xref: /linux/fs/btrfs/disk-io.c (revision 5bdef865eb358b6f3760e25e591ae115e9eeddef)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include "compat.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "volumes.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
38 #include "locking.h"
39 #include "tree-log.h"
40 #include "free-space-cache.h"
41 
42 static struct extent_io_ops btree_extent_io_ops;
43 static void end_workqueue_fn(struct btrfs_work *work);
44 
45 static atomic_t btrfs_bdi_num = ATOMIC_INIT(0);
46 
47 /*
48  * end_io_wq structs are used to do processing in task context when an IO is
49  * complete.  This is used during reads to verify checksums, and it is used
50  * by writes to insert metadata for new file extents after IO is complete.
51  */
52 struct end_io_wq {
53 	struct bio *bio;
54 	bio_end_io_t *end_io;
55 	void *private;
56 	struct btrfs_fs_info *info;
57 	int error;
58 	int metadata;
59 	struct list_head list;
60 	struct btrfs_work work;
61 };
62 
63 /*
64  * async submit bios are used to offload expensive checksumming
65  * onto the worker threads.  They checksum file and metadata bios
66  * just before they are sent down the IO stack.
67  */
68 struct async_submit_bio {
69 	struct inode *inode;
70 	struct bio *bio;
71 	struct list_head list;
72 	extent_submit_bio_hook_t *submit_bio_start;
73 	extent_submit_bio_hook_t *submit_bio_done;
74 	int rw;
75 	int mirror_num;
76 	unsigned long bio_flags;
77 	struct btrfs_work work;
78 };
79 
80 /* These are used to set the lockdep class on the extent buffer locks.
81  * The class is set by the readpage_end_io_hook after the buffer has
82  * passed csum validation but before the pages are unlocked.
83  *
84  * The lockdep class is also set by btrfs_init_new_buffer on freshly
85  * allocated blocks.
86  *
87  * The class is based on the level in the tree block, which allows lockdep
88  * to know that lower nodes nest inside the locks of higher nodes.
89  *
90  * We also add a check to make sure the highest level of the tree is
91  * the same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this
92  * code needs update as well.
93  */
94 #ifdef CONFIG_DEBUG_LOCK_ALLOC
95 # if BTRFS_MAX_LEVEL != 8
96 #  error
97 # endif
98 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
99 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
100 	/* leaf */
101 	"btrfs-extent-00",
102 	"btrfs-extent-01",
103 	"btrfs-extent-02",
104 	"btrfs-extent-03",
105 	"btrfs-extent-04",
106 	"btrfs-extent-05",
107 	"btrfs-extent-06",
108 	"btrfs-extent-07",
109 	/* highest possible level */
110 	"btrfs-extent-08",
111 };
112 #endif
113 
114 /*
115  * extents on the btree inode are pretty simple, there's one extent
116  * that covers the entire device
117  */
118 static struct extent_map *btree_get_extent(struct inode *inode,
119 		struct page *page, size_t page_offset, u64 start, u64 len,
120 		int create)
121 {
122 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
123 	struct extent_map *em;
124 	int ret;
125 
126 	spin_lock(&em_tree->lock);
127 	em = lookup_extent_mapping(em_tree, start, len);
128 	if (em) {
129 		em->bdev =
130 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
131 		spin_unlock(&em_tree->lock);
132 		goto out;
133 	}
134 	spin_unlock(&em_tree->lock);
135 
136 	em = alloc_extent_map(GFP_NOFS);
137 	if (!em) {
138 		em = ERR_PTR(-ENOMEM);
139 		goto out;
140 	}
141 	em->start = 0;
142 	em->len = (u64)-1;
143 	em->block_len = (u64)-1;
144 	em->block_start = 0;
145 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
146 
147 	spin_lock(&em_tree->lock);
148 	ret = add_extent_mapping(em_tree, em);
149 	if (ret == -EEXIST) {
150 		u64 failed_start = em->start;
151 		u64 failed_len = em->len;
152 
153 		free_extent_map(em);
154 		em = lookup_extent_mapping(em_tree, start, len);
155 		if (em) {
156 			ret = 0;
157 		} else {
158 			em = lookup_extent_mapping(em_tree, failed_start,
159 						   failed_len);
160 			ret = -EIO;
161 		}
162 	} else if (ret) {
163 		free_extent_map(em);
164 		em = NULL;
165 	}
166 	spin_unlock(&em_tree->lock);
167 
168 	if (ret)
169 		em = ERR_PTR(ret);
170 out:
171 	return em;
172 }
173 
174 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
175 {
176 	return crc32c(seed, data, len);
177 }
178 
179 void btrfs_csum_final(u32 crc, char *result)
180 {
181 	*(__le32 *)result = ~cpu_to_le32(crc);
182 }
183 
184 /*
185  * compute the csum for a btree block, and either verify it or write it
186  * into the csum field of the block.
187  */
188 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
189 			   int verify)
190 {
191 	u16 csum_size =
192 		btrfs_super_csum_size(&root->fs_info->super_copy);
193 	char *result = NULL;
194 	unsigned long len;
195 	unsigned long cur_len;
196 	unsigned long offset = BTRFS_CSUM_SIZE;
197 	char *map_token = NULL;
198 	char *kaddr;
199 	unsigned long map_start;
200 	unsigned long map_len;
201 	int err;
202 	u32 crc = ~(u32)0;
203 	unsigned long inline_result;
204 
205 	len = buf->len - offset;
206 	while (len > 0) {
207 		err = map_private_extent_buffer(buf, offset, 32,
208 					&map_token, &kaddr,
209 					&map_start, &map_len, KM_USER0);
210 		if (err)
211 			return 1;
212 		cur_len = min(len, map_len - (offset - map_start));
213 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
214 				      crc, cur_len);
215 		len -= cur_len;
216 		offset += cur_len;
217 		unmap_extent_buffer(buf, map_token, KM_USER0);
218 	}
219 	if (csum_size > sizeof(inline_result)) {
220 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
221 		if (!result)
222 			return 1;
223 	} else {
224 		result = (char *)&inline_result;
225 	}
226 
227 	btrfs_csum_final(crc, result);
228 
229 	if (verify) {
230 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
231 			u32 val;
232 			u32 found = 0;
233 			memcpy(&found, result, csum_size);
234 
235 			read_extent_buffer(buf, &val, 0, csum_size);
236 			if (printk_ratelimit()) {
237 				printk(KERN_INFO "btrfs: %s checksum verify "
238 				       "failed on %llu wanted %X found %X "
239 				       "level %d\n",
240 				       root->fs_info->sb->s_id,
241 				       (unsigned long long)buf->start, val, found,
242 				       btrfs_header_level(buf));
243 			}
244 			if (result != (char *)&inline_result)
245 				kfree(result);
246 			return 1;
247 		}
248 	} else {
249 		write_extent_buffer(buf, result, 0, csum_size);
250 	}
251 	if (result != (char *)&inline_result)
252 		kfree(result);
253 	return 0;
254 }
255 
256 /*
257  * we can't consider a given block up to date unless the transid of the
258  * block matches the transid in the parent node's pointer.  This is how we
259  * detect blocks that either didn't get written at all or got written
260  * in the wrong place.
261  */
262 static int verify_parent_transid(struct extent_io_tree *io_tree,
263 				 struct extent_buffer *eb, u64 parent_transid)
264 {
265 	int ret;
266 
267 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
268 		return 0;
269 
270 	lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
271 	if (extent_buffer_uptodate(io_tree, eb) &&
272 	    btrfs_header_generation(eb) == parent_transid) {
273 		ret = 0;
274 		goto out;
275 	}
276 	if (printk_ratelimit()) {
277 		printk("parent transid verify failed on %llu wanted %llu "
278 		       "found %llu\n",
279 		       (unsigned long long)eb->start,
280 		       (unsigned long long)parent_transid,
281 		       (unsigned long long)btrfs_header_generation(eb));
282 	}
283 	ret = 1;
284 	clear_extent_buffer_uptodate(io_tree, eb);
285 out:
286 	unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
287 		      GFP_NOFS);
288 	return ret;
289 }
290 
291 /*
292  * helper to read a given tree block, doing retries as required when
293  * the checksums don't match and we have alternate mirrors to try.
