xref: /linux/fs/btrfs/disk-io.c (revision 8520a98dbab61e9e340cdfb72dd17ccc8a98961e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <linux/sched/mm.h>
21 #include <asm/unaligned.h>
22 #include <crypto/hash.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "volumes.h"
28 #include "print-tree.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "free-space-cache.h"
32 #include "free-space-tree.h"
33 #include "inode-map.h"
34 #include "check-integrity.h"
35 #include "rcu-string.h"
36 #include "dev-replace.h"
37 #include "raid56.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 #include "compression.h"
41 #include "tree-checker.h"
42 #include "ref-verify.h"
43 
44 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
45 				 BTRFS_HEADER_FLAG_RELOC |\
46 				 BTRFS_SUPER_FLAG_ERROR |\
47 				 BTRFS_SUPER_FLAG_SEEDING |\
48 				 BTRFS_SUPER_FLAG_METADUMP |\
49 				 BTRFS_SUPER_FLAG_METADUMP_V2)
50 
51 static const struct extent_io_ops btree_extent_io_ops;
52 static void end_workqueue_fn(struct btrfs_work *work);
53 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
54 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
55 				      struct btrfs_fs_info *fs_info);
56 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
57 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
58 					struct extent_io_tree *dirty_pages,
59 					int mark);
60 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
61 				       struct extent_io_tree *pinned_extents);
62 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
63 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
64 
65 /*
66  * btrfs_end_io_wq structs are used to do processing in task context when an IO
67  * is complete.  This is used during reads to verify checksums, and it is used
68  * by writes to insert metadata for new file extents after IO is complete.
69  */
70 struct btrfs_end_io_wq {
71 	struct bio *bio;
72 	bio_end_io_t *end_io;
73 	void *private;
74 	struct btrfs_fs_info *info;
75 	blk_status_t status;
76 	enum btrfs_wq_endio_type metadata;
77 	struct btrfs_work work;
78 };
79 
80 static struct kmem_cache *btrfs_end_io_wq_cache;
81 
82 int __init btrfs_end_io_wq_init(void)
83 {
84 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
85 					sizeof(struct btrfs_end_io_wq),
86 					0,
87 					SLAB_MEM_SPREAD,
88 					NULL);
89 	if (!btrfs_end_io_wq_cache)
90 		return -ENOMEM;
91 	return 0;
92 }
93 
94 void __cold btrfs_end_io_wq_exit(void)
95 {
96 	kmem_cache_destroy(btrfs_end_io_wq_cache);
97 }
98 
99 /*
100  * async submit bios are used to offload expensive checksumming
101  * onto the worker threads.  They checksum file and metadata bios
102  * just before they are sent down the IO stack.
103  */
104 struct async_submit_bio {
105 	void *private_data;
106 	struct bio *bio;
107 	extent_submit_bio_start_t *submit_bio_start;
108 	int mirror_num;
109 	/*
110 	 * bio_offset is optional, can be used if the pages in the bio
111 	 * can't tell us where in the file the bio should go
112 	 */
113 	u64 bio_offset;
114 	struct btrfs_work work;
115 	blk_status_t status;
116 };
117 
118 /*
119  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
120  * eb, the lockdep key is determined by the btrfs_root it belongs to and
121  * the level the eb occupies in the tree.
122  *
123  * Different roots are used for different purposes and may nest inside each
124  * other and they require separate keysets.  As lockdep keys should be
125  * static, assign keysets according to the purpose of the root as indicated
126  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
127  * roots have separate keysets.
128  *
129  * Lock-nesting across peer nodes is always done with the immediate parent
130  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
131  * subclass to avoid triggering lockdep warning in such cases.
132  *
133  * The key is set by the readpage_end_io_hook after the buffer has passed
134  * csum validation but before the pages are unlocked.  It is also set by
135  * btrfs_init_new_buffer on freshly allocated blocks.
136  *
137  * We also add a check to make sure the highest level of the tree is the
138  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
139  * needs update as well.
140  */
141 #ifdef CONFIG_DEBUG_LOCK_ALLOC
142 # if BTRFS_MAX_LEVEL != 8
143 #  error
144 # endif
145 
146 static struct btrfs_lockdep_keyset {
147 	u64			id;		/* root objectid */
148 	const char		*name_stem;	/* lock name stem */
149 	char			names[BTRFS_MAX_LEVEL + 1][20];
150 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
151 } btrfs_lockdep_keysets[] = {
152 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
153 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
154 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
155 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
156 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
157 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
158 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
159 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
160 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
161 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
162 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
163 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
164 	{ .id = 0,				.name_stem = "tree"	},
165 };
166 
167 void __init btrfs_init_lockdep(void)
168 {
169 	int i, j;
170 
171 	/* initialize lockdep class names */
172 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
173 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
174 
175 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
176 			snprintf(ks->names[j], sizeof(ks->names[j]),
177 				 "btrfs-%s-%02d", ks->name_stem, j);
178 	}
179 }
180 
181 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
182 				    int level)
183 {
184 	struct btrfs_lockdep_keyset *ks;
185 
186 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
187 
188 	/* find the matching keyset, id 0 is the default entry */
189 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
190 		if (ks->id == objectid)
191 			break;
192 
193 	lockdep_set_class_and_name(&eb->lock,
194 				   &ks->keys[level], ks->names[level]);
195 }
196 
197 #endif
198 
199 /*
200  * extents on the btree inode are pretty simple, there's one extent
201  * that covers the entire device
202  */
203 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
204 		struct page *page, size_t pg_offset, u64 start, u64 len,
205 		int create)
206 {
207 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
208 	struct extent_map_tree *em_tree = &inode->extent_tree;
209 	struct extent_map *em;
210 	int ret;
211 
212 	read_lock(&em_tree->lock);
213 	em = lookup_extent_mapping(em_tree, start, len);
214 	if (em) {
215 		em->bdev = fs_info->fs_devices->latest_bdev;
216 		read_unlock(&em_tree->lock);
217 		goto out;
218 	}
219 	read_unlock(&em_tree->lock);
220 
221 	em = alloc_extent_map();
222 	if (!em) {
223 		em = ERR_PTR(-ENOMEM);
224 		goto out;
225 	}
226 	em->start = 0;
227 	em->len = (u64)-1;
228 	em->block_len = (u64)-1;
229 	em->block_start = 0;
230 	em->bdev = fs_info->fs_devices->latest_bdev;
231 
232 	write_lock(&em_tree->lock);
233 	ret = add_extent_mapping(em_tree, em, 0);
234 	if (ret == -EEXIST) {
235 		free_extent_map(em);
236 		em = lookup_extent_mapping(em_tree, start, len);
237 		if (!em)
238 			em = ERR_PTR(-EIO);
239 	} else if (ret) {
240 		free_extent_map(em);
241 		em = ERR_PTR(ret);
242 	}
243 	write_unlock(&em_tree->lock);
244 
245 out:
246 	return em;
247 }
248 
249 /*
250  * Compute the csum of a btree block and store the result to provided buffer.
251  *
252  * Returns error if the extent buffer cannot be mapped.
253  */
254 static int csum_tree_block(struct extent_buffer *buf, u8 *result)
255 {
256 	struct btrfs_fs_info *fs_info = buf->fs_info;
257 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
258 	unsigned long len;
259 	unsigned long cur_len;
260 	unsigned long offset = BTRFS_CSUM_SIZE;
261 	char *kaddr;
262 	unsigned long map_start;
263 	unsigned long map_len;
264 	int err;
265 
266 	shash->tfm = fs_info->csum_shash;
267 	crypto_shash_init(shash);
268 
269 	len = buf->len - offset;
270 
271 	while (len > 0) {
272 		/*
273 		 * Note: we don't need to check for the err == 1 case here, as
274 		 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
275 		 * and 'min_len = 32' and the currently implemented mapping
276 		 * algorithm we cannot cross a page boundary.
277 		 */
278 		err = map_private_extent_buffer(buf, offset, 32,
279 					&kaddr, &map_start, &map_len);
280 		if (WARN_ON(err))
281 			return err;
282 		cur_len = min(len, map_len - (offset - map_start));
283 		crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
284 		len -= cur_len;
285 		offset += cur_len;
286 	}
287 	memset(result, 0, BTRFS_CSUM_SIZE);
288 
289 	crypto_shash_final(shash, result);
290 
291 	return 0;
292 }
293 
294 /*
295  * we can't consider a given block up to date unless the transid of the
296  * block matches the transid in the parent node's pointer.  This is how we
297  * detect blocks that either didn't get written at all or got written
298  * in the wrong place.
299  */
300 static int verify_parent_transid(struct extent_io_tree *io_tree,
301 				 struct extent_buffer *eb, u64 parent_transid,
302 				 int atomic)
303 {
304 	struct extent_state *cached_state = NULL;
305 	int ret;
306 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
307 
308 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
309 		return 0;
310 
311 	if (atomic)
312 		return -EAGAIN;
313 
314 	if (need_lock) {
315 		btrfs_tree_read_lock(eb);
316 		btrfs_set_lock_blocking_read(eb);
317 	}
318 
319 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
320 			 &cached_state);
321 	if (extent_buffer_uptodate(eb) &&
322 	    btrfs_header_generation(eb) == parent_transid) {
323 		ret = 0;
324 		goto out;
325 	}
326 	btrfs_err_rl(eb->fs_info,
327 		"parent transid verify failed on %llu wanted %llu found %llu",
328 			eb->start,
329 			parent_transid, btrfs_header_generation(eb));
330 	ret = 1;
331 
332 	/*
333 	 * Things reading via commit roots that don't have normal protection,
334 	 * like send, can have a really old block in cache that may point at a
335 	 * block that has been freed and re-allocated.  So don't clear uptodate
336 	 * if we find an eb that is under IO (dirty/writeback) because we could
337 	 * end up reading in the stale data and then writing it back out and
338 	 * making everybody very sad.
339 	 */
340 	if (!extent_buffer_under_io(eb))
341 		clear_extent_buffer_uptodate(eb);
342 out:
343 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
344 			     &cached_state);
345 	if (need_lock)
346 		btrfs_tree_read_unlock_blocking(eb);
347 	return ret;
348 }
349 
350 static bool btrfs_supported_super_csum(u16 csum_type)
351 {
352 	switch (csum_type) {
353 	case BTRFS_CSUM_TYPE_CRC32:
354 		return true;
355 	default:
356 		return false;
357 	}
358 }
359 
360 /*
361  * Return 0 if the superblock checksum type matches the checksum value of that
362  * algorithm. Pass the raw disk superblock data.
363  */
364 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
365 				  char *raw_disk_sb)
366 {
367 	struct btrfs_super_block *disk_sb =
368 		(struct btrfs_super_block *)raw_disk_sb;
369 	char result[BTRFS_CSUM_SIZE];
370 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
371 
372 	shash->tfm = fs_info->csum_shash;
373 	crypto_shash_init(shash);
374 
375 	/*
376 	 * The super_block structure does not span the whole
377 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
378 	 * filled with zeros and is included in the checksum.
379 	 */
380 	crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
381 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382 	crypto_shash_final(shash, result);
383 
384 	if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
385 		return 1;
386 
387 	return 0;
388 }
389 
390 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
391 			   struct btrfs_key *first_key, u64 parent_transid)
392 {
393 	struct btrfs_fs_info *fs_info = eb->fs_info;
394 	int found_level;
395 	struct btrfs_key found_key;
396 	int ret;
397 
398 	found_level = btrfs_header_level(eb);
399 	if (found_level != level) {
400 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
401 		     KERN_ERR "BTRFS: tree level check failed\n");
402 		btrfs_err(fs_info,
403 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
404 			  eb->start, level, found_level);
405 		return -EIO;
406 	}
407 
408 	if (!first_key)
409 		return 0;
410 
411 	/*
412 	 * For live tree block (new tree blocks in current transaction),
413 	 * we need proper lock context to avoid race, which is impossible here.
414 	 * So we only checks tree blocks which is read from disk, whose
415 	 * generation <= fs_info->last_trans_committed.
416 	 */
417 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
418 		return 0;
419 	if (found_level)
420 		btrfs_node_key_to_cpu(eb, &found_key, 0);
421 	else
422 		btrfs_item_key_to_cpu(eb, &found_key, 0);
423 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
424 
425 	if (ret) {
426 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
427 		     KERN_ERR "BTRFS: tree first key check failed\n");
428 		btrfs_err(fs_info,
429 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
430 			  eb->start, parent_transid, first_key->objectid,
431 			  first_key->type, first_key->offset,
432 			  found_key.objectid, found_key.type,
433 			  found_key.offset);
434 	}
435 	return ret;
436 }
437 
438 /*
439  * helper to read a given tree block, doing retries as required when
440  * the checksums don't match and we have alternate mirrors to try.
441  *
442  * @parent_transid:	expected transid, skip check if 0
443  * @level:		expected level, mandatory check
444  * @first_key:		expected key of first slot, skip check if NULL
445  */
446 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
447 					  u64 parent_transid, int level,
448 					  struct btrfs_key *first_key)
449 {
450 	struct btrfs_fs_info *fs_info = eb->fs_info;
451 	struct extent_io_tree *io_tree;
452 	int failed = 0;
453 	int ret;
454 	int num_copies = 0;
455 	int mirror_num = 0;
456 	int failed_mirror = 0;
457 
458 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
459 	while (1) {
460 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
461 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
462 		if (!ret) {
463 			if (verify_parent_transid(io_tree, eb,
464 						   parent_transid, 0))
465 				ret = -EIO;
466 			else if (btrfs_verify_level_key(eb, level,
467 						first_key, parent_transid))
468 				ret = -EUCLEAN;
469 			else
470 				break;
471 		}
472 
473 		num_copies = btrfs_num_copies(fs_info,
474 					      eb->start, eb->len);
475 		if (num_copies == 1)
476 			break;
477 
478 		if (!failed_mirror) {
479 			failed = 1;
480 			failed_mirror = eb->read_mirror;
481 		}
482 
483 		mirror_num++;
484 		if (mirror_num == failed_mirror)
485 			mirror_num++;
486 
487 		if (mirror_num > num_copies)
488 			break;
489 	}
490 
491 	if (failed && !ret && failed_mirror)
492 		btrfs_repair_eb_io_failure(eb, failed_mirror);
493 
494 	return ret;
495 }
496 
497 /*
498  * checksum a dirty tree block before IO.  This has extra checks to make sure
499  * we only fill in the checksum field in the first page of a multi-page block
500  */
501 
502 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
503 {
504 	u64 start = page_offset(page);
505 	u64 found_start;
506 	u8 result[BTRFS_CSUM_SIZE];
507 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
508 	struct extent_buffer *eb;
509 	int ret;
510 
511 	eb = (struct extent_buffer *)page->private;
512 	if (page != eb->pages[0])
513 		return 0;
514 
515 	found_start = btrfs_header_bytenr(eb);
516 	/*
517 	 * Please do not consolidate these warnings into a single if.
518 	 * It is useful to know what went wrong.
519 	 */
520 	if (WARN_ON(found_start != start))
521 		return -EUCLEAN;
522 	if (WARN_ON(!PageUptodate(page)))
523 		return -EUCLEAN;
524 
525 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
526 			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
527 
528 	if (csum_tree_block(eb, result))
529 		return -EINVAL;
530 
531 	if (btrfs_header_level(eb))
532 		ret = btrfs_check_node(eb);
533 	else
534 		ret = btrfs_check_leaf_full(eb);
535 
536 	if (ret < 0) {
537 		btrfs_err(fs_info,
538 		"block=%llu write time tree block corruption detected",
539 			  eb->start);
540 		return ret;
541 	}
542 	write_extent_buffer(eb, result, 0, csum_size);
543 
544 	return 0;
545 }
546 
547 static int check_tree_block_fsid(struct extent_buffer *eb)
548 {
549 	struct btrfs_fs_info *fs_info = eb->fs_info;
550 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
551 	u8 fsid[BTRFS_FSID_SIZE];
552 	int ret = 1;
553 
554 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
555 	while (fs_devices) {
556 		u8 *metadata_uuid;
557 
558 		/*
559 		 * Checking the incompat flag is only valid for the current
560 		 * fs. For seed devices it's forbidden to have their uuid
561 		 * changed so reading ->fsid in this case is fine
562 		 */
563 		if (fs_devices == fs_info->fs_devices &&
564 		    btrfs_fs_incompat(fs_info, METADATA_UUID))
565 			metadata_uuid = fs_devices->metadata_uuid;
566 		else
567 			metadata_uuid = fs_devices->fsid;
568 
569 		if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
570 			ret = 0;
571 			break;
572 		}
573 		fs_devices = fs_devices->seed;
574 	}
575 	return ret;
576 }
577 
578 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
579 				      u64 phy_offset, struct page *page,
580 				      u64 start, u64 end, int mirror)
581 {
582 	u64 found_start;
583 	int found_level;
584 	struct extent_buffer *eb;
585 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
586 	struct btrfs_fs_info *fs_info = root->fs_info;
587 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
588 	int ret = 0;
589 	u8 result[BTRFS_CSUM_SIZE];
590 	int reads_done;
591 
592 	if (!page->private)
593 		goto out;
594 
595 	eb = (struct extent_buffer *)page->private;
596 
597 	/* the pending IO might have been the only thing that kept this buffer
598 	 * in memory.  Make sure we have a ref for all this other checks
599 	 */
600 	extent_buffer_get(eb);
601 
602 	reads_done = atomic_dec_and_test(&eb->io_pages);
603 	if (!reads_done)
604 		goto err;
605 
606 	eb->read_mirror = mirror;
607 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
608 		ret = -EIO;
609 		goto err;
610 	}
611 
612 	found_start = btrfs_header_bytenr(eb);
613 	if (found_start != eb->start) {
614 		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
615 			     eb->start, found_start);
616 		ret = -EIO;
617 		goto err;
618 	}
619 	if (check_tree_block_fsid(eb)) {
620 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
621 			     eb->start);
622 		ret = -EIO;
623 		goto err;
624 	}
625 	found_level = btrfs_header_level(eb);
626 	if (found_level >= BTRFS_MAX_LEVEL) {
627 		btrfs_err(fs_info, "bad tree block level %d on %llu",
628 			  (int)btrfs_header_level(eb), eb->start);
629 		ret = -EIO;
630 		goto err;
631 	}
632 
633 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
634 				       eb, found_level);
635 
636 	ret = csum_tree_block(eb, result);
637 	if (ret)
638 		goto err;
639 
640 	if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
641 		u32 val;
642 		u32 found = 0;
643 
644 		memcpy(&found, result, csum_size);
645 
646 		read_extent_buffer(eb, &val, 0, csum_size);
647 		btrfs_warn_rl(fs_info,
648 		"%s checksum verify failed on %llu wanted %x found %x level %d",
649 			      fs_info->sb->s_id, eb->start,
650 			      val, found, btrfs_header_level(eb));
651 		ret = -EUCLEAN;
652 		goto err;
653 	}
654 
655 	/*
656 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
657 	 * that we don't try and read the other copies of this block, just
658 	 * return -EIO.
