xref: /linux/fs/btrfs/disk-io.c (revision 5cd2340cb6a383d04fd88e48fabc2a21a909d6a1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "dev-replace.h"
33 #include "raid56.h"
34 #include "sysfs.h"
35 #include "qgroup.h"
36 #include "compression.h"
37 #include "tree-checker.h"
38 #include "ref-verify.h"
39 #include "block-group.h"
40 #include "discard.h"
41 #include "space-info.h"
42 #include "zoned.h"
43 #include "subpage.h"
44 #include "fs.h"
45 #include "accessors.h"
46 #include "extent-tree.h"
47 #include "root-tree.h"
48 #include "defrag.h"
49 #include "uuid-tree.h"
50 #include "relocation.h"
51 #include "scrub.h"
52 #include "super.h"
53 
54 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
55 				 BTRFS_HEADER_FLAG_RELOC |\
56 				 BTRFS_SUPER_FLAG_ERROR |\
57 				 BTRFS_SUPER_FLAG_SEEDING |\
58 				 BTRFS_SUPER_FLAG_METADUMP |\
59 				 BTRFS_SUPER_FLAG_METADUMP_V2)
60 
61 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
62 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
63 
64 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
65 {
66 	if (fs_info->csum_shash)
67 		crypto_free_shash(fs_info->csum_shash);
68 }
69 
70 /*
71  * Compute the csum of a btree block and store the result to provided buffer.
72  */
73 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
74 {
75 	struct btrfs_fs_info *fs_info = buf->fs_info;
76 	int num_pages;
77 	u32 first_page_part;
78 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
79 	char *kaddr;
80 	int i;
81 
82 	shash->tfm = fs_info->csum_shash;
83 	crypto_shash_init(shash);
84 
85 	if (buf->addr) {
86 		/* Pages are contiguous, handle them as a big one. */
87 		kaddr = buf->addr;
88 		first_page_part = fs_info->nodesize;
89 		num_pages = 1;
90 	} else {
91 		kaddr = folio_address(buf->folios[0]);
92 		first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
93 		num_pages = num_extent_pages(buf);
94 	}
95 
96 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
97 			    first_page_part - BTRFS_CSUM_SIZE);
98 
99 	/*
100 	 * Multiple single-page folios case would reach here.
101 	 *
102 	 * nodesize <= PAGE_SIZE and large folio all handled by above
103 	 * crypto_shash_update() already.
104 	 */
105 	for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
106 		kaddr = folio_address(buf->folios[i]);
107 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
108 	}
109 	memset(result, 0, BTRFS_CSUM_SIZE);
110 	crypto_shash_final(shash, result);
111 }
112 
113 /*
114  * we can't consider a given block up to date unless the transid of the
115  * block matches the transid in the parent node's pointer.  This is how we
116  * detect blocks that either didn't get written at all or got written
117  * in the wrong place.
118  */
119 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
120 {
121 	if (!extent_buffer_uptodate(eb))
122 		return 0;
123 
124 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
125 		return 1;
126 
127 	if (atomic)
128 		return -EAGAIN;
129 
130 	if (!extent_buffer_uptodate(eb) ||
131 	    btrfs_header_generation(eb) != parent_transid) {
132 		btrfs_err_rl(eb->fs_info,
133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
134 			eb->start, eb->read_mirror,
135 			parent_transid, btrfs_header_generation(eb));
136 		clear_extent_buffer_uptodate(eb);
137 		return 0;
138 	}
139 	return 1;
140 }
141 
142 static bool btrfs_supported_super_csum(u16 csum_type)
143 {
144 	switch (csum_type) {
145 	case BTRFS_CSUM_TYPE_CRC32:
146 	case BTRFS_CSUM_TYPE_XXHASH:
147 	case BTRFS_CSUM_TYPE_SHA256:
148 	case BTRFS_CSUM_TYPE_BLAKE2:
149 		return true;
150 	default:
151 		return false;
152 	}
153 }
154 
155 /*
156  * Return 0 if the superblock checksum type matches the checksum value of that
157  * algorithm. Pass the raw disk superblock data.
158  */
159 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
160 			   const struct btrfs_super_block *disk_sb)
161 {
162 	char result[BTRFS_CSUM_SIZE];
163 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
164 
165 	shash->tfm = fs_info->csum_shash;
166 
167 	/*
168 	 * The super_block structure does not span the whole
169 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
170 	 * filled with zeros and is included in the checksum.
171 	 */
172 	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
173 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
174 
175 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
176 		return 1;
177 
178 	return 0;
179 }
180 
181 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
182 				      int mirror_num)
183 {
184 	struct btrfs_fs_info *fs_info = eb->fs_info;
185 	int num_folios = num_extent_folios(eb);
186 	int ret = 0;
187 
188 	if (sb_rdonly(fs_info->sb))
189 		return -EROFS;
190 
191 	for (int i = 0; i < num_folios; i++) {
192 		struct folio *folio = eb->folios[i];
193 		u64 start = max_t(u64, eb->start, folio_pos(folio));
194 		u64 end = min_t(u64, eb->start + eb->len,
195 				folio_pos(folio) + eb->folio_size);
196 		u32 len = end - start;
197 
198 		ret = btrfs_repair_io_failure(fs_info, 0, start, len,
199 					      start, folio, offset_in_folio(folio, start),
200 					      mirror_num);
201 		if (ret)
202 			break;
203 	}
204 
205 	return ret;
206 }
207 
208 /*
209  * helper to read a given tree block, doing retries as required when
210  * the checksums don't match and we have alternate mirrors to try.
211  *
212  * @check:		expected tree parentness check, see the comments of the
213  *			structure for details.
214  */
215 int btrfs_read_extent_buffer(struct extent_buffer *eb,
216 			     const struct btrfs_tree_parent_check *check)
217 {
218 	struct btrfs_fs_info *fs_info = eb->fs_info;
219 	int failed = 0;
220 	int ret;
221 	int num_copies = 0;
222 	int mirror_num = 0;
223 	int failed_mirror = 0;
224 
225 	ASSERT(check);
226 
227 	while (1) {
228 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
229 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
230 		if (!ret)
231 			break;
232 
233 		num_copies = btrfs_num_copies(fs_info,
234 					      eb->start, eb->len);
235 		if (num_copies == 1)
236 			break;
237 
238 		if (!failed_mirror) {
239 			failed = 1;
240 			failed_mirror = eb->read_mirror;
241 		}
242 
243 		mirror_num++;
244 		if (mirror_num == failed_mirror)
245 			mirror_num++;
246 
247 		if (mirror_num > num_copies)
248 			break;
249 	}
250 
251 	if (failed && !ret && failed_mirror)
252 		btrfs_repair_eb_io_failure(eb, failed_mirror);
253 
254 	return ret;
255 }
256 
257 /*
258  * Checksum a dirty tree block before IO.
259  */
260 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
261 {
262 	struct extent_buffer *eb = bbio->private;
263 	struct btrfs_fs_info *fs_info = eb->fs_info;
264 	u64 found_start = btrfs_header_bytenr(eb);
265 	u64 last_trans;
266 	u8 result[BTRFS_CSUM_SIZE];
267 	int ret;
268 
269 	/* Btree blocks are always contiguous on disk. */
270 	if (WARN_ON_ONCE(bbio->file_offset != eb->start))
271 		return BLK_STS_IOERR;
272 	if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
273 		return BLK_STS_IOERR;
274 
275 	/*
276 	 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
277 	 * checksum it but zero-out its content. This is done to preserve
278 	 * ordering of I/O without unnecessarily writing out data.
279 	 */
280 	if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
281 		memzero_extent_buffer(eb, 0, eb->len);
282 		return BLK_STS_OK;
283 	}
284 
285 	if (WARN_ON_ONCE(found_start != eb->start))
286 		return BLK_STS_IOERR;
287 	if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0],
288 					       eb->start, eb->len)))
289 		return BLK_STS_IOERR;
290 
291 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
292 				    offsetof(struct btrfs_header, fsid),
293 				    BTRFS_FSID_SIZE) == 0);
294 	csum_tree_block(eb, result);
295 
296 	if (btrfs_header_level(eb))
297 		ret = btrfs_check_node(eb);
298 	else
299 		ret = btrfs_check_leaf(eb);
300 
301 	if (ret < 0)
302 		goto error;
303 
304 	/*
305 	 * Also check the generation, the eb reached here must be newer than
306 	 * last committed. Or something seriously wrong happened.
307 	 */
308 	last_trans = btrfs_get_last_trans_committed(fs_info);
309 	if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
310 		ret = -EUCLEAN;
311 		btrfs_err(fs_info,
312 			"block=%llu bad generation, have %llu expect > %llu",
313 			  eb->start, btrfs_header_generation(eb), last_trans);
314 		goto error;
315 	}
316 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
317 	return BLK_STS_OK;
318 
319 error:
320 	btrfs_print_tree(eb, 0);
321 	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
322 		  eb->start);
323 	/*
324 	 * Be noisy if this is an extent buffer from a log tree. We don't abort
325 	 * a transaction in case there's a bad log tree extent buffer, we just
326 	 * fallback to a transaction commit. Still we want to know when there is
327 	 * a bad log tree extent buffer, as that may signal a bug somewhere.
328 	 */
329 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
330 		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
331 	return errno_to_blk_status(ret);
332 }
333 
334 static bool check_tree_block_fsid(struct extent_buffer *eb)
335 {
336 	struct btrfs_fs_info *fs_info = eb->fs_info;
337 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
338 	u8 fsid[BTRFS_FSID_SIZE];
339 
340 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
341 			   BTRFS_FSID_SIZE);
342 
343 	/*
344 	 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
345 	 * This is then overwritten by metadata_uuid if it is present in the
346 	 * device_list_add(). The same true for a seed device as well. So use of
347 	 * fs_devices::metadata_uuid is appropriate here.
348 	 */
349 	if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
350 		return false;
351 
352 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
353 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
354 			return false;
355 
356 	return true;
357 }
358 
359 /* Do basic extent buffer checks at read time */
360 int btrfs_validate_extent_buffer(struct extent_buffer *eb,
361 				 const struct btrfs_tree_parent_check *check)
362 {
363 	struct btrfs_fs_info *fs_info = eb->fs_info;
364 	u64 found_start;
365 	const u32 csum_size = fs_info->csum_size;
366 	u8 found_level;
367 	u8 result[BTRFS_CSUM_SIZE];
368 	const u8 *header_csum;
369 	int ret = 0;
370 	const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS);
371 
372 	ASSERT(check);
373 
374 	found_start = btrfs_header_bytenr(eb);
375 	if (found_start != eb->start) {
376 		btrfs_err_rl(fs_info,
377 			"bad tree block start, mirror %u want %llu have %llu",
378 			     eb->read_mirror, eb->start, found_start);
379 		ret = -EIO;
380 		goto out;
381 	}
382 	if (check_tree_block_fsid(eb)) {
383 		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
384 			     eb->start, eb->read_mirror);
385 		ret = -EIO;
386 		goto out;
387 	}
388 	found_level = btrfs_header_level(eb);
389 	if (found_level >= BTRFS_MAX_LEVEL) {
390 		btrfs_err(fs_info,
391 			"bad tree block level, mirror %u level %d on logical %llu",
392 			eb->read_mirror, btrfs_header_level(eb), eb->start);
393 		ret = -EIO;
394 		goto out;
395 	}
396 
397 	csum_tree_block(eb, result);
398 	header_csum = folio_address(eb->folios[0]) +
399 		get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
400 
401 	if (memcmp(result, header_csum, csum_size) != 0) {
402 		btrfs_warn_rl(fs_info,
403 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d%s",
404 			      eb->start, eb->read_mirror,
405 			      CSUM_FMT_VALUE(csum_size, header_csum),
406 			      CSUM_FMT_VALUE(csum_size, result),
407 			      btrfs_header_level(eb),
408 			      ignore_csum ? ", ignored" : "");
409 		if (!ignore_csum) {
410 			ret = -EUCLEAN;
411 			goto out;
412 		}
413 	}
414 
415 	if (found_level != check->level) {
416 		btrfs_err(fs_info,
417 		"level verify failed on logical %llu mirror %u wanted %u found %u",
418 			  eb->start, eb->read_mirror, check->level, found_level);
419 		ret = -EIO;
420 		goto out;
421 	}
422 	if (unlikely(check->transid &&
423 		     btrfs_header_generation(eb) != check->transid)) {
424 		btrfs_err_rl(eb->fs_info,
425 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
426 				eb->start, eb->read_mirror, check->transid,
427 				btrfs_header_generation(eb));
428 		ret = -EIO;
429 		goto out;
430 	}
431 	if (check->has_first_key) {
432 		const struct btrfs_key *expect_key = &check->first_key;
433 		struct btrfs_key found_key;
434 
435 		if (found_level)
436 			btrfs_node_key_to_cpu(eb, &found_key, 0);
437 		else
438 			btrfs_item_key_to_cpu(eb, &found_key, 0);
439 		if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
440 			btrfs_err(fs_info,
441 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
442 				  eb->start, check->transid,
443 				  expect_key->objectid,
444 				  expect_key->type, expect_key->offset,
445 				  found_key.objectid, found_key.type,
446 				  found_key.offset);
447 			ret = -EUCLEAN;
448 			goto out;
449 		}
450 	}
451 	if (check->owner_root) {
452 		ret = btrfs_check_eb_owner(eb, check->owner_root);
453 		if (ret < 0)
454 			goto out;
455 	}
456 
457 	/*
458 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
459 	 * that we don't try and read the other copies of this block, just
460 	 * return -EIO.
461 	 */
462 	if (found_level == 0 && btrfs_check_leaf(eb)) {
463 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
464 		ret = -EIO;
465 	}
466 
467 	if (found_level > 0 && btrfs_check_node(eb))
468 		ret = -EIO;
469 
470 	if (ret)
471 		btrfs_err(fs_info,
472 		"read time tree block corruption detected on logical %llu mirror %u",
473 			  eb->start, eb->read_mirror);
474 out:
475 	return ret;
476 }
477 
478 #ifdef CONFIG_MIGRATION
479 static int btree_migrate_folio(struct address_space *mapping,
480 		struct folio *dst, struct folio *src, enum migrate_mode mode)
481 {
482 	/*
483 	 * we can't safely write a btree page from here,
484 	 * we haven't done the locking hook
485 	 */
486 	if (folio_test_dirty(src))
487 		return -EAGAIN;
488 	/*
489 	 * Buffers may be managed in a filesystem specific way.
490 	 * We must have no buffers or drop them.
491 	 */
492 	if (folio_get_private(src) &&
493 	    !filemap_release_folio(src, GFP_KERNEL))
494 		return -EAGAIN;
495 	return migrate_folio(mapping, dst, src, mode);
496 }
497 #else
498 #define btree_migrate_folio NULL
499 #endif
500 
501 static int btree_writepages(struct address_space *mapping,
502 			    struct writeback_control *wbc)
503 {
504 	int ret;
505 
506 	if (wbc->sync_mode == WB_SYNC_NONE) {
507 		struct btrfs_fs_info *fs_info;
508 
509 		if (wbc->for_kupdate)
510 			return 0;
511 
512 		fs_info = inode_to_fs_info(mapping->host);
513 		/* this is a bit racy, but that's ok */
514 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
515 					     BTRFS_DIRTY_METADATA_THRESH,
516 					     fs_info->dirty_metadata_batch);
517 		if (ret < 0)
518 			return 0;
519 	}
520 	return btree_write_cache_pages(mapping, wbc);
521 }
522 
523 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
524 {
525 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
526 		return false;
527 
528 	return try_release_extent_buffer(&folio->page);
529 }
530 
531 static void btree_invalidate_folio(struct folio *folio, size_t offset,
532 				 size_t length)
533 {
534 	struct extent_io_tree *tree;
535 
536 	tree = &folio_to_inode(folio)->io_tree;
537 	extent_invalidate_folio(tree, folio, offset);
538 	btree_release_folio(folio, GFP_NOFS);
539 	if (folio_get_private(folio)) {
540 		btrfs_warn(folio_to_fs_info(folio),
541 			   "folio private not zero on folio %llu",
542 			   (unsigned long long)folio_pos(folio));
543 		folio_detach_private(folio);
544 	}
545 }
546 
547 #ifdef DEBUG
548 static bool btree_dirty_folio(struct address_space *mapping,
549 		struct folio *folio)
550 {
551 	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
552 	struct btrfs_subpage_info *spi = fs_info->subpage_info;
553 	struct btrfs_subpage *subpage;
554 	struct extent_buffer *eb;
555 	int cur_bit = 0;
556 	u64 page_start = folio_pos(folio);
557 
558 	if (fs_info->sectorsize == PAGE_SIZE) {
559 		eb = folio_get_private(folio);
560 		BUG_ON(!eb);
561 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
562 		BUG_ON(!atomic_read(&eb->refs));
563 		btrfs_assert_tree_write_locked(eb);
564 		return filemap_dirty_folio(mapping, folio);
565 	}
566 
567 	ASSERT(spi);
568 	subpage = folio_get_private(folio);
569 
570 	for (cur_bit = spi->dirty_offset;
571 	     cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
572 	     cur_bit++) {
573 		unsigned long flags;
574 		u64 cur;
575 
576 		spin_lock_irqsave(&subpage->lock, flags);
577 		if (!test_bit(cur_bit, subpage->bitmaps)) {
578 			spin_unlock_irqrestore(&subpage->lock, flags);
579 			continue;
580 		}
581 		spin_unlock_irqrestore(&subpage->lock, flags);
582 		cur = page_start + cur_bit * fs_info->sectorsize;
583 
584 		eb = find_extent_buffer(fs_info, cur);
585 		ASSERT(eb);
586 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
587 		ASSERT(atomic_read(&eb->refs));
588 		btrfs_assert_tree_write_locked(eb);
589 		free_extent_buffer(eb);
590 
591 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
592 	}
593 	return filemap_dirty_folio(mapping, folio);
594 }
595 #else
596 #define btree_dirty_folio filemap_dirty_folio
597 #endif
598 
599 static const struct address_space_operations btree_aops = {
600 	.writepages	= btree_writepages,
601 	.release_folio	= btree_release_folio,
602 	.invalidate_folio = btree_invalidate_folio,
603 	.migrate_folio	= btree_migrate_folio,
604 	.dirty_folio	= btree_dirty_folio,
605 };
606 
607 struct extent_buffer *btrfs_find_create_tree_block(
608 						struct btrfs_fs_info *fs_info,
609 						u64 bytenr, u64 owner_root,
610 						int level)
611 {
612 	if (btrfs_is_testing(fs_info))
613 		return alloc_test_extent_buffer(fs_info, bytenr);
614 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
615 }
616 
617 /*
618  * Read tree block at logical address @bytenr and do variant basic but critical
619  * verification.
620  *
621  * @check:		expected tree parentness check, see comments of the
622  *			structure for details.
