(&fs_info->fs_roots_radix_lock);
1563 	radix_tree_preload_end();
1564 
1565 	return ret;
1566 }
1567 
1568 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1569 				     struct btrfs_key *location,
1570 				     bool check_ref)
1571 {
1572 	struct btrfs_root *root;
1573 	struct btrfs_path *path;
1574 	struct btrfs_key key;
1575 	int ret;
1576 
1577 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1578 		return fs_info->tree_root;
1579 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1580 		return fs_info->extent_root;
1581 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1582 		return fs_info->chunk_root;
1583 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1584 		return fs_info->dev_root;
1585 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1586 		return fs_info->csum_root;
1587 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1588 		return fs_info->quota_root ? fs_info->quota_root :
1589 					     ERR_PTR(-ENOENT);
1590 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1591 		return fs_info->uuid_root ? fs_info->uuid_root :
1592 					    ERR_PTR(-ENOENT);
1593 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1594 		return fs_info->free_space_root ? fs_info->free_space_root :
1595 						  ERR_PTR(-ENOENT);
1596 again:
1597 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1598 	if (root) {
1599 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1600 			return ERR_PTR(-ENOENT);
1601 		return root;
1602 	}
1603 
1604 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1605 	if (IS_ERR(root))
1606 		return root;
1607 
1608 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1609 		ret = -ENOENT;
1610 		goto fail;
1611 	}
1612 
1613 	ret = btrfs_init_fs_root(root);
1614 	if (ret)
1615 		goto fail;
1616 
1617 	path = btrfs_alloc_path();
1618 	if (!path) {
1619 		ret = -ENOMEM;
1620 		goto fail;
1621 	}
1622 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1623 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1624 	key.offset = location->objectid;
1625 
1626 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1627 	btrfs_free_path(path);
1628 	if (ret < 0)
1629 		goto fail;
1630 	if (ret == 0)
1631 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1632 
1633 	ret = btrfs_insert_fs_root(fs_info, root);
1634 	if (ret) {
1635 		if (ret == -EEXIST) {
1636 			btrfs_free_fs_root(root);
1637 			goto again;
1638 		}
1639 		goto fail;
1640 	}
1641 	return root;
1642 fail:
1643 	btrfs_free_fs_root(root);
1644 	return ERR_PTR(ret);
1645 }
1646 
1647 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1648 {
1649 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1650 	int ret = 0;
1651 	struct btrfs_device *device;
1652 	struct backing_dev_info *bdi;
1653 
1654 	rcu_read_lock();
1655 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1656 		if (!device->bdev)
1657 			continue;
1658 		bdi = device->bdev->bd_bdi;
1659 		if (bdi_congested(bdi, bdi_bits)) {
1660 			ret = 1;
1661 			break;
1662 		}
1663 	}
1664 	rcu_read_unlock();
1665 	return ret;
1666 }
1667 
1668 /*
1669  * called by the kthread helper functions to finally call the bio end_io
1670  * functions.  This is where read checksum verification actually happens
1671  */
1672 static void end_workqueue_fn(struct btrfs_work *work)
1673 {
1674 	struct bio *bio;
1675 	struct btrfs_end_io_wq *end_io_wq;
1676 
1677 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1678 	bio = end_io_wq->bio;
1679 
1680 	bio->bi_status = end_io_wq->status;
1681 	bio->bi_private = end_io_wq->private;
1682 	bio->bi_end_io = end_io_wq->end_io;
1683 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1684 	bio_endio(bio);
1685 }
1686 
1687 static int cleaner_kthread(void *arg)
1688 {
1689 	struct btrfs_root *root = arg;
1690 	struct btrfs_fs_info *fs_info = root->fs_info;
1691 	int again;
1692 
1693 	while (1) {
1694 		again = 0;
1695 
1696 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1697 
1698 		/* Make the cleaner go to sleep early. */
1699 		if (btrfs_need_cleaner_sleep(fs_info))
1700 			goto sleep;
1701 
1702 		/*
1703 		 * Do not do anything if we might cause open_ctree() to block
1704 		 * before we have finished mounting the filesystem.
1705 		 */
1706 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1707 			goto sleep;
1708 
1709 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1710 			goto sleep;
1711 
1712 		/*
1713 		 * Avoid the problem that we change the status of the fs
1714 		 * during the above check and trylock.
1715 		 */
1716 		if (btrfs_need_cleaner_sleep(fs_info)) {
1717 			mutex_unlock(&fs_info->cleaner_mutex);
1718 			goto sleep;
1719 		}
1720 
1721 		btrfs_run_delayed_iputs(fs_info);
1722 
1723 		again = btrfs_clean_one_deleted_snapshot(root);
1724 		mutex_unlock(&fs_info->cleaner_mutex);
1725 
1726 		/*
1727 		 * The defragger has dealt with the R/O remount and umount,
1728 		 * needn't do anything special here.
1729 		 */
1730 		btrfs_run_defrag_inodes(fs_info);
1731 
1732 		/*
1733 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1734 		 * with relocation (btrfs_relocate_chunk) and relocation
1735 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1736 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1737 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1738 		 * unused block groups.
1739 		 */
1740 		btrfs_delete_unused_bgs(fs_info);
1741 sleep:
1742 		clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1743 		if (kthread_should_park())
1744 			kthread_parkme();
1745 		if (kthread_should_stop())
1746 			return 0;
1747 		if (!again) {
1748 			set_current_state(TASK_INTERRUPTIBLE);
1749 			schedule();
1750 			__set_current_state(TASK_RUNNING);
1751 		}
1752 	}
1753 }
1754 
1755 static int transaction_kthread(void *arg)
1756 {
1757 	struct btrfs_root *root = arg;
1758 	struct btrfs_fs_info *fs_info = root->fs_info;
1759 	struct btrfs_trans_handle *trans;
1760 	struct btrfs_transaction *cur;
1761 	u64 transid;
1762 	time64_t now;
1763 	unsigned long delay;
1764 	bool cannot_commit;
1765 
1766 	do {
1767 		cannot_commit = false;
1768 		delay = HZ * fs_info->commit_interval;
1769 		mutex_lock(&fs_info->transaction_kthread_mutex);
1770 
1771 		spin_lock(&fs_info->trans_lock);
1772 		cur = fs_info->running_transaction;
1773 		if (!cur) {
1774 			spin_unlock(&fs_info->trans_lock);
1775 			goto sleep;
1776 		}
1777 
1778 		now = ktime_get_seconds();
1779 		if (cur->state < TRANS_STATE_BLOCKED &&
1780 		    !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1781 		    (now < cur->start_time ||
1782 		     now - cur->start_time < fs_info->commit_interval)) {
1783 			spin_unlock(&fs_info->trans_lock);
1784 			delay = HZ * 5;
1785 			goto sleep;
1786 		}
1787 		transid = cur->transid;
1788 		spin_unlock(&fs_info->trans_lock);
1789 
1790 		/* If the file system is aborted, this will always fail. */
1791 		trans = btrfs_attach_transaction(root);
1792 		if (IS_ERR(trans)) {
1793 			if (PTR_ERR(trans) != -ENOENT)
1794 				cannot_commit = true;
1795 			goto sleep;
1796 		}
1797 		if (transid == trans->transid) {
1798 			btrfs_commit_transaction(trans);
1799 		} else {
1800 			btrfs_end_transaction(trans);
1801 		}
1802 sleep:
1803 		wake_up_process(fs_info->cleaner_kthread);
1804 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1805 
1806 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1807 				      &fs_info->fs_state)))
1808 			btrfs_cleanup_transaction(fs_info);
1809 		if (!kthread_should_stop() &&
1810 				(!btrfs_transaction_blocked(fs_info) ||
1811 				 cannot_commit))
1812 			schedule_timeout_interruptible(delay);
1813 	} while (!kthread_should_stop());
1814 	return 0;
1815 }
1816 
1817 /*
1818  * this will find the highest generation in the array of
1819  * root backups.  The index of the highest array is returned,
1820  * or -1 if we can't find anything.
1821  *
1822  * We check to make sure the array is valid by comparing the
1823  * generation of the latest  root in the array with the generation
1824  * in the super block.  If they don't match we pitch it.
1825  */
1826 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1827 {
1828 	u64 cur;
1829 	int newest_index = -1;
1830 	struct btrfs_root_backup *root_backup;
1831 	int i;
1832 
1833 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1834 		root_backup = info->super_copy->super_roots + i;
1835 		cur = btrfs_backup_tree_root_gen(root_backup);
1836 		if (cur == newest_gen)
1837 			newest_index = i;
1838 	}
1839 
1840 	/* check to see if we actually wrapped around */
1841 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1842 		root_backup = info->super_copy->super_roots;
1843 		cur = btrfs_backup_tree_root_gen(root_backup);
1844 		if (cur == newest_gen)
1845 			newest_index = 0;
1846 	}
1847 	return newest_index;
1848 }
1849 
1850 
1851 /*
1852  * find the oldest backup so we know where to store new entries
1853  * in the backup array.  This will set the backup_root_index
1854  * field in the fs_info struct
1855  */
1856 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1857 				     u64 newest_gen)
1858 {
1859 	int newest_index = -1;
1860 
1861 	newest_index = find_newest_super_backup(info, newest_gen);
1862 	/* if there was garbage in there, just move along */
1863 	if (newest_index == -1) {
1864 		info->backup_root_index = 0;
1865 	} else {
1866 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1867 	}
1868 }
1869 
1870 /*
1871  * copy all the root pointers into the super backup array.
1872  * this will bump the backup pointer by one when it is
1873  * done
1874  */
1875 static void backup_super_roots(struct btrfs_fs_info *info)
1876 {
1877 	int next_backup;
1878 	struct btrfs_root_backup *root_backup;
1879 	int last_backup;
1880 
1881 	next_backup = info->backup_root_index;
1882 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1883 		BTRFS_NUM_BACKUP_ROOTS;
1884 
1885 	/*
1886 	 * just overwrite the last backup if we're at the same generation
1887 	 * this happens only at umount
1888 	 */
1889 	root_backup = info->super_for_commit->super_roots + last_backup;
1890 	if (btrfs_backup_tree_root_gen(root_backup) ==
1891 	    btrfs_header_generation(info->tree_root->node))
1892 		next_backup = last_backup;
1893 
1894 	root_backup = info->super_for_commit->super_roots + next_backup;
1895 
1896 	/*
1897 	 * make sure all of our padding and empty slots get zero filled
1898 	 * regardless of which ones we use today
1899 	 */
1900 	memset(root_backup, 0, sizeof(*root_backup));
1901 
1902 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1903 
1904 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1905 	btrfs_set_backup_tree_root_gen(root_backup,
1906 			       btrfs_header_generation(info->tree_root->node));
1907 
1908 	btrfs_set_backup_tree_root_level(root_backup,
1909 			       btrfs_header_level(info->tree_root->node));
1910 
1911 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1912 	btrfs_set_backup_chunk_root_gen(root_backup,
1913 			       btrfs_header_generation(info->chunk_root->node));
1914 	btrfs_set_backup_chunk_root_level(root_backup,
1915 			       btrfs_header_level(info->chunk_root->node));
1916 
1917 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1918 	btrfs_set_backup_extent_root_gen(root_backup,
1919 			       btrfs_header_generation(info->extent_root->node));
1920 	btrfs_set_backup_extent_root_level(root_backup,
1921 			       btrfs_header_level(info->extent_root->node));
1922 
1923 	/*
1924 	 * we might commit during log recovery, which happens before we set
1925 	 * the fs_root.  Make sure it is valid before we fill it in.
