1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include "compat.h" 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "btrfs_inode.h" 35 #include "volumes.h" 36 #include "print-tree.h" 37 #include "async-thread.h" 38 #include "locking.h" 39 #include "tree-log.h" 40 #include "free-space-cache.h" 41 42 static struct extent_io_ops btree_extent_io_ops; 43 static void end_workqueue_fn(struct btrfs_work *work); 44 45 static atomic_t btrfs_bdi_num = ATOMIC_INIT(0); 46 47 /* 48 * end_io_wq structs are used to do processing in task context when an IO is 49 * complete. This is used during reads to verify checksums, and it is used 50 * by writes to insert metadata for new file extents after IO is complete. 51 */ 52 struct end_io_wq { 53 struct bio *bio; 54 bio_end_io_t *end_io; 55 void *private; 56 struct btrfs_fs_info *info; 57 int error; 58 int metadata; 59 struct list_head list; 60 struct btrfs_work work; 61 }; 62 63 /* 64 * async submit bios are used to offload expensive checksumming 65 * onto the worker threads. They checksum file and metadata bios 66 * just before they are sent down the IO stack. 67 */ 68 struct async_submit_bio { 69 struct inode *inode; 70 struct bio *bio; 71 struct list_head list; 72 extent_submit_bio_hook_t *submit_bio_start; 73 extent_submit_bio_hook_t *submit_bio_done; 74 int rw; 75 int mirror_num; 76 unsigned long bio_flags; 77 struct btrfs_work work; 78 }; 79 80 /* These are used to set the lockdep class on the extent buffer locks. 81 * The class is set by the readpage_end_io_hook after the buffer has 82 * passed csum validation but before the pages are unlocked. 83 * 84 * The lockdep class is also set by btrfs_init_new_buffer on freshly 85 * allocated blocks. 86 * 87 * The class is based on the level in the tree block, which allows lockdep 88 * to know that lower nodes nest inside the locks of higher nodes. 89 * 90 * We also add a check to make sure the highest level of the tree is 91 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this 92 * code needs update as well. 93 */ 94 #ifdef CONFIG_DEBUG_LOCK_ALLOC 95 # if BTRFS_MAX_LEVEL != 8 96 # error 97 # endif 98 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1]; 99 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = { 100 /* leaf */ 101 "btrfs-extent-00", 102 "btrfs-extent-01", 103 "btrfs-extent-02", 104 "btrfs-extent-03", 105 "btrfs-extent-04", 106 "btrfs-extent-05", 107 "btrfs-extent-06", 108 "btrfs-extent-07", 109 /* highest possible level */ 110 "btrfs-extent-08", 111 }; 112 #endif 113 114 /* 115 * extents on the btree inode are pretty simple, there's one extent 116 * that covers the entire device 117 */ 118 static struct extent_map *btree_get_extent(struct inode *inode, 119 struct page *page, size_t page_offset, u64 start, u64 len, 120 int create) 121 { 122 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 123 struct extent_map *em; 124 int ret; 125 126 spin_lock(&em_tree->lock); 127 em = lookup_extent_mapping(em_tree, start, len); 128 if (em) { 129 em->bdev = 130 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 131 spin_unlock(&em_tree->lock); 132 goto out; 133 } 134 spin_unlock(&em_tree->lock); 135 136 em = alloc_extent_map(GFP_NOFS); 137 if (!em) { 138 em = ERR_PTR(-ENOMEM); 139 goto out; 140 } 141 em->start = 0; 142 em->len = (u64)-1; 143 em->block_len = (u64)-1; 144 em->block_start = 0; 145 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 146 147 spin_lock(&em_tree->lock); 148 ret = add_extent_mapping(em_tree, em); 149 if (ret == -EEXIST) { 150 u64 failed_start = em->start; 151 u64 failed_len = em->len; 152 153 free_extent_map(em); 154 em = lookup_extent_mapping(em_tree, start, len); 155 if (em) { 156 ret = 0; 157 } else { 158 em = lookup_extent_mapping(em_tree, failed_start, 159 failed_len); 160 ret = -EIO; 161 } 162 } else if (ret) { 163 free_extent_map(em); 164 em = NULL; 165 } 166 spin_unlock(&em_tree->lock); 167 168 if (ret) 169 em = ERR_PTR(ret); 170 out: 171 return em; 172 } 173 174 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 175 { 176 return crc32c(seed, data, len); 177 } 178 179 void btrfs_csum_final(u32 crc, char *result) 180 { 181 *(__le32 *)result = ~cpu_to_le32(crc); 182 } 183 184 /* 185 * compute the csum for a btree block, and either verify it or write it 186 * into the csum field of the block. 187 */ 188 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 189 int verify) 190 { 191 u16 csum_size = 192 btrfs_super_csum_size(&root->fs_info->super_copy); 193 char *result = NULL; 194 unsigned long len; 195 unsigned long cur_len; 196 unsigned long offset = BTRFS_CSUM_SIZE; 197 char *map_token = NULL; 198 char *kaddr; 199 unsigned long map_start; 200 unsigned long map_len; 201 int err; 202 u32 crc = ~(u32)0; 203 unsigned long inline_result; 204 205 len = buf->len - offset; 206 while (len > 0) { 207 err = map_private_extent_buffer(buf, offset, 32, 208 &map_token, &kaddr, 209 &map_start, &map_len, KM_USER0); 210 if (err) 211 return 1; 212 cur_len = min(len, map_len - (offset - map_start)); 213 crc = btrfs_csum_data(root, kaddr + offset - map_start, 214 crc, cur_len); 215 len -= cur_len; 216 offset += cur_len; 217 unmap_extent_buffer(buf, map_token, KM_USER0); 218 } 219 if (csum_size > sizeof(inline_result)) { 220 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 221 if (!result) 222 return 1; 223 } else { 224 result = (char *)&inline_result; 225 } 226 227 btrfs_csum_final(crc, result); 228 229 if (verify) { 230 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 231 u32 val; 232 u32 found = 0; 233 memcpy(&found, result, csum_size); 234 235 read_extent_buffer(buf, &val, 0, csum_size); 236 if (printk_ratelimit()) { 237 printk(KERN_INFO "btrfs: %s checksum verify " 238 "failed on %llu wanted %X found %X " 239 "level %d\n", 240 root->fs_info->sb->s_id, 241 (unsigned long long)buf->start, val, found, 242 btrfs_header_level(buf)); 243 } 244 if (result != (char *)&inline_result) 245 kfree(result); 246 return 1; 247 } 248 } else { 249 write_extent_buffer(buf, result, 0, csum_size); 250 } 251 if (result != (char *)&inline_result) 252 kfree(result); 253 return 0; 254 } 255 256 /* 257 * we can't consider a given block up to date unless the transid of the 258 * block matches the transid in the parent node's pointer. This is how we 259 * detect blocks that either didn't get written at all or got written 260 * in the wrong place. 261 */ 262 static int verify_parent_transid(struct extent_io_tree *io_tree, 263 struct extent_buffer *eb, u64 parent_transid) 264 { 265 int ret; 266 267 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 268 return 0; 269 270 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS); 271 if (extent_buffer_uptodate(io_tree, eb) && 272 btrfs_header_generation(eb) == parent_transid) { 273 ret = 0; 274 goto out; 275 } 276 if (printk_ratelimit()) { 277 printk("parent transid verify failed on %llu wanted %llu " 278 "found %llu\n", 279 (unsigned long long)eb->start, 280 (unsigned long long)parent_transid, 281 (unsigned long long)btrfs_header_generation(eb)); 282 } 283 ret = 1; 284 clear_extent_buffer_uptodate(io_tree, eb); 285 out: 286 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 287 GFP_NOFS); 288 return ret; 289 } 290 291 /* 292 * helper to read a given tree block, doing retries as required when 293 * the checksums don't match and we have alternate mirrors to try. 294 */ 295 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 296 struct extent_buffer *eb, 297 u64 start, u64 parent_transid) 298 { 299 struct extent_io_tree *io_tree; 300 int ret; 301 int num_copies = 0; 302 int mirror_num = 0; 303 304 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 305 while (1) { 306 ret = read_extent_buffer_pages(io_tree, eb, start, 1, 307 btree_get_extent, mirror_num); 308 if (!ret && 309 !verify_parent_transid(io_tree, eb, parent_transid)) 310 return ret; 311 312 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 313 eb->start, eb->len); 314 if (num_copies == 1) 315 return ret; 316 317 mirror_num++; 318 if (mirror_num > num_copies) 319 return ret; 320 } 321 return -EIO; 322 } 323 324 /* 325 * checksum a dirty tree block before IO. This has extra checks to make sure 326 * we only fill in the checksum field in the first page of a multi-page block 327 */ 328 329 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 330 { 331 struct extent_io_tree *tree; 332 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 333 u64 found_start; 334 int found_level; 335 unsigned long len; 336 struct extent_buffer *eb; 337 int ret; 338 339 tree = &BTRFS_I(page->mapping->host)->io_tree; 340 341 if (page->private == EXTENT_PAGE_PRIVATE) 342 goto out; 343 if (!page->private) 344 goto out; 345 len = page->private >> 2; 346 WARN_ON(len == 0); 347 348 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 349 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE, 350 btrfs_header_generation(eb)); 351 BUG_ON(ret); 352 found_start = btrfs_header_bytenr(eb); 353 if (found_start != start) { 354 WARN_ON(1); 355 goto err; 356 } 357 