1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/slab.h> 29 #include <linux/migrate.h> 30 #include <linux/ratelimit.h> 31 #include <linux/uuid.h> 32 #include <linux/semaphore.h> 33 #include <asm/unaligned.h> 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "hash.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "locking.h" 42 #include "tree-log.h" 43 #include "free-space-cache.h" 44 #include "free-space-tree.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 #include "dev-replace.h" 49 #include "raid56.h" 50 #include "sysfs.h" 51 #include "qgroup.h" 52 #include "compression.h" 53 54 #ifdef CONFIG_X86 55 #include <asm/cpufeature.h> 56 #endif 57 58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 59 BTRFS_HEADER_FLAG_RELOC |\ 60 BTRFS_SUPER_FLAG_ERROR |\ 61 BTRFS_SUPER_FLAG_SEEDING |\ 62 BTRFS_SUPER_FLAG_METADUMP) 63 64 static const struct extent_io_ops btree_extent_io_ops; 65 static void end_workqueue_fn(struct btrfs_work *work); 66 static void free_fs_root(struct btrfs_root *root); 67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info); 68 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 69 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 70 struct btrfs_fs_info *fs_info); 71 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 72 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 73 struct extent_io_tree *dirty_pages, 74 int mark); 75 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 76 struct extent_io_tree *pinned_extents); 77 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 78 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 79 80 /* 81 * btrfs_end_io_wq structs are used to do processing in task context when an IO 82 * is complete. This is used during reads to verify checksums, and it is used 83 * by writes to insert metadata for new file extents after IO is complete. 84 */ 85 struct btrfs_end_io_wq { 86 struct bio *bio; 87 bio_end_io_t *end_io; 88 void *private; 89 struct btrfs_fs_info *info; 90 blk_status_t status; 91 enum btrfs_wq_endio_type metadata; 92 struct list_head list; 93 struct btrfs_work work; 94 }; 95 96 static struct kmem_cache *btrfs_end_io_wq_cache; 97 98 int __init btrfs_end_io_wq_init(void) 99 { 100 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 101 sizeof(struct btrfs_end_io_wq), 102 0, 103 SLAB_MEM_SPREAD, 104 NULL); 105 if (!btrfs_end_io_wq_cache) 106 return -ENOMEM; 107 return 0; 108 } 109 110 void btrfs_end_io_wq_exit(void) 111 { 112 kmem_cache_destroy(btrfs_end_io_wq_cache); 113 } 114 115 /* 116 * async submit bios are used to offload expensive checksumming 117 * onto the worker threads. They checksum file and metadata bios 118 * just before they are sent down the IO stack. 119 */ 120 struct async_submit_bio { 121 struct inode *inode; 122 struct bio *bio; 123 struct list_head list; 124 extent_submit_bio_hook_t *submit_bio_start; 125 extent_submit_bio_hook_t *submit_bio_done; 126 int mirror_num; 127 unsigned long bio_flags; 128 /* 129 * bio_offset is optional, can be used if the pages in the bio 130 * can't tell us where in the file the bio should go 131 */ 132 u64 bio_offset; 133 struct btrfs_work work; 134 blk_status_t status; 135 }; 136 137 /* 138 * Lockdep class keys for extent_buffer->lock's in this root. For a given 139 * eb, the lockdep key is determined by the btrfs_root it belongs to and 140 * the level the eb occupies in the tree. 141 * 142 * Different roots are used for different purposes and may nest inside each 143 * other and they require separate keysets. As lockdep keys should be 144 * static, assign keysets according to the purpose of the root as indicated 145 * by btrfs_root->objectid. This ensures that all special purpose roots 146 * have separate keysets. 147 * 148 * Lock-nesting across peer nodes is always done with the immediate parent 149 * node locked thus preventing deadlock. As lockdep doesn't know this, use 150 * subclass to avoid triggering lockdep warning in such cases. 151 * 152 * The key is set by the readpage_end_io_hook after the buffer has passed 153 * csum validation but before the pages are unlocked. It is also set by 154 * btrfs_init_new_buffer on freshly allocated blocks. 155 * 156 * We also add a check to make sure the highest level of the tree is the 157 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 158 * needs update as well. 159 */ 160 #ifdef CONFIG_DEBUG_LOCK_ALLOC 161 # if BTRFS_MAX_LEVEL != 8 162 # error 163 # endif 164 165 static struct btrfs_lockdep_keyset { 166 u64 id; /* root objectid */ 167 const char *name_stem; /* lock name stem */ 168 char names[BTRFS_MAX_LEVEL + 1][20]; 169 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 170 } btrfs_lockdep_keysets[] = { 171 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 172 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 173 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 174 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 175 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 176 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 177 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 178 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 179 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 180 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 181 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 182 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 183 { .id = 0, .name_stem = "tree" }, 184 }; 185 186 void __init btrfs_init_lockdep(void) 187 { 188 int i, j; 189 190 /* initialize lockdep class names */ 191 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 192 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 193 194 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 195 snprintf(ks->names[j], sizeof(ks->names[j]), 196 "btrfs-%s-%02d", ks->name_stem, j); 197 } 198 } 199 200 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 201 int level) 202 { 203 struct btrfs_lockdep_keyset *ks; 204 205 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 206 207 /* find the matching keyset, id 0 is the default entry */ 208 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 209 if (ks->id == objectid) 210 break; 211 212 lockdep_set_class_and_name(&eb->lock, 213 &ks->keys[level], ks->names[level]); 214 } 215 216 #endif 217 218 /* 219 * extents on the btree inode are pretty simple, there's one extent 220 * that covers the entire device 221 */ 222 static struct extent_map *btree_get_extent(struct btrfs_inode *inode, 223 struct page *page, size_t pg_offset, u64 start, u64 len, 224 int create) 225 { 226 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 227 struct extent_map_tree *em_tree = &inode->extent_tree; 228 struct extent_map *em; 229 int ret; 230 231 read_lock(&em_tree->lock); 232 em = lookup_extent_mapping(em_tree, start, len); 233 if (em) { 234 em->bdev = fs_info->fs_devices->latest_bdev; 235 read_unlock(&em_tree->lock); 236 goto out; 237 } 238 read_unlock(&em_tree->lock); 239 240 em = alloc_extent_map(); 241 if (!em) { 242 em = ERR_PTR(-ENOMEM); 243 goto out; 244 } 245 em->start = 0; 246 em->len = (u64)-1; 247 em->block_len = (u64)-1; 248 em->block_start = 0; 249 em->bdev = fs_info->fs_devices->latest_bdev; 250 251 write_lock(&em_tree->lock); 252 ret = add_extent_mapping(em_tree, em, 0); 253 if (ret == -EEXIST) { 254 free_extent_map(em); 255 em = lookup_extent_mapping(em_tree, start, len); 256 if (!em) 257 em = ERR_PTR(-EIO); 258 } else if (ret) { 259 free_extent_map(em); 260 em = ERR_PTR(ret); 261 } 262 write_unlock(&em_tree->lock); 263 264 out: 265 return em; 266 } 267 268 u32 btrfs_csum_data(const char *data, u32 seed, size_t len) 269 { 270 return btrfs_crc32c(seed, data, len); 271 } 272 273 void btrfs_csum_final(u32 crc, u8 *result) 274 { 275 put_unaligned_le32(~crc, result); 276 } 277 278 /* 279 * compute the csum for a btree block, and either verify it or write it 280 * into the csum field of the block. 281 */ 282 static int csum_tree_block(struct btrfs_fs_info *fs_info, 283 struct extent_buffer *buf, 284 int verify) 285 { 286 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 287 char *result = NULL; 288 unsigned long len; 289 unsigned long cur_len; 290 unsigned long offset = BTRFS_CSUM_SIZE; 291 char *kaddr; 292 unsigned long map_start; 293 unsigned long map_len; 294 int err; 295 u32 crc = ~(u32)0; 296 unsigned long inline_result; 297 298 len = buf->len - offset; 299 while (len > 0) { 300 err = map_private_extent_buffer(buf, offset, 32, 301 &kaddr, &map_start, &map_len); 302 if (err) 303 return err; 304 cur_len = min(len, map_len - (offset - map_start)); 305 crc = btrfs_csum_data(kaddr + offset - map_start, 306 crc, cur_len); 307 len -= cur_len; 308 offset += cur_len; 309 } 310 if (csum_size > sizeof(inline_result)) { 311 result = kzalloc(csum_size, GFP_NOFS); 312 if (!result) 313 return -ENOMEM; 314 } else { 315 result = (char *)&inline_result; 316 } 317 318 btrfs_csum_final(crc, result); 319 320 if (verify) { 321 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 322 u32 val; 323 u32 found = 0; 324 memcpy(&found, result, csum_size); 325 326 read_extent_buffer(buf, &val, 0, csum_size); 327 btrfs_warn_rl(fs_info, 328 "%s checksum verify failed on %llu wanted %X found %X level %d", 329 fs_info->sb->s_id, buf->start, 330 val, found, btrfs_header_level(buf)); 331 if (result != (char *)&inline_result) 332 kfree(result); 333 return -EUCLEAN; 334 } 335 } else { 336 write_extent_buffer(buf, result, 0, csum_size); 337 } 338 if (result != (char *)&inline_result) 339 kfree(result); 340 return 0; 341 } 342 343 /* 344 * we can't consider a given block up to date unless the transid of the 345 * block matches the transid in the parent node's pointer. This is how we 346 * detect blocks that either didn't get written at all or got written 347 * in the wrong place. 348 */ 349 static int verify_parent_transid(struct extent_io_tree *io_tree, 350 struct extent_buffer *eb, u64 parent_transid, 351 int atomic) 352 { 353 struct extent_state *cached_state = NULL; 354 int ret; 355 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 356 357 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 358 return 0; 359 360 if (atomic) 361 return -EAGAIN; 362 363 if (need_lock) { 364 btrfs_tree_read_lock(eb); 365 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 366 } 367 368 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 369 &cached_state); 370 if (extent_buffer_uptodate(eb) && 371 btrfs_header_generation(eb) == parent_transid) { 372 ret = 0; 373 goto out; 374 } 375 btrfs_err_rl(eb->fs_info, 376 "parent transid verify failed on %llu wanted %llu found %llu", 377 eb->start, 378 parent_transid, btrfs_header_generation(eb)); 379 ret = 1; 380 381 /* 382 * Things reading via commit roots that don't have normal protection, 383 * like send, can have a really old block in cache that may point at a 384 * block that has been freed and re-allocated. So don't clear uptodate 385 * if we find an eb that is under IO (dirty/writeback) because we could 386 * end up reading in the stale data and then writing it back out and 387 * making everybody very sad. 388 */ 389 if (!extent_buffer_under_io(eb)) 390 clear_extent_buffer_uptodate(eb); 391 out: 392 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 393 &cached_state, GFP_NOFS); 394 if (need_lock) 395 btrfs_tree_read_unlock_blocking(eb); 396 return ret; 397 } 398 399 /* 400 * Return 0 if the superblock checksum type matches the checksum value of that 401 * algorithm. Pass the raw disk superblock data. 402 */ 403 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 404 char *raw_disk_sb) 405 { 406 struct btrfs_super_block *disk_sb = 407 (struct btrfs_super_block *)raw_disk_sb; 408 u16 csum_type = btrfs_super_csum_type(disk_sb); 409 int ret = 0; 410 411 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 412 u32 crc = ~(u32)0; 413 const int csum_size = sizeof(crc); 414 char result[csum_size]; 415 416 /* 417 * The super_block structure does not span the whole 418 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 419 * is filled with zeros and is included in the checksum. 420 */ 421 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 422 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 423 btrfs_csum_final(crc, result); 424 425 if (memcmp(raw_disk_sb, result, csum_size)) 426 ret = 1; 427 } 428 429 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 430 btrfs_err(fs_info, "unsupported checksum algorithm %u", 431 csum_type); 432 ret = 1; 433 } 434 435 return ret; 436 } 437 438 /* 439 * helper to read a given tree block, doing retries as required when 440 * the checksums don't match and we have alternate mirrors to try. 441 */ 442 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info, 443 struct extent_buffer *eb, 444 u64 parent_transid) 445 { 446 struct extent_io_tree *io_tree; 447 int failed = 0; 448 int ret; 449 int num_copies = 0; 450 int mirror_num = 0; 451 int failed_mirror = 0; 452 453 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 454 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 455 while (1) { 456 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE, 457 btree_get_extent, mirror_num); 458 if (!ret) { 459 if (!verify_parent_transid(io_tree, eb, 460 parent_transid, 0)) 461 break; 462 else 463 ret = -EIO; 464 } 465 466 /* 467 * This buffer's crc is fine, but its contents are corrupted, so 468 * there is no reason to read the other copies, they won't be 469 * any less wrong. 470 */ 471 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 472 break; 473 474 num_copies = btrfs_num_copies(fs_info, 475 eb->start, eb->len); 476 if (num_copies == 1) 477 break; 478 479 if (!failed_mirror) { 480 failed = 1; 481 failed_mirror = eb->read_mirror; 482 } 483 484 mirror_num++; 485 if (mirror_num == failed_mirror) 486 mirror_num++; 487 488 if (mirror_num > num_copies) 489 break; 490 } 491 492 if (failed && !ret && failed_mirror) 493 repair_eb_io_failure(fs_info, eb, failed_mirror); 494 495 return ret; 496 } 497 498 /* 499 * checksum a dirty tree block before IO. This has extra checks to make sure 500 * we only fill in the checksum field in the first page of a multi-page block 501 */ 502 503 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 504 { 505 u64 start = page_offset(page); 506 u64 found_start; 507 struct extent_buffer *eb; 508 509 eb = (struct extent_buffer *)page->private; 510 if (page != eb->pages[0]) 511 return 0; 512 513 found_start = btrfs_header_bytenr(eb); 514 /* 515 * Please do not consolidate these warnings into a single if. 516 * It is useful to know what went wrong. 517 */ 518 if (WARN_ON(found_start != start)) 519 return -EUCLEAN; 520 if (WARN_ON(!PageUptodate(page))) 521 return -EUCLEAN; 522 523 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid, 524 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 525 526 return csum_tree_block(fs_info, eb, 0); 527 } 528 529 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 530 struct extent_buffer *eb) 531 { 532 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 533 u8 fsid[BTRFS_UUID_SIZE]; 534 int ret = 1; 535 536 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 537 while (fs_devices) { 538 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 539 ret = 0; 540 break; 541 } 542 fs_devices = fs_devices->seed; 543 } 544 return ret; 545 } 546 547 #define CORRUPT(reason, eb, root, slot) \ 548 btrfs_crit(root->fs_info, \ 549 "corrupt %s, %s: block=%llu, root=%llu, slot=%d", \ 550 btrfs_header_level(eb) == 0 ? "leaf" : "node", \ 551 reason, btrfs_header_bytenr(eb), root->objectid, slot) 552 553 static noinline int check_leaf(struct btrfs_root *root, 554 struct extent_buffer *leaf) 555 { 556 struct btrfs_fs_info *fs_info = root->fs_info; 557 struct btrfs_key key; 558 struct btrfs_key leaf_key; 559 u32 nritems = btrfs_header_nritems(leaf); 560 int slot; 561 562 /* 563 * Extent buffers from a relocation tree have a owner field that 564 * corresponds to the subvolume tree they are based on. So just from an 565 * extent buffer alone we can not find out what is the id of the 566 * corresponding subvolume tree, so we can not figure out if the extent 567 * buffer corresponds to the root of the relocation tree or not. So skip 568 * this check for relocation trees. 569 */ 570 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) { 571 struct btrfs_root *check_root; 572 573 key.objectid = btrfs_header_owner(leaf); 574 key.type = BTRFS_ROOT_ITEM_KEY; 575 key.offset = (u64)-1; 576 577 check_root = btrfs_get_fs_root(fs_info, &key, false); 578 /* 579 * The only reason we also check NULL here is that during 580 * open_ctree() some roots has not yet been set up. 581 */ 582 if (!IS_ERR_OR_NULL(check_root)) { 583 struct extent_buffer *eb; 584 585 eb = btrfs_root_node(check_root); 586 /* if leaf is the root, then it's fine */ 587 if (leaf != eb) { 588 CORRUPT("non-root leaf's nritems is 0", 589 leaf, check_root, 0); 590 free_extent_buffer(eb); 591 return -EIO; 592 } 593 free_extent_buffer(eb); 594 } 595 return 0; 596 } 597 598 if (nritems == 0) 599 return 0; 600 601 /* Check the 0 item */ 602 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 603 BTRFS_LEAF_DATA_SIZE(fs_info)) { 604 CORRUPT("invalid item offset size pair", leaf, root, 0); 605 return -EIO; 606 } 607 608 /* 609 * Check to make sure each items keys are in the correct order and their 610 * offsets make sense. We only have to loop through nritems-1 because 611 * we check the current slot against the next slot, which verifies the 612 * next slot's offset+size makes sense and that the current's slot 613 * offset is correct. 