1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 #include "block-group.h" 42 #include "discard.h" 43 #include "space-info.h" 44 #include "zoned.h" 45 #include "subpage.h" 46 #include "fs.h" 47 #include "accessors.h" 48 #include "extent-tree.h" 49 #include "root-tree.h" 50 #include "defrag.h" 51 #include "uuid-tree.h" 52 #include "relocation.h" 53 #include "scrub.h" 54 #include "super.h" 55 56 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 57 BTRFS_HEADER_FLAG_RELOC |\ 58 BTRFS_SUPER_FLAG_ERROR |\ 59 BTRFS_SUPER_FLAG_SEEDING |\ 60 BTRFS_SUPER_FLAG_METADUMP |\ 61 BTRFS_SUPER_FLAG_METADUMP_V2) 62 63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 65 66 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 67 { 68 if (fs_info->csum_shash) 69 crypto_free_shash(fs_info->csum_shash); 70 } 71 72 /* 73 * Compute the csum of a btree block and store the result to provided buffer. 74 */ 75 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 76 { 77 struct btrfs_fs_info *fs_info = buf->fs_info; 78 const int num_pages = num_extent_pages(buf); 79 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 80 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 81 char *kaddr; 82 int i; 83 84 shash->tfm = fs_info->csum_shash; 85 crypto_shash_init(shash); 86 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start); 87 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 88 first_page_part - BTRFS_CSUM_SIZE); 89 90 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { 91 kaddr = page_address(buf->pages[i]); 92 crypto_shash_update(shash, kaddr, PAGE_SIZE); 93 } 94 memset(result, 0, BTRFS_CSUM_SIZE); 95 crypto_shash_final(shash, result); 96 } 97 98 /* 99 * we can't consider a given block up to date unless the transid of the 100 * block matches the transid in the parent node's pointer. This is how we 101 * detect blocks that either didn't get written at all or got written 102 * in the wrong place. 103 */ 104 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic) 105 { 106 if (!extent_buffer_uptodate(eb)) 107 return 0; 108 109 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 110 return 1; 111 112 if (atomic) 113 return -EAGAIN; 114 115 if (!extent_buffer_uptodate(eb) || 116 btrfs_header_generation(eb) != parent_transid) { 117 btrfs_err_rl(eb->fs_info, 118 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 119 eb->start, eb->read_mirror, 120 parent_transid, btrfs_header_generation(eb)); 121 clear_extent_buffer_uptodate(eb); 122 return 0; 123 } 124 return 1; 125 } 126 127 static bool btrfs_supported_super_csum(u16 csum_type) 128 { 129 switch (csum_type) { 130 case BTRFS_CSUM_TYPE_CRC32: 131 case BTRFS_CSUM_TYPE_XXHASH: 132 case BTRFS_CSUM_TYPE_SHA256: 133 case BTRFS_CSUM_TYPE_BLAKE2: 134 return true; 135 default: 136 return false; 137 } 138 } 139 140 /* 141 * Return 0 if the superblock checksum type matches the checksum value of that 142 * algorithm. Pass the raw disk superblock data. 143 */ 144 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 145 const struct btrfs_super_block *disk_sb) 146 { 147 char result[BTRFS_CSUM_SIZE]; 148 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 149 150 shash->tfm = fs_info->csum_shash; 151 152 /* 153 * The super_block structure does not span the whole 154 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 155 * filled with zeros and is included in the checksum. 156 */ 157 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 158 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 159 160 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 161 return 1; 162 163 return 0; 164 } 165 166 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 167 int mirror_num) 168 { 169 struct btrfs_fs_info *fs_info = eb->fs_info; 170 int i, num_pages = num_extent_pages(eb); 171 int ret = 0; 172 173 if (sb_rdonly(fs_info->sb)) 174 return -EROFS; 175 176 for (i = 0; i < num_pages; i++) { 177 struct page *p = eb->pages[i]; 178 u64 start = max_t(u64, eb->start, page_offset(p)); 179 u64 end = min_t(u64, eb->start + eb->len, page_offset(p) + PAGE_SIZE); 180 u32 len = end - start; 181 182 ret = btrfs_repair_io_failure(fs_info, 0, start, len, 183 start, p, offset_in_page(start), mirror_num); 184 if (ret) 185 break; 186 } 187 188 return ret; 189 } 190 191 /* 192 * helper to read a given tree block, doing retries as required when 193 * the checksums don't match and we have alternate mirrors to try. 194 * 195 * @check: expected tree parentness check, see the comments of the 196 * structure for details. 197 */ 198 int btrfs_read_extent_buffer(struct extent_buffer *eb, 199 struct btrfs_tree_parent_check *check) 200 { 201 struct btrfs_fs_info *fs_info = eb->fs_info; 202 int failed = 0; 203 int ret; 204 int num_copies = 0; 205 int mirror_num = 0; 206 int failed_mirror = 0; 207 208 ASSERT(check); 209 210 while (1) { 211 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 212 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check); 213 if (!ret) 214 break; 215 216 num_copies = btrfs_num_copies(fs_info, 217 eb->start, eb->len); 218 if (num_copies == 1) 219 break; 220 221 if (!failed_mirror) { 222 failed = 1; 223 failed_mirror = eb->read_mirror; 224 } 225 226 mirror_num++; 227 if (mirror_num == failed_mirror) 228 mirror_num++; 229 230 if (mirror_num > num_copies) 231 break; 232 } 233 234 if (failed && !ret && failed_mirror) 235 btrfs_repair_eb_io_failure(eb, failed_mirror); 236 237 return ret; 238 } 239 240 /* 241 * Checksum a dirty tree block before IO. 242 */ 243 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio) 244 { 245 struct extent_buffer *eb = bbio->private; 246 struct btrfs_fs_info *fs_info = eb->fs_info; 247 u64 found_start = btrfs_header_bytenr(eb); 248 u8 result[BTRFS_CSUM_SIZE]; 249 int ret; 250 251 /* Btree blocks are always contiguous on disk. */ 252 if (WARN_ON_ONCE(bbio->file_offset != eb->start)) 253 return BLK_STS_IOERR; 254 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len)) 255 return BLK_STS_IOERR; 256 257 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) { 258 WARN_ON_ONCE(found_start != 0); 259 return BLK_STS_OK; 260 } 261 262 if (WARN_ON_ONCE(found_start != eb->start)) 263 return BLK_STS_IOERR; 264 if (WARN_ON(!btrfs_page_test_uptodate(fs_info, eb->pages[0], eb->start, 265 eb->len))) 266 return BLK_STS_IOERR; 267 268 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 269 offsetof(struct btrfs_header, fsid), 270 BTRFS_FSID_SIZE) == 0); 271 csum_tree_block(eb, result); 272 273 if (btrfs_header_level(eb)) 274 ret = btrfs_check_node(eb); 275 else 276 ret = btrfs_check_leaf(eb); 277 278 if (ret < 0) 279 goto error; 280 281 /* 282 * Also check the generation, the eb reached here must be newer than 283 * last committed. Or something seriously wrong happened. 284 */ 285 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) { 286 ret = -EUCLEAN; 287 btrfs_err(fs_info, 288 "block=%llu bad generation, have %llu expect > %llu", 289 eb->start, btrfs_header_generation(eb), 290 fs_info->last_trans_committed); 291 goto error; 292 } 293 write_extent_buffer(eb, result, 0, fs_info->csum_size); 294 return BLK_STS_OK; 295 296 error: 297 btrfs_print_tree(eb, 0); 298 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 299 eb->start); 300 /* 301 * Be noisy if this is an extent buffer from a log tree. We don't abort 302 * a transaction in case there's a bad log tree extent buffer, we just 303 * fallback to a transaction commit. Still we want to know when there is 304 * a bad log tree extent buffer, as that may signal a bug somewhere. 305 */ 306 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 307 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 308 return errno_to_blk_status(ret); 309 } 310 311 static bool check_tree_block_fsid(struct extent_buffer *eb) 312 { 313 struct btrfs_fs_info *fs_info = eb->fs_info; 314 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 315 u8 fsid[BTRFS_FSID_SIZE]; 316 317 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 318 BTRFS_FSID_SIZE); 319 320 /* 321 * alloc_fs_devices() copies the fsid into metadata_uuid if the 322 * metadata_uuid is unset in the superblock, including for a seed device. 323 * So, we can use fs_devices->metadata_uuid. 324 */ 325 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0) 326 return false; 327 328 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 329 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 330 return false; 331 332 return true; 333 } 334 335 /* Do basic extent buffer checks at read time */ 336 int btrfs_validate_extent_buffer(struct extent_buffer *eb, 337 struct btrfs_tree_parent_check *check) 338 { 339 struct btrfs_fs_info *fs_info = eb->fs_info; 340 u64 found_start; 341 const u32 csum_size = fs_info->csum_size; 342 u8 found_level; 343 u8 result[BTRFS_CSUM_SIZE]; 344 const u8 *header_csum; 345 int ret = 0; 346 347 ASSERT(check); 348 349 found_start = btrfs_header_bytenr(eb); 350 if (found_start != eb->start) { 351 btrfs_err_rl(fs_info, 352 "bad tree block start, mirror %u want %llu have %llu", 353 eb->read_mirror, eb->start, found_start); 354 ret = -EIO; 355 goto out; 356 } 357 if (check_tree_block_fsid(eb)) { 358 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 359 eb->start, eb->read_mirror); 360 ret = -EIO; 361 goto out; 362 } 363 found_level = btrfs_header_level(eb); 364 if (found_level >= BTRFS_MAX_LEVEL) { 365 btrfs_err(fs_info, 366 "bad tree block level, mirror %u level %d on logical %llu", 367 eb->read_mirror, btrfs_header_level(eb), eb->start); 368 ret = -EIO; 369 goto out; 370 } 371 372 csum_tree_block(eb, result); 373 header_csum = page_address(eb->pages[0]) + 374 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum)); 375 376 if (memcmp(result, header_csum, csum_size) != 0) { 377 btrfs_warn_rl(fs_info, 378 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d", 379 eb->start, eb->read_mirror, 380 CSUM_FMT_VALUE(csum_size, header_csum), 381 CSUM_FMT_VALUE(csum_size, result), 382 btrfs_header_level(eb)); 383 ret = -EUCLEAN; 384 goto out; 385 } 386 387 if (found_level != check->level) { 388 btrfs_err(fs_info, 389 "level verify failed on logical %llu mirror %u wanted %u found %u", 390 eb->start, eb->read_mirror, check->level, found_level); 391 ret = -EIO; 392 goto out; 393 } 394 if (unlikely(check->transid && 395 btrfs_header_generation(eb) != check->transid)) { 396 btrfs_err_rl(eb->fs_info, 397 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 398 eb->start, eb->read_mirror, check->transid, 399 btrfs_header_generation(eb)); 400 ret = -EIO; 401 goto out; 402 } 403 if (check->has_first_key) { 404 struct btrfs_key *expect_key = &check->first_key; 405 struct btrfs_key found_key; 406 407 if (found_level) 408 btrfs_node_key_to_cpu(eb, &found_key, 0); 409 else 410 btrfs_item_key_to_cpu(eb, &found_key, 0); 411 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 412 btrfs_err(fs_info, 413 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 414 eb->start, check->transid, 415 expect_key->objectid, 416 expect_key->type, expect_key->offset, 417 found_key.objectid, found_key.type, 418 found_key.offset); 419 ret = -EUCLEAN; 420 goto out; 421 } 422 } 423 if (check->owner_root) { 424 ret = btrfs_check_eb_owner(eb, check->owner_root); 425 if (ret < 0) 426 goto out; 427 } 428 429 /* 430 * If this is a leaf block and it is corrupt, set the corrupt bit so 431 * that we don't try and read the other copies of this block, just 432 * return -EIO. 433 */ 434 if (found_level == 0 && btrfs_check_leaf(eb)) { 435 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 436 ret = -EIO; 437 } 438 439 if (found_level > 0 && btrfs_check_node(eb)) 440 ret = -EIO; 441 442 if (ret) 443 btrfs_err(fs_info, 444 "read time tree block corruption detected on logical %llu mirror %u", 445 eb->start, eb->read_mirror); 446 out: 447 return ret; 448 } 449 450 #ifdef CONFIG_MIGRATION 451 static int btree_migrate_folio(struct address_space *mapping, 452 struct folio *dst, struct folio *src, enum migrate_mode mode) 453 { 454 /* 455 * we can't safely write a btree page from here, 456 * we haven't done the locking hook 457 */ 458 if (folio_test_dirty(src)) 459 return -EAGAIN; 460 /* 461 * Buffers may be managed in a filesystem specific way. 462 * We must have no buffers or drop them. 463 */ 464 if (folio_get_private(src) && 465 !filemap_release_folio(src, GFP_KERNEL)) 466 return -EAGAIN; 467 return migrate_folio(mapping, dst, src, mode); 468 } 469 #else 470 #define btree_migrate_folio NULL 471 #endif 472 473 static int btree_writepages(struct address_space *mapping, 474 struct writeback_control *wbc) 475 { 476 struct btrfs_fs_info *fs_info; 477 int ret; 478 479 if (wbc->sync_mode == WB_SYNC_NONE) { 480 481 if (wbc->for_kupdate) 482 return 0; 483 484 fs_info = BTRFS_I(mapping->host)->root->fs_info; 485 /* this is a bit racy, but that's ok */ 486 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 487 BTRFS_DIRTY_METADATA_THRESH, 488 fs_info->dirty_metadata_batch); 489 if (ret < 0) 490 return 0; 491 } 492 return btree_write_cache_pages(mapping, wbc); 493 } 494 495 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 496 { 497 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 498 return false; 499 500 return try_release_extent_buffer(&folio->page); 501 } 502 503 static void btree_invalidate_folio(struct folio *folio, size_t offset, 504 size_t length) 505 { 506 struct extent_io_tree *tree; 507 tree = &BTRFS_I(folio->mapping->host)->io_tree; 508 extent_invalidate_folio(tree, folio, offset); 509 btree_release_folio(folio, GFP_NOFS); 510 if (folio_get_private(folio)) { 511 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info, 512 "folio private not zero on folio %llu", 513 (unsigned long long)folio_pos(folio)); 514 folio_detach_private(folio); 515 } 516 } 517 518 #ifdef DEBUG 519 static bool btree_dirty_folio(struct address_space *mapping, 520 struct folio *folio) 521 { 522 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 523 struct btrfs_subpage *subpage; 524 struct extent_buffer *eb; 525 int cur_bit = 0; 526 u64 page_start = folio_pos(folio); 527 528 if (fs_info->sectorsize == PAGE_SIZE) { 529 eb = folio_get_private(folio); 530 BUG_ON(!eb); 531 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 532 BUG_ON(!atomic_read(&eb->refs)); 533 btrfs_assert_tree_write_locked(eb); 534 return filemap_dirty_folio(mapping, folio); 535 } 536 subpage = folio_get_private(folio); 537 538 ASSERT(subpage->dirty_bitmap); 539 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) { 540 unsigned long flags; 541 u64 cur; 542 u16 tmp = (1 << cur_bit); 543 544 spin_lock_irqsave(&subpage->lock, flags); 545 if (!(tmp & subpage->dirty_bitmap)) { 546 spin_unlock_irqrestore(&subpage->lock, flags); 547 cur_bit++; 548 continue; 549 } 550 spin_unlock_irqrestore(&subpage->lock, flags); 551 cur = page_start + cur_bit * fs_info->sectorsize; 552 553 eb = find_extent_buffer(fs_info, cur); 554 ASSERT(eb); 555 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 556 ASSERT(atomic_read(&eb->refs)); 557 btrfs_assert_tree_write_locked(eb); 558 free_extent_buffer(eb); 559 560 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits); 561 } 562 return filemap_dirty_folio(mapping, folio); 563 } 564 #else 565 #define btree_dirty_folio filemap_dirty_folio 566 #endif 567 568 static const struct address_space_operations btree_aops = { 569 .writepages = btree_writepages, 570 .release_folio = btree_release_folio, 571 .invalidate_folio = btree_invalidate_folio, 572 .migrate_folio = btree_migrate_folio, 573 .dirty_folio = btree_dirty_folio, 574 }; 575 576 struct extent_buffer *btrfs_find_create_tree_block( 577 struct btrfs_fs_info *fs_info, 578 u64 bytenr, u64 owner_root, 579 int level) 580 { 581 if (btrfs_is_testing(fs_info)) 582 return alloc_test_extent_buffer(fs_info, bytenr); 583 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 584 } 585 586 /* 587 * Read tree block at logical address @bytenr and do variant basic but critical 588 * verification. 589 * 590 * @check: expected tree parentness check, see comments of the 591 * structure for details. 592 */ 593 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 594 struct btrfs_tree_parent_check *check) 595 { 596 struct extent_buffer *buf = NULL; 597 int ret; 598 599 ASSERT(check); 600 601 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 602 check->level); 603 if (IS_ERR(buf)) 604 return buf; 605 606 ret = btrfs_read_extent_buffer(buf, check); 607 if (ret) { 608 free_extent_buffer_stale(buf); 609 return ERR_PTR(ret); 610 } 611 if (btrfs_check_eb_owner(buf, check->owner_root)) { 612 free_extent_buffer_stale(buf); 613 return ERR_PTR(-EUCLEAN); 614 } 615 return buf; 616 617 } 618 619 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 620 u64 objectid) 621 { 622 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 623 624 memset(&root->root_key, 0, sizeof(root->root_key)); 625 memset(&root->root_item, 0, sizeof(root->root_item)); 626 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 627 root->fs_info = fs_info; 628 root->root_key.objectid = objectid; 629 root->node = NULL; 630 root->commit_root = NULL; 631 root->state = 0; 632 RB_CLEAR_NODE(&root->rb_node); 633 634 root->last_trans = 0; 635 root->free_objectid = 0; 636 root->nr_delalloc_inodes = 0; 637 root->nr_ordered_extents = 0; 638 root->inode_tree = RB_ROOT; 639 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 640 641 btrfs_init_root_block_rsv(root); 642 643 INIT_LIST_HEAD(&root->dirty_list); 644 INIT_LIST_HEAD(&root->root_list); 645 INIT_LIST_HEAD(&root->delalloc_inodes); 646 INIT_LIST_HEAD(&root->delalloc_root); 647 INIT_LIST_HEAD(&root->ordered_extents); 648 INIT_LIST_HEAD(&root->ordered_root); 649 INIT_LIST_HEAD(&root->reloc_dirty_list); 650 INIT_LIST_HEAD(&root->logged_list[0]); 651 INIT_LIST_HEAD(&root->logged_list[1]); 652 spin_lock_init(&root->inode_lock); 653 spin_lock_init(&root->delalloc_lock); 654 spin_lock_init(&root->ordered_extent_lock); 655 spin_lock_init(&root->accounting_lock); 656 spin_lock_init(&root->log_extents_lock[0]); 657 spin_lock_init(&root->log_extents_lock[1]); 658 spin_lock_init(&root->qgroup_meta_rsv_lock); 659 mutex_init(&root->objectid_mutex); 660 mutex_init(&root->log_mutex); 661 mutex_init(&root->ordered_extent_mutex); 662 mutex_init(&root->delalloc_mutex); 663 init_waitqueue_head(&root->qgroup_flush_wait); 664 init_waitqueue_head(&root->log_writer_wait); 665 init_waitqueue_head(&root->log_commit_wait[0]); 666 init_waitqueue_head(&root->log_commit_wait[1]); 667 INIT_LIST_HEAD(&root->log_ctxs[0]); 668 INIT_LIST_HEAD(&root->log_ctxs[1]); 669 atomic_set(&root->log_commit[0], 0); 670 atomic_set(&root->log_commit[1], 0); 671 atomic_set(&root->log_writers, 0); 672 atomic_set(&root->log_batch, 0); 673 refcount_set(&root->refs, 1); 674 atomic_set(&root->snapshot_force_cow, 0); 675 atomic_set(&root->nr_swapfiles, 0); 676 root->log_transid = 0; 677 root->log_transid_committed = -1; 678 root->last_log_commit = 0; 679 root->anon_dev = 0; 680 if (!dummy) { 681 extent_io_tree_init(fs_info, &root->dirty_log_pages, 682 IO_TREE_ROOT_DIRTY_LOG_PAGES); 683 extent_io_tree_init(fs_info, &root->log_csum_range, 684 