if (eb->first_page != page) { 358 WARN_ON(1); 359 goto err; 360 } 361 if (!PageUptodate(page)) { 362 WARN_ON(1); 363 goto err; 364 } 365 found_level = btrfs_header_level(eb); 366 367 csum_tree_block(root, eb, 0); 368 err: 369 free_extent_buffer(eb); 370 out: 371 return 0; 372 } 373 374 static int check_tree_block_fsid(struct btrfs_root *root, 375 struct extent_buffer *eb) 376 { 377 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 378 u8 fsid[BTRFS_UUID_SIZE]; 379 int ret = 1; 380 381 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 382 BTRFS_FSID_SIZE); 383 while (fs_devices) { 384 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 385 ret = 0; 386 break; 387 } 388 fs_devices = fs_devices->seed; 389 } 390 return ret; 391 } 392 393 #ifdef CONFIG_DEBUG_LOCK_ALLOC 394 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level) 395 { 396 lockdep_set_class_and_name(&eb->lock, 397 &btrfs_eb_class[level], 398 btrfs_eb_name[level]); 399 } 400 #endif 401 402 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 403 struct extent_state *state) 404 { 405 struct extent_io_tree *tree; 406 u64 found_start; 407 int found_level; 408 unsigned long len; 409 struct extent_buffer *eb; 410 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 411 int ret = 0; 412 413 tree = &BTRFS_I(page->mapping->host)->io_tree; 414 if (page->private == EXTENT_PAGE_PRIVATE) 415 goto out; 416 if (!page->private) 417 goto out; 418 419 len = page->private >> 2; 420 WARN_ON(len == 0); 421 422 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 423 424 found_start = btrfs_header_bytenr(eb); 425 if (found_start != start) { 426 if (printk_ratelimit()) { 427 printk(KERN_INFO "btrfs bad tree block start " 428 "%llu %llu\n", 429 (unsigned long long)found_start, 430 (unsigned long long)eb->start); 431 } 432 ret = -EIO; 433 goto err; 434 } 435 if (eb->first_page != page) { 436 printk(KERN_INFO "btrfs bad first page %lu %lu\n", 437 eb->first_page->index, page->index); 438 WARN_ON(1); 439 ret = -EIO; 440 goto err; 441 } 442 if (check_tree_block_fsid(root, eb)) { 443 if (printk_ratelimit()) { 444 printk(KERN_INFO "btrfs bad fsid on block %llu\n", 445 (unsigned long long)eb->start); 446 } 447 ret = -EIO; 448 goto err; 449 } 450 found_level = btrfs_header_level(eb); 451 452 btrfs_set_buffer_lockdep_class(eb, found_level); 453 454 ret = csum_tree_block(root, eb, 1); 455 if (ret) 456 ret = -EIO; 457 458 end = min_t(u64, eb->len, PAGE_CACHE_SIZE); 459 end = eb->start + end - 1; 460 err: 461 free_extent_buffer(eb); 462 out: 463 return ret; 464 } 465 466 static void end_workqueue_bio(struct bio *bio, int err) 467 { 468 struct end_io_wq *end_io_wq = bio->bi_private; 469 struct btrfs_fs_info *fs_info; 470 471 fs_info = end_io_wq->info; 472 end_io_wq->error = err; 473 end_io_wq->work.func = end_workqueue_fn; 474 end_io_wq->work.flags = 0; 475 476 if (bio->bi_rw & (1 << BIO_RW)) { 477 if (end_io_wq->metadata) 478 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 479 &end_io_wq->work); 480 else 481 btrfs_queue_worker(&fs_info->endio_write_workers, 482 &end_io_wq->work); 483 } else { 484 if (end_io_wq->metadata) 485 btrfs_queue_worker(&fs_info->endio_meta_workers, 486 &end_io_wq->work); 487 else 488 btrfs_queue_worker(&fs_info->endio_workers, 489 &end_io_wq->work); 490 } 491 } 492 493 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 494 int metadata) 495 { 496 struct end_io_wq *end_io_wq; 497 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 498 if (!end_io_wq) 499 return -ENOMEM; 500 501 end_io_wq->private = bio->bi_private; 502 end_io_wq->end_io = bio->bi_end_io; 503 end_io_wq->info = info; 504 end_io_wq->error = 0; 505 end_io_wq->bio = bio; 506 end_io_wq->metadata = metadata; 507 508 bio->bi_private = end_io_wq; 509 bio->bi_end_io = end_workqueue_bio; 510 return 0; 511 } 512 513 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 514 { 515 unsigned long limit = min_t(unsigned long, 516 info->workers.max_workers, 517 info->fs_devices->open_devices); 518 return 256 * limit; 519 } 520 521 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone) 522 { 523 return atomic_read(&info->nr_async_bios) > 524 btrfs_async_submit_limit(info); 525 } 526 527 static void run_one_async_start(struct btrfs_work *work) 528 { 529 struct btrfs_fs_info *fs_info; 530 struct async_submit_bio *async; 531 532 async = container_of(work, struct async_submit_bio, work); 533 fs_info = BTRFS_I(async->inode)->root->fs_info; 534 async->submit_bio_start(async->inode, async->rw, async->bio, 535 async->mirror_num, async->bio_flags); 536 } 537 538 static void run_one_async_done(struct btrfs_work *work) 539 { 540 struct btrfs_fs_info *fs_info; 541 struct async_submit_bio *async; 542 int limit; 543 544 async = container_of(work, struct async_submit_bio, work); 545 fs_info = BTRFS_I(async->inode)->root->fs_info; 546 547 limit = btrfs_async_submit_limit(fs_info); 548 limit = limit * 2 / 3; 549 550 atomic_dec(&fs_info->nr_async_submits); 551 552 if (atomic_read(&fs_info->nr_async_submits) < limit && 553 waitqueue_active(&fs_info->async_submit_wait)) 554 wake_up(&fs_info->async_submit_wait); 555 556 async->submit_bio_done(async->inode, async->rw, async->bio, 557 async->mirror_num, async->bio_flags); 558 } 559 560 static void run_one_async_free(struct btrfs_work *work) 561 { 562 struct async_submit_bio *async; 563 564 async = container_of(work, struct async_submit_bio, work); 565 kfree(async); 566 } 567 568 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 569 int rw, struct bio *bio, int mirror_num, 570 unsigned long bio_flags, 571 extent_submit_bio_hook_t *submit_bio_start, 572 extent_submit_bio_hook_t *submit_bio_done) 573 { 574 struct async_submit_bio *async; 575 576 async = kmalloc(sizeof(*async), GFP_NOFS); 577 if (!async) 578 return -ENOMEM; 579 580 async->inode = inode; 581 async->rw = rw; 582 async->bio = bio; 583 async->mirror_num = mirror_num; 584 async->submit_bio_start = submit_bio_start; 585 async->submit_bio_done = submit_bio_done; 586 587 async->work.func = run_one_async_start; 588 async->work.ordered_func = run_one_async_done; 589 async->work.ordered_free = run_one_async_free; 590 591 async->work.flags = 0; 592 async->bio_flags = bio_flags; 593 594 atomic_inc(&fs_info->nr_async_submits); 595 596 if (rw & (1 << BIO_RW_SYNCIO)) 597 btrfs_set_work_high_prio(&async->work); 598 599 btrfs_queue_worker(&fs_info->workers, &async->work); 600 601 while (atomic_read(&fs_info->async_submit_draining) && 602 atomic_read(&fs_info->nr_async_submits)) { 603 wait_event(fs_info->async_submit_wait, 604 (atomic_read(&fs_info->nr_async_submits) == 0)); 605 } 606 607 return 0; 608 } 609 610 static int btree_csum_one_bio(struct bio *bio) 611 { 612 struct bio_vec *bvec = bio->bi_io_vec; 613 int bio_index = 0; 614 struct btrfs_root *root; 615 616 WARN_ON(bio->bi_vcnt <= 0); 617 while (bio_index < bio->bi_vcnt) { 618 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 619 csum_dirty_buffer(root, bvec->bv_page); 620 bio_index++; 621 bvec++; 622 } 623 return 0; 624 } 625 626 static int __btree_submit_bio_start(struct inode *inode, int rw, 627 struct bio *bio, int mirror_num, 628 unsigned long bio_flags) 629 { 630 /* 631 * when we're called for a write, we're already in the async 632 * submission context. Just jump into btrfs_map_bio 633 */ 634 btree_csum_one_bio(bio); 635 return 0; 636 } 637 638 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 639 int mirror_num, unsigned long bio_flags) 640 { 641 /* 642 * when we're called for a write, we're already in the async 643 * submission context. Just jump into btrfs_map_bio 644 */ 645 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 646 } 647 648 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 649 int mirror_num, unsigned long bio_flags) 650 { 651 int ret; 652 653 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 654 bio, 1); 655 BUG_ON(ret); 656 657 if (!(rw & (1 << BIO_RW))) { 658 /* 659 * called for a read, do the setup so that checksum validation 660 * can happen in the async kernel threads 661 */ 662 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 663 mirror_num, 0); 664 } 665 666 /* 667 * kthread helpers are used to submit writes so that checksumming 668 * can happen in parallel across all CPUs 669 */ 670 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 671 inode, rw, bio, mirror_num, 0, 672 __btree_submit_bio_start, 673 __btree_submit_bio_done); 674 } 675 676 static int btree_writepage(struct page *page, struct writeback_control *wbc) 677 { 678 struct extent_io_tree *tree; 679 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 680 struct extent_buffer *eb; 681 int was_dirty; 682 683 tree = &BTRFS_I(page->mapping->host)->io_tree; 684 if (!