614 */ 615 for (slot = 0; slot < nritems - 1; slot++) { 616 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 617 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 618 619 /* Make sure the keys are in the right order */ 620 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 621 CORRUPT("bad key order", leaf, root, slot); 622 return -EIO; 623 } 624 625 /* 626 * Make sure the offset and ends are right, remember that the 627 * item data starts at the end of the leaf and grows towards the 628 * front. 629 */ 630 if (btrfs_item_offset_nr(leaf, slot) != 631 btrfs_item_end_nr(leaf, slot + 1)) { 632 CORRUPT("slot offset bad", leaf, root, slot); 633 return -EIO; 634 } 635 636 /* 637 * Check to make sure that we don't point outside of the leaf, 638 * just in case all the items are consistent to each other, but 639 * all point outside of the leaf. 640 */ 641 if (btrfs_item_end_nr(leaf, slot) > 642 BTRFS_LEAF_DATA_SIZE(fs_info)) { 643 CORRUPT("slot end outside of leaf", leaf, root, slot); 644 return -EIO; 645 } 646 } 647 648 return 0; 649 } 650 651 static int check_node(struct btrfs_root *root, struct extent_buffer *node) 652 { 653 unsigned long nr = btrfs_header_nritems(node); 654 struct btrfs_key key, next_key; 655 int slot; 656 u64 bytenr; 657 int ret = 0; 658 659 if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) { 660 btrfs_crit(root->fs_info, 661 "corrupt node: block %llu root %llu nritems %lu", 662 node->start, root->objectid, nr); 663 return -EIO; 664 } 665 666 for (slot = 0; slot < nr - 1; slot++) { 667 bytenr = btrfs_node_blockptr(node, slot); 668 btrfs_node_key_to_cpu(node, &key, slot); 669 btrfs_node_key_to_cpu(node, &next_key, slot + 1); 670 671 if (!bytenr) { 672 CORRUPT("invalid item slot", node, root, slot); 673 ret = -EIO; 674 goto out; 675 } 676 677 if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) { 678 CORRUPT("bad key order", node, root, slot); 679 ret = -EIO; 680 goto out; 681 } 682 } 683 out: 684 return ret; 685 } 686 687 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 688 u64 phy_offset, struct page *page, 689 u64 start, u64 end, int mirror) 690 { 691 u64 found_start; 692 int found_level; 693 struct extent_buffer *eb; 694 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 695 struct btrfs_fs_info *fs_info = root->fs_info; 696 int ret = 0; 697 int reads_done; 698 699 if (!page->private) 700 goto out; 701 702 eb = (struct extent_buffer *)page->private; 703 704 /* the pending IO might have been the only thing that kept this buffer 705 * in memory. Make sure we have a ref for all this other checks 706 */ 707 extent_buffer_get(eb); 708 709 reads_done = atomic_dec_and_test(&eb->io_pages); 710 if (!reads_done) 711 goto err; 712 713 eb->read_mirror = mirror; 714 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 715 ret = -EIO; 716 goto err; 717 } 718 719 found_start = btrfs_header_bytenr(eb); 720 if (found_start != eb->start) { 721 btrfs_err_rl(fs_info, "bad tree block start %llu %llu", 722 found_start, eb->start); 723 ret = -EIO; 724 goto err; 725 } 726 if (check_tree_block_fsid(fs_info, eb)) { 727 btrfs_err_rl(fs_info, "bad fsid on block %llu", 728 eb->start); 729 ret = -EIO; 730 goto err; 731 } 732 found_level = btrfs_header_level(eb); 733 if (found_level >= BTRFS_MAX_LEVEL) { 734 btrfs_err(fs_info, "bad tree block level %d", 735 (int)btrfs_header_level(eb)); 736 ret = -EIO; 737 goto err; 738 } 739 740 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 741 eb, found_level); 742 743 ret = csum_tree_block(fs_info, eb, 1); 744 if (ret) 745 goto err; 746 747 /* 748 * If this is a leaf block and it is corrupt, set the corrupt bit so 749 * that we don't try and read the other copies of this block, just 750 * return -EIO. 751 */ 752 if (found_level == 0 && check_leaf(root, eb)) { 753 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 754 ret = -EIO; 755 } 756 757 if (found_level > 0 && check_node(root, eb)) 758 ret = -EIO; 759 760 if (!ret) 761 set_extent_buffer_uptodate(eb); 762 err: 763 if (reads_done && 764 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 765 btree_readahead_hook(eb, ret); 766 767 if (ret) { 768 /* 769 * our io error hook is going to dec the io pages 770 * again, we have to make sure it has something 771 * to decrement 772 */ 773 atomic_inc(&eb->io_pages); 774 clear_extent_buffer_uptodate(eb); 775 } 776 free_extent_buffer(eb); 777 out: 778 return ret; 779 } 780 781 static int btree_io_failed_hook(struct page *page, int failed_mirror) 782 { 783 struct extent_buffer *eb; 784 785 eb = (struct extent_buffer *)page->private; 786 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 787 eb->read_mirror = failed_mirror; 788 atomic_dec(&eb->io_pages); 789 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 790 btree_readahead_hook(eb, -EIO); 791 return -EIO; /* we fixed nothing */ 792 } 793 794 static void end_workqueue_bio(struct bio *bio) 795 { 796 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 797 struct btrfs_fs_info *fs_info; 798 struct btrfs_workqueue *wq; 799 btrfs_work_func_t func; 800 801 fs_info = end_io_wq->info; 802 end_io_wq->status = bio->bi_status; 803 804 if (bio_op(bio) == REQ_OP_WRITE) { 805 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 806 wq = fs_info->endio_meta_write_workers; 807 func = btrfs_endio_meta_write_helper; 808 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 809 wq = fs_info->endio_freespace_worker; 810 func = btrfs_freespace_write_helper; 811 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 812 wq = fs_info->endio_raid56_workers; 813 func = btrfs_endio_raid56_helper; 814 } else { 815 wq = fs_info->endio_write_workers; 816 func = btrfs_endio_write_helper; 817 } 818 } else { 819 if (unlikely(end_io_wq->metadata == 820 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 821 wq = fs_info->endio_repair_workers; 822 func = btrfs_endio_repair_helper; 823 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 824 wq = fs_info->endio_raid56_workers; 825 func = btrfs_endio_raid56_helper; 826 } else if (end_io_wq->metadata) { 827 wq = fs_info->endio_meta_workers; 828 func = btrfs_endio_meta_helper; 829 } else { 830 wq = fs_info->endio_workers; 831 func = btrfs_endio_helper; 832 } 833 } 834 835 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 836 btrfs_queue_work(wq, &end_io_wq->work); 837 } 838 839 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 840 enum btrfs_wq_endio_type metadata) 841 { 842 struct btrfs_end_io_wq *end_io_wq; 843 844 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 845 if (!end_io_wq) 846 return BLK_STS_RESOURCE; 847 848 end_io_wq->private = bio->bi_private; 849 end_io_wq->end_io = bio->bi_end_io; 850 end_io_wq->info = info; 851 end_io_wq->status = 0; 852 end_io_wq->bio = bio; 853 end_io_wq->metadata = metadata; 854 855 bio->bi_private = end_io_wq; 856 bio->bi_end_io = end_workqueue_bio; 857 return 0; 858 } 859 860 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 861 { 862 unsigned long limit = min_t(unsigned long, 863 info->thread_pool_size, 864 info->fs_devices->open_devices); 865 return 256 * limit; 866 } 867 868 static void run_one_async_start(struct btrfs_work *work) 869 { 870 struct async_submit_bio *async; 871 blk_status_t ret; 872 873 async = container_of(work, struct async_submit_bio, work); 874 ret = async->submit_bio_start(async->inode, async->bio, 875 async->mirror_num, async->bio_flags, 876 async->bio_offset); 877 if (ret) 878 async->status = ret; 879 } 880 881 static void run_one_async_done(struct btrfs_work *work) 882 { 883 struct btrfs_fs_info *fs_info; 884 struct async_submit_bio *async; 885 int limit; 886 887 async = container_of(work, struct async_submit_bio, work); 888 fs_info = BTRFS_I(async->inode)->root->fs_info; 889 890 limit = btrfs_async_submit_limit(fs_info); 891 limit = limit * 2 / 3; 892 893 /* 894 * atomic_dec_return implies a barrier for waitqueue_active 895 */ 896 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 897 waitqueue_active(&fs_info->async_submit_wait)) 898 wake_up(&fs_info->async_submit_wait); 899 900 /* If an error occurred we just want to clean up the bio and move on */ 901 if (async->status) { 902 async->bio->bi_status = async->status; 903 bio_endio(async->bio); 904 return; 905 } 906 907 async->submit_bio_done(async->inode, async->bio, async->mirror_num, 908 async->bio_flags, async->bio_offset); 909 } 910 911 static void run_one_async_free(struct btrfs_work *work) 912 { 913 struct async_submit_bio *async; 914 915 async = container_of(work, struct async_submit_bio, work); 916 kfree(async); 917 } 918 919 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, 920 struct inode *inode, struct bio *bio, int mirror_num, 921 unsigned long bio_flags, u64 bio_offset, 922 extent_submit_bio_hook_t *submit_bio_start, 923 extent_submit_bio_hook_t *submit_bio_done) 924 { 925 struct async_submit_bio *async; 926 927 async = kmalloc(sizeof(*async), GFP_NOFS); 928 if (!async) 929 return BLK_STS_RESOURCE; 930 931 async->inode = inode; 932 async->bio = bio; 933 async->mirror_num = mirror_num; 934 async->submit_bio_start = submit_bio_start; 935 async->submit_bio_done = submit_bio_done; 936 937 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 938 run_one_async_done, run_one_async_free); 939 940 async->bio_flags = bio_flags; 941 async->bio_offset = bio_offset; 942 943 async->status = 0; 944 945 atomic_inc(&fs_info->nr_async_submits); 946 947 if (op_is_sync(bio->bi_opf)) 948 btrfs_set_work_high_priority(&async->work); 949 950 btrfs_queue_work(fs_info->workers, &async->work); 951 952 while (atomic_read(&fs_info->async_submit_draining) && 953 atomic_read(&fs_info->nr_async_submits)) { 954 wait_event(fs_info->async_submit_wait, 955 (atomic_read(&fs_info->nr_async_submits) == 0)); 956 } 957 958 return 0; 959 } 960 961 static blk_status_t btree_csum_one_bio(struct bio *bio) 962 { 963 struct bio_vec *bvec; 964 struct btrfs_root *root; 965 int i, ret = 0; 966 967 bio_for_each_segment_all(bvec, bio, i) { 968 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 969 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 970 if (ret) 971 break; 972 } 973 974 return errno_to_blk_status(ret); 975 } 976 977 static blk_status_t __btree_submit_bio_start(struct inode *inode, 978 struct bio *bio, int mirror_num, unsigned long bio_flags, 979 u64 bio_offset) 980 { 981 /* 982 * when we're called for a write, we're already in the async 983 * submission context. Just jump into btrfs_map_bio 984 */ 985 return btree_csum_one_bio(bio); 986 } 987 988 static blk_status_t __btree_submit_bio_done(struct inode *inode, 989 struct bio *bio, int mirror_num, unsigned long bio_flags, 990 u64 bio_offset) 991 { 992 blk_status_t ret; 993 994 /* 995 * when we're called for a write, we're already in the async 996 * submission context. Just jump into btrfs_map_bio 997 */ 998 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1); 999 if (ret) { 1000 bio->bi_status = ret; 1001 bio_endio(bio); 1002 } 1003 return ret; 1004 } 1005 1006 static int check_async_write(unsigned long bio_flags) 1007 { 1008 if (bio_flags & EXTENT_BIO_TREE_LOG) 1009 return 0; 1010 #ifdef CONFIG_X86 1011 if (static_cpu_has(X86_FEATURE_XMM4_2)) 1012 return 0; 1013 #endif 1014 return 1; 1015 } 1016 1017 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio, 1018 int mirror_num, unsigned long bio_flags, 1019 u64 bio_offset) 1020 { 1021 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1022 int async = check_async_write(bio_flags); 1023 blk_status_t ret; 1024 1025 if (bio_op(bio) != REQ_OP_WRITE) { 1026 /* 1027 * called for a read, do the setup so that checksum validation 1028 * can happen in the async kernel threads 1029 */ 1030 ret = btrfs_bio_wq_end_io(fs_info, bio, 1031 BTRFS_WQ_ENDIO_METADATA); 1032 if (ret) 1033 goto out_w_error; 1034 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 1035 } else if (!async) { 1036 ret = btree_csum_one_bio(bio); 1037 if (ret) 1038 goto out_w_error; 1039 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 1040 } else { 1041 /* 1042 * kthread helpers are used to submit writes so that 1043 * checksumming can happen in parallel across all CPUs 1044 */ 1045 ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 0, 1046 bio_offset, 1047 __btree_submit_bio_start, 1048 __btree_submit_bio_done); 1049 } 1050 1051 if (ret) 1052 goto out_w_error; 1053 return 0; 1054 1055 out_w_error: 1056 bio->bi_status = ret; 1057 bio_endio(bio); 1058 return ret; 1059 } 1060 1061 #ifdef CONFIG_MIGRATION 1062 static int btree_migratepage(struct address_space *mapping, 1063 struct page *newpage, struct page *page, 1064 enum migrate_mode mode) 1065 { 1066 /* 1067 * we can't safely write a btree page from here, 1068 * we haven't done the locking hook 1069 */ 1070 if (PageDirty(page)) 1071 return -EAGAIN; 1072 /* 1073 * Buffers may be managed in a filesystem specific way. 1074 * We must have no buffers or drop them. 1075 */ 1076 if (page_has_private(page) && 1077 !try_to_release_page(page, GFP_KERNEL)) 1078 return -EAGAIN; 1079 return migrate_page(mapping, newpage, page, mode); 1080 } 1081 #endif 1082 1083 1084 static int btree_writepages(struct address_space *mapping, 1085 struct writeback_control *wbc) 1086 { 1087 struct btrfs_fs_info *fs_info; 1088 int ret; 1089 1090 if (wbc->sync_mode == WB_SYNC_NONE) { 1091 1092 if (wbc->for_kupdate) 1093 return 0; 1094 1095 fs_info = BTRFS_I(mapping->host)->root->fs_info; 1096 /* this is a bit racy, but that's ok */ 1097 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 1098 BTRFS_DIRTY_METADATA_THRESH); 1099 if (ret < 0) 1100 return 0; 1101 } 1102 return btree_write_cache_pages(mapping, wbc); 1103 } 1104 1105 static int btree_readpage(struct file *file, struct page *page) 1106 { 1107 struct extent_io_tree *tree; 1108 tree = &BTRFS_I(page->mapping->host)->io_tree; 1109 return extent_read_full_page(tree, page, btree_get_extent, 0); 1110 } 1111 1112 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1113 { 1114 if (PageWriteback(page) || PageDirty(page)) 1115 return 0; 1116 1117 return try_release_extent_buffer(page); 1118 } 1119 1120 static void btree_invalidatepage(struct page *page, unsigned int offset, 1121 unsigned int length) 1122 { 1123 struct extent_io_tree *tree; 1124 tree = &BTRFS_I(page->mapping->host)->io_tree; 1125 extent_invalidatepage(tree, page, offset); 1126 btree_releasepage(page, GFP_NOFS); 1127 if (PagePrivate(page)) { 1128 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1129 "page private not zero on page %llu", 1130 (unsigned long long)page_offset(page)); 1131 ClearPagePrivate(page); 1132 set_page_private(page, 0); 1133 put_page(page); 1134 } 1135 } 1136 1137 static int btree_set_page_dirty(struct page *page) 1138 { 1139 #ifdef DEBUG 1140 struct extent_buffer *eb; 1141 1142 BUG_ON(!PagePrivate(page)); 1143 eb = (struct extent_buffer *)page->private; 1144 BUG_ON(!eb); 1145 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1146 BUG_ON(!atomic_read(&eb->refs)); 1147 btrfs_assert_tree_locked(eb); 1148 #endif 1149 return __set_page_dirty_nobuffers(page); 1150 } 1151 1152 static const struct address_space_operations btree_aops = { 1153 .readpage = btree_readpage, 1154 .writepages = btree_writepages, 1155 .releasepage = btree_releasepage, 1156 .invalidatepage = btree_invalidatepage, 1157 #ifdef CONFIG_MIGRATION 1158 .migratepage = btree_migratepage, 1159 #endif 1160 .set_page_dirty = btree_set_page_dirty, 1161 }; 1162 1163 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 1164 { 1165 struct extent_buffer *buf = NULL; 1166 struct inode *btree_inode = fs_info->btree_inode; 1167 1168 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1169 if (IS_ERR(buf)) 1170 return; 1171 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1172 buf, WAIT_NONE, btree_get_extent, 0); 1173 free_extent_buffer(buf); 1174 } 1175 1176 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr, 1177 int mirror_num, struct extent_buffer **eb) 1178 { 1179 struct extent_buffer *buf = NULL; 1180 struct inode *btree_inode = fs_info->btree_inode; 1181 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1182 int ret; 1183 1184 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1185 if (IS_ERR(buf)) 1186 return 0; 1187 1188 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1189 1190 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK, 1191 btree_get_extent, mirror_num); 1192 if (ret) { 1193 free_extent_buffer(buf); 1194 return ret; 1195 } 1196 1197 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1198 free_extent_buffer(buf); 1199 return -EIO; 1200 } else if (extent_buffer_uptodate(buf)) { 1201 *eb = buf; 1202 } else { 1203 free_extent_buffer(buf); 1204 } 1205 return 0; 1206 } 1207 1208 struct extent_buffer *btrfs_find_create_tree_block( 1209 struct btrfs_fs_info *fs_info, 1210 u64 bytenr) 1211 { 1212 if (btrfs_is_testing(fs_info)) 1213 return alloc_test_extent_buffer(fs_info, bytenr); 1214 return alloc_extent_buffer(fs_info, bytenr); 1215 } 1216 1217 1218 int btrfs_write_tree_block(struct extent_buffer *buf) 1219 { 1220 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1221 buf->start + buf->len - 1); 1222 } 1223 1224 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1225 { 1226 return filemap_fdatawait_range(buf->pages[0]->mapping, 1227 buf->start, buf->start + buf->len - 1); 1228 } 1229 1230 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1231 u64 