IO_TREE_LOG_CSUM_RANGE); 685 } 686 687 spin_lock_init(&root->root_item_lock); 688 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 689 #ifdef CONFIG_BTRFS_DEBUG 690 INIT_LIST_HEAD(&root->leak_list); 691 spin_lock(&fs_info->fs_roots_radix_lock); 692 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 693 spin_unlock(&fs_info->fs_roots_radix_lock); 694 #endif 695 } 696 697 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 698 u64 objectid, gfp_t flags) 699 { 700 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 701 if (root) 702 __setup_root(root, fs_info, objectid); 703 return root; 704 } 705 706 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 707 /* Should only be used by the testing infrastructure */ 708 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 709 { 710 struct btrfs_root *root; 711 712 if (!fs_info) 713 return ERR_PTR(-EINVAL); 714 715 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 716 if (!root) 717 return ERR_PTR(-ENOMEM); 718 719 /* We don't use the stripesize in selftest, set it as sectorsize */ 720 root->alloc_bytenr = 0; 721 722 return root; 723 } 724 #endif 725 726 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 727 { 728 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 729 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 730 731 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 732 } 733 734 static int global_root_key_cmp(const void *k, const struct rb_node *node) 735 { 736 const struct btrfs_key *key = k; 737 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 738 739 return btrfs_comp_cpu_keys(key, &root->root_key); 740 } 741 742 int btrfs_global_root_insert(struct btrfs_root *root) 743 { 744 struct btrfs_fs_info *fs_info = root->fs_info; 745 struct rb_node *tmp; 746 int ret = 0; 747 748 write_lock(&fs_info->global_root_lock); 749 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 750 write_unlock(&fs_info->global_root_lock); 751 752 if (tmp) { 753 ret = -EEXIST; 754 btrfs_warn(fs_info, "global root %llu %llu already exists", 755 root->root_key.objectid, root->root_key.offset); 756 } 757 return ret; 758 } 759 760 void btrfs_global_root_delete(struct btrfs_root *root) 761 { 762 struct btrfs_fs_info *fs_info = root->fs_info; 763 764 write_lock(&fs_info->global_root_lock); 765 rb_erase(&root->rb_node, &fs_info->global_root_tree); 766 write_unlock(&fs_info->global_root_lock); 767 } 768 769 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 770 struct btrfs_key *key) 771 { 772 struct rb_node *node; 773 struct btrfs_root *root = NULL; 774 775 read_lock(&fs_info->global_root_lock); 776 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 777 if (node) 778 root = container_of(node, struct btrfs_root, rb_node); 779 read_unlock(&fs_info->global_root_lock); 780 781 return root; 782 } 783 784 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 785 { 786 struct btrfs_block_group *block_group; 787 u64 ret; 788 789 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 790 return 0; 791 792 if (bytenr) 793 block_group = btrfs_lookup_block_group(fs_info, bytenr); 794 else 795 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 796 ASSERT(block_group); 797 if (!block_group) 798 return 0; 799 ret = block_group->global_root_id; 800 btrfs_put_block_group(block_group); 801 802 return ret; 803 } 804 805 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 806 { 807 struct btrfs_key key = { 808 .objectid = BTRFS_CSUM_TREE_OBJECTID, 809 .type = BTRFS_ROOT_ITEM_KEY, 810 .offset = btrfs_global_root_id(fs_info, bytenr), 811 }; 812 813 return btrfs_global_root(fs_info, &key); 814 } 815 816 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 817 { 818 struct btrfs_key key = { 819 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 820 .type = BTRFS_ROOT_ITEM_KEY, 821 .offset = btrfs_global_root_id(fs_info, bytenr), 822 }; 823 824 return btrfs_global_root(fs_info, &key); 825 } 826 827 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) 828 { 829 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) 830 return fs_info->block_group_root; 831 return btrfs_extent_root(fs_info, 0); 832 } 833 834 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 835 u64 objectid) 836 { 837 struct btrfs_fs_info *fs_info = trans->fs_info; 838 struct extent_buffer *leaf; 839 struct btrfs_root *tree_root = fs_info->tree_root; 840 struct btrfs_root *root; 841 struct btrfs_key key; 842 unsigned int nofs_flag; 843 int ret = 0; 844 845 /* 846 * We're holding a transaction handle, so use a NOFS memory allocation 847 * context to avoid deadlock if reclaim happens. 848 */ 849 nofs_flag = memalloc_nofs_save(); 850 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 851 memalloc_nofs_restore(nofs_flag); 852 if (!root) 853 return ERR_PTR(-ENOMEM); 854 855 root->root_key.objectid = objectid; 856 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 857 root->root_key.offset = 0; 858 859 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 860 BTRFS_NESTING_NORMAL); 861 if (IS_ERR(leaf)) { 862 ret = PTR_ERR(leaf); 863 leaf = NULL; 864 goto fail; 865 } 866 867 root->node = leaf; 868 btrfs_mark_buffer_dirty(leaf); 869 870 root->commit_root = btrfs_root_node(root); 871 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 872 873 btrfs_set_root_flags(&root->root_item, 0); 874 btrfs_set_root_limit(&root->root_item, 0); 875 btrfs_set_root_bytenr(&root->root_item, leaf->start); 876 btrfs_set_root_generation(&root->root_item, trans->transid); 877 btrfs_set_root_level(&root->root_item, 0); 878 btrfs_set_root_refs(&root->root_item, 1); 879 btrfs_set_root_used(&root->root_item, leaf->len); 880 btrfs_set_root_last_snapshot(&root->root_item, 0); 881 btrfs_set_root_dirid(&root->root_item, 0); 882 if (is_fstree(objectid)) 883 generate_random_guid(root->root_item.uuid); 884 else 885 export_guid(root->root_item.uuid, &guid_null); 886 btrfs_set_root_drop_level(&root->root_item, 0); 887 888 btrfs_tree_unlock(leaf); 889 890 key.objectid = objectid; 891 key.type = BTRFS_ROOT_ITEM_KEY; 892 key.offset = 0; 893 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 894 if (ret) 895 goto fail; 896 897 return root; 898 899 fail: 900 btrfs_put_root(root); 901 902 return ERR_PTR(ret); 903 } 904 905 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 906 struct btrfs_fs_info *fs_info) 907 { 908 struct btrfs_root *root; 909 910 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 911 if (!root) 912 return ERR_PTR(-ENOMEM); 913 914 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 915 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 916 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 917 918 return root; 919 } 920 921 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 922 struct btrfs_root *root) 923 { 924 struct extent_buffer *leaf; 925 926 /* 927 * DON'T set SHAREABLE bit for log trees. 928 * 929 * Log trees are not exposed to user space thus can't be snapshotted, 930 * and they go away before a real commit is actually done. 931 * 932 * They do store pointers to file data extents, and those reference 933 * counts still get updated (along with back refs to the log tree). 934 */ 935 936 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 937 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); 938 if (IS_ERR(leaf)) 939 return PTR_ERR(leaf); 940 941 root->node = leaf; 942 943 btrfs_mark_buffer_dirty(root->node); 944 btrfs_tree_unlock(root->node); 945 946 return 0; 947 } 948 949 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 950 struct btrfs_fs_info *fs_info) 951 { 952 struct btrfs_root *log_root; 953 954 log_root = alloc_log_tree(trans, fs_info); 955 if (IS_ERR(log_root)) 956 return PTR_ERR(log_root); 957 958 if (!btrfs_is_zoned(fs_info)) { 959 int ret = btrfs_alloc_log_tree_node(trans, log_root); 960 961 if (ret) { 962 btrfs_put_root(log_root); 963 return ret; 964 } 965 } 966 967 WARN_ON(fs_info->log_root_tree); 968 fs_info->log_root_tree = log_root; 969 return 0; 970 } 971 972 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 973 struct btrfs_root *root) 974 { 975 struct btrfs_fs_info *fs_info = root->fs_info; 976 struct btrfs_root *log_root; 977 struct btrfs_inode_item *inode_item; 978 int ret; 979 980 log_root = alloc_log_tree(trans, fs_info); 981 if (IS_ERR(log_root)) 982 return PTR_ERR(log_root); 983 984 ret = btrfs_alloc_log_tree_node(trans, log_root); 985 if (ret) { 986 btrfs_put_root(log_root); 987 return ret; 988 } 989 990 log_root->last_trans = trans->transid; 991 log_root->root_key.offset = root->root_key.objectid; 992 993 inode_item = &log_root->root_item.inode; 994 btrfs_set_stack_inode_generation(inode_item, 1); 995 btrfs_set_stack_inode_size(inode_item, 3); 996 btrfs_set_stack_inode_nlink(inode_item, 1); 997 btrfs_set_stack_inode_nbytes(inode_item, 998 fs_info->nodesize); 999 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1000 1001 btrfs_set_root_node(&log_root->root_item, log_root->node); 1002 1003 WARN_ON(root->log_root); 1004 root->log_root = log_root; 1005 root->log_transid = 0; 1006 root->log_transid_committed = -1; 1007 root->last_log_commit = 0; 1008 return 0; 1009 } 1010 1011 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1012 struct btrfs_path *path, 1013 struct btrfs_key *key) 1014 { 1015 struct btrfs_root *root; 1016 struct btrfs_tree_parent_check check = { 0 }; 1017 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1018 u64 generation; 1019 int ret; 1020 int level; 1021 1022 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1023 if (!root) 1024 return ERR_PTR(-ENOMEM); 1025 1026 ret = btrfs_find_root(tree_root, key, path, 1027 &root->root_item, &root->root_key); 1028 if (ret) { 1029 if (ret > 0) 1030 ret = -ENOENT; 1031 goto fail; 1032 } 1033 1034 generation = btrfs_root_generation(&root->root_item); 1035 level = btrfs_root_level(&root->root_item); 1036 check.level = level; 1037 check.transid = generation; 1038 check.owner_root = key->objectid; 1039 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1040 &check); 1041 if (IS_ERR(root->node)) { 1042 ret = PTR_ERR(root->node); 1043 root->node = NULL; 1044 goto fail; 1045 } 1046 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1047 ret = -EIO; 1048 goto fail; 1049 } 1050 1051 /* 1052 * For real fs, and not log/reloc trees, root owner must 1053 * match its root node owner 1054 */ 1055 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) && 1056 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1057 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1058 root->root_key.objectid != btrfs_header_owner(root->node)) { 1059 btrfs_crit(fs_info, 1060 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1061 root->root_key.objectid, root->node->start, 1062 btrfs_header_owner(root->node), 1063 root->root_key.objectid); 1064 ret = -EUCLEAN; 1065 goto fail; 1066 } 1067 root->commit_root = btrfs_root_node(root); 1068 return root; 1069 fail: 1070 btrfs_put_root(root); 1071 return ERR_PTR(ret); 1072 } 1073 1074 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1075 struct btrfs_key *key) 1076 { 1077 struct btrfs_root *root; 1078 struct btrfs_path *path; 1079 1080 path = btrfs_alloc_path(); 1081 if (!path) 1082 return ERR_PTR(-ENOMEM); 1083 root = read_tree_root_path(tree_root, path, key); 1084 btrfs_free_path(path); 1085 1086 return root; 1087 } 1088 1089 /* 1090 * Initialize subvolume root in-memory structure 1091 * 1092 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1093 */ 1094 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1095 { 1096 int ret; 1097 1098 btrfs_drew_lock_init(&root->snapshot_lock); 1099 1100 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1101 !btrfs_is_data_reloc_root(root) && 1102 is_fstree(root->root_key.objectid)) { 1103 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1104 btrfs_check_and_init_root_item(&root->root_item); 1105 } 1106 1107 /* 1108 * Don't assign anonymous block device to roots that are not exposed to 1109 * userspace, the id pool is limited to 1M 1110 */ 1111 if (is_fstree(root->root_key.objectid) && 1112 btrfs_root_refs(&root->root_item) > 0) { 1113 if (!anon_dev) { 1114 ret = get_anon_bdev(&root->anon_dev); 1115 if (ret) 1116 goto fail; 1117 } else { 1118 root->anon_dev = anon_dev; 1119 } 1120 } 1121 1122 mutex_lock(&root->objectid_mutex); 1123 ret = btrfs_init_root_free_objectid(root); 1124 if (ret) { 1125 mutex_unlock(&root->objectid_mutex); 1126 goto fail; 1127 } 1128 1129 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1130 1131 mutex_unlock(&root->objectid_mutex); 1132 1133 return 0; 1134 fail: 1135 /* The caller is responsible to call btrfs_free_fs_root */ 1136 return ret; 1137 } 1138 1139 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1140 u64 root_id) 1141 { 1142 struct btrfs_root *root; 1143 1144 spin_lock(&fs_info->fs_roots_radix_lock); 1145 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1146 (unsigned long)root_id); 1147 root = btrfs_grab_root(root); 1148 spin_unlock(&fs_info->fs_roots_radix_lock); 1149 return root; 1150 } 1151 1152 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1153 u64 objectid) 1154 { 1155 struct btrfs_key key = { 1156 .objectid = objectid, 1157 .type = BTRFS_ROOT_ITEM_KEY, 1158 .offset = 0, 1159 }; 1160 1161 switch (objectid) { 1162 case BTRFS_ROOT_TREE_OBJECTID: 1163 return btrfs_grab_root(fs_info->tree_root); 1164 case BTRFS_EXTENT_TREE_OBJECTID: 1165 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1166 case BTRFS_CHUNK_TREE_OBJECTID: 1167 return btrfs_grab_root(fs_info->chunk_root); 1168 case BTRFS_DEV_TREE_OBJECTID: 1169 return btrfs_grab_root(fs_info->dev_root); 1170 case BTRFS_CSUM_TREE_OBJECTID: 1171 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1172 case BTRFS_QUOTA_TREE_OBJECTID: 1173 return btrfs_grab_root(fs_info->quota_root); 1174 case BTRFS_UUID_TREE_OBJECTID: 1175 return btrfs_grab_root(fs_info->uuid_root); 1176 case BTRFS_BLOCK_GROUP_TREE_OBJECTID: 1177 return btrfs_grab_root(fs_info->block_group_root); 1178 case BTRFS_FREE_SPACE_TREE_OBJECTID: 1179 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1180 default: 1181 return NULL; 1182 } 1183 } 1184 1185 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1186 struct btrfs_root *root) 1187 { 1188 int ret; 1189 1190 ret = radix_tree_preload(GFP_NOFS); 1191 if (ret) 1192 return ret; 1193 1194 spin_lock(&fs_info->fs_roots_radix_lock); 1195 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1196 (unsigned long)root->root_key.objectid, 1197 root); 1198 if (ret == 0) { 1199 btrfs_grab_root(root); 1200 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1201 } 1202 spin_unlock(&fs_info->fs_roots_radix_lock); 1203 radix_tree_preload_end(); 1204 1205 return ret; 1206 } 1207 1208 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1209 { 1210 #ifdef CONFIG_BTRFS_DEBUG 1211 struct btrfs_root *root; 1212 1213 while (!list_empty(&fs_info->allocated_roots)) { 1214 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1215 1216 root = list_first_entry(&fs_info->allocated_roots, 1217 struct btrfs_root, leak_list); 1218 btrfs_err(fs_info, "leaked root %s refcount %d", 1219 btrfs_root_name(&root->root_key, buf), 1220 refcount_read(&root->refs)); 1221 while (refcount_read(&root->refs) > 1) 1222 btrfs_put_root(root); 1223 btrfs_put_root(root); 1224 } 1225 #endif 1226 } 1227 1228 static void free_global_roots(struct btrfs_fs_info *fs_info) 1229 { 1230 struct btrfs_root *root; 1231 struct rb_node *node; 1232 1233 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1234 root = rb_entry(node, struct btrfs_root, rb_node); 1235 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1236 btrfs_put_root(root); 1237 } 1238 } 1239 1240 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1241 { 1242 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1243 percpu_counter_destroy(&fs_info->delalloc_bytes); 1244 percpu_counter_destroy(&fs_info->ordered_bytes); 1245 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1246 btrfs_free_csum_hash(fs_info); 1247 btrfs_free_stripe_hash_table(fs_info); 1248 btrfs_free_ref_cache(fs_info); 1249 kfree(fs_info->balance_ctl); 1250 kfree(fs_info->delayed_root); 1251 free_global_roots(fs_info); 1252 btrfs_put_root(fs_info->tree_root); 1253 btrfs_put_root(fs_info->chunk_root); 1254 btrfs_put_root(fs_info->dev_root); 1255 btrfs_put_root(fs_info->quota_root); 1256 btrfs_put_root(fs_info->uuid_root); 1257 btrfs_put_root(fs_info->fs_root); 1258 btrfs_put_root(fs_info->data_reloc_root); 1259 btrfs_put_root(fs_info->block_group_root); 1260 btrfs_check_leaked_roots(fs_info); 1261 btrfs_extent_buffer_leak_debug_check(fs_info); 1262 kfree(fs_info->super_copy); 1263 kfree(fs_info->super_for_commit); 1264 kfree(fs_info->subpage_info); 1265 kvfree(fs_info); 1266 } 1267 1268 1269 /* 1270 * Get an in-memory reference of a root structure. 1271 * 1272 * For essential trees like root/extent tree, we grab it from fs_info directly. 1273 * For subvolume trees, we check the cached filesystem roots first. If not 1274 * found, then read it from disk and add it to cached fs roots. 1275 * 1276 * Caller should release the root by calling btrfs_put_root() after the usage. 1277 * 1278 * NOTE: Reloc and log trees can't be read by this function as they share the 1279 * same root objectid. 1280 * 1281 * @objectid: root id 1282 * @anon_dev: preallocated anonymous block device number for new roots, 1283 * pass 0 for new allocation. 1284 * @check_ref: whether to check root item references, If true, return -ENOENT 1285 * for orphan roots 1286 */ 1287 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1288 u64 objectid, dev_t anon_dev, 1289 bool check_ref) 1290 { 1291 struct btrfs_root *root; 1292 struct btrfs_path *path; 1293 struct btrfs_key key; 1294 int ret; 1295 1296 root = btrfs_get_global_root(fs_info, objectid); 1297 if (root) 1298 return root; 1299 1300 /* 1301 * If we're called for non-subvolume trees, and above function didn't 1302 * find one, do not try to read it from disk. 1303 * 1304 * This is namely for free-space-tree and quota tree, which can change 1305 * at runtime and should only be grabbed from fs_info. 1306 */ 1307 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) 1308 return ERR_PTR(-ENOENT); 1309 again: 1310 root = btrfs_lookup_fs_root(fs_info, objectid); 1311 if (root) { 1312 /* Shouldn't get preallocated anon_dev for cached roots */ 1313 ASSERT(!anon_dev); 1314 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1315 btrfs_put_root(root); 1316 return ERR_PTR(-ENOENT); 1317 } 1318 return root; 1319 } 1320 1321 key.objectid = objectid; 1322 key.type = BTRFS_ROOT_ITEM_KEY; 1323 key.offset = (u64)-1; 1324 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1325 if (IS_ERR(root)) 1326 return root; 1327 1328 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1329 ret = -ENOENT; 1330 goto fail; 1331 } 1332 1333 ret = btrfs_init_fs_root(root, anon_dev); 1334 if (ret) 1335 goto fail; 1336 1337 path = btrfs_alloc_path(); 1338 if (!path) { 1339 ret = -ENOMEM; 1340 goto fail; 1341 } 1342 key.objectid = BTRFS_ORPHAN_OBJECTID; 1343 key.type = BTRFS_ORPHAN_ITEM_KEY; 1344 key.offset = objectid; 1345 1346 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1347 btrfs_free_path(path); 1348 if (ret < 0) 1349 goto fail; 1350 if (ret == 0) 1351 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1352 1353 ret = btrfs_insert_fs_root(fs_info, root); 1354 if (ret) { 1355 if (ret == -EEXIST) { 1356 btrfs_put_root(root); 1357 goto again; 1358 } 1359 goto fail; 1360 } 1361 return root; 1362 fail: 1363 /* 1364 * If our caller provided us an anonymous device, then it's his 1365 * responsibility to free it in case we fail. So we have to set our 1366 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1367 * and once again by our caller. 