659 	 */
660 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
661 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
662 		ret = -EIO;
663 	}
664 
665 	if (found_level > 0 && btrfs_check_node(eb))
666 		ret = -EIO;
667 
668 	if (!ret)
669 		set_extent_buffer_uptodate(eb);
670 	else
671 		btrfs_err(fs_info,
672 			  "block=%llu read time tree block corruption detected",
673 			  eb->start);
674 err:
675 	if (reads_done &&
676 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
677 		btree_readahead_hook(eb, ret);
678 
679 	if (ret) {
680 		/*
681 		 * our io error hook is going to dec the io pages
682 		 * again, we have to make sure it has something
683 		 * to decrement
684 		 */
685 		atomic_inc(&eb->io_pages);
686 		clear_extent_buffer_uptodate(eb);
687 	}
688 	free_extent_buffer(eb);
689 out:
690 	return ret;
691 }
692 
693 static void end_workqueue_bio(struct bio *bio)
694 {
695 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
696 	struct btrfs_fs_info *fs_info;
697 	struct btrfs_workqueue *wq;
698 	btrfs_work_func_t func;
699 
700 	fs_info = end_io_wq->info;
701 	end_io_wq->status = bio->bi_status;
702 
703 	if (bio_op(bio) == REQ_OP_WRITE) {
704 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
705 			wq = fs_info->endio_meta_write_workers;
706 			func = btrfs_endio_meta_write_helper;
707 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
708 			wq = fs_info->endio_freespace_worker;
709 			func = btrfs_freespace_write_helper;
710 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
711 			wq = fs_info->endio_raid56_workers;
712 			func = btrfs_endio_raid56_helper;
713 		} else {
714 			wq = fs_info->endio_write_workers;
715 			func = btrfs_endio_write_helper;
716 		}
717 	} else {
718 		if (unlikely(end_io_wq->metadata ==
719 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
720 			wq = fs_info->endio_repair_workers;
721 			func = btrfs_endio_repair_helper;
722 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
723 			wq = fs_info->endio_raid56_workers;
724 			func = btrfs_endio_raid56_helper;
725 		} else if (end_io_wq->metadata) {
726 			wq = fs_info->endio_meta_workers;
727 			func = btrfs_endio_meta_helper;
728 		} else {
729 			wq = fs_info->endio_workers;
730 			func = btrfs_endio_helper;
731 		}
732 	}
733 
734 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
735 	btrfs_queue_work(wq, &end_io_wq->work);
736 }
737 
738 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
739 			enum btrfs_wq_endio_type metadata)
740 {
741 	struct btrfs_end_io_wq *end_io_wq;
742 
743 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
744 	if (!end_io_wq)
745 		return BLK_STS_RESOURCE;
746 
747 	end_io_wq->private = bio->bi_private;
748 	end_io_wq->end_io = bio->bi_end_io;
749 	end_io_wq->info = info;
750 	end_io_wq->status = 0;
751 	end_io_wq->bio = bio;
752 	end_io_wq->metadata = metadata;
753 
754 	bio->bi_private = end_io_wq;
755 	bio->bi_end_io = end_workqueue_bio;
756 	return 0;
757 }
758 
759 static void run_one_async_start(struct btrfs_work *work)
760 {
761 	struct async_submit_bio *async;
762 	blk_status_t ret;
763 
764 	async = container_of(work, struct  async_submit_bio, work);
765 	ret = async->submit_bio_start(async->private_data, async->bio,
766 				      async->bio_offset);
767 	if (ret)
768 		async->status = ret;
769 }
770 
771 /*
772  * In order to insert checksums into the metadata in large chunks, we wait
773  * until bio submission time.   All the pages in the bio are checksummed and
774  * sums are attached onto the ordered extent record.
775  *
776  * At IO completion time the csums attached on the ordered extent record are
777  * inserted into the tree.
778  */
779 static void run_one_async_done(struct btrfs_work *work)
780 {
781 	struct async_submit_bio *async;
782 	struct inode *inode;
783 	blk_status_t ret;
784 
785 	async = container_of(work, struct  async_submit_bio, work);
786 	inode = async->private_data;
787 
788 	/* If an error occurred we just want to clean up the bio and move on */
789 	if (async->status) {
790 		async->bio->bi_status = async->status;
791 		bio_endio(async->bio);
792 		return;
793 	}
794 
795 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
796 			async->mirror_num, 1);
797 	if (ret) {
798 		async->bio->bi_status = ret;
799 		bio_endio(async->bio);
800 	}
801 }
802 
803 static void run_one_async_free(struct btrfs_work *work)
804 {
805 	struct async_submit_bio *async;
806 
807 	async = container_of(work, struct  async_submit_bio, work);
808 	kfree(async);
809 }
810 
811 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
812 				 int mirror_num, unsigned long bio_flags,
813 				 u64 bio_offset, void *private_data,
814 				 extent_submit_bio_start_t *submit_bio_start)
815 {
816 	struct async_submit_bio *async;
817 
818 	async = kmalloc(sizeof(*async), GFP_NOFS);
819 	if (!async)
820 		return BLK_STS_RESOURCE;
821 
822 	async->private_data = private_data;
823 	async->bio = bio;
824 	async->mirror_num = mirror_num;
825 	async->submit_bio_start = submit_bio_start;
826 
827 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
828 			run_one_async_done, run_one_async_free);
829 
830 	async->bio_offset = bio_offset;
831 
832 	async->status = 0;
833 
834 	if (op_is_sync(bio->bi_opf))
835 		btrfs_set_work_high_priority(&async->work);
836 
837 	btrfs_queue_work(fs_info->workers, &async->work);
838 	return 0;
839 }
840 
841 static blk_status_t btree_csum_one_bio(struct bio *bio)
842 {
843 	struct bio_vec *bvec;
844 	struct btrfs_root *root;
845 	int ret = 0;
846 	struct bvec_iter_all iter_all;
847 
848 	ASSERT(!bio_flagged(bio, BIO_CLONED));
849 	bio_for_each_segment_all(bvec, bio, iter_all) {
850 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
851 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
852 		if (ret)
853 			break;
854 	}
855 
856 	return errno_to_blk_status(ret);
857 }
858 
859 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
860 					     u64 bio_offset)
861 {
862 	/*
863 	 * when we're called for a write, we're already in the async
864 	 * submission context.  Just jump into btrfs_map_bio
865 	 */
866 	return btree_csum_one_bio(bio);
867 }
868 
869 static int check_async_write(struct btrfs_fs_info *fs_info,
870 			     struct btrfs_inode *bi)
871 {
872 	if (atomic_read(&bi->sync_writers))
873 		return 0;
874 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
875 		return 0;
876 	return 1;
877 }
878 
879 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
880 					  int mirror_num,
881 					  unsigned long bio_flags)
882 {
883 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
884 	int async = check_async_write(fs_info, BTRFS_I(inode));
885 	blk_status_t ret;
886 
887 	if (bio_op(bio) != REQ_OP_WRITE) {
888 		/*
889 		 * called for a read, do the setup so that checksum validation
890 		 * can happen in the async kernel threads
891 		 */
892 		ret = btrfs_bio_wq_end_io(fs_info, bio,
893 					  BTRFS_WQ_ENDIO_METADATA);
894 		if (ret)
895 			goto out_w_error;
896 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
897 	} else if (!async) {
898 		ret = btree_csum_one_bio(bio);
899 		if (ret)
900 			goto out_w_error;
901 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
902 	} else {
903 		/*
904 		 * kthread helpers are used to submit writes so that
905 		 * checksumming can happen in parallel across all CPUs
906 		 */
907 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
908 					  0, inode, btree_submit_bio_start);
909 	}
910 
911 	if (ret)
912 		goto out_w_error;
913 	return 0;
914 
915 out_w_error:
916 	bio->bi_status = ret;
917 	bio_endio(bio);
918 	return ret;
919 }
920 
921 #ifdef CONFIG_MIGRATION
922 static int btree_migratepage(struct address_space *mapping,
923 			struct page *newpage, struct page *page,
924 			enum migrate_mode mode)
925 {
926 	/*
927 	 * we can't safely write a btree page from here,
928 	 * we haven't done the locking hook
929 	 */
930 	if (PageDirty(page))
931 		return -EAGAIN;
932 	/*
933 	 * Buffers may be managed in a filesystem specific way.
934 	 * We must have no buffers or drop them.
935 	 */
936 	if (page_has_private(page) &&
937 	    !try_to_release_page(page, GFP_KERNEL))
938 		return -EAGAIN;
939 	return migrate_page(mapping, newpage, page, mode);
940 }
941 #endif
942 
943 
944 static int btree_writepages(struct address_space *mapping,
945 			    struct writeback_control *wbc)
946 {
947 	struct btrfs_fs_info *fs_info;
948 	int ret;
949 
950 	if (wbc->sync_mode == WB_SYNC_NONE) {
951 
952 		if (wbc->for_kupdate)
953 			return 0;
954 
955 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
956 		/* this is a bit racy, but that's ok */
957 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
958 					     BTRFS_DIRTY_METADATA_THRESH,
959 					     fs_info->dirty_metadata_batch);
960 		if (ret < 0)
961 			return 0;
962 	}
963 	return btree_write_cache_pages(mapping, wbc);
964 }
965 
966 static int btree_readpage(struct file *file, struct page *page)
967 {
968 	struct extent_io_tree *tree;
969 	tree = &BTRFS_I(page->mapping->host)->io_tree;
970 	return extent_read_full_page(tree, page, btree_get_extent, 0);
971 }
972 
973 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
974 {
975 	if (PageWriteback(page) || PageDirty(page))
976 		return 0;
977 
978 	return try_release_extent_buffer(page);
979 }
980 
981 static void btree_invalidatepage(struct page *page, unsigned int offset,
982 				 unsigned int length)
983 {
984 	struct extent_io_tree *tree;
985 	tree = &BTRFS_I(page->mapping->host)->io_tree;
986 	extent_invalidatepage(tree, page, offset);
987 	btree_releasepage(page, GFP_NOFS);
988 	if (PagePrivate(page)) {
989 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
990 			   "page private not zero on page %llu",
991 			   (unsigned long long)page_offset(page));
992 		ClearPagePrivate(page);
993 		set_page_private(page, 0);
994 		put_page(page);
995 	}
996 }
997 
998 static int btree_set_page_dirty(struct page *page)
999 {
1000 #ifdef DEBUG
1001 	struct extent_buffer *eb;
1002 
1003 	BUG_ON(!PagePrivate(page));
1004 	eb = (struct extent_buffer *)page->private;
1005 	BUG_ON(!eb);
1006 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1007 	BUG_ON(!atomic_read(&eb->refs));
1008 	btrfs_assert_tree_locked(eb);
1009 #endif
1010 	return __set_page_dirty_nobuffers(page);
1011 }
1012 
1013 static const struct address_space_operations btree_aops = {
1014 	.readpage	= btree_readpage,
1015 	.writepages	= btree_writepages,
1016 	.releasepage	= btree_releasepage,
1017 	.invalidatepage = btree_invalidatepage,
1018 #ifdef CONFIG_MIGRATION
1019 	.migratepage	= btree_migratepage,
1020 #endif
1021 	.set_page_dirty = btree_set_page_dirty,
1022 };
1023 
1024 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1025 {
1026 	struct extent_buffer *buf = NULL;
1027 	int ret;
1028 
1029 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1030 	if (IS_ERR(buf))
1031 		return;
1032 
1033 	ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1034 	if (ret < 0)
1035 		free_extent_buffer_stale(buf);
1036 	else
1037 		free_extent_buffer(buf);
1038 }
1039 
1040 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1041 			 int mirror_num, struct extent_buffer **eb)
1042 {
1043 	struct extent_buffer *buf = NULL;
1044 	int ret;
1045 
1046 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1047 	if (IS_ERR(buf))
1048 		return 0;
1049 
1050 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1051 
1052 	ret = read_extent_buffer_pages(buf, WAIT_PAGE_LOCK, mirror_num);
1053 	if (ret) {
1054 		free_extent_buffer_stale(buf);
1055 		return ret;
1056 	}
1057 
1058 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1059 		free_extent_buffer_stale(buf);
1060 		return -EIO;
1061 	} else if (extent_buffer_uptodate(buf)) {
1062 		*eb = buf;
1063 	} else {
1064 		free_extent_buffer(buf);
1065 	}
1066 	return 0;
1067 }
1068 
1069 struct extent_buffer *btrfs_find_create_tree_block(
1070 						struct btrfs_fs_info *fs_info,
1071 						u64 bytenr)
1072 {
1073 	if (btrfs_is_testing(fs_info))
1074 		return alloc_test_extent_buffer(fs_info, bytenr);
1075 	return alloc_extent_buffer(fs_info, bytenr);
1076 }
1077 
1078 /*
1079  * Read tree block at logical address @bytenr and do variant basic but critical
1080  * verification.
1081  *
1082  * @parent_transid:	expected transid of this tree block, skip check if 0
1083  * @level:		expected level, mandatory check
1084  * @first_key:		expected key in slot 0, skip check if NULL
1085  */
1086 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1087 				      u64 parent_transid, int level,
1088 				      struct btrfs_key *first_key)
1089 {
1090 	struct extent_buffer *buf = NULL;
1091 	int ret;
1092 
1093 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1094 	if (IS_ERR(buf))
1095 		return buf;
1096 
1097 	ret = btree_read_extent_buffer_pages(buf, parent_transid,
1098 					     level, first_key);
1099 	if (ret) {
1100 		free_extent_buffer_stale(buf);
1101 		return ERR_PTR(ret);
1102 	}
1103 	return buf;
1104 
1105 }
1106 
1107 void btrfs_clean_tree_block(struct extent_buffer *buf)
1108 {
1109 	struct btrfs_fs_info *fs_info = buf->fs_info;
1110 	if (btrfs_header_generation(buf) ==
1111 	    fs_info->running_transaction->transid) {
1112 		btrfs_assert_tree_locked(buf);
1113 
1114 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1115 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1116 						 -buf->len,
1117 						 fs_info->dirty_metadata_batch);
1118 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1119 			btrfs_set_lock_blocking_write(buf);
1120 			clear_extent_buffer_dirty(buf);
1121 		}
1122 	}
1123 }
1124 
1125 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1126 {
1127 	struct btrfs_subvolume_writers *writers;
1128 	int ret;
1129 
1130 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1131 	if (!writers)
1132 		return ERR_PTR(-ENOMEM);
1133 
1134 	ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1135 	if (ret < 0) {
1136 		kfree(writers);
1137 		return ERR_PTR(ret);
1138 	}
1139 
1140 	init_waitqueue_head(&writers->wait);
1141 	return writers;
1142 }
1143 
1144 static void
1145 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1146 {
1147 	percpu_counter_destroy(&writers->counter);
1148 	kfree(writers);
1149 }
1150 
1151 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1152 			 u64 objectid)
1153 {
1154 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1155 	root->node = NULL;
1156 	root->commit_root = NULL;
1157 	root->state = 0;
1158 	root->orphan_cleanup_state = 0;
1159 
1160 	root->last_trans = 0;
1161 	root->highest_objectid = 0;
1162 	root->nr_delalloc_inodes = 0;
1163 	root->nr_ordered_extents = 0;
1164 	root->inode_tree = RB_ROOT;
1165 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1166 	root->block_rsv = NULL;
1167 
1168 	INIT_LIST_HEAD(&root->dirty_list);
1169 	INIT_LIST_HEAD(&root->root_list);
1170 	INIT_LIST_HEAD(&root->delalloc_inodes);
1171 	INIT_LIST_HEAD(&root->delalloc_root);
1172 	INIT_LIST_HEAD(&root->ordered_extents);
1173 	INIT_LIST_HEAD(&root->ordered_root);
1174 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1175 	INIT_LIST_HEAD(&root->logged_list[0]);
1176 	INIT_LIST_HEAD(&root->logged_list[1]);
1177 	spin_lock_init(&root->inode_lock);
1178 	spin_lock_init(&root->delalloc_lock);
1179 	spin_lock_init(&root->ordered_extent_lock);
1180 	spin_lock_init(&root->accounting_lock);
1181 	spin_lock_init(&root->log_extents_lock[0]);
1182 	spin_lock_init(&root->log_extents_lock[1]);
1183 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1184 	mutex_init(&root->objectid_mutex);
1185 	mutex_init(&root->log_mutex);
1186 	mutex_init(&root->ordered_extent_mutex);
1187 	mutex_init(&root->delalloc_mutex);
1188 	init_waitqueue_head(&root->log_writer_wait);
1189 	init_waitqueue_head(&root->log_commit_wait[0]);
1190 	init_waitqueue_head(&root->log_commit_wait[1]);
1191 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1192 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1193 	atomic_set(&root->log_commit[0], 0);
1194 	atomic_set(&root->log_commit[1], 0);
1195 	atomic_set(&root->log_writers, 0);
1196 	atomic_set(&root->log_batch, 0);
1197 	refcount_set(&root->refs, 1);
1198 	atomic_set(&root->will_be_snapshotted, 0);
1199 	atomic_set(&root->snapshot_force_cow, 0);
1200 	atomic_set(&root->nr_swapfiles, 0);
1201 	root->log_transid = 0;
1202 	root->log_transid_committed = -1;
1203 	root->last_log_commit = 0;
1204 	if (!dummy)
1205 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1206 				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1207 
1208 	memset(&root->root_key, 0, sizeof(root->root_key));
1209 	memset(&root->root_item, 0, sizeof(root->root_item));
1210 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1211 	if (!dummy)
1212 		root->defrag_trans_start = fs_info->generation;
1213 	else
1214 		root->defrag_trans_start = 0;
1215 	root->root_key.objectid = objectid;
1216 	root->anon_dev = 0;
1217 
1218 	spin_lock_init(&root->root_item_lock);
1219 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1220 }
1221 
1222 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1223 		gfp_t flags)
1224 {
1225 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1226 	if (root)
1227 		root->fs_info = fs_info;
1228 	return root;
1229 }
1230 
1231 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1232 /* Should only be used by the testing infrastructure */
1233 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1234 {
1235 	struct btrfs_root *root;
1236 
1237 	if (!fs_info)
1238 		return ERR_PTR(-EINVAL);
1239 
1240 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1241 	if (!root)
1242 		return ERR_PTR(-ENOMEM);
1243 
1244 	/* We don't use the stripesize in selftest, set it as sectorsize */
1245 	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1246 	root->alloc_bytenr = 0;
1247 
1248 	return root;
1249 }
1250 #endif
1251 
1252 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1253 				     u64 objectid)
1254 {
1255 	struct btrfs_fs_info *fs_info = trans->fs_info;
1256 	struct extent_buffer *leaf;
1257 	struct btrfs_root *tree_root = fs_info->tree_root;
1258 	struct btrfs_root *root;
1259 	struct btrfs_key key;
1260 	unsigned int nofs_flag;
1261 	int ret = 0;
1262 	uuid_le uuid = NULL_UUID_LE;
1263 
1264 	/*
1265 	 * We're holding a transaction handle, so use a NOFS memory allocation
1266 	 * context to avoid deadlock if reclaim happens.