623  */
624 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
625 				      struct btrfs_tree_parent_check *check)
626 {
627 	struct extent_buffer *buf = NULL;
628 	int ret;
629 
630 	ASSERT(check);
631 
632 	buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
633 					   check->level);
634 	if (IS_ERR(buf))
635 		return buf;
636 
637 	ret = btrfs_read_extent_buffer(buf, check);
638 	if (ret) {
639 		free_extent_buffer_stale(buf);
640 		return ERR_PTR(ret);
641 	}
642 	return buf;
643 
644 }
645 
646 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
647 			 u64 objectid)
648 {
649 	bool dummy = btrfs_is_testing(fs_info);
650 
651 	memset(&root->root_key, 0, sizeof(root->root_key));
652 	memset(&root->root_item, 0, sizeof(root->root_item));
653 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
654 	root->fs_info = fs_info;
655 	root->root_key.objectid = objectid;
656 	root->node = NULL;
657 	root->commit_root = NULL;
658 	root->state = 0;
659 	RB_CLEAR_NODE(&root->rb_node);
660 
661 	btrfs_set_root_last_trans(root, 0);
662 	root->free_objectid = 0;
663 	root->nr_delalloc_inodes = 0;
664 	root->nr_ordered_extents = 0;
665 	xa_init(&root->inodes);
666 	xa_init(&root->delayed_nodes);
667 
668 	btrfs_init_root_block_rsv(root);
669 
670 	INIT_LIST_HEAD(&root->dirty_list);
671 	INIT_LIST_HEAD(&root->root_list);
672 	INIT_LIST_HEAD(&root->delalloc_inodes);
673 	INIT_LIST_HEAD(&root->delalloc_root);
674 	INIT_LIST_HEAD(&root->ordered_extents);
675 	INIT_LIST_HEAD(&root->ordered_root);
676 	INIT_LIST_HEAD(&root->reloc_dirty_list);
677 	spin_lock_init(&root->delalloc_lock);
678 	spin_lock_init(&root->ordered_extent_lock);
679 	spin_lock_init(&root->accounting_lock);
680 	spin_lock_init(&root->qgroup_meta_rsv_lock);
681 	mutex_init(&root->objectid_mutex);
682 	mutex_init(&root->log_mutex);
683 	mutex_init(&root->ordered_extent_mutex);
684 	mutex_init(&root->delalloc_mutex);
685 	init_waitqueue_head(&root->qgroup_flush_wait);
686 	init_waitqueue_head(&root->log_writer_wait);
687 	init_waitqueue_head(&root->log_commit_wait[0]);
688 	init_waitqueue_head(&root->log_commit_wait[1]);
689 	INIT_LIST_HEAD(&root->log_ctxs[0]);
690 	INIT_LIST_HEAD(&root->log_ctxs[1]);
691 	atomic_set(&root->log_commit[0], 0);
692 	atomic_set(&root->log_commit[1], 0);
693 	atomic_set(&root->log_writers, 0);
694 	atomic_set(&root->log_batch, 0);
695 	refcount_set(&root->refs, 1);
696 	atomic_set(&root->snapshot_force_cow, 0);
697 	atomic_set(&root->nr_swapfiles, 0);
698 	btrfs_set_root_log_transid(root, 0);
699 	root->log_transid_committed = -1;
700 	btrfs_set_root_last_log_commit(root, 0);
701 	root->anon_dev = 0;
702 	if (!dummy) {
703 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
704 				    IO_TREE_ROOT_DIRTY_LOG_PAGES);
705 		extent_io_tree_init(fs_info, &root->log_csum_range,
706 				    IO_TREE_LOG_CSUM_RANGE);
707 	}
708 
709 	spin_lock_init(&root->root_item_lock);
710 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
711 #ifdef CONFIG_BTRFS_DEBUG
712 	INIT_LIST_HEAD(&root->leak_list);
713 	spin_lock(&fs_info->fs_roots_radix_lock);
714 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
715 	spin_unlock(&fs_info->fs_roots_radix_lock);
716 #endif
717 }
718 
719 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
720 					   u64 objectid, gfp_t flags)
721 {
722 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
723 	if (root)
724 		__setup_root(root, fs_info, objectid);
725 	return root;
726 }
727 
728 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
729 /* Should only be used by the testing infrastructure */
730 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
731 {
732 	struct btrfs_root *root;
733 
734 	if (!fs_info)
735 		return ERR_PTR(-EINVAL);
736 
737 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
738 	if (!root)
739 		return ERR_PTR(-ENOMEM);
740 
741 	/* We don't use the stripesize in selftest, set it as sectorsize */
742 	root->alloc_bytenr = 0;
743 
744 	return root;
745 }
746 #endif
747 
748 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
749 {
750 	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
751 	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
752 
753 	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
754 }
755 
756 static int global_root_key_cmp(const void *k, const struct rb_node *node)
757 {
758 	const struct btrfs_key *key = k;
759 	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
760 
761 	return btrfs_comp_cpu_keys(key, &root->root_key);
762 }
763 
764 int btrfs_global_root_insert(struct btrfs_root *root)
765 {
766 	struct btrfs_fs_info *fs_info = root->fs_info;
767 	struct rb_node *tmp;
768 	int ret = 0;
769 
770 	write_lock(&fs_info->global_root_lock);
771 	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
772 	write_unlock(&fs_info->global_root_lock);
773 
774 	if (tmp) {
775 		ret = -EEXIST;
776 		btrfs_warn(fs_info, "global root %llu %llu already exists",
777 			   btrfs_root_id(root), root->root_key.offset);
778 	}
779 	return ret;
780 }
781 
782 void btrfs_global_root_delete(struct btrfs_root *root)
783 {
784 	struct btrfs_fs_info *fs_info = root->fs_info;
785 
786 	write_lock(&fs_info->global_root_lock);
787 	rb_erase(&root->rb_node, &fs_info->global_root_tree);
788 	write_unlock(&fs_info->global_root_lock);
789 }
790 
791 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
792 				     struct btrfs_key *key)
793 {
794 	struct rb_node *node;
795 	struct btrfs_root *root = NULL;
796 
797 	read_lock(&fs_info->global_root_lock);
798 	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
799 	if (node)
800 		root = container_of(node, struct btrfs_root, rb_node);
801 	read_unlock(&fs_info->global_root_lock);
802 
803 	return root;
804 }
805 
806 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
807 {
808 	struct btrfs_block_group *block_group;
809 	u64 ret;
810 
811 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
812 		return 0;
813 
814 	if (bytenr)
815 		block_group = btrfs_lookup_block_group(fs_info, bytenr);
816 	else
817 		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
818 	ASSERT(block_group);
819 	if (!block_group)
820 		return 0;
821 	ret = block_group->global_root_id;
822 	btrfs_put_block_group(block_group);
823 
824 	return ret;
825 }
826 
827 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
828 {
829 	struct btrfs_key key = {
830 		.objectid = BTRFS_CSUM_TREE_OBJECTID,
831 		.type = BTRFS_ROOT_ITEM_KEY,
832 		.offset = btrfs_global_root_id(fs_info, bytenr),
833 	};
834 
835 	return btrfs_global_root(fs_info, &key);
836 }
837 
838 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
839 {
840 	struct btrfs_key key = {
841 		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
842 		.type = BTRFS_ROOT_ITEM_KEY,
843 		.offset = btrfs_global_root_id(fs_info, bytenr),
844 	};
845 
846 	return btrfs_global_root(fs_info, &key);
847 }
848 
849 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
850 				     u64 objectid)
851 {
852 	struct btrfs_fs_info *fs_info = trans->fs_info;
853 	struct extent_buffer *leaf;
854 	struct btrfs_root *tree_root = fs_info->tree_root;
855 	struct btrfs_root *root;
856 	struct btrfs_key key;
857 	unsigned int nofs_flag;
858 	int ret = 0;
859 
860 	/*
861 	 * We're holding a transaction handle, so use a NOFS memory allocation
862 	 * context to avoid deadlock if reclaim happens.
863 	 */
864 	nofs_flag = memalloc_nofs_save();
865 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
866 	memalloc_nofs_restore(nofs_flag);
867 	if (!root)
868 		return ERR_PTR(-ENOMEM);
869 
870 	root->root_key.objectid = objectid;
871 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
872 	root->root_key.offset = 0;
873 
874 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
875 				      0, BTRFS_NESTING_NORMAL);
876 	if (IS_ERR(leaf)) {
877 		ret = PTR_ERR(leaf);
878 		leaf = NULL;
879 		goto fail;
880 	}
881 
882 	root->node = leaf;
883 	btrfs_mark_buffer_dirty(trans, leaf);
884 
885 	root->commit_root = btrfs_root_node(root);
886 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
887 
888 	btrfs_set_root_flags(&root->root_item, 0);
889 	btrfs_set_root_limit(&root->root_item, 0);
890 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
891 	btrfs_set_root_generation(&root->root_item, trans->transid);
892 	btrfs_set_root_level(&root->root_item, 0);
893 	btrfs_set_root_refs(&root->root_item, 1);
894 	btrfs_set_root_used(&root->root_item, leaf->len);
895 	btrfs_set_root_last_snapshot(&root->root_item, 0);
896 	btrfs_set_root_dirid(&root->root_item, 0);
897 	if (is_fstree(objectid))
898 		generate_random_guid(root->root_item.uuid);
899 	else
900 		export_guid(root->root_item.uuid, &guid_null);
901 	btrfs_set_root_drop_level(&root->root_item, 0);
902 
903 	btrfs_tree_unlock(leaf);
904 
905 	key.objectid = objectid;
906 	key.type = BTRFS_ROOT_ITEM_KEY;
907 	key.offset = 0;
908 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
909 	if (ret)
910 		goto fail;
911 
912 	return root;
913 
914 fail:
915 	btrfs_put_root(root);
916 
917 	return ERR_PTR(ret);
918 }
919 
920 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
921 					 struct btrfs_fs_info *fs_info)
922 {
923 	struct btrfs_root *root;
924 
925 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
926 	if (!root)
927 		return ERR_PTR(-ENOMEM);
928 
929 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
930 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
931 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
932 
933 	return root;
934 }
935 
936 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
937 			      struct btrfs_root *root)
938 {
939 	struct extent_buffer *leaf;
940 
941 	/*
942 	 * DON'T set SHAREABLE bit for log trees.
943 	 *
944 	 * Log trees are not exposed to user space thus can't be snapshotted,
945 	 * and they go away before a real commit is actually done.
946 	 *
947 	 * They do store pointers to file data extents, and those reference
948 	 * counts still get updated (along with back refs to the log tree).
949 	 */
950 
951 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
952 			NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
953 	if (IS_ERR(leaf))
954 		return PTR_ERR(leaf);
955 
956 	root->node = leaf;
957 
958 	btrfs_mark_buffer_dirty(trans, root->node);
959 	btrfs_tree_unlock(root->node);
960 
961 	return 0;
962 }
963 
964 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
965 			     struct btrfs_fs_info *fs_info)
966 {
967 	struct btrfs_root *log_root;
968 
969 	log_root = alloc_log_tree(trans, fs_info);
970 	if (IS_ERR(log_root))
971 		return PTR_ERR(log_root);
972 
973 	if (!btrfs_is_zoned(fs_info)) {
974 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
975 
976 		if (ret) {
977 			btrfs_put_root(log_root);
978 			return ret;
979 		}
980 	}
981 
982 	WARN_ON(fs_info->log_root_tree);
983 	fs_info->log_root_tree = log_root;
984 	return 0;
985 }
986 
987 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
988 		       struct btrfs_root *root)
989 {
990 	struct btrfs_fs_info *fs_info = root->fs_info;
991 	struct btrfs_root *log_root;
992 	struct btrfs_inode_item *inode_item;
993 	int ret;
994 
995 	log_root = alloc_log_tree(trans, fs_info);
996 	if (IS_ERR(log_root))
997 		return PTR_ERR(log_root);
998 
999 	ret = btrfs_alloc_log_tree_node(trans, log_root);
1000 	if (ret) {
1001 		btrfs_put_root(log_root);
1002 		return ret;
1003 	}
1004 
1005 	btrfs_set_root_last_trans(log_root, trans->transid);
1006 	log_root->root_key.offset = btrfs_root_id(root);
1007 
1008 	inode_item = &log_root->root_item.inode;
1009 	btrfs_set_stack_inode_generation(inode_item, 1);
1010 	btrfs_set_stack_inode_size(inode_item, 3);
1011 	btrfs_set_stack_inode_nlink(inode_item, 1);
1012 	btrfs_set_stack_inode_nbytes(inode_item,
1013 				     fs_info->nodesize);
1014 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1015 
1016 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1017 
1018 	WARN_ON(root->log_root);
1019 	root->log_root = log_root;
1020 	btrfs_set_root_log_transid(root, 0);
1021 	root->log_transid_committed = -1;
1022 	btrfs_set_root_last_log_commit(root, 0);
1023 	return 0;
1024 }
1025 
1026 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1027 					      struct btrfs_path *path,
1028 					      const struct btrfs_key *key)
1029 {
1030 	struct btrfs_root *root;
1031 	struct btrfs_tree_parent_check check = { 0 };
1032 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1033 	u64 generation;
1034 	int ret;
1035 	int level;
1036 
1037 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1038 	if (!root)
1039 		return ERR_PTR(-ENOMEM);
1040 
1041 	ret = btrfs_find_root(tree_root, key, path,
1042 			      &root->root_item, &root->root_key);
1043 	if (ret) {
1044 		if (ret > 0)
1045 			ret = -ENOENT;
1046 		goto fail;
1047 	}
1048 
1049 	generation = btrfs_root_generation(&root->root_item);
1050 	level = btrfs_root_level(&root->root_item);
1051 	check.level = level;
1052 	check.transid = generation;
1053 	check.owner_root = key->objectid;
1054 	root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1055 				     &check);
1056 	if (IS_ERR(root->node)) {
1057 		ret = PTR_ERR(root->node);
1058 		root->node = NULL;
1059 		goto fail;
1060 	}
1061 	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1062 		ret = -EIO;
1063 		goto fail;
1064 	}
1065 
1066 	/*
1067 	 * For real fs, and not log/reloc trees, root owner must
1068 	 * match its root node owner
1069 	 */
1070 	if (!btrfs_is_testing(fs_info) &&
1071 	    btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1072 	    btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
1073 	    btrfs_root_id(root) != btrfs_header_owner(root->node)) {
1074 		btrfs_crit(fs_info,
1075 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1076 			   btrfs_root_id(root), root->node->start,
1077 			   btrfs_header_owner(root->node),
1078 			   btrfs_root_id(root));
1079 		ret = -EUCLEAN;
1080 		goto fail;
1081 	}
1082 	root->commit_root = btrfs_root_node(root);
1083 	return root;
1084 fail:
1085 	btrfs_put_root(root);
1086 	return ERR_PTR(ret);
1087 }
1088 
1089 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1090 					const struct btrfs_key *key)
1091 {
1092 	struct btrfs_root *root;
1093 	struct btrfs_path *path;
1094 
1095 	path = btrfs_alloc_path();
1096 	if (!path)
1097 		return ERR_PTR(-ENOMEM);
1098 	root = read_tree_root_path(tree_root, path, key);
1099 	btrfs_free_path(path);
1100 
1101 	return root;
1102 }
1103 
1104 /*
1105  * Initialize subvolume root in-memory structure
1106  *
1107  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1108  */
1109 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1110 {
1111 	int ret;
1112 
1113 	btrfs_drew_lock_init(&root->snapshot_lock);
1114 
1115 	if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1116 	    !btrfs_is_data_reloc_root(root) &&
1117 	    is_fstree(btrfs_root_id(root))) {
1118 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1119 		btrfs_check_and_init_root_item(&root->root_item);
1120 	}
1121 
1122 	/*
1123 	 * Don't assign anonymous block device to roots that are not exposed to
1124 	 * userspace, the id pool is limited to 1M
1125 	 */
1126 	if (is_fstree(btrfs_root_id(root)) &&
1127 	    btrfs_root_refs(&root->root_item) > 0) {
1128 		if (!anon_dev) {
1129 			ret = get_anon_bdev(&root->anon_dev);
1130 			if (ret)
1131 				goto fail;
1132 		} else {
1133 			root->anon_dev = anon_dev;
1134 		}
1135 	}
1136 
1137 	mutex_lock(&root->objectid_mutex);
1138 	ret = btrfs_init_root_free_objectid(root);
1139 	if (ret) {
1140 		mutex_unlock(&root->objectid_mutex);
1141 		goto fail;
1142 	}
1143 
1144 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1145 
1146 	mutex_unlock(&root->objectid_mutex);
1147 
1148 	return 0;
1149 fail:
1150 	/* The caller is responsible to call btrfs_free_fs_root */
1151 	return ret;
1152 }
1153 
1154 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1155 					       u64 root_id)
1156 {
1157 	struct btrfs_root *root;
1158 
1159 	spin_lock(&fs_info->fs_roots_radix_lock);
1160 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1161 				 (unsigned long)root_id);
1162 	root = btrfs_grab_root(root);
1163 	spin_unlock(&fs_info->fs_roots_radix_lock);
1164 	return root;
1165 }
1166 
1167 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1168 						u64 objectid)
1169 {
1170 	struct btrfs_key key = {
1171 		.objectid = objectid,
1172 		.type = BTRFS_ROOT_ITEM_KEY,
1173 		.offset = 0,
1174 	};
1175 
1176 	switch (objectid) {
1177 	case BTRFS_ROOT_TREE_OBJECTID:
1178 		return btrfs_grab_root(fs_info->tree_root);
1179 	case BTRFS_EXTENT_TREE_OBJECTID:
1180 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1181 	case BTRFS_CHUNK_TREE_OBJECTID:
1182 		return btrfs_grab_root(fs_info->chunk_root);
1183 	case BTRFS_DEV_TREE_OBJECTID:
1184 		return btrfs_grab_root(fs_info->dev_root);
1185 	case BTRFS_CSUM_TREE_OBJECTID:
1186 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1187 	case BTRFS_QUOTA_TREE_OBJECTID:
1188 		return btrfs_grab_root(fs_info->quota_root);
1189 	case BTRFS_UUID_TREE_OBJECTID:
1190 		return btrfs_grab_root(fs_info->uuid_root);
1191 	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1192 		return btrfs_grab_root(fs_info->block_group_root);
1193 	case BTRFS_FREE_SPACE_TREE_OBJECTID:
1194 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1195 	case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1196 		return btrfs_grab_root(fs_info->stripe_root);
1197 	default:
1198 		return NULL;
1199 	}
1200 }
1201 
1202 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1203 			 struct btrfs_root *root)
1204 {
1205 	int ret;
1206 
1207 	ret = radix_tree_preload(GFP_NOFS);
1208 	if (ret)
1209 		return ret;
1210 
1211 	spin_lock(&fs_info->fs_roots_radix_lock);
1212 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1213 				(unsigned long)btrfs_root_id(root),
1214 				root);
1215 	if (ret == 0) {
1216 		btrfs_grab_root(root);
1217 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1218 	}
1219 	spin_unlock(&fs_info->fs_roots_radix_lock);
1220 	radix_tree_preload_end();
1221 
1222 	return ret;
1223 }
1224 
1225 void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info)
1226 {
1227 #ifdef CONFIG_BTRFS_DEBUG
1228 	struct btrfs_root *root;
1229 
1230 	while (!list_empty(&fs_info->allocated_roots)) {
1231 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1232 
1233 		root = list_first_entry(&fs_info->allocated_roots,
1234 					struct btrfs_root, leak_list);
1235 		btrfs_err(fs_info, "leaked root %s refcount %d",
1236 			  btrfs_root_name(&root->root_key, buf),
1237 			  refcount_read(&root->refs));
1238 		WARN_ON_ONCE(1);
1239 		while (refcount_read(&root->refs) > 1)
1240 			btrfs_put_root(root);
1241 		btrfs_put_root(root);
1242 	}
1243 #endif
1244 }
1245 
1246 static void free_global_roots(struct btrfs_fs_info *fs_info)
1247 {
1248 	struct btrfs_root *root;
1249 	struct rb_node *node;
1250 
1251 	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1252 		root = rb_entry(node, struct btrfs_root, rb_node);
1253 		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1254 		btrfs_put_root(root);
1255 	}
1256 }
1257 
1258 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1259 {
1260 	struct percpu_counter *em_counter = &fs_info->evictable_extent_maps;
1261 
1262 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1263 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1264 	percpu_counter_destroy(&fs_info->ordered_bytes);
1265 	if (percpu_counter_initialized(em_counter))
1266 		ASSERT(percpu_counter_sum_positive(em_counter) == 0);
1267 	percpu_counter_destroy(em_counter);
1268 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1269 	btrfs_free_csum_hash(fs_info);
1270 	btrfs_free_stripe_hash_table(fs_info);
1271 	btrfs_free_ref_cache(fs_info);
1272 	kfree(fs_info->balance_ctl);
1273 	kfree(fs_info->delayed_root);
1274 	free_global_roots(fs_info);
1275 	btrfs_put_root(fs_info->tree_root);
1276 	btrfs_put_root(fs_info->chunk_root);
1277 	btrfs_put_root(fs_info->dev_root);
1278 	btrfs_put_root(fs_info->quota_root);
1279 	btrfs_put_root(fs_info->uuid_root);
1280 	btrfs_put_root(fs_info->fs_root);
1281 	btrfs_put_root(fs_info->data_reloc_root);
1282 	btrfs_put_root(fs_info->block_group_root);
1283 	btrfs_put_root(fs_info->stripe_root);
1284 	btrfs_check_leaked_roots(fs_info);
1285 	btrfs_extent_buffer_leak_debug_check(fs_info);
1286 	kfree(fs_info->super_copy);
1287 	kfree(fs_info->super_for_commit);
1288 	kfree(fs_info->subpage_info);
1289 	kvfree(fs_info);
1290 }
1291 
1292 
1293 /*
1294  * Get an in-memory reference of a root structure.