294  */
295 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
296 					  struct extent_buffer *eb,
297 					  u64 start, u64 parent_transid)
298 {
299 	struct extent_io_tree *io_tree;
300 	int ret;
301 	int num_copies = 0;
302 	int mirror_num = 0;
303 
304 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
305 	while (1) {
306 		ret = read_extent_buffer_pages(io_tree, eb, start, 1,
307 					       btree_get_extent, mirror_num);
308 		if (!ret &&
309 		    !verify_parent_transid(io_tree, eb, parent_transid))
310 			return ret;
311 
312 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
313 					      eb->start, eb->len);
314 		if (num_copies == 1)
315 			return ret;
316 
317 		mirror_num++;
318 		if (mirror_num > num_copies)
319 			return ret;
320 	}
321 	return -EIO;
322 }
323 
324 /*
325  * checksum a dirty tree block before IO.  This has extra checks to make sure
326  * we only fill in the checksum field in the first page of a multi-page block
327  */
328 
329 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
330 {
331 	struct extent_io_tree *tree;
332 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
333 	u64 found_start;
334 	int found_level;
335 	unsigned long len;
336 	struct extent_buffer *eb;
337 	int ret;
338 
339 	tree = &BTRFS_I(page->mapping->host)->io_tree;
340 
341 	if (page->private == EXTENT_PAGE_PRIVATE)
342 		goto out;
343 	if (!page->private)
344 		goto out;
345 	len = page->private >> 2;
346 	WARN_ON(len == 0);
347 
348 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
349 	ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
350 					     btrfs_header_generation(eb));
351 	BUG_ON(ret);
352 	found_start = btrfs_header_bytenr(eb);
353 	if (found_start != start) {
354 		WARN_ON(1);
355 		goto err;
356 	}
357 	if (eb->first_page != page) {
358 		WARN_ON(1);
359 		goto err;
360 	}
361 	if (!PageUptodate(page)) {
362 		WARN_ON(1);
363 		goto err;
364 	}
365 	found_level = btrfs_header_level(eb);
366 
367 	csum_tree_block(root, eb, 0);
368 err:
369 	free_extent_buffer(eb);
370 out:
371 	return 0;
372 }
373 
374 static int check_tree_block_fsid(struct btrfs_root *root,
375 				 struct extent_buffer *eb)
376 {
377 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
378 	u8 fsid[BTRFS_UUID_SIZE];
379 	int ret = 1;
380 
381 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
382 			   BTRFS_FSID_SIZE);
383 	while (fs_devices) {
384 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
385 			ret = 0;
386 			break;
387 		}
388 		fs_devices = fs_devices->seed;
389 	}
390 	return ret;
391 }
392 
393 #ifdef CONFIG_DEBUG_LOCK_ALLOC
394 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
395 {
396 	lockdep_set_class_and_name(&eb->lock,
397 			   &btrfs_eb_class[level],
398 			   btrfs_eb_name[level]);
399 }
400 #endif
401 
402 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
403 			       struct extent_state *state)
404 {
405 	struct extent_io_tree *tree;
406 	u64 found_start;
407 	int found_level;
408 	unsigned long len;
409 	struct extent_buffer *eb;
410 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
411 	int ret = 0;
412 
413 	tree = &BTRFS_I(page->mapping->host)->io_tree;
414 	if (page->private == EXTENT_PAGE_PRIVATE)
415 		goto out;
416 	if (!page->private)
417 		goto out;
418 
419 	len = page->private >> 2;
420 	WARN_ON(len == 0);
421 
422 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
423 
424 	found_start = btrfs_header_bytenr(eb);
425 	if (found_start != start) {
426 		if (printk_ratelimit()) {
427 			printk(KERN_INFO "btrfs bad tree block start "
428 			       "%llu %llu\n",
429 			       (unsigned long long)found_start,
430 			       (unsigned long long)eb->start);
431 		}
432 		ret = -EIO;
433 		goto err;
434 	}
435 	if (eb->first_page != page) {
436 		printk(KERN_INFO "btrfs bad first page %lu %lu\n",
437 		       eb->first_page->index, page->index);
438 		WARN_ON(1);
439 		ret = -EIO;
440 		goto err;
441 	}
442 	if (check_tree_block_fsid(root, eb)) {
443 		if (printk_ratelimit()) {
444 			printk(KERN_INFO "btrfs bad fsid on block %llu\n",
445 			       (unsigned long long)eb->start);
446 		}
447 		ret = -EIO;
448 		goto err;
449 	}
450 	found_level = btrfs_header_level(eb);
451 
452 	btrfs_set_buffer_lockdep_class(eb, found_level);
453 
454 	ret = csum_tree_block(root, eb, 1);
455 	if (ret)
456 		ret = -EIO;
457 
458 	end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
459 	end = eb->start + end - 1;
460 err:
461 	free_extent_buffer(eb);
462 out:
463 	return ret;
464 }
465 
466 static void end_workqueue_bio(struct bio *bio, int err)
467 {
468 	struct end_io_wq *end_io_wq = bio->bi_private;
469 	struct btrfs_fs_info *fs_info;
470 
471 	fs_info = end_io_wq->info;
472 	end_io_wq->error = err;
473 	end_io_wq->work.func = end_workqueue_fn;
474 	end_io_wq->work.flags = 0;
475 
476 	if (bio->bi_rw & (1 << BIO_RW)) {
477 		if (end_io_wq->metadata)
478 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
479 					   &end_io_wq->work);
480 		else
481 			btrfs_queue_worker(&fs_info->endio_write_workers,
482 					   &end_io_wq->work);
483 	} else {
484 		if (end_io_wq->metadata)
485 			btrfs_queue_worker(&fs_info->endio_meta_workers,
486 					   &end_io_wq->work);
487 		else
488 			btrfs_queue_worker(&fs_info->endio_workers,
489 					   &end_io_wq->work);
490 	}
491 }
492 
493 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
494 			int metadata)
495 {
496 	struct end_io_wq *end_io_wq;
497 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
498 	if (!end_io_wq)
499 		return -ENOMEM;
500 
501 	end_io_wq->private = bio->bi_private;
502 	end_io_wq->end_io = bio->bi_end_io;
503 	end_io_wq->info = info;
504 	end_io_wq->error = 0;
505 	end_io_wq->bio = bio;
506 	end_io_wq->metadata = metadata;
507 
508 	bio->bi_private = end_io_wq;
509 	bio->bi_end_io = end_workqueue_bio;
510 	return 0;
511 }
512 
513 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
514 {
515 	unsigned long limit = min_t(unsigned long,
516 				    info->workers.max_workers,
517 				    info->fs_devices->open_devices);
518 	return 256 * limit;
519 }
520 
521 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
522 {
523 	return atomic_read(&info->nr_async_bios) >
524 		btrfs_async_submit_limit(info);
525 }
526 
527 static void run_one_async_start(struct btrfs_work *work)
528 {
529 	struct btrfs_fs_info *fs_info;
530 	struct async_submit_bio *async;
531 
532 	async = container_of(work, struct  async_submit_bio, work);
533 	fs_info = BTRFS_I(async->inode)->root->fs_info;
534 	async->submit_bio_start(async->inode, async->rw, async->bio,
535 			       async->mirror_num, async->bio_flags);
536 }
537 
538 static void run_one_async_done(struct btrfs_work *work)
539 {
540 	struct btrfs_fs_info *fs_info;
541 	struct async_submit_bio *async;
542 	int limit;
543 
544 	async = container_of(work, struct  async_submit_bio, work);
545 	fs_info = BTRFS_I(async->inode)->root->fs_info;
546 
547 	limit = btrfs_async_submit_limit(fs_info);
548 	limit = limit * 2 / 3;
549 
550 	atomic_dec(&fs_info->nr_async_submits);
551 
552 	if (atomic_read(&fs_info->nr_async_submits) < limit &&
553 	    waitqueue_active(&fs_info->async_submit_wait))
554 		wake_up(&fs_info->async_submit_wait);
555 
556 	async->submit_bio_done(async->inode, async->rw, async->bio,
557 			       async->mirror_num, async->bio_flags);
558 }
559 
560 static void run_one_async_free(struct btrfs_work *work)
561 {
562 	struct async_submit_bio *async;
563 
564 	async = container_of(work, struct  async_submit_bio, work);
565 	kfree(async);
566 }
567 
568 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
569 			int rw, struct bio *bio, int mirror_num,
570 			unsigned long bio_flags,
571 			extent_submit_bio_hook_t *submit_bio_start,
572 			extent_submit_bio_hook_t *submit_bio_done)
573 {
574 	struct async_submit_bio *async;
575 
576 	async = kmalloc(sizeof(*async), GFP_NOFS);
577 	if (!async)
578 		return -ENOMEM;
579 
580 	async->inode = inode;
581 	async->rw = rw;
582 	async->bio = bio;
583 	async->mirror_num = mirror_num;
584 	async->submit_bio_start = submit_bio_start;
585 	async->submit_bio_done = submit_bio_done;
586 
587 	async->work.func = run_one_async_start;
588 	async->work.ordered_func = run_one_async_done;
589 	async->work.ordered_free = run_one_async_free;
590 
591 	async->work.flags = 0;
592 	async->bio_flags = bio_flags;
593 
594 	atomic_inc(&fs_info->nr_async_submits);
595 
596 	if (rw & (1 << BIO_RW_SYNCIO))
597 		btrfs_set_work_high_prio(&async->work);
598 
599 	btrfs_queue_worker(&fs_info->workers, &async->work);
600 
601 	while (atomic_read(&fs_info->async_submit_draining) &&
602 	      atomic_read(&fs_info->nr_async_submits)) {
603 		wait_event(fs_info->async_submit_wait,
604 			   (atomic_read(&fs_info->nr_async_submits) == 0));
605 	}
606 
607 	return 0;
608 }
609 
610 static int btree_csum_one_bio(struct bio *bio)
611 {
612 	struct bio_vec *bvec = bio->bi_io_vec;
613 	int bio_index = 0;
614 	struct btrfs_root *root;
615 
616 	WARN_ON(bio->bi_vcnt <= 0);
617 	while (bio_index < bio->bi_vcnt) {
618 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
619 		csum_dirty_buffer(root, bvec->bv_page);
620 		bio_index++;
621 		bvec++;
622 	}
623 	return 0;
624 }
625 
626 static int __btree_submit_bio_start(struct inode *inode, int rw,
627 				    struct bio *bio, int mirror_num,
628 				    unsigned long bio_flags)
629 {
630 	/*
631 	 * when we're called for a write, we're already in the async
632 	 * submission context.  Just jump into btrfs_map_bio
633 	 */
634 	btree_csum_one_bio(bio);
635 	return 0;
636 }
637 
638 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
639 				 int mirror_num, unsigned long bio_flags)
640 {
641 	/*
642 	 * when we're called for a write, we're already in the async
643 	 * submission context.  Just jump into btrfs_map_bio
644 	 */
645 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
646 }
647 
648 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
649 				 int mirror_num, unsigned long bio_flags)
650 {
651 	int ret;
652 
653 	ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
654 					  bio, 1);
655 	BUG_ON(ret);
656 
657 	if (!(rw & (1 << BIO_RW))) {
658 		/*
659 		 * called for a read, do the setup so that checksum validation
660 		 * can happen in the async kernel threads
661 		 */
662 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
663 				     mirror_num, 0);
664 	}
665 
666 	/*
667 	 * kthread helpers are used to submit writes so that checksumming
668 	 * can happen in parallel across all CPUs
669 	 */
670 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
671 				   inode, rw, bio, mirror_num, 0,
672 				   __btree_submit_bio_start,
673 				   __btree_submit_bio_done);
674 }
675 
676 static int btree_writepage(struct page *page, struct writeback_control *wbc)
677 {
678 	struct extent_io_tree *tree;
679 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
