1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/buffer_head.h> 11 #include <linux/workqueue.h> 12 #include <linux/kthread.h> 13 #include <linux/slab.h> 14 #include <linux/migrate.h> 15 #include <linux/ratelimit.h> 16 #include <linux/uuid.h> 17 #include <linux/semaphore.h> 18 #include <linux/error-injection.h> 19 #include <linux/crc32c.h> 20 #include <linux/sched/mm.h> 21 #include <asm/unaligned.h> 22 #include <crypto/hash.h> 23 #include "ctree.h" 24 #include "disk-io.h" 25 #include "transaction.h" 26 #include "btrfs_inode.h" 27 #include "volumes.h" 28 #include "print-tree.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "free-space-cache.h" 32 #include "free-space-tree.h" 33 #include "inode-map.h" 34 #include "check-integrity.h" 35 #include "rcu-string.h" 36 #include "dev-replace.h" 37 #include "raid56.h" 38 #include "sysfs.h" 39 #include "qgroup.h" 40 #include "compression.h" 41 #include "tree-checker.h" 42 #include "ref-verify.h" 43 44 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 45 BTRFS_HEADER_FLAG_RELOC |\ 46 BTRFS_SUPER_FLAG_ERROR |\ 47 BTRFS_SUPER_FLAG_SEEDING |\ 48 BTRFS_SUPER_FLAG_METADUMP |\ 49 BTRFS_SUPER_FLAG_METADUMP_V2) 50 51 static const struct extent_io_ops btree_extent_io_ops; 52 static void end_workqueue_fn(struct btrfs_work *work); 53 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 54 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 55 struct btrfs_fs_info *fs_info); 56 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 57 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 58 struct extent_io_tree *dirty_pages, 59 int mark); 60 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 61 struct extent_io_tree *pinned_extents); 62 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 63 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 64 65 /* 66 * btrfs_end_io_wq structs are used to do processing in task context when an IO 67 * is complete. This is used during reads to verify checksums, and it is used 68 * by writes to insert metadata for new file extents after IO is complete. 69 */ 70 struct btrfs_end_io_wq { 71 struct bio *bio; 72 bio_end_io_t *end_io; 73 void *private; 74 struct btrfs_fs_info *info; 75 blk_status_t status; 76 enum btrfs_wq_endio_type metadata; 77 struct btrfs_work work; 78 }; 79 80 static struct kmem_cache *btrfs_end_io_wq_cache; 81 82 int __init btrfs_end_io_wq_init(void) 83 { 84 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 85 sizeof(struct btrfs_end_io_wq), 86 0, 87 SLAB_MEM_SPREAD, 88 NULL); 89 if (!btrfs_end_io_wq_cache) 90 return -ENOMEM; 91 return 0; 92 } 93 94 void __cold btrfs_end_io_wq_exit(void) 95 { 96 kmem_cache_destroy(btrfs_end_io_wq_cache); 97 } 98 99 /* 100 * async submit bios are used to offload expensive checksumming 101 * onto the worker threads. They checksum file and metadata bios 102 * just before they are sent down the IO stack. 103 */ 104 struct async_submit_bio { 105 void *private_data; 106 struct bio *bio; 107 extent_submit_bio_start_t *submit_bio_start; 108 int mirror_num; 109 /* 110 * bio_offset is optional, can be used if the pages in the bio 111 * can't tell us where in the file the bio should go 112 */ 113 u64 bio_offset; 114 struct btrfs_work work; 115 blk_status_t status; 116 }; 117 118 /* 119 * Lockdep class keys for extent_buffer->lock's in this root. For a given 120 * eb, the lockdep key is determined by the btrfs_root it belongs to and 121 * the level the eb occupies in the tree. 122 * 123 * Different roots are used for different purposes and may nest inside each 124 * other and they require separate keysets. As lockdep keys should be 125 * static, assign keysets according to the purpose of the root as indicated 126 * by btrfs_root->root_key.objectid. This ensures that all special purpose 127 * roots have separate keysets. 128 * 129 * Lock-nesting across peer nodes is always done with the immediate parent 130 * node locked thus preventing deadlock. As lockdep doesn't know this, use 131 * subclass to avoid triggering lockdep warning in such cases. 132 * 133 * The key is set by the readpage_end_io_hook after the buffer has passed 134 * csum validation but before the pages are unlocked. It is also set by 135 * btrfs_init_new_buffer on freshly allocated blocks. 136 * 137 * We also add a check to make sure the highest level of the tree is the 138 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 139 * needs update as well. 140 */ 141 #ifdef CONFIG_DEBUG_LOCK_ALLOC 142 # if BTRFS_MAX_LEVEL != 8 143 # error 144 # endif 145 146 static struct btrfs_lockdep_keyset { 147 u64 id; /* root objectid */ 148 const char *name_stem; /* lock name stem */ 149 char names[BTRFS_MAX_LEVEL + 1][20]; 150 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 151 } btrfs_lockdep_keysets[] = { 152 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 153 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 154 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 155 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 156 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 157 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 158 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 159 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 160 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 161 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 162 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 163 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 164 { .id = 0, .name_stem = "tree" }, 165 }; 166 167 void __init btrfs_init_lockdep(void) 168 { 169 int i, j; 170 171 /* initialize lockdep class names */ 172 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 173 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 174 175 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 176 snprintf(ks->names[j], sizeof(ks->names[j]), 177 "btrfs-%s-%02d", ks->name_stem, j); 178 } 179 } 180 181 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 182 int level) 183 { 184 struct btrfs_lockdep_keyset *ks; 185 186 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 187 188 /* find the matching keyset, id 0 is the default entry */ 189 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 190 if (ks->id == objectid) 191 break; 192 193 lockdep_set_class_and_name(&eb->lock, 194 &ks->keys[level], ks->names[level]); 195 } 196 197 #endif 198 199 /* 200 * extents on the btree inode are pretty simple, there's one extent 201 * that covers the entire device 202 */ 203 struct extent_map *btree_get_extent(struct btrfs_inode *inode, 204 struct page *page, size_t pg_offset, u64 start, u64 len, 205 int create) 206 { 207 struct btrfs_fs_info *fs_info = inode->root->fs_info; 208 struct extent_map_tree *em_tree = &inode->extent_tree; 209 struct extent_map *em; 210 int ret; 211 212 read_lock(&em_tree->lock); 213 em = lookup_extent_mapping(em_tree, start, len); 214 if (em) { 215 em->bdev = fs_info->fs_devices->latest_bdev; 216 read_unlock(&em_tree->lock); 217 goto out; 218 } 219 read_unlock(&em_tree->lock); 220 221 em = alloc_extent_map(); 222 if (!em) { 223 em = ERR_PTR(-ENOMEM); 224 goto out; 225 } 226 em->start = 0; 227 em->len = (u64)-1; 228 em->block_len = (u64)-1; 229 em->block_start = 0; 230 em->bdev = fs_info->fs_devices->latest_bdev; 231 232 write_lock(&em_tree->lock); 233 ret = add_extent_mapping(em_tree, em, 0); 234 if (ret == -EEXIST) { 235 free_extent_map(em); 236 em = lookup_extent_mapping(em_tree, start, len); 237 if (!em) 238 em = ERR_PTR(-EIO); 239 } else if (ret) { 240 free_extent_map(em); 241 em = ERR_PTR(ret); 242 } 243 write_unlock(&em_tree->lock); 244 245 out: 246 return em; 247 } 248 249 /* 250 * Compute the csum of a btree block and store the result to provided buffer. 251 * 252 * Returns error if the extent buffer cannot be mapped. 253 */ 254 static int csum_tree_block(struct extent_buffer *buf, u8 *result) 255 { 256 struct btrfs_fs_info *fs_info = buf->fs_info; 257 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 258 unsigned long len; 259 unsigned long cur_len; 260 unsigned long offset = BTRFS_CSUM_SIZE; 261 char *kaddr; 262 unsigned long map_start; 263 unsigned long map_len; 264 int err; 265 266 shash->tfm = fs_info->csum_shash; 267 crypto_shash_init(shash); 268 269 len = buf->len - offset; 270 271 while (len > 0) { 272 /* 273 * Note: we don't need to check for the err == 1 case here, as 274 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)' 275 * and 'min_len = 32' and the currently implemented mapping 276 * algorithm we cannot cross a page boundary. 277 */ 278 err = map_private_extent_buffer(buf, offset, 32, 279 &kaddr, &map_start, &map_len); 280 if (WARN_ON(err)) 281 return err; 282 cur_len = min(len, map_len - (offset - map_start)); 283 crypto_shash_update(shash, kaddr + offset - map_start, cur_len); 284 len -= cur_len; 285 offset += cur_len; 286 } 287 memset(result, 0, BTRFS_CSUM_SIZE); 288 289 crypto_shash_final(shash, result); 290 291 return 0; 292 } 293 294 /* 295 * we can't consider a given block up to date unless the transid of the 296 * block matches the transid in the parent node's pointer. This is how we 297 * detect blocks that either didn't get written at all or got written 298 * in the wrong place. 299 */ 300 static int verify_parent_transid(struct extent_io_tree *io_tree, 301 struct extent_buffer *eb, u64 parent_transid, 302 int atomic) 303 { 304 struct extent_state *cached_state = NULL; 305 int ret; 306 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 307 308 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 309 return 0; 310 311 if (atomic) 312 return -EAGAIN; 313 314 if (need_lock) { 315 btrfs_tree_read_lock(eb); 316 btrfs_set_lock_blocking_read(eb); 317 } 318 319 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 320 &cached_state); 321 if (extent_buffer_uptodate(eb) && 322 btrfs_header_generation(eb) == parent_transid) { 323 ret = 0; 324 goto out; 325 } 326 btrfs_err_rl(eb->fs_info, 327 "parent transid verify failed on %llu wanted %llu found %llu", 328 eb->start, 329 parent_transid, btrfs_header_generation(eb)); 330 ret = 1; 331 332 /* 333 * Things reading via commit roots that don't have normal protection, 334 * like send, can have a really old block in cache that may point at a 335 * block that has been freed and re-allocated. So don't clear uptodate 336 * if we find an eb that is under IO (dirty/writeback) because we could 337 * end up reading in the stale data and then writing it back out and 338 * making everybody very sad. 339 */ 340 if (!extent_buffer_under_io(eb)) 341 clear_extent_buffer_uptodate(eb); 342 out: 343 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 344 &cached_state); 345 if (need_lock) 346 btrfs_tree_read_unlock_blocking(eb); 347 return ret; 348 } 349 350 static bool btrfs_supported_super_csum(u16 csum_type) 351 { 352 switch (csum_type) { 353 case BTRFS_CSUM_TYPE_CRC32: 354 return true; 355 default: 356 return false; 357 } 358 } 359 360 /* 361 * Return 0 if the superblock checksum type matches the checksum value of that 362 * algorithm. Pass the raw disk superblock data. 363 */ 364 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 365 char *raw_disk_sb) 366 { 367 struct btrfs_super_block *disk_sb = 368 (struct btrfs_super_block *)raw_disk_sb; 369 char result[BTRFS_CSUM_SIZE]; 370 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 371 372 shash->tfm = fs_info->csum_shash; 373 crypto_shash_init(shash); 374 375 /* 376 * The super_block structure does not span the whole 377 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 378 * filled with zeros and is included in the checksum. 379 */ 380 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE, 381 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 382 crypto_shash_final(shash, result); 383 384 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb))) 385 return 1; 386 387 return 0; 388 } 389 390 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 391 struct btrfs_key *first_key, u64 parent_transid) 392 { 393 struct btrfs_fs_info *fs_info = eb->fs_info; 394 int found_level; 395 struct btrfs_key found_key; 396 int ret; 397 398 found_level = btrfs_header_level(eb); 399 if (found_level != level) { 400 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 401 KERN_ERR "BTRFS: tree level check failed\n"); 402 btrfs_err(fs_info, 403 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 404 eb->start, level, found_level); 405 return -EIO; 406 } 407 408 if (!first_key) 409 return 0; 410 411 /* 412 * For live tree block (new tree blocks in current transaction), 413 * we need proper lock context to avoid race, which is impossible here. 414 * So we only checks tree blocks which is read from disk, whose 415 * generation <= fs_info->last_trans_committed. 416 */ 417 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 418 return 0; 419 if (found_level) 420 btrfs_node_key_to_cpu(eb, &found_key, 0); 421 else 422 btrfs_item_key_to_cpu(eb, &found_key, 0); 423 ret = btrfs_comp_cpu_keys(first_key, &found_key); 424 425 if (ret) { 426 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 427 KERN_ERR "BTRFS: tree first key check failed\n"); 428 btrfs_err(fs_info, 429 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 430 eb->start, parent_transid, first_key->objectid, 431 first_key->type, first_key->offset, 432 found_key.objectid, found_key.type, 433 found_key.offset); 434 } 435 return ret; 436 } 437 438 /* 439 * helper to read a given tree block, doing retries as required when 440 * the checksums don't match and we have alternate mirrors to try. 441 * 442 * @parent_transid: expected transid, skip check if 0 443 * @level: expected level, mandatory check 444 * @first_key: expected key of first slot, skip check if NULL 445 */ 446 static int btree_read_extent_buffer_pages(struct extent_buffer *eb, 447 u64 parent_transid, int level, 448 struct btrfs_key *first_key) 449 { 450 struct btrfs_fs_info *fs_info = eb->fs_info; 451 struct extent_io_tree *io_tree; 452 int failed = 0; 453 int ret; 454 int num_copies = 0; 455 int mirror_num = 0; 456 int failed_mirror = 0; 457 458 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 459 while (1) { 460 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 461 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num); 462 if (!ret) { 463 if (verify_parent_transid(io_tree, eb, 464 parent_transid, 0)) 465 ret = -EIO; 466 else if (btrfs_verify_level_key(eb, level, 467 first_key, parent_transid)) 468 ret = -EUCLEAN; 469 else 470 break; 471 } 472 473 num_copies = btrfs_num_copies(fs_info, 474 eb->start, eb->len); 475 if (num_copies == 1) 476 break; 477 478 if (!failed_mirror) { 479 failed = 1; 480 failed_mirror = eb->read_mirror; 481 } 482 483 mirror_num++; 484 if (mirror_num == failed_mirror) 485 mirror_num++; 486 487 if (mirror_num > num_copies) 488 break; 489 } 490 491 if (failed && !ret && failed_mirror) 492 btrfs_repair_eb_io_failure(eb, failed_mirror); 493 494 return ret; 495 } 496 497 /* 498 * checksum a dirty tree block before IO. This has extra checks to make sure 499 * we only fill in the checksum field in the first page of a multi-page block 500 */ 501 502 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 503 { 504 u64 start = page_offset(page); 505 u64 found_start; 506 u8 result[BTRFS_CSUM_SIZE]; 507 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 508 struct extent_buffer *eb; 509 int ret; 510 511 eb = (struct extent_buffer *)page->private; 512 if (page != eb->pages[0]) 513 return 0; 514 515 found_start = btrfs_header_bytenr(eb); 516 /* 517 * Please do not consolidate these warnings into a single if. 518 * It is useful to know what went wrong. 