1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/buffer_head.h> 11 #include <linux/workqueue.h> 12 #include <linux/kthread.h> 13 #include <linux/slab.h> 14 #include <linux/migrate.h> 15 #include <linux/ratelimit.h> 16 #include <linux/uuid.h> 17 #include <linux/semaphore.h> 18 #include <linux/error-injection.h> 19 #include <linux/crc32c.h> 20 #include <asm/unaligned.h> 21 #include "ctree.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 #include "btrfs_inode.h" 25 #include "volumes.h" 26 #include "print-tree.h" 27 #include "locking.h" 28 #include "tree-log.h" 29 #include "free-space-cache.h" 30 #include "free-space-tree.h" 31 #include "inode-map.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 42 #ifdef CONFIG_X86 43 #include <asm/cpufeature.h> 44 #endif 45 46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 47 BTRFS_HEADER_FLAG_RELOC |\ 48 BTRFS_SUPER_FLAG_ERROR |\ 49 BTRFS_SUPER_FLAG_SEEDING |\ 50 BTRFS_SUPER_FLAG_METADUMP |\ 51 BTRFS_SUPER_FLAG_METADUMP_V2) 52 53 static const struct extent_io_ops btree_extent_io_ops; 54 static void end_workqueue_fn(struct btrfs_work *work); 55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 57 struct btrfs_fs_info *fs_info); 58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 60 struct extent_io_tree *dirty_pages, 61 int mark); 62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 63 struct extent_io_tree *pinned_extents); 64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 66 67 /* 68 * btrfs_end_io_wq structs are used to do processing in task context when an IO 69 * is complete. This is used during reads to verify checksums, and it is used 70 * by writes to insert metadata for new file extents after IO is complete. 71 */ 72 struct btrfs_end_io_wq { 73 struct bio *bio; 74 bio_end_io_t *end_io; 75 void *private; 76 struct btrfs_fs_info *info; 77 blk_status_t status; 78 enum btrfs_wq_endio_type metadata; 79 struct btrfs_work work; 80 }; 81 82 static struct kmem_cache *btrfs_end_io_wq_cache; 83 84 int __init btrfs_end_io_wq_init(void) 85 { 86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 87 sizeof(struct btrfs_end_io_wq), 88 0, 89 SLAB_MEM_SPREAD, 90 NULL); 91 if (!btrfs_end_io_wq_cache) 92 return -ENOMEM; 93 return 0; 94 } 95 96 void __cold btrfs_end_io_wq_exit(void) 97 { 98 kmem_cache_destroy(btrfs_end_io_wq_cache); 99 } 100 101 /* 102 * async submit bios are used to offload expensive checksumming 103 * onto the worker threads. They checksum file and metadata bios 104 * just before they are sent down the IO stack. 105 */ 106 struct async_submit_bio { 107 void *private_data; 108 struct bio *bio; 109 extent_submit_bio_start_t *submit_bio_start; 110 int mirror_num; 111 /* 112 * bio_offset is optional, can be used if the pages in the bio 113 * can't tell us where in the file the bio should go 114 */ 115 u64 bio_offset; 116 struct btrfs_work work; 117 blk_status_t status; 118 }; 119 120 /* 121 * Lockdep class keys for extent_buffer->lock's in this root. For a given 122 * eb, the lockdep key is determined by the btrfs_root it belongs to and 123 * the level the eb occupies in the tree. 124 * 125 * Different roots are used for different purposes and may nest inside each 126 * other and they require separate keysets. As lockdep keys should be 127 * static, assign keysets according to the purpose of the root as indicated 128 * by btrfs_root->root_key.objectid. This ensures that all special purpose 129 * roots have separate keysets. 130 * 131 * Lock-nesting across peer nodes is always done with the immediate parent 132 * node locked thus preventing deadlock. As lockdep doesn't know this, use 133 * subclass to avoid triggering lockdep warning in such cases. 134 * 135 * The key is set by the readpage_end_io_hook after the buffer has passed 136 * csum validation but before the pages are unlocked. It is also set by 137 * btrfs_init_new_buffer on freshly allocated blocks. 138 * 139 * We also add a check to make sure the highest level of the tree is the 140 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 141 * needs update as well. 142 */ 143 #ifdef CONFIG_DEBUG_LOCK_ALLOC 144 # if BTRFS_MAX_LEVEL != 8 145 # error 146 # endif 147 148 static struct btrfs_lockdep_keyset { 149 u64 id; /* root objectid */ 150 const char *name_stem; /* lock name stem */ 151 char names[BTRFS_MAX_LEVEL + 1][20]; 152 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 153 } btrfs_lockdep_keysets[] = { 154 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 155 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 156 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 157 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 158 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 159 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 160 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 161 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 162 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 163 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 164 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 165 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 166 { .id = 0, .name_stem = "tree" }, 167 }; 168 169 void __init btrfs_init_lockdep(void) 170 { 171 int i, j; 172 173 /* initialize lockdep class names */ 174 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 175 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 176 177 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 178 snprintf(ks->names[j], sizeof(ks->names[j]), 179 "btrfs-%s-%02d", ks->name_stem, j); 180 } 181 } 182 183 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 184 int level) 185 { 186 struct btrfs_lockdep_keyset *ks; 187 188 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 189 190 /* find the matching keyset, id 0 is the default entry */ 191 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 192 if (ks->id == objectid) 193 break; 194 195 lockdep_set_class_and_name(&eb->lock, 196 &ks->keys[level], ks->names[level]); 197 } 198 199 #endif 200 201 /* 202 * extents on the btree inode are pretty simple, there's one extent 203 * that covers the entire device 204 */ 205 struct extent_map *btree_get_extent(struct btrfs_inode *inode, 206 struct page *page, size_t pg_offset, u64 start, u64 len, 207 int create) 208 { 209 struct btrfs_fs_info *fs_info = inode->root->fs_info; 210 struct extent_map_tree *em_tree = &inode->extent_tree; 211 struct extent_map *em; 212 int ret; 213 214 read_lock(&em_tree->lock); 215 em = lookup_extent_mapping(em_tree, start, len); 216 if (em) { 217 em->bdev = fs_info->fs_devices->latest_bdev; 218 read_unlock(&em_tree->lock); 219 goto out; 220 } 221 read_unlock(&em_tree->lock); 222 223 em = alloc_extent_map(); 224 if (!em) { 225 em = ERR_PTR(-ENOMEM); 226 goto out; 227 } 228 em->start = 0; 229 em->len = (u64)-1; 230 em->block_len = (u64)-1; 231 em->block_start = 0; 232 em->bdev = fs_info->fs_devices->latest_bdev; 233 234 write_lock(&em_tree->lock); 235 ret = add_extent_mapping(em_tree, em, 0); 236 if (ret == -EEXIST) { 237 free_extent_map(em); 238 em = lookup_extent_mapping(em_tree, start, len); 239 if (!em) 240 em = ERR_PTR(-EIO); 241 } else if (ret) { 242 free_extent_map(em); 243 em = ERR_PTR(ret); 244 } 245 write_unlock(&em_tree->lock); 246 247 out: 248 return em; 249 } 250 251 u32 btrfs_csum_data(const char *data, u32 seed, size_t len) 252 { 253 return crc32c(seed, data, len); 254 } 255 256 void btrfs_csum_final(u32 crc, u8 *result) 257 { 258 put_unaligned_le32(~crc, result); 259 } 260 261 /* 262 * compute the csum for a btree block, and either verify it or write it 263 * into the csum field of the block. 264 */ 265 static int csum_tree_block(struct btrfs_fs_info *fs_info, 266 struct extent_buffer *buf, 267 int verify) 268 { 269 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 270 char result[BTRFS_CSUM_SIZE]; 271 unsigned long len; 272 unsigned long cur_len; 273 unsigned long offset = BTRFS_CSUM_SIZE; 274 char *kaddr; 275 unsigned long map_start; 276 unsigned long map_len; 277 int err; 278 u32 crc = ~(u32)0; 279 280 len = buf->len - offset; 281 while (len > 0) { 282 /* 283 * Note: we don't need to check for the err == 1 case here, as 284 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)' 285 * and 'min_len = 32' and the currently implemented mapping 286 * algorithm we cannot cross a page boundary. 287 */ 288 err = map_private_extent_buffer(buf, offset, 32, 289 &kaddr, &map_start, &map_len); 290 if (err) 291 return err; 292 cur_len = min(len, map_len - (offset - map_start)); 293 crc = btrfs_csum_data(kaddr + offset - map_start, 294 crc, cur_len); 295 len -= cur_len; 296 offset += cur_len; 297 } 298 memset(result, 0, BTRFS_CSUM_SIZE); 299 300 btrfs_csum_final(crc, result); 301 302 if (verify) { 303 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 304 u32 val; 305 u32 found = 0; 306 memcpy(&found, result, csum_size); 307 308 read_extent_buffer(buf, &val, 0, csum_size); 309 btrfs_warn_rl(fs_info, 310 "%s checksum verify failed on %llu wanted %X found %X level %d", 311 fs_info->sb->s_id, buf->start, 312 val, found, btrfs_header_level(buf)); 313 return -EUCLEAN; 314 } 315 } else { 316 write_extent_buffer(buf, result, 0, csum_size); 317 } 318 319 return 0; 320 } 321 322 /* 323 * we can't consider a given block up to date unless the transid of the 324 * block matches the transid in the parent node's pointer. This is how we 325 * detect blocks that either didn't get written at all or got written 326 * in the wrong place. 327 */ 328 static int verify_parent_transid(struct extent_io_tree *io_tree, 329 struct extent_buffer *eb, u64 parent_transid, 330 int atomic) 331 { 332 struct extent_state *cached_state = NULL; 333 int ret; 334 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 335 336 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 337 return 0; 338 339 if (atomic) 340 return -EAGAIN; 341 342 if (need_lock) { 343 btrfs_tree_read_lock(eb); 344 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 345 } 346 347 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 348 &cached_state); 349 if (extent_buffer_uptodate(eb) && 350 btrfs_header_generation(eb) == parent_transid) { 351 ret = 0; 352 goto out; 353 } 354 btrfs_err_rl(eb->fs_info, 355 "parent transid verify failed on %llu wanted %llu found %llu", 356 eb->start, 357 parent_transid, btrfs_header_generation(eb)); 358 ret = 1; 359 360 /* 361 * Things reading via commit roots that don't have normal protection, 362 * like send, can have a really old block in cache that may point at a 363 * block that has been freed and re-allocated. So don't clear uptodate 364 * if we find an eb that is under IO (dirty/writeback) because we could 365 * end up reading in the stale data and then writing it back out and 366 * making everybody very sad. 367 */ 368 if (!extent_buffer_under_io(eb)) 369 clear_extent_buffer_uptodate(eb); 370 out: 371 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 372 &cached_state); 373 if (need_lock) 374 btrfs_tree_read_unlock_blocking(eb); 375 return ret; 376 } 377 378 /* 379 * Return 0 if the superblock checksum type matches the checksum value of that 380 * algorithm. Pass the raw disk superblock data. 381 */ 382 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 383 char *raw_disk_sb) 384 { 385 struct btrfs_super_block *disk_sb = 386 (struct btrfs_super_block *)raw_disk_sb; 387 u16 csum_type = btrfs_super_csum_type(disk_sb); 388 int ret = 0; 389 390 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 391 u32 crc = ~(u32)0; 392 char result[sizeof(crc)]; 393 394 /* 395 * The super_block structure does not span the whole 396 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 397 * is filled with zeros and is included in the checksum. 398 */ 399 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 400 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 401 btrfs_csum_final(crc, result); 402 403 if (memcmp(raw_disk_sb, result, sizeof(result))) 404 ret = 1; 405 } 406 407 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 408 btrfs_err(fs_info, "unsupported checksum algorithm %u", 409 csum_type); 410 ret = 1; 411 } 412 413 return ret; 414 } 415 416 static int verify_level_key(struct btrfs_fs_info *fs_info, 417 struct extent_buffer *eb, int level, 418 struct btrfs_key *first_key, u64 parent_transid) 419 { 420 int found_level; 421 struct btrfs_key found_key; 422 int ret; 423 424 found_level = btrfs_header_level(eb); 425 if (found_level != level) { 426 #ifdef CONFIG_BTRFS_DEBUG 427 WARN_ON(1); 428 btrfs_err(fs_info, 429 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 430 eb->start, level, found_level); 431 #endif 432 return -EIO; 433 } 434 435 if (!first_key) 436 return 0; 437 438 /* 439 * For live tree block (new tree blocks in current transaction), 440 * we need proper lock context to avoid race, which is impossible here. 441 * So we only checks tree blocks which is read from disk, whose 442 * generation <= fs_info->last_trans_committed. 443 */ 444 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 445 return 0; 446 if (found_level) 447 btrfs_node_key_to_cpu(eb, &found_key, 0); 448 else 449 btrfs_item_key_to_cpu(eb, &found_key, 0); 450 ret = btrfs_comp_cpu_keys(first_key, &found_key); 451 452 #ifdef CONFIG_BTRFS_DEBUG 453 if (ret) { 454 WARN_ON(1); 455 btrfs_err(fs_info, 456 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 457 eb->start, parent_transid, first_key->objectid, 458 first_key->type, first_key->offset, 459 found_key.objectid, found_key.type, 460 found_key.offset); 461 } 462 #endif 463 return ret; 464 } 465 466 /* 467 * helper to read a given tree block, doing retries as required when 468 * the checksums don't match and we have alternate mirrors to try. 469 * 470 * @parent_transid: expected transid, skip check if 0 471 * @level: expected level, mandatory check 472 * @first_key: expected key of first slot, skip check if NULL 473 */ 474 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info, 475 struct extent_buffer *eb, 476 u64 parent_transid, int level, 477 struct btrfs_key *first_key) 478 { 479 struct extent_io_tree *io_tree; 480 int failed = 0; 481 int ret; 482 int num_copies = 0; 483 int mirror_num = 0; 484 int failed_mirror = 0; 485 486 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 487 while (1) { 488 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 489 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE, 490 mirror_num); 491 if (!ret) { 492 if (verify_parent_transid(io_tree, eb, 493 parent_transid, 0)) 494 ret = -EIO; 495 else if (verify_level_key(fs_info, eb, level, 496 first_key, parent_transid)) 497 ret = -EUCLEAN; 498 else 499 break; 500 } 501 502 num_copies = btrfs_num_copies(fs_info, 503 eb->start, eb->len); 504 if (num_copies == 1) 505 break; 506 507 if (!failed_mirror) { 508 failed = 1; 509 failed_mirror = eb->read_mirror; 510 } 511 512 mirror_num++; 513 if (mirror_num == failed_mirror) 514 mirror_num++; 515 516 if (mirror_num > num_copies) 517 break; 518 } 519 520 if (failed && !ret && failed_mirror) 521 repair_eb_io_failure(fs_info, eb, failed_mirror); 522 523 return ret; 524 } 525 526 /* 527 * checksum a dirty tree block before IO. This has extra checks to make sure 528 * we only fill in the checksum field in the first page of a multi-page block 529 */ 530 531 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 532 { 533 u64 start = page_offset(page); 534 u64 found_start; 535 struct extent_buffer *eb; 536 537 eb = (struct extent_buffer *)page->private; 538 if (page != eb->pages[0]) 539 return 0; 540 541 found_start = btrfs_header_bytenr(eb); 542 /* 543 * Please do not consolidate these warnings into a single if. 544 * It is useful to know what went wrong. 