680 	struct extent_buffer *eb;
681 	int was_dirty;
682 
683 	tree = &BTRFS_I(page->mapping->host)->io_tree;
684 	if (!(current->flags & PF_MEMALLOC)) {
685 		return extent_write_full_page(tree, page,
686 					      btree_get_extent, wbc);
687 	}
688 
689 	redirty_page_for_writepage(wbc, page);
690 	eb = btrfs_find_tree_block(root, page_offset(page),
691 				      PAGE_CACHE_SIZE);
692 	WARN_ON(!eb);
693 
694 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
695 	if (!was_dirty) {
696 		spin_lock(&root->fs_info->delalloc_lock);
697 		root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
698 		spin_unlock(&root->fs_info->delalloc_lock);
699 	}
700 	free_extent_buffer(eb);
701 
702 	unlock_page(page);
703 	return 0;
704 }
705 
706 static int btree_writepages(struct address_space *mapping,
707 			    struct writeback_control *wbc)
708 {
709 	struct extent_io_tree *tree;
710 	tree = &BTRFS_I(mapping->host)->io_tree;
711 	if (wbc->sync_mode == WB_SYNC_NONE) {
712 		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
713 		u64 num_dirty;
714 		unsigned long thresh = 32 * 1024 * 1024;
715 
716 		if (wbc->for_kupdate)
717 			return 0;
718 
719 		/* this is a bit racy, but that's ok */
720 		num_dirty = root->fs_info->dirty_metadata_bytes;
721 		if (num_dirty < thresh)
722 			return 0;
723 	}
724 	return extent_writepages(tree, mapping, btree_get_extent, wbc);
725 }
726 
727 static int btree_readpage(struct file *file, struct page *page)
728 {
729 	struct extent_io_tree *tree;
730 	tree = &BTRFS_I(page->mapping->host)->io_tree;
731 	return extent_read_full_page(tree, page, btree_get_extent);
732 }
733 
734 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
735 {
736 	struct extent_io_tree *tree;
737 	struct extent_map_tree *map;
738 	int ret;
739 
740 	if (PageWriteback(page) || PageDirty(page))
741 		return 0;
742 
743 	tree = &BTRFS_I(page->mapping->host)->io_tree;
744 	map = &BTRFS_I(page->mapping->host)->extent_tree;
745 
746 	ret = try_release_extent_state(map, tree, page, gfp_flags);
747 	if (!ret)
748 		return 0;
749 
750 	ret = try_release_extent_buffer(tree, page);
751 	if (ret == 1) {
752 		ClearPagePrivate(page);
753 		set_page_private(page, 0);
754 		page_cache_release(page);
755 	}
756 
757 	return ret;
758 }
759 
760 static void btree_invalidatepage(struct page *page, unsigned long offset)
761 {
762 	struct extent_io_tree *tree;
763 	tree = &BTRFS_I(page->mapping->host)->io_tree;
764 	extent_invalidatepage(tree, page, offset);
765 	btree_releasepage(page, GFP_NOFS);
766 	if (PagePrivate(page)) {
767 		printk(KERN_WARNING "btrfs warning page private not zero "
768 		       "on page %llu\n", (unsigned long long)page_offset(page));
769 		ClearPagePrivate(page);
770 		set_page_private(page, 0);
771 		page_cache_release(page);
772 	}
773 }
774 
775 static struct address_space_operations btree_aops = {
776 	.readpage	= btree_readpage,
777 	.writepage	= btree_writepage,
778 	.writepages	= btree_writepages,
779 	.releasepage	= btree_releasepage,
780 	.invalidatepage = btree_invalidatepage,
781 	.sync_page	= block_sync_page,
782 };
783 
784 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
785 			 u64 parent_transid)
786 {
787 	struct extent_buffer *buf = NULL;
788 	struct inode *btree_inode = root->fs_info->btree_inode;
789 	int ret = 0;
790 
791 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
792 	if (!buf)
793 		return 0;
794 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
795 				 buf, 0, 0, btree_get_extent, 0);
796 	free_extent_buffer(buf);
797 	return ret;
798 }
799 
800 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
801 					    u64 bytenr, u32 blocksize)
802 {
803 	struct inode *btree_inode = root->fs_info->btree_inode;
804 	struct extent_buffer *eb;
805 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
806 				bytenr, blocksize, GFP_NOFS);
807 	return eb;
808 }
809 
810 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
811 						 u64 bytenr, u32 blocksize)
812 {
813 	struct inode *btree_inode = root->fs_info->btree_inode;
814 	struct extent_buffer *eb;
815 
816 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
817 				 bytenr, blocksize, NULL, GFP_NOFS);
818 	return eb;
819 }
820 
821 
822 int btrfs_write_tree_block(struct extent_buffer *buf)
823 {
824 	return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
825 				      buf->start + buf->len - 1, WB_SYNC_ALL);
826 }
827 
828 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
829 {
830 	return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
831 				  buf->start, buf->start + buf->len - 1);
832 }
833 
834 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
835 				      u32 blocksize, u64 parent_transid)
836 {
837 	struct extent_buffer *buf = NULL;
838 	struct inode *btree_inode = root->fs_info->btree_inode;
839 	struct extent_io_tree *io_tree;
840 	int ret;
841 
842 	io_tree = &BTRFS_I(btree_inode)->io_tree;
843 
844 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
845 	if (!buf)
846 		return NULL;
847 
848 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
849 
850 	if (ret == 0)
851 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
852 	return buf;
853 
854 }
855 
856 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
857 		     struct extent_buffer *buf)
858 {
859 	struct inode *btree_inode = root->fs_info->btree_inode;
860 	if (btrfs_header_generation(buf) ==
861 	    root->fs_info->running_transaction->transid) {
862 		btrfs_assert_tree_locked(buf);
863 
864 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
865 			spin_lock(&root->fs_info->delalloc_lock);
866 			if (root->fs_info->dirty_metadata_bytes >= buf->len)
867 				root->fs_info->dirty_metadata_bytes -= buf->len;
868 			else
869 				WARN_ON(1);
870 			spin_unlock(&root->fs_info->delalloc_lock);
871 		}
872 
873 		/* ugh, clear_extent_buffer_dirty needs to lock the page */
874 		btrfs_set_lock_blocking(buf);
875 		clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
876 					  buf);
877 	}
878 	return 0;
879 }
880 
881 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
882 			u32 stripesize, struct btrfs_root *root,
883 			struct btrfs_fs_info *fs_info,
884 			u64 objectid)
885 {
886 	root->node = NULL;
887 	root->commit_root = NULL;
888 	root->sectorsize = sectorsize;
889 	root->nodesize = nodesize;
890 	root->leafsize = leafsize;
891 	root->stripesize = stripesize;
892 	root->ref_cows = 0;
893 	root->track_dirty = 0;
894 
895 	root->fs_info = fs_info;
896 	root->objectid = objectid;
897 	root->last_trans = 0;
898 	root->highest_inode = 0;
899 	root->last_inode_alloc = 0;
900 	root->name = NULL;
901 	root->in_sysfs = 0;
902 	root->inode_tree.rb_node = NULL;
903 
904 	INIT_LIST_HEAD(&root->dirty_list);
905 	INIT_LIST_HEAD(&root->orphan_list);
906 	INIT_LIST_HEAD(&root->root_list);
907 	spin_lock_init(&root->node_lock);
908 	spin_lock_init(&root->list_lock);
909 	spin_lock_init(&root->inode_lock);
910 	mutex_init(&root->objectid_mutex);
911 	mutex_init(&root->log_mutex);
912 	init_waitqueue_head(&root->log_writer_wait);
913 	init_waitqueue_head(&root->log_commit_wait[0]);
914 	init_waitqueue_head(&root->log_commit_wait[1]);
915 	atomic_set(&root->log_commit[0], 0);
916 	atomic_set(&root->log_commit[1], 0);
917 	atomic_set(&root->log_writers, 0);
918 	root->log_batch = 0;
919 	root->log_transid = 0;
920 	extent_io_tree_init(&root->dirty_log_pages,
921 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
922 
923 	memset(&root->root_key, 0, sizeof(root->root_key));
924 	memset(&root->root_item, 0, sizeof(root->root_item));
925 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
926 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
927 	root->defrag_trans_start = fs_info->generation;
928 	init_completion(&root->kobj_unregister);
929 	root->defrag_running = 0;
930 	root->defrag_level = 0;
931 	root->root_key.objectid = objectid;
932 	root->anon_super.s_root = NULL;
933 	root->anon_super.s_dev = 0;
934 	INIT_LIST_HEAD(&root->anon_super.s_list);
935 	INIT_LIST_HEAD(&root->anon_super.s_instances);
936 	init_rwsem(&root->anon_super.s_umount);
937 
938 	return 0;
939 }
940 
941 static int find_and_setup_root(struct btrfs_root *tree_root,
942 			       struct btrfs_fs_info *fs_info,
943 			       u64 objectid,
944 			       struct btrfs_root *root)
945 {
946 	int ret;
947 	u32 blocksize;
948 	u64 generation;
949 
950 	__setup_root(tree_root->nodesize, tree_root->leafsize,
951 		     tree_root->sectorsize, tree_root->stripesize,
952 		     root, fs_info, objectid);
953 	ret = btrfs_find_last_root(tree_root, objectid,
954 				   &root->root_item, &root->root_key);
955 	BUG_ON(ret);
956 
957 	generation = btrfs_root_generation(&root->root_item);
958 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
959 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
960 				     blocksize, generation);
961 	root->commit_root = btrfs_root_node(root);
962 	BUG_ON(!root->node);
963 	return 0;
964 }
965 
966 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
967 			     struct btrfs_fs_info *fs_info)
968 {
969 	struct extent_buffer *eb;
970 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
971 	u64 start = 0;
972 	u64 end = 0;
973 	int ret;
974 
975 	if (!log_root_tree)
976 		return 0;
977 
978 	while (1) {
979 		ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
980 				    0, &start, &end, EXTENT_DIRTY);
981 		if (ret)
982 			break;
983 
984 		clear_extent_dirty(&log_root_tree->dirty_log_pages,
985 				   start, end, GFP_NOFS);
986 	}
987 	eb = fs_info->log_root_tree->node;
988 
989 	WARN_ON(btrfs_header_level(eb) != 0);
990 	WARN_ON(btrfs_header_nritems(eb) != 0);
991 
992 	ret = btrfs_free_reserved_extent(fs_info->tree_root,
993 				eb->start, eb->len);
994 	BUG_ON(ret);
995 
996 	free_extent_buffer(eb);
997 	kfree(fs_info->log_root_tree);
998 	fs_info->log_root_tree = NULL;
999 	return 0;
1000 }
1001 
1002 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1003 					 struct btrfs_fs_info *fs_info)
1004 {
1005 	struct btrfs_root *root;
1006 	struct btrfs_root *tree_root = fs_info->tree_root;
1007 	struct extent_buffer *leaf;
1008 
1009 	root = kzalloc(sizeof(*root), GFP_NOFS);
1010 	if (!root)
1011 		return ERR_PTR(-ENOMEM);
1012 
1013 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1014 		     tree_root->sectorsize, tree_root->stripesize,
1015 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1016 
1017 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1018 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1019 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1020 	/*
1021 	 * log trees do not get reference counted because they go away
1022 	 * before a real commit is actually done.  They do store pointers
1023 	 * to file data extents, and those reference counts still get
1024 	 * updated (along with back refs to the log tree).