519 */ 520 if (WARN_ON(found_start != start)) 521 return -EUCLEAN; 522 if (WARN_ON(!PageUptodate(page))) 523 return -EUCLEAN; 524 525 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 526 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 527 528 if (csum_tree_block(eb, result)) 529 return -EINVAL; 530 531 if (btrfs_header_level(eb)) 532 ret = btrfs_check_node(eb); 533 else 534 ret = btrfs_check_leaf_full(eb); 535 536 if (ret < 0) { 537 btrfs_err(fs_info, 538 "block=%llu write time tree block corruption detected", 539 eb->start); 540 return ret; 541 } 542 write_extent_buffer(eb, result, 0, csum_size); 543 544 return 0; 545 } 546 547 static int check_tree_block_fsid(struct extent_buffer *eb) 548 { 549 struct btrfs_fs_info *fs_info = eb->fs_info; 550 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 551 u8 fsid[BTRFS_FSID_SIZE]; 552 int ret = 1; 553 554 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 555 while (fs_devices) { 556 u8 *metadata_uuid; 557 558 /* 559 * Checking the incompat flag is only valid for the current 560 * fs. For seed devices it's forbidden to have their uuid 561 * changed so reading ->fsid in this case is fine 562 */ 563 if (fs_devices == fs_info->fs_devices && 564 btrfs_fs_incompat(fs_info, METADATA_UUID)) 565 metadata_uuid = fs_devices->metadata_uuid; 566 else 567 metadata_uuid = fs_devices->fsid; 568 569 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) { 570 ret = 0; 571 break; 572 } 573 fs_devices = fs_devices->seed; 574 } 575 return ret; 576 } 577 578 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 579 u64 phy_offset, struct page *page, 580 u64 start, u64 end, int mirror) 581 { 582 u64 found_start; 583 int found_level; 584 struct extent_buffer *eb; 585 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 586 struct btrfs_fs_info *fs_info = root->fs_info; 587 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 588 int ret = 0; 589 u8 result[BTRFS_CSUM_SIZE]; 590 int reads_done; 591 592 if (!page->private) 593 goto out; 594 595 eb = (struct extent_buffer *)page->private; 596 597 /* the pending IO might have been the only thing that kept this buffer 598 * in memory. Make sure we have a ref for all this other checks 599 */ 600 extent_buffer_get(eb); 601 602 reads_done = atomic_dec_and_test(&eb->io_pages); 603 if (!reads_done) 604 goto err; 605 606 eb->read_mirror = mirror; 607 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 608 ret = -EIO; 609 goto err; 610 } 611 612 found_start = btrfs_header_bytenr(eb); 613 if (found_start != eb->start) { 614 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 615 eb->start, found_start); 616 ret = -EIO; 617 goto err; 618 } 619 if (check_tree_block_fsid(eb)) { 620 btrfs_err_rl(fs_info, "bad fsid on block %llu", 621 eb->start); 622 ret = -EIO; 623 goto err; 624 } 625 found_level = btrfs_header_level(eb); 626 if (found_level >= BTRFS_MAX_LEVEL) { 627 btrfs_err(fs_info, "bad tree block level %d on %llu", 628 (int)btrfs_header_level(eb), eb->start); 629 ret = -EIO; 630 goto err; 631 } 632 633 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 634 eb, found_level); 635 636 ret = csum_tree_block(eb, result); 637 if (ret) 638 goto err; 639 640 if (memcmp_extent_buffer(eb, result, 0, csum_size)) { 641 u32 val; 642 u32 found = 0; 643 644 memcpy(&found, result, csum_size); 645 646 read_extent_buffer(eb, &val, 0, csum_size); 647 btrfs_warn_rl(fs_info, 648 "%s checksum verify failed on %llu wanted %x found %x level %d", 649 fs_info->sb->s_id, eb->start, 650 val, found, btrfs_header_level(eb)); 651 ret = -EUCLEAN; 652 goto err; 653 } 654 655 /* 656 * If this is a leaf block and it is corrupt, set the corrupt bit so 657 * that we don't try and read the other copies of this block, just 658 * return -EIO. 659 */ 660 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 661 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 662 ret = -EIO; 663 } 664 665 if (found_level > 0 && btrfs_check_node(eb)) 666 ret = -EIO; 667 668 if (!ret) 669 set_extent_buffer_uptodate(eb); 670 else 671 btrfs_err(fs_info, 672 "block=%llu read time tree block corruption detected", 673 eb->start); 674 err: 675 if (reads_done && 676 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 677 btree_readahead_hook(eb, ret); 678 679 if (ret) { 680 /* 681 * our io error hook is going to dec the io pages 682 * again, we have to make sure it has something 683 * to decrement 684 */ 685 atomic_inc(&eb->io_pages); 686 clear_extent_buffer_uptodate(eb); 687 } 688 free_extent_buffer(eb); 689 out: 690 return ret; 691 } 692 693 static void end_workqueue_bio(struct bio *bio) 694 { 695 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 696 struct btrfs_fs_info *fs_info; 697 struct btrfs_workqueue *wq; 698 btrfs_work_func_t func; 699 700 fs_info = end_io_wq->info; 701 end_io_wq->status = bio->bi_status; 702 703 if (bio_op(bio) == REQ_OP_WRITE) { 704 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 705 wq = fs_info->endio_meta_write_workers; 706 func = btrfs_endio_meta_write_helper; 707 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 708 wq = fs_info->endio_freespace_worker; 709 func = btrfs_freespace_write_helper; 710 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 711 wq = fs_info->endio_raid56_workers; 712 func = btrfs_endio_raid56_helper; 713 } else { 714 wq = fs_info->endio_write_workers; 715 func = btrfs_endio_write_helper; 716 } 717 } else { 718 if (unlikely(end_io_wq->metadata == 719 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 720 wq = fs_info->endio_repair_workers; 721 func = btrfs_endio_repair_helper; 722 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 723 wq = fs_info->endio_raid56_workers; 724 func = btrfs_endio_raid56_helper; 725 } else if (end_io_wq->metadata) { 726 wq = fs_info->endio_meta_workers; 727 func = btrfs_endio_meta_helper; 728 } else { 729 wq = fs_info->endio_workers; 730 func = btrfs_endio_helper; 731 } 732 } 733 734 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 735 btrfs_queue_work(wq, &end_io_wq->work); 736 } 737 738 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 739 enum btrfs_wq_endio_type metadata) 740 { 741 struct btrfs_end_io_wq *end_io_wq; 742 743 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 744 if (!end_io_wq) 745 return BLK_STS_RESOURCE; 746 747 end_io_wq->private = bio->bi_private; 748 end_io_wq->end_io = bio->bi_end_io; 749 end_io_wq->info = info; 750 end_io_wq->status = 0; 751 end_io_wq->bio = bio; 752 end_io_wq->metadata = metadata; 753 754 bio->bi_private = end_io_wq; 755 bio->bi_end_io = end_workqueue_bio; 756 return 0; 757 } 758 759 static void run_one_async_start(struct btrfs_work *work) 760 { 761 struct async_submit_bio *async; 762 blk_status_t ret; 763 764 async = container_of(work, struct async_submit_bio, work); 765 ret = async->submit_bio_start(async->private_data, async->bio, 766 async->bio_offset); 767 if (ret) 768 async->status = ret; 769 } 770 771 /* 772 * In order to insert checksums into the metadata in large chunks, we wait 773 * until bio submission time. All the pages in the bio are checksummed and 774 * sums are attached onto the ordered extent record. 775 * 776 * At IO completion time the csums attached on the ordered extent record are 777 * inserted into the tree. 778 */ 779 static void run_one_async_done(struct btrfs_work *work) 780 { 781 struct async_submit_bio *async; 782 struct inode *inode; 783 blk_status_t ret; 784 785 async = container_of(work, struct async_submit_bio, work); 786 inode = async->private_data; 787 788 /* If an error occurred we just want to clean up the bio and move on */ 789 if (async->status) { 790 async->bio->bi_status = async->status; 791 bio_endio(async->bio); 792 return; 793 } 794 795 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, 796 async->mirror_num, 1); 797 if (ret) { 798 async->bio->bi_status = ret; 799 bio_endio(async->bio); 800 } 801 } 802 803 static void run_one_async_free(struct btrfs_work *work) 804 { 805 struct async_submit_bio *async; 806 807 async = container_of(work, struct async_submit_bio, work); 808 kfree(async); 809 } 810 811 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 812 int mirror_num, unsigned long bio_flags, 813 u64 bio_offset, void *private_data, 814 extent_submit_bio_start_t *submit_bio_start) 815 { 816 struct async_submit_bio *async; 817 818 async = kmalloc(sizeof(*async), GFP_NOFS); 819 if (!async) 820 return BLK_STS_RESOURCE; 821 822 async->private_data = private_data; 823 async->bio = bio; 824 async->mirror_num = mirror_num; 825 async->submit_bio_start = submit_bio_start; 826 827 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 828 run_one_async_done, run_one_async_free); 829 830 async->bio_offset = bio_offset; 831 832 async->status = 0; 833 834 if (op_is_sync(bio->bi_opf)) 835 btrfs_set_work_high_priority(&async->work); 836 837 btrfs_queue_work(fs_info->workers, &async->work); 838 return 0; 839 } 840 841 static blk_status_t btree_csum_one_bio(struct bio *bio) 842 { 843 struct bio_vec *bvec; 844 struct btrfs_root *root; 845 int ret = 0; 846 struct bvec_iter_all iter_all; 847 848 ASSERT(!bio_flagged(bio, BIO_CLONED)); 849 bio_for_each_segment_all(bvec, bio, iter_all) { 850 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 851 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 852 if (ret) 853 break; 854 } 855 856 return errno_to_blk_status(ret); 857 } 858 859 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, 860 u64 bio_offset) 861 { 862 /* 863 * when we're called for a write, we're already in the async 864 * submission context. Just jump into btrfs_map_bio 865 */ 866 return btree_csum_one_bio(bio); 867 } 868 869 static int check_async_write(struct btrfs_fs_info *fs_info, 870 struct btrfs_inode *bi) 871 { 872 if (atomic_read(&bi->sync_writers)) 873 return 0; 874 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 875 return 0; 876 return 1; 877 } 878 879 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio, 880 int mirror_num, 881 unsigned long bio_flags) 882 { 883 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 884 int async = check_async_write(fs_info, BTRFS_I(inode)); 885 blk_status_t ret; 886 887 if (bio_op(bio) != REQ_OP_WRITE) { 888 /* 889 * called for a read, do the setup so that checksum validation 890 * can happen in the async kernel threads 891 */ 892 ret = btrfs_bio_wq_end_io(fs_info, bio, 893 BTRFS_WQ_ENDIO_METADATA); 894 if (ret) 895 goto out_w_error; 896 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 897 } else if (!async) { 898 ret = btree_csum_one_bio(bio); 899 if (ret) 900 goto out_w_error; 901 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 902 } else { 903 /* 904 * kthread helpers are used to submit writes so that 905 * checksumming can happen in parallel across all CPUs 906 */ 907 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 908 0, inode, btree_submit_bio_start); 909 } 910 911 if (ret) 912 goto out_w_error; 913 return 0; 914 915 out_w_error: 916 bio->bi_status = ret; 917 bio_endio(bio); 918 return ret; 919 } 920 921 #ifdef CONFIG_MIGRATION 922 static int btree_migratepage(struct address_space *mapping, 923 struct page *newpage, struct page *page, 924 enum migrate_mode mode) 925 { 926 /* 927 * we can't safely write a btree page from here, 928 * we haven't done the locking hook 929 */ 930 if (PageDirty(page)) 931 return -EAGAIN; 932 /* 933 * Buffers may be managed in a filesystem specific way. 934 * We must have no buffers or drop them. 935 */ 936 if (page_has_private(page) && 937 !try_to_release_page(page, GFP_KERNEL)) 938 return -EAGAIN; 939 return migrate_page(mapping, newpage, page, mode); 940 } 941 #endif 942 943 944 static int btree_writepages(struct address_space *mapping, 945 struct writeback_control *wbc) 946 { 947 struct btrfs_fs_info *fs_info; 948 int ret; 949 950 if (wbc->sync_mode == WB_SYNC_NONE) { 951 952 if (wbc->for_kupdate) 953 return 0; 954 955 fs_info = BTRFS_I(mapping->host)->root->fs_info; 956 /* this is a bit racy, but that's ok */ 957 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 958 BTRFS_DIRTY_METADATA_THRESH, 959 fs_info->dirty_metadata_batch); 960 if (ret < 0) 961 return 0; 962 } 963 return btree_write_cache_pages(mapping, wbc); 964 } 965 966 static int btree_readpage(struct file *file, struct page *page) 967 { 968 struct extent_io_tree *tree; 969 tree = &BTRFS_I(page->mapping->host)->io_tree; 970 return extent_read_full_page(tree, page, btree_get_extent, 0); 971 } 972 973 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 974 { 975 if (PageWriteback(page) || PageDirty(page)) 976 return 0; 977 978 return try_release_extent_buffer(page); 979 } 980 981 static void btree_invalidatepage(struct page *page, unsigned int offset, 982 unsigned int length) 983 { 984 struct extent_io_tree *tree; 985 tree = &BTRFS_I(page->mapping->host)->io_tree; 986 extent_invalidatepage(tree, page, offset); 987 btree_releasepage(page, GFP_NOFS); 988 if (PagePrivate(page)) { 989 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 990 "page private not zero on page %llu", 991 (unsigned long long)page_offset(page)); 992 ClearPagePrivate(page); 993 set_page_private(page, 0); 994 put_page(page); 995 } 996 } 997 998 static int btree_set_page_dirty(struct page *page) 999 { 1000 #ifdef DEBUG 1001 struct extent_buffer *eb; 1002 1003 BUG_ON(!PagePrivate(page)); 1004 eb = (struct extent_buffer *)page->private; 1005 BUG_ON(!eb); 1006 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1007 BUG_ON(!atomic_read(&eb->refs)); 1008 btrfs_assert_tree_locked(eb); 1009 #endif 1010 return __set_page_dirty_nobuffers(page); 1011 } 1012 1013 static const struct address_space_operations btree_aops = { 1014 .readpage = btree_readpage, 1015 .writepages = btree_writepages, 1016 .releasepage = btree_releasepage, 1017 .invalidatepage = btree_invalidatepage, 1018 #ifdef CONFIG_MIGRATION 1019 .migratepage = btree_migratepage, 1020 #endif 1021 .set_page_dirty = btree_set_page_dirty, 1022 }; 1023 1024 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 1025 { 1026 struct extent_buffer *buf = NULL; 1027 int ret; 1028 1029 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1030 if (IS_ERR(buf)) 1031 return; 1032 1033 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0); 1034 if (ret < 0) 1035 free_extent_buffer_stale(buf); 1036 else 1037 free_extent_buffer(buf); 1038 } 1039 1040 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr, 1041 int mirror_num, struct extent_buffer **eb) 1042 { 1043 struct extent_buffer *buf = NULL; 1044 int ret; 1045 1046 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1047 if (IS_ERR(buf)) 1048 return 0; 1049 1050 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1051 1052 ret = read_extent_buffer_pages(buf, WAIT_PAGE_LOCK, mirror_num); 1053 if (ret) { 1054 free_extent_buffer_stale(buf); 1055 return ret; 1056 } 1057 1058 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1059 free_extent_buffer_stale(buf); 1060 return -EIO; 1061 } else if (extent_buffer_uptodate(buf)) { 1062 *eb = buf; 1063 } else { 1064 free_extent_buffer(buf); 1065 } 1066 return 0; 1067 } 1068 1069 struct extent_buffer *btrfs_find_create_tree_block( 1070 struct btrfs_fs_info *fs_info, 1071 u64 bytenr) 1072 { 1073 if (btrfs_is_testing(fs_info)) 1074 return alloc_test_extent_buffer(fs_info, bytenr); 1075 return alloc_extent_buffer(fs_info, bytenr); 1076 } 1077 1078 /* 1079 * Read tree block at logical address @bytenr and do variant basic but critical 1080 * verification. 1081 * 1082 * @parent_transid: expected transid of this tree block, skip check if 0 1083 * @level: expected level, mandatory check 1084 * @first_key: expected key in slot 0, skip check if NULL 1085 */ 1086 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1087 u64 parent_transid, int level, 1088 struct btrfs_key *first_key) 1089 { 1090 struct extent_buffer *buf = NULL; 1091 int ret; 1092 1093 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1094 if (IS_ERR(buf)) 1095 return buf; 1096 1097 ret = btree_read_extent_buffer_pages(buf, parent_transid, 1098 level, first_key); 1099 if (ret) { 1100 free_extent_buffer_stale(buf); 1101 return ERR_PTR(ret); 1102 } 1103 return buf; 1104 1105 } 1106 1107 void btrfs_clean_tree_block(struct extent_buffer *buf) 1108 { 1109 struct btrfs_fs_info *fs_info = buf->fs_info; 1110 if (btrfs_header_generation(buf) == 1111 fs_info->running_transaction->transid) { 1112 btrfs_assert_tree_locked(buf); 1113 1114 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1115 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1116 -buf->len, 1117 fs_info->dirty_metadata_batch); 1118 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1119 btrfs_set_lock_blocking_write(buf); 1120 clear_extent_buffer_dirty(buf); 1121 } 1122 } 1123 } 1124 1125 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1126 { 1127 struct btrfs_subvolume_writers *writers; 1128 int ret; 1129 1130 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1131 if (!writers) 1132 return ERR_PTR(-ENOMEM); 1133 1134 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS); 1135 if (ret < 0) { 1136 kfree(writers); 1137 return ERR_PTR(ret); 1138 } 1139 1140 init_waitqueue_head(&writers->wait); 1141 return writers; 1142 } 1143 1144 static void 1145 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1146 { 1147 percpu_counter_destroy(&writers->counter); 1148 kfree(writers); 1149 } 1150 1151 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1152 u64 objectid) 1153 { 1154 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1155 root->node = NULL; 1156 root->commit_root = NULL; 1157 root->state = 0; 1158 root->orphan_cleanup_state = 0; 1159 1160 root->last_trans = 0; 1161 root->highest_objectid = 0; 1162 root->nr_delalloc_inodes = 0; 1163 root->nr_ordered_extents = 0; 1164 root->inode_tree = RB_ROOT; 1165 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1166 root->block_rsv = NULL; 1167 1168 INIT_LIST_HEAD(&root->dirty_list); 1169 INIT_LIST_HEAD(&root->root_list); 1170 INIT_LIST_HEAD(&root->delalloc_inodes); 1171 INIT_LIST_HEAD(&root->delalloc_root); 1172 INIT_LIST_HEAD(&root->ordered_extents); 1173 INIT_LIST_HEAD(&root->ordered_root); 1174 INIT_LIST_HEAD(&root->reloc_dirty_list); 1175 INIT_LIST_HEAD(&root->logged_list[0]); 1176 INIT_LIST_HEAD(&root->logged_list[1]); 1177 spin_lock_init(&root->inode_lock); 1178 spin_lock_init(&root->delalloc_lock); 1179 spin_lock_init(&root->ordered_extent_lock); 1180 spin_lock_init(&root->accounting_lock); 1181 spin_lock_init(&root->log_extents_lock[0]); 1182 spin_lock_init(&root->log_extents_lock[1]); 1183 spin_lock_init(&root->qgroup_meta_rsv_lock); 1184 mutex_init(&root->objectid_mutex); 1185 mutex_init(&root->log_mutex); 1186 mutex_init(&root->ordered_extent_mutex); 1187 mutex_init(&root->delalloc_mutex); 1188 init_waitqueue_head(&root->log_writer_wait); 1189 init_waitqueue_head(&root->log_commit_wait[0]); 1190 init_waitqueue_head(&root->log_commit_wait[1]); 1191 INIT_LIST_HEAD(&root->log_ctxs[0]); 1192 INIT_LIST_HEAD(&root->log_ctxs[1]); 1193 atomic_set(&root->log_commit[0], 0); 1194 atomic_set(&root->log_commit[1], 0); 1195 atomic_set(&root->log_writers, 0); 1196 atomic_set(&root->log_batch, 0); 1197 refcount_set(&root->refs, 1); 1198 atomic_set(&root->will_be_snapshotted, 0); 1199 atomic_set(&root->snapshot_force_cow, 0); 1200 atomic_set(&root->nr_swapfiles, 0); 1201 root->log_transid = 0; 1202 root->log_transid_committed = -1; 1203 root->last_log_commit = 0; 1204 if (!dummy) 1205 extent_io_tree_init(fs_info, &root->dirty_log_pages, 1206 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL); 1207 1208 memset(&root->root_key, 0, sizeof(root->root_key)); 1209 memset(&root->root_item, 0, sizeof(root->root_item)); 1210 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1211 if (!dummy) 1212 root->defrag_trans_start = fs_info->generation; 1213 else 1214 root->defrag_trans_start = 0; 1215 root->root_key.objectid = objectid; 1216 root->anon_dev = 0; 1217 1218 spin_lock_init(&root->root_item_lock); 1219 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1220 } 1221 1222 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1223 gfp_t flags) 1224 { 1225 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1226 if (root) 1227 root->fs_info = fs_info; 1228 return root; 1229 } 1230 1231 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1232 /* Should only be used by the testing infrastructure */ 1233 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1234 { 1235 struct btrfs_root *root; 1236 1237 if (!fs_info) 1238 return ERR_PTR(-EINVAL); 1239 1240 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1241 if (!root) 1242 return ERR_PTR(-ENOMEM); 1243 1244 /* We don't use the stripesize in selftest, set it as sectorsize */ 1245 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 1246 root->alloc_bytenr = 0; 1247 1248 return root; 1249 } 1250 #endif 1251 1252 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1253 u64 objectid) 1254 { 1255 struct btrfs_fs_info *fs_info = trans->fs_info; 1256 struct extent_buffer *leaf; 1257 struct btrfs_root *tree_root = fs_info->tree_root; 1258 struct btrfs_root *root; 1259 struct btrfs_key key; 1260 unsigned int nofs_flag; 1261 int ret = 0; 1262 uuid_le uuid = NULL_UUID_LE; 1263 1264 /* 1265 * We're holding a transaction handle, so use a NOFS memory allocation 1266 * context to avoid deadlock if reclaim happens. 