xref: /linux/fs/btrfs/disk-io.c (revision 69fb09f6ccdb2f070557fd1f4c56c4d646694c8e)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53 
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57 
58 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
59 				 BTRFS_HEADER_FLAG_RELOC |\
60 				 BTRFS_SUPER_FLAG_ERROR |\
61 				 BTRFS_SUPER_FLAG_SEEDING |\
62 				 BTRFS_SUPER_FLAG_METADUMP)
63 
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
68 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
69 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
70 				      struct btrfs_fs_info *fs_info);
71 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
72 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
73 					struct extent_io_tree *dirty_pages,
74 					int mark);
75 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
76 				       struct extent_io_tree *pinned_extents);
77 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
78 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
79 
80 /*
81  * btrfs_end_io_wq structs are used to do processing in task context when an IO
82  * is complete.  This is used during reads to verify checksums, and it is used
83  * by writes to insert metadata for new file extents after IO is complete.
84  */
85 struct btrfs_end_io_wq {
86 	struct bio *bio;
87 	bio_end_io_t *end_io;
88 	void *private;
89 	struct btrfs_fs_info *info;
90 	blk_status_t status;
91 	enum btrfs_wq_endio_type metadata;
92 	struct list_head list;
93 	struct btrfs_work work;
94 };
95 
96 static struct kmem_cache *btrfs_end_io_wq_cache;
97 
98 int __init btrfs_end_io_wq_init(void)
99 {
100 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
101 					sizeof(struct btrfs_end_io_wq),
102 					0,
103 					SLAB_MEM_SPREAD,
104 					NULL);
105 	if (!btrfs_end_io_wq_cache)
106 		return -ENOMEM;
107 	return 0;
108 }
109 
110 void btrfs_end_io_wq_exit(void)
111 {
112 	kmem_cache_destroy(btrfs_end_io_wq_cache);
113 }
114 
115 /*
116  * async submit bios are used to offload expensive checksumming
117  * onto the worker threads.  They checksum file and metadata bios
118  * just before they are sent down the IO stack.
119  */
120 struct async_submit_bio {
121 	struct inode *inode;
122 	struct bio *bio;
123 	struct list_head list;
124 	extent_submit_bio_hook_t *submit_bio_start;
125 	extent_submit_bio_hook_t *submit_bio_done;
126 	int mirror_num;
127 	unsigned long bio_flags;
128 	/*
129 	 * bio_offset is optional, can be used if the pages in the bio
130 	 * can't tell us where in the file the bio should go
131 	 */
132 	u64 bio_offset;
133 	struct btrfs_work work;
134 	blk_status_t status;
135 };
136 
137 /*
138  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
139  * eb, the lockdep key is determined by the btrfs_root it belongs to and
140  * the level the eb occupies in the tree.
141  *
142  * Different roots are used for different purposes and may nest inside each
143  * other and they require separate keysets.  As lockdep keys should be
144  * static, assign keysets according to the purpose of the root as indicated
145  * by btrfs_root->objectid.  This ensures that all special purpose roots
146  * have separate keysets.
147  *
148  * Lock-nesting across peer nodes is always done with the immediate parent
149  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
150  * subclass to avoid triggering lockdep warning in such cases.
151  *
152  * The key is set by the readpage_end_io_hook after the buffer has passed
153  * csum validation but before the pages are unlocked.  It is also set by
154  * btrfs_init_new_buffer on freshly allocated blocks.
155  *
156  * We also add a check to make sure the highest level of the tree is the
157  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
158  * needs update as well.
159  */
160 #ifdef CONFIG_DEBUG_LOCK_ALLOC
161 # if BTRFS_MAX_LEVEL != 8
162 #  error
163 # endif
164 
165 static struct btrfs_lockdep_keyset {
166 	u64			id;		/* root objectid */
167 	const char		*name_stem;	/* lock name stem */
168 	char			names[BTRFS_MAX_LEVEL + 1][20];
169 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
170 } btrfs_lockdep_keysets[] = {
171 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
172 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
173 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
174 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
175 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
176 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
177 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
178 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
179 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
180 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
181 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
182 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
183 	{ .id = 0,				.name_stem = "tree"	},
184 };
185 
186 void __init btrfs_init_lockdep(void)
187 {
188 	int i, j;
189 
190 	/* initialize lockdep class names */
191 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
192 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
193 
194 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
195 			snprintf(ks->names[j], sizeof(ks->names[j]),
196 				 "btrfs-%s-%02d", ks->name_stem, j);
197 	}
198 }
199 
200 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
201 				    int level)
202 {
203 	struct btrfs_lockdep_keyset *ks;
204 
205 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
206 
207 	/* find the matching keyset, id 0 is the default entry */
208 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
209 		if (ks->id == objectid)
210 			break;
211 
212 	lockdep_set_class_and_name(&eb->lock,
213 				   &ks->keys[level], ks->names[level]);
214 }
215 
216 #endif
217 
218 /*
219  * extents on the btree inode are pretty simple, there's one extent
220  * that covers the entire device
221  */
222 static struct extent_map *btree_get_extent(struct btrfs_inode *inode,
223 		struct page *page, size_t pg_offset, u64 start, u64 len,
224 		int create)
225 {
226 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
227 	struct extent_map_tree *em_tree = &inode->extent_tree;
228 	struct extent_map *em;
229 	int ret;
230 
231 	read_lock(&em_tree->lock);
232 	em = lookup_extent_mapping(em_tree, start, len);
233 	if (em) {
234 		em->bdev = fs_info->fs_devices->latest_bdev;
235 		read_unlock(&em_tree->lock);
236 		goto out;
237 	}
238 	read_unlock(&em_tree->lock);
239 
240 	em = alloc_extent_map();
241 	if (!em) {
242 		em = ERR_PTR(-ENOMEM);
243 		goto out;
244 	}
245 	em->start = 0;
246 	em->len = (u64)-1;
247 	em->block_len = (u64)-1;
248 	em->block_start = 0;
249 	em->bdev = fs_info->fs_devices->latest_bdev;
250 
251 	write_lock(&em_tree->lock);
252 	ret = add_extent_mapping(em_tree, em, 0);
253 	if (ret == -EEXIST) {
254 		free_extent_map(em);
255 		em = lookup_extent_mapping(em_tree, start, len);
256 		if (!em)
257 			em = ERR_PTR(-EIO);
258 	} else if (ret) {
259 		free_extent_map(em);
260 		em = ERR_PTR(ret);
261 	}
262 	write_unlock(&em_tree->lock);
263 
264 out:
265 	return em;
266 }
267 
268 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
269 {
270 	return btrfs_crc32c(seed, data, len);
271 }
272 
273 void btrfs_csum_final(u32 crc, u8 *result)
274 {
275 	put_unaligned_le32(~crc, result);
276 }
277 
278 /*
279  * compute the csum for a btree block, and either verify it or write it
280  * into the csum field of the block.
281  */
282 static int csum_tree_block(struct btrfs_fs_info *fs_info,
283 			   struct extent_buffer *buf,
284 			   int verify)
285 {
286 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
287 	char *result = NULL;
288 	unsigned long len;
289 	unsigned long cur_len;
290 	unsigned long offset = BTRFS_CSUM_SIZE;
291 	char *kaddr;
292 	unsigned long map_start;
293 	unsigned long map_len;
294 	int err;
295 	u32 crc = ~(u32)0;
296 	unsigned long inline_result;
297 
298 	len = buf->len - offset;
299 	while (len > 0) {
300 		err = map_private_extent_buffer(buf, offset, 32,
301 					&kaddr, &map_start, &map_len);
302 		if (err)
303 			return err;
304 		cur_len = min(len, map_len - (offset - map_start));
305 		crc = btrfs_csum_data(kaddr + offset - map_start,
306 				      crc, cur_len);
307 		len -= cur_len;
308 		offset += cur_len;
309 	}
310 	if (csum_size > sizeof(inline_result)) {
311 		result = kzalloc(csum_size, GFP_NOFS);
312 		if (!result)
313 			return -ENOMEM;
314 	} else {
315 		result = (char *)&inline_result;
316 	}
317 
318 	btrfs_csum_final(crc, result);
319 
320 	if (verify) {
321 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
322 			u32 val;
323 			u32 found = 0;
324 			memcpy(&found, result, csum_size);
325 
326 			read_extent_buffer(buf, &val, 0, csum_size);
327 			btrfs_warn_rl(fs_info,
328 				"%s checksum verify failed on %llu wanted %X found %X level %d",
329 				fs_info->sb->s_id, buf->start,
330 				val, found, btrfs_header_level(buf));
331 			if (result != (char *)&inline_result)
332 				kfree(result);
333 			return -EUCLEAN;
334 		}
335 	} else {
336 		write_extent_buffer(buf, result, 0, csum_size);
337 	}
338 	if (result != (char *)&inline_result)
339 		kfree(result);
340 	return 0;
341 }
342 
343 /*
344  * we can't consider a given block up to date unless the transid of the
345  * block matches the transid in the parent node's pointer.  This is how we
346  * detect blocks that either didn't get written at all or got written
347  * in the wrong place.
348  */
349 static int verify_parent_transid(struct extent_io_tree *io_tree,
350 				 struct extent_buffer *eb, u64 parent_transid,
351 				 int atomic)
352 {
353 	struct extent_state *cached_state = NULL;
354 	int ret;
355 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
356 
357 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
358 		return 0;
359 
360 	if (atomic)
361 		return -EAGAIN;
362 
363 	if (need_lock) {
364 		btrfs_tree_read_lock(eb);
365 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
366 	}
367 
368 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
369 			 &cached_state);
370 	if (extent_buffer_uptodate(eb) &&
371 	    btrfs_header_generation(eb) == parent_transid) {
372 		ret = 0;
373 		goto out;
374 	}
375 	btrfs_err_rl(eb->fs_info,
376 		"parent transid verify failed on %llu wanted %llu found %llu",
377 			eb->start,
378 			parent_transid, btrfs_header_generation(eb));
379 	ret = 1;
380 
381 	/*
382 	 * Things reading via commit roots that don't have normal protection,
383 	 * like send, can have a really old block in cache that may point at a
384 	 * block that has been freed and re-allocated.  So don't clear uptodate
385 	 * if we find an eb that is under IO (dirty/writeback) because we could
386 	 * end up reading in the stale data and then writing it back out and
387 	 * making everybody very sad.
388 	 */
389 	if (!extent_buffer_under_io(eb))
390 		clear_extent_buffer_uptodate(eb);
391 out:
392 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
393 			     &cached_state, GFP_NOFS);
394 	if (need_lock)
395 		btrfs_tree_read_unlock_blocking(eb);
396 	return ret;
397 }
398 
399 /*
400  * Return 0 if the superblock checksum type matches the checksum value of that
401  * algorithm. Pass the raw disk superblock data.
402  */
403 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
404 				  char *raw_disk_sb)
405 {
406 	struct btrfs_super_block *disk_sb =
407 		(struct btrfs_super_block *)raw_disk_sb;
408 	u16 csum_type = btrfs_super_csum_type(disk_sb);
409 	int ret = 0;
410 
411 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
412 		u32 crc = ~(u32)0;
413 		const int csum_size = sizeof(crc);
414 		char result[csum_size];
415 
416 		/*
417 		 * The super_block structure does not span the whole
418 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
419 		 * is filled with zeros and is included in the checksum.
420 		 */
421 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
422 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
423 		btrfs_csum_final(crc, result);
424 
425 		if (memcmp(raw_disk_sb, result, csum_size))
426 			ret = 1;
427 	}
428 
429 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
430 		btrfs_err(fs_info, "unsupported checksum algorithm %u",
431 				csum_type);
432 		ret = 1;
433 	}
434 
435 	return ret;
436 }
437 
438 /*
439  * helper to read a given tree block, doing retries as required when
440  * the checksums don't match and we have alternate mirrors to try.
441  */
442 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
443 					  struct extent_buffer *eb,
444 					  u64 parent_transid)
445 {
446 	struct extent_io_tree *io_tree;
447 	int failed = 0;
448 	int ret;
449 	int num_copies = 0;
450 	int mirror_num = 0;
451 	int failed_mirror = 0;
452 
453 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
454 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
455 	while (1) {
456 		ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
457 					       btree_get_extent, mirror_num);
458 		if (!ret) {
459 			if (!verify_parent_transid(io_tree, eb,
460 						   parent_transid, 0))
461 				break;
462 			else
463 				ret = -EIO;
464 		}
465 
466 		/*
467 		 * This buffer's crc is fine, but its contents are corrupted, so
468 		 * there is no reason to read the other copies, they won't be
469 		 * any less wrong.
470 		 */
471 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
472 			break;
473 
474 		num_copies = btrfs_num_copies(fs_info,
475 					      eb->start, eb->len);
476 		if (num_copies == 1)
477 			break;
478 
479 		if (!failed_mirror) {
480 			failed = 1;
481 			failed_mirror = eb->read_mirror;
482 		}
483 
484 		mirror_num++;
485 		if (mirror_num == failed_mirror)
486 			mirror_num++;
487 
488 		if (mirror_num > num_copies)
489 			break;
490 	}
491 
492 	if (failed && !ret && failed_mirror)
493 		repair_eb_io_failure(fs_info, eb, failed_mirror);
494 
495 	return ret;
496 }
497 
498 /*
499  * checksum a dirty tree block before IO.  This has extra checks to make sure
500  * we only fill in the checksum field in the first page of a multi-page block
501  */
502 
503 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
504 {
505 	u64 start = page_offset(page);
506 	u64 found_start;
507 	struct extent_buffer *eb;
508 
509 	eb = (struct extent_buffer *)page->private;
510 	if (page != eb->pages[0])
511 		return 0;
512 
513 	found_start = btrfs_header_bytenr(eb);
514 	/*
515 	 * Please do not consolidate these warnings into a single if.
516 	 * It is useful to know what went wrong.
517 	 */
518 	if (WARN_ON(found_start != start))
519 		return -EUCLEAN;
520 	if (WARN_ON(!PageUptodate(page)))
521 		return -EUCLEAN;
522 
523 	ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
524 			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
525 
526 	return csum_tree_block(fs_info, eb, 0);
527 }
528 
529 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
530 				 struct extent_buffer *eb)
531 {
532 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
533 	u8 fsid[BTRFS_UUID_SIZE];
534 	int ret = 1;
535 
536 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
537 	while (fs_devices) {
538 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
539 			ret = 0;
540 			break;
541 		}
542 		fs_devices = fs_devices->seed;
543 	}
544 	return ret;
545 }
546 
547 #define CORRUPT(reason, eb, root, slot)					\
548 	btrfs_crit(root->fs_info,					\
549 		   "corrupt %s, %s: block=%llu, root=%llu, slot=%d",	\
550 		   btrfs_header_level(eb) == 0 ? "leaf" : "node",	\
551 		   reason, btrfs_header_bytenr(eb), root->objectid, slot)
552 
553 static noinline int check_leaf(struct btrfs_root *root,
554 			       struct extent_buffer *leaf)
555 {
556 	struct btrfs_fs_info *fs_info = root->fs_info;
557 	struct btrfs_key key;
558 	struct btrfs_key leaf_key;
559 	u32 nritems = btrfs_header_nritems(leaf);
560 	int slot;
561 
562 	/*
563 	 * Extent buffers from a relocation tree have a owner field that
564 	 * corresponds to the subvolume tree they are based on. So just from an
565 	 * extent buffer alone we can not find out what is the id of the
566 	 * corresponding subvolume tree, so we can not figure out if the extent
567 	 * buffer corresponds to the root of the relocation tree or not. So skip
568 	 * this check for relocation trees.
569 	 */
570 	if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
571 		struct btrfs_root *check_root;
572 
573 		key.objectid = btrfs_header_owner(leaf);
574 		key.type = BTRFS_ROOT_ITEM_KEY;
575 		key.offset = (u64)-1;
576 
577 		check_root = btrfs_get_fs_root(fs_info, &key, false);
578 		/*
579 		 * The only reason we also check NULL here is that during
580 		 * open_ctree() some roots has not yet been set up.
581 		 */
582 		if (!IS_ERR_OR_NULL(check_root)) {
583 			struct extent_buffer *eb;
584 
585 			eb = btrfs_root_node(check_root);
586 			/* if leaf is the root, then it's fine */
587 			if (leaf != eb) {
588 				CORRUPT("non-root leaf's nritems is 0",
589 					leaf, check_root, 0);
590 				free_extent_buffer(eb);
591 				return -EIO;
592 			}
593 			free_extent_buffer(eb);
594 		}
595 		return 0;
596 	}
597 
598 	if (nritems == 0)
599 		return 0;
600 
601 	/* Check the 0 item */
602 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
603 	    BTRFS_LEAF_DATA_SIZE(fs_info)) {
604 		CORRUPT("invalid item offset size pair", leaf, root, 0);
605 		return -EIO;
606 	}
607 
608 	/*
609 	 * Check to make sure each items keys are in the correct order and their
610 	 * offsets make sense.  We only have to loop through nritems-1 because
611 	 * we check the current slot against the next slot, which verifies the
612 	 * next slot's offset+size makes sense and that the current's slot
613 	 * offset is correct.
614 	 */
615 	for (slot = 0; slot < nritems - 1; slot++) {
616 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
617 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
618 
619 		/* Make sure the keys are in the right order */
620 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
621 			CORRUPT("bad key order", leaf, root, slot);
622 			return -EIO;
623 		}
624 
625 		/*
626 		 * Make sure the offset and ends are right, remember that the
627 		 * item data starts at the end of the leaf and grows towards the
628 		 * front.
629 		 */
630 		if (btrfs_item_offset_nr(leaf, slot) !=
631 			btrfs_item_end_nr(leaf, slot + 1)) {
632 			CORRUPT("slot offset bad", leaf, root, slot);
633 			return -EIO;
634 		}
635 
636 		/*
637 		 * Check to make sure that we don't point outside of the leaf,
638 		 * just in case all the items are consistent to each other, but
639 		 * all point outside of the leaf.