1025 	 */
1026 	root->ref_cows = 0;
1027 
1028 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1029 				      BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1030 	if (IS_ERR(leaf)) {
1031 		kfree(root);
1032 		return ERR_CAST(leaf);
1033 	}
1034 
1035 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1036 	btrfs_set_header_bytenr(leaf, leaf->start);
1037 	btrfs_set_header_generation(leaf, trans->transid);
1038 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1039 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1040 	root->node = leaf;
1041 
1042 	write_extent_buffer(root->node, root->fs_info->fsid,
1043 			    (unsigned long)btrfs_header_fsid(root->node),
1044 			    BTRFS_FSID_SIZE);
1045 	btrfs_mark_buffer_dirty(root->node);
1046 	btrfs_tree_unlock(root->node);
1047 	return root;
1048 }
1049 
1050 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1051 			     struct btrfs_fs_info *fs_info)
1052 {
1053 	struct btrfs_root *log_root;
1054 
1055 	log_root = alloc_log_tree(trans, fs_info);
1056 	if (IS_ERR(log_root))
1057 		return PTR_ERR(log_root);
1058 	WARN_ON(fs_info->log_root_tree);
1059 	fs_info->log_root_tree = log_root;
1060 	return 0;
1061 }
1062 
1063 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1064 		       struct btrfs_root *root)
1065 {
1066 	struct btrfs_root *log_root;
1067 	struct btrfs_inode_item *inode_item;
1068 
1069 	log_root = alloc_log_tree(trans, root->fs_info);
1070 	if (IS_ERR(log_root))
1071 		return PTR_ERR(log_root);
1072 
1073 	log_root->last_trans = trans->transid;
1074 	log_root->root_key.offset = root->root_key.objectid;
1075 
1076 	inode_item = &log_root->root_item.inode;
1077 	inode_item->generation = cpu_to_le64(1);
1078 	inode_item->size = cpu_to_le64(3);
1079 	inode_item->nlink = cpu_to_le32(1);
1080 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1081 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1082 
1083 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1084 
1085 	WARN_ON(root->log_root);
1086 	root->log_root = log_root;
1087 	root->log_transid = 0;
1088 	return 0;
1089 }
1090 
1091 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1092 					       struct btrfs_key *location)
1093 {
1094 	struct btrfs_root *root;
1095 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1096 	struct btrfs_path *path;
1097 	struct extent_buffer *l;
1098 	u64 highest_inode;
1099 	u64 generation;
1100 	u32 blocksize;
1101 	int ret = 0;
1102 
1103 	root = kzalloc(sizeof(*root), GFP_NOFS);
1104 	if (!root)
1105 		return ERR_PTR(-ENOMEM);
1106 	if (location->offset == (u64)-1) {
1107 		ret = find_and_setup_root(tree_root, fs_info,
1108 					  location->objectid, root);
1109 		if (ret) {
1110 			kfree(root);
1111 			return ERR_PTR(ret);
1112 		}
1113 		goto insert;
1114 	}
1115 
1116 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1117 		     tree_root->sectorsize, tree_root->stripesize,
1118 		     root, fs_info, location->objectid);
1119 
1120 	path = btrfs_alloc_path();
1121 	BUG_ON(!path);
1122 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1123 	if (ret != 0) {
1124 		if (ret > 0)
1125 			ret = -ENOENT;
1126 		goto out;
1127 	}
1128 	l = path->nodes[0];
1129 	read_extent_buffer(l, &root->root_item,
1130 	       btrfs_item_ptr_offset(l, path->slots[0]),
1131 	       sizeof(root->root_item));
1132 	memcpy(&root->root_key, location, sizeof(*location));
1133 	ret = 0;
1134 out:
1135 	btrfs_release_path(root, path);
1136 	btrfs_free_path(path);
1137 	if (ret) {
1138 		kfree(root);
1139 		return ERR_PTR(ret);
1140 	}
1141 	generation = btrfs_root_generation(&root->root_item);
1142 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1143 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1144 				     blocksize, generation);
1145 	root->commit_root = btrfs_root_node(root);
1146 	BUG_ON(!root->node);
1147 insert:
1148 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1149 		root->ref_cows = 1;
1150 		ret = btrfs_find_highest_inode(root, &highest_inode);
1151 		if (ret == 0) {
1152 			root->highest_inode = highest_inode;
1153 			root->last_inode_alloc = highest_inode;
1154 		}
1155 	}
1156 	return root;
1157 }
1158 
1159 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1160 					u64 root_objectid)
1161 {
1162 	struct btrfs_root *root;
1163 
1164 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1165 		return fs_info->tree_root;
1166 	if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1167 		return fs_info->extent_root;
1168 
1169 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1170 				 (unsigned long)root_objectid);
1171 	return root;
1172 }
1173 
1174 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1175 					      struct btrfs_key *location)
1176 {
1177 	struct btrfs_root *root;
1178 	int ret;
1179 
1180 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1181 		return fs_info->tree_root;
1182 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1183 		return fs_info->extent_root;
1184 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1185 		return fs_info->chunk_root;
1186 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1187 		return fs_info->dev_root;
1188 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1189 		return fs_info->csum_root;
1190 
1191 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1192 				 (unsigned long)location->objectid);
1193 	if (root)
1194 		return root;
1195 
1196 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1197 	if (IS_ERR(root))
1198 		return root;
1199 
1200 	set_anon_super(&root->anon_super, NULL);
1201 
1202 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1203 				(unsigned long)root->root_key.objectid,
1204 				root);
1205 	if (ret) {
1206 		free_extent_buffer(root->node);
1207 		kfree(root);
1208 		return ERR_PTR(ret);
1209 	}
1210 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
1211 		ret = btrfs_find_dead_roots(fs_info->tree_root,
1212 					    root->root_key.objectid);
1213 		BUG_ON(ret);
1214 		btrfs_orphan_cleanup(root);
1215 	}
1216 	return root;
1217 }
1218 
1219 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1220 				      struct btrfs_key *location,
1221 				      const char *name, int namelen)
1222 {
1223 	struct btrfs_root *root;
1224 	int ret;
1225 
1226 	root = btrfs_read_fs_root_no_name(fs_info, location);
1227 	if (!root)
1228 		return NULL;
1229 
1230 	if (root->in_sysfs)
1231 		return root;
1232 
1233 	ret = btrfs_set_root_name(root, name, namelen);
1234 	if (ret) {
1235 		free_extent_buffer(root->node);
1236 		kfree(root);
1237 		return ERR_PTR(ret);
1238 	}
1239 #if 0
1240 	ret = btrfs_sysfs_add_root(root);
1241 	if (ret) {
1242 		free_extent_buffer(root->node);
1243 		kfree(root->name);
1244 		kfree(root);
1245 		return ERR_PTR(ret);
1246 	}
1247 #endif
1248 	root->in_sysfs = 1;
1249 	return root;
1250 }
1251 
1252 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1253 {
1254 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1255 	int ret = 0;
1256 	struct btrfs_device *device;
1257 	struct backing_dev_info *bdi;
1258 
1259 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1260 		if (!device->bdev)
1261 			continue;
1262 		bdi = blk_get_backing_dev_info(device->bdev);
1263 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1264 			ret = 1;
1265 			break;
1266 		}
1267 	}
1268 	return ret;
1269 }
1270 
1271 /*
1272  * this unplugs every device on the box, and it is only used when page
1273  * is null
1274  */
1275 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1276 {
1277 	struct btrfs_device *device;
1278 	struct btrfs_fs_info *info;
1279 
1280 	info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1281 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1282 		if (!device->bdev)
1283 			continue;
1284 
1285 		bdi = blk_get_backing_dev_info(device->bdev);
1286 		if (bdi->unplug_io_fn)
1287 			bdi->unplug_io_fn(bdi, page);
1288 	}
1289 }
1290 
1291 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1292 {
1293 	struct inode *inode;
1294 	struct extent_map_tree *em_tree;
1295 	struct extent_map *em;
1296 	struct address_space *mapping;
1297 	u64 offset;
1298 
1299 	/* the generic O_DIRECT read code does this */
1300 	if (1 || !page) {
1301 		__unplug_io_fn(bdi, page);
1302 		return;
1303 	}
1304 
1305 	/*
1306 	 * page->mapping may change at any time.  Get a consistent copy
1307 	 * and use that for everything below
1308 	 */
1309 	smp_mb();
1310 	mapping = page->mapping;
1311 	if (!mapping)
1312 		return;
1313 
1314 	inode = mapping->host;
1315 
1316 	/*
1317 	 * don't do the expensive searching for a small number of
1318 	 * devices
1319 	 */
1320 	if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1321 		__unplug_io_fn(bdi, page);
1322 		return;
1323 	}
1324 
1325 	offset = page_offset(page);
1326 
1327 	em_tree = &BTRFS_I(inode)->extent_tree;
1328 	spin_lock(&em_tree->lock);
1329 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1330 	spin_unlock(&em_tree->lock);
1331 	if (!em) {
1332 		__unplug_io_fn(bdi, page);
1333 		return;
1334 	}
1335 
1336 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1337 		free_extent_map(em);
1338 		__unplug_io_fn(bdi, page);
1339 		return;
1340 	}
1341 	offset = offset - em->start;
1342 	btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1343 			  em->block_start + offset, page);
1344 	free_extent_map(em);
1345 }
1346 
1347 /*
1348  * If this fails, caller must call bdi_destroy() to get rid of the
1349  * bdi again.