1267 */ 1268 nofs_flag = memalloc_nofs_save(); 1269 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1270 memalloc_nofs_restore(nofs_flag); 1271 if (!root) 1272 return ERR_PTR(-ENOMEM); 1273 1274 __setup_root(root, fs_info, objectid); 1275 root->root_key.objectid = objectid; 1276 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1277 root->root_key.offset = 0; 1278 1279 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1280 if (IS_ERR(leaf)) { 1281 ret = PTR_ERR(leaf); 1282 leaf = NULL; 1283 goto fail; 1284 } 1285 1286 root->node = leaf; 1287 btrfs_mark_buffer_dirty(leaf); 1288 1289 root->commit_root = btrfs_root_node(root); 1290 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1291 1292 root->root_item.flags = 0; 1293 root->root_item.byte_limit = 0; 1294 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1295 btrfs_set_root_generation(&root->root_item, trans->transid); 1296 btrfs_set_root_level(&root->root_item, 0); 1297 btrfs_set_root_refs(&root->root_item, 1); 1298 btrfs_set_root_used(&root->root_item, leaf->len); 1299 btrfs_set_root_last_snapshot(&root->root_item, 0); 1300 btrfs_set_root_dirid(&root->root_item, 0); 1301 if (is_fstree(objectid)) 1302 uuid_le_gen(&uuid); 1303 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1304 root->root_item.drop_level = 0; 1305 1306 key.objectid = objectid; 1307 key.type = BTRFS_ROOT_ITEM_KEY; 1308 key.offset = 0; 1309 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1310 if (ret) 1311 goto fail; 1312 1313 btrfs_tree_unlock(leaf); 1314 1315 return root; 1316 1317 fail: 1318 if (leaf) { 1319 btrfs_tree_unlock(leaf); 1320 free_extent_buffer(root->commit_root); 1321 free_extent_buffer(leaf); 1322 } 1323 kfree(root); 1324 1325 return ERR_PTR(ret); 1326 } 1327 1328 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1329 struct btrfs_fs_info *fs_info) 1330 { 1331 struct btrfs_root *root; 1332 struct extent_buffer *leaf; 1333 1334 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1335 if (!root) 1336 return ERR_PTR(-ENOMEM); 1337 1338 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1339 1340 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1341 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1342 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1343 1344 /* 1345 * DON'T set REF_COWS for log trees 1346 * 1347 * log trees do not get reference counted because they go away 1348 * before a real commit is actually done. They do store pointers 1349 * to file data extents, and those reference counts still get 1350 * updated (along with back refs to the log tree). 1351 */ 1352 1353 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1354 NULL, 0, 0, 0); 1355 if (IS_ERR(leaf)) { 1356 kfree(root); 1357 return ERR_CAST(leaf); 1358 } 1359 1360 root->node = leaf; 1361 1362 btrfs_mark_buffer_dirty(root->node); 1363 btrfs_tree_unlock(root->node); 1364 return root; 1365 } 1366 1367 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1368 struct btrfs_fs_info *fs_info) 1369 { 1370 struct btrfs_root *log_root; 1371 1372 log_root = alloc_log_tree(trans, fs_info); 1373 if (IS_ERR(log_root)) 1374 return PTR_ERR(log_root); 1375 WARN_ON(fs_info->log_root_tree); 1376 fs_info->log_root_tree = log_root; 1377 return 0; 1378 } 1379 1380 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1381 struct btrfs_root *root) 1382 { 1383 struct btrfs_fs_info *fs_info = root->fs_info; 1384 struct btrfs_root *log_root; 1385 struct btrfs_inode_item *inode_item; 1386 1387 log_root = alloc_log_tree(trans, fs_info); 1388 if (IS_ERR(log_root)) 1389 return PTR_ERR(log_root); 1390 1391 log_root->last_trans = trans->transid; 1392 log_root->root_key.offset = root->root_key.objectid; 1393 1394 inode_item = &log_root->root_item.inode; 1395 btrfs_set_stack_inode_generation(inode_item, 1); 1396 btrfs_set_stack_inode_size(inode_item, 3); 1397 btrfs_set_stack_inode_nlink(inode_item, 1); 1398 btrfs_set_stack_inode_nbytes(inode_item, 1399 fs_info->nodesize); 1400 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1401 1402 btrfs_set_root_node(&log_root->root_item, log_root->node); 1403 1404 WARN_ON(root->log_root); 1405 root->log_root = log_root; 1406 root->log_transid = 0; 1407 root->log_transid_committed = -1; 1408 root->last_log_commit = 0; 1409 return 0; 1410 } 1411 1412 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1413 struct btrfs_key *key) 1414 { 1415 struct btrfs_root *root; 1416 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1417 struct btrfs_path *path; 1418 u64 generation; 1419 int ret; 1420 int level; 1421 1422 path = btrfs_alloc_path(); 1423 if (!path) 1424 return ERR_PTR(-ENOMEM); 1425 1426 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1427 if (!root) { 1428 ret = -ENOMEM; 1429 goto alloc_fail; 1430 } 1431 1432 __setup_root(root, fs_info, key->objectid); 1433 1434 ret = btrfs_find_root(tree_root, key, path, 1435 &root->root_item, &root->root_key); 1436 if (ret) { 1437 if (ret > 0) 1438 ret = -ENOENT; 1439 goto find_fail; 1440 } 1441 1442 generation = btrfs_root_generation(&root->root_item); 1443 level = btrfs_root_level(&root->root_item); 1444 root->node = read_tree_block(fs_info, 1445 btrfs_root_bytenr(&root->root_item), 1446 generation, level, NULL); 1447 if (IS_ERR(root->node)) { 1448 ret = PTR_ERR(root->node); 1449 goto find_fail; 1450 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1451 ret = -EIO; 1452 free_extent_buffer(root->node); 1453 goto find_fail; 1454 } 1455 root->commit_root = btrfs_root_node(root); 1456 out: 1457 btrfs_free_path(path); 1458 return root; 1459 1460 find_fail: 1461 kfree(root); 1462 alloc_fail: 1463 root = ERR_PTR(ret); 1464 goto out; 1465 } 1466 1467 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1468 struct btrfs_key *location) 1469 { 1470 struct btrfs_root *root; 1471 1472 root = btrfs_read_tree_root(tree_root, location); 1473 if (IS_ERR(root)) 1474 return root; 1475 1476 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1477 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1478 btrfs_check_and_init_root_item(&root->root_item); 1479 } 1480 1481 return root; 1482 } 1483 1484 int btrfs_init_fs_root(struct btrfs_root *root) 1485 { 1486 int ret; 1487 struct btrfs_subvolume_writers *writers; 1488 1489 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1490 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1491 GFP_NOFS); 1492 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1493 ret = -ENOMEM; 1494 goto fail; 1495 } 1496 1497 writers = btrfs_alloc_subvolume_writers(); 1498 if (IS_ERR(writers)) { 1499 ret = PTR_ERR(writers); 1500 goto fail; 1501 } 1502 root->subv_writers = writers; 1503 1504 btrfs_init_free_ino_ctl(root); 1505 spin_lock_init(&root->ino_cache_lock); 1506 init_waitqueue_head(&root->ino_cache_wait); 1507 1508 ret = get_anon_bdev(&root->anon_dev); 1509 if (ret) 1510 goto fail; 1511 1512 mutex_lock(&root->objectid_mutex); 1513 ret = btrfs_find_highest_objectid(root, 1514 &root->highest_objectid); 1515 if (ret) { 1516 mutex_unlock(&root->objectid_mutex); 1517 goto fail; 1518 } 1519 1520 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1521 1522 mutex_unlock(&root->objectid_mutex); 1523 1524 return 0; 1525 fail: 1526 /* The caller is responsible to call btrfs_free_fs_root */ 1527 return ret; 1528 } 1529 1530 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1531 u64 root_id) 1532 { 1533 struct btrfs_root *root; 1534 1535 spin_lock(&fs_info->fs_roots_radix_lock); 1536 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1537 (unsigned long)root_id); 1538 spin_unlock(&fs_info->fs_roots_radix_lock); 1539 return root; 1540 } 1541 1542 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1543 struct btrfs_root *root) 1544 { 1545 int ret; 1546 1547 ret = radix_tree_preload(GFP_NOFS); 1548 if (ret) 1549 return ret; 1550 1551 spin_lock(&fs_info->fs_roots_radix_lock); 1552 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1553 (unsigned long)root->root_key.objectid, 1554 root); 1555 if (ret == 0) 1556 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1557 spin_unlock(&fs_info->fs_roots_radix_lock); 1558 radix_tree_preload_end(); 1559 1560 return ret; 1561 } 1562 1563 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1564 struct btrfs_key *location, 1565 bool check_ref) 1566 { 1567 struct btrfs_root *root; 1568 struct btrfs_path *path; 1569 struct btrfs_key key; 1570 int ret; 1571 1572 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1573 return fs_info->tree_root; 1574 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1575 return fs_info->extent_root; 1576 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1577 return fs_info->chunk_root; 1578 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1579 return fs_info->dev_root; 1580 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1581 return fs_info->csum_root; 1582 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1583 return fs_info->quota_root ? fs_info->quota_root : 1584 ERR_PTR(-ENOENT); 1585 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1586 return fs_info->uuid_root ? fs_info->uuid_root : 1587 ERR_PTR(-ENOENT); 1588 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1589 return fs_info->free_space_root ? fs_info->free_space_root : 1590 ERR_PTR(-ENOENT); 1591 again: 1592 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1593 if (root) { 1594 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1595 return ERR_PTR(-ENOENT); 1596 return root; 1597 } 1598 1599 root = btrfs_read_fs_root(fs_info->tree_root, location); 1600 if (IS_ERR(root)) 1601 return root; 1602 1603 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1604 ret = -ENOENT; 1605 goto fail; 1606 } 1607 1608 ret = btrfs_init_fs_root(root); 1609 if (ret) 1610 goto fail; 1611 1612 path = btrfs_alloc_path(); 1613 if (!path) { 1614 ret = -ENOMEM; 1615 goto fail; 1616 } 1617 key.objectid = BTRFS_ORPHAN_OBJECTID; 1618 key.type = BTRFS_ORPHAN_ITEM_KEY; 1619 key.offset = location->objectid; 1620 1621 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1622 btrfs_free_path(path); 1623 if (ret < 0) 1624 goto fail; 1625 if (ret == 0) 1626 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1627 1628 ret = btrfs_insert_fs_root(fs_info, root); 1629 if (ret) { 1630 if (ret == -EEXIST) { 1631 btrfs_free_fs_root(root); 1632 goto again; 1633 } 1634 goto fail; 1635 } 1636 return root; 1637 fail: 1638 btrfs_free_fs_root(root); 1639 return ERR_PTR(ret); 1640 } 1641 1642 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1643 { 1644 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1645 int ret = 0; 1646 struct btrfs_device *device; 1647 struct backing_dev_info *bdi; 1648 1649 rcu_read_lock(); 1650 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1651 if (!device->bdev) 1652 continue; 1653 bdi = device->bdev->bd_bdi; 1654 if (bdi_congested(bdi, bdi_bits)) { 1655 ret = 1; 1656 break; 1657 } 1658 } 1659 rcu_read_unlock(); 1660 return ret; 1661 } 1662 1663 /* 1664 * called by the kthread helper functions to finally call the bio end_io 1665 * functions. This is where read checksum verification actually happens 1666 */ 1667 static void end_workqueue_fn(struct btrfs_work *work) 1668 { 1669 struct bio *bio; 1670 struct btrfs_end_io_wq *end_io_wq; 1671 1672 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1673 bio = end_io_wq->bio; 1674 1675 bio->bi_status = end_io_wq->status; 1676 bio->bi_private = end_io_wq->private; 1677 bio->bi_end_io = end_io_wq->end_io; 1678 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1679 bio_endio(bio); 1680 } 1681 1682 static int cleaner_kthread(void *arg) 1683 { 1684 struct btrfs_root *root = arg; 1685 struct btrfs_fs_info *fs_info = root->fs_info; 1686 int again; 1687 1688 while (1) { 1689 again = 0; 1690 1691 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1692 1693 /* Make the cleaner go to sleep early. */ 1694 if (btrfs_need_cleaner_sleep(fs_info)) 1695 goto sleep; 1696 1697 /* 1698 * Do not do anything if we might cause open_ctree() to block 1699 * before we have finished mounting the filesystem. 1700 */ 1701 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1702 goto sleep; 1703 1704 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1705 goto sleep; 1706 1707 /* 1708 * Avoid the problem that we change the status of the fs 1709 * during the above check and trylock. 1710 */ 1711 if (btrfs_need_cleaner_sleep(fs_info)) { 1712 mutex_unlock(&fs_info->cleaner_mutex); 1713 goto sleep; 1714 } 1715 1716 btrfs_run_delayed_iputs(fs_info); 1717 1718 again = btrfs_clean_one_deleted_snapshot(root); 1719 mutex_unlock(&fs_info->cleaner_mutex); 1720 1721 /* 1722 * The defragger has dealt with the R/O remount and umount, 1723 * needn't do anything special here. 1724 */ 1725 btrfs_run_defrag_inodes(fs_info); 1726 1727 /* 1728 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1729 * with relocation (btrfs_relocate_chunk) and relocation 1730 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1731 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1732 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1733 * unused block groups. 1734 */ 1735 btrfs_delete_unused_bgs(fs_info); 1736 sleep: 1737 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1738 if (kthread_should_park()) 1739 kthread_parkme(); 1740 if (kthread_should_stop()) 1741 return 0; 1742 if (!again) { 1743 set_current_state(TASK_INTERRUPTIBLE); 1744 schedule(); 1745 __set_current_state(TASK_RUNNING); 1746 } 1747 } 1748 } 1749 1750 static int transaction_kthread(void *arg) 1751 { 1752 struct btrfs_root *root = arg; 1753 struct btrfs_fs_info *fs_info = root->fs_info; 1754 struct btrfs_trans_handle *trans; 1755 struct btrfs_transaction *cur; 1756 u64 transid; 1757 time64_t now; 1758 unsigned long delay; 1759 bool cannot_commit; 1760 1761 do { 1762 cannot_commit = false; 1763 delay = HZ * fs_info->commit_interval; 1764 mutex_lock(&fs_info->transaction_kthread_mutex); 1765 1766 spin_lock(&fs_info->trans_lock); 1767 cur = fs_info->running_transaction; 1768 if (!cur) { 1769 spin_unlock(&fs_info->trans_lock); 1770 goto sleep; 1771 } 1772 1773 now = ktime_get_seconds(); 1774 if (cur->state < TRANS_STATE_BLOCKED && 1775 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) && 1776 (now < cur->start_time || 1777 now - cur->start_time < fs_info->commit_interval)) { 1778 spin_unlock(&fs_info->trans_lock); 1779 delay = HZ * 5; 1780 goto sleep; 1781 } 1782 transid = cur->transid; 1783 spin_unlock(&fs_info->trans_lock); 1784 1785 /* If the file system is aborted, this will always fail. */ 1786 trans = btrfs_attach_transaction(root); 1787 if (IS_ERR(trans)) { 1788 if (PTR_ERR(trans) != -ENOENT) 1789 cannot_commit = true; 1790 goto sleep; 1791 } 1792 if (transid == trans->transid) { 1793 btrfs_commit_transaction(trans); 1794 } else { 1795 btrfs_end_transaction(trans); 1796 } 1797 sleep: 1798 wake_up_process(fs_info->cleaner_kthread); 1799 mutex_unlock(&fs_info->transaction_kthread_mutex); 1800 1801 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1802 &fs_info->fs_state))) 1803 btrfs_cleanup_transaction(fs_info); 1804 if (!kthread_should_stop() && 1805 (!btrfs_transaction_blocked(fs_info) || 1806 cannot_commit)) 1807 schedule_timeout_interruptible(delay); 1808 } while (!kthread_should_stop()); 1809 return 0; 1810 } 1811 1812 /* 1813 * this will find the highest generation in the array of 1814 * root backups. The index of the highest array is returned, 1815 * or -1 if we can't find anything. 