1267 	 */
1268 	nofs_flag = memalloc_nofs_save();
1269 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1270 	memalloc_nofs_restore(nofs_flag);
1271 	if (!root)
1272 		return ERR_PTR(-ENOMEM);
1273 
1274 	__setup_root(root, fs_info, objectid);
1275 	root->root_key.objectid = objectid;
1276 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1277 	root->root_key.offset = 0;
1278 
1279 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1280 	if (IS_ERR(leaf)) {
1281 		ret = PTR_ERR(leaf);
1282 		leaf = NULL;
1283 		goto fail;
1284 	}
1285 
1286 	root->node = leaf;
1287 	btrfs_mark_buffer_dirty(leaf);
1288 
1289 	root->commit_root = btrfs_root_node(root);
1290 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1291 
1292 	root->root_item.flags = 0;
1293 	root->root_item.byte_limit = 0;
1294 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1295 	btrfs_set_root_generation(&root->root_item, trans->transid);
1296 	btrfs_set_root_level(&root->root_item, 0);
1297 	btrfs_set_root_refs(&root->root_item, 1);
1298 	btrfs_set_root_used(&root->root_item, leaf->len);
1299 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1300 	btrfs_set_root_dirid(&root->root_item, 0);
1301 	if (is_fstree(objectid))
1302 		uuid_le_gen(&uuid);
1303 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1304 	root->root_item.drop_level = 0;
1305 
1306 	key.objectid = objectid;
1307 	key.type = BTRFS_ROOT_ITEM_KEY;
1308 	key.offset = 0;
1309 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1310 	if (ret)
1311 		goto fail;
1312 
1313 	btrfs_tree_unlock(leaf);
1314 
1315 	return root;
1316 
1317 fail:
1318 	if (leaf) {
1319 		btrfs_tree_unlock(leaf);
1320 		free_extent_buffer(root->commit_root);
1321 		free_extent_buffer(leaf);
1322 	}
1323 	kfree(root);
1324 
1325 	return ERR_PTR(ret);
1326 }
1327 
1328 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1329 					 struct btrfs_fs_info *fs_info)
1330 {
1331 	struct btrfs_root *root;
1332 	struct extent_buffer *leaf;
1333 
1334 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1335 	if (!root)
1336 		return ERR_PTR(-ENOMEM);
1337 
1338 	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1339 
1340 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1341 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1342 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1343 
1344 	/*
1345 	 * DON'T set REF_COWS for log trees
1346 	 *
1347 	 * log trees do not get reference counted because they go away
1348 	 * before a real commit is actually done.  They do store pointers
1349 	 * to file data extents, and those reference counts still get
1350 	 * updated (along with back refs to the log tree).
1351 	 */
1352 
1353 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1354 			NULL, 0, 0, 0);
1355 	if (IS_ERR(leaf)) {
1356 		kfree(root);
1357 		return ERR_CAST(leaf);
1358 	}
1359 
1360 	root->node = leaf;
1361 
1362 	btrfs_mark_buffer_dirty(root->node);
1363 	btrfs_tree_unlock(root->node);
1364 	return root;
1365 }
1366 
1367 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1368 			     struct btrfs_fs_info *fs_info)
1369 {
1370 	struct btrfs_root *log_root;
1371 
1372 	log_root = alloc_log_tree(trans, fs_info);
1373 	if (IS_ERR(log_root))
1374 		return PTR_ERR(log_root);
1375 	WARN_ON(fs_info->log_root_tree);
1376 	fs_info->log_root_tree = log_root;
1377 	return 0;
1378 }
1379 
1380 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1381 		       struct btrfs_root *root)
1382 {
1383 	struct btrfs_fs_info *fs_info = root->fs_info;
1384 	struct btrfs_root *log_root;
1385 	struct btrfs_inode_item *inode_item;
1386 
1387 	log_root = alloc_log_tree(trans, fs_info);
1388 	if (IS_ERR(log_root))
1389 		return PTR_ERR(log_root);
1390 
1391 	log_root->last_trans = trans->transid;
1392 	log_root->root_key.offset = root->root_key.objectid;
1393 
1394 	inode_item = &log_root->root_item.inode;
1395 	btrfs_set_stack_inode_generation(inode_item, 1);
1396 	btrfs_set_stack_inode_size(inode_item, 3);
1397 	btrfs_set_stack_inode_nlink(inode_item, 1);
1398 	btrfs_set_stack_inode_nbytes(inode_item,
1399 				     fs_info->nodesize);
1400 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1401 
1402 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1403 
1404 	WARN_ON(root->log_root);
1405 	root->log_root = log_root;
1406 	root->log_transid = 0;
1407 	root->log_transid_committed = -1;
1408 	root->last_log_commit = 0;
1409 	return 0;
1410 }
1411 
1412 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1413 					       struct btrfs_key *key)
1414 {
1415 	struct btrfs_root *root;
1416 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1417 	struct btrfs_path *path;
1418 	u64 generation;
1419 	int ret;
1420 	int level;
1421 
1422 	path = btrfs_alloc_path();
1423 	if (!path)
1424 		return ERR_PTR(-ENOMEM);
1425 
1426 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1427 	if (!root) {
1428 		ret = -ENOMEM;
1429 		goto alloc_fail;
1430 	}
1431 
1432 	__setup_root(root, fs_info, key->objectid);
1433 
1434 	ret = btrfs_find_root(tree_root, key, path,
1435 			      &root->root_item, &root->root_key);
1436 	if (ret) {
1437 		if (ret > 0)
1438 			ret = -ENOENT;
1439 		goto find_fail;
1440 	}
1441 
1442 	generation = btrfs_root_generation(&root->root_item);
1443 	level = btrfs_root_level(&root->root_item);
1444 	root->node = read_tree_block(fs_info,
1445 				     btrfs_root_bytenr(&root->root_item),
1446 				     generation, level, NULL);
1447 	if (IS_ERR(root->node)) {
1448 		ret = PTR_ERR(root->node);
1449 		goto find_fail;
1450 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1451 		ret = -EIO;
1452 		free_extent_buffer(root->node);
1453 		goto find_fail;
1454 	}
1455 	root->commit_root = btrfs_root_node(root);
1456 out:
1457 	btrfs_free_path(path);
1458 	return root;
1459 
1460 find_fail:
1461 	kfree(root);
1462 alloc_fail:
1463 	root = ERR_PTR(ret);
1464 	goto out;
1465 }
1466 
1467 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1468 				      struct btrfs_key *location)
1469 {
1470 	struct btrfs_root *root;
1471 
1472 	root = btrfs_read_tree_root(tree_root, location);
1473 	if (IS_ERR(root))
1474 		return root;
1475 
1476 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1477 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1478 		btrfs_check_and_init_root_item(&root->root_item);
1479 	}
1480 
1481 	return root;
1482 }
1483 
1484 int btrfs_init_fs_root(struct btrfs_root *root)
1485 {
1486 	int ret;
1487 	struct btrfs_subvolume_writers *writers;
1488 
1489 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1490 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1491 					GFP_NOFS);
1492 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1493 		ret = -ENOMEM;
1494 		goto fail;
1495 	}
1496 
1497 	writers = btrfs_alloc_subvolume_writers();
1498 	if (IS_ERR(writers)) {
1499 		ret = PTR_ERR(writers);
1500 		goto fail;
1501 	}
1502 	root->subv_writers = writers;
1503 
1504 	btrfs_init_free_ino_ctl(root);
1505 	spin_lock_init(&root->ino_cache_lock);
1506 	init_waitqueue_head(&root->ino_cache_wait);
1507 
1508 	ret = get_anon_bdev(&root->anon_dev);
1509 	if (ret)
1510 		goto fail;
1511 
1512 	mutex_lock(&root->objectid_mutex);
1513 	ret = btrfs_find_highest_objectid(root,
1514 					&root->highest_objectid);
1515 	if (ret) {
1516 		mutex_unlock(&root->objectid_mutex);
1517 		goto fail;
1518 	}
1519 
1520 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1521 
1522 	mutex_unlock(&root->objectid_mutex);
1523 
1524 	return 0;
1525 fail:
1526 	/* The caller is responsible to call btrfs_free_fs_root */
1527 	return ret;
1528 }
1529 
1530 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1531 					u64 root_id)
1532 {
1533 	struct btrfs_root *root;
1534 
1535 	spin_lock(&fs_info->fs_roots_radix_lock);
1536 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1537 				 (unsigned long)root_id);
1538 	spin_unlock(&fs_info->fs_roots_radix_lock);
1539 	return root;
1540 }
1541 
1542 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1543 			 struct btrfs_root *root)
1544 {
1545 	int ret;
1546 
1547 	ret = radix_tree_preload(GFP_NOFS);
1548 	if (ret)
1549 		return ret;
1550 
1551 	spin_lock(&fs_info->fs_roots_radix_lock);
1552 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1553 				(unsigned long)root->root_key.objectid,
1554 				root);
1555 	if (ret == 0)
1556 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1557 	spin_unlock(&fs_info->fs_roots_radix_lock);
1558 	radix_tree_preload_end();
1559 
1560 	return ret;
1561 }
1562 
1563 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1564 				     struct btrfs_key *location,
1565 				     bool check_ref)
1566 {
1567 	struct btrfs_root *root;
1568 	struct btrfs_path *path;
1569 	struct btrfs_key key;
1570 	int ret;
1571 
1572 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1573 		return fs_info->tree_root;
1574 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1575 		return fs_info->extent_root;
1576 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1577 		return fs_info->chunk_root;
1578 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1579 		return fs_info->dev_root;
1580 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1581 		return fs_info->csum_root;
1582 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1583 		return fs_info->quota_root ? fs_info->quota_root :
1584 					     ERR_PTR(-ENOENT);
1585 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1586 		return fs_info->uuid_root ? fs_info->uuid_root :
1587 					    ERR_PTR(-ENOENT);
1588 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1589 		return fs_info->free_space_root ? fs_info->free_space_root :
1590 						  ERR_PTR(-ENOENT);
1591 again:
1592 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1593 	if (root) {
1594 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1595 			return ERR_PTR(-ENOENT);
1596 		return root;
1597 	}
1598 
1599 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1600 	if (IS_ERR(root))
1601 		return root;
1602 
1603 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1604 		ret = -ENOENT;
1605 		goto fail;
1606 	}
1607 
1608 	ret = btrfs_init_fs_root(root);
1609 	if (ret)
1610 		goto fail;
1611 
1612 	path = btrfs_alloc_path();
1613 	if (!path) {
1614 		ret = -ENOMEM;
1615 		goto fail;
1616 	}
1617 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1618 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1619 	key.offset = location->objectid;
1620 
1621 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1622 	btrfs_free_path(path);
1623 	if (ret < 0)
1624 		goto fail;
1625 	if (ret == 0)
1626 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1627 
1628 	ret = btrfs_insert_fs_root(fs_info, root);
1629 	if (ret) {
1630 		if (ret == -EEXIST) {
1631 			btrfs_free_fs_root(root);
1632 			goto again;
1633 		}
1634 		goto fail;
1635 	}
1636 	return root;
1637 fail:
1638 	btrfs_free_fs_root(root);
1639 	return ERR_PTR(ret);
1640 }
1641 
1642 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1643 {
1644 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1645 	int ret = 0;
1646 	struct btrfs_device *device;
1647 	struct backing_dev_info *bdi;
1648 
1649 	rcu_read_lock();
1650 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1651 		if (!device->bdev)
1652 			continue;
1653 		bdi = device->bdev->bd_bdi;
1654 		if (bdi_congested(bdi, bdi_bits)) {
1655 			ret = 1;
1656 			break;
1657 		}
1658 	}
1659 	rcu_read_unlock();
1660 	return ret;
1661 }
1662 
1663 /*
1664  * called by the kthread helper functions to finally call the bio end_io
1665  * functions.  This is where read checksum verification actually happens
1666  */
1667 static void end_workqueue_fn(struct btrfs_work *work)
1668 {
1669 	struct bio *bio;
1670 	struct btrfs_end_io_wq *end_io_wq;
1671 
1672 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1673 	bio = end_io_wq->bio;
1674 
1675 	bio->bi_status = end_io_wq->status;
1676 	bio->bi_private = end_io_wq->private;
1677 	bio->bi_end_io = end_io_wq->end_io;
1678 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1679 	bio_endio(bio);
1680 }
1681 
1682 static int cleaner_kthread(void *arg)
1683 {
1684 	struct btrfs_root *root = arg;
1685 	struct btrfs_fs_info *fs_info = root->fs_info;
1686 	int again;
1687 
1688 	while (1) {
1689 		again = 0;
1690 
1691 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1692 
1693 		/* Make the cleaner go to sleep early. */
1694 		if (btrfs_need_cleaner_sleep(fs_info))
1695 			goto sleep;
1696 
1697 		/*
1698 		 * Do not do anything if we might cause open_ctree() to block
1699 		 * before we have finished mounting the filesystem.
1700 		 */
1701 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1702 			goto sleep;
1703 
1704 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1705 			goto sleep;
1706 
1707 		/*
1708 		 * Avoid the problem that we change the status of the fs
1709 		 * during the above check and trylock.
1710 		 */
1711 		if (btrfs_need_cleaner_sleep(fs_info)) {
1712 			mutex_unlock(&fs_info->cleaner_mutex);
1713 			goto sleep;
1714 		}
1715 
1716 		btrfs_run_delayed_iputs(fs_info);
1717 
1718 		again = btrfs_clean_one_deleted_snapshot(root);
1719 		mutex_unlock(&fs_info->cleaner_mutex);
1720 
1721 		/*
1722 		 * The defragger has dealt with the R/O remount and umount,
1723 		 * needn't do anything special here.
1724 		 */
1725 		btrfs_run_defrag_inodes(fs_info);
1726 
1727 		/*
1728 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1729 		 * with relocation (btrfs_relocate_chunk) and relocation
1730 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1731 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1732 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1733 		 * unused block groups.
1734 		 */
1735 		btrfs_delete_unused_bgs(fs_info);
1736 sleep:
1737 		clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1738 		if (kthread_should_park())
1739 			kthread_parkme();
1740 		if (kthread_should_stop())
1741 			return 0;
1742 		if (!again) {
1743 			set_current_state(TASK_INTERRUPTIBLE);
1744 			schedule();
1745 			__set_current_state(TASK_RUNNING);
1746 		}
1747 	}
1748 }
1749 
1750 static int transaction_kthread(void *arg)
1751 {
1752 	struct btrfs_root *root = arg;
1753 	struct btrfs_fs_info *fs_info = root->fs_info;
1754 	struct btrfs_trans_handle *trans;
1755 	struct btrfs_transaction *cur;
1756 	u64 transid;
1757 	time64_t now;
1758 	unsigned long delay;
1759 	bool cannot_commit;
1760 
1761 	do {
1762 		cannot_commit = false;
1763 		delay = HZ * fs_info->commit_interval;
1764 		mutex_lock(&fs_info->transaction_kthread_mutex);
1765 
1766 		spin_lock(&fs_info->trans_lock);
1767 		cur = fs_info->running_transaction;
1768 		if (!cur) {
1769 			spin_unlock(&fs_info->trans_lock);
1770 			goto sleep;
1771 		}
1772 
1773 		now = ktime_get_seconds();
1774 		if (cur->state < TRANS_STATE_BLOCKED &&
1775 		    !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1776 		    (now < cur->start_time ||
1777 		     now - cur->start_time < fs_info->commit_interval)) {
1778 			spin_unlock(&fs_info->trans_lock);
1779 			delay = HZ * 5;
1780 			goto sleep;
1781 		}
1782 		transid = cur->transid;
1783 		spin_unlock(&fs_info->trans_lock);
1784 
1785 		/* If the file system is aborted, this will always fail. */
1786 		trans = btrfs_attach_transaction(root);
1787 		if (IS_ERR(trans)) {
1788 			if (PTR_ERR(trans) != -ENOENT)
1789 				cannot_commit = true;
1790 			goto sleep;
1791 		}
1792 		if (transid == trans->transid) {
1793 			btrfs_commit_transaction(trans);
1794 		} else {
1795 			btrfs_end_transaction(trans);
1796 		}
1797 sleep:
1798 		wake_up_process(fs_info->cleaner_kthread);
1799 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1800 
1801 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1802 				      &fs_info->fs_state)))
1803 			btrfs_cleanup_transaction(fs_info);
1804 		if (!kthread_should_stop() &&
1805 				(!btrfs_transaction_blocked(fs_info) ||
1806 				 cannot_commit))
1807 			schedule_timeout_interruptible(delay);
1808 	} while (!kthread_should_stop());
1809 	return 0;
1810 }
1811 
1812 /*
1813  * this will find the highest generation in the array of
1814  * root backups.  The index of the highest array is returned,
1815  * or -1 if we can't find anything.