1926 	 */
1927 	if (info->fs_root && info->fs_root->node) {
1928 		btrfs_set_backup_fs_root(root_backup,
1929 					 info->fs_root->node->start);
1930 		btrfs_set_backup_fs_root_gen(root_backup,
1931 			       btrfs_header_generation(info->fs_root->node));
1932 		btrfs_set_backup_fs_root_level(root_backup,
1933 			       btrfs_header_level(info->fs_root->node));
1934 	}
1935 
1936 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1937 	btrfs_set_backup_dev_root_gen(root_backup,
1938 			       btrfs_header_generation(info->dev_root->node));
1939 	btrfs_set_backup_dev_root_level(root_backup,
1940 				       btrfs_header_level(info->dev_root->node));
1941 
1942 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1943 	btrfs_set_backup_csum_root_gen(root_backup,
1944 			       btrfs_header_generation(info->csum_root->node));
1945 	btrfs_set_backup_csum_root_level(root_backup,
1946 			       btrfs_header_level(info->csum_root->node));
1947 
1948 	btrfs_set_backup_total_bytes(root_backup,
1949 			     btrfs_super_total_bytes(info->super_copy));
1950 	btrfs_set_backup_bytes_used(root_backup,
1951 			     btrfs_super_bytes_used(info->super_copy));
1952 	btrfs_set_backup_num_devices(root_backup,
1953 			     btrfs_super_num_devices(info->super_copy));
1954 
1955 	/*
1956 	 * if we don't copy this out to the super_copy, it won't get remembered
1957 	 * for the next commit
1958 	 */
1959 	memcpy(&info->super_copy->super_roots,
1960 	       &info->super_for_commit->super_roots,
1961 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1962 }
1963 
1964 /*
1965  * this copies info out of the root backup array and back into
1966  * the in-memory super block.  It is meant to help iterate through
1967  * the array, so you send it the number of backups you've already
1968  * tried and the last backup index you used.
1969  *
1970  * this returns -1 when it has tried all the backups
1971  */
1972 static noinline int next_root_backup(struct btrfs_fs_info *info,
1973 				     struct btrfs_super_block *super,
1974 				     int *num_backups_tried, int *backup_index)
1975 {
1976 	struct btrfs_root_backup *root_backup;
1977 	int newest = *backup_index;
1978 
1979 	if (*num_backups_tried == 0) {
1980 		u64 gen = btrfs_super_generation(super);
1981 
1982 		newest = find_newest_super_backup(info, gen);
1983 		if (newest == -1)
1984 			return -1;
1985 
1986 		*backup_index = newest;
1987 		*num_backups_tried = 1;
1988 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1989 		/* we've tried all the backups, all done */
1990 		return -1;
1991 	} else {
1992 		/* jump to the next oldest backup */
1993 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1994 			BTRFS_NUM_BACKUP_ROOTS;
1995 		*backup_index = newest;
1996 		*num_backups_tried += 1;
1997 	}
1998 	root_backup = super->super_roots + newest;
1999 
2000 	btrfs_set_super_generation(super,
2001 				   btrfs_backup_tree_root_gen(root_backup));
2002 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2003 	btrfs_set_super_root_level(super,
2004 				   btrfs_backup_tree_root_level(root_backup));
2005 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2006 
2007 	/*
2008 	 * fixme: the total bytes and num_devices need to match or we should
2009 	 * need a fsck
2010 	 */
2011 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2012 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2013 	return 0;
2014 }
2015 
2016 /* helper to cleanup workers */
2017 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2018 {
2019 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2020 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2021 	btrfs_destroy_workqueue(fs_info->workers);
2022 	btrfs_destroy_workqueue(fs_info->endio_workers);
2023 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2024 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2025 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2026 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2027 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2028 	btrfs_destroy_workqueue(fs_info->submit_workers);
2029 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2030 	btrfs_destroy_workqueue(fs_info->caching_workers);
2031 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2032 	btrfs_destroy_workqueue(fs_info->flush_workers);
2033 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2034 	btrfs_destroy_workqueue(fs_info->extent_workers);
2035 	/*
2036 	 * Now that all other work queues are destroyed, we can safely destroy
2037 	 * the queues used for metadata I/O, since tasks from those other work
2038 	 * queues can do metadata I/O operations.
2039 	 */
2040 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2041 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2042 }
2043 
2044 static void free_root_extent_buffers(struct btrfs_root *root)
2045 {
2046 	if (root) {
2047 		free_extent_buffer(root->node);
2048 		free_extent_buffer(root->commit_root);
2049 		root->node = NULL;
2050 		root->commit_root = NULL;
2051 	}
2052 }
2053 
2054 /* helper to cleanup tree roots */
2055 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2056 {
2057 	free_root_extent_buffers(info->tree_root);
2058 
2059 	free_root_extent_buffers(info->dev_root);
2060 	free_root_extent_buffers(info->extent_root);
2061 	free_root_extent_buffers(info->csum_root);
2062 	free_root_extent_buffers(info->quota_root);
2063 	free_root_extent_buffers(info->uuid_root);
2064 	if (chunk_root)
2065 		free_root_extent_buffers(info->chunk_root);
2066 	free_root_extent_buffers(info->free_space_root);
2067 }
2068 
2069 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2070 {
2071 	int ret;
2072 	struct btrfs_root *gang[8];
2073 	int i;
2074 
2075 	while (!list_empty(&fs_info->dead_roots)) {
2076 		gang[0] = list_entry(fs_info->dead_roots.next,
2077 				     struct btrfs_root, root_list);
2078 		list_del(&gang[0]->root_list);
2079 
2080 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2081 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2082 		} else {
2083 			free_extent_buffer(gang[0]->node);
2084 			free_extent_buffer(gang[0]->commit_root);
2085 			btrfs_put_fs_root(gang[0]);
2086 		}
2087 	}
2088 
2089 	while (1) {
2090 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2091 					     (void **)gang, 0,
2092 					     ARRAY_SIZE(gang));
2093 		if (!ret)
2094 			break;
2095 		for (i = 0; i < ret; i++)
2096 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2097 	}
2098 
2099 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2100 		btrfs_free_log_root_tree(NULL, fs_info);
2101 		btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2102 	}
2103 }
2104 
2105 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2106 {
2107 	mutex_init(&fs_info->scrub_lock);
2108 	atomic_set(&fs_info->scrubs_running, 0);
2109 	atomic_set(&fs_info->scrub_pause_req, 0);
2110 	atomic_set(&fs_info->scrubs_paused, 0);
2111 	atomic_set(&fs_info->scrub_cancel_req, 0);
2112 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2113 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2114 }
2115 
2116 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2117 {
2118 	spin_lock_init(&fs_info->balance_lock);
2119 	mutex_init(&fs_info->balance_mutex);
2120 	atomic_set(&fs_info->balance_pause_req, 0);
2121 	atomic_set(&fs_info->balance_cancel_req, 0);
2122 	fs_info->balance_ctl = NULL;
2123 	init_waitqueue_head(&fs_info->balance_wait_q);
2124 }
2125 
2126 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2127 {
2128 	struct inode *inode = fs_info->btree_inode;
2129 
2130 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2131 	set_nlink(inode, 1);
2132 	/*
2133 	 * we set the i_size on the btree inode to the max possible int.
2134 	 * the real end of the address space is determined by all of
2135 	 * the devices in the system
2136 	 */
2137 	inode->i_size = OFFSET_MAX;
2138 	inode->i_mapping->a_ops = &btree_aops;
2139 
2140 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2141 	extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2142 	BTRFS_I(inode)->io_tree.track_uptodate = 0;
2143 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2144 
2145 	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2146 
2147 	BTRFS_I(inode)->root = fs_info->tree_root;
2148 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2149 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2150 	btrfs_insert_inode_hash(inode);
2151 }
2152 
2153 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2154 {
2155 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2156 	init_rwsem(&fs_info->dev_replace.rwsem);
2157 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2158 }
2159 
2160 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2161 {
2162 	spin_lock_init(&fs_info->qgroup_lock);
2163 	mutex_init(&fs_info->qgroup_ioctl_lock);
2164 	fs_info->qgroup_tree = RB_ROOT;
2165 	fs_info->qgroup_op_tree = RB_ROOT;
2166 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2167 	fs_info->qgroup_seq = 1;
2168 	fs_info->qgroup_ulist = NULL;
2169 	fs_info->qgroup_rescan_running = false;
2170 	mutex_init(&fs_info->qgroup_rescan_lock);
2171 }
2172 
2173 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2174 		struct btrfs_fs_devices *fs_devices)
2175 {
2176 	u32 max_active = fs_info->thread_pool_size;
2177 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2178 
2179 	fs_info->workers =
2180 		btrfs_alloc_workqueue(fs_info, "worker",
2181 				      flags | WQ_HIGHPRI, max_active, 16);
2182 
2183 	fs_info->delalloc_workers =
2184 		btrfs_alloc_workqueue(fs_info, "delalloc",
2185 				      flags, max_active, 2);
2186 
2187 	fs_info->flush_workers =
2188 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2189 				      flags, max_active, 0);
2190 
2191 	fs_info->caching_workers =
2192 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2193 
2194 	/*
2195 	 * a higher idle thresh on the submit workers makes it much more
2196 	 * likely that bios will be send down in a sane order to the
2197 	 * devices
2198 	 */
2199 	fs_info->submit_workers =
2200 		btrfs_alloc_workqueue(fs_info, "submit", flags,
2201 				      min_t(u64, fs_devices->num_devices,
2202 					    max_active), 64);
2203 
2204 	fs_info->fixup_workers =
2205 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2206 
2207 	/*
2208 	 * endios are largely parallel and should have a very
2209 	 * low idle thresh
2210 	 */
2211 	fs_info->endio_workers =
2212 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2213 	fs_info->endio_meta_workers =
2214 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2215 				      max_active, 4);
2216 	fs_info->endio_meta_write_workers =
2217 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2218 				      max_active, 2);
2219 	fs_info->endio_raid56_workers =
2220 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2221 				      max_active, 4);
2222 	fs_info->endio_repair_workers =
2223 		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2224 	fs_info->rmw_workers =
2225 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2226 	fs_info->endio_write_workers =
2227 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2228 				      max_active, 2);
2229 	fs_info->endio_freespace_worker =
2230 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2231 				      max_active, 0);
2232 	fs_info->delayed_workers =
2233 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2234 				      max_active, 0);
2235 	fs_info->readahead_workers =
2236 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2237 				      max_active, 2);
2238 	fs_info->qgroup_rescan_workers =
2239 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2240 	fs_info->extent_workers =
2241 		btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2242 				      min_t(u64, fs_devices->num_devices,
2243 					    max_active), 8);
2244 
2245 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2246 	      fs_info->submit_workers && fs_info->flush_workers &&
2247 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2248 	      fs_info->endio_meta_write_workers &&
2249 	      fs_info->endio_repair_workers &&
2250 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2251 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2252 	      fs_info->caching_workers && fs_info->readahead_workers &&
2253 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2254 	      fs_info->extent_workers &&
2255 	      fs_info->qgroup_rescan_workers)) {
2256 		return -ENOMEM;
2257 	}
2258 
2259 	return 0;
2260 }
2261 
2262 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2263 			    struct btrfs_fs_devices *fs_devices)
2264 {
2265 	int ret;
2266 	struct btrfs_root *log_tree_root;
2267 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2268 	u64 bytenr = btrfs_super_log_root(disk_super);
2269 	int level = btrfs_super_log_root_level(disk_super);
2270 
2271 	if (fs_devices->rw_devices == 0) {
2272 		btrfs_warn(fs_info, "log replay required on RO media");
2273 		return -EIO;
2274 	}
2275 
2276 	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2277 	if (!log_tree_root)
2278 		return -ENOMEM;
2279 
2280 	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2281 
2282 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2283 					      fs_info->generation + 1,
2284 					      level, NULL);
2285 	if (IS_ERR(log_tree_root->node)) {
2286 		btrfs_warn(fs_info, "failed to read log tree");
2287 		ret = PTR_ERR(log_tree_root->node);
2288 		kfree(log_tree_root);
2289 		return ret;
2290 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2291 		btrfs_err(fs_info, "failed to read log tree");
2292 		free_extent_buffer(log_tree_root->node);
2293 		kfree(log_tree_root);
2294 		return -EIO;
2295 	}
2296 	/* returns with log_tree_root freed on success */
2297 	ret = btrfs_recover_log_trees(log_tree_root);
2298 	if (ret) {
2299 		btrfs_handle_fs_error(fs_info, ret,
2300 				      "Failed to recover log tree");
2301 		free_extent_buffer(log_tree_root->node);
2302 		kfree(log_tree_root);
2303 		return ret;
2304 	}
2305 
2306 	if (sb_rdonly(fs_info->sb)) {
2307 		ret = btrfs_commit_super(fs_info);
2308 		if (ret)
2309 			return ret;
2310 	}
2311 
2312 	return 0;
2313 }
2314 
2315 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2316 {
2317 	struct btrfs_root *tree_root = fs_info->tree_root;
2318 	struct btrfs_root *root;
2319 	struct btrfs_key location;
2320 	int ret;
2321 
2322 	BUG_ON(!fs_info->tree_root);
2323 
2324 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2325 	location.type = BTRFS_ROOT_ITEM_KEY;
2326 	location.offset = 0;
2327 
2328 	root = btrfs_read_tree_root(tree_root, &location);
2329 	if (IS_ERR(root)) {
2330 		ret = PTR_ERR(root);
2331 		goto out;
2332 	}
2333 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2334 	fs_info->extent_root = root;
2335 
2336 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2337 	root = btrfs_read_tree_root(tree_root, &location);
2338 	if (IS_ERR(root)) {
2339 		ret = PTR_ERR(root);
2340 		goto out;
2341 	}
2342 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2343 	fs_info->dev_root = root;
2344 	btrfs_init_devices_late(fs_info);
2345 
2346 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2347 	root = btrfs_read_tree_root(tree_root, &location);
2348 	if (IS_ERR(root)) {
2349 		ret = PTR_ERR(root);
2350 		goto out;
2351 	}
2352 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2353 	fs_info->csum_root = root;
2354 
2355 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2356 	root = btrfs_read_tree_root(tree_root, &location);
2357 	if (!IS_ERR(root)) {
2358 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2359 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2360 		fs_info->quota_root = root;
2361 	}
2362 
2363 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2364 	root = btrfs_read_tree_root(tree_root, &location);
2365 	if (IS_ERR(root)) {
2366 		ret = PTR_ERR(root);
2367 		if (ret != -ENOENT)
2368 			goto out;
2369 	} else {
2370 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2371 		fs_info->uuid_root = root;
2372 	}
2373 
2374 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2375 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2376 		root = btrfs_read_tree_root(tree_root, &location);
2377 		if (IS_ERR(root)) {
2378 			ret = PTR_ERR(root);
2379 			goto out;
2380 		}
2381 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2382 		fs_info->free_space_root = root;
2383 	}
2384 
2385 	return 0;
2386 out:
2387 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2388 		   location.objectid, ret);
2389 	return ret;
2390 }
2391 
2392 /*
2393  * Real super block validation
2394  * NOTE: super csum type and incompat features will not be checked here.