545 */ 546 if (WARN_ON(found_start != start)) 547 return -EUCLEAN; 548 if (WARN_ON(!PageUptodate(page))) 549 return -EUCLEAN; 550 551 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 552 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 553 554 return csum_tree_block(fs_info, eb, 0); 555 } 556 557 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 558 struct extent_buffer *eb) 559 { 560 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 561 u8 fsid[BTRFS_FSID_SIZE]; 562 int ret = 1; 563 564 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 565 while (fs_devices) { 566 u8 *metadata_uuid; 567 568 /* 569 * Checking the incompat flag is only valid for the current 570 * fs. For seed devices it's forbidden to have their uuid 571 * changed so reading ->fsid in this case is fine 572 */ 573 if (fs_devices == fs_info->fs_devices && 574 btrfs_fs_incompat(fs_info, METADATA_UUID)) 575 metadata_uuid = fs_devices->metadata_uuid; 576 else 577 metadata_uuid = fs_devices->fsid; 578 579 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) { 580 ret = 0; 581 break; 582 } 583 fs_devices = fs_devices->seed; 584 } 585 return ret; 586 } 587 588 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 589 u64 phy_offset, struct page *page, 590 u64 start, u64 end, int mirror) 591 { 592 u64 found_start; 593 int found_level; 594 struct extent_buffer *eb; 595 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 596 struct btrfs_fs_info *fs_info = root->fs_info; 597 int ret = 0; 598 int reads_done; 599 600 if (!page->private) 601 goto out; 602 603 eb = (struct extent_buffer *)page->private; 604 605 /* the pending IO might have been the only thing that kept this buffer 606 * in memory. Make sure we have a ref for all this other checks 607 */ 608 extent_buffer_get(eb); 609 610 reads_done = atomic_dec_and_test(&eb->io_pages); 611 if (!reads_done) 612 goto err; 613 614 eb->read_mirror = mirror; 615 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 616 ret = -EIO; 617 goto err; 618 } 619 620 found_start = btrfs_header_bytenr(eb); 621 if (found_start != eb->start) { 622 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 623 eb->start, found_start); 624 ret = -EIO; 625 goto err; 626 } 627 if (check_tree_block_fsid(fs_info, eb)) { 628 btrfs_err_rl(fs_info, "bad fsid on block %llu", 629 eb->start); 630 ret = -EIO; 631 goto err; 632 } 633 found_level = btrfs_header_level(eb); 634 if (found_level >= BTRFS_MAX_LEVEL) { 635 btrfs_err(fs_info, "bad tree block level %d on %llu", 636 (int)btrfs_header_level(eb), eb->start); 637 ret = -EIO; 638 goto err; 639 } 640 641 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 642 eb, found_level); 643 644 ret = csum_tree_block(fs_info, eb, 1); 645 if (ret) 646 goto err; 647 648 /* 649 * If this is a leaf block and it is corrupt, set the corrupt bit so 650 * that we don't try and read the other copies of this block, just 651 * return -EIO. 652 */ 653 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) { 654 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 655 ret = -EIO; 656 } 657 658 if (found_level > 0 && btrfs_check_node(fs_info, eb)) 659 ret = -EIO; 660 661 if (!ret) 662 set_extent_buffer_uptodate(eb); 663 err: 664 if (reads_done && 665 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 666 btree_readahead_hook(eb, ret); 667 668 if (ret) { 669 /* 670 * our io error hook is going to dec the io pages 671 * again, we have to make sure it has something 672 * to decrement 673 */ 674 atomic_inc(&eb->io_pages); 675 clear_extent_buffer_uptodate(eb); 676 } 677 free_extent_buffer(eb); 678 out: 679 return ret; 680 } 681 682 static void end_workqueue_bio(struct bio *bio) 683 { 684 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 685 struct btrfs_fs_info *fs_info; 686 struct btrfs_workqueue *wq; 687 btrfs_work_func_t func; 688 689 fs_info = end_io_wq->info; 690 end_io_wq->status = bio->bi_status; 691 692 if (bio_op(bio) == REQ_OP_WRITE) { 693 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 694 wq = fs_info->endio_meta_write_workers; 695 func = btrfs_endio_meta_write_helper; 696 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 697 wq = fs_info->endio_freespace_worker; 698 func = btrfs_freespace_write_helper; 699 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 700 wq = fs_info->endio_raid56_workers; 701 func = btrfs_endio_raid56_helper; 702 } else { 703 wq = fs_info->endio_write_workers; 704 func = btrfs_endio_write_helper; 705 } 706 } else { 707 if (unlikely(end_io_wq->metadata == 708 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 709 wq = fs_info->endio_repair_workers; 710 func = btrfs_endio_repair_helper; 711 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 712 wq = fs_info->endio_raid56_workers; 713 func = btrfs_endio_raid56_helper; 714 } else if (end_io_wq->metadata) { 715 wq = fs_info->endio_meta_workers; 716 func = btrfs_endio_meta_helper; 717 } else { 718 wq = fs_info->endio_workers; 719 func = btrfs_endio_helper; 720 } 721 } 722 723 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 724 btrfs_queue_work(wq, &end_io_wq->work); 725 } 726 727 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 728 enum btrfs_wq_endio_type metadata) 729 { 730 struct btrfs_end_io_wq *end_io_wq; 731 732 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 733 if (!end_io_wq) 734 return BLK_STS_RESOURCE; 735 736 end_io_wq->private = bio->bi_private; 737 end_io_wq->end_io = bio->bi_end_io; 738 end_io_wq->info = info; 739 end_io_wq->status = 0; 740 end_io_wq->bio = bio; 741 end_io_wq->metadata = metadata; 742 743 bio->bi_private = end_io_wq; 744 bio->bi_end_io = end_workqueue_bio; 745 return 0; 746 } 747 748 static void run_one_async_start(struct btrfs_work *work) 749 { 750 struct async_submit_bio *async; 751 blk_status_t ret; 752 753 async = container_of(work, struct async_submit_bio, work); 754 ret = async->submit_bio_start(async->private_data, async->bio, 755 async->bio_offset); 756 if (ret) 757 async->status = ret; 758 } 759 760 /* 761 * In order to insert checksums into the metadata in large chunks, we wait 762 * until bio submission time. All the pages in the bio are checksummed and 763 * sums are attached onto the ordered extent record. 764 * 765 * At IO completion time the csums attached on the ordered extent record are 766 * inserted into the tree. 767 */ 768 static void run_one_async_done(struct btrfs_work *work) 769 { 770 struct async_submit_bio *async; 771 struct inode *inode; 772 blk_status_t ret; 773 774 async = container_of(work, struct async_submit_bio, work); 775 inode = async->private_data; 776 777 /* If an error occurred we just want to clean up the bio and move on */ 778 if (async->status) { 779 async->bio->bi_status = async->status; 780 bio_endio(async->bio); 781 return; 782 } 783 784 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, 785 async->mirror_num, 1); 786 if (ret) { 787 async->bio->bi_status = ret; 788 bio_endio(async->bio); 789 } 790 } 791 792 static void run_one_async_free(struct btrfs_work *work) 793 { 794 struct async_submit_bio *async; 795 796 async = container_of(work, struct async_submit_bio, work); 797 kfree(async); 798 } 799 800 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 801 int mirror_num, unsigned long bio_flags, 802 u64 bio_offset, void *private_data, 803 extent_submit_bio_start_t *submit_bio_start) 804 { 805 struct async_submit_bio *async; 806 807 async = kmalloc(sizeof(*async), GFP_NOFS); 808 if (!async) 809 return BLK_STS_RESOURCE; 810 811 async->private_data = private_data; 812 async->bio = bio; 813 async->mirror_num = mirror_num; 814 async->submit_bio_start = submit_bio_start; 815 816 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 817 run_one_async_done, run_one_async_free); 818 819 async->bio_offset = bio_offset; 820 821 async->status = 0; 822 823 if (op_is_sync(bio->bi_opf)) 824 btrfs_set_work_high_priority(&async->work); 825 826 btrfs_queue_work(fs_info->workers, &async->work); 827 return 0; 828 } 829 830 static blk_status_t btree_csum_one_bio(struct bio *bio) 831 { 832 struct bio_vec *bvec; 833 struct btrfs_root *root; 834 int i, ret = 0; 835 836 ASSERT(!bio_flagged(bio, BIO_CLONED)); 837 bio_for_each_segment_all(bvec, bio, i) { 838 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 839 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 840 if (ret) 841 break; 842 } 843 844 return errno_to_blk_status(ret); 845 } 846 847 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, 848 u64 bio_offset) 849 { 850 /* 851 * when we're called for a write, we're already in the async 852 * submission context. Just jump into btrfs_map_bio 853 */ 854 return btree_csum_one_bio(bio); 855 } 856 857 static int check_async_write(struct btrfs_inode *bi) 858 { 859 if (atomic_read(&bi->sync_writers)) 860 return 0; 861 #ifdef CONFIG_X86 862 if (static_cpu_has(X86_FEATURE_XMM4_2)) 863 return 0; 864 #endif 865 return 1; 866 } 867 868 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio, 869 int mirror_num, unsigned long bio_flags, 870 u64 bio_offset) 871 { 872 struct inode *inode = private_data; 873 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 874 int async = check_async_write(BTRFS_I(inode)); 875 blk_status_t ret; 876 877 if (bio_op(bio) != REQ_OP_WRITE) { 878 /* 879 * called for a read, do the setup so that checksum validation 880 * can happen in the async kernel threads 881 */ 882 ret = btrfs_bio_wq_end_io(fs_info, bio, 883 BTRFS_WQ_ENDIO_METADATA); 884 if (ret) 885 goto out_w_error; 886 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 887 } else if (!async) { 888 ret = btree_csum_one_bio(bio); 889 if (ret) 890 goto out_w_error; 891 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 892 } else { 893 /* 894 * kthread helpers are used to submit writes so that 895 * checksumming can happen in parallel across all CPUs 896 */ 897 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 898 bio_offset, private_data, 899 btree_submit_bio_start); 900 } 901 902 if (ret) 903 goto out_w_error; 904 return 0; 905 906 out_w_error: 907 bio->bi_status = ret; 908 bio_endio(bio); 909 return ret; 910 } 911 912 #ifdef CONFIG_MIGRATION 913 static int btree_migratepage(struct address_space *mapping, 914 struct page *newpage, struct page *page, 915 enum migrate_mode mode) 916 { 917 /* 918 * we can't safely write a btree page from here, 919 * we haven't done the locking hook 920 */ 921 if (PageDirty(page)) 922 return -EAGAIN; 923 /* 924 * Buffers may be managed in a filesystem specific way. 925 * We must have no buffers or drop them. 926 */ 927 if (page_has_private(page) && 928 !try_to_release_page(page, GFP_KERNEL)) 929 return -EAGAIN; 930 return migrate_page(mapping, newpage, page, mode); 931 } 932 #endif 933 934 935 static int btree_writepages(struct address_space *mapping, 936 struct writeback_control *wbc) 937 { 938 struct btrfs_fs_info *fs_info; 939 int ret; 940 941 if (wbc->sync_mode == WB_SYNC_NONE) { 942 943 if (wbc->for_kupdate) 944 return 0; 945 946 fs_info = BTRFS_I(mapping->host)->root->fs_info; 947 /* this is a bit racy, but that's ok */ 948 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 949 BTRFS_DIRTY_METADATA_THRESH, 950 fs_info->dirty_metadata_batch); 951 if (ret < 0) 952 return 0; 953 } 954 return btree_write_cache_pages(mapping, wbc); 955 } 956 957 static int btree_readpage(struct file *file, struct page *page) 958 { 959 struct extent_io_tree *tree; 960 tree = &BTRFS_I(page->mapping->host)->io_tree; 961 return extent_read_full_page(tree, page, btree_get_extent, 0); 962 } 963 964 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 965 { 966 if (PageWriteback(page) || PageDirty(page)) 967 return 0; 968 969 return try_release_extent_buffer(page); 970 } 971 972 static void btree_invalidatepage(struct page *page, unsigned int offset, 973 unsigned int length) 974 { 975 struct extent_io_tree *tree; 976 tree = &BTRFS_I(page->mapping->host)->io_tree; 977 extent_invalidatepage(tree, page, offset); 978 btree_releasepage(page, GFP_NOFS); 979 if (PagePrivate(page)) { 980 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 981 "page private not zero on page %llu", 982 (unsigned long long)page_offset(page)); 983 ClearPagePrivate(page); 984 set_page_private(page, 0); 985 put_page(page); 986 } 987 } 988 989 static int btree_set_page_dirty(struct page *page) 990 { 991 #ifdef DEBUG 992 struct extent_buffer *eb; 993 994 BUG_ON(!PagePrivate(page)); 995 eb = (struct extent_buffer *)page->private; 996 BUG_ON(!eb); 997 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 998 BUG_ON(!atomic_read(&eb->refs)); 999 btrfs_assert_tree_locked(eb); 1000 #endif 1001 return __set_page_dirty_nobuffers(page); 1002 } 1003 1004 static const struct address_space_operations btree_aops = { 1005 .readpage = btree_readpage, 1006 .writepages = btree_writepages, 1007 .releasepage = btree_releasepage, 1008 .invalidatepage = btree_invalidatepage, 1009 #ifdef CONFIG_MIGRATION 1010 .migratepage = btree_migratepage, 1011 #endif 1012 .set_page_dirty = btree_set_page_dirty, 1013 }; 1014 1015 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 1016 { 1017 struct extent_buffer *buf = NULL; 1018 struct inode *btree_inode = fs_info->btree_inode; 1019 1020 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1021 if (IS_ERR(buf)) 1022 return; 1023 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1024 buf, WAIT_NONE, 0); 1025 free_extent_buffer(buf); 1026 } 1027 1028 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr, 1029 int mirror_num, struct extent_buffer **eb) 1030 { 1031 struct extent_buffer *buf = NULL; 1032 struct inode *btree_inode = fs_info->btree_inode; 1033 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1034 int ret; 1035 1036 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1037 if (IS_ERR(buf)) 1038 return 0; 1039 1040 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1041 1042 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK, 1043 mirror_num); 1044 if (ret) { 1045 free_extent_buffer(buf); 1046 return ret; 1047 } 1048 1049 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1050 free_extent_buffer(buf); 1051 return -EIO; 1052 } else if (extent_buffer_uptodate(buf)) { 1053 *eb = buf; 1054 } else { 1055 free_extent_buffer(buf); 1056 } 1057 return 0; 1058 } 1059 1060 struct extent_buffer *btrfs_find_create_tree_block( 1061 struct btrfs_fs_info *fs_info, 1062 u64 bytenr) 1063 { 1064 if (btrfs_is_testing(fs_info)) 1065 return alloc_test_extent_buffer(fs_info, bytenr); 1066 return alloc_extent_buffer(fs_info, bytenr); 1067 } 1068 1069 1070 int btrfs_write_tree_block(struct extent_buffer *buf) 1071 { 1072 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1073 buf->start + buf->len - 1); 1074 } 1075 1076 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1077 { 1078 filemap_fdatawait_range(buf->pages[0]->mapping, 1079 buf->start, buf->start + buf->len - 1); 1080 } 1081 1082 /* 1083 * Read tree block at logical address @bytenr and do variant basic but critical 1084 * verification. 1085 * 1086 * @parent_transid: expected transid of this tree block, skip check if 0 1087 * @level: expected level, mandatory check 1088 * @first_key: expected key in slot 0, skip check if NULL 1089 */ 1090 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1091 u64 parent_transid, int level, 1092 struct btrfs_key *first_key) 1093 { 1094 struct extent_buffer *buf = NULL; 1095 int ret; 1096 1097 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1098 if (IS_ERR(buf)) 1099 return buf; 1100 1101 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid, 1102 level, first_key); 1103 if (ret) { 1104 free_extent_buffer(buf); 1105 return ERR_PTR(ret); 1106 } 1107 return buf; 1108 1109 } 1110 1111 void clean_tree_block(struct btrfs_fs_info *fs_info, 1112 struct extent_buffer *buf) 1113 { 1114 if (btrfs_header_generation(buf) == 1115 fs_info->running_transaction->transid) { 1116 btrfs_assert_tree_locked(buf); 1117 1118 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1119 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1120 -buf->len, 1121 fs_info->dirty_metadata_batch); 1122 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1123 btrfs_set_lock_blocking(buf); 1124 clear_extent_buffer_dirty(buf); 1125 } 1126 } 1127 } 1128 1129 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1130 { 1131 struct btrfs_subvolume_writers *writers; 1132 int ret; 1133 1134 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1135 if (!writers) 1136 return ERR_PTR(-ENOMEM); 1137 1138 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS); 1139 if (ret < 0) { 1140 kfree(writers); 1141 return ERR_PTR(ret); 1142 } 1143 1144 init_waitqueue_head(&writers->wait); 1145 return writers; 1146 } 1147 1148 static void 1149 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1150 { 1151 percpu_counter_destroy(&writers->counter); 1152 kfree(writers); 1153 } 1154 1155 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1156 u64 objectid) 1157 { 1158 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1159 root->node = NULL; 1160 root->commit_root = NULL; 1161 root->state = 0; 1162 root->orphan_cleanup_state = 0; 1163 1164 root->last_trans = 0; 1165 root->highest_objectid = 0; 1166 root->nr_delalloc_inodes = 0; 1167 root->nr_ordered_extents = 0; 1168 root->inode_tree = RB_ROOT; 1169 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1170 root->block_rsv = NULL; 1171 1172 INIT_LIST_HEAD(&root->dirty_list); 1173 INIT_LIST_HEAD(&root->root_list); 1174 INIT_LIST_HEAD(&root->delalloc_inodes); 1175 INIT_LIST_HEAD(&root->delalloc_root); 1176 INIT_LIST_HEAD(&root->ordered_extents); 1177 INIT_LIST_HEAD(&root->ordered_root); 1178 INIT_LIST_HEAD(&root->logged_list[0]); 1179 INIT_LIST_HEAD(&root->logged_list[1]); 1180 spin_lock_init(&root->inode_lock); 1181 spin_lock_init(&root->delalloc_lock); 1182 spin_lock_init(&root->ordered_extent_lock); 1183 spin_lock_init(&root->accounting_lock); 1184 spin_lock_init(&root->log_extents_lock[0]); 1185 spin_lock_init(&root->log_extents_lock[1]); 1186 spin_lock_init(&root->qgroup_meta_rsv_lock); 1187 mutex_init(&root->objectid_mutex); 1188 mutex_init(&root->log_mutex); 1189 mutex_init(&root->ordered_extent_mutex); 1190 mutex_init(&root->delalloc_mutex); 1191 init_waitqueue_head(&root->log_writer_wait); 1192 init_waitqueue_head(&root->log_commit_wait[0]); 1193 init_waitqueue_head(&root->log_commit_wait[1]); 1194 INIT_LIST_HEAD(&root->log_ctxs[0]); 1195 INIT_LIST_HEAD(&root->log_ctxs[1]); 1196 atomic_set(&root->log_commit[0], 0); 1197 atomic_set(&root->log_commit[1], 0); 1198 atomic_set(&root->log_writers, 0); 1199 atomic_set(&root->log_batch, 0); 1200 refcount_set(&root->refs, 1); 1201 atomic_set(&root->will_be_snapshotted, 0); 1202 atomic_set(&root->snapshot_force_cow, 0); 1203 atomic_set(&root->nr_swapfiles, 0); 1204 root->log_transid = 0; 1205 root->log_transid_committed = -1; 1206 