(current->flags & PF_MEMALLOC)) { 685 return extent_write_full_page(tree, page, 686 btree_get_extent, wbc); 687 } 688 689 redirty_page_for_writepage(wbc, page); 690 eb = btrfs_find_tree_block(root, page_offset(page), 691 PAGE_CACHE_SIZE); 692 WARN_ON(!eb); 693 694 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 695 if (!was_dirty) { 696 spin_lock(&root->fs_info->delalloc_lock); 697 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE; 698 spin_unlock(&root->fs_info->delalloc_lock); 699 } 700 free_extent_buffer(eb); 701 702 unlock_page(page); 703 return 0; 704 } 705 706 static int btree_writepages(struct address_space *mapping, 707 struct writeback_control *wbc) 708 { 709 struct extent_io_tree *tree; 710 tree = &BTRFS_I(mapping->host)->io_tree; 711 if (wbc->sync_mode == WB_SYNC_NONE) { 712 struct btrfs_root *root = BTRFS_I(mapping->host)->root; 713 u64 num_dirty; 714 unsigned long thresh = 32 * 1024 * 1024; 715 716 if (wbc->for_kupdate) 717 return 0; 718 719 /* this is a bit racy, but that's ok */ 720 num_dirty = root->fs_info->dirty_metadata_bytes; 721 if (num_dirty < thresh) 722 return 0; 723 } 724 return extent_writepages(tree, mapping, btree_get_extent, wbc); 725 } 726 727 static int btree_readpage(struct file *file, struct page *page) 728 { 729 struct extent_io_tree *tree; 730 tree = &BTRFS_I(page->mapping->host)->io_tree; 731 return extent_read_full_page(tree, page, btree_get_extent); 732 } 733 734 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 735 { 736 struct extent_io_tree *tree; 737 struct extent_map_tree *map; 738 int ret; 739 740 if (PageWriteback(page) || PageDirty(page)) 741 return 0; 742 743 tree = &BTRFS_I(page->mapping->host)->io_tree; 744 map = &BTRFS_I(page->mapping->host)->extent_tree; 745 746 ret = try_release_extent_state(map, tree, page, gfp_flags); 747 if (!ret) 748 return 0; 749 750 ret = try_release_extent_buffer(tree, page); 751 if (ret == 1) { 752 ClearPagePrivate(page); 753 set_page_private(page, 0); 754 page_cache_release(page); 755 } 756 757 return ret; 758 } 759 760 static void btree_invalidatepage(struct page *page, unsigned long offset) 761 { 762 struct extent_io_tree *tree; 763 tree = &BTRFS_I(page->mapping->host)->io_tree; 764 extent_invalidatepage(tree, page, offset); 765 btree_releasepage(page, GFP_NOFS); 766 if (PagePrivate(page)) { 767 printk(KERN_WARNING "btrfs warning page private not zero " 768 "on page %llu\n", (unsigned long long)page_offset(page)); 769 ClearPagePrivate(page); 770 set_page_private(page, 0); 771 page_cache_release(page); 772 } 773 } 774 775 static struct address_space_operations btree_aops = { 776 .readpage = btree_readpage, 777 .writepage = btree_writepage, 778 .writepages = btree_writepages, 779 .releasepage = btree_releasepage, 780 .invalidatepage = btree_invalidatepage, 781 .sync_page = block_sync_page, 782 }; 783 784 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 785 u64 parent_transid) 786 { 787 struct extent_buffer *buf = NULL; 788 struct inode *btree_inode = root->fs_info->btree_inode; 789 int ret = 0; 790 791 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 792 if (!buf) 793 return 0; 794 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 795 buf, 0, 0, btree_get_extent, 0); 796 free_extent_buffer(buf); 797 return ret; 798 } 799 800 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 801 u64 bytenr, u32 blocksize) 802 { 803 struct inode *btree_inode = root->fs_info->btree_inode; 804 struct extent_buffer *eb; 805 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 806 bytenr, blocksize, GFP_NOFS); 807 return eb; 808 } 809 810 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 811 u64 bytenr, u32 blocksize) 812 { 813 struct inode *btree_inode = root->fs_info->btree_inode; 814 struct extent_buffer *eb; 815 816 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 817 bytenr, blocksize, NULL, GFP_NOFS); 818 return eb; 819 } 820 821 822 int btrfs_write_tree_block(struct extent_buffer *buf) 823 { 824 return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start, 825 buf->start + buf->len - 1, WB_SYNC_ALL); 826 } 827 828 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 829 { 830 return btrfs_wait_on_page_writeback_range(buf->first_page->mapping, 831 buf->start, buf->start + buf->len - 1); 832 } 833 834 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 835 u32 blocksize, u64 parent_transid) 836 { 837 struct extent_buffer *buf = NULL; 838 struct inode *btree_inode = root->fs_info->btree_inode; 839 struct extent_io_tree *io_tree; 840 int ret; 841 842 io_tree = &BTRFS_I(btree_inode)->io_tree; 843 844 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 845 if (!buf) 846 return NULL; 847 848 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 849 850 if (ret == 0) 851 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 852 return buf; 853 854 } 855 856 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 857 struct extent_buffer *buf) 858 { 859 struct inode *btree_inode = root->fs_info->btree_inode; 860 if (btrfs_header_generation(buf) == 861 root->fs_info->running_transaction->transid) { 862 btrfs_assert_tree_locked(buf); 863 864 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 865 spin_lock(&root->fs_info->delalloc_lock); 866 if (root->fs_info->dirty_metadata_bytes >= buf->len) 867 root->fs_info->dirty_metadata_bytes -= buf->len; 868 else 869 WARN_ON(1); 870 spin_unlock(&root->fs_info->delalloc_lock); 871 } 872 873 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 874 btrfs_set_lock_blocking(buf); 875 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 876 buf); 877 } 878 return 0; 879 } 880 881 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 882 u32 stripesize, struct btrfs_root *root, 883 struct btrfs_fs_info *fs_info, 884 u64 objectid) 885 { 886 root->node = NULL; 887 root->commit_root = NULL; 888 root->sectorsize = sectorsize; 889 root->nodesize = nodesize; 890 root->leafsize = leafsize; 891 root->stripesize = stripesize; 892 root->ref_cows = 0; 893 root->track_dirty = 0; 894 895 root->fs_info = fs_info; 896 root->objectid = objectid; 897 root->last_trans = 0; 898 root->highest_inode = 0; 899 root->last_inode_alloc = 0; 900 root->name = NULL; 901 root->in_sysfs = 0; 902 root->inode_tree.rb_node = NULL; 903 904 INIT_LIST_HEAD(&root->dirty_list); 905 INIT_LIST_HEAD(&root->orphan_list); 906 INIT_LIST_HEAD(&root->root_list); 907 spin_lock_init(&root->node_lock); 908 spin_lock_init(&root->list_lock); 909 spin_lock_init(&root->inode_lock); 910 mutex_init(&root->objectid_mutex); 911 mutex_init(&root->log_mutex); 912 init_waitqueue_head(&root->log_writer_wait); 913 init_waitqueue_head(&root->log_commit_wait[0]); 914 init_waitqueue_head(&root->log_commit_wait[1]); 915 atomic_set(&root->log_commit[0], 0); 916 atomic_set(&root->log_commit[1], 0); 917 atomic_set(&root->log_writers, 0); 918 root->log_batch = 0; 919 root->log_transid = 0; 920 extent_io_tree_init(&root->dirty_log_pages, 921 fs_info->btree_inode->i_mapping, GFP_NOFS); 922 923 memset(&root->root_key, 0, sizeof(root->root_key)); 924 memset(&root->root_item, 0, sizeof(root->root_item)); 925 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 926 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 927 root->defrag_trans_start = fs_info->generation; 928 init_completion(&root->kobj_unregister); 929 root->defrag_running = 0; 930 root->defrag_level = 0; 931 root->root_key.objectid = objectid; 932 root->anon_super.s_root = NULL; 933 root->anon_super.s_dev = 0; 934 INIT_LIST_HEAD(&root->anon_super.s_list); 935 INIT_LIST_HEAD(&root->anon_super.s_instances); 936 init_rwsem(&root->anon_super.s_umount); 937 938 return 0; 939 } 940 941 static int find_and_setup_root(struct btrfs_root *tree_root, 942 struct btrfs_fs_info *fs_info, 943 u64 objectid, 944 struct btrfs_root *root) 945 { 946 int ret; 947 u32 blocksize; 948 u64 generation; 949 950 __setup_root(tree_root->nodesize, tree_root->leafsize, 951 tree_root->sectorsize, tree_root->stripesize, 952 root, fs_info, objectid); 953 ret = btrfs_find_last_root(tree_root, objectid, 954 &root->root_item, &root->root_key); 955 BUG_ON(ret); 956 957 generation = btrfs_root_generation(&root->root_item); 958 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 959 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 960 blocksize, generation); 961 root->commit_root = btrfs_root_node(root); 962 BUG_ON(!root->node); 963 return 0; 964 } 965 966 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 967 struct btrfs_fs_info *fs_info) 968 { 969 struct extent_buffer *eb; 970 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 971 u64 start = 0; 972 u64 end = 0; 973 int ret; 974 975 if (!log_root_tree) 976 return 0; 977 978 while (1) { 979 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages, 980 0, &start, &end, EXTENT_DIRTY); 981 if (ret) 982 break; 983 984 clear_extent_dirty(&log_root_tree->dirty_log_pages, 985 start, end, GFP_NOFS); 986 } 987 eb = fs_info->log_root_tree->node; 988 989 WARN_ON(btrfs_header_level(eb) != 0); 990 WARN_ON(btrfs_header_nritems(eb) != 0); 991 992 ret = btrfs_free_reserved_extent(fs_info->tree_root, 993 eb->start, eb->len); 994 BUG_ON(ret); 995 996 free_extent_buffer(eb); 997 kfree(fs_info->log_root_tree); 998 fs_info->log_root_tree = NULL; 999 return 0; 1000 } 1001 1002 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1003 struct btrfs_fs_info *fs_info) 1004 { 1005 struct btrfs_root *root; 1006 struct btrfs_root *tree_root = fs_info->tree_root; 1007 struct extent_buffer *leaf; 1008 1009 root = kzalloc(sizeof(*root), GFP_NOFS); 1010 if (!root) 1011 return ERR_PTR(-ENOMEM); 1012 1013 __setup_root(tree_root->nodesize, tree_root->leafsize, 1014 tree_root->sectorsize, tree_root->stripesize, 1015 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1016 1017 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1018 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1019 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1020 /* 1021 * log trees do not get reference counted because they go away 1022 * before a real commit is actually done. They do store pointers 1023 * to file data extents, and those reference counts still get 1024 * updated (along with back refs to the log tree). 