1816  *
1817  * We check to make sure the array is valid by comparing the
1818  * generation of the latest  root in the array with the generation
1819  * in the super block.  If they don't match we pitch it.
1820  */
1821 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1822 {
1823 	u64 cur;
1824 	int newest_index = -1;
1825 	struct btrfs_root_backup *root_backup;
1826 	int i;
1827 
1828 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1829 		root_backup = info->super_copy->super_roots + i;
1830 		cur = btrfs_backup_tree_root_gen(root_backup);
1831 		if (cur == newest_gen)
1832 			newest_index = i;
1833 	}
1834 
1835 	/* check to see if we actually wrapped around */
1836 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1837 		root_backup = info->super_copy->super_roots;
1838 		cur = btrfs_backup_tree_root_gen(root_backup);
1839 		if (cur == newest_gen)
1840 			newest_index = 0;
1841 	}
1842 	return newest_index;
1843 }
1844 
1845 
1846 /*
1847  * find the oldest backup so we know where to store new entries
1848  * in the backup array.  This will set the backup_root_index
1849  * field in the fs_info struct
1850  */
1851 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1852 				     u64 newest_gen)
1853 {
1854 	int newest_index = -1;
1855 
1856 	newest_index = find_newest_super_backup(info, newest_gen);
1857 	/* if there was garbage in there, just move along */
1858 	if (newest_index == -1) {
1859 		info->backup_root_index = 0;
1860 	} else {
1861 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1862 	}
1863 }
1864 
1865 /*
1866  * copy all the root pointers into the super backup array.
1867  * this will bump the backup pointer by one when it is
1868  * done
1869  */
1870 static void backup_super_roots(struct btrfs_fs_info *info)
1871 {
1872 	int next_backup;
1873 	struct btrfs_root_backup *root_backup;
1874 	int last_backup;
1875 
1876 	next_backup = info->backup_root_index;
1877 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1878 		BTRFS_NUM_BACKUP_ROOTS;
1879 
1880 	/*
1881 	 * just overwrite the last backup if we're at the same generation
1882 	 * this happens only at umount
1883 	 */
1884 	root_backup = info->super_for_commit->super_roots + last_backup;
1885 	if (btrfs_backup_tree_root_gen(root_backup) ==
1886 	    btrfs_header_generation(info->tree_root->node))
1887 		next_backup = last_backup;
1888 
1889 	root_backup = info->super_for_commit->super_roots + next_backup;
1890 
1891 	/*
1892 	 * make sure all of our padding and empty slots get zero filled
1893 	 * regardless of which ones we use today
1894 	 */
1895 	memset(root_backup, 0, sizeof(*root_backup));
1896 
1897 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1898 
1899 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1900 	btrfs_set_backup_tree_root_gen(root_backup,
1901 			       btrfs_header_generation(info->tree_root->node));
1902 
1903 	btrfs_set_backup_tree_root_level(root_backup,
1904 			       btrfs_header_level(info->tree_root->node));
1905 
1906 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1907 	btrfs_set_backup_chunk_root_gen(root_backup,
1908 			       btrfs_header_generation(info->chunk_root->node));
1909 	btrfs_set_backup_chunk_root_level(root_backup,
1910 			       btrfs_header_level(info->chunk_root->node));
1911 
1912 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1913 	btrfs_set_backup_extent_root_gen(root_backup,
1914 			       btrfs_header_generation(info->extent_root->node));
1915 	btrfs_set_backup_extent_root_level(root_backup,
1916 			       btrfs_header_level(info->extent_root->node));
1917 
1918 	/*
1919 	 * we might commit during log recovery, which happens before we set
1920 	 * the fs_root.  Make sure it is valid before we fill it in.
1921 	 */
1922 	if (info->fs_root && info->fs_root->node) {
1923 		btrfs_set_backup_fs_root(root_backup,
1924 					 info->fs_root->node->start);
1925 		btrfs_set_backup_fs_root_gen(root_backup,
1926 			       btrfs_header_generation(info->fs_root->node));
1927 		btrfs_set_backup_fs_root_level(root_backup,
1928 			       btrfs_header_level(info->fs_root->node));
1929 	}
1930 
1931 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1932 	btrfs_set_backup_dev_root_gen(root_backup,
1933 			       btrfs_header_generation(info->dev_root->node));
1934 	btrfs_set_backup_dev_root_level(root_backup,
1935 				       btrfs_header_level(info->dev_root->node));
1936 
1937 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1938 	btrfs_set_backup_csum_root_gen(root_backup,
1939 			       btrfs_header_generation(info->csum_root->node));
1940 	btrfs_set_backup_csum_root_level(root_backup,
1941 			       btrfs_header_level(info->csum_root->node));
1942 
1943 	btrfs_set_backup_total_bytes(root_backup,
1944 			     btrfs_super_total_bytes(info->super_copy));
1945 	btrfs_set_backup_bytes_used(root_backup,
1946 			     btrfs_super_bytes_used(info->super_copy));
1947 	btrfs_set_backup_num_devices(root_backup,
1948 			     btrfs_super_num_devices(info->super_copy));
1949 
1950 	/*
1951 	 * if we don't copy this out to the super_copy, it won't get remembered
1952 	 * for the next commit
1953 	 */
1954 	memcpy(&info->super_copy->super_roots,
1955 	       &info->super_for_commit->super_roots,
1956 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1957 }
1958 
1959 /*
1960  * this copies info out of the root backup array and back into
1961  * the in-memory super block.  It is meant to help iterate through
1962  * the array, so you send it the number of backups you've already
1963  * tried and the last backup index you used.
1964  *
1965  * this returns -1 when it has tried all the backups
1966  */
1967 static noinline int next_root_backup(struct btrfs_fs_info *info,
1968 				     struct btrfs_super_block *super,
1969 				     int *num_backups_tried, int *backup_index)
1970 {
1971 	struct btrfs_root_backup *root_backup;
1972 	int newest = *backup_index;
1973 
1974 	if (*num_backups_tried == 0) {
1975 		u64 gen = btrfs_super_generation(super);
1976 
1977 		newest = find_newest_super_backup(info, gen);
1978 		if (newest == -1)
1979 			return -1;
1980 
1981 		*backup_index = newest;
1982 		*num_backups_tried = 1;
1983 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1984 		/* we've tried all the backups, all done */
1985 		return -1;
1986 	} else {
1987 		/* jump to the next oldest backup */
1988 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1989 			BTRFS_NUM_BACKUP_ROOTS;
1990 		*backup_index = newest;
1991 		*num_backups_tried += 1;
1992 	}
1993 	root_backup = super->super_roots + newest;
1994 
1995 	btrfs_set_super_generation(super,
1996 				   btrfs_backup_tree_root_gen(root_backup));
1997 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1998 	btrfs_set_super_root_level(super,
1999 				   btrfs_backup_tree_root_level(root_backup));
2000 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2001 
2002 	/*
2003 	 * fixme: the total bytes and num_devices need to match or we should
2004 	 * need a fsck
2005 	 */
2006 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2007 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2008 	return 0;
2009 }
2010 
2011 /* helper to cleanup workers */
2012 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2013 {
2014 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2015 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2016 	btrfs_destroy_workqueue(fs_info->workers);
2017 	btrfs_destroy_workqueue(fs_info->endio_workers);
2018 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2019 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2020 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2021 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2022 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2023 	btrfs_destroy_workqueue(fs_info->submit_workers);
2024 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2025 	btrfs_destroy_workqueue(fs_info->caching_workers);
2026 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2027 	btrfs_destroy_workqueue(fs_info->flush_workers);
2028 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2029 	btrfs_destroy_workqueue(fs_info->extent_workers);
2030 	/*
2031 	 * Now that all other work queues are destroyed, we can safely destroy
2032 	 * the queues used for metadata I/O, since tasks from those other work
2033 	 * queues can do metadata I/O operations.
2034 	 */
2035 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2036 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2037 }
2038 
2039 static void free_root_extent_buffers(struct btrfs_root *root)
2040 {
2041 	if (root) {
2042 		free_extent_buffer(root->node);
2043 		free_extent_buffer(root->commit_root);
2044 		root->node = NULL;
2045 		root->commit_root = NULL;
2046 	}
2047 }
2048 
2049 /* helper to cleanup tree roots */
2050 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2051 {
2052 	free_root_extent_buffers(info->tree_root);
2053 
2054 	free_root_extent_buffers(info->dev_root);
2055 	free_root_extent_buffers(info->extent_root);
2056 	free_root_extent_buffers(info->csum_root);
2057 	free_root_extent_buffers(info->quota_root);
2058 	free_root_extent_buffers(info->uuid_root);
2059 	if (chunk_root)
2060 		free_root_extent_buffers(info->chunk_root);
2061 	free_root_extent_buffers(info->free_space_root);
2062 }
2063 
2064 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2065 {
2066 	int ret;
2067 	struct btrfs_root *gang[8];
2068 	int i;
2069 
2070 	while (!list_empty(&fs_info->dead_roots)) {
2071 		gang[0] = list_entry(fs_info->dead_roots.next,
2072 				     struct btrfs_root, root_list);
2073 		list_del(&gang[0]->root_list);
2074 
2075 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2076 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2077 		} else {
2078 			free_extent_buffer(gang[0]->node);
2079 			free_extent_buffer(gang[0]->commit_root);
2080 			btrfs_put_fs_root(gang[0]);
2081 		}
2082 	}
2083 
2084 	while (1) {
2085 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2086 					     (void **)gang, 0,
2087 					     ARRAY_SIZE(gang));
2088 		if (!ret)
2089 			break;
2090 		for (i = 0; i < ret; i++)
2091 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2092 	}
2093 
2094 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2095 		btrfs_free_log_root_tree(NULL, fs_info);
2096 		btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2097 	}
2098 }
2099 
2100 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2101 {
2102 	mutex_init(&fs_info->scrub_lock);
2103 	atomic_set(&fs_info->scrubs_running, 0);
2104 	atomic_set(&fs_info->scrub_pause_req, 0);
2105 	atomic_set(&fs_info->scrubs_paused, 0);
2106 	atomic_set(&fs_info->scrub_cancel_req, 0);
2107 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2108 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2109 }
2110 
2111 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2112 {
2113 	spin_lock_init(&fs_info->balance_lock);
2114 	mutex_init(&fs_info->balance_mutex);
2115 	atomic_set(&fs_info->balance_pause_req, 0);
2116 	atomic_set(&fs_info->balance_cancel_req, 0);
2117 	fs_info->balance_ctl = NULL;
2118 	init_waitqueue_head(&fs_info->balance_wait_q);
2119 }
2120 
2121 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2122 {
2123 	struct inode *inode = fs_info->btree_inode;
2124 
2125 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2126 	set_nlink(inode, 1);
2127 	/*
2128 	 * we set the i_size on the btree inode to the max possible int.
2129 	 * the real end of the address space is determined by all of
2130 	 * the devices in the system
2131 	 */
2132 	inode->i_size = OFFSET_MAX;
2133 	inode->i_mapping->a_ops = &btree_aops;
2134 
2135 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2136 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2137 			    IO_TREE_INODE_IO, inode);
2138 	BTRFS_I(inode)->io_tree.track_uptodate = false;
2139 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2140 
2141 	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2142 
2143 	BTRFS_I(inode)->root = fs_info->tree_root;
2144 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2145 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2146 	btrfs_insert_inode_hash(inode);
2147 }
2148 
2149 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2150 {
2151 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2152 	init_rwsem(&fs_info->dev_replace.rwsem);
2153 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2154 }
2155 
2156 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2157 {
2158 	spin_lock_init(&fs_info->qgroup_lock);
2159 	mutex_init(&fs_info->qgroup_ioctl_lock);
2160 	fs_info->qgroup_tree = RB_ROOT;
2161 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2162 	fs_info->qgroup_seq = 1;
2163 	fs_info->qgroup_ulist = NULL;
2164 	fs_info->qgroup_rescan_running = false;
2165 	mutex_init(&fs_info->qgroup_rescan_lock);
2166 }
2167 
2168 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2169 		struct btrfs_fs_devices *fs_devices)
2170 {
2171 	u32 max_active = fs_info->thread_pool_size;
2172 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2173 
2174 	fs_info->workers =
2175 		btrfs_alloc_workqueue(fs_info, "worker",
2176 				      flags | WQ_HIGHPRI, max_active, 16);
2177 
2178 	fs_info->delalloc_workers =
2179 		btrfs_alloc_workqueue(fs_info, "delalloc",
2180 				      flags, max_active, 2);
2181 
2182 	fs_info->flush_workers =
2183 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2184 				      flags, max_active, 0);
2185 
2186 	fs_info->caching_workers =
2187 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2188 
2189 	/*
2190 	 * a higher idle thresh on the submit workers makes it much more
2191 	 * likely that bios will be send down in a sane order to the
2192 	 * devices
2193 	 */
2194 	fs_info->submit_workers =
2195 		btrfs_alloc_workqueue(fs_info, "submit", flags,
2196 				      min_t(u64, fs_devices->num_devices,
2197 					    max_active), 64);
2198 
2199 	fs_info->fixup_workers =
2200 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2201 
2202 	/*
2203 	 * endios are largely parallel and should have a very
2204 	 * low idle thresh
2205 	 */
2206 	fs_info->endio_workers =
2207 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2208 	fs_info->endio_meta_workers =
2209 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2210 				      max_active, 4);
2211 	fs_info->endio_meta_write_workers =
2212 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2213 				      max_active, 2);
2214 	fs_info->endio_raid56_workers =
2215 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2216 				      max_active, 4);
2217 	fs_info->endio_repair_workers =
2218 		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2219 	fs_info->rmw_workers =
2220 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2221 	fs_info->endio_write_workers =
2222 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2223 				      max_active, 2);
2224 	fs_info->endio_freespace_worker =
2225 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2226 				      max_active, 0);
2227 	fs_info->delayed_workers =
2228 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2229 				      max_active, 0);
2230 	fs_info->readahead_workers =
2231 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2232 				      max_active, 2);
2233 	fs_info->qgroup_rescan_workers =
2234 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2235 	fs_info->extent_workers =
2236 		btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2237 				      min_t(u64, fs_devices->num_devices,
2238 					    max_active), 8);
2239 
2240 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2241 	      fs_info->submit_workers && fs_info->flush_workers &&
2242 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2243 	      fs_info->endio_meta_write_workers &&
2244 	      fs_info->endio_repair_workers &&
2245 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2246 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2247 	      fs_info->caching_workers && fs_info->readahead_workers &&
2248 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2249 	      fs_info->extent_workers &&
2250 	      fs_info->qgroup_rescan_workers)) {
2251 		return -ENOMEM;
2252 	}
2253 
2254 	return 0;
2255 }
2256 
2257 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2258 {
2259 	struct crypto_shash *csum_shash;
2260 	const char *csum_name = btrfs_super_csum_name(csum_type);
2261 
2262 	csum_shash = crypto_alloc_shash(csum_name, 0, 0);
2263 
2264 	if (IS_ERR(csum_shash)) {
2265 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2266 			  csum_name);
2267 		return PTR_ERR(csum_shash);
2268 	}
2269 
2270 	fs_info->csum_shash = csum_shash;
2271 
2272 	return 0;
2273 }
2274 
2275 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2276 {
2277 	crypto_free_shash(fs_info->csum_shash);
2278 }
2279 
2280 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2281 			    struct btrfs_fs_devices *fs_devices)
2282 {
2283 	int ret;
2284 	struct btrfs_root *log_tree_root;
2285 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2286 	u64 bytenr = btrfs_super_log_root(disk_super);
2287 	int level = btrfs_super_log_root_level(disk_super);
2288 
2289 	if (fs_devices->rw_devices == 0) {
2290 		btrfs_warn(fs_info, "log replay required on RO media");
2291 		return -EIO;
2292 	}
2293 
2294 	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2295 	if (!log_tree_root)
2296 		return -ENOMEM;
2297 
2298 	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2299 
2300 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2301 					      fs_info->generation + 1,
2302 					      level, NULL);
2303 	if (IS_ERR(log_tree_root->node)) {
2304 		btrfs_warn(fs_info, "failed to read log tree");
2305 		ret = PTR_ERR(log_tree_root->node);
2306 		kfree(log_tree_root);
2307 		return ret;
2308 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2309 		btrfs_err(fs_info, "failed to read log tree");
2310 		free_extent_buffer(log_tree_root->node);
2311 		kfree(log_tree_root);
2312 		return -EIO;
2313 	}
2314 	/* returns with log_tree_root freed on success */
2315 	ret = btrfs_recover_log_trees(log_tree_root);
2316 	if (ret) {
2317 		btrfs_handle_fs_error(fs_info, ret,
2318 				      "Failed to recover log tree");
2319 		free_extent_buffer(log_tree_root->node);
2320 		kfree(log_tree_root);
2321 		return ret;
2322 	}
2323 
2324 	if (sb_rdonly(fs_info->sb)) {
2325 		ret = btrfs_commit_super(fs_info);
2326 		if (ret)
2327 			return ret;
2328 	}
2329 
2330 	return 0;
2331 }
2332 
2333 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2334 {
2335 	struct btrfs_root *tree_root = fs_info->tree_root;
2336 	struct btrfs_root *root;
2337 	struct btrfs_key location;
2338 	int ret;
2339 
2340 	BUG_ON(!fs_info->tree_root);
2341 
2342 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2343 	location.type = BTRFS_ROOT_ITEM_KEY;
2344 	location.offset = 0;
2345 
2346 	root = btrfs_read_tree_root(tree_root, &location);
2347 	if (IS_ERR(root)) {
2348 		ret = PTR_ERR(root);
2349 		goto out;
2350 	}
2351 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2352 	fs_info->extent_root = root;
2353 
2354 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2355 	root = btrfs_read_tree_root(tree_root, &location);
2356 	if (IS_ERR(root)) {
2357 		ret = PTR_ERR(root);
2358 		goto out;
2359 	}
2360 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2361 	fs_info->dev_root = root;
2362 	btrfs_init_devices_late(fs_info);
2363 
2364 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2365 	root = btrfs_read_tree_root(tree_root, &location);
2366 	if (IS_ERR(root)) {
2367 		ret = PTR_ERR(root);
2368 		goto out;
2369 	}
2370 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2371 	fs_info->csum_root = root;
2372 
2373 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2374 	root = btrfs_read_tree_root(tree_root, &location);
2375 	if (!IS_ERR(root)) {
2376 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2377 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2378 		fs_info->quota_root = root;
2379 	}
2380 
2381 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2382 	root = btrfs_read_tree_root(tree_root, &location);
2383 	if (IS_ERR(root)) {
2384 		ret = PTR_ERR(root);
2385 		if (ret != -ENOENT)
2386 			goto out;
2387 	} else {
2388 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2389 		fs_info->uuid_root = root;
2390 	}
2391 
2392 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2393 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2394 		root = btrfs_read_tree_root(tree_root, &location);
2395 		if (IS_ERR(root)) {
2396 			ret = PTR_ERR(root);
2397 			goto out;
2398 		}
2399 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2400 		fs_info->free_space_root = root;
2401 	}
2402 
2403 	return 0;
2404 out:
2405 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2406 		   location.objectid, ret);
2407 	return ret;
2408 }
2409 
2410 /*
2411  * Real super block validation
2412  * NOTE: super csum type and incompat features will not be checked here.