root->last_log_commit = 0; 1207 if (!dummy) 1208 extent_io_tree_init(&root->dirty_log_pages, NULL); 1209 1210 memset(&root->root_key, 0, sizeof(root->root_key)); 1211 memset(&root->root_item, 0, sizeof(root->root_item)); 1212 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1213 if (!dummy) 1214 root->defrag_trans_start = fs_info->generation; 1215 else 1216 root->defrag_trans_start = 0; 1217 root->root_key.objectid = objectid; 1218 root->anon_dev = 0; 1219 1220 spin_lock_init(&root->root_item_lock); 1221 } 1222 1223 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1224 gfp_t flags) 1225 { 1226 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1227 if (root) 1228 root->fs_info = fs_info; 1229 return root; 1230 } 1231 1232 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1233 /* Should only be used by the testing infrastructure */ 1234 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1235 { 1236 struct btrfs_root *root; 1237 1238 if (!fs_info) 1239 return ERR_PTR(-EINVAL); 1240 1241 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1242 if (!root) 1243 return ERR_PTR(-ENOMEM); 1244 1245 /* We don't use the stripesize in selftest, set it as sectorsize */ 1246 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 1247 root->alloc_bytenr = 0; 1248 1249 return root; 1250 } 1251 #endif 1252 1253 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1254 struct btrfs_fs_info *fs_info, 1255 u64 objectid) 1256 { 1257 struct extent_buffer *leaf; 1258 struct btrfs_root *tree_root = fs_info->tree_root; 1259 struct btrfs_root *root; 1260 struct btrfs_key key; 1261 int ret = 0; 1262 uuid_le uuid = NULL_UUID_LE; 1263 1264 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1265 if (!root) 1266 return ERR_PTR(-ENOMEM); 1267 1268 __setup_root(root, fs_info, objectid); 1269 root->root_key.objectid = objectid; 1270 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1271 root->root_key.offset = 0; 1272 1273 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1274 if (IS_ERR(leaf)) { 1275 ret = PTR_ERR(leaf); 1276 leaf = NULL; 1277 goto fail; 1278 } 1279 1280 root->node = leaf; 1281 btrfs_mark_buffer_dirty(leaf); 1282 1283 root->commit_root = btrfs_root_node(root); 1284 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1285 1286 root->root_item.flags = 0; 1287 root->root_item.byte_limit = 0; 1288 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1289 btrfs_set_root_generation(&root->root_item, trans->transid); 1290 btrfs_set_root_level(&root->root_item, 0); 1291 btrfs_set_root_refs(&root->root_item, 1); 1292 btrfs_set_root_used(&root->root_item, leaf->len); 1293 btrfs_set_root_last_snapshot(&root->root_item, 0); 1294 btrfs_set_root_dirid(&root->root_item, 0); 1295 if (is_fstree(objectid)) 1296 uuid_le_gen(&uuid); 1297 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1298 root->root_item.drop_level = 0; 1299 1300 key.objectid = objectid; 1301 key.type = BTRFS_ROOT_ITEM_KEY; 1302 key.offset = 0; 1303 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1304 if (ret) 1305 goto fail; 1306 1307 btrfs_tree_unlock(leaf); 1308 1309 return root; 1310 1311 fail: 1312 if (leaf) { 1313 btrfs_tree_unlock(leaf); 1314 free_extent_buffer(root->commit_root); 1315 free_extent_buffer(leaf); 1316 } 1317 kfree(root); 1318 1319 return ERR_PTR(ret); 1320 } 1321 1322 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1323 struct btrfs_fs_info *fs_info) 1324 { 1325 struct btrfs_root *root; 1326 struct extent_buffer *leaf; 1327 1328 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1329 if (!root) 1330 return ERR_PTR(-ENOMEM); 1331 1332 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1333 1334 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1335 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1336 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1337 1338 /* 1339 * DON'T set REF_COWS for log trees 1340 * 1341 * log trees do not get reference counted because they go away 1342 * before a real commit is actually done. They do store pointers 1343 * to file data extents, and those reference counts still get 1344 * updated (along with back refs to the log tree). 1345 */ 1346 1347 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1348 NULL, 0, 0, 0); 1349 if (IS_ERR(leaf)) { 1350 kfree(root); 1351 return ERR_CAST(leaf); 1352 } 1353 1354 root->node = leaf; 1355 1356 btrfs_mark_buffer_dirty(root->node); 1357 btrfs_tree_unlock(root->node); 1358 return root; 1359 } 1360 1361 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1362 struct btrfs_fs_info *fs_info) 1363 { 1364 struct btrfs_root *log_root; 1365 1366 log_root = alloc_log_tree(trans, fs_info); 1367 if (IS_ERR(log_root)) 1368 return PTR_ERR(log_root); 1369 WARN_ON(fs_info->log_root_tree); 1370 fs_info->log_root_tree = log_root; 1371 return 0; 1372 } 1373 1374 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1375 struct btrfs_root *root) 1376 { 1377 struct btrfs_fs_info *fs_info = root->fs_info; 1378 struct btrfs_root *log_root; 1379 struct btrfs_inode_item *inode_item; 1380 1381 log_root = alloc_log_tree(trans, fs_info); 1382 if (IS_ERR(log_root)) 1383 return PTR_ERR(log_root); 1384 1385 log_root->last_trans = trans->transid; 1386 log_root->root_key.offset = root->root_key.objectid; 1387 1388 inode_item = &log_root->root_item.inode; 1389 btrfs_set_stack_inode_generation(inode_item, 1); 1390 btrfs_set_stack_inode_size(inode_item, 3); 1391 btrfs_set_stack_inode_nlink(inode_item, 1); 1392 btrfs_set_stack_inode_nbytes(inode_item, 1393 fs_info->nodesize); 1394 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1395 1396 btrfs_set_root_node(&log_root->root_item, log_root->node); 1397 1398 WARN_ON(root->log_root); 1399 root->log_root = log_root; 1400 root->log_transid = 0; 1401 root->log_transid_committed = -1; 1402 root->last_log_commit = 0; 1403 return 0; 1404 } 1405 1406 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1407 struct btrfs_key *key) 1408 { 1409 struct btrfs_root *root; 1410 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1411 struct btrfs_path *path; 1412 u64 generation; 1413 int ret; 1414 int level; 1415 1416 path = btrfs_alloc_path(); 1417 if (!path) 1418 return ERR_PTR(-ENOMEM); 1419 1420 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1421 if (!root) { 1422 ret = -ENOMEM; 1423 goto alloc_fail; 1424 } 1425 1426 __setup_root(root, fs_info, key->objectid); 1427 1428 ret = btrfs_find_root(tree_root, key, path, 1429 &root->root_item, &root->root_key); 1430 if (ret) { 1431 if (ret > 0) 1432 ret = -ENOENT; 1433 goto find_fail; 1434 } 1435 1436 generation = btrfs_root_generation(&root->root_item); 1437 level = btrfs_root_level(&root->root_item); 1438 root->node = read_tree_block(fs_info, 1439 btrfs_root_bytenr(&root->root_item), 1440 generation, level, NULL); 1441 if (IS_ERR(root->node)) { 1442 ret = PTR_ERR(root->node); 1443 goto find_fail; 1444 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1445 ret = -EIO; 1446 free_extent_buffer(root->node); 1447 goto find_fail; 1448 } 1449 root->commit_root = btrfs_root_node(root); 1450 out: 1451 btrfs_free_path(path); 1452 return root; 1453 1454 find_fail: 1455 kfree(root); 1456 alloc_fail: 1457 root = ERR_PTR(ret); 1458 goto out; 1459 } 1460 1461 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1462 struct btrfs_key *location) 1463 { 1464 struct btrfs_root *root; 1465 1466 root = btrfs_read_tree_root(tree_root, location); 1467 if (IS_ERR(root)) 1468 return root; 1469 1470 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1471 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1472 btrfs_check_and_init_root_item(&root->root_item); 1473 } 1474 1475 return root; 1476 } 1477 1478 int btrfs_init_fs_root(struct btrfs_root *root) 1479 { 1480 int ret; 1481 struct btrfs_subvolume_writers *writers; 1482 1483 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1484 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1485 GFP_NOFS); 1486 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1487 ret = -ENOMEM; 1488 goto fail; 1489 } 1490 1491 writers = btrfs_alloc_subvolume_writers(); 1492 if (IS_ERR(writers)) { 1493 ret = PTR_ERR(writers); 1494 goto fail; 1495 } 1496 root->subv_writers = writers; 1497 1498 btrfs_init_free_ino_ctl(root); 1499 spin_lock_init(&root->ino_cache_lock); 1500 init_waitqueue_head(&root->ino_cache_wait); 1501 1502 ret = get_anon_bdev(&root->anon_dev); 1503 if (ret) 1504 goto fail; 1505 1506 mutex_lock(&root->objectid_mutex); 1507 ret = btrfs_find_highest_objectid(root, 1508 &root->highest_objectid); 1509 if (ret) { 1510 mutex_unlock(&root->objectid_mutex); 1511 goto fail; 1512 } 1513 1514 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1515 1516 mutex_unlock(&root->objectid_mutex); 1517 1518 return 0; 1519 fail: 1520 /* The caller is responsible to call btrfs_free_fs_root */ 1521 return ret; 1522 } 1523 1524 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1525 u64 root_id) 1526 { 1527 struct btrfs_root *root; 1528 1529 spin_lock(&fs_info->fs_roots_radix_lock); 1530 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1531 (unsigned long)root_id); 1532 spin_unlock(&fs_info->fs_roots_radix_lock); 1533 return root; 1534 } 1535 1536 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1537 struct btrfs_root *root) 1538 { 1539 int ret; 1540 1541 ret = radix_tree_preload(GFP_NOFS); 1542 if (ret) 1543 return ret; 1544 1545 spin_lock(&fs_info->fs_roots_radix_lock); 1546 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1547 (unsigned long)root->root_key.objectid, 1548 root); 1549 if (ret == 0) 1550 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1551 spin_unlock(&fs_info->fs_roots_radix_lock); 1552 radix_tree_preload_end(); 1553 1554 return ret; 1555 } 1556 1557 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1558 struct btrfs_key *location, 1559 bool check_ref) 1560 { 1561 struct btrfs_root *root; 1562 struct btrfs_path *path; 1563 struct btrfs_key key; 1564 int ret; 1565 1566 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1567 return fs_info->tree_root; 1568 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1569 return fs_info->extent_root; 1570 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1571 return fs_info->chunk_root; 1572 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1573 return fs_info->dev_root; 1574 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1575 return fs_info->csum_root; 1576 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1577 return fs_info->quota_root ? fs_info->quota_root : 1578 ERR_PTR(-ENOENT); 1579 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1580 return fs_info->uuid_root ? fs_info->uuid_root : 1581 ERR_PTR(-ENOENT); 1582 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1583 return fs_info->free_space_root ? fs_info->free_space_root : 1584 ERR_PTR(-ENOENT); 1585 again: 1586 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1587 if (root) { 1588 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1589 return ERR_PTR(-ENOENT); 1590 return root; 1591 } 1592 1593 root = btrfs_read_fs_root(fs_info->tree_root, location); 1594 if (IS_ERR(root)) 1595 return root; 1596 1597 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1598 ret = -ENOENT; 1599 goto fail; 1600 } 1601 1602 ret = btrfs_init_fs_root(root); 1603 if (ret) 1604 goto fail; 1605 1606 path = btrfs_alloc_path(); 1607 if (!path) { 1608 ret = -ENOMEM; 1609 goto fail; 1610 } 1611 key.objectid = BTRFS_ORPHAN_OBJECTID; 1612 key.type = BTRFS_ORPHAN_ITEM_KEY; 1613 key.offset = location->objectid; 1614 1615 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1616 btrfs_free_path(path); 1617 if (ret < 0) 1618 goto fail; 1619 if (ret == 0) 1620 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1621 1622 ret = btrfs_insert_fs_root(fs_info, root); 1623 if (ret) { 1624 if (ret == -EEXIST) { 1625 btrfs_free_fs_root(root); 1626 goto again; 1627 } 1628 goto fail; 1629 } 1630 return root; 1631 fail: 1632 btrfs_free_fs_root(root); 1633 return ERR_PTR(ret); 1634 } 1635 1636 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1637 { 1638 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1639 int ret = 0; 1640 struct btrfs_device *device; 1641 struct backing_dev_info *bdi; 1642 1643 rcu_read_lock(); 1644 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1645 if (!device->bdev) 1646 continue; 1647 bdi = device->bdev->bd_bdi; 1648 if (bdi_congested(bdi, bdi_bits)) { 1649 ret = 1; 1650 break; 1651 } 1652 } 1653 rcu_read_unlock(); 1654 return ret; 1655 } 1656 1657 /* 1658 * called by the kthread helper functions to finally call the bio end_io 1659 * functions. This is where read checksum verification actually happens 1660 */ 1661 static void end_workqueue_fn(struct btrfs_work *work) 1662 { 1663 struct bio *bio; 1664 struct btrfs_end_io_wq *end_io_wq; 1665 1666 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1667 bio = end_io_wq->bio; 1668 1669 bio->bi_status = end_io_wq->status; 1670 bio->bi_private = end_io_wq->private; 1671 bio->bi_end_io = end_io_wq->end_io; 1672 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1673 bio_endio(bio); 1674 } 1675 1676 static int cleaner_kthread(void *arg) 1677 { 1678 struct btrfs_root *root = arg; 1679 struct btrfs_fs_info *fs_info = root->fs_info; 1680 int again; 1681 1682 while (1) { 1683 again = 0; 1684 1685 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1686 1687 /* Make the cleaner go to sleep early. */ 1688 if (btrfs_need_cleaner_sleep(fs_info)) 1689 goto sleep; 1690 1691 /* 1692 * Do not do anything if we might cause open_ctree() to block 1693 * before we have finished mounting the filesystem. 1694 */ 1695 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1696 goto sleep; 1697 1698 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1699 goto sleep; 1700 1701 /* 1702 * Avoid the problem that we change the status of the fs 1703 * during the above check and trylock. 1704 */ 1705 if (btrfs_need_cleaner_sleep(fs_info)) { 1706 mutex_unlock(&fs_info->cleaner_mutex); 1707 goto sleep; 1708 } 1709 1710 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 1711 btrfs_run_delayed_iputs(fs_info); 1712 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 1713 1714 again = btrfs_clean_one_deleted_snapshot(root); 1715 mutex_unlock(&fs_info->cleaner_mutex); 1716 1717 /* 1718 * The defragger has dealt with the R/O remount and umount, 1719 * needn't do anything special here. 1720 */ 1721 btrfs_run_defrag_inodes(fs_info); 1722 1723 /* 1724 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1725 * with relocation (btrfs_relocate_chunk) and relocation 1726 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1727 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1728 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1729 * unused block groups. 1730 */ 1731 btrfs_delete_unused_bgs(fs_info); 1732 sleep: 1733 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1734 if (kthread_should_park()) 1735 kthread_parkme(); 1736 if (kthread_should_stop()) 1737 return 0; 1738 if (!again) { 1739 set_current_state(TASK_INTERRUPTIBLE); 1740 schedule(); 1741 __set_current_state(TASK_RUNNING); 1742 } 1743 } 1744 } 1745 1746 static int transaction_kthread(void *arg) 1747 { 1748 struct btrfs_root *root = arg; 1749 struct btrfs_fs_info *fs_info = root->fs_info; 1750 struct btrfs_trans_handle *trans; 1751 struct btrfs_transaction *cur; 1752 u64 transid; 1753 time64_t now; 1754 unsigned long delay; 1755 bool cannot_commit; 1756 1757 do { 1758 cannot_commit = false; 1759 delay = HZ * fs_info->commit_interval; 1760 mutex_lock(&fs_info->transaction_kthread_mutex); 1761 1762 spin_lock(&fs_info->trans_lock); 1763 cur = fs_info->running_transaction; 1764 if (!cur) { 1765 spin_unlock(&fs_info->trans_lock); 1766 goto sleep; 1767 } 1768 1769 now = ktime_get_seconds(); 1770 if (cur->state < TRANS_STATE_BLOCKED && 1771 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) && 1772 (now < cur->start_time || 1773 now - cur->start_time < fs_info->commit_interval)) { 1774 spin_unlock(&fs_info->trans_lock); 1775 delay = HZ * 5; 1776 goto sleep; 1777 } 1778 transid = cur->transid; 1779 spin_unlock(&fs_info->trans_lock); 1780 1781 /* If the file system is aborted, this will always fail. */ 1782 trans = btrfs_attach_transaction(root); 1783 if (IS_ERR(trans)) { 1784 if (PTR_ERR(trans) != -ENOENT) 1785 cannot_commit = true; 1786 goto sleep; 1787 } 1788 if (transid == trans->transid) { 1789 btrfs_commit_transaction(trans); 1790 } else { 1791 btrfs_end_transaction(trans); 1792 } 1793 sleep: 1794 wake_up_process(fs_info->cleaner_kthread); 1795 mutex_unlock(&fs_info->transaction_kthread_mutex); 1796 1797 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1798 &fs_info->fs_state))) 1799 btrfs_cleanup_transaction(fs_info); 1800 if (!kthread_should_stop() && 1801 (!btrfs_transaction_blocked(fs_info) || 1802 cannot_commit)) 1803 schedule_timeout_interruptible(delay); 1804 } while (!kthread_should_stop()); 1805 return 0; 1806 } 1807 1808 /* 1809 * this will find the highest generation in the array of 1810 * root backups. The index of the highest array is returned, 1811 * or -1 if we can't find anything. 