1025 */ 1026 root->ref_cows = 0; 1027 1028 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1029 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0); 1030 if (IS_ERR(leaf)) { 1031 kfree(root); 1032 return ERR_CAST(leaf); 1033 } 1034 1035 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1036 btrfs_set_header_bytenr(leaf, leaf->start); 1037 btrfs_set_header_generation(leaf, trans->transid); 1038 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1039 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1040 root->node = leaf; 1041 1042 write_extent_buffer(root->node, root->fs_info->fsid, 1043 (unsigned long)btrfs_header_fsid(root->node), 1044 BTRFS_FSID_SIZE); 1045 btrfs_mark_buffer_dirty(root->node); 1046 btrfs_tree_unlock(root->node); 1047 return root; 1048 } 1049 1050 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1051 struct btrfs_fs_info *fs_info) 1052 { 1053 struct btrfs_root *log_root; 1054 1055 log_root = alloc_log_tree(trans, fs_info); 1056 if (IS_ERR(log_root)) 1057 return PTR_ERR(log_root); 1058 WARN_ON(fs_info->log_root_tree); 1059 fs_info->log_root_tree = log_root; 1060 return 0; 1061 } 1062 1063 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1064 struct btrfs_root *root) 1065 { 1066 struct btrfs_root *log_root; 1067 struct btrfs_inode_item *inode_item; 1068 1069 log_root = alloc_log_tree(trans, root->fs_info); 1070 if (IS_ERR(log_root)) 1071 return PTR_ERR(log_root); 1072 1073 log_root->last_trans = trans->transid; 1074 log_root->root_key.offset = root->root_key.objectid; 1075 1076 inode_item = &log_root->root_item.inode; 1077 inode_item->generation = cpu_to_le64(1); 1078 inode_item->size = cpu_to_le64(3); 1079 inode_item->nlink = cpu_to_le32(1); 1080 inode_item->nbytes = cpu_to_le64(root->leafsize); 1081 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1082 1083 btrfs_set_root_node(&log_root->root_item, log_root->node); 1084 1085 WARN_ON(root->log_root); 1086 root->log_root = log_root; 1087 root->log_transid = 0; 1088 return 0; 1089 } 1090 1091 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1092 struct btrfs_key *location) 1093 { 1094 struct btrfs_root *root; 1095 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1096 struct btrfs_path *path; 1097 struct extent_buffer *l; 1098 u64 highest_inode; 1099 u64 generation; 1100 u32 blocksize; 1101 int ret = 0; 1102 1103 root = kzalloc(sizeof(*root), GFP_NOFS); 1104 if (!root) 1105 return ERR_PTR(-ENOMEM); 1106 if (location->offset == (u64)-1) { 1107 ret = find_and_setup_root(tree_root, fs_info, 1108 location->objectid, root); 1109 if (ret) { 1110 kfree(root); 1111 return ERR_PTR(ret); 1112 } 1113 goto insert; 1114 } 1115 1116 __setup_root(tree_root->nodesize, tree_root->leafsize, 1117 tree_root->sectorsize, tree_root->stripesize, 1118 root, fs_info, location->objectid); 1119 1120 path = btrfs_alloc_path(); 1121 BUG_ON(!path); 1122 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1123 if (ret != 0) { 1124 if (ret > 0) 1125 ret = -ENOENT; 1126 goto out; 1127 } 1128 l = path->nodes[0]; 1129 read_extent_buffer(l, &root->root_item, 1130 btrfs_item_ptr_offset(l, path->slots[0]), 1131 sizeof(root->root_item)); 1132 memcpy(&root->root_key, location, sizeof(*location)); 1133 ret = 0; 1134 out: 1135 btrfs_release_path(root, path); 1136 btrfs_free_path(path); 1137 if (ret) { 1138 kfree(root); 1139 return ERR_PTR(ret); 1140 } 1141 generation = btrfs_root_generation(&root->root_item); 1142 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1143 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1144 blocksize, generation); 1145 root->commit_root = btrfs_root_node(root); 1146 BUG_ON(!root->node); 1147 insert: 1148 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { 1149 root->ref_cows = 1; 1150 ret = btrfs_find_highest_inode(root, &highest_inode); 1151 if (ret == 0) { 1152 root->highest_inode = highest_inode; 1153 root->last_inode_alloc = highest_inode; 1154 } 1155 } 1156 return root; 1157 } 1158 1159 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1160 u64 root_objectid) 1161 { 1162 struct btrfs_root *root; 1163 1164 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID) 1165 return fs_info->tree_root; 1166 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID) 1167 return fs_info->extent_root; 1168 1169 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1170 (unsigned long)root_objectid); 1171 return root; 1172 } 1173 1174 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1175 struct btrfs_key *location) 1176 { 1177 struct btrfs_root *root; 1178 int ret; 1179 1180 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1181 return fs_info->tree_root; 1182 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1183 return fs_info->extent_root; 1184 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1185 return fs_info->chunk_root; 1186 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1187 return fs_info->dev_root; 1188 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1189 return fs_info->csum_root; 1190 1191 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1192 (unsigned long)location->objectid); 1193 if (root) 1194 return root; 1195 1196 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1197 if (IS_ERR(root)) 1198 return root; 1199 1200 set_anon_super(&root->anon_super, NULL); 1201 1202 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1203 (unsigned long)root->root_key.objectid, 1204 root); 1205 if (ret) { 1206 free_extent_buffer(root->node); 1207 kfree(root); 1208 return ERR_PTR(ret); 1209 } 1210 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 1211 ret = btrfs_find_dead_roots(fs_info->tree_root, 1212 root->root_key.objectid); 1213 BUG_ON(ret); 1214 btrfs_orphan_cleanup(root); 1215 } 1216 return root; 1217 } 1218 1219 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info, 1220 struct btrfs_key *location, 1221 const char *name, int namelen) 1222 { 1223 struct btrfs_root *root; 1224 int ret; 1225 1226 root = btrfs_read_fs_root_no_name(fs_info, location); 1227 if (!root) 1228 return NULL; 1229 1230 if (root->in_sysfs) 1231 return root; 1232 1233 ret = btrfs_set_root_name(root, name, namelen); 1234 if (ret) { 1235 free_extent_buffer(root->node); 1236 kfree(root); 1237 return ERR_PTR(ret); 1238 } 1239 #if 0 1240 ret = btrfs_sysfs_add_root(root); 1241 if (ret) { 1242 free_extent_buffer(root->node); 1243 kfree(root->name); 1244 kfree(root); 1245 return ERR_PTR(ret); 1246 } 1247 #endif 1248 root->in_sysfs = 1; 1249 return root; 1250 } 1251 1252 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1253 { 1254 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1255 int ret = 0; 1256 struct btrfs_device *device; 1257 struct backing_dev_info *bdi; 1258 1259 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1260 if (!device->bdev) 1261 continue; 1262 bdi = blk_get_backing_dev_info(device->bdev); 1263 if (bdi && bdi_congested(bdi, bdi_bits)) { 1264 ret = 1; 1265 break; 1266 } 1267 } 1268 return ret; 1269 } 1270 1271 /* 1272 * this unplugs every device on the box, and it is only used when page 1273 * is null 1274 */ 1275 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1276 { 1277 struct btrfs_device *device; 1278 struct btrfs_fs_info *info; 1279 1280 info = (struct btrfs_fs_info *)bdi->unplug_io_data; 1281 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1282 if (!device->bdev) 1283 continue; 1284 1285 bdi = blk_get_backing_dev_info(device->bdev); 1286 if (bdi->unplug_io_fn) 1287 bdi->unplug_io_fn(bdi, page); 1288 } 1289 } 1290 1291 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1292 { 1293 struct inode *inode; 1294 struct extent_map_tree *em_tree; 1295 struct extent_map *em; 1296 struct address_space *mapping; 1297 u64 offset; 1298 1299 /* the generic O_DIRECT read code does this */ 1300 if (1 || !page) { 1301 __unplug_io_fn(bdi, page); 1302 return; 1303 } 1304 1305 /* 1306 * page->mapping may change at any time. Get a consistent copy 1307 * and use that for everything below 1308 */ 1309 smp_mb(); 1310 mapping = page->mapping; 1311 if (!mapping) 1312 return; 1313 1314 inode = mapping->host; 1315 1316 /* 1317 * don't do the expensive searching for a small number of 1318 * devices 1319 */ 1320 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) { 1321 __unplug_io_fn(bdi, page); 1322 return; 1323 } 1324 1325 offset = page_offset(page); 1326 1327 em_tree = &BTRFS_I(inode)->extent_tree; 1328 spin_lock(&em_tree->lock); 1329 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 1330 spin_unlock(&em_tree->lock); 1331 if (!em) { 1332 __unplug_io_fn(bdi, page); 1333 return; 1334 } 1335 1336 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1337 free_extent_map(em); 1338 __unplug_io_fn(bdi, page); 1339 return; 1340 } 1341 offset = offset - em->start; 1342 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree, 1343 em->block_start + offset, page); 1344 free_extent_map(em); 1345 } 1346 1347 /* 1348 * If this fails, caller must call bdi_destroy() to get rid of the 1349 * bdi again. 