2395  *
2396  * @sb:		super block to check
2397  * @mirror_num:	the super block number to check its bytenr:
2398  * 		0	the primary (1st) sb
2399  * 		1, 2	2nd and 3rd backup copy
2400  * 	       -1	skip bytenr check
2401  */
2402 static int validate_super(struct btrfs_fs_info *fs_info,
2403 			    struct btrfs_super_block *sb, int mirror_num)
2404 {
2405 	u64 nodesize = btrfs_super_nodesize(sb);
2406 	u64 sectorsize = btrfs_super_sectorsize(sb);
2407 	int ret = 0;
2408 
2409 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2410 		btrfs_err(fs_info, "no valid FS found");
2411 		ret = -EINVAL;
2412 	}
2413 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2414 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2415 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2416 		ret = -EINVAL;
2417 	}
2418 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2419 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2420 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2421 		ret = -EINVAL;
2422 	}
2423 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2424 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2425 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2426 		ret = -EINVAL;
2427 	}
2428 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2429 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2430 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2431 		ret = -EINVAL;
2432 	}
2433 
2434 	/*
2435 	 * Check sectorsize and nodesize first, other check will need it.
2436 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2437 	 */
2438 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2439 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2440 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2441 		ret = -EINVAL;
2442 	}
2443 	/* Only PAGE SIZE is supported yet */
2444 	if (sectorsize != PAGE_SIZE) {
2445 		btrfs_err(fs_info,
2446 			"sectorsize %llu not supported yet, only support %lu",
2447 			sectorsize, PAGE_SIZE);
2448 		ret = -EINVAL;
2449 	}
2450 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2451 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2452 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2453 		ret = -EINVAL;
2454 	}
2455 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2456 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2457 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2458 		ret = -EINVAL;
2459 	}
2460 
2461 	/* Root alignment check */
2462 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2463 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2464 			   btrfs_super_root(sb));
2465 		ret = -EINVAL;
2466 	}
2467 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2468 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2469 			   btrfs_super_chunk_root(sb));
2470 		ret = -EINVAL;
2471 	}
2472 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2473 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2474 			   btrfs_super_log_root(sb));
2475 		ret = -EINVAL;
2476 	}
2477 
2478 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2479 		   BTRFS_FSID_SIZE) != 0) {
2480 		btrfs_err(fs_info,
2481 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2482 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2483 		ret = -EINVAL;
2484 	}
2485 
2486 	/*
2487 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2488 	 * done later
2489 	 */
2490 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2491 		btrfs_err(fs_info, "bytes_used is too small %llu",
2492 			  btrfs_super_bytes_used(sb));
2493 		ret = -EINVAL;
2494 	}
2495 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2496 		btrfs_err(fs_info, "invalid stripesize %u",
2497 			  btrfs_super_stripesize(sb));
2498 		ret = -EINVAL;
2499 	}
2500 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2501 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2502 			   btrfs_super_num_devices(sb));
2503 	if (btrfs_super_num_devices(sb) == 0) {
2504 		btrfs_err(fs_info, "number of devices is 0");
2505 		ret = -EINVAL;
2506 	}
2507 
2508 	if (mirror_num >= 0 &&
2509 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2510 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2511 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2512 		ret = -EINVAL;
2513 	}
2514 
2515 	/*
2516 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2517 	 * and one chunk
2518 	 */
2519 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2520 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2521 			  btrfs_super_sys_array_size(sb),
2522 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2523 		ret = -EINVAL;
2524 	}
2525 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2526 			+ sizeof(struct btrfs_chunk)) {
2527 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2528 			  btrfs_super_sys_array_size(sb),
2529 			  sizeof(struct btrfs_disk_key)
2530 			  + sizeof(struct btrfs_chunk));
2531 		ret = -EINVAL;
2532 	}
2533 
2534 	/*
2535 	 * The generation is a global counter, we'll trust it more than the others
2536 	 * but it's still possible that it's the one that's wrong.
2537 	 */
2538 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2539 		btrfs_warn(fs_info,
2540 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2541 			btrfs_super_generation(sb),
2542 			btrfs_super_chunk_root_generation(sb));
2543 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2544 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2545 		btrfs_warn(fs_info,
2546 			"suspicious: generation < cache_generation: %llu < %llu",
2547 			btrfs_super_generation(sb),
2548 			btrfs_super_cache_generation(sb));
2549 
2550 	return ret;
2551 }
2552 
2553 /*
2554  * Validation of super block at mount time.
2555  * Some checks already done early at mount time, like csum type and incompat
2556  * flags will be skipped.
2557  */
2558 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2559 {
2560 	return validate_super(fs_info, fs_info->super_copy, 0);
2561 }
2562 
2563 /*
2564  * Validation of super block at write time.
2565  * Some checks like bytenr check will be skipped as their values will be
2566  * overwritten soon.
2567  * Extra checks like csum type and incompat flags will be done here.
2568  */
2569 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2570 				      struct btrfs_super_block *sb)
2571 {
2572 	int ret;
2573 
2574 	ret = validate_super(fs_info, sb, -1);
2575 	if (ret < 0)
2576 		goto out;
2577 	if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2578 		ret = -EUCLEAN;
2579 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2580 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2581 		goto out;
2582 	}
2583 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2584 		ret = -EUCLEAN;
2585 		btrfs_err(fs_info,
2586 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2587 			  btrfs_super_incompat_flags(sb),
2588 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2589 		goto out;
2590 	}
2591 out:
2592 	if (ret < 0)
2593 		btrfs_err(fs_info,
2594 		"super block corruption detected before writing it to disk");
2595 	return ret;
2596 }
2597 
2598 int open_ctree(struct super_block *sb,
2599 	       struct btrfs_fs_devices *fs_devices,
2600 	       char *options)
2601 {
2602 	u32 sectorsize;
2603 	u32 nodesize;
2604 	u32 stripesize;
2605 	u64 generation;
2606 	u64 features;
2607 	struct btrfs_key location;
2608 	struct buffer_head *bh;
2609 	struct btrfs_super_block *disk_super;
2610 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2611 	struct btrfs_root *tree_root;
2612 	struct btrfs_root *chunk_root;
2613 	int ret;
2614 	int err = -EINVAL;
2615 	int num_backups_tried = 0;
2616 	int backup_index = 0;
2617 	int clear_free_space_tree = 0;
2618 	int level;
2619 
2620 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2621 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2622 	if (!tree_root || !chunk_root) {
2623 		err = -ENOMEM;
2624 		goto fail;
2625 	}
2626 
2627 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2628 	if (ret) {
2629 		err = ret;
2630 		goto fail;
2631 	}
2632 
2633 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2634 	if (ret) {
2635 		err = ret;
2636 		goto fail_srcu;
2637 	}
2638 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2639 					(1 + ilog2(nr_cpu_ids));
2640 
2641 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2642 	if (ret) {
2643 		err = ret;
2644 		goto fail_dirty_metadata_bytes;
2645 	}
2646 
2647 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2648 			GFP_KERNEL);
2649 	if (ret) {
2650 		err = ret;
2651 		goto fail_delalloc_bytes;
2652 	}
2653 
2654 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2655 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2656 	INIT_LIST_HEAD(&fs_info->trans_list);
2657 	INIT_LIST_HEAD(&fs_info->dead_roots);
2658 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2659 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2660 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2661 	INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2662 	spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2663 	spin_lock_init(&fs_info->delalloc_root_lock);
2664 	spin_lock_init(&fs_info->trans_lock);
2665 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2666 	spin_lock_init(&fs_info->delayed_iput_lock);
2667 	spin_lock_init(&fs_info->defrag_inodes_lock);
2668 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2669 	spin_lock_init(&fs_info->super_lock);
2670 	spin_lock_init(&fs_info->qgroup_op_lock);
2671 	spin_lock_init(&fs_info->buffer_lock);
2672 	spin_lock_init(&fs_info->unused_bgs_lock);
2673 	rwlock_init(&fs_info->tree_mod_log_lock);
2674 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2675 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2676 	mutex_init(&fs_info->reloc_mutex);
2677 	mutex_init(&fs_info->delalloc_root_mutex);
2678 	seqlock_init(&fs_info->profiles_lock);
2679 
2680 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2681 	INIT_LIST_HEAD(&fs_info->space_info);
2682 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2683 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2684 	btrfs_mapping_init(&fs_info->mapping_tree);
2685 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2686 			     BTRFS_BLOCK_RSV_GLOBAL);
2687 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2688 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2689 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2690 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2691 			     BTRFS_BLOCK_RSV_DELOPS);
2692 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2693 			     BTRFS_BLOCK_RSV_DELREFS);
2694 
2695 	atomic_set(&fs_info->async_delalloc_pages, 0);
2696 	atomic_set(&fs_info->defrag_running, 0);
2697 	atomic_set(&fs_info->qgroup_op_seq, 0);
2698 	atomic_set(&fs_info->reada_works_cnt, 0);
2699 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2700 	atomic64_set(&fs_info->tree_mod_seq, 0);
2701 	fs_info->sb = sb;
2702 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2703 	fs_info->metadata_ratio = 0;
2704 	fs_info->defrag_inodes = RB_ROOT;
2705 	atomic64_set(&fs_info->free_chunk_space, 0);
2706 	fs_info->tree_mod_log = RB_ROOT;
2707 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2708 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2709 	/* readahead state */
2710 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2711 	spin_lock_init(&fs_info->reada_lock);
2712 	btrfs_init_ref_verify(fs_info);
2713 
2714 	fs_info->thread_pool_size = min_t(unsigned long,
2715 					  num_online_cpus() + 2, 8);
2716 
2717 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2718 	spin_lock_init(&fs_info->ordered_root_lock);
2719 
2720 	fs_info->btree_inode = new_inode(sb);
2721 	if (!fs_info->btree_inode) {