1812 * 1813 * We check to make sure the array is valid by comparing the 1814 * generation of the latest root in the array with the generation 1815 * in the super block. If they don't match we pitch it. 1816 */ 1817 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1818 { 1819 u64 cur; 1820 int newest_index = -1; 1821 struct btrfs_root_backup *root_backup; 1822 int i; 1823 1824 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1825 root_backup = info->super_copy->super_roots + i; 1826 cur = btrfs_backup_tree_root_gen(root_backup); 1827 if (cur == newest_gen) 1828 newest_index = i; 1829 } 1830 1831 /* check to see if we actually wrapped around */ 1832 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1833 root_backup = info->super_copy->super_roots; 1834 cur = btrfs_backup_tree_root_gen(root_backup); 1835 if (cur == newest_gen) 1836 newest_index = 0; 1837 } 1838 return newest_index; 1839 } 1840 1841 1842 /* 1843 * find the oldest backup so we know where to store new entries 1844 * in the backup array. This will set the backup_root_index 1845 * field in the fs_info struct 1846 */ 1847 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1848 u64 newest_gen) 1849 { 1850 int newest_index = -1; 1851 1852 newest_index = find_newest_super_backup(info, newest_gen); 1853 /* if there was garbage in there, just move along */ 1854 if (newest_index == -1) { 1855 info->backup_root_index = 0; 1856 } else { 1857 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1858 } 1859 } 1860 1861 /* 1862 * copy all the root pointers into the super backup array. 1863 * this will bump the backup pointer by one when it is 1864 * done 1865 */ 1866 static void backup_super_roots(struct btrfs_fs_info *info) 1867 { 1868 int next_backup; 1869 struct btrfs_root_backup *root_backup; 1870 int last_backup; 1871 1872 next_backup = info->backup_root_index; 1873 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1874 BTRFS_NUM_BACKUP_ROOTS; 1875 1876 /* 1877 * just overwrite the last backup if we're at the same generation 1878 * this happens only at umount 1879 */ 1880 root_backup = info->super_for_commit->super_roots + last_backup; 1881 if (btrfs_backup_tree_root_gen(root_backup) == 1882 btrfs_header_generation(info->tree_root->node)) 1883 next_backup = last_backup; 1884 1885 root_backup = info->super_for_commit->super_roots + next_backup; 1886 1887 /* 1888 * make sure all of our padding and empty slots get zero filled 1889 * regardless of which ones we use today 1890 */ 1891 memset(root_backup, 0, sizeof(*root_backup)); 1892 1893 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1894 1895 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1896 btrfs_set_backup_tree_root_gen(root_backup, 1897 btrfs_header_generation(info->tree_root->node)); 1898 1899 btrfs_set_backup_tree_root_level(root_backup, 1900 btrfs_header_level(info->tree_root->node)); 1901 1902 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1903 btrfs_set_backup_chunk_root_gen(root_backup, 1904 btrfs_header_generation(info->chunk_root->node)); 1905 btrfs_set_backup_chunk_root_level(root_backup, 1906 btrfs_header_level(info->chunk_root->node)); 1907 1908 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1909 btrfs_set_backup_extent_root_gen(root_backup, 1910 btrfs_header_generation(info->extent_root->node)); 1911 btrfs_set_backup_extent_root_level(root_backup, 1912 btrfs_header_level(info->extent_root->node)); 1913 1914 /* 1915 * we might commit during log recovery, which happens before we set 1916 * the fs_root. Make sure it is valid before we fill it in. 1917 */ 1918 if (info->fs_root && info->fs_root->node) { 1919 btrfs_set_backup_fs_root(root_backup, 1920 info->fs_root->node->start); 1921 btrfs_set_backup_fs_root_gen(root_backup, 1922 btrfs_header_generation(info->fs_root->node)); 1923 btrfs_set_backup_fs_root_level(root_backup, 1924 btrfs_header_level(info->fs_root->node)); 1925 } 1926 1927 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1928 btrfs_set_backup_dev_root_gen(root_backup, 1929 btrfs_header_generation(info->dev_root->node)); 1930 btrfs_set_backup_dev_root_level(root_backup, 1931 btrfs_header_level(info->dev_root->node)); 1932 1933 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1934 btrfs_set_backup_csum_root_gen(root_backup, 1935 btrfs_header_generation(info->csum_root->node)); 1936 btrfs_set_backup_csum_root_level(root_backup, 1937 btrfs_header_level(info->csum_root->node)); 1938 1939 btrfs_set_backup_total_bytes(root_backup, 1940 btrfs_super_total_bytes(info->super_copy)); 1941 btrfs_set_backup_bytes_used(root_backup, 1942 btrfs_super_bytes_used(info->super_copy)); 1943 btrfs_set_backup_num_devices(root_backup, 1944 btrfs_super_num_devices(info->super_copy)); 1945 1946 /* 1947 * if we don't copy this out to the super_copy, it won't get remembered 1948 * for the next commit 1949 */ 1950 memcpy(&info->super_copy->super_roots, 1951 &info->super_for_commit->super_roots, 1952 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1953 } 1954 1955 /* 1956 * this copies info out of the root backup array and back into 1957 * the in-memory super block. It is meant to help iterate through 1958 * the array, so you send it the number of backups you've already 1959 * tried and the last backup index you used. 1960 * 1961 * this returns -1 when it has tried all the backups 1962 */ 1963 static noinline int next_root_backup(struct btrfs_fs_info *info, 1964 struct btrfs_super_block *super, 1965 int *num_backups_tried, int *backup_index) 1966 { 1967 struct btrfs_root_backup *root_backup; 1968 int newest = *backup_index; 1969 1970 if (*num_backups_tried == 0) { 1971 u64 gen = btrfs_super_generation(super); 1972 1973 newest = find_newest_super_backup(info, gen); 1974 if (newest == -1) 1975 return -1; 1976 1977 *backup_index = newest; 1978 *num_backups_tried = 1; 1979 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1980 /* we've tried all the backups, all done */ 1981 return -1; 1982 } else { 1983 /* jump to the next oldest backup */ 1984 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1985 BTRFS_NUM_BACKUP_ROOTS; 1986 *backup_index = newest; 1987 *num_backups_tried += 1; 1988 } 1989 root_backup = super->super_roots + newest; 1990 1991 btrfs_set_super_generation(super, 1992 btrfs_backup_tree_root_gen(root_backup)); 1993 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1994 btrfs_set_super_root_level(super, 1995 btrfs_backup_tree_root_level(root_backup)); 1996 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1997 1998 /* 1999 * fixme: the total bytes and num_devices need to match or we should 2000 * need a fsck 2001 */ 2002 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2003 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2004 return 0; 2005 } 2006 2007 /* helper to cleanup workers */ 2008 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2009 { 2010 btrfs_destroy_workqueue(fs_info->fixup_workers); 2011 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2012 btrfs_destroy_workqueue(fs_info->workers); 2013 btrfs_destroy_workqueue(fs_info->endio_workers); 2014 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2015 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2016 btrfs_destroy_workqueue(fs_info->rmw_workers); 2017 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2018 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2019 btrfs_destroy_workqueue(fs_info->submit_workers); 2020 btrfs_destroy_workqueue(fs_info->delayed_workers); 2021 btrfs_destroy_workqueue(fs_info->caching_workers); 2022 btrfs_destroy_workqueue(fs_info->readahead_workers); 2023 btrfs_destroy_workqueue(fs_info->flush_workers); 2024 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2025 btrfs_destroy_workqueue(fs_info->extent_workers); 2026 /* 2027 * Now that all other work queues are destroyed, we can safely destroy 2028 * the queues used for metadata I/O, since tasks from those other work 2029 * queues can do metadata I/O operations. 2030 */ 2031 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2032 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2033 } 2034 2035 static void free_root_extent_buffers(struct btrfs_root *root) 2036 { 2037 if (root) { 2038 free_extent_buffer(root->node); 2039 free_extent_buffer(root->commit_root); 2040 root->node = NULL; 2041 root->commit_root = NULL; 2042 } 2043 } 2044 2045 /* helper to cleanup tree roots */ 2046 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2047 { 2048 free_root_extent_buffers(info->tree_root); 2049 2050 free_root_extent_buffers(info->dev_root); 2051 free_root_extent_buffers(info->extent_root); 2052 free_root_extent_buffers(info->csum_root); 2053 free_root_extent_buffers(info->quota_root); 2054 free_root_extent_buffers(info->uuid_root); 2055 if (chunk_root) 2056 free_root_extent_buffers(info->chunk_root); 2057 free_root_extent_buffers(info->free_space_root); 2058 } 2059 2060 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2061 { 2062 int ret; 2063 struct btrfs_root *gang[8]; 2064 int i; 2065 2066 while (!list_empty(&fs_info->dead_roots)) { 2067 gang[0] = list_entry(fs_info->dead_roots.next, 2068 struct btrfs_root, root_list); 2069 list_del(&gang[0]->root_list); 2070 2071 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2072 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2073 } else { 2074 free_extent_buffer(gang[0]->node); 2075 free_extent_buffer(gang[0]->commit_root); 2076 btrfs_put_fs_root(gang[0]); 2077 } 2078 } 2079 2080 while (1) { 2081 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2082 (void **)gang, 0, 2083 ARRAY_SIZE(gang)); 2084 if (!ret) 2085 break; 2086 for (i = 0; i < ret; i++) 2087 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2088 } 2089 2090 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2091 btrfs_free_log_root_tree(NULL, fs_info); 2092 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 2093 } 2094 } 2095 2096 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2097 { 2098 mutex_init(&fs_info->scrub_lock); 2099 atomic_set(&fs_info->scrubs_running, 0); 2100 atomic_set(&fs_info->scrub_pause_req, 0); 2101 atomic_set(&fs_info->scrubs_paused, 0); 2102 atomic_set(&fs_info->scrub_cancel_req, 0); 2103 init_waitqueue_head(&fs_info->scrub_pause_wait); 2104 fs_info->scrub_workers_refcnt = 0; 2105 } 2106 2107 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2108 { 2109 spin_lock_init(&fs_info->balance_lock); 2110 mutex_init(&fs_info->balance_mutex); 2111 atomic_set(&fs_info->balance_pause_req, 0); 2112 atomic_set(&fs_info->balance_cancel_req, 0); 2113 fs_info->balance_ctl = NULL; 2114 init_waitqueue_head(&fs_info->balance_wait_q); 2115 } 2116 2117 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2118 { 2119 struct inode *inode = fs_info->btree_inode; 2120 2121 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2122 set_nlink(inode, 1); 2123 /* 2124 * we set the i_size on the btree inode to the max possible int. 2125 * the real end of the address space is determined by all of 2126 * the devices in the system 2127 */ 2128 inode->i_size = OFFSET_MAX; 2129 inode->i_mapping->a_ops = &btree_aops; 2130 2131 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2132 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode); 2133 BTRFS_I(inode)->io_tree.track_uptodate = 0; 2134 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2135 2136 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2137 2138 BTRFS_I(inode)->root = fs_info->tree_root; 2139 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2140 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2141 btrfs_insert_inode_hash(inode); 2142 } 2143 2144 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2145 { 2146 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2147 init_rwsem(&fs_info->dev_replace.rwsem); 2148 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2149 } 2150 2151 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2152 { 2153 spin_lock_init(&fs_info->qgroup_lock); 2154 mutex_init(&fs_info->qgroup_ioctl_lock); 2155 fs_info->qgroup_tree = RB_ROOT; 2156 fs_info->qgroup_op_tree = RB_ROOT; 2157 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2158 fs_info->qgroup_seq = 1; 2159 fs_info->qgroup_ulist = NULL; 2160 fs_info->qgroup_rescan_running = false; 2161 mutex_init(&fs_info->qgroup_rescan_lock); 2162 } 2163 2164 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2165 struct btrfs_fs_devices *fs_devices) 2166 { 2167 u32 max_active = fs_info->thread_pool_size; 2168 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2169 2170 fs_info->workers = 2171 btrfs_alloc_workqueue(fs_info, "worker", 2172 flags | WQ_HIGHPRI, max_active, 16); 2173 2174 fs_info->delalloc_workers = 2175 btrfs_alloc_workqueue(fs_info, "delalloc", 2176 flags, max_active, 2); 2177 2178 fs_info->flush_workers = 2179 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2180 flags, max_active, 0); 2181 2182 fs_info->caching_workers = 2183 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2184 2185 /* 2186 * a higher idle thresh on the submit workers makes it much more 2187 * likely that bios will be send down in a sane order to the 2188 * devices 2189 */ 2190 fs_info->submit_workers = 2191 btrfs_alloc_workqueue(fs_info, "submit", flags, 2192 min_t(u64, fs_devices->num_devices, 2193 max_active), 64); 2194 2195 fs_info->fixup_workers = 2196 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2197 2198 /* 2199 * endios are largely parallel and should have a very 2200 * low idle thresh 2201 */ 2202 fs_info->endio_workers = 2203 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2204 fs_info->endio_meta_workers = 2205 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2206 max_active, 4); 2207 fs_info->endio_meta_write_workers = 2208 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2209 max_active, 2); 2210 fs_info->endio_raid56_workers = 2211 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2212 max_active, 4); 2213 fs_info->endio_repair_workers = 2214 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2215 fs_info->rmw_workers = 2216 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2217 fs_info->endio_write_workers = 2218 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2219 max_active, 2); 2220 fs_info->endio_freespace_worker = 2221 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2222 max_active, 0); 2223 fs_info->delayed_workers = 2224 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2225 max_active, 0); 2226 fs_info->readahead_workers = 2227 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2228 max_active, 2); 2229 fs_info->qgroup_rescan_workers = 2230 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2231 fs_info->extent_workers = 2232 btrfs_alloc_workqueue(fs_info, "extent-refs", flags, 2233 min_t(u64, fs_devices->num_devices, 2234 max_active), 8); 2235 2236 if (!(fs_info->workers && fs_info->delalloc_workers && 2237 fs_info->submit_workers && fs_info->flush_workers && 2238 fs_info->endio_workers && fs_info->endio_meta_workers && 2239 fs_info->endio_meta_write_workers && 2240 fs_info->endio_repair_workers && 2241 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2242 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2243 fs_info->caching_workers && fs_info->readahead_workers && 2244 fs_info->fixup_workers && fs_info->delayed_workers && 2245 fs_info->extent_workers && 2246 fs_info->qgroup_rescan_workers)) { 2247 return -ENOMEM; 2248 } 2249 2250 return 0; 2251 } 2252 2253 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2254 struct btrfs_fs_devices *fs_devices) 2255 { 2256 int ret; 2257 struct btrfs_root *log_tree_root; 2258 struct btrfs_super_block *disk_super = fs_info->super_copy; 2259 u64 bytenr = btrfs_super_log_root(disk_super); 2260 int level = btrfs_super_log_root_level(disk_super); 2261 2262 if (fs_devices->rw_devices == 0) { 2263 btrfs_warn(fs_info, "log replay required on RO media"); 2264 return -EIO; 2265 } 2266 2267 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2268 if (!log_tree_root) 2269 return -ENOMEM; 2270 2271 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2272 2273 log_tree_root->node = read_tree_block(fs_info, bytenr, 2274 fs_info->generation + 1, 2275 level, NULL); 2276 if (IS_ERR(log_tree_root->node)) { 2277 btrfs_warn(fs_info, "failed to read log tree"); 2278 ret = PTR_ERR(log_tree_root->node); 2279 kfree(log_tree_root); 2280 return ret; 2281 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2282 btrfs_err(fs_info, "failed to read log tree"); 2283 free_extent_buffer(log_tree_root->node); 2284 kfree(log_tree_root); 2285 return -EIO; 2286 } 2287 /* returns with log_tree_root freed on success */ 2288 ret = btrfs_recover_log_trees(log_tree_root); 2289 if (ret) { 2290 btrfs_handle_fs_error(fs_info, ret, 2291 "Failed to recover log tree"); 2292 free_extent_buffer(log_tree_root->node); 2293 kfree(log_tree_root); 2294 return ret; 2295 } 2296 2297 if (sb_rdonly(fs_info->sb)) { 2298 ret = btrfs_commit_super(fs_info); 2299 if (ret) 2300 return ret; 2301 } 2302 2303 return 0; 2304 } 2305 2306 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2307 { 2308 struct btrfs_root *tree_root = fs_info->tree_root; 2309 struct btrfs_root *root; 2310 struct btrfs_key location; 2311 int ret; 2312 2313 BUG_ON(!fs_info->tree_root); 2314 2315 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2316 location.type = BTRFS_ROOT_ITEM_KEY; 2317 location.offset = 0; 2318 2319 root = btrfs_read_tree_root(tree_root, &location); 2320 if (IS_ERR(root)) { 2321 ret = PTR_ERR(root); 2322 goto out; 2323 } 2324 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2325 fs_info->extent_root = root; 2326 2327 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2328 root = btrfs_read_tree_root(tree_root, &location); 2329 if (IS_ERR(root)) { 2330 ret = PTR_ERR(root); 2331 goto out; 2332 } 2333 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2334 fs_info->dev_root = root; 2335 btrfs_init_devices_late(fs_info); 2336 2337 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2338 root = btrfs_read_tree_root(tree_root, &location); 2339 if (IS_ERR(root)) { 2340 ret = PTR_ERR(root); 2341 goto out; 2342 } 2343 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2344 fs_info->csum_root = root; 2345 2346 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2347 root = btrfs_read_tree_root(tree_root, &location); 2348 if (!IS_ERR(root)) { 2349 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2350 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2351 fs_info->quota_root = root; 2352 } 2353 2354 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2355 root = btrfs_read_tree_root(tree_root, &location); 2356 if (IS_ERR(root)) { 2357 ret = PTR_ERR(root); 2358 if (ret != -ENOENT) 2359 goto out; 2360 } else { 2361 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2362 fs_info->uuid_root = root; 2363 } 2364 2365 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2366 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2367 root = btrfs_read_tree_root(tree_root, &location); 2368 if (IS_ERR(root)) { 2369 ret = PTR_ERR(root); 2370 goto out; 2371 } 2372 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2373 fs_info->free_space_root = root; 2374 } 2375 2376 return 0; 2377 out: 2378 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2379 location.objectid, ret); 2380 return ret; 2381 } 2382 2383 /* 2384 * Real super block validation 2385 * NOTE: super csum type and incompat features will not be checked here. 2386 * 2387 * @sb: super block to check 2388 * @mirror_num: the super block number to check its bytenr: 2389 * 0 the primary (1st) sb 2390 * 1, 2 2nd and 3rd backup copy 2391 * -1 skip bytenr check 2392 */ 2393 static int validate_super(struct btrfs_fs_info *fs_info, 2394 struct btrfs_super_block *sb, int mirror_num) 2395 { 2396 u64 nodesize = btrfs_super_nodesize(sb); 2397 u64 sectorsize = btrfs_super_sectorsize(sb); 2398 int ret = 0; 2399 2400 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2401 btrfs_err(fs_info, "no valid FS found"); 2402 ret = -EINVAL; 2403 } 2404 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2405 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2406 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2407 ret = -EINVAL; 2408 } 2409 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2410 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2411 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2412 ret = -EINVAL; 2413 } 2414 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2415 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2416 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2417 ret = -EINVAL; 2418 } 2419 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2420 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2421 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2422 ret = -EINVAL; 2423 } 2424 2425 /* 2426 * Check sectorsize and nodesize first, other check will need it. 2427 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2428 */ 2429 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2430 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2431 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2432 ret = -EINVAL; 2433 } 2434 /* Only PAGE SIZE is supported yet */ 2435 if (sectorsize != PAGE_SIZE) { 2436 btrfs_err(fs_info, 2437 "sectorsize %llu not supported yet, only support %lu", 2438 sectorsize, PAGE_SIZE); 2439 ret = -EINVAL; 2440 } 2441 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2442 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2443 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2444 ret = -EINVAL; 2445 } 2446 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2447 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2448 le32_to_cpu(sb->__unused_leafsize), nodesize); 2449 ret = -EINVAL; 2450 } 2451 2452 /* Root alignment check */ 2453 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2454 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2455 btrfs_super_root(sb)); 2456 ret = -EINVAL; 2457 } 2458 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2459 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2460 btrfs_super_chunk_root(sb)); 2461 ret = -EINVAL; 2462 } 2463 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2464 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2465 btrfs_super_log_root(sb)); 2466 ret = -EINVAL; 2467 } 2468 2469 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2470 BTRFS_FSID_SIZE) != 0) { 2471 btrfs_err(fs_info, 2472 "dev_item UUID does not match metadata fsid: %pU != %pU", 2473 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2474 ret = -EINVAL; 2475 } 2476 2477 /* 2478 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2479 * done later 2480 */ 2481 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2482 btrfs_err(fs_info, "bytes_used is too small %llu", 2483 btrfs_super_bytes_used(sb)); 2484 ret = -EINVAL; 2485 } 2486 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2487 btrfs_err(fs_info, "invalid stripesize %u", 2488 btrfs_super_stripesize(sb)); 2489 ret = -EINVAL; 2490 } 2491 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2492 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2493 btrfs_super_num_devices(sb)); 2494 if (btrfs_super_num_devices(sb) == 0) { 2495 btrfs_err(fs_info, "number of devices is 0"); 2496 ret = -EINVAL; 2497 } 2498 2499 if (mirror_num >= 0 && 2500 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2501 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2502 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2503 ret = -EINVAL; 2504 } 2505 2506 /* 2507 * Obvious sys_chunk_array corruptions, it must hold at least one key 2508 * and one chunk 2509 */ 2510 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2511 btrfs_err(fs_info, "system chunk array too big %u > %u", 2512 btrfs_super_sys_array_size(sb), 2513 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2514 ret = -EINVAL; 2515 } 2516 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2517 + sizeof(struct btrfs_chunk)) { 2518 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2519 btrfs_super_sys_array_size(sb), 2520 sizeof(struct btrfs_disk_key) 2521 + sizeof(struct btrfs_chunk)); 2522 ret = -EINVAL; 2523 } 2524 2525 /* 2526 * The generation is a global counter, we'll trust it more than the others 2527 * but it's still possible that it's the one that's wrong. 2528 */ 2529 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2530 btrfs_warn(fs_info, 2531 "suspicious: generation < chunk_root_generation: %llu < %llu", 2532 btrfs_super_generation(sb), 2533 btrfs_super_chunk_root_generation(sb)); 2534 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2535 && btrfs_super_cache_generation(sb) != (u64)-1) 2536 btrfs_warn(fs_info, 2537 "suspicious: generation < cache_generation: %llu < %llu", 2538 btrfs_super_generation(sb), 2539 btrfs_super_cache_generation(sb)); 2540 2541 return ret; 2542 } 2543 2544 /* 2545 * Validation of super block at mount time. 2546 * Some checks already done early at mount time, like csum type and incompat 2547 * flags will be skipped. 2548 */ 2549 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2550 { 2551 return validate_super(fs_info, fs_info->super_copy, 0); 2552 } 2553 2554 /* 2555 * Validation of super block at write time. 2556 * Some checks like bytenr check will be skipped as their values will be 2557 * overwritten soon. 2558 * Extra checks like csum type and incompat flags will be done here. 2559 */ 2560 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2561 struct btrfs_super_block *sb) 2562 { 2563 int ret; 2564 2565 ret = validate_super(fs_info, sb, -1); 2566 if (ret < 0) 2567 goto out; 2568 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) { 2569 ret = -EUCLEAN; 2570 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2571 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2572 goto out; 2573 } 2574 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2575 ret = -EUCLEAN; 2576 btrfs_err(fs_info, 2577 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2578 btrfs_super_incompat_flags(sb), 2579 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2580 goto out; 2581 } 2582 out: 2583 if (ret < 0) 2584 btrfs_err(fs_info, 2585 "super block corruption detected before writing it to disk"); 2586 return ret; 2587 } 2588 2589 int open_ctree(struct super_block *sb, 2590 struct btrfs_fs_devices *fs_devices, 2591 char *options) 2592 { 2593 u32 sectorsize; 2594 u32 nodesize; 2595 u32 stripesize; 2596 u64 generation; 2597 u64 features; 2598 struct btrfs_key location; 2599 struct buffer_head *bh; 2600 struct btrfs_super_block *disk_super; 2601 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2602 struct btrfs_root *tree_root; 2603 struct btrfs_root *chunk_root; 2604 int ret; 2605 int err = -EINVAL; 2606 int num_backups_tried = 0; 2607 int backup_index = 0; 2608 int clear_free_space_tree = 0; 2609 int level; 2610 2611 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2612 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2613 if (!tree_root || !chunk_root) { 2614 err = -ENOMEM; 2615 goto fail; 2616 } 2617 2618 ret = init_srcu_struct(&fs_info->subvol_srcu); 2619 if (ret) { 2620 err = ret; 2621 goto fail; 2622 } 2623 2624 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2625 if (ret) { 2626 err = ret; 2627 goto fail_srcu; 2628 } 2629 fs_info->dirty_metadata_batch = PAGE_SIZE * 2630 (1 + ilog2(nr_cpu_ids)); 2631 2632 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2633 if (ret) { 2634 err = ret; 2635 goto fail_dirty_metadata_bytes; 2636 } 2637 2638 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2639 GFP_KERNEL); 2640 if (ret) { 2641 err = ret; 2642 goto fail_delalloc_bytes; 2643 } 2644 2645 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2646 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2647 INIT_LIST_HEAD(&fs_info->trans_list); 2648 INIT_LIST_HEAD(&fs_info->dead_roots); 2649 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2650 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2651 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2652 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs); 2653 spin_lock_init(&fs_info->pending_raid_kobjs_lock); 2654 spin_lock_init(&fs_info->delalloc_root_lock); 2655 spin_lock_init(&fs_info->trans_lock); 2656 spin_lock_init(&fs_info->fs_roots_radix_lock); 2657 spin_lock_init(&fs_info->delayed_iput_lock); 2658 spin_lock_init(&fs_info->defrag_inodes_lock); 2659 spin_lock_init(&fs_info->tree_mod_seq_lock); 2660 spin_lock_init(&fs_info->super_lock); 2661 spin_lock_init(&fs_info->qgroup_op_lock); 2662 spin_lock_init(&fs_info->buffer_lock); 2663 spin_lock_init(&fs_info->unused_bgs_lock); 2664 rwlock_init(&fs_info->tree_mod_log_lock); 2665 mutex_init(&fs_info->unused_bg_unpin_mutex); 2666 mutex_init(&fs_info->delete_unused_bgs_mutex); 2667 mutex_init(&fs_info->reloc_mutex); 2668 mutex_init(&fs_info->delalloc_root_mutex); 2669 mutex_init(&fs_info->cleaner_delayed_iput_mutex); 2670 seqlock_init(&fs_info->profiles_lock); 2671 2672 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2673 INIT_LIST_HEAD(&fs_info->space_info); 2674 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2675 INIT_LIST_HEAD(&fs_info->unused_bgs); 2676 btrfs_mapping_init(&fs_info->mapping_tree); 2677 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2678 BTRFS_BLOCK_RSV_GLOBAL); 2679 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2680 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2681 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2682 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2683 BTRFS_BLOCK_RSV_DELOPS); 2684 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2685 BTRFS_BLOCK_RSV_DELREFS); 2686 2687 atomic_set(&fs_info->async_delalloc_pages, 0); 2688 atomic_set(&fs_info->defrag_running, 0); 2689 atomic_set(&fs_info->qgroup_op_seq, 0); 2690 atomic_set(&fs_info->reada_works_cnt, 0); 2691 atomic64_set(&fs_info->tree_mod_seq, 0); 2692 fs_info->sb = sb; 2693 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2694 fs_info->metadata_ratio = 0; 2695 fs_info->defrag_inodes = RB_ROOT; 2696 atomic64_set(&fs_info->free_chunk_space, 0); 2697 fs_info->tree_mod_log = RB_ROOT; 2698 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2699 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2700 /* readahead state */ 2701 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2702 spin_lock_init(&fs_info->reada_lock); 2703 btrfs_init_ref_verify(fs_info); 2704 2705 fs_info->thread_pool_size = min_t(unsigned long, 2706 num_online_cpus() + 2, 8); 2707 2708 INIT_LIST_HEAD(&fs_info->ordered_roots); 2709 spin_lock_init(&fs_info->ordered_root_lock); 2710 2711 fs_info->btree_inode = new_inode(sb); 2712 if (!fs_info->btree_inode) { 2713 err = -ENOMEM; 2714 goto fail_bio_counter; 2715 } 2716 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2717 2718 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2719 GFP_KERNEL); 2720 if (!fs_info->delayed_root) { 2721 err = -ENOMEM; 2722 goto fail_iput; 2723 } 2724 btrfs_init_delayed_root(fs_info->delayed_root); 2725 2726 btrfs_init_scrub(fs_info); 2727 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2728 fs_info->check_integrity_print_mask = 0; 2729 #endif 2730 btrfs_init_balance(fs_info); 2731 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2732 2733 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2734 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2735 2736 btrfs_init_btree_inode(fs_info); 2737 2738 spin_lock_init(&fs_info->block_group_cache_lock); 2739 fs_info->block_group_cache_tree = RB_ROOT; 2740 fs_info->first_logical_byte = (u64)-1; 2741 2742 extent_io_tree_init(&fs_info->freed_extents[0], NULL); 2743 extent_io_tree_init(&fs_info->freed_extents[1], NULL); 2744 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2745 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2746 2747 mutex_init(&fs_info->ordered_operations_mutex); 2748 mutex_init(&fs_info->tree_log_mutex); 2749 mutex_init(&fs_info->chunk_mutex); 2750 mutex_init(&fs_info->transaction_kthread_mutex); 2751 mutex_init(&fs_info->cleaner_mutex); 2752 mutex_init(&fs_info->ro_block_group_mutex); 2753 init_rwsem(&fs_info->commit_root_sem); 2754 init_rwsem(&fs_info->cleanup_work_sem); 2755 init_rwsem(&fs_info->subvol_sem); 2756 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2757 2758 btrfs_init_dev_replace_locks(fs_info); 2759 btrfs_init_qgroup(fs_info); 2760 2761 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2762 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2763 2764 init_waitqueue_head(&fs_info->transaction_throttle); 2765 init_waitqueue_head(&fs_info->transaction_wait); 2766 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2767 init_waitqueue_head(&fs_info->async_submit_wait); 2768 2769 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2770 2771 /* Usable values until the real ones are cached from the superblock */ 2772 fs_info->nodesize = 4096; 2773 fs_info->sectorsize = 4096; 2774 fs_info->stripesize = 4096; 2775 2776 spin_lock_init(&fs_info->swapfile_pins_lock); 2777 fs_info->swapfile_pins = RB_ROOT; 2778 2779 ret = btrfs_alloc_stripe_hash_table(fs_info); 2780 if (ret) { 2781 err = ret; 2782 goto fail_alloc; 2783 } 2784 2785 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 2786 2787 invalidate_bdev(fs_devices->latest_bdev); 2788 2789 /* 2790 * Read super block and check the signature bytes only 2791 */ 2792 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2793 if (IS_ERR(bh)) { 2794 err = PTR_ERR(bh); 2795 goto fail_alloc; 2796 } 2797 2798 /* 2799 * We want to check superblock checksum, the type is stored inside. 