1368 */ 1369 if (anon_dev) 1370 root->anon_dev = 0; 1371 btrfs_put_root(root); 1372 return ERR_PTR(ret); 1373 } 1374 1375 /* 1376 * Get in-memory reference of a root structure 1377 * 1378 * @objectid: tree objectid 1379 * @check_ref: if set, verify that the tree exists and the item has at least 1380 * one reference 1381 */ 1382 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1383 u64 objectid, bool check_ref) 1384 { 1385 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1386 } 1387 1388 /* 1389 * Get in-memory reference of a root structure, created as new, optionally pass 1390 * the anonymous block device id 1391 * 1392 * @objectid: tree objectid 1393 * @anon_dev: if zero, allocate a new anonymous block device or use the 1394 * parameter value 1395 */ 1396 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1397 u64 objectid, dev_t anon_dev) 1398 { 1399 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1400 } 1401 1402 /* 1403 * btrfs_get_fs_root_commit_root - return a root for the given objectid 1404 * @fs_info: the fs_info 1405 * @objectid: the objectid we need to lookup 1406 * 1407 * This is exclusively used for backref walking, and exists specifically because 1408 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1409 * creation time, which means we may have to read the tree_root in order to look 1410 * up a fs root that is not in memory. If the root is not in memory we will 1411 * read the tree root commit root and look up the fs root from there. This is a 1412 * temporary root, it will not be inserted into the radix tree as it doesn't 1413 * have the most uptodate information, it'll simply be discarded once the 1414 * backref code is finished using the root. 1415 */ 1416 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1417 struct btrfs_path *path, 1418 u64 objectid) 1419 { 1420 struct btrfs_root *root; 1421 struct btrfs_key key; 1422 1423 ASSERT(path->search_commit_root && path->skip_locking); 1424 1425 /* 1426 * This can return -ENOENT if we ask for a root that doesn't exist, but 1427 * since this is called via the backref walking code we won't be looking 1428 * up a root that doesn't exist, unless there's corruption. So if root 1429 * != NULL just return it. 1430 */ 1431 root = btrfs_get_global_root(fs_info, objectid); 1432 if (root) 1433 return root; 1434 1435 root = btrfs_lookup_fs_root(fs_info, objectid); 1436 if (root) 1437 return root; 1438 1439 key.objectid = objectid; 1440 key.type = BTRFS_ROOT_ITEM_KEY; 1441 key.offset = (u64)-1; 1442 root = read_tree_root_path(fs_info->tree_root, path, &key); 1443 btrfs_release_path(path); 1444 1445 return root; 1446 } 1447 1448 static int cleaner_kthread(void *arg) 1449 { 1450 struct btrfs_fs_info *fs_info = arg; 1451 int again; 1452 1453 while (1) { 1454 again = 0; 1455 1456 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1457 1458 /* Make the cleaner go to sleep early. */ 1459 if (btrfs_need_cleaner_sleep(fs_info)) 1460 goto sleep; 1461 1462 /* 1463 * Do not do anything if we might cause open_ctree() to block 1464 * before we have finished mounting the filesystem. 1465 */ 1466 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1467 goto sleep; 1468 1469 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1470 goto sleep; 1471 1472 /* 1473 * Avoid the problem that we change the status of the fs 1474 * during the above check and trylock. 1475 */ 1476 if (btrfs_need_cleaner_sleep(fs_info)) { 1477 mutex_unlock(&fs_info->cleaner_mutex); 1478 goto sleep; 1479 } 1480 1481 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) 1482 btrfs_sysfs_feature_update(fs_info); 1483 1484 btrfs_run_delayed_iputs(fs_info); 1485 1486 again = btrfs_clean_one_deleted_snapshot(fs_info); 1487 mutex_unlock(&fs_info->cleaner_mutex); 1488 1489 /* 1490 * The defragger has dealt with the R/O remount and umount, 1491 * needn't do anything special here. 1492 */ 1493 btrfs_run_defrag_inodes(fs_info); 1494 1495 /* 1496 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1497 * with relocation (btrfs_relocate_chunk) and relocation 1498 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1499 * after acquiring fs_info->reclaim_bgs_lock. So we 1500 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1501 * unused block groups. 1502 */ 1503 btrfs_delete_unused_bgs(fs_info); 1504 1505 /* 1506 * Reclaim block groups in the reclaim_bgs list after we deleted 1507 * all unused block_groups. This possibly gives us some more free 1508 * space. 1509 */ 1510 btrfs_reclaim_bgs(fs_info); 1511 sleep: 1512 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1513 if (kthread_should_park()) 1514 kthread_parkme(); 1515 if (kthread_should_stop()) 1516 return 0; 1517 if (!again) { 1518 set_current_state(TASK_INTERRUPTIBLE); 1519 schedule(); 1520 __set_current_state(TASK_RUNNING); 1521 } 1522 } 1523 } 1524 1525 static int transaction_kthread(void *arg) 1526 { 1527 struct btrfs_root *root = arg; 1528 struct btrfs_fs_info *fs_info = root->fs_info; 1529 struct btrfs_trans_handle *trans; 1530 struct btrfs_transaction *cur; 1531 u64 transid; 1532 time64_t delta; 1533 unsigned long delay; 1534 bool cannot_commit; 1535 1536 do { 1537 cannot_commit = false; 1538 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1539 mutex_lock(&fs_info->transaction_kthread_mutex); 1540 1541 spin_lock(&fs_info->trans_lock); 1542 cur = fs_info->running_transaction; 1543 if (!cur) { 1544 spin_unlock(&fs_info->trans_lock); 1545 goto sleep; 1546 } 1547 1548 delta = ktime_get_seconds() - cur->start_time; 1549 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1550 cur->state < TRANS_STATE_COMMIT_START && 1551 delta < fs_info->commit_interval) { 1552 spin_unlock(&fs_info->trans_lock); 1553 delay -= msecs_to_jiffies((delta - 1) * 1000); 1554 delay = min(delay, 1555 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1556 goto sleep; 1557 } 1558 transid = cur->transid; 1559 spin_unlock(&fs_info->trans_lock); 1560 1561 /* If the file system is aborted, this will always fail. */ 1562 trans = btrfs_attach_transaction(root); 1563 if (IS_ERR(trans)) { 1564 if (PTR_ERR(trans) != -ENOENT) 1565 cannot_commit = true; 1566 goto sleep; 1567 } 1568 if (transid == trans->transid) { 1569 btrfs_commit_transaction(trans); 1570 } else { 1571 btrfs_end_transaction(trans); 1572 } 1573 sleep: 1574 wake_up_process(fs_info->cleaner_kthread); 1575 mutex_unlock(&fs_info->transaction_kthread_mutex); 1576 1577 if (BTRFS_FS_ERROR(fs_info)) 1578 btrfs_cleanup_transaction(fs_info); 1579 if (!kthread_should_stop() && 1580 (!btrfs_transaction_blocked(fs_info) || 1581 cannot_commit)) 1582 schedule_timeout_interruptible(delay); 1583 } while (!kthread_should_stop()); 1584 return 0; 1585 } 1586 1587 /* 1588 * This will find the highest generation in the array of root backups. The 1589 * index of the highest array is returned, or -EINVAL if we can't find 1590 * anything. 1591 * 1592 * We check to make sure the array is valid by comparing the 1593 * generation of the latest root in the array with the generation 1594 * in the super block. If they don't match we pitch it. 1595 */ 1596 static int find_newest_super_backup(struct btrfs_fs_info *info) 1597 { 1598 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1599 u64 cur; 1600 struct btrfs_root_backup *root_backup; 1601 int i; 1602 1603 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1604 root_backup = info->super_copy->super_roots + i; 1605 cur = btrfs_backup_tree_root_gen(root_backup); 1606 if (cur == newest_gen) 1607 return i; 1608 } 1609 1610 return -EINVAL; 1611 } 1612 1613 /* 1614 * copy all the root pointers into the super backup array. 1615 * this will bump the backup pointer by one when it is 1616 * done 1617 */ 1618 static void backup_super_roots(struct btrfs_fs_info *info) 1619 { 1620 const int next_backup = info->backup_root_index; 1621 struct btrfs_root_backup *root_backup; 1622 1623 root_backup = info->super_for_commit->super_roots + next_backup; 1624 1625 /* 1626 * make sure all of our padding and empty slots get zero filled 1627 * regardless of which ones we use today 1628 */ 1629 memset(root_backup, 0, sizeof(*root_backup)); 1630 1631 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1632 1633 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1634 btrfs_set_backup_tree_root_gen(root_backup, 1635 btrfs_header_generation(info->tree_root->node)); 1636 1637 btrfs_set_backup_tree_root_level(root_backup, 1638 btrfs_header_level(info->tree_root->node)); 1639 1640 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1641 btrfs_set_backup_chunk_root_gen(root_backup, 1642 btrfs_header_generation(info->chunk_root->node)); 1643 btrfs_set_backup_chunk_root_level(root_backup, 1644 btrfs_header_level(info->chunk_root->node)); 1645 1646 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1647 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1648 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1649 1650 btrfs_set_backup_extent_root(root_backup, 1651 extent_root->node->start); 1652 btrfs_set_backup_extent_root_gen(root_backup, 1653 btrfs_header_generation(extent_root->node)); 1654 btrfs_set_backup_extent_root_level(root_backup, 1655 btrfs_header_level(extent_root->node)); 1656 1657 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1658 btrfs_set_backup_csum_root_gen(root_backup, 1659 btrfs_header_generation(csum_root->node)); 1660 btrfs_set_backup_csum_root_level(root_backup, 1661 btrfs_header_level(csum_root->node)); 1662 } 1663 1664 /* 1665 * we might commit during log recovery, which happens before we set 1666 * the fs_root. Make sure it is valid before we fill it in. 1667 */ 1668 if (info->fs_root && info->fs_root->node) { 1669 btrfs_set_backup_fs_root(root_backup, 1670 info->fs_root->node->start); 1671 btrfs_set_backup_fs_root_gen(root_backup, 1672 btrfs_header_generation(info->fs_root->node)); 1673 btrfs_set_backup_fs_root_level(root_backup, 1674 btrfs_header_level(info->fs_root->node)); 1675 } 1676 1677 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1678 btrfs_set_backup_dev_root_gen(root_backup, 1679 btrfs_header_generation(info->dev_root->node)); 1680 btrfs_set_backup_dev_root_level(root_backup, 1681 btrfs_header_level(info->dev_root->node)); 1682 1683 btrfs_set_backup_total_bytes(root_backup, 1684 btrfs_super_total_bytes(info->super_copy)); 1685 btrfs_set_backup_bytes_used(root_backup, 1686 btrfs_super_bytes_used(info->super_copy)); 1687 btrfs_set_backup_num_devices(root_backup, 1688 btrfs_super_num_devices(info->super_copy)); 1689 1690 /* 1691 * if we don't copy this out to the super_copy, it won't get remembered 1692 * for the next commit 1693 */ 1694 memcpy(&info->super_copy->super_roots, 1695 &info->super_for_commit->super_roots, 1696 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1697 } 1698 1699 /* 1700 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 1701 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1702 * 1703 * fs_info - filesystem whose backup roots need to be read 1704 * priority - priority of backup root required 1705 * 1706 * Returns backup root index on success and -EINVAL otherwise. 1707 */ 1708 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1709 { 1710 int backup_index = find_newest_super_backup(fs_info); 1711 struct btrfs_super_block *super = fs_info->super_copy; 1712 struct btrfs_root_backup *root_backup; 1713 1714 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1715 if (priority == 0) 1716 return backup_index; 1717 1718 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1719 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1720 } else { 1721 return -EINVAL; 1722 } 1723 1724 root_backup = super->super_roots + backup_index; 1725 1726 btrfs_set_super_generation(super, 1727 btrfs_backup_tree_root_gen(root_backup)); 1728 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1729 btrfs_set_super_root_level(super, 1730 btrfs_backup_tree_root_level(root_backup)); 1731 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1732 1733 /* 1734 * Fixme: the total bytes and num_devices need to match or we should 1735 * need a fsck 1736 */ 1737 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1738 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1739 1740 return backup_index; 1741 } 1742 1743 /* helper to cleanup workers */ 1744 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1745 { 1746 btrfs_destroy_workqueue(fs_info->fixup_workers); 1747 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1748 btrfs_destroy_workqueue(fs_info->workers); 1749 if (fs_info->endio_workers) 1750 destroy_workqueue(fs_info->endio_workers); 1751 if (fs_info->rmw_workers) 1752 destroy_workqueue(fs_info->rmw_workers); 1753 if (fs_info->compressed_write_workers) 1754 destroy_workqueue(fs_info->compressed_write_workers); 1755 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1756 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1757 btrfs_destroy_workqueue(fs_info->delayed_workers); 1758 btrfs_destroy_workqueue(fs_info->caching_workers); 1759 btrfs_destroy_workqueue(fs_info->flush_workers); 1760 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1761 if (fs_info->discard_ctl.discard_workers) 1762 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1763 /* 1764 * Now that all other work queues are destroyed, we can safely destroy 1765 * the queues used for metadata I/O, since tasks from those other work 1766 * queues can do metadata I/O operations. 1767 */ 1768 if (fs_info->endio_meta_workers) 1769 destroy_workqueue(fs_info->endio_meta_workers); 1770 } 1771 1772 static void free_root_extent_buffers(struct btrfs_root *root) 1773 { 1774 if (root) { 1775 free_extent_buffer(root->node); 1776 free_extent_buffer(root->commit_root); 1777 root->node = NULL; 1778 root->commit_root = NULL; 1779 } 1780 } 1781 1782 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 1783 { 1784 struct btrfs_root *root, *tmp; 1785 1786 rbtree_postorder_for_each_entry_safe(root, tmp, 1787 &fs_info->global_root_tree, 1788 rb_node) 1789 free_root_extent_buffers(root); 1790 } 1791 1792 /* helper to cleanup tree roots */ 1793 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1794 { 1795 free_root_extent_buffers(info->tree_root); 1796 1797 free_global_root_pointers(info); 1798 free_root_extent_buffers(info->dev_root); 1799 free_root_extent_buffers(info->quota_root); 1800 free_root_extent_buffers(info->uuid_root); 1801 free_root_extent_buffers(info->fs_root); 1802 free_root_extent_buffers(info->data_reloc_root); 1803 free_root_extent_buffers(info->block_group_root); 1804 if (free_chunk_root) 1805 free_root_extent_buffers(info->chunk_root); 1806 } 1807 1808 void btrfs_put_root(struct btrfs_root *root) 1809 { 1810 if (!root) 1811 return; 1812 1813 if (refcount_dec_and_test(&root->refs)) { 1814 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 1815 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 1816 if (root->anon_dev) 1817 free_anon_bdev(root->anon_dev); 1818 free_root_extent_buffers(root); 1819 #ifdef CONFIG_BTRFS_DEBUG 1820 spin_lock(&root->fs_info->fs_roots_radix_lock); 1821 list_del_init(&root->leak_list); 1822 spin_unlock(&root->fs_info->fs_roots_radix_lock); 1823 #endif 1824 kfree(root); 1825 } 1826 } 1827 1828 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 1829 { 1830 int ret; 1831 struct btrfs_root *gang[8]; 1832 int i; 1833 1834 while (!list_empty(&fs_info->dead_roots)) { 1835 gang[0] = list_entry(fs_info->dead_roots.next, 1836 struct btrfs_root, root_list); 1837 list_del(&gang[0]->root_list); 1838 1839 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 1840 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 1841 btrfs_put_root(gang[0]); 1842 } 1843 1844 while (1) { 1845 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 1846 (void **)gang, 0, 1847 ARRAY_SIZE(gang)); 1848 if (!ret) 1849 break; 1850 for (i = 0; i < ret; i++) 1851 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 1852 } 1853 } 1854 1855 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 1856 { 1857 mutex_init(&fs_info->scrub_lock); 1858 atomic_set(&fs_info->scrubs_running, 0); 1859 atomic_set(&fs_info->scrub_pause_req, 0); 1860 atomic_set(&fs_info->scrubs_paused, 0); 1861 atomic_set(&fs_info->scrub_cancel_req, 0); 1862 init_waitqueue_head(&fs_info->scrub_pause_wait); 1863 refcount_set(&fs_info->scrub_workers_refcnt, 0); 1864 } 1865 1866 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 1867 { 1868 spin_lock_init(&fs_info->balance_lock); 1869 mutex_init(&fs_info->balance_mutex); 1870 atomic_set(&fs_info->balance_pause_req, 0); 1871 atomic_set(&fs_info->balance_cancel_req, 0); 1872 fs_info->balance_ctl = NULL; 1873 init_waitqueue_head(&fs_info->balance_wait_q); 1874 atomic_set(&fs_info->reloc_cancel_req, 0); 1875 } 1876 1877 static int btrfs_init_btree_inode(struct super_block *sb) 1878 { 1879 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1880 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 1881 fs_info->tree_root); 1882 struct inode *inode; 1883 1884 inode = new_inode(sb); 1885 if (!inode) 1886 return -ENOMEM; 1887 1888 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 1889 set_nlink(inode, 1); 1890 /* 1891 * we set the i_size on the btree inode to the max possible int. 1892 * the real end of the address space is determined by all of 1893 * the devices in the system 1894 */ 1895 inode->i_size = OFFSET_MAX; 1896 inode->i_mapping->a_ops = &btree_aops; 1897 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); 1898 1899 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 1900 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 1901 IO_TREE_BTREE_INODE_IO); 1902 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 1903 1904 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 1905 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID; 1906 BTRFS_I(inode)->location.type = 0; 1907 BTRFS_I(inode)->location.offset = 0; 1908 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 1909 __insert_inode_hash(inode, hash); 1910 fs_info->btree_inode = inode; 1911 1912 return 0; 1913 } 1914 1915 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 1916 { 1917 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 1918 init_rwsem(&fs_info->dev_replace.rwsem); 1919 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 1920 } 1921 1922 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 1923 { 1924 spin_lock_init(&fs_info->qgroup_lock); 1925 mutex_init(&fs_info->qgroup_ioctl_lock); 1926 fs_info->qgroup_tree = RB_ROOT; 1927 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 1928 fs_info->qgroup_seq = 1; 1929 fs_info->qgroup_ulist = NULL; 1930 fs_info->qgroup_rescan_running = false; 1931 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL; 1932 mutex_init(&fs_info->qgroup_rescan_lock); 1933 } 1934 1935 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 1936 { 1937 u32 max_active = fs_info->thread_pool_size; 1938 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 1939 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE; 1940 1941 fs_info->workers = 1942 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 1943 1944 fs_info->delalloc_workers = 1945 btrfs_alloc_workqueue(fs_info, "delalloc", 1946 flags, max_active, 2); 1947 1948 fs_info->flush_workers = 1949 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 1950 flags, max_active, 0); 1951 1952 fs_info->caching_workers = 1953 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 1954 1955 fs_info->fixup_workers = 1956 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags); 1957 1958 fs_info->endio_workers = 1959 alloc_workqueue("btrfs-endio", flags, max_active); 1960 fs_info->endio_meta_workers = 1961 alloc_workqueue("btrfs-endio-meta", flags, max_active); 1962 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 1963 fs_info->endio_write_workers = 1964 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 1965 max_active, 2); 1966 fs_info->compressed_write_workers = 1967 alloc_workqueue("btrfs-compressed-write", flags, max_active); 1968 fs_info->endio_freespace_worker = 1969 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 1970 max_active, 0); 1971 fs_info->delayed_workers = 1972 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 1973 max_active, 0); 1974 fs_info->qgroup_rescan_workers = 1975 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan", 1976 ordered_flags); 1977 fs_info->discard_ctl.discard_workers = 1978 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE); 1979 1980 if (!