2722 		err = -ENOMEM;
2723 		goto fail_bio_counter;
2724 	}
2725 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2726 
2727 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2728 					GFP_KERNEL);
2729 	if (!fs_info->delayed_root) {
2730 		err = -ENOMEM;
2731 		goto fail_iput;
2732 	}
2733 	btrfs_init_delayed_root(fs_info->delayed_root);
2734 
2735 	btrfs_init_scrub(fs_info);
2736 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2737 	fs_info->check_integrity_print_mask = 0;
2738 #endif
2739 	btrfs_init_balance(fs_info);
2740 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2741 
2742 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2743 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2744 
2745 	btrfs_init_btree_inode(fs_info);
2746 
2747 	spin_lock_init(&fs_info->block_group_cache_lock);
2748 	fs_info->block_group_cache_tree = RB_ROOT;
2749 	fs_info->first_logical_byte = (u64)-1;
2750 
2751 	extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2752 	extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2753 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2754 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2755 
2756 	mutex_init(&fs_info->ordered_operations_mutex);
2757 	mutex_init(&fs_info->tree_log_mutex);
2758 	mutex_init(&fs_info->chunk_mutex);
2759 	mutex_init(&fs_info->transaction_kthread_mutex);
2760 	mutex_init(&fs_info->cleaner_mutex);
2761 	mutex_init(&fs_info->ro_block_group_mutex);
2762 	init_rwsem(&fs_info->commit_root_sem);
2763 	init_rwsem(&fs_info->cleanup_work_sem);
2764 	init_rwsem(&fs_info->subvol_sem);
2765 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2766 
2767 	btrfs_init_dev_replace_locks(fs_info);
2768 	btrfs_init_qgroup(fs_info);
2769 
2770 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2771 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2772 
2773 	init_waitqueue_head(&fs_info->transaction_throttle);
2774 	init_waitqueue_head(&fs_info->transaction_wait);
2775 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2776 	init_waitqueue_head(&fs_info->async_submit_wait);
2777 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2778 
2779 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2780 
2781 	/* Usable values until the real ones are cached from the superblock */
2782 	fs_info->nodesize = 4096;
2783 	fs_info->sectorsize = 4096;
2784 	fs_info->stripesize = 4096;
2785 
2786 	spin_lock_init(&fs_info->swapfile_pins_lock);
2787 	fs_info->swapfile_pins = RB_ROOT;
2788 
2789 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2790 	if (ret) {
2791 		err = ret;
2792 		goto fail_alloc;
2793 	}
2794 
2795 	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2796 
2797 	invalidate_bdev(fs_devices->latest_bdev);
2798 
2799 	/*
2800 	 * Read super block and check the signature bytes only
2801 	 */
2802 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2803 	if (IS_ERR(bh)) {
2804 		err = PTR_ERR(bh);
2805 		goto fail_alloc;
2806 	}
2807 
2808 	/*
2809 	 * We want to check superblock checksum, the type is stored inside.
2810 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2811 	 */
2812 	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2813 		btrfs_err(fs_info, "superblock checksum mismatch");
2814 		err = -EINVAL;
2815 		brelse(bh);
2816 		goto fail_alloc;
2817 	}
2818 
2819 	/*
2820 	 * super_copy is zeroed at allocation time and we never touch the
2821 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2822 	 * the whole block of INFO_SIZE
2823 	 */
2824 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2825 	brelse(bh);
2826 
2827 	disk_super = fs_info->super_copy;
2828 
2829 	ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2830 		       BTRFS_FSID_SIZE));
2831 
2832 	if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2833 		ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2834 				fs_info->super_copy->metadata_uuid,
2835 				BTRFS_FSID_SIZE));
2836 	}
2837 
2838 	features = btrfs_super_flags(disk_super);
2839 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2840 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2841 		btrfs_set_super_flags(disk_super, features);
2842 		btrfs_info(fs_info,
2843 			"found metadata UUID change in progress flag, clearing");
2844 	}
2845 
2846 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2847 	       sizeof(*fs_info->super_for_commit));
2848 
2849 	ret = btrfs_validate_mount_super(fs_info);
2850 	if (ret) {
2851 		btrfs_err(fs_info, "superblock contains fatal errors");
2852 		err = -EINVAL;
2853 		goto fail_alloc;
2854 	}
2855 
2856 	if (!btrfs_super_root(disk_super))
2857 		goto fail_alloc;
2858 
2859 	/* check FS state, whether FS is broken. */
2860 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2861 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2862 
2863 	/*
2864 	 * run through our array of backup supers and setup
2865 	 * our ring pointer to the oldest one
2866 	 */
2867 	generation = btrfs_super_generation(disk_super);
2868 	find_oldest_super_backup(fs_info, generation);
2869 
2870 	/*
2871 	 * In the long term, we'll store the compression type in the super
2872 	 * block, and it'll be used for per file compression control.
2873 	 */
2874 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2875 
2876 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2877 	if (ret) {
2878 		err = ret;
2879 		goto fail_alloc;
2880 	}
2881 
2882 	features = btrfs_super_incompat_flags(disk_super) &
2883 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2884 	if (features) {
2885 		btrfs_err(fs_info,
2886 		    "cannot mount because of unsupported optional features (%llx)",
2887 		    features);
2888 		err = -EINVAL;
2889 		goto fail_alloc;
2890 	}
2891 
2892 	features = btrfs_super_incompat_flags(disk_super);
2893 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2894 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2895 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2896 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2897 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2898 
2899 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2900 		btrfs_info(fs_info, "has skinny extents");
2901 
2902 	/*
2903 	 * flag our filesystem as having big metadata blocks if
2904 	 * they are bigger than the page size
2905 	 */
2906 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2907 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2908 			btrfs_info(fs_info,
2909 				"flagging fs with big metadata feature");
2910 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2911 	}
2912 
2913 	nodesize = btrfs_super_nodesize(disk_super);
2914 	sectorsize = btrfs_super_sectorsize(disk_super);
2915 	stripesize = sectorsize;
2916 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2917 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2918 
2919 	/* Cache block sizes */
2920 	fs_info->nodesize = nodesize;
2921 	fs_info->sectorsize = sectorsize;
2922 	fs_info->stripesize = stripesize;
2923 
2924 	/*
2925 	 * mixed block groups end up with duplicate but slightly offset
2926 	 * extent buffers for the same range.  It leads to corruptions
2927 	 */
2928 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2929 	    (sectorsize != nodesize)) {
2930 		btrfs_err(fs_info,
2931 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2932 			nodesize, sectorsize);
2933 		goto fail_alloc;
2934 	}
2935 
2936 	/*
2937 	 * Needn't use the lock because there is no other task which will
2938 	 * update the flag.
2939 	 */
2940 	btrfs_set_super_incompat_flags(disk_super, features);
2941 
2942 	features = btrfs_super_compat_ro_flags(disk_super) &
2943 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2944 	if (!sb_rdonly(sb) && features) {
2945 		btrfs_err(fs_info,
2946 	"cannot mount read-write because of unsupported optional features (%llx)",
2947 		       features);
2948 		err = -EINVAL;
2949 		goto fail_alloc;
2950 	}
2951 
2952 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2953 	if (ret) {
2954 		err = ret;
2955 		goto fail_sb_buffer;
2956 	}
2957 
2958 	sb->s_bdi->congested_fn = btrfs_congested_fn;
2959 	sb->s_bdi->congested_data = fs_info;
2960 	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2961 	sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
2962 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2963 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2964 
2965 	sb->s_blocksize = sectorsize;
2966 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2967 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
2968 
2969 	mutex_lock(&fs_info->chunk_mutex);
2970 	ret = btrfs_read_sys_array(fs_info);
2971 	mutex_unlock(&fs_info->chunk_mutex);
2972 	if (ret) {
2973 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
2974 		goto fail_sb_buffer;
2975 	}
2976 
2977 	generation = btrfs_super_chunk_root_generation(disk_super);
2978 	level = btrfs_super_chunk_root_level(disk_super);
2979 
2980 	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2981 
2982 	chunk_root->node = read_tree_block(fs_info,
2983 					   btrfs_super_chunk_root(disk_super),
2984 					   generation, level, NULL);
2985 	if (IS_ERR(chunk_root->node) ||
2986 	    !extent_buffer_uptodate(chunk_root->node)) {
2987 		btrfs_err(fs_info, "failed to read chunk root");
2988 		if (!IS_ERR(chunk_root->node))
2989 			free_extent_buffer(chunk_root->node);
2990 		chunk_root->node = NULL;
2991 		goto fail_tree_roots;
2992 	}
2993 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2994 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2995 
2996 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2997 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2998 
2999 	ret = btrfs_read_chunk_tree(fs_info);
3000 	if (ret) {
3001 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3002 		goto fail_tree_roots;
3003 	}
3004 
3005 	/*
3006 	 * Keep the devid that is marked to be the target device for the
3007 	 * device replace procedure
3008 	 */
3009 	btrfs_free_extra_devids(fs_devices, 0);
3010 
3011 	if (!fs_devices->latest_bdev) {
3012 		btrfs_err(fs_info, "failed to read devices");
3013 		goto fail_tree_roots;
3014 	}
3015 
3016 retry_root_backup:
3017 	generation = btrfs_super_generation(disk_super);
3018 	level = btrfs_super_root_level(disk_super);
3019 
3020 	tree_root->node = read_tree_block(fs_info,
3021 					  btrfs_super_root(disk_super),
3022 					  generation, level, NULL);
3023 	if (IS_ERR(tree_root->node) ||
3024 	    !extent_buffer_uptodate(tree_root->node)) {
3025 		btrfs_warn(fs_info, "failed to read tree root");
3026 		if (!IS_ERR(tree_root->node))
3027 			free_extent_buffer(tree_root->node);
3028 		tree_root->node = NULL;
3029 		goto recovery_tree_root;
3030 	}
3031 
3032 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3033 	tree_root->commit_root = btrfs_root_node(tree_root);
3034 	btrfs_set_root_refs(&tree_root->root_item, 1);
3035 
3036 	mutex_lock(&tree_root->objectid_mutex);
3037 	ret = btrfs_find_highest_objectid(tree_root,
3038 					&tree_root->highest_objectid);
3039 	if (ret) {
3040 		mutex_unlock(&tree_root->objectid_mutex);
3041 		goto recovery_tree_root;
3042 	}
3043 
3044 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3045 
3046 	mutex_unlock(&tree_root->objectid_mutex);
3047 
3048 	ret = btrfs_read_roots(fs_info);
3049 	if (ret)
3050 		goto recovery_tree_root;
3051 
3052 	fs_info->generation = generation;
3053 	fs_info->last_trans_committed = generation;
3054 
3055 	ret = btrfs_verify_dev_extents(fs_info);
3056 	if (ret) {
3057 		btrfs_err(fs_info,
3058 			  "failed to verify dev extents against chunks: %d",
3059 			  ret);
3060 		goto fail_block_groups;
3061 	}
3062 	ret = btrfs_recover_balance(fs_info);
3063 	if (ret) {
3064 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3065 		goto fail_block_groups;