1350 */ 1351 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1352 { 1353 int err; 1354 1355 bdi->capabilities = BDI_CAP_MAP_COPY; 1356 err = bdi_init(bdi); 1357 if (err) 1358 return err; 1359 1360 err = bdi_register(bdi, NULL, "btrfs-%d", 1361 atomic_inc_return(&btrfs_bdi_num)); 1362 if (err) 1363 return err; 1364 1365 bdi->ra_pages = default_backing_dev_info.ra_pages; 1366 bdi->unplug_io_fn = btrfs_unplug_io_fn; 1367 bdi->unplug_io_data = info; 1368 bdi->congested_fn = btrfs_congested_fn; 1369 bdi->congested_data = info; 1370 return 0; 1371 } 1372 1373 static int bio_ready_for_csum(struct bio *bio) 1374 { 1375 u64 length = 0; 1376 u64 buf_len = 0; 1377 u64 start = 0; 1378 struct page *page; 1379 struct extent_io_tree *io_tree = NULL; 1380 struct btrfs_fs_info *info = NULL; 1381 struct bio_vec *bvec; 1382 int i; 1383 int ret; 1384 1385 bio_for_each_segment(bvec, bio, i) { 1386 page = bvec->bv_page; 1387 if (page->private == EXTENT_PAGE_PRIVATE) { 1388 length += bvec->bv_len; 1389 continue; 1390 } 1391 if (!page->private) { 1392 length += bvec->bv_len; 1393 continue; 1394 } 1395 length = bvec->bv_len; 1396 buf_len = page->private >> 2; 1397 start = page_offset(page) + bvec->bv_offset; 1398 io_tree = &BTRFS_I(page->mapping->host)->io_tree; 1399 info = BTRFS_I(page->mapping->host)->root->fs_info; 1400 } 1401 /* are we fully contained in this bio? */ 1402 if (buf_len <= length) 1403 return 1; 1404 1405 ret = extent_range_uptodate(io_tree, start + length, 1406 start + buf_len - 1); 1407 return ret; 1408 } 1409 1410 /* 1411 * called by the kthread helper functions to finally call the bio end_io 1412 * functions. This is where read checksum verification actually happens 1413 */ 1414 static void end_workqueue_fn(struct btrfs_work *work) 1415 { 1416 struct bio *bio; 1417 struct end_io_wq *end_io_wq; 1418 struct btrfs_fs_info *fs_info; 1419 int error; 1420 1421 end_io_wq = container_of(work, struct end_io_wq, work); 1422 bio = end_io_wq->bio; 1423 fs_info = end_io_wq->info; 1424 1425 /* metadata bio reads are special because the whole tree block must 1426 * be checksummed at once. This makes sure the entire block is in 1427 * ram and up to date before trying to verify things. For 1428 * blocksize <= pagesize, it is basically a noop 1429 */ 1430 if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata && 1431 !bio_ready_for_csum(bio)) { 1432 btrfs_queue_worker(&fs_info->endio_meta_workers, 1433 &end_io_wq->work); 1434 return; 1435 } 1436 error = end_io_wq->error; 1437 bio->bi_private = end_io_wq->private; 1438 bio->bi_end_io = end_io_wq->end_io; 1439 kfree(end_io_wq); 1440 bio_endio(bio, error); 1441 } 1442 1443 static int cleaner_kthread(void *arg) 1444 { 1445 struct btrfs_root *root = arg; 1446 1447 do { 1448 smp_mb(); 1449 if (root->fs_info->closing) 1450 break; 1451 1452 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1453 mutex_lock(&root->fs_info->cleaner_mutex); 1454 btrfs_clean_old_snapshots(root); 1455 mutex_unlock(&root->fs_info->cleaner_mutex); 1456 1457 if (freezing(current)) { 1458 refrigerator(); 1459 } else { 1460 smp_mb(); 1461 if (root->fs_info->closing) 1462 break; 1463 set_current_state(TASK_INTERRUPTIBLE); 1464 schedule(); 1465 __set_current_state(TASK_RUNNING); 1466 } 1467 } while (!kthread_should_stop()); 1468 return 0; 1469 } 1470 1471 static int transaction_kthread(void *arg) 1472 { 1473 struct btrfs_root *root = arg; 1474 struct btrfs_trans_handle *trans; 1475 struct btrfs_transaction *cur; 1476 unsigned long now; 1477 unsigned long delay; 1478 int ret; 1479 1480 do { 1481 smp_mb(); 1482 if (root->fs_info->closing) 1483 break; 1484 1485 delay = HZ * 30; 1486 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1487 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1488 1489 mutex_lock(&root->fs_info->trans_mutex); 1490 cur = root->fs_info->running_transaction; 1491 if (!cur) { 1492 mutex_unlock(&root->fs_info->trans_mutex); 1493 goto sleep; 1494 } 1495 1496 now = get_seconds(); 1497 if (now < cur->start_time || now - cur->start_time < 30) { 1498 mutex_unlock(&root->fs_info->trans_mutex); 1499 delay = HZ * 5; 1500 goto sleep; 1501 } 1502 mutex_unlock(&root->fs_info->trans_mutex); 1503 trans = btrfs_start_transaction(root, 1); 1504 ret = btrfs_commit_transaction(trans, root); 1505 1506 sleep: 1507 wake_up_process(root->fs_info->cleaner_kthread); 1508 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1509 1510 if (freezing(current)) { 1511 refrigerator(); 1512 } else { 1513 if (root->fs_info->closing) 1514 break; 1515 set_current_state(TASK_INTERRUPTIBLE); 1516 schedule_timeout(delay); 1517 __set_current_state(TASK_RUNNING); 1518 } 1519 } while (!kthread_should_stop()); 1520 return 0; 1521 } 1522 1523 struct btrfs_root *open_ctree(struct super_block *sb, 1524 struct btrfs_fs_devices *fs_devices, 1525 char *options) 1526 { 1527 u32 sectorsize; 1528 u32 nodesize; 1529 u32 leafsize; 1530 u32 blocksize; 1531 u32 stripesize; 1532 u64 generation; 1533 u64 features; 1534 struct btrfs_key location; 1535 struct buffer_head *bh; 1536 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root), 1537 GFP_NOFS); 1538 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root), 1539 GFP_NOFS); 1540 struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root), 1541 GFP_NOFS); 1542 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info), 1543 GFP_NOFS); 1544 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root), 1545 GFP_NOFS); 1546 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root), 1547 GFP_NOFS); 1548 struct btrfs_root *log_tree_root; 1549 1550 int ret; 1551 int err = -EINVAL; 1552 1553 struct btrfs_super_block *disk_super; 1554 1555 if (!extent_root || !tree_root || !fs_info || 1556 !chunk_root || !dev_root || !csum_root) { 1557 err = -ENOMEM; 1558 goto fail; 1559 } 1560 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS); 1561 INIT_LIST_HEAD(&fs_info->trans_list); 1562 INIT_LIST_HEAD(&fs_info->dead_roots); 1563 INIT_LIST_HEAD(&fs_info->hashers); 1564 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 1565 INIT_LIST_HEAD(&fs_info->ordered_operations); 1566 spin_lock_init(&fs_info->delalloc_lock); 1567 spin_lock_init(&fs_info->new_trans_lock); 1568 spin_lock_init(&fs_info->ref_cache_lock); 1569 1570 init_completion(&fs_info->kobj_unregister); 1571 fs_info->tree_root = tree_root; 1572 fs_info->extent_root = extent_root; 1573 fs_info->csum_root = csum_root; 1574 fs_info->chunk_root = chunk_root; 1575 fs_info->dev_root = dev_root; 1576 fs_info->fs_devices = fs_devices; 1577 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 1578 INIT_LIST_HEAD(&fs_info->space_info); 1579 btrfs_mapping_init(&fs_info->mapping_tree); 1580 atomic_set(&fs_info->nr_async_submits, 0); 1581 atomic_set(&fs_info->async_delalloc_pages, 0); 1582 atomic_set(&fs_info->async_submit_draining, 0); 1583 atomic_set(&fs_info->nr_async_bios, 0); 1584 fs_info->sb = sb; 1585 fs_info->max_extent = (u64)-1; 1586 fs_info->max_inline = 8192 * 1024; 1587 if (setup_bdi(fs_info, &fs_info->bdi)) 1588 goto fail_bdi; 1589 fs_info->btree_inode = new_inode(sb); 1590 fs_info->btree_inode->i_ino = 1; 1591 fs_info->btree_inode->i_nlink = 1; 1592 fs_info->metadata_ratio = 8; 1593 1594 fs_info->thread_pool_size = min_t(unsigned long, 1595 num_online_cpus() + 2, 8); 1596 1597 INIT_LIST_HEAD(&fs_info->ordered_extents); 1598 spin_lock_init(&fs_info->ordered_extent_lock); 1599 1600 sb->s_blocksize = 4096; 1601 sb->s_blocksize_bits = blksize_bits(4096); 1602 1603 /* 1604 * we set the i_size on the btree inode to the max possible int. 1605 * the real end of the address space is determined by all of 1606 * the devices in the system 1607 */ 1608 fs_info->btree_inode->i_size = OFFSET_MAX; 1609 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 1610 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 1611 1612 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 1613 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 1614 fs_info->btree_inode->i_mapping, 1615 GFP_NOFS); 1616 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree, 1617 GFP_NOFS); 1618 1619 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 1620 1621 