2413  *
2414  * @sb:		super block to check
2415  * @mirror_num:	the super block number to check its bytenr:
2416  * 		0	the primary (1st) sb
2417  * 		1, 2	2nd and 3rd backup copy
2418  * 	       -1	skip bytenr check
2419  */
2420 static int validate_super(struct btrfs_fs_info *fs_info,
2421 			    struct btrfs_super_block *sb, int mirror_num)
2422 {
2423 	u64 nodesize = btrfs_super_nodesize(sb);
2424 	u64 sectorsize = btrfs_super_sectorsize(sb);
2425 	int ret = 0;
2426 
2427 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2428 		btrfs_err(fs_info, "no valid FS found");
2429 		ret = -EINVAL;
2430 	}
2431 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2432 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2433 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2434 		ret = -EINVAL;
2435 	}
2436 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2437 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2438 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2439 		ret = -EINVAL;
2440 	}
2441 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2442 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2443 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2444 		ret = -EINVAL;
2445 	}
2446 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2447 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2448 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2449 		ret = -EINVAL;
2450 	}
2451 
2452 	/*
2453 	 * Check sectorsize and nodesize first, other check will need it.
2454 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2455 	 */
2456 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2457 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2458 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2459 		ret = -EINVAL;
2460 	}
2461 	/* Only PAGE SIZE is supported yet */
2462 	if (sectorsize != PAGE_SIZE) {
2463 		btrfs_err(fs_info,
2464 			"sectorsize %llu not supported yet, only support %lu",
2465 			sectorsize, PAGE_SIZE);
2466 		ret = -EINVAL;
2467 	}
2468 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2469 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2470 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2471 		ret = -EINVAL;
2472 	}
2473 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2474 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2475 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2476 		ret = -EINVAL;
2477 	}
2478 
2479 	/* Root alignment check */
2480 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2481 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2482 			   btrfs_super_root(sb));
2483 		ret = -EINVAL;
2484 	}
2485 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2486 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2487 			   btrfs_super_chunk_root(sb));
2488 		ret = -EINVAL;
2489 	}
2490 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2491 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2492 			   btrfs_super_log_root(sb));
2493 		ret = -EINVAL;
2494 	}
2495 
2496 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2497 		   BTRFS_FSID_SIZE) != 0) {
2498 		btrfs_err(fs_info,
2499 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2500 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2501 		ret = -EINVAL;
2502 	}
2503 
2504 	/*
2505 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2506 	 * done later
2507 	 */
2508 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2509 		btrfs_err(fs_info, "bytes_used is too small %llu",
2510 			  btrfs_super_bytes_used(sb));
2511 		ret = -EINVAL;
2512 	}
2513 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2514 		btrfs_err(fs_info, "invalid stripesize %u",
2515 			  btrfs_super_stripesize(sb));
2516 		ret = -EINVAL;
2517 	}
2518 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2519 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2520 			   btrfs_super_num_devices(sb));
2521 	if (btrfs_super_num_devices(sb) == 0) {
2522 		btrfs_err(fs_info, "number of devices is 0");
2523 		ret = -EINVAL;
2524 	}
2525 
2526 	if (mirror_num >= 0 &&
2527 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2528 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2529 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2530 		ret = -EINVAL;
2531 	}
2532 
2533 	/*
2534 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2535 	 * and one chunk
2536 	 */
2537 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2538 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2539 			  btrfs_super_sys_array_size(sb),
2540 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2541 		ret = -EINVAL;
2542 	}
2543 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2544 			+ sizeof(struct btrfs_chunk)) {
2545 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2546 			  btrfs_super_sys_array_size(sb),
2547 			  sizeof(struct btrfs_disk_key)
2548 			  + sizeof(struct btrfs_chunk));
2549 		ret = -EINVAL;
2550 	}
2551 
2552 	/*
2553 	 * The generation is a global counter, we'll trust it more than the others
2554 	 * but it's still possible that it's the one that's wrong.
2555 	 */
2556 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2557 		btrfs_warn(fs_info,
2558 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2559 			btrfs_super_generation(sb),
2560 			btrfs_super_chunk_root_generation(sb));
2561 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2562 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2563 		btrfs_warn(fs_info,
2564 			"suspicious: generation < cache_generation: %llu < %llu",
2565 			btrfs_super_generation(sb),
2566 			btrfs_super_cache_generation(sb));
2567 
2568 	return ret;
2569 }
2570 
2571 /*
2572  * Validation of super block at mount time.
2573  * Some checks already done early at mount time, like csum type and incompat
2574  * flags will be skipped.
2575  */
2576 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2577 {
2578 	return validate_super(fs_info, fs_info->super_copy, 0);
2579 }
2580 
2581 /*
2582  * Validation of super block at write time.
2583  * Some checks like bytenr check will be skipped as their values will be
2584  * overwritten soon.
2585  * Extra checks like csum type and incompat flags will be done here.
2586  */
2587 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2588 				      struct btrfs_super_block *sb)
2589 {
2590 	int ret;
2591 
2592 	ret = validate_super(fs_info, sb, -1);
2593 	if (ret < 0)
2594 		goto out;
2595 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2596 		ret = -EUCLEAN;
2597 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2598 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2599 		goto out;
2600 	}
2601 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2602 		ret = -EUCLEAN;
2603 		btrfs_err(fs_info,
2604 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2605 			  btrfs_super_incompat_flags(sb),
2606 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2607 		goto out;
2608 	}
2609 out:
2610 	if (ret < 0)
2611 		btrfs_err(fs_info,
2612 		"super block corruption detected before writing it to disk");
2613 	return ret;
2614 }
2615 
2616 int open_ctree(struct super_block *sb,
2617 	       struct btrfs_fs_devices *fs_devices,
2618 	       char *options)
2619 {
2620 	u32 sectorsize;
2621 	u32 nodesize;
2622 	u32 stripesize;
2623 	u64 generation;
2624 	u64 features;
2625 	u16 csum_type;
2626 	struct btrfs_key location;
2627 	struct buffer_head *bh;
2628 	struct btrfs_super_block *disk_super;
2629 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2630 	struct btrfs_root *tree_root;
2631 	struct btrfs_root *chunk_root;
2632 	int ret;
2633 	int err = -EINVAL;
2634 	int num_backups_tried = 0;
2635 	int backup_index = 0;
2636 	int clear_free_space_tree = 0;
2637 	int level;
2638 
2639 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2640 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2641 	if (!tree_root || !chunk_root) {
2642 		err = -ENOMEM;
2643 		goto fail;
2644 	}
2645 
2646 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2647 	if (ret) {
2648 		err = ret;
2649 		goto fail;
2650 	}
2651 
2652 	ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2653 	if (ret) {
2654 		err = ret;
2655 		goto fail_srcu;
2656 	}
2657 
2658 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2659 	if (ret) {
2660 		err = ret;
2661 		goto fail_dio_bytes;
2662 	}
2663 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2664 					(1 + ilog2(nr_cpu_ids));
2665 
2666 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2667 	if (ret) {
2668 		err = ret;
2669 		goto fail_dirty_metadata_bytes;
2670 	}
2671 
2672 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2673 			GFP_KERNEL);
2674 	if (ret) {
2675 		err = ret;
2676 		goto fail_delalloc_bytes;
2677 	}
2678 
2679 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2680 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2681 	INIT_LIST_HEAD(&fs_info->trans_list);
2682 	INIT_LIST_HEAD(&fs_info->dead_roots);
2683 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2684 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2685 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2686 	spin_lock_init(&fs_info->delalloc_root_lock);
2687 	spin_lock_init(&fs_info->trans_lock);
2688 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2689 	spin_lock_init(&fs_info->delayed_iput_lock);
2690 	spin_lock_init(&fs_info->defrag_inodes_lock);
2691 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2692 	spin_lock_init(&fs_info->super_lock);
2693 	spin_lock_init(&fs_info->buffer_lock);
2694 	spin_lock_init(&fs_info->unused_bgs_lock);
2695 	rwlock_init(&fs_info->tree_mod_log_lock);
2696 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2697 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2698 	mutex_init(&fs_info->reloc_mutex);
2699 	mutex_init(&fs_info->delalloc_root_mutex);
2700 	seqlock_init(&fs_info->profiles_lock);
2701 
2702 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2703 	INIT_LIST_HEAD(&fs_info->space_info);
2704 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2705 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2706 	extent_map_tree_init(&fs_info->mapping_tree);
2707 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2708 			     BTRFS_BLOCK_RSV_GLOBAL);
2709 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2710 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2711 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2712 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2713 			     BTRFS_BLOCK_RSV_DELOPS);
2714 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2715 			     BTRFS_BLOCK_RSV_DELREFS);
2716 
2717 	atomic_set(&fs_info->async_delalloc_pages, 0);
2718 	atomic_set(&fs_info->defrag_running, 0);
2719 	atomic_set(&fs_info->reada_works_cnt, 0);
2720 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2721 	atomic64_set(&fs_info->tree_mod_seq, 0);
2722 	fs_info->sb = sb;
2723 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2724 	fs_info->metadata_ratio = 0;
2725 	fs_info->defrag_inodes = RB_ROOT;
2726 	atomic64_set(&fs_info->free_chunk_space, 0);
2727 	fs_info->tree_mod_log = RB_ROOT;
2728 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2729 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2730 	/* readahead state */
2731 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2732 	spin_lock_init(&fs_info->reada_lock);
2733 	btrfs_init_ref_verify(fs_info);
2734 
2735 	fs_info->thread_pool_size = min_t(unsigned long,
2736 					  num_online_cpus() + 2, 8);
2737 
2738 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2739 	spin_lock_init(&fs_info->ordered_root_lock);
2740 
2741 	fs_info->btree_inode = new_inode(sb);
2742 	if (!fs_info->btree_inode) {
2743 		err = -ENOMEM;
2744 		goto fail_bio_counter;
2745 	}
2746 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2747 
2748 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2749 					GFP_KERNEL);
2750 	if (!fs_info->delayed_root) {
2751 		err = -ENOMEM;
2752 		goto fail_iput;
2753 	}
2754 	btrfs_init_delayed_root(fs_info->delayed_root);
2755 
2756 	btrfs_init_scrub(fs_info);
2757 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2758 	fs_info->check_integrity_print_mask = 0;
2759 #endif
2760 	btrfs_init_balance(fs_info);
2761 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2762 
2763 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2764 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2765 
2766 	btrfs_init_btree_inode(fs_info);
2767 
2768 	spin_lock_init(&fs_info->block_group_cache_lock);
2769 	fs_info->block_group_cache_tree = RB_ROOT;
2770 	fs_info->first_logical_byte = (u64)-1;
2771 
2772 	extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2773 			    IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2774 	extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2775 			    IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
2776 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2777 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2778 
2779 	mutex_init(&fs_info->ordered_operations_mutex);
2780 	mutex_init(&fs_info->tree_log_mutex);
2781 	mutex_init(&fs_info->chunk_mutex);
2782 	mutex_init(&fs_info->transaction_kthread_mutex);
2783 	mutex_init(&fs_info->cleaner_mutex);
2784 	mutex_init(&fs_info->ro_block_group_mutex);
2785 	init_rwsem(&fs_info->commit_root_sem);
2786 	init_rwsem(&fs_info->cleanup_work_sem);
2787 	init_rwsem(&fs_info->subvol_sem);
2788 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2789 
2790 	btrfs_init_dev_replace_locks(fs_info);
2791 	btrfs_init_qgroup(fs_info);
2792 
2793 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2794 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2795 
2796 	init_waitqueue_head(&fs_info->transaction_throttle);
2797 	init_waitqueue_head(&fs_info->transaction_wait);
2798 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2799 	init_waitqueue_head(&fs_info->async_submit_wait);
2800 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2801 
2802 	/* Usable values until the real ones are cached from the superblock */
2803 	fs_info->nodesize = 4096;
2804 	fs_info->sectorsize = 4096;
2805 	fs_info->stripesize = 4096;
2806 
2807 	spin_lock_init(&fs_info->swapfile_pins_lock);
2808 	fs_info->swapfile_pins = RB_ROOT;
2809 
2810 	fs_info->send_in_progress = 0;
2811 
2812 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2813 	if (ret) {
2814 		err = ret;
2815 		goto fail_alloc;
2816 	}
2817 
2818 	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2819 
2820 	invalidate_bdev(fs_devices->latest_bdev);
2821 
2822 	/*
2823 	 * Read super block and check the signature bytes only
2824 	 */
2825 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2826 	if (IS_ERR(bh)) {
2827 		err = PTR_ERR(bh);
2828 		goto fail_alloc;
2829 	}
2830 
2831 	/*
2832 	 * Verify the type first, if that or the the checksum value are
2833 	 * corrupted, we'll find out
2834 	 */
2835 	csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2836 	if (!btrfs_supported_super_csum(csum_type)) {
2837 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2838 			  csum_type);
2839 		err = -EINVAL;
2840 		brelse(bh);
2841 		goto fail_alloc;
2842 	}
2843 
2844 	ret = btrfs_init_csum_hash(fs_info, csum_type);
2845 	if (ret) {
2846 		err = ret;
2847 		goto fail_alloc;
2848 	}
2849 
2850 	/*
2851 	 * We want to check superblock checksum, the type is stored inside.
2852 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2853 	 */
2854 	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2855 		btrfs_err(fs_info, "superblock checksum mismatch");
2856 		err = -EINVAL;
2857 		brelse(bh);
2858 		goto fail_csum;
2859 	}
2860 
2861 	/*
2862 	 * super_copy is zeroed at allocation time and we never touch the
2863 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2864 	 * the whole block of INFO_SIZE
2865 	 */
2866 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2867 	brelse(bh);
2868 
2869 	disk_super = fs_info->super_copy;
2870 
2871 	ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2872 		       BTRFS_FSID_SIZE));
2873 
2874 	if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2875 		ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2876 				fs_info->super_copy->metadata_uuid,
2877 				BTRFS_FSID_SIZE));
2878 	}
2879 
2880 	features = btrfs_super_flags(disk_super);
2881 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2882 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2883 		btrfs_set_super_flags(disk_super, features);
2884 		btrfs_info(fs_info,
2885 			"found metadata UUID change in progress flag, clearing");
2886 	}
2887 
2888 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2889 	       sizeof(*fs_info->super_for_commit));
2890 
2891 	ret = btrfs_validate_mount_super(fs_info);
2892 	if (ret) {
2893 		btrfs_err(fs_info, "superblock contains fatal errors");
2894 		err = -EINVAL;
2895 		goto fail_csum;
2896 	}
2897 
2898 	if (!btrfs_super_root(disk_super))
2899 		goto fail_csum;
2900 
2901 	/* check FS state, whether FS is broken. */
2902 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2903 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2904 
2905 	/*
2906 	 * run through our array of backup supers and setup
2907 	 * our ring pointer to the oldest one
2908 	 */
2909 	generation = btrfs_super_generation(disk_super);
2910 	find_oldest_super_backup(fs_info, generation);
2911 
2912 	/*
2913 	 * In the long term, we'll store the compression type in the super
2914 	 * block, and it'll be used for per file compression control.