1295  *
1296  * For essential trees like root/extent tree, we grab it from fs_info directly.
1297  * For subvolume trees, we check the cached filesystem roots first. If not
1298  * found, then read it from disk and add it to cached fs roots.
1299  *
1300  * Caller should release the root by calling btrfs_put_root() after the usage.
1301  *
1302  * NOTE: Reloc and log trees can't be read by this function as they share the
1303  *	 same root objectid.
1304  *
1305  * @objectid:	root id
1306  * @anon_dev:	preallocated anonymous block device number for new roots,
1307  *		pass NULL for a new allocation.
1308  * @check_ref:	whether to check root item references, If true, return -ENOENT
1309  *		for orphan roots
1310  */
1311 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1312 					     u64 objectid, dev_t *anon_dev,
1313 					     bool check_ref)
1314 {
1315 	struct btrfs_root *root;
1316 	struct btrfs_path *path;
1317 	struct btrfs_key key;
1318 	int ret;
1319 
1320 	root = btrfs_get_global_root(fs_info, objectid);
1321 	if (root)
1322 		return root;
1323 
1324 	/*
1325 	 * If we're called for non-subvolume trees, and above function didn't
1326 	 * find one, do not try to read it from disk.
1327 	 *
1328 	 * This is namely for free-space-tree and quota tree, which can change
1329 	 * at runtime and should only be grabbed from fs_info.
1330 	 */
1331 	if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1332 		return ERR_PTR(-ENOENT);
1333 again:
1334 	root = btrfs_lookup_fs_root(fs_info, objectid);
1335 	if (root) {
1336 		/*
1337 		 * Some other caller may have read out the newly inserted
1338 		 * subvolume already (for things like backref walk etc).  Not
1339 		 * that common but still possible.  In that case, we just need
1340 		 * to free the anon_dev.
1341 		 */
1342 		if (unlikely(anon_dev && *anon_dev)) {
1343 			free_anon_bdev(*anon_dev);
1344 			*anon_dev = 0;
1345 		}
1346 
1347 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1348 			btrfs_put_root(root);
1349 			return ERR_PTR(-ENOENT);
1350 		}
1351 		return root;
1352 	}
1353 
1354 	key.objectid = objectid;
1355 	key.type = BTRFS_ROOT_ITEM_KEY;
1356 	key.offset = (u64)-1;
1357 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1358 	if (IS_ERR(root))
1359 		return root;
1360 
1361 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1362 		ret = -ENOENT;
1363 		goto fail;
1364 	}
1365 
1366 	ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
1367 	if (ret)
1368 		goto fail;
1369 
1370 	path = btrfs_alloc_path();
1371 	if (!path) {
1372 		ret = -ENOMEM;
1373 		goto fail;
1374 	}
1375 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1376 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1377 	key.offset = objectid;
1378 
1379 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1380 	btrfs_free_path(path);
1381 	if (ret < 0)
1382 		goto fail;
1383 	if (ret == 0)
1384 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1385 
1386 	ret = btrfs_insert_fs_root(fs_info, root);
1387 	if (ret) {
1388 		if (ret == -EEXIST) {
1389 			btrfs_put_root(root);
1390 			goto again;
1391 		}
1392 		goto fail;
1393 	}
1394 	return root;
1395 fail:
1396 	/*
1397 	 * If our caller provided us an anonymous device, then it's his
1398 	 * responsibility to free it in case we fail. So we have to set our
1399 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1400 	 * and once again by our caller.
1401 	 */
1402 	if (anon_dev && *anon_dev)
1403 		root->anon_dev = 0;
1404 	btrfs_put_root(root);
1405 	return ERR_PTR(ret);
1406 }
1407 
1408 /*
1409  * Get in-memory reference of a root structure
1410  *
1411  * @objectid:	tree objectid
1412  * @check_ref:	if set, verify that the tree exists and the item has at least
1413  *		one reference
1414  */
1415 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1416 				     u64 objectid, bool check_ref)
1417 {
1418 	return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
1419 }
1420 
1421 /*
1422  * Get in-memory reference of a root structure, created as new, optionally pass
1423  * the anonymous block device id
1424  *
1425  * @objectid:	tree objectid
1426  * @anon_dev:	if NULL, allocate a new anonymous block device or use the
1427  *		parameter value if not NULL
1428  */
1429 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1430 					 u64 objectid, dev_t *anon_dev)
1431 {
1432 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1433 }
1434 
1435 /*
1436  * Return a root for the given objectid.
1437  *
1438  * @fs_info:	the fs_info
1439  * @objectid:	the objectid we need to lookup
1440  *
1441  * This is exclusively used for backref walking, and exists specifically because
1442  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1443  * creation time, which means we may have to read the tree_root in order to look
1444  * up a fs root that is not in memory.  If the root is not in memory we will
1445  * read the tree root commit root and look up the fs root from there.  This is a
1446  * temporary root, it will not be inserted into the radix tree as it doesn't
1447  * have the most uptodate information, it'll simply be discarded once the
1448  * backref code is finished using the root.
1449  */
1450 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1451 						 struct btrfs_path *path,
1452 						 u64 objectid)
1453 {
1454 	struct btrfs_root *root;
1455 	struct btrfs_key key;
1456 
1457 	ASSERT(path->search_commit_root && path->skip_locking);
1458 
1459 	/*
1460 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1461 	 * since this is called via the backref walking code we won't be looking
1462 	 * up a root that doesn't exist, unless there's corruption.  So if root
1463 	 * != NULL just return it.
1464 	 */
1465 	root = btrfs_get_global_root(fs_info, objectid);
1466 	if (root)
1467 		return root;
1468 
1469 	root = btrfs_lookup_fs_root(fs_info, objectid);
1470 	if (root)
1471 		return root;
1472 
1473 	key.objectid = objectid;
1474 	key.type = BTRFS_ROOT_ITEM_KEY;
1475 	key.offset = (u64)-1;
1476 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1477 	btrfs_release_path(path);
1478 
1479 	return root;
1480 }
1481 
1482 static int cleaner_kthread(void *arg)
1483 {
1484 	struct btrfs_fs_info *fs_info = arg;
1485 	int again;
1486 
1487 	while (1) {
1488 		again = 0;
1489 
1490 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1491 
1492 		/* Make the cleaner go to sleep early. */
1493 		if (btrfs_need_cleaner_sleep(fs_info))
1494 			goto sleep;
1495 
1496 		/*
1497 		 * Do not do anything if we might cause open_ctree() to block
1498 		 * before we have finished mounting the filesystem.
1499 		 */
1500 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1501 			goto sleep;
1502 
1503 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1504 			goto sleep;
1505 
1506 		/*
1507 		 * Avoid the problem that we change the status of the fs
1508 		 * during the above check and trylock.
1509 		 */
1510 		if (btrfs_need_cleaner_sleep(fs_info)) {
1511 			mutex_unlock(&fs_info->cleaner_mutex);
1512 			goto sleep;
1513 		}
1514 
1515 		if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1516 			btrfs_sysfs_feature_update(fs_info);
1517 
1518 		btrfs_run_delayed_iputs(fs_info);
1519 
1520 		again = btrfs_clean_one_deleted_snapshot(fs_info);
1521 		mutex_unlock(&fs_info->cleaner_mutex);
1522 
1523 		/*
1524 		 * The defragger has dealt with the R/O remount and umount,
1525 		 * needn't do anything special here.
1526 		 */
1527 		btrfs_run_defrag_inodes(fs_info);
1528 
1529 		/*
1530 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1531 		 * with relocation (btrfs_relocate_chunk) and relocation
1532 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1533 		 * after acquiring fs_info->reclaim_bgs_lock. So we
1534 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1535 		 * unused block groups.
1536 		 */
1537 		btrfs_delete_unused_bgs(fs_info);
1538 
1539 		/*
1540 		 * Reclaim block groups in the reclaim_bgs list after we deleted
1541 		 * all unused block_groups. This possibly gives us some more free
1542 		 * space.
1543 		 */
1544 		btrfs_reclaim_bgs(fs_info);
1545 sleep:
1546 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1547 		if (kthread_should_park())
1548 			kthread_parkme();
1549 		if (kthread_should_stop())
1550 			return 0;
1551 		if (!again) {
1552 			set_current_state(TASK_INTERRUPTIBLE);
1553 			schedule();
1554 			__set_current_state(TASK_RUNNING);
1555 		}
1556 	}
1557 }
1558 
1559 static int transaction_kthread(void *arg)
1560 {
1561 	struct btrfs_root *root = arg;
1562 	struct btrfs_fs_info *fs_info = root->fs_info;
1563 	struct btrfs_trans_handle *trans;
1564 	struct btrfs_transaction *cur;
1565 	u64 transid;
1566 	time64_t delta;
1567 	unsigned long delay;
1568 	bool cannot_commit;
1569 
1570 	do {
1571 		cannot_commit = false;
1572 		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1573 		mutex_lock(&fs_info->transaction_kthread_mutex);
1574 
1575 		spin_lock(&fs_info->trans_lock);
1576 		cur = fs_info->running_transaction;
1577 		if (!cur) {
1578 			spin_unlock(&fs_info->trans_lock);
1579 			goto sleep;
1580 		}
1581 
1582 		delta = ktime_get_seconds() - cur->start_time;
1583 		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1584 		    cur->state < TRANS_STATE_COMMIT_PREP &&
1585 		    delta < fs_info->commit_interval) {
1586 			spin_unlock(&fs_info->trans_lock);
1587 			delay -= msecs_to_jiffies((delta - 1) * 1000);
1588 			delay = min(delay,
1589 				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1590 			goto sleep;
1591 		}
1592 		transid = cur->transid;
1593 		spin_unlock(&fs_info->trans_lock);
1594 
1595 		/* If the file system is aborted, this will always fail. */
1596 		trans = btrfs_attach_transaction(root);
1597 		if (IS_ERR(trans)) {
1598 			if (PTR_ERR(trans) != -ENOENT)
1599 				cannot_commit = true;
1600 			goto sleep;
1601 		}
1602 		if (transid == trans->transid) {
1603 			btrfs_commit_transaction(trans);
1604 		} else {
1605 			btrfs_end_transaction(trans);
1606 		}
1607 sleep:
1608 		wake_up_process(fs_info->cleaner_kthread);
1609 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1610 
1611 		if (BTRFS_FS_ERROR(fs_info))
1612 			btrfs_cleanup_transaction(fs_info);
1613 		if (!kthread_should_stop() &&
1614 				(!btrfs_transaction_blocked(fs_info) ||
1615 				 cannot_commit))
1616 			schedule_timeout_interruptible(delay);
1617 	} while (!kthread_should_stop());
1618 	return 0;
1619 }
1620 
1621 /*
1622  * This will find the highest generation in the array of root backups.  The
1623  * index of the highest array is returned, or -EINVAL if we can't find
1624  * anything.
1625  *
1626  * We check to make sure the array is valid by comparing the
1627  * generation of the latest  root in the array with the generation
1628  * in the super block.  If they don't match we pitch it.
1629  */
1630 static int find_newest_super_backup(struct btrfs_fs_info *info)
1631 {
1632 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1633 	u64 cur;
1634 	struct btrfs_root_backup *root_backup;
1635 	int i;
1636 
1637 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1638 		root_backup = info->super_copy->super_roots + i;
1639 		cur = btrfs_backup_tree_root_gen(root_backup);
1640 		if (cur == newest_gen)
1641 			return i;
1642 	}
1643 
1644 	return -EINVAL;
1645 }
1646 
1647 /*
1648  * copy all the root pointers into the super backup array.
1649  * this will bump the backup pointer by one when it is
1650  * done
1651  */
1652 static void backup_super_roots(struct btrfs_fs_info *info)
1653 {
1654 	const int next_backup = info->backup_root_index;
1655 	struct btrfs_root_backup *root_backup;
1656 
1657 	root_backup = info->super_for_commit->super_roots + next_backup;
1658 
1659 	/*
1660 	 * make sure all of our padding and empty slots get zero filled
1661 	 * regardless of which ones we use today
1662 	 */
1663 	memset(root_backup, 0, sizeof(*root_backup));
1664 
1665 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1666 
1667 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1668 	btrfs_set_backup_tree_root_gen(root_backup,
1669 			       btrfs_header_generation(info->tree_root->node));
1670 
1671 	btrfs_set_backup_tree_root_level(root_backup,
1672 			       btrfs_header_level(info->tree_root->node));
1673 
1674 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1675 	btrfs_set_backup_chunk_root_gen(root_backup,
1676 			       btrfs_header_generation(info->chunk_root->node));
1677 	btrfs_set_backup_chunk_root_level(root_backup,
1678 			       btrfs_header_level(info->chunk_root->node));
1679 
1680 	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1681 		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1682 		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1683 
1684 		btrfs_set_backup_extent_root(root_backup,
1685 					     extent_root->node->start);
1686 		btrfs_set_backup_extent_root_gen(root_backup,
1687 				btrfs_header_generation(extent_root->node));
1688 		btrfs_set_backup_extent_root_level(root_backup,
1689 					btrfs_header_level(extent_root->node));
1690 
1691 		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1692 		btrfs_set_backup_csum_root_gen(root_backup,
1693 					       btrfs_header_generation(csum_root->node));
1694 		btrfs_set_backup_csum_root_level(root_backup,
1695 						 btrfs_header_level(csum_root->node));
1696 	}
1697 
1698 	/*
1699 	 * we might commit during log recovery, which happens before we set
1700 	 * the fs_root.  Make sure it is valid before we fill it in.
1701 	 */
1702 	if (info->fs_root && info->fs_root->node) {
1703 		btrfs_set_backup_fs_root(root_backup,
1704 					 info->fs_root->node->start);
1705 		btrfs_set_backup_fs_root_gen(root_backup,
1706 			       btrfs_header_generation(info->fs_root->node));
1707 		btrfs_set_backup_fs_root_level(root_backup,
1708 			       btrfs_header_level(info->fs_root->node));
1709 	}
1710 
1711 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1712 	btrfs_set_backup_dev_root_gen(root_backup,
1713 			       btrfs_header_generation(info->dev_root->node));
1714 	btrfs_set_backup_dev_root_level(root_backup,
1715 				       btrfs_header_level(info->dev_root->node));
1716 
1717 	btrfs_set_backup_total_bytes(root_backup,
1718 			     btrfs_super_total_bytes(info->super_copy));
1719 	btrfs_set_backup_bytes_used(root_backup,
1720 			     btrfs_super_bytes_used(info->super_copy));
1721 	btrfs_set_backup_num_devices(root_backup,
1722 			     btrfs_super_num_devices(info->super_copy));
1723 
1724 	/*
1725 	 * if we don't copy this out to the super_copy, it won't get remembered
1726 	 * for the next commit
1727 	 */
1728 	memcpy(&info->super_copy->super_roots,
1729 	       &info->super_for_commit->super_roots,
1730 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1731 }
1732 
1733 /*
1734  * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1735  * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1736  *
1737  * @fs_info:  filesystem whose backup roots need to be read
1738  * @priority: priority of backup root required
1739  *
1740  * Returns backup root index on success and -EINVAL otherwise.
1741  */
1742 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1743 {
1744 	int backup_index = find_newest_super_backup(fs_info);
1745 	struct btrfs_super_block *super = fs_info->super_copy;
1746 	struct btrfs_root_backup *root_backup;
1747 
1748 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1749 		if (priority == 0)
1750 			return backup_index;
1751 
1752 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1753 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1754 	} else {
1755 		return -EINVAL;
1756 	}
1757 
1758 	root_backup = super->super_roots + backup_index;
1759 
1760 	btrfs_set_super_generation(super,
1761 				   btrfs_backup_tree_root_gen(root_backup));
1762 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1763 	btrfs_set_super_root_level(super,
1764 				   btrfs_backup_tree_root_level(root_backup));
1765 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1766 
1767 	/*
1768 	 * Fixme: the total bytes and num_devices need to match or we should
1769 	 * need a fsck
1770 	 */
1771 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1772 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1773 
1774 	return backup_index;
1775 }
1776 
1777 /* helper to cleanup workers */
1778 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1779 {
1780 	btrfs_destroy_workqueue(fs_info->fixup_workers);
1781 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1782 	btrfs_destroy_workqueue(fs_info->workers);
1783 	if (fs_info->endio_workers)
1784 		destroy_workqueue(fs_info->endio_workers);
1785 	if (fs_info->rmw_workers)
1786 		destroy_workqueue(fs_info->rmw_workers);
1787 	if (fs_info->compressed_write_workers)
1788 		destroy_workqueue(fs_info->compressed_write_workers);
1789 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1790 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1791 	btrfs_destroy_workqueue(fs_info->delayed_workers);
1792 	btrfs_destroy_workqueue(fs_info->caching_workers);
1793 	btrfs_destroy_workqueue(fs_info->flush_workers);
1794 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1795 	if (fs_info->discard_ctl.discard_workers)
1796 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1797 	/*
1798 	 * Now that all other work queues are destroyed, we can safely destroy
1799 	 * the queues used for metadata I/O, since tasks from those other work
1800 	 * queues can do metadata I/O operations.