parent_transid) 1232 { 1233 struct extent_buffer *buf = NULL; 1234 int ret; 1235 1236 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1237 if (IS_ERR(buf)) 1238 return buf; 1239 1240 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid); 1241 if (ret) { 1242 free_extent_buffer(buf); 1243 return ERR_PTR(ret); 1244 } 1245 return buf; 1246 1247 } 1248 1249 void clean_tree_block(struct btrfs_fs_info *fs_info, 1250 struct extent_buffer *buf) 1251 { 1252 if (btrfs_header_generation(buf) == 1253 fs_info->running_transaction->transid) { 1254 btrfs_assert_tree_locked(buf); 1255 1256 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1257 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1258 -buf->len, 1259 fs_info->dirty_metadata_batch); 1260 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1261 btrfs_set_lock_blocking(buf); 1262 clear_extent_buffer_dirty(buf); 1263 } 1264 } 1265 } 1266 1267 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1268 { 1269 struct btrfs_subvolume_writers *writers; 1270 int ret; 1271 1272 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1273 if (!writers) 1274 return ERR_PTR(-ENOMEM); 1275 1276 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL); 1277 if (ret < 0) { 1278 kfree(writers); 1279 return ERR_PTR(ret); 1280 } 1281 1282 init_waitqueue_head(&writers->wait); 1283 return writers; 1284 } 1285 1286 static void 1287 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1288 { 1289 percpu_counter_destroy(&writers->counter); 1290 kfree(writers); 1291 } 1292 1293 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1294 u64 objectid) 1295 { 1296 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1297 root->node = NULL; 1298 root->commit_root = NULL; 1299 root->state = 0; 1300 root->orphan_cleanup_state = 0; 1301 1302 root->objectid = objectid; 1303 root->last_trans = 0; 1304 root->highest_objectid = 0; 1305 root->nr_delalloc_inodes = 0; 1306 root->nr_ordered_extents = 0; 1307 root->name = NULL; 1308 root->inode_tree = RB_ROOT; 1309 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1310 root->block_rsv = NULL; 1311 root->orphan_block_rsv = NULL; 1312 1313 INIT_LIST_HEAD(&root->dirty_list); 1314 INIT_LIST_HEAD(&root->root_list); 1315 INIT_LIST_HEAD(&root->delalloc_inodes); 1316 INIT_LIST_HEAD(&root->delalloc_root); 1317 INIT_LIST_HEAD(&root->ordered_extents); 1318 INIT_LIST_HEAD(&root->ordered_root); 1319 INIT_LIST_HEAD(&root->logged_list[0]); 1320 INIT_LIST_HEAD(&root->logged_list[1]); 1321 spin_lock_init(&root->orphan_lock); 1322 spin_lock_init(&root->inode_lock); 1323 spin_lock_init(&root->delalloc_lock); 1324 spin_lock_init(&root->ordered_extent_lock); 1325 spin_lock_init(&root->accounting_lock); 1326 spin_lock_init(&root->log_extents_lock[0]); 1327 spin_lock_init(&root->log_extents_lock[1]); 1328 mutex_init(&root->objectid_mutex); 1329 mutex_init(&root->log_mutex); 1330 mutex_init(&root->ordered_extent_mutex); 1331 mutex_init(&root->delalloc_mutex); 1332 init_waitqueue_head(&root->log_writer_wait); 1333 init_waitqueue_head(&root->log_commit_wait[0]); 1334 init_waitqueue_head(&root->log_commit_wait[1]); 1335 INIT_LIST_HEAD(&root->log_ctxs[0]); 1336 INIT_LIST_HEAD(&root->log_ctxs[1]); 1337 atomic_set(&root->log_commit[0], 0); 1338 atomic_set(&root->log_commit[1], 0); 1339 atomic_set(&root->log_writers, 0); 1340 atomic_set(&root->log_batch, 0); 1341 atomic_set(&root->orphan_inodes, 0); 1342 refcount_set(&root->refs, 1); 1343 atomic_set(&root->will_be_snapshoted, 0); 1344 atomic64_set(&root->qgroup_meta_rsv, 0); 1345 root->log_transid = 0; 1346 root->log_transid_committed = -1; 1347 root->last_log_commit = 0; 1348 if (!dummy) 1349 extent_io_tree_init(&root->dirty_log_pages, 1350 fs_info->btree_inode->i_mapping); 1351 1352 memset(&root->root_key, 0, sizeof(root->root_key)); 1353 memset(&root->root_item, 0, sizeof(root->root_item)); 1354 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1355 if (!dummy) 1356 root->defrag_trans_start = fs_info->generation; 1357 else 1358 root->defrag_trans_start = 0; 1359 root->root_key.objectid = objectid; 1360 root->anon_dev = 0; 1361 1362 spin_lock_init(&root->root_item_lock); 1363 } 1364 1365 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1366 gfp_t flags) 1367 { 1368 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1369 if (root) 1370 root->fs_info = fs_info; 1371 return root; 1372 } 1373 1374 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1375 /* Should only be used by the testing infrastructure */ 1376 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1377 { 1378 struct btrfs_root *root; 1379 1380 if (!fs_info) 1381 return ERR_PTR(-EINVAL); 1382 1383 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1384 if (!root) 1385 return ERR_PTR(-ENOMEM); 1386 1387 /* We don't use the stripesize in selftest, set it as sectorsize */ 1388 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 1389 root->alloc_bytenr = 0; 1390 1391 return root; 1392 } 1393 #endif 1394 1395 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1396 struct btrfs_fs_info *fs_info, 1397 u64 objectid) 1398 { 1399 struct extent_buffer *leaf; 1400 struct btrfs_root *tree_root = fs_info->tree_root; 1401 struct btrfs_root *root; 1402 struct btrfs_key key; 1403 int ret = 0; 1404 uuid_le uuid; 1405 1406 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1407 if (!root) 1408 return ERR_PTR(-ENOMEM); 1409 1410 __setup_root(root, fs_info, objectid); 1411 root->root_key.objectid = objectid; 1412 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1413 root->root_key.offset = 0; 1414 1415 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1416 if (IS_ERR(leaf)) { 1417 ret = PTR_ERR(leaf); 1418 leaf = NULL; 1419 goto fail; 1420 } 1421 1422 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 1423 btrfs_set_header_bytenr(leaf, leaf->start); 1424 btrfs_set_header_generation(leaf, trans->transid); 1425 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1426 btrfs_set_header_owner(leaf, objectid); 1427 root->node = leaf; 1428 1429 write_extent_buffer_fsid(leaf, fs_info->fsid); 1430 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid); 1431 btrfs_mark_buffer_dirty(leaf); 1432 1433 root->commit_root = btrfs_root_node(root); 1434 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1435 1436 root->root_item.flags = 0; 1437 root->root_item.byte_limit = 0; 1438 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1439 btrfs_set_root_generation(&root->root_item, trans->transid); 1440 btrfs_set_root_level(&root->root_item, 0); 1441 btrfs_set_root_refs(&root->root_item, 1); 1442 btrfs_set_root_used(&root->root_item, leaf->len); 1443 btrfs_set_root_last_snapshot(&root->root_item, 0); 1444 btrfs_set_root_dirid(&root->root_item, 0); 1445 uuid_le_gen(&uuid); 1446 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1447 root->root_item.drop_level = 0; 1448 1449 key.objectid = objectid; 1450 key.type = BTRFS_ROOT_ITEM_KEY; 1451 key.offset = 0; 1452 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1453 if (ret) 1454 goto fail; 1455 1456 btrfs_tree_unlock(leaf); 1457 1458 return root; 1459 1460 fail: 1461 if (leaf) { 1462 btrfs_tree_unlock(leaf); 1463 free_extent_buffer(root->commit_root); 1464 free_extent_buffer(leaf); 1465 } 1466 kfree(root); 1467 1468 return ERR_PTR(ret); 1469 } 1470 1471 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1472 struct btrfs_fs_info *fs_info) 1473 { 1474 struct btrfs_root *root; 1475 struct extent_buffer *leaf; 1476 1477 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1478 if (!root) 1479 return ERR_PTR(-ENOMEM); 1480 1481 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1482 1483 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1484 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1485 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1486 1487 /* 1488 * DON'T set REF_COWS for log trees 1489 * 1490 * log trees do not get reference counted because they go away 1491 * before a real commit is actually done. They do store pointers 1492 * to file data extents, and those reference counts still get 1493 * updated (along with back refs to the log tree). 1494 */ 1495 1496 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1497 NULL, 0, 0, 0); 1498 if (IS_ERR(leaf)) { 1499 kfree(root); 1500 return ERR_CAST(leaf); 1501 } 1502 1503 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 1504 btrfs_set_header_bytenr(leaf, leaf->start); 1505 btrfs_set_header_generation(leaf, trans->transid); 1506 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1507 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1508 root->node = leaf; 1509 1510 write_extent_buffer_fsid(root->node, fs_info->fsid); 1511 btrfs_mark_buffer_dirty(root->node); 1512 btrfs_tree_unlock(root->node); 1513 return root; 1514 } 1515 1516 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1517 struct btrfs_fs_info *fs_info) 1518 { 1519 struct btrfs_root *log_root; 1520 1521 log_root = alloc_log_tree(trans, fs_info); 1522 if (IS_ERR(log_root)) 1523 return PTR_ERR(log_root); 1524 WARN_ON(fs_info->log_root_tree); 1525 fs_info->log_root_tree = log_root; 1526 return 0; 1527 } 1528 1529 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1530 struct btrfs_root *root) 1531 { 1532 struct btrfs_fs_info *fs_info = root->fs_info; 1533 struct btrfs_root *log_root; 1534 struct btrfs_inode_item *inode_item; 1535 1536 log_root = alloc_log_tree(trans, fs_info); 1537 if (IS_ERR(log_root)) 1538 return PTR_ERR(log_root); 1539 1540 log_root->last_trans = trans->transid; 1541 log_root->root_key.offset = root->root_key.objectid; 1542 1543 inode_item = &log_root->root_item.inode; 1544 btrfs_set_stack_inode_generation(inode_item, 1); 1545 btrfs_set_stack_inode_size(inode_item, 3); 1546 btrfs_set_stack_inode_nlink(inode_item, 1); 1547 btrfs_set_stack_inode_nbytes(inode_item, 1548 fs_info->nodesize); 1549 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1550 1551 btrfs_set_root_node(&log_root->root_item, log_root->node); 1552 1553 WARN_ON(root->log_root); 1554 root->log_root = log_root; 1555 root->log_transid = 0; 1556 root->log_transid_committed = -1; 1557 root->last_log_commit = 0; 1558 return 0; 1559 } 1560 1561 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1562 struct btrfs_key *key) 1563 { 1564 struct btrfs_root *root; 1565 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1566 struct btrfs_path *path; 1567 u64 generation; 1568 int ret; 1569 1570 path = btrfs_alloc_path(); 1571 if (!path) 1572 return ERR_PTR(-ENOMEM); 1573 1574 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1575 if (!root) { 1576 ret = -ENOMEM; 1577 goto alloc_fail; 1578 } 1579 1580 __setup_root(root, fs_info, key->objectid); 1581 1582 ret = btrfs_find_root(tree_root, key, path, 1583 &root->root_item, &root->root_key); 1584 if (ret) { 1585 if (ret > 0) 1586 ret = -ENOENT; 1587 goto find_fail; 1588 } 1589 1590 generation = btrfs_root_generation(&root->root_item); 1591 root->node = read_tree_block(fs_info, 1592 btrfs_root_bytenr(&root->root_item), 1593 generation); 1594 if (IS_ERR(root->node)) { 1595 ret = PTR_ERR(root->node); 1596 goto find_fail; 1597 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1598 ret = -EIO; 1599 free_extent_buffer(root->node); 1600 goto find_fail; 1601 } 1602 root->commit_root = btrfs_root_node(root); 1603 out: 1604 btrfs_free_path(path); 1605 return root; 1606 1607 find_fail: 1608 kfree(root); 1609 alloc_fail: 1610 root = ERR_PTR(ret); 1611 goto out; 1612 } 1613 1614 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1615 struct btrfs_key *location) 1616 { 1617 struct btrfs_root *root; 1618 1619 root = btrfs_read_tree_root(tree_root, location); 1620 if (IS_ERR(root)) 1621 return root; 1622 1623 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1624 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1625 btrfs_check_and_init_root_item(&root->root_item); 1626 } 1627 1628 return root; 1629 } 1630 1631 int btrfs_init_fs_root(struct btrfs_root *root) 1632 { 1633 int ret; 1634 struct btrfs_subvolume_writers *writers; 1635 1636 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1637 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1638 GFP_NOFS); 1639 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1640 ret = -ENOMEM; 1641 goto fail; 1642 } 1643 1644 writers = btrfs_alloc_subvolume_writers(); 1645 if (IS_ERR(writers)) { 1646 ret = PTR_ERR(writers); 1647 goto fail; 1648 } 1649 root->subv_writers = writers; 1650 1651 btrfs_init_free_ino_ctl(root); 1652 spin_lock_init(&root->ino_cache_lock); 1653 init_waitqueue_head(&root->ino_cache_wait); 1654 1655 ret = get_anon_bdev(&root->anon_dev); 1656 if (ret) 1657 goto fail; 1658 1659 mutex_lock(&root->objectid_mutex); 1660 ret = btrfs_find_highest_objectid(root, 1661 &root->highest_objectid); 1662 if (ret) { 1663 mutex_unlock(&root->objectid_mutex); 1664 goto fail; 1665 } 1666 1667 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1668 1669 mutex_unlock(&root->objectid_mutex); 1670 1671 return 0; 1672 fail: 1673 /* the caller is responsible to call free_fs_root */ 1674 return ret; 1675 } 1676 1677 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1678 u64 root_id) 1679 { 1680 struct btrfs_root *root; 1681 1682 spin_lock(&fs_info->fs_roots_radix_lock); 1683 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1684 (unsigned long)root_id); 1685 spin_unlock(&fs_info->fs_roots_radix_lock); 1686 return root; 1687 } 1688 1689 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1690 struct btrfs_root *root) 1691 { 1692 int ret; 1693 1694 ret = radix_tree_preload(GFP_NOFS); 1695 if (ret) 1696 return ret; 1697 1698 spin_lock(&fs_info->fs_roots_radix_lock); 1699 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1700 (unsigned long)root->root_key.objectid, 1701 root); 1702 if (ret == 0) 1703 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1704 spin_unlock(&fs_info->fs_roots_radix_lock); 1705 radix_tree_preload_end(); 1706 1707 return ret; 1708 } 1709 1710 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1711 struct btrfs_key *location, 1712 bool check_ref) 1713 { 1714 struct btrfs_root *root; 1715 struct btrfs_path *path; 1716 struct btrfs_key key; 1717 int ret; 1718 1719 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1720 return fs_info->tree_root; 1721 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1722 return fs_info->extent_root; 1723 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1724 return fs_info->chunk_root; 1725 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1726 return fs_info->dev_root; 1727 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1728 return fs_info->csum_root; 1729 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1730 return fs_info->quota_root ? fs_info->quota_root : 1731 ERR_PTR(-ENOENT); 1732 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1733 return fs_info->uuid_root ? fs_info->uuid_root : 1734 ERR_PTR(-ENOENT); 1735 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1736 return fs_info->free_space_root ? fs_info->free_space_root : 1737 ERR_PTR(-ENOENT); 1738 again: 1739 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1740 if (root) { 1741 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1742 return ERR_PTR(-ENOENT); 1743 return root; 1744 } 1745 1746 root = btrfs_read_fs_root(fs_info->tree_root, location); 1747 if (IS_ERR(root)) 1748 return root; 1749 1750 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1751 ret = -ENOENT; 1752 goto fail; 1753 } 1754 1755 ret = btrfs_init_fs_root(root); 1756 if (ret) 1757 goto fail; 1758 1759 path = btrfs_alloc_path(); 1760 if (!path) { 1761 ret = -ENOMEM; 1762 goto fail; 1763 } 1764 key.objectid = BTRFS_ORPHAN_OBJECTID; 1765 key.type = BTRFS_ORPHAN_ITEM_KEY; 1766 key.offset = location->objectid; 1767 1768 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1769 btrfs_free_path(path); 1770 if (ret < 0) 1771 goto fail; 1772 if (ret == 0) 1773 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1774 1775 ret = btrfs_insert_fs_root(fs_info, root); 1776 if (ret) { 1777 if (ret == -EEXIST) { 1778 free_fs_root(root); 1779 goto again; 1780 } 1781 goto fail; 1782 } 1783 return root; 1784 fail: 1785 free_fs_root(root); 1786 return ERR_PTR(ret); 1787 } 1788 1789 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1790 { 1791 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1792 int ret = 0; 1793 struct btrfs_device *device; 1794 struct backing_dev_info *bdi; 1795 1796 rcu_read_lock(); 1797 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1798 if (!device->bdev) 1799 continue; 1800 bdi = device->bdev->bd_bdi; 1801 if (bdi_congested(bdi, bdi_bits)) { 1802 ret = 1; 1803 break; 1804 } 1805 } 1806 rcu_read_unlock(); 1807 return ret; 1808 } 1809 1810 /* 1811 * called by the kthread helper functions to finally call the bio end_io 1812 * functions. This is where read checksum verification actually happens 1813 */ 1814 static void end_workqueue_fn(struct btrfs_work *work) 1815 { 1816 struct bio *bio; 1817 struct btrfs_end_io_wq *end_io_wq; 1818 1819 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1820 bio = end_io_wq->bio; 1821 1822 bio->bi_status = end_io_wq->status; 1823 bio->bi_private = end_io_wq->private; 1824 bio->bi_end_io = end_io_wq->end_io; 1825 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1826 bio_endio(bio); 1827 } 1828 1829 static int cleaner_kthread(void *arg) 1830 { 1831 struct btrfs_root *root = arg; 1832 struct btrfs_fs_info *fs_info = root->fs_info; 1833 int again; 1834 struct btrfs_trans_handle *trans; 1835 1836 do { 1837 again = 0; 1838 1839 /* Make the cleaner go to sleep early. */ 1840 if (btrfs_need_cleaner_sleep(fs_info)) 1841 goto sleep; 1842 1843 /* 1844 * Do not do anything if we might cause open_ctree() to block 1845 * before we have finished mounting the filesystem. 