2915 	 */
2916 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2917 
2918 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2919 	if (ret) {
2920 		err = ret;
2921 		goto fail_csum;
2922 	}
2923 
2924 	features = btrfs_super_incompat_flags(disk_super) &
2925 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2926 	if (features) {
2927 		btrfs_err(fs_info,
2928 		    "cannot mount because of unsupported optional features (%llx)",
2929 		    features);
2930 		err = -EINVAL;
2931 		goto fail_csum;
2932 	}
2933 
2934 	features = btrfs_super_incompat_flags(disk_super);
2935 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2936 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2937 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2938 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2939 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2940 
2941 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2942 		btrfs_info(fs_info, "has skinny extents");
2943 
2944 	/*
2945 	 * flag our filesystem as having big metadata blocks if
2946 	 * they are bigger than the page size
2947 	 */
2948 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2949 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2950 			btrfs_info(fs_info,
2951 				"flagging fs with big metadata feature");
2952 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2953 	}
2954 
2955 	nodesize = btrfs_super_nodesize(disk_super);
2956 	sectorsize = btrfs_super_sectorsize(disk_super);
2957 	stripesize = sectorsize;
2958 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2959 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2960 
2961 	/* Cache block sizes */
2962 	fs_info->nodesize = nodesize;
2963 	fs_info->sectorsize = sectorsize;
2964 	fs_info->stripesize = stripesize;
2965 
2966 	/*
2967 	 * mixed block groups end up with duplicate but slightly offset
2968 	 * extent buffers for the same range.  It leads to corruptions
2969 	 */
2970 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2971 	    (sectorsize != nodesize)) {
2972 		btrfs_err(fs_info,
2973 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2974 			nodesize, sectorsize);
2975 		goto fail_csum;
2976 	}
2977 
2978 	/*
2979 	 * Needn't use the lock because there is no other task which will
2980 	 * update the flag.
2981 	 */
2982 	btrfs_set_super_incompat_flags(disk_super, features);
2983 
2984 	features = btrfs_super_compat_ro_flags(disk_super) &
2985 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2986 	if (!sb_rdonly(sb) && features) {
2987 		btrfs_err(fs_info,
2988 	"cannot mount read-write because of unsupported optional features (%llx)",
2989 		       features);
2990 		err = -EINVAL;
2991 		goto fail_csum;
2992 	}
2993 
2994 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2995 	if (ret) {
2996 		err = ret;
2997 		goto fail_sb_buffer;
2998 	}
2999 
3000 	sb->s_bdi->congested_fn = btrfs_congested_fn;
3001 	sb->s_bdi->congested_data = fs_info;
3002 	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3003 	sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3004 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3005 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3006 
3007 	sb->s_blocksize = sectorsize;
3008 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3009 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3010 
3011 	mutex_lock(&fs_info->chunk_mutex);
3012 	ret = btrfs_read_sys_array(fs_info);
3013 	mutex_unlock(&fs_info->chunk_mutex);
3014 	if (ret) {
3015 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3016 		goto fail_sb_buffer;
3017 	}
3018 
3019 	generation = btrfs_super_chunk_root_generation(disk_super);
3020 	level = btrfs_super_chunk_root_level(disk_super);
3021 
3022 	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
3023 
3024 	chunk_root->node = read_tree_block(fs_info,
3025 					   btrfs_super_chunk_root(disk_super),
3026 					   generation, level, NULL);
3027 	if (IS_ERR(chunk_root->node) ||
3028 	    !extent_buffer_uptodate(chunk_root->node)) {
3029 		btrfs_err(fs_info, "failed to read chunk root");
3030 		if (!IS_ERR(chunk_root->node))
3031 			free_extent_buffer(chunk_root->node);
3032 		chunk_root->node = NULL;
3033 		goto fail_tree_roots;
3034 	}
3035 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3036 	chunk_root->commit_root = btrfs_root_node(chunk_root);
3037 
3038 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3039 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3040 
3041 	ret = btrfs_read_chunk_tree(fs_info);
3042 	if (ret) {
3043 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3044 		goto fail_tree_roots;
3045 	}
3046 
3047 	/*
3048 	 * Keep the devid that is marked to be the target device for the
3049 	 * device replace procedure
3050 	 */
3051 	btrfs_free_extra_devids(fs_devices, 0);
3052 
3053 	if (!fs_devices->latest_bdev) {
3054 		btrfs_err(fs_info, "failed to read devices");
3055 		goto fail_tree_roots;
3056 	}
3057 
3058 retry_root_backup:
3059 	generation = btrfs_super_generation(disk_super);
3060 	level = btrfs_super_root_level(disk_super);
3061 
3062 	tree_root->node = read_tree_block(fs_info,
3063 					  btrfs_super_root(disk_super),
3064 					  generation, level, NULL);
3065 	if (IS_ERR(tree_root->node) ||
3066 	    !extent_buffer_uptodate(tree_root->node)) {
3067 		btrfs_warn(fs_info, "failed to read tree root");
3068 		if (!IS_ERR(tree_root->node))
3069 			free_extent_buffer(tree_root->node);
3070 		tree_root->node = NULL;
3071 		goto recovery_tree_root;
3072 	}
3073 
3074 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3075 	tree_root->commit_root = btrfs_root_node(tree_root);
3076 	btrfs_set_root_refs(&tree_root->root_item, 1);
3077 
3078 	mutex_lock(&tree_root->objectid_mutex);
3079 	ret = btrfs_find_highest_objectid(tree_root,
3080 					&tree_root->highest_objectid);
3081 	if (ret) {
3082 		mutex_unlock(&tree_root->objectid_mutex);
3083 		goto recovery_tree_root;
3084 	}
3085 
3086 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3087 
3088 	mutex_unlock(&tree_root->objectid_mutex);
3089 
3090 	ret = btrfs_read_roots(fs_info);
3091 	if (ret)
3092 		goto recovery_tree_root;
3093 
3094 	fs_info->generation = generation;
3095 	fs_info->last_trans_committed = generation;
3096 
3097 	ret = btrfs_verify_dev_extents(fs_info);
3098 	if (ret) {
3099 		btrfs_err(fs_info,
3100 			  "failed to verify dev extents against chunks: %d",
3101 			  ret);
3102 		goto fail_block_groups;
3103 	}
3104 	ret = btrfs_recover_balance(fs_info);
3105 	if (ret) {
3106 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3107 		goto fail_block_groups;
3108 	}
3109 
3110 	ret = btrfs_init_dev_stats(fs_info);
3111 	if (ret) {
3112 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3113 		goto fail_block_groups;
3114 	}
3115 
3116 	ret = btrfs_init_dev_replace(fs_info);
3117 	if (ret) {
3118 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3119 		goto fail_block_groups;
3120 	}
3121 
3122 	btrfs_free_extra_devids(fs_devices, 1);
3123 
3124 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3125 	if (ret) {
3126 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3127 				ret);
3128 		goto fail_block_groups;
3129 	}
3130 
3131 	ret = btrfs_sysfs_add_device(fs_devices);
3132 	if (ret) {
3133 		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3134 				ret);
3135 		goto fail_fsdev_sysfs;
3136 	}
3137 
3138 	ret = btrfs_sysfs_add_mounted(fs_info);
3139 	if (ret) {
3140 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3141 		goto fail_fsdev_sysfs;
3142 	}
3143 
3144 	ret = btrfs_init_space_info(fs_info);
3145 	if (ret) {
3146 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3147 		goto fail_sysfs;
3148 	}
3149 
3150 	ret = btrfs_read_block_groups(fs_info);
3151 	if (ret) {
3152 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3153 		goto fail_sysfs;
3154 	}
3155 
3156 	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3157 		btrfs_warn(fs_info,
3158 		"writable mount is not allowed due to too many missing devices");
3159 		goto fail_sysfs;
3160 	}
3161 
3162 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3163 					       "btrfs-cleaner");
3164 	if (IS_ERR(fs_info->cleaner_kthread))
3165 		goto fail_sysfs;
3166 
3167 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3168 						   tree_root,
3169 						   "btrfs-transaction");
3170 	if (IS_ERR(fs_info->transaction_kthread))
3171 		goto fail_cleaner;
3172 
3173 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3174 	    !fs_info->fs_devices->rotating) {
3175 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3176 	}
3177 
3178 	/*
3179 	 * Mount does not set all options immediately, we can do it now and do
3180 	 * not have to wait for transaction commit
3181 	 */
3182 	btrfs_apply_pending_changes(fs_info);
3183 
3184 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3185 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3186 		ret = btrfsic_mount(fs_info, fs_devices,
3187 				    btrfs_test_opt(fs_info,
3188 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3189 				    1 : 0,
3190 				    fs_info->check_integrity_print_mask);
3191 		if (ret)
3192 			btrfs_warn(fs_info,
3193 				"failed to initialize integrity check module: %d",
3194 				ret);
3195 	}
3196 #endif
3197 	ret = btrfs_read_qgroup_config(fs_info);
3198 	if (ret)
3199 		goto fail_trans_kthread;
3200 
3201 	if (btrfs_build_ref_tree(fs_info))
3202 		btrfs_err(fs_info, "couldn't build ref tree");
3203 
3204 	/* do not make disk changes in broken FS or nologreplay is given */
3205 	if (btrfs_super_log_root(disk_super) != 0 &&
3206 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3207 		ret = btrfs_replay_log(fs_info, fs_devices);
3208 		if (ret) {
3209 			err = ret;
3210 			goto fail_qgroup;
3211 		}
3212 	}
3213 
3214 	ret = btrfs_find_orphan_roots(fs_info);
3215 	if (ret)
3216 		goto fail_qgroup;
3217 
3218 	if (!sb_rdonly(sb)) {
3219 		ret = btrfs_cleanup_fs_roots(fs_info);
3220 		if (ret)
3221 			goto fail_qgroup;
3222 
3223 		mutex_lock(&fs_info->cleaner_mutex);
3224 		ret = btrfs_recover_relocation(tree_root);
3225 		mutex_unlock(&fs_info->cleaner_mutex);
3226 		if (ret < 0) {
3227 			btrfs_warn(fs_info, "failed to recover relocation: %d",
3228 					ret);
3229 			err = -EINVAL;
3230 			goto fail_qgroup;
3231 		}
3232 	}
3233 
3234 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3235 	location.type = BTRFS_ROOT_ITEM_KEY;
3236 	location.offset = 0;
3237 
3238 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3239 	if (IS_ERR(fs_info->fs_root)) {
3240 		err = PTR_ERR(fs_info->fs_root);
3241 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3242 		goto fail_qgroup;
3243 	}
3244 
3245 	if (sb_rdonly(sb))
3246 		return 0;
3247 
3248 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3249 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3250 		clear_free_space_tree = 1;
3251 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3252 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3253 		btrfs_warn(fs_info, "free space tree is invalid");
3254 		clear_free_space_tree = 1;
3255 	}
3256 
3257 	if (clear_free_space_tree) {
3258 		btrfs_info(fs_info, "clearing free space tree");
3259 		ret = btrfs_clear_free_space_tree(fs_info);
3260 		if (ret) {
3261 			btrfs_warn(fs_info,
3262 				   "failed to clear free space tree: %d", ret);
3263 			close_ctree(fs_info);
3264 			return ret;
3265 		}
3266 	}
3267 
3268 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3269 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3270 		btrfs_info(fs_info, "creating free space tree");
3271 		ret = btrfs_create_free_space_tree(fs_info);
3272 		if (ret) {
3273 			btrfs_warn(fs_info,
3274 				"failed to create free space tree: %d", ret);
3275 			close_ctree(fs_info);
3276 			return ret;
3277 		}
3278 	}
3279 
3280 	down_read(&fs_info->cleanup_work_sem);
3281 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3282 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3283 		up_read(&fs_info->cleanup_work_sem);
3284 		close_ctree(fs_info);
3285 		return ret;
3286 	}
3287 	up_read(&fs_info->cleanup_work_sem);
3288 
3289 	ret = btrfs_resume_balance_async(fs_info);
3290 	if (ret) {
3291 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3292 		close_ctree(fs_info);
3293 		return ret;
3294 	}
3295 
3296 	ret = btrfs_resume_dev_replace_async(fs_info);
3297 	if (ret) {
3298 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3299 		close_ctree(fs_info);
3300 		return ret;
3301 	}
3302 
3303 	btrfs_qgroup_rescan_resume(fs_info);
3304 
3305 	if (!fs_info->uuid_root) {
3306 		btrfs_info(fs_info, "creating UUID tree");
3307 		ret = btrfs_create_uuid_tree(fs_info);
3308 		if (ret) {
3309 			btrfs_warn(fs_info,
3310 				"failed to create the UUID tree: %d", ret);
3311 			close_ctree(fs_info);
3312 			return ret;
3313 		}
3314 	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3315 		   fs_info->generation !=
3316 				btrfs_super_uuid_tree_generation(disk_super)) {
3317 		btrfs_info(fs_info, "checking UUID tree");
3318 		ret = btrfs_check_uuid_tree(fs_info);
3319 		if (ret) {
3320 			btrfs_warn(fs_info,
3321 				"failed to check the UUID tree: %d", ret);
3322 			close_ctree(fs_info);
3323 			return ret;
3324 		}
3325 	} else {
3326 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3327 	}
3328 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3329 
3330 	/*
3331 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3332 	 * no need to keep the flag
3333 	 */
3334 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3335 
3336 	return 0;
3337 
3338 fail_qgroup:
3339 	btrfs_free_qgroup_config(fs_info);
3340 fail_trans_kthread:
3341 	kthread_stop(fs_info->transaction_kthread);
3342 	btrfs_cleanup_transaction(fs_info);
3343 	btrfs_free_fs_roots(fs_info);
3344 fail_cleaner:
3345 	kthread_stop(fs_info->cleaner_kthread);
3346 
3347 	/*
3348 	 * make sure we're done with the btree inode before we stop our
3349 	 * kthreads
3350 	 */
3351 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3352 
3353 fail_sysfs:
3354 	btrfs_sysfs_remove_mounted(fs_info);
3355 
3356 fail_fsdev_sysfs:
3357 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3358 
3359 fail_block_groups:
3360 	btrfs_put_block_group_cache(fs_info);
3361 
3362 fail_tree_roots:
3363 	free_root_pointers(fs_info, 1);
3364 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3365 
3366 fail_sb_buffer:
3367 	btrfs_stop_all_workers(fs_info);
3368 	btrfs_free_block_groups(fs_info);
3369 fail_csum:
3370 	btrfs_free_csum_hash(fs_info);
3371 fail_alloc:
3372 fail_iput:
3373 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3374 
3375 	iput(fs_info->btree_inode);
3376 fail_bio_counter:
3377 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3378 fail_delalloc_bytes:
3379 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3380 fail_dirty_metadata_bytes:
3381 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3382 fail_dio_bytes:
3383 	percpu_counter_destroy(&fs_info->dio_bytes);
3384 fail_srcu:
3385 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3386 fail:
3387 	btrfs_free_stripe_hash_table(fs_info);
3388 	btrfs_close_devices(fs_info->fs_devices);
3389 	return err;
3390 
3391 recovery_tree_root:
3392 	if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3393 		goto fail_tree_roots;
3394 
3395 	free_root_pointers(fs_info, 0);
3396 
3397 	/* don't use the log in recovery mode, it won't be valid */
3398 	btrfs_set_super_log_root(disk_super, 0);
3399 
3400 	/* we can't trust the free space cache either */
3401 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3402 
3403 	ret = next_root_backup(fs_info, fs_info->super_copy,
3404 			       &num_backups_tried, &backup_index);
3405 	if (ret == -1)
3406 		goto fail_block_groups;
3407 	goto retry_root_backup;
3408 }
3409 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3410 
3411 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3412 {
3413 	if (uptodate) {
3414 		set_buffer_uptodate(bh);
3415 	} else {
3416 		struct btrfs_device *device = (struct btrfs_device *)
3417 			bh->b_private;
3418 
3419 		btrfs_warn_rl_in_rcu(device->fs_info,
3420 				"lost page write due to IO error on %s",
3421 					  rcu_str_deref(device->name));
3422 		/* note, we don't set_buffer_write_io_error because we have
3423 		 * our own ways of dealing with the IO errors
3424 		 */
3425 		clear_buffer_uptodate(bh);
3426 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3427 	}
3428 	unlock_buffer(bh);
3429 	put_bh(bh);
3430 }
3431 
3432 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3433 			struct buffer_head **bh_ret)
3434 {
3435 	struct buffer_head *bh;
3436 	struct btrfs_super_block *super;
3437 	u64 bytenr;
3438 
3439 	bytenr = btrfs_sb_offset(copy_num);
3440 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3441 		return -EINVAL;
3442 
3443 	bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3444 	/*
3445 	 * If we fail to read from the underlying devices, as of now
3446 	 * the best option we have is to mark it EIO.
3447 	 */
3448 	if (!bh)
3449 		return -EIO;
3450 
3451 	super = (struct btrfs_super_block *)bh->b_data;
3452 	if (btrfs_super_bytenr(super) != bytenr ||
3453 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3454 		brelse(bh);
3455 		return -EINVAL;
3456 	}
3457 
3458 	*bh_ret = bh;
3459 	return 0;
3460 }
3461 
3462 
3463 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3464 {
3465 	struct buffer_head *bh;
3466 	struct buffer_head *latest = NULL;
3467 	struct btrfs_super_block *super;
3468 	int i;
3469 	u64 transid = 0;
3470 	int ret = -EINVAL;
3471 
3472 	/* we would like to check all the supers, but that would make
3473 	 * a btrfs mount succeed after a mkfs from a different FS.
3474 	 * So, we need to add a special mount option to scan for
3475 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3476 	 */
3477 	for (i = 0; i < 1; i++) {
3478 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3479 		if (ret)
3480 			continue;
3481 
3482 		super = (struct btrfs_super_block *)bh->b_data;
3483 
3484 		if (!latest || btrfs_super_generation(super) > transid) {
3485 			brelse(latest);
3486 			latest = bh;
3487 			transid = btrfs_super_generation(super);
3488 		} else {
3489 			brelse(bh);
3490 		}
3491 	}
3492 
3493 	if (!latest)
3494 		return ERR_PTR(ret);
3495 
3496 	return latest;
3497 }
3498 
3499 /*
3500  * Write superblock @sb to the @device. Do not wait for completion, all the
3501  * buffer heads we write are pinned.