3066 	}
3067 
3068 	ret = btrfs_init_dev_stats(fs_info);
3069 	if (ret) {
3070 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3071 		goto fail_block_groups;
3072 	}
3073 
3074 	ret = btrfs_init_dev_replace(fs_info);
3075 	if (ret) {
3076 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3077 		goto fail_block_groups;
3078 	}
3079 
3080 	btrfs_free_extra_devids(fs_devices, 1);
3081 
3082 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3083 	if (ret) {
3084 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3085 				ret);
3086 		goto fail_block_groups;
3087 	}
3088 
3089 	ret = btrfs_sysfs_add_device(fs_devices);
3090 	if (ret) {
3091 		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3092 				ret);
3093 		goto fail_fsdev_sysfs;
3094 	}
3095 
3096 	ret = btrfs_sysfs_add_mounted(fs_info);
3097 	if (ret) {
3098 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3099 		goto fail_fsdev_sysfs;
3100 	}
3101 
3102 	ret = btrfs_init_space_info(fs_info);
3103 	if (ret) {
3104 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3105 		goto fail_sysfs;
3106 	}
3107 
3108 	ret = btrfs_read_block_groups(fs_info);
3109 	if (ret) {
3110 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3111 		goto fail_sysfs;
3112 	}
3113 
3114 	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3115 		btrfs_warn(fs_info,
3116 		"writable mount is not allowed due to too many missing devices");
3117 		goto fail_sysfs;
3118 	}
3119 
3120 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3121 					       "btrfs-cleaner");
3122 	if (IS_ERR(fs_info->cleaner_kthread))
3123 		goto fail_sysfs;
3124 
3125 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3126 						   tree_root,
3127 						   "btrfs-transaction");
3128 	if (IS_ERR(fs_info->transaction_kthread))
3129 		goto fail_cleaner;
3130 
3131 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3132 	    !fs_info->fs_devices->rotating) {
3133 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3134 	}
3135 
3136 	/*
3137 	 * Mount does not set all options immediately, we can do it now and do
3138 	 * not have to wait for transaction commit
3139 	 */
3140 	btrfs_apply_pending_changes(fs_info);
3141 
3142 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3143 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3144 		ret = btrfsic_mount(fs_info, fs_devices,
3145 				    btrfs_test_opt(fs_info,
3146 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3147 				    1 : 0,
3148 				    fs_info->check_integrity_print_mask);
3149 		if (ret)
3150 			btrfs_warn(fs_info,
3151 				"failed to initialize integrity check module: %d",
3152 				ret);
3153 	}
3154 #endif
3155 	ret = btrfs_read_qgroup_config(fs_info);
3156 	if (ret)
3157 		goto fail_trans_kthread;
3158 
3159 	if (btrfs_build_ref_tree(fs_info))
3160 		btrfs_err(fs_info, "couldn't build ref tree");
3161 
3162 	/* do not make disk changes in broken FS or nologreplay is given */
3163 	if (btrfs_super_log_root(disk_super) != 0 &&
3164 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3165 		ret = btrfs_replay_log(fs_info, fs_devices);
3166 		if (ret) {
3167 			err = ret;
3168 			goto fail_qgroup;
3169 		}
3170 	}
3171 
3172 	ret = btrfs_find_orphan_roots(fs_info);
3173 	if (ret)
3174 		goto fail_qgroup;
3175 
3176 	if (!sb_rdonly(sb)) {
3177 		ret = btrfs_cleanup_fs_roots(fs_info);
3178 		if (ret)
3179 			goto fail_qgroup;
3180 
3181 		mutex_lock(&fs_info->cleaner_mutex);
3182 		ret = btrfs_recover_relocation(tree_root);
3183 		mutex_unlock(&fs_info->cleaner_mutex);
3184 		if (ret < 0) {
3185 			btrfs_warn(fs_info, "failed to recover relocation: %d",
3186 					ret);
3187 			err = -EINVAL;
3188 			goto fail_qgroup;
3189 		}
3190 	}
3191 
3192 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3193 	location.type = BTRFS_ROOT_ITEM_KEY;
3194 	location.offset = 0;
3195 
3196 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3197 	if (IS_ERR(fs_info->fs_root)) {
3198 		err = PTR_ERR(fs_info->fs_root);
3199 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3200 		goto fail_qgroup;
3201 	}
3202 
3203 	if (sb_rdonly(sb))
3204 		return 0;
3205 
3206 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3207 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3208 		clear_free_space_tree = 1;
3209 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3210 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3211 		btrfs_warn(fs_info, "free space tree is invalid");
3212 		clear_free_space_tree = 1;
3213 	}
3214 
3215 	if (clear_free_space_tree) {
3216 		btrfs_info(fs_info, "clearing free space tree");
3217 		ret = btrfs_clear_free_space_tree(fs_info);
3218 		if (ret) {
3219 			btrfs_warn(fs_info,
3220 				   "failed to clear free space tree: %d", ret);
3221 			close_ctree(fs_info);
3222 			return ret;
3223 		}
3224 	}
3225 
3226 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3227 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3228 		btrfs_info(fs_info, "creating free space tree");
3229 		ret = btrfs_create_free_space_tree(fs_info);
3230 		if (ret) {
3231 			btrfs_warn(fs_info,
3232 				"failed to create free space tree: %d", ret);
3233 			close_ctree(fs_info);
3234 			return ret;
3235 		}
3236 	}
3237 
3238 	down_read(&fs_info->cleanup_work_sem);
3239 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3240 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3241 		up_read(&fs_info->cleanup_work_sem);
3242 		close_ctree(fs_info);
3243 		return ret;
3244 	}
3245 	up_read(&fs_info->cleanup_work_sem);
3246 
3247 	ret = btrfs_resume_balance_async(fs_info);
3248 	if (ret) {
3249 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3250 		close_ctree(fs_info);
3251 		return ret;
3252 	}
3253 
3254 	ret = btrfs_resume_dev_replace_async(fs_info);
3255 	if (ret) {
3256 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3257 		close_ctree(fs_info);
3258 		return ret;
3259 	}
3260 
3261 	btrfs_qgroup_rescan_resume(fs_info);
3262 
3263 	if (!fs_info->uuid_root) {
3264 		btrfs_info(fs_info, "creating UUID tree");
3265 		ret = btrfs_create_uuid_tree(fs_info);
3266 		if (ret) {
3267 			btrfs_warn(fs_info,
3268 				"failed to create the UUID tree: %d", ret);
3269 			close_ctree(fs_info);
3270 			return ret;
3271 		}
3272 	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3273 		   fs_info->generation !=
3274 				btrfs_super_uuid_tree_generation(disk_super)) {
3275 		btrfs_info(fs_info, "checking UUID tree");
3276 		ret = btrfs_check_uuid_tree(fs_info);
3277 		if (ret) {
3278 			btrfs_warn(fs_info,
3279 				"failed to check the UUID tree: %d", ret);
3280 			close_ctree(fs_info);
3281 			return ret;
3282 		}
3283 	} else {
3284 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3285 	}
3286 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3287 
3288 	/*
3289 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3290 	 * no need to keep the flag
3291 	 */
3292 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3293 
3294 	return 0;
3295 
3296 fail_qgroup:
3297 	btrfs_free_qgroup_config(fs_info);
3298 fail_trans_kthread:
3299 	kthread_stop(fs_info->transaction_kthread);
3300 	btrfs_cleanup_transaction(fs_info);
3301 	btrfs_free_fs_roots(fs_info);
3302 fail_cleaner:
3303 	kthread_stop(fs_info->cleaner_kthread);
3304 
3305 	/*
3306 	 * make sure we're done with the btree inode before we stop our
3307 	 * kthreads
3308 	 */
3309 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3310 
3311 fail_sysfs:
3312 	btrfs_sysfs_remove_mounted(fs_info);
3313 
3314 fail_fsdev_sysfs:
3315 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3316 
3317 fail_block_groups:
3318 	btrfs_put_block_group_cache(fs_info);
3319 
3320 fail_tree_roots:
3321 	free_root_pointers(fs_info, 1);
3322 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3323 
3324 fail_sb_buffer:
3325 	btrfs_stop_all_workers(fs_info);
3326 	btrfs_free_block_groups(fs_info);
3327 fail_alloc:
3328 fail_iput:
3329 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3330 
3331 	iput(fs_info->btree_inode);
3332 fail_bio_counter:
3333 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3334 fail_delalloc_bytes:
3335 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3336 fail_dirty_metadata_bytes:
3337 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3338 fail_srcu:
3339 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3340 fail:
3341 	btrfs_free_stripe_hash_table(fs_info);
3342 	btrfs_close_devices(fs_info->fs_devices);
3343 	return err;
3344 
3345 recovery_tree_root:
3346 	if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3347 		goto fail_tree_roots;
3348 
3349 	free_root_pointers(fs_info, 0);
3350 
3351 	/* don't use the log in recovery mode, it won't be valid */
3352 	btrfs_set_super_log_root(disk_super, 0);
3353 
3354 	/* we can't trust the free space cache either */
3355 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3356 
3357 	ret = next_root_backup(fs_info, fs_info->super_copy,
3358 			       &num_backups_tried, &backup_index);
3359 	if (ret == -1)
3360 		goto fail_block_groups;
3361 	goto retry_root_backup;
3362 }
3363 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3364 
3365 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3366 {
3367 	if (uptodate) {
3368 		set_buffer_uptodate(bh);
3369 	} else {
3370 		struct btrfs_device *device = (struct btrfs_device *)
3371 			bh->b_private;
3372 
3373 		btrfs_warn_rl_in_rcu(device->fs_info,
3374 				"lost page write due to IO error on %s",
3375 					  rcu_str_deref(device->name));
3376 		/* note, we don't set_buffer_write_io_error because we have
3377 		 * our own ways of dealing with the IO errors
3378 		 */
3379 		clear_buffer_uptodate(bh);
3380 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3381 	}
3382 	unlock_buffer(bh);
3383 	put_bh(bh);
3384 }
3385 
3386 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3387 			struct buffer_head **bh_ret)
3388 {
3389 	struct buffer_head *bh;
3390 	struct btrfs_super_block *super;
3391 	u64 bytenr;
3392 
3393 	bytenr = btrfs_sb_offset(copy_num);
3394 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3395 		return -EINVAL;
3396 
3397 	bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3398 	/*
3399 	 * If we fail to read from the underlying devices, as of now
3400 	 * the best option we have is to mark it EIO.
3401 	 */
3402 	if (!bh)
3403 		return -EIO;
3404 
3405 	super = (struct btrfs_super_block *)bh->b_data;
3406 	if (btrfs_super_bytenr(super) != bytenr ||
3407 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3408 		brelse(bh);
3409 		return -EINVAL;
3410 	}
3411 
3412 	*bh_ret = bh;
3413 	return 0;
3414 }
3415 
3416 
3417 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3418 {
3419 	struct buffer_head *bh;
3420 	struct buffer_head *latest = NULL;
3421 	struct btrfs_super_block *super;
3422 	int i;
3423 	u64 transid = 0;
3424 	int ret = -EINVAL;
3425 
3426 	/* we would like to check all the supers, but that would make
3427 	 * a btrfs mount succeed after a mkfs from a different FS.
3428 	 * So, we need to add a special mount option to scan for
3429 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3430 	 */
3431 	for (i = 0; i < 1; i++) {
3432 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3433 		if (ret)
3434 			continue;
3435 
3436 		super = (struct btrfs_super_block *)bh->b_data;
3437 
3438 		if (!latest || btrfs_super_generation(super) > transid) {
3439 			brelse(latest);
3440 			latest = bh;
3441 			transid = btrfs_super_generation(super);
3442 		} else {
3443 			brelse(bh);
3444 		}
3445 	}
3446 
3447 	if (!latest)
3448 		return ERR_PTR(ret);
3449 
3450 	return latest;
3451 }
3452 
3453 /*
3454  * Write superblock @sb to the @device. Do not wait for completion, all the
3455  * buffer heads we write are pinned.