1816 * 1817 * We check to make sure the array is valid by comparing the 1818 * generation of the latest root in the array with the generation 1819 * in the super block. If they don't match we pitch it. 1820 */ 1821 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1822 { 1823 u64 cur; 1824 int newest_index = -1; 1825 struct btrfs_root_backup *root_backup; 1826 int i; 1827 1828 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1829 root_backup = info->super_copy->super_roots + i; 1830 cur = btrfs_backup_tree_root_gen(root_backup); 1831 if (cur == newest_gen) 1832 newest_index = i; 1833 } 1834 1835 /* check to see if we actually wrapped around */ 1836 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1837 root_backup = info->super_copy->super_roots; 1838 cur = btrfs_backup_tree_root_gen(root_backup); 1839 if (cur == newest_gen) 1840 newest_index = 0; 1841 } 1842 return newest_index; 1843 } 1844 1845 1846 /* 1847 * find the oldest backup so we know where to store new entries 1848 * in the backup array. This will set the backup_root_index 1849 * field in the fs_info struct 1850 */ 1851 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1852 u64 newest_gen) 1853 { 1854 int newest_index = -1; 1855 1856 newest_index = find_newest_super_backup(info, newest_gen); 1857 /* if there was garbage in there, just move along */ 1858 if (newest_index == -1) { 1859 info->backup_root_index = 0; 1860 } else { 1861 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1862 } 1863 } 1864 1865 /* 1866 * copy all the root pointers into the super backup array. 1867 * this will bump the backup pointer by one when it is 1868 * done 1869 */ 1870 static void backup_super_roots(struct btrfs_fs_info *info) 1871 { 1872 int next_backup; 1873 struct btrfs_root_backup *root_backup; 1874 int last_backup; 1875 1876 next_backup = info->backup_root_index; 1877 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1878 BTRFS_NUM_BACKUP_ROOTS; 1879 1880 /* 1881 * just overwrite the last backup if we're at the same generation 1882 * this happens only at umount 1883 */ 1884 root_backup = info->super_for_commit->super_roots + last_backup; 1885 if (btrfs_backup_tree_root_gen(root_backup) == 1886 btrfs_header_generation(info->tree_root->node)) 1887 next_backup = last_backup; 1888 1889 root_backup = info->super_for_commit->super_roots + next_backup; 1890 1891 /* 1892 * make sure all of our padding and empty slots get zero filled 1893 * regardless of which ones we use today 1894 */ 1895 memset(root_backup, 0, sizeof(*root_backup)); 1896 1897 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1898 1899 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1900 btrfs_set_backup_tree_root_gen(root_backup, 1901 btrfs_header_generation(info->tree_root->node)); 1902 1903 btrfs_set_backup_tree_root_level(root_backup, 1904 btrfs_header_level(info->tree_root->node)); 1905 1906 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1907 btrfs_set_backup_chunk_root_gen(root_backup, 1908 btrfs_header_generation(info->chunk_root->node)); 1909 btrfs_set_backup_chunk_root_level(root_backup, 1910 btrfs_header_level(info->chunk_root->node)); 1911 1912 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1913 btrfs_set_backup_extent_root_gen(root_backup, 1914 btrfs_header_generation(info->extent_root->node)); 1915 btrfs_set_backup_extent_root_level(root_backup, 1916 btrfs_header_level(info->extent_root->node)); 1917 1918 /* 1919 * we might commit during log recovery, which happens before we set 1920 * the fs_root. Make sure it is valid before we fill it in. 1921 */ 1922 if (info->fs_root && info->fs_root->node) { 1923 btrfs_set_backup_fs_root(root_backup, 1924 info->fs_root->node->start); 1925 btrfs_set_backup_fs_root_gen(root_backup, 1926 btrfs_header_generation(info->fs_root->node)); 1927 btrfs_set_backup_fs_root_level(root_backup, 1928 btrfs_header_level(info->fs_root->node)); 1929 } 1930 1931 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1932 btrfs_set_backup_dev_root_gen(root_backup, 1933 btrfs_header_generation(info->dev_root->node)); 1934 btrfs_set_backup_dev_root_level(root_backup, 1935 btrfs_header_level(info->dev_root->node)); 1936 1937 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1938 btrfs_set_backup_csum_root_gen(root_backup, 1939 btrfs_header_generation(info->csum_root->node)); 1940 btrfs_set_backup_csum_root_level(root_backup, 1941 btrfs_header_level(info->csum_root->node)); 1942 1943 btrfs_set_backup_total_bytes(root_backup, 1944 btrfs_super_total_bytes(info->super_copy)); 1945 btrfs_set_backup_bytes_used(root_backup, 1946 btrfs_super_bytes_used(info->super_copy)); 1947 btrfs_set_backup_num_devices(root_backup, 1948 btrfs_super_num_devices(info->super_copy)); 1949 1950 /* 1951 * if we don't copy this out to the super_copy, it won't get remembered 1952 * for the next commit 1953 */ 1954 memcpy(&info->super_copy->super_roots, 1955 &info->super_for_commit->super_roots, 1956 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1957 } 1958 1959 /* 1960 * this copies info out of the root backup array and back into 1961 * the in-memory super block. It is meant to help iterate through 1962 * the array, so you send it the number of backups you've already 1963 * tried and the last backup index you used. 1964 * 1965 * this returns -1 when it has tried all the backups 1966 */ 1967 static noinline int next_root_backup(struct btrfs_fs_info *info, 1968 struct btrfs_super_block *super, 1969 int *num_backups_tried, int *backup_index) 1970 { 1971 struct btrfs_root_backup *root_backup; 1972 int newest = *backup_index; 1973 1974 if (*num_backups_tried == 0) { 1975 u64 gen = btrfs_super_generation(super); 1976 1977 newest = find_newest_super_backup(info, gen); 1978 if (newest == -1) 1979 return -1; 1980 1981 *backup_index = newest; 1982 *num_backups_tried = 1; 1983 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1984 /* we've tried all the backups, all done */ 1985 return -1; 1986 } else { 1987 /* jump to the next oldest backup */ 1988 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1989 BTRFS_NUM_BACKUP_ROOTS; 1990 *backup_index = newest; 1991 *num_backups_tried += 1; 1992 } 1993 root_backup = super->super_roots + newest; 1994 1995 btrfs_set_super_generation(super, 1996 btrfs_backup_tree_root_gen(root_backup)); 1997 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1998 btrfs_set_super_root_level(super, 1999 btrfs_backup_tree_root_level(root_backup)); 2000 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2001 2002 /* 2003 * fixme: the total bytes and num_devices need to match or we should 2004 * need a fsck 2005 */ 2006 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2007 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2008 return 0; 2009 } 2010 2011 /* helper to cleanup workers */ 2012 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2013 { 2014 btrfs_destroy_workqueue(fs_info->fixup_workers); 2015 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2016 btrfs_destroy_workqueue(fs_info->workers); 2017 btrfs_destroy_workqueue(fs_info->endio_workers); 2018 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2019 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2020 btrfs_destroy_workqueue(fs_info->rmw_workers); 2021 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2022 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2023 btrfs_destroy_workqueue(fs_info->submit_workers); 2024 btrfs_destroy_workqueue(fs_info->delayed_workers); 2025 btrfs_destroy_workqueue(fs_info->caching_workers); 2026 btrfs_destroy_workqueue(fs_info->readahead_workers); 2027 btrfs_destroy_workqueue(fs_info->flush_workers); 2028 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2029 btrfs_destroy_workqueue(fs_info->extent_workers); 2030 /* 2031 * Now that all other work queues are destroyed, we can safely destroy 2032 * the queues used for metadata I/O, since tasks from those other work 2033 * queues can do metadata I/O operations. 2034 */ 2035 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2036 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2037 } 2038 2039 static void free_root_extent_buffers(struct btrfs_root *root) 2040 { 2041 if (root) { 2042 free_extent_buffer(root->node); 2043 free_extent_buffer(root->commit_root); 2044 root->node = NULL; 2045 root->commit_root = NULL; 2046 } 2047 } 2048 2049 /* helper to cleanup tree roots */ 2050 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2051 { 2052 free_root_extent_buffers(info->tree_root); 2053 2054 free_root_extent_buffers(info->dev_root); 2055 free_root_extent_buffers(info->extent_root); 2056 free_root_extent_buffers(info->csum_root); 2057 free_root_extent_buffers(info->quota_root); 2058 free_root_extent_buffers(info->uuid_root); 2059 if (chunk_root) 2060 free_root_extent_buffers(info->chunk_root); 2061 free_root_extent_buffers(info->free_space_root); 2062 } 2063 2064 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2065 { 2066 int ret; 2067 struct btrfs_root *gang[8]; 2068 int i; 2069 2070 while (!list_empty(&fs_info->dead_roots)) { 2071 gang[0] = list_entry(fs_info->dead_roots.next, 2072 struct btrfs_root, root_list); 2073 list_del(&gang[0]->root_list); 2074 2075 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2076 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2077 } else { 2078 free_extent_buffer(gang[0]->node); 2079 free_extent_buffer(gang[0]->commit_root); 2080 btrfs_put_fs_root(gang[0]); 2081 } 2082 } 2083 2084 while (1) { 2085 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2086 (void **)gang, 0, 2087 ARRAY_SIZE(gang)); 2088 if (!ret) 2089 break; 2090 for (i = 0; i < ret; i++) 2091 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2092 } 2093 2094 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2095 btrfs_free_log_root_tree(NULL, fs_info); 2096 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 2097 } 2098 } 2099 2100 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2101 { 2102 mutex_init(&fs_info->scrub_lock); 2103 atomic_set(&fs_info->scrubs_running, 0); 2104 atomic_set(&fs_info->scrub_pause_req, 0); 2105 atomic_set(&fs_info->scrubs_paused, 0); 2106 atomic_set(&fs_info->scrub_cancel_req, 0); 2107 init_waitqueue_head(&fs_info->scrub_pause_wait); 2108 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2109 } 2110 2111 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2112 { 2113 spin_lock_init(&fs_info->balance_lock); 2114 mutex_init(&fs_info->balance_mutex); 2115 atomic_set(&fs_info->balance_pause_req, 0); 2116 atomic_set(&fs_info->balance_cancel_req, 0); 2117 fs_info->balance_ctl = NULL; 2118 init_waitqueue_head(&fs_info->balance_wait_q); 2119 } 2120 2121 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2122 { 2123 struct inode *inode = fs_info->btree_inode; 2124 2125 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2126 set_nlink(inode, 1); 2127 /* 2128 * we set the i_size on the btree inode to the max possible int. 2129 * the real end of the address space is determined by all of 2130 * the devices in the system 2131 */ 2132 inode->i_size = OFFSET_MAX; 2133 inode->i_mapping->a_ops = &btree_aops; 2134 2135 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2136 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2137 IO_TREE_INODE_IO, inode); 2138 BTRFS_I(inode)->io_tree.track_uptodate = false; 2139 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2140 2141 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2142 2143 BTRFS_I(inode)->root = fs_info->tree_root; 2144 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2145 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2146 btrfs_insert_inode_hash(inode); 2147 } 2148 2149 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2150 { 2151 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2152 init_rwsem(&fs_info->dev_replace.rwsem); 2153 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2154 } 2155 2156 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2157 { 2158 spin_lock_init(&fs_info->qgroup_lock); 2159 mutex_init(&fs_info->qgroup_ioctl_lock); 2160 fs_info->qgroup_tree = RB_ROOT; 2161 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2162 fs_info->qgroup_seq = 1; 2163 fs_info->qgroup_ulist = NULL; 2164 fs_info->qgroup_rescan_running = false; 2165 mutex_init(&fs_info->qgroup_rescan_lock); 2166 } 2167 2168 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2169 struct btrfs_fs_devices *fs_devices) 2170 { 2171 u32 max_active = fs_info->thread_pool_size; 2172 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2173 2174 fs_info->workers = 2175 btrfs_alloc_workqueue(fs_info, "worker", 2176 flags | WQ_HIGHPRI, max_active, 16); 2177 2178 fs_info->delalloc_workers = 2179 btrfs_alloc_workqueue(fs_info, "delalloc", 2180 flags, max_active, 2); 2181 2182 fs_info->flush_workers = 2183 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2184 flags, max_active, 0); 2185 2186 fs_info->caching_workers = 2187 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2188 2189 /* 2190 * a higher idle thresh on the submit workers makes it much more 2191 * likely that bios will be send down in a sane order to the 2192 * devices 2193 */ 2194 fs_info->submit_workers = 2195 btrfs_alloc_workqueue(fs_info, "submit", flags, 2196 min_t(u64, fs_devices->num_devices, 2197 max_active), 64); 2198 2199 fs_info->fixup_workers = 2200 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2201 2202 /* 2203 * endios are largely parallel and should have a very 2204 * low idle thresh 2205 */ 2206 fs_info->endio_workers = 2207 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2208 fs_info->endio_meta_workers = 2209 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2210 max_active, 4); 2211 fs_info->endio_meta_write_workers = 2212 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2213 max_active, 2); 2214 fs_info->endio_raid56_workers = 2215 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2216 max_active, 4); 2217 fs_info->endio_repair_workers = 2218 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2219 fs_info->rmw_workers = 2220 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2221 fs_info->endio_write_workers = 2222 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2223 max_active, 2); 2224 fs_info->endio_freespace_worker = 2225 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2226 max_active, 0); 2227 fs_info->delayed_workers = 2228 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2229 max_active, 0); 2230 fs_info->readahead_workers = 2231 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2232 max_active, 2); 2233 fs_info->qgroup_rescan_workers = 2234 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2235 fs_info->extent_workers = 2236 btrfs_alloc_workqueue(fs_info, "extent-refs", flags, 2237 min_t(u64, fs_devices->num_devices, 2238 max_active), 8); 2239 2240 if (!(fs_info->workers && fs_info->delalloc_workers && 2241 fs_info->submit_workers && fs_info->flush_workers && 2242 fs_info->endio_workers && fs_info->endio_meta_workers && 2243 fs_info->endio_meta_write_workers && 2244 fs_info->endio_repair_workers && 2245 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2246 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2247 fs_info->caching_workers && fs_info->readahead_workers && 2248 fs_info->fixup_workers && fs_info->delayed_workers && 2249 fs_info->extent_workers && 2250 fs_info->qgroup_rescan_workers)) { 2251 return -ENOMEM; 2252 } 2253 2254 return 0; 2255 } 2256 2257 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2258 { 2259 struct crypto_shash *csum_shash; 2260 const char *csum_name = btrfs_super_csum_name(csum_type); 2261 2262 csum_shash = crypto_alloc_shash(csum_name, 0, 0); 2263 2264 if (IS_ERR(csum_shash)) { 2265 btrfs_err(fs_info, "error allocating %s hash for checksum", 2266 csum_name); 2267 return PTR_ERR(csum_shash); 2268 } 2269 2270 fs_info->csum_shash = csum_shash; 2271 2272 return 0; 2273 } 2274 2275 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 2276 { 2277 crypto_free_shash(fs_info->csum_shash); 2278 } 2279 2280 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2281 struct btrfs_fs_devices *fs_devices) 2282 { 2283 int ret; 2284 struct btrfs_root *log_tree_root; 2285 struct btrfs_super_block *disk_super = fs_info->super_copy; 2286 u64 bytenr = btrfs_super_log_root(disk_super); 2287 int level = btrfs_super_log_root_level(disk_super); 2288 2289 if (fs_devices->rw_devices == 0) { 2290 btrfs_warn(fs_info, "log replay required on RO media"); 2291 return -EIO; 2292 } 2293 2294 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2295 if (!log_tree_root) 2296 return -ENOMEM; 2297 2298 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2299 2300 log_tree_root->node = read_tree_block(fs_info, bytenr, 2301 fs_info->generation + 1, 2302 level, NULL); 2303 if (IS_ERR(log_tree_root->node)) { 2304 btrfs_warn(fs_info, "failed to read log tree"); 2305 ret = PTR_ERR(log_tree_root->node); 2306 kfree(log_tree_root); 2307 return ret; 2308 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2309 btrfs_err(fs_info, "failed to read log tree"); 2310 free_extent_buffer(log_tree_root->node); 2311 kfree(log_tree_root); 2312 return -EIO; 2313 } 2314 /* returns with log_tree_root freed on success */ 2315 ret = btrfs_recover_log_trees(log_tree_root); 2316 if (ret) { 2317 btrfs_handle_fs_error(fs_info, ret, 2318 "Failed to recover log tree"); 2319 free_extent_buffer(log_tree_root->node); 2320 kfree(log_tree_root); 2321 return ret; 2322 } 2323 2324 if (sb_rdonly(fs_info->sb)) { 2325 ret = btrfs_commit_super(fs_info); 2326 if (ret) 2327 return ret; 2328 } 2329 2330 