2800 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2801 */ 2802 if (btrfs_check_super_csum(fs_info, bh->b_data)) { 2803 btrfs_err(fs_info, "superblock checksum mismatch"); 2804 err = -EINVAL; 2805 brelse(bh); 2806 goto fail_alloc; 2807 } 2808 2809 /* 2810 * super_copy is zeroed at allocation time and we never touch the 2811 * following bytes up to INFO_SIZE, the checksum is calculated from 2812 * the whole block of INFO_SIZE 2813 */ 2814 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2815 brelse(bh); 2816 2817 disk_super = fs_info->super_copy; 2818 2819 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2820 BTRFS_FSID_SIZE)); 2821 2822 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) { 2823 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid, 2824 fs_info->super_copy->metadata_uuid, 2825 BTRFS_FSID_SIZE)); 2826 } 2827 2828 features = btrfs_super_flags(disk_super); 2829 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 2830 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 2831 btrfs_set_super_flags(disk_super, features); 2832 btrfs_info(fs_info, 2833 "found metadata UUID change in progress flag, clearing"); 2834 } 2835 2836 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2837 sizeof(*fs_info->super_for_commit)); 2838 2839 ret = btrfs_validate_mount_super(fs_info); 2840 if (ret) { 2841 btrfs_err(fs_info, "superblock contains fatal errors"); 2842 err = -EINVAL; 2843 goto fail_alloc; 2844 } 2845 2846 if (!btrfs_super_root(disk_super)) 2847 goto fail_alloc; 2848 2849 /* check FS state, whether FS is broken. */ 2850 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2851 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2852 2853 /* 2854 * run through our array of backup supers and setup 2855 * our ring pointer to the oldest one 2856 */ 2857 generation = btrfs_super_generation(disk_super); 2858 find_oldest_super_backup(fs_info, generation); 2859 2860 /* 2861 * In the long term, we'll store the compression type in the super 2862 * block, and it'll be used for per file compression control. 2863 */ 2864 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2865 2866 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2867 if (ret) { 2868 err = ret; 2869 goto fail_alloc; 2870 } 2871 2872 features = btrfs_super_incompat_flags(disk_super) & 2873 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2874 if (features) { 2875 btrfs_err(fs_info, 2876 "cannot mount because of unsupported optional features (%llx)", 2877 features); 2878 err = -EINVAL; 2879 goto fail_alloc; 2880 } 2881 2882 features = btrfs_super_incompat_flags(disk_super); 2883 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2884 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2885 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2886 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 2887 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 2888 2889 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2890 btrfs_info(fs_info, "has skinny extents"); 2891 2892 /* 2893 * flag our filesystem as having big metadata blocks if 2894 * they are bigger than the page size 2895 */ 2896 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2897 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2898 btrfs_info(fs_info, 2899 "flagging fs with big metadata feature"); 2900 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2901 } 2902 2903 nodesize = btrfs_super_nodesize(disk_super); 2904 sectorsize = btrfs_super_sectorsize(disk_super); 2905 stripesize = sectorsize; 2906 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2907 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2908 2909 /* Cache block sizes */ 2910 fs_info->nodesize = nodesize; 2911 fs_info->sectorsize = sectorsize; 2912 fs_info->stripesize = stripesize; 2913 2914 /* 2915 * mixed block groups end up with duplicate but slightly offset 2916 * extent buffers for the same range. It leads to corruptions 2917 */ 2918 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2919 (sectorsize != nodesize)) { 2920 btrfs_err(fs_info, 2921 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2922 nodesize, sectorsize); 2923 goto fail_alloc; 2924 } 2925 2926 /* 2927 * Needn't use the lock because there is no other task which will 2928 * update the flag. 2929 */ 2930 btrfs_set_super_incompat_flags(disk_super, features); 2931 2932 features = btrfs_super_compat_ro_flags(disk_super) & 2933 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2934 if (!sb_rdonly(sb) && features) { 2935 btrfs_err(fs_info, 2936 "cannot mount read-write because of unsupported optional features (%llx)", 2937 features); 2938 err = -EINVAL; 2939 goto fail_alloc; 2940 } 2941 2942 ret = btrfs_init_workqueues(fs_info, fs_devices); 2943 if (ret) { 2944 err = ret; 2945 goto fail_sb_buffer; 2946 } 2947 2948 sb->s_bdi->congested_fn = btrfs_congested_fn; 2949 sb->s_bdi->congested_data = fs_info; 2950 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 2951 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE; 2952 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 2953 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 2954 2955 sb->s_blocksize = sectorsize; 2956 sb->s_blocksize_bits = blksize_bits(sectorsize); 2957 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 2958 2959 mutex_lock(&fs_info->chunk_mutex); 2960 ret = btrfs_read_sys_array(fs_info); 2961 mutex_unlock(&fs_info->chunk_mutex); 2962 if (ret) { 2963 btrfs_err(fs_info, "failed to read the system array: %d", ret); 2964 goto fail_sb_buffer; 2965 } 2966 2967 generation = btrfs_super_chunk_root_generation(disk_super); 2968 level = btrfs_super_chunk_root_level(disk_super); 2969 2970 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2971 2972 chunk_root->node = read_tree_block(fs_info, 2973 btrfs_super_chunk_root(disk_super), 2974 generation, level, NULL); 2975 if (IS_ERR(chunk_root->node) || 2976 !extent_buffer_uptodate(chunk_root->node)) { 2977 btrfs_err(fs_info, "failed to read chunk root"); 2978 if (!IS_ERR(chunk_root->node)) 2979 free_extent_buffer(chunk_root->node); 2980 chunk_root->node = NULL; 2981 goto fail_tree_roots; 2982 } 2983 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2984 chunk_root->commit_root = btrfs_root_node(chunk_root); 2985 2986 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2987 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2988 2989 ret = btrfs_read_chunk_tree(fs_info); 2990 if (ret) { 2991 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 2992 goto fail_tree_roots; 2993 } 2994 2995 /* 2996 * Keep the devid that is marked to be the target device for the 2997 * device replace procedure 2998 */ 2999 btrfs_free_extra_devids(fs_devices, 0); 3000 3001 if (!fs_devices->latest_bdev) { 3002 btrfs_err(fs_info, "failed to read devices"); 3003 goto fail_tree_roots; 3004 } 3005 3006 retry_root_backup: 3007 generation = btrfs_super_generation(disk_super); 3008 level = btrfs_super_root_level(disk_super); 3009 3010 tree_root->node = read_tree_block(fs_info, 3011 btrfs_super_root(disk_super), 3012 generation, level, NULL); 3013 if (IS_ERR(tree_root->node) || 3014 !extent_buffer_uptodate(tree_root->node)) { 3015 btrfs_warn(fs_info, "failed to read tree root"); 3016 if (!IS_ERR(tree_root->node)) 3017 free_extent_buffer(tree_root->node); 3018 tree_root->node = NULL; 3019 goto recovery_tree_root; 3020 } 3021 3022 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 3023 tree_root->commit_root = btrfs_root_node(tree_root); 3024 btrfs_set_root_refs(&tree_root->root_item, 1); 3025 3026 mutex_lock(&tree_root->objectid_mutex); 3027 ret = btrfs_find_highest_objectid(tree_root, 3028 &tree_root->highest_objectid); 3029 if (ret) { 3030 mutex_unlock(&tree_root->objectid_mutex); 3031 goto recovery_tree_root; 3032 } 3033 3034 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 3035 3036 mutex_unlock(&tree_root->objectid_mutex); 3037 3038 ret = btrfs_read_roots(fs_info); 3039 if (ret) 3040 goto recovery_tree_root; 3041 3042 fs_info->generation = generation; 3043 fs_info->last_trans_committed = generation; 3044 3045 ret = btrfs_verify_dev_extents(fs_info); 3046 if (ret) { 3047 btrfs_err(fs_info, 3048 "failed to verify dev extents against chunks: %d", 3049 ret); 3050 goto fail_block_groups; 3051 } 3052 ret = btrfs_recover_balance(fs_info); 3053 if (ret) { 3054 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3055 goto fail_block_groups; 3056 } 3057 3058 ret = btrfs_init_dev_stats(fs_info); 3059 if (ret) { 3060 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3061 goto fail_block_groups; 3062 } 3063 3064 ret = btrfs_init_dev_replace(fs_info); 3065 if (ret) { 3066 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3067 goto fail_block_groups; 3068 } 3069 3070 btrfs_free_extra_devids(fs_devices, 1); 3071 3072 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 3073 if (ret) { 3074 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3075 ret); 3076 goto fail_block_groups; 3077 } 3078 3079 ret = btrfs_sysfs_add_device(fs_devices); 3080 if (ret) { 3081 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 3082 ret); 3083 goto fail_fsdev_sysfs; 3084 } 3085 3086 ret = btrfs_sysfs_add_mounted(fs_info); 3087 if (ret) { 3088 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3089 goto fail_fsdev_sysfs; 3090 } 3091 3092 ret = btrfs_init_space_info(fs_info); 3093 if (ret) { 3094 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3095 goto fail_sysfs; 3096 } 3097 3098 ret = btrfs_read_block_groups(fs_info); 3099 if (ret) { 3100 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3101 goto fail_sysfs; 3102 } 3103 3104 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 3105 btrfs_warn(fs_info, 3106 "writable mount is not allowed due to too many missing devices"); 3107 goto fail_sysfs; 3108 } 3109 3110 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3111 "btrfs-cleaner"); 3112 if (IS_ERR(fs_info->cleaner_kthread)) 3113 goto fail_sysfs; 3114 3115 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3116 tree_root, 3117 "btrfs-transaction"); 3118 if (IS_ERR(fs_info->transaction_kthread)) 3119 goto fail_cleaner; 3120 3121 if (!btrfs_test_opt(fs_info, NOSSD) && 3122 !fs_info->fs_devices->rotating) { 3123 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3124 } 3125 3126 /* 3127 * Mount does not set all options immediately, we can do it now and do 3128 * not have to wait for transaction commit 3129 */ 3130 btrfs_apply_pending_changes(fs_info); 3131 3132 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3133 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3134 ret = btrfsic_mount(fs_info, fs_devices, 3135 btrfs_test_opt(fs_info, 3136 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3137 1 : 0, 3138 fs_info->check_integrity_print_mask); 3139 if (ret) 3140 btrfs_warn(fs_info, 3141 "failed to initialize integrity check module: %d", 3142 ret); 3143 } 3144 #endif 3145 ret = btrfs_read_qgroup_config(fs_info); 3146 if (ret) 3147 goto fail_trans_kthread; 3148 3149 if (btrfs_build_ref_tree(fs_info)) 3150 btrfs_err(fs_info, "couldn't build ref tree"); 3151 3152 /* do not make disk changes in broken FS or nologreplay is given */ 3153 if (btrfs_super_log_root(disk_super) != 0 && 3154 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3155 ret = btrfs_replay_log(fs_info, fs_devices); 3156 if (ret) { 3157 err = ret; 3158 goto fail_qgroup; 3159 } 3160 } 3161 3162 ret = btrfs_find_orphan_roots(fs_info); 3163 if (ret) 3164 goto fail_qgroup; 3165 3166 if (!sb_rdonly(sb)) { 3167 ret = btrfs_cleanup_fs_roots(fs_info); 3168 if (ret) 3169 goto fail_qgroup; 3170 3171 mutex_lock(&fs_info->cleaner_mutex); 3172 ret = btrfs_recover_relocation(tree_root); 3173 mutex_unlock(&fs_info->cleaner_mutex); 3174 if (ret < 0) { 3175 btrfs_warn(fs_info, "failed to recover relocation: %d", 3176 ret); 3177 err = -EINVAL; 3178 goto fail_qgroup; 3179 } 3180 } 3181 3182 location.objectid = BTRFS_FS_TREE_OBJECTID; 3183 location.type = BTRFS_ROOT_ITEM_KEY; 3184 location.offset = 0; 3185 3186 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3187 if (IS_ERR(fs_info->fs_root)) { 3188 err = PTR_ERR(fs_info->fs_root); 3189 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3190 goto fail_qgroup; 3191 } 3192 3193 if (sb_rdonly(sb)) 3194 return 0; 3195 3196 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3197 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3198 clear_free_space_tree = 1; 3199 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3200 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3201 btrfs_warn(fs_info, "free space tree is invalid"); 3202 clear_free_space_tree = 1; 3203 } 3204 3205 if (clear_free_space_tree) { 3206 btrfs_info(fs_info, "clearing free space tree"); 3207 ret = btrfs_clear_free_space_tree(fs_info); 3208 if (ret) { 3209 btrfs_warn(fs_info, 3210 "failed to clear free space tree: %d", ret); 3211 close_ctree(fs_info); 3212 return ret; 3213 } 3214 } 3215 3216 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3217 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3218 btrfs_info(fs_info, "creating free space tree"); 3219 ret = btrfs_create_free_space_tree(fs_info); 3220 if (ret) { 3221 btrfs_warn(fs_info, 3222 "failed to create free space tree: %d", ret); 3223 close_ctree(fs_info); 3224 return ret; 3225 } 3226 } 3227 3228 down_read(&fs_info->cleanup_work_sem); 3229 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3230 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3231 up_read(&fs_info->cleanup_work_sem); 3232 close_ctree(fs_info); 3233 return ret; 3234 } 3235 up_read(&fs_info->cleanup_work_sem); 3236 3237 ret = btrfs_resume_balance_async(fs_info); 3238 if (ret) { 3239 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3240 close_ctree(fs_info); 3241 return ret; 3242 } 3243 3244 ret = btrfs_resume_dev_replace_async(fs_info); 3245 if (ret) { 3246 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3247 close_ctree(fs_info); 3248 return ret; 3249 } 3250 3251 btrfs_qgroup_rescan_resume(fs_info); 3252 3253 if (!fs_info->uuid_root) { 3254 btrfs_info(fs_info, "creating UUID tree"); 3255 ret = btrfs_create_uuid_tree(fs_info); 3256 if (ret) { 3257 btrfs_warn(fs_info, 3258 "failed to create the UUID tree: %d", ret); 3259 close_ctree(fs_info); 3260 return ret; 3261 } 3262 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3263 fs_info->generation != 3264 btrfs_super_uuid_tree_generation(disk_super)) { 3265 btrfs_info(fs_info, "checking UUID tree"); 3266 ret = btrfs_check_uuid_tree(fs_info); 3267 if (ret) { 3268 btrfs_warn(fs_info, 3269 "failed to check the UUID tree: %d", ret); 3270 close_ctree(fs_info); 3271 return ret; 3272 } 3273 } else { 3274 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3275 } 3276 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3277 3278 /* 3279 * backuproot only affect mount behavior, and if open_ctree succeeded, 3280 * no need to keep the flag 3281 */ 3282 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3283 3284 return 0; 3285 3286 fail_qgroup: 3287 btrfs_free_qgroup_config(fs_info); 3288 fail_trans_kthread: 3289 kthread_stop(fs_info->transaction_kthread); 3290 btrfs_cleanup_transaction(fs_info); 3291 btrfs_free_fs_roots(fs_info); 3292 fail_cleaner: 3293 kthread_stop(fs_info->cleaner_kthread); 3294 3295 /* 3296 * make sure we're done with the btree inode before we stop our 3297 * kthreads 3298 */ 3299 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3300 3301 fail_sysfs: 3302 btrfs_sysfs_remove_mounted(fs_info); 3303 3304 fail_fsdev_sysfs: 3305 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3306 3307 fail_block_groups: 3308 btrfs_put_block_group_cache(fs_info); 3309 3310 fail_tree_roots: 3311 free_root_pointers(fs_info, 1); 3312 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3313 3314 fail_sb_buffer: 3315 btrfs_stop_all_workers(fs_info); 3316 btrfs_free_block_groups(fs_info); 3317 fail_alloc: 3318 fail_iput: 3319 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3320 3321 iput(fs_info->btree_inode); 3322 fail_bio_counter: 3323 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 3324 fail_delalloc_bytes: 3325 percpu_counter_destroy(&fs_info->delalloc_bytes); 3326 fail_dirty_metadata_bytes: 3327 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3328 fail_srcu: 3329 cleanup_srcu_struct(&fs_info->subvol_srcu); 3330 fail: 3331 btrfs_free_stripe_hash_table(fs_info); 3332 btrfs_close_devices(fs_info->fs_devices); 3333 return err; 3334 3335 recovery_tree_root: 3336 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 3337 goto fail_tree_roots; 3338 3339 free_root_pointers(fs_info, 0); 3340 3341 /* don't use the log in recovery mode, it won't be valid */ 3342 btrfs_set_super_log_root(disk_super, 0); 3343 3344 /* we can't trust the free space cache either */ 3345 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3346 3347 ret = next_root_backup(fs_info, fs_info->super_copy, 3348 &num_backups_tried, &backup_index); 3349 if (ret == -1) 3350 goto fail_block_groups; 3351 goto retry_root_backup; 3352 } 3353 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3354 3355 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3356 { 3357 if (uptodate) { 3358 set_buffer_uptodate(bh); 3359 } else { 3360 struct btrfs_device *device = (struct btrfs_device *) 3361 bh->b_private; 3362 3363 btrfs_warn_rl_in_rcu(device->fs_info, 3364 "lost page write due to IO error on %s", 3365 rcu_str_deref(device->name)); 3366 /* note, we don't set_buffer_write_io_error because we have 3367 * our own ways of dealing with the IO errors 3368 */ 3369 clear_buffer_uptodate(bh); 3370 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3371 } 3372 unlock_buffer(bh); 3373 put_bh(bh); 3374 } 3375 3376 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3377 struct buffer_head **bh_ret) 3378 { 3379 struct buffer_head *bh; 3380 struct btrfs_super_block *super; 3381 u64 bytenr; 3382 3383 bytenr = btrfs_sb_offset(copy_num); 3384 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3385 return -EINVAL; 3386 3387 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE); 3388 /* 3389 * If we fail to read from the underlying devices, as of now 3390 * the best option we have is to mark it EIO. 3391 */ 3392 if (!bh) 3393 return -EIO; 3394 3395 super = (struct btrfs_super_block *)bh->b_data; 3396 if (btrfs_super_bytenr(super) != bytenr || 3397 btrfs_super_magic(super) != BTRFS_MAGIC) { 3398 brelse(bh); 3399 return -EINVAL; 3400 } 3401 3402 *bh_ret = bh; 3403 return 0; 3404 } 3405 3406 3407 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3408 { 3409 struct buffer_head *bh; 3410 struct buffer_head *latest = NULL; 3411 struct btrfs_super_block *super; 3412 int i; 3413 u64 transid = 0; 3414 int ret = -EINVAL; 3415 3416 /* we would like to check all the supers, but that would make 3417 * a btrfs mount succeed after a mkfs from a different FS. 3418 * So, we need to add a special mount option to scan for 3419 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3420 */ 3421 for (i = 0; i < 1; i++) { 3422 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3423 if (ret) 3424 continue; 3425 3426 super = (struct btrfs_super_block *)bh->b_data; 3427 3428 if (!latest || btrfs_super_generation(super) > transid) { 3429 brelse(latest); 3430 latest = bh; 3431 transid = btrfs_super_generation(super); 3432 } else { 3433 brelse(bh); 3434 } 3435 } 3436 3437 if (!latest) 3438 return ERR_PTR(ret); 3439 3440 return latest; 3441 } 3442 3443 /* 3444 * Write superblock @sb to the @device. Do not wait for completion, all the 3445 * buffer heads we write are pinned. 