3502  *
3503  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3504  * the expected device size at commit time. Note that max_mirrors must be
3505  * same for write and wait phases.
3506  *
3507  * Return number of errors when buffer head is not found or submission fails.
3508  */
3509 static int write_dev_supers(struct btrfs_device *device,
3510 			    struct btrfs_super_block *sb, int max_mirrors)
3511 {
3512 	struct btrfs_fs_info *fs_info = device->fs_info;
3513 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3514 	struct buffer_head *bh;
3515 	int i;
3516 	int ret;
3517 	int errors = 0;
3518 	u64 bytenr;
3519 	int op_flags;
3520 
3521 	if (max_mirrors == 0)
3522 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3523 
3524 	shash->tfm = fs_info->csum_shash;
3525 
3526 	for (i = 0; i < max_mirrors; i++) {
3527 		bytenr = btrfs_sb_offset(i);
3528 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3529 		    device->commit_total_bytes)
3530 			break;
3531 
3532 		btrfs_set_super_bytenr(sb, bytenr);
3533 
3534 		crypto_shash_init(shash);
3535 		crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3536 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3537 		crypto_shash_final(shash, sb->csum);
3538 
3539 		/* One reference for us, and we leave it for the caller */
3540 		bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3541 			      BTRFS_SUPER_INFO_SIZE);
3542 		if (!bh) {
3543 			btrfs_err(device->fs_info,
3544 			    "couldn't get super buffer head for bytenr %llu",
3545 			    bytenr);
3546 			errors++;
3547 			continue;
3548 		}
3549 
3550 		memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3551 
3552 		/* one reference for submit_bh */
3553 		get_bh(bh);
3554 
3555 		set_buffer_uptodate(bh);
3556 		lock_buffer(bh);
3557 		bh->b_end_io = btrfs_end_buffer_write_sync;
3558 		bh->b_private = device;
3559 
3560 		/*
3561 		 * we fua the first super.  The others we allow
3562 		 * to go down lazy.
3563 		 */
3564 		op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3565 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3566 			op_flags |= REQ_FUA;
3567 		ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3568 		if (ret)
3569 			errors++;
3570 	}
3571 	return errors < i ? 0 : -1;
3572 }
3573 
3574 /*
3575  * Wait for write completion of superblocks done by write_dev_supers,
3576  * @max_mirrors same for write and wait phases.
3577  *
3578  * Return number of errors when buffer head is not found or not marked up to
3579  * date.
3580  */
3581 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3582 {
3583 	struct buffer_head *bh;
3584 	int i;
3585 	int errors = 0;
3586 	bool primary_failed = false;
3587 	u64 bytenr;
3588 
3589 	if (max_mirrors == 0)
3590 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3591 
3592 	for (i = 0; i < max_mirrors; i++) {
3593 		bytenr = btrfs_sb_offset(i);
3594 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3595 		    device->commit_total_bytes)
3596 			break;
3597 
3598 		bh = __find_get_block(device->bdev,
3599 				      bytenr / BTRFS_BDEV_BLOCKSIZE,
3600 				      BTRFS_SUPER_INFO_SIZE);
3601 		if (!bh) {
3602 			errors++;
3603 			if (i == 0)
3604 				primary_failed = true;
3605 			continue;
3606 		}
3607 		wait_on_buffer(bh);
3608 		if (!buffer_uptodate(bh)) {
3609 			errors++;
3610 			if (i == 0)
3611 				primary_failed = true;
3612 		}
3613 
3614 		/* drop our reference */
3615 		brelse(bh);
3616 
3617 		/* drop the reference from the writing run */
3618 		brelse(bh);
3619 	}
3620 
3621 	/* log error, force error return */
3622 	if (primary_failed) {
3623 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3624 			  device->devid);
3625 		return -1;
3626 	}
3627 
3628 	return errors < i ? 0 : -1;
3629 }
3630 
3631 /*
3632  * endio for the write_dev_flush, this will wake anyone waiting
3633  * for the barrier when it is done
3634  */
3635 static void btrfs_end_empty_barrier(struct bio *bio)
3636 {
3637 	complete(bio->bi_private);
3638 }
3639 
3640 /*
3641  * Submit a flush request to the device if it supports it. Error handling is
3642  * done in the waiting counterpart.
3643  */
3644 static void write_dev_flush(struct btrfs_device *device)
3645 {
3646 	struct request_queue *q = bdev_get_queue(device->bdev);
3647 	struct bio *bio = device->flush_bio;
3648 
3649 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3650 		return;
3651 
3652 	bio_reset(bio);
3653 	bio->bi_end_io = btrfs_end_empty_barrier;
3654 	bio_set_dev(bio, device->bdev);
3655 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3656 	init_completion(&device->flush_wait);
3657 	bio->bi_private = &device->flush_wait;
3658 
3659 	btrfsic_submit_bio(bio);
3660 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3661 }
3662 
3663 /*
3664  * If the flush bio has been submitted by write_dev_flush, wait for it.
3665  */
3666 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3667 {
3668 	struct bio *bio = device->flush_bio;
3669 
3670 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3671 		return BLK_STS_OK;
3672 
3673 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3674 	wait_for_completion_io(&device->flush_wait);
3675 
3676 	return bio->bi_status;
3677 }
3678 
3679 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3680 {
3681 	if (!btrfs_check_rw_degradable(fs_info, NULL))
3682 		return -EIO;
3683 	return 0;
3684 }
3685 
3686 /*
3687  * send an empty flush down to each device in parallel,
3688  * then wait for them
3689  */
3690 static int barrier_all_devices(struct btrfs_fs_info *info)
3691 {
3692 	struct list_head *head;
3693 	struct btrfs_device *dev;
3694 	int errors_wait = 0;
3695 	blk_status_t ret;
3696 
3697 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3698 	/* send down all the barriers */
3699 	head = &info->fs_devices->devices;
3700 	list_for_each_entry(dev, head, dev_list) {
3701 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3702 			continue;
3703 		if (!dev->bdev)
3704 			continue;
3705 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3706 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3707 			continue;
3708 
3709 		write_dev_flush(dev);
3710 		dev->last_flush_error = BLK_STS_OK;
3711 	}
3712 
3713 	/* wait for all the barriers */
3714 	list_for_each_entry(dev, head, dev_list) {
3715 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3716 			continue;
3717 		if (!dev->bdev) {
3718 			errors_wait++;
3719 			continue;
3720 		}
3721 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3722 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3723 			continue;
3724 
3725 		ret = wait_dev_flush(dev);
3726 		if (ret) {
3727 			dev->last_flush_error = ret;
3728 			btrfs_dev_stat_inc_and_print(dev,
3729 					BTRFS_DEV_STAT_FLUSH_ERRS);
3730 			errors_wait++;
3731 		}
3732 	}
3733 
3734 	if (errors_wait) {
3735 		/*
3736 		 * At some point we need the status of all disks
3737 		 * to arrive at the volume status. So error checking
3738 		 * is being pushed to a separate loop.
3739 		 */
3740 		return check_barrier_error(info);
3741 	}
3742 	return 0;
3743 }
3744 
3745 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3746 {
3747 	int raid_type;
3748 	int min_tolerated = INT_MAX;
3749 
3750 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3751 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3752 		min_tolerated = min_t(int, min_tolerated,
3753 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3754 				    tolerated_failures);
3755 
3756 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3757 		if (raid_type == BTRFS_RAID_SINGLE)
3758 			continue;
3759 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3760 			continue;
3761 		min_tolerated = min_t(int, min_tolerated,
3762 				    btrfs_raid_array[raid_type].
3763 				    tolerated_failures);
3764 	}
3765 
3766 	if (min_tolerated == INT_MAX) {
3767 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3768 		min_tolerated = 0;
3769 	}
3770 
3771 	return min_tolerated;
3772 }
3773 
3774 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3775 {
3776 	struct list_head *head;
3777 	struct btrfs_device *dev;
3778 	struct btrfs_super_block *sb;
3779 	struct btrfs_dev_item *dev_item;
3780 	int ret;
3781 	int do_barriers;
3782 	int max_errors;
3783 	int total_errors = 0;
3784 	u64 flags;
3785 
3786 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3787 
3788 	/*
3789 	 * max_mirrors == 0 indicates we're from commit_transaction,
3790 	 * not from fsync where the tree roots in fs_info have not
3791 	 * been consistent on disk.
3792 	 */
3793 	if (max_mirrors == 0)
3794 		backup_super_roots(fs_info);
3795 
3796 	sb = fs_info->super_for_commit;
3797 	dev_item = &sb->dev_item;
3798 
3799 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3800 	head = &fs_info->fs_devices->devices;
3801 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3802 
3803 	if (do_barriers) {
3804 		ret = barrier_all_devices(fs_info);
3805 		if (ret) {
3806 			mutex_unlock(
3807 				&fs_info->fs_devices->device_list_mutex);
3808 			btrfs_handle_fs_error(fs_info, ret,
3809 					      "errors while submitting device barriers.");
3810 			return ret;
3811 		}
3812 	}
3813 
3814 	list_for_each_entry(dev, head, dev_list) {
3815 		if (!dev->bdev) {
3816 			total_errors++;
3817 			continue;
3818 		}
3819 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3820 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3821 			continue;
3822 
3823 		btrfs_set_stack_device_generation(dev_item, 0);
3824 		btrfs_set_stack_device_type(dev_item, dev->type);
3825 		btrfs_set_stack_device_id(dev_item, dev->devid);
3826 		btrfs_set_stack_device_total_bytes(dev_item,
3827 						   dev->commit_total_bytes);
3828 		btrfs_set_stack_device_bytes_used(dev_item,
3829 						  dev->commit_bytes_used);
3830 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3831 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3832 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3833 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3834 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3835 		       BTRFS_FSID_SIZE);
3836 
3837 		flags = btrfs_super_flags(sb);
3838 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3839 
3840 		ret = btrfs_validate_write_super(fs_info, sb);
3841 		if (ret < 0) {
3842 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3843 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
3844 				"unexpected superblock corruption detected");
3845 			return -EUCLEAN;
3846 		}
3847 
3848 		ret = write_dev_supers(dev, sb, max_mirrors);
3849 		if (ret)
3850 			total_errors++;
3851 	}
3852 	if (total_errors > max_errors) {
3853 		btrfs_err(fs_info, "%d errors while writing supers",
3854 			  total_errors);
3855 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3856 
3857 		/* FUA is masked off if unsupported and can't be the reason */
3858 		btrfs_handle_fs_error(fs_info, -EIO,
3859 				      "%d errors while writing supers",
3860 				      total_errors);
3861 		return -EIO;
3862 	}
3863 
3864 	total_errors = 0;
3865 	list_for_each_entry(dev, head, dev_list) {
3866 		if (!dev->bdev)
3867 			continue;
3868 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3869 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3870 			continue;
3871 
3872 		ret = wait_dev_supers(dev, max_mirrors);
3873 		if (ret)
3874 			total_errors++;
3875 	}
3876 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3877 	if (total_errors > max_errors) {
3878 		btrfs_handle_fs_error(fs_info, -EIO,
3879 				      "%d errors while writing supers",
3880 				      total_errors);
3881 		return -EIO;
3882 	}
3883 	return 0;
3884 }
3885 
3886 /* Drop a fs root from the radix tree and free it. */
3887 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3888 				  struct btrfs_root *root)
3889 {
3890 	spin_lock(&fs_info->fs_roots_radix_lock);
3891 	radix_tree_delete(&fs_info->fs_roots_radix,
3892 			  (unsigned long)root->root_key.objectid);
3893 	spin_unlock(&fs_info->fs_roots_radix_lock);
3894 
3895 	if (btrfs_root_refs(&root->root_item) == 0)
3896 		synchronize_srcu(&fs_info->subvol_srcu);
3897 
3898 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3899 		btrfs_free_log(NULL, root);
3900 		if (root->reloc_root) {
3901 			free_extent_buffer(root->reloc_root->node);
3902 			free_extent_buffer(root->reloc_root->commit_root);
3903 			btrfs_put_fs_root(root->reloc_root);
3904 			root->reloc_root = NULL;
3905 		}
3906 	}
3907 
3908 	if (root->free_ino_pinned)
3909 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3910 	if (root->free_ino_ctl)
3911 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3912 	btrfs_free_fs_root(root);
3913 }
3914 
3915 void btrfs_free_fs_root(struct btrfs_root *root)
3916 {
3917 	iput(root->ino_cache_inode);
3918 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3919 	if (root->anon_dev)
3920 		free_anon_bdev(root->anon_dev);
3921 	if (root->subv_writers)
3922 		btrfs_free_subvolume_writers(root->subv_writers);
3923 	free_extent_buffer(root->node);
3924 	free_extent_buffer(root->commit_root);
3925 	kfree(root->free_ino_ctl);
3926 	kfree(root->free_ino_pinned);
3927 	btrfs_put_fs_root(root);
3928 }
3929 
3930 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3931 {
3932 	u64 root_objectid = 0;
3933 	struct btrfs_root *gang[8];
3934 	int i = 0;
3935 	int err = 0;
3936 	unsigned int ret = 0;
3937 	int index;
3938 
3939 	while (1) {
3940 		index = srcu_read_lock(&fs_info->subvol_srcu);
3941 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3942 					     (void **)gang, root_objectid,
3943 					     ARRAY_SIZE(gang));
3944 		if (!ret) {
3945 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3946 			break;
3947 		}
3948 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3949 
3950 		for (i = 0; i < ret; i++) {
3951 			/* Avoid to grab roots in dead_roots */
3952 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3953 				gang[i] = NULL;
3954 				continue;
3955 			}
3956 			/* grab all the search result for later use */
3957 			gang[i] = btrfs_grab_fs_root(gang[i]);
3958 		}
3959 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3960 
3961 		for (i = 0; i < ret; i++) {
3962 			if (!gang[i])
3963 				continue;
3964 			root_objectid = gang[i]->root_key.objectid;
3965 			err = btrfs_orphan_cleanup(gang[i]);
3966 			if (err)
3967 				break;
3968 			btrfs_put_fs_root(gang[i]);
3969 		}
3970 		root_objectid++;
3971 	}
3972 
3973 	/* release the uncleaned roots due to error */
3974 	for (; i < ret; i++) {
3975 		if (gang[i])
3976 			btrfs_put_fs_root(gang[i]);
3977 	}
3978 	return err;
3979 }
3980 
3981 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3982 {
3983 	struct btrfs_root *root = fs_info->tree_root;
3984 	struct btrfs_trans_handle *trans;
3985 
3986 	mutex_lock(&fs_info->cleaner_mutex);
3987 	btrfs_run_delayed_iputs(fs_info);
3988 	mutex_unlock(&fs_info->cleaner_mutex);
3989 	wake_up_process(fs_info->cleaner_kthread);
3990 
3991 	/* wait until ongoing cleanup work done */
3992 	down_write(&fs_info->cleanup_work_sem);
3993 	up_write(&fs_info->cleanup_work_sem);
3994 
3995 	trans = btrfs_join_transaction(root);
3996 	if (IS_ERR(trans))
3997 		return PTR_ERR(trans);
3998 	return btrfs_commit_transaction(trans);
3999 }
4000 
4001 void close_ctree(struct btrfs_fs_info *fs_info)
4002 {
4003 	int ret;
4004 
4005 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4006 	/*
4007 	 * We don't want the cleaner to start new transactions, add more delayed
4008 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4009 	 * because that frees the task_struct, and the transaction kthread might
4010 	 * still try to wake up the cleaner.
4011 	 */
4012 	kthread_park(fs_info->cleaner_kthread);
4013 
4014 	/* wait for the qgroup rescan worker to stop */
4015 	btrfs_qgroup_wait_for_completion(fs_info, false);
4016 
4017 	/* wait for the uuid_scan task to finish */
4018 	down(&fs_info->uuid_tree_rescan_sem);
4019 	/* avoid complains from lockdep et al., set sem back to initial state */
4020 	up(&fs_info->uuid_tree_rescan_sem);
4021 
4022 	/* pause restriper - we want to resume on mount */
4023 	btrfs_pause_balance(fs_info);
4024 
4025 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4026 
4027 	btrfs_scrub_cancel(fs_info);
4028 
4029 	/* wait for any defraggers to finish */
4030 	wait_event(fs_info->transaction_wait,
4031 		   (atomic_read(&fs_info->defrag_running) == 0));
4032 
4033 	/* clear out the rbtree of defraggable inodes */
4034 	btrfs_cleanup_defrag_inodes(fs_info);
4035 
4036 	cancel_work_sync(&fs_info->async_reclaim_work);
4037 
4038 	if (!sb_rdonly(fs_info->sb)) {
4039 		/*
4040 		 * The cleaner kthread is stopped, so do one final pass over
4041 		 * unused block groups.
4042 		 */
4043 		btrfs_delete_unused_bgs(fs_info);
4044 
4045 		ret = btrfs_commit_super(fs_info);
4046 		if (ret)
4047 			btrfs_err(fs_info, "commit super ret %d", ret);
4048 	}
4049 
4050 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4051 	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4052 		btrfs_error_commit_super(fs_info);
4053 
4054 	kthread_stop(fs_info->transaction_kthread);
4055 	kthread_stop(fs_info->cleaner_kthread);
4056 
4057 	ASSERT(list_empty(&fs_info->delayed_iputs));
4058 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4059 
4060 	btrfs_free_qgroup_config(fs_info);
4061 	ASSERT(list_empty(&fs_info->delalloc_roots));
4062 
4063 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4064 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4065 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4066 	}
4067 
4068 	if (percpu_counter_sum(&fs_info->dio_bytes))
4069 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4070 			   percpu_counter_sum(&fs_info->dio_bytes));
4071 
4072 	btrfs_sysfs_remove_mounted(fs_info);
4073 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4074 
4075 	btrfs_free_fs_roots(fs_info);
4076 
4077 	btrfs_put_block_group_cache(fs_info);
4078 
4079 	/*
4080 	 * we must make sure there is not any read request to
4081 	 * submit after we stopping all workers.