return 0; 2331 } 2332 2333 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2334 { 2335 struct btrfs_root *tree_root = fs_info->tree_root; 2336 struct btrfs_root *root; 2337 struct btrfs_key location; 2338 int ret; 2339 2340 BUG_ON(!fs_info->tree_root); 2341 2342 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2343 location.type = BTRFS_ROOT_ITEM_KEY; 2344 location.offset = 0; 2345 2346 root = btrfs_read_tree_root(tree_root, &location); 2347 if (IS_ERR(root)) { 2348 ret = PTR_ERR(root); 2349 goto out; 2350 } 2351 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2352 fs_info->extent_root = root; 2353 2354 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2355 root = btrfs_read_tree_root(tree_root, &location); 2356 if (IS_ERR(root)) { 2357 ret = PTR_ERR(root); 2358 goto out; 2359 } 2360 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2361 fs_info->dev_root = root; 2362 btrfs_init_devices_late(fs_info); 2363 2364 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2365 root = btrfs_read_tree_root(tree_root, &location); 2366 if (IS_ERR(root)) { 2367 ret = PTR_ERR(root); 2368 goto out; 2369 } 2370 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2371 fs_info->csum_root = root; 2372 2373 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2374 root = btrfs_read_tree_root(tree_root, &location); 2375 if (!IS_ERR(root)) { 2376 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2377 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2378 fs_info->quota_root = root; 2379 } 2380 2381 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2382 root = btrfs_read_tree_root(tree_root, &location); 2383 if (IS_ERR(root)) { 2384 ret = PTR_ERR(root); 2385 if (ret != -ENOENT) 2386 goto out; 2387 } else { 2388 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2389 fs_info->uuid_root = root; 2390 } 2391 2392 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2393 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2394 root = btrfs_read_tree_root(tree_root, &location); 2395 if (IS_ERR(root)) { 2396 ret = PTR_ERR(root); 2397 goto out; 2398 } 2399 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2400 fs_info->free_space_root = root; 2401 } 2402 2403 return 0; 2404 out: 2405 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2406 location.objectid, ret); 2407 return ret; 2408 } 2409 2410 /* 2411 * Real super block validation 2412 * NOTE: super csum type and incompat features will not be checked here. 2413 * 2414 * @sb: super block to check 2415 * @mirror_num: the super block number to check its bytenr: 2416 * 0 the primary (1st) sb 2417 * 1, 2 2nd and 3rd backup copy 2418 * -1 skip bytenr check 2419 */ 2420 static int validate_super(struct btrfs_fs_info *fs_info, 2421 struct btrfs_super_block *sb, int mirror_num) 2422 { 2423 u64 nodesize = btrfs_super_nodesize(sb); 2424 u64 sectorsize = btrfs_super_sectorsize(sb); 2425 int ret = 0; 2426 2427 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2428 btrfs_err(fs_info, "no valid FS found"); 2429 ret = -EINVAL; 2430 } 2431 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2432 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2433 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2434 ret = -EINVAL; 2435 } 2436 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2437 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2438 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2439 ret = -EINVAL; 2440 } 2441 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2442 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2443 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2444 ret = -EINVAL; 2445 } 2446 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2447 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2448 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2449 ret = -EINVAL; 2450 } 2451 2452 /* 2453 * Check sectorsize and nodesize first, other check will need it. 2454 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2455 */ 2456 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2457 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2458 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2459 ret = -EINVAL; 2460 } 2461 /* Only PAGE SIZE is supported yet */ 2462 if (sectorsize != PAGE_SIZE) { 2463 btrfs_err(fs_info, 2464 "sectorsize %llu not supported yet, only support %lu", 2465 sectorsize, PAGE_SIZE); 2466 ret = -EINVAL; 2467 } 2468 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2469 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2470 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2471 ret = -EINVAL; 2472 } 2473 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2474 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2475 le32_to_cpu(sb->__unused_leafsize), nodesize); 2476 ret = -EINVAL; 2477 } 2478 2479 /* Root alignment check */ 2480 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2481 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2482 btrfs_super_root(sb)); 2483 ret = -EINVAL; 2484 } 2485 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2486 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2487 btrfs_super_chunk_root(sb)); 2488 ret = -EINVAL; 2489 } 2490 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2491 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2492 btrfs_super_log_root(sb)); 2493 ret = -EINVAL; 2494 } 2495 2496 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2497 BTRFS_FSID_SIZE) != 0) { 2498 btrfs_err(fs_info, 2499 "dev_item UUID does not match metadata fsid: %pU != %pU", 2500 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2501 ret = -EINVAL; 2502 } 2503 2504 /* 2505 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2506 * done later 2507 */ 2508 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2509 btrfs_err(fs_info, "bytes_used is too small %llu", 2510 btrfs_super_bytes_used(sb)); 2511 ret = -EINVAL; 2512 } 2513 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2514 btrfs_err(fs_info, "invalid stripesize %u", 2515 btrfs_super_stripesize(sb)); 2516 ret = -EINVAL; 2517 } 2518 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2519 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2520 btrfs_super_num_devices(sb)); 2521 if (btrfs_super_num_devices(sb) == 0) { 2522 btrfs_err(fs_info, "number of devices is 0"); 2523 ret = -EINVAL; 2524 } 2525 2526 if (mirror_num >= 0 && 2527 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2528 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2529 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2530 ret = -EINVAL; 2531 } 2532 2533 /* 2534 * Obvious sys_chunk_array corruptions, it must hold at least one key 2535 * and one chunk 2536 */ 2537 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2538 btrfs_err(fs_info, "system chunk array too big %u > %u", 2539 btrfs_super_sys_array_size(sb), 2540 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2541 ret = -EINVAL; 2542 } 2543 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2544 + sizeof(struct btrfs_chunk)) { 2545 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2546 btrfs_super_sys_array_size(sb), 2547 sizeof(struct btrfs_disk_key) 2548 + sizeof(struct btrfs_chunk)); 2549 ret = -EINVAL; 2550 } 2551 2552 /* 2553 * The generation is a global counter, we'll trust it more than the others 2554 * but it's still possible that it's the one that's wrong. 2555 */ 2556 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2557 btrfs_warn(fs_info, 2558 "suspicious: generation < chunk_root_generation: %llu < %llu", 2559 btrfs_super_generation(sb), 2560 btrfs_super_chunk_root_generation(sb)); 2561 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2562 && btrfs_super_cache_generation(sb) != (u64)-1) 2563 btrfs_warn(fs_info, 2564 "suspicious: generation < cache_generation: %llu < %llu", 2565 btrfs_super_generation(sb), 2566 btrfs_super_cache_generation(sb)); 2567 2568 return ret; 2569 } 2570 2571 /* 2572 * Validation of super block at mount time. 2573 * Some checks already done early at mount time, like csum type and incompat 2574 * flags will be skipped. 2575 */ 2576 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2577 { 2578 return validate_super(fs_info, fs_info->super_copy, 0); 2579 } 2580 2581 /* 2582 * Validation of super block at write time. 2583 * Some checks like bytenr check will be skipped as their values will be 2584 * overwritten soon. 2585 * Extra checks like csum type and incompat flags will be done here. 2586 */ 2587 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2588 struct btrfs_super_block *sb) 2589 { 2590 int ret; 2591 2592 ret = validate_super(fs_info, sb, -1); 2593 if (ret < 0) 2594 goto out; 2595 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2596 ret = -EUCLEAN; 2597 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2598 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2599 goto out; 2600 } 2601 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2602 ret = -EUCLEAN; 2603 btrfs_err(fs_info, 2604 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2605 btrfs_super_incompat_flags(sb), 2606 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2607 goto out; 2608 } 2609 out: 2610 if (ret < 0) 2611 btrfs_err(fs_info, 2612 "super block corruption detected before writing it to disk"); 2613 return ret; 2614 } 2615 2616 int open_ctree(struct super_block *sb, 2617 struct btrfs_fs_devices *fs_devices, 2618 char *options) 2619 { 2620 u32 sectorsize; 2621 u32 nodesize; 2622 u32 stripesize; 2623 u64 generation; 2624 u64 features; 2625 u16 csum_type; 2626 struct btrfs_key location; 2627 struct buffer_head *bh; 2628 struct btrfs_super_block *disk_super; 2629 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2630 struct btrfs_root *tree_root; 2631 struct btrfs_root *chunk_root; 2632 int ret; 2633 int err = -EINVAL; 2634 int num_backups_tried = 0; 2635 int backup_index = 0; 2636 int clear_free_space_tree = 0; 2637 int level; 2638 2639 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2640 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2641 if (!tree_root || !chunk_root) { 2642 err = -ENOMEM; 2643 goto fail; 2644 } 2645 2646 ret = init_srcu_struct(&fs_info->subvol_srcu); 2647 if (ret) { 2648 err = ret; 2649 goto fail; 2650 } 2651 2652 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL); 2653 if (ret) { 2654 err = ret; 2655 goto fail_srcu; 2656 } 2657 2658 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2659 if (ret) { 2660 err = ret; 2661 goto fail_dio_bytes; 2662 } 2663 fs_info->dirty_metadata_batch = PAGE_SIZE * 2664 (1 + ilog2(nr_cpu_ids)); 2665 2666 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2667 if (ret) { 2668 err = ret; 2669 goto fail_dirty_metadata_bytes; 2670 } 2671 2672 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2673 GFP_KERNEL); 2674 if (ret) { 2675 err = ret; 2676 goto fail_delalloc_bytes; 2677 } 2678 2679 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2680 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2681 INIT_LIST_HEAD(&fs_info->trans_list); 2682 INIT_LIST_HEAD(&fs_info->dead_roots); 2683 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2684 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2685 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2686 spin_lock_init(&fs_info->delalloc_root_lock); 2687 spin_lock_init(&fs_info->trans_lock); 2688 spin_lock_init(&fs_info->fs_roots_radix_lock); 2689 spin_lock_init(&fs_info->delayed_iput_lock); 2690 spin_lock_init(&fs_info->defrag_inodes_lock); 2691 spin_lock_init(&fs_info->tree_mod_seq_lock); 2692 spin_lock_init(&fs_info->super_lock); 2693 spin_lock_init(&fs_info->buffer_lock); 2694 spin_lock_init(&fs_info->unused_bgs_lock); 2695 rwlock_init(&fs_info->tree_mod_log_lock); 2696 mutex_init(&fs_info->unused_bg_unpin_mutex); 2697 mutex_init(&fs_info->delete_unused_bgs_mutex); 2698 mutex_init(&fs_info->reloc_mutex); 2699 mutex_init(&fs_info->delalloc_root_mutex); 2700 seqlock_init(&fs_info->profiles_lock); 2701 2702 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2703 INIT_LIST_HEAD(&fs_info->space_info); 2704 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2705 INIT_LIST_HEAD(&fs_info->unused_bgs); 2706 extent_map_tree_init(&fs_info->mapping_tree); 2707 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2708 BTRFS_BLOCK_RSV_GLOBAL); 2709 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2710 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2711 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2712 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2713 BTRFS_BLOCK_RSV_DELOPS); 2714 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2715 BTRFS_BLOCK_RSV_DELREFS); 2716 2717 atomic_set(&fs_info->async_delalloc_pages, 0); 2718 atomic_set(&fs_info->defrag_running, 0); 2719 atomic_set(&fs_info->reada_works_cnt, 0); 2720 atomic_set(&fs_info->nr_delayed_iputs, 0); 2721 atomic64_set(&fs_info->tree_mod_seq, 0); 2722 fs_info->sb = sb; 2723 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2724 fs_info->metadata_ratio = 0; 2725 fs_info->defrag_inodes = RB_ROOT; 2726 atomic64_set(&fs_info->free_chunk_space, 0); 2727 fs_info->tree_mod_log = RB_ROOT; 2728 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2729 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2730 /* readahead state */ 2731 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2732 spin_lock_init(&fs_info->reada_lock); 2733 btrfs_init_ref_verify(fs_info); 2734 2735 fs_info->thread_pool_size = min_t(unsigned long, 2736 num_online_cpus() + 2, 8); 2737 2738 INIT_LIST_HEAD(&fs_info->ordered_roots); 2739 spin_lock_init(&fs_info->ordered_root_lock); 2740 2741 fs_info->btree_inode = new_inode(sb); 2742 if (!fs_info->btree_inode) { 2743 err = -ENOMEM; 2744 goto fail_bio_counter; 2745 } 2746 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2747 2748 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2749 GFP_KERNEL); 2750 if (!fs_info->delayed_root) { 2751 err = -ENOMEM; 2752 goto fail_iput; 2753 } 2754 btrfs_init_delayed_root(fs_info->delayed_root); 2755 2756 btrfs_init_scrub(fs_info); 2757 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2758 fs_info->check_integrity_print_mask = 0; 2759 #endif 2760 btrfs_init_balance(fs_info); 2761 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2762 2763 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2764 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2765 2766 btrfs_init_btree_inode(fs_info); 2767 2768 spin_lock_init(&fs_info->block_group_cache_lock); 2769 fs_info->block_group_cache_tree = RB_ROOT; 2770 fs_info->first_logical_byte = (u64)-1; 2771 2772 extent_io_tree_init(fs_info, &fs_info->freed_extents[0], 2773 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL); 2774 extent_io_tree_init(fs_info, &fs_info->freed_extents[1], 2775 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL); 2776 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2777 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2778 2779 mutex_init(&fs_info->ordered_operations_mutex); 2780 mutex_init(&fs_info->tree_log_mutex); 2781 mutex_init(&fs_info->chunk_mutex); 2782 mutex_init(&fs_info->transaction_kthread_mutex); 2783 mutex_init(&fs_info->cleaner_mutex); 2784 mutex_init(&fs_info->ro_block_group_mutex); 2785 init_rwsem(&fs_info->commit_root_sem); 2786 init_rwsem(&fs_info->cleanup_work_sem); 2787 init_rwsem(&fs_info->subvol_sem); 2788 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2789 2790 btrfs_init_dev_replace_locks(fs_info); 2791 btrfs_init_qgroup(fs_info); 2792 2793 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2794 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2795 2796 init_waitqueue_head(&fs_info->transaction_throttle); 2797 init_waitqueue_head(&fs_info->transaction_wait); 2798 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2799 init_waitqueue_head(&fs_info->async_submit_wait); 2800 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2801 2802 /* Usable values until the real ones are cached from the superblock */ 2803 fs_info->nodesize = 4096; 2804 fs_info->sectorsize = 4096; 2805 fs_info->stripesize = 4096; 2806 2807 spin_lock_init(&fs_info->swapfile_pins_lock); 2808 fs_info->swapfile_pins = RB_ROOT; 2809 2810 fs_info->send_in_progress = 0; 2811 2812 ret = btrfs_alloc_stripe_hash_table(fs_info); 2813 if (ret) { 2814 err = ret; 2815 goto fail_alloc; 2816 } 2817 2818 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 2819 2820 invalidate_bdev(fs_devices->latest_bdev); 2821 2822 /* 2823 * Read super block and check the signature bytes only 2824 */ 2825 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2826 if (IS_ERR(bh)) { 2827 err = PTR_ERR(bh); 2828 goto fail_alloc; 2829 } 2830 2831 /* 2832 * Verify the type first, if that or the the checksum value are 2833 * corrupted, we'll find out 2834 */ 2835 csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data); 2836 if (!btrfs_supported_super_csum(csum_type)) { 2837 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 2838 csum_type); 2839 err = -EINVAL; 2840 brelse(bh); 2841 goto fail_alloc; 2842 } 2843 2844 ret = btrfs_init_csum_hash(fs_info, csum_type); 2845 if (ret) { 2846 err = ret; 2847 goto fail_alloc; 2848 } 2849 2850 /* 2851 * We want to check superblock checksum, the type is stored inside. 