1801 	 */
1802 	if (fs_info->endio_meta_workers)
1803 		destroy_workqueue(fs_info->endio_meta_workers);
1804 }
1805 
1806 static void free_root_extent_buffers(struct btrfs_root *root)
1807 {
1808 	if (root) {
1809 		free_extent_buffer(root->node);
1810 		free_extent_buffer(root->commit_root);
1811 		root->node = NULL;
1812 		root->commit_root = NULL;
1813 	}
1814 }
1815 
1816 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1817 {
1818 	struct btrfs_root *root, *tmp;
1819 
1820 	rbtree_postorder_for_each_entry_safe(root, tmp,
1821 					     &fs_info->global_root_tree,
1822 					     rb_node)
1823 		free_root_extent_buffers(root);
1824 }
1825 
1826 /* helper to cleanup tree roots */
1827 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1828 {
1829 	free_root_extent_buffers(info->tree_root);
1830 
1831 	free_global_root_pointers(info);
1832 	free_root_extent_buffers(info->dev_root);
1833 	free_root_extent_buffers(info->quota_root);
1834 	free_root_extent_buffers(info->uuid_root);
1835 	free_root_extent_buffers(info->fs_root);
1836 	free_root_extent_buffers(info->data_reloc_root);
1837 	free_root_extent_buffers(info->block_group_root);
1838 	free_root_extent_buffers(info->stripe_root);
1839 	if (free_chunk_root)
1840 		free_root_extent_buffers(info->chunk_root);
1841 }
1842 
1843 void btrfs_put_root(struct btrfs_root *root)
1844 {
1845 	if (!root)
1846 		return;
1847 
1848 	if (refcount_dec_and_test(&root->refs)) {
1849 		if (WARN_ON(!xa_empty(&root->inodes)))
1850 			xa_destroy(&root->inodes);
1851 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1852 		if (root->anon_dev)
1853 			free_anon_bdev(root->anon_dev);
1854 		free_root_extent_buffers(root);
1855 #ifdef CONFIG_BTRFS_DEBUG
1856 		spin_lock(&root->fs_info->fs_roots_radix_lock);
1857 		list_del_init(&root->leak_list);
1858 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
1859 #endif
1860 		kfree(root);
1861 	}
1862 }
1863 
1864 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1865 {
1866 	int ret;
1867 	struct btrfs_root *gang[8];
1868 	int i;
1869 
1870 	while (!list_empty(&fs_info->dead_roots)) {
1871 		gang[0] = list_entry(fs_info->dead_roots.next,
1872 				     struct btrfs_root, root_list);
1873 		list_del(&gang[0]->root_list);
1874 
1875 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1876 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1877 		btrfs_put_root(gang[0]);
1878 	}
1879 
1880 	while (1) {
1881 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1882 					     (void **)gang, 0,
1883 					     ARRAY_SIZE(gang));
1884 		if (!ret)
1885 			break;
1886 		for (i = 0; i < ret; i++)
1887 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1888 	}
1889 }
1890 
1891 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1892 {
1893 	mutex_init(&fs_info->scrub_lock);
1894 	atomic_set(&fs_info->scrubs_running, 0);
1895 	atomic_set(&fs_info->scrub_pause_req, 0);
1896 	atomic_set(&fs_info->scrubs_paused, 0);
1897 	atomic_set(&fs_info->scrub_cancel_req, 0);
1898 	init_waitqueue_head(&fs_info->scrub_pause_wait);
1899 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
1900 }
1901 
1902 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1903 {
1904 	spin_lock_init(&fs_info->balance_lock);
1905 	mutex_init(&fs_info->balance_mutex);
1906 	atomic_set(&fs_info->balance_pause_req, 0);
1907 	atomic_set(&fs_info->balance_cancel_req, 0);
1908 	fs_info->balance_ctl = NULL;
1909 	init_waitqueue_head(&fs_info->balance_wait_q);
1910 	atomic_set(&fs_info->reloc_cancel_req, 0);
1911 }
1912 
1913 static int btrfs_init_btree_inode(struct super_block *sb)
1914 {
1915 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1916 	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1917 					      fs_info->tree_root);
1918 	struct inode *inode;
1919 
1920 	inode = new_inode(sb);
1921 	if (!inode)
1922 		return -ENOMEM;
1923 
1924 	btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID);
1925 	set_nlink(inode, 1);
1926 	/*
1927 	 * we set the i_size on the btree inode to the max possible int.
1928 	 * the real end of the address space is determined by all of
1929 	 * the devices in the system
1930 	 */
1931 	inode->i_size = OFFSET_MAX;
1932 	inode->i_mapping->a_ops = &btree_aops;
1933 	mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1934 
1935 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1936 			    IO_TREE_BTREE_INODE_IO);
1937 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1938 
1939 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1940 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1941 	__insert_inode_hash(inode, hash);
1942 	fs_info->btree_inode = inode;
1943 
1944 	return 0;
1945 }
1946 
1947 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1948 {
1949 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1950 	init_rwsem(&fs_info->dev_replace.rwsem);
1951 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1952 }
1953 
1954 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1955 {
1956 	spin_lock_init(&fs_info->qgroup_lock);
1957 	mutex_init(&fs_info->qgroup_ioctl_lock);
1958 	fs_info->qgroup_tree = RB_ROOT;
1959 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1960 	fs_info->qgroup_seq = 1;
1961 	fs_info->qgroup_ulist = NULL;
1962 	fs_info->qgroup_rescan_running = false;
1963 	fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
1964 	mutex_init(&fs_info->qgroup_rescan_lock);
1965 }
1966 
1967 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1968 {
1969 	u32 max_active = fs_info->thread_pool_size;
1970 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1971 	unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1972 
1973 	fs_info->workers =
1974 		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1975 
1976 	fs_info->delalloc_workers =
1977 		btrfs_alloc_workqueue(fs_info, "delalloc",
1978 				      flags, max_active, 2);
1979 
1980 	fs_info->flush_workers =
1981 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1982 				      flags, max_active, 0);
1983 
1984 	fs_info->caching_workers =
1985 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1986 
1987 	fs_info->fixup_workers =
1988 		btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1989 
1990 	fs_info->endio_workers =
1991 		alloc_workqueue("btrfs-endio", flags, max_active);
1992 	fs_info->endio_meta_workers =
1993 		alloc_workqueue("btrfs-endio-meta", flags, max_active);
1994 	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
1995 	fs_info->endio_write_workers =
1996 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1997 				      max_active, 2);
1998 	fs_info->compressed_write_workers =
1999 		alloc_workqueue("btrfs-compressed-write", flags, max_active);
2000 	fs_info->endio_freespace_worker =
2001 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2002 				      max_active, 0);
2003 	fs_info->delayed_workers =
2004 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2005 				      max_active, 0);
2006 	fs_info->qgroup_rescan_workers =
2007 		btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
2008 					      ordered_flags);
2009 	fs_info->discard_ctl.discard_workers =
2010 		alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
2011 
2012 	if (!(fs_info->workers &&
2013 	      fs_info->delalloc_workers && fs_info->flush_workers &&
2014 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2015 	      fs_info->compressed_write_workers &&
2016 	      fs_info->endio_write_workers &&
2017 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2018 	      fs_info->caching_workers && fs_info->fixup_workers &&
2019 	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2020 	      fs_info->discard_ctl.discard_workers)) {
2021 		return -ENOMEM;
2022 	}
2023 
2024 	return 0;
2025 }
2026 
2027 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2028 {
2029 	struct crypto_shash *csum_shash;
2030 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2031 
2032 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2033 
2034 	if (IS_ERR(csum_shash)) {
2035 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2036 			  csum_driver);
2037 		return PTR_ERR(csum_shash);
2038 	}
2039 
2040 	fs_info->csum_shash = csum_shash;
2041 
2042 	/*
2043 	 * Check if the checksum implementation is a fast accelerated one.
2044 	 * As-is this is a bit of a hack and should be replaced once the csum
2045 	 * implementations provide that information themselves.
2046 	 */
2047 	switch (csum_type) {
2048 	case BTRFS_CSUM_TYPE_CRC32:
2049 		if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2050 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2051 		break;
2052 	case BTRFS_CSUM_TYPE_XXHASH:
2053 		set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2054 		break;
2055 	default:
2056 		break;
2057 	}
2058 
2059 	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2060 			btrfs_super_csum_name(csum_type),
2061 			crypto_shash_driver_name(csum_shash));
2062 	return 0;
2063 }
2064 
2065 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2066 			    struct btrfs_fs_devices *fs_devices)
2067 {
2068 	int ret;
2069 	struct btrfs_tree_parent_check check = { 0 };
2070 	struct btrfs_root *log_tree_root;
2071 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2072 	u64 bytenr = btrfs_super_log_root(disk_super);
2073 	int level = btrfs_super_log_root_level(disk_super);
2074 
2075 	if (fs_devices->rw_devices == 0) {
2076 		btrfs_warn(fs_info, "log replay required on RO media");
2077 		return -EIO;
2078 	}
2079 
2080 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2081 					 GFP_KERNEL);
2082 	if (!log_tree_root)
2083 		return -ENOMEM;
2084 
2085 	check.level = level;
2086 	check.transid = fs_info->generation + 1;
2087 	check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2088 	log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2089 	if (IS_ERR(log_tree_root->node)) {
2090 		btrfs_warn(fs_info, "failed to read log tree");
2091 		ret = PTR_ERR(log_tree_root->node);
2092 		log_tree_root->node = NULL;
2093 		btrfs_put_root(log_tree_root);
2094 		return ret;
2095 	}
2096 	if (!extent_buffer_uptodate(log_tree_root->node)) {
2097 		btrfs_err(fs_info, "failed to read log tree");
2098 		btrfs_put_root(log_tree_root);
2099 		return -EIO;
2100 	}
2101 
2102 	/* returns with log_tree_root freed on success */
2103 	ret = btrfs_recover_log_trees(log_tree_root);
2104 	if (ret) {
2105 		btrfs_handle_fs_error(fs_info, ret,
2106 				      "Failed to recover log tree");
2107 		btrfs_put_root(log_tree_root);
2108 		return ret;
2109 	}
2110 
2111 	if (sb_rdonly(fs_info->sb)) {
2112 		ret = btrfs_commit_super(fs_info);
2113 		if (ret)
2114 			return ret;
2115 	}
2116 
2117 	return 0;
2118 }
2119 
2120 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2121 				      struct btrfs_path *path, u64 objectid,
2122 				      const char *name)
2123 {
2124 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2125 	struct btrfs_root *root;
2126 	u64 max_global_id = 0;
2127 	int ret;
2128 	struct btrfs_key key = {
2129 		.objectid = objectid,
2130 		.type = BTRFS_ROOT_ITEM_KEY,
2131 		.offset = 0,
2132 	};
2133 	bool found = false;
2134 
2135 	/* If we have IGNOREDATACSUMS skip loading these roots. */
2136 	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2137 	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2138 		set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2139 		return 0;
2140 	}
2141 
2142 	while (1) {
2143 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2144 		if (ret < 0)
2145 			break;
2146 
2147 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2148 			ret = btrfs_next_leaf(tree_root, path);
2149 			if (ret) {
2150 				if (ret > 0)
2151 					ret = 0;
2152 				break;
2153 			}
2154 		}
2155 		ret = 0;
2156 
2157 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2158 		if (key.objectid != objectid)
2159 			break;
2160 		btrfs_release_path(path);
2161 
2162 		/*
2163 		 * Just worry about this for extent tree, it'll be the same for
2164 		 * everybody.
2165 		 */
2166 		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2167 			max_global_id = max(max_global_id, key.offset);
2168 
2169 		found = true;
2170 		root = read_tree_root_path(tree_root, path, &key);
2171 		if (IS_ERR(root)) {
2172 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2173 				ret = PTR_ERR(root);
2174 			break;
2175 		}
2176 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2177 		ret = btrfs_global_root_insert(root);
2178 		if (ret) {
2179 			btrfs_put_root(root);
2180 			break;
2181 		}
2182 		key.offset++;
2183 	}
2184 	btrfs_release_path(path);
2185 
2186 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2187 		fs_info->nr_global_roots = max_global_id + 1;
2188 
2189 	if (!found || ret) {
2190 		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2191 			set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2192 
2193 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2194 			ret = ret ? ret : -ENOENT;
2195 		else
2196 			ret = 0;
2197 		btrfs_err(fs_info, "failed to load root %s", name);
2198 	}
2199 	return ret;
2200 }
2201 
2202 static int load_global_roots(struct btrfs_root *tree_root)
2203 {
2204 	struct btrfs_path *path;
2205 	int ret = 0;
2206 
2207 	path = btrfs_alloc_path();
2208 	if (!path)
2209 		return -ENOMEM;
2210 
2211 	ret = load_global_roots_objectid(tree_root, path,
2212 					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2213 	if (ret)
2214 		goto out;
2215 	ret = load_global_roots_objectid(tree_root, path,
2216 					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2217 	if (ret)
2218 		goto out;
2219 	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2220 		goto out;
2221 	ret = load_global_roots_objectid(tree_root, path,
2222 					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2223 					 "free space");
2224 out:
2225 	btrfs_free_path(path);
2226 	return ret;
2227 }
2228 
2229 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2230 {
2231 	struct btrfs_root *tree_root = fs_info->tree_root;
2232 	struct btrfs_root *root;
2233 	struct btrfs_key location;
2234 	int ret;
2235 
2236 	ASSERT(fs_info->tree_root);
2237 
2238 	ret = load_global_roots(tree_root);
2239 	if (ret)
2240 		return ret;
2241 
2242 	location.type = BTRFS_ROOT_ITEM_KEY;
2243 	location.offset = 0;
2244 
2245 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2246 		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2247 		root = btrfs_read_tree_root(tree_root, &location);
2248 		if (IS_ERR(root)) {
2249 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2250 				ret = PTR_ERR(root);
2251 				goto out;
2252 			}
2253 		} else {
2254 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2255 			fs_info->block_group_root = root;
2256 		}
2257 	}
2258 
2259 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2260 	root = btrfs_read_tree_root(tree_root, &location);
2261 	if (IS_ERR(root)) {
2262 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2263 			ret = PTR_ERR(root);
2264 			goto out;
2265 		}
2266 	} else {
2267 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2268 		fs_info->dev_root = root;
2269 	}
2270 	/* Initialize fs_info for all devices in any case */
2271 	ret = btrfs_init_devices_late(fs_info);
2272 	if (ret)
2273 		goto out;
2274 
2275 	/*
2276 	 * This tree can share blocks with some other fs tree during relocation
2277 	 * and we need a proper setup by btrfs_get_fs_root
2278 	 */
2279 	root = btrfs_get_fs_root(tree_root->fs_info,
2280 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2281 	if (IS_ERR(root)) {
2282 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2283 			ret = PTR_ERR(root);
2284 			goto out;
2285 		}
2286 	} else {
2287 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2288 		fs_info->data_reloc_root = root;
2289 	}
2290 
2291 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2292 	root = btrfs_read_tree_root(tree_root, &location);
2293 	if (!IS_ERR(root)) {
2294 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2295 		fs_info->quota_root = root;
2296 	}
2297 
2298 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2299 	root = btrfs_read_tree_root(tree_root, &location);
2300 	if (IS_ERR(root)) {
2301 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2302 			ret = PTR_ERR(root);
2303 			if (ret != -ENOENT)
2304 				goto out;
2305 		}
2306 	} else {
2307 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2308 		fs_info->uuid_root = root;
2309 	}
2310 
2311 	if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2312 		location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2313 		root = btrfs_read_tree_root(tree_root, &location);
2314 		if (IS_ERR(root)) {
2315 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2316 				ret = PTR_ERR(root);
2317 				goto out;
2318 			}
2319 		} else {
2320 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2321 			fs_info->stripe_root = root;
2322 		}
2323 	}
2324 
2325 	return 0;
2326 out:
2327 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2328 		   location.objectid, ret);
2329 	return ret;
2330 }
2331 
2332 /*
2333  * Real super block validation
2334  * NOTE: super csum type and incompat features will not be checked here.
2335  *
2336  * @sb:		super block to check
2337  * @mirror_num:	the super block number to check its bytenr:
2338  * 		0	the primary (1st) sb
2339  * 		1, 2	2nd and 3rd backup copy
2340  * 	       -1	skip bytenr check
2341  */
2342 int btrfs_validate_super(const struct btrfs_fs_info *fs_info,
2343 			 const struct btrfs_super_block *sb, int mirror_num)
2344 {
2345 	u64 nodesize = btrfs_super_nodesize(sb);
2346 	u64 sectorsize = btrfs_super_sectorsize(sb);
2347 	int ret = 0;
2348 	const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS);
2349 
2350 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2351 		btrfs_err(fs_info, "no valid FS found");
2352 		ret = -EINVAL;
2353 	}
2354 	if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) {
2355 		if (!ignore_flags) {
2356 			btrfs_err(fs_info,
2357 			"unrecognized or unsupported super flag 0x%llx",
2358 				  btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2359 			ret = -EINVAL;
2360 		} else {
2361 			btrfs_info(fs_info,
2362 			"unrecognized or unsupported super flags: 0x%llx, ignored",
2363 				   btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2364 		}
2365 	}
2366 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2367 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2368 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2369 		ret = -EINVAL;
2370 	}
2371 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2372 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2373 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2374 		ret = -EINVAL;
2375 	}
2376 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2377 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2378 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2379 		ret = -EINVAL;
2380 	}
2381 
2382 	/*
2383 	 * Check sectorsize and nodesize first, other check will need it.
2384 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2385 	 */
2386 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2387 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2388 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2389 		ret = -EINVAL;
2390 	}
2391 
2392 	/*
2393 	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2394 	 *
2395 	 * We can support 16K sectorsize with 64K page size without problem,
2396 	 * but such sectorsize/pagesize combination doesn't make much sense.
2397 	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2398 	 * beginning.
2399 	 */
2400 	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2401 		btrfs_err(fs_info,
2402 			"sectorsize %llu not yet supported for page size %lu",
2403 			sectorsize, PAGE_SIZE);
2404 		ret = -EINVAL;
2405 	}
2406 
2407 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2408 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2409 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2410 		ret = -EINVAL;
2411 	}
2412 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2413 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2414 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2415 		ret = -EINVAL;
2416 	}
2417 
2418 	/* Root alignment check */
2419 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2420 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2421 			   btrfs_super_root(sb));
2422 		ret = -EINVAL;
2423 	}
2424 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2425 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2426 			   btrfs_super_chunk_root(sb));
2427 		ret = -EINVAL;
2428 	}
2429 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2430 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2431 			   btrfs_super_log_root(sb));
2432 		ret = -EINVAL;
2433 	}
2434 
2435 	if (!fs_info->fs_devices->temp_fsid &&
2436 	    memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2437 		btrfs_err(fs_info,
2438 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2439 			  sb->fsid, fs_info->fs_devices->fsid);
2440 		ret = -EINVAL;
2441 	}
2442 
2443 	if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2444 		   BTRFS_FSID_SIZE) != 0) {
2445 		btrfs_err(fs_info,
2446 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2447 			  btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2448 		ret = -EINVAL;
2449 	}
2450 
2451 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2452 		   BTRFS_FSID_SIZE) != 0) {
2453 		btrfs_err(fs_info,
2454 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2455 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2456 		ret = -EINVAL;
2457 	}
2458 
2459 	/*
2460 	 * Artificial requirement for block-group-tree to force newer features
2461 	 * (free-space-tree, no-holes) so the test matrix is smaller.
2462 	 */
2463 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2464 	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2465 	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2466 		btrfs_err(fs_info,
2467 		"block-group-tree feature requires free-space-tree and no-holes");
2468 		ret = -EINVAL;
2469 	}
2470 
2471 	/*
2472 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2473 	 * done later
2474 	 */
2475 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2476 		btrfs_err(fs_info, "bytes_used is too small %llu",
2477 			  btrfs_super_bytes_used(sb));
2478 		ret = -EINVAL;
2479 	}
2480 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2481 		btrfs_err(fs_info, "invalid stripesize %u",
2482 			  btrfs_super_stripesize(sb));
2483 		ret = -EINVAL;
2484 	}
2485 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2486 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2487 			   btrfs_super_num_devices(sb));
2488 	if (btrfs_super_num_devices(sb) == 0) {
2489 		btrfs_err(fs_info, "number of devices is 0");
2490 		ret = -EINVAL;
2491 	}
2492 
2493 	if (mirror_num >= 0 &&
2494 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2495 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2496 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2497 		ret = -EINVAL;
2498 	}
2499 
2500 	/*
2501 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2502 	 * and one chunk
2503 	 */
2504 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2505 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2506 			  btrfs_super_sys_array_size(sb),
2507 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2508 		ret = -EINVAL;
2509 	}
2510 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2511 			+ sizeof(struct btrfs_chunk)) {
2512 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2513 			  btrfs_super_sys_array_size(sb),
2514 			  sizeof(struct btrfs_disk_key)
2515 			  + sizeof(struct btrfs_chunk));
2516 		ret = -EINVAL;
2517 	}
2518 
2519 	/*
2520 	 * The generation is a global counter, we'll trust it more than the others
2521 	 * but it's still possible that it's the one that's wrong.