1350  */
1351 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1352 {
1353 	int err;
1354 
1355 	bdi->capabilities = BDI_CAP_MAP_COPY;
1356 	err = bdi_init(bdi);
1357 	if (err)
1358 		return err;
1359 
1360 	err = bdi_register(bdi, NULL, "btrfs-%d",
1361 				atomic_inc_return(&btrfs_bdi_num));
1362 	if (err)
1363 		return err;
1364 
1365 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1366 	bdi->unplug_io_fn	= btrfs_unplug_io_fn;
1367 	bdi->unplug_io_data	= info;
1368 	bdi->congested_fn	= btrfs_congested_fn;
1369 	bdi->congested_data	= info;
1370 	return 0;
1371 }
1372 
1373 static int bio_ready_for_csum(struct bio *bio)
1374 {
1375 	u64 length = 0;
1376 	u64 buf_len = 0;
1377 	u64 start = 0;
1378 	struct page *page;
1379 	struct extent_io_tree *io_tree = NULL;
1380 	struct btrfs_fs_info *info = NULL;
1381 	struct bio_vec *bvec;
1382 	int i;
1383 	int ret;
1384 
1385 	bio_for_each_segment(bvec, bio, i) {
1386 		page = bvec->bv_page;
1387 		if (page->private == EXTENT_PAGE_PRIVATE) {
1388 			length += bvec->bv_len;
1389 			continue;
1390 		}
1391 		if (!page->private) {
1392 			length += bvec->bv_len;
1393 			continue;
1394 		}
1395 		length = bvec->bv_len;
1396 		buf_len = page->private >> 2;
1397 		start = page_offset(page) + bvec->bv_offset;
1398 		io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1399 		info = BTRFS_I(page->mapping->host)->root->fs_info;
1400 	}
1401 	/* are we fully contained in this bio? */
1402 	if (buf_len <= length)
1403 		return 1;
1404 
1405 	ret = extent_range_uptodate(io_tree, start + length,
1406 				    start + buf_len - 1);
1407 	return ret;
1408 }
1409 
1410 /*
1411  * called by the kthread helper functions to finally call the bio end_io
1412  * functions.  This is where read checksum verification actually happens
1413  */
1414 static void end_workqueue_fn(struct btrfs_work *work)
1415 {
1416 	struct bio *bio;
1417 	struct end_io_wq *end_io_wq;
1418 	struct btrfs_fs_info *fs_info;
1419 	int error;
1420 
1421 	end_io_wq = container_of(work, struct end_io_wq, work);
1422 	bio = end_io_wq->bio;
1423 	fs_info = end_io_wq->info;
1424 
1425 	/* metadata bio reads are special because the whole tree block must
1426 	 * be checksummed at once.  This makes sure the entire block is in
1427 	 * ram and up to date before trying to verify things.  For
1428 	 * blocksize <= pagesize, it is basically a noop
1429 	 */
1430 	if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1431 	    !bio_ready_for_csum(bio)) {
1432 		btrfs_queue_worker(&fs_info->endio_meta_workers,
1433 				   &end_io_wq->work);
1434 		return;
1435 	}
1436 	error = end_io_wq->error;
1437 	bio->bi_private = end_io_wq->private;
1438 	bio->bi_end_io = end_io_wq->end_io;
1439 	kfree(end_io_wq);
1440 	bio_endio(bio, error);
1441 }
1442 
1443 static int cleaner_kthread(void *arg)
1444 {
1445 	struct btrfs_root *root = arg;
1446 
1447 	do {
1448 		smp_mb();
1449 		if (root->fs_info->closing)
1450 			break;
1451 
1452 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1453 		mutex_lock(&root->fs_info->cleaner_mutex);
1454 		btrfs_clean_old_snapshots(root);
1455 		mutex_unlock(&root->fs_info->cleaner_mutex);
1456 
1457 		if (freezing(current)) {
1458 			refrigerator();
1459 		} else {
1460 			smp_mb();
1461 			if (root->fs_info->closing)
1462 				break;
1463 			set_current_state(TASK_INTERRUPTIBLE);
1464 			schedule();
1465 			__set_current_state(TASK_RUNNING);
1466 		}
1467 	} while (!kthread_should_stop());
1468 	return 0;
1469 }
1470 
1471 static int transaction_kthread(void *arg)
1472 {
1473 	struct btrfs_root *root = arg;
1474 	struct btrfs_trans_handle *trans;
1475 	struct btrfs_transaction *cur;
1476 	unsigned long now;
1477 	unsigned long delay;
1478 	int ret;
1479 
1480 	do {
1481 		smp_mb();
1482 		if (root->fs_info->closing)
1483 			break;
1484 
1485 		delay = HZ * 30;
1486 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1487 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1488 
1489 		mutex_lock(&root->fs_info->trans_mutex);
1490 		cur = root->fs_info->running_transaction;
1491 		if (!cur) {
1492 			mutex_unlock(&root->fs_info->trans_mutex);
1493 			goto sleep;
1494 		}
1495 
1496 		now = get_seconds();
1497 		if (now < cur->start_time || now - cur->start_time < 30) {
1498 			mutex_unlock(&root->fs_info->trans_mutex);
1499 			delay = HZ * 5;
1500 			goto sleep;
1501 		}
1502 		mutex_unlock(&root->fs_info->trans_mutex);
1503 		trans = btrfs_start_transaction(root, 1);
1504 		ret = btrfs_commit_transaction(trans, root);
1505 
1506 sleep:
1507 		wake_up_process(root->fs_info->cleaner_kthread);
1508 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1509 
1510 		if (freezing(current)) {
1511 			refrigerator();
1512 		} else {
1513 			if (root->fs_info->closing)
1514 				break;
1515 			set_current_state(TASK_INTERRUPTIBLE);
1516 			schedule_timeout(delay);
1517 			__set_current_state(TASK_RUNNING);
1518 		}
1519 	} while (!kthread_should_stop());
1520 	return 0;
1521 }
1522 
1523 struct btrfs_root *open_ctree(struct super_block *sb,
1524 			      struct btrfs_fs_devices *fs_devices,
1525 			      char *options)
1526 {
1527 	u32 sectorsize;
1528 	u32 nodesize;
1529 	u32 leafsize;
1530 	u32 blocksize;
1531 	u32 stripesize;
1532 	u64 generation;
1533 	u64 features;
1534 	struct btrfs_key location;
1535 	struct buffer_head *bh;
1536 	struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1537 						 GFP_NOFS);
1538 	struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1539 						 GFP_NOFS);
1540 	struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1541 					       GFP_NOFS);
1542 	struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1543 						GFP_NOFS);
1544 	struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1545 						GFP_NOFS);
1546 	struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1547 					      GFP_NOFS);
1548 	struct btrfs_root *log_tree_root;
1549 
1550 	int ret;
1551 	int err = -EINVAL;
1552 
1553 	struct btrfs_super_block *disk_super;
1554 
1555 	if (!extent_root || !tree_root || !fs_info ||
1556 	    !chunk_root || !dev_root || !csum_root) {
1557 		err = -ENOMEM;
1558 		goto fail;
1559 	}
1560 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1561 	INIT_LIST_HEAD(&fs_info->trans_list);
1562 	INIT_LIST_HEAD(&fs_info->dead_roots);
1563 	INIT_LIST_HEAD(&fs_info->hashers);
1564 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1565 	INIT_LIST_HEAD(&fs_info->ordered_operations);
1566 	spin_lock_init(&fs_info->delalloc_lock);
1567 	spin_lock_init(&fs_info->new_trans_lock);
1568 	spin_lock_init(&fs_info->ref_cache_lock);
1569 
1570 	init_completion(&fs_info->kobj_unregister);
1571 	fs_info->tree_root = tree_root;
1572 	fs_info->extent_root = extent_root;
1573 	fs_info->csum_root = csum_root;
1574 	fs_info->chunk_root = chunk_root;
1575 	fs_info->dev_root = dev_root;
1576 	fs_info->fs_devices = fs_devices;
1577 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1578 	INIT_LIST_HEAD(&fs_info->space_info);
1579 	btrfs_mapping_init(&fs_info->mapping_tree);
1580 	atomic_set(&fs_info->nr_async_submits, 0);
1581 	atomic_set(&fs_info->async_delalloc_pages, 0);
1582 	atomic_set(&fs_info->async_submit_draining, 0);
1583 	atomic_set(&fs_info->nr_async_bios, 0);
1584 	fs_info->sb = sb;
1585 	fs_info->max_extent = (u64)-1;
1586 	fs_info->max_inline = 8192 * 1024;
1587 	if (setup_bdi(fs_info, &fs_info->bdi))
1588 		goto fail_bdi;
1589 	fs_info->btree_inode = new_inode(sb);
1590 	fs_info->btree_inode->i_ino = 1;
1591 	fs_info->btree_inode->i_nlink = 1;
1592 	fs_info->metadata_ratio = 8;
1593 
1594 	fs_info->thread_pool_size = min_t(unsigned long,
1595 					  num_online_cpus() + 2, 8);
1596 
1597 	INIT_LIST_HEAD(&fs_info->ordered_extents);
1598 	spin_lock_init(&fs_info->ordered_extent_lock);
1599 
1600 	sb->s_blocksize = 4096;
1601 	sb->s_blocksize_bits = blksize_bits(4096);
1602 
1603 	/*
1604 	 * we set the i_size on the btree inode to the max possible int.