4082 	 */
4083 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4084 	btrfs_stop_all_workers(fs_info);
4085 
4086 	btrfs_free_block_groups(fs_info);
4087 
4088 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4089 	free_root_pointers(fs_info, 1);
4090 
4091 	iput(fs_info->btree_inode);
4092 
4093 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4094 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4095 		btrfsic_unmount(fs_info->fs_devices);
4096 #endif
4097 
4098 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4099 	btrfs_close_devices(fs_info->fs_devices);
4100 
4101 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4102 	percpu_counter_destroy(&fs_info->delalloc_bytes);
4103 	percpu_counter_destroy(&fs_info->dio_bytes);
4104 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4105 	cleanup_srcu_struct(&fs_info->subvol_srcu);
4106 
4107 	btrfs_free_csum_hash(fs_info);
4108 	btrfs_free_stripe_hash_table(fs_info);
4109 	btrfs_free_ref_cache(fs_info);
4110 }
4111 
4112 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4113 			  int atomic)
4114 {
4115 	int ret;
4116 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4117 
4118 	ret = extent_buffer_uptodate(buf);
4119 	if (!ret)
4120 		return ret;
4121 
4122 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4123 				    parent_transid, atomic);
4124 	if (ret == -EAGAIN)
4125 		return ret;
4126 	return !ret;
4127 }
4128 
4129 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4130 {
4131 	struct btrfs_fs_info *fs_info;
4132 	struct btrfs_root *root;
4133 	u64 transid = btrfs_header_generation(buf);
4134 	int was_dirty;
4135 
4136 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4137 	/*
4138 	 * This is a fast path so only do this check if we have sanity tests
4139 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4140 	 * outside of the sanity tests.
4141 	 */
4142 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4143 		return;
4144 #endif
4145 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4146 	fs_info = root->fs_info;
4147 	btrfs_assert_tree_locked(buf);
4148 	if (transid != fs_info->generation)
4149 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4150 			buf->start, transid, fs_info->generation);
4151 	was_dirty = set_extent_buffer_dirty(buf);
4152 	if (!was_dirty)
4153 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4154 					 buf->len,
4155 					 fs_info->dirty_metadata_batch);
4156 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4157 	/*
4158 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4159 	 * but item data not updated.
4160 	 * So here we should only check item pointers, not item data.
4161 	 */
4162 	if (btrfs_header_level(buf) == 0 &&
4163 	    btrfs_check_leaf_relaxed(buf)) {
4164 		btrfs_print_leaf(buf);
4165 		ASSERT(0);
4166 	}
4167 #endif
4168 }
4169 
4170 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4171 					int flush_delayed)
4172 {
4173 	/*
4174 	 * looks as though older kernels can get into trouble with
4175 	 * this code, they end up stuck in balance_dirty_pages forever
4176 	 */
4177 	int ret;
4178 
4179 	if (current->flags & PF_MEMALLOC)
4180 		return;
4181 
4182 	if (flush_delayed)
4183 		btrfs_balance_delayed_items(fs_info);
4184 
4185 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4186 				     BTRFS_DIRTY_METADATA_THRESH,
4187 				     fs_info->dirty_metadata_batch);
4188 	if (ret > 0) {
4189 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4190 	}
4191 }
4192 
4193 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4194 {
4195 	__btrfs_btree_balance_dirty(fs_info, 1);
4196 }
4197 
4198 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4199 {
4200 	__btrfs_btree_balance_dirty(fs_info, 0);
4201 }
4202 
4203 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4204 		      struct btrfs_key *first_key)
4205 {
4206 	return btree_read_extent_buffer_pages(buf, parent_transid,
4207 					      level, first_key);
4208 }
4209 
4210 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4211 {
4212 	/* cleanup FS via transaction */
4213 	btrfs_cleanup_transaction(fs_info);
4214 
4215 	mutex_lock(&fs_info->cleaner_mutex);
4216 	btrfs_run_delayed_iputs(fs_info);
4217 	mutex_unlock(&fs_info->cleaner_mutex);
4218 
4219 	down_write(&fs_info->cleanup_work_sem);
4220 	up_write(&fs_info->cleanup_work_sem);
4221 }
4222 
4223 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4224 {
4225 	struct btrfs_ordered_extent *ordered;
4226 
4227 	spin_lock(&root->ordered_extent_lock);
4228 	/*
4229 	 * This will just short circuit the ordered completion stuff which will
4230 	 * make sure the ordered extent gets properly cleaned up.
4231 	 */
4232 	list_for_each_entry(ordered, &root->ordered_extents,
4233 			    root_extent_list)
4234 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4235 	spin_unlock(&root->ordered_extent_lock);
4236 }
4237 
4238 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4239 {
4240 	struct btrfs_root *root;
4241 	struct list_head splice;
4242 
4243 	INIT_LIST_HEAD(&splice);
4244 
4245 	spin_lock(&fs_info->ordered_root_lock);
4246 	list_splice_init(&fs_info->ordered_roots, &splice);
4247 	while (!list_empty(&splice)) {
4248 		root = list_first_entry(&splice, struct btrfs_root,
4249 					ordered_root);
4250 		list_move_tail(&root->ordered_root,
4251 			       &fs_info->ordered_roots);
4252 
4253 		spin_unlock(&fs_info->ordered_root_lock);
4254 		btrfs_destroy_ordered_extents(root);
4255 
4256 		cond_resched();
4257 		spin_lock(&fs_info->ordered_root_lock);
4258 	}
4259 	spin_unlock(&fs_info->ordered_root_lock);
4260 
4261 	/*
4262 	 * We need this here because if we've been flipped read-only we won't
4263 	 * get sync() from the umount, so we need to make sure any ordered
4264 	 * extents that haven't had their dirty pages IO start writeout yet
4265 	 * actually get run and error out properly.
4266 	 */
4267 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4268 }
4269 
4270 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4271 				      struct btrfs_fs_info *fs_info)
4272 {
4273 	struct rb_node *node;
4274 	struct btrfs_delayed_ref_root *delayed_refs;
4275 	struct btrfs_delayed_ref_node *ref;
4276 	int ret = 0;
4277 
4278 	delayed_refs = &trans->delayed_refs;
4279 
4280 	spin_lock(&delayed_refs->lock);
4281 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4282 		spin_unlock(&delayed_refs->lock);
4283 		btrfs_info(fs_info, "delayed_refs has NO entry");
4284 		return ret;
4285 	}
4286 
4287 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4288 		struct btrfs_delayed_ref_head *head;
4289 		struct rb_node *n;
4290 		bool pin_bytes = false;
4291 
4292 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4293 				href_node);
4294 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4295 			continue;
4296 
4297 		spin_lock(&head->lock);
4298 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4299 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4300 				       ref_node);
4301 			ref->in_tree = 0;
4302 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4303 			RB_CLEAR_NODE(&ref->ref_node);
4304 			if (!list_empty(&ref->add_list))
4305 				list_del(&ref->add_list);
4306 			atomic_dec(&delayed_refs->num_entries);
4307 			btrfs_put_delayed_ref(ref);
4308 		}
4309 		if (head->must_insert_reserved)
4310 			pin_bytes = true;
4311 		btrfs_free_delayed_extent_op(head->extent_op);
4312 		btrfs_delete_ref_head(delayed_refs, head);
4313 		spin_unlock(&head->lock);
4314 		spin_unlock(&delayed_refs->lock);
4315 		mutex_unlock(&head->mutex);
4316 
4317 		if (pin_bytes)
4318 			btrfs_pin_extent(fs_info, head->bytenr,
4319 					 head->num_bytes, 1);
4320 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4321 		btrfs_put_delayed_ref_head(head);
4322 		cond_resched();
4323 		spin_lock(&delayed_refs->lock);
4324 	}
4325 
4326 	spin_unlock(&delayed_refs->lock);
4327 
4328 	return ret;
4329 }
4330 
4331 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4332 {
4333 	struct btrfs_inode *btrfs_inode;
4334 	struct list_head splice;
4335 
4336 	INIT_LIST_HEAD(&splice);
4337 
4338 	spin_lock(&root->delalloc_lock);
4339 	list_splice_init(&root->delalloc_inodes, &splice);
4340 
4341 	while (!list_empty(&splice)) {
4342 		struct inode *inode = NULL;
4343 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4344 					       delalloc_inodes);
4345 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4346 		spin_unlock(&root->delalloc_lock);
4347 
4348 		/*
4349 		 * Make sure we get a live inode and that it'll not disappear
4350 		 * meanwhile.
4351 		 */
4352 		inode = igrab(&btrfs_inode->vfs_inode);
4353 		if (inode) {
4354 			invalidate_inode_pages2(inode->i_mapping);
4355 			iput(inode);
4356 		}
4357 		spin_lock(&root->delalloc_lock);
4358 	}
4359 	spin_unlock(&root->delalloc_lock);
4360 }
4361 
4362 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4363 {
4364 	struct btrfs_root *root;
4365 	struct list_head splice;
4366 
4367 	INIT_LIST_HEAD(&splice);
4368 
4369 	spin_lock(&fs_info->delalloc_root_lock);
4370 	list_splice_init(&fs_info->delalloc_roots, &splice);
4371 	while (!list_empty(&splice)) {
4372 		root = list_first_entry(&splice, struct btrfs_root,
4373 					 delalloc_root);
4374 		root = btrfs_grab_fs_root(root);
4375 		BUG_ON(!root);
4376 		spin_unlock(&fs_info->delalloc_root_lock);
4377 
4378 		btrfs_destroy_delalloc_inodes(root);
4379 		btrfs_put_fs_root(root);
4380 
4381 		spin_lock(&fs_info->delalloc_root_lock);
4382 	}
4383 	spin_unlock(&fs_info->delalloc_root_lock);
4384 }
4385 
4386 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4387 					struct extent_io_tree *dirty_pages,
4388 					int mark)
4389 {
4390 	int ret;
4391 	struct extent_buffer *eb;
4392 	u64 start = 0;
4393 	u64 end;
4394 
4395 	while (1) {
4396 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4397 					    mark, NULL);
4398 		if (ret)
4399 			break;
4400 
4401 		clear_extent_bits(dirty_pages, start, end, mark);
4402 		while (start <= end) {
4403 			eb = find_extent_buffer(fs_info, start);
4404 			start += fs_info->nodesize;
4405 			if (!eb)
4406 				continue;
4407 			wait_on_extent_buffer_writeback(eb);
4408 
4409 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4410 					       &eb->bflags))
4411 				clear_extent_buffer_dirty(eb);
4412 			free_extent_buffer_stale(eb);
4413 		}
4414 	}
4415 
4416 	return ret;
4417 }
4418 
4419 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4420 				       struct extent_io_tree *pinned_extents)
4421 {
4422 	struct extent_io_tree *unpin;
4423 	u64 start;
4424 	u64 end;
4425 	int ret;
4426 	bool loop = true;
4427 
4428 	unpin = pinned_extents;
4429 again:
4430 	while (1) {
4431 		struct extent_state *cached_state = NULL;
4432 
4433 		/*
4434 		 * The btrfs_finish_extent_commit() may get the same range as
4435 		 * ours between find_first_extent_bit and clear_extent_dirty.
4436 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4437 		 * the same extent range.
4438 		 */
4439 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4440 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4441 					    EXTENT_DIRTY, &cached_state);
4442 		if (ret) {
4443 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4444 			break;
4445 		}
4446 
4447 		clear_extent_dirty(unpin, start, end, &cached_state);
4448 		free_extent_state(cached_state);
4449 		btrfs_error_unpin_extent_range(fs_info, start, end);
4450 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4451 		cond_resched();
4452 	}
4453 
4454 	if (loop) {
4455 		if (unpin == &fs_info->freed_extents[0])
4456 			unpin = &fs_info->freed_extents[1];
4457 		else
4458 			unpin = &fs_info->freed_extents[0];
4459 		loop = false;
4460 		goto again;
4461 	}
4462 
4463 	return 0;
4464 }
4465 
4466 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4467 {
4468 	struct inode *inode;
4469 
4470 	inode = cache->io_ctl.inode;
4471 	if (inode) {
4472 		invalidate_inode_pages2(inode->i_mapping);
4473 		BTRFS_I(inode)->generation = 0;
4474 		cache->io_ctl.inode = NULL;
4475 		iput(inode);
4476 	}
4477 	btrfs_put_block_group(cache);
4478 }
4479 
4480 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4481 			     struct btrfs_fs_info *fs_info)
4482 {
4483 	struct btrfs_block_group_cache *cache;
4484 
4485 	spin_lock(&cur_trans->dirty_bgs_lock);
4486 	while (!list_empty(&cur_trans->dirty_bgs)) {
4487 		cache = list_first_entry(&cur_trans->dirty_bgs,
4488 					 struct btrfs_block_group_cache,
4489 					 dirty_list);
4490 
4491 		if (!list_empty(&cache->io_list)) {
4492 			spin_unlock(&cur_trans->dirty_bgs_lock);
4493 			list_del_init(&cache->io_list);
4494 			btrfs_cleanup_bg_io(cache);
4495 			spin_lock(&cur_trans->dirty_bgs_lock);
4496 		}
4497 
4498 		list_del_init(&cache->dirty_list);
4499 		spin_lock(&cache->lock);
4500 		cache->disk_cache_state = BTRFS_DC_ERROR;
4501 		spin_unlock(&cache->lock);
4502 
4503 		spin_unlock(&cur_trans->dirty_bgs_lock);
4504 		btrfs_put_block_group(cache);
4505 		btrfs_delayed_refs_rsv_release(fs_info, 1);
4506 		spin_lock(&cur_trans->dirty_bgs_lock);
4507 	}
4508 	spin_unlock(&cur_trans->dirty_bgs_lock);
4509 
4510 	/*
4511 	 * Refer to the definition of io_bgs member for details why it's safe
4512 	 * to use it without any locking
4513 	 */
4514 	while (!list_empty(&cur_trans->io_bgs)) {
4515 		cache = list_first_entry(&cur_trans->io_bgs,
4516 					 struct btrfs_block_group_cache,
4517 					 io_list);
4518 
4519 		list_del_init(&cache->io_list);
4520 		spin_lock(&cache->lock);
4521 		cache->disk_cache_state = BTRFS_DC_ERROR;
4522 		spin_unlock(&cache->lock);
4523 		btrfs_cleanup_bg_io(cache);
4524 	}
4525 }
4526 
4527 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4528 				   struct btrfs_fs_info *fs_info)
4529 {
4530 	struct btrfs_device *dev, *tmp;
4531 
4532 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4533 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4534 	ASSERT(list_empty(&cur_trans->io_bgs));
4535 
4536 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4537 				 post_commit_list) {
4538 		list_del_init(&dev->post_commit_list);
4539 	}
4540 
4541 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4542 
4543 	cur_trans->state = TRANS_STATE_COMMIT_START;
4544 	wake_up(&fs_info->transaction_blocked_wait);
4545 
4546 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4547 	wake_up(&fs_info->transaction_wait);
4548 
4549 	btrfs_destroy_delayed_inodes(fs_info);
4550 	btrfs_assert_delayed_root_empty(fs_info);
4551 
4552 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4553 				     EXTENT_DIRTY);
4554 	btrfs_destroy_pinned_extent(fs_info,
4555 				    fs_info->pinned_extents);
4556 
4557 	cur_trans->state =TRANS_STATE_COMPLETED;
4558 	wake_up(&cur_trans->commit_wait);
4559 }
4560 
4561 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4562 {
4563 	struct btrfs_transaction *t;
4564 
4565 	mutex_lock(&fs_info->transaction_kthread_mutex);
4566 
4567 	spin_lock(&fs_info->trans_lock);
4568 	while (!list_empty(&fs_info->trans_list)) {
4569 		t = list_first_entry(&fs_info->trans_list,
4570 				     struct btrfs_transaction, list);
4571 		if (t->state >= TRANS_STATE_COMMIT_START) {
4572 			refcount_inc(&t->use_count);
4573 			spin_unlock(&fs_info->trans_lock);
4574 			btrfs_wait_for_commit(fs_info, t->transid);
4575 			btrfs_put_transaction(t);
4576 			spin_lock(&fs_info->trans_lock);
4577 			continue;
4578 		}
4579 		if (t == fs_info->running_transaction) {
4580 			t->state = TRANS_STATE_COMMIT_DOING;
4581 			spin_unlock(&fs_info->trans_lock);
4582 			/*
4583 			 * We wait for 0 num_writers since we don't hold a trans
4584 			 * handle open currently for this transaction.
4585 			 */
4586 			wait_event(t->writer_wait,
4587 				   atomic_read(&t->num_writers) == 0);
4588 		} else {
4589 			spin_unlock(&fs_info->trans_lock);
4590 		}
4591 		btrfs_cleanup_one_transaction(t, fs_info);
4592 
4593 		spin_lock(&fs_info->trans_lock);
4594 		if (t == fs_info->running_transaction)
4595 			fs_info->running_transaction = NULL;
4596 		list_del_init(&t->list);
4597 		spin_unlock(&fs_info->trans_lock);
4598 
4599 		btrfs_put_transaction(t);
4600 		trace_btrfs_transaction_commit(fs_info->tree_root);
4601 		spin_lock(&fs_info->trans_lock);
4602 	}
4603 	spin_unlock(&fs_info->trans_lock);
4604 	btrfs_destroy_all_ordered_extents(fs_info);
4605 	btrfs_destroy_delayed_inodes(fs_info);
4606 	btrfs_assert_delayed_root_empty(fs_info);
4607 	btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4608 	btrfs_destroy_all_delalloc_inodes(fs_info);
4609 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4610 
4611 	return 0;
4612 }
4613 
4614 static const struct extent_io_ops btree_extent_io_ops = {
4615 	/* mandatory callbacks */
4616 	.submit_bio_hook = btree_submit_bio_hook,
4617 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4618 };
4619