1846 */ 1847 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1848 goto sleep; 1849 1850 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1851 goto sleep; 1852 1853 /* 1854 * Avoid the problem that we change the status of the fs 1855 * during the above check and trylock. 1856 */ 1857 if (btrfs_need_cleaner_sleep(fs_info)) { 1858 mutex_unlock(&fs_info->cleaner_mutex); 1859 goto sleep; 1860 } 1861 1862 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 1863 btrfs_run_delayed_iputs(fs_info); 1864 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 1865 1866 again = btrfs_clean_one_deleted_snapshot(root); 1867 mutex_unlock(&fs_info->cleaner_mutex); 1868 1869 /* 1870 * The defragger has dealt with the R/O remount and umount, 1871 * needn't do anything special here. 1872 */ 1873 btrfs_run_defrag_inodes(fs_info); 1874 1875 /* 1876 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1877 * with relocation (btrfs_relocate_chunk) and relocation 1878 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1879 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1880 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1881 * unused block groups. 1882 */ 1883 btrfs_delete_unused_bgs(fs_info); 1884 sleep: 1885 if (!again) { 1886 set_current_state(TASK_INTERRUPTIBLE); 1887 if (!kthread_should_stop()) 1888 schedule(); 1889 __set_current_state(TASK_RUNNING); 1890 } 1891 } while (!kthread_should_stop()); 1892 1893 /* 1894 * Transaction kthread is stopped before us and wakes us up. 1895 * However we might have started a new transaction and COWed some 1896 * tree blocks when deleting unused block groups for example. So 1897 * make sure we commit the transaction we started to have a clean 1898 * shutdown when evicting the btree inode - if it has dirty pages 1899 * when we do the final iput() on it, eviction will trigger a 1900 * writeback for it which will fail with null pointer dereferences 1901 * since work queues and other resources were already released and 1902 * destroyed by the time the iput/eviction/writeback is made. 1903 */ 1904 trans = btrfs_attach_transaction(root); 1905 if (IS_ERR(trans)) { 1906 if (PTR_ERR(trans) != -ENOENT) 1907 btrfs_err(fs_info, 1908 "cleaner transaction attach returned %ld", 1909 PTR_ERR(trans)); 1910 } else { 1911 int ret; 1912 1913 ret = btrfs_commit_transaction(trans); 1914 if (ret) 1915 btrfs_err(fs_info, 1916 "cleaner open transaction commit returned %d", 1917 ret); 1918 } 1919 1920 return 0; 1921 } 1922 1923 static int transaction_kthread(void *arg) 1924 { 1925 struct btrfs_root *root = arg; 1926 struct btrfs_fs_info *fs_info = root->fs_info; 1927 struct btrfs_trans_handle *trans; 1928 struct btrfs_transaction *cur; 1929 u64 transid; 1930 unsigned long now; 1931 unsigned long delay; 1932 bool cannot_commit; 1933 1934 do { 1935 cannot_commit = false; 1936 delay = HZ * fs_info->commit_interval; 1937 mutex_lock(&fs_info->transaction_kthread_mutex); 1938 1939 spin_lock(&fs_info->trans_lock); 1940 cur = fs_info->running_transaction; 1941 if (!cur) { 1942 spin_unlock(&fs_info->trans_lock); 1943 goto sleep; 1944 } 1945 1946 now = get_seconds(); 1947 if (cur->state < TRANS_STATE_BLOCKED && 1948 (now < cur->start_time || 1949 now - cur->start_time < fs_info->commit_interval)) { 1950 spin_unlock(&fs_info->trans_lock); 1951 delay = HZ * 5; 1952 goto sleep; 1953 } 1954 transid = cur->transid; 1955 spin_unlock(&fs_info->trans_lock); 1956 1957 /* If the file system is aborted, this will always fail. */ 1958 trans = btrfs_attach_transaction(root); 1959 if (IS_ERR(trans)) { 1960 if (PTR_ERR(trans) != -ENOENT) 1961 cannot_commit = true; 1962 goto sleep; 1963 } 1964 if (transid == trans->transid) { 1965 btrfs_commit_transaction(trans); 1966 } else { 1967 btrfs_end_transaction(trans); 1968 } 1969 sleep: 1970 wake_up_process(fs_info->cleaner_kthread); 1971 mutex_unlock(&fs_info->transaction_kthread_mutex); 1972 1973 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1974 &fs_info->fs_state))) 1975 btrfs_cleanup_transaction(fs_info); 1976 set_current_state(TASK_INTERRUPTIBLE); 1977 if (!kthread_should_stop() && 1978 (!btrfs_transaction_blocked(fs_info) || 1979 cannot_commit)) 1980 schedule_timeout(delay); 1981 __set_current_state(TASK_RUNNING); 1982 } while (!kthread_should_stop()); 1983 return 0; 1984 } 1985 1986 /* 1987 * this will find the highest generation in the array of 1988 * root backups. The index of the highest array is returned, 1989 * or -1 if we can't find anything. 1990 * 1991 * We check to make sure the array is valid by comparing the 1992 * generation of the latest root in the array with the generation 1993 * in the super block. If they don't match we pitch it. 1994 */ 1995 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1996 { 1997 u64 cur; 1998 int newest_index = -1; 1999 struct btrfs_root_backup *root_backup; 2000 int i; 2001 2002 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2003 root_backup = info->super_copy->super_roots + i; 2004 cur = btrfs_backup_tree_root_gen(root_backup); 2005 if (cur == newest_gen) 2006 newest_index = i; 2007 } 2008 2009 /* check to see if we actually wrapped around */ 2010 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 2011 root_backup = info->super_copy->super_roots; 2012 cur = btrfs_backup_tree_root_gen(root_backup); 2013 if (cur == newest_gen) 2014 newest_index = 0; 2015 } 2016 return newest_index; 2017 } 2018 2019 2020 /* 2021 * find the oldest backup so we know where to store new entries 2022 * in the backup array. This will set the backup_root_index 2023 * field in the fs_info struct 2024 */ 2025 static void find_oldest_super_backup(struct btrfs_fs_info *info, 2026 u64 newest_gen) 2027 { 2028 int newest_index = -1; 2029 2030 newest_index = find_newest_super_backup(info, newest_gen); 2031 /* if there was garbage in there, just move along */ 2032 if (newest_index == -1) { 2033 info->backup_root_index = 0; 2034 } else { 2035 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 2036 } 2037 } 2038 2039 /* 2040 * copy all the root pointers into the super backup array. 2041 * this will bump the backup pointer by one when it is 2042 * done 2043 */ 2044 static void backup_super_roots(struct btrfs_fs_info *info) 2045 { 2046 int next_backup; 2047 struct btrfs_root_backup *root_backup; 2048 int last_backup; 2049 2050 next_backup = info->backup_root_index; 2051 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 2052 BTRFS_NUM_BACKUP_ROOTS; 2053 2054 /* 2055 * just overwrite the last backup if we're at the same generation 2056 * this happens only at umount 2057 */ 2058 root_backup = info->super_for_commit->super_roots + last_backup; 2059 if (btrfs_backup_tree_root_gen(root_backup) == 2060 btrfs_header_generation(info->tree_root->node)) 2061 next_backup = last_backup; 2062 2063 root_backup = info->super_for_commit->super_roots + next_backup; 2064 2065 /* 2066 * make sure all of our padding and empty slots get zero filled 2067 * regardless of which ones we use today 2068 */ 2069 memset(root_backup, 0, sizeof(*root_backup)); 2070 2071 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 2072 2073 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 2074 btrfs_set_backup_tree_root_gen(root_backup, 2075 btrfs_header_generation(info->tree_root->node)); 2076 2077 btrfs_set_backup_tree_root_level(root_backup, 2078 btrfs_header_level(info->tree_root->node)); 2079 2080 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 2081 btrfs_set_backup_chunk_root_gen(root_backup, 2082 btrfs_header_generation(info->chunk_root->node)); 2083 btrfs_set_backup_chunk_root_level(root_backup, 2084 btrfs_header_level(info->chunk_root->node)); 2085 2086 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 2087 btrfs_set_backup_extent_root_gen(root_backup, 2088 btrfs_header_generation(info->extent_root->node)); 2089 btrfs_set_backup_extent_root_level(root_backup, 2090 btrfs_header_level(info->extent_root->node)); 2091 2092 /* 2093 * we might commit during log recovery, which happens before we set 2094 * the fs_root. Make sure it is valid before we fill it in. 2095 */ 2096 if (info->fs_root && info->fs_root->node) { 2097 btrfs_set_backup_fs_root(root_backup, 2098 info->fs_root->node->start); 2099 btrfs_set_backup_fs_root_gen(root_backup, 2100 btrfs_header_generation(info->fs_root->node)); 2101 btrfs_set_backup_fs_root_level(root_backup, 2102 btrfs_header_level(info->fs_root->node)); 2103 } 2104 2105 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 2106 btrfs_set_backup_dev_root_gen(root_backup, 2107 btrfs_header_generation(info->dev_root->node)); 2108 btrfs_set_backup_dev_root_level(root_backup, 2109 btrfs_header_level(info->dev_root->node)); 2110 2111 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 2112 btrfs_set_backup_csum_root_gen(root_backup, 2113 btrfs_header_generation(info->csum_root->node)); 2114 btrfs_set_backup_csum_root_level(root_backup, 2115 btrfs_header_level(info->csum_root->node)); 2116 2117 btrfs_set_backup_total_bytes(root_backup, 2118 btrfs_super_total_bytes(info->super_copy)); 2119 btrfs_set_backup_bytes_used(root_backup, 2120 btrfs_super_bytes_used(info->super_copy)); 2121 btrfs_set_backup_num_devices(root_backup, 2122 btrfs_super_num_devices(info->super_copy)); 2123 2124 /* 2125 * if we don't copy this out to the super_copy, it won't get remembered 2126 * for the next commit 2127 */ 2128 memcpy(&info->super_copy->super_roots, 2129 &info->super_for_commit->super_roots, 2130 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2131 } 2132 2133 /* 2134 * this copies info out of the root backup array and back into 2135 * the in-memory super block. It is meant to help iterate through 2136 * the array, so you send it the number of backups you've already 2137 * tried and the last backup index you used. 2138 * 2139 * this returns -1 when it has tried all the backups 2140 */ 2141 static noinline int next_root_backup(struct btrfs_fs_info *info, 2142 struct btrfs_super_block *super, 2143 int *num_backups_tried, int *backup_index) 2144 { 2145 struct btrfs_root_backup *root_backup; 2146 int newest = *backup_index; 2147 2148 if (*num_backups_tried == 0) { 2149 u64 gen = btrfs_super_generation(super); 2150 2151 newest = find_newest_super_backup(info, gen); 2152 if (newest == -1) 2153 return -1; 2154 2155 *backup_index = newest; 2156 *num_backups_tried = 1; 2157 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2158 /* we've tried all the backups, all done */ 2159 return -1; 2160 } else { 2161 /* jump to the next oldest backup */ 2162 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2163 BTRFS_NUM_BACKUP_ROOTS; 2164 *backup_index = newest; 2165 *num_backups_tried += 1; 2166 } 2167 root_backup = super->super_roots + newest; 2168 2169 btrfs_set_super_generation(super, 2170 btrfs_backup_tree_root_gen(root_backup)); 2171 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2172 btrfs_set_super_root_level(super, 2173 btrfs_backup_tree_root_level(root_backup)); 2174 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2175 2176 /* 2177 * fixme: the total bytes and num_devices need to match or we should 2178 * need a fsck 2179 */ 2180 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2181 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2182 return 0; 2183 } 2184 2185 /* helper to cleanup workers */ 2186 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2187 { 2188 btrfs_destroy_workqueue(fs_info->fixup_workers); 2189 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2190 btrfs_destroy_workqueue(fs_info->workers); 2191 btrfs_destroy_workqueue(fs_info->endio_workers); 2192 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2193 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2194 btrfs_destroy_workqueue(fs_info->rmw_workers); 2195 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2196 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2197 btrfs_destroy_workqueue(fs_info->submit_workers); 2198 btrfs_destroy_workqueue(fs_info->delayed_workers); 2199 btrfs_destroy_workqueue(fs_info->caching_workers); 2200 btrfs_destroy_workqueue(fs_info->readahead_workers); 2201 btrfs_destroy_workqueue(fs_info->flush_workers); 2202 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2203 btrfs_destroy_workqueue(fs_info->extent_workers); 2204 /* 2205 * Now that all other work queues are destroyed, we can safely destroy 2206 * the queues used for metadata I/O, since tasks from those other work 2207 * queues can do metadata I/O operations. 2208 */ 2209 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2210 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2211 } 2212 2213 static void free_root_extent_buffers(struct btrfs_root *root) 2214 { 2215 if (root) { 2216 free_extent_buffer(root->node); 2217 free_extent_buffer(root->commit_root); 2218 root->node = NULL; 2219 root->commit_root = NULL; 2220 } 2221 } 2222 2223 /* helper to cleanup tree roots */ 2224 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2225 { 2226 free_root_extent_buffers(info->tree_root); 2227 2228 free_root_extent_buffers(info->dev_root); 2229 free_root_extent_buffers(info->extent_root); 2230 free_root_extent_buffers(info->csum_root); 2231 free_root_extent_buffers(info->quota_root); 2232 free_root_extent_buffers(info->uuid_root); 2233 if (chunk_root) 2234 free_root_extent_buffers(info->chunk_root); 2235 free_root_extent_buffers(info->free_space_root); 2236 } 2237 2238 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2239 { 2240 int ret; 2241 struct btrfs_root *gang[8]; 2242 int i; 2243 2244 while (!list_empty(&fs_info->dead_roots)) { 2245 gang[0] = list_entry(fs_info->dead_roots.next, 2246 struct btrfs_root, root_list); 2247 list_del(&gang[0]->root_list); 2248 2249 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2250 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2251 } else { 2252 free_extent_buffer(gang[0]->node); 2253 free_extent_buffer(gang[0]->commit_root); 2254 btrfs_put_fs_root(gang[0]); 2255 } 2256 } 2257 2258 while (1) { 2259 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2260 (void **)gang, 0, 2261 ARRAY_SIZE(gang)); 2262 if (!ret) 2263 break; 2264 for (i = 0; i < ret; i++) 2265 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2266 } 2267 2268 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2269 btrfs_free_log_root_tree(NULL, fs_info); 2270 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 2271 } 2272 } 2273 2274 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2275 { 2276 mutex_init(&fs_info->scrub_lock); 2277 atomic_set(&fs_info->scrubs_running, 0); 2278 atomic_set(&fs_info->scrub_pause_req, 0); 2279 atomic_set(&fs_info->scrubs_paused, 0); 2280 atomic_set(&fs_info->scrub_cancel_req, 0); 2281 init_waitqueue_head(&fs_info->scrub_pause_wait); 2282 fs_info->scrub_workers_refcnt = 0; 2283 } 2284 2285 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2286 { 2287 spin_lock_init(&fs_info->balance_lock); 2288 mutex_init(&fs_info->balance_mutex); 2289 atomic_set(&fs_info->balance_running, 0); 2290 atomic_set(&fs_info->balance_pause_req, 0); 2291 atomic_set(&fs_info->balance_cancel_req, 0); 2292 fs_info->balance_ctl = NULL; 2293 init_waitqueue_head(&fs_info->balance_wait_q); 2294 } 2295 2296 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2297 { 2298 struct inode *inode = fs_info->btree_inode; 2299 2300 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2301 set_nlink(inode, 1); 2302 /* 2303 * we set the i_size on the btree inode to the max possible int. 2304 * the real end of the address space is determined by all of 2305 * the devices in the system 2306 */ 2307 inode->i_size = OFFSET_MAX; 2308 inode->i_mapping->a_ops = &btree_aops; 2309 2310 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2311 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode->i_mapping); 2312 BTRFS_I(inode)->io_tree.track_uptodate = 0; 2313 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2314 2315 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2316 2317 BTRFS_I(inode)->root = fs_info->tree_root; 2318 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2319 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2320 btrfs_insert_inode_hash(inode); 2321 } 2322 2323 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2324 { 2325 fs_info->dev_replace.lock_owner = 0; 2326 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2327 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2328 rwlock_init(&fs_info->dev_replace.lock); 2329 atomic_set(&fs_info->dev_replace.read_locks, 0); 2330 atomic_set(&fs_info->dev_replace.blocking_readers, 0); 2331 init_waitqueue_head(&fs_info->replace_wait); 2332 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq); 2333 } 2334 2335 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2336 { 2337 spin_lock_init(&fs_info->qgroup_lock); 2338 mutex_init(&fs_info->qgroup_ioctl_lock); 2339 fs_info->qgroup_tree = RB_ROOT; 2340 fs_info->qgroup_op_tree = RB_ROOT; 2341 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2342 fs_info->qgroup_seq = 1; 2343 fs_info->qgroup_ulist = NULL; 2344 fs_info->qgroup_rescan_running = false; 2345 mutex_init(&fs_info->qgroup_rescan_lock); 2346 } 2347 2348 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2349 struct btrfs_fs_devices *fs_devices) 2350 { 2351 int max_active = fs_info->thread_pool_size; 2352 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2353 2354 fs_info->workers = 2355 btrfs_alloc_workqueue(fs_info, "worker", 2356 flags | WQ_HIGHPRI, max_active, 16); 2357 2358 fs_info->delalloc_workers = 2359 btrfs_alloc_workqueue(fs_info, "delalloc", 2360 flags, max_active, 2); 2361 2362 fs_info->flush_workers = 2363 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2364 flags, max_active, 0); 2365 2366 fs_info->caching_workers = 2367 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2368 2369 /* 2370 * a higher idle thresh on the submit workers makes it much more 2371 * likely that bios will be send down in a sane order to the 2372 * devices 2373 */ 2374 fs_info->submit_workers = 2375 btrfs_alloc_workqueue(fs_info, "submit", flags, 2376 min_t(u64, fs_devices->num_devices, 2377 max_active), 64); 2378 2379 fs_info->fixup_workers = 2380 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2381 2382 /* 2383 * endios are largely parallel and should have a very 2384 * low idle thresh 2385 */ 2386 fs_info->endio_workers = 2387 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2388 fs_info->endio_meta_workers = 2389 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2390 max_active, 4); 2391 fs_info->endio_meta_write_workers = 2392 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2393 max_active, 2); 2394 fs_info->endio_raid56_workers = 2395 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2396 max_active, 4); 2397 fs_info->endio_repair_workers = 2398 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2399 fs_info->rmw_workers = 2400 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2401 fs_info->endio_write_workers = 2402 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2403 max_active, 2); 2404 fs_info->endio_freespace_worker = 2405 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2406 max_active, 0); 2407 fs_info->delayed_workers = 2408 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2409 max_active, 0); 2410 fs_info->readahead_workers = 2411 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2412 max_active, 2); 2413 fs_info->qgroup_rescan_workers = 2414 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2415 fs_info->extent_workers = 2416 btrfs_alloc_workqueue(fs_info, "extent-refs", flags, 2417 min_t(u64, fs_devices->num_devices, 2418 max_active), 8); 2419 2420 if (!