spin_lock_init(&fs_info->block_group_cache_lock); 1622 fs_info->block_group_cache_tree.rb_node = NULL; 1623 1624 extent_io_tree_init(&fs_info->pinned_extents, 1625 fs_info->btree_inode->i_mapping, GFP_NOFS); 1626 fs_info->do_barriers = 1; 1627 1628 BTRFS_I(fs_info->btree_inode)->root = tree_root; 1629 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 1630 sizeof(struct btrfs_key)); 1631 insert_inode_hash(fs_info->btree_inode); 1632 1633 mutex_init(&fs_info->trans_mutex); 1634 mutex_init(&fs_info->ordered_operations_mutex); 1635 mutex_init(&fs_info->tree_log_mutex); 1636 mutex_init(&fs_info->drop_mutex); 1637 mutex_init(&fs_info->chunk_mutex); 1638 mutex_init(&fs_info->transaction_kthread_mutex); 1639 mutex_init(&fs_info->cleaner_mutex); 1640 mutex_init(&fs_info->volume_mutex); 1641 mutex_init(&fs_info->tree_reloc_mutex); 1642 1643 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 1644 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 1645 1646 init_waitqueue_head(&fs_info->transaction_throttle); 1647 init_waitqueue_head(&fs_info->transaction_wait); 1648 init_waitqueue_head(&fs_info->async_submit_wait); 1649 1650 __setup_root(4096, 4096, 4096, 4096, tree_root, 1651 fs_info, BTRFS_ROOT_TREE_OBJECTID); 1652 1653 1654 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 1655 if (!bh) 1656 goto fail_iput; 1657 1658 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy)); 1659 memcpy(&fs_info->super_for_commit, &fs_info->super_copy, 1660 sizeof(fs_info->super_for_commit)); 1661 brelse(bh); 1662 1663 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE); 1664 1665 disk_super = &fs_info->super_copy; 1666 if (!btrfs_super_root(disk_super)) 1667 goto fail_iput; 1668 1669 ret = btrfs_parse_options(tree_root, options); 1670 if (ret) { 1671 err = ret; 1672 goto fail_iput; 1673 } 1674 1675 features = btrfs_super_incompat_flags(disk_super) & 1676 ~BTRFS_FEATURE_INCOMPAT_SUPP; 1677 if (features) { 1678 printk(KERN_ERR "BTRFS: couldn't mount because of " 1679 "unsupported optional features (%Lx).\n", 1680 (unsigned long long)features); 1681 err = -EINVAL; 1682 goto fail_iput; 1683 } 1684 1685 features = btrfs_super_incompat_flags(disk_super); 1686 if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) { 1687 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 1688 btrfs_set_super_incompat_flags(disk_super, features); 1689 } 1690 1691 features = btrfs_super_compat_ro_flags(disk_super) & 1692 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 1693 if (!(sb->s_flags & MS_RDONLY) && features) { 1694 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 1695 "unsupported option features (%Lx).\n", 1696 (unsigned long long)features); 1697 err = -EINVAL; 1698 goto fail_iput; 1699 } 1700 1701 /* 1702 * we need to start all the end_io workers up front because the 1703 * queue work function gets called at interrupt time, and so it 1704 * cannot dynamically grow. 1705 */ 1706 btrfs_init_workers(&fs_info->workers, "worker", 1707 fs_info->thread_pool_size); 1708 1709 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 1710 fs_info->thread_pool_size); 1711 1712 btrfs_init_workers(&fs_info->submit_workers, "submit", 1713 min_t(u64, fs_devices->num_devices, 1714 fs_info->thread_pool_size)); 1715 1716 /* a higher idle thresh on the submit workers makes it much more 1717 * likely that bios will be send down in a sane order to the 1718 * devices 1719 */ 1720 fs_info->submit_workers.idle_thresh = 64; 1721 1722 fs_info->workers.idle_thresh = 16; 1723 fs_info->workers.ordered = 1; 1724 1725 fs_info->delalloc_workers.idle_thresh = 2; 1726 fs_info->delalloc_workers.ordered = 1; 1727 1728 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1); 1729 btrfs_init_workers(&fs_info->endio_workers, "endio", 1730 fs_info->thread_pool_size); 1731 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 1732 fs_info->thread_pool_size); 1733 btrfs_init_workers(&fs_info->endio_meta_write_workers, 1734 "endio-meta-write", fs_info->thread_pool_size); 1735 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 1736 fs_info->thread_pool_size); 1737 1738 /* 1739 * endios are largely parallel and should have a very 1740 * low idle thresh 1741 */ 1742 fs_info->endio_workers.idle_thresh = 4; 1743 fs_info->endio_meta_workers.idle_thresh = 4; 1744 1745 fs_info->endio_write_workers.idle_thresh = 64; 1746 fs_info->endio_meta_write_workers.idle_thresh = 64; 1747 1748 btrfs_start_workers(&fs_info->workers, 1); 1749 btrfs_start_workers(&fs_info->submit_workers, 1); 1750 btrfs_start_workers(&fs_info->delalloc_workers, 1); 1751 btrfs_start_workers(&fs_info->fixup_workers, 1); 1752 btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size); 1753 btrfs_start_workers(&fs_info->endio_meta_workers, 1754 fs_info->thread_pool_size); 1755 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1756 fs_info->thread_pool_size); 1757 btrfs_start_workers(&fs_info->endio_write_workers, 1758 fs_info->thread_pool_size); 1759 1760 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 1761 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 1762 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 1763 1764 nodesize = btrfs_super_nodesize(disk_super); 1765 leafsize = btrfs_super_leafsize(disk_super); 1766 sectorsize = btrfs_super_sectorsize(disk_super); 1767 stripesize = btrfs_super_stripesize(disk_super); 1768 tree_root->nodesize = nodesize; 1769 tree_root->leafsize = leafsize; 1770 tree_root->sectorsize = sectorsize; 1771 tree_root->stripesize = stripesize; 1772 1773 sb->s_blocksize = sectorsize; 1774 sb->s_blocksize_bits = blksize_bits(sectorsize); 1775 1776 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 1777 sizeof(disk_super->magic))) { 1778 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 1779 goto fail_sb_buffer; 1780 } 1781 1782 mutex_lock(&fs_info->chunk_mutex); 1783 ret = btrfs_read_sys_array(tree_root); 1784 mutex_unlock(&fs_info->chunk_mutex); 1785 if (ret) { 1786 printk(KERN_WARNING "btrfs: failed to read the system " 1787 "array on %s\n", sb->s_id); 1788 goto fail_sb_buffer; 1789 } 1790 1791 blocksize = btrfs_level_size(tree_root, 1792 btrfs_super_chunk_root_level(disk_super)); 1793 generation = btrfs_super_chunk_root_generation(disk_super); 1794 1795 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1796 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 1797 1798 chunk_root->node = read_tree_block(chunk_root, 1799 btrfs_super_chunk_root(disk_super), 1800 blocksize, generation); 1801 BUG_ON(!chunk_root->node); 1802 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 1803 chunk_root->commit_root = btrfs_root_node(chunk_root); 1804 1805 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 1806 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 1807 BTRFS_UUID_SIZE); 1808 1809 mutex_lock(&fs_info->chunk_mutex); 1810 ret = btrfs_read_chunk_tree(chunk_root); 1811 mutex_unlock(&fs_info->chunk_mutex); 1812 if (ret) { 1813 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 1814 sb->s_id); 1815 goto fail_chunk_root; 1816 } 1817 1818 btrfs_close_extra_devices(fs_devices); 1819 1820 blocksize = btrfs_level_size(tree_root, 1821 btrfs_super_root_level(disk_super)); 1822 generation = btrfs_super_generation(disk_super); 1823 1824 tree_root->node = read_tree_block(tree_root, 1825 btrfs_super_root(disk_super), 1826 blocksize, generation); 1827 if (!tree_root->node) 1828 goto fail_chunk_root; 1829 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 1830 tree_root->commit_root = btrfs_root_node(tree_root); 1831 1832 ret = find_and_setup_root(tree_root, fs_info, 1833 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 1834 if (ret) 1835 goto fail_tree_root; 1836 extent_root->track_dirty = 1; 1837 1838 ret = find_and_setup_root(tree_root, fs_info, 1839 BTRFS_DEV_TREE_OBJECTID, dev_root); 1840 if (ret) 1841 goto fail_extent_root; 1842 dev_root->track_dirty = 1; 1843 1844 ret = find_and_setup_root(tree_root, fs_info, 1845 BTRFS_CSUM_TREE_OBJECTID, csum_root); 1846 if (ret) 1847 goto fail_dev_root; 1848 1849 csum_root->track_dirty = 1; 1850 1851 btrfs_read_block_groups(extent_root); 1852 1853 fs_info->generation = generation; 1854 fs_info->last_trans_committed = generation; 1855 fs_info->data_alloc_profile = (u64)-1; 1856 fs_info->metadata_alloc_profile = (u64)-1; 1857 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile; 1858 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 1859 "btrfs-cleaner"); 1860 if (IS_ERR(fs_info->cleaner_kthread)) 1861 goto fail_csum_root; 1862 1863 fs_info->transaction_kthread = kthread_run(transaction_kthread, 1864 tree_root, 1865 "btrfs-transaction"); 1866 if (IS_ERR(fs_info->transaction_kthread)) 1867 goto fail_cleaner; 1868 1869 if (!btrfs_test_opt(tree_root, SSD) && 1870 !btrfs_test_opt(tree_root, NOSSD) && 1871 !fs_info->fs_devices->rotating) { 1872 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 1873 "mode\n"); 1874 btrfs_set_opt(fs_info->mount_opt, SSD); 1875 } 1876 1877 if (btrfs_super_log_root(disk_super) != 0) { 1878 u64 bytenr = btrfs_super_log_root(disk_super); 1879 1880 if (fs_devices->rw_devices == 0) { 1881 printk(KERN_WARNING "Btrfs log replay required " 1882 "on RO media\n"); 1883 err = -EIO; 1884 goto fail_trans_kthread; 1885 } 1886 blocksize = 1887 btrfs_level_size(tree_root, 1888 btrfs_super_log_root_level(disk_super)); 1889 1890 log_tree_root = kzalloc(sizeof(struct btrfs_root), 1891 GFP_NOFS); 1892 1893 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1894 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1895 1896 log_tree_root->node = read_tree_block(tree_root, bytenr, 1897 blocksize, 1898 generation + 1); 1899 ret = btrfs_recover_log_trees(log_tree_root); 1900 BUG_ON(ret); 1901 1902 if (sb->s_flags & MS_RDONLY) { 1903 ret = btrfs_commit_super(tree_root); 1904 BUG_ON(ret); 1905 } 1906 } 1907 1908 if (!