640 		 */
641 		if (btrfs_item_end_nr(leaf, slot) >
642 		    BTRFS_LEAF_DATA_SIZE(fs_info)) {
643 			CORRUPT("slot end outside of leaf", leaf, root, slot);
644 			return -EIO;
645 		}
646 	}
647 
648 	return 0;
649 }
650 
651 static int check_node(struct btrfs_root *root, struct extent_buffer *node)
652 {
653 	unsigned long nr = btrfs_header_nritems(node);
654 	struct btrfs_key key, next_key;
655 	int slot;
656 	u64 bytenr;
657 	int ret = 0;
658 
659 	if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
660 		btrfs_crit(root->fs_info,
661 			   "corrupt node: block %llu root %llu nritems %lu",
662 			   node->start, root->objectid, nr);
663 		return -EIO;
664 	}
665 
666 	for (slot = 0; slot < nr - 1; slot++) {
667 		bytenr = btrfs_node_blockptr(node, slot);
668 		btrfs_node_key_to_cpu(node, &key, slot);
669 		btrfs_node_key_to_cpu(node, &next_key, slot + 1);
670 
671 		if (!bytenr) {
672 			CORRUPT("invalid item slot", node, root, slot);
673 			ret = -EIO;
674 			goto out;
675 		}
676 
677 		if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
678 			CORRUPT("bad key order", node, root, slot);
679 			ret = -EIO;
680 			goto out;
681 		}
682 	}
683 out:
684 	return ret;
685 }
686 
687 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
688 				      u64 phy_offset, struct page *page,
689 				      u64 start, u64 end, int mirror)
690 {
691 	u64 found_start;
692 	int found_level;
693 	struct extent_buffer *eb;
694 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
695 	struct btrfs_fs_info *fs_info = root->fs_info;
696 	int ret = 0;
697 	int reads_done;
698 
699 	if (!page->private)
700 		goto out;
701 
702 	eb = (struct extent_buffer *)page->private;
703 
704 	/* the pending IO might have been the only thing that kept this buffer
705 	 * in memory.  Make sure we have a ref for all this other checks
706 	 */
707 	extent_buffer_get(eb);
708 
709 	reads_done = atomic_dec_and_test(&eb->io_pages);
710 	if (!reads_done)
711 		goto err;
712 
713 	eb->read_mirror = mirror;
714 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
715 		ret = -EIO;
716 		goto err;
717 	}
718 
719 	found_start = btrfs_header_bytenr(eb);
720 	if (found_start != eb->start) {
721 		btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
722 			     found_start, eb->start);
723 		ret = -EIO;
724 		goto err;
725 	}
726 	if (check_tree_block_fsid(fs_info, eb)) {
727 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
728 			     eb->start);
729 		ret = -EIO;
730 		goto err;
731 	}
732 	found_level = btrfs_header_level(eb);
733 	if (found_level >= BTRFS_MAX_LEVEL) {
734 		btrfs_err(fs_info, "bad tree block level %d",
735 			  (int)btrfs_header_level(eb));
736 		ret = -EIO;
737 		goto err;
738 	}
739 
740 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
741 				       eb, found_level);
742 
743 	ret = csum_tree_block(fs_info, eb, 1);
744 	if (ret)
745 		goto err;
746 
747 	/*
748 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
749 	 * that we don't try and read the other copies of this block, just
750 	 * return -EIO.
751 	 */
752 	if (found_level == 0 && check_leaf(root, eb)) {
753 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
754 		ret = -EIO;
755 	}
756 
757 	if (found_level > 0 && check_node(root, eb))
758 		ret = -EIO;
759 
760 	if (!ret)
761 		set_extent_buffer_uptodate(eb);
762 err:
763 	if (reads_done &&
764 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
765 		btree_readahead_hook(eb, ret);
766 
767 	if (ret) {
768 		/*
769 		 * our io error hook is going to dec the io pages
770 		 * again, we have to make sure it has something
771 		 * to decrement
772 		 */
773 		atomic_inc(&eb->io_pages);
774 		clear_extent_buffer_uptodate(eb);
775 	}
776 	free_extent_buffer(eb);
777 out:
778 	return ret;
779 }
780 
781 static int btree_io_failed_hook(struct page *page, int failed_mirror)
782 {
783 	struct extent_buffer *eb;
784 
785 	eb = (struct extent_buffer *)page->private;
786 	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
787 	eb->read_mirror = failed_mirror;
788 	atomic_dec(&eb->io_pages);
789 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
790 		btree_readahead_hook(eb, -EIO);
791 	return -EIO;	/* we fixed nothing */
792 }
793 
794 static void end_workqueue_bio(struct bio *bio)
795 {
796 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
797 	struct btrfs_fs_info *fs_info;
798 	struct btrfs_workqueue *wq;
799 	btrfs_work_func_t func;
800 
801 	fs_info = end_io_wq->info;
802 	end_io_wq->status = bio->bi_status;
803 
804 	if (bio_op(bio) == REQ_OP_WRITE) {
805 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
806 			wq = fs_info->endio_meta_write_workers;
807 			func = btrfs_endio_meta_write_helper;
808 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
809 			wq = fs_info->endio_freespace_worker;
810 			func = btrfs_freespace_write_helper;
811 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
812 			wq = fs_info->endio_raid56_workers;
813 			func = btrfs_endio_raid56_helper;
814 		} else {
815 			wq = fs_info->endio_write_workers;
816 			func = btrfs_endio_write_helper;
817 		}
818 	} else {
819 		if (unlikely(end_io_wq->metadata ==
820 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
821 			wq = fs_info->endio_repair_workers;
822 			func = btrfs_endio_repair_helper;
823 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
824 			wq = fs_info->endio_raid56_workers;
825 			func = btrfs_endio_raid56_helper;
826 		} else if (end_io_wq->metadata) {
827 			wq = fs_info->endio_meta_workers;
828 			func = btrfs_endio_meta_helper;
829 		} else {
830 			wq = fs_info->endio_workers;
831 			func = btrfs_endio_helper;
832 		}
833 	}
834 
835 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
836 	btrfs_queue_work(wq, &end_io_wq->work);
837 }
838 
839 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
840 			enum btrfs_wq_endio_type metadata)
841 {
842 	struct btrfs_end_io_wq *end_io_wq;
843 
844 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
845 	if (!end_io_wq)
846 		return BLK_STS_RESOURCE;
847 
848 	end_io_wq->private = bio->bi_private;
849 	end_io_wq->end_io = bio->bi_end_io;
850 	end_io_wq->info = info;
851 	end_io_wq->status = 0;
852 	end_io_wq->bio = bio;
853 	end_io_wq->metadata = metadata;
854 
855 	bio->bi_private = end_io_wq;
856 	bio->bi_end_io = end_workqueue_bio;
857 	return 0;
858 }
859 
860 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
861 {
862 	unsigned long limit = min_t(unsigned long,
863 				    info->thread_pool_size,
864 				    info->fs_devices->open_devices);
865 	return 256 * limit;
866 }
867 
868 static void run_one_async_start(struct btrfs_work *work)
869 {
870 	struct async_submit_bio *async;
871 	blk_status_t ret;
872 
873 	async = container_of(work, struct  async_submit_bio, work);
874 	ret = async->submit_bio_start(async->inode, async->bio,
875 				      async->mirror_num, async->bio_flags,
876 				      async->bio_offset);
877 	if (ret)
878 		async->status = ret;
879 }
880 
881 static void run_one_async_done(struct btrfs_work *work)
882 {
883 	struct btrfs_fs_info *fs_info;
884 	struct async_submit_bio *async;
885 	int limit;
886 
887 	async = container_of(work, struct  async_submit_bio, work);
888 	fs_info = BTRFS_I(async->inode)->root->fs_info;
889 
890 	limit = btrfs_async_submit_limit(fs_info);
891 	limit = limit * 2 / 3;
892 
893 	/*
894 	 * atomic_dec_return implies a barrier for waitqueue_active
895 	 */
896 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
897 	    waitqueue_active(&fs_info->async_submit_wait))
898 		wake_up(&fs_info->async_submit_wait);
899 
900 	/* If an error occurred we just want to clean up the bio and move on */
901 	if (async->status) {
902 		async->bio->bi_status = async->status;
903 		bio_endio(async->bio);
904 		return;
905 	}
906 
907 	async->submit_bio_done(async->inode, async->bio, async->mirror_num,
908 			       async->bio_flags, async->bio_offset);
909 }
910 
911 static void run_one_async_free(struct btrfs_work *work)
912 {
913 	struct async_submit_bio *async;
914 
915 	async = container_of(work, struct  async_submit_bio, work);
916 	kfree(async);
917 }
918 
919 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info,
920 		struct inode *inode, struct bio *bio, int mirror_num,
921 		unsigned long bio_flags, u64 bio_offset,
922 		extent_submit_bio_hook_t *submit_bio_start,
923 		extent_submit_bio_hook_t *submit_bio_done)
924 {
925 	struct async_submit_bio *async;
926 
927 	async = kmalloc(sizeof(*async), GFP_NOFS);
928 	if (!async)
929 		return BLK_STS_RESOURCE;
930 
931 	async->inode = inode;
932 	async->bio = bio;
933 	async->mirror_num = mirror_num;
934 	async->submit_bio_start = submit_bio_start;
935 	async->submit_bio_done = submit_bio_done;
936 
937 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
938 			run_one_async_done, run_one_async_free);
939 
940 	async->bio_flags = bio_flags;
941 	async->bio_offset = bio_offset;
942 
943 	async->status = 0;
944 
945 	atomic_inc(&fs_info->nr_async_submits);
946 
947 	if (op_is_sync(bio->bi_opf))
948 		btrfs_set_work_high_priority(&async->work);
949 
950 	btrfs_queue_work(fs_info->workers, &async->work);
951 
952 	while (atomic_read(&fs_info->async_submit_draining) &&
953 	      atomic_read(&fs_info->nr_async_submits)) {
954 		wait_event(fs_info->async_submit_wait,
955 			   (atomic_read(&fs_info->nr_async_submits) == 0));
956 	}
957 
958 	return 0;
959 }
960 
961 static blk_status_t btree_csum_one_bio(struct bio *bio)
962 {
963 	struct bio_vec *bvec;
964 	struct btrfs_root *root;
965 	int i, ret = 0;
966 
967 	bio_for_each_segment_all(bvec, bio, i) {
968 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
969 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
970 		if (ret)
971 			break;
972 	}
973 
974 	return errno_to_blk_status(ret);
975 }
976 
977 static blk_status_t __btree_submit_bio_start(struct inode *inode,
978 		struct bio *bio, int mirror_num, unsigned long bio_flags,
979 		u64 bio_offset)
980 {
981 	/*
982 	 * when we're called for a write, we're already in the async
983 	 * submission context.  Just jump into btrfs_map_bio
984 	 */
985 	return btree_csum_one_bio(bio);
986 }
987 
988 static blk_status_t __btree_submit_bio_done(struct inode *inode,
989 		struct bio *bio, int mirror_num, unsigned long bio_flags,
990 		u64 bio_offset)
991 {
992 	blk_status_t ret;
993 
994 	/*
995 	 * when we're called for a write, we're already in the async
996 	 * submission context.  Just jump into btrfs_map_bio
997 	 */
998 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
999 	if (ret) {
1000 		bio->bi_status = ret;
1001 		bio_endio(bio);
1002 	}
1003 	return ret;
1004 }
1005 
1006 static int check_async_write(unsigned long bio_flags)
1007 {
1008 	if (bio_flags & EXTENT_BIO_TREE_LOG)
1009 		return 0;
1010 #ifdef CONFIG_X86
1011 	if (static_cpu_has(X86_FEATURE_XMM4_2))
1012 		return 0;
1013 #endif
1014 	return 1;
1015 }
1016 
1017 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
1018 				 int mirror_num, unsigned long bio_flags,
1019 				 u64 bio_offset)
1020 {
1021 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1022 	int async = check_async_write(bio_flags);
1023 	blk_status_t ret;
1024 
1025 	if (bio_op(bio) != REQ_OP_WRITE) {
1026 		/*
1027 		 * called for a read, do the setup so that checksum validation
1028 		 * can happen in the async kernel threads
1029 		 */
1030 		ret = btrfs_bio_wq_end_io(fs_info, bio,
1031 					  BTRFS_WQ_ENDIO_METADATA);
1032 		if (ret)
1033 			goto out_w_error;
1034 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1035 	} else if (!async) {
1036 		ret = btree_csum_one_bio(bio);
1037 		if (ret)
1038 			goto out_w_error;
1039 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1040 	} else {
1041 		/*
1042 		 * kthread helpers are used to submit writes so that
1043 		 * checksumming can happen in parallel across all CPUs
1044 		 */
1045 		ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 0,
1046 					  bio_offset,
1047 					  __btree_submit_bio_start,
1048 					  __btree_submit_bio_done);
1049 	}
1050 
1051 	if (ret)
1052 		goto out_w_error;
1053 	return 0;
1054 
1055 out_w_error:
1056 	bio->bi_status = ret;
1057 	bio_endio(bio);
1058 	return ret;
1059 }
1060 
1061 #ifdef CONFIG_MIGRATION
1062 static int btree_migratepage(struct address_space *mapping,
1063 			struct page *newpage, struct page *page,
1064 			enum migrate_mode mode)
1065 {
1066 	/*
1067 	 * we can't safely write a btree page from here,
1068 	 * we haven't done the locking hook
1069 	 */
1070 	if (PageDirty(page))
1071 		return -EAGAIN;
1072 	/*
1073 	 * Buffers may be managed in a filesystem specific way.
1074 	 * We must have no buffers or drop them.