(fs_info->workers && 1981 fs_info->delalloc_workers && fs_info->flush_workers && 1982 fs_info->endio_workers && fs_info->endio_meta_workers && 1983 fs_info->compressed_write_workers && 1984 fs_info->endio_write_workers && 1985 fs_info->endio_freespace_worker && fs_info->rmw_workers && 1986 fs_info->caching_workers && fs_info->fixup_workers && 1987 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 1988 fs_info->discard_ctl.discard_workers)) { 1989 return -ENOMEM; 1990 } 1991 1992 return 0; 1993 } 1994 1995 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 1996 { 1997 struct crypto_shash *csum_shash; 1998 const char *csum_driver = btrfs_super_csum_driver(csum_type); 1999 2000 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2001 2002 if (IS_ERR(csum_shash)) { 2003 btrfs_err(fs_info, "error allocating %s hash for checksum", 2004 csum_driver); 2005 return PTR_ERR(csum_shash); 2006 } 2007 2008 fs_info->csum_shash = csum_shash; 2009 2010 /* 2011 * Check if the checksum implementation is a fast accelerated one. 2012 * As-is this is a bit of a hack and should be replaced once the csum 2013 * implementations provide that information themselves. 2014 */ 2015 switch (csum_type) { 2016 case BTRFS_CSUM_TYPE_CRC32: 2017 if (!strstr(crypto_shash_driver_name(csum_shash), "generic")) 2018 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2019 break; 2020 case BTRFS_CSUM_TYPE_XXHASH: 2021 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2022 break; 2023 default: 2024 break; 2025 } 2026 2027 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2028 btrfs_super_csum_name(csum_type), 2029 crypto_shash_driver_name(csum_shash)); 2030 return 0; 2031 } 2032 2033 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2034 struct btrfs_fs_devices *fs_devices) 2035 { 2036 int ret; 2037 struct btrfs_tree_parent_check check = { 0 }; 2038 struct btrfs_root *log_tree_root; 2039 struct btrfs_super_block *disk_super = fs_info->super_copy; 2040 u64 bytenr = btrfs_super_log_root(disk_super); 2041 int level = btrfs_super_log_root_level(disk_super); 2042 2043 if (fs_devices->rw_devices == 0) { 2044 btrfs_warn(fs_info, "log replay required on RO media"); 2045 return -EIO; 2046 } 2047 2048 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2049 GFP_KERNEL); 2050 if (!log_tree_root) 2051 return -ENOMEM; 2052 2053 check.level = level; 2054 check.transid = fs_info->generation + 1; 2055 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2056 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2057 if (IS_ERR(log_tree_root->node)) { 2058 btrfs_warn(fs_info, "failed to read log tree"); 2059 ret = PTR_ERR(log_tree_root->node); 2060 log_tree_root->node = NULL; 2061 btrfs_put_root(log_tree_root); 2062 return ret; 2063 } 2064 if (!extent_buffer_uptodate(log_tree_root->node)) { 2065 btrfs_err(fs_info, "failed to read log tree"); 2066 btrfs_put_root(log_tree_root); 2067 return -EIO; 2068 } 2069 2070 /* returns with log_tree_root freed on success */ 2071 ret = btrfs_recover_log_trees(log_tree_root); 2072 if (ret) { 2073 btrfs_handle_fs_error(fs_info, ret, 2074 "Failed to recover log tree"); 2075 btrfs_put_root(log_tree_root); 2076 return ret; 2077 } 2078 2079 if (sb_rdonly(fs_info->sb)) { 2080 ret = btrfs_commit_super(fs_info); 2081 if (ret) 2082 return ret; 2083 } 2084 2085 return 0; 2086 } 2087 2088 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2089 struct btrfs_path *path, u64 objectid, 2090 const char *name) 2091 { 2092 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2093 struct btrfs_root *root; 2094 u64 max_global_id = 0; 2095 int ret; 2096 struct btrfs_key key = { 2097 .objectid = objectid, 2098 .type = BTRFS_ROOT_ITEM_KEY, 2099 .offset = 0, 2100 }; 2101 bool found = false; 2102 2103 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2104 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2105 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2106 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2107 return 0; 2108 } 2109 2110 while (1) { 2111 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2112 if (ret < 0) 2113 break; 2114 2115 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2116 ret = btrfs_next_leaf(tree_root, path); 2117 if (ret) { 2118 if (ret > 0) 2119 ret = 0; 2120 break; 2121 } 2122 } 2123 ret = 0; 2124 2125 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2126 if (key.objectid != objectid) 2127 break; 2128 btrfs_release_path(path); 2129 2130 /* 2131 * Just worry about this for extent tree, it'll be the same for 2132 * everybody. 2133 */ 2134 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2135 max_global_id = max(max_global_id, key.offset); 2136 2137 found = true; 2138 root = read_tree_root_path(tree_root, path, &key); 2139 if (IS_ERR(root)) { 2140 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2141 ret = PTR_ERR(root); 2142 break; 2143 } 2144 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2145 ret = btrfs_global_root_insert(root); 2146 if (ret) { 2147 btrfs_put_root(root); 2148 break; 2149 } 2150 key.offset++; 2151 } 2152 btrfs_release_path(path); 2153 2154 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2155 fs_info->nr_global_roots = max_global_id + 1; 2156 2157 if (!found || ret) { 2158 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2159 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2160 2161 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2162 ret = ret ? ret : -ENOENT; 2163 else 2164 ret = 0; 2165 btrfs_err(fs_info, "failed to load root %s", name); 2166 } 2167 return ret; 2168 } 2169 2170 static int load_global_roots(struct btrfs_root *tree_root) 2171 { 2172 struct btrfs_path *path; 2173 int ret = 0; 2174 2175 path = btrfs_alloc_path(); 2176 if (!path) 2177 return -ENOMEM; 2178 2179 ret = load_global_roots_objectid(tree_root, path, 2180 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2181 if (ret) 2182 goto out; 2183 ret = load_global_roots_objectid(tree_root, path, 2184 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2185 if (ret) 2186 goto out; 2187 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2188 goto out; 2189 ret = load_global_roots_objectid(tree_root, path, 2190 BTRFS_FREE_SPACE_TREE_OBJECTID, 2191 "free space"); 2192 out: 2193 btrfs_free_path(path); 2194 return ret; 2195 } 2196 2197 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2198 { 2199 struct btrfs_root *tree_root = fs_info->tree_root; 2200 struct btrfs_root *root; 2201 struct btrfs_key location; 2202 int ret; 2203 2204 BUG_ON(!fs_info->tree_root); 2205 2206 ret = load_global_roots(tree_root); 2207 if (ret) 2208 return ret; 2209 2210 location.type = BTRFS_ROOT_ITEM_KEY; 2211 location.offset = 0; 2212 2213 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2214 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2215 root = btrfs_read_tree_root(tree_root, &location); 2216 if (IS_ERR(root)) { 2217 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2218 ret = PTR_ERR(root); 2219 goto out; 2220 } 2221 } else { 2222 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2223 fs_info->block_group_root = root; 2224 } 2225 } 2226 2227 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2228 root = btrfs_read_tree_root(tree_root, &location); 2229 if (IS_ERR(root)) { 2230 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2231 ret = PTR_ERR(root); 2232 goto out; 2233 } 2234 } else { 2235 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2236 fs_info->dev_root = root; 2237 } 2238 /* Initialize fs_info for all devices in any case */ 2239 ret = btrfs_init_devices_late(fs_info); 2240 if (ret) 2241 goto out; 2242 2243 /* 2244 * This tree can share blocks with some other fs tree during relocation 2245 * and we need a proper setup by btrfs_get_fs_root 2246 */ 2247 root = btrfs_get_fs_root(tree_root->fs_info, 2248 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2249 if (IS_ERR(root)) { 2250 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2251 ret = PTR_ERR(root); 2252 goto out; 2253 } 2254 } else { 2255 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2256 fs_info->data_reloc_root = root; 2257 } 2258 2259 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2260 root = btrfs_read_tree_root(tree_root, &location); 2261 if (!IS_ERR(root)) { 2262 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2263 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2264 fs_info->quota_root = root; 2265 } 2266 2267 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2268 root = btrfs_read_tree_root(tree_root, &location); 2269 if (IS_ERR(root)) { 2270 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2271 ret = PTR_ERR(root); 2272 if (ret != -ENOENT) 2273 goto out; 2274 } 2275 } else { 2276 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2277 fs_info->uuid_root = root; 2278 } 2279 2280 return 0; 2281 out: 2282 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2283 location.objectid, ret); 2284 return ret; 2285 } 2286 2287 /* 2288 * Real super block validation 2289 * NOTE: super csum type and incompat features will not be checked here. 2290 * 2291 * @sb: super block to check 2292 * @mirror_num: the super block number to check its bytenr: 2293 * 0 the primary (1st) sb 2294 * 1, 2 2nd and 3rd backup copy 2295 * -1 skip bytenr check 2296 */ 2297 int btrfs_validate_super(struct btrfs_fs_info *fs_info, 2298 struct btrfs_super_block *sb, int mirror_num) 2299 { 2300 u64 nodesize = btrfs_super_nodesize(sb); 2301 u64 sectorsize = btrfs_super_sectorsize(sb); 2302 int ret = 0; 2303 2304 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2305 btrfs_err(fs_info, "no valid FS found"); 2306 ret = -EINVAL; 2307 } 2308 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2309 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2310 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2311 ret = -EINVAL; 2312 } 2313 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2314 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2315 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2316 ret = -EINVAL; 2317 } 2318 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2319 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2320 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2321 ret = -EINVAL; 2322 } 2323 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2324 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2325 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2326 ret = -EINVAL; 2327 } 2328 2329 /* 2330 * Check sectorsize and nodesize first, other check will need it. 2331 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2332 */ 2333 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2334 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2335 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2336 ret = -EINVAL; 2337 } 2338 2339 /* 2340 * We only support at most two sectorsizes: 4K and PAGE_SIZE. 2341 * 2342 * We can support 16K sectorsize with 64K page size without problem, 2343 * but such sectorsize/pagesize combination doesn't make much sense. 2344 * 4K will be our future standard, PAGE_SIZE is supported from the very 2345 * beginning. 2346 */ 2347 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) { 2348 btrfs_err(fs_info, 2349 "sectorsize %llu not yet supported for page size %lu", 2350 sectorsize, PAGE_SIZE); 2351 ret = -EINVAL; 2352 } 2353 2354 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2355 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2356 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2357 ret = -EINVAL; 2358 } 2359 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2360 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2361 le32_to_cpu(sb->__unused_leafsize), nodesize); 2362 ret = -EINVAL; 2363 } 2364 2365 /* Root alignment check */ 2366 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2367 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2368 btrfs_super_root(sb)); 2369 ret = -EINVAL; 2370 } 2371 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2372 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2373 btrfs_super_chunk_root(sb)); 2374 ret = -EINVAL; 2375 } 2376 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2377 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2378 btrfs_super_log_root(sb)); 2379 ret = -EINVAL; 2380 } 2381 2382 if (memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) { 2383 btrfs_err(fs_info, 2384 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2385 sb->fsid, fs_info->fs_devices->fsid); 2386 ret = -EINVAL; 2387 } 2388 2389 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb), 2390 BTRFS_FSID_SIZE) != 0) { 2391 btrfs_err(fs_info, 2392 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2393 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid); 2394 ret = -EINVAL; 2395 } 2396 2397 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2398 BTRFS_FSID_SIZE) != 0) { 2399 btrfs_err(fs_info, 2400 "dev_item UUID does not match metadata fsid: %pU != %pU", 2401 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2402 ret = -EINVAL; 2403 } 2404 2405 /* 2406 * Artificial requirement for block-group-tree to force newer features 2407 * (free-space-tree, no-holes) so the test matrix is smaller. 2408 */ 2409 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2410 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2411 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2412 btrfs_err(fs_info, 2413 "block-group-tree feature requires fres-space-tree and no-holes"); 2414 ret = -EINVAL; 2415 } 2416 2417 /* 2418 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2419 * done later 2420 */ 2421 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2422 btrfs_err(fs_info, "bytes_used is too small %llu", 2423 btrfs_super_bytes_used(sb)); 2424 ret = -EINVAL; 2425 } 2426 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2427 btrfs_err(fs_info, "invalid stripesize %u", 2428 btrfs_super_stripesize(sb)); 2429 ret = -EINVAL; 2430 } 2431 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2432 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2433 btrfs_super_num_devices(sb)); 2434 if (btrfs_super_num_devices(sb) == 0) { 2435 btrfs_err(fs_info, "number of devices is 0"); 2436 ret = -EINVAL; 2437 } 2438 2439 if (mirror_num >= 0 && 2440 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2441 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2442 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2443 ret = -EINVAL; 2444 } 2445 2446 /* 2447 * Obvious sys_chunk_array corruptions, it must hold at least one key 2448 * and one chunk 2449 */ 2450 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2451 btrfs_err(fs_info, "system chunk array too big %u > %u", 2452 btrfs_super_sys_array_size(sb), 2453 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2454 ret = -EINVAL; 2455 } 2456 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2457 + sizeof(struct btrfs_chunk)) { 2458 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2459 btrfs_super_sys_array_size(sb), 2460 sizeof(struct btrfs_disk_key) 2461 + sizeof(struct btrfs_chunk)); 2462 ret = -EINVAL; 2463 } 2464 2465 /* 2466 * The generation is a global counter, we'll trust it more than the others 2467 * but it's still possible that it's the one that's wrong. 2468 */ 2469 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2470 btrfs_warn(fs_info, 2471 "suspicious: generation < chunk_root_generation: %llu < %llu", 2472 btrfs_super_generation(sb), 2473 btrfs_super_chunk_root_generation(sb)); 2474 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2475 && btrfs_super_cache_generation(sb) != (u64)-1) 2476 btrfs_warn(fs_info, 2477 "suspicious: generation < cache_generation: %llu < %llu", 2478 btrfs_super_generation(sb), 2479 btrfs_super_cache_generation(sb)); 2480 2481 return ret; 2482 } 2483 2484 /* 2485 * Validation of super block at mount time. 2486 * Some checks already done early at mount time, like csum type and incompat 2487 * flags will be skipped. 