2852 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2853 */ 2854 if (btrfs_check_super_csum(fs_info, bh->b_data)) { 2855 btrfs_err(fs_info, "superblock checksum mismatch"); 2856 err = -EINVAL; 2857 brelse(bh); 2858 goto fail_csum; 2859 } 2860 2861 /* 2862 * super_copy is zeroed at allocation time and we never touch the 2863 * following bytes up to INFO_SIZE, the checksum is calculated from 2864 * the whole block of INFO_SIZE 2865 */ 2866 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2867 brelse(bh); 2868 2869 disk_super = fs_info->super_copy; 2870 2871 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2872 BTRFS_FSID_SIZE)); 2873 2874 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) { 2875 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid, 2876 fs_info->super_copy->metadata_uuid, 2877 BTRFS_FSID_SIZE)); 2878 } 2879 2880 features = btrfs_super_flags(disk_super); 2881 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 2882 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 2883 btrfs_set_super_flags(disk_super, features); 2884 btrfs_info(fs_info, 2885 "found metadata UUID change in progress flag, clearing"); 2886 } 2887 2888 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2889 sizeof(*fs_info->super_for_commit)); 2890 2891 ret = btrfs_validate_mount_super(fs_info); 2892 if (ret) { 2893 btrfs_err(fs_info, "superblock contains fatal errors"); 2894 err = -EINVAL; 2895 goto fail_csum; 2896 } 2897 2898 if (!btrfs_super_root(disk_super)) 2899 goto fail_csum; 2900 2901 /* check FS state, whether FS is broken. */ 2902 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2903 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2904 2905 /* 2906 * run through our array of backup supers and setup 2907 * our ring pointer to the oldest one 2908 */ 2909 generation = btrfs_super_generation(disk_super); 2910 find_oldest_super_backup(fs_info, generation); 2911 2912 /* 2913 * In the long term, we'll store the compression type in the super 2914 * block, and it'll be used for per file compression control. 2915 */ 2916 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2917 2918 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2919 if (ret) { 2920 err = ret; 2921 goto fail_csum; 2922 } 2923 2924 features = btrfs_super_incompat_flags(disk_super) & 2925 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2926 if (features) { 2927 btrfs_err(fs_info, 2928 "cannot mount because of unsupported optional features (%llx)", 2929 features); 2930 err = -EINVAL; 2931 goto fail_csum; 2932 } 2933 2934 features = btrfs_super_incompat_flags(disk_super); 2935 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2936 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2937 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2938 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 2939 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 2940 2941 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2942 btrfs_info(fs_info, "has skinny extents"); 2943 2944 /* 2945 * flag our filesystem as having big metadata blocks if 2946 * they are bigger than the page size 2947 */ 2948 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2949 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2950 btrfs_info(fs_info, 2951 "flagging fs with big metadata feature"); 2952 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2953 } 2954 2955 nodesize = btrfs_super_nodesize(disk_super); 2956 sectorsize = btrfs_super_sectorsize(disk_super); 2957 stripesize = sectorsize; 2958 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2959 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2960 2961 /* Cache block sizes */ 2962 fs_info->nodesize = nodesize; 2963 fs_info->sectorsize = sectorsize; 2964 fs_info->stripesize = stripesize; 2965 2966 /* 2967 * mixed block groups end up with duplicate but slightly offset 2968 * extent buffers for the same range. It leads to corruptions 2969 */ 2970 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2971 (sectorsize != nodesize)) { 2972 btrfs_err(fs_info, 2973 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2974 nodesize, sectorsize); 2975 goto fail_csum; 2976 } 2977 2978 /* 2979 * Needn't use the lock because there is no other task which will 2980 * update the flag. 2981 */ 2982 btrfs_set_super_incompat_flags(disk_super, features); 2983 2984 features = btrfs_super_compat_ro_flags(disk_super) & 2985 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2986 if (!sb_rdonly(sb) && features) { 2987 btrfs_err(fs_info, 2988 "cannot mount read-write because of unsupported optional features (%llx)", 2989 features); 2990 err = -EINVAL; 2991 goto fail_csum; 2992 } 2993 2994 ret = btrfs_init_workqueues(fs_info, fs_devices); 2995 if (ret) { 2996 err = ret; 2997 goto fail_sb_buffer; 2998 } 2999 3000 sb->s_bdi->congested_fn = btrfs_congested_fn; 3001 sb->s_bdi->congested_data = fs_info; 3002 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 3003 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES; 3004 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3005 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3006 3007 sb->s_blocksize = sectorsize; 3008 sb->s_blocksize_bits = blksize_bits(sectorsize); 3009 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3010 3011 mutex_lock(&fs_info->chunk_mutex); 3012 ret = btrfs_read_sys_array(fs_info); 3013 mutex_unlock(&fs_info->chunk_mutex); 3014 if (ret) { 3015 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3016 goto fail_sb_buffer; 3017 } 3018 3019 generation = btrfs_super_chunk_root_generation(disk_super); 3020 level = btrfs_super_chunk_root_level(disk_super); 3021 3022 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 3023 3024 chunk_root->node = read_tree_block(fs_info, 3025 btrfs_super_chunk_root(disk_super), 3026 generation, level, NULL); 3027 if (IS_ERR(chunk_root->node) || 3028 !extent_buffer_uptodate(chunk_root->node)) { 3029 btrfs_err(fs_info, "failed to read chunk root"); 3030 if (!IS_ERR(chunk_root->node)) 3031 free_extent_buffer(chunk_root->node); 3032 chunk_root->node = NULL; 3033 goto fail_tree_roots; 3034 } 3035 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 3036 chunk_root->commit_root = btrfs_root_node(chunk_root); 3037 3038 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3039 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 3040 3041 ret = btrfs_read_chunk_tree(fs_info); 3042 if (ret) { 3043 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3044 goto fail_tree_roots; 3045 } 3046 3047 /* 3048 * Keep the devid that is marked to be the target device for the 3049 * device replace procedure 3050 */ 3051 btrfs_free_extra_devids(fs_devices, 0); 3052 3053 if (!fs_devices->latest_bdev) { 3054 btrfs_err(fs_info, "failed to read devices"); 3055 goto fail_tree_roots; 3056 } 3057 3058 retry_root_backup: 3059 generation = btrfs_super_generation(disk_super); 3060 level = btrfs_super_root_level(disk_super); 3061 3062 tree_root->node = read_tree_block(fs_info, 3063 btrfs_super_root(disk_super), 3064 generation, level, NULL); 3065 if (IS_ERR(tree_root->node) || 3066 !extent_buffer_uptodate(tree_root->node)) { 3067 btrfs_warn(fs_info, "failed to read tree root"); 3068 if (!IS_ERR(tree_root->node)) 3069 free_extent_buffer(tree_root->node); 3070 tree_root->node = NULL; 3071 goto recovery_tree_root; 3072 } 3073 3074 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 3075 tree_root->commit_root = btrfs_root_node(tree_root); 3076 btrfs_set_root_refs(&tree_root->root_item, 1); 3077 3078 mutex_lock(&tree_root->objectid_mutex); 3079 ret = btrfs_find_highest_objectid(tree_root, 3080 &tree_root->highest_objectid); 3081 if (ret) { 3082 mutex_unlock(&tree_root->objectid_mutex); 3083 goto recovery_tree_root; 3084 } 3085 3086 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 3087 3088 mutex_unlock(&tree_root->objectid_mutex); 3089 3090 ret = btrfs_read_roots(fs_info); 3091 if (ret) 3092 goto recovery_tree_root; 3093 3094 fs_info->generation = generation; 3095 fs_info->last_trans_committed = generation; 3096 3097 ret = btrfs_verify_dev_extents(fs_info); 3098 if (ret) { 3099 btrfs_err(fs_info, 3100 "failed to verify dev extents against chunks: %d", 3101 ret); 3102 goto fail_block_groups; 3103 } 3104 ret = btrfs_recover_balance(fs_info); 3105 if (ret) { 3106 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3107 goto fail_block_groups; 3108 } 3109 3110 ret = btrfs_init_dev_stats(fs_info); 3111 if (ret) { 3112 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3113 goto fail_block_groups; 3114 } 3115 3116 ret = btrfs_init_dev_replace(fs_info); 3117 if (ret) { 3118 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3119 goto fail_block_groups; 3120 } 3121 3122 btrfs_free_extra_devids(fs_devices, 1); 3123 3124 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 3125 if (ret) { 3126 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3127 ret); 3128 goto fail_block_groups; 3129 } 3130 3131 ret = btrfs_sysfs_add_device(fs_devices); 3132 if (ret) { 3133 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 3134 ret); 3135 goto fail_fsdev_sysfs; 3136 } 3137 3138 ret = btrfs_sysfs_add_mounted(fs_info); 3139 if (ret) { 3140 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3141 goto fail_fsdev_sysfs; 3142 } 3143 3144 ret = btrfs_init_space_info(fs_info); 3145 if (ret) { 3146 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3147 goto fail_sysfs; 3148 } 3149 3150 ret = btrfs_read_block_groups(fs_info); 3151 if (ret) { 3152 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3153 goto fail_sysfs; 3154 } 3155 3156 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 3157 btrfs_warn(fs_info, 3158 "writable mount is not allowed due to too many missing devices"); 3159 goto fail_sysfs; 3160 } 3161 3162 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3163 "btrfs-cleaner"); 3164 if (IS_ERR(fs_info->cleaner_kthread)) 3165 goto fail_sysfs; 3166 3167 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3168 tree_root, 3169 "btrfs-transaction"); 3170 if (IS_ERR(fs_info->transaction_kthread)) 3171 goto fail_cleaner; 3172 3173 if (!btrfs_test_opt(fs_info, NOSSD) && 3174 !fs_info->fs_devices->rotating) { 3175 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3176 } 3177 3178 /* 3179 * Mount does not set all options immediately, we can do it now and do 3180 * not have to wait for transaction commit 3181 */ 3182 btrfs_apply_pending_changes(fs_info); 3183 3184 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3185 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3186 ret = btrfsic_mount(fs_info, fs_devices, 3187 btrfs_test_opt(fs_info, 3188 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3189 1 : 0, 3190 fs_info->check_integrity_print_mask); 3191 if (ret) 3192 btrfs_warn(fs_info, 3193 "failed to initialize integrity check module: %d", 3194 ret); 3195 } 3196 #endif 3197 ret = btrfs_read_qgroup_config(fs_info); 3198 if (ret) 3199 goto fail_trans_kthread; 3200 3201 if (btrfs_build_ref_tree(fs_info)) 3202 btrfs_err(fs_info, "couldn't build ref tree"); 3203 3204 /* do not make disk changes in broken FS or nologreplay is given */ 3205 if (btrfs_super_log_root(disk_super) != 0 && 3206 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3207 ret = btrfs_replay_log(fs_info, fs_devices); 3208 if (ret) { 3209 err = ret; 3210 goto fail_qgroup; 3211 } 3212 } 3213 3214 ret = btrfs_find_orphan_roots(fs_info); 3215 if (ret) 3216 goto fail_qgroup; 3217 3218 if (!sb_rdonly(sb)) { 3219 ret = btrfs_cleanup_fs_roots(fs_info); 3220 if (ret) 3221 goto fail_qgroup; 3222 3223 mutex_lock(&fs_info->cleaner_mutex); 3224 ret = btrfs_recover_relocation(tree_root); 3225 mutex_unlock(&fs_info->cleaner_mutex); 3226 if (ret < 0) { 3227 btrfs_warn(fs_info, "failed to recover relocation: %d", 3228 ret); 3229 err = -EINVAL; 3230 goto fail_qgroup; 3231 } 3232 } 3233 3234 location.objectid = BTRFS_FS_TREE_OBJECTID; 3235 location.type = BTRFS_ROOT_ITEM_KEY; 3236 location.offset = 0; 3237 3238 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3239 if (IS_ERR(fs_info->fs_root)) { 3240 err = PTR_ERR(fs_info->fs_root); 3241 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3242 goto fail_qgroup; 3243 } 3244 3245 if (sb_rdonly(sb)) 3246 return 0; 3247 3248 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3249 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3250 clear_free_space_tree = 1; 3251 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3252 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3253 btrfs_warn(fs_info, "free space tree is invalid"); 3254 clear_free_space_tree = 1; 3255 } 3256 3257 if (clear_free_space_tree) { 3258 btrfs_info(fs_info, "clearing free space tree"); 3259 ret = btrfs_clear_free_space_tree(fs_info); 3260 if (ret) { 3261 btrfs_warn(fs_info, 3262 "failed to clear free space tree: %d", ret); 3263 close_ctree(fs_info); 3264 return ret; 3265 } 3266 } 3267 3268 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3269 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3270 btrfs_info(fs_info, "creating free space tree"); 3271 ret = btrfs_create_free_space_tree(fs_info); 3272 if (ret) { 3273 btrfs_warn(fs_info, 3274 "failed to create free space tree: %d", ret); 3275 close_ctree(fs_info); 3276 return ret; 3277 } 3278 } 3279 3280 down_read(&fs_info->cleanup_work_sem); 3281 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3282 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3283 up_read(&fs_info->cleanup_work_sem); 3284 close_ctree(fs_info); 3285 return ret; 3286 } 3287 up_read(&fs_info->cleanup_work_sem); 3288 3289 ret = btrfs_resume_balance_async(fs_info); 3290 if (ret) { 3291 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3292 close_ctree(fs_info); 3293 return ret; 3294 } 3295 3296 ret = btrfs_resume_dev_replace_async(fs_info); 3297 if (ret) { 3298 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3299 close_ctree(fs_info); 3300 return ret; 3301 } 3302 3303 btrfs_qgroup_rescan_resume(fs_info); 3304 3305 if (!fs_info->uuid_root) { 3306 btrfs_info(fs_info, "creating UUID tree"); 3307 ret = btrfs_create_uuid_tree(fs_info); 3308 if (ret) { 3309 btrfs_warn(fs_info, 3310 "failed to create the UUID tree: %d", ret); 3311 close_ctree(fs_info); 3312 return ret; 3313 } 3314 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3315 fs_info->generation != 3316 btrfs_super_uuid_tree_generation(disk_super)) { 3317 btrfs_info(fs_info, "checking UUID tree"); 3318 ret = btrfs_check_uuid_tree(fs_info); 3319 if (ret) { 3320 btrfs_warn(fs_info, 3321 "failed to check the UUID tree: %d", ret); 3322 close_ctree(fs_info); 3323 return ret; 3324 } 3325 } else { 3326 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3327 } 3328 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3329 3330 /* 3331 * backuproot only affect mount behavior, and if open_ctree succeeded, 3332 * no need to keep the flag 3333 */ 3334 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3335 3336 return 0; 3337 3338 fail_qgroup: 3339 btrfs_free_qgroup_config(fs_info); 3340 fail_trans_kthread: 3341 kthread_stop(fs_info->transaction_kthread); 3342 btrfs_cleanup_transaction(fs_info); 3343 btrfs_free_fs_roots(fs_info); 3344 fail_cleaner: 3345 kthread_stop(fs_info->cleaner_kthread); 3346 3347 /* 3348 * make sure we're done with the btree inode before we stop our 3349 * kthreads 3350 */ 3351 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3352 3353 fail_sysfs: 3354 btrfs_sysfs_remove_mounted(fs_info); 3355 3356 fail_fsdev_sysfs: 3357 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3358 3359 fail_block_groups: 3360 btrfs_put_block_group_cache(fs_info); 3361 3362 fail_tree_roots: 3363 free_root_pointers(fs_info, 1); 3364 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3365 3366 fail_sb_buffer: 3367 btrfs_stop_all_workers(fs_info); 3368 btrfs_free_block_groups(fs_info); 3369 fail_csum: 3370 btrfs_free_csum_hash(fs_info); 3371 fail_alloc: 3372 fail_iput: 3373 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3374 3375 iput(fs_info->btree_inode); 3376 fail_bio_counter: 3377 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 3378 fail_delalloc_bytes: 3379 percpu_counter_destroy(&fs_info->delalloc_bytes); 3380 fail_dirty_metadata_bytes: 3381 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3382 fail_dio_bytes: 3383 percpu_counter_destroy(&fs_info->dio_bytes); 3384 fail_srcu: 3385 cleanup_srcu_struct(&fs_info->subvol_srcu); 3386 fail: 3387 btrfs_free_stripe_hash_table(fs_info); 3388 btrfs_close_devices(fs_info->fs_devices); 3389 return err; 3390 3391 recovery_tree_root: 3392 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 3393 goto fail_tree_roots; 3394 3395 free_root_pointers(fs_info, 0); 3396 3397 /* don't use the log in recovery mode, it won't be valid */ 3398 btrfs_set_super_log_root(disk_super, 0); 3399 3400 /* we can't trust the free space cache either */ 3401 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3402 3403 ret = next_root_backup(fs_info, fs_info->super_copy, 3404 &num_backups_tried, &backup_index); 3405 if (ret == -1) 3406 goto fail_block_groups; 3407 goto retry_root_backup; 3408 } 3409 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3410 3411 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3412 { 3413 if (uptodate) { 3414 set_buffer_uptodate(bh); 3415 } else { 3416 struct btrfs_device *device = (struct btrfs_device *) 3417 bh->b_private; 3418 3419 btrfs_warn_rl_in_rcu(device->fs_info, 3420 "lost page write due to IO error on %s", 3421 rcu_str_deref(device->name)); 3422 /* note, we don't set_buffer_write_io_error because we have 3423 * our own ways of dealing with the IO errors 3424 */ 3425 clear_buffer_uptodate(bh); 3426 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3427 } 3428 unlock_buffer(bh); 3429 put_bh(bh); 3430 } 3431 3432 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3433 struct buffer_head **bh_ret) 3434 { 3435 struct buffer_head *bh; 3436 struct btrfs_super_block *super; 3437 u64 bytenr; 3438 3439 bytenr = btrfs_sb_offset(copy_num); 3440 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3441 return -EINVAL; 3442 3443 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE); 3444 /* 3445 * If we fail to read from the underlying devices, as of now 3446 * the best option we have is to mark it EIO. 3447 */ 3448 if (!bh) 3449 return -EIO; 3450 3451 super = (struct btrfs_super_block *)bh->b_data; 3452 if (btrfs_super_bytenr(super) != bytenr || 3453 btrfs_super_magic(super) != BTRFS_MAGIC) { 3454 brelse(bh); 3455 return -EINVAL; 3456 } 3457 3458 *bh_ret = bh; 3459 return 0; 3460 } 3461 3462 3463 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3464 { 3465 struct buffer_head *bh; 3466 struct buffer_head *latest = NULL; 3467 struct btrfs_super_block *super; 3468 int i; 3469 u64 transid = 0; 3470 int ret = -EINVAL; 3471 3472 /* we would like to check all the supers, but that would make 3473 * a btrfs mount succeed after a mkfs from a different FS. 3474 * So, we need to add a special mount option to scan for 3475 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3476 */ 3477 for (i = 0; i < 1; i++) { 3478 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3479 if (ret) 3480 continue; 3481 3482 super = (struct btrfs_super_block *)bh->b_data; 3483 3484 if (!latest || btrfs_super_generation(super) > transid) { 3485 brelse(latest); 3486 latest = bh; 3487 transid = btrfs_super_generation(super); 3488 } else { 3489 brelse(bh); 3490 } 3491 } 3492 3493 if (!latest) 3494 return ERR_PTR(ret); 3495 3496 return latest; 3497 } 3498 3499 /* 3500 * Write superblock @sb to the @device. Do not wait for completion, all the 3501 * buffer heads we write are pinned. 