1075 	 */
1076 	if (page_has_private(page) &&
1077 	    !try_to_release_page(page, GFP_KERNEL))
1078 		return -EAGAIN;
1079 	return migrate_page(mapping, newpage, page, mode);
1080 }
1081 #endif
1082 
1083 
1084 static int btree_writepages(struct address_space *mapping,
1085 			    struct writeback_control *wbc)
1086 {
1087 	struct btrfs_fs_info *fs_info;
1088 	int ret;
1089 
1090 	if (wbc->sync_mode == WB_SYNC_NONE) {
1091 
1092 		if (wbc->for_kupdate)
1093 			return 0;
1094 
1095 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
1096 		/* this is a bit racy, but that's ok */
1097 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1098 					     BTRFS_DIRTY_METADATA_THRESH);
1099 		if (ret < 0)
1100 			return 0;
1101 	}
1102 	return btree_write_cache_pages(mapping, wbc);
1103 }
1104 
1105 static int btree_readpage(struct file *file, struct page *page)
1106 {
1107 	struct extent_io_tree *tree;
1108 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1109 	return extent_read_full_page(tree, page, btree_get_extent, 0);
1110 }
1111 
1112 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1113 {
1114 	if (PageWriteback(page) || PageDirty(page))
1115 		return 0;
1116 
1117 	return try_release_extent_buffer(page);
1118 }
1119 
1120 static void btree_invalidatepage(struct page *page, unsigned int offset,
1121 				 unsigned int length)
1122 {
1123 	struct extent_io_tree *tree;
1124 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1125 	extent_invalidatepage(tree, page, offset);
1126 	btree_releasepage(page, GFP_NOFS);
1127 	if (PagePrivate(page)) {
1128 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1129 			   "page private not zero on page %llu",
1130 			   (unsigned long long)page_offset(page));
1131 		ClearPagePrivate(page);
1132 		set_page_private(page, 0);
1133 		put_page(page);
1134 	}
1135 }
1136 
1137 static int btree_set_page_dirty(struct page *page)
1138 {
1139 #ifdef DEBUG
1140 	struct extent_buffer *eb;
1141 
1142 	BUG_ON(!PagePrivate(page));
1143 	eb = (struct extent_buffer *)page->private;
1144 	BUG_ON(!eb);
1145 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1146 	BUG_ON(!atomic_read(&eb->refs));
1147 	btrfs_assert_tree_locked(eb);
1148 #endif
1149 	return __set_page_dirty_nobuffers(page);
1150 }
1151 
1152 static const struct address_space_operations btree_aops = {
1153 	.readpage	= btree_readpage,
1154 	.writepages	= btree_writepages,
1155 	.releasepage	= btree_releasepage,
1156 	.invalidatepage = btree_invalidatepage,
1157 #ifdef CONFIG_MIGRATION
1158 	.migratepage	= btree_migratepage,
1159 #endif
1160 	.set_page_dirty = btree_set_page_dirty,
1161 };
1162 
1163 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1164 {
1165 	struct extent_buffer *buf = NULL;
1166 	struct inode *btree_inode = fs_info->btree_inode;
1167 
1168 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1169 	if (IS_ERR(buf))
1170 		return;
1171 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1172 				 buf, WAIT_NONE, btree_get_extent, 0);
1173 	free_extent_buffer(buf);
1174 }
1175 
1176 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1177 			 int mirror_num, struct extent_buffer **eb)
1178 {
1179 	struct extent_buffer *buf = NULL;
1180 	struct inode *btree_inode = fs_info->btree_inode;
1181 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1182 	int ret;
1183 
1184 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1185 	if (IS_ERR(buf))
1186 		return 0;
1187 
1188 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1189 
1190 	ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1191 				       btree_get_extent, mirror_num);
1192 	if (ret) {
1193 		free_extent_buffer(buf);
1194 		return ret;
1195 	}
1196 
1197 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1198 		free_extent_buffer(buf);
1199 		return -EIO;
1200 	} else if (extent_buffer_uptodate(buf)) {
1201 		*eb = buf;
1202 	} else {
1203 		free_extent_buffer(buf);
1204 	}
1205 	return 0;
1206 }
1207 
1208 struct extent_buffer *btrfs_find_create_tree_block(
1209 						struct btrfs_fs_info *fs_info,
1210 						u64 bytenr)
1211 {
1212 	if (btrfs_is_testing(fs_info))
1213 		return alloc_test_extent_buffer(fs_info, bytenr);
1214 	return alloc_extent_buffer(fs_info, bytenr);
1215 }
1216 
1217 
1218 int btrfs_write_tree_block(struct extent_buffer *buf)
1219 {
1220 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1221 					buf->start + buf->len - 1);
1222 }
1223 
1224 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1225 {
1226 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1227 				       buf->start, buf->start + buf->len - 1);
1228 }
1229 
1230 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1231 				      u64 parent_transid)
1232 {
1233 	struct extent_buffer *buf = NULL;
1234 	int ret;
1235 
1236 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1237 	if (IS_ERR(buf))
1238 		return buf;
1239 
1240 	ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
1241 	if (ret) {
1242 		free_extent_buffer(buf);
1243 		return ERR_PTR(ret);
1244 	}
1245 	return buf;
1246 
1247 }
1248 
1249 void clean_tree_block(struct btrfs_fs_info *fs_info,
1250 		      struct extent_buffer *buf)
1251 {
1252 	if (btrfs_header_generation(buf) ==
1253 	    fs_info->running_transaction->transid) {
1254 		btrfs_assert_tree_locked(buf);
1255 
1256 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1257 			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1258 					     -buf->len,
1259 					     fs_info->dirty_metadata_batch);
1260 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1261 			btrfs_set_lock_blocking(buf);
1262 			clear_extent_buffer_dirty(buf);
1263 		}
1264 	}
1265 }
1266 
1267 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1268 {
1269 	struct btrfs_subvolume_writers *writers;
1270 	int ret;
1271 
1272 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1273 	if (!writers)
1274 		return ERR_PTR(-ENOMEM);
1275 
1276 	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1277 	if (ret < 0) {
1278 		kfree(writers);
1279 		return ERR_PTR(ret);
1280 	}
1281 
1282 	init_waitqueue_head(&writers->wait);
1283 	return writers;
1284 }
1285 
1286 static void
1287 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1288 {
1289 	percpu_counter_destroy(&writers->counter);
1290 	kfree(writers);
1291 }
1292 
1293 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1294 			 u64 objectid)
1295 {
1296 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1297 	root->node = NULL;
1298 	root->commit_root = NULL;
1299 	root->state = 0;
1300 	root->orphan_cleanup_state = 0;
1301 
1302 	root->objectid = objectid;
1303 	root->last_trans = 0;
1304 	root->highest_objectid = 0;
1305 	root->nr_delalloc_inodes = 0;
1306 	root->nr_ordered_extents = 0;
1307 	root->name = NULL;
1308 	root->inode_tree = RB_ROOT;
1309 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1310 	root->block_rsv = NULL;
1311 	root->orphan_block_rsv = NULL;
1312 
1313 	INIT_LIST_HEAD(&root->dirty_list);
1314 	INIT_LIST_HEAD(&root->root_list);
1315 	INIT_LIST_HEAD(&root->delalloc_inodes);
1316 	INIT_LIST_HEAD(&root->delalloc_root);
1317 	INIT_LIST_HEAD(&root->ordered_extents);
1318 	INIT_LIST_HEAD(&root->ordered_root);
1319 	INIT_LIST_HEAD(&root->logged_list[0]);
1320 	INIT_LIST_HEAD(&root->logged_list[1]);
1321 	spin_lock_init(&root->orphan_lock);
1322 	spin_lock_init(&root->inode_lock);
1323 	spin_lock_init(&root->delalloc_lock);
1324 	spin_lock_init(&root->ordered_extent_lock);
1325 	spin_lock_init(&root->accounting_lock);
1326 	spin_lock_init(&root->log_extents_lock[0]);
1327 	spin_lock_init(&root->log_extents_lock[1]);
1328 	mutex_init(&root->objectid_mutex);
1329 	mutex_init(&root->log_mutex);
1330 	mutex_init(&root->ordered_extent_mutex);
1331 	mutex_init(&root->delalloc_mutex);
1332 	init_waitqueue_head(&root->log_writer_wait);
1333 	init_waitqueue_head(&root->log_commit_wait[0]);
1334 	init_waitqueue_head(&root->log_commit_wait[1]);
1335 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1336 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1337 	atomic_set(&root->log_commit[0], 0);
1338 	atomic_set(&root->log_commit[1], 0);
1339 	atomic_set(&root->log_writers, 0);
1340 	atomic_set(&root->log_batch, 0);
1341 	atomic_set(&root->orphan_inodes, 0);
1342 	refcount_set(&root->refs, 1);
1343 	atomic_set(&root->will_be_snapshoted, 0);
1344 	atomic64_set(&root->qgroup_meta_rsv, 0);
1345 	root->log_transid = 0;
1346 	root->log_transid_committed = -1;
1347 	root->last_log_commit = 0;
1348 	if (!dummy)
1349 		extent_io_tree_init(&root->dirty_log_pages,
1350 				     fs_info->btree_inode->i_mapping);
1351 
1352 	memset(&root->root_key, 0, sizeof(root->root_key));
1353 	memset(&root->root_item, 0, sizeof(root->root_item));
1354 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1355 	if (!dummy)
1356 		root->defrag_trans_start = fs_info->generation;
1357 	else
1358 		root->defrag_trans_start = 0;
1359 	root->root_key.objectid = objectid;
1360 	root->anon_dev = 0;
1361 
1362 	spin_lock_init(&root->root_item_lock);
1363 }
1364 
1365 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1366 		gfp_t flags)
1367 {
1368 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1369 	if (root)
1370 		root->fs_info = fs_info;
1371 	return root;
1372 }
1373 
1374 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1375 /* Should only be used by the testing infrastructure */
1376 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1377 {
1378 	struct btrfs_root *root;
1379 
1380 	if (!fs_info)
1381 		return ERR_PTR(-EINVAL);
1382 
1383 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1384 	if (!root)
1385 		return ERR_PTR(-ENOMEM);
1386 
1387 	/* We don't use the stripesize in selftest, set it as sectorsize */
1388 	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1389 	root->alloc_bytenr = 0;
1390 
1391 	return root;
1392 }
1393 #endif
1394 
1395 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1396 				     struct btrfs_fs_info *fs_info,
1397 				     u64 objectid)
1398 {
1399 	struct extent_buffer *leaf;
1400 	struct btrfs_root *tree_root = fs_info->tree_root;
1401 	struct btrfs_root *root;
1402 	struct btrfs_key key;
1403 	int ret = 0;
1404 	uuid_le uuid;
1405 
1406 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1407 	if (!root)
1408 		return ERR_PTR(-ENOMEM);
1409 
1410 	__setup_root(root, fs_info, objectid);
1411 	root->root_key.objectid = objectid;
1412 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1413 	root->root_key.offset = 0;
1414 
1415 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1416 	if (IS_ERR(leaf)) {
1417 		ret = PTR_ERR(leaf);
1418 		leaf = NULL;
1419 		goto fail;
1420 	}
1421 
1422 	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1423 	btrfs_set_header_bytenr(leaf, leaf->start);
1424 	btrfs_set_header_generation(leaf, trans->transid);
1425 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1426 	btrfs_set_header_owner(leaf, objectid);
1427 	root->node = leaf;
1428 
1429 	write_extent_buffer_fsid(leaf, fs_info->fsid);
1430 	write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1431 	btrfs_mark_buffer_dirty(leaf);
1432 
1433 	root->commit_root = btrfs_root_node(root);
1434 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1435 
1436 	root->root_item.flags = 0;
1437 	root->root_item.byte_limit = 0;
1438 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1439 	btrfs_set_root_generation(&root->root_item, trans->transid);
1440 	btrfs_set_root_level(&root->root_item, 0);
1441 	btrfs_set_root_refs(&root->root_item, 1);
1442 	btrfs_set_root_used(&root->root_item, leaf->len);
1443 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1444 	btrfs_set_root_dirid(&root->root_item, 0);
1445 	uuid_le_gen(&uuid);
1446 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1447 	root->root_item.drop_level = 0;
1448 
1449 	key.objectid = objectid;
1450 	key.type = BTRFS_ROOT_ITEM_KEY;
1451 	key.offset = 0;
1452 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1453 	if (ret)
1454 		goto fail;
1455 
1456 	btrfs_tree_unlock(leaf);
1457 
1458 	return root;
1459 
1460 fail:
1461 	if (leaf) {
1462 		btrfs_tree_unlock(leaf);
1463 		free_extent_buffer(root->commit_root);
1464 		free_extent_buffer(leaf);
1465 	}
1466 	kfree(root);
1467 
1468 	return ERR_PTR(ret);
1469 }
1470 
1471 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1472 					 struct btrfs_fs_info *fs_info)
1473 {
1474 	struct btrfs_root *root;
1475 	struct extent_buffer *leaf;
1476 
1477 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1478 	if (!root)
1479 		return ERR_PTR(-ENOMEM);
1480 
1481 	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1482 
1483 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1484 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1485 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1486 
1487 	/*
1488 	 * DON'T set REF_COWS for log trees
1489 	 *
1490 	 * log trees do not get reference counted because they go away
1491 	 * before a real commit is actually done.  They do store pointers
1492 	 * to file data extents, and those reference counts still get
1493 	 * updated (along with back refs to the log tree).
1494 	 */
1495 
1496 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1497 			NULL, 0, 0, 0);
1498 	if (IS_ERR(leaf)) {
1499 		kfree(root);
1500 		return ERR_CAST(leaf);
1501 	}
1502 
1503 	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1504 	btrfs_set_header_bytenr(leaf, leaf->start);
1505 	btrfs_set_header_generation(leaf, trans->transid);
1506 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1507 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1508 	root->node = leaf;
1509 
1510 	write_extent_buffer_fsid(root->node, fs_info->fsid);
1511 	btrfs_mark_buffer_dirty(root->node);
1512 	btrfs_tree_unlock(root->node);
1513 	return root;
1514 }
1515 
1516 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1517 			     struct btrfs_fs_info *fs_info)
1518 {
1519 	struct btrfs_root *log_root;
1520 
1521 	log_root = alloc_log_tree(trans, fs_info);
1522 	if (IS_ERR(log_root))
1523 		return PTR_ERR(log_root);
1524 	WARN_ON(fs_info->log_root_tree);
1525 	fs_info->log_root_tree = log_root;
1526 	return 0;
1527 }
1528 
1529 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1530 		       struct btrfs_root *root)
1531 {
1532 	struct btrfs_fs_info *fs_info = root->fs_info;
1533 	struct btrfs_root *log_root;
1534 	struct btrfs_inode_item *inode_item;
1535 
1536 	log_root = alloc_log_tree(trans, fs_info);
1537 	if (IS_ERR(log_root))
1538 		return PTR_ERR(log_root);
1539 
1540 	log_root->last_trans = trans->transid;
1541 	log_root->root_key.offset = root->root_key.objectid;
1542 
1543 	inode_item = &log_root->root_item.inode;
1544 	btrfs_set_stack_inode_generation(inode_item, 1);
1545 	btrfs_set_stack_inode_size(inode_item, 3);
1546 	btrfs_set_stack_inode_nlink(inode_item, 1);
1547 	btrfs_set_stack_inode_nbytes(inode_item,
1548 				     fs_info->nodesize);
1549 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1550 
1551 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1552 
1553 	WARN_ON(root->log_root);
1554 	root->log_root = log_root;
1555 	root->log_transid = 0;
1556 	root->log_transid_committed = -1;
1557 	root->last_log_commit = 0;
1558 	return 0;
1559 }
1560 
1561 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1562 					       struct btrfs_key *key)
1563 {
1564 	struct btrfs_root *root;
1565 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1566 	struct btrfs_path *path;
1567 	u64 generation;
1568 	int ret;
1569 
1570 	path = btrfs_alloc_path();
1571 	if (!path)
1572 		return ERR_PTR(-ENOMEM);
1573 
1574 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1575 	if (!root) {
1576 		ret = -ENOMEM;
1577 		goto alloc_fail;
1578 	}
1579 
1580 	__setup_root(root, fs_info, key->objectid);
1581 
1582 	ret = btrfs_find_root(tree_root, key, path,
1583 			      &root->root_item, &root->root_key);
1584 	if (ret) {
1585 		if (ret > 0)
1586 			ret = -ENOENT;
1587 		goto find_fail;
1588 	}
1589 
1590 	generation = btrfs_root_generation(&root->root_item);
1591 	root->node = read_tree_block(fs_info,
1592 				     btrfs_root_bytenr(&root->root_item),
1593 				     generation);
1594 	if (IS_ERR(root->node)) {
1595 		ret = PTR_ERR(root->node);
1596 		goto find_fail;
1597 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1598 		ret = -EIO;
1599 		free_extent_buffer(root->node);
1600 		goto find_fail;
1601 	}
1602 	root->commit_root = btrfs_root_node(root);
1603 out:
1604 	btrfs_free_path(path);
1605 	return root;
1606 
1607 find_fail:
1608 	kfree(root);
1609 alloc_fail:
1610 	root = ERR_PTR(ret);
1611 	goto out;
1612 }
1613 
1614 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1615 				      struct btrfs_key *location)
1616 {
1617 	struct btrfs_root *root;
1618 
1619 	root = btrfs_read_tree_root(tree_root, location);
1620 	if (IS_ERR(root))
1621 		return root;
1622 
1623 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1624 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1625 		btrfs_check_and_init_root_item(&root->root_item);
1626 	}
1627 
1628 	return root;
1629 }
1630 
1631 int btrfs_init_fs_root(struct btrfs_root *root)
1632 {
1633 	int ret;
1634 	struct btrfs_subvolume_writers *writers;
1635 
1636 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1637 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1638 					GFP_NOFS);
1639 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1640 		ret = -ENOMEM;
1641 		goto fail;
1642 	}
1643 
1644 	writers = btrfs_alloc_subvolume_writers();
1645 	if (IS_ERR(writers)) {
1646 		ret = PTR_ERR(writers);
1647 		goto fail;
1648 	}
1649 	root->subv_writers = writers;
1650 
1651 	btrfs_init_free_ino_ctl(root);
1652 	spin_lock_init(&root->ino_cache_lock);
1653 	init_waitqueue_head(&root->ino_cache_wait);
1654 
1655 	ret = get_anon_bdev(&root->anon_dev);
1656 	if (ret)
1657 		goto fail;
1658 
1659 	mutex_lock(&root->objectid_mutex);
1660 	ret = btrfs_find_highest_objectid(root,
1661 					&root->highest_objectid);
1662 	if (ret) {
1663 		mutex_unlock(&root->objectid_mutex);
1664 		goto fail;
1665 	}
1666 
1667 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1668 
1669 	mutex_unlock(&root->objectid_mutex);
1670 
1671 	return 0;
1672 fail:
1673 	/* the caller is responsible to call free_fs_root */
1674 	return ret;
1675 }
1676 
1677 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1678 					u64 root_id)
1679 {
1680 	struct btrfs_root *root;
1681 
1682 	spin_lock(&fs_info->fs_roots_radix_lock);
1683 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1684 				 (unsigned long)root_id);
1685 	spin_unlock(&fs_info->fs_roots_radix_lock);
1686 	return root;
1687 }
1688 
1689 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1690 			 struct btrfs_root *root)
1691 {
1692 	int ret;
1693 
1694 	ret = radix_tree_preload(GFP_NOFS);
1695 	if (ret)
1696 		return ret;
1697 
1698 	spin_lock(&fs_info->fs_roots_radix_lock);
1699 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1700 				(unsigned long)root->root_key.objectid,
1701 				root);
1702 	if (ret == 0)
1703 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1704 	spin_unlock(&fs_info->fs_roots_radix_lock);
1705 	radix_tree_preload_end();
1706 
1707 	return ret;
1708 }
1709 
1710 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1711 				     struct btrfs_key *location,
1712 				     bool check_ref)
1713 {
1714 	struct btrfs_root *root;
1715 	struct btrfs_path *path;
1716 	struct btrfs_key key;
1717 	int ret;
1718 
1719 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1720 		return fs_info->tree_root;
1721 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1722 		return fs_info->extent_root;
1723 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1724 		return fs_info->chunk_root;
1725 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1726 		return fs_info->dev_root;
1727 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1728 		return fs_info->csum_root;
1729 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1730 		return fs_info->quota_root ? fs_info->quota_root :
1731 					     ERR_PTR(-ENOENT);
1732 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1733 		return fs_info->uuid_root ? fs_info->uuid_root :
1734 					    ERR_PTR(-ENOENT);
1735 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1736 		return fs_info->free_space_root ? fs_info->free_space_root :
1737 						  ERR_PTR(-ENOENT);
1738 again:
1739 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1740 	if (root) {
1741 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1742 			return ERR_PTR(-ENOENT);
1743 		return root;
1744 	}
1745 
1746 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1747 	if (IS_ERR(root))
1748 		return root;
1749 
1750 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1751 		ret = -ENOENT;
1752 		goto fail;
1753 	}
1754 
1755 	ret = btrfs_init_fs_root(root);
1756 	if (ret)
1757 		goto fail;
1758 
1759 	path = btrfs_alloc_path();
1760 	if (!path) {
1761 		ret = -ENOMEM;
1762 		goto fail;
1763 	}
1764 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1765 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1766 	key.offset = location->objectid;
1767 
1768 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1769 	btrfs_free_path(path);
1770 	if (ret < 0)
1771 		goto fail;
1772 	if (ret == 0)
1773 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1774 
1775 	ret = btrfs_insert_fs_root(fs_info, root);
1776 	if (ret) {
1777 		if (ret == -EEXIST) {
1778 			free_fs_root(root);
1779 			goto again;
1780 		}
1781 		goto fail;
1782 	}
1783 	return root;
1784 fail:
1785 	free_fs_root(root);
1786 	return ERR_PTR(ret);
1787 }
1788 
1789 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1790 {
1791 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1792 	int ret = 0;
1793 	struct btrfs_device *device;
1794 	struct backing_dev_info *bdi;
1795 
1796 	rcu_read_lock();
1797 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1798 		if (!device->bdev)
1799 			continue;
1800 		bdi = device->bdev->bd_bdi;
1801 		if (bdi_congested(bdi, bdi_bits)) {
1802 			ret = 1;
1803 			break;
1804 		}
1805 	}
1806 	rcu_read_unlock();
1807 	return ret;
1808 }
1809 
1810 /*
1811  * called by the kthread helper functions to finally call the bio end_io
1812  * functions.  This is where read checksum verification actually happens
1813  */
1814 static void end_workqueue_fn(struct btrfs_work *work)
1815 {
1816 	struct bio *bio;
1817 	struct btrfs_end_io_wq *end_io_wq;
1818 
1819 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1820 	bio = end_io_wq->bio;
1821 
1822 	bio->bi_status = end_io_wq->status;
1823 	bio->bi_private = end_io_wq->private;
1824 	bio->bi_end_io = end_io_wq->end_io;
1825 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1826 	bio_endio(bio);
1827 }
1828 
1829 static int cleaner_kthread(void *arg)
1830 {
1831 	struct btrfs_root *root = arg;
1832 	struct btrfs_fs_info *fs_info = root->fs_info;
1833 	int again;
1834 	struct btrfs_trans_handle *trans;
1835 
1836 	do {
1837 		again = 0;
1838 
1839 		/* Make the cleaner go to sleep early. */
1840 		if (btrfs_need_cleaner_sleep(fs_info))
1841 			goto sleep;
1842 
1843 		/*
1844 		 * Do not do anything if we might cause open_ctree() to block
1845 		 * before we have finished mounting the filesystem.