2522 	 */
2523 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2524 		btrfs_warn(fs_info,
2525 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2526 			btrfs_super_generation(sb),
2527 			btrfs_super_chunk_root_generation(sb));
2528 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2529 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2530 		btrfs_warn(fs_info,
2531 			"suspicious: generation < cache_generation: %llu < %llu",
2532 			btrfs_super_generation(sb),
2533 			btrfs_super_cache_generation(sb));
2534 
2535 	return ret;
2536 }
2537 
2538 /*
2539  * Validation of super block at mount time.
2540  * Some checks already done early at mount time, like csum type and incompat
2541  * flags will be skipped.
2542  */
2543 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2544 {
2545 	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2546 }
2547 
2548 /*
2549  * Validation of super block at write time.
2550  * Some checks like bytenr check will be skipped as their values will be
2551  * overwritten soon.
2552  * Extra checks like csum type and incompat flags will be done here.
2553  */
2554 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2555 				      struct btrfs_super_block *sb)
2556 {
2557 	int ret;
2558 
2559 	ret = btrfs_validate_super(fs_info, sb, -1);
2560 	if (ret < 0)
2561 		goto out;
2562 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2563 		ret = -EUCLEAN;
2564 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2565 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2566 		goto out;
2567 	}
2568 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2569 		ret = -EUCLEAN;
2570 		btrfs_err(fs_info,
2571 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2572 			  btrfs_super_incompat_flags(sb),
2573 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2574 		goto out;
2575 	}
2576 out:
2577 	if (ret < 0)
2578 		btrfs_err(fs_info,
2579 		"super block corruption detected before writing it to disk");
2580 	return ret;
2581 }
2582 
2583 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2584 {
2585 	struct btrfs_tree_parent_check check = {
2586 		.level = level,
2587 		.transid = gen,
2588 		.owner_root = btrfs_root_id(root)
2589 	};
2590 	int ret = 0;
2591 
2592 	root->node = read_tree_block(root->fs_info, bytenr, &check);
2593 	if (IS_ERR(root->node)) {
2594 		ret = PTR_ERR(root->node);
2595 		root->node = NULL;
2596 		return ret;
2597 	}
2598 	if (!extent_buffer_uptodate(root->node)) {
2599 		free_extent_buffer(root->node);
2600 		root->node = NULL;
2601 		return -EIO;
2602 	}
2603 
2604 	btrfs_set_root_node(&root->root_item, root->node);
2605 	root->commit_root = btrfs_root_node(root);
2606 	btrfs_set_root_refs(&root->root_item, 1);
2607 	return ret;
2608 }
2609 
2610 static int load_important_roots(struct btrfs_fs_info *fs_info)
2611 {
2612 	struct btrfs_super_block *sb = fs_info->super_copy;
2613 	u64 gen, bytenr;
2614 	int level, ret;
2615 
2616 	bytenr = btrfs_super_root(sb);
2617 	gen = btrfs_super_generation(sb);
2618 	level = btrfs_super_root_level(sb);
2619 	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2620 	if (ret) {
2621 		btrfs_warn(fs_info, "couldn't read tree root");
2622 		return ret;
2623 	}
2624 	return 0;
2625 }
2626 
2627 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2628 {
2629 	int backup_index = find_newest_super_backup(fs_info);
2630 	struct btrfs_super_block *sb = fs_info->super_copy;
2631 	struct btrfs_root *tree_root = fs_info->tree_root;
2632 	bool handle_error = false;
2633 	int ret = 0;
2634 	int i;
2635 
2636 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2637 		if (handle_error) {
2638 			if (!IS_ERR(tree_root->node))
2639 				free_extent_buffer(tree_root->node);
2640 			tree_root->node = NULL;
2641 
2642 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2643 				break;
2644 
2645 			free_root_pointers(fs_info, 0);
2646 
2647 			/*
2648 			 * Don't use the log in recovery mode, it won't be
2649 			 * valid
2650 			 */
2651 			btrfs_set_super_log_root(sb, 0);
2652 
2653 			btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2654 			ret = read_backup_root(fs_info, i);
2655 			backup_index = ret;
2656 			if (ret < 0)
2657 				return ret;
2658 		}
2659 
2660 		ret = load_important_roots(fs_info);
2661 		if (ret) {
2662 			handle_error = true;
2663 			continue;
2664 		}
2665 
2666 		/*
2667 		 * No need to hold btrfs_root::objectid_mutex since the fs
2668 		 * hasn't been fully initialised and we are the only user
2669 		 */
2670 		ret = btrfs_init_root_free_objectid(tree_root);
2671 		if (ret < 0) {
2672 			handle_error = true;
2673 			continue;
2674 		}
2675 
2676 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2677 
2678 		ret = btrfs_read_roots(fs_info);
2679 		if (ret < 0) {
2680 			handle_error = true;
2681 			continue;
2682 		}
2683 
2684 		/* All successful */
2685 		fs_info->generation = btrfs_header_generation(tree_root->node);
2686 		btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2687 		fs_info->last_reloc_trans = 0;
2688 
2689 		/* Always begin writing backup roots after the one being used */
2690 		if (backup_index < 0) {
2691 			fs_info->backup_root_index = 0;
2692 		} else {
2693 			fs_info->backup_root_index = backup_index + 1;
2694 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2695 		}
2696 		break;
2697 	}
2698 
2699 	return ret;
2700 }
2701 
2702 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2703 {
2704 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2705 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2706 	INIT_LIST_HEAD(&fs_info->trans_list);
2707 	INIT_LIST_HEAD(&fs_info->dead_roots);
2708 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2709 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2710 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2711 	spin_lock_init(&fs_info->delalloc_root_lock);
2712 	spin_lock_init(&fs_info->trans_lock);
2713 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2714 	spin_lock_init(&fs_info->delayed_iput_lock);
2715 	spin_lock_init(&fs_info->defrag_inodes_lock);
2716 	spin_lock_init(&fs_info->super_lock);
2717 	spin_lock_init(&fs_info->buffer_lock);
2718 	spin_lock_init(&fs_info->unused_bgs_lock);
2719 	spin_lock_init(&fs_info->treelog_bg_lock);
2720 	spin_lock_init(&fs_info->zone_active_bgs_lock);
2721 	spin_lock_init(&fs_info->relocation_bg_lock);
2722 	rwlock_init(&fs_info->tree_mod_log_lock);
2723 	rwlock_init(&fs_info->global_root_lock);
2724 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2725 	mutex_init(&fs_info->reclaim_bgs_lock);
2726 	mutex_init(&fs_info->reloc_mutex);
2727 	mutex_init(&fs_info->delalloc_root_mutex);
2728 	mutex_init(&fs_info->zoned_meta_io_lock);
2729 	mutex_init(&fs_info->zoned_data_reloc_io_lock);
2730 	seqlock_init(&fs_info->profiles_lock);
2731 
2732 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2733 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2734 	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2735 	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2736 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2737 				     BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2738 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2739 				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2740 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2741 				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2742 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2743 				     BTRFS_LOCKDEP_TRANS_COMPLETED);
2744 
2745 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2746 	INIT_LIST_HEAD(&fs_info->space_info);
2747 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2748 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2749 	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2750 	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2751 #ifdef CONFIG_BTRFS_DEBUG
2752 	INIT_LIST_HEAD(&fs_info->allocated_roots);
2753 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2754 	spin_lock_init(&fs_info->eb_leak_lock);
2755 #endif
2756 	fs_info->mapping_tree = RB_ROOT_CACHED;
2757 	rwlock_init(&fs_info->mapping_tree_lock);
2758 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2759 			     BTRFS_BLOCK_RSV_GLOBAL);
2760 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2761 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2762 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2763 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2764 			     BTRFS_BLOCK_RSV_DELOPS);
2765 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2766 			     BTRFS_BLOCK_RSV_DELREFS);
2767 
2768 	atomic_set(&fs_info->async_delalloc_pages, 0);
2769 	atomic_set(&fs_info->defrag_running, 0);
2770 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2771 	atomic64_set(&fs_info->tree_mod_seq, 0);
2772 	fs_info->global_root_tree = RB_ROOT;
2773 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2774 	fs_info->metadata_ratio = 0;
2775 	fs_info->defrag_inodes = RB_ROOT;
2776 	atomic64_set(&fs_info->free_chunk_space, 0);
2777 	fs_info->tree_mod_log = RB_ROOT;
2778 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2779 	btrfs_init_ref_verify(fs_info);
2780 
2781 	fs_info->thread_pool_size = min_t(unsigned long,
2782 					  num_online_cpus() + 2, 8);
2783 
2784 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2785 	spin_lock_init(&fs_info->ordered_root_lock);
2786 
2787 	btrfs_init_scrub(fs_info);
2788 	btrfs_init_balance(fs_info);
2789 	btrfs_init_async_reclaim_work(fs_info);
2790 
2791 	rwlock_init(&fs_info->block_group_cache_lock);
2792 	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2793 
2794 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2795 			    IO_TREE_FS_EXCLUDED_EXTENTS);
2796 
2797 	mutex_init(&fs_info->ordered_operations_mutex);
2798 	mutex_init(&fs_info->tree_log_mutex);
2799 	mutex_init(&fs_info->chunk_mutex);
2800 	mutex_init(&fs_info->transaction_kthread_mutex);
2801 	mutex_init(&fs_info->cleaner_mutex);
2802 	mutex_init(&fs_info->ro_block_group_mutex);
2803 	init_rwsem(&fs_info->commit_root_sem);
2804 	init_rwsem(&fs_info->cleanup_work_sem);
2805 	init_rwsem(&fs_info->subvol_sem);
2806 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2807 
2808 	btrfs_init_dev_replace_locks(fs_info);
2809 	btrfs_init_qgroup(fs_info);
2810 	btrfs_discard_init(fs_info);
2811 
2812 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2813 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2814 
2815 	init_waitqueue_head(&fs_info->transaction_throttle);
2816 	init_waitqueue_head(&fs_info->transaction_wait);
2817 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2818 	init_waitqueue_head(&fs_info->async_submit_wait);
2819 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2820 
2821 	/* Usable values until the real ones are cached from the superblock */
2822 	fs_info->nodesize = 4096;
2823 	fs_info->sectorsize = 4096;
2824 	fs_info->sectorsize_bits = ilog2(4096);
2825 	fs_info->stripesize = 4096;
2826 
2827 	/* Default compress algorithm when user does -o compress */
2828 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2829 
2830 	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2831 
2832 	spin_lock_init(&fs_info->swapfile_pins_lock);
2833 	fs_info->swapfile_pins = RB_ROOT;
2834 
2835 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2836 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2837 }
2838 
2839 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2840 {
2841 	int ret;
2842 
2843 	fs_info->sb = sb;
2844 	/* Temporary fixed values for block size until we read the superblock. */
2845 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2846 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2847 
2848 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2849 	if (ret)
2850 		return ret;
2851 
2852 	ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL);
2853 	if (ret)
2854 		return ret;
2855 
2856 	spin_lock_init(&fs_info->extent_map_shrinker_lock);
2857 
2858 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2859 	if (ret)
2860 		return ret;
2861 
2862 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2863 					(1 + ilog2(nr_cpu_ids));
2864 
2865 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2866 	if (ret)
2867 		return ret;
2868 
2869 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2870 			GFP_KERNEL);
2871 	if (ret)
2872 		return ret;
2873 
2874 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2875 					GFP_KERNEL);
2876 	if (!fs_info->delayed_root)
2877 		return -ENOMEM;
2878 	btrfs_init_delayed_root(fs_info->delayed_root);
2879 
2880 	if (sb_rdonly(sb))
2881 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2882 	if (btrfs_test_opt(fs_info, IGNOREMETACSUMS))
2883 		set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state);
2884 
2885 	return btrfs_alloc_stripe_hash_table(fs_info);
2886 }
2887 
2888 static int btrfs_uuid_rescan_kthread(void *data)
2889 {
2890 	struct btrfs_fs_info *fs_info = data;
2891 	int ret;
2892 
2893 	/*
2894 	 * 1st step is to iterate through the existing UUID tree and
2895 	 * to delete all entries that contain outdated data.
2896 	 * 2nd step is to add all missing entries to the UUID tree.
2897 	 */
2898 	ret = btrfs_uuid_tree_iterate(fs_info);
2899 	if (ret < 0) {
2900 		if (ret != -EINTR)
2901 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2902 				   ret);
2903 		up(&fs_info->uuid_tree_rescan_sem);
2904 		return ret;
2905 	}
2906 	return btrfs_uuid_scan_kthread(data);
2907 }
2908 
2909 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2910 {
2911 	struct task_struct *task;
2912 
2913 	down(&fs_info->uuid_tree_rescan_sem);
2914 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2915 	if (IS_ERR(task)) {
2916 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2917 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2918 		up(&fs_info->uuid_tree_rescan_sem);
2919 		return PTR_ERR(task);
2920 	}
2921 
2922 	return 0;
2923 }
2924 
2925 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2926 {
2927 	u64 root_objectid = 0;
2928 	struct btrfs_root *gang[8];
2929 	int ret = 0;
2930 
2931 	while (1) {
2932 		unsigned int found;
2933 
2934 		spin_lock(&fs_info->fs_roots_radix_lock);
2935 		found = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2936 					     (void **)gang, root_objectid,
2937 					     ARRAY_SIZE(gang));
2938 		if (!found) {
2939 			spin_unlock(&fs_info->fs_roots_radix_lock);
2940 			break;
2941 		}
2942 		root_objectid = btrfs_root_id(gang[found - 1]) + 1;
2943 
2944 		for (int i = 0; i < found; i++) {
2945 			/* Avoid to grab roots in dead_roots. */
2946 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2947 				gang[i] = NULL;
2948 				continue;
2949 			}
2950 			/* Grab all the search result for later use. */
2951 			gang[i] = btrfs_grab_root(gang[i]);
2952 		}
2953 		spin_unlock(&fs_info->fs_roots_radix_lock);
2954 
2955 		for (int i = 0; i < found; i++) {
2956 			if (!gang[i])
2957 				continue;
2958 			root_objectid = btrfs_root_id(gang[i]);
2959 			/*
2960 			 * Continue to release the remaining roots after the first
2961 			 * error without cleanup and preserve the first error
2962 			 * for the return.
2963 			 */
2964 			if (!ret)
2965 				ret = btrfs_orphan_cleanup(gang[i]);
2966 			btrfs_put_root(gang[i]);
2967 		}
2968 		if (ret)
2969 			break;
2970 
2971 		root_objectid++;
2972 	}
2973 	return ret;
2974 }
2975 
2976 /*
2977  * Mounting logic specific to read-write file systems. Shared by open_ctree
2978  * and btrfs_remount when remounting from read-only to read-write.
2979  */
2980 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2981 {
2982 	int ret;
2983 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2984 	bool rebuild_free_space_tree = false;
2985 
2986 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2987 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2988 		if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2989 			btrfs_warn(fs_info,
2990 				   "'clear_cache' option is ignored with extent tree v2");
2991 		else
2992 			rebuild_free_space_tree = true;
2993 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2994 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2995 		btrfs_warn(fs_info, "free space tree is invalid");
2996 		rebuild_free_space_tree = true;
2997 	}
2998 
2999 	if (rebuild_free_space_tree) {
3000 		btrfs_info(fs_info, "rebuilding free space tree");
3001 		ret = btrfs_rebuild_free_space_tree(fs_info);
3002 		if (ret) {
3003 			btrfs_warn(fs_info,
3004 				   "failed to rebuild free space tree: %d", ret);
3005 			goto out;
3006 		}
3007 	}
3008 
3009 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3010 	    !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3011 		btrfs_info(fs_info, "disabling free space tree");
3012 		ret = btrfs_delete_free_space_tree(fs_info);
3013 		if (ret) {
3014 			btrfs_warn(fs_info,
3015 				   "failed to disable free space tree: %d", ret);
3016 			goto out;
3017 		}
3018 	}
3019 
3020 	/*
3021 	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3022 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3023 	 * them into the fs_info->fs_roots_radix tree. This must be done before
3024 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3025 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3026 	 * item before the root's tree is deleted - this means that if we unmount
3027 	 * or crash before the deletion completes, on the next mount we will not
3028 	 * delete what remains of the tree because the orphan item does not
3029 	 * exists anymore, which is what tells us we have a pending deletion.
3030 	 */
3031 	ret = btrfs_find_orphan_roots(fs_info);
3032 	if (ret)
3033 		goto out;
3034 
3035 	ret = btrfs_cleanup_fs_roots(fs_info);
3036 	if (ret)
3037 		goto out;
3038 
3039 	down_read(&fs_info->cleanup_work_sem);
3040 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3041 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3042 		up_read(&fs_info->cleanup_work_sem);
3043 		goto out;
3044 	}
3045 	up_read(&fs_info->cleanup_work_sem);
3046 
3047 	mutex_lock(&fs_info->cleaner_mutex);
3048 	ret = btrfs_recover_relocation(fs_info);
3049 	mutex_unlock(&fs_info->cleaner_mutex);
3050 	if (ret < 0) {
3051 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3052 		goto out;
3053 	}
3054 
3055 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3056 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3057 		btrfs_info(fs_info, "creating free space tree");
3058 		ret = btrfs_create_free_space_tree(fs_info);
3059 		if (ret) {
3060 			btrfs_warn(fs_info,
3061 				"failed to create free space tree: %d", ret);
3062 			goto out;
3063 		}
3064 	}
3065 
3066 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3067 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3068 		if (ret)
3069 			goto out;
3070 	}
3071 
3072 	ret = btrfs_resume_balance_async(fs_info);
3073 	if (ret)
3074 		goto out;
3075 
3076 	ret = btrfs_resume_dev_replace_async(fs_info);
3077 	if (ret) {
3078 		btrfs_warn(fs_info, "failed to resume dev_replace");
3079 		goto out;
3080 	}
3081 
3082 	btrfs_qgroup_rescan_resume(fs_info);
3083 
3084 	if (!fs_info->uuid_root) {
3085 		btrfs_info(fs_info, "creating UUID tree");
3086 		ret = btrfs_create_uuid_tree(fs_info);
3087 		if (ret) {
3088 			btrfs_warn(fs_info,
3089 				   "failed to create the UUID tree %d", ret);
3090 			goto out;
3091 		}
3092 	}
3093 
3094 out:
3095 	return ret;
3096 }
3097 
3098 /*
3099  * Do various sanity and dependency checks of different features.
3100  *
3101  * @is_rw_mount:	If the mount is read-write.
3102  *
3103  * This is the place for less strict checks (like for subpage or artificial
3104  * feature dependencies).
3105  *
3106  * For strict checks or possible corruption detection, see
3107  * btrfs_validate_super().
3108  *
3109  * This should be called after btrfs_parse_options(), as some mount options
3110  * (space cache related) can modify on-disk format like free space tree and
3111  * screw up certain feature dependencies.
3112  */
3113 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3114 {
3115 	struct btrfs_super_block *disk_super = fs_info->super_copy;
3116 	u64 incompat = btrfs_super_incompat_flags(disk_super);
3117 	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3118 	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3119 
3120 	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3121 		btrfs_err(fs_info,
3122 		"cannot mount because of unknown incompat features (0x%llx)",
3123 		    incompat);
3124 		return -EINVAL;
3125 	}
3126 
3127 	/* Runtime limitation for mixed block groups. */
3128 	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3129 	    (fs_info->sectorsize != fs_info->nodesize)) {
3130 		btrfs_err(fs_info,
3131 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3132 			fs_info->nodesize, fs_info->sectorsize);
3133 		return -EINVAL;
3134 	}
3135 
3136 	/* Mixed backref is an always-enabled feature. */
3137 	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3138 
3139 	/* Set compression related flags just in case. */
3140 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3141 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3142 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3143 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3144 
3145 	/*
3146 	 * An ancient flag, which should really be marked deprecated.
3147 	 * Such runtime limitation doesn't really need a incompat flag.