3456  *
3457  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3458  * the expected device size at commit time. Note that max_mirrors must be
3459  * same for write and wait phases.
3460  *
3461  * Return number of errors when buffer head is not found or submission fails.
3462  */
3463 static int write_dev_supers(struct btrfs_device *device,
3464 			    struct btrfs_super_block *sb, int max_mirrors)
3465 {
3466 	struct buffer_head *bh;
3467 	int i;
3468 	int ret;
3469 	int errors = 0;
3470 	u32 crc;
3471 	u64 bytenr;
3472 	int op_flags;
3473 
3474 	if (max_mirrors == 0)
3475 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3476 
3477 	for (i = 0; i < max_mirrors; i++) {
3478 		bytenr = btrfs_sb_offset(i);
3479 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3480 		    device->commit_total_bytes)
3481 			break;
3482 
3483 		btrfs_set_super_bytenr(sb, bytenr);
3484 
3485 		crc = ~(u32)0;
3486 		crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3487 				      BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3488 		btrfs_csum_final(crc, sb->csum);
3489 
3490 		/* One reference for us, and we leave it for the caller */
3491 		bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3492 			      BTRFS_SUPER_INFO_SIZE);
3493 		if (!bh) {
3494 			btrfs_err(device->fs_info,
3495 			    "couldn't get super buffer head for bytenr %llu",
3496 			    bytenr);
3497 			errors++;
3498 			continue;
3499 		}
3500 
3501 		memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3502 
3503 		/* one reference for submit_bh */
3504 		get_bh(bh);
3505 
3506 		set_buffer_uptodate(bh);
3507 		lock_buffer(bh);
3508 		bh->b_end_io = btrfs_end_buffer_write_sync;
3509 		bh->b_private = device;
3510 
3511 		/*
3512 		 * we fua the first super.  The others we allow
3513 		 * to go down lazy.
3514 		 */
3515 		op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3516 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3517 			op_flags |= REQ_FUA;
3518 		ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3519 		if (ret)
3520 			errors++;
3521 	}
3522 	return errors < i ? 0 : -1;
3523 }
3524 
3525 /*
3526  * Wait for write completion of superblocks done by write_dev_supers,
3527  * @max_mirrors same for write and wait phases.
3528  *
3529  * Return number of errors when buffer head is not found or not marked up to
3530  * date.
3531  */
3532 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3533 {
3534 	struct buffer_head *bh;
3535 	int i;
3536 	int errors = 0;
3537 	bool primary_failed = false;
3538 	u64 bytenr;
3539 
3540 	if (max_mirrors == 0)
3541 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3542 
3543 	for (i = 0; i < max_mirrors; i++) {
3544 		bytenr = btrfs_sb_offset(i);
3545 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3546 		    device->commit_total_bytes)
3547 			break;
3548 
3549 		bh = __find_get_block(device->bdev,
3550 				      bytenr / BTRFS_BDEV_BLOCKSIZE,
3551 				      BTRFS_SUPER_INFO_SIZE);
3552 		if (!bh) {
3553 			errors++;
3554 			if (i == 0)
3555 				primary_failed = true;
3556 			continue;
3557 		}
3558 		wait_on_buffer(bh);
3559 		if (!buffer_uptodate(bh)) {
3560 			errors++;
3561 			if (i == 0)
3562 				primary_failed = true;
3563 		}
3564 
3565 		/* drop our reference */
3566 		brelse(bh);
3567 
3568 		/* drop the reference from the writing run */
3569 		brelse(bh);
3570 	}
3571 
3572 	/* log error, force error return */
3573 	if (primary_failed) {
3574 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3575 			  device->devid);
3576 		return -1;
3577 	}
3578 
3579 	return errors < i ? 0 : -1;
3580 }
3581 
3582 /*
3583  * endio for the write_dev_flush, this will wake anyone waiting
3584  * for the barrier when it is done
3585  */
3586 static void btrfs_end_empty_barrier(struct bio *bio)
3587 {
3588 	complete(bio->bi_private);
3589 }
3590 
3591 /*
3592  * Submit a flush request to the device if it supports it. Error handling is
3593  * done in the waiting counterpart.
3594  */
3595 static void write_dev_flush(struct btrfs_device *device)
3596 {
3597 	struct request_queue *q = bdev_get_queue(device->bdev);
3598 	struct bio *bio = device->flush_bio;
3599 
3600 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3601 		return;
3602 
3603 	bio_reset(bio);
3604 	bio->bi_end_io = btrfs_end_empty_barrier;
3605 	bio_set_dev(bio, device->bdev);
3606 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3607 	init_completion(&device->flush_wait);
3608 	bio->bi_private = &device->flush_wait;
3609 
3610 	btrfsic_submit_bio(bio);
3611 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3612 }
3613 
3614 /*
3615  * If the flush bio has been submitted by write_dev_flush, wait for it.
3616  */
3617 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3618 {
3619 	struct bio *bio = device->flush_bio;
3620 
3621 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3622 		return BLK_STS_OK;
3623 
3624 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3625 	wait_for_completion_io(&device->flush_wait);
3626 
3627 	return bio->bi_status;
3628 }
3629 
3630 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3631 {
3632 	if (!btrfs_check_rw_degradable(fs_info, NULL))
3633 		return -EIO;
3634 	return 0;
3635 }
3636 
3637 /*
3638  * send an empty flush down to each device in parallel,
3639  * then wait for them
3640  */
3641 static int barrier_all_devices(struct btrfs_fs_info *info)
3642 {
3643 	struct list_head *head;
3644 	struct btrfs_device *dev;
3645 	int errors_wait = 0;
3646 	blk_status_t ret;
3647 
3648 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3649 	/* send down all the barriers */
3650 	head = &info->fs_devices->devices;
3651 	list_for_each_entry(dev, head, dev_list) {
3652 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3653 			continue;
3654 		if (!dev->bdev)
3655 			continue;
3656 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3657 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3658 			continue;
3659 
3660 		write_dev_flush(dev);
3661 		dev->last_flush_error = BLK_STS_OK;
3662 	}
3663 
3664 	/* wait for all the barriers */
3665 	list_for_each_entry(dev, head, dev_list) {
3666 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3667 			continue;
3668 		if (!dev->bdev) {
3669 			errors_wait++;
3670 			continue;
3671 		}
3672 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3673 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3674 			continue;
3675 
3676 		ret = wait_dev_flush(dev);
3677 		if (ret) {
3678 			dev->last_flush_error = ret;
3679 			btrfs_dev_stat_inc_and_print(dev,
3680 					BTRFS_DEV_STAT_FLUSH_ERRS);
3681 			errors_wait++;
3682 		}
3683 	}
3684 
3685 	if (errors_wait) {
3686 		/*
3687 		 * At some point we need the status of all disks
3688 		 * to arrive at the volume status. So error checking
3689 		 * is being pushed to a separate loop.
3690 		 */
3691 		return check_barrier_error(info);
3692 	}
3693 	return 0;
3694 }
3695 
3696 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3697 {
3698 	int raid_type;
3699 	int min_tolerated = INT_MAX;
3700 
3701 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3702 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3703 		min_tolerated = min(min_tolerated,
3704 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3705 				    tolerated_failures);
3706 
3707 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3708 		if (raid_type == BTRFS_RAID_SINGLE)
3709 			continue;
3710 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3711 			continue;
3712 		min_tolerated = min(min_tolerated,
3713 				    btrfs_raid_array[raid_type].
3714 				    tolerated_failures);
3715 	}
3716 
3717 	if (min_tolerated == INT_MAX) {
3718 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3719 		min_tolerated = 0;
3720 	}
3721 
3722 	return min_tolerated;
3723 }
3724 
3725 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3726 {
3727 	struct list_head *head;
3728 	struct btrfs_device *dev;
3729 	struct btrfs_super_block *sb;
3730 	struct btrfs_dev_item *dev_item;
3731 	int ret;
3732 	int do_barriers;
3733 	int max_errors;
3734 	int total_errors = 0;
3735 	u64 flags;
3736 
3737 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3738 
3739 	/*
3740 	 * max_mirrors == 0 indicates we're from commit_transaction,
3741 	 * not from fsync where the tree roots in fs_info have not
3742 	 * been consistent on disk.
3743 	 */
3744 	if (max_mirrors == 0)
3745 		backup_super_roots(fs_info);
3746 
3747 	sb = fs_info->super_for_commit;
3748 	dev_item = &sb->dev_item;
3749 
3750 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3751 	head = &fs_info->fs_devices->devices;
3752 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3753 
3754 	if (do_barriers) {
3755 		ret = barrier_all_devices(fs_info);
3756 		if (ret) {
3757 			mutex_unlock(
3758 				&fs_info->fs_devices->device_list_mutex);
3759 			btrfs_handle_fs_error(fs_info, ret,
3760 					      "errors while submitting device barriers.");
3761 			return ret;
3762 		}
3763 	}
3764 
3765 	list_for_each_entry(dev, head, dev_list) {
3766 		if (!dev->bdev) {
3767 			total_errors++;
3768 			continue;
3769 		}
3770 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3771 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3772 			continue;
3773 
3774 		btrfs_set_stack_device_generation(dev_item, 0);
3775 		btrfs_set_stack_device_type(dev_item, dev->type);
3776 		btrfs_set_stack_device_id(dev_item, dev->devid);
3777 		btrfs_set_stack_device_total_bytes(dev_item,
3778 						   dev->commit_total_bytes);
3779 		btrfs_set_stack_device_bytes_used(dev_item,
3780 						  dev->commit_bytes_used);
3781 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3782 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3783 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3784 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3785 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3786 		       BTRFS_FSID_SIZE);
3787 
3788 		flags = btrfs_super_flags(sb);
3789 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3790 
3791 		ret = btrfs_validate_write_super(fs_info, sb);
3792 		if (ret < 0) {
3793 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3794 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
3795 				"unexpected superblock corruption detected");
3796 			return -EUCLEAN;
3797 		}
3798 
3799 		ret = write_dev_supers(dev, sb, max_mirrors);
3800 		if (ret)
3801 			total_errors++;
3802 	}
3803 	if (total_errors > max_errors) {
3804 		btrfs_err(fs_info, "%d errors while writing supers",
3805 			  total_errors);
3806 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3807 
3808 		/* FUA is masked off if unsupported and can't be the reason */
3809 		btrfs_handle_fs_error(fs_info, -EIO,
3810 				      "%d errors while writing supers",
3811 				      total_errors);
3812 		return -EIO;
3813 	}
3814 
3815 	total_errors = 0;
3816 	list_for_each_entry(dev, head, dev_list) {
3817 		if (!dev->bdev)
3818 			continue;
3819 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3820 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3821 			continue;
3822 
3823 		ret = wait_dev_supers(dev, max_mirrors);
3824 		if (ret)
3825 			total_errors++;
3826 	}
3827 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3828 	if (total_errors > max_errors) {
3829 		btrfs_handle_fs_error(fs_info, -EIO,
3830 				      "%d errors while writing supers",
3831 				      total_errors);
3832 		return -EIO;
3833 	}
3834 	return 0;
3835 }
3836 
3837 /* Drop a fs root from the radix tree and free it. */
3838 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3839 				  struct btrfs_root *root)
3840 {
3841 	spin_lock(&fs_info->fs_roots_radix_lock);
3842 	radix_tree_delete(&fs_info->fs_roots_radix,
3843 			  (unsigned long)root->root_key.objectid);
3844 	spin_unlock(&fs_info->fs_roots_radix_lock);
3845 
3846 	if (btrfs_root_refs(&root->root_item) == 0)
3847 		synchronize_srcu(&fs_info->subvol_srcu);
3848 
3849 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3850 		btrfs_free_log(NULL, root);
3851 		if (root->reloc_root) {
3852 			free_extent_buffer(root->reloc_root->node);
3853 			free_extent_buffer(root->reloc_root->commit_root);
3854 			btrfs_put_fs_root(root->reloc_root);
3855 			root->reloc_root = NULL;
3856 		}
3857 	}
3858 
3859 	if (root->free_ino_pinned)
3860 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3861 	if (root->free_ino_ctl)
3862 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3863 	btrfs_free_fs_root(root);
3864 }
3865 
3866 void btrfs_free_fs_root(struct btrfs_root *root)
3867 {
3868 	iput(root->ino_cache_inode);
3869 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3870 	if (root->anon_dev)
3871 		free_anon_bdev(root->anon_dev);
3872 	if (root->subv_writers)
3873 		btrfs_free_subvolume_writers(root->subv_writers);
3874 	free_extent_buffer(root->node);
3875 	free_extent_buffer(root->commit_root);
3876 	kfree(root->free_ino_ctl);
3877 	kfree(root->free_ino_pinned);
3878 	btrfs_put_fs_root(root);
3879 }
3880 
3881 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3882 {
3883 	u64 root_objectid = 0;
3884 	struct btrfs_root *gang[8];
3885 	int i = 0;
3886 	int err = 0;
3887 	unsigned int ret = 0;
3888 	int index;
3889 
3890 	while (1) {
3891 		index = srcu_read_lock(&fs_info->subvol_srcu);
3892 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3893 					     (void **)gang, root_objectid,
3894 					     ARRAY_SIZE(gang));
3895 		if (!ret) {
3896 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3897 			break;
3898 		}
3899 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3900 
3901 		for (i = 0; i < ret; i++) {
3902 			/* Avoid to grab roots in dead_roots */
3903 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3904 				gang[i] = NULL;
3905 				continue;
3906 			}
3907 			/* grab all the search result for later use */
3908 			gang[i] = btrfs_grab_fs_root(gang[i]);
3909 		}
3910 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3911 
3912 		for (i = 0; i < ret; i++) {
3913 			if (!gang[i])
3914 				continue;
3915 			root_objectid = gang[i]->root_key.objectid;
3916 			err = btrfs_orphan_cleanup(gang[i]);
3917 			if (err)
3918 				break;
3919 			btrfs_put_fs_root(gang[i]);
3920 		}
3921 		root_objectid++;
3922 	}
3923 
3924 	/* release the uncleaned roots due to error */
3925 	for (; i < ret; i++) {
3926 		if (gang[i])
3927 			btrfs_put_fs_root(gang[i]);
3928 	}
3929 	return err;
3930 }
3931 
3932 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3933 {
3934 	struct btrfs_root *root = fs_info->tree_root;
3935 	struct btrfs_trans_handle *trans;
3936 
3937 	mutex_lock(&fs_info->cleaner_mutex);
3938 	btrfs_run_delayed_iputs(fs_info);
3939 	mutex_unlock(&fs_info->cleaner_mutex);
3940 	wake_up_process(fs_info->cleaner_kthread);
3941 
3942 	/* wait until ongoing cleanup work done */
3943 	down_write(&fs_info->cleanup_work_sem);
3944 	up_write(&fs_info->cleanup_work_sem);
3945 
3946 	trans = btrfs_join_transaction(root);
3947 	if (IS_ERR(trans))
3948 		return PTR_ERR(trans);
3949 	return btrfs_commit_transaction(trans);
3950 }
3951 
3952 void close_ctree(struct btrfs_fs_info *fs_info)
3953 {
3954 	int ret;
3955 
3956 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3957 	/*
3958 	 * We don't want the cleaner to start new transactions, add more delayed
3959 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3960 	 * because that frees the task_struct, and the transaction kthread might
3961 	 * still try to wake up the cleaner.