1846 		 */
1847 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1848 			goto sleep;
1849 
1850 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1851 			goto sleep;
1852 
1853 		/*
1854 		 * Avoid the problem that we change the status of the fs
1855 		 * during the above check and trylock.
1856 		 */
1857 		if (btrfs_need_cleaner_sleep(fs_info)) {
1858 			mutex_unlock(&fs_info->cleaner_mutex);
1859 			goto sleep;
1860 		}
1861 
1862 		mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1863 		btrfs_run_delayed_iputs(fs_info);
1864 		mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1865 
1866 		again = btrfs_clean_one_deleted_snapshot(root);
1867 		mutex_unlock(&fs_info->cleaner_mutex);
1868 
1869 		/*
1870 		 * The defragger has dealt with the R/O remount and umount,
1871 		 * needn't do anything special here.
1872 		 */
1873 		btrfs_run_defrag_inodes(fs_info);
1874 
1875 		/*
1876 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1877 		 * with relocation (btrfs_relocate_chunk) and relocation
1878 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1879 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1880 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1881 		 * unused block groups.
1882 		 */
1883 		btrfs_delete_unused_bgs(fs_info);
1884 sleep:
1885 		if (!again) {
1886 			set_current_state(TASK_INTERRUPTIBLE);
1887 			if (!kthread_should_stop())
1888 				schedule();
1889 			__set_current_state(TASK_RUNNING);
1890 		}
1891 	} while (!kthread_should_stop());
1892 
1893 	/*
1894 	 * Transaction kthread is stopped before us and wakes us up.
1895 	 * However we might have started a new transaction and COWed some
1896 	 * tree blocks when deleting unused block groups for example. So
1897 	 * make sure we commit the transaction we started to have a clean
1898 	 * shutdown when evicting the btree inode - if it has dirty pages
1899 	 * when we do the final iput() on it, eviction will trigger a
1900 	 * writeback for it which will fail with null pointer dereferences
1901 	 * since work queues and other resources were already released and
1902 	 * destroyed by the time the iput/eviction/writeback is made.
1903 	 */
1904 	trans = btrfs_attach_transaction(root);
1905 	if (IS_ERR(trans)) {
1906 		if (PTR_ERR(trans) != -ENOENT)
1907 			btrfs_err(fs_info,
1908 				  "cleaner transaction attach returned %ld",
1909 				  PTR_ERR(trans));
1910 	} else {
1911 		int ret;
1912 
1913 		ret = btrfs_commit_transaction(trans);
1914 		if (ret)
1915 			btrfs_err(fs_info,
1916 				  "cleaner open transaction commit returned %d",
1917 				  ret);
1918 	}
1919 
1920 	return 0;
1921 }
1922 
1923 static int transaction_kthread(void *arg)
1924 {
1925 	struct btrfs_root *root = arg;
1926 	struct btrfs_fs_info *fs_info = root->fs_info;
1927 	struct btrfs_trans_handle *trans;
1928 	struct btrfs_transaction *cur;
1929 	u64 transid;
1930 	unsigned long now;
1931 	unsigned long delay;
1932 	bool cannot_commit;
1933 
1934 	do {
1935 		cannot_commit = false;
1936 		delay = HZ * fs_info->commit_interval;
1937 		mutex_lock(&fs_info->transaction_kthread_mutex);
1938 
1939 		spin_lock(&fs_info->trans_lock);
1940 		cur = fs_info->running_transaction;
1941 		if (!cur) {
1942 			spin_unlock(&fs_info->trans_lock);
1943 			goto sleep;
1944 		}
1945 
1946 		now = get_seconds();
1947 		if (cur->state < TRANS_STATE_BLOCKED &&
1948 		    (now < cur->start_time ||
1949 		     now - cur->start_time < fs_info->commit_interval)) {
1950 			spin_unlock(&fs_info->trans_lock);
1951 			delay = HZ * 5;
1952 			goto sleep;
1953 		}
1954 		transid = cur->transid;
1955 		spin_unlock(&fs_info->trans_lock);
1956 
1957 		/* If the file system is aborted, this will always fail. */
1958 		trans = btrfs_attach_transaction(root);
1959 		if (IS_ERR(trans)) {
1960 			if (PTR_ERR(trans) != -ENOENT)
1961 				cannot_commit = true;
1962 			goto sleep;
1963 		}
1964 		if (transid == trans->transid) {
1965 			btrfs_commit_transaction(trans);
1966 		} else {
1967 			btrfs_end_transaction(trans);
1968 		}
1969 sleep:
1970 		wake_up_process(fs_info->cleaner_kthread);
1971 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1972 
1973 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1974 				      &fs_info->fs_state)))
1975 			btrfs_cleanup_transaction(fs_info);
1976 		set_current_state(TASK_INTERRUPTIBLE);
1977 		if (!kthread_should_stop() &&
1978 				(!btrfs_transaction_blocked(fs_info) ||
1979 				 cannot_commit))
1980 			schedule_timeout(delay);
1981 		__set_current_state(TASK_RUNNING);
1982 	} while (!kthread_should_stop());
1983 	return 0;
1984 }
1985 
1986 /*
1987  * this will find the highest generation in the array of
1988  * root backups.  The index of the highest array is returned,
1989  * or -1 if we can't find anything.
1990  *
1991  * We check to make sure the array is valid by comparing the
1992  * generation of the latest  root in the array with the generation
1993  * in the super block.  If they don't match we pitch it.
1994  */
1995 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1996 {
1997 	u64 cur;
1998 	int newest_index = -1;
1999 	struct btrfs_root_backup *root_backup;
2000 	int i;
2001 
2002 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2003 		root_backup = info->super_copy->super_roots + i;
2004 		cur = btrfs_backup_tree_root_gen(root_backup);
2005 		if (cur == newest_gen)
2006 			newest_index = i;
2007 	}
2008 
2009 	/* check to see if we actually wrapped around */
2010 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2011 		root_backup = info->super_copy->super_roots;
2012 		cur = btrfs_backup_tree_root_gen(root_backup);
2013 		if (cur == newest_gen)
2014 			newest_index = 0;
2015 	}
2016 	return newest_index;
2017 }
2018 
2019 
2020 /*
2021  * find the oldest backup so we know where to store new entries
2022  * in the backup array.  This will set the backup_root_index
2023  * field in the fs_info struct
2024  */
2025 static void find_oldest_super_backup(struct btrfs_fs_info *info,
2026 				     u64 newest_gen)
2027 {
2028 	int newest_index = -1;
2029 
2030 	newest_index = find_newest_super_backup(info, newest_gen);
2031 	/* if there was garbage in there, just move along */
2032 	if (newest_index == -1) {
2033 		info->backup_root_index = 0;
2034 	} else {
2035 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2036 	}
2037 }
2038 
2039 /*
2040  * copy all the root pointers into the super backup array.
2041  * this will bump the backup pointer by one when it is
2042  * done
2043  */
2044 static void backup_super_roots(struct btrfs_fs_info *info)
2045 {
2046 	int next_backup;
2047 	struct btrfs_root_backup *root_backup;
2048 	int last_backup;
2049 
2050 	next_backup = info->backup_root_index;
2051 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2052 		BTRFS_NUM_BACKUP_ROOTS;
2053 
2054 	/*
2055 	 * just overwrite the last backup if we're at the same generation
2056 	 * this happens only at umount
2057 	 */
2058 	root_backup = info->super_for_commit->super_roots + last_backup;
2059 	if (btrfs_backup_tree_root_gen(root_backup) ==
2060 	    btrfs_header_generation(info->tree_root->node))
2061 		next_backup = last_backup;
2062 
2063 	root_backup = info->super_for_commit->super_roots + next_backup;
2064 
2065 	/*
2066 	 * make sure all of our padding and empty slots get zero filled
2067 	 * regardless of which ones we use today
2068 	 */
2069 	memset(root_backup, 0, sizeof(*root_backup));
2070 
2071 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2072 
2073 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2074 	btrfs_set_backup_tree_root_gen(root_backup,
2075 			       btrfs_header_generation(info->tree_root->node));
2076 
2077 	btrfs_set_backup_tree_root_level(root_backup,
2078 			       btrfs_header_level(info->tree_root->node));
2079 
2080 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2081 	btrfs_set_backup_chunk_root_gen(root_backup,
2082 			       btrfs_header_generation(info->chunk_root->node));
2083 	btrfs_set_backup_chunk_root_level(root_backup,
2084 			       btrfs_header_level(info->chunk_root->node));
2085 
2086 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2087 	btrfs_set_backup_extent_root_gen(root_backup,
2088 			       btrfs_header_generation(info->extent_root->node));
2089 	btrfs_set_backup_extent_root_level(root_backup,
2090 			       btrfs_header_level(info->extent_root->node));
2091 
2092 	/*
2093 	 * we might commit during log recovery, which happens before we set
2094 	 * the fs_root.  Make sure it is valid before we fill it in.
2095 	 */
2096 	if (info->fs_root && info->fs_root->node) {
2097 		btrfs_set_backup_fs_root(root_backup,
2098 					 info->fs_root->node->start);
2099 		btrfs_set_backup_fs_root_gen(root_backup,
2100 			       btrfs_header_generation(info->fs_root->node));
2101 		btrfs_set_backup_fs_root_level(root_backup,
2102 			       btrfs_header_level(info->fs_root->node));
2103 	}
2104 
2105 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2106 	btrfs_set_backup_dev_root_gen(root_backup,
2107 			       btrfs_header_generation(info->dev_root->node));
2108 	btrfs_set_backup_dev_root_level(root_backup,
2109 				       btrfs_header_level(info->dev_root->node));
2110 
2111 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2112 	btrfs_set_backup_csum_root_gen(root_backup,
2113 			       btrfs_header_generation(info->csum_root->node));
2114 	btrfs_set_backup_csum_root_level(root_backup,
2115 			       btrfs_header_level(info->csum_root->node));
2116 
2117 	btrfs_set_backup_total_bytes(root_backup,
2118 			     btrfs_super_total_bytes(info->super_copy));
2119 	btrfs_set_backup_bytes_used(root_backup,
2120 			     btrfs_super_bytes_used(info->super_copy));
2121 	btrfs_set_backup_num_devices(root_backup,
2122 			     btrfs_super_num_devices(info->super_copy));
2123 
2124 	/*
2125 	 * if we don't copy this out to the super_copy, it won't get remembered
2126 	 * for the next commit
2127 	 */
2128 	memcpy(&info->super_copy->super_roots,
2129 	       &info->super_for_commit->super_roots,
2130 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2131 }
2132 
2133 /*
2134  * this copies info out of the root backup array and back into
2135  * the in-memory super block.  It is meant to help iterate through
2136  * the array, so you send it the number of backups you've already
2137  * tried and the last backup index you used.
2138  *
2139  * this returns -1 when it has tried all the backups
2140  */
2141 static noinline int next_root_backup(struct btrfs_fs_info *info,
2142 				     struct btrfs_super_block *super,
2143 				     int *num_backups_tried, int *backup_index)
2144 {
2145 	struct btrfs_root_backup *root_backup;
2146 	int newest = *backup_index;
2147 
2148 	if (*num_backups_tried == 0) {
2149 		u64 gen = btrfs_super_generation(super);
2150 
2151 		newest = find_newest_super_backup(info, gen);
2152 		if (newest == -1)
2153 			return -1;
2154 
2155 		*backup_index = newest;
2156 		*num_backups_tried = 1;
2157 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2158 		/* we've tried all the backups, all done */
2159 		return -1;
2160 	} else {
2161 		/* jump to the next oldest backup */
2162 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2163 			BTRFS_NUM_BACKUP_ROOTS;
2164 		*backup_index = newest;
2165 		*num_backups_tried += 1;
2166 	}
2167 	root_backup = super->super_roots + newest;
2168 
2169 	btrfs_set_super_generation(super,
2170 				   btrfs_backup_tree_root_gen(root_backup));
2171 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2172 	btrfs_set_super_root_level(super,
2173 				   btrfs_backup_tree_root_level(root_backup));
2174 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2175 
2176 	/*
2177 	 * fixme: the total bytes and num_devices need to match or we should
2178 	 * need a fsck
2179 	 */
2180 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2181 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2182 	return 0;
2183 }
2184 
2185 /* helper to cleanup workers */
2186 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2187 {
2188 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2189 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2190 	btrfs_destroy_workqueue(fs_info->workers);
2191 	btrfs_destroy_workqueue(fs_info->endio_workers);
2192 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2193 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2194 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2195 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2196 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2197 	btrfs_destroy_workqueue(fs_info->submit_workers);
2198 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2199 	btrfs_destroy_workqueue(fs_info->caching_workers);
2200 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2201 	btrfs_destroy_workqueue(fs_info->flush_workers);
2202 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2203 	btrfs_destroy_workqueue(fs_info->extent_workers);
2204 	/*
2205 	 * Now that all other work queues are destroyed, we can safely destroy
2206 	 * the queues used for metadata I/O, since tasks from those other work
2207 	 * queues can do metadata I/O operations.
2208 	 */
2209 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2210 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2211 }
2212 
2213 static void free_root_extent_buffers(struct btrfs_root *root)
2214 {
2215 	if (root) {
2216 		free_extent_buffer(root->node);
2217 		free_extent_buffer(root->commit_root);
2218 		root->node = NULL;
2219 		root->commit_root = NULL;
2220 	}
2221 }
2222 
2223 /* helper to cleanup tree roots */
2224 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2225 {
2226 	free_root_extent_buffers(info->tree_root);
2227 
2228 	free_root_extent_buffers(info->dev_root);
2229 	free_root_extent_buffers(info->extent_root);
2230 	free_root_extent_buffers(info->csum_root);
2231 	free_root_extent_buffers(info->quota_root);
2232 	free_root_extent_buffers(info->uuid_root);
2233 	if (chunk_root)
2234 		free_root_extent_buffers(info->chunk_root);
2235 	free_root_extent_buffers(info->free_space_root);
2236 }
2237 
2238 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2239 {
2240 	int ret;
2241 	struct btrfs_root *gang[8];
2242 	int i;
2243 
2244 	while (!list_empty(&fs_info->dead_roots)) {
2245 		gang[0] = list_entry(fs_info->dead_roots.next,
2246 				     struct btrfs_root, root_list);
2247 		list_del(&gang[0]->root_list);
2248 
2249 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2250 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2251 		} else {
2252 			free_extent_buffer(gang[0]->node);
2253 			free_extent_buffer(gang[0]->commit_root);
2254 			btrfs_put_fs_root(gang[0]);
2255 		}
2256 	}
2257 
2258 	while (1) {
2259 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2260 					     (void **)gang, 0,
2261 					     ARRAY_SIZE(gang));
2262 		if (!ret)
2263 			break;
2264 		for (i = 0; i < ret; i++)
2265 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2266 	}
2267 
2268 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2269 		btrfs_free_log_root_tree(NULL, fs_info);
2270 		btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2271 	}
2272 }
2273 
2274 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2275 {
2276 	mutex_init(&fs_info->scrub_lock);
2277 	atomic_set(&fs_info->scrubs_running, 0);
2278 	atomic_set(&fs_info->scrub_pause_req, 0);
2279 	atomic_set(&fs_info->scrubs_paused, 0);
2280 	atomic_set(&fs_info->scrub_cancel_req, 0);
2281 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2282 	fs_info->scrub_workers_refcnt = 0;
2283 }
2284 
2285 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2286 {
2287 	spin_lock_init(&fs_info->balance_lock);
2288 	mutex_init(&fs_info->balance_mutex);
2289 	atomic_set(&fs_info->balance_running, 0);
2290 	atomic_set(&fs_info->balance_pause_req, 0);
2291 	atomic_set(&fs_info->balance_cancel_req, 0);
2292 	fs_info->balance_ctl = NULL;
2293 	init_waitqueue_head(&fs_info->balance_wait_q);
2294 }
2295 
2296 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2297 {
2298 	struct inode *inode = fs_info->btree_inode;
2299 
2300 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2301 	set_nlink(inode, 1);
2302 	/*
2303 	 * we set the i_size on the btree inode to the max possible int.