3148 	 */
3149 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3150 		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3151 
3152 	if (compat_ro_unsupp && is_rw_mount) {
3153 		btrfs_err(fs_info,
3154 	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3155 		       compat_ro);
3156 		return -EINVAL;
3157 	}
3158 
3159 	/*
3160 	 * We have unsupported RO compat features, although RO mounted, we
3161 	 * should not cause any metadata writes, including log replay.
3162 	 * Or we could screw up whatever the new feature requires.
3163 	 */
3164 	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3165 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3166 		btrfs_err(fs_info,
3167 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3168 			  compat_ro);
3169 		return -EINVAL;
3170 	}
3171 
3172 	/*
3173 	 * Artificial limitations for block group tree, to force
3174 	 * block-group-tree to rely on no-holes and free-space-tree.
3175 	 */
3176 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3177 	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3178 	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3179 		btrfs_err(fs_info,
3180 "block-group-tree feature requires no-holes and free-space-tree features");
3181 		return -EINVAL;
3182 	}
3183 
3184 	/*
3185 	 * Subpage runtime limitation on v1 cache.
3186 	 *
3187 	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3188 	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3189 	 * going to be deprecated anyway.
3190 	 */
3191 	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3192 		btrfs_warn(fs_info,
3193 	"v1 space cache is not supported for page size %lu with sectorsize %u",
3194 			   PAGE_SIZE, fs_info->sectorsize);
3195 		return -EINVAL;
3196 	}
3197 
3198 	/* This can be called by remount, we need to protect the super block. */
3199 	spin_lock(&fs_info->super_lock);
3200 	btrfs_set_super_incompat_flags(disk_super, incompat);
3201 	spin_unlock(&fs_info->super_lock);
3202 
3203 	return 0;
3204 }
3205 
3206 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3207 		      const char *options)
3208 {
3209 	u32 sectorsize;
3210 	u32 nodesize;
3211 	u32 stripesize;
3212 	u64 generation;
3213 	u16 csum_type;
3214 	struct btrfs_super_block *disk_super;
3215 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3216 	struct btrfs_root *tree_root;
3217 	struct btrfs_root *chunk_root;
3218 	int ret;
3219 	int level;
3220 
3221 	ret = init_mount_fs_info(fs_info, sb);
3222 	if (ret)
3223 		goto fail;
3224 
3225 	/* These need to be init'ed before we start creating inodes and such. */
3226 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3227 				     GFP_KERNEL);
3228 	fs_info->tree_root = tree_root;
3229 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3230 				      GFP_KERNEL);
3231 	fs_info->chunk_root = chunk_root;
3232 	if (!tree_root || !chunk_root) {
3233 		ret = -ENOMEM;
3234 		goto fail;
3235 	}
3236 
3237 	ret = btrfs_init_btree_inode(sb);
3238 	if (ret)
3239 		goto fail;
3240 
3241 	invalidate_bdev(fs_devices->latest_dev->bdev);
3242 
3243 	/*
3244 	 * Read super block and check the signature bytes only
3245 	 */
3246 	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3247 	if (IS_ERR(disk_super)) {
3248 		ret = PTR_ERR(disk_super);
3249 		goto fail_alloc;
3250 	}
3251 
3252 	btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3253 	/*
3254 	 * Verify the type first, if that or the checksum value are
3255 	 * corrupted, we'll find out
3256 	 */
3257 	csum_type = btrfs_super_csum_type(disk_super);
3258 	if (!btrfs_supported_super_csum(csum_type)) {
3259 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3260 			  csum_type);
3261 		ret = -EINVAL;
3262 		btrfs_release_disk_super(disk_super);
3263 		goto fail_alloc;
3264 	}
3265 
3266 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3267 
3268 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3269 	if (ret) {
3270 		btrfs_release_disk_super(disk_super);
3271 		goto fail_alloc;
3272 	}
3273 
3274 	/*
3275 	 * We want to check superblock checksum, the type is stored inside.
3276 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3277 	 */
3278 	if (btrfs_check_super_csum(fs_info, disk_super)) {
3279 		btrfs_err(fs_info, "superblock checksum mismatch");
3280 		ret = -EINVAL;
3281 		btrfs_release_disk_super(disk_super);
3282 		goto fail_alloc;
3283 	}
3284 
3285 	/*
3286 	 * super_copy is zeroed at allocation time and we never touch the
3287 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3288 	 * the whole block of INFO_SIZE
3289 	 */
3290 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3291 	btrfs_release_disk_super(disk_super);
3292 
3293 	disk_super = fs_info->super_copy;
3294 
3295 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3296 	       sizeof(*fs_info->super_for_commit));
3297 
3298 	ret = btrfs_validate_mount_super(fs_info);
3299 	if (ret) {
3300 		btrfs_err(fs_info, "superblock contains fatal errors");
3301 		ret = -EINVAL;
3302 		goto fail_alloc;
3303 	}
3304 
3305 	if (!btrfs_super_root(disk_super)) {
3306 		btrfs_err(fs_info, "invalid superblock tree root bytenr");
3307 		ret = -EINVAL;
3308 		goto fail_alloc;
3309 	}
3310 
3311 	/* check FS state, whether FS is broken. */
3312 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3313 		WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3314 
3315 	/* Set up fs_info before parsing mount options */
3316 	nodesize = btrfs_super_nodesize(disk_super);
3317 	sectorsize = btrfs_super_sectorsize(disk_super);
3318 	stripesize = sectorsize;
3319 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3320 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3321 
3322 	fs_info->nodesize = nodesize;
3323 	fs_info->sectorsize = sectorsize;
3324 	fs_info->sectorsize_bits = ilog2(sectorsize);
3325 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3326 	fs_info->stripesize = stripesize;
3327 
3328 	/*
3329 	 * Handle the space caching options appropriately now that we have the
3330 	 * super block loaded and validated.
3331 	 */
3332 	btrfs_set_free_space_cache_settings(fs_info);
3333 
3334 	if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3335 		ret = -EINVAL;
3336 		goto fail_alloc;
3337 	}
3338 
3339 	ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3340 	if (ret < 0)
3341 		goto fail_alloc;
3342 
3343 	/*
3344 	 * At this point our mount options are validated, if we set ->max_inline
3345 	 * to something non-standard make sure we truncate it to sectorsize.
3346 	 */
3347 	fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3348 
3349 	if (sectorsize < PAGE_SIZE) {
3350 		struct btrfs_subpage_info *subpage_info;
3351 
3352 		btrfs_warn(fs_info,
3353 		"read-write for sector size %u with page size %lu is experimental",
3354 			   sectorsize, PAGE_SIZE);
3355 		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3356 		if (!subpage_info) {
3357 			ret = -ENOMEM;
3358 			goto fail_alloc;
3359 		}
3360 		btrfs_init_subpage_info(subpage_info, sectorsize);
3361 		fs_info->subpage_info = subpage_info;
3362 	}
3363 
3364 	ret = btrfs_init_workqueues(fs_info);
3365 	if (ret)
3366 		goto fail_sb_buffer;
3367 
3368 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3369 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3370 
3371 	/* Update the values for the current filesystem. */
3372 	sb->s_blocksize = sectorsize;
3373 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3374 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3375 
3376 	mutex_lock(&fs_info->chunk_mutex);
3377 	ret = btrfs_read_sys_array(fs_info);
3378 	mutex_unlock(&fs_info->chunk_mutex);
3379 	if (ret) {
3380 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3381 		goto fail_sb_buffer;
3382 	}
3383 
3384 	generation = btrfs_super_chunk_root_generation(disk_super);
3385 	level = btrfs_super_chunk_root_level(disk_super);
3386 	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3387 			      generation, level);
3388 	if (ret) {
3389 		btrfs_err(fs_info, "failed to read chunk root");
3390 		goto fail_tree_roots;
3391 	}
3392 
3393 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3394 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3395 			   BTRFS_UUID_SIZE);
3396 
3397 	ret = btrfs_read_chunk_tree(fs_info);
3398 	if (ret) {
3399 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3400 		goto fail_tree_roots;
3401 	}
3402 
3403 	/*
3404 	 * At this point we know all the devices that make this filesystem,
3405 	 * including the seed devices but we don't know yet if the replace
3406 	 * target is required. So free devices that are not part of this
3407 	 * filesystem but skip the replace target device which is checked
3408 	 * below in btrfs_init_dev_replace().
3409 	 */
3410 	btrfs_free_extra_devids(fs_devices);
3411 	if (!fs_devices->latest_dev->bdev) {
3412 		btrfs_err(fs_info, "failed to read devices");
3413 		ret = -EIO;
3414 		goto fail_tree_roots;
3415 	}
3416 
3417 	ret = init_tree_roots(fs_info);
3418 	if (ret)
3419 		goto fail_tree_roots;
3420 
3421 	/*
3422 	 * Get zone type information of zoned block devices. This will also
3423 	 * handle emulation of a zoned filesystem if a regular device has the
3424 	 * zoned incompat feature flag set.
3425 	 */
3426 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3427 	if (ret) {
3428 		btrfs_err(fs_info,
3429 			  "zoned: failed to read device zone info: %d", ret);
3430 		goto fail_block_groups;
3431 	}
3432 
3433 	/*
3434 	 * If we have a uuid root and we're not being told to rescan we need to
3435 	 * check the generation here so we can set the
3436 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3437 	 * transaction during a balance or the log replay without updating the
3438 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3439 	 * even though it was perfectly fine.
3440 	 */
3441 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3442 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3443 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3444 
3445 	ret = btrfs_verify_dev_extents(fs_info);
3446 	if (ret) {
3447 		btrfs_err(fs_info,
3448 			  "failed to verify dev extents against chunks: %d",
3449 			  ret);
3450 		goto fail_block_groups;
3451 	}
3452 	ret = btrfs_recover_balance(fs_info);
3453 	if (ret) {
3454 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3455 		goto fail_block_groups;
3456 	}
3457 
3458 	ret = btrfs_init_dev_stats(fs_info);
3459 	if (ret) {
3460 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3461 		goto fail_block_groups;
3462 	}
3463 
3464 	ret = btrfs_init_dev_replace(fs_info);
3465 	if (ret) {
3466 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3467 		goto fail_block_groups;
3468 	}
3469 
3470 	ret = btrfs_check_zoned_mode(fs_info);
3471 	if (ret) {
3472 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3473 			  ret);
3474 		goto fail_block_groups;
3475 	}
3476 
3477 	ret = btrfs_sysfs_add_fsid(fs_devices);
3478 	if (ret) {
3479 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3480 				ret);
3481 		goto fail_block_groups;
3482 	}
3483 
3484 	ret = btrfs_sysfs_add_mounted(fs_info);
3485 	if (ret) {
3486 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3487 		goto fail_fsdev_sysfs;
3488 	}
3489 
3490 	ret = btrfs_init_space_info(fs_info);
3491 	if (ret) {
3492 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3493 		goto fail_sysfs;
3494 	}
3495 
3496 	ret = btrfs_read_block_groups(fs_info);
3497 	if (ret) {
3498 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3499 		goto fail_sysfs;
3500 	}
3501 
3502 	btrfs_free_zone_cache(fs_info);
3503 
3504 	btrfs_check_active_zone_reservation(fs_info);
3505 
3506 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3507 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3508 		btrfs_warn(fs_info,
3509 		"writable mount is not allowed due to too many missing devices");
3510 		ret = -EINVAL;
3511 		goto fail_sysfs;
3512 	}
3513 
3514 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3515 					       "btrfs-cleaner");
3516 	if (IS_ERR(fs_info->cleaner_kthread)) {
3517 		ret = PTR_ERR(fs_info->cleaner_kthread);
3518 		goto fail_sysfs;
3519 	}
3520 
3521 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3522 						   tree_root,
3523 						   "btrfs-transaction");
3524 	if (IS_ERR(fs_info->transaction_kthread)) {
3525 		ret = PTR_ERR(fs_info->transaction_kthread);
3526 		goto fail_cleaner;
3527 	}
3528 
3529 	ret = btrfs_read_qgroup_config(fs_info);
3530 	if (ret)
3531 		goto fail_trans_kthread;
3532 
3533 	if (btrfs_build_ref_tree(fs_info))
3534 		btrfs_err(fs_info, "couldn't build ref tree");
3535 
3536 	/* do not make disk changes in broken FS or nologreplay is given */
3537 	if (btrfs_super_log_root(disk_super) != 0 &&
3538 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3539 		btrfs_info(fs_info, "start tree-log replay");
3540 		ret = btrfs_replay_log(fs_info, fs_devices);
3541 		if (ret)
3542 			goto fail_qgroup;
3543 	}
3544 
3545 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3546 	if (IS_ERR(fs_info->fs_root)) {
3547 		ret = PTR_ERR(fs_info->fs_root);
3548 		btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3549 		fs_info->fs_root = NULL;
3550 		goto fail_qgroup;
3551 	}
3552 
3553 	if (sb_rdonly(sb))
3554 		return 0;
3555 
3556 	ret = btrfs_start_pre_rw_mount(fs_info);
3557 	if (ret) {
3558 		close_ctree(fs_info);
3559 		return ret;
3560 	}
3561 	btrfs_discard_resume(fs_info);
3562 
3563 	if (fs_info->uuid_root &&
3564 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3565 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3566 		btrfs_info(fs_info, "checking UUID tree");
3567 		ret = btrfs_check_uuid_tree(fs_info);
3568 		if (ret) {
3569 			btrfs_warn(fs_info,
3570 				"failed to check the UUID tree: %d", ret);
3571 			close_ctree(fs_info);
3572 			return ret;
3573 		}
3574 	}
3575 
3576 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3577 
3578 	/* Kick the cleaner thread so it'll start deleting snapshots. */
3579 	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3580 		wake_up_process(fs_info->cleaner_kthread);
3581 
3582 	return 0;
3583 
3584 fail_qgroup:
3585 	btrfs_free_qgroup_config(fs_info);
3586 fail_trans_kthread:
3587 	kthread_stop(fs_info->transaction_kthread);
3588 	btrfs_cleanup_transaction(fs_info);
3589 	btrfs_free_fs_roots(fs_info);
3590 fail_cleaner:
3591 	kthread_stop(fs_info->cleaner_kthread);
3592 
3593 	/*
3594 	 * make sure we're done with the btree inode before we stop our
3595 	 * kthreads
3596 	 */
3597 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3598 
3599 fail_sysfs:
3600 	btrfs_sysfs_remove_mounted(fs_info);
3601 
3602 fail_fsdev_sysfs:
3603 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3604 
3605 fail_block_groups:
3606 	btrfs_put_block_group_cache(fs_info);
3607 
3608 fail_tree_roots:
3609 	if (fs_info->data_reloc_root)
3610 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3611 	free_root_pointers(fs_info, true);
3612 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3613 
3614 fail_sb_buffer:
3615 	btrfs_stop_all_workers(fs_info);
3616 	btrfs_free_block_groups(fs_info);
3617 fail_alloc:
3618 	btrfs_mapping_tree_free(fs_info);
3619 
3620 	iput(fs_info->btree_inode);
3621 fail:
3622 	btrfs_close_devices(fs_info->fs_devices);
3623 	ASSERT(ret < 0);
3624 	return ret;
3625 }
3626 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3627 
3628 static void btrfs_end_super_write(struct bio *bio)
3629 {
3630 	struct btrfs_device *device = bio->bi_private;
3631 	struct folio_iter fi;
3632 
3633 	bio_for_each_folio_all(fi, bio) {
3634 		if (bio->bi_status) {
3635 			btrfs_warn_rl_in_rcu(device->fs_info,
3636 				"lost super block write due to IO error on %s (%d)",
3637 				btrfs_dev_name(device),
3638 				blk_status_to_errno(bio->bi_status));
3639 			btrfs_dev_stat_inc_and_print(device,
3640 						     BTRFS_DEV_STAT_WRITE_ERRS);
3641 			/* Ensure failure if the primary sb fails. */
3642 			if (bio->bi_opf & REQ_FUA)
3643 				atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR,
3644 					   &device->sb_write_errors);
3645 			else
3646 				atomic_inc(&device->sb_write_errors);
3647 		}
3648 		folio_unlock(fi.folio);
3649 		folio_put(fi.folio);
3650 	}
3651 
3652 	bio_put(bio);
3653 }
3654 
3655 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3656 						   int copy_num, bool drop_cache)
3657 {
3658 	struct btrfs_super_block *super;
3659 	struct page *page;
3660 	u64 bytenr, bytenr_orig;
3661 	struct address_space *mapping = bdev->bd_mapping;
3662 	int ret;
3663 
3664 	bytenr_orig = btrfs_sb_offset(copy_num);
3665 	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3666 	if (ret == -ENOENT)
3667 		return ERR_PTR(-EINVAL);
3668 	else if (ret)
3669 		return ERR_PTR(ret);
3670 
3671 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3672 		return ERR_PTR(-EINVAL);
3673 
3674 	if (drop_cache) {
3675 		/* This should only be called with the primary sb. */
3676 		ASSERT(copy_num == 0);
3677 
3678 		/*
3679 		 * Drop the page of the primary superblock, so later read will
3680 		 * always read from the device.
3681 		 */
3682 		invalidate_inode_pages2_range(mapping,
3683 				bytenr >> PAGE_SHIFT,
3684 				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3685 	}
3686 
3687 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3688 	if (IS_ERR(page))
3689 		return ERR_CAST(page);
3690 
3691 	super = page_address(page);
3692 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3693 		btrfs_release_disk_super(super);
3694 		return ERR_PTR(-ENODATA);
3695 	}
3696 
3697 	if (btrfs_super_bytenr(super) != bytenr_orig) {
3698 		btrfs_release_disk_super(super);
3699 		return ERR_PTR(-EINVAL);
3700 	}
3701 
3702 	return super;
3703 }
3704 
3705 
3706 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3707 {
3708 	struct btrfs_super_block *super, *latest = NULL;
3709 	int i;
3710 	u64 transid = 0;
3711 
3712 	/* we would like to check all the supers, but that would make
3713 	 * a btrfs mount succeed after a mkfs from a different FS.
3714 	 * So, we need to add a special mount option to scan for
3715 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3716 	 */
3717 	for (i = 0; i < 1; i++) {
3718 		super = btrfs_read_dev_one_super(bdev, i, false);
3719 		if (IS_ERR(super))
3720 			continue;
3721 
3722 		if (!latest || btrfs_super_generation(super) > transid) {
3723 			if (latest)
3724 				btrfs_release_disk_super(super);
3725 
3726 			latest = super;
3727 			transid = btrfs_super_generation(super);
3728 		}
3729 	}
3730 
3731 	return super;
3732 }
3733 
3734 /*
3735  * Write superblock @sb to the @device. Do not wait for completion, all the
3736  * folios we use for writing are locked.
3737  *
3738  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3739  * the expected device size at commit time. Note that max_mirrors must be
3740  * same for write and wait phases.
3741  *
3742  * Return number of errors when folio is not found or submission fails.