3502 * 3503 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3504 * the expected device size at commit time. Note that max_mirrors must be 3505 * same for write and wait phases. 3506 * 3507 * Return number of errors when buffer head is not found or submission fails. 3508 */ 3509 static int write_dev_supers(struct btrfs_device *device, 3510 struct btrfs_super_block *sb, int max_mirrors) 3511 { 3512 struct btrfs_fs_info *fs_info = device->fs_info; 3513 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3514 struct buffer_head *bh; 3515 int i; 3516 int ret; 3517 int errors = 0; 3518 u64 bytenr; 3519 int op_flags; 3520 3521 if (max_mirrors == 0) 3522 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3523 3524 shash->tfm = fs_info->csum_shash; 3525 3526 for (i = 0; i < max_mirrors; i++) { 3527 bytenr = btrfs_sb_offset(i); 3528 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3529 device->commit_total_bytes) 3530 break; 3531 3532 btrfs_set_super_bytenr(sb, bytenr); 3533 3534 crypto_shash_init(shash); 3535 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3536 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 3537 crypto_shash_final(shash, sb->csum); 3538 3539 /* One reference for us, and we leave it for the caller */ 3540 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, 3541 BTRFS_SUPER_INFO_SIZE); 3542 if (!bh) { 3543 btrfs_err(device->fs_info, 3544 "couldn't get super buffer head for bytenr %llu", 3545 bytenr); 3546 errors++; 3547 continue; 3548 } 3549 3550 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3551 3552 /* one reference for submit_bh */ 3553 get_bh(bh); 3554 3555 set_buffer_uptodate(bh); 3556 lock_buffer(bh); 3557 bh->b_end_io = btrfs_end_buffer_write_sync; 3558 bh->b_private = device; 3559 3560 /* 3561 * we fua the first super. The others we allow 3562 * to go down lazy. 3563 */ 3564 op_flags = REQ_SYNC | REQ_META | REQ_PRIO; 3565 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3566 op_flags |= REQ_FUA; 3567 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh); 3568 if (ret) 3569 errors++; 3570 } 3571 return errors < i ? 0 : -1; 3572 } 3573 3574 /* 3575 * Wait for write completion of superblocks done by write_dev_supers, 3576 * @max_mirrors same for write and wait phases. 3577 * 3578 * Return number of errors when buffer head is not found or not marked up to 3579 * date. 3580 */ 3581 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3582 { 3583 struct buffer_head *bh; 3584 int i; 3585 int errors = 0; 3586 bool primary_failed = false; 3587 u64 bytenr; 3588 3589 if (max_mirrors == 0) 3590 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3591 3592 for (i = 0; i < max_mirrors; i++) { 3593 bytenr = btrfs_sb_offset(i); 3594 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3595 device->commit_total_bytes) 3596 break; 3597 3598 bh = __find_get_block(device->bdev, 3599 bytenr / BTRFS_BDEV_BLOCKSIZE, 3600 BTRFS_SUPER_INFO_SIZE); 3601 if (!bh) { 3602 errors++; 3603 if (i == 0) 3604 primary_failed = true; 3605 continue; 3606 } 3607 wait_on_buffer(bh); 3608 if (!buffer_uptodate(bh)) { 3609 errors++; 3610 if (i == 0) 3611 primary_failed = true; 3612 } 3613 3614 /* drop our reference */ 3615 brelse(bh); 3616 3617 /* drop the reference from the writing run */ 3618 brelse(bh); 3619 } 3620 3621 /* log error, force error return */ 3622 if (primary_failed) { 3623 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3624 device->devid); 3625 return -1; 3626 } 3627 3628 return errors < i ? 0 : -1; 3629 } 3630 3631 /* 3632 * endio for the write_dev_flush, this will wake anyone waiting 3633 * for the barrier when it is done 3634 */ 3635 static void btrfs_end_empty_barrier(struct bio *bio) 3636 { 3637 complete(bio->bi_private); 3638 } 3639 3640 /* 3641 * Submit a flush request to the device if it supports it. Error handling is 3642 * done in the waiting counterpart. 3643 */ 3644 static void write_dev_flush(struct btrfs_device *device) 3645 { 3646 struct request_queue *q = bdev_get_queue(device->bdev); 3647 struct bio *bio = device->flush_bio; 3648 3649 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3650 return; 3651 3652 bio_reset(bio); 3653 bio->bi_end_io = btrfs_end_empty_barrier; 3654 bio_set_dev(bio, device->bdev); 3655 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3656 init_completion(&device->flush_wait); 3657 bio->bi_private = &device->flush_wait; 3658 3659 btrfsic_submit_bio(bio); 3660 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3661 } 3662 3663 /* 3664 * If the flush bio has been submitted by write_dev_flush, wait for it. 3665 */ 3666 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3667 { 3668 struct bio *bio = device->flush_bio; 3669 3670 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3671 return BLK_STS_OK; 3672 3673 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3674 wait_for_completion_io(&device->flush_wait); 3675 3676 return bio->bi_status; 3677 } 3678 3679 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3680 { 3681 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3682 return -EIO; 3683 return 0; 3684 } 3685 3686 /* 3687 * send an empty flush down to each device in parallel, 3688 * then wait for them 3689 */ 3690 static int barrier_all_devices(struct btrfs_fs_info *info) 3691 { 3692 struct list_head *head; 3693 struct btrfs_device *dev; 3694 int errors_wait = 0; 3695 blk_status_t ret; 3696 3697 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3698 /* send down all the barriers */ 3699 head = &info->fs_devices->devices; 3700 list_for_each_entry(dev, head, dev_list) { 3701 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3702 continue; 3703 if (!dev->bdev) 3704 continue; 3705 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3706 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3707 continue; 3708 3709 write_dev_flush(dev); 3710 dev->last_flush_error = BLK_STS_OK; 3711 } 3712 3713 /* wait for all the barriers */ 3714 list_for_each_entry(dev, head, dev_list) { 3715 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3716 continue; 3717 if (!dev->bdev) { 3718 errors_wait++; 3719 continue; 3720 } 3721 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3722 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3723 continue; 3724 3725 ret = wait_dev_flush(dev); 3726 if (ret) { 3727 dev->last_flush_error = ret; 3728 btrfs_dev_stat_inc_and_print(dev, 3729 BTRFS_DEV_STAT_FLUSH_ERRS); 3730 errors_wait++; 3731 } 3732 } 3733 3734 if (errors_wait) { 3735 /* 3736 * At some point we need the status of all disks 3737 * to arrive at the volume status. So error checking 3738 * is being pushed to a separate loop. 3739 */ 3740 return check_barrier_error(info); 3741 } 3742 return 0; 3743 } 3744 3745 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3746 { 3747 int raid_type; 3748 int min_tolerated = INT_MAX; 3749 3750 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3751 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3752 min_tolerated = min_t(int, min_tolerated, 3753 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3754 tolerated_failures); 3755 3756 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3757 if (raid_type == BTRFS_RAID_SINGLE) 3758 continue; 3759 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3760 continue; 3761 min_tolerated = min_t(int, min_tolerated, 3762 btrfs_raid_array[raid_type]. 3763 tolerated_failures); 3764 } 3765 3766 if (min_tolerated == INT_MAX) { 3767 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3768 min_tolerated = 0; 3769 } 3770 3771 return min_tolerated; 3772 } 3773 3774 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3775 { 3776 struct list_head *head; 3777 struct btrfs_device *dev; 3778 struct btrfs_super_block *sb; 3779 struct btrfs_dev_item *dev_item; 3780 int ret; 3781 int do_barriers; 3782 int max_errors; 3783 int total_errors = 0; 3784 u64 flags; 3785 3786 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3787 3788 /* 3789 * max_mirrors == 0 indicates we're from commit_transaction, 3790 * not from fsync where the tree roots in fs_info have not 3791 * been consistent on disk. 3792 */ 3793 if (max_mirrors == 0) 3794 backup_super_roots(fs_info); 3795 3796 sb = fs_info->super_for_commit; 3797 dev_item = &sb->dev_item; 3798 3799 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3800 head = &fs_info->fs_devices->devices; 3801 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3802 3803 if (do_barriers) { 3804 ret = barrier_all_devices(fs_info); 3805 if (ret) { 3806 mutex_unlock( 3807 &fs_info->fs_devices->device_list_mutex); 3808 btrfs_handle_fs_error(fs_info, ret, 3809 "errors while submitting device barriers."); 3810 return ret; 3811 } 3812 } 3813 3814 list_for_each_entry(dev, head, dev_list) { 3815 if (!dev->bdev) { 3816 total_errors++; 3817 continue; 3818 } 3819 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3820 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3821 continue; 3822 3823 btrfs_set_stack_device_generation(dev_item, 0); 3824 btrfs_set_stack_device_type(dev_item, dev->type); 3825 btrfs_set_stack_device_id(dev_item, dev->devid); 3826 btrfs_set_stack_device_total_bytes(dev_item, 3827 dev->commit_total_bytes); 3828 btrfs_set_stack_device_bytes_used(dev_item, 3829 dev->commit_bytes_used); 3830 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3831 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3832 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3833 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3834 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 3835 BTRFS_FSID_SIZE); 3836 3837 flags = btrfs_super_flags(sb); 3838 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3839 3840 ret = btrfs_validate_write_super(fs_info, sb); 3841 if (ret < 0) { 3842 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3843 btrfs_handle_fs_error(fs_info, -EUCLEAN, 3844 "unexpected superblock corruption detected"); 3845 return -EUCLEAN; 3846 } 3847 3848 ret = write_dev_supers(dev, sb, max_mirrors); 3849 if (ret) 3850 total_errors++; 3851 } 3852 if (total_errors > max_errors) { 3853 btrfs_err(fs_info, "%d errors while writing supers", 3854 total_errors); 3855 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3856 3857 /* FUA is masked off if unsupported and can't be the reason */ 3858 btrfs_handle_fs_error(fs_info, -EIO, 3859 "%d errors while writing supers", 3860 total_errors); 3861 return -EIO; 3862 } 3863 3864 total_errors = 0; 3865 list_for_each_entry(dev, head, dev_list) { 3866 if (!dev->bdev) 3867 continue; 3868 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3869 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3870 continue; 3871 3872 ret = wait_dev_supers(dev, max_mirrors); 3873 if (ret) 3874 total_errors++; 3875 } 3876 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3877 if (total_errors > max_errors) { 3878 btrfs_handle_fs_error(fs_info, -EIO, 3879 "%d errors while writing supers", 3880 total_errors); 3881 return -EIO; 3882 } 3883 return 0; 3884 } 3885 3886 /* Drop a fs root from the radix tree and free it. */ 3887 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3888 struct btrfs_root *root) 3889 { 3890 spin_lock(&fs_info->fs_roots_radix_lock); 3891 radix_tree_delete(&fs_info->fs_roots_radix, 3892 (unsigned long)root->root_key.objectid); 3893 spin_unlock(&fs_info->fs_roots_radix_lock); 3894 3895 if (btrfs_root_refs(&root->root_item) == 0) 3896 synchronize_srcu(&fs_info->subvol_srcu); 3897 3898 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3899 btrfs_free_log(NULL, root); 3900 if (root->reloc_root) { 3901 free_extent_buffer(root->reloc_root->node); 3902 free_extent_buffer(root->reloc_root->commit_root); 3903 btrfs_put_fs_root(root->reloc_root); 3904 root->reloc_root = NULL; 3905 } 3906 } 3907 3908 if (root->free_ino_pinned) 3909 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3910 if (root->free_ino_ctl) 3911 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3912 btrfs_free_fs_root(root); 3913 } 3914 3915 void btrfs_free_fs_root(struct btrfs_root *root) 3916 { 3917 iput(root->ino_cache_inode); 3918 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3919 if (root->anon_dev) 3920 free_anon_bdev(root->anon_dev); 3921 if (root->subv_writers) 3922 btrfs_free_subvolume_writers(root->subv_writers); 3923 free_extent_buffer(root->node); 3924 free_extent_buffer(root->commit_root); 3925 kfree(root->free_ino_ctl); 3926 kfree(root->free_ino_pinned); 3927 btrfs_put_fs_root(root); 3928 } 3929 3930 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3931 { 3932 u64 root_objectid = 0; 3933 struct btrfs_root *gang[8]; 3934 int i = 0; 3935 int err = 0; 3936 unsigned int ret = 0; 3937 int index; 3938 3939 while (1) { 3940 index = srcu_read_lock(&fs_info->subvol_srcu); 3941 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3942 (void **)gang, root_objectid, 3943 ARRAY_SIZE(gang)); 3944 if (!ret) { 3945 srcu_read_unlock(&fs_info->subvol_srcu, index); 3946 break; 3947 } 3948 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3949 3950 for (i = 0; i < ret; i++) { 3951 /* Avoid to grab roots in dead_roots */ 3952 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3953 gang[i] = NULL; 3954 continue; 3955 } 3956 /* grab all the search result for later use */ 3957 gang[i] = btrfs_grab_fs_root(gang[i]); 3958 } 3959 srcu_read_unlock(&fs_info->subvol_srcu, index); 3960 3961 for (i = 0; i < ret; i++) { 3962 if (!gang[i]) 3963 continue; 3964 root_objectid = gang[i]->root_key.objectid; 3965 err = btrfs_orphan_cleanup(gang[i]); 3966 if (err) 3967 break; 3968 btrfs_put_fs_root(gang[i]); 3969 } 3970 root_objectid++; 3971 } 3972 3973 /* release the uncleaned roots due to error */ 3974 for (; i < ret; i++) { 3975 if (gang[i]) 3976 btrfs_put_fs_root(gang[i]); 3977 } 3978 return err; 3979 } 3980 3981 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3982 { 3983 struct btrfs_root *root = fs_info->tree_root; 3984 struct btrfs_trans_handle *trans; 3985 3986 mutex_lock(&fs_info->cleaner_mutex); 3987 btrfs_run_delayed_iputs(fs_info); 3988 mutex_unlock(&fs_info->cleaner_mutex); 3989 wake_up_process(fs_info->cleaner_kthread); 3990 3991 /* wait until ongoing cleanup work done */ 3992 down_write(&fs_info->cleanup_work_sem); 3993 up_write(&fs_info->cleanup_work_sem); 3994 3995 trans = btrfs_join_transaction(root); 3996 if (IS_ERR(trans)) 3997 return PTR_ERR(trans); 3998 return btrfs_commit_transaction(trans); 3999 } 4000 4001 void close_ctree(struct btrfs_fs_info *fs_info) 4002 { 4003 int ret; 4004 4005 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4006 /* 4007 * We don't want the cleaner to start new transactions, add more delayed 4008 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4009 * because that frees the task_struct, and the transaction kthread might 4010 * still try to wake up the cleaner. 4011 */ 4012 kthread_park(fs_info->cleaner_kthread); 4013 4014 /* wait for the qgroup rescan worker to stop */ 4015 btrfs_qgroup_wait_for_completion(fs_info, false); 4016 4017 /* wait for the uuid_scan task to finish */ 4018 down(&fs_info->uuid_tree_rescan_sem); 4019 /* avoid complains from lockdep et al., set sem back to initial state */ 4020 up(&fs_info->uuid_tree_rescan_sem); 4021 4022 /* pause restriper - we want to resume on mount */ 4023 btrfs_pause_balance(fs_info); 4024 4025 btrfs_dev_replace_suspend_for_unmount(fs_info); 4026 4027 btrfs_scrub_cancel(fs_info); 4028 4029 /* wait for any defraggers to finish */ 4030 wait_event(fs_info->transaction_wait, 4031 (atomic_read(&fs_info->defrag_running) == 0)); 4032 4033 /* clear out the rbtree of defraggable inodes */ 4034 btrfs_cleanup_defrag_inodes(fs_info); 4035 4036 cancel_work_sync(&fs_info->async_reclaim_work); 4037 4038 if (!sb_rdonly(fs_info->sb)) { 4039 /* 4040 * The cleaner kthread is stopped, so do one final pass over 4041 * unused block groups. 