1605 	 * the real end of the address space is determined by all of
1606 	 * the devices in the system
1607 	 */
1608 	fs_info->btree_inode->i_size = OFFSET_MAX;
1609 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1610 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1611 
1612 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1613 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1614 			     fs_info->btree_inode->i_mapping,
1615 			     GFP_NOFS);
1616 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1617 			     GFP_NOFS);
1618 
1619 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1620 
1621 	spin_lock_init(&fs_info->block_group_cache_lock);
1622 	fs_info->block_group_cache_tree.rb_node = NULL;
1623 
1624 	extent_io_tree_init(&fs_info->pinned_extents,
1625 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1626 	fs_info->do_barriers = 1;
1627 
1628 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
1629 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1630 	       sizeof(struct btrfs_key));
1631 	insert_inode_hash(fs_info->btree_inode);
1632 
1633 	mutex_init(&fs_info->trans_mutex);
1634 	mutex_init(&fs_info->ordered_operations_mutex);
1635 	mutex_init(&fs_info->tree_log_mutex);
1636 	mutex_init(&fs_info->drop_mutex);
1637 	mutex_init(&fs_info->chunk_mutex);
1638 	mutex_init(&fs_info->transaction_kthread_mutex);
1639 	mutex_init(&fs_info->cleaner_mutex);
1640 	mutex_init(&fs_info->volume_mutex);
1641 	mutex_init(&fs_info->tree_reloc_mutex);
1642 
1643 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1644 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1645 
1646 	init_waitqueue_head(&fs_info->transaction_throttle);
1647 	init_waitqueue_head(&fs_info->transaction_wait);
1648 	init_waitqueue_head(&fs_info->async_submit_wait);
1649 
1650 	__setup_root(4096, 4096, 4096, 4096, tree_root,
1651 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
1652 
1653 
1654 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1655 	if (!bh)
1656 		goto fail_iput;
1657 
1658 	memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1659 	memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1660 	       sizeof(fs_info->super_for_commit));
1661 	brelse(bh);
1662 
1663 	memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1664 
1665 	disk_super = &fs_info->super_copy;
1666 	if (!btrfs_super_root(disk_super))
1667 		goto fail_iput;
1668 
1669 	ret = btrfs_parse_options(tree_root, options);
1670 	if (ret) {
1671 		err = ret;
1672 		goto fail_iput;
1673 	}
1674 
1675 	features = btrfs_super_incompat_flags(disk_super) &
1676 		~BTRFS_FEATURE_INCOMPAT_SUPP;
1677 	if (features) {
1678 		printk(KERN_ERR "BTRFS: couldn't mount because of "
1679 		       "unsupported optional features (%Lx).\n",
1680 		       (unsigned long long)features);
1681 		err = -EINVAL;
1682 		goto fail_iput;
1683 	}
1684 
1685 	features = btrfs_super_incompat_flags(disk_super);
1686 	if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
1687 		features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1688 		btrfs_set_super_incompat_flags(disk_super, features);
1689 	}
1690 
1691 	features = btrfs_super_compat_ro_flags(disk_super) &
1692 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
1693 	if (!(sb->s_flags & MS_RDONLY) && features) {
1694 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1695 		       "unsupported option features (%Lx).\n",
1696 		       (unsigned long long)features);
1697 		err = -EINVAL;
1698 		goto fail_iput;
1699 	}
1700 
1701 	/*
1702 	 * we need to start all the end_io workers up front because the
1703 	 * queue work function gets called at interrupt time, and so it
1704 	 * cannot dynamically grow.
1705 	 */
1706 	btrfs_init_workers(&fs_info->workers, "worker",
1707 			   fs_info->thread_pool_size);
1708 
1709 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1710 			   fs_info->thread_pool_size);
1711 
1712 	btrfs_init_workers(&fs_info->submit_workers, "submit",
1713 			   min_t(u64, fs_devices->num_devices,
1714 			   fs_info->thread_pool_size));
1715 
1716 	/* a higher idle thresh on the submit workers makes it much more
1717 	 * likely that bios will be send down in a sane order to the
1718 	 * devices
1719 	 */
1720 	fs_info->submit_workers.idle_thresh = 64;
1721 
1722 	fs_info->workers.idle_thresh = 16;
1723 	fs_info->workers.ordered = 1;
1724 
1725 	fs_info->delalloc_workers.idle_thresh = 2;
1726 	fs_info->delalloc_workers.ordered = 1;
1727 
1728 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
1729 	btrfs_init_workers(&fs_info->endio_workers, "endio",
1730 			   fs_info->thread_pool_size);
1731 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1732 			   fs_info->thread_pool_size);
1733 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
1734 			   "endio-meta-write", fs_info->thread_pool_size);
1735 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1736 			   fs_info->thread_pool_size);
1737 
1738 	/*
1739 	 * endios are largely parallel and should have a very
1740 	 * low idle thresh
1741 	 */
1742 	fs_info->endio_workers.idle_thresh = 4;
1743 	fs_info->endio_meta_workers.idle_thresh = 4;
1744 
1745 	fs_info->endio_write_workers.idle_thresh = 64;
1746 	fs_info->endio_meta_write_workers.idle_thresh = 64;
1747 
1748 	btrfs_start_workers(&fs_info->workers, 1);
1749 	btrfs_start_workers(&fs_info->submit_workers, 1);
1750 	btrfs_start_workers(&fs_info->delalloc_workers, 1);
1751 	btrfs_start_workers(&fs_info->fixup_workers, 1);
1752 	btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1753 	btrfs_start_workers(&fs_info->endio_meta_workers,
1754 			    fs_info->thread_pool_size);
1755 	btrfs_start_workers(&fs_info->endio_meta_write_workers,
1756 			    fs_info->thread_pool_size);
1757 	btrfs_start_workers(&fs_info->endio_write_workers,
1758 			    fs_info->thread_pool_size);
1759 
1760 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1761 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1762 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1763 
1764 	nodesize = btrfs_super_nodesize(disk_super);
1765 	leafsize = btrfs_super_leafsize(disk_super);
1766 	sectorsize = btrfs_super_sectorsize(disk_super);
1767 	stripesize = btrfs_super_stripesize(disk_super);
1768 	tree_root->nodesize = nodesize;
1769 	tree_root->leafsize = leafsize;
1770 	tree_root->sectorsize = sectorsize;
1771 	tree_root->stripesize = stripesize;
1772 
1773 	sb->s_blocksize = sectorsize;
1774 	sb->s_blocksize_bits = blksize_bits(sectorsize);
1775 
1776 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1777 		    sizeof(disk_super->magic))) {
1778 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1779 		goto fail_sb_buffer;
1780 	}
1781 
1782 	mutex_lock(&fs_info->chunk_mutex);
1783 	ret = btrfs_read_sys_array(tree_root);
1784 	mutex_unlock(&fs_info->chunk_mutex);
1785 	if (ret) {
1786 		printk(KERN_WARNING "btrfs: failed to read the system "
1787 		       "array on %s\n", sb->s_id);
1788 		goto fail_sb_buffer;
1789 	}
1790 
1791 	blocksize = btrfs_level_size(tree_root,
1792 				     btrfs_super_chunk_root_level(disk_super));
1793 	generation = btrfs_super_chunk_root_generation(disk_super);
1794 
1795 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
1796 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1797 
1798 	chunk_root->node = read_tree_block(chunk_root,
1799 					   btrfs_super_chunk_root(disk_super),
1800 					   blocksize, generation);
1801 	BUG_ON(!chunk_root->node);
1802 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1803 	chunk_root->commit_root = btrfs_root_node(chunk_root);
1804 
1805 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1806 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1807 	   BTRFS_UUID_SIZE);
1808 
1809 	mutex_lock(&fs_info->chunk_mutex);
1810 	ret = btrfs_read_chunk_tree(chunk_root);
1811 	mutex_unlock(&fs_info->chunk_mutex);
1812 	if (ret) {
1813 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1814 		       sb->s_id);
1815 		goto fail_chunk_root;
1816 	}
1817 
1818 	btrfs_close_extra_devices(fs_devices);
1819 
1820 	blocksize = btrfs_level_size(tree_root,
1821 				     btrfs_super_root_level(disk_super));
1822 	generation = btrfs_super_generation(disk_super);
1823 
1824 	tree_root->node = read_tree_block(tree_root,
1825 					  btrfs_super_root(disk_super),
1826 					  blocksize, generation);
1827 	if (!tree_root->node)
1828 		goto fail_chunk_root;
1829 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1830 	tree_root->commit_root = btrfs_root_node(tree_root);
1831 
1832 	ret = find_and_setup_root(tree_root, fs_info,
1833 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1834 	if (ret)
1835 		goto fail_tree_root;
1836 	extent_root->track_dirty = 1;
1837 
1838 	ret = find_and_setup_root(tree_root, fs_info,
1839 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
1840 	if (ret)
1841 		goto fail_extent_root;
1842 	dev_root->track_dirty = 1;
1843 
1844 	ret = find_and_setup_root(tree_root, fs_info,
1845 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
1846 	if (ret)
1847 		goto fail_dev_root;
1848 
1849 	csum_root->track_dirty = 1;
1850 
1851 	btrfs_read_block_groups(extent_root);
1852 
1853 	fs_info->generation = generation;
1854 	fs_info->last_trans_committed = generation;
1855 	fs_info->data_alloc_profile = (u64)-1;
1856 	fs_info->metadata_alloc_profile = (u64)-1;
1857 	fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1858 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1859 					       "btrfs-cleaner");
1860 	if (IS_ERR(fs_info->cleaner_kthread))
1861 		goto fail_csum_root;
1862 
1863 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
1864 						   tree_root,
1865 						   "btrfs-transaction");
1866 	if (IS_ERR(fs_info->transaction_kthread))