3743  */
3744 static int write_dev_supers(struct btrfs_device *device,
3745 			    struct btrfs_super_block *sb, int max_mirrors)
3746 {
3747 	struct btrfs_fs_info *fs_info = device->fs_info;
3748 	struct address_space *mapping = device->bdev->bd_mapping;
3749 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3750 	int i;
3751 	int ret;
3752 	u64 bytenr, bytenr_orig;
3753 
3754 	atomic_set(&device->sb_write_errors, 0);
3755 
3756 	if (max_mirrors == 0)
3757 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3758 
3759 	shash->tfm = fs_info->csum_shash;
3760 
3761 	for (i = 0; i < max_mirrors; i++) {
3762 		struct folio *folio;
3763 		struct bio *bio;
3764 		struct btrfs_super_block *disk_super;
3765 		size_t offset;
3766 
3767 		bytenr_orig = btrfs_sb_offset(i);
3768 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3769 		if (ret == -ENOENT) {
3770 			continue;
3771 		} else if (ret < 0) {
3772 			btrfs_err(device->fs_info,
3773 				"couldn't get super block location for mirror %d",
3774 				i);
3775 			atomic_inc(&device->sb_write_errors);
3776 			continue;
3777 		}
3778 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3779 		    device->commit_total_bytes)
3780 			break;
3781 
3782 		btrfs_set_super_bytenr(sb, bytenr_orig);
3783 
3784 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3785 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3786 				    sb->csum);
3787 
3788 		folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT,
3789 					    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3790 					    GFP_NOFS);
3791 		if (IS_ERR(folio)) {
3792 			btrfs_err(device->fs_info,
3793 			    "couldn't get super block page for bytenr %llu",
3794 			    bytenr);
3795 			atomic_inc(&device->sb_write_errors);
3796 			continue;
3797 		}
3798 		ASSERT(folio_order(folio) == 0);
3799 
3800 		offset = offset_in_folio(folio, bytenr);
3801 		disk_super = folio_address(folio) + offset;
3802 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3803 
3804 		/*
3805 		 * Directly use bios here instead of relying on the page cache
3806 		 * to do I/O, so we don't lose the ability to do integrity
3807 		 * checking.
3808 		 */
3809 		bio = bio_alloc(device->bdev, 1,
3810 				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3811 				GFP_NOFS);
3812 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3813 		bio->bi_private = device;
3814 		bio->bi_end_io = btrfs_end_super_write;
3815 		bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset);
3816 
3817 		/*
3818 		 * We FUA only the first super block.  The others we allow to
3819 		 * go down lazy and there's a short window where the on-disk
3820 		 * copies might still contain the older version.
3821 		 */
3822 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3823 			bio->bi_opf |= REQ_FUA;
3824 		submit_bio(bio);
3825 
3826 		if (btrfs_advance_sb_log(device, i))
3827 			atomic_inc(&device->sb_write_errors);
3828 	}
3829 	return atomic_read(&device->sb_write_errors) < i ? 0 : -1;
3830 }
3831 
3832 /*
3833  * Wait for write completion of superblocks done by write_dev_supers,
3834  * @max_mirrors same for write and wait phases.
3835  *
3836  * Return -1 if primary super block write failed or when there were no super block
3837  * copies written. Otherwise 0.
3838  */
3839 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3840 {
3841 	int i;
3842 	int errors = 0;
3843 	bool primary_failed = false;
3844 	int ret;
3845 	u64 bytenr;
3846 
3847 	if (max_mirrors == 0)
3848 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3849 
3850 	for (i = 0; i < max_mirrors; i++) {
3851 		struct folio *folio;
3852 
3853 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3854 		if (ret == -ENOENT) {
3855 			break;
3856 		} else if (ret < 0) {
3857 			errors++;
3858 			if (i == 0)
3859 				primary_failed = true;
3860 			continue;
3861 		}
3862 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3863 		    device->commit_total_bytes)
3864 			break;
3865 
3866 		folio = filemap_get_folio(device->bdev->bd_mapping,
3867 					  bytenr >> PAGE_SHIFT);
3868 		/* If the folio has been removed, then we know it completed. */
3869 		if (IS_ERR(folio))
3870 			continue;
3871 		ASSERT(folio_order(folio) == 0);
3872 
3873 		/* Folio will be unlocked once the write completes. */
3874 		folio_wait_locked(folio);
3875 		folio_put(folio);
3876 	}
3877 
3878 	errors += atomic_read(&device->sb_write_errors);
3879 	if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR)
3880 		primary_failed = true;
3881 	if (primary_failed) {
3882 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3883 			  device->devid);
3884 		return -1;
3885 	}
3886 
3887 	return errors < i ? 0 : -1;
3888 }
3889 
3890 /*
3891  * endio for the write_dev_flush, this will wake anyone waiting
3892  * for the barrier when it is done
3893  */
3894 static void btrfs_end_empty_barrier(struct bio *bio)
3895 {
3896 	bio_uninit(bio);
3897 	complete(bio->bi_private);
3898 }
3899 
3900 /*
3901  * Submit a flush request to the device if it supports it. Error handling is
3902  * done in the waiting counterpart.
3903  */
3904 static void write_dev_flush(struct btrfs_device *device)
3905 {
3906 	struct bio *bio = &device->flush_bio;
3907 
3908 	device->last_flush_error = BLK_STS_OK;
3909 
3910 	bio_init(bio, device->bdev, NULL, 0,
3911 		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3912 	bio->bi_end_io = btrfs_end_empty_barrier;
3913 	init_completion(&device->flush_wait);
3914 	bio->bi_private = &device->flush_wait;
3915 	submit_bio(bio);
3916 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3917 }
3918 
3919 /*
3920  * If the flush bio has been submitted by write_dev_flush, wait for it.
3921  * Return true for any error, and false otherwise.
3922  */
3923 static bool wait_dev_flush(struct btrfs_device *device)
3924 {
3925 	struct bio *bio = &device->flush_bio;
3926 
3927 	if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3928 		return false;
3929 
3930 	wait_for_completion_io(&device->flush_wait);
3931 
3932 	if (bio->bi_status) {
3933 		device->last_flush_error = bio->bi_status;
3934 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3935 		return true;
3936 	}
3937 
3938 	return false;
3939 }
3940 
3941 /*
3942  * send an empty flush down to each device in parallel,
3943  * then wait for them
3944  */
3945 static int barrier_all_devices(struct btrfs_fs_info *info)
3946 {
3947 	struct list_head *head;
3948 	struct btrfs_device *dev;
3949 	int errors_wait = 0;
3950 
3951 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3952 	/* send down all the barriers */
3953 	head = &info->fs_devices->devices;
3954 	list_for_each_entry(dev, head, dev_list) {
3955 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3956 			continue;
3957 		if (!dev->bdev)
3958 			continue;
3959 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3960 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3961 			continue;
3962 
3963 		write_dev_flush(dev);
3964 	}
3965 
3966 	/* wait for all the barriers */
3967 	list_for_each_entry(dev, head, dev_list) {
3968 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3969 			continue;
3970 		if (!dev->bdev) {
3971 			errors_wait++;
3972 			continue;
3973 		}
3974 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3975 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3976 			continue;
3977 
3978 		if (wait_dev_flush(dev))
3979 			errors_wait++;
3980 	}
3981 
3982 	/*
3983 	 * Checks last_flush_error of disks in order to determine the device
3984 	 * state.
3985 	 */
3986 	if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3987 		return -EIO;
3988 
3989 	return 0;
3990 }
3991 
3992 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3993 {
3994 	int raid_type;
3995 	int min_tolerated = INT_MAX;
3996 
3997 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3998 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3999 		min_tolerated = min_t(int, min_tolerated,
4000 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
4001 				    tolerated_failures);
4002 
4003 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4004 		if (raid_type == BTRFS_RAID_SINGLE)
4005 			continue;
4006 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4007 			continue;
4008 		min_tolerated = min_t(int, min_tolerated,
4009 				    btrfs_raid_array[raid_type].
4010 				    tolerated_failures);
4011 	}
4012 
4013 	if (min_tolerated == INT_MAX) {
4014 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4015 		min_tolerated = 0;
4016 	}
4017 
4018 	return min_tolerated;
4019 }
4020 
4021 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4022 {
4023 	struct list_head *head;
4024 	struct btrfs_device *dev;
4025 	struct btrfs_super_block *sb;
4026 	struct btrfs_dev_item *dev_item;
4027 	int ret;
4028 	int do_barriers;
4029 	int max_errors;
4030 	int total_errors = 0;
4031 	u64 flags;
4032 
4033 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4034 
4035 	/*
4036 	 * max_mirrors == 0 indicates we're from commit_transaction,
4037 	 * not from fsync where the tree roots in fs_info have not
4038 	 * been consistent on disk.
4039 	 */
4040 	if (max_mirrors == 0)
4041 		backup_super_roots(fs_info);
4042 
4043 	sb = fs_info->super_for_commit;
4044 	dev_item = &sb->dev_item;
4045 
4046 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4047 	head = &fs_info->fs_devices->devices;
4048 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4049 
4050 	if (do_barriers) {
4051 		ret = barrier_all_devices(fs_info);
4052 		if (ret) {
4053 			mutex_unlock(
4054 				&fs_info->fs_devices->device_list_mutex);
4055 			btrfs_handle_fs_error(fs_info, ret,
4056 					      "errors while submitting device barriers.");
4057 			return ret;
4058 		}
4059 	}
4060 
4061 	list_for_each_entry(dev, head, dev_list) {
4062 		if (!dev->bdev) {
4063 			total_errors++;
4064 			continue;
4065 		}
4066 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4067 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4068 			continue;
4069 
4070 		btrfs_set_stack_device_generation(dev_item, 0);
4071 		btrfs_set_stack_device_type(dev_item, dev->type);
4072 		btrfs_set_stack_device_id(dev_item, dev->devid);
4073 		btrfs_set_stack_device_total_bytes(dev_item,
4074 						   dev->commit_total_bytes);
4075 		btrfs_set_stack_device_bytes_used(dev_item,
4076 						  dev->commit_bytes_used);
4077 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4078 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4079 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4080 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4081 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4082 		       BTRFS_FSID_SIZE);
4083 
4084 		flags = btrfs_super_flags(sb);
4085 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4086 
4087 		ret = btrfs_validate_write_super(fs_info, sb);
4088 		if (ret < 0) {
4089 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4090 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4091 				"unexpected superblock corruption detected");
4092 			return -EUCLEAN;
4093 		}
4094 
4095 		ret = write_dev_supers(dev, sb, max_mirrors);
4096 		if (ret)
4097 			total_errors++;
4098 	}
4099 	if (total_errors > max_errors) {
4100 		btrfs_err(fs_info, "%d errors while writing supers",
4101 			  total_errors);
4102 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4103 
4104 		/* FUA is masked off if unsupported and can't be the reason */
4105 		btrfs_handle_fs_error(fs_info, -EIO,
4106 				      "%d errors while writing supers",
4107 				      total_errors);
4108 		return -EIO;
4109 	}
4110 
4111 	total_errors = 0;
4112 	list_for_each_entry(dev, head, dev_list) {
4113 		if (!dev->bdev)
4114 			continue;
4115 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4116 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4117 			continue;
4118 
4119 		ret = wait_dev_supers(dev, max_mirrors);
4120 		if (ret)
4121 			total_errors++;
4122 	}
4123 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4124 	if (total_errors > max_errors) {
4125 		btrfs_handle_fs_error(fs_info, -EIO,
4126 				      "%d errors while writing supers",
4127 				      total_errors);
4128 		return -EIO;
4129 	}
4130 	return 0;
4131 }
4132 
4133 /* Drop a fs root from the radix tree and free it. */
4134 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4135 				  struct btrfs_root *root)
4136 {
4137 	bool drop_ref = false;
4138 
4139 	spin_lock(&fs_info->fs_roots_radix_lock);
4140 	radix_tree_delete(&fs_info->fs_roots_radix,
4141 			  (unsigned long)btrfs_root_id(root));
4142 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4143 		drop_ref = true;
4144 	spin_unlock(&fs_info->fs_roots_radix_lock);
4145 
4146 	if (BTRFS_FS_ERROR(fs_info)) {
4147 		ASSERT(root->log_root == NULL);
4148 		if (root->reloc_root) {
4149 			btrfs_put_root(root->reloc_root);
4150 			root->reloc_root = NULL;
4151 		}
4152 	}
4153 
4154 	if (drop_ref)
4155 		btrfs_put_root(root);
4156 }
4157 
4158 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4159 {
4160 	mutex_lock(&fs_info->cleaner_mutex);
4161 	btrfs_run_delayed_iputs(fs_info);
4162 	mutex_unlock(&fs_info->cleaner_mutex);
4163 	wake_up_process(fs_info->cleaner_kthread);
4164 
4165 	/* wait until ongoing cleanup work done */
4166 	down_write(&fs_info->cleanup_work_sem);
4167 	up_write(&fs_info->cleanup_work_sem);
4168 
4169 	return btrfs_commit_current_transaction(fs_info->tree_root);
4170 }
4171 
4172 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4173 {
4174 	struct btrfs_transaction *trans;
4175 	struct btrfs_transaction *tmp;
4176 	bool found = false;
4177 
4178 	/*
4179 	 * This function is only called at the very end of close_ctree(),
4180 	 * thus no other running transaction, no need to take trans_lock.
4181 	 */
4182 	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4183 	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4184 		struct extent_state *cached = NULL;
4185 		u64 dirty_bytes = 0;
4186 		u64 cur = 0;
4187 		u64 found_start;
4188 		u64 found_end;
4189 
4190 		found = true;
4191 		while (find_first_extent_bit(&trans->dirty_pages, cur,
4192 			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4193 			dirty_bytes += found_end + 1 - found_start;
4194 			cur = found_end + 1;
4195 		}
4196 		btrfs_warn(fs_info,
4197 	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4198 			   trans->transid, dirty_bytes);
4199 		btrfs_cleanup_one_transaction(trans, fs_info);
4200 
4201 		if (trans == fs_info->running_transaction)
4202 			fs_info->running_transaction = NULL;
4203 		list_del_init(&trans->list);
4204 
4205 		btrfs_put_transaction(trans);
4206 		trace_btrfs_transaction_commit(fs_info);
4207 	}
4208 	ASSERT(!found);
4209 }
4210 
4211 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4212 {
4213 	int ret;
4214 
4215 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4216 
4217 	/*
4218 	 * If we had UNFINISHED_DROPS we could still be processing them, so
4219 	 * clear that bit and wake up relocation so it can stop.
4220 	 * We must do this before stopping the block group reclaim task, because
4221 	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4222 	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4223 	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4224 	 * return 1.
4225 	 */
4226 	btrfs_wake_unfinished_drop(fs_info);
4227 
4228 	/*
4229 	 * We may have the reclaim task running and relocating a data block group,
4230 	 * in which case it may create delayed iputs. So stop it before we park
4231 	 * the cleaner kthread otherwise we can get new delayed iputs after
4232 	 * parking the cleaner, and that can make the async reclaim task to hang
4233 	 * if it's waiting for delayed iputs to complete, since the cleaner is
4234 	 * parked and can not run delayed iputs - this will make us hang when
4235 	 * trying to stop the async reclaim task.
4236 	 */
4237 	cancel_work_sync(&fs_info->reclaim_bgs_work);
4238 	/*
4239 	 * We don't want the cleaner to start new transactions, add more delayed
4240 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4241 	 * because that frees the task_struct, and the transaction kthread might
4242 	 * still try to wake up the cleaner.
4243 	 */
4244 	kthread_park(fs_info->cleaner_kthread);
4245 
4246 	/* wait for the qgroup rescan worker to stop */
4247 	btrfs_qgroup_wait_for_completion(fs_info, false);
4248 
4249 	/* wait for the uuid_scan task to finish */
4250 	down(&fs_info->uuid_tree_rescan_sem);
4251 	/* avoid complains from lockdep et al., set sem back to initial state */
4252 	up(&fs_info->uuid_tree_rescan_sem);
4253 
4254 	/* pause restriper - we want to resume on mount */
4255 	btrfs_pause_balance(fs_info);
4256 
4257 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4258 
4259 	btrfs_scrub_cancel(fs_info);
4260 
4261 	/* wait for any defraggers to finish */
4262 	wait_event(fs_info->transaction_wait,
4263 		   (atomic_read(&fs_info->defrag_running) == 0));
4264 
4265 	/* clear out the rbtree of defraggable inodes */
4266 	btrfs_cleanup_defrag_inodes(fs_info);
4267 
4268 	/*
4269 	 * After we parked the cleaner kthread, ordered extents may have
4270 	 * completed and created new delayed iputs. If one of the async reclaim
4271 	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4272 	 * can hang forever trying to stop it, because if a delayed iput is
4273 	 * added after it ran btrfs_run_delayed_iputs() and before it called
4274 	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4275 	 * no one else to run iputs.
4276 	 *
4277 	 * So wait for all ongoing ordered extents to complete and then run
4278 	 * delayed iputs. This works because once we reach this point no one
4279 	 * can either create new ordered extents nor create delayed iputs
4280 	 * through some other means.
4281 	 *
4282 	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4283 	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4284 	 * but the delayed iput for the respective inode is made only when doing
4285 	 * the final btrfs_put_ordered_extent() (which must happen at
4286 	 * btrfs_finish_ordered_io() when we are unmounting).
4287 	 */
4288 	btrfs_flush_workqueue(fs_info->endio_write_workers);
4289 	/* Ordered extents for free space inodes. */
4290 	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4291 	btrfs_run_delayed_iputs(fs_info);
4292 
4293 	cancel_work_sync(&fs_info->async_reclaim_work);
4294 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4295 	cancel_work_sync(&fs_info->preempt_reclaim_work);
4296 
4297 	/* Cancel or finish ongoing discard work */
4298 	btrfs_discard_cleanup(fs_info);
4299 
4300 	if (!sb_rdonly(fs_info->sb)) {
4301 		/*
4302 		 * The cleaner kthread is stopped, so do one final pass over
4303 		 * unused block groups.
4304 		 */
4305 		btrfs_delete_unused_bgs(fs_info);
4306 
4307 		/*
4308 		 * There might be existing delayed inode workers still running
4309 		 * and holding an empty delayed inode item. We must wait for
4310 		 * them to complete first because they can create a transaction.
4311 		 * This happens when someone calls btrfs_balance_delayed_items()
4312 		 * and then a transaction commit runs the same delayed nodes
4313 		 * before any delayed worker has done something with the nodes.
4314 		 * We must wait for any worker here and not at transaction
4315 		 * commit time since that could cause a deadlock.
4316 		 * This is a very rare case.
4317 		 */
4318 		btrfs_flush_workqueue(fs_info->delayed_workers);
4319 
4320 		ret = btrfs_commit_super(fs_info);
4321 		if (ret)
4322 			btrfs_err(fs_info, "commit super ret %d", ret);
4323 	}
4324 
4325 	if (BTRFS_FS_ERROR(fs_info))
4326 		btrfs_error_commit_super(fs_info);
4327 
4328 	kthread_stop(fs_info->transaction_kthread);
4329 	kthread_stop(fs_info->cleaner_kthread);
4330 
4331 	ASSERT(list_empty(&fs_info->delayed_iputs));
4332 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4333 
4334 	if (btrfs_check_quota_leak(fs_info)) {
4335 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4336 		btrfs_err(fs_info, "qgroup reserved space leaked");
4337 	}
4338 
4339 	btrfs_free_qgroup_config(fs_info);
4340 	ASSERT(list_empty(&fs_info->delalloc_roots));
4341 
4342 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4343 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4344 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4345 	}
4346 
4347 	if (percpu_counter_sum(&fs_info->ordered_bytes))
4348 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4349 			   percpu_counter_sum(&fs_info->ordered_bytes));
4350 
4351 	btrfs_sysfs_remove_mounted(fs_info);
4352 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4353 
4354 	btrfs_put_block_group_cache(fs_info);
4355 
4356 	/*
4357 	 * we must make sure there is not any read request to
4358 	 * submit after we stopping all workers.
4359 	 */
4360 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4361 	btrfs_stop_all_workers(fs_info);
4362 
4363 	/* We shouldn't have any transaction open at this point */
4364 	warn_about_uncommitted_trans(fs_info);
4365 
4366 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4367 	free_root_pointers(fs_info, true);
4368 	btrfs_free_fs_roots(fs_info);
4369 
4370 	/*
4371 	 * We must free the block groups after dropping the fs_roots as we could
4372 	 * have had an IO error and have left over tree log blocks that aren't
4373 	 * cleaned up until the fs roots are freed.  This makes the block group
4374 	 * accounting appear to be wrong because there's pending reserved bytes,
4375 	 * so make sure we do the block group cleanup afterwards.