2304 	 * the real end of the address space is determined by all of
2305 	 * the devices in the system
2306 	 */
2307 	inode->i_size = OFFSET_MAX;
2308 	inode->i_mapping->a_ops = &btree_aops;
2309 
2310 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2311 	extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode->i_mapping);
2312 	BTRFS_I(inode)->io_tree.track_uptodate = 0;
2313 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2314 
2315 	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2316 
2317 	BTRFS_I(inode)->root = fs_info->tree_root;
2318 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2319 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2320 	btrfs_insert_inode_hash(inode);
2321 }
2322 
2323 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2324 {
2325 	fs_info->dev_replace.lock_owner = 0;
2326 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2327 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2328 	rwlock_init(&fs_info->dev_replace.lock);
2329 	atomic_set(&fs_info->dev_replace.read_locks, 0);
2330 	atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2331 	init_waitqueue_head(&fs_info->replace_wait);
2332 	init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2333 }
2334 
2335 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2336 {
2337 	spin_lock_init(&fs_info->qgroup_lock);
2338 	mutex_init(&fs_info->qgroup_ioctl_lock);
2339 	fs_info->qgroup_tree = RB_ROOT;
2340 	fs_info->qgroup_op_tree = RB_ROOT;
2341 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2342 	fs_info->qgroup_seq = 1;
2343 	fs_info->qgroup_ulist = NULL;
2344 	fs_info->qgroup_rescan_running = false;
2345 	mutex_init(&fs_info->qgroup_rescan_lock);
2346 }
2347 
2348 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2349 		struct btrfs_fs_devices *fs_devices)
2350 {
2351 	int max_active = fs_info->thread_pool_size;
2352 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2353 
2354 	fs_info->workers =
2355 		btrfs_alloc_workqueue(fs_info, "worker",
2356 				      flags | WQ_HIGHPRI, max_active, 16);
2357 
2358 	fs_info->delalloc_workers =
2359 		btrfs_alloc_workqueue(fs_info, "delalloc",
2360 				      flags, max_active, 2);
2361 
2362 	fs_info->flush_workers =
2363 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2364 				      flags, max_active, 0);
2365 
2366 	fs_info->caching_workers =
2367 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2368 
2369 	/*
2370 	 * a higher idle thresh on the submit workers makes it much more
2371 	 * likely that bios will be send down in a sane order to the
2372 	 * devices
2373 	 */
2374 	fs_info->submit_workers =
2375 		btrfs_alloc_workqueue(fs_info, "submit", flags,
2376 				      min_t(u64, fs_devices->num_devices,
2377 					    max_active), 64);
2378 
2379 	fs_info->fixup_workers =
2380 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2381 
2382 	/*
2383 	 * endios are largely parallel and should have a very
2384 	 * low idle thresh
2385 	 */
2386 	fs_info->endio_workers =
2387 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2388 	fs_info->endio_meta_workers =
2389 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2390 				      max_active, 4);
2391 	fs_info->endio_meta_write_workers =
2392 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2393 				      max_active, 2);
2394 	fs_info->endio_raid56_workers =
2395 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2396 				      max_active, 4);
2397 	fs_info->endio_repair_workers =
2398 		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2399 	fs_info->rmw_workers =
2400 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2401 	fs_info->endio_write_workers =
2402 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2403 				      max_active, 2);
2404 	fs_info->endio_freespace_worker =
2405 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2406 				      max_active, 0);
2407 	fs_info->delayed_workers =
2408 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2409 				      max_active, 0);
2410 	fs_info->readahead_workers =
2411 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2412 				      max_active, 2);
2413 	fs_info->qgroup_rescan_workers =
2414 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2415 	fs_info->extent_workers =
2416 		btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2417 				      min_t(u64, fs_devices->num_devices,
2418 					    max_active), 8);
2419 
2420 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2421 	      fs_info->submit_workers && fs_info->flush_workers &&
2422 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2423 	      fs_info->endio_meta_write_workers &&
2424 	      fs_info->endio_repair_workers &&
2425 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2426 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2427 	      fs_info->caching_workers && fs_info->readahead_workers &&
2428 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2429 	      fs_info->extent_workers &&
2430 	      fs_info->qgroup_rescan_workers)) {
2431 		return -ENOMEM;
2432 	}
2433 
2434 	return 0;
2435 }
2436 
2437 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2438 			    struct btrfs_fs_devices *fs_devices)
2439 {
2440 	int ret;
2441 	struct btrfs_root *log_tree_root;
2442 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2443 	u64 bytenr = btrfs_super_log_root(disk_super);
2444 
2445 	if (fs_devices->rw_devices == 0) {
2446 		btrfs_warn(fs_info, "log replay required on RO media");
2447 		return -EIO;
2448 	}
2449 
2450 	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2451 	if (!log_tree_root)
2452 		return -ENOMEM;
2453 
2454 	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2455 
2456 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2457 					      fs_info->generation + 1);
2458 	if (IS_ERR(log_tree_root->node)) {
2459 		btrfs_warn(fs_info, "failed to read log tree");
2460 		ret = PTR_ERR(log_tree_root->node);
2461 		kfree(log_tree_root);
2462 		return ret;
2463 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2464 		btrfs_err(fs_info, "failed to read log tree");
2465 		free_extent_buffer(log_tree_root->node);
2466 		kfree(log_tree_root);
2467 		return -EIO;
2468 	}
2469 	/* returns with log_tree_root freed on success */
2470 	ret = btrfs_recover_log_trees(log_tree_root);
2471 	if (ret) {
2472 		btrfs_handle_fs_error(fs_info, ret,
2473 				      "Failed to recover log tree");
2474 		free_extent_buffer(log_tree_root->node);
2475 		kfree(log_tree_root);
2476 		return ret;
2477 	}
2478 
2479 	if (fs_info->sb->s_flags & MS_RDONLY) {
2480 		ret = btrfs_commit_super(fs_info);
2481 		if (ret)
2482 			return ret;
2483 	}
2484 
2485 	return 0;
2486 }
2487 
2488 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2489 {
2490 	struct btrfs_root *tree_root = fs_info->tree_root;
2491 	struct btrfs_root *root;
2492 	struct btrfs_key location;
2493 	int ret;
2494 
2495 	BUG_ON(!fs_info->tree_root);
2496 
2497 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2498 	location.type = BTRFS_ROOT_ITEM_KEY;
2499 	location.offset = 0;
2500 
2501 	root = btrfs_read_tree_root(tree_root, &location);
2502 	if (IS_ERR(root))
2503 		return PTR_ERR(root);
2504 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2505 	fs_info->extent_root = root;
2506 
2507 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2508 	root = btrfs_read_tree_root(tree_root, &location);
2509 	if (IS_ERR(root))
2510 		return PTR_ERR(root);
2511 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2512 	fs_info->dev_root = root;
2513 	btrfs_init_devices_late(fs_info);
2514 
2515 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2516 	root = btrfs_read_tree_root(tree_root, &location);
2517 	if (IS_ERR(root))
2518 		return PTR_ERR(root);
2519 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2520 	fs_info->csum_root = root;
2521 
2522 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2523 	root = btrfs_read_tree_root(tree_root, &location);
2524 	if (!IS_ERR(root)) {
2525 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2526 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2527 		fs_info->quota_root = root;
2528 	}
2529 
2530 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2531 	root = btrfs_read_tree_root(tree_root, &location);
2532 	if (IS_ERR(root)) {
2533 		ret = PTR_ERR(root);
2534 		if (ret != -ENOENT)
2535 			return ret;
2536 	} else {
2537 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2538 		fs_info->uuid_root = root;
2539 	}
2540 
2541 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2542 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2543 		root = btrfs_read_tree_root(tree_root, &location);
2544 		if (IS_ERR(root))
2545 			return PTR_ERR(root);
2546 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2547 		fs_info->free_space_root = root;
2548 	}
2549 
2550 	return 0;
2551 }
2552 
2553 int open_ctree(struct super_block *sb,
2554 	       struct btrfs_fs_devices *fs_devices,
2555 	       char *options)
2556 {
2557 	u32 sectorsize;
2558 	u32 nodesize;
2559 	u32 stripesize;
2560 	u64 generation;
2561 	u64 features;
2562 	struct btrfs_key location;
2563 	struct buffer_head *bh;
2564 	struct btrfs_super_block *disk_super;
2565 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2566 	struct btrfs_root *tree_root;
2567 	struct btrfs_root *chunk_root;
2568 	int ret;
2569 	int err = -EINVAL;
2570 	int num_backups_tried = 0;
2571 	int backup_index = 0;
2572 	int max_active;
2573 	int clear_free_space_tree = 0;
2574 
2575 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2576 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2577 	if (!tree_root || !chunk_root) {
2578 		err = -ENOMEM;
2579 		goto fail;
2580 	}
2581 
2582 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2583 	if (ret) {
2584 		err = ret;
2585 		goto fail;
2586 	}
2587 
2588 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2589 	if (ret) {
2590 		err = ret;
2591 		goto fail_srcu;
2592 	}
2593 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2594 					(1 + ilog2(nr_cpu_ids));
2595 
2596 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2597 	if (ret) {
2598 		err = ret;
2599 		goto fail_dirty_metadata_bytes;
2600 	}
2601 
2602 	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2603 	if (ret) {
2604 		err = ret;
2605 		goto fail_delalloc_bytes;
2606 	}
2607 
2608 	fs_info->btree_inode = new_inode(sb);
2609 	if (!fs_info->btree_inode) {
2610 		err = -ENOMEM;
2611 		goto fail_bio_counter;
2612 	}
2613 
2614 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2615 
2616 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2617 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2618 	INIT_LIST_HEAD(&fs_info->trans_list);
2619 	INIT_LIST_HEAD(&fs_info->dead_roots);
2620 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2621 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2622 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2623 	spin_lock_init(&fs_info->delalloc_root_lock);
2624 	spin_lock_init(&fs_info->trans_lock);
2625 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2626 	spin_lock_init(&fs_info->delayed_iput_lock);
2627 	spin_lock_init(&fs_info->defrag_inodes_lock);
2628 	spin_lock_init(&fs_info->free_chunk_lock);
2629 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2630 	spin_lock_init(&fs_info->super_lock);
2631 	spin_lock_init(&fs_info->qgroup_op_lock);
2632 	spin_lock_init(&fs_info->buffer_lock);
2633 	spin_lock_init(&fs_info->unused_bgs_lock);
2634 	rwlock_init(&fs_info->tree_mod_log_lock);
2635 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2636 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2637 	mutex_init(&fs_info->reloc_mutex);
2638 	mutex_init(&fs_info->delalloc_root_mutex);
2639 	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2640 	seqlock_init(&fs_info->profiles_lock);
2641 
2642 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2643 	INIT_LIST_HEAD(&fs_info->space_info);
2644 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2645 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2646 	btrfs_mapping_init(&fs_info->mapping_tree);
2647 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2648 			     BTRFS_BLOCK_RSV_GLOBAL);
2649 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2650 			     BTRFS_BLOCK_RSV_DELALLOC);
2651 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2652 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2653 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2654 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2655 			     BTRFS_BLOCK_RSV_DELOPS);
2656 	atomic_set(&fs_info->nr_async_submits, 0);
2657 	atomic_set(&fs_info->async_delalloc_pages, 0);
2658 	atomic_set(&fs_info->async_submit_draining, 0);
2659 	atomic_set(&fs_info->nr_async_bios, 0);
2660 	atomic_set(&fs_info->defrag_running, 0);
2661 	atomic_set(&fs_info->qgroup_op_seq, 0);
2662 	atomic_set(&fs_info->reada_works_cnt, 0);
2663 	atomic64_set(&fs_info->tree_mod_seq, 0);
2664 	fs_info->fs_frozen = 0;
2665 	fs_info->sb = sb;
2666 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2667 	fs_info->metadata_ratio = 0;
2668 	fs_info->defrag_inodes = RB_ROOT;
2669 	fs_info->free_chunk_space = 0;
2670 	fs_info->tree_mod_log = RB_ROOT;
2671 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2672 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2673 	/* readahead state */
2674 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2675 	spin_lock_init(&fs_info->reada_lock);
2676 
2677 	fs_info->thread_pool_size = min_t(unsigned long,
2678 					  num_online_cpus() + 2, 8);
2679 
2680 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2681 	spin_lock_init(&fs_info->ordered_root_lock);
2682 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2683 					GFP_KERNEL);
2684 	if (!fs_info->delayed_root) {
2685 		err = -ENOMEM;
2686 		goto fail_iput;
2687 	}
2688 	btrfs_init_delayed_root(fs_info->delayed_root);
2689 
2690 	btrfs_init_scrub(fs_info);
2691 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2692 	fs_info->check_integrity_print_mask = 0;
2693 #endif
2694 	btrfs_init_balance(fs_info);
2695 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2696 
2697 	sb->s_blocksize = 4096;
2698 	sb->s_blocksize_bits = blksize_bits(4096);
2699 
2700 	btrfs_init_btree_inode(fs_info);
2701 
2702 	spin_lock_init(&fs_info->block_group_cache_lock);
2703 	fs_info->block_group_cache_tree = RB_ROOT;
2704 	fs_info->first_logical_byte = (u64)-1;
2705 
2706 	extent_io_tree_init(&fs_info->freed_extents[0],
2707 			     fs_info->btree_inode->i_mapping);
2708 	extent_io_tree_init(&fs_info->freed_extents[1],
2709 			     fs_info->btree_inode->i_mapping);
2710 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2711 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2712 
2713 	mutex_init(&fs_info->ordered_operations_mutex);
2714 	mutex_init(&fs_info->tree_log_mutex);
2715 	mutex_init(&fs_info->chunk_mutex);
2716 	mutex_init(&fs_info->transaction_kthread_mutex);
2717 	mutex_init(&fs_info->cleaner_mutex);
2718 	mutex_init(&fs_info->volume_mutex);
2719 	mutex_init(&fs_info->ro_block_group_mutex);
2720 	init_rwsem(&fs_info->commit_root_sem);
2721 	init_rwsem(&fs_info->cleanup_work_sem);
2722 	init_rwsem(&fs_info->subvol_sem);
2723 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2724 
2725 	btrfs_init_dev_replace_locks(fs_info);
2726 	btrfs_init_qgroup(fs_info);
2727 
2728 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2729 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2730 
2731 	init_waitqueue_head(&fs_info->transaction_throttle);
2732 	init_waitqueue_head(&fs_info->transaction_wait);
2733 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2734 	init_waitqueue_head(&fs_info->async_submit_wait);
2735 
2736 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2737 
2738 	/* Usable values until the real ones are cached from the superblock */
2739 	fs_info->nodesize = 4096;
2740 	fs_info->sectorsize = 4096;
2741 	fs_info->stripesize = 4096;
2742 
2743 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2744 	if (ret) {
2745 		err = ret;
2746 		goto fail_alloc;
2747 	}
2748 
2749 	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2750 
2751 	invalidate_bdev(fs_devices->latest_bdev);
2752 
2753 	/*
2754 	 * Read super block and check the signature bytes only
2755 	 */
2756 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2757 	if (IS_ERR(bh)) {
2758 		err = PTR_ERR(bh);
2759 		goto fail_alloc;
2760 	}
2761 
2762 	/*
2763 	 * We want to check superblock checksum, the type is stored inside.
2764 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2765 	 */
2766 	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2767 		btrfs_err(fs_info, "superblock checksum mismatch");
2768 		err = -EINVAL;
2769 		brelse(bh);
2770 		goto fail_alloc;
2771 	}
2772 
2773 	/*
2774 	 * super_copy is zeroed at allocation time and we never touch the
2775 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2776 	 * the whole block of INFO_SIZE
2777 	 */
2778 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2779 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2780 	       sizeof(*fs_info->super_for_commit));
2781 	brelse(bh);
2782 
2783 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2784 
2785 	ret = btrfs_check_super_valid(fs_info);
2786 	if (ret) {
2787 		btrfs_err(fs_info, "superblock contains fatal errors");
2788 		err = -EINVAL;
2789 		goto fail_alloc;
2790 	}
2791 
2792 	disk_super = fs_info->super_copy;
2793 	if (!btrfs_super_root(disk_super))
2794 		goto fail_alloc;
2795 
2796 	/* check FS state, whether FS is broken. */
2797 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2798 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2799 
2800 	/*
2801 	 * run through our array of backup supers and setup
2802 	 * our ring pointer to the oldest one
2803 	 */
2804 	generation = btrfs_super_generation(disk_super);
2805 	find_oldest_super_backup(fs_info, generation);
2806 
2807 	/*
2808 	 * In the long term, we'll store the compression type in the super
2809 	 * block, and it'll be used for per file compression control.
2810 	 */
2811 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2812 
2813 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2814 	if (ret) {
2815 		err = ret;
2816 		goto fail_alloc;
2817 	}
2818 
2819 	features = btrfs_super_incompat_flags(disk_super) &
2820 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2821 	if (features) {
2822 		btrfs_err(fs_info,
2823 		    "cannot mount because of unsupported optional features (%llx)",
2824 		    features);
2825 		err = -EINVAL;
2826 		goto fail_alloc;
2827 	}
2828 
2829 	features = btrfs_super_incompat_flags(disk_super);
2830 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2831 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2832 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2833 
2834 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2835 		btrfs_info(fs_info, "has skinny extents");
2836 
2837 	/*
2838 	 * flag our filesystem as having big metadata blocks if
2839 	 * they are bigger than the page size
2840 	 */
2841 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2842 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2843 			btrfs_info(fs_info,
2844 				"flagging fs with big metadata feature");
2845 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2846 	}
2847 
2848 	nodesize = btrfs_super_nodesize(disk_super);
2849 	sectorsize = btrfs_super_sectorsize(disk_super);
2850 	stripesize = sectorsize;
2851 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2852 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2853 
2854 	/* Cache block sizes */
2855 	fs_info->nodesize = nodesize;
2856 	fs_info->sectorsize = sectorsize;
2857 	fs_info->stripesize = stripesize;
2858 
2859 	/*
2860 	 * mixed block groups end up with duplicate but slightly offset
2861 	 * extent buffers for the same range.  It leads to corruptions
2862 	 */
2863 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2864 	    (sectorsize != nodesize)) {
2865 		btrfs_err(fs_info,
2866 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2867 			nodesize, sectorsize);
2868 		goto fail_alloc;
2869 	}
2870 
2871 	/*
2872 	 * Needn't use the lock because there is no other task which will
2873 	 * update the flag.