3446 * 3447 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3448 * the expected device size at commit time. Note that max_mirrors must be 3449 * same for write and wait phases. 3450 * 3451 * Return number of errors when buffer head is not found or submission fails. 3452 */ 3453 static int write_dev_supers(struct btrfs_device *device, 3454 struct btrfs_super_block *sb, int max_mirrors) 3455 { 3456 struct buffer_head *bh; 3457 int i; 3458 int ret; 3459 int errors = 0; 3460 u32 crc; 3461 u64 bytenr; 3462 int op_flags; 3463 3464 if (max_mirrors == 0) 3465 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3466 3467 for (i = 0; i < max_mirrors; i++) { 3468 bytenr = btrfs_sb_offset(i); 3469 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3470 device->commit_total_bytes) 3471 break; 3472 3473 btrfs_set_super_bytenr(sb, bytenr); 3474 3475 crc = ~(u32)0; 3476 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc, 3477 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 3478 btrfs_csum_final(crc, sb->csum); 3479 3480 /* One reference for us, and we leave it for the caller */ 3481 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, 3482 BTRFS_SUPER_INFO_SIZE); 3483 if (!bh) { 3484 btrfs_err(device->fs_info, 3485 "couldn't get super buffer head for bytenr %llu", 3486 bytenr); 3487 errors++; 3488 continue; 3489 } 3490 3491 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3492 3493 /* one reference for submit_bh */ 3494 get_bh(bh); 3495 3496 set_buffer_uptodate(bh); 3497 lock_buffer(bh); 3498 bh->b_end_io = btrfs_end_buffer_write_sync; 3499 bh->b_private = device; 3500 3501 /* 3502 * we fua the first super. The others we allow 3503 * to go down lazy. 3504 */ 3505 op_flags = REQ_SYNC | REQ_META | REQ_PRIO; 3506 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3507 op_flags |= REQ_FUA; 3508 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh); 3509 if (ret) 3510 errors++; 3511 } 3512 return errors < i ? 0 : -1; 3513 } 3514 3515 /* 3516 * Wait for write completion of superblocks done by write_dev_supers, 3517 * @max_mirrors same for write and wait phases. 3518 * 3519 * Return number of errors when buffer head is not found or not marked up to 3520 * date. 3521 */ 3522 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3523 { 3524 struct buffer_head *bh; 3525 int i; 3526 int errors = 0; 3527 bool primary_failed = false; 3528 u64 bytenr; 3529 3530 if (max_mirrors == 0) 3531 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3532 3533 for (i = 0; i < max_mirrors; i++) { 3534 bytenr = btrfs_sb_offset(i); 3535 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3536 device->commit_total_bytes) 3537 break; 3538 3539 bh = __find_get_block(device->bdev, 3540 bytenr / BTRFS_BDEV_BLOCKSIZE, 3541 BTRFS_SUPER_INFO_SIZE); 3542 if (!bh) { 3543 errors++; 3544 if (i == 0) 3545 primary_failed = true; 3546 continue; 3547 } 3548 wait_on_buffer(bh); 3549 if (!buffer_uptodate(bh)) { 3550 errors++; 3551 if (i == 0) 3552 primary_failed = true; 3553 } 3554 3555 /* drop our reference */ 3556 brelse(bh); 3557 3558 /* drop the reference from the writing run */ 3559 brelse(bh); 3560 } 3561 3562 /* log error, force error return */ 3563 if (primary_failed) { 3564 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3565 device->devid); 3566 return -1; 3567 } 3568 3569 return errors < i ? 0 : -1; 3570 } 3571 3572 /* 3573 * endio for the write_dev_flush, this will wake anyone waiting 3574 * for the barrier when it is done 3575 */ 3576 static void btrfs_end_empty_barrier(struct bio *bio) 3577 { 3578 complete(bio->bi_private); 3579 } 3580 3581 /* 3582 * Submit a flush request to the device if it supports it. Error handling is 3583 * done in the waiting counterpart. 3584 */ 3585 static void write_dev_flush(struct btrfs_device *device) 3586 { 3587 struct request_queue *q = bdev_get_queue(device->bdev); 3588 struct bio *bio = device->flush_bio; 3589 3590 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3591 return; 3592 3593 bio_reset(bio); 3594 bio->bi_end_io = btrfs_end_empty_barrier; 3595 bio_set_dev(bio, device->bdev); 3596 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3597 init_completion(&device->flush_wait); 3598 bio->bi_private = &device->flush_wait; 3599 3600 btrfsic_submit_bio(bio); 3601 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3602 } 3603 3604 /* 3605 * If the flush bio has been submitted by write_dev_flush, wait for it. 3606 */ 3607 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3608 { 3609 struct bio *bio = device->flush_bio; 3610 3611 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3612 return BLK_STS_OK; 3613 3614 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3615 wait_for_completion_io(&device->flush_wait); 3616 3617 return bio->bi_status; 3618 } 3619 3620 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3621 { 3622 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3623 return -EIO; 3624 return 0; 3625 } 3626 3627 /* 3628 * send an empty flush down to each device in parallel, 3629 * then wait for them 3630 */ 3631 static int barrier_all_devices(struct btrfs_fs_info *info) 3632 { 3633 struct list_head *head; 3634 struct btrfs_device *dev; 3635 int errors_wait = 0; 3636 blk_status_t ret; 3637 3638 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3639 /* send down all the barriers */ 3640 head = &info->fs_devices->devices; 3641 list_for_each_entry(dev, head, dev_list) { 3642 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3643 continue; 3644 if (!dev->bdev) 3645 continue; 3646 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3647 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3648 continue; 3649 3650 write_dev_flush(dev); 3651 dev->last_flush_error = BLK_STS_OK; 3652 } 3653 3654 /* wait for all the barriers */ 3655 list_for_each_entry(dev, head, dev_list) { 3656 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3657 continue; 3658 if (!dev->bdev) { 3659 errors_wait++; 3660 continue; 3661 } 3662 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3663 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3664 continue; 3665 3666 ret = wait_dev_flush(dev); 3667 if (ret) { 3668 dev->last_flush_error = ret; 3669 btrfs_dev_stat_inc_and_print(dev, 3670 BTRFS_DEV_STAT_FLUSH_ERRS); 3671 errors_wait++; 3672 } 3673 } 3674 3675 if (errors_wait) { 3676 /* 3677 * At some point we need the status of all disks 3678 * to arrive at the volume status. So error checking 3679 * is being pushed to a separate loop. 3680 */ 3681 return check_barrier_error(info); 3682 } 3683 return 0; 3684 } 3685 3686 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3687 { 3688 int raid_type; 3689 int min_tolerated = INT_MAX; 3690 3691 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3692 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3693 min_tolerated = min(min_tolerated, 3694 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3695 tolerated_failures); 3696 3697 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3698 if (raid_type == BTRFS_RAID_SINGLE) 3699 continue; 3700 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3701 continue; 3702 min_tolerated = min(min_tolerated, 3703 btrfs_raid_array[raid_type]. 3704 tolerated_failures); 3705 } 3706 3707 if (min_tolerated == INT_MAX) { 3708 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3709 min_tolerated = 0; 3710 } 3711 3712 return min_tolerated; 3713 } 3714 3715 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3716 { 3717 struct list_head *head; 3718 struct btrfs_device *dev; 3719 struct btrfs_super_block *sb; 3720 struct btrfs_dev_item *dev_item; 3721 int ret; 3722 int do_barriers; 3723 int max_errors; 3724 int total_errors = 0; 3725 u64 flags; 3726 3727 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3728 3729 /* 3730 * max_mirrors == 0 indicates we're from commit_transaction, 3731 * not from fsync where the tree roots in fs_info have not 3732 * been consistent on disk. 3733 */ 3734 if (max_mirrors == 0) 3735 backup_super_roots(fs_info); 3736 3737 sb = fs_info->super_for_commit; 3738 dev_item = &sb->dev_item; 3739 3740 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3741 head = &fs_info->fs_devices->devices; 3742 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3743 3744 if (do_barriers) { 3745 ret = barrier_all_devices(fs_info); 3746 if (ret) { 3747 mutex_unlock( 3748 &fs_info->fs_devices->device_list_mutex); 3749 btrfs_handle_fs_error(fs_info, ret, 3750 "errors while submitting device barriers."); 3751 return ret; 3752 } 3753 } 3754 3755 list_for_each_entry(dev, head, dev_list) { 3756 if (!dev->bdev) { 3757 total_errors++; 3758 continue; 3759 } 3760 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3761 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3762 continue; 3763 3764 btrfs_set_stack_device_generation(dev_item, 0); 3765 btrfs_set_stack_device_type(dev_item, dev->type); 3766 btrfs_set_stack_device_id(dev_item, dev->devid); 3767 btrfs_set_stack_device_total_bytes(dev_item, 3768 dev->commit_total_bytes); 3769 btrfs_set_stack_device_bytes_used(dev_item, 3770 dev->commit_bytes_used); 3771 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3772 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3773 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3774 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3775 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 3776 BTRFS_FSID_SIZE); 3777 3778 flags = btrfs_super_flags(sb); 3779 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3780 3781 ret = btrfs_validate_write_super(fs_info, sb); 3782 if (ret < 0) { 3783 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3784 btrfs_handle_fs_error(fs_info, -EUCLEAN, 3785 "unexpected superblock corruption detected"); 3786 return -EUCLEAN; 3787 } 3788 3789 ret = write_dev_supers(dev, sb, max_mirrors); 3790 if (ret) 3791 total_errors++; 3792 } 3793 if (total_errors > max_errors) { 3794 btrfs_err(fs_info, "%d errors while writing supers", 3795 total_errors); 3796 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3797 3798 /* FUA is masked off if unsupported and can't be the reason */ 3799 btrfs_handle_fs_error(fs_info, -EIO, 3800 "%d errors while writing supers", 3801 total_errors); 3802 return -EIO; 3803 } 3804 3805 total_errors = 0; 3806 list_for_each_entry(dev, head, dev_list) { 3807 if (!dev->bdev) 3808 continue; 3809 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3810 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3811 continue; 3812 3813 ret = wait_dev_supers(dev, max_mirrors); 3814 if (ret) 3815 total_errors++; 3816 } 3817 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3818 if (total_errors > max_errors) { 3819 btrfs_handle_fs_error(fs_info, -EIO, 3820 "%d errors while writing supers", 3821 total_errors); 3822 return -EIO; 3823 } 3824 return 0; 3825 } 3826 3827 /* Drop a fs root from the radix tree and free it. */ 3828 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3829 struct btrfs_root *root) 3830 { 3831 spin_lock(&fs_info->fs_roots_radix_lock); 3832 radix_tree_delete(&fs_info->fs_roots_radix, 3833 (unsigned long)root->root_key.objectid); 3834 spin_unlock(&fs_info->fs_roots_radix_lock); 3835 3836 if (btrfs_root_refs(&root->root_item) == 0) 3837 synchronize_srcu(&fs_info->subvol_srcu); 3838 3839 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3840 btrfs_free_log(NULL, root); 3841 if (root->reloc_root) { 3842 free_extent_buffer(root->reloc_root->node); 3843 free_extent_buffer(root->reloc_root->commit_root); 3844 btrfs_put_fs_root(root->reloc_root); 3845 root->reloc_root = NULL; 3846 } 3847 } 3848 3849 if (root->free_ino_pinned) 3850 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3851 if (root->free_ino_ctl) 3852 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3853 btrfs_free_fs_root(root); 3854 } 3855 3856 void btrfs_free_fs_root(struct btrfs_root *root) 3857 { 3858 iput(root->ino_cache_inode); 3859 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3860 if (root->anon_dev) 3861 free_anon_bdev(root->anon_dev); 3862 if (root->subv_writers) 3863 btrfs_free_subvolume_writers(root->subv_writers); 3864 free_extent_buffer(root->node); 3865 free_extent_buffer(root->commit_root); 3866 kfree(root->free_ino_ctl); 3867 kfree(root->free_ino_pinned); 3868 btrfs_put_fs_root(root); 3869 } 3870 3871 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3872 { 3873 u64 root_objectid = 0; 3874 struct btrfs_root *gang[8]; 3875 int i = 0; 3876 int err = 0; 3877 unsigned int ret = 0; 3878 int index; 3879 3880 while (1) { 3881 index = srcu_read_lock(&fs_info->subvol_srcu); 3882 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3883 (void **)gang, root_objectid, 3884 ARRAY_SIZE(gang)); 3885 if (!ret) { 3886 srcu_read_unlock(&fs_info->subvol_srcu, index); 3887 break; 3888 } 3889 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3890 3891 for (i = 0; i < ret; i++) { 3892 /* Avoid to grab roots in dead_roots */ 3893 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3894 gang[i] = NULL; 3895 continue; 3896 } 3897 /* grab all the search result for later use */ 3898 gang[i] = btrfs_grab_fs_root(gang[i]); 3899 } 3900 srcu_read_unlock(&fs_info->subvol_srcu, index); 3901 3902 for (i = 0; i < ret; i++) { 3903 if (!gang[i]) 3904 continue; 3905 root_objectid = gang[i]->root_key.objectid; 3906 err = btrfs_orphan_cleanup(gang[i]); 3907 if (err) 3908 break; 3909 btrfs_put_fs_root(gang[i]); 3910 } 3911 root_objectid++; 3912 } 3913 3914 /* release the uncleaned roots due to error */ 3915 for (; i < ret; i++) { 3916 if (gang[i]) 3917 btrfs_put_fs_root(gang[i]); 3918 } 3919 return err; 3920 } 3921 3922 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3923 { 3924 struct btrfs_root *root = fs_info->tree_root; 3925 struct btrfs_trans_handle *trans; 3926 3927 mutex_lock(&fs_info->cleaner_mutex); 3928 btrfs_run_delayed_iputs(fs_info); 3929 mutex_unlock(&fs_info->cleaner_mutex); 3930 wake_up_process(fs_info->cleaner_kthread); 3931 3932 /* wait until ongoing cleanup work done */ 3933 down_write(&fs_info->cleanup_work_sem); 3934 up_write(&fs_info->cleanup_work_sem); 3935 3936 trans = btrfs_join_transaction(root); 3937 if (IS_ERR(trans)) 3938 return PTR_ERR(trans); 3939 return btrfs_commit_transaction(trans); 3940 } 3941 3942 void close_ctree(struct btrfs_fs_info *fs_info) 3943 { 3944 int ret; 3945 3946 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3947 /* 3948 * We don't want the cleaner to start new transactions, add more delayed 3949 * iputs, etc. while we're closing. We can't use kthread_stop() yet 3950 * because that frees the task_struct, and the transaction kthread might 3951 * still try to wake up the cleaner. 3952 */ 3953 kthread_park(fs_info->cleaner_kthread); 3954 3955 /* wait for the qgroup rescan worker to stop */ 3956 btrfs_qgroup_wait_for_completion(fs_info, false); 3957 3958 /* wait for the uuid_scan task to finish */ 3959 down(&fs_info->uuid_tree_rescan_sem); 3960 /* avoid complains from lockdep et al., set sem back to initial state */ 3961 up(&fs_info->uuid_tree_rescan_sem); 3962 3963 /* pause restriper - we want to resume on mount */ 3964 btrfs_pause_balance(fs_info); 3965 3966 btrfs_dev_replace_suspend_for_unmount(fs_info); 3967 3968 btrfs_scrub_cancel(fs_info); 3969 3970 /* wait for any defraggers to finish */ 3971 wait_event(fs_info->transaction_wait, 3972 (atomic_read(&fs_info->defrag_running) == 0)); 3973 3974 /* clear out the rbtree of defraggable inodes */ 3975 btrfs_cleanup_defrag_inodes(fs_info); 3976 3977 cancel_work_sync(&fs_info->async_reclaim_work); 3978 3979 if (!sb_rdonly(fs_info->sb)) { 3980 /* 3981 * The cleaner kthread is stopped, so do one final pass over 3982 * unused block groups. 