(fs_info->workers && fs_info->delalloc_workers && 2421 fs_info->submit_workers && fs_info->flush_workers && 2422 fs_info->endio_workers && fs_info->endio_meta_workers && 2423 fs_info->endio_meta_write_workers && 2424 fs_info->endio_repair_workers && 2425 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2426 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2427 fs_info->caching_workers && fs_info->readahead_workers && 2428 fs_info->fixup_workers && fs_info->delayed_workers && 2429 fs_info->extent_workers && 2430 fs_info->qgroup_rescan_workers)) { 2431 return -ENOMEM; 2432 } 2433 2434 return 0; 2435 } 2436 2437 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2438 struct btrfs_fs_devices *fs_devices) 2439 { 2440 int ret; 2441 struct btrfs_root *log_tree_root; 2442 struct btrfs_super_block *disk_super = fs_info->super_copy; 2443 u64 bytenr = btrfs_super_log_root(disk_super); 2444 2445 if (fs_devices->rw_devices == 0) { 2446 btrfs_warn(fs_info, "log replay required on RO media"); 2447 return -EIO; 2448 } 2449 2450 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2451 if (!log_tree_root) 2452 return -ENOMEM; 2453 2454 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2455 2456 log_tree_root->node = read_tree_block(fs_info, bytenr, 2457 fs_info->generation + 1); 2458 if (IS_ERR(log_tree_root->node)) { 2459 btrfs_warn(fs_info, "failed to read log tree"); 2460 ret = PTR_ERR(log_tree_root->node); 2461 kfree(log_tree_root); 2462 return ret; 2463 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2464 btrfs_err(fs_info, "failed to read log tree"); 2465 free_extent_buffer(log_tree_root->node); 2466 kfree(log_tree_root); 2467 return -EIO; 2468 } 2469 /* returns with log_tree_root freed on success */ 2470 ret = btrfs_recover_log_trees(log_tree_root); 2471 if (ret) { 2472 btrfs_handle_fs_error(fs_info, ret, 2473 "Failed to recover log tree"); 2474 free_extent_buffer(log_tree_root->node); 2475 kfree(log_tree_root); 2476 return ret; 2477 } 2478 2479 if (fs_info->sb->s_flags & MS_RDONLY) { 2480 ret = btrfs_commit_super(fs_info); 2481 if (ret) 2482 return ret; 2483 } 2484 2485 return 0; 2486 } 2487 2488 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2489 { 2490 struct btrfs_root *tree_root = fs_info->tree_root; 2491 struct btrfs_root *root; 2492 struct btrfs_key location; 2493 int ret; 2494 2495 BUG_ON(!fs_info->tree_root); 2496 2497 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2498 location.type = BTRFS_ROOT_ITEM_KEY; 2499 location.offset = 0; 2500 2501 root = btrfs_read_tree_root(tree_root, &location); 2502 if (IS_ERR(root)) 2503 return PTR_ERR(root); 2504 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2505 fs_info->extent_root = root; 2506 2507 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2508 root = btrfs_read_tree_root(tree_root, &location); 2509 if (IS_ERR(root)) 2510 return PTR_ERR(root); 2511 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2512 fs_info->dev_root = root; 2513 btrfs_init_devices_late(fs_info); 2514 2515 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2516 root = btrfs_read_tree_root(tree_root, &location); 2517 if (IS_ERR(root)) 2518 return PTR_ERR(root); 2519 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2520 fs_info->csum_root = root; 2521 2522 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2523 root = btrfs_read_tree_root(tree_root, &location); 2524 if (!IS_ERR(root)) { 2525 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2526 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2527 fs_info->quota_root = root; 2528 } 2529 2530 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2531 root = btrfs_read_tree_root(tree_root, &location); 2532 if (IS_ERR(root)) { 2533 ret = PTR_ERR(root); 2534 if (ret != -ENOENT) 2535 return ret; 2536 } else { 2537 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2538 fs_info->uuid_root = root; 2539 } 2540 2541 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2542 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2543 root = btrfs_read_tree_root(tree_root, &location); 2544 if (IS_ERR(root)) 2545 return PTR_ERR(root); 2546 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2547 fs_info->free_space_root = root; 2548 } 2549 2550 return 0; 2551 } 2552 2553 int open_ctree(struct super_block *sb, 2554 struct btrfs_fs_devices *fs_devices, 2555 char *options) 2556 { 2557 u32 sectorsize; 2558 u32 nodesize; 2559 u32 stripesize; 2560 u64 generation; 2561 u64 features; 2562 struct btrfs_key location; 2563 struct buffer_head *bh; 2564 struct btrfs_super_block *disk_super; 2565 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2566 struct btrfs_root *tree_root; 2567 struct btrfs_root *chunk_root; 2568 int ret; 2569 int err = -EINVAL; 2570 int num_backups_tried = 0; 2571 int backup_index = 0; 2572 int max_active; 2573 int clear_free_space_tree = 0; 2574 2575 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2576 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2577 if (!tree_root || !chunk_root) { 2578 err = -ENOMEM; 2579 goto fail; 2580 } 2581 2582 ret = init_srcu_struct(&fs_info->subvol_srcu); 2583 if (ret) { 2584 err = ret; 2585 goto fail; 2586 } 2587 2588 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2589 if (ret) { 2590 err = ret; 2591 goto fail_srcu; 2592 } 2593 fs_info->dirty_metadata_batch = PAGE_SIZE * 2594 (1 + ilog2(nr_cpu_ids)); 2595 2596 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2597 if (ret) { 2598 err = ret; 2599 goto fail_dirty_metadata_bytes; 2600 } 2601 2602 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); 2603 if (ret) { 2604 err = ret; 2605 goto fail_delalloc_bytes; 2606 } 2607 2608 fs_info->btree_inode = new_inode(sb); 2609 if (!fs_info->btree_inode) { 2610 err = -ENOMEM; 2611 goto fail_bio_counter; 2612 } 2613 2614 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2615 2616 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2617 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2618 INIT_LIST_HEAD(&fs_info->trans_list); 2619 INIT_LIST_HEAD(&fs_info->dead_roots); 2620 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2621 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2622 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2623 spin_lock_init(&fs_info->delalloc_root_lock); 2624 spin_lock_init(&fs_info->trans_lock); 2625 spin_lock_init(&fs_info->fs_roots_radix_lock); 2626 spin_lock_init(&fs_info->delayed_iput_lock); 2627 spin_lock_init(&fs_info->defrag_inodes_lock); 2628 spin_lock_init(&fs_info->free_chunk_lock); 2629 spin_lock_init(&fs_info->tree_mod_seq_lock); 2630 spin_lock_init(&fs_info->super_lock); 2631 spin_lock_init(&fs_info->qgroup_op_lock); 2632 spin_lock_init(&fs_info->buffer_lock); 2633 spin_lock_init(&fs_info->unused_bgs_lock); 2634 rwlock_init(&fs_info->tree_mod_log_lock); 2635 mutex_init(&fs_info->unused_bg_unpin_mutex); 2636 mutex_init(&fs_info->delete_unused_bgs_mutex); 2637 mutex_init(&fs_info->reloc_mutex); 2638 mutex_init(&fs_info->delalloc_root_mutex); 2639 mutex_init(&fs_info->cleaner_delayed_iput_mutex); 2640 seqlock_init(&fs_info->profiles_lock); 2641 2642 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2643 INIT_LIST_HEAD(&fs_info->space_info); 2644 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2645 INIT_LIST_HEAD(&fs_info->unused_bgs); 2646 btrfs_mapping_init(&fs_info->mapping_tree); 2647 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2648 BTRFS_BLOCK_RSV_GLOBAL); 2649 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2650 BTRFS_BLOCK_RSV_DELALLOC); 2651 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2652 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2653 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2654 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2655 BTRFS_BLOCK_RSV_DELOPS); 2656 atomic_set(&fs_info->nr_async_submits, 0); 2657 atomic_set(&fs_info->async_delalloc_pages, 0); 2658 atomic_set(&fs_info->async_submit_draining, 0); 2659 atomic_set(&fs_info->nr_async_bios, 0); 2660 atomic_set(&fs_info->defrag_running, 0); 2661 atomic_set(&fs_info->qgroup_op_seq, 0); 2662 atomic_set(&fs_info->reada_works_cnt, 0); 2663 atomic64_set(&fs_info->tree_mod_seq, 0); 2664 fs_info->fs_frozen = 0; 2665 fs_info->sb = sb; 2666 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2667 fs_info->metadata_ratio = 0; 2668 fs_info->defrag_inodes = RB_ROOT; 2669 fs_info->free_chunk_space = 0; 2670 fs_info->tree_mod_log = RB_ROOT; 2671 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2672 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2673 /* readahead state */ 2674 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2675 spin_lock_init(&fs_info->reada_lock); 2676 2677 fs_info->thread_pool_size = min_t(unsigned long, 2678 num_online_cpus() + 2, 8); 2679 2680 INIT_LIST_HEAD(&fs_info->ordered_roots); 2681 spin_lock_init(&fs_info->ordered_root_lock); 2682 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2683 GFP_KERNEL); 2684 if (!fs_info->delayed_root) { 2685 err = -ENOMEM; 2686 goto fail_iput; 2687 } 2688 btrfs_init_delayed_root(fs_info->delayed_root); 2689 2690 btrfs_init_scrub(fs_info); 2691 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2692 fs_info->check_integrity_print_mask = 0; 2693 #endif 2694 btrfs_init_balance(fs_info); 2695 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2696 2697 sb->s_blocksize = 4096; 2698 sb->s_blocksize_bits = blksize_bits(4096); 2699 2700 btrfs_init_btree_inode(fs_info); 2701 2702 spin_lock_init(&fs_info->block_group_cache_lock); 2703 fs_info->block_group_cache_tree = RB_ROOT; 2704 fs_info->first_logical_byte = (u64)-1; 2705 2706 extent_io_tree_init(&fs_info->freed_extents[0], 2707 fs_info->btree_inode->i_mapping); 2708 extent_io_tree_init(&fs_info->freed_extents[1], 2709 fs_info->btree_inode->i_mapping); 2710 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2711 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2712 2713 mutex_init(&fs_info->ordered_operations_mutex); 2714 mutex_init(&fs_info->tree_log_mutex); 2715 mutex_init(&fs_info->chunk_mutex); 2716 mutex_init(&fs_info->transaction_kthread_mutex); 2717 mutex_init(&fs_info->cleaner_mutex); 2718 mutex_init(&fs_info->volume_mutex); 2719 mutex_init(&fs_info->ro_block_group_mutex); 2720 init_rwsem(&fs_info->commit_root_sem); 2721 init_rwsem(&fs_info->cleanup_work_sem); 2722 init_rwsem(&fs_info->subvol_sem); 2723 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2724 2725 btrfs_init_dev_replace_locks(fs_info); 2726 btrfs_init_qgroup(fs_info); 2727 2728 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2729 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2730 2731 init_waitqueue_head(&fs_info->transaction_throttle); 2732 init_waitqueue_head(&fs_info->transaction_wait); 2733 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2734 init_waitqueue_head(&fs_info->async_submit_wait); 2735 2736 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2737 2738 /* Usable values until the real ones are cached from the superblock */ 2739 fs_info->nodesize = 4096; 2740 fs_info->sectorsize = 4096; 2741 fs_info->stripesize = 4096; 2742 2743 ret = btrfs_alloc_stripe_hash_table(fs_info); 2744 if (ret) { 2745 err = ret; 2746 goto fail_alloc; 2747 } 2748 2749 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 2750 2751 invalidate_bdev(fs_devices->latest_bdev); 2752 2753 /* 2754 * Read super block and check the signature bytes only 2755 */ 2756 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2757 if (IS_ERR(bh)) { 2758 err = PTR_ERR(bh); 2759 goto fail_alloc; 2760 } 2761 2762 /* 2763 * We want to check superblock checksum, the type is stored inside. 2764 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2765 */ 2766 if (btrfs_check_super_csum(fs_info, bh->b_data)) { 2767 btrfs_err(fs_info, "superblock checksum mismatch"); 2768 err = -EINVAL; 2769 brelse(bh); 2770 goto fail_alloc; 2771 } 2772 2773 /* 2774 * super_copy is zeroed at allocation time and we never touch the 2775 * following bytes up to INFO_SIZE, the checksum is calculated from 2776 * the whole block of INFO_SIZE 2777 */ 2778 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2779 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2780 sizeof(*fs_info->super_for_commit)); 2781 brelse(bh); 2782 2783 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2784 2785 ret = btrfs_check_super_valid(fs_info); 2786 if (ret) { 2787 btrfs_err(fs_info, "superblock contains fatal errors"); 2788 err = -EINVAL; 2789 goto fail_alloc; 2790 } 2791 2792 disk_super = fs_info->super_copy; 2793 if (!btrfs_super_root(disk_super)) 2794 goto fail_alloc; 2795 2796 /* check FS state, whether FS is broken. */ 2797 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2798 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2799 2800 /* 2801 * run through our array of backup supers and setup 2802 * our ring pointer to the oldest one 2803 */ 2804 generation = btrfs_super_generation(disk_super); 2805 find_oldest_super_backup(fs_info, generation); 2806 2807 /* 2808 * In the long term, we'll store the compression type in the super 2809 * block, and it'll be used for per file compression control. 2810 */ 2811 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2812 2813 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2814 if (ret) { 2815 err = ret; 2816 goto fail_alloc; 2817 } 2818 2819 features = btrfs_super_incompat_flags(disk_super) & 2820 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2821 if (features) { 2822 btrfs_err(fs_info, 2823 "cannot mount because of unsupported optional features (%llx)", 2824 features); 2825 err = -EINVAL; 2826 goto fail_alloc; 2827 } 2828 2829 features = btrfs_super_incompat_flags(disk_super); 2830 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2831 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2832 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2833 2834 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2835 btrfs_info(fs_info, "has skinny extents"); 2836 2837 /* 2838 * flag our filesystem as having big metadata blocks if 2839 * they are bigger than the page size 2840 */ 2841 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2842 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2843 btrfs_info(fs_info, 2844 "flagging fs with big metadata feature"); 2845 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2846 } 2847 2848 nodesize = btrfs_super_nodesize(disk_super); 2849 sectorsize = btrfs_super_sectorsize(disk_super); 2850 stripesize = sectorsize; 2851 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2852 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2853 2854 /* Cache block sizes */ 2855 fs_info->nodesize = nodesize; 2856 fs_info->sectorsize = sectorsize; 2857 fs_info->stripesize = stripesize; 2858 2859 /* 2860 * mixed block groups end up with duplicate but slightly offset 2861 * extent buffers for the same range. It leads to corruptions 2862 */ 2863 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2864 (sectorsize != nodesize)) { 2865 btrfs_err(fs_info, 2866 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2867 nodesize, sectorsize); 2868 goto fail_alloc; 2869 } 2870 2871 /* 2872 * Needn't use the lock because there is no other task which will 2873 * update the flag. 2874 */ 2875 btrfs_set_super_incompat_flags(disk_super, features); 2876 2877 features = btrfs_super_compat_ro_flags(disk_super) & 2878 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2879 if (!