4376 	 */
4377 	btrfs_free_block_groups(fs_info);
4378 
4379 	iput(fs_info->btree_inode);
4380 
4381 	btrfs_mapping_tree_free(fs_info);
4382 	btrfs_close_devices(fs_info->fs_devices);
4383 }
4384 
4385 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4386 			     struct extent_buffer *buf)
4387 {
4388 	struct btrfs_fs_info *fs_info = buf->fs_info;
4389 	u64 transid = btrfs_header_generation(buf);
4390 
4391 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4392 	/*
4393 	 * This is a fast path so only do this check if we have sanity tests
4394 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4395 	 * outside of the sanity tests.
4396 	 */
4397 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4398 		return;
4399 #endif
4400 	/* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4401 	ASSERT(trans->transid == fs_info->generation);
4402 	btrfs_assert_tree_write_locked(buf);
4403 	if (unlikely(transid != fs_info->generation)) {
4404 		btrfs_abort_transaction(trans, -EUCLEAN);
4405 		btrfs_crit(fs_info,
4406 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4407 			   buf->start, transid, fs_info->generation);
4408 	}
4409 	set_extent_buffer_dirty(buf);
4410 }
4411 
4412 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4413 					int flush_delayed)
4414 {
4415 	/*
4416 	 * looks as though older kernels can get into trouble with
4417 	 * this code, they end up stuck in balance_dirty_pages forever
4418 	 */
4419 	int ret;
4420 
4421 	if (current->flags & PF_MEMALLOC)
4422 		return;
4423 
4424 	if (flush_delayed)
4425 		btrfs_balance_delayed_items(fs_info);
4426 
4427 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4428 				     BTRFS_DIRTY_METADATA_THRESH,
4429 				     fs_info->dirty_metadata_batch);
4430 	if (ret > 0) {
4431 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4432 	}
4433 }
4434 
4435 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4436 {
4437 	__btrfs_btree_balance_dirty(fs_info, 1);
4438 }
4439 
4440 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4441 {
4442 	__btrfs_btree_balance_dirty(fs_info, 0);
4443 }
4444 
4445 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4446 {
4447 	/* cleanup FS via transaction */
4448 	btrfs_cleanup_transaction(fs_info);
4449 
4450 	mutex_lock(&fs_info->cleaner_mutex);
4451 	btrfs_run_delayed_iputs(fs_info);
4452 	mutex_unlock(&fs_info->cleaner_mutex);
4453 
4454 	down_write(&fs_info->cleanup_work_sem);
4455 	up_write(&fs_info->cleanup_work_sem);
4456 }
4457 
4458 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4459 {
4460 	struct btrfs_root *gang[8];
4461 	u64 root_objectid = 0;
4462 	int ret;
4463 
4464 	spin_lock(&fs_info->fs_roots_radix_lock);
4465 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4466 					     (void **)gang, root_objectid,
4467 					     ARRAY_SIZE(gang))) != 0) {
4468 		int i;
4469 
4470 		for (i = 0; i < ret; i++)
4471 			gang[i] = btrfs_grab_root(gang[i]);
4472 		spin_unlock(&fs_info->fs_roots_radix_lock);
4473 
4474 		for (i = 0; i < ret; i++) {
4475 			if (!gang[i])
4476 				continue;
4477 			root_objectid = btrfs_root_id(gang[i]);
4478 			btrfs_free_log(NULL, gang[i]);
4479 			btrfs_put_root(gang[i]);
4480 		}
4481 		root_objectid++;
4482 		spin_lock(&fs_info->fs_roots_radix_lock);
4483 	}
4484 	spin_unlock(&fs_info->fs_roots_radix_lock);
4485 	btrfs_free_log_root_tree(NULL, fs_info);
4486 }
4487 
4488 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4489 {
4490 	struct btrfs_ordered_extent *ordered;
4491 
4492 	spin_lock(&root->ordered_extent_lock);
4493 	/*
4494 	 * This will just short circuit the ordered completion stuff which will
4495 	 * make sure the ordered extent gets properly cleaned up.
4496 	 */
4497 	list_for_each_entry(ordered, &root->ordered_extents,
4498 			    root_extent_list)
4499 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4500 	spin_unlock(&root->ordered_extent_lock);
4501 }
4502 
4503 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4504 {
4505 	struct btrfs_root *root;
4506 	LIST_HEAD(splice);
4507 
4508 	spin_lock(&fs_info->ordered_root_lock);
4509 	list_splice_init(&fs_info->ordered_roots, &splice);
4510 	while (!list_empty(&splice)) {
4511 		root = list_first_entry(&splice, struct btrfs_root,
4512 					ordered_root);
4513 		list_move_tail(&root->ordered_root,
4514 			       &fs_info->ordered_roots);
4515 
4516 		spin_unlock(&fs_info->ordered_root_lock);
4517 		btrfs_destroy_ordered_extents(root);
4518 
4519 		cond_resched();
4520 		spin_lock(&fs_info->ordered_root_lock);
4521 	}
4522 	spin_unlock(&fs_info->ordered_root_lock);
4523 
4524 	/*
4525 	 * We need this here because if we've been flipped read-only we won't
4526 	 * get sync() from the umount, so we need to make sure any ordered
4527 	 * extents that haven't had their dirty pages IO start writeout yet
4528 	 * actually get run and error out properly.
4529 	 */
4530 	btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
4531 }
4532 
4533 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4534 				       struct btrfs_fs_info *fs_info)
4535 {
4536 	struct rb_node *node;
4537 	struct btrfs_delayed_ref_root *delayed_refs = &trans->delayed_refs;
4538 	struct btrfs_delayed_ref_node *ref;
4539 
4540 	spin_lock(&delayed_refs->lock);
4541 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4542 		struct btrfs_delayed_ref_head *head;
4543 		struct rb_node *n;
4544 		bool pin_bytes = false;
4545 
4546 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4547 				href_node);
4548 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4549 			continue;
4550 
4551 		spin_lock(&head->lock);
4552 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4553 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4554 				       ref_node);
4555 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4556 			RB_CLEAR_NODE(&ref->ref_node);
4557 			if (!list_empty(&ref->add_list))
4558 				list_del(&ref->add_list);
4559 			atomic_dec(&delayed_refs->num_entries);
4560 			btrfs_put_delayed_ref(ref);
4561 			btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
4562 		}
4563 		if (head->must_insert_reserved)
4564 			pin_bytes = true;
4565 		btrfs_free_delayed_extent_op(head->extent_op);
4566 		btrfs_delete_ref_head(delayed_refs, head);
4567 		spin_unlock(&head->lock);
4568 		spin_unlock(&delayed_refs->lock);
4569 		mutex_unlock(&head->mutex);
4570 
4571 		if (pin_bytes) {
4572 			struct btrfs_block_group *cache;
4573 
4574 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4575 			BUG_ON(!cache);
4576 
4577 			spin_lock(&cache->space_info->lock);
4578 			spin_lock(&cache->lock);
4579 			cache->pinned += head->num_bytes;
4580 			btrfs_space_info_update_bytes_pinned(fs_info,
4581 				cache->space_info, head->num_bytes);
4582 			cache->reserved -= head->num_bytes;
4583 			cache->space_info->bytes_reserved -= head->num_bytes;
4584 			spin_unlock(&cache->lock);
4585 			spin_unlock(&cache->space_info->lock);
4586 
4587 			btrfs_put_block_group(cache);
4588 
4589 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4590 				head->bytenr + head->num_bytes - 1);
4591 		}
4592 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4593 		btrfs_put_delayed_ref_head(head);
4594 		cond_resched();
4595 		spin_lock(&delayed_refs->lock);
4596 	}
4597 	btrfs_qgroup_destroy_extent_records(trans);
4598 
4599 	spin_unlock(&delayed_refs->lock);
4600 }
4601 
4602 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4603 {
4604 	struct btrfs_inode *btrfs_inode;
4605 	LIST_HEAD(splice);
4606 
4607 	spin_lock(&root->delalloc_lock);
4608 	list_splice_init(&root->delalloc_inodes, &splice);
4609 
4610 	while (!list_empty(&splice)) {
4611 		struct inode *inode = NULL;
4612 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4613 					       delalloc_inodes);
4614 		btrfs_del_delalloc_inode(btrfs_inode);
4615 		spin_unlock(&root->delalloc_lock);
4616 
4617 		/*
4618 		 * Make sure we get a live inode and that it'll not disappear
4619 		 * meanwhile.
4620 		 */
4621 		inode = igrab(&btrfs_inode->vfs_inode);
4622 		if (inode) {
4623 			unsigned int nofs_flag;
4624 
4625 			nofs_flag = memalloc_nofs_save();
4626 			invalidate_inode_pages2(inode->i_mapping);
4627 			memalloc_nofs_restore(nofs_flag);
4628 			iput(inode);
4629 		}
4630 		spin_lock(&root->delalloc_lock);
4631 	}
4632 	spin_unlock(&root->delalloc_lock);
4633 }
4634 
4635 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4636 {
4637 	struct btrfs_root *root;
4638 	LIST_HEAD(splice);
4639 
4640 	spin_lock(&fs_info->delalloc_root_lock);
4641 	list_splice_init(&fs_info->delalloc_roots, &splice);
4642 	while (!list_empty(&splice)) {
4643 		root = list_first_entry(&splice, struct btrfs_root,
4644 					 delalloc_root);
4645 		root = btrfs_grab_root(root);
4646 		BUG_ON(!root);
4647 		spin_unlock(&fs_info->delalloc_root_lock);
4648 
4649 		btrfs_destroy_delalloc_inodes(root);
4650 		btrfs_put_root(root);
4651 
4652 		spin_lock(&fs_info->delalloc_root_lock);
4653 	}
4654 	spin_unlock(&fs_info->delalloc_root_lock);
4655 }
4656 
4657 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4658 					 struct extent_io_tree *dirty_pages,
4659 					 int mark)
4660 {
4661 	struct extent_buffer *eb;
4662 	u64 start = 0;
4663 	u64 end;
4664 
4665 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
4666 				     mark, NULL)) {
4667 		clear_extent_bits(dirty_pages, start, end, mark);
4668 		while (start <= end) {
4669 			eb = find_extent_buffer(fs_info, start);
4670 			start += fs_info->nodesize;
4671 			if (!eb)
4672 				continue;
4673 
4674 			btrfs_tree_lock(eb);
4675 			wait_on_extent_buffer_writeback(eb);
4676 			btrfs_clear_buffer_dirty(NULL, eb);
4677 			btrfs_tree_unlock(eb);
4678 
4679 			free_extent_buffer_stale(eb);
4680 		}
4681 	}
4682 }
4683 
4684 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4685 					struct extent_io_tree *unpin)
4686 {
4687 	u64 start;
4688 	u64 end;
4689 
4690 	while (1) {
4691 		struct extent_state *cached_state = NULL;
4692 
4693 		/*
4694 		 * The btrfs_finish_extent_commit() may get the same range as
4695 		 * ours between find_first_extent_bit and clear_extent_dirty.
4696 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4697 		 * the same extent range.
4698 		 */
4699 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4700 		if (!find_first_extent_bit(unpin, 0, &start, &end,
4701 					   EXTENT_DIRTY, &cached_state)) {
4702 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4703 			break;
4704 		}
4705 
4706 		clear_extent_dirty(unpin, start, end, &cached_state);
4707 		free_extent_state(cached_state);
4708 		btrfs_error_unpin_extent_range(fs_info, start, end);
4709 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4710 		cond_resched();
4711 	}
4712 }
4713 
4714 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4715 {
4716 	struct inode *inode;
4717 
4718 	inode = cache->io_ctl.inode;
4719 	if (inode) {
4720 		unsigned int nofs_flag;
4721 
4722 		nofs_flag = memalloc_nofs_save();
4723 		invalidate_inode_pages2(inode->i_mapping);
4724 		memalloc_nofs_restore(nofs_flag);
4725 
4726 		BTRFS_I(inode)->generation = 0;
4727 		cache->io_ctl.inode = NULL;
4728 		iput(inode);
4729 	}
4730 	ASSERT(cache->io_ctl.pages == NULL);
4731 	btrfs_put_block_group(cache);
4732 }
4733 
4734 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4735 			     struct btrfs_fs_info *fs_info)
4736 {
4737 	struct btrfs_block_group *cache;
4738 
4739 	spin_lock(&cur_trans->dirty_bgs_lock);
4740 	while (!list_empty(&cur_trans->dirty_bgs)) {
4741 		cache = list_first_entry(&cur_trans->dirty_bgs,
4742 					 struct btrfs_block_group,
4743 					 dirty_list);
4744 
4745 		if (!list_empty(&cache->io_list)) {
4746 			spin_unlock(&cur_trans->dirty_bgs_lock);
4747 			list_del_init(&cache->io_list);
4748 			btrfs_cleanup_bg_io(cache);
4749 			spin_lock(&cur_trans->dirty_bgs_lock);
4750 		}
4751 
4752 		list_del_init(&cache->dirty_list);
4753 		spin_lock(&cache->lock);
4754 		cache->disk_cache_state = BTRFS_DC_ERROR;
4755 		spin_unlock(&cache->lock);
4756 
4757 		spin_unlock(&cur_trans->dirty_bgs_lock);
4758 		btrfs_put_block_group(cache);
4759 		btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4760 		spin_lock(&cur_trans->dirty_bgs_lock);
4761 	}
4762 	spin_unlock(&cur_trans->dirty_bgs_lock);
4763 
4764 	/*
4765 	 * Refer to the definition of io_bgs member for details why it's safe
4766 	 * to use it without any locking
4767 	 */
4768 	while (!list_empty(&cur_trans->io_bgs)) {
4769 		cache = list_first_entry(&cur_trans->io_bgs,
4770 					 struct btrfs_block_group,
4771 					 io_list);
4772 
4773 		list_del_init(&cache->io_list);
4774 		spin_lock(&cache->lock);
4775 		cache->disk_cache_state = BTRFS_DC_ERROR;
4776 		spin_unlock(&cache->lock);
4777 		btrfs_cleanup_bg_io(cache);
4778 	}
4779 }
4780 
4781 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4782 {
4783 	struct btrfs_root *gang[8];
4784 	int i;
4785 	int ret;
4786 
4787 	spin_lock(&fs_info->fs_roots_radix_lock);
4788 	while (1) {
4789 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4790 						 (void **)gang, 0,
4791 						 ARRAY_SIZE(gang),
4792 						 BTRFS_ROOT_TRANS_TAG);
4793 		if (ret == 0)
4794 			break;
4795 		for (i = 0; i < ret; i++) {
4796 			struct btrfs_root *root = gang[i];
4797 
4798 			btrfs_qgroup_free_meta_all_pertrans(root);
4799 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
4800 					(unsigned long)btrfs_root_id(root),
4801 					BTRFS_ROOT_TRANS_TAG);
4802 		}
4803 	}
4804 	spin_unlock(&fs_info->fs_roots_radix_lock);
4805 }
4806 
4807 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4808 				   struct btrfs_fs_info *fs_info)
4809 {
4810 	struct btrfs_device *dev, *tmp;
4811 
4812 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4813 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4814 	ASSERT(list_empty(&cur_trans->io_bgs));
4815 
4816 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4817 				 post_commit_list) {
4818 		list_del_init(&dev->post_commit_list);
4819 	}
4820 
4821 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4822 
4823 	cur_trans->state = TRANS_STATE_COMMIT_START;
4824 	wake_up(&fs_info->transaction_blocked_wait);
4825 
4826 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4827 	wake_up(&fs_info->transaction_wait);
4828 
4829 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4830 				     EXTENT_DIRTY);
4831 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4832 
4833 	cur_trans->state =TRANS_STATE_COMPLETED;
4834 	wake_up(&cur_trans->commit_wait);
4835 }
4836 
4837 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4838 {
4839 	struct btrfs_transaction *t;
4840 
4841 	mutex_lock(&fs_info->transaction_kthread_mutex);
4842 
4843 	spin_lock(&fs_info->trans_lock);
4844 	while (!list_empty(&fs_info->trans_list)) {
4845 		t = list_first_entry(&fs_info->trans_list,
4846 				     struct btrfs_transaction, list);
4847 		if (t->state >= TRANS_STATE_COMMIT_PREP) {
4848 			refcount_inc(&t->use_count);
4849 			spin_unlock(&fs_info->trans_lock);
4850 			btrfs_wait_for_commit(fs_info, t->transid);
4851 			btrfs_put_transaction(t);
4852 			spin_lock(&fs_info->trans_lock);
4853 			continue;
4854 		}
4855 		if (t == fs_info->running_transaction) {
4856 			t->state = TRANS_STATE_COMMIT_DOING;
4857 			spin_unlock(&fs_info->trans_lock);
4858 			/*
4859 			 * We wait for 0 num_writers since we don't hold a trans
4860 			 * handle open currently for this transaction.
4861 			 */
4862 			wait_event(t->writer_wait,
4863 				   atomic_read(&t->num_writers) == 0);
4864 		} else {
4865 			spin_unlock(&fs_info->trans_lock);
4866 		}
4867 		btrfs_cleanup_one_transaction(t, fs_info);
4868 
4869 		spin_lock(&fs_info->trans_lock);
4870 		if (t == fs_info->running_transaction)
4871 			fs_info->running_transaction = NULL;
4872 		list_del_init(&t->list);
4873 		spin_unlock(&fs_info->trans_lock);
4874 
4875 		btrfs_put_transaction(t);
4876 		trace_btrfs_transaction_commit(fs_info);
4877 		spin_lock(&fs_info->trans_lock);
4878 	}
4879 	spin_unlock(&fs_info->trans_lock);
4880 	btrfs_destroy_all_ordered_extents(fs_info);
4881 	btrfs_destroy_delayed_inodes(fs_info);
4882 	btrfs_assert_delayed_root_empty(fs_info);
4883 	btrfs_destroy_all_delalloc_inodes(fs_info);
4884 	btrfs_drop_all_logs(fs_info);
4885 	btrfs_free_all_qgroup_pertrans(fs_info);
4886 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4887 
4888 	return 0;
4889 }
4890 
4891 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4892 {
4893 	struct btrfs_path *path;
4894 	int ret;
4895 	struct extent_buffer *l;
4896 	struct btrfs_key search_key;
4897 	struct btrfs_key found_key;
4898 	int slot;
4899 
4900 	path = btrfs_alloc_path();
4901 	if (!path)
4902 		return -ENOMEM;
4903 
4904 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4905 	search_key.type = -1;
4906 	search_key.offset = (u64)-1;
4907 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4908 	if (ret < 0)
4909 		goto error;
4910 	if (ret == 0) {
4911 		/*
4912 		 * Key with offset -1 found, there would have to exist a root
4913 		 * with such id, but this is out of valid range.
4914 		 */
4915 		ret = -EUCLEAN;
4916 		goto error;
4917 	}
4918 	if (path->slots[0] > 0) {
4919 		slot = path->slots[0] - 1;
4920 		l = path->nodes[0];
4921 		btrfs_item_key_to_cpu(l, &found_key, slot);
4922 		root->free_objectid = max_t(u64, found_key.objectid + 1,
4923 					    BTRFS_FIRST_FREE_OBJECTID);
4924 	} else {
4925 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4926 	}
4927 	ret = 0;
4928 error:
4929 	btrfs_free_path(path);
4930 	return ret;
4931 }
4932 
4933 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4934 {
4935 	int ret;
4936 	mutex_lock(&root->objectid_mutex);
4937 
4938 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4939 		btrfs_warn(root->fs_info,
4940 			   "the objectid of root %llu reaches its highest value",
4941 			   btrfs_root_id(root));
4942 		ret = -ENOSPC;
4943 		goto out;
4944 	}
4945 
4946 	*objectid = root->free_objectid++;
4947 	ret = 0;
4948 out:
4949 	mutex_unlock(&root->objectid_mutex);
4950 	return ret;
4951 }
4952