(sb->s_flags & MS_RDONLY)) { 1909 ret = btrfs_recover_relocation(tree_root); 1910 BUG_ON(ret); 1911 } 1912 1913 location.objectid = BTRFS_FS_TREE_OBJECTID; 1914 location.type = BTRFS_ROOT_ITEM_KEY; 1915 location.offset = (u64)-1; 1916 1917 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 1918 if (!fs_info->fs_root) 1919 goto fail_trans_kthread; 1920 1921 return tree_root; 1922 1923 fail_trans_kthread: 1924 kthread_stop(fs_info->transaction_kthread); 1925 fail_cleaner: 1926 kthread_stop(fs_info->cleaner_kthread); 1927 1928 /* 1929 * make sure we're done with the btree inode before we stop our 1930 * kthreads 1931 */ 1932 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 1933 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 1934 1935 fail_csum_root: 1936 free_extent_buffer(csum_root->node); 1937 free_extent_buffer(csum_root->commit_root); 1938 fail_dev_root: 1939 free_extent_buffer(dev_root->node); 1940 free_extent_buffer(dev_root->commit_root); 1941 fail_extent_root: 1942 free_extent_buffer(extent_root->node); 1943 free_extent_buffer(extent_root->commit_root); 1944 fail_tree_root: 1945 free_extent_buffer(tree_root->node); 1946 free_extent_buffer(tree_root->commit_root); 1947 fail_chunk_root: 1948 free_extent_buffer(chunk_root->node); 1949 free_extent_buffer(chunk_root->commit_root); 1950 fail_sb_buffer: 1951 btrfs_stop_workers(&fs_info->fixup_workers); 1952 btrfs_stop_workers(&fs_info->delalloc_workers); 1953 btrfs_stop_workers(&fs_info->workers); 1954 btrfs_stop_workers(&fs_info->endio_workers); 1955 btrfs_stop_workers(&fs_info->endio_meta_workers); 1956 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 1957 btrfs_stop_workers(&fs_info->endio_write_workers); 1958 btrfs_stop_workers(&fs_info->submit_workers); 1959 fail_iput: 1960 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 1961 iput(fs_info->btree_inode); 1962 1963 btrfs_close_devices(fs_info->fs_devices); 1964 btrfs_mapping_tree_free(&fs_info->mapping_tree); 1965 fail_bdi: 1966 bdi_destroy(&fs_info->bdi); 1967 fail: 1968 kfree(extent_root); 1969 kfree(tree_root); 1970 kfree(fs_info); 1971 kfree(chunk_root); 1972 kfree(dev_root); 1973 kfree(csum_root); 1974 return ERR_PTR(err); 1975 } 1976 1977 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 1978 { 1979 char b[BDEVNAME_SIZE]; 1980 1981 if (uptodate) { 1982 set_buffer_uptodate(bh); 1983 } else { 1984 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { 1985 printk(KERN_WARNING "lost page write due to " 1986 "I/O error on %s\n", 1987 bdevname(bh->b_bdev, b)); 1988 } 1989 /* note, we dont' set_buffer_write_io_error because we have 1990 * our own ways of dealing with the IO errors 1991 */ 1992 clear_buffer_uptodate(bh); 1993 } 1994 unlock_buffer(bh); 1995 put_bh(bh); 1996 } 1997 1998 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 1999 { 2000 struct buffer_head *bh; 2001 struct buffer_head *latest = NULL; 2002 struct btrfs_super_block *super; 2003 int i; 2004 u64 transid = 0; 2005 u64 bytenr; 2006 2007 /* we would like to check all the supers, but that would make 2008 * a btrfs mount succeed after a mkfs from a different FS. 2009 * So, we need to add a special mount option to scan for 2010 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 2011 */ 2012 for (i = 0; i < 1; i++) { 2013 bytenr = btrfs_sb_offset(i); 2014 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 2015 break; 2016 bh = __bread(bdev, bytenr / 4096, 4096); 2017 if (!bh) 2018 continue; 2019 2020 super = (struct btrfs_super_block *)bh->b_data; 2021 if (btrfs_super_bytenr(super) != bytenr || 2022 strncmp((char *)(&super->magic), BTRFS_MAGIC, 2023 sizeof(super->magic))) { 2024 brelse(bh); 2025 continue; 2026 } 2027 2028 if (!latest || btrfs_super_generation(super) > transid) { 2029 brelse(latest); 2030 latest = bh; 2031 transid = btrfs_super_generation(super); 2032 } else { 2033 brelse(bh); 2034 } 2035 } 2036 return latest; 2037 } 2038 2039 /* 2040 * this should be called twice, once with wait == 0 and 2041 * once with wait == 1. When wait == 0 is done, all the buffer heads 2042 * we write are pinned. 2043 * 2044 * They are released when wait == 1 is done. 2045 * max_mirrors must be the same for both runs, and it indicates how 2046 * many supers on this one device should be written. 2047 * 2048 * max_mirrors == 0 means to write them all. 2049 */ 2050 static int write_dev_supers(struct btrfs_device *device, 2051 struct btrfs_super_block *sb, 2052 int do_barriers, int wait, int max_mirrors) 2053 { 2054 struct buffer_head *bh; 2055 int i; 2056 int ret; 2057 int errors = 0; 2058 u32 crc; 2059 u64 bytenr; 2060 int last_barrier = 0; 2061 2062 if (max_mirrors == 0) 2063 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2064 2065 /* make sure only the last submit_bh does a barrier */ 2066 if (do_barriers) { 2067 for (i = 0; i < max_mirrors; i++) { 2068 bytenr = btrfs_sb_offset(i); 2069 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 2070 device->total_bytes) 2071 break; 2072 last_barrier = i; 2073 } 2074 } 2075 2076 for (i = 0; i < max_mirrors; i++) { 2077 bytenr = btrfs_sb_offset(i); 2078 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2079 break; 2080 2081 if (wait) { 2082 bh = __find_get_block(device->bdev, bytenr / 4096, 2083 BTRFS_SUPER_INFO_SIZE); 2084 BUG_ON(!bh); 2085 wait_on_buffer(bh); 2086 if (!buffer_uptodate(bh)) 2087 errors++; 2088 2089 /* drop our reference */ 2090 brelse(bh); 2091 2092 /* drop the reference from the wait == 0 run */ 2093 brelse(bh); 2094 continue; 2095 } else { 2096 btrfs_set_super_bytenr(sb, bytenr); 2097 2098 crc = ~(u32)0; 2099 crc = btrfs_csum_data(NULL, (char *)sb + 2100 BTRFS_CSUM_SIZE, crc, 2101 BTRFS_SUPER_INFO_SIZE - 2102 BTRFS_CSUM_SIZE); 2103 btrfs_csum_final(crc, sb->csum); 2104 2105 /* 2106 * one reference for us, and we leave it for the 2107 * caller 2108 */ 2109 bh = __getblk(device->bdev, bytenr / 4096, 2110 BTRFS_SUPER_INFO_SIZE); 2111 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2112 2113 /* one reference for submit_bh */ 2114 get_bh(bh); 2115 2116 set_buffer_uptodate(bh); 2117 lock_buffer(bh); 2118 bh->b_end_io = btrfs_end_buffer_write_sync; 2119 } 2120 2121 if (i == last_barrier && do_barriers && device->barriers) { 2122 ret = submit_bh(WRITE_BARRIER, bh); 2123 if (ret == -EOPNOTSUPP) { 2124 printk("btrfs: disabling barriers on dev %s\n", 2125 device->name); 2126 set_buffer_uptodate(bh); 2127 device->barriers = 0; 2128 /* one reference for submit_bh */ 2129 get_bh(bh); 2130 lock_buffer(bh); 2131 ret = submit_bh(WRITE_SYNC, bh); 2132 } 2133 } else { 2134 ret = submit_bh(WRITE_SYNC, bh); 2135 } 2136 2137 if (ret) 2138 errors++; 2139 } 2140 return errors < i ? 0 : -1; 2141 } 2142 2143 int write_all_supers(struct btrfs_root *root, int max_mirrors) 2144 { 2145 struct list_head *head; 2146 struct btrfs_device *dev; 2147 struct btrfs_super_block *sb; 2148 struct btrfs_dev_item *dev_item; 2149 int ret; 2150 int do_barriers; 2151 int max_errors; 2152 int total_errors = 0; 2153 u64 flags; 2154 2155 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1; 2156 do_barriers = !btrfs_test_opt(root, NOBARRIER); 2157 2158 sb = &root->fs_info->super_for_commit; 2159 dev_item = &sb->dev_item; 2160 2161 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2162 head = &root->fs_info->fs_devices->devices; 2163 list_for_each_entry(dev, head, dev_list) { 2164 if (!dev->bdev) { 2165 total_errors++; 2166 continue; 2167 } 2168 if (!dev->in_fs_metadata || !dev->writeable) 2169 continue; 2170 2171 btrfs_set_stack_device_generation(dev_item, 0); 2172 btrfs_set_stack_device_type(dev_item, dev->type); 2173 btrfs_set_stack_device_id(dev_item, dev->devid); 2174 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 2175 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 2176 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 2177 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 2178 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 2179 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 2180 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2181 2182 flags = btrfs_super_flags(sb); 2183 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 2184 2185 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 2186 if (ret) 2187 