(sb->s_flags & MS_RDONLY) && features) { 2880 btrfs_err(fs_info, 2881 "cannot mount read-write because of unsupported optional features (%llx)", 2882 features); 2883 err = -EINVAL; 2884 goto fail_alloc; 2885 } 2886 2887 max_active = fs_info->thread_pool_size; 2888 2889 ret = btrfs_init_workqueues(fs_info, fs_devices); 2890 if (ret) { 2891 err = ret; 2892 goto fail_sb_buffer; 2893 } 2894 2895 sb->s_bdi->congested_fn = btrfs_congested_fn; 2896 sb->s_bdi->congested_data = fs_info; 2897 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 2898 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE; 2899 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 2900 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 2901 2902 sb->s_blocksize = sectorsize; 2903 sb->s_blocksize_bits = blksize_bits(sectorsize); 2904 2905 mutex_lock(&fs_info->chunk_mutex); 2906 ret = btrfs_read_sys_array(fs_info); 2907 mutex_unlock(&fs_info->chunk_mutex); 2908 if (ret) { 2909 btrfs_err(fs_info, "failed to read the system array: %d", ret); 2910 goto fail_sb_buffer; 2911 } 2912 2913 generation = btrfs_super_chunk_root_generation(disk_super); 2914 2915 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2916 2917 chunk_root->node = read_tree_block(fs_info, 2918 btrfs_super_chunk_root(disk_super), 2919 generation); 2920 if (IS_ERR(chunk_root->node) || 2921 !extent_buffer_uptodate(chunk_root->node)) { 2922 btrfs_err(fs_info, "failed to read chunk root"); 2923 if (!IS_ERR(chunk_root->node)) 2924 free_extent_buffer(chunk_root->node); 2925 chunk_root->node = NULL; 2926 goto fail_tree_roots; 2927 } 2928 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2929 chunk_root->commit_root = btrfs_root_node(chunk_root); 2930 2931 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2932 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2933 2934 ret = btrfs_read_chunk_tree(fs_info); 2935 if (ret) { 2936 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 2937 goto fail_tree_roots; 2938 } 2939 2940 /* 2941 * keep the device that is marked to be the target device for the 2942 * dev_replace procedure 2943 */ 2944 btrfs_close_extra_devices(fs_devices, 0); 2945 2946 if (!fs_devices->latest_bdev) { 2947 btrfs_err(fs_info, "failed to read devices"); 2948 goto fail_tree_roots; 2949 } 2950 2951 retry_root_backup: 2952 generation = btrfs_super_generation(disk_super); 2953 2954 tree_root->node = read_tree_block(fs_info, 2955 btrfs_super_root(disk_super), 2956 generation); 2957 if (IS_ERR(tree_root->node) || 2958 !extent_buffer_uptodate(tree_root->node)) { 2959 btrfs_warn(fs_info, "failed to read tree root"); 2960 if (!IS_ERR(tree_root->node)) 2961 free_extent_buffer(tree_root->node); 2962 tree_root->node = NULL; 2963 goto recovery_tree_root; 2964 } 2965 2966 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2967 tree_root->commit_root = btrfs_root_node(tree_root); 2968 btrfs_set_root_refs(&tree_root->root_item, 1); 2969 2970 mutex_lock(&tree_root->objectid_mutex); 2971 ret = btrfs_find_highest_objectid(tree_root, 2972 &tree_root->highest_objectid); 2973 if (ret) { 2974 mutex_unlock(&tree_root->objectid_mutex); 2975 goto recovery_tree_root; 2976 } 2977 2978 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2979 2980 mutex_unlock(&tree_root->objectid_mutex); 2981 2982 ret = btrfs_read_roots(fs_info); 2983 if (ret) 2984 goto recovery_tree_root; 2985 2986 fs_info->generation = generation; 2987 fs_info->last_trans_committed = generation; 2988 2989 ret = btrfs_recover_balance(fs_info); 2990 if (ret) { 2991 btrfs_err(fs_info, "failed to recover balance: %d", ret); 2992 goto fail_block_groups; 2993 } 2994 2995 ret = btrfs_init_dev_stats(fs_info); 2996 if (ret) { 2997 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 2998 goto fail_block_groups; 2999 } 3000 3001 ret = btrfs_init_dev_replace(fs_info); 3002 if (ret) { 3003 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3004 goto fail_block_groups; 3005 } 3006 3007 btrfs_close_extra_devices(fs_devices, 1); 3008 3009 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 3010 if (ret) { 3011 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3012 ret); 3013 goto fail_block_groups; 3014 } 3015 3016 ret = btrfs_sysfs_add_device(fs_devices); 3017 if (ret) { 3018 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 3019 ret); 3020 goto fail_fsdev_sysfs; 3021 } 3022 3023 ret = btrfs_sysfs_add_mounted(fs_info); 3024 if (ret) { 3025 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3026 goto fail_fsdev_sysfs; 3027 } 3028 3029 ret = btrfs_init_space_info(fs_info); 3030 if (ret) { 3031 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3032 goto fail_sysfs; 3033 } 3034 3035 ret = btrfs_read_block_groups(fs_info); 3036 if (ret) { 3037 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3038 goto fail_sysfs; 3039 } 3040 fs_info->num_tolerated_disk_barrier_failures = 3041 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3042 if (fs_info->fs_devices->missing_devices > 3043 fs_info->num_tolerated_disk_barrier_failures && 3044 !(sb->s_flags & MS_RDONLY)) { 3045 btrfs_warn(fs_info, 3046 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed", 3047 fs_info->fs_devices->missing_devices, 3048 fs_info->num_tolerated_disk_barrier_failures); 3049 goto fail_sysfs; 3050 } 3051 3052 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3053 "btrfs-cleaner"); 3054 if (IS_ERR(fs_info->cleaner_kthread)) 3055 goto fail_sysfs; 3056 3057 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3058 tree_root, 3059 "btrfs-transaction"); 3060 if (IS_ERR(fs_info->transaction_kthread)) 3061 goto fail_cleaner; 3062 3063 if (!btrfs_test_opt(fs_info, SSD) && 3064 !btrfs_test_opt(fs_info, NOSSD) && 3065 !fs_info->fs_devices->rotating) { 3066 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode"); 3067 btrfs_set_opt(fs_info->mount_opt, SSD); 3068 } 3069 3070 /* 3071 * Mount does not set all options immediately, we can do it now and do 3072 * not have to wait for transaction commit 3073 */ 3074 btrfs_apply_pending_changes(fs_info); 3075 3076 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3077 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3078 ret = btrfsic_mount(fs_info, fs_devices, 3079 btrfs_test_opt(fs_info, 3080 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3081 1 : 0, 3082 fs_info->check_integrity_print_mask); 3083 if (ret) 3084 btrfs_warn(fs_info, 3085 "failed to initialize integrity check module: %d", 3086 ret); 3087 } 3088 #endif 3089 ret = btrfs_read_qgroup_config(fs_info); 3090 if (ret) 3091 goto fail_trans_kthread; 3092 3093 /* do not make disk changes in broken FS or nologreplay is given */ 3094 if (btrfs_super_log_root(disk_super) != 0 && 3095 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3096 ret = btrfs_replay_log(fs_info, fs_devices); 3097 if (ret) { 3098 err = ret; 3099 goto fail_qgroup; 3100 } 3101 } 3102 3103 ret = btrfs_find_orphan_roots(fs_info); 3104 if (ret) 3105 goto fail_qgroup; 3106 3107 if (!(sb->s_flags & MS_RDONLY)) { 3108 ret = btrfs_cleanup_fs_roots(fs_info); 3109 if (ret) 3110 goto fail_qgroup; 3111 3112 mutex_lock(&fs_info->cleaner_mutex); 3113 ret = btrfs_recover_relocation(tree_root); 3114 mutex_unlock(&fs_info->cleaner_mutex); 3115 if (ret < 0) { 3116 btrfs_warn(fs_info, "failed to recover relocation: %d", 3117 ret); 3118 err = -EINVAL; 3119 goto fail_qgroup; 3120 } 3121 } 3122 3123 location.objectid = BTRFS_FS_TREE_OBJECTID; 3124 location.type = BTRFS_ROOT_ITEM_KEY; 3125 location.offset = 0; 3126 3127 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3128 if (IS_ERR(fs_info->fs_root)) { 3129 err = PTR_ERR(fs_info->fs_root); 3130 goto fail_qgroup; 3131 } 3132 3133 if (sb->s_flags & MS_RDONLY) 3134 return 0; 3135 3136 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3137 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3138 clear_free_space_tree = 1; 3139 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3140 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3141 btrfs_warn(fs_info, "free space tree is invalid"); 3142 clear_free_space_tree = 1; 3143 } 3144 3145 if (clear_free_space_tree) { 3146 btrfs_info(fs_info, "clearing free space tree"); 3147 ret = btrfs_clear_free_space_tree(fs_info); 3148 if (ret) { 3149 btrfs_warn(fs_info, 3150 "failed to clear free space tree: %d", ret); 3151 close_ctree(fs_info); 3152 return ret; 3153 } 3154 } 3155 3156 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3157 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3158 btrfs_info(fs_info, "creating free space tree"); 3159 ret = btrfs_create_free_space_tree(fs_info); 3160 if (ret) { 3161 btrfs_warn(fs_info, 3162 "failed to create free space tree: %d", ret); 3163 close_ctree(fs_info); 3164 return ret; 3165 } 3166 } 3167 3168 down_read(&fs_info->cleanup_work_sem); 3169 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3170 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3171 up_read(&fs_info->cleanup_work_sem); 3172 close_ctree(fs_info); 3173 return ret; 3174 } 3175 up_read(&fs_info->cleanup_work_sem); 3176 3177 ret = btrfs_resume_balance_async(fs_info); 3178 if (ret) { 3179 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3180 close_ctree(fs_info); 3181 return ret; 3182 } 3183 3184 ret = btrfs_resume_dev_replace_async(fs_info); 3185 if (ret) { 3186 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3187 close_ctree(fs_info); 3188 return ret; 3189 } 3190 3191 btrfs_qgroup_rescan_resume(fs_info); 3192 3193 if (!fs_info->uuid_root) { 3194 btrfs_info(fs_info, "creating UUID tree"); 3195 ret = btrfs_create_uuid_tree(fs_info); 3196 if (ret) { 3197 btrfs_warn(fs_info, 3198 "failed to create the UUID tree: %d", ret); 3199 close_ctree(fs_info); 3200 return ret; 3201 } 3202 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3203 fs_info->generation != 3204 btrfs_super_uuid_tree_generation(disk_super)) { 3205 btrfs_info(fs_info, "checking UUID tree"); 3206 ret = btrfs_check_uuid_tree(fs_info); 3207 if (ret) { 3208 btrfs_warn(fs_info, 3209 "failed to check the UUID tree: %d", ret); 3210 close_ctree(fs_info); 3211 return ret; 3212 } 3213 } else { 3214 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3215 } 3216 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3217 3218 /* 3219 * backuproot only affect mount behavior, and if open_ctree succeeded, 3220 * no need to keep the flag 3221 */ 3222 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3223 3224 return 0; 3225 3226 fail_qgroup: 3227 btrfs_free_qgroup_config(fs_info); 3228 fail_trans_kthread: 3229 kthread_stop(fs_info->transaction_kthread); 3230 btrfs_cleanup_transaction(fs_info); 3231 btrfs_free_fs_roots(fs_info); 3232 fail_cleaner: 3233 kthread_stop(fs_info->cleaner_kthread); 3234 3235 /* 3236 * make sure we're done with the btree inode before we stop our 3237 * kthreads 3238 */ 3239 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3240 3241 fail_sysfs: 3242 btrfs_sysfs_remove_mounted(fs_info); 3243 3244 fail_fsdev_sysfs: 3245 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3246 3247 fail_block_groups: 3248 btrfs_put_block_group_cache(fs_info); 3249 3250 fail_tree_roots: 3251 free_root_pointers(fs_info, 1); 3252 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3253 3254 fail_sb_buffer: 3255 btrfs_stop_all_workers(fs_info); 3256 btrfs_free_block_groups(fs_info); 3257 fail_alloc: 3258 fail_iput: 3259 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3260 3261 iput(fs_info->btree_inode); 3262 fail_bio_counter: 3263 percpu_counter_destroy(&fs_info->bio_counter); 3264 fail_delalloc_bytes: 3265 percpu_counter_destroy(&fs_info->delalloc_bytes); 3266 fail_dirty_metadata_bytes: 3267 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3268 fail_srcu: 3269 cleanup_srcu_struct(&fs_info->subvol_srcu); 3270 fail: 3271 btrfs_free_stripe_hash_table(fs_info); 3272 btrfs_close_devices(fs_info->fs_devices); 3273 return err; 3274 3275 recovery_tree_root: 3276 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 3277 goto fail_tree_roots; 3278 3279 free_root_pointers(fs_info, 0); 3280 3281 /* don't use the log in recovery mode, it won't be valid */ 3282 btrfs_set_super_log_root(disk_super, 0); 3283 3284 /* we can't trust the free space cache either */ 3285 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3286 3287 ret = next_root_backup(fs_info, fs_info->super_copy, 3288 &num_backups_tried, &backup_index); 3289 if (ret == -1) 3290 goto fail_block_groups; 3291 goto retry_root_backup; 3292 } 3293 3294 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3295 { 3296 if (uptodate) { 3297 set_buffer_uptodate(bh); 3298 } else { 3299 struct btrfs_device *device = (struct btrfs_device *) 3300 bh->b_private; 3301 3302 btrfs_warn_rl_in_rcu(device->fs_info, 3303 "lost page write due to IO error on %s", 3304 rcu_str_deref(device->name)); 3305 /* note, we don't set_buffer_write_io_error because we have 3306 * our own ways of dealing with the IO errors 3307 */ 3308 clear_buffer_uptodate(bh); 3309 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3310 } 3311 unlock_buffer(bh); 3312 put_bh(bh); 3313 } 3314 3315 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3316 struct buffer_head **bh_ret) 3317 { 3318 struct buffer_head *bh; 3319 struct btrfs_super_block *super; 3320 u64 bytenr; 3321 3322 bytenr = btrfs_sb_offset(copy_num); 3323 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3324 return -EINVAL; 3325 3326 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE); 3327 /* 3328 * If we fail to read from the underlying devices, as of now 3329 * the best option we have is to mark it EIO. 3330 */ 3331 if (!bh) 3332 return -EIO; 3333 3334 super = (struct btrfs_super_block *)bh->b_data; 3335 if (btrfs_super_bytenr(super) != bytenr || 3336 btrfs_super_magic(super) != BTRFS_MAGIC) { 3337 brelse(bh); 3338 return -EINVAL; 3339 } 3340 3341 *bh_ret = bh; 3342 return 0; 3343 } 3344 3345 3346 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3347 { 3348 struct buffer_head *bh; 3349 struct buffer_head *latest = NULL; 3350 struct btrfs_super_block *super; 3351 int i; 3352 u64 transid = 0; 3353 int ret = -EINVAL; 3354 3355 /* we would like to check all the supers, but that would make 3356 * a btrfs mount succeed after a mkfs from a different FS. 3357 * So, we need to add a special mount option to scan for 3358 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3359 */ 3360 for (i = 0; i < 1; i++) { 3361 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3362 if (ret) 3363 continue; 3364 3365 super = (struct btrfs_super_block *)bh->b_data; 3366 3367 if (!latest || btrfs_super_generation(super) > transid) { 3368 brelse(latest); 3369 latest = bh; 3370 transid = btrfs_super_generation(super); 3371 } else { 3372 brelse(bh); 3373 } 3374 } 3375 3376 if (!latest) 3377 return ERR_PTR(ret); 3378 3379 return latest; 3380 } 3381 3382 /* 3383 * this should be called twice, once with wait == 0 and 3384 * once with wait == 1. When wait == 0 is done, all the buffer heads 3385 * we write are pinned. 3386 * 3387 * They are released when wait == 1 is done. 3388 * max_mirrors must be the same for both runs, and it indicates how 3389 * many supers on this one device should be written. 3390 * 3391 * max_mirrors == 0 means to write them all. 3392 */ 3393 static int write_dev_supers(struct btrfs_device *device, 3394 struct btrfs_super_block *sb, 3395 int wait, int max_mirrors) 3396 { 3397 struct buffer_head *bh; 3398 int i; 3399 int ret; 3400 int errors = 0; 3401 u32 crc; 3402 u64 bytenr; 3403 3404 if (max_mirrors == 0) 3405 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3406 3407 for (i = 0; i < max_mirrors; i++) { 3408 bytenr = btrfs_sb_offset(i); 3409 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3410 device->commit_total_bytes) 3411 break; 3412 3413 if (wait) { 3414 bh = __find_get_block(device->bdev, bytenr / 4096, 3415 BTRFS_SUPER_INFO_SIZE); 3416 if (!bh) { 3417 errors++; 3418 continue; 3419 } 3420 wait_on_buffer(bh); 3421 if (!buffer_uptodate(bh)) 3422 errors++; 3423 3424 /* drop our reference */ 3425 brelse(bh); 3426 3427 /* drop the reference from the wait == 0 run */ 3428 brelse(bh); 3429 continue; 3430 } else { 3431 btrfs_set_super_bytenr(sb, bytenr); 3432 3433 crc = ~(u32)0; 3434 crc = btrfs_csum_data((const char *)sb + 3435 BTRFS_CSUM_SIZE, crc, 3436 BTRFS_SUPER_INFO_SIZE - 3437 BTRFS_CSUM_SIZE); 3438 btrfs_csum_final(crc, sb->csum); 3439 3440 /* 3441 * one reference for us, and we leave it for the 3442 * caller 3443 */ 3444 bh = __getblk(device->bdev, bytenr / 4096, 3445 BTRFS_SUPER_INFO_SIZE); 3446 if (!bh) { 3447 btrfs_err(device->fs_info, 3448 "couldn't get super buffer head for bytenr %llu", 3449 bytenr); 3450 errors++; 3451 continue; 3452 } 3453 3454 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3455 3456 /* one reference for submit_bh */ 3457 get_bh(bh); 3458 3459 set_buffer_uptodate(bh); 3460 lock_buffer(bh); 3461 bh->b_end_io = btrfs_end_buffer_write_sync; 3462 bh->b_private = device; 3463 } 3464 3465 /* 3466 * we fua the first super. The others we allow 3467 * to go down lazy. 3468 */ 3469 if (i == 0) { 3470 ret = btrfsic_submit_bh(REQ_OP_WRITE, 3471 REQ_SYNC | REQ_FUA, bh); 3472 } else { 3473 ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_SYNC, bh); 3474 } 3475 if (ret) 3476 errors++; 3477 } 3478 return errors < i ? 