2488 */ 2489 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2490 { 2491 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2492 } 2493 2494 /* 2495 * Validation of super block at write time. 2496 * Some checks like bytenr check will be skipped as their values will be 2497 * overwritten soon. 2498 * Extra checks like csum type and incompat flags will be done here. 2499 */ 2500 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2501 struct btrfs_super_block *sb) 2502 { 2503 int ret; 2504 2505 ret = btrfs_validate_super(fs_info, sb, -1); 2506 if (ret < 0) 2507 goto out; 2508 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2509 ret = -EUCLEAN; 2510 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2511 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2512 goto out; 2513 } 2514 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2515 ret = -EUCLEAN; 2516 btrfs_err(fs_info, 2517 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2518 btrfs_super_incompat_flags(sb), 2519 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2520 goto out; 2521 } 2522 out: 2523 if (ret < 0) 2524 btrfs_err(fs_info, 2525 "super block corruption detected before writing it to disk"); 2526 return ret; 2527 } 2528 2529 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2530 { 2531 struct btrfs_tree_parent_check check = { 2532 .level = level, 2533 .transid = gen, 2534 .owner_root = root->root_key.objectid 2535 }; 2536 int ret = 0; 2537 2538 root->node = read_tree_block(root->fs_info, bytenr, &check); 2539 if (IS_ERR(root->node)) { 2540 ret = PTR_ERR(root->node); 2541 root->node = NULL; 2542 return ret; 2543 } 2544 if (!extent_buffer_uptodate(root->node)) { 2545 free_extent_buffer(root->node); 2546 root->node = NULL; 2547 return -EIO; 2548 } 2549 2550 btrfs_set_root_node(&root->root_item, root->node); 2551 root->commit_root = btrfs_root_node(root); 2552 btrfs_set_root_refs(&root->root_item, 1); 2553 return ret; 2554 } 2555 2556 static int load_important_roots(struct btrfs_fs_info *fs_info) 2557 { 2558 struct btrfs_super_block *sb = fs_info->super_copy; 2559 u64 gen, bytenr; 2560 int level, ret; 2561 2562 bytenr = btrfs_super_root(sb); 2563 gen = btrfs_super_generation(sb); 2564 level = btrfs_super_root_level(sb); 2565 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2566 if (ret) { 2567 btrfs_warn(fs_info, "couldn't read tree root"); 2568 return ret; 2569 } 2570 return 0; 2571 } 2572 2573 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2574 { 2575 int backup_index = find_newest_super_backup(fs_info); 2576 struct btrfs_super_block *sb = fs_info->super_copy; 2577 struct btrfs_root *tree_root = fs_info->tree_root; 2578 bool handle_error = false; 2579 int ret = 0; 2580 int i; 2581 2582 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2583 if (handle_error) { 2584 if (!IS_ERR(tree_root->node)) 2585 free_extent_buffer(tree_root->node); 2586 tree_root->node = NULL; 2587 2588 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2589 break; 2590 2591 free_root_pointers(fs_info, 0); 2592 2593 /* 2594 * Don't use the log in recovery mode, it won't be 2595 * valid 2596 */ 2597 btrfs_set_super_log_root(sb, 0); 2598 2599 /* We can't trust the free space cache either */ 2600 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2601 2602 btrfs_warn(fs_info, "try to load backup roots slot %d", i); 2603 ret = read_backup_root(fs_info, i); 2604 backup_index = ret; 2605 if (ret < 0) 2606 return ret; 2607 } 2608 2609 ret = load_important_roots(fs_info); 2610 if (ret) { 2611 handle_error = true; 2612 continue; 2613 } 2614 2615 /* 2616 * No need to hold btrfs_root::objectid_mutex since the fs 2617 * hasn't been fully initialised and we are the only user 2618 */ 2619 ret = btrfs_init_root_free_objectid(tree_root); 2620 if (ret < 0) { 2621 handle_error = true; 2622 continue; 2623 } 2624 2625 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2626 2627 ret = btrfs_read_roots(fs_info); 2628 if (ret < 0) { 2629 handle_error = true; 2630 continue; 2631 } 2632 2633 /* All successful */ 2634 fs_info->generation = btrfs_header_generation(tree_root->node); 2635 fs_info->last_trans_committed = fs_info->generation; 2636 fs_info->last_reloc_trans = 0; 2637 2638 /* Always begin writing backup roots after the one being used */ 2639 if (backup_index < 0) { 2640 fs_info->backup_root_index = 0; 2641 } else { 2642 fs_info->backup_root_index = backup_index + 1; 2643 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2644 } 2645 break; 2646 } 2647 2648 return ret; 2649 } 2650 2651 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2652 { 2653 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2654 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2655 INIT_LIST_HEAD(&fs_info->trans_list); 2656 INIT_LIST_HEAD(&fs_info->dead_roots); 2657 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2658 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2659 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2660 spin_lock_init(&fs_info->delalloc_root_lock); 2661 spin_lock_init(&fs_info->trans_lock); 2662 spin_lock_init(&fs_info->fs_roots_radix_lock); 2663 spin_lock_init(&fs_info->delayed_iput_lock); 2664 spin_lock_init(&fs_info->defrag_inodes_lock); 2665 spin_lock_init(&fs_info->super_lock); 2666 spin_lock_init(&fs_info->buffer_lock); 2667 spin_lock_init(&fs_info->unused_bgs_lock); 2668 spin_lock_init(&fs_info->treelog_bg_lock); 2669 spin_lock_init(&fs_info->zone_active_bgs_lock); 2670 spin_lock_init(&fs_info->relocation_bg_lock); 2671 rwlock_init(&fs_info->tree_mod_log_lock); 2672 rwlock_init(&fs_info->global_root_lock); 2673 mutex_init(&fs_info->unused_bg_unpin_mutex); 2674 mutex_init(&fs_info->reclaim_bgs_lock); 2675 mutex_init(&fs_info->reloc_mutex); 2676 mutex_init(&fs_info->delalloc_root_mutex); 2677 mutex_init(&fs_info->zoned_meta_io_lock); 2678 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2679 seqlock_init(&fs_info->profiles_lock); 2680 2681 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2682 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2683 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2684 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2685 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start, 2686 BTRFS_LOCKDEP_TRANS_COMMIT_START); 2687 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2688 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2689 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 2690 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2691 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 2692 BTRFS_LOCKDEP_TRANS_COMPLETED); 2693 2694 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2695 INIT_LIST_HEAD(&fs_info->space_info); 2696 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2697 INIT_LIST_HEAD(&fs_info->unused_bgs); 2698 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2699 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2700 #ifdef CONFIG_BTRFS_DEBUG 2701 INIT_LIST_HEAD(&fs_info->allocated_roots); 2702 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2703 spin_lock_init(&fs_info->eb_leak_lock); 2704 #endif 2705 extent_map_tree_init(&fs_info->mapping_tree); 2706 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2707 BTRFS_BLOCK_RSV_GLOBAL); 2708 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2709 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2710 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2711 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2712 BTRFS_BLOCK_RSV_DELOPS); 2713 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2714 BTRFS_BLOCK_RSV_DELREFS); 2715 2716 atomic_set(&fs_info->async_delalloc_pages, 0); 2717 atomic_set(&fs_info->defrag_running, 0); 2718 atomic_set(&fs_info->nr_delayed_iputs, 0); 2719 atomic64_set(&fs_info->tree_mod_seq, 0); 2720 fs_info->global_root_tree = RB_ROOT; 2721 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2722 fs_info->metadata_ratio = 0; 2723 fs_info->defrag_inodes = RB_ROOT; 2724 atomic64_set(&fs_info->free_chunk_space, 0); 2725 fs_info->tree_mod_log = RB_ROOT; 2726 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2727 btrfs_init_ref_verify(fs_info); 2728 2729 fs_info->thread_pool_size = min_t(unsigned long, 2730 num_online_cpus() + 2, 8); 2731 2732 INIT_LIST_HEAD(&fs_info->ordered_roots); 2733 spin_lock_init(&fs_info->ordered_root_lock); 2734 2735 btrfs_init_scrub(fs_info); 2736 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2737 fs_info->check_integrity_print_mask = 0; 2738 #endif 2739 btrfs_init_balance(fs_info); 2740 btrfs_init_async_reclaim_work(fs_info); 2741 2742 rwlock_init(&fs_info->block_group_cache_lock); 2743 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 2744 2745 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2746 IO_TREE_FS_EXCLUDED_EXTENTS); 2747 2748 mutex_init(&fs_info->ordered_operations_mutex); 2749 mutex_init(&fs_info->tree_log_mutex); 2750 mutex_init(&fs_info->chunk_mutex); 2751 mutex_init(&fs_info->transaction_kthread_mutex); 2752 mutex_init(&fs_info->cleaner_mutex); 2753 mutex_init(&fs_info->ro_block_group_mutex); 2754 init_rwsem(&fs_info->commit_root_sem); 2755 init_rwsem(&fs_info->cleanup_work_sem); 2756 init_rwsem(&fs_info->subvol_sem); 2757 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2758 2759 btrfs_init_dev_replace_locks(fs_info); 2760 btrfs_init_qgroup(fs_info); 2761 btrfs_discard_init(fs_info); 2762 2763 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2764 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2765 2766 init_waitqueue_head(&fs_info->transaction_throttle); 2767 init_waitqueue_head(&fs_info->transaction_wait); 2768 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2769 init_waitqueue_head(&fs_info->async_submit_wait); 2770 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2771 2772 /* Usable values until the real ones are cached from the superblock */ 2773 fs_info->nodesize = 4096; 2774 fs_info->sectorsize = 4096; 2775 fs_info->sectorsize_bits = ilog2(4096); 2776 fs_info->stripesize = 4096; 2777 2778 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 2779 2780 spin_lock_init(&fs_info->swapfile_pins_lock); 2781 fs_info->swapfile_pins = RB_ROOT; 2782 2783 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 2784 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 2785 } 2786 2787 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2788 { 2789 int ret; 2790 2791 fs_info->sb = sb; 2792 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2793 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2794 2795 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 2796 if (ret) 2797 return ret; 2798 2799 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2800 if (ret) 2801 return ret; 2802 2803 fs_info->dirty_metadata_batch = PAGE_SIZE * 2804 (1 + ilog2(nr_cpu_ids)); 2805 2806 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2807 if (ret) 2808 return ret; 2809 2810 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2811 GFP_KERNEL); 2812 if (ret) 2813 return ret; 2814 2815 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2816 GFP_KERNEL); 2817 if (!fs_info->delayed_root) 2818 return -ENOMEM; 2819 btrfs_init_delayed_root(fs_info->delayed_root); 2820 2821 if (sb_rdonly(sb)) 2822 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2823 2824 return btrfs_alloc_stripe_hash_table(fs_info); 2825 } 2826 2827 static int btrfs_uuid_rescan_kthread(void *data) 2828 { 2829 struct btrfs_fs_info *fs_info = data; 2830 int ret; 2831 2832 /* 2833 * 1st step is to iterate through the existing UUID tree and 2834 * to delete all entries that contain outdated data. 2835 * 2nd step is to add all missing entries to the UUID tree. 2836 */ 2837 ret = btrfs_uuid_tree_iterate(fs_info); 2838 if (ret < 0) { 2839 if (ret != -EINTR) 2840 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2841 ret); 2842 up(&fs_info->uuid_tree_rescan_sem); 2843 return ret; 2844 } 2845 return btrfs_uuid_scan_kthread(data); 2846 } 2847 2848 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2849 { 2850 struct task_struct *task; 2851 2852 down(&fs_info->uuid_tree_rescan_sem); 2853 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2854 if (IS_ERR(task)) { 2855 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2856 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2857 up(&fs_info->uuid_tree_rescan_sem); 2858 return PTR_ERR(task); 2859 } 2860 2861 return 0; 2862 } 2863 2864 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2865 { 2866 u64 root_objectid = 0; 2867 struct btrfs_root *gang[8]; 2868 int i = 0; 2869 int err = 0; 2870 unsigned int ret = 0; 2871 2872 while (1) { 2873 spin_lock(&fs_info->fs_roots_radix_lock); 2874 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2875 (void **)gang, root_objectid, 2876 ARRAY_SIZE(gang)); 2877 if (!ret) { 2878 spin_unlock(&fs_info->fs_roots_radix_lock); 2879 break; 2880 } 2881 root_objectid = gang[ret - 1]->root_key.objectid + 1; 2882 2883 for (i = 0; i < ret; i++) { 2884 /* Avoid to grab roots in dead_roots. */ 2885 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 2886 gang[i] = NULL; 2887 continue; 2888 } 2889 /* Grab all the search result for later use. */ 2890 gang[i] = btrfs_grab_root(gang[i]); 2891 } 2892 spin_unlock(&fs_info->fs_roots_radix_lock); 2893 2894 for (i = 0; i < ret; i++) { 2895 if (!gang[i]) 2896 continue; 2897 root_objectid = gang[i]->root_key.objectid; 2898 err = btrfs_orphan_cleanup(gang[i]); 2899 if (err) 2900 goto out; 2901 btrfs_put_root(gang[i]); 2902 } 2903 root_objectid++; 2904 } 2905 out: 2906 /* Release the uncleaned roots due to error. */ 2907 for (; i < ret; i++) { 2908 if (gang[i]) 2909 btrfs_put_root(gang[i]); 2910 } 2911 return err; 2912 } 2913 2914 /* 2915 * Some options only have meaning at mount time and shouldn't persist across 2916 * remounts, or be displayed. Clear these at the end of mount and remount 2917 * code paths. 2918 */ 2919 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 2920 { 2921 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 2922 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 2923 } 2924 2925 /* 2926 * Mounting logic specific to read-write file systems. Shared by open_ctree 2927 * and btrfs_remount when remounting from read-only to read-write. 2928 */ 2929 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 2930 { 2931 int ret; 2932 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 2933 bool rebuild_free_space_tree = false; 2934 2935 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 2936 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2937 rebuild_free_space_tree = true; 2938 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 2939 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 2940 btrfs_warn(fs_info, "free space tree is invalid"); 2941 rebuild_free_space_tree = true; 2942 } 2943 2944 if (rebuild_free_space_tree) { 2945 btrfs_info(fs_info, "rebuilding free space tree"); 2946 ret = btrfs_rebuild_free_space_tree(fs_info); 2947 if (ret) { 2948 btrfs_warn(fs_info, 2949 "failed to rebuild free space tree: %d", ret); 2950 goto out; 2951 } 2952 } 2953 2954 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 2955 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 2956 btrfs_info(fs_info, "disabling free space tree"); 2957 ret = btrfs_delete_free_space_tree(fs_info); 2958 if (ret) { 2959 btrfs_warn(fs_info, 2960 "failed to disable free space tree: %d", ret); 2961 goto out; 2962 } 2963 } 2964 2965 /* 2966 * btrfs_find_orphan_roots() is responsible for finding all the dead 2967 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 2968 * them into the fs_info->fs_roots_radix tree. This must be done before 2969 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 2970 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 2971 * item before the root's tree is deleted - this means that if we unmount 2972 * or crash before the deletion completes, on the next mount we will not 2973 * delete what remains of the tree because the orphan item does not 2974 * exists anymore, which is what tells us we have a pending deletion. 2975 */ 2976 ret = btrfs_find_orphan_roots(fs_info); 2977 if (ret) 2978 goto out; 2979 2980 ret = btrfs_cleanup_fs_roots(fs_info); 2981 if (ret) 2982 goto out; 2983 2984 down_read(&fs_info->cleanup_work_sem); 2985 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 2986 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 2987 up_read(&fs_info->cleanup_work_sem); 2988 goto out; 2989 } 2990 up_read(&fs_info->cleanup_work_sem); 2991 2992 mutex_lock(&fs_info->cleaner_mutex); 2993 ret = btrfs_recover_relocation(fs_info); 2994 mutex_unlock(&fs_info->cleaner_mutex); 2995 if (ret < 0) { 2996 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 2997 goto out; 2998 } 2999 3000 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3001 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3002 btrfs_info(fs_info, "creating free space tree"); 3003 ret = btrfs_create_free_space_tree(fs_info); 3004 if (ret) { 3005 btrfs_warn(fs_info, 3006 "failed to create free space tree: %d", ret); 3007 goto out; 3008 } 3009 } 3010 3011 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3012 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3013 if (ret) 3014 goto out; 3015 } 3016 3017 ret = btrfs_resume_balance_async(fs_info); 3018 if (ret) 3019 goto out; 3020 3021 ret = btrfs_resume_dev_replace_async(fs_info); 3022 if (ret) { 3023 btrfs_warn(fs_info, "failed to resume dev_replace"); 3024 goto out; 3025 } 3026 3027 btrfs_qgroup_rescan_resume(fs_info); 3028 3029 if (!fs_info->uuid_root) { 3030 btrfs_info(fs_info, "creating UUID tree"); 3031 ret = btrfs_create_uuid_tree(fs_info); 3032 if (ret) { 3033 btrfs_warn(fs_info, 3034 "failed to create the UUID tree %d", ret); 3035 goto out; 3036 } 3037 } 3038 3039 out: 3040 return ret; 3041 } 3042 3043 /* 3044 * Do various sanity and dependency checks of different features. 3045 * 3046 * @is_rw_mount: If the mount is read-write. 3047 * 3048 * This is the place for less strict checks (like for subpage or artificial 3049 * feature dependencies). 3050 * 3051 * For strict checks or possible corruption detection, see 3052 * btrfs_validate_super(). 3053 * 3054 * This should be called after btrfs_parse_options(), as some mount options 3055 * (space cache related) can modify on-disk format like free space tree and 3056 * screw up certain feature dependencies. 3057 */ 3058 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3059 { 3060 struct btrfs_super_block *disk_super = fs_info->super_copy; 3061 u64 incompat = btrfs_super_incompat_flags(disk_super); 3062 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3063 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3064 3065 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3066 btrfs_err(fs_info, 3067 "cannot mount because of unknown incompat features (0x%llx)", 3068 incompat); 3069 return -EINVAL; 3070 } 3071 3072 /* Runtime limitation for mixed block groups. */ 3073 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3074 (fs_info->sectorsize != fs_info->nodesize)) { 3075 btrfs_err(fs_info, 3076 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3077 fs_info->nodesize, fs_info->sectorsize); 3078 return -EINVAL; 3079 } 3080 3081 /* Mixed backref is an always-enabled feature. */ 3082 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3083 3084 /* Set compression related flags just in case. */ 3085 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3086 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3087 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3088 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3089 3090 /* 3091 * An ancient flag, which should really be marked deprecated. 3092 * Such runtime limitation doesn't really need a incompat flag. 3093 */ 3094 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3095 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3096 3097 if (compat_ro_unsupp && is_rw_mount) { 3098 btrfs_err(fs_info, 3099 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3100 compat_ro); 3101 return -EINVAL; 3102 } 3103 3104 /* 3105 * We have unsupported RO compat features, although RO mounted, we 3106 * should not cause any metadata writes, including log replay. 3107 * Or we could screw up whatever the new feature requires. 