3962 	 */
3963 	kthread_park(fs_info->cleaner_kthread);
3964 
3965 	/* wait for the qgroup rescan worker to stop */
3966 	btrfs_qgroup_wait_for_completion(fs_info, false);
3967 
3968 	/* wait for the uuid_scan task to finish */
3969 	down(&fs_info->uuid_tree_rescan_sem);
3970 	/* avoid complains from lockdep et al., set sem back to initial state */
3971 	up(&fs_info->uuid_tree_rescan_sem);
3972 
3973 	/* pause restriper - we want to resume on mount */
3974 	btrfs_pause_balance(fs_info);
3975 
3976 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3977 
3978 	btrfs_scrub_cancel(fs_info);
3979 
3980 	/* wait for any defraggers to finish */
3981 	wait_event(fs_info->transaction_wait,
3982 		   (atomic_read(&fs_info->defrag_running) == 0));
3983 
3984 	/* clear out the rbtree of defraggable inodes */
3985 	btrfs_cleanup_defrag_inodes(fs_info);
3986 
3987 	cancel_work_sync(&fs_info->async_reclaim_work);
3988 
3989 	if (!sb_rdonly(fs_info->sb)) {
3990 		/*
3991 		 * The cleaner kthread is stopped, so do one final pass over
3992 		 * unused block groups.
3993 		 */
3994 		btrfs_delete_unused_bgs(fs_info);
3995 
3996 		ret = btrfs_commit_super(fs_info);
3997 		if (ret)
3998 			btrfs_err(fs_info, "commit super ret %d", ret);
3999 	}
4000 
4001 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4002 	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4003 		btrfs_error_commit_super(fs_info);
4004 
4005 	kthread_stop(fs_info->transaction_kthread);
4006 	kthread_stop(fs_info->cleaner_kthread);
4007 
4008 	ASSERT(list_empty(&fs_info->delayed_iputs));
4009 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4010 
4011 	btrfs_free_qgroup_config(fs_info);
4012 	ASSERT(list_empty(&fs_info->delalloc_roots));
4013 
4014 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4015 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4016 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4017 	}
4018 
4019 	btrfs_sysfs_remove_mounted(fs_info);
4020 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4021 
4022 	btrfs_free_fs_roots(fs_info);
4023 
4024 	btrfs_put_block_group_cache(fs_info);
4025 
4026 	/*
4027 	 * we must make sure there is not any read request to
4028 	 * submit after we stopping all workers.
4029 	 */
4030 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4031 	btrfs_stop_all_workers(fs_info);
4032 
4033 	btrfs_free_block_groups(fs_info);
4034 
4035 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4036 	free_root_pointers(fs_info, 1);
4037 
4038 	iput(fs_info->btree_inode);
4039 
4040 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4041 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4042 		btrfsic_unmount(fs_info->fs_devices);
4043 #endif
4044 
4045 	btrfs_close_devices(fs_info->fs_devices);
4046 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4047 
4048 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4049 	percpu_counter_destroy(&fs_info->delalloc_bytes);
4050 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4051 	cleanup_srcu_struct(&fs_info->subvol_srcu);
4052 
4053 	btrfs_free_stripe_hash_table(fs_info);
4054 	btrfs_free_ref_cache(fs_info);
4055 
4056 	while (!list_empty(&fs_info->pinned_chunks)) {
4057 		struct extent_map *em;
4058 
4059 		em = list_first_entry(&fs_info->pinned_chunks,
4060 				      struct extent_map, list);
4061 		list_del_init(&em->list);
4062 		free_extent_map(em);
4063 	}
4064 }
4065 
4066 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4067 			  int atomic)
4068 {
4069 	int ret;
4070 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4071 
4072 	ret = extent_buffer_uptodate(buf);
4073 	if (!ret)
4074 		return ret;
4075 
4076 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4077 				    parent_transid, atomic);
4078 	if (ret == -EAGAIN)
4079 		return ret;
4080 	return !ret;
4081 }
4082 
4083 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4084 {
4085 	struct btrfs_fs_info *fs_info;
4086 	struct btrfs_root *root;
4087 	u64 transid = btrfs_header_generation(buf);
4088 	int was_dirty;
4089 
4090 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4091 	/*
4092 	 * This is a fast path so only do this check if we have sanity tests
4093 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4094 	 * outside of the sanity tests.
4095 	 */
4096 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4097 		return;
4098 #endif
4099 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4100 	fs_info = root->fs_info;
4101 	btrfs_assert_tree_locked(buf);
4102 	if (transid != fs_info->generation)
4103 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4104 			buf->start, transid, fs_info->generation);
4105 	was_dirty = set_extent_buffer_dirty(buf);
4106 	if (!was_dirty)
4107 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4108 					 buf->len,
4109 					 fs_info->dirty_metadata_batch);
4110 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4111 	/*
4112 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4113 	 * but item data not updated.
4114 	 * So here we should only check item pointers, not item data.
4115 	 */
4116 	if (btrfs_header_level(buf) == 0 &&
4117 	    btrfs_check_leaf_relaxed(fs_info, buf)) {
4118 		btrfs_print_leaf(buf);
4119 		ASSERT(0);
4120 	}
4121 #endif
4122 }
4123 
4124 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4125 					int flush_delayed)
4126 {
4127 	/*
4128 	 * looks as though older kernels can get into trouble with
4129 	 * this code, they end up stuck in balance_dirty_pages forever
4130 	 */
4131 	int ret;
4132 
4133 	if (current->flags & PF_MEMALLOC)
4134 		return;
4135 
4136 	if (flush_delayed)
4137 		btrfs_balance_delayed_items(fs_info);
4138 
4139 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4140 				     BTRFS_DIRTY_METADATA_THRESH,
4141 				     fs_info->dirty_metadata_batch);
4142 	if (ret > 0) {
4143 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4144 	}
4145 }
4146 
4147 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4148 {
4149 	__btrfs_btree_balance_dirty(fs_info, 1);
4150 }
4151 
4152 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4153 {
4154 	__btrfs_btree_balance_dirty(fs_info, 0);
4155 }
4156 
4157 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4158 		      struct btrfs_key *first_key)
4159 {
4160 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4161 	struct btrfs_fs_info *fs_info = root->fs_info;
4162 
4163 	return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4164 					      level, first_key);
4165 }
4166 
4167 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4168 {
4169 	/* cleanup FS via transaction */
4170 	btrfs_cleanup_transaction(fs_info);
4171 
4172 	mutex_lock(&fs_info->cleaner_mutex);
4173 	btrfs_run_delayed_iputs(fs_info);
4174 	mutex_unlock(&fs_info->cleaner_mutex);
4175 
4176 	down_write(&fs_info->cleanup_work_sem);
4177 	up_write(&fs_info->cleanup_work_sem);
4178 }
4179 
4180 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4181 {
4182 	struct btrfs_ordered_extent *ordered;
4183 
4184 	spin_lock(&root->ordered_extent_lock);
4185 	/*
4186 	 * This will just short circuit the ordered completion stuff which will
4187 	 * make sure the ordered extent gets properly cleaned up.
4188 	 */
4189 	list_for_each_entry(ordered, &root->ordered_extents,
4190 			    root_extent_list)
4191 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4192 	spin_unlock(&root->ordered_extent_lock);
4193 }
4194 
4195 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4196 {
4197 	struct btrfs_root *root;
4198 	struct list_head splice;
4199 
4200 	INIT_LIST_HEAD(&splice);
4201 
4202 	spin_lock(&fs_info->ordered_root_lock);
4203 	list_splice_init(&fs_info->ordered_roots, &splice);
4204 	while (!list_empty(&splice)) {
4205 		root = list_first_entry(&splice, struct btrfs_root,
4206 					ordered_root);
4207 		list_move_tail(&root->ordered_root,
4208 			       &fs_info->ordered_roots);
4209 
4210 		spin_unlock(&fs_info->ordered_root_lock);
4211 		btrfs_destroy_ordered_extents(root);
4212 
4213 		cond_resched();
4214 		spin_lock(&fs_info->ordered_root_lock);
4215 	}
4216 	spin_unlock(&fs_info->ordered_root_lock);
4217 
4218 	/*
4219 	 * We need this here because if we've been flipped read-only we won't
4220 	 * get sync() from the umount, so we need to make sure any ordered
4221 	 * extents that haven't had their dirty pages IO start writeout yet
4222 	 * actually get run and error out properly.