3983 */ 3984 btrfs_delete_unused_bgs(fs_info); 3985 3986 ret = btrfs_commit_super(fs_info); 3987 if (ret) 3988 btrfs_err(fs_info, "commit super ret %d", ret); 3989 } 3990 3991 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 3992 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 3993 btrfs_error_commit_super(fs_info); 3994 3995 kthread_stop(fs_info->transaction_kthread); 3996 kthread_stop(fs_info->cleaner_kthread); 3997 3998 ASSERT(list_empty(&fs_info->delayed_iputs)); 3999 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4000 4001 btrfs_free_qgroup_config(fs_info); 4002 ASSERT(list_empty(&fs_info->delalloc_roots)); 4003 4004 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4005 btrfs_info(fs_info, "at unmount delalloc count %lld", 4006 percpu_counter_sum(&fs_info->delalloc_bytes)); 4007 } 4008 4009 btrfs_sysfs_remove_mounted(fs_info); 4010 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4011 4012 btrfs_free_fs_roots(fs_info); 4013 4014 btrfs_put_block_group_cache(fs_info); 4015 4016 /* 4017 * we must make sure there is not any read request to 4018 * submit after we stopping all workers. 4019 */ 4020 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4021 btrfs_stop_all_workers(fs_info); 4022 4023 btrfs_free_block_groups(fs_info); 4024 4025 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4026 free_root_pointers(fs_info, 1); 4027 4028 iput(fs_info->btree_inode); 4029 4030 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4031 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4032 btrfsic_unmount(fs_info->fs_devices); 4033 #endif 4034 4035 btrfs_close_devices(fs_info->fs_devices); 4036 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4037 4038 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 4039 percpu_counter_destroy(&fs_info->delalloc_bytes); 4040 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 4041 cleanup_srcu_struct(&fs_info->subvol_srcu); 4042 4043 btrfs_free_stripe_hash_table(fs_info); 4044 btrfs_free_ref_cache(fs_info); 4045 4046 while (!list_empty(&fs_info->pinned_chunks)) { 4047 struct extent_map *em; 4048 4049 em = list_first_entry(&fs_info->pinned_chunks, 4050 struct extent_map, list); 4051 list_del_init(&em->list); 4052 free_extent_map(em); 4053 } 4054 } 4055 4056 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4057 int atomic) 4058 { 4059 int ret; 4060 struct inode *btree_inode = buf->pages[0]->mapping->host; 4061 4062 ret = extent_buffer_uptodate(buf); 4063 if (!ret) 4064 return ret; 4065 4066 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4067 parent_transid, atomic); 4068 if (ret == -EAGAIN) 4069 return ret; 4070 return !ret; 4071 } 4072 4073 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4074 { 4075 struct btrfs_fs_info *fs_info; 4076 struct btrfs_root *root; 4077 u64 transid = btrfs_header_generation(buf); 4078 int was_dirty; 4079 4080 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4081 /* 4082 * This is a fast path so only do this check if we have sanity tests 4083 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4084 * outside of the sanity tests. 4085 */ 4086 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4087 return; 4088 #endif 4089 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4090 fs_info = root->fs_info; 4091 btrfs_assert_tree_locked(buf); 4092 if (transid != fs_info->generation) 4093 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4094 buf->start, transid, fs_info->generation); 4095 was_dirty = set_extent_buffer_dirty(buf); 4096 if (!was_dirty) 4097 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4098 buf->len, 4099 fs_info->dirty_metadata_batch); 4100 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4101 /* 4102 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4103 * but item data not updated. 4104 * So here we should only check item pointers, not item data. 4105 */ 4106 if (btrfs_header_level(buf) == 0 && 4107 btrfs_check_leaf_relaxed(fs_info, buf)) { 4108 btrfs_print_leaf(buf); 4109 ASSERT(0); 4110 } 4111 #endif 4112 } 4113 4114 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4115 int flush_delayed) 4116 { 4117 /* 4118 * looks as though older kernels can get into trouble with 4119 * this code, they end up stuck in balance_dirty_pages forever 4120 */ 4121 int ret; 4122 4123 if (current->flags & PF_MEMALLOC) 4124 return; 4125 4126 if (flush_delayed) 4127 btrfs_balance_delayed_items(fs_info); 4128 4129 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4130 BTRFS_DIRTY_METADATA_THRESH, 4131 fs_info->dirty_metadata_batch); 4132 if (ret > 0) { 4133 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4134 } 4135 } 4136 4137 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4138 { 4139 __btrfs_btree_balance_dirty(fs_info, 1); 4140 } 4141 4142 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4143 { 4144 __btrfs_btree_balance_dirty(fs_info, 0); 4145 } 4146 4147 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4148 struct btrfs_key *first_key) 4149 { 4150 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4151 struct btrfs_fs_info *fs_info = root->fs_info; 4152 4153 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid, 4154 level, first_key); 4155 } 4156 4157 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4158 { 4159 /* cleanup FS via transaction */ 4160 btrfs_cleanup_transaction(fs_info); 4161 4162 mutex_lock(&fs_info->cleaner_mutex); 4163 btrfs_run_delayed_iputs(fs_info); 4164 mutex_unlock(&fs_info->cleaner_mutex); 4165 4166 down_write(&fs_info->cleanup_work_sem); 4167 up_write(&fs_info->cleanup_work_sem); 4168 } 4169 4170 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4171 { 4172 struct btrfs_ordered_extent *ordered; 4173 4174 spin_lock(&root->ordered_extent_lock); 4175 /* 4176 * This will just short circuit the ordered completion stuff which will 4177 * make sure the ordered extent gets properly cleaned up. 4178 */ 4179 list_for_each_entry(ordered, &root->ordered_extents, 4180 root_extent_list) 4181 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4182 spin_unlock(&root->ordered_extent_lock); 4183 } 4184 4185 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4186 { 4187 struct btrfs_root *root; 4188 struct list_head splice; 4189 4190 INIT_LIST_HEAD(&splice); 4191 4192 spin_lock(&fs_info->ordered_root_lock); 4193 list_splice_init(&fs_info->ordered_roots, &splice); 4194 while (!list_empty(&splice)) { 4195 root = list_first_entry(&splice, struct btrfs_root, 4196 ordered_root); 4197 list_move_tail(&root->ordered_root, 4198 &fs_info->ordered_roots); 4199 4200 spin_unlock(&fs_info->ordered_root_lock); 4201 btrfs_destroy_ordered_extents(root); 4202 4203 cond_resched(); 4204 spin_lock(&fs_info->ordered_root_lock); 4205 } 4206 spin_unlock(&fs_info->ordered_root_lock); 4207 4208 /* 4209 * We need this here because if we've been flipped read-only we won't 4210 * get sync() from the umount, so we need to make sure any ordered 4211 * extents that haven't had their dirty pages IO start writeout yet 4212 * actually get run and error out properly. 4213 */ 4214 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4215 } 4216 4217 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4218 struct btrfs_fs_info *fs_info) 4219 { 4220 struct rb_node *node; 4221 struct btrfs_delayed_ref_root *delayed_refs; 4222 struct btrfs_delayed_ref_node *ref; 4223 int ret = 0; 4224 4225 delayed_refs = &trans->delayed_refs; 4226 4227 spin_lock(&delayed_refs->lock); 4228 if (atomic_read(&delayed_refs->num_entries) == 0) { 4229 spin_unlock(&delayed_refs->lock); 4230 btrfs_info(fs_info, "delayed_refs has NO entry"); 4231 return ret; 4232 } 4233 4234 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4235 struct btrfs_delayed_ref_head *head; 4236 struct rb_node *n; 4237 bool pin_bytes = false; 4238 4239 head = rb_entry(node, struct btrfs_delayed_ref_head, 4240 href_node); 4241 if (!mutex_trylock(&head->mutex)) { 4242 refcount_inc(&head->refs); 4243 spin_unlock(&delayed_refs->lock); 4244 4245 mutex_lock(&head->mutex); 4246 mutex_unlock(&head->mutex); 4247 btrfs_put_delayed_ref_head(head); 4248 spin_lock(&delayed_refs->lock); 4249 continue; 4250 } 4251 spin_lock(&head->lock); 4252 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4253 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4254 ref_node); 4255 ref->in_tree = 0; 4256 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4257 RB_CLEAR_NODE(&ref->ref_node); 4258 if (!list_empty(&ref->add_list)) 4259 list_del(&ref->add_list); 4260 atomic_dec(&delayed_refs->num_entries); 4261 btrfs_put_delayed_ref(ref); 4262 } 4263 if (head->must_insert_reserved) 4264 pin_bytes = true; 4265 btrfs_free_delayed_extent_op(head->extent_op); 4266 delayed_refs->num_heads--; 4267 if (head->processing == 0) 4268 delayed_refs->num_heads_ready--; 4269 atomic_dec(&delayed_refs->num_entries); 4270 rb_erase_cached(&head->href_node, &delayed_refs->href_root); 4271 RB_CLEAR_NODE(&head->href_node); 4272 spin_unlock(&head->lock); 4273 spin_unlock(&delayed_refs->lock); 4274 mutex_unlock(&head->mutex); 4275 4276 if (pin_bytes) 4277 btrfs_pin_extent(fs_info, head->bytenr, 4278 head->num_bytes, 1); 4279 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4280 btrfs_put_delayed_ref_head(head); 4281 cond_resched(); 4282 spin_lock(&delayed_refs->lock); 4283 } 4284 4285 spin_unlock(&delayed_refs->lock); 4286 4287 return ret; 4288 } 4289 4290 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4291 { 4292 struct btrfs_inode *btrfs_inode; 4293 struct list_head splice; 4294 4295 INIT_LIST_HEAD(&splice); 4296 4297 spin_lock(&root->delalloc_lock); 4298 list_splice_init(&root->delalloc_inodes, &splice); 4299 4300 while (!list_empty(&splice)) { 4301 struct inode *inode = NULL; 4302 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4303 delalloc_inodes); 4304 __btrfs_del_delalloc_inode(root, btrfs_inode); 4305 spin_unlock(&root->delalloc_lock); 4306 4307 /* 4308 * Make sure we get a live inode and that it'll not disappear 4309 * meanwhile. 4310 */ 4311 inode = igrab(&btrfs_inode->vfs_inode); 4312 if (inode) { 4313 invalidate_inode_pages2(inode->i_mapping); 4314 iput(inode); 4315 } 4316 spin_lock(&root->delalloc_lock); 4317 } 4318 spin_unlock(&root->delalloc_lock); 4319 } 4320 4321 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4322 { 4323 struct btrfs_root *root; 4324 struct list_head splice; 4325 4326 INIT_LIST_HEAD(&splice); 4327 4328 spin_lock(&fs_info->delalloc_root_lock); 4329 list_splice_init(&fs_info->delalloc_roots, &splice); 4330 while (!list_empty(&splice)) { 4331 root = list_first_entry(&splice, struct btrfs_root, 4332 delalloc_root); 4333 root = btrfs_grab_fs_root(root); 4334 BUG_ON(!root); 4335 spin_unlock(&fs_info->delalloc_root_lock); 4336 4337 btrfs_destroy_delalloc_inodes(root); 4338 btrfs_put_fs_root(root); 4339 4340 spin_lock(&fs_info->delalloc_root_lock); 4341 } 4342 spin_unlock(&fs_info->delalloc_root_lock); 4343 } 4344 4345 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4346 struct extent_io_tree *dirty_pages, 4347 int mark) 4348 { 4349 int ret; 4350 struct extent_buffer *eb; 4351 u64 start = 0; 4352 u64 end; 4353 4354 while (1) { 4355 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4356 mark, NULL); 4357 if (ret) 4358 break; 4359 4360 clear_extent_bits(dirty_pages, start, end, mark); 4361 while (start <= end) { 4362 eb = find_extent_buffer(fs_info, start); 4363 start += fs_info->nodesize; 4364 if (!eb) 4365 continue; 4366 wait_on_extent_buffer_writeback(eb); 4367 4368 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4369 &eb->bflags)) 4370 clear_extent_buffer_dirty(eb); 4371 free_extent_buffer_stale(eb); 4372 } 4373 } 4374 4375 return ret; 4376 } 4377 4378 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4379 struct extent_io_tree *pinned_extents) 4380 { 4381 struct extent_io_tree *unpin; 4382 u64 start; 4383 u64 end; 4384 int ret; 4385 bool loop = true; 4386 4387 unpin = pinned_extents; 4388 again: 4389 while (1) { 4390 struct extent_state *cached_state = NULL; 4391 4392 /* 4393 * The btrfs_finish_extent_commit() may get the same range as 4394 * ours between find_first_extent_bit and clear_extent_dirty. 4395 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4396 * the same extent range. 4397 */ 4398 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4399 ret = find_first_extent_bit(unpin, 0, &start, &end, 4400 EXTENT_DIRTY, &cached_state); 4401 if (ret) { 4402 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4403 break; 4404 } 4405 4406 clear_extent_dirty(unpin, start, end, &cached_state); 4407 free_extent_state(cached_state); 4408 btrfs_error_unpin_extent_range(fs_info, start, end); 4409 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4410 cond_resched(); 4411 } 4412 4413 if (loop) { 4414 if (unpin == &fs_info->freed_extents[0]) 4415 unpin = &fs_info->freed_extents[1]; 4416 else 4417 unpin = &fs_info->freed_extents[0]; 4418 loop = false; 4419 goto again; 4420 } 4421 4422 return 0; 4423 } 4424 4425 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache) 4426 { 4427 struct inode *inode; 4428 4429 inode = cache->io_ctl.inode; 4430 if (inode) { 4431 invalidate_inode_pages2(inode->i_mapping); 4432 BTRFS_I(inode)->generation = 0; 4433 cache->io_ctl.inode = NULL; 4434 iput(inode); 4435 } 4436 btrfs_put_block_group(cache); 4437 } 4438 4439 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4440 struct btrfs_fs_info *fs_info) 4441 { 4442 struct btrfs_block_group_cache *cache; 4443 4444 spin_lock(&cur_trans->dirty_bgs_lock); 4445 while (!list_empty(&cur_trans->dirty_bgs)) { 4446 cache = list_first_entry(&cur_trans->dirty_bgs, 4447 struct btrfs_block_group_cache, 4448 dirty_list); 4449 4450 if (!list_empty(&cache->io_list)) { 4451 spin_unlock(&cur_trans->dirty_bgs_lock); 4452 list_del_init(&cache->io_list); 4453 btrfs_cleanup_bg_io(cache); 4454 spin_lock(&cur_trans->dirty_bgs_lock); 4455 } 4456 4457 list_del_init(&cache->dirty_list); 4458 spin_lock(&cache->lock); 4459 cache->disk_cache_state = BTRFS_DC_ERROR; 4460 spin_unlock(&cache->lock); 4461 4462 spin_unlock(&cur_trans->dirty_bgs_lock); 4463 btrfs_put_block_group(cache); 4464 btrfs_delayed_refs_rsv_release(fs_info, 1); 4465 spin_lock(&cur_trans->dirty_bgs_lock); 4466 } 4467 spin_unlock(&cur_trans->dirty_bgs_lock); 4468 4469 /* 4470 * Refer to the definition of io_bgs member for details why it's safe 4471 * to use it without any locking 4472 */ 4473 while (!list_empty(&cur_trans->io_bgs)) { 4474 cache = list_first_entry(&cur_trans->io_bgs, 4475 struct btrfs_block_group_cache, 4476 io_list); 4477 4478 list_del_init(&cache->io_list); 4479 spin_lock(&cache->lock); 4480 cache->disk_cache_state = BTRFS_DC_ERROR; 4481 spin_unlock(&cache->lock); 4482 btrfs_cleanup_bg_io(cache); 4483 } 4484 } 4485 4486 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4487 struct btrfs_fs_info *fs_info) 4488 { 4489 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4490 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4491 ASSERT(list_empty(&cur_trans->io_bgs)); 4492 4493 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4494 4495 cur_trans->state = TRANS_STATE_COMMIT_START; 4496 wake_up(&fs_info->transaction_blocked_wait); 4497 4498 cur_trans->state = TRANS_STATE_UNBLOCKED; 4499 wake_up(&fs_info->transaction_wait); 4500 4501 btrfs_destroy_delayed_inodes(fs_info); 4502 btrfs_assert_delayed_root_empty(fs_info); 4503 4504 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4505 EXTENT_DIRTY); 4506 btrfs_destroy_pinned_extent(fs_info, 4507 fs_info->pinned_extents); 4508 4509 cur_trans->state =TRANS_STATE_COMPLETED; 4510 wake_up(&cur_trans->commit_wait); 4511 } 4512 4513 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4514 { 4515 struct btrfs_transaction *t; 4516 4517 mutex_lock(&fs_info->transaction_kthread_mutex); 4518 4519 spin_lock(&fs_info->trans_lock); 4520 while (!list_empty(&fs_info->trans_list)) { 4521 t = list_first_entry(&fs_info->trans_list, 4522 struct btrfs_transaction, list); 4523 if (t->state >= TRANS_STATE_COMMIT_START) { 4524 refcount_inc(&t->use_count); 4525 spin_unlock(&fs_info->trans_lock); 4526 btrfs_wait_for_commit(fs_info, t->transid); 4527 btrfs_put_transaction(t); 4528 spin_lock(&fs_info->trans_lock); 4529 continue; 4530 } 4531 if (t == fs_info->running_transaction) { 4532 t->state = TRANS_STATE_COMMIT_DOING; 4533 spin_unlock(&fs_info->trans_lock); 4534 /* 4535 * We wait for 0 num_writers since we don't hold a trans 4536 * handle open currently for this transaction. 4537 */ 4538 wait_event(t->writer_wait, 4539 atomic_read(&t->num_writers) == 0); 4540 } else { 4541 spin_unlock(&fs_info->trans_lock); 4542 } 4543 btrfs_cleanup_one_transaction(t, fs_info); 4544 4545 spin_lock(&fs_info->trans_lock); 4546 if (t == fs_info->running_transaction) 4547 fs_info->running_transaction = NULL; 4548 list_del_init(&t->list); 4549 spin_unlock(&fs_info->trans_lock); 4550 4551 btrfs_put_transaction(t); 4552 trace_btrfs_transaction_commit(fs_info->tree_root); 4553 spin_lock(&fs_info->trans_lock); 4554 } 4555 spin_unlock(&fs_info->trans_lock); 4556 btrfs_destroy_all_ordered_extents(fs_info); 4557 btrfs_destroy_delayed_inodes(fs_info); 4558 btrfs_assert_delayed_root_empty(fs_info); 4559 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 4560 btrfs_destroy_all_delalloc_inodes(fs_info); 4561 mutex_unlock(&fs_info->transaction_kthread_mutex); 4562 4563 return 0; 4564 } 4565 4566 static const struct extent_io_ops btree_extent_io_ops = { 4567 /* mandatory callbacks */ 4568 .submit_bio_hook = btree_submit_bio_hook, 4569 .readpage_end_io_hook = btree_readpage_end_io_hook, 4570 }; 4571