0 : -1; 3479 } 3480 3481 /* 3482 * endio for the write_dev_flush, this will wake anyone waiting 3483 * for the barrier when it is done 3484 */ 3485 static void btrfs_end_empty_barrier(struct bio *bio) 3486 { 3487 if (bio->bi_private) 3488 complete(bio->bi_private); 3489 bio_put(bio); 3490 } 3491 3492 /* 3493 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3494 * sent down. With wait == 1, it waits for the previous flush. 3495 * 3496 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3497 * capable 3498 */ 3499 static blk_status_t write_dev_flush(struct btrfs_device *device, int wait) 3500 { 3501 struct request_queue *q = bdev_get_queue(device->bdev); 3502 struct bio *bio; 3503 blk_status_t ret = 0; 3504 3505 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3506 return 0; 3507 3508 if (wait) { 3509 bio = device->flush_bio; 3510 if (!bio) 3511 return 0; 3512 3513 wait_for_completion(&device->flush_wait); 3514 3515 if (bio->bi_status) { 3516 ret = bio->bi_status; 3517 btrfs_dev_stat_inc_and_print(device, 3518 BTRFS_DEV_STAT_FLUSH_ERRS); 3519 } 3520 3521 /* drop the reference from the wait == 0 run */ 3522 bio_put(bio); 3523 device->flush_bio = NULL; 3524 3525 return ret; 3526 } 3527 3528 /* 3529 * one reference for us, and we leave it for the 3530 * caller 3531 */ 3532 device->flush_bio = NULL; 3533 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3534 if (!bio) 3535 return BLK_STS_RESOURCE; 3536 3537 bio->bi_end_io = btrfs_end_empty_barrier; 3538 bio->bi_bdev = device->bdev; 3539 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3540 init_completion(&device->flush_wait); 3541 bio->bi_private = &device->flush_wait; 3542 device->flush_bio = bio; 3543 3544 bio_get(bio); 3545 btrfsic_submit_bio(bio); 3546 3547 return 0; 3548 } 3549 3550 /* 3551 * send an empty flush down to each device in parallel, 3552 * then wait for them 3553 */ 3554 static int barrier_all_devices(struct btrfs_fs_info *info) 3555 { 3556 struct list_head *head; 3557 struct btrfs_device *dev; 3558 int errors_send = 0; 3559 int errors_wait = 0; 3560 blk_status_t ret; 3561 3562 /* send down all the barriers */ 3563 head = &info->fs_devices->devices; 3564 list_for_each_entry_rcu(dev, head, dev_list) { 3565 if (dev->missing) 3566 continue; 3567 if (!dev->bdev) { 3568 errors_send++; 3569 continue; 3570 } 3571 if (!dev->in_fs_metadata || !dev->writeable) 3572 continue; 3573 3574 ret = write_dev_flush(dev, 0); 3575 if (ret) 3576 errors_send++; 3577 } 3578 3579 /* wait for all the barriers */ 3580 list_for_each_entry_rcu(dev, head, dev_list) { 3581 if (dev->missing) 3582 continue; 3583 if (!dev->bdev) { 3584 errors_wait++; 3585 continue; 3586 } 3587 if (!dev->in_fs_metadata || !dev->writeable) 3588 continue; 3589 3590 ret = write_dev_flush(dev, 1); 3591 if (ret) 3592 errors_wait++; 3593 } 3594 if (errors_send > info->num_tolerated_disk_barrier_failures || 3595 errors_wait > info->num_tolerated_disk_barrier_failures) 3596 return -EIO; 3597 return 0; 3598 } 3599 3600 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3601 { 3602 int raid_type; 3603 int min_tolerated = INT_MAX; 3604 3605 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3606 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3607 min_tolerated = min(min_tolerated, 3608 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3609 tolerated_failures); 3610 3611 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3612 if (raid_type == BTRFS_RAID_SINGLE) 3613 continue; 3614 if (!(flags & btrfs_raid_group[raid_type])) 3615 continue; 3616 min_tolerated = min(min_tolerated, 3617 btrfs_raid_array[raid_type]. 3618 tolerated_failures); 3619 } 3620 3621 if (min_tolerated == INT_MAX) { 3622 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3623 min_tolerated = 0; 3624 } 3625 3626 return min_tolerated; 3627 } 3628 3629 int btrfs_calc_num_tolerated_disk_barrier_failures( 3630 struct btrfs_fs_info *fs_info) 3631 { 3632 struct btrfs_ioctl_space_info space; 3633 struct btrfs_space_info *sinfo; 3634 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3635 BTRFS_BLOCK_GROUP_SYSTEM, 3636 BTRFS_BLOCK_GROUP_METADATA, 3637 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3638 int i; 3639 int c; 3640 int num_tolerated_disk_barrier_failures = 3641 (int)fs_info->fs_devices->num_devices; 3642 3643 for (i = 0; i < ARRAY_SIZE(types); i++) { 3644 struct btrfs_space_info *tmp; 3645 3646 sinfo = NULL; 3647 rcu_read_lock(); 3648 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3649 if (tmp->flags == types[i]) { 3650 sinfo = tmp; 3651 break; 3652 } 3653 } 3654 rcu_read_unlock(); 3655 3656 if (!sinfo) 3657 continue; 3658 3659 down_read(&sinfo->groups_sem); 3660 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3661 u64 flags; 3662 3663 if (list_empty(&sinfo->block_groups[c])) 3664 continue; 3665 3666 btrfs_get_block_group_info(&sinfo->block_groups[c], 3667 &space); 3668 if (space.total_bytes == 0 || space.used_bytes == 0) 3669 continue; 3670 flags = space.flags; 3671 3672 num_tolerated_disk_barrier_failures = min( 3673 num_tolerated_disk_barrier_failures, 3674 btrfs_get_num_tolerated_disk_barrier_failures( 3675 flags)); 3676 } 3677 up_read(&sinfo->groups_sem); 3678 } 3679 3680 return num_tolerated_disk_barrier_failures; 3681 } 3682 3683 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3684 { 3685 struct list_head *head; 3686 struct btrfs_device *dev; 3687 struct btrfs_super_block *sb; 3688 struct btrfs_dev_item *dev_item; 3689 int ret; 3690 int do_barriers; 3691 int max_errors; 3692 int total_errors = 0; 3693 u64 flags; 3694 3695 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3696 backup_super_roots(fs_info); 3697 3698 sb = fs_info->super_for_commit; 3699 dev_item = &sb->dev_item; 3700 3701 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3702 head = &fs_info->fs_devices->devices; 3703 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3704 3705 if (do_barriers) { 3706 ret = barrier_all_devices(fs_info); 3707 if (ret) { 3708 mutex_unlock( 3709 &fs_info->fs_devices->device_list_mutex); 3710 btrfs_handle_fs_error(fs_info, ret, 3711 "errors while submitting device barriers."); 3712 return ret; 3713 } 3714 } 3715 3716 list_for_each_entry_rcu(dev, head, dev_list) { 3717 if (!dev->bdev) { 3718 total_errors++; 3719 continue; 3720 } 3721 if (!dev->in_fs_metadata || !dev->writeable) 3722 continue; 3723 3724 btrfs_set_stack_device_generation(dev_item, 0); 3725 btrfs_set_stack_device_type(dev_item, dev->type); 3726 btrfs_set_stack_device_id(dev_item, dev->devid); 3727 btrfs_set_stack_device_total_bytes(dev_item, 3728 dev->commit_total_bytes); 3729 btrfs_set_stack_device_bytes_used(dev_item, 3730 dev->commit_bytes_used); 3731 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3732 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3733 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3734 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3735 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3736 3737 flags = btrfs_super_flags(sb); 3738 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3739 3740 ret = write_dev_supers(dev, sb, 0, max_mirrors); 3741 if (ret) 3742 total_errors++; 3743 } 3744 if (total_errors > max_errors) { 3745 btrfs_err(fs_info, "%d errors while writing supers", 3746 total_errors); 3747 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3748 3749 /* FUA is masked off if unsupported and can't be the reason */ 3750 btrfs_handle_fs_error(fs_info, -EIO, 3751 "%d errors while writing supers", 3752 total_errors); 3753 return -EIO; 3754 } 3755 3756 total_errors = 0; 3757 list_for_each_entry_rcu(dev, head, dev_list) { 3758 if (!dev->bdev) 3759 continue; 3760 if (!dev->in_fs_metadata || !dev->writeable) 3761 continue; 3762 3763 ret = write_dev_supers(dev, sb, 1, max_mirrors); 3764 if (ret) 3765 total_errors++; 3766 } 3767 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3768 if (total_errors > max_errors) { 3769 btrfs_handle_fs_error(fs_info, -EIO, 3770 "%d errors while writing supers", 3771 total_errors); 3772 return -EIO; 3773 } 3774 return 0; 3775 } 3776 3777 /* Drop a fs root from the radix tree and free it. */ 3778 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3779 struct btrfs_root *root) 3780 { 3781 spin_lock(&fs_info->fs_roots_radix_lock); 3782 radix_tree_delete(&fs_info->fs_roots_radix, 3783 (unsigned long)root->root_key.objectid); 3784 spin_unlock(&fs_info->fs_roots_radix_lock); 3785 3786 if (btrfs_root_refs(&root->root_item) == 0) 3787 synchronize_srcu(&fs_info->subvol_srcu); 3788 3789 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3790 btrfs_free_log(NULL, root); 3791 if (root->reloc_root) { 3792 free_extent_buffer(root->reloc_root->node); 3793 free_extent_buffer(root->reloc_root->commit_root); 3794 btrfs_put_fs_root(root->reloc_root); 3795 root->reloc_root = NULL; 3796 } 3797 } 3798 3799 if (root->free_ino_pinned) 3800 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3801 if (root->free_ino_ctl) 3802 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3803 free_fs_root(root); 3804 } 3805 3806 static void free_fs_root(struct btrfs_root *root) 3807 { 3808 iput(root->ino_cache_inode); 3809 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3810 btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv); 3811 root->orphan_block_rsv = NULL; 3812 if (root->anon_dev) 3813 free_anon_bdev(root->anon_dev); 3814 if (root->subv_writers) 3815 btrfs_free_subvolume_writers(root->subv_writers); 3816 free_extent_buffer(root->node); 3817 free_extent_buffer(root->commit_root); 3818 kfree(root->free_ino_ctl); 3819 kfree(root->free_ino_pinned); 3820 kfree(root->name); 3821 btrfs_put_fs_root(root); 3822 } 3823 3824 void btrfs_free_fs_root(struct btrfs_root *root) 3825 { 3826 free_fs_root(root); 3827 } 3828 3829 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3830 { 3831 u64 root_objectid = 0; 3832 struct btrfs_root *gang[8]; 3833 int i = 0; 3834 int err = 0; 3835 unsigned int ret = 0; 3836 int index; 3837 3838 while (1) { 3839 index = srcu_read_lock(&fs_info->subvol_srcu); 3840 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3841 (void **)gang, root_objectid, 3842 ARRAY_SIZE(gang)); 3843 if (!ret) { 3844 srcu_read_unlock(&fs_info->subvol_srcu, index); 3845 break; 3846 } 3847 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3848 3849 for (i = 0; i < ret; i++) { 3850 /* Avoid to grab roots in dead_roots */ 3851 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3852 gang[i] = NULL; 3853 continue; 3854 } 3855 /* grab all the search result for later use */ 3856 gang[i] = btrfs_grab_fs_root(gang[i]); 3857 } 3858 srcu_read_unlock(&fs_info->subvol_srcu, index); 3859 3860 for (i = 0; i < ret; i++) { 3861 if (!gang[i]) 3862 continue; 3863 root_objectid = gang[i]->root_key.objectid; 3864 err = btrfs_orphan_cleanup(gang[i]); 3865 if (err) 3866 break; 3867 btrfs_put_fs_root(gang[i]); 3868 } 3869 root_objectid++; 3870 } 3871 3872 /* release the uncleaned roots due to error */ 3873 for (; i < ret; i++) { 3874 if (gang[i]) 3875 btrfs_put_fs_root(gang[i]); 3876 } 3877 return err; 3878 } 3879 3880 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3881 { 3882 struct btrfs_root *root = fs_info->tree_root; 3883 struct btrfs_trans_handle *trans; 3884 3885 mutex_lock(&fs_info->cleaner_mutex); 3886 btrfs_run_delayed_iputs(fs_info); 3887 mutex_unlock(&fs_info->cleaner_mutex); 3888 wake_up_process(fs_info->cleaner_kthread); 3889 3890 /* wait until ongoing cleanup work done */ 3891 down_write(&fs_info->cleanup_work_sem); 3892 up_write(&fs_info->cleanup_work_sem); 3893 3894 trans = btrfs_join_transaction(root); 3895 if (IS_ERR(trans)) 3896 return PTR_ERR(trans); 3897 return btrfs_commit_transaction(trans); 3898 } 3899 3900 void close_ctree(struct btrfs_fs_info *fs_info) 3901 { 3902 struct btrfs_root *root = fs_info->tree_root; 3903 int ret; 3904 3905 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3906 3907 /* wait for the qgroup rescan worker to stop */ 3908 btrfs_qgroup_wait_for_completion(fs_info, false); 3909 3910 /* wait for the uuid_scan task to finish */ 3911 down(&fs_info->uuid_tree_rescan_sem); 3912 /* avoid complains from lockdep et al., set sem back to initial state */ 3913 up(&fs_info->uuid_tree_rescan_sem); 3914 3915 /* pause restriper - we want to resume on mount */ 3916 btrfs_pause_balance(fs_info); 3917 3918 btrfs_dev_replace_suspend_for_unmount(fs_info); 3919 3920 btrfs_scrub_cancel(fs_info); 3921 3922 /* wait for any defraggers to finish */ 3923 wait_event(fs_info->transaction_wait, 3924 (atomic_read(&fs_info->defrag_running) == 0)); 3925 3926 /* clear out the rbtree of defraggable inodes */ 3927 btrfs_cleanup_defrag_inodes(fs_info); 3928 3929 cancel_work_sync(&fs_info->async_reclaim_work); 3930 3931 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3932 /* 3933 * If the cleaner thread is stopped and there are 3934 * block groups queued for removal, the deletion will be 3935 * skipped when we quit the cleaner thread. 3936 */ 3937 btrfs_delete_unused_bgs(fs_info); 3938 3939 ret = btrfs_commit_super(fs_info); 3940 if (ret) 3941 btrfs_err(fs_info, "commit super ret %d", ret); 3942 } 3943 3944 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3945 btrfs_error_commit_super(fs_info); 3946 3947 kthread_stop(fs_info->transaction_kthread); 3948 kthread_stop(fs_info->cleaner_kthread); 3949 3950 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 3951 3952 btrfs_free_qgroup_config(fs_info); 3953 3954 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3955 btrfs_info(fs_info, "at unmount delalloc count %lld", 3956 percpu_counter_sum(&fs_info->delalloc_bytes)); 3957 } 3958 3959 btrfs_sysfs_remove_mounted(fs_info); 3960 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3961 3962 btrfs_free_fs_roots(fs_info); 3963 3964 btrfs_put_block_group_cache(fs_info); 3965 3966 /* 3967 * we must make sure there is not any read request to 3968 * submit after we stopping all workers. 3969 */ 3970 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3971 btrfs_stop_all_workers(fs_info); 3972 3973 btrfs_free_block_groups(fs_info); 3974 3975 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 3976 free_root_pointers(fs_info, 1); 3977 3978 iput(fs_info->btree_inode); 3979 3980 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3981 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 3982 btrfsic_unmount(fs_info->fs_devices); 3983 #endif 3984 3985 btrfs_close_devices(fs_info->fs_devices); 3986 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3987 3988 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3989 percpu_counter_destroy(&fs_info->delalloc_bytes); 3990 percpu_counter_destroy(&fs_info->bio_counter); 3991 cleanup_srcu_struct(&fs_info->subvol_srcu); 3992 3993 btrfs_free_stripe_hash_table(fs_info); 3994 3995 __btrfs_free_block_rsv(root->orphan_block_rsv); 3996 root->orphan_block_rsv = NULL; 3997 3998 mutex_lock(&fs_info->chunk_mutex); 3999 while (!list_empty(&fs_info->pinned_chunks)) { 4000 struct extent_map *em; 4001 4002 em = list_first_entry(&fs_info->pinned_chunks, 4003 struct extent_map, list); 4004 list_del_init(&em->list); 4005 free_extent_map(em); 4006 } 4007 mutex_unlock(&fs_info->chunk_mutex); 4008 } 4009 4010 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4011 int atomic) 4012 { 4013 int ret; 4014 struct inode *btree_inode = buf->pages[0]->mapping->host; 4015 4016 ret = extent_buffer_uptodate(buf); 4017 if (!ret) 4018 return ret; 4019 4020 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4021 parent_transid, atomic); 4022 if (ret == -EAGAIN) 4023 return ret; 4024 return !ret; 4025 } 4026 4027 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4028 { 4029 struct btrfs_fs_info *fs_info; 4030 struct btrfs_root *root; 4031 u64 transid = btrfs_header_generation(buf); 4032 int was_dirty; 4033 4034 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4035 /* 4036 * This is a fast path so only do this check if we have sanity tests 4037 * enabled. Normal people shouldn't be marking dummy buffers as dirty 4038 * outside of the sanity tests. 