4042 */ 4043 btrfs_delete_unused_bgs(fs_info); 4044 4045 ret = btrfs_commit_super(fs_info); 4046 if (ret) 4047 btrfs_err(fs_info, "commit super ret %d", ret); 4048 } 4049 4050 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 4051 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 4052 btrfs_error_commit_super(fs_info); 4053 4054 kthread_stop(fs_info->transaction_kthread); 4055 kthread_stop(fs_info->cleaner_kthread); 4056 4057 ASSERT(list_empty(&fs_info->delayed_iputs)); 4058 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4059 4060 btrfs_free_qgroup_config(fs_info); 4061 ASSERT(list_empty(&fs_info->delalloc_roots)); 4062 4063 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4064 btrfs_info(fs_info, "at unmount delalloc count %lld", 4065 percpu_counter_sum(&fs_info->delalloc_bytes)); 4066 } 4067 4068 if (percpu_counter_sum(&fs_info->dio_bytes)) 4069 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4070 percpu_counter_sum(&fs_info->dio_bytes)); 4071 4072 btrfs_sysfs_remove_mounted(fs_info); 4073 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4074 4075 btrfs_free_fs_roots(fs_info); 4076 4077 btrfs_put_block_group_cache(fs_info); 4078 4079 /* 4080 * we must make sure there is not any read request to 4081 * submit after we stopping all workers. 4082 */ 4083 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4084 btrfs_stop_all_workers(fs_info); 4085 4086 btrfs_free_block_groups(fs_info); 4087 4088 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4089 free_root_pointers(fs_info, 1); 4090 4091 iput(fs_info->btree_inode); 4092 4093 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4094 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4095 btrfsic_unmount(fs_info->fs_devices); 4096 #endif 4097 4098 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4099 btrfs_close_devices(fs_info->fs_devices); 4100 4101 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 4102 percpu_counter_destroy(&fs_info->delalloc_bytes); 4103 percpu_counter_destroy(&fs_info->dio_bytes); 4104 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 4105 cleanup_srcu_struct(&fs_info->subvol_srcu); 4106 4107 btrfs_free_csum_hash(fs_info); 4108 btrfs_free_stripe_hash_table(fs_info); 4109 btrfs_free_ref_cache(fs_info); 4110 } 4111 4112 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4113 int atomic) 4114 { 4115 int ret; 4116 struct inode *btree_inode = buf->pages[0]->mapping->host; 4117 4118 ret = extent_buffer_uptodate(buf); 4119 if (!ret) 4120 return ret; 4121 4122 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4123 parent_transid, atomic); 4124 if (ret == -EAGAIN) 4125 return ret; 4126 return !ret; 4127 } 4128 4129 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4130 { 4131 struct btrfs_fs_info *fs_info; 4132 struct btrfs_root *root; 4133 u64 transid = btrfs_header_generation(buf); 4134 int was_dirty; 4135 4136 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4137 /* 4138 * This is a fast path so only do this check if we have sanity tests 4139 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4140 * outside of the sanity tests. 4141 */ 4142 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4143 return; 4144 #endif 4145 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4146 fs_info = root->fs_info; 4147 btrfs_assert_tree_locked(buf); 4148 if (transid != fs_info->generation) 4149 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4150 buf->start, transid, fs_info->generation); 4151 was_dirty = set_extent_buffer_dirty(buf); 4152 if (!was_dirty) 4153 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4154 buf->len, 4155 fs_info->dirty_metadata_batch); 4156 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4157 /* 4158 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4159 * but item data not updated. 4160 * So here we should only check item pointers, not item data. 4161 */ 4162 if (btrfs_header_level(buf) == 0 && 4163 btrfs_check_leaf_relaxed(buf)) { 4164 btrfs_print_leaf(buf); 4165 ASSERT(0); 4166 } 4167 #endif 4168 } 4169 4170 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4171 int flush_delayed) 4172 { 4173 /* 4174 * looks as though older kernels can get into trouble with 4175 * this code, they end up stuck in balance_dirty_pages forever 4176 */ 4177 int ret; 4178 4179 if (current->flags & PF_MEMALLOC) 4180 return; 4181 4182 if (flush_delayed) 4183 btrfs_balance_delayed_items(fs_info); 4184 4185 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4186 BTRFS_DIRTY_METADATA_THRESH, 4187 fs_info->dirty_metadata_batch); 4188 if (ret > 0) { 4189 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4190 } 4191 } 4192 4193 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4194 { 4195 __btrfs_btree_balance_dirty(fs_info, 1); 4196 } 4197 4198 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4199 { 4200 __btrfs_btree_balance_dirty(fs_info, 0); 4201 } 4202 4203 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4204 struct btrfs_key *first_key) 4205 { 4206 return btree_read_extent_buffer_pages(buf, parent_transid, 4207 level, first_key); 4208 } 4209 4210 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4211 { 4212 /* cleanup FS via transaction */ 4213 btrfs_cleanup_transaction(fs_info); 4214 4215 mutex_lock(&fs_info->cleaner_mutex); 4216 btrfs_run_delayed_iputs(fs_info); 4217 mutex_unlock(&fs_info->cleaner_mutex); 4218 4219 down_write(&fs_info->cleanup_work_sem); 4220 up_write(&fs_info->cleanup_work_sem); 4221 } 4222 4223 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4224 { 4225 struct btrfs_ordered_extent *ordered; 4226 4227 spin_lock(&root->ordered_extent_lock); 4228 /* 4229 * This will just short circuit the ordered completion stuff which will 4230 * make sure the ordered extent gets properly cleaned up. 4231 */ 4232 list_for_each_entry(ordered, &root->ordered_extents, 4233 root_extent_list) 4234 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4235 spin_unlock(&root->ordered_extent_lock); 4236 } 4237 4238 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4239 { 4240 struct btrfs_root *root; 4241 struct list_head splice; 4242 4243 INIT_LIST_HEAD(&splice); 4244 4245 spin_lock(&fs_info->ordered_root_lock); 4246 list_splice_init(&fs_info->ordered_roots, &splice); 4247 while (!list_empty(&splice)) { 4248 root = list_first_entry(&splice, struct btrfs_root, 4249 ordered_root); 4250 list_move_tail(&root->ordered_root, 4251 &fs_info->ordered_roots); 4252 4253 spin_unlock(&fs_info->ordered_root_lock); 4254 btrfs_destroy_ordered_extents(root); 4255 4256 cond_resched(); 4257 spin_lock(&fs_info->ordered_root_lock); 4258 } 4259 spin_unlock(&fs_info->ordered_root_lock); 4260 4261 /* 4262 * We need this here because if we've been flipped read-only we won't 4263 * get sync() from the umount, so we need to make sure any ordered 4264 * extents that haven't had their dirty pages IO start writeout yet 4265 * actually get run and error out properly. 4266 */ 4267 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4268 } 4269 4270 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4271 struct btrfs_fs_info *fs_info) 4272 { 4273 struct rb_node *node; 4274 struct btrfs_delayed_ref_root *delayed_refs; 4275 struct btrfs_delayed_ref_node *ref; 4276 int ret = 0; 4277 4278 delayed_refs = &trans->delayed_refs; 4279 4280 spin_lock(&delayed_refs->lock); 4281 if (atomic_read(&delayed_refs->num_entries) == 0) { 4282 spin_unlock(&delayed_refs->lock); 4283 btrfs_info(fs_info, "delayed_refs has NO entry"); 4284 return ret; 4285 } 4286 4287 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4288 struct btrfs_delayed_ref_head *head; 4289 struct rb_node *n; 4290 bool pin_bytes = false; 4291 4292 head = rb_entry(node, struct btrfs_delayed_ref_head, 4293 href_node); 4294 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4295 continue; 4296 4297 spin_lock(&head->lock); 4298 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4299 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4300 ref_node); 4301 ref->in_tree = 0; 4302 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4303 RB_CLEAR_NODE(&ref->ref_node); 4304 if (!list_empty(&ref->add_list)) 4305 list_del(&ref->add_list); 4306 atomic_dec(&delayed_refs->num_entries); 4307 btrfs_put_delayed_ref(ref); 4308 } 4309 if (head->must_insert_reserved) 4310 pin_bytes = true; 4311 btrfs_free_delayed_extent_op(head->extent_op); 4312 btrfs_delete_ref_head(delayed_refs, head); 4313 spin_unlock(&head->lock); 4314 spin_unlock(&delayed_refs->lock); 4315 mutex_unlock(&head->mutex); 4316 4317 if (pin_bytes) 4318 btrfs_pin_extent(fs_info, head->bytenr, 4319 head->num_bytes, 1); 4320 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4321 btrfs_put_delayed_ref_head(head); 4322 cond_resched(); 4323 spin_lock(&delayed_refs->lock); 4324 } 4325 4326 spin_unlock(&delayed_refs->lock); 4327 4328 return ret; 4329 } 4330 4331 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4332 { 4333 struct btrfs_inode *btrfs_inode; 4334 struct list_head splice; 4335 4336 INIT_LIST_HEAD(&splice); 4337 4338 spin_lock(&root->delalloc_lock); 4339 list_splice_init(&root->delalloc_inodes, &splice); 4340 4341 while (!list_empty(&splice)) { 4342 struct inode *inode = NULL; 4343 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4344 delalloc_inodes); 4345 __btrfs_del_delalloc_inode(root, btrfs_inode); 4346 spin_unlock(&root->delalloc_lock); 4347 4348 /* 4349 * Make sure we get a live inode and that it'll not disappear 4350 * meanwhile. 4351 */ 4352 inode = igrab(&btrfs_inode->vfs_inode); 4353 if (inode) { 4354 invalidate_inode_pages2(inode->i_mapping); 4355 iput(inode); 4356 } 4357 spin_lock(&root->delalloc_lock); 4358 } 4359 spin_unlock(&root->delalloc_lock); 4360 } 4361 4362 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4363 { 4364 struct btrfs_root *root; 4365 struct list_head splice; 4366 4367 INIT_LIST_HEAD(&splice); 4368 4369 spin_lock(&fs_info->delalloc_root_lock); 4370 list_splice_init(&fs_info->delalloc_roots, &splice); 4371 while (!list_empty(&splice)) { 4372 root = list_first_entry(&splice, struct btrfs_root, 4373 delalloc_root); 4374 root = btrfs_grab_fs_root(root); 4375 BUG_ON(!root); 4376 spin_unlock(&fs_info->delalloc_root_lock); 4377 4378 btrfs_destroy_delalloc_inodes(root); 4379 btrfs_put_fs_root(root); 4380 4381 spin_lock(&fs_info->delalloc_root_lock); 4382 } 4383 spin_unlock(&fs_info->delalloc_root_lock); 4384 } 4385 4386 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4387 struct extent_io_tree *dirty_pages, 4388 int mark) 4389 { 4390 int ret; 4391 struct extent_buffer *eb; 4392 u64 start = 0; 4393 u64 end; 4394 4395 while (1) { 4396 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4397 mark, NULL); 4398 if (ret) 4399 break; 4400 4401 clear_extent_bits(dirty_pages, start, end, mark); 4402 while (start <= end) { 4403 eb = find_extent_buffer(fs_info, start); 4404 start += fs_info->nodesize; 4405 if (!eb) 4406 continue; 4407 wait_on_extent_buffer_writeback(eb); 4408 4409 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4410 &eb->bflags)) 4411 clear_extent_buffer_dirty(eb); 4412 free_extent_buffer_stale(eb); 4413 } 4414 } 4415 4416 return ret; 4417 } 4418 4419 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4420 struct extent_io_tree *pinned_extents) 4421 { 4422 struct extent_io_tree *unpin; 4423 u64 start; 4424 u64 end; 4425 int ret; 4426 bool loop = true; 4427 4428 unpin = pinned_extents; 4429 again: 4430 while (1) { 4431 struct extent_state *cached_state = NULL; 4432 4433 /* 4434 * The btrfs_finish_extent_commit() may get the same range as 4435 * ours between find_first_extent_bit and clear_extent_dirty. 4436 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4437 * the same extent range. 4438 */ 4439 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4440 ret = find_first_extent_bit(unpin, 0, &start, &end, 4441 EXTENT_DIRTY, &cached_state); 4442 if (ret) { 4443 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4444 break; 4445 } 4446 4447 clear_extent_dirty(unpin, start, end, &cached_state); 4448 free_extent_state(cached_state); 4449 btrfs_error_unpin_extent_range(fs_info, start, end); 4450 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4451 cond_resched(); 4452 } 4453 4454 if (loop) { 4455 if (unpin == &fs_info->freed_extents[0]) 4456 unpin = &fs_info->freed_extents[1]; 4457 else 4458 unpin = &fs_info->freed_extents[0]; 4459 loop = false; 4460 goto again; 4461 } 4462 4463 return 0; 4464 } 4465 4466 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache) 4467 { 4468 struct inode *inode; 4469 4470 inode = cache->io_ctl.inode; 4471 if (inode) { 4472 invalidate_inode_pages2(inode->i_mapping); 4473 BTRFS_I(inode)->generation = 0; 4474 cache->io_ctl.inode = NULL; 4475 iput(inode); 4476 } 4477 btrfs_put_block_group(cache); 4478 } 4479 4480 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4481 struct btrfs_fs_info *fs_info) 4482 { 4483 struct btrfs_block_group_cache *cache; 4484 4485 spin_lock(&cur_trans->dirty_bgs_lock); 4486 while (!list_empty(&cur_trans->dirty_bgs)) { 4487 cache = list_first_entry(&cur_trans->dirty_bgs, 4488 struct btrfs_block_group_cache, 4489 dirty_list); 4490 4491 if (!list_empty(&cache->io_list)) { 4492 spin_unlock(&cur_trans->dirty_bgs_lock); 4493 list_del_init(&cache->io_list); 4494 btrfs_cleanup_bg_io(cache); 4495 spin_lock(&cur_trans->dirty_bgs_lock); 4496 } 4497 4498 list_del_init(&cache->dirty_list); 4499 spin_lock(&cache->lock); 4500 cache->disk_cache_state = BTRFS_DC_ERROR; 4501 spin_unlock(&cache->lock); 4502 4503 spin_unlock(&cur_trans->dirty_bgs_lock); 4504 btrfs_put_block_group(cache); 4505 btrfs_delayed_refs_rsv_release(fs_info, 1); 4506 spin_lock(&cur_trans->dirty_bgs_lock); 4507 } 4508 spin_unlock(&cur_trans->dirty_bgs_lock); 4509 4510 /* 4511 * Refer to the definition of io_bgs member for details why it's safe 4512 * to use it without any locking 4513 */ 4514 while (!list_empty(&cur_trans->io_bgs)) { 4515 cache = list_first_entry(&cur_trans->io_bgs, 4516 struct btrfs_block_group_cache, 4517 io_list); 4518 4519 list_del_init(&cache->io_list); 4520 spin_lock(&cache->lock); 4521 cache->disk_cache_state = BTRFS_DC_ERROR; 4522 spin_unlock(&cache->lock); 4523 btrfs_cleanup_bg_io(cache); 4524 } 4525 } 4526 4527 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4528 struct btrfs_fs_info *fs_info) 4529 { 4530 struct btrfs_device *dev, *tmp; 4531 4532 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4533 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4534 ASSERT(list_empty(&cur_trans->io_bgs)); 4535 4536 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4537 post_commit_list) { 4538 list_del_init(&dev->post_commit_list); 4539 } 4540 4541 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4542 4543 cur_trans->state = TRANS_STATE_COMMIT_START; 4544 wake_up(&fs_info->transaction_blocked_wait); 4545 4546 cur_trans->state = TRANS_STATE_UNBLOCKED; 4547 wake_up(&fs_info->transaction_wait); 4548 4549 btrfs_destroy_delayed_inodes(fs_info); 4550 btrfs_assert_delayed_root_empty(fs_info); 4551 4552 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4553 EXTENT_DIRTY); 4554 btrfs_destroy_pinned_extent(fs_info, 4555 fs_info->pinned_extents); 4556 4557 cur_trans->state =TRANS_STATE_COMPLETED; 4558 wake_up(&cur_trans->commit_wait); 4559 } 4560 4561 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4562 { 4563 struct btrfs_transaction *t; 4564 4565 mutex_lock(&fs_info->transaction_kthread_mutex); 4566 4567 spin_lock(&fs_info->trans_lock); 4568 while (!list_empty(&fs_info->trans_list)) { 4569 t = list_first_entry(&fs_info->trans_list, 4570 struct btrfs_transaction, list); 4571 if (t->state >= TRANS_STATE_COMMIT_START) { 4572 refcount_inc(&t->use_count); 4573 spin_unlock(&fs_info->trans_lock); 4574 btrfs_wait_for_commit(fs_info, t->transid); 4575 btrfs_put_transaction(t); 4576 spin_lock(&fs_info->trans_lock); 4577 continue; 4578 } 4579 if (t == fs_info->running_transaction) { 4580 t->state = TRANS_STATE_COMMIT_DOING; 4581 spin_unlock(&fs_info->trans_lock); 4582 /* 4583 * We wait for 0 num_writers since we don't hold a trans 4584 * handle open currently for this transaction. 4585 */ 4586 wait_event(t->writer_wait, 4587 atomic_read(&t->num_writers) == 0); 4588 } else { 4589 spin_unlock(&fs_info->trans_lock); 4590 } 4591 btrfs_cleanup_one_transaction(t, fs_info); 4592 4593 spin_lock(&fs_info->trans_lock); 4594 if (t == fs_info->running_transaction) 4595 fs_info->running_transaction = NULL; 4596 list_del_init(&t->list); 4597 spin_unlock(&fs_info->trans_lock); 4598 4599 btrfs_put_transaction(t); 4600 trace_btrfs_transaction_commit(fs_info->tree_root); 4601 spin_lock(&fs_info->trans_lock); 4602 } 4603 spin_unlock(&fs_info->trans_lock); 4604 btrfs_destroy_all_ordered_extents(fs_info); 4605 btrfs_destroy_delayed_inodes(fs_info); 4606 btrfs_assert_delayed_root_empty(fs_info); 4607 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 4608 btrfs_destroy_all_delalloc_inodes(fs_info); 4609 mutex_unlock(&fs_info->transaction_kthread_mutex); 4610 4611 return 0; 4612 } 4613 4614 static const struct extent_io_ops btree_extent_io_ops = { 4615 /* mandatory callbacks */ 4616 .submit_bio_hook = btree_submit_bio_hook, 4617 .readpage_end_io_hook = btree_readpage_end_io_hook, 4618 }; 4619