2874 	 */
2875 	btrfs_set_super_incompat_flags(disk_super, features);
2876 
2877 	features = btrfs_super_compat_ro_flags(disk_super) &
2878 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2879 	if (!(sb->s_flags & MS_RDONLY) && features) {
2880 		btrfs_err(fs_info,
2881 	"cannot mount read-write because of unsupported optional features (%llx)",
2882 		       features);
2883 		err = -EINVAL;
2884 		goto fail_alloc;
2885 	}
2886 
2887 	max_active = fs_info->thread_pool_size;
2888 
2889 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2890 	if (ret) {
2891 		err = ret;
2892 		goto fail_sb_buffer;
2893 	}
2894 
2895 	sb->s_bdi->congested_fn = btrfs_congested_fn;
2896 	sb->s_bdi->congested_data = fs_info;
2897 	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2898 	sb->s_bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
2899 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2900 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2901 
2902 	sb->s_blocksize = sectorsize;
2903 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2904 
2905 	mutex_lock(&fs_info->chunk_mutex);
2906 	ret = btrfs_read_sys_array(fs_info);
2907 	mutex_unlock(&fs_info->chunk_mutex);
2908 	if (ret) {
2909 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
2910 		goto fail_sb_buffer;
2911 	}
2912 
2913 	generation = btrfs_super_chunk_root_generation(disk_super);
2914 
2915 	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2916 
2917 	chunk_root->node = read_tree_block(fs_info,
2918 					   btrfs_super_chunk_root(disk_super),
2919 					   generation);
2920 	if (IS_ERR(chunk_root->node) ||
2921 	    !extent_buffer_uptodate(chunk_root->node)) {
2922 		btrfs_err(fs_info, "failed to read chunk root");
2923 		if (!IS_ERR(chunk_root->node))
2924 			free_extent_buffer(chunk_root->node);
2925 		chunk_root->node = NULL;
2926 		goto fail_tree_roots;
2927 	}
2928 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2929 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2930 
2931 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2932 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2933 
2934 	ret = btrfs_read_chunk_tree(fs_info);
2935 	if (ret) {
2936 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2937 		goto fail_tree_roots;
2938 	}
2939 
2940 	/*
2941 	 * keep the device that is marked to be the target device for the
2942 	 * dev_replace procedure
2943 	 */
2944 	btrfs_close_extra_devices(fs_devices, 0);
2945 
2946 	if (!fs_devices->latest_bdev) {
2947 		btrfs_err(fs_info, "failed to read devices");
2948 		goto fail_tree_roots;
2949 	}
2950 
2951 retry_root_backup:
2952 	generation = btrfs_super_generation(disk_super);
2953 
2954 	tree_root->node = read_tree_block(fs_info,
2955 					  btrfs_super_root(disk_super),
2956 					  generation);
2957 	if (IS_ERR(tree_root->node) ||
2958 	    !extent_buffer_uptodate(tree_root->node)) {
2959 		btrfs_warn(fs_info, "failed to read tree root");
2960 		if (!IS_ERR(tree_root->node))
2961 			free_extent_buffer(tree_root->node);
2962 		tree_root->node = NULL;
2963 		goto recovery_tree_root;
2964 	}
2965 
2966 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2967 	tree_root->commit_root = btrfs_root_node(tree_root);
2968 	btrfs_set_root_refs(&tree_root->root_item, 1);
2969 
2970 	mutex_lock(&tree_root->objectid_mutex);
2971 	ret = btrfs_find_highest_objectid(tree_root,
2972 					&tree_root->highest_objectid);
2973 	if (ret) {
2974 		mutex_unlock(&tree_root->objectid_mutex);
2975 		goto recovery_tree_root;
2976 	}
2977 
2978 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2979 
2980 	mutex_unlock(&tree_root->objectid_mutex);
2981 
2982 	ret = btrfs_read_roots(fs_info);
2983 	if (ret)
2984 		goto recovery_tree_root;
2985 
2986 	fs_info->generation = generation;
2987 	fs_info->last_trans_committed = generation;
2988 
2989 	ret = btrfs_recover_balance(fs_info);
2990 	if (ret) {
2991 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
2992 		goto fail_block_groups;
2993 	}
2994 
2995 	ret = btrfs_init_dev_stats(fs_info);
2996 	if (ret) {
2997 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2998 		goto fail_block_groups;
2999 	}
3000 
3001 	ret = btrfs_init_dev_replace(fs_info);
3002 	if (ret) {
3003 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3004 		goto fail_block_groups;
3005 	}
3006 
3007 	btrfs_close_extra_devices(fs_devices, 1);
3008 
3009 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3010 	if (ret) {
3011 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3012 				ret);
3013 		goto fail_block_groups;
3014 	}
3015 
3016 	ret = btrfs_sysfs_add_device(fs_devices);
3017 	if (ret) {
3018 		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3019 				ret);
3020 		goto fail_fsdev_sysfs;
3021 	}
3022 
3023 	ret = btrfs_sysfs_add_mounted(fs_info);
3024 	if (ret) {
3025 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3026 		goto fail_fsdev_sysfs;
3027 	}
3028 
3029 	ret = btrfs_init_space_info(fs_info);
3030 	if (ret) {
3031 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3032 		goto fail_sysfs;
3033 	}
3034 
3035 	ret = btrfs_read_block_groups(fs_info);
3036 	if (ret) {
3037 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3038 		goto fail_sysfs;
3039 	}
3040 	fs_info->num_tolerated_disk_barrier_failures =
3041 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3042 	if (fs_info->fs_devices->missing_devices >
3043 	     fs_info->num_tolerated_disk_barrier_failures &&
3044 	    !(sb->s_flags & MS_RDONLY)) {
3045 		btrfs_warn(fs_info,
3046 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3047 			fs_info->fs_devices->missing_devices,
3048 			fs_info->num_tolerated_disk_barrier_failures);
3049 		goto fail_sysfs;
3050 	}
3051 
3052 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3053 					       "btrfs-cleaner");
3054 	if (IS_ERR(fs_info->cleaner_kthread))
3055 		goto fail_sysfs;
3056 
3057 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3058 						   tree_root,
3059 						   "btrfs-transaction");
3060 	if (IS_ERR(fs_info->transaction_kthread))
3061 		goto fail_cleaner;
3062 
3063 	if (!btrfs_test_opt(fs_info, SSD) &&
3064 	    !btrfs_test_opt(fs_info, NOSSD) &&
3065 	    !fs_info->fs_devices->rotating) {
3066 		btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3067 		btrfs_set_opt(fs_info->mount_opt, SSD);
3068 	}
3069 
3070 	/*
3071 	 * Mount does not set all options immediately, we can do it now and do
3072 	 * not have to wait for transaction commit
3073 	 */
3074 	btrfs_apply_pending_changes(fs_info);
3075 
3076 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3077 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3078 		ret = btrfsic_mount(fs_info, fs_devices,
3079 				    btrfs_test_opt(fs_info,
3080 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3081 				    1 : 0,
3082 				    fs_info->check_integrity_print_mask);
3083 		if (ret)
3084 			btrfs_warn(fs_info,
3085 				"failed to initialize integrity check module: %d",
3086 				ret);
3087 	}
3088 #endif
3089 	ret = btrfs_read_qgroup_config(fs_info);
3090 	if (ret)
3091 		goto fail_trans_kthread;
3092 
3093 	/* do not make disk changes in broken FS or nologreplay is given */
3094 	if (btrfs_super_log_root(disk_super) != 0 &&
3095 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3096 		ret = btrfs_replay_log(fs_info, fs_devices);
3097 		if (ret) {
3098 			err = ret;
3099 			goto fail_qgroup;
3100 		}
3101 	}
3102 
3103 	ret = btrfs_find_orphan_roots(fs_info);
3104 	if (ret)
3105 		goto fail_qgroup;
3106 
3107 	if (!(sb->s_flags & MS_RDONLY)) {
3108 		ret = btrfs_cleanup_fs_roots(fs_info);
3109 		if (ret)
3110 			goto fail_qgroup;
3111 
3112 		mutex_lock(&fs_info->cleaner_mutex);
3113 		ret = btrfs_recover_relocation(tree_root);
3114 		mutex_unlock(&fs_info->cleaner_mutex);
3115 		if (ret < 0) {
3116 			btrfs_warn(fs_info, "failed to recover relocation: %d",
3117 					ret);
3118 			err = -EINVAL;
3119 			goto fail_qgroup;
3120 		}
3121 	}
3122 
3123 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3124 	location.type = BTRFS_ROOT_ITEM_KEY;
3125 	location.offset = 0;
3126 
3127 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3128 	if (IS_ERR(fs_info->fs_root)) {
3129 		err = PTR_ERR(fs_info->fs_root);
3130 		goto fail_qgroup;
3131 	}
3132 
3133 	if (sb->s_flags & MS_RDONLY)
3134 		return 0;
3135 
3136 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3137 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3138 		clear_free_space_tree = 1;
3139 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3140 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3141 		btrfs_warn(fs_info, "free space tree is invalid");
3142 		clear_free_space_tree = 1;
3143 	}
3144 
3145 	if (clear_free_space_tree) {
3146 		btrfs_info(fs_info, "clearing free space tree");
3147 		ret = btrfs_clear_free_space_tree(fs_info);
3148 		if (ret) {
3149 			btrfs_warn(fs_info,
3150 				   "failed to clear free space tree: %d", ret);
3151 			close_ctree(fs_info);
3152 			return ret;
3153 		}
3154 	}
3155 
3156 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3157 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3158 		btrfs_info(fs_info, "creating free space tree");
3159 		ret = btrfs_create_free_space_tree(fs_info);
3160 		if (ret) {
3161 			btrfs_warn(fs_info,
3162 				"failed to create free space tree: %d", ret);
3163 			close_ctree(fs_info);
3164 			return ret;
3165 		}
3166 	}
3167 
3168 	down_read(&fs_info->cleanup_work_sem);
3169 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3170 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3171 		up_read(&fs_info->cleanup_work_sem);
3172 		close_ctree(fs_info);
3173 		return ret;
3174 	}
3175 	up_read(&fs_info->cleanup_work_sem);
3176 
3177 	ret = btrfs_resume_balance_async(fs_info);
3178 	if (ret) {
3179 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3180 		close_ctree(fs_info);
3181 		return ret;
3182 	}
3183 
3184 	ret = btrfs_resume_dev_replace_async(fs_info);
3185 	if (ret) {
3186 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3187 		close_ctree(fs_info);
3188 		return ret;
3189 	}
3190 
3191 	btrfs_qgroup_rescan_resume(fs_info);
3192 
3193 	if (!fs_info->uuid_root) {
3194 		btrfs_info(fs_info, "creating UUID tree");
3195 		ret = btrfs_create_uuid_tree(fs_info);
3196 		if (ret) {
3197 			btrfs_warn(fs_info,
3198 				"failed to create the UUID tree: %d", ret);
3199 			close_ctree(fs_info);
3200 			return ret;
3201 		}
3202 	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3203 		   fs_info->generation !=
3204 				btrfs_super_uuid_tree_generation(disk_super)) {
3205 		btrfs_info(fs_info, "checking UUID tree");
3206 		ret = btrfs_check_uuid_tree(fs_info);
3207 		if (ret) {
3208 			btrfs_warn(fs_info,
3209 				"failed to check the UUID tree: %d", ret);
3210 			close_ctree(fs_info);
3211 			return ret;
3212 		}
3213 	} else {
3214 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3215 	}
3216 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3217 
3218 	/*
3219 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3220 	 * no need to keep the flag
3221 	 */
3222 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3223 
3224 	return 0;
3225 
3226 fail_qgroup:
3227 	btrfs_free_qgroup_config(fs_info);
3228 fail_trans_kthread:
3229 	kthread_stop(fs_info->transaction_kthread);
3230 	btrfs_cleanup_transaction(fs_info);
3231 	btrfs_free_fs_roots(fs_info);
3232 fail_cleaner:
3233 	kthread_stop(fs_info->cleaner_kthread);
3234 
3235 	/*
3236 	 * make sure we're done with the btree inode before we stop our
3237 	 * kthreads
3238 	 */
3239 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3240 
3241 fail_sysfs:
3242 	btrfs_sysfs_remove_mounted(fs_info);
3243 
3244 fail_fsdev_sysfs:
3245 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3246 
3247 fail_block_groups:
3248 	btrfs_put_block_group_cache(fs_info);
3249 
3250 fail_tree_roots:
3251 	free_root_pointers(fs_info, 1);
3252 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3253 
3254 fail_sb_buffer:
3255 	btrfs_stop_all_workers(fs_info);
3256 	btrfs_free_block_groups(fs_info);
3257 fail_alloc:
3258 fail_iput:
3259 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3260 
3261 	iput(fs_info->btree_inode);
3262 fail_bio_counter:
3263 	percpu_counter_destroy(&fs_info->bio_counter);
3264 fail_delalloc_bytes:
3265 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3266 fail_dirty_metadata_bytes:
3267 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3268 fail_srcu:
3269 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3270 fail:
3271 	btrfs_free_stripe_hash_table(fs_info);
3272 	btrfs_close_devices(fs_info->fs_devices);
3273 	return err;
3274 
3275 recovery_tree_root:
3276 	if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3277 		goto fail_tree_roots;
3278 
3279 	free_root_pointers(fs_info, 0);
3280 
3281 	/* don't use the log in recovery mode, it won't be valid */
3282 	btrfs_set_super_log_root(disk_super, 0);
3283 
3284 	/* we can't trust the free space cache either */
3285 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3286 
3287 	ret = next_root_backup(fs_info, fs_info->super_copy,
3288 			       &num_backups_tried, &backup_index);
3289 	if (ret == -1)
3290 		goto fail_block_groups;
3291 	goto retry_root_backup;
3292 }
3293 
3294 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3295 {
3296 	if (uptodate) {
3297 		set_buffer_uptodate(bh);
3298 	} else {
3299 		struct btrfs_device *device = (struct btrfs_device *)
3300 			bh->b_private;
3301 
3302 		btrfs_warn_rl_in_rcu(device->fs_info,
3303 				"lost page write due to IO error on %s",
3304 					  rcu_str_deref(device->name));
3305 		/* note, we don't set_buffer_write_io_error because we have
3306 		 * our own ways of dealing with the IO errors
3307 		 */
3308 		clear_buffer_uptodate(bh);
3309 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3310 	}
3311 	unlock_buffer(bh);
3312 	put_bh(bh);
3313 }
3314 
3315 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3316 			struct buffer_head **bh_ret)
3317 {
3318 	struct buffer_head *bh;
3319 	struct btrfs_super_block *super;
3320 	u64 bytenr;
3321 
3322 	bytenr = btrfs_sb_offset(copy_num);
3323 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3324 		return -EINVAL;
3325 
3326 	bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3327 	/*
3328 	 * If we fail to read from the underlying devices, as of now
3329 	 * the best option we have is to mark it EIO.
3330 	 */
3331 	if (!bh)
3332 		return -EIO;
3333 
3334 	super = (struct btrfs_super_block *)bh->b_data;
3335 	if (btrfs_super_bytenr(super) != bytenr ||
3336 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3337 		brelse(bh);
3338 		return -EINVAL;
3339 	}
3340 
3341 	*bh_ret = bh;
3342 	return 0;
3343 }
3344 
3345 
3346 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3347 {
3348 	struct buffer_head *bh;
3349 	struct buffer_head *latest = NULL;
3350 	struct btrfs_super_block *super;
3351 	int i;
3352 	u64 transid = 0;
3353 	int ret = -EINVAL;
3354 
3355 	/* we would like to check all the supers, but that would make
3356 	 * a btrfs mount succeed after a mkfs from a different FS.
3357 	 * So, we need to add a special mount option to scan for
3358 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3359 	 */
3360 	for (i = 0; i < 1; i++) {
3361 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3362 		if (ret)
3363 			continue;
3364 
3365 		super = (struct btrfs_super_block *)bh->b_data;
3366 
3367 		if (!latest || btrfs_super_generation(super) > transid) {
3368 			brelse(latest);
3369 			latest = bh;
3370 			transid = btrfs_super_generation(super);
3371 		} else {
3372 			brelse(bh);
3373 		}
3374 	}
3375 
3376 	if (!latest)
3377 		return ERR_PTR(ret);
3378 
3379 	return latest;
3380 }
3381 
3382 /*
3383  * this should be called twice, once with wait == 0 and
3384  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3385  * we write are pinned.
3386  *
3387  * They are released when wait == 1 is done.
3388  * max_mirrors must be the same for both runs, and it indicates how
3389  * many supers on this one device should be written.
3390  *
3391  * max_mirrors == 0 means to write them all.
3392  */
3393 static int write_dev_supers(struct btrfs_device *device,
3394 			    struct btrfs_super_block *sb,
3395 			    int wait, int max_mirrors)
3396 {
3397 	struct buffer_head *bh;
3398 	int i;
3399 	int ret;
3400 	int errors = 0;
3401 	u32 crc;
3402 	u64 bytenr;
3403 
3404 	if (max_mirrors == 0)
3405 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3406 
3407 	for (i = 0; i < max_mirrors; i++) {
3408 		bytenr = btrfs_sb_offset(i);
3409 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3410 		    device->commit_total_bytes)
3411 			break;
3412 
3413 		if (wait) {
3414 			bh = __find_get_block(device->bdev, bytenr / 4096,
3415 					      BTRFS_SUPER_INFO_SIZE);
3416 			if (!bh) {
3417 				errors++;
3418 				continue;
3419 			}
3420 			wait_on_buffer(bh);
3421 			if (!buffer_uptodate(bh))
3422 				errors++;
3423 
3424 			/* drop our reference */
3425 			brelse(bh);
3426 
3427 			/* drop the reference from the wait == 0 run */
3428 			brelse(bh);
3429 			continue;
3430 		} else {
3431 			btrfs_set_super_bytenr(sb, bytenr);
3432 
3433 			crc = ~(u32)0;
3434 			crc = btrfs_csum_data((const char *)sb +
3435 					      BTRFS_CSUM_SIZE, crc,
3436 					      BTRFS_SUPER_INFO_SIZE -
3437 					      BTRFS_CSUM_SIZE);
3438 			btrfs_csum_final(crc, sb->csum);
3439 
3440 			/*
3441 			 * one reference for us, and we leave it for the
3442 			 * caller
3443 			 */
3444 			bh = __getblk(device->bdev, bytenr / 4096,
3445 				      BTRFS_SUPER_INFO_SIZE);
3446 			if (!bh) {
3447 				btrfs_err(device->fs_info,
3448 				    "couldn't get super buffer head for bytenr %llu",
3449 				    bytenr);
3450 				errors++;
3451 				continue;
3452 			}
3453 
3454 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3455 
3456 			/* one reference for submit_bh */
3457 			get_bh(bh);
3458 
3459 			set_buffer_uptodate(bh);
3460 			lock_buffer(bh);
3461 			bh->b_end_io = btrfs_end_buffer_write_sync;
3462 			bh->b_private = device;
3463 		}
3464 
3465 		/*
3466 		 * we fua the first super.  The others we allow
3467 		 * to go down lazy.
3468 		 */
3469 		if (i == 0) {
3470 			ret = btrfsic_submit_bh(REQ_OP_WRITE,
3471 						REQ_SYNC | REQ_FUA, bh);
3472 		} else {
3473 			ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_SYNC, bh);
3474 		}
3475 		if (ret)
3476 			errors++;
3477 	}
3478 	return errors < i ? 0 : -1;
3479 }
3480 
3481 /*
3482  * endio for the write_dev_flush, this will wake anyone waiting
3483  * for the barrier when it is done
3484  */
3485 static void btrfs_end_empty_barrier(struct bio *bio)
3486 {
3487 	if (bio->bi_private)
3488 		complete(bio->bi_private);
3489 	bio_put(bio);
3490 }
3491 
3492 /*
3493  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3494  * sent down.  With wait == 1, it waits for the previous flush.