total_errors++; 2188 } 2189 if (total_errors > max_errors) { 2190 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2191 total_errors); 2192 BUG(); 2193 } 2194 2195 total_errors = 0; 2196 list_for_each_entry(dev, head, dev_list) { 2197 if (!dev->bdev) 2198 continue; 2199 if (!dev->in_fs_metadata || !dev->writeable) 2200 continue; 2201 2202 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 2203 if (ret) 2204 total_errors++; 2205 } 2206 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2207 if (total_errors > max_errors) { 2208 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2209 total_errors); 2210 BUG(); 2211 } 2212 return 0; 2213 } 2214 2215 int write_ctree_super(struct btrfs_trans_handle *trans, 2216 struct btrfs_root *root, int max_mirrors) 2217 { 2218 int ret; 2219 2220 ret = write_all_supers(root, max_mirrors); 2221 return ret; 2222 } 2223 2224 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2225 { 2226 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2227 radix_tree_delete(&fs_info->fs_roots_radix, 2228 (unsigned long)root->root_key.objectid); 2229 if (root->anon_super.s_dev) { 2230 down_write(&root->anon_super.s_umount); 2231 kill_anon_super(&root->anon_super); 2232 } 2233 if (root->node) 2234 free_extent_buffer(root->node); 2235 if (root->commit_root) 2236 free_extent_buffer(root->commit_root); 2237 kfree(root->name); 2238 kfree(root); 2239 return 0; 2240 } 2241 2242 static int del_fs_roots(struct btrfs_fs_info *fs_info) 2243 { 2244 int ret; 2245 struct btrfs_root *gang[8]; 2246 int i; 2247 2248 while (1) { 2249 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2250 (void **)gang, 0, 2251 ARRAY_SIZE(gang)); 2252 if (!ret) 2253 break; 2254 for (i = 0; i < ret; i++) 2255 btrfs_free_fs_root(fs_info, gang[i]); 2256 } 2257 return 0; 2258 } 2259 2260 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2261 { 2262 u64 root_objectid = 0; 2263 struct btrfs_root *gang[8]; 2264 int i; 2265 int ret; 2266 2267 while (1) { 2268 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2269 (void **)gang, root_objectid, 2270 ARRAY_SIZE(gang)); 2271 if (!ret) 2272 break; 2273 2274 root_objectid = gang[ret - 1]->root_key.objectid + 1; 2275 for (i = 0; i < ret; i++) { 2276 root_objectid = gang[i]->root_key.objectid; 2277 ret = btrfs_find_dead_roots(fs_info->tree_root, 2278 root_objectid); 2279 BUG_ON(ret); 2280 btrfs_orphan_cleanup(gang[i]); 2281 } 2282 root_objectid++; 2283 } 2284 return 0; 2285 } 2286 2287 int btrfs_commit_super(struct btrfs_root *root) 2288 { 2289 struct btrfs_trans_handle *trans; 2290 int ret; 2291 2292 mutex_lock(&root->fs_info->cleaner_mutex); 2293 btrfs_clean_old_snapshots(root); 2294 mutex_unlock(&root->fs_info->cleaner_mutex); 2295 trans = btrfs_start_transaction(root, 1); 2296 ret = btrfs_commit_transaction(trans, root); 2297 BUG_ON(ret); 2298 /* run commit again to drop the original snapshot */ 2299 trans = btrfs_start_transaction(root, 1); 2300 btrfs_commit_transaction(trans, root); 2301 ret = btrfs_write_and_wait_transaction(NULL, root); 2302 BUG_ON(ret); 2303 2304 ret = write_ctree_super(NULL, root, 0); 2305 return ret; 2306 } 2307 2308 int close_ctree(struct btrfs_root *root) 2309 { 2310 struct btrfs_fs_info *fs_info = root->fs_info; 2311 int ret; 2312 2313 fs_info->closing = 1; 2314 smp_mb(); 2315 2316 kthread_stop(root->fs_info->transaction_kthread); 2317 kthread_stop(root->fs_info->cleaner_kthread); 2318 2319 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 2320 ret = btrfs_commit_super(root); 2321 if (ret) 2322 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 2323 } 2324 2325 if (fs_info->delalloc_bytes) { 2326 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 2327 (unsigned long long)fs_info->delalloc_bytes); 2328 } 2329 if (fs_info->total_ref_cache_size) { 2330 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", 2331 (unsigned long long)fs_info->total_ref_cache_size); 2332 } 2333 2334 free_extent_buffer(fs_info->extent_root->node); 2335 free_extent_buffer(fs_info->extent_root->commit_root); 2336 free_extent_buffer(fs_info->tree_root->node); 2337 free_extent_buffer(fs_info->tree_root->commit_root); 2338 free_extent_buffer(root->fs_info->chunk_root->node); 2339 free_extent_buffer(root->fs_info->chunk_root->commit_root); 2340 free_extent_buffer(root->fs_info->dev_root->node); 2341 free_extent_buffer(root->fs_info->dev_root->commit_root); 2342 free_extent_buffer(root->fs_info->csum_root->node); 2343 free_extent_buffer(root->fs_info->csum_root->commit_root); 2344 2345 btrfs_free_block_groups(root->fs_info); 2346 2347 del_fs_roots(fs_info); 2348 2349 iput(fs_info->btree_inode); 2350 2351 btrfs_stop_workers(&fs_info->fixup_workers); 2352 btrfs_stop_workers(&fs_info->delalloc_workers); 2353 btrfs_stop_workers(&fs_info->workers); 2354 btrfs_stop_workers(&fs_info->endio_workers); 2355 btrfs_stop_workers(&fs_info->endio_meta_workers); 2356 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2357 btrfs_stop_workers(&fs_info->endio_write_workers); 2358 btrfs_stop_workers(&fs_info->submit_workers); 2359 2360 btrfs_close_devices(fs_info->fs_devices); 2361 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2362 2363 bdi_destroy(&fs_info->bdi); 2364 2365 kfree(fs_info->extent_root); 2366 kfree(fs_info->tree_root); 2367 kfree(fs_info->chunk_root); 2368 kfree(fs_info->dev_root); 2369 kfree(fs_info->csum_root); 2370 return 0; 2371 } 2372 2373 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) 2374 { 2375 int ret; 2376 struct inode *btree_inode = buf->first_page->mapping->host; 2377 2378 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf); 2379 if (!ret) 2380 return ret; 2381 2382 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 2383 parent_transid); 2384 return !ret; 2385 } 2386 2387 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 2388 { 2389 struct inode *btree_inode = buf->first_page->mapping->host; 2390 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, 2391 buf); 2392 } 2393 2394 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 2395 { 2396 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2397 u64 transid = btrfs_header_generation(buf); 2398 struct inode *btree_inode = root->fs_info->btree_inode; 2399 int was_dirty; 2400 2401 btrfs_assert_tree_locked(buf); 2402 if (transid != root->fs_info->generation) { 2403 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 2404 "found %llu running %llu\n", 2405 (unsigned long long)buf->start, 2406 (unsigned long long)transid, 2407 (unsigned long long)root->fs_info->generation); 2408 WARN_ON(1); 2409 } 2410 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 2411 buf); 2412 if (!was_dirty) { 2413 spin_lock(&root->fs_info->delalloc_lock); 2414 root->fs_info->dirty_metadata_bytes += buf->len; 2415 spin_unlock(&root->fs_info->delalloc_lock); 2416 } 2417 } 2418 2419 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 2420 { 2421 /* 2422 * looks as though older kernels can get into trouble with 2423 * this code, they end up stuck in balance_dirty_pages forever 2424 */ 2425 u64 num_dirty; 2426 unsigned long thresh = 32 * 1024 * 1024; 2427 2428 if (current->flags & PF_MEMALLOC) 2429 return; 2430 2431 num_dirty = root->fs_info->dirty_metadata_bytes; 2432 2433 if (num_dirty > thresh) { 2434 balance_dirty_pages_ratelimited_nr( 2435 root->fs_info->btree_inode->i_mapping, 1); 2436 } 2437 return; 2438 } 2439 2440 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 2441 { 2442 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2443 int ret; 2444 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 2445 if (ret == 0) 2446 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 2447 return ret; 2448 } 2449 2450 int btree_lock_page_hook(struct page *page) 2451 { 2452 struct inode *inode = page->mapping->host; 2453 struct btrfs_root *root = BTRFS_I(inode)->root; 2454 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2455 struct extent_buffer *eb; 2456 unsigned long len; 2457 u64 bytenr = page_offset(page); 2458 2459 if (page->private == EXTENT_PAGE_PRIVATE) 2460 goto out; 2461 2462 len = page->private >> 2; 2463 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS); 2464 if (!eb) 2465 goto out; 2466 2467 btrfs_tree_lock(eb); 2468 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 2469 2470 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 2471 spin_lock(&root->fs_info->delalloc_lock); 2472 if (root->fs_info->dirty_metadata_bytes >= eb->len) 2473 root->fs_info->dirty_metadata_bytes -= eb->len; 2474 else 2475 WARN_ON(1); 2476 spin_unlock(&root->fs_info->delalloc_lock); 2477 } 2478 2479 btrfs_tree_unlock(eb); 2480 free_extent_buffer(eb); 2481 out: 2482 lock_page(page); 2483 return 0; 2484 } 2485 2486 static struct extent_io_ops btree_extent_io_ops = { 2487 .write_cache_pages_lock_hook = btree_lock_page_hook, 2488 .readpage_end_io_hook = btree_readpage_end_io_hook, 2489 .submit_bio_hook = btree_submit_bio_hook, 2490 /* note we're sharing with inode.c for the merge bio hook */ 2491 .merge_bio_hook = btrfs_merge_bio_hook, 2492 }; 2493