3108 */ 3109 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3110 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3111 btrfs_err(fs_info, 3112 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3113 compat_ro); 3114 return -EINVAL; 3115 } 3116 3117 /* 3118 * Artificial limitations for block group tree, to force 3119 * block-group-tree to rely on no-holes and free-space-tree. 3120 */ 3121 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3122 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3123 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3124 btrfs_err(fs_info, 3125 "block-group-tree feature requires no-holes and free-space-tree features"); 3126 return -EINVAL; 3127 } 3128 3129 /* 3130 * Subpage runtime limitation on v1 cache. 3131 * 3132 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3133 * we're already defaulting to v2 cache, no need to bother v1 as it's 3134 * going to be deprecated anyway. 3135 */ 3136 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3137 btrfs_warn(fs_info, 3138 "v1 space cache is not supported for page size %lu with sectorsize %u", 3139 PAGE_SIZE, fs_info->sectorsize); 3140 return -EINVAL; 3141 } 3142 3143 /* This can be called by remount, we need to protect the super block. */ 3144 spin_lock(&fs_info->super_lock); 3145 btrfs_set_super_incompat_flags(disk_super, incompat); 3146 spin_unlock(&fs_info->super_lock); 3147 3148 return 0; 3149 } 3150 3151 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3152 char *options) 3153 { 3154 u32 sectorsize; 3155 u32 nodesize; 3156 u32 stripesize; 3157 u64 generation; 3158 u64 features; 3159 u16 csum_type; 3160 struct btrfs_super_block *disk_super; 3161 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3162 struct btrfs_root *tree_root; 3163 struct btrfs_root *chunk_root; 3164 int ret; 3165 int level; 3166 3167 ret = init_mount_fs_info(fs_info, sb); 3168 if (ret) 3169 goto fail; 3170 3171 /* These need to be init'ed before we start creating inodes and such. */ 3172 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3173 GFP_KERNEL); 3174 fs_info->tree_root = tree_root; 3175 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3176 GFP_KERNEL); 3177 fs_info->chunk_root = chunk_root; 3178 if (!tree_root || !chunk_root) { 3179 ret = -ENOMEM; 3180 goto fail; 3181 } 3182 3183 ret = btrfs_init_btree_inode(sb); 3184 if (ret) 3185 goto fail; 3186 3187 invalidate_bdev(fs_devices->latest_dev->bdev); 3188 3189 /* 3190 * Read super block and check the signature bytes only 3191 */ 3192 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3193 if (IS_ERR(disk_super)) { 3194 ret = PTR_ERR(disk_super); 3195 goto fail_alloc; 3196 } 3197 3198 /* 3199 * Verify the type first, if that or the checksum value are 3200 * corrupted, we'll find out 3201 */ 3202 csum_type = btrfs_super_csum_type(disk_super); 3203 if (!btrfs_supported_super_csum(csum_type)) { 3204 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3205 csum_type); 3206 ret = -EINVAL; 3207 btrfs_release_disk_super(disk_super); 3208 goto fail_alloc; 3209 } 3210 3211 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3212 3213 ret = btrfs_init_csum_hash(fs_info, csum_type); 3214 if (ret) { 3215 btrfs_release_disk_super(disk_super); 3216 goto fail_alloc; 3217 } 3218 3219 /* 3220 * We want to check superblock checksum, the type is stored inside. 3221 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3222 */ 3223 if (btrfs_check_super_csum(fs_info, disk_super)) { 3224 btrfs_err(fs_info, "superblock checksum mismatch"); 3225 ret = -EINVAL; 3226 btrfs_release_disk_super(disk_super); 3227 goto fail_alloc; 3228 } 3229 3230 /* 3231 * super_copy is zeroed at allocation time and we never touch the 3232 * following bytes up to INFO_SIZE, the checksum is calculated from 3233 * the whole block of INFO_SIZE 3234 */ 3235 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3236 btrfs_release_disk_super(disk_super); 3237 3238 disk_super = fs_info->super_copy; 3239 3240 3241 features = btrfs_super_flags(disk_super); 3242 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 3243 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 3244 btrfs_set_super_flags(disk_super, features); 3245 btrfs_info(fs_info, 3246 "found metadata UUID change in progress flag, clearing"); 3247 } 3248 3249 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3250 sizeof(*fs_info->super_for_commit)); 3251 3252 ret = btrfs_validate_mount_super(fs_info); 3253 if (ret) { 3254 btrfs_err(fs_info, "superblock contains fatal errors"); 3255 ret = -EINVAL; 3256 goto fail_alloc; 3257 } 3258 3259 if (!btrfs_super_root(disk_super)) { 3260 btrfs_err(fs_info, "invalid superblock tree root bytenr"); 3261 ret = -EINVAL; 3262 goto fail_alloc; 3263 } 3264 3265 /* check FS state, whether FS is broken. */ 3266 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3267 WRITE_ONCE(fs_info->fs_error, -EUCLEAN); 3268 3269 /* 3270 * In the long term, we'll store the compression type in the super 3271 * block, and it'll be used for per file compression control. 3272 */ 3273 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 3274 3275 3276 /* Set up fs_info before parsing mount options */ 3277 nodesize = btrfs_super_nodesize(disk_super); 3278 sectorsize = btrfs_super_sectorsize(disk_super); 3279 stripesize = sectorsize; 3280 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3281 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3282 3283 fs_info->nodesize = nodesize; 3284 fs_info->sectorsize = sectorsize; 3285 fs_info->sectorsize_bits = ilog2(sectorsize); 3286 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3287 fs_info->stripesize = stripesize; 3288 3289 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 3290 if (ret) 3291 goto fail_alloc; 3292 3293 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3294 if (ret < 0) 3295 goto fail_alloc; 3296 3297 if (sectorsize < PAGE_SIZE) { 3298 struct btrfs_subpage_info *subpage_info; 3299 3300 /* 3301 * V1 space cache has some hardcoded PAGE_SIZE usage, and is 3302 * going to be deprecated. 3303 * 3304 * Force to use v2 cache for subpage case. 3305 */ 3306 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 3307 btrfs_set_and_info(fs_info, FREE_SPACE_TREE, 3308 "forcing free space tree for sector size %u with page size %lu", 3309 sectorsize, PAGE_SIZE); 3310 3311 btrfs_warn(fs_info, 3312 "read-write for sector size %u with page size %lu is experimental", 3313 sectorsize, PAGE_SIZE); 3314 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL); 3315 if (!subpage_info) { 3316 ret = -ENOMEM; 3317 goto fail_alloc; 3318 } 3319 btrfs_init_subpage_info(subpage_info, sectorsize); 3320 fs_info->subpage_info = subpage_info; 3321 } 3322 3323 ret = btrfs_init_workqueues(fs_info); 3324 if (ret) 3325 goto fail_sb_buffer; 3326 3327 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3328 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3329 3330 sb->s_blocksize = sectorsize; 3331 sb->s_blocksize_bits = blksize_bits(sectorsize); 3332 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3333 3334 mutex_lock(&fs_info->chunk_mutex); 3335 ret = btrfs_read_sys_array(fs_info); 3336 mutex_unlock(&fs_info->chunk_mutex); 3337 if (ret) { 3338 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3339 goto fail_sb_buffer; 3340 } 3341 3342 generation = btrfs_super_chunk_root_generation(disk_super); 3343 level = btrfs_super_chunk_root_level(disk_super); 3344 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3345 generation, level); 3346 if (ret) { 3347 btrfs_err(fs_info, "failed to read chunk root"); 3348 goto fail_tree_roots; 3349 } 3350 3351 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3352 offsetof(struct btrfs_header, chunk_tree_uuid), 3353 BTRFS_UUID_SIZE); 3354 3355 ret = btrfs_read_chunk_tree(fs_info); 3356 if (ret) { 3357 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3358 goto fail_tree_roots; 3359 } 3360 3361 /* 3362 * At this point we know all the devices that make this filesystem, 3363 * including the seed devices but we don't know yet if the replace 3364 * target is required. So free devices that are not part of this 3365 * filesystem but skip the replace target device which is checked 3366 * below in btrfs_init_dev_replace(). 3367 */ 3368 btrfs_free_extra_devids(fs_devices); 3369 if (!fs_devices->latest_dev->bdev) { 3370 btrfs_err(fs_info, "failed to read devices"); 3371 ret = -EIO; 3372 goto fail_tree_roots; 3373 } 3374 3375 ret = init_tree_roots(fs_info); 3376 if (ret) 3377 goto fail_tree_roots; 3378 3379 /* 3380 * Get zone type information of zoned block devices. This will also 3381 * handle emulation of a zoned filesystem if a regular device has the 3382 * zoned incompat feature flag set. 3383 */ 3384 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3385 if (ret) { 3386 btrfs_err(fs_info, 3387 "zoned: failed to read device zone info: %d", ret); 3388 goto fail_block_groups; 3389 } 3390 3391 /* 3392 * If we have a uuid root and we're not being told to rescan we need to 3393 * check the generation here so we can set the 3394 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3395 * transaction during a balance or the log replay without updating the 3396 * uuid generation, and then if we crash we would rescan the uuid tree, 3397 * even though it was perfectly fine. 3398 */ 3399 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3400 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3401 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3402 3403 ret = btrfs_verify_dev_extents(fs_info); 3404 if (ret) { 3405 btrfs_err(fs_info, 3406 "failed to verify dev extents against chunks: %d", 3407 ret); 3408 goto fail_block_groups; 3409 } 3410 ret = btrfs_recover_balance(fs_info); 3411 if (ret) { 3412 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3413 goto fail_block_groups; 3414 } 3415 3416 ret = btrfs_init_dev_stats(fs_info); 3417 if (ret) { 3418 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3419 goto fail_block_groups; 3420 } 3421 3422 ret = btrfs_init_dev_replace(fs_info); 3423 if (ret) { 3424 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3425 goto fail_block_groups; 3426 } 3427 3428 ret = btrfs_check_zoned_mode(fs_info); 3429 if (ret) { 3430 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3431 ret); 3432 goto fail_block_groups; 3433 } 3434 3435 ret = btrfs_sysfs_add_fsid(fs_devices); 3436 if (ret) { 3437 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3438 ret); 3439 goto fail_block_groups; 3440 } 3441 3442 ret = btrfs_sysfs_add_mounted(fs_info); 3443 if (ret) { 3444 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3445 goto fail_fsdev_sysfs; 3446 } 3447 3448 ret = btrfs_init_space_info(fs_info); 3449 if (ret) { 3450 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3451 goto fail_sysfs; 3452 } 3453 3454 ret = btrfs_read_block_groups(fs_info); 3455 if (ret) { 3456 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3457 goto fail_sysfs; 3458 } 3459 3460 btrfs_free_zone_cache(fs_info); 3461 3462 btrfs_check_active_zone_reservation(fs_info); 3463 3464 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3465 !btrfs_check_rw_degradable(fs_info, NULL)) { 3466 btrfs_warn(fs_info, 3467 "writable mount is not allowed due to too many missing devices"); 3468 ret = -EINVAL; 3469 goto fail_sysfs; 3470 } 3471 3472 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3473 "btrfs-cleaner"); 3474 if (IS_ERR(fs_info->cleaner_kthread)) { 3475 ret = PTR_ERR(fs_info->cleaner_kthread); 3476 goto fail_sysfs; 3477 } 3478 3479 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3480 tree_root, 3481 "btrfs-transaction"); 3482 if (IS_ERR(fs_info->transaction_kthread)) { 3483 ret = PTR_ERR(fs_info->transaction_kthread); 3484 goto fail_cleaner; 3485 } 3486 3487 if (!btrfs_test_opt(fs_info, NOSSD) && 3488 !fs_info->fs_devices->rotating) { 3489 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3490 } 3491 3492 /* 3493 * For devices supporting discard turn on discard=async automatically, 3494 * unless it's already set or disabled. This could be turned off by 3495 * nodiscard for the same mount. 3496 * 3497 * The zoned mode piggy backs on the discard functionality for 3498 * resetting a zone. There is no reason to delay the zone reset as it is 3499 * fast enough. So, do not enable async discard for zoned mode. 3500 */ 3501 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) || 3502 btrfs_test_opt(fs_info, DISCARD_ASYNC) || 3503 btrfs_test_opt(fs_info, NODISCARD)) && 3504 fs_info->fs_devices->discardable && 3505 !btrfs_is_zoned(fs_info)) { 3506 btrfs_set_and_info(fs_info, DISCARD_ASYNC, 3507 "auto enabling async discard"); 3508 } 3509 3510 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3511 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3512 ret = btrfsic_mount(fs_info, fs_devices, 3513 btrfs_test_opt(fs_info, 3514 CHECK_INTEGRITY_DATA) ? 1 : 0, 3515 fs_info->check_integrity_print_mask); 3516 if (ret) 3517 btrfs_warn(fs_info, 3518 "failed to initialize integrity check module: %d", 3519 ret); 3520 } 3521 #endif 3522 ret = btrfs_read_qgroup_config(fs_info); 3523 if (ret) 3524 goto fail_trans_kthread; 3525 3526 if (btrfs_build_ref_tree(fs_info)) 3527 btrfs_err(fs_info, "couldn't build ref tree"); 3528 3529 /* do not make disk changes in broken FS or nologreplay is given */ 3530 if (btrfs_super_log_root(disk_super) != 0 && 3531 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3532 btrfs_info(fs_info, "start tree-log replay"); 3533 ret = btrfs_replay_log(fs_info, fs_devices); 3534 if (ret) 3535 goto fail_qgroup; 3536 } 3537 3538 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3539 if (IS_ERR(fs_info->fs_root)) { 3540 ret = PTR_ERR(fs_info->fs_root); 3541 btrfs_warn(fs_info, "failed to read fs tree: %d", ret); 3542 fs_info->fs_root = NULL; 3543 goto fail_qgroup; 3544 } 3545 3546 if (sb_rdonly(sb)) 3547 goto clear_oneshot; 3548 3549 ret = btrfs_start_pre_rw_mount(fs_info); 3550 if (ret) { 3551 close_ctree(fs_info); 3552 return ret; 3553 } 3554 btrfs_discard_resume(fs_info); 3555 3556 if (fs_info->uuid_root && 3557 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3558 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3559 btrfs_info(fs_info, "checking UUID tree"); 3560 ret = btrfs_check_uuid_tree(fs_info); 3561 if (ret) { 3562 btrfs_warn(fs_info, 3563 "failed to check the UUID tree: %d", ret); 3564 close_ctree(fs_info); 3565 return ret; 3566 } 3567 } 3568 3569 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3570 3571 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3572 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3573 wake_up_process(fs_info->cleaner_kthread); 3574 3575 clear_oneshot: 3576 btrfs_clear_oneshot_options(fs_info); 3577 return 0; 3578 3579 fail_qgroup: 3580 btrfs_free_qgroup_config(fs_info); 3581 fail_trans_kthread: 3582 kthread_stop(fs_info->transaction_kthread); 3583 btrfs_cleanup_transaction(fs_info); 3584 btrfs_free_fs_roots(fs_info); 3585 fail_cleaner: 3586 kthread_stop(fs_info->cleaner_kthread); 3587 3588 /* 3589 * make sure we're done with the btree inode before we stop our 3590 * kthreads 3591 */ 3592 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3593 3594 fail_sysfs: 3595 btrfs_sysfs_remove_mounted(fs_info); 3596 3597 fail_fsdev_sysfs: 3598 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3599 3600 fail_block_groups: 3601 btrfs_put_block_group_cache(fs_info); 3602 3603 fail_tree_roots: 3604 if (fs_info->data_reloc_root) 3605 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3606 free_root_pointers(fs_info, true); 3607 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3608 3609 fail_sb_buffer: 3610 btrfs_stop_all_workers(fs_info); 3611 btrfs_free_block_groups(fs_info); 3612 fail_alloc: 3613 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3614 3615 iput(fs_info->btree_inode); 3616 fail: 3617 btrfs_close_devices(fs_info->fs_devices); 3618 ASSERT(ret < 0); 3619 return ret; 3620 } 3621 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3622 3623 static void btrfs_end_super_write(struct bio *bio) 3624 { 3625 struct btrfs_device *device = bio->bi_private; 3626 struct bio_vec *bvec; 3627 struct bvec_iter_all iter_all; 3628 struct page *page; 3629 3630 bio_for_each_segment_all(bvec, bio, iter_all) { 3631 page = bvec->bv_page; 3632 3633 if (bio->bi_status) { 3634 btrfs_warn_rl_in_rcu(device->fs_info, 3635 "lost page write due to IO error on %s (%d)", 3636 btrfs_dev_name(device), 3637 blk_status_to_errno(bio->bi_status)); 3638 ClearPageUptodate(page); 3639 SetPageError(page); 3640 btrfs_dev_stat_inc_and_print(device, 3641 BTRFS_DEV_STAT_WRITE_ERRS); 3642 } else { 3643 SetPageUptodate(page); 3644 } 3645 3646 put_page(page); 3647 unlock_page(page); 3648 } 3649 3650 bio_put(bio); 3651 } 3652 3653 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3654 int copy_num, bool drop_cache) 3655 { 3656 struct btrfs_super_block *super; 3657 struct page *page; 3658 u64 bytenr, bytenr_orig; 3659 struct address_space *mapping = bdev->bd_inode->i_mapping; 3660 int ret; 3661 3662 bytenr_orig = btrfs_sb_offset(copy_num); 3663 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3664 if (ret == -ENOENT) 3665 return ERR_PTR(-EINVAL); 3666 else if (ret) 3667 return ERR_PTR(ret); 3668 3669 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 3670 return ERR_PTR(-EINVAL); 3671 3672 if (drop_cache) { 3673 /* This should only be called with the primary sb. */ 3674 ASSERT(copy_num == 0); 3675 3676 /* 3677 * Drop the page of the primary superblock, so later read will 3678 * always read from the device. 3679 */ 3680 invalidate_inode_pages2_range(mapping, 3681 bytenr >> PAGE_SHIFT, 3682 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 3683 } 3684 3685 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3686 if (IS_ERR(page)) 3687 return ERR_CAST(page); 3688 3689 super = page_address(page); 3690 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3691 btrfs_release_disk_super(super); 3692 return ERR_PTR(-ENODATA); 3693 } 3694 3695 if (btrfs_super_bytenr(super) != bytenr_orig) { 3696 btrfs_release_disk_super(super); 3697 return ERR_PTR(-EINVAL); 3698 } 3699 3700 return super; 3701 } 3702 3703 3704 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3705 { 3706 struct btrfs_super_block *super, *latest = NULL; 3707 int i; 3708 u64 transid = 0; 3709 3710 /* we would like to check all the supers, but that would make 3711 * a btrfs mount succeed after a mkfs from a different FS. 3712 * So, we need to add a special mount option to scan for 3713 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3714 */ 3715 for (i = 0; i < 1; i++) { 3716 super = btrfs_read_dev_one_super(bdev, i, false); 3717 if (IS_ERR(super)) 3718 continue; 3719 3720 if (!latest || btrfs_super_generation(super) > transid) { 3721 if (latest) 3722 btrfs_release_disk_super(super); 3723 3724 latest = super; 3725 transid = btrfs_super_generation(super); 3726 } 3727 } 3728 3729 return super; 3730 } 3731 3732 /* 3733 * Write superblock @sb to the @device. Do not wait for completion, all the 3734 * pages we use for writing are locked. 