3495  *
3496  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3497  * capable
3498  */
3499 static blk_status_t write_dev_flush(struct btrfs_device *device, int wait)
3500 {
3501 	struct request_queue *q = bdev_get_queue(device->bdev);
3502 	struct bio *bio;
3503 	blk_status_t ret = 0;
3504 
3505 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3506 		return 0;
3507 
3508 	if (wait) {
3509 		bio = device->flush_bio;
3510 		if (!bio)
3511 			return 0;
3512 
3513 		wait_for_completion(&device->flush_wait);
3514 
3515 		if (bio->bi_status) {
3516 			ret = bio->bi_status;
3517 			btrfs_dev_stat_inc_and_print(device,
3518 				BTRFS_DEV_STAT_FLUSH_ERRS);
3519 		}
3520 
3521 		/* drop the reference from the wait == 0 run */
3522 		bio_put(bio);
3523 		device->flush_bio = NULL;
3524 
3525 		return ret;
3526 	}
3527 
3528 	/*
3529 	 * one reference for us, and we leave it for the
3530 	 * caller
3531 	 */
3532 	device->flush_bio = NULL;
3533 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3534 	if (!bio)
3535 		return BLK_STS_RESOURCE;
3536 
3537 	bio->bi_end_io = btrfs_end_empty_barrier;
3538 	bio->bi_bdev = device->bdev;
3539 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3540 	init_completion(&device->flush_wait);
3541 	bio->bi_private = &device->flush_wait;
3542 	device->flush_bio = bio;
3543 
3544 	bio_get(bio);
3545 	btrfsic_submit_bio(bio);
3546 
3547 	return 0;
3548 }
3549 
3550 /*
3551  * send an empty flush down to each device in parallel,
3552  * then wait for them
3553  */
3554 static int barrier_all_devices(struct btrfs_fs_info *info)
3555 {
3556 	struct list_head *head;
3557 	struct btrfs_device *dev;
3558 	int errors_send = 0;
3559 	int errors_wait = 0;
3560 	blk_status_t ret;
3561 
3562 	/* send down all the barriers */
3563 	head = &info->fs_devices->devices;
3564 	list_for_each_entry_rcu(dev, head, dev_list) {
3565 		if (dev->missing)
3566 			continue;
3567 		if (!dev->bdev) {
3568 			errors_send++;
3569 			continue;
3570 		}
3571 		if (!dev->in_fs_metadata || !dev->writeable)
3572 			continue;
3573 
3574 		ret = write_dev_flush(dev, 0);
3575 		if (ret)
3576 			errors_send++;
3577 	}
3578 
3579 	/* wait for all the barriers */
3580 	list_for_each_entry_rcu(dev, head, dev_list) {
3581 		if (dev->missing)
3582 			continue;
3583 		if (!dev->bdev) {
3584 			errors_wait++;
3585 			continue;
3586 		}
3587 		if (!dev->in_fs_metadata || !dev->writeable)
3588 			continue;
3589 
3590 		ret = write_dev_flush(dev, 1);
3591 		if (ret)
3592 			errors_wait++;
3593 	}
3594 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3595 	    errors_wait > info->num_tolerated_disk_barrier_failures)
3596 		return -EIO;
3597 	return 0;
3598 }
3599 
3600 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3601 {
3602 	int raid_type;
3603 	int min_tolerated = INT_MAX;
3604 
3605 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3606 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3607 		min_tolerated = min(min_tolerated,
3608 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3609 				    tolerated_failures);
3610 
3611 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3612 		if (raid_type == BTRFS_RAID_SINGLE)
3613 			continue;
3614 		if (!(flags & btrfs_raid_group[raid_type]))
3615 			continue;
3616 		min_tolerated = min(min_tolerated,
3617 				    btrfs_raid_array[raid_type].
3618 				    tolerated_failures);
3619 	}
3620 
3621 	if (min_tolerated == INT_MAX) {
3622 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3623 		min_tolerated = 0;
3624 	}
3625 
3626 	return min_tolerated;
3627 }
3628 
3629 int btrfs_calc_num_tolerated_disk_barrier_failures(
3630 	struct btrfs_fs_info *fs_info)
3631 {
3632 	struct btrfs_ioctl_space_info space;
3633 	struct btrfs_space_info *sinfo;
3634 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3635 		       BTRFS_BLOCK_GROUP_SYSTEM,
3636 		       BTRFS_BLOCK_GROUP_METADATA,
3637 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3638 	int i;
3639 	int c;
3640 	int num_tolerated_disk_barrier_failures =
3641 		(int)fs_info->fs_devices->num_devices;
3642 
3643 	for (i = 0; i < ARRAY_SIZE(types); i++) {
3644 		struct btrfs_space_info *tmp;
3645 
3646 		sinfo = NULL;
3647 		rcu_read_lock();
3648 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3649 			if (tmp->flags == types[i]) {
3650 				sinfo = tmp;
3651 				break;
3652 			}
3653 		}
3654 		rcu_read_unlock();
3655 
3656 		if (!sinfo)
3657 			continue;
3658 
3659 		down_read(&sinfo->groups_sem);
3660 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3661 			u64 flags;
3662 
3663 			if (list_empty(&sinfo->block_groups[c]))
3664 				continue;
3665 
3666 			btrfs_get_block_group_info(&sinfo->block_groups[c],
3667 						   &space);
3668 			if (space.total_bytes == 0 || space.used_bytes == 0)
3669 				continue;
3670 			flags = space.flags;
3671 
3672 			num_tolerated_disk_barrier_failures = min(
3673 				num_tolerated_disk_barrier_failures,
3674 				btrfs_get_num_tolerated_disk_barrier_failures(
3675 					flags));
3676 		}
3677 		up_read(&sinfo->groups_sem);
3678 	}
3679 
3680 	return num_tolerated_disk_barrier_failures;
3681 }
3682 
3683 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3684 {
3685 	struct list_head *head;
3686 	struct btrfs_device *dev;
3687 	struct btrfs_super_block *sb;
3688 	struct btrfs_dev_item *dev_item;
3689 	int ret;
3690 	int do_barriers;
3691 	int max_errors;
3692 	int total_errors = 0;
3693 	u64 flags;
3694 
3695 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3696 	backup_super_roots(fs_info);
3697 
3698 	sb = fs_info->super_for_commit;
3699 	dev_item = &sb->dev_item;
3700 
3701 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3702 	head = &fs_info->fs_devices->devices;
3703 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3704 
3705 	if (do_barriers) {
3706 		ret = barrier_all_devices(fs_info);
3707 		if (ret) {
3708 			mutex_unlock(
3709 				&fs_info->fs_devices->device_list_mutex);
3710 			btrfs_handle_fs_error(fs_info, ret,
3711 					      "errors while submitting device barriers.");
3712 			return ret;
3713 		}
3714 	}
3715 
3716 	list_for_each_entry_rcu(dev, head, dev_list) {
3717 		if (!dev->bdev) {
3718 			total_errors++;
3719 			continue;
3720 		}
3721 		if (!dev->in_fs_metadata || !dev->writeable)
3722 			continue;
3723 
3724 		btrfs_set_stack_device_generation(dev_item, 0);
3725 		btrfs_set_stack_device_type(dev_item, dev->type);
3726 		btrfs_set_stack_device_id(dev_item, dev->devid);
3727 		btrfs_set_stack_device_total_bytes(dev_item,
3728 						   dev->commit_total_bytes);
3729 		btrfs_set_stack_device_bytes_used(dev_item,
3730 						  dev->commit_bytes_used);
3731 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3732 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3733 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3734 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3735 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3736 
3737 		flags = btrfs_super_flags(sb);
3738 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3739 
3740 		ret = write_dev_supers(dev, sb, 0, max_mirrors);
3741 		if (ret)
3742 			total_errors++;
3743 	}
3744 	if (total_errors > max_errors) {
3745 		btrfs_err(fs_info, "%d errors while writing supers",
3746 			  total_errors);
3747 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3748 
3749 		/* FUA is masked off if unsupported and can't be the reason */
3750 		btrfs_handle_fs_error(fs_info, -EIO,
3751 				      "%d errors while writing supers",
3752 				      total_errors);
3753 		return -EIO;
3754 	}
3755 
3756 	total_errors = 0;
3757 	list_for_each_entry_rcu(dev, head, dev_list) {
3758 		if (!dev->bdev)
3759 			continue;
3760 		if (!dev->in_fs_metadata || !dev->writeable)
3761 			continue;
3762 
3763 		ret = write_dev_supers(dev, sb, 1, max_mirrors);
3764 		if (ret)
3765 			total_errors++;
3766 	}
3767 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3768 	if (total_errors > max_errors) {
3769 		btrfs_handle_fs_error(fs_info, -EIO,
3770 				      "%d errors while writing supers",
3771 				      total_errors);
3772 		return -EIO;
3773 	}
3774 	return 0;
3775 }
3776 
3777 /* Drop a fs root from the radix tree and free it. */
3778 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3779 				  struct btrfs_root *root)
3780 {
3781 	spin_lock(&fs_info->fs_roots_radix_lock);
3782 	radix_tree_delete(&fs_info->fs_roots_radix,
3783 			  (unsigned long)root->root_key.objectid);
3784 	spin_unlock(&fs_info->fs_roots_radix_lock);
3785 
3786 	if (btrfs_root_refs(&root->root_item) == 0)
3787 		synchronize_srcu(&fs_info->subvol_srcu);
3788 
3789 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3790 		btrfs_free_log(NULL, root);
3791 		if (root->reloc_root) {
3792 			free_extent_buffer(root->reloc_root->node);
3793 			free_extent_buffer(root->reloc_root->commit_root);
3794 			btrfs_put_fs_root(root->reloc_root);
3795 			root->reloc_root = NULL;
3796 		}
3797 	}
3798 
3799 	if (root->free_ino_pinned)
3800 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3801 	if (root->free_ino_ctl)
3802 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3803 	free_fs_root(root);
3804 }
3805 
3806 static void free_fs_root(struct btrfs_root *root)
3807 {
3808 	iput(root->ino_cache_inode);
3809 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3810 	btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3811 	root->orphan_block_rsv = NULL;
3812 	if (root->anon_dev)
3813 		free_anon_bdev(root->anon_dev);
3814 	if (root->subv_writers)
3815 		btrfs_free_subvolume_writers(root->subv_writers);
3816 	free_extent_buffer(root->node);
3817 	free_extent_buffer(root->commit_root);
3818 	kfree(root->free_ino_ctl);
3819 	kfree(root->free_ino_pinned);
3820 	kfree(root->name);
3821 	btrfs_put_fs_root(root);
3822 }
3823 
3824 void btrfs_free_fs_root(struct btrfs_root *root)
3825 {
3826 	free_fs_root(root);
3827 }
3828 
3829 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3830 {
3831 	u64 root_objectid = 0;
3832 	struct btrfs_root *gang[8];
3833 	int i = 0;
3834 	int err = 0;
3835 	unsigned int ret = 0;
3836 	int index;
3837 
3838 	while (1) {
3839 		index = srcu_read_lock(&fs_info->subvol_srcu);
3840 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3841 					     (void **)gang, root_objectid,
3842 					     ARRAY_SIZE(gang));
3843 		if (!ret) {
3844 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3845 			break;
3846 		}
3847 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3848 
3849 		for (i = 0; i < ret; i++) {
3850 			/* Avoid to grab roots in dead_roots */
3851 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3852 				gang[i] = NULL;
3853 				continue;
3854 			}
3855 			/* grab all the search result for later use */
3856 			gang[i] = btrfs_grab_fs_root(gang[i]);
3857 		}
3858 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3859 
3860 		for (i = 0; i < ret; i++) {
3861 			if (!gang[i])
3862 				continue;
3863 			root_objectid = gang[i]->root_key.objectid;
3864 			err = btrfs_orphan_cleanup(gang[i]);
3865 			if (err)
3866 				break;
3867 			btrfs_put_fs_root(gang[i]);
3868 		}
3869 		root_objectid++;
3870 	}
3871 
3872 	/* release the uncleaned roots due to error */
3873 	for (; i < ret; i++) {
3874 		if (gang[i])
3875 			btrfs_put_fs_root(gang[i]);
3876 	}
3877 	return err;
3878 }
3879 
3880 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3881 {
3882 	struct btrfs_root *root = fs_info->tree_root;
3883 	struct btrfs_trans_handle *trans;
3884 
3885 	mutex_lock(&fs_info->cleaner_mutex);
3886 	btrfs_run_delayed_iputs(fs_info);
3887 	mutex_unlock(&fs_info->cleaner_mutex);
3888 	wake_up_process(fs_info->cleaner_kthread);
3889 
3890 	/* wait until ongoing cleanup work done */
3891 	down_write(&fs_info->cleanup_work_sem);
3892 	up_write(&fs_info->cleanup_work_sem);
3893 
3894 	trans = btrfs_join_transaction(root);
3895 	if (IS_ERR(trans))
3896 		return PTR_ERR(trans);
3897 	return btrfs_commit_transaction(trans);
3898 }
3899 
3900 void close_ctree(struct btrfs_fs_info *fs_info)
3901 {
3902 	struct btrfs_root *root = fs_info->tree_root;
3903 	int ret;
3904 
3905 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3906 
3907 	/* wait for the qgroup rescan worker to stop */
3908 	btrfs_qgroup_wait_for_completion(fs_info, false);
3909 
3910 	/* wait for the uuid_scan task to finish */
3911 	down(&fs_info->uuid_tree_rescan_sem);
3912 	/* avoid complains from lockdep et al., set sem back to initial state */
3913 	up(&fs_info->uuid_tree_rescan_sem);
3914 
3915 	/* pause restriper - we want to resume on mount */
3916 	btrfs_pause_balance(fs_info);
3917 
3918 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3919 
3920 	btrfs_scrub_cancel(fs_info);
3921 
3922 	/* wait for any defraggers to finish */
3923 	wait_event(fs_info->transaction_wait,
3924 		   (atomic_read(&fs_info->defrag_running) == 0));
3925 
3926 	/* clear out the rbtree of defraggable inodes */
3927 	btrfs_cleanup_defrag_inodes(fs_info);
3928 
3929 	cancel_work_sync(&fs_info->async_reclaim_work);
3930 
3931 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3932 		/*
3933 		 * If the cleaner thread is stopped and there are
3934 		 * block groups queued for removal, the deletion will be
3935 		 * skipped when we quit the cleaner thread.
3936 		 */
3937 		btrfs_delete_unused_bgs(fs_info);
3938 
3939 		ret = btrfs_commit_super(fs_info);
3940 		if (ret)
3941 			btrfs_err(fs_info, "commit super ret %d", ret);
3942 	}
3943 
3944 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3945 		btrfs_error_commit_super(fs_info);
3946 
3947 	kthread_stop(fs_info->transaction_kthread);
3948 	kthread_stop(fs_info->cleaner_kthread);
3949 
3950 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3951 
3952 	btrfs_free_qgroup_config(fs_info);
3953 
3954 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3955 		btrfs_info(fs_info, "at unmount delalloc count %lld",
3956 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3957 	}
3958 
3959 	btrfs_sysfs_remove_mounted(fs_info);
3960 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3961 
3962 	btrfs_free_fs_roots(fs_info);
3963 
3964 	btrfs_put_block_group_cache(fs_info);
3965 
3966 	/*
3967 	 * we must make sure there is not any read request to
3968 	 * submit after we stopping all workers.
3969 	 */
3970 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3971 	btrfs_stop_all_workers(fs_info);
3972 
3973 	btrfs_free_block_groups(fs_info);
3974 
3975 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3976 	free_root_pointers(fs_info, 1);
3977 
3978 	iput(fs_info->btree_inode);
3979 
3980 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3981 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
3982 		btrfsic_unmount(fs_info->fs_devices);
3983 #endif
3984 
3985 	btrfs_close_devices(fs_info->fs_devices);
3986 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3987 
3988 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3989 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3990 	percpu_counter_destroy(&fs_info->bio_counter);
3991 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3992 
3993 	btrfs_free_stripe_hash_table(fs_info);
3994 
3995 	__btrfs_free_block_rsv(root->orphan_block_rsv);
3996 	root->orphan_block_rsv = NULL;
3997 
3998 	mutex_lock(&fs_info->chunk_mutex);
3999 	while (!list_empty(&fs_info->pinned_chunks)) {
4000 		struct extent_map *em;
4001 
4002 		em = list_first_entry(&fs_info->pinned_chunks,
4003 				      struct extent_map, list);
4004 		list_del_init(&em->list);
4005 		free_extent_map(em);
4006 	}
4007 	mutex_unlock(&fs_info->chunk_mutex);
4008 }
4009 
4010 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4011 			  int atomic)
4012 {
4013 	int ret;
4014 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4015 
4016 	ret = extent_buffer_uptodate(buf);
4017 	if (!ret)
4018 		return ret;
4019 
4020 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4021 				    parent_transid, atomic);
4022 	if (ret == -EAGAIN)
4023 		return ret;
4024 	return !ret;
4025 }
4026 
4027 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4028 {
4029 	struct btrfs_fs_info *fs_info;
4030 	struct btrfs_root *root;
4031 	u64 transid = btrfs_header_generation(buf);
4032 	int was_dirty;
4033 
4034 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4035 	/*
4036 	 * This is a fast path so only do this check if we have sanity tests
4037 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
4038 	 * outside of the sanity tests.
4039 	 */
4040 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4041 		return;
4042 #endif
4043 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4044 	fs_info = root->fs_info;
4045 	btrfs_assert_tree_locked(buf);
4046 	if (transid != fs_info->generation)
4047 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4048 			buf->start, transid, fs_info->generation);
4049 	was_dirty = set_extent_buffer_dirty(buf);
4050 	if (!was_dirty)
4051 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
4052 				     buf->len,
4053 				     fs_info->dirty_metadata_batch);
4054 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4055 	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4056 		btrfs_print_leaf(fs_info, buf);
4057 		ASSERT(0);
4058 	}
4059 #endif
4060 }
4061 
4062 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4063 					int flush_delayed)
4064 {
4065 	/*
4066 	 * looks as though older kernels can get into trouble with
4067 	 * this code, they end up stuck in balance_dirty_pages forever
4068 	 */
4069 	int ret;
4070 
4071 	if (current->flags & PF_MEMALLOC)
4072 		return;
4073 
4074 	if (flush_delayed)
4075 		btrfs_balance_delayed_items(fs_info);
4076 
4077 	ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4078 				     BTRFS_DIRTY_METADATA_THRESH);
4079 	if (ret > 0) {
4080 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4081 	}
4082 }
4083 
4084 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4085 {
4086 	__btrfs_btree_balance_dirty(fs_info, 1);
4087 }
4088 
4089 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4090 {
4091 	__btrfs_btree_balance_dirty(fs_info, 0);
4092 }
4093 
4094 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4095 {
4096 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4097 	struct btrfs_fs_info *fs_info = root->fs_info;
4098 
4099 	return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
4100 }
4101 
4102 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
4103 {
4104 	struct btrfs_super_block *sb = fs_info->super_copy;
4105 	u64 nodesize = btrfs_super_nodesize(sb);
4106 	u64 sectorsize = btrfs_super_sectorsize(sb);
4107 	int ret = 0;
4108 
4109 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4110 		btrfs_err(fs_info, "no valid FS found");
4111 		ret = -EINVAL;
4112 	}
4113 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4114 		btrfs_warn(fs_info, "unrecognized super flag: %llu",
4115 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4116 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4117 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
4118 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4119 		ret = -EINVAL;
4120 	}
4121 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4122 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
4123 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4124 		ret = -EINVAL;
4125 	}
4126 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4127 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
4128 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4129 		ret = -EINVAL;
4130 	}
4131 
4132 	/*
4133 	 * Check sectorsize and nodesize first, other check will need it.