1867 		goto fail_cleaner;
1868 
1869 	if (!btrfs_test_opt(tree_root, SSD) &&
1870 	    !btrfs_test_opt(tree_root, NOSSD) &&
1871 	    !fs_info->fs_devices->rotating) {
1872 		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1873 		       "mode\n");
1874 		btrfs_set_opt(fs_info->mount_opt, SSD);
1875 	}
1876 
1877 	if (btrfs_super_log_root(disk_super) != 0) {
1878 		u64 bytenr = btrfs_super_log_root(disk_super);
1879 
1880 		if (fs_devices->rw_devices == 0) {
1881 			printk(KERN_WARNING "Btrfs log replay required "
1882 			       "on RO media\n");
1883 			err = -EIO;
1884 			goto fail_trans_kthread;
1885 		}
1886 		blocksize =
1887 		     btrfs_level_size(tree_root,
1888 				      btrfs_super_log_root_level(disk_super));
1889 
1890 		log_tree_root = kzalloc(sizeof(struct btrfs_root),
1891 						      GFP_NOFS);
1892 
1893 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
1894 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1895 
1896 		log_tree_root->node = read_tree_block(tree_root, bytenr,
1897 						      blocksize,
1898 						      generation + 1);
1899 		ret = btrfs_recover_log_trees(log_tree_root);
1900 		BUG_ON(ret);
1901 
1902 		if (sb->s_flags & MS_RDONLY) {
1903 			ret =  btrfs_commit_super(tree_root);
1904 			BUG_ON(ret);
1905 		}
1906 	}
1907 
1908 	if (!(sb->s_flags & MS_RDONLY)) {
1909 		ret = btrfs_recover_relocation(tree_root);
1910 		BUG_ON(ret);
1911 	}
1912 
1913 	location.objectid = BTRFS_FS_TREE_OBJECTID;
1914 	location.type = BTRFS_ROOT_ITEM_KEY;
1915 	location.offset = (u64)-1;
1916 
1917 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1918 	if (!fs_info->fs_root)
1919 		goto fail_trans_kthread;
1920 
1921 	return tree_root;
1922 
1923 fail_trans_kthread:
1924 	kthread_stop(fs_info->transaction_kthread);
1925 fail_cleaner:
1926 	kthread_stop(fs_info->cleaner_kthread);
1927 
1928 	/*
1929 	 * make sure we're done with the btree inode before we stop our
1930 	 * kthreads
1931 	 */
1932 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1933 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1934 
1935 fail_csum_root:
1936 	free_extent_buffer(csum_root->node);
1937 	free_extent_buffer(csum_root->commit_root);
1938 fail_dev_root:
1939 	free_extent_buffer(dev_root->node);
1940 	free_extent_buffer(dev_root->commit_root);
1941 fail_extent_root:
1942 	free_extent_buffer(extent_root->node);
1943 	free_extent_buffer(extent_root->commit_root);
1944 fail_tree_root:
1945 	free_extent_buffer(tree_root->node);
1946 	free_extent_buffer(tree_root->commit_root);
1947 fail_chunk_root:
1948 	free_extent_buffer(chunk_root->node);
1949 	free_extent_buffer(chunk_root->commit_root);
1950 fail_sb_buffer:
1951 	btrfs_stop_workers(&fs_info->fixup_workers);
1952 	btrfs_stop_workers(&fs_info->delalloc_workers);
1953 	btrfs_stop_workers(&fs_info->workers);
1954 	btrfs_stop_workers(&fs_info->endio_workers);
1955 	btrfs_stop_workers(&fs_info->endio_meta_workers);
1956 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1957 	btrfs_stop_workers(&fs_info->endio_write_workers);
1958 	btrfs_stop_workers(&fs_info->submit_workers);
1959 fail_iput:
1960 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1961 	iput(fs_info->btree_inode);
1962 
1963 	btrfs_close_devices(fs_info->fs_devices);
1964 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
1965 fail_bdi:
1966 	bdi_destroy(&fs_info->bdi);
1967 fail:
1968 	kfree(extent_root);
1969 	kfree(tree_root);
1970 	kfree(fs_info);
1971 	kfree(chunk_root);
1972 	kfree(dev_root);
1973 	kfree(csum_root);
1974 	return ERR_PTR(err);
1975 }
1976 
1977 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1978 {
1979 	char b[BDEVNAME_SIZE];
1980 
1981 	if (uptodate) {
1982 		set_buffer_uptodate(bh);
1983 	} else {
1984 		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1985 			printk(KERN_WARNING "lost page write due to "
1986 					"I/O error on %s\n",
1987 				       bdevname(bh->b_bdev, b));
1988 		}
1989 		/* note, we dont' set_buffer_write_io_error because we have
1990 		 * our own ways of dealing with the IO errors
1991 		 */
1992 		clear_buffer_uptodate(bh);
1993 	}
1994 	unlock_buffer(bh);
1995 	put_bh(bh);
1996 }
1997 
1998 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
1999 {
2000 	struct buffer_head *bh;
2001 	struct buffer_head *latest = NULL;
2002 	struct btrfs_super_block *super;
2003 	int i;
2004 	u64 transid = 0;
2005 	u64 bytenr;
2006 
2007 	/* we would like to check all the supers, but that would make
2008 	 * a btrfs mount succeed after a mkfs from a different FS.
2009 	 * So, we need to add a special mount option to scan for
2010 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2011 	 */
2012 	for (i = 0; i < 1; i++) {
2013 		bytenr = btrfs_sb_offset(i);
2014 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2015 			break;
2016 		bh = __bread(bdev, bytenr / 4096, 4096);
2017 		if (!bh)
2018 			continue;
2019 
2020 		super = (struct btrfs_super_block *)bh->b_data;
2021 		if (btrfs_super_bytenr(super) != bytenr ||
2022 		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2023 			    sizeof(super->magic))) {
2024 			brelse(bh);
2025 			continue;
2026 		}
2027 
2028 		if (!latest || btrfs_super_generation(super) > transid) {
2029 			brelse(latest);
2030 			latest = bh;
2031 			transid = btrfs_super_generation(super);
2032 		} else {
2033 			brelse(bh);
2034 		}
2035 	}
2036 	return latest;
2037 }
2038 
2039 /*
2040  * this should be called twice, once with wait == 0 and
2041  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2042  * we write are pinned.
2043  *
2044  * They are released when wait == 1 is done.
2045  * max_mirrors must be the same for both runs, and it indicates how
2046  * many supers on this one device should be written.
2047  *
2048  * max_mirrors == 0 means to write them all.
2049  */
2050 static int write_dev_supers(struct btrfs_device *device,
2051 			    struct btrfs_super_block *sb,
2052 			    int do_barriers, int wait, int max_mirrors)
2053 {
2054 	struct buffer_head *bh;
2055 	int i;
2056 	int ret;
2057 	int errors = 0;
2058 	u32 crc;
2059 	u64 bytenr;
2060 	int last_barrier = 0;
2061 
2062 	if (max_mirrors == 0)
2063 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2064 
2065 	/* make sure only the last submit_bh does a barrier */
2066 	if (do_barriers) {
2067 		for (i = 0; i < max_mirrors; i++) {
2068 			bytenr = btrfs_sb_offset(i);
2069 			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2070 			    device->total_bytes)
2071 				break;
2072 			last_barrier = i;
2073 		}
2074 	}
2075 
2076 	for (i = 0; i < max_mirrors; i++) {
2077 		bytenr = btrfs_sb_offset(i);
2078 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2079 			break;
2080 
2081 		if (wait) {
2082 			bh = __find_get_block(device->bdev, bytenr / 4096,
2083 					      BTRFS_SUPER_INFO_SIZE);
2084 			BUG_ON(!bh);
2085 			wait_on_buffer(bh);
2086 			if (!buffer_uptodate(bh))
2087 				errors++;
2088 
2089 			/* drop our reference */
2090 			brelse(bh);
2091 
2092 			/* drop the reference from the wait == 0 run */
2093 			brelse(bh);
2094 			continue;
2095 		} else {
2096 			btrfs_set_super_bytenr(sb, bytenr);
2097 
2098 			crc = ~(u32)0;
2099 			crc = btrfs_csum_data(NULL, (char *)sb +
2100 					      BTRFS_CSUM_SIZE, crc,
2101 					      BTRFS_SUPER_INFO_SIZE -
2102 					      BTRFS_CSUM_SIZE);
2103 			btrfs_csum_final(crc, sb->csum);
2104 
2105 			/*
2106 			 * one reference for us, and we leave it for the
2107 			 * caller
2108 			 */
2109 			bh = __getblk(device->bdev, bytenr / 4096,
2110 				      BTRFS_SUPER_INFO_SIZE);
2111 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2112 
2113 			/* one reference for submit_bh */
2114 			get_bh(bh);
2115 
2116 			set_buffer_uptodate(bh);
2117 			lock_buffer(bh);
2118 			bh->b_end_io = btrfs_end_buffer_write_sync;
2119 		}
2120 
2121 		if (i == last_barrier && do_barriers && device->barriers) {
2122 			ret = submit_bh(WRITE_BARRIER, bh);
2123 			if (ret == -EOPNOTSUPP) {
2124 				printk("btrfs: disabling barriers on dev %s\n",
2125 				       device->name);
2126 				set_buffer_uptodate(bh);
2127 				device->barriers = 0;
2128 				/* one reference for submit_bh */
2129 				get_bh(bh);
2130 				lock_buffer(bh);
2131 				ret = submit_bh(WRITE_SYNC, bh);
2132 			}
2133 		} else {
2134 			ret = submit_bh(WRITE_SYNC, bh);
2135 		}
2136 
2137 		if (ret)
2138 			errors++;
2139 	}
2140 	return errors < i ? 0 : -1;
2141 }
2142 
2143 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2144 {
2145 	struct list_head *head;
2146 	struct btrfs_device *dev;
2147 	struct btrfs_super_block *sb;
2148 	struct btrfs_dev_item *dev_item;
2149 	int ret;
2150 	int do_barriers;
2151 	int max_errors;
2152 	int total_errors = 0;
2153 	u64 flags;
2154 
2155 	max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2156 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2157 
2158 	sb = &root->fs_info->super_for_commit;
2159 	dev_item = &sb->dev_item;
2160 
2161 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2162 	head = &root->fs_info->fs_devices->devices;
2163 	list_for_each_entry(dev, head, dev_list) {
2164 		if (!dev->bdev) {
2165 			total_errors++;
2166 			continue;
2167 		}
2168 		if (!dev->in_fs_metadata || !dev->writeable)
2169 			continue;
2170 
2171 		btrfs_set_stack_device_generation(dev_item, 0);
2172 		btrfs_set_stack_device_type(dev_item, dev->type);
2173 		btrfs_set_stack_device_id(dev_item, dev->devid);
2174 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2175 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2176 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2177 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2178 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2179 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2180 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2181 