3735 * 3736 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3737 * the expected device size at commit time. Note that max_mirrors must be 3738 * same for write and wait phases. 3739 * 3740 * Return number of errors when page is not found or submission fails. 3741 */ 3742 static int write_dev_supers(struct btrfs_device *device, 3743 struct btrfs_super_block *sb, int max_mirrors) 3744 { 3745 struct btrfs_fs_info *fs_info = device->fs_info; 3746 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3747 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3748 int i; 3749 int errors = 0; 3750 int ret; 3751 u64 bytenr, bytenr_orig; 3752 3753 if (max_mirrors == 0) 3754 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3755 3756 shash->tfm = fs_info->csum_shash; 3757 3758 for (i = 0; i < max_mirrors; i++) { 3759 struct page *page; 3760 struct bio *bio; 3761 struct btrfs_super_block *disk_super; 3762 3763 bytenr_orig = btrfs_sb_offset(i); 3764 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3765 if (ret == -ENOENT) { 3766 continue; 3767 } else if (ret < 0) { 3768 btrfs_err(device->fs_info, 3769 "couldn't get super block location for mirror %d", 3770 i); 3771 errors++; 3772 continue; 3773 } 3774 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3775 device->commit_total_bytes) 3776 break; 3777 3778 btrfs_set_super_bytenr(sb, bytenr_orig); 3779 3780 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3781 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3782 sb->csum); 3783 3784 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 3785 GFP_NOFS); 3786 if (!page) { 3787 btrfs_err(device->fs_info, 3788 "couldn't get super block page for bytenr %llu", 3789 bytenr); 3790 errors++; 3791 continue; 3792 } 3793 3794 /* Bump the refcount for wait_dev_supers() */ 3795 get_page(page); 3796 3797 disk_super = page_address(page); 3798 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3799 3800 /* 3801 * Directly use bios here instead of relying on the page cache 3802 * to do I/O, so we don't lose the ability to do integrity 3803 * checking. 3804 */ 3805 bio = bio_alloc(device->bdev, 1, 3806 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 3807 GFP_NOFS); 3808 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3809 bio->bi_private = device; 3810 bio->bi_end_io = btrfs_end_super_write; 3811 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 3812 offset_in_page(bytenr)); 3813 3814 /* 3815 * We FUA only the first super block. The others we allow to 3816 * go down lazy and there's a short window where the on-disk 3817 * copies might still contain the older version. 3818 */ 3819 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3820 bio->bi_opf |= REQ_FUA; 3821 3822 btrfsic_check_bio(bio); 3823 submit_bio(bio); 3824 3825 if (btrfs_advance_sb_log(device, i)) 3826 errors++; 3827 } 3828 return errors < i ? 0 : -1; 3829 } 3830 3831 /* 3832 * Wait for write completion of superblocks done by write_dev_supers, 3833 * @max_mirrors same for write and wait phases. 3834 * 3835 * Return number of errors when page is not found or not marked up to 3836 * date. 3837 */ 3838 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3839 { 3840 int i; 3841 int errors = 0; 3842 bool primary_failed = false; 3843 int ret; 3844 u64 bytenr; 3845 3846 if (max_mirrors == 0) 3847 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3848 3849 for (i = 0; i < max_mirrors; i++) { 3850 struct page *page; 3851 3852 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 3853 if (ret == -ENOENT) { 3854 break; 3855 } else if (ret < 0) { 3856 errors++; 3857 if (i == 0) 3858 primary_failed = true; 3859 continue; 3860 } 3861 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3862 device->commit_total_bytes) 3863 break; 3864 3865 page = find_get_page(device->bdev->bd_inode->i_mapping, 3866 bytenr >> PAGE_SHIFT); 3867 if (!page) { 3868 errors++; 3869 if (i == 0) 3870 primary_failed = true; 3871 continue; 3872 } 3873 /* Page is submitted locked and unlocked once the IO completes */ 3874 wait_on_page_locked(page); 3875 if (PageError(page)) { 3876 errors++; 3877 if (i == 0) 3878 primary_failed = true; 3879 } 3880 3881 /* Drop our reference */ 3882 put_page(page); 3883 3884 /* Drop the reference from the writing run */ 3885 put_page(page); 3886 } 3887 3888 /* log error, force error return */ 3889 if (primary_failed) { 3890 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3891 device->devid); 3892 return -1; 3893 } 3894 3895 return errors < i ? 0 : -1; 3896 } 3897 3898 /* 3899 * endio for the write_dev_flush, this will wake anyone waiting 3900 * for the barrier when it is done 3901 */ 3902 static void btrfs_end_empty_barrier(struct bio *bio) 3903 { 3904 bio_uninit(bio); 3905 complete(bio->bi_private); 3906 } 3907 3908 /* 3909 * Submit a flush request to the device if it supports it. Error handling is 3910 * done in the waiting counterpart. 3911 */ 3912 static void write_dev_flush(struct btrfs_device *device) 3913 { 3914 struct bio *bio = &device->flush_bio; 3915 3916 device->last_flush_error = BLK_STS_OK; 3917 3918 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3919 /* 3920 * When a disk has write caching disabled, we skip submission of a bio 3921 * with flush and sync requests before writing the superblock, since 3922 * it's not needed. However when the integrity checker is enabled, this 3923 * results in reports that there are metadata blocks referred by a 3924 * superblock that were not properly flushed. So don't skip the bio 3925 * submission only when the integrity checker is enabled for the sake 3926 * of simplicity, since this is a debug tool and not meant for use in 3927 * non-debug builds. 3928 */ 3929 if (!bdev_write_cache(device->bdev)) 3930 return; 3931 #endif 3932 3933 bio_init(bio, device->bdev, NULL, 0, 3934 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 3935 bio->bi_end_io = btrfs_end_empty_barrier; 3936 init_completion(&device->flush_wait); 3937 bio->bi_private = &device->flush_wait; 3938 3939 btrfsic_check_bio(bio); 3940 submit_bio(bio); 3941 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3942 } 3943 3944 /* 3945 * If the flush bio has been submitted by write_dev_flush, wait for it. 3946 * Return true for any error, and false otherwise. 3947 */ 3948 static bool wait_dev_flush(struct btrfs_device *device) 3949 { 3950 struct bio *bio = &device->flush_bio; 3951 3952 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3953 return false; 3954 3955 wait_for_completion_io(&device->flush_wait); 3956 3957 if (bio->bi_status) { 3958 device->last_flush_error = bio->bi_status; 3959 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); 3960 return true; 3961 } 3962 3963 return false; 3964 } 3965 3966 /* 3967 * send an empty flush down to each device in parallel, 3968 * then wait for them 3969 */ 3970 static int barrier_all_devices(struct btrfs_fs_info *info) 3971 { 3972 struct list_head *head; 3973 struct btrfs_device *dev; 3974 int errors_wait = 0; 3975 3976 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3977 /* send down all the barriers */ 3978 head = &info->fs_devices->devices; 3979 list_for_each_entry(dev, head, dev_list) { 3980 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3981 continue; 3982 if (!dev->bdev) 3983 continue; 3984 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3985 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3986 continue; 3987 3988 write_dev_flush(dev); 3989 } 3990 3991 /* wait for all the barriers */ 3992 list_for_each_entry(dev, head, dev_list) { 3993 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3994 continue; 3995 if (!dev->bdev) { 3996 errors_wait++; 3997 continue; 3998 } 3999 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4000 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4001 continue; 4002 4003 if (wait_dev_flush(dev)) 4004 errors_wait++; 4005 } 4006 4007 /* 4008 * Checks last_flush_error of disks in order to determine the device 4009 * state. 4010 */ 4011 if (errors_wait && !btrfs_check_rw_degradable(info, NULL)) 4012 return -EIO; 4013 4014 return 0; 4015 } 4016 4017 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 4018 { 4019 int raid_type; 4020 int min_tolerated = INT_MAX; 4021 4022 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 4023 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 4024 min_tolerated = min_t(int, min_tolerated, 4025 btrfs_raid_array[BTRFS_RAID_SINGLE]. 4026 tolerated_failures); 4027 4028 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4029 if (raid_type == BTRFS_RAID_SINGLE) 4030 continue; 4031 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 4032 continue; 4033 min_tolerated = min_t(int, min_tolerated, 4034 btrfs_raid_array[raid_type]. 4035 tolerated_failures); 4036 } 4037 4038 if (min_tolerated == INT_MAX) { 4039 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4040 min_tolerated = 0; 4041 } 4042 4043 return min_tolerated; 4044 } 4045 4046 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4047 { 4048 struct list_head *head; 4049 struct btrfs_device *dev; 4050 struct btrfs_super_block *sb; 4051 struct btrfs_dev_item *dev_item; 4052 int ret; 4053 int do_barriers; 4054 int max_errors; 4055 int total_errors = 0; 4056 u64 flags; 4057 4058 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4059 4060 /* 4061 * max_mirrors == 0 indicates we're from commit_transaction, 4062 * not from fsync where the tree roots in fs_info have not 4063 * been consistent on disk. 4064 */ 4065 if (max_mirrors == 0) 4066 backup_super_roots(fs_info); 4067 4068 sb = fs_info->super_for_commit; 4069 dev_item = &sb->dev_item; 4070 4071 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4072 head = &fs_info->fs_devices->devices; 4073 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4074 4075 if (do_barriers) { 4076 ret = barrier_all_devices(fs_info); 4077 if (ret) { 4078 mutex_unlock( 4079 &fs_info->fs_devices->device_list_mutex); 4080 btrfs_handle_fs_error(fs_info, ret, 4081 "errors while submitting device barriers."); 4082 return ret; 4083 } 4084 } 4085 4086 list_for_each_entry(dev, head, dev_list) { 4087 if (!dev->bdev) { 4088 total_errors++; 4089 continue; 4090 } 4091 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4092 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4093 continue; 4094 4095 btrfs_set_stack_device_generation(dev_item, 0); 4096 btrfs_set_stack_device_type(dev_item, dev->type); 4097 btrfs_set_stack_device_id(dev_item, dev->devid); 4098 btrfs_set_stack_device_total_bytes(dev_item, 4099 dev->commit_total_bytes); 4100 btrfs_set_stack_device_bytes_used(dev_item, 4101 dev->commit_bytes_used); 4102 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4103 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4104 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4105 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4106 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4107 BTRFS_FSID_SIZE); 4108 4109 flags = btrfs_super_flags(sb); 4110 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4111 4112 ret = btrfs_validate_write_super(fs_info, sb); 4113 if (ret < 0) { 4114 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4115 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4116 "unexpected superblock corruption detected"); 4117 return -EUCLEAN; 4118 } 4119 4120 ret = write_dev_supers(dev, sb, max_mirrors); 4121 if (ret) 4122 total_errors++; 4123 } 4124 if (total_errors > max_errors) { 4125 btrfs_err(fs_info, "%d errors while writing supers", 4126 total_errors); 4127 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4128 4129 /* FUA is masked off if unsupported and can't be the reason */ 4130 btrfs_handle_fs_error(fs_info, -EIO, 4131 "%d errors while writing supers", 4132 total_errors); 4133 return -EIO; 4134 } 4135 4136 total_errors = 0; 4137 list_for_each_entry(dev, head, dev_list) { 4138 if (!dev->bdev) 4139 continue; 4140 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4141 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4142 continue; 4143 4144 ret = wait_dev_supers(dev, max_mirrors); 4145 if (ret) 4146 total_errors++; 4147 } 4148 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4149 if (total_errors > max_errors) { 4150 btrfs_handle_fs_error(fs_info, -EIO, 4151 "%d errors while writing supers", 4152 total_errors); 4153 return -EIO; 4154 } 4155 return 0; 4156 } 4157 4158 /* Drop a fs root from the radix tree and free it. */ 4159 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4160 struct btrfs_root *root) 4161 { 4162 bool drop_ref = false; 4163 4164 spin_lock(&fs_info->fs_roots_radix_lock); 4165 radix_tree_delete(&fs_info->fs_roots_radix, 4166 (unsigned long)root->root_key.objectid); 4167 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4168 drop_ref = true; 4169 spin_unlock(&fs_info->fs_roots_radix_lock); 4170 4171 if (BTRFS_FS_ERROR(fs_info)) { 4172 ASSERT(root->log_root == NULL); 4173 if (root->reloc_root) { 4174 btrfs_put_root(root->reloc_root); 4175 root->reloc_root = NULL; 4176 } 4177 } 4178 4179 if (drop_ref) 4180 btrfs_put_root(root); 4181 } 4182 4183 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4184 { 4185 struct btrfs_root *root = fs_info->tree_root; 4186 struct btrfs_trans_handle *trans; 4187 4188 mutex_lock(&fs_info->cleaner_mutex); 4189 btrfs_run_delayed_iputs(fs_info); 4190 mutex_unlock(&fs_info->cleaner_mutex); 4191 wake_up_process(fs_info->cleaner_kthread); 4192 4193 /* wait until ongoing cleanup work done */ 4194 down_write(&fs_info->cleanup_work_sem); 4195 up_write(&fs_info->cleanup_work_sem); 4196 4197 trans = btrfs_join_transaction(root); 4198 if (IS_ERR(trans)) 4199 return PTR_ERR(trans); 4200 return btrfs_commit_transaction(trans); 4201 } 4202 4203 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4204 { 4205 struct btrfs_transaction *trans; 4206 struct btrfs_transaction *tmp; 4207 bool found = false; 4208 4209 if (list_empty(&fs_info->trans_list)) 4210 return; 4211 4212 /* 4213 * This function is only called at the very end of close_ctree(), 4214 * thus no other running transaction, no need to take trans_lock. 4215 */ 4216 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4217 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4218 struct extent_state *cached = NULL; 4219 u64 dirty_bytes = 0; 4220 u64 cur = 0; 4221 u64 found_start; 4222 u64 found_end; 4223 4224 found = true; 4225 while (find_first_extent_bit(&trans->dirty_pages, cur, 4226 &found_start, &found_end, EXTENT_DIRTY, &cached)) { 4227 dirty_bytes += found_end + 1 - found_start; 4228 cur = found_end + 1; 4229 } 4230 btrfs_warn(fs_info, 4231 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4232 trans->transid, dirty_bytes); 4233 btrfs_cleanup_one_transaction(trans, fs_info); 4234 4235 if (trans == fs_info->running_transaction) 4236 fs_info->running_transaction = NULL; 4237 list_del_init(&trans->list); 4238 4239 btrfs_put_transaction(trans); 4240 trace_btrfs_transaction_commit(fs_info); 4241 } 4242 ASSERT(!found); 4243 } 4244 4245 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4246 { 4247 int ret; 4248 4249 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4250 4251 /* 4252 * If we had UNFINISHED_DROPS we could still be processing them, so 4253 * clear that bit and wake up relocation so it can stop. 4254 * We must do this before stopping the block group reclaim task, because 4255 * at btrfs_relocate_block_group() we wait for this bit, and after the 4256 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4257 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4258 * return 1. 4259 */ 4260 btrfs_wake_unfinished_drop(fs_info); 4261 4262 /* 4263 * We may have the reclaim task running and relocating a data block group, 4264 * in which case it may create delayed iputs. So stop it before we park 4265 * the cleaner kthread otherwise we can get new delayed iputs after 4266 * parking the cleaner, and that can make the async reclaim task to hang 4267 * if it's waiting for delayed iputs to complete, since the cleaner is 4268 * parked and can not run delayed iputs - this will make us hang when 4269 * trying to stop the async reclaim task. 4270 */ 4271 cancel_work_sync(&fs_info->reclaim_bgs_work); 4272 /* 4273 * We don't want the cleaner to start new transactions, add more delayed 4274 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4275 * because that frees the task_struct, and the transaction kthread might 4276 * still try to wake up the cleaner. 4277 */ 4278 kthread_park(fs_info->cleaner_kthread); 4279 4280 /* wait for the qgroup rescan worker to stop */ 4281 btrfs_qgroup_wait_for_completion(fs_info, false); 4282 4283 /* wait for the uuid_scan task to finish */ 4284 down(&fs_info->uuid_tree_rescan_sem); 4285 /* avoid complains from lockdep et al., set sem back to initial state */ 4286 up(&fs_info->uuid_tree_rescan_sem); 4287 4288 /* pause restriper - we want to resume on mount */ 4289 btrfs_pause_balance(fs_info); 4290 4291 btrfs_dev_replace_suspend_for_unmount(fs_info); 4292 4293 btrfs_scrub_cancel(fs_info); 4294 4295 /* wait for any defraggers to finish */ 4296 wait_event(fs_info->transaction_wait, 4297 (atomic_read(&fs_info->defrag_running) == 0)); 4298 4299 /* clear out the rbtree of defraggable inodes */ 4300 btrfs_cleanup_defrag_inodes(fs_info); 4301 4302 /* 4303 * After we parked the cleaner kthread, ordered extents may have 4304 * completed and created new delayed iputs. If one of the async reclaim 4305 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4306 * can hang forever trying to stop it, because if a delayed iput is 4307 * added after it ran btrfs_run_delayed_iputs() and before it called 4308 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4309 * no one else to run iputs. 4310 * 4311 * So wait for all ongoing ordered extents to complete and then run 4312 * delayed iputs. This works because once we reach this point no one 4313 * can either create new ordered extents nor create delayed iputs 4314 * through some other means. 4315 * 4316 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4317 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4318 * but the delayed iput for the respective inode is made only when doing 4319 * the final btrfs_put_ordered_extent() (which must happen at 4320 * btrfs_finish_ordered_io() when we are unmounting). 4321 */ 4322 btrfs_flush_workqueue(fs_info->endio_write_workers); 4323 /* Ordered extents for free space inodes. */ 4324 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4325 btrfs_run_delayed_iputs(fs_info); 4326 4327 cancel_work_sync(&fs_info->async_reclaim_work); 4328 cancel_work_sync(&fs_info->async_data_reclaim_work); 4329 cancel_work_sync(&fs_info->preempt_reclaim_work); 4330 4331 /* Cancel or finish ongoing discard work */ 4332 btrfs_discard_cleanup(fs_info); 4333 4334 if (!sb_rdonly(fs_info->sb)) { 4335 /* 4336 * The cleaner kthread is stopped, so do one final pass over 4337 * unused block groups. 4338 */ 4339 btrfs_delete_unused_bgs(fs_info); 4340 4341 /* 4342 * There might be existing delayed inode workers still running 4343 * and holding an empty delayed inode item. We must wait for 4344 * them to complete first because they can create a transaction. 