4134 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4135 	 */
4136 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4137 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4138 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
4139 		ret = -EINVAL;
4140 	}
4141 	/* Only PAGE SIZE is supported yet */
4142 	if (sectorsize != PAGE_SIZE) {
4143 		btrfs_err(fs_info,
4144 			"sectorsize %llu not supported yet, only support %lu",
4145 			sectorsize, PAGE_SIZE);
4146 		ret = -EINVAL;
4147 	}
4148 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4149 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4150 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
4151 		ret = -EINVAL;
4152 	}
4153 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4154 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4155 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
4156 		ret = -EINVAL;
4157 	}
4158 
4159 	/* Root alignment check */
4160 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4161 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4162 			   btrfs_super_root(sb));
4163 		ret = -EINVAL;
4164 	}
4165 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4166 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4167 			   btrfs_super_chunk_root(sb));
4168 		ret = -EINVAL;
4169 	}
4170 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4171 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
4172 			   btrfs_super_log_root(sb));
4173 		ret = -EINVAL;
4174 	}
4175 
4176 	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4177 		btrfs_err(fs_info,
4178 			   "dev_item UUID does not match fsid: %pU != %pU",
4179 			   fs_info->fsid, sb->dev_item.fsid);
4180 		ret = -EINVAL;
4181 	}
4182 
4183 	/*
4184 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4185 	 * done later
4186 	 */
4187 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4188 		btrfs_err(fs_info, "bytes_used is too small %llu",
4189 			  btrfs_super_bytes_used(sb));
4190 		ret = -EINVAL;
4191 	}
4192 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4193 		btrfs_err(fs_info, "invalid stripesize %u",
4194 			  btrfs_super_stripesize(sb));
4195 		ret = -EINVAL;
4196 	}
4197 	if (btrfs_super_num_devices(sb) > (1UL << 31))
4198 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
4199 			   btrfs_super_num_devices(sb));
4200 	if (btrfs_super_num_devices(sb) == 0) {
4201 		btrfs_err(fs_info, "number of devices is 0");
4202 		ret = -EINVAL;
4203 	}
4204 
4205 	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4206 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
4207 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4208 		ret = -EINVAL;
4209 	}
4210 
4211 	/*
4212 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
4213 	 * and one chunk
4214 	 */
4215 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4216 		btrfs_err(fs_info, "system chunk array too big %u > %u",
4217 			  btrfs_super_sys_array_size(sb),
4218 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4219 		ret = -EINVAL;
4220 	}
4221 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4222 			+ sizeof(struct btrfs_chunk)) {
4223 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
4224 			  btrfs_super_sys_array_size(sb),
4225 			  sizeof(struct btrfs_disk_key)
4226 			  + sizeof(struct btrfs_chunk));
4227 		ret = -EINVAL;
4228 	}
4229 
4230 	/*
4231 	 * The generation is a global counter, we'll trust it more than the others
4232 	 * but it's still possible that it's the one that's wrong.
4233 	 */
4234 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4235 		btrfs_warn(fs_info,
4236 			"suspicious: generation < chunk_root_generation: %llu < %llu",
4237 			btrfs_super_generation(sb),
4238 			btrfs_super_chunk_root_generation(sb));
4239 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4240 	    && btrfs_super_cache_generation(sb) != (u64)-1)
4241 		btrfs_warn(fs_info,
4242 			"suspicious: generation < cache_generation: %llu < %llu",
4243 			btrfs_super_generation(sb),
4244 			btrfs_super_cache_generation(sb));
4245 
4246 	return ret;
4247 }
4248 
4249 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4250 {
4251 	mutex_lock(&fs_info->cleaner_mutex);
4252 	btrfs_run_delayed_iputs(fs_info);
4253 	mutex_unlock(&fs_info->cleaner_mutex);
4254 
4255 	down_write(&fs_info->cleanup_work_sem);
4256 	up_write(&fs_info->cleanup_work_sem);
4257 
4258 	/* cleanup FS via transaction */
4259 	btrfs_cleanup_transaction(fs_info);
4260 }
4261 
4262 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4263 {
4264 	struct btrfs_ordered_extent *ordered;
4265 
4266 	spin_lock(&root->ordered_extent_lock);
4267 	/*
4268 	 * This will just short circuit the ordered completion stuff which will
4269 	 * make sure the ordered extent gets properly cleaned up.
4270 	 */
4271 	list_for_each_entry(ordered, &root->ordered_extents,
4272 			    root_extent_list)
4273 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4274 	spin_unlock(&root->ordered_extent_lock);
4275 }
4276 
4277 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4278 {
4279 	struct btrfs_root *root;
4280 	struct list_head splice;
4281 
4282 	INIT_LIST_HEAD(&splice);
4283 
4284 	spin_lock(&fs_info->ordered_root_lock);
4285 	list_splice_init(&fs_info->ordered_roots, &splice);
4286 	while (!list_empty(&splice)) {
4287 		root = list_first_entry(&splice, struct btrfs_root,
4288 					ordered_root);
4289 		list_move_tail(&root->ordered_root,
4290 			       &fs_info->ordered_roots);
4291 
4292 		spin_unlock(&fs_info->ordered_root_lock);
4293 		btrfs_destroy_ordered_extents(root);
4294 
4295 		cond_resched();
4296 		spin_lock(&fs_info->ordered_root_lock);
4297 	}
4298 	spin_unlock(&fs_info->ordered_root_lock);
4299 }
4300 
4301 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4302 				      struct btrfs_fs_info *fs_info)
4303 {
4304 	struct rb_node *node;
4305 	struct btrfs_delayed_ref_root *delayed_refs;
4306 	struct btrfs_delayed_ref_node *ref;
4307 	int ret = 0;
4308 
4309 	delayed_refs = &trans->delayed_refs;
4310 
4311 	spin_lock(&delayed_refs->lock);
4312 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4313 		spin_unlock(&delayed_refs->lock);
4314 		btrfs_info(fs_info, "delayed_refs has NO entry");
4315 		return ret;
4316 	}
4317 
4318 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4319 		struct btrfs_delayed_ref_head *head;
4320 		struct btrfs_delayed_ref_node *tmp;
4321 		bool pin_bytes = false;
4322 
4323 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4324 				href_node);
4325 		if (!mutex_trylock(&head->mutex)) {
4326 			refcount_inc(&head->node.refs);
4327 			spin_unlock(&delayed_refs->lock);
4328 
4329 			mutex_lock(&head->mutex);
4330 			mutex_unlock(&head->mutex);
4331 			btrfs_put_delayed_ref(&head->node);
4332 			spin_lock(&delayed_refs->lock);
4333 			continue;
4334 		}
4335 		spin_lock(&head->lock);
4336 		list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4337 						 list) {
4338 			ref->in_tree = 0;
4339 			list_del(&ref->list);
4340 			if (!list_empty(&ref->add_list))
4341 				list_del(&ref->add_list);
4342 			atomic_dec(&delayed_refs->num_entries);
4343 			btrfs_put_delayed_ref(ref);
4344 		}
4345 		if (head->must_insert_reserved)
4346 			pin_bytes = true;
4347 		btrfs_free_delayed_extent_op(head->extent_op);
4348 		delayed_refs->num_heads--;
4349 		if (head->processing == 0)
4350 			delayed_refs->num_heads_ready--;
4351 		atomic_dec(&delayed_refs->num_entries);
4352 		head->node.in_tree = 0;
4353 		rb_erase(&head->href_node, &delayed_refs->href_root);
4354 		spin_unlock(&head->lock);
4355 		spin_unlock(&delayed_refs->lock);
4356 		mutex_unlock(&head->mutex);
4357 
4358 		if (pin_bytes)
4359 			btrfs_pin_extent(fs_info, head->node.bytenr,
4360 					 head->node.num_bytes, 1);
4361 		btrfs_put_delayed_ref(&head->node);
4362 		cond_resched();
4363 		spin_lock(&delayed_refs->lock);
4364 	}
4365 
4366 	spin_unlock(&delayed_refs->lock);
4367 
4368 	return ret;
4369 }
4370 
4371 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4372 {
4373 	struct btrfs_inode *btrfs_inode;
4374 	struct list_head splice;
4375 
4376 	INIT_LIST_HEAD(&splice);
4377 
4378 	spin_lock(&root->delalloc_lock);
4379 	list_splice_init(&root->delalloc_inodes, &splice);
4380 
4381 	while (!list_empty(&splice)) {
4382 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4383 					       delalloc_inodes);
4384 
4385 		list_del_init(&btrfs_inode->delalloc_inodes);
4386 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4387 			  &btrfs_inode->runtime_flags);
4388 		spin_unlock(&root->delalloc_lock);
4389 
4390 		btrfs_invalidate_inodes(btrfs_inode->root);
4391 
4392 		spin_lock(&root->delalloc_lock);
4393 	}
4394 
4395 	spin_unlock(&root->delalloc_lock);
4396 }
4397 
4398 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4399 {
4400 	struct btrfs_root *root;
4401 	struct list_head splice;
4402 
4403 	INIT_LIST_HEAD(&splice);
4404 
4405 	spin_lock(&fs_info->delalloc_root_lock);
4406 	list_splice_init(&fs_info->delalloc_roots, &splice);
4407 	while (!list_empty(&splice)) {
4408 		root = list_first_entry(&splice, struct btrfs_root,
4409 					 delalloc_root);
4410 		list_del_init(&root->delalloc_root);
4411 		root = btrfs_grab_fs_root(root);
4412 		BUG_ON(!root);
4413 		spin_unlock(&fs_info->delalloc_root_lock);
4414 
4415 		btrfs_destroy_delalloc_inodes(root);
4416 		btrfs_put_fs_root(root);
4417 
4418 		spin_lock(&fs_info->delalloc_root_lock);
4419 	}
4420 	spin_unlock(&fs_info->delalloc_root_lock);
4421 }
4422 
4423 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4424 					struct extent_io_tree *dirty_pages,
4425 					int mark)
4426 {
4427 	int ret;
4428 	struct extent_buffer *eb;
4429 	u64 start = 0;
4430 	u64 end;
4431 
4432 	while (1) {
4433 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4434 					    mark, NULL);
4435 		if (ret)
4436 			break;
4437 
4438 		clear_extent_bits(dirty_pages, start, end, mark);
4439 		while (start <= end) {
4440 			eb = find_extent_buffer(fs_info, start);
4441 			start += fs_info->nodesize;
4442 			if (!eb)
4443 				continue;
4444 			wait_on_extent_buffer_writeback(eb);
4445 
4446 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4447 					       &eb->bflags))
4448 				clear_extent_buffer_dirty(eb);
4449 			free_extent_buffer_stale(eb);
4450 		}
4451 	}
4452 
4453 	return ret;
4454 }
4455 
4456 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4457 				       struct extent_io_tree *pinned_extents)
4458 {
4459 	struct extent_io_tree *unpin;
4460 	u64 start;
4461 	u64 end;
4462 	int ret;
4463 	bool loop = true;
4464 
4465 	unpin = pinned_extents;
4466 again:
4467 	while (1) {
4468 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4469 					    EXTENT_DIRTY, NULL);
4470 		if (ret)
4471 			break;
4472 
4473 		clear_extent_dirty(unpin, start, end);
4474 		btrfs_error_unpin_extent_range(fs_info, start, end);
4475 		cond_resched();
4476 	}
4477 
4478 	if (loop) {
4479 		if (unpin == &fs_info->freed_extents[0])
4480 			unpin = &fs_info->freed_extents[1];
4481 		else
4482 			unpin = &fs_info->freed_extents[0];
4483 		loop = false;
4484 		goto again;
4485 	}
4486 
4487 	return 0;
4488 }
4489 
4490 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4491 {
4492 	struct inode *inode;
4493 
4494 	inode = cache->io_ctl.inode;
4495 	if (inode) {
4496 		invalidate_inode_pages2(inode->i_mapping);
4497 		BTRFS_I(inode)->generation = 0;
4498 		cache->io_ctl.inode = NULL;
4499 		iput(inode);
4500 	}
4501 	btrfs_put_block_group(cache);
4502 }
4503 
4504 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4505 			     struct btrfs_fs_info *fs_info)
4506 {
4507 	struct btrfs_block_group_cache *cache;
4508 
4509 	spin_lock(&cur_trans->dirty_bgs_lock);
4510 	while (!list_empty(&cur_trans->dirty_bgs)) {
4511 		cache = list_first_entry(&cur_trans->dirty_bgs,
4512 					 struct btrfs_block_group_cache,
4513 					 dirty_list);
4514 		if (!cache) {
4515 			btrfs_err(fs_info, "orphan block group dirty_bgs list");
4516 			spin_unlock(&cur_trans->dirty_bgs_lock);
4517 			return;
4518 		}
4519 
4520 		if (!list_empty(&cache->io_list)) {
4521 			spin_unlock(&cur_trans->dirty_bgs_lock);
4522 			list_del_init(&cache->io_list);
4523 			btrfs_cleanup_bg_io(cache);
4524 			spin_lock(&cur_trans->dirty_bgs_lock);
4525 		}
4526 
4527 		list_del_init(&cache->dirty_list);
4528 		spin_lock(&cache->lock);
4529 		cache->disk_cache_state = BTRFS_DC_ERROR;
4530 		spin_unlock(&cache->lock);
4531 
4532 		spin_unlock(&cur_trans->dirty_bgs_lock);
4533 		btrfs_put_block_group(cache);
4534 		spin_lock(&cur_trans->dirty_bgs_lock);
4535 	}
4536 	spin_unlock(&cur_trans->dirty_bgs_lock);
4537 
4538 	while (!list_empty(&cur_trans->io_bgs)) {
4539 		cache = list_first_entry(&cur_trans->io_bgs,
4540 					 struct btrfs_block_group_cache,
4541 					 io_list);
4542 		if (!cache) {
4543 			btrfs_err(fs_info, "orphan block group on io_bgs list");
4544 			return;
4545 		}
4546 
4547 		list_del_init(&cache->io_list);
4548 		spin_lock(&cache->lock);
4549 		cache->disk_cache_state = BTRFS_DC_ERROR;
4550 		spin_unlock(&cache->lock);
4551 		btrfs_cleanup_bg_io(cache);
4552 	}
4553 }
4554 
4555 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4556 				   struct btrfs_fs_info *fs_info)
4557 {
4558 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4559 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4560 	ASSERT(list_empty(&cur_trans->io_bgs));
4561 
4562 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4563 
4564 	cur_trans->state = TRANS_STATE_COMMIT_START;
4565 	wake_up(&fs_info->transaction_blocked_wait);
4566 
4567 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4568 	wake_up(&fs_info->transaction_wait);
4569 
4570 	btrfs_destroy_delayed_inodes(fs_info);
4571 	btrfs_assert_delayed_root_empty(fs_info);
4572 
4573 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4574 				     EXTENT_DIRTY);
4575 	btrfs_destroy_pinned_extent(fs_info,
4576 				    fs_info->pinned_extents);
4577 
4578 	cur_trans->state =TRANS_STATE_COMPLETED;
4579 	wake_up(&cur_trans->commit_wait);
4580 
4581 	/*
4582 	memset(cur_trans, 0, sizeof(*cur_trans));
4583 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4584 	*/
4585 }
4586 
4587 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4588 {
4589 	struct btrfs_transaction *t;
4590 
4591 	mutex_lock(&fs_info->transaction_kthread_mutex);
4592 
4593 	spin_lock(&fs_info->trans_lock);
4594 	while (!list_empty(&fs_info->trans_list)) {
4595 		t = list_first_entry(&fs_info->trans_list,
4596 				     struct btrfs_transaction, list);
4597 		if (t->state >= TRANS_STATE_COMMIT_START) {
4598 			refcount_inc(&t->use_count);
4599 			spin_unlock(&fs_info->trans_lock);
4600 			btrfs_wait_for_commit(fs_info, t->transid);
4601 			btrfs_put_transaction(t);
4602 			spin_lock(&fs_info->trans_lock);
4603 			continue;
4604 		}
4605 		if (t == fs_info->running_transaction) {
4606 			t->state = TRANS_STATE_COMMIT_DOING;
4607 			spin_unlock(&fs_info->trans_lock);
4608 			/*
4609 			 * We wait for 0 num_writers since we don't hold a trans
4610 			 * handle open currently for this transaction.
4611 			 */
4612 			wait_event(t->writer_wait,
4613 				   atomic_read(&t->num_writers) == 0);
4614 		} else {
4615 			spin_unlock(&fs_info->trans_lock);
4616 		}
4617 		btrfs_cleanup_one_transaction(t, fs_info);
4618 
4619 		spin_lock(&fs_info->trans_lock);
4620 		if (t == fs_info->running_transaction)
4621 			fs_info->running_transaction = NULL;
4622 		list_del_init(&t->list);
4623 		spin_unlock(&fs_info->trans_lock);
4624 
4625 		btrfs_put_transaction(t);
4626 		trace_btrfs_transaction_commit(fs_info->tree_root);
4627 		spin_lock(&fs_info->trans_lock);
4628 	}
4629 	spin_unlock(&fs_info->trans_lock);
4630 	btrfs_destroy_all_ordered_extents(fs_info);
4631 	btrfs_destroy_delayed_inodes(fs_info);
4632 	btrfs_assert_delayed_root_empty(fs_info);
4633 	btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4634 	btrfs_destroy_all_delalloc_inodes(fs_info);
4635 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4636 
4637 	return 0;
4638 }
4639 
4640 static const struct extent_io_ops btree_extent_io_ops = {
4641 	/* mandatory callbacks */
4642 	.submit_bio_hook = btree_submit_bio_hook,
4643 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4644 	/* note we're sharing with inode.c for the merge bio hook */
4645 	.merge_bio_hook = btrfs_merge_bio_hook,
4646 	.readpage_io_failed_hook = btree_io_failed_hook,
4647 
4648 	/* optional callbacks */
4649 };
4650