2182 		flags = btrfs_super_flags(sb);
2183 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2184 
2185 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2186 		if (ret)
2187 			total_errors++;
2188 	}
2189 	if (total_errors > max_errors) {
2190 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2191 		       total_errors);
2192 		BUG();
2193 	}
2194 
2195 	total_errors = 0;
2196 	list_for_each_entry(dev, head, dev_list) {
2197 		if (!dev->bdev)
2198 			continue;
2199 		if (!dev->in_fs_metadata || !dev->writeable)
2200 			continue;
2201 
2202 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2203 		if (ret)
2204 			total_errors++;
2205 	}
2206 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2207 	if (total_errors > max_errors) {
2208 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2209 		       total_errors);
2210 		BUG();
2211 	}
2212 	return 0;
2213 }
2214 
2215 int write_ctree_super(struct btrfs_trans_handle *trans,
2216 		      struct btrfs_root *root, int max_mirrors)
2217 {
2218 	int ret;
2219 
2220 	ret = write_all_supers(root, max_mirrors);
2221 	return ret;
2222 }
2223 
2224 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2225 {
2226 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2227 	radix_tree_delete(&fs_info->fs_roots_radix,
2228 			  (unsigned long)root->root_key.objectid);
2229 	if (root->anon_super.s_dev) {
2230 		down_write(&root->anon_super.s_umount);
2231 		kill_anon_super(&root->anon_super);
2232 	}
2233 	if (root->node)
2234 		free_extent_buffer(root->node);
2235 	if (root->commit_root)
2236 		free_extent_buffer(root->commit_root);
2237 	kfree(root->name);
2238 	kfree(root);
2239 	return 0;
2240 }
2241 
2242 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2243 {
2244 	int ret;
2245 	struct btrfs_root *gang[8];
2246 	int i;
2247 
2248 	while (1) {
2249 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2250 					     (void **)gang, 0,
2251 					     ARRAY_SIZE(gang));
2252 		if (!ret)
2253 			break;
2254 		for (i = 0; i < ret; i++)
2255 			btrfs_free_fs_root(fs_info, gang[i]);
2256 	}
2257 	return 0;
2258 }
2259 
2260 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2261 {
2262 	u64 root_objectid = 0;
2263 	struct btrfs_root *gang[8];
2264 	int i;
2265 	int ret;
2266 
2267 	while (1) {
2268 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2269 					     (void **)gang, root_objectid,
2270 					     ARRAY_SIZE(gang));
2271 		if (!ret)
2272 			break;
2273 
2274 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
2275 		for (i = 0; i < ret; i++) {
2276 			root_objectid = gang[i]->root_key.objectid;
2277 			ret = btrfs_find_dead_roots(fs_info->tree_root,
2278 						    root_objectid);
2279 			BUG_ON(ret);
2280 			btrfs_orphan_cleanup(gang[i]);
2281 		}
2282 		root_objectid++;
2283 	}
2284 	return 0;
2285 }
2286 
2287 int btrfs_commit_super(struct btrfs_root *root)
2288 {
2289 	struct btrfs_trans_handle *trans;
2290 	int ret;
2291 
2292 	mutex_lock(&root->fs_info->cleaner_mutex);
2293 	btrfs_clean_old_snapshots(root);
2294 	mutex_unlock(&root->fs_info->cleaner_mutex);
2295 	trans = btrfs_start_transaction(root, 1);
2296 	ret = btrfs_commit_transaction(trans, root);
2297 	BUG_ON(ret);
2298 	/* run commit again to drop the original snapshot */
2299 	trans = btrfs_start_transaction(root, 1);
2300 	btrfs_commit_transaction(trans, root);
2301 	ret = btrfs_write_and_wait_transaction(NULL, root);
2302 	BUG_ON(ret);
2303 
2304 	ret = write_ctree_super(NULL, root, 0);
2305 	return ret;
2306 }
2307 
2308 int close_ctree(struct btrfs_root *root)
2309 {
2310 	struct btrfs_fs_info *fs_info = root->fs_info;
2311 	int ret;
2312 
2313 	fs_info->closing = 1;
2314 	smp_mb();
2315 
2316 	kthread_stop(root->fs_info->transaction_kthread);
2317 	kthread_stop(root->fs_info->cleaner_kthread);
2318 
2319 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2320 		ret =  btrfs_commit_super(root);
2321 		if (ret)
2322 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2323 	}
2324 
2325 	if (fs_info->delalloc_bytes) {
2326 		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2327 		       (unsigned long long)fs_info->delalloc_bytes);
2328 	}
2329 	if (fs_info->total_ref_cache_size) {
2330 		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2331 		       (unsigned long long)fs_info->total_ref_cache_size);
2332 	}
2333 
2334 	free_extent_buffer(fs_info->extent_root->node);
2335 	free_extent_buffer(fs_info->extent_root->commit_root);
2336 	free_extent_buffer(fs_info->tree_root->node);
2337 	free_extent_buffer(fs_info->tree_root->commit_root);
2338 	free_extent_buffer(root->fs_info->chunk_root->node);
2339 	free_extent_buffer(root->fs_info->chunk_root->commit_root);
2340 	free_extent_buffer(root->fs_info->dev_root->node);
2341 	free_extent_buffer(root->fs_info->dev_root->commit_root);
2342 	free_extent_buffer(root->fs_info->csum_root->node);
2343 	free_extent_buffer(root->fs_info->csum_root->commit_root);
2344 
2345 	btrfs_free_block_groups(root->fs_info);
2346 
2347 	del_fs_roots(fs_info);
2348 
2349 	iput(fs_info->btree_inode);
2350 
2351 	btrfs_stop_workers(&fs_info->fixup_workers);
2352 	btrfs_stop_workers(&fs_info->delalloc_workers);
2353 	btrfs_stop_workers(&fs_info->workers);
2354 	btrfs_stop_workers(&fs_info->endio_workers);
2355 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2356 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2357 	btrfs_stop_workers(&fs_info->endio_write_workers);
2358 	btrfs_stop_workers(&fs_info->submit_workers);
2359 
2360 	btrfs_close_devices(fs_info->fs_devices);
2361 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2362 
2363 	bdi_destroy(&fs_info->bdi);
2364 
2365 	kfree(fs_info->extent_root);
2366 	kfree(fs_info->tree_root);
2367 	kfree(fs_info->chunk_root);
2368 	kfree(fs_info->dev_root);
2369 	kfree(fs_info->csum_root);
2370 	return 0;
2371 }
2372 
2373 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2374 {
2375 	int ret;
2376 	struct inode *btree_inode = buf->first_page->mapping->host;
2377 
2378 	ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2379 	if (!ret)
2380 		return ret;
2381 
2382 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2383 				    parent_transid);
2384 	return !ret;
2385 }
2386 
2387 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2388 {
2389 	struct inode *btree_inode = buf->first_page->mapping->host;
2390 	return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2391 					  buf);
2392 }
2393 
2394 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2395 {
2396 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2397 	u64 transid = btrfs_header_generation(buf);
2398 	struct inode *btree_inode = root->fs_info->btree_inode;
2399 	int was_dirty;
2400 
2401 	btrfs_assert_tree_locked(buf);
2402 	if (transid != root->fs_info->generation) {
2403 		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2404 		       "found %llu running %llu\n",
2405 			(unsigned long long)buf->start,
2406 			(unsigned long long)transid,
2407 			(unsigned long long)root->fs_info->generation);
2408 		WARN_ON(1);
2409 	}
2410 	was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2411 					    buf);
2412 	if (!was_dirty) {
2413 		spin_lock(&root->fs_info->delalloc_lock);
2414 		root->fs_info->dirty_metadata_bytes += buf->len;
2415 		spin_unlock(&root->fs_info->delalloc_lock);
2416 	}
2417 }
2418 
2419 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2420 {
2421 	/*
2422 	 * looks as though older kernels can get into trouble with
2423 	 * this code, they end up stuck in balance_dirty_pages forever
2424 	 */
2425 	u64 num_dirty;
2426 	unsigned long thresh = 32 * 1024 * 1024;
2427 
2428 	if (current->flags & PF_MEMALLOC)
2429 		return;
2430 
2431 	num_dirty = root->fs_info->dirty_metadata_bytes;
2432 
2433 	if (num_dirty > thresh) {
2434 		balance_dirty_pages_ratelimited_nr(
2435 				   root->fs_info->btree_inode->i_mapping, 1);
2436 	}
2437 	return;
2438 }
2439 
2440 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2441 {
2442 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2443 	int ret;
2444 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2445 	if (ret == 0)
2446 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2447 	return ret;
2448 }
2449 
2450 int btree_lock_page_hook(struct page *page)
2451 {
2452 	struct inode *inode = page->mapping->host;
2453 	struct btrfs_root *root = BTRFS_I(inode)->root;
2454 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2455 	struct extent_buffer *eb;
2456 	unsigned long len;
2457 	u64 bytenr = page_offset(page);
2458 
2459 	if (page->private == EXTENT_PAGE_PRIVATE)
2460 		goto out;
2461 
2462 	len = page->private >> 2;
2463 	eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2464 	if (!eb)
2465 		goto out;
2466 
2467 	btrfs_tree_lock(eb);
2468 	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2469 
2470 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2471 		spin_lock(&root->fs_info->delalloc_lock);
2472 		if (root->fs_info->dirty_metadata_bytes >= eb->len)
2473 			root->fs_info->dirty_metadata_bytes -= eb->len;
2474 		else
2475 			WARN_ON(1);
2476 		spin_unlock(&root->fs_info->delalloc_lock);
2477 	}
2478 
2479 	btrfs_tree_unlock(eb);
2480 	free_extent_buffer(eb);
2481 out:
2482 	lock_page(page);
2483 	return 0;
2484 }
2485 
2486 static struct extent_io_ops btree_extent_io_ops = {
2487 	.write_cache_pages_lock_hook = btree_lock_page_hook,
2488 	.readpage_end_io_hook = btree_readpage_end_io_hook,
2489 	.submit_bio_hook = btree_submit_bio_hook,
2490 	/* note we're sharing with inode.c for the merge bio hook */
2491 	.merge_bio_hook = btrfs_merge_bio_hook,
2492 };
2493