4345 * This happens when someone calls btrfs_balance_delayed_items() 4346 * and then a transaction commit runs the same delayed nodes 4347 * before any delayed worker has done something with the nodes. 4348 * We must wait for any worker here and not at transaction 4349 * commit time since that could cause a deadlock. 4350 * This is a very rare case. 4351 */ 4352 btrfs_flush_workqueue(fs_info->delayed_workers); 4353 4354 ret = btrfs_commit_super(fs_info); 4355 if (ret) 4356 btrfs_err(fs_info, "commit super ret %d", ret); 4357 } 4358 4359 if (BTRFS_FS_ERROR(fs_info)) 4360 btrfs_error_commit_super(fs_info); 4361 4362 kthread_stop(fs_info->transaction_kthread); 4363 kthread_stop(fs_info->cleaner_kthread); 4364 4365 ASSERT(list_empty(&fs_info->delayed_iputs)); 4366 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4367 4368 if (btrfs_check_quota_leak(fs_info)) { 4369 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4370 btrfs_err(fs_info, "qgroup reserved space leaked"); 4371 } 4372 4373 btrfs_free_qgroup_config(fs_info); 4374 ASSERT(list_empty(&fs_info->delalloc_roots)); 4375 4376 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4377 btrfs_info(fs_info, "at unmount delalloc count %lld", 4378 percpu_counter_sum(&fs_info->delalloc_bytes)); 4379 } 4380 4381 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4382 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4383 percpu_counter_sum(&fs_info->ordered_bytes)); 4384 4385 btrfs_sysfs_remove_mounted(fs_info); 4386 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4387 4388 btrfs_put_block_group_cache(fs_info); 4389 4390 /* 4391 * we must make sure there is not any read request to 4392 * submit after we stopping all workers. 4393 */ 4394 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4395 btrfs_stop_all_workers(fs_info); 4396 4397 /* We shouldn't have any transaction open at this point */ 4398 warn_about_uncommitted_trans(fs_info); 4399 4400 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4401 free_root_pointers(fs_info, true); 4402 btrfs_free_fs_roots(fs_info); 4403 4404 /* 4405 * We must free the block groups after dropping the fs_roots as we could 4406 * have had an IO error and have left over tree log blocks that aren't 4407 * cleaned up until the fs roots are freed. This makes the block group 4408 * accounting appear to be wrong because there's pending reserved bytes, 4409 * so make sure we do the block group cleanup afterwards. 4410 */ 4411 btrfs_free_block_groups(fs_info); 4412 4413 iput(fs_info->btree_inode); 4414 4415 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4416 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4417 btrfsic_unmount(fs_info->fs_devices); 4418 #endif 4419 4420 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4421 btrfs_close_devices(fs_info->fs_devices); 4422 } 4423 4424 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4425 { 4426 struct btrfs_fs_info *fs_info = buf->fs_info; 4427 u64 transid = btrfs_header_generation(buf); 4428 4429 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4430 /* 4431 * This is a fast path so only do this check if we have sanity tests 4432 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4433 * outside of the sanity tests. 4434 */ 4435 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4436 return; 4437 #endif 4438 btrfs_assert_tree_write_locked(buf); 4439 if (transid != fs_info->generation) 4440 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4441 buf->start, transid, fs_info->generation); 4442 set_extent_buffer_dirty(buf); 4443 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4444 /* 4445 * btrfs_check_leaf() won't check item data if we don't have WRITTEN 4446 * set, so this will only validate the basic structure of the items. 4447 */ 4448 if (btrfs_header_level(buf) == 0 && btrfs_check_leaf(buf)) { 4449 btrfs_print_leaf(buf); 4450 ASSERT(0); 4451 } 4452 #endif 4453 } 4454 4455 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4456 int flush_delayed) 4457 { 4458 /* 4459 * looks as though older kernels can get into trouble with 4460 * this code, they end up stuck in balance_dirty_pages forever 4461 */ 4462 int ret; 4463 4464 if (current->flags & PF_MEMALLOC) 4465 return; 4466 4467 if (flush_delayed) 4468 btrfs_balance_delayed_items(fs_info); 4469 4470 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4471 BTRFS_DIRTY_METADATA_THRESH, 4472 fs_info->dirty_metadata_batch); 4473 if (ret > 0) { 4474 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4475 } 4476 } 4477 4478 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4479 { 4480 __btrfs_btree_balance_dirty(fs_info, 1); 4481 } 4482 4483 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4484 { 4485 __btrfs_btree_balance_dirty(fs_info, 0); 4486 } 4487 4488 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4489 { 4490 /* cleanup FS via transaction */ 4491 btrfs_cleanup_transaction(fs_info); 4492 4493 mutex_lock(&fs_info->cleaner_mutex); 4494 btrfs_run_delayed_iputs(fs_info); 4495 mutex_unlock(&fs_info->cleaner_mutex); 4496 4497 down_write(&fs_info->cleanup_work_sem); 4498 up_write(&fs_info->cleanup_work_sem); 4499 } 4500 4501 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4502 { 4503 struct btrfs_root *gang[8]; 4504 u64 root_objectid = 0; 4505 int ret; 4506 4507 spin_lock(&fs_info->fs_roots_radix_lock); 4508 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4509 (void **)gang, root_objectid, 4510 ARRAY_SIZE(gang))) != 0) { 4511 int i; 4512 4513 for (i = 0; i < ret; i++) 4514 gang[i] = btrfs_grab_root(gang[i]); 4515 spin_unlock(&fs_info->fs_roots_radix_lock); 4516 4517 for (i = 0; i < ret; i++) { 4518 if (!gang[i]) 4519 continue; 4520 root_objectid = gang[i]->root_key.objectid; 4521 btrfs_free_log(NULL, gang[i]); 4522 btrfs_put_root(gang[i]); 4523 } 4524 root_objectid++; 4525 spin_lock(&fs_info->fs_roots_radix_lock); 4526 } 4527 spin_unlock(&fs_info->fs_roots_radix_lock); 4528 btrfs_free_log_root_tree(NULL, fs_info); 4529 } 4530 4531 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4532 { 4533 struct btrfs_ordered_extent *ordered; 4534 4535 spin_lock(&root->ordered_extent_lock); 4536 /* 4537 * This will just short circuit the ordered completion stuff which will 4538 * make sure the ordered extent gets properly cleaned up. 4539 */ 4540 list_for_each_entry(ordered, &root->ordered_extents, 4541 root_extent_list) 4542 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4543 spin_unlock(&root->ordered_extent_lock); 4544 } 4545 4546 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4547 { 4548 struct btrfs_root *root; 4549 LIST_HEAD(splice); 4550 4551 spin_lock(&fs_info->ordered_root_lock); 4552 list_splice_init(&fs_info->ordered_roots, &splice); 4553 while (!list_empty(&splice)) { 4554 root = list_first_entry(&splice, struct btrfs_root, 4555 ordered_root); 4556 list_move_tail(&root->ordered_root, 4557 &fs_info->ordered_roots); 4558 4559 spin_unlock(&fs_info->ordered_root_lock); 4560 btrfs_destroy_ordered_extents(root); 4561 4562 cond_resched(); 4563 spin_lock(&fs_info->ordered_root_lock); 4564 } 4565 spin_unlock(&fs_info->ordered_root_lock); 4566 4567 /* 4568 * We need this here because if we've been flipped read-only we won't 4569 * get sync() from the umount, so we need to make sure any ordered 4570 * extents that haven't had their dirty pages IO start writeout yet 4571 * actually get run and error out properly. 4572 */ 4573 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4574 } 4575 4576 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4577 struct btrfs_fs_info *fs_info) 4578 { 4579 struct rb_node *node; 4580 struct btrfs_delayed_ref_root *delayed_refs; 4581 struct btrfs_delayed_ref_node *ref; 4582 4583 delayed_refs = &trans->delayed_refs; 4584 4585 spin_lock(&delayed_refs->lock); 4586 if (atomic_read(&delayed_refs->num_entries) == 0) { 4587 spin_unlock(&delayed_refs->lock); 4588 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4589 return; 4590 } 4591 4592 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4593 struct btrfs_delayed_ref_head *head; 4594 struct rb_node *n; 4595 bool pin_bytes = false; 4596 4597 head = rb_entry(node, struct btrfs_delayed_ref_head, 4598 href_node); 4599 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4600 continue; 4601 4602 spin_lock(&head->lock); 4603 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4604 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4605 ref_node); 4606 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4607 RB_CLEAR_NODE(&ref->ref_node); 4608 if (!list_empty(&ref->add_list)) 4609 list_del(&ref->add_list); 4610 atomic_dec(&delayed_refs->num_entries); 4611 btrfs_put_delayed_ref(ref); 4612 } 4613 if (head->must_insert_reserved) 4614 pin_bytes = true; 4615 btrfs_free_delayed_extent_op(head->extent_op); 4616 btrfs_delete_ref_head(delayed_refs, head); 4617 spin_unlock(&head->lock); 4618 spin_unlock(&delayed_refs->lock); 4619 mutex_unlock(&head->mutex); 4620 4621 if (pin_bytes) { 4622 struct btrfs_block_group *cache; 4623 4624 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4625 BUG_ON(!cache); 4626 4627 spin_lock(&cache->space_info->lock); 4628 spin_lock(&cache->lock); 4629 cache->pinned += head->num_bytes; 4630 btrfs_space_info_update_bytes_pinned(fs_info, 4631 cache->space_info, head->num_bytes); 4632 cache->reserved -= head->num_bytes; 4633 cache->space_info->bytes_reserved -= head->num_bytes; 4634 spin_unlock(&cache->lock); 4635 spin_unlock(&cache->space_info->lock); 4636 4637 btrfs_put_block_group(cache); 4638 4639 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4640 head->bytenr + head->num_bytes - 1); 4641 } 4642 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4643 btrfs_put_delayed_ref_head(head); 4644 cond_resched(); 4645 spin_lock(&delayed_refs->lock); 4646 } 4647 btrfs_qgroup_destroy_extent_records(trans); 4648 4649 spin_unlock(&delayed_refs->lock); 4650 } 4651 4652 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4653 { 4654 struct btrfs_inode *btrfs_inode; 4655 LIST_HEAD(splice); 4656 4657 spin_lock(&root->delalloc_lock); 4658 list_splice_init(&root->delalloc_inodes, &splice); 4659 4660 while (!list_empty(&splice)) { 4661 struct inode *inode = NULL; 4662 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4663 delalloc_inodes); 4664 __btrfs_del_delalloc_inode(root, btrfs_inode); 4665 spin_unlock(&root->delalloc_lock); 4666 4667 /* 4668 * Make sure we get a live inode and that it'll not disappear 4669 * meanwhile. 4670 */ 4671 inode = igrab(&btrfs_inode->vfs_inode); 4672 if (inode) { 4673 unsigned int nofs_flag; 4674 4675 nofs_flag = memalloc_nofs_save(); 4676 invalidate_inode_pages2(inode->i_mapping); 4677 memalloc_nofs_restore(nofs_flag); 4678 iput(inode); 4679 } 4680 spin_lock(&root->delalloc_lock); 4681 } 4682 spin_unlock(&root->delalloc_lock); 4683 } 4684 4685 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4686 { 4687 struct btrfs_root *root; 4688 LIST_HEAD(splice); 4689 4690 spin_lock(&fs_info->delalloc_root_lock); 4691 list_splice_init(&fs_info->delalloc_roots, &splice); 4692 while (!list_empty(&splice)) { 4693 root = list_first_entry(&splice, struct btrfs_root, 4694 delalloc_root); 4695 root = btrfs_grab_root(root); 4696 BUG_ON(!root); 4697 spin_unlock(&fs_info->delalloc_root_lock); 4698 4699 btrfs_destroy_delalloc_inodes(root); 4700 btrfs_put_root(root); 4701 4702 spin_lock(&fs_info->delalloc_root_lock); 4703 } 4704 spin_unlock(&fs_info->delalloc_root_lock); 4705 } 4706 4707 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4708 struct extent_io_tree *dirty_pages, 4709 int mark) 4710 { 4711 struct extent_buffer *eb; 4712 u64 start = 0; 4713 u64 end; 4714 4715 while (find_first_extent_bit(dirty_pages, start, &start, &end, 4716 mark, NULL)) { 4717 clear_extent_bits(dirty_pages, start, end, mark); 4718 while (start <= end) { 4719 eb = find_extent_buffer(fs_info, start); 4720 start += fs_info->nodesize; 4721 if (!eb) 4722 continue; 4723 4724 btrfs_tree_lock(eb); 4725 wait_on_extent_buffer_writeback(eb); 4726 btrfs_clear_buffer_dirty(NULL, eb); 4727 btrfs_tree_unlock(eb); 4728 4729 free_extent_buffer_stale(eb); 4730 } 4731 } 4732 } 4733 4734 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4735 struct extent_io_tree *unpin) 4736 { 4737 u64 start; 4738 u64 end; 4739 4740 while (1) { 4741 struct extent_state *cached_state = NULL; 4742 4743 /* 4744 * The btrfs_finish_extent_commit() may get the same range as 4745 * ours between find_first_extent_bit and clear_extent_dirty. 4746 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4747 * the same extent range. 4748 */ 4749 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4750 if (!find_first_extent_bit(unpin, 0, &start, &end, 4751 EXTENT_DIRTY, &cached_state)) { 4752 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4753 break; 4754 } 4755 4756 clear_extent_dirty(unpin, start, end, &cached_state); 4757 free_extent_state(cached_state); 4758 btrfs_error_unpin_extent_range(fs_info, start, end); 4759 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4760 cond_resched(); 4761 } 4762 } 4763 4764 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4765 { 4766 struct inode *inode; 4767 4768 inode = cache->io_ctl.inode; 4769 if (inode) { 4770 unsigned int nofs_flag; 4771 4772 nofs_flag = memalloc_nofs_save(); 4773 invalidate_inode_pages2(inode->i_mapping); 4774 memalloc_nofs_restore(nofs_flag); 4775 4776 BTRFS_I(inode)->generation = 0; 4777 cache->io_ctl.inode = NULL; 4778 iput(inode); 4779 } 4780 ASSERT(cache->io_ctl.pages == NULL); 4781 btrfs_put_block_group(cache); 4782 } 4783 4784 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4785 struct btrfs_fs_info *fs_info) 4786 { 4787 struct btrfs_block_group *cache; 4788 4789 spin_lock(&cur_trans->dirty_bgs_lock); 4790 while (!list_empty(&cur_trans->dirty_bgs)) { 4791 cache = list_first_entry(&cur_trans->dirty_bgs, 4792 struct btrfs_block_group, 4793 dirty_list); 4794 4795 if (!list_empty(&cache->io_list)) { 4796 spin_unlock(&cur_trans->dirty_bgs_lock); 4797 list_del_init(&cache->io_list); 4798 btrfs_cleanup_bg_io(cache); 4799 spin_lock(&cur_trans->dirty_bgs_lock); 4800 } 4801 4802 list_del_init(&cache->dirty_list); 4803 spin_lock(&cache->lock); 4804 cache->disk_cache_state = BTRFS_DC_ERROR; 4805 spin_unlock(&cache->lock); 4806 4807 spin_unlock(&cur_trans->dirty_bgs_lock); 4808 btrfs_put_block_group(cache); 4809 btrfs_delayed_refs_rsv_release(fs_info, 1); 4810 spin_lock(&cur_trans->dirty_bgs_lock); 4811 } 4812 spin_unlock(&cur_trans->dirty_bgs_lock); 4813 4814 /* 4815 * Refer to the definition of io_bgs member for details why it's safe 4816 * to use it without any locking 4817 */ 4818 while (!list_empty(&cur_trans->io_bgs)) { 4819 cache = list_first_entry(&cur_trans->io_bgs, 4820 struct btrfs_block_group, 4821 io_list); 4822 4823 list_del_init(&cache->io_list); 4824 spin_lock(&cache->lock); 4825 cache->disk_cache_state = BTRFS_DC_ERROR; 4826 spin_unlock(&cache->lock); 4827 btrfs_cleanup_bg_io(cache); 4828 } 4829 } 4830 4831 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4832 struct btrfs_fs_info *fs_info) 4833 { 4834 struct btrfs_device *dev, *tmp; 4835 4836 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4837 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4838 ASSERT(list_empty(&cur_trans->io_bgs)); 4839 4840 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4841 post_commit_list) { 4842 list_del_init(&dev->post_commit_list); 4843 } 4844 4845 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4846 4847 cur_trans->state = TRANS_STATE_COMMIT_START; 4848 wake_up(&fs_info->transaction_blocked_wait); 4849 4850 cur_trans->state = TRANS_STATE_UNBLOCKED; 4851 wake_up(&fs_info->transaction_wait); 4852 4853 btrfs_destroy_delayed_inodes(fs_info); 4854 4855 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4856 EXTENT_DIRTY); 4857 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4858 4859 cur_trans->state =TRANS_STATE_COMPLETED; 4860 wake_up(&cur_trans->commit_wait); 4861 } 4862 4863 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4864 { 4865 struct btrfs_transaction *t; 4866 4867 mutex_lock(&fs_info->transaction_kthread_mutex); 4868 4869 spin_lock(&fs_info->trans_lock); 4870 while (!list_empty(&fs_info->trans_list)) { 4871 t = list_first_entry(&fs_info->trans_list, 4872 struct btrfs_transaction, list); 4873 if (t->state >= TRANS_STATE_COMMIT_START) { 4874 refcount_inc(&t->use_count); 4875 spin_unlock(&fs_info->trans_lock); 4876 btrfs_wait_for_commit(fs_info, t->transid); 4877 btrfs_put_transaction(t); 4878 spin_lock(&fs_info->trans_lock); 4879 continue; 4880 } 4881 if (t == fs_info->running_transaction) { 4882 t->state = TRANS_STATE_COMMIT_DOING; 4883 spin_unlock(&fs_info->trans_lock); 4884 /* 4885 * We wait for 0 num_writers since we don't hold a trans 4886 * handle open currently for this transaction. 4887 */ 4888 wait_event(t->writer_wait, 4889 atomic_read(&t->num_writers) == 0); 4890 } else { 4891 spin_unlock(&fs_info->trans_lock); 4892 } 4893 btrfs_cleanup_one_transaction(t, fs_info); 4894 4895 spin_lock(&fs_info->trans_lock); 4896 if (t == fs_info->running_transaction) 4897 fs_info->running_transaction = NULL; 4898 list_del_init(&t->list); 4899 spin_unlock(&fs_info->trans_lock); 4900 4901 btrfs_put_transaction(t); 4902 trace_btrfs_transaction_commit(fs_info); 4903 spin_lock(&fs_info->trans_lock); 4904 } 4905 spin_unlock(&fs_info->trans_lock); 4906 btrfs_destroy_all_ordered_extents(fs_info); 4907 btrfs_destroy_delayed_inodes(fs_info); 4908 btrfs_assert_delayed_root_empty(fs_info); 4909 btrfs_destroy_all_delalloc_inodes(fs_info); 4910 btrfs_drop_all_logs(fs_info); 4911 mutex_unlock(&fs_info->transaction_kthread_mutex); 4912 4913 return 0; 4914 } 4915 4916 int btrfs_init_root_free_objectid(struct btrfs_root *root) 4917 { 4918 struct btrfs_path *path; 4919 int ret; 4920 struct extent_buffer *l; 4921 struct btrfs_key search_key; 4922 struct btrfs_key found_key; 4923 int slot; 4924 4925 path = btrfs_alloc_path(); 4926 if (!path) 4927 return -ENOMEM; 4928 4929 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 4930 search_key.type = -1; 4931 search_key.offset = (u64)-1; 4932 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 4933 if (ret < 0) 4934 goto error; 4935 BUG_ON(ret == 0); /* Corruption */ 4936 if (path->slots[0] > 0) { 4937 slot = path->slots[0] - 1; 4938 l = path->nodes[0]; 4939 btrfs_item_key_to_cpu(l, &found_key, slot); 4940 root->free_objectid = max_t(u64, found_key.objectid + 1, 4941 BTRFS_FIRST_FREE_OBJECTID); 4942 } else { 4943 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 4944 } 4945 ret = 0; 4946 error: 4947 btrfs_free_path(path); 4948 return ret; 4949 } 4950 4951 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 4952 { 4953 int ret; 4954 mutex_lock(&root->objectid_mutex); 4955 4956 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 4957 btrfs_warn(root->fs_info, 4958 "the objectid of root %llu reaches its highest value", 4959 root->root_key.objectid); 4960 ret = -ENOSPC; 4961 goto out; 4962 } 4963 4964 *objectid = root->free_objectid++; 4965 ret = 0; 4966 out: 4967 mutex_unlock(&root->objectid_mutex); 4968 return ret; 4969 } 4970