4039 */ 4040 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 4041 return; 4042 #endif 4043 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4044 fs_info = root->fs_info; 4045 btrfs_assert_tree_locked(buf); 4046 if (transid != fs_info->generation) 4047 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4048 buf->start, transid, fs_info->generation); 4049 was_dirty = set_extent_buffer_dirty(buf); 4050 if (!was_dirty) 4051 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 4052 buf->len, 4053 fs_info->dirty_metadata_batch); 4054 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4055 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) { 4056 btrfs_print_leaf(fs_info, buf); 4057 ASSERT(0); 4058 } 4059 #endif 4060 } 4061 4062 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4063 int flush_delayed) 4064 { 4065 /* 4066 * looks as though older kernels can get into trouble with 4067 * this code, they end up stuck in balance_dirty_pages forever 4068 */ 4069 int ret; 4070 4071 if (current->flags & PF_MEMALLOC) 4072 return; 4073 4074 if (flush_delayed) 4075 btrfs_balance_delayed_items(fs_info); 4076 4077 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4078 BTRFS_DIRTY_METADATA_THRESH); 4079 if (ret > 0) { 4080 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4081 } 4082 } 4083 4084 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4085 { 4086 __btrfs_btree_balance_dirty(fs_info, 1); 4087 } 4088 4089 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4090 { 4091 __btrfs_btree_balance_dirty(fs_info, 0); 4092 } 4093 4094 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 4095 { 4096 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4097 struct btrfs_fs_info *fs_info = root->fs_info; 4098 4099 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid); 4100 } 4101 4102 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info) 4103 { 4104 struct btrfs_super_block *sb = fs_info->super_copy; 4105 u64 nodesize = btrfs_super_nodesize(sb); 4106 u64 sectorsize = btrfs_super_sectorsize(sb); 4107 int ret = 0; 4108 4109 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 4110 btrfs_err(fs_info, "no valid FS found"); 4111 ret = -EINVAL; 4112 } 4113 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) 4114 btrfs_warn(fs_info, "unrecognized super flag: %llu", 4115 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 4116 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 4117 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 4118 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 4119 ret = -EINVAL; 4120 } 4121 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 4122 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 4123 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 4124 ret = -EINVAL; 4125 } 4126 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 4127 btrfs_err(fs_info, "log_root level too big: %d >= %d", 4128 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 4129 ret = -EINVAL; 4130 } 4131 4132 /* 4133 * Check sectorsize and nodesize first, other check will need it. 4134 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 4135 */ 4136 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 4137 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4138 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 4139 ret = -EINVAL; 4140 } 4141 /* Only PAGE SIZE is supported yet */ 4142 if (sectorsize != PAGE_SIZE) { 4143 btrfs_err(fs_info, 4144 "sectorsize %llu not supported yet, only support %lu", 4145 sectorsize, PAGE_SIZE); 4146 ret = -EINVAL; 4147 } 4148 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 4149 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4150 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 4151 ret = -EINVAL; 4152 } 4153 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 4154 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 4155 le32_to_cpu(sb->__unused_leafsize), nodesize); 4156 ret = -EINVAL; 4157 } 4158 4159 /* Root alignment check */ 4160 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 4161 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 4162 btrfs_super_root(sb)); 4163 ret = -EINVAL; 4164 } 4165 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 4166 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 4167 btrfs_super_chunk_root(sb)); 4168 ret = -EINVAL; 4169 } 4170 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 4171 btrfs_warn(fs_info, "log_root block unaligned: %llu", 4172 btrfs_super_log_root(sb)); 4173 ret = -EINVAL; 4174 } 4175 4176 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) { 4177 btrfs_err(fs_info, 4178 "dev_item UUID does not match fsid: %pU != %pU", 4179 fs_info->fsid, sb->dev_item.fsid); 4180 ret = -EINVAL; 4181 } 4182 4183 /* 4184 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 4185 * done later 4186 */ 4187 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 4188 btrfs_err(fs_info, "bytes_used is too small %llu", 4189 btrfs_super_bytes_used(sb)); 4190 ret = -EINVAL; 4191 } 4192 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 4193 btrfs_err(fs_info, "invalid stripesize %u", 4194 btrfs_super_stripesize(sb)); 4195 ret = -EINVAL; 4196 } 4197 if (btrfs_super_num_devices(sb) > (1UL << 31)) 4198 btrfs_warn(fs_info, "suspicious number of devices: %llu", 4199 btrfs_super_num_devices(sb)); 4200 if (btrfs_super_num_devices(sb) == 0) { 4201 btrfs_err(fs_info, "number of devices is 0"); 4202 ret = -EINVAL; 4203 } 4204 4205 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) { 4206 btrfs_err(fs_info, "super offset mismatch %llu != %u", 4207 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 4208 ret = -EINVAL; 4209 } 4210 4211 /* 4212 * Obvious sys_chunk_array corruptions, it must hold at least one key 4213 * and one chunk 4214 */ 4215 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4216 btrfs_err(fs_info, "system chunk array too big %u > %u", 4217 btrfs_super_sys_array_size(sb), 4218 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 4219 ret = -EINVAL; 4220 } 4221 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 4222 + sizeof(struct btrfs_chunk)) { 4223 btrfs_err(fs_info, "system chunk array too small %u < %zu", 4224 btrfs_super_sys_array_size(sb), 4225 sizeof(struct btrfs_disk_key) 4226 + sizeof(struct btrfs_chunk)); 4227 ret = -EINVAL; 4228 } 4229 4230 /* 4231 * The generation is a global counter, we'll trust it more than the others 4232 * but it's still possible that it's the one that's wrong. 4233 */ 4234 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 4235 btrfs_warn(fs_info, 4236 "suspicious: generation < chunk_root_generation: %llu < %llu", 4237 btrfs_super_generation(sb), 4238 btrfs_super_chunk_root_generation(sb)); 4239 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 4240 && btrfs_super_cache_generation(sb) != (u64)-1) 4241 btrfs_warn(fs_info, 4242 "suspicious: generation < cache_generation: %llu < %llu", 4243 btrfs_super_generation(sb), 4244 btrfs_super_cache_generation(sb)); 4245 4246 return ret; 4247 } 4248 4249 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4250 { 4251 mutex_lock(&fs_info->cleaner_mutex); 4252 btrfs_run_delayed_iputs(fs_info); 4253 mutex_unlock(&fs_info->cleaner_mutex); 4254 4255 down_write(&fs_info->cleanup_work_sem); 4256 up_write(&fs_info->cleanup_work_sem); 4257 4258 /* cleanup FS via transaction */ 4259 btrfs_cleanup_transaction(fs_info); 4260 } 4261 4262 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4263 { 4264 struct btrfs_ordered_extent *ordered; 4265 4266 spin_lock(&root->ordered_extent_lock); 4267 /* 4268 * This will just short circuit the ordered completion stuff which will 4269 * make sure the ordered extent gets properly cleaned up. 4270 */ 4271 list_for_each_entry(ordered, &root->ordered_extents, 4272 root_extent_list) 4273 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4274 spin_unlock(&root->ordered_extent_lock); 4275 } 4276 4277 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4278 { 4279 struct btrfs_root *root; 4280 struct list_head splice; 4281 4282 INIT_LIST_HEAD(&splice); 4283 4284 spin_lock(&fs_info->ordered_root_lock); 4285 list_splice_init(&fs_info->ordered_roots, &splice); 4286 while (!list_empty(&splice)) { 4287 root = list_first_entry(&splice, struct btrfs_root, 4288 ordered_root); 4289 list_move_tail(&root->ordered_root, 4290 &fs_info->ordered_roots); 4291 4292 spin_unlock(&fs_info->ordered_root_lock); 4293 btrfs_destroy_ordered_extents(root); 4294 4295 cond_resched(); 4296 spin_lock(&fs_info->ordered_root_lock); 4297 } 4298 spin_unlock(&fs_info->ordered_root_lock); 4299 } 4300 4301 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4302 struct btrfs_fs_info *fs_info) 4303 { 4304 struct rb_node *node; 4305 struct btrfs_delayed_ref_root *delayed_refs; 4306 struct btrfs_delayed_ref_node *ref; 4307 int ret = 0; 4308 4309 delayed_refs = &trans->delayed_refs; 4310 4311 spin_lock(&delayed_refs->lock); 4312 if (atomic_read(&delayed_refs->num_entries) == 0) { 4313 spin_unlock(&delayed_refs->lock); 4314 btrfs_info(fs_info, "delayed_refs has NO entry"); 4315 return ret; 4316 } 4317 4318 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 4319 struct btrfs_delayed_ref_head *head; 4320 struct btrfs_delayed_ref_node *tmp; 4321 bool pin_bytes = false; 4322 4323 head = rb_entry(node, struct btrfs_delayed_ref_head, 4324 href_node); 4325 if (!mutex_trylock(&head->mutex)) { 4326 refcount_inc(&head->node.refs); 4327 spin_unlock(&delayed_refs->lock); 4328 4329 mutex_lock(&head->mutex); 4330 mutex_unlock(&head->mutex); 4331 btrfs_put_delayed_ref(&head->node); 4332 spin_lock(&delayed_refs->lock); 4333 continue; 4334 } 4335 spin_lock(&head->lock); 4336 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list, 4337 list) { 4338 ref->in_tree = 0; 4339 list_del(&ref->list); 4340 if (!list_empty(&ref->add_list)) 4341 list_del(&ref->add_list); 4342 atomic_dec(&delayed_refs->num_entries); 4343 btrfs_put_delayed_ref(ref); 4344 } 4345 if (head->must_insert_reserved) 4346 pin_bytes = true; 4347 btrfs_free_delayed_extent_op(head->extent_op); 4348 delayed_refs->num_heads--; 4349 if (head->processing == 0) 4350 delayed_refs->num_heads_ready--; 4351 atomic_dec(&delayed_refs->num_entries); 4352 head->node.in_tree = 0; 4353 rb_erase(&head->href_node, &delayed_refs->href_root); 4354 spin_unlock(&head->lock); 4355 spin_unlock(&delayed_refs->lock); 4356 mutex_unlock(&head->mutex); 4357 4358 if (pin_bytes) 4359 btrfs_pin_extent(fs_info, head->node.bytenr, 4360 head->node.num_bytes, 1); 4361 btrfs_put_delayed_ref(&head->node); 4362 cond_resched(); 4363 spin_lock(&delayed_refs->lock); 4364 } 4365 4366 spin_unlock(&delayed_refs->lock); 4367 4368 return ret; 4369 } 4370 4371 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4372 { 4373 struct btrfs_inode *btrfs_inode; 4374 struct list_head splice; 4375 4376 INIT_LIST_HEAD(&splice); 4377 4378 spin_lock(&root->delalloc_lock); 4379 list_splice_init(&root->delalloc_inodes, &splice); 4380 4381 while (!list_empty(&splice)) { 4382 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4383 delalloc_inodes); 4384 4385 list_del_init(&btrfs_inode->delalloc_inodes); 4386 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 4387 &btrfs_inode->runtime_flags); 4388 spin_unlock(&root->delalloc_lock); 4389 4390 btrfs_invalidate_inodes(btrfs_inode->root); 4391 4392 spin_lock(&root->delalloc_lock); 4393 } 4394 4395 spin_unlock(&root->delalloc_lock); 4396 } 4397 4398 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4399 { 4400 struct btrfs_root *root; 4401 struct list_head splice; 4402 4403 INIT_LIST_HEAD(&splice); 4404 4405 spin_lock(&fs_info->delalloc_root_lock); 4406 list_splice_init(&fs_info->delalloc_roots, &splice); 4407 while (!list_empty(&splice)) { 4408 root = list_first_entry(&splice, struct btrfs_root, 4409 delalloc_root); 4410 list_del_init(&root->delalloc_root); 4411 root = btrfs_grab_fs_root(root); 4412 BUG_ON(!root); 4413 spin_unlock(&fs_info->delalloc_root_lock); 4414 4415 btrfs_destroy_delalloc_inodes(root); 4416 btrfs_put_fs_root(root); 4417 4418 spin_lock(&fs_info->delalloc_root_lock); 4419 } 4420 spin_unlock(&fs_info->delalloc_root_lock); 4421 } 4422 4423 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4424 struct extent_io_tree *dirty_pages, 4425 int mark) 4426 { 4427 int ret; 4428 struct extent_buffer *eb; 4429 u64 start = 0; 4430 u64 end; 4431 4432 while (1) { 4433 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4434 mark, NULL); 4435 if (ret) 4436 break; 4437 4438 clear_extent_bits(dirty_pages, start, end, mark); 4439 while (start <= end) { 4440 eb = find_extent_buffer(fs_info, start); 4441 start += fs_info->nodesize; 4442 if (!eb) 4443 continue; 4444 wait_on_extent_buffer_writeback(eb); 4445 4446 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4447 &eb->bflags)) 4448 clear_extent_buffer_dirty(eb); 4449 free_extent_buffer_stale(eb); 4450 } 4451 } 4452 4453 return ret; 4454 } 4455 4456 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4457 struct extent_io_tree *pinned_extents) 4458 { 4459 struct extent_io_tree *unpin; 4460 u64 start; 4461 u64 end; 4462 int ret; 4463 bool loop = true; 4464 4465 unpin = pinned_extents; 4466 again: 4467 while (1) { 4468 ret = find_first_extent_bit(unpin, 0, &start, &end, 4469 EXTENT_DIRTY, NULL); 4470 if (ret) 4471 break; 4472 4473 clear_extent_dirty(unpin, start, end); 4474 btrfs_error_unpin_extent_range(fs_info, start, end); 4475 cond_resched(); 4476 } 4477 4478 if (loop) { 4479 if (unpin == &fs_info->freed_extents[0]) 4480 unpin = &fs_info->freed_extents[1]; 4481 else 4482 unpin = &fs_info->freed_extents[0]; 4483 loop = false; 4484 goto again; 4485 } 4486 4487 return 0; 4488 } 4489 4490 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache) 4491 { 4492 struct inode *inode; 4493 4494 inode = cache->io_ctl.inode; 4495 if (inode) { 4496 invalidate_inode_pages2(inode->i_mapping); 4497 BTRFS_I(inode)->generation = 0; 4498 cache->io_ctl.inode = NULL; 4499 iput(inode); 4500 } 4501 btrfs_put_block_group(cache); 4502 } 4503 4504 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4505 struct btrfs_fs_info *fs_info) 4506 { 4507 struct btrfs_block_group_cache *cache; 4508 4509 spin_lock(&cur_trans->dirty_bgs_lock); 4510 while (!list_empty(&cur_trans->dirty_bgs)) { 4511 cache = list_first_entry(&cur_trans->dirty_bgs, 4512 struct btrfs_block_group_cache, 4513 dirty_list); 4514 if (!cache) { 4515 btrfs_err(fs_info, "orphan block group dirty_bgs list"); 4516 spin_unlock(&cur_trans->dirty_bgs_lock); 4517 return; 4518 } 4519 4520 if (!list_empty(&cache->io_list)) { 4521 spin_unlock(&cur_trans->dirty_bgs_lock); 4522 list_del_init(&cache->io_list); 4523 btrfs_cleanup_bg_io(cache); 4524 spin_lock(&cur_trans->dirty_bgs_lock); 4525 } 4526 4527 list_del_init(&cache->dirty_list); 4528 spin_lock(&cache->lock); 4529 cache->disk_cache_state = BTRFS_DC_ERROR; 4530 spin_unlock(&cache->lock); 4531 4532 spin_unlock(&cur_trans->dirty_bgs_lock); 4533 btrfs_put_block_group(cache); 4534 spin_lock(&cur_trans->dirty_bgs_lock); 4535 } 4536 spin_unlock(&cur_trans->dirty_bgs_lock); 4537 4538 while (!list_empty(&cur_trans->io_bgs)) { 4539 cache = list_first_entry(&cur_trans->io_bgs, 4540 struct btrfs_block_group_cache, 4541 io_list); 4542 if (!cache) { 4543 btrfs_err(fs_info, "orphan block group on io_bgs list"); 4544 return; 4545 } 4546 4547 list_del_init(&cache->io_list); 4548 spin_lock(&cache->lock); 4549 cache->disk_cache_state = BTRFS_DC_ERROR; 4550 spin_unlock(&cache->lock); 4551 btrfs_cleanup_bg_io(cache); 4552 } 4553 } 4554 4555 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4556 struct btrfs_fs_info *fs_info) 4557 { 4558 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4559 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4560 ASSERT(list_empty(&cur_trans->io_bgs)); 4561 4562 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4563 4564 cur_trans->state = TRANS_STATE_COMMIT_START; 4565 wake_up(&fs_info->transaction_blocked_wait); 4566 4567 cur_trans->state = TRANS_STATE_UNBLOCKED; 4568 wake_up(&fs_info->transaction_wait); 4569 4570 btrfs_destroy_delayed_inodes(fs_info); 4571 btrfs_assert_delayed_root_empty(fs_info); 4572 4573 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4574 EXTENT_DIRTY); 4575 btrfs_destroy_pinned_extent(fs_info, 4576 fs_info->pinned_extents); 4577 4578 cur_trans->state =TRANS_STATE_COMPLETED; 4579 wake_up(&cur_trans->commit_wait); 4580 4581 /* 4582 memset(cur_trans, 0, sizeof(*cur_trans)); 4583 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4584 */ 4585 } 4586 4587 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4588 { 4589 struct btrfs_transaction *t; 4590 4591 mutex_lock(&fs_info->transaction_kthread_mutex); 4592 4593 spin_lock(&fs_info->trans_lock); 4594 while (!list_empty(&fs_info->trans_list)) { 4595 t = list_first_entry(&fs_info->trans_list, 4596 struct btrfs_transaction, list); 4597 if (t->state >= TRANS_STATE_COMMIT_START) { 4598 refcount_inc(&t->use_count); 4599 spin_unlock(&fs_info->trans_lock); 4600 btrfs_wait_for_commit(fs_info, t->transid); 4601 btrfs_put_transaction(t); 4602 spin_lock(&fs_info->trans_lock); 4603 continue; 4604 } 4605 if (t == fs_info->running_transaction) { 4606 t->state = TRANS_STATE_COMMIT_DOING; 4607 spin_unlock(&fs_info->trans_lock); 4608 /* 4609 * We wait for 0 num_writers since we don't hold a trans 4610 * handle open currently for this transaction. 4611 */ 4612 wait_event(t->writer_wait, 4613 atomic_read(&t->num_writers) == 0); 4614 } else { 4615 spin_unlock(&fs_info->trans_lock); 4616 } 4617 btrfs_cleanup_one_transaction(t, fs_info); 4618 4619 spin_lock(&fs_info->trans_lock); 4620 if (t == fs_info->running_transaction) 4621 fs_info->running_transaction = NULL; 4622 list_del_init(&t->list); 4623 spin_unlock(&fs_info->trans_lock); 4624 4625 btrfs_put_transaction(t); 4626 trace_btrfs_transaction_commit(fs_info->tree_root); 4627 spin_lock(&fs_info->trans_lock); 4628 } 4629 spin_unlock(&fs_info->trans_lock); 4630 btrfs_destroy_all_ordered_extents(fs_info); 4631 btrfs_destroy_delayed_inodes(fs_info); 4632 btrfs_assert_delayed_root_empty(fs_info); 4633 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 4634 btrfs_destroy_all_delalloc_inodes(fs_info); 4635 mutex_unlock(&fs_info->transaction_kthread_mutex); 4636 4637 return 0; 4638 } 4639 4640 static const struct extent_io_ops btree_extent_io_ops = { 4641 /* mandatory callbacks */ 4642 .submit_bio_hook = btree_submit_bio_hook, 4643 .readpage_end_io_hook = btree_readpage_end_io_hook, 4644 /* note we're sharing with inode.c for the merge bio hook */ 4645 .merge_bio_hook = btrfs_merge_bio_hook, 4646 .readpage_io_failed_hook = btree_io_failed_hook, 4647 4648 /* optional callbacks */ 4649 }; 4650