4223 	 */
4224 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4225 }
4226 
4227 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4228 				      struct btrfs_fs_info *fs_info)
4229 {
4230 	struct rb_node *node;
4231 	struct btrfs_delayed_ref_root *delayed_refs;
4232 	struct btrfs_delayed_ref_node *ref;
4233 	int ret = 0;
4234 
4235 	delayed_refs = &trans->delayed_refs;
4236 
4237 	spin_lock(&delayed_refs->lock);
4238 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4239 		spin_unlock(&delayed_refs->lock);
4240 		btrfs_info(fs_info, "delayed_refs has NO entry");
4241 		return ret;
4242 	}
4243 
4244 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4245 		struct btrfs_delayed_ref_head *head;
4246 		struct rb_node *n;
4247 		bool pin_bytes = false;
4248 
4249 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4250 				href_node);
4251 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4252 			continue;
4253 
4254 		spin_lock(&head->lock);
4255 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4256 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4257 				       ref_node);
4258 			ref->in_tree = 0;
4259 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4260 			RB_CLEAR_NODE(&ref->ref_node);
4261 			if (!list_empty(&ref->add_list))
4262 				list_del(&ref->add_list);
4263 			atomic_dec(&delayed_refs->num_entries);
4264 			btrfs_put_delayed_ref(ref);
4265 		}
4266 		if (head->must_insert_reserved)
4267 			pin_bytes = true;
4268 		btrfs_free_delayed_extent_op(head->extent_op);
4269 		btrfs_delete_ref_head(delayed_refs, head);
4270 		spin_unlock(&head->lock);
4271 		spin_unlock(&delayed_refs->lock);
4272 		mutex_unlock(&head->mutex);
4273 
4274 		if (pin_bytes)
4275 			btrfs_pin_extent(fs_info, head->bytenr,
4276 					 head->num_bytes, 1);
4277 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4278 		btrfs_put_delayed_ref_head(head);
4279 		cond_resched();
4280 		spin_lock(&delayed_refs->lock);
4281 	}
4282 
4283 	spin_unlock(&delayed_refs->lock);
4284 
4285 	return ret;
4286 }
4287 
4288 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4289 {
4290 	struct btrfs_inode *btrfs_inode;
4291 	struct list_head splice;
4292 
4293 	INIT_LIST_HEAD(&splice);
4294 
4295 	spin_lock(&root->delalloc_lock);
4296 	list_splice_init(&root->delalloc_inodes, &splice);
4297 
4298 	while (!list_empty(&splice)) {
4299 		struct inode *inode = NULL;
4300 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4301 					       delalloc_inodes);
4302 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4303 		spin_unlock(&root->delalloc_lock);
4304 
4305 		/*
4306 		 * Make sure we get a live inode and that it'll not disappear
4307 		 * meanwhile.
4308 		 */
4309 		inode = igrab(&btrfs_inode->vfs_inode);
4310 		if (inode) {
4311 			invalidate_inode_pages2(inode->i_mapping);
4312 			iput(inode);
4313 		}
4314 		spin_lock(&root->delalloc_lock);
4315 	}
4316 	spin_unlock(&root->delalloc_lock);
4317 }
4318 
4319 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4320 {
4321 	struct btrfs_root *root;
4322 	struct list_head splice;
4323 
4324 	INIT_LIST_HEAD(&splice);
4325 
4326 	spin_lock(&fs_info->delalloc_root_lock);
4327 	list_splice_init(&fs_info->delalloc_roots, &splice);
4328 	while (!list_empty(&splice)) {
4329 		root = list_first_entry(&splice, struct btrfs_root,
4330 					 delalloc_root);
4331 		root = btrfs_grab_fs_root(root);
4332 		BUG_ON(!root);
4333 		spin_unlock(&fs_info->delalloc_root_lock);
4334 
4335 		btrfs_destroy_delalloc_inodes(root);
4336 		btrfs_put_fs_root(root);
4337 
4338 		spin_lock(&fs_info->delalloc_root_lock);
4339 	}
4340 	spin_unlock(&fs_info->delalloc_root_lock);
4341 }
4342 
4343 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4344 					struct extent_io_tree *dirty_pages,
4345 					int mark)
4346 {
4347 	int ret;
4348 	struct extent_buffer *eb;
4349 	u64 start = 0;
4350 	u64 end;
4351 
4352 	while (1) {
4353 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4354 					    mark, NULL);
4355 		if (ret)
4356 			break;
4357 
4358 		clear_extent_bits(dirty_pages, start, end, mark);
4359 		while (start <= end) {
4360 			eb = find_extent_buffer(fs_info, start);
4361 			start += fs_info->nodesize;
4362 			if (!eb)
4363 				continue;
4364 			wait_on_extent_buffer_writeback(eb);
4365 
4366 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4367 					       &eb->bflags))
4368 				clear_extent_buffer_dirty(eb);
4369 			free_extent_buffer_stale(eb);
4370 		}
4371 	}
4372 
4373 	return ret;
4374 }
4375 
4376 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4377 				       struct extent_io_tree *pinned_extents)
4378 {
4379 	struct extent_io_tree *unpin;
4380 	u64 start;
4381 	u64 end;
4382 	int ret;
4383 	bool loop = true;
4384 
4385 	unpin = pinned_extents;
4386 again:
4387 	while (1) {
4388 		struct extent_state *cached_state = NULL;
4389 
4390 		/*
4391 		 * The btrfs_finish_extent_commit() may get the same range as
4392 		 * ours between find_first_extent_bit and clear_extent_dirty.
4393 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4394 		 * the same extent range.
4395 		 */
4396 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4397 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4398 					    EXTENT_DIRTY, &cached_state);
4399 		if (ret) {
4400 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4401 			break;
4402 		}
4403 
4404 		clear_extent_dirty(unpin, start, end, &cached_state);
4405 		free_extent_state(cached_state);
4406 		btrfs_error_unpin_extent_range(fs_info, start, end);
4407 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4408 		cond_resched();
4409 	}
4410 
4411 	if (loop) {
4412 		if (unpin == &fs_info->freed_extents[0])
4413 			unpin = &fs_info->freed_extents[1];
4414 		else
4415 			unpin = &fs_info->freed_extents[0];
4416 		loop = false;
4417 		goto again;
4418 	}
4419 
4420 	return 0;
4421 }
4422 
4423 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4424 {
4425 	struct inode *inode;
4426 
4427 	inode = cache->io_ctl.inode;
4428 	if (inode) {
4429 		invalidate_inode_pages2(inode->i_mapping);
4430 		BTRFS_I(inode)->generation = 0;
4431 		cache->io_ctl.inode = NULL;
4432 		iput(inode);
4433 	}
4434 	btrfs_put_block_group(cache);
4435 }
4436 
4437 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4438 			     struct btrfs_fs_info *fs_info)
4439 {
4440 	struct btrfs_block_group_cache *cache;
4441 
4442 	spin_lock(&cur_trans->dirty_bgs_lock);
4443 	while (!list_empty(&cur_trans->dirty_bgs)) {
4444 		cache = list_first_entry(&cur_trans->dirty_bgs,
4445 					 struct btrfs_block_group_cache,
4446 					 dirty_list);
4447 
4448 		if (!list_empty(&cache->io_list)) {
4449 			spin_unlock(&cur_trans->dirty_bgs_lock);
4450 			list_del_init(&cache->io_list);
4451 			btrfs_cleanup_bg_io(cache);
4452 			spin_lock(&cur_trans->dirty_bgs_lock);
4453 		}
4454 
4455 		list_del_init(&cache->dirty_list);
4456 		spin_lock(&cache->lock);
4457 		cache->disk_cache_state = BTRFS_DC_ERROR;
4458 		spin_unlock(&cache->lock);
4459 
4460 		spin_unlock(&cur_trans->dirty_bgs_lock);
4461 		btrfs_put_block_group(cache);
4462 		btrfs_delayed_refs_rsv_release(fs_info, 1);
4463 		spin_lock(&cur_trans->dirty_bgs_lock);
4464 	}
4465 	spin_unlock(&cur_trans->dirty_bgs_lock);
4466 
4467 	/*
4468 	 * Refer to the definition of io_bgs member for details why it's safe
4469 	 * to use it without any locking
4470 	 */
4471 	while (!list_empty(&cur_trans->io_bgs)) {
4472 		cache = list_first_entry(&cur_trans->io_bgs,
4473 					 struct btrfs_block_group_cache,
4474 					 io_list);
4475 
4476 		list_del_init(&cache->io_list);
4477 		spin_lock(&cache->lock);
4478 		cache->disk_cache_state = BTRFS_DC_ERROR;
4479 		spin_unlock(&cache->lock);
4480 		btrfs_cleanup_bg_io(cache);
4481 	}
4482 }
4483 
4484 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4485 				   struct btrfs_fs_info *fs_info)
4486 {
4487 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4488 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4489 	ASSERT(list_empty(&cur_trans->io_bgs));
4490 
4491 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4492 
4493 	cur_trans->state = TRANS_STATE_COMMIT_START;
4494 	wake_up(&fs_info->transaction_blocked_wait);
4495 
4496 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4497 	wake_up(&fs_info->transaction_wait);
4498 
4499 	btrfs_destroy_delayed_inodes(fs_info);
4500 	btrfs_assert_delayed_root_empty(fs_info);
4501 
4502 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4503 				     EXTENT_DIRTY);
4504 	btrfs_destroy_pinned_extent(fs_info,
4505 				    fs_info->pinned_extents);
4506 
4507 	cur_trans->state =TRANS_STATE_COMPLETED;
4508 	wake_up(&cur_trans->commit_wait);
4509 }
4510 
4511 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4512 {
4513 	struct btrfs_transaction *t;
4514 
4515 	mutex_lock(&fs_info->transaction_kthread_mutex);
4516 
4517 	spin_lock(&fs_info->trans_lock);
4518 	while (!list_empty(&fs_info->trans_list)) {
4519 		t = list_first_entry(&fs_info->trans_list,
4520 				     struct btrfs_transaction, list);
4521 		if (t->state >= TRANS_STATE_COMMIT_START) {
4522 			refcount_inc(&t->use_count);
4523 			spin_unlock(&fs_info->trans_lock);
4524 			btrfs_wait_for_commit(fs_info, t->transid);
4525 			btrfs_put_transaction(t);
4526 			spin_lock(&fs_info->trans_lock);
4527 			continue;
4528 		}
4529 		if (t == fs_info->running_transaction) {
4530 			t->state = TRANS_STATE_COMMIT_DOING;
4531 			spin_unlock(&fs_info->trans_lock);
4532 			/*
4533 			 * We wait for 0 num_writers since we don't hold a trans
4534 			 * handle open currently for this transaction.
4535 			 */
4536 			wait_event(t->writer_wait,
4537 				   atomic_read(&t->num_writers) == 0);
4538 		} else {
4539 			spin_unlock(&fs_info->trans_lock);
4540 		}
4541 		btrfs_cleanup_one_transaction(t, fs_info);
4542 
4543 		spin_lock(&fs_info->trans_lock);
4544 		if (t == fs_info->running_transaction)
4545 			fs_info->running_transaction = NULL;
4546 		list_del_init(&t->list);
4547 		spin_unlock(&fs_info->trans_lock);
4548 
4549 		btrfs_put_transaction(t);
4550 		trace_btrfs_transaction_commit(fs_info->tree_root);
4551 		spin_lock(&fs_info->trans_lock);
4552 	}
4553 	spin_unlock(&fs_info->trans_lock);
4554 	btrfs_destroy_all_ordered_extents(fs_info);
4555 	btrfs_destroy_delayed_inodes(fs_info);
4556 	btrfs_assert_delayed_root_empty(fs_info);
4557 	btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4558 	btrfs_destroy_all_delalloc_inodes(fs_info);
4559 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4560 
4561 	return 0;
4562 }
4563 
4564 static const struct extent_io_ops btree_extent_io_ops = {
4565 	/* mandatory callbacks */
4566 	.submit_bio_hook = btree_submit_bio_hook,
4567 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4568 };
4569