1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include <linux/slab.h> 31 #include <linux/migrate.h> 32 #include <linux/ratelimit.h> 33 #include <asm/unaligned.h> 34 #include "compat.h" 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "async-thread.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 49 static struct extent_io_ops btree_extent_io_ops; 50 static void end_workqueue_fn(struct btrfs_work *work); 51 static void free_fs_root(struct btrfs_root *root); 52 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 53 int read_only); 54 static void btrfs_destroy_ordered_operations(struct btrfs_root *root); 55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 57 struct btrfs_root *root); 58 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t); 59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 60 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 61 struct extent_io_tree *dirty_pages, 62 int mark); 63 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 64 struct extent_io_tree *pinned_extents); 65 66 /* 67 * end_io_wq structs are used to do processing in task context when an IO is 68 * complete. This is used during reads to verify checksums, and it is used 69 * by writes to insert metadata for new file extents after IO is complete. 70 */ 71 struct end_io_wq { 72 struct bio *bio; 73 bio_end_io_t *end_io; 74 void *private; 75 struct btrfs_fs_info *info; 76 int error; 77 int metadata; 78 struct list_head list; 79 struct btrfs_work work; 80 }; 81 82 /* 83 * async submit bios are used to offload expensive checksumming 84 * onto the worker threads. They checksum file and metadata bios 85 * just before they are sent down the IO stack. 86 */ 87 struct async_submit_bio { 88 struct inode *inode; 89 struct bio *bio; 90 struct list_head list; 91 extent_submit_bio_hook_t *submit_bio_start; 92 extent_submit_bio_hook_t *submit_bio_done; 93 int rw; 94 int mirror_num; 95 unsigned long bio_flags; 96 /* 97 * bio_offset is optional, can be used if the pages in the bio 98 * can't tell us where in the file the bio should go 99 */ 100 u64 bio_offset; 101 struct btrfs_work work; 102 int error; 103 }; 104 105 /* 106 * Lockdep class keys for extent_buffer->lock's in this root. For a given 107 * eb, the lockdep key is determined by the btrfs_root it belongs to and 108 * the level the eb occupies in the tree. 109 * 110 * Different roots are used for different purposes and may nest inside each 111 * other and they require separate keysets. As lockdep keys should be 112 * static, assign keysets according to the purpose of the root as indicated 113 * by btrfs_root->objectid. This ensures that all special purpose roots 114 * have separate keysets. 115 * 116 * Lock-nesting across peer nodes is always done with the immediate parent 117 * node locked thus preventing deadlock. As lockdep doesn't know this, use 118 * subclass to avoid triggering lockdep warning in such cases. 119 * 120 * The key is set by the readpage_end_io_hook after the buffer has passed 121 * csum validation but before the pages are unlocked. It is also set by 122 * btrfs_init_new_buffer on freshly allocated blocks. 123 * 124 * We also add a check to make sure the highest level of the tree is the 125 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 126 * needs update as well. 127 */ 128 #ifdef CONFIG_DEBUG_LOCK_ALLOC 129 # if BTRFS_MAX_LEVEL != 8 130 # error 131 # endif 132 133 static struct btrfs_lockdep_keyset { 134 u64 id; /* root objectid */ 135 const char *name_stem; /* lock name stem */ 136 char names[BTRFS_MAX_LEVEL + 1][20]; 137 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 138 } btrfs_lockdep_keysets[] = { 139 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 140 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 141 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 142 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 143 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 144 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 145 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" }, 146 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 147 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 148 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 149 { .id = 0, .name_stem = "tree" }, 150 }; 151 152 void __init btrfs_init_lockdep(void) 153 { 154 int i, j; 155 156 /* initialize lockdep class names */ 157 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 158 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 159 160 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 161 snprintf(ks->names[j], sizeof(ks->names[j]), 162 "btrfs-%s-%02d", ks->name_stem, j); 163 } 164 } 165 166 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 167 int level) 168 { 169 struct btrfs_lockdep_keyset *ks; 170 171 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 172 173 /* find the matching keyset, id 0 is the default entry */ 174 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 175 if (ks->id == objectid) 176 break; 177 178 lockdep_set_class_and_name(&eb->lock, 179 &ks->keys[level], ks->names[level]); 180 } 181 182 #endif 183 184 /* 185 * extents on the btree inode are pretty simple, there's one extent 186 * that covers the entire device 187 */ 188 static struct extent_map *btree_get_extent(struct inode *inode, 189 struct page *page, size_t pg_offset, u64 start, u64 len, 190 int create) 191 { 192 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 193 struct extent_map *em; 194 int ret; 195 196 read_lock(&em_tree->lock); 197 em = lookup_extent_mapping(em_tree, start, len); 198 if (em) { 199 em->bdev = 200 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 201 read_unlock(&em_tree->lock); 202 goto out; 203 } 204 read_unlock(&em_tree->lock); 205 206 em = alloc_extent_map(); 207 if (!em) { 208 em = ERR_PTR(-ENOMEM); 209 goto out; 210 } 211 em->start = 0; 212 em->len = (u64)-1; 213 em->block_len = (u64)-1; 214 em->block_start = 0; 215 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 216 217 write_lock(&em_tree->lock); 218 ret = add_extent_mapping(em_tree, em); 219 if (ret == -EEXIST) { 220 u64 failed_start = em->start; 221 u64 failed_len = em->len; 222 223 free_extent_map(em); 224 em = lookup_extent_mapping(em_tree, start, len); 225 if (em) { 226 ret = 0; 227 } else { 228 em = lookup_extent_mapping(em_tree, failed_start, 229 failed_len); 230 ret = -EIO; 231 } 232 } else if (ret) { 233 free_extent_map(em); 234 em = NULL; 235 } 236 write_unlock(&em_tree->lock); 237 238 if (ret) 239 em = ERR_PTR(ret); 240 out: 241 return em; 242 } 243 244 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 245 { 246 return crc32c(seed, data, len); 247 } 248 249 void btrfs_csum_final(u32 crc, char *result) 250 { 251 put_unaligned_le32(~crc, result); 252 } 253 254 /* 255 * compute the csum for a btree block, and either verify it or write it 256 * into the csum field of the block. 257 */ 258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 259 int verify) 260 { 261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 262 char *result = NULL; 263 unsigned long len; 264 unsigned long cur_len; 265 unsigned long offset = BTRFS_CSUM_SIZE; 266 char *kaddr; 267 unsigned long map_start; 268 unsigned long map_len; 269 int err; 270 u32 crc = ~(u32)0; 271 unsigned long inline_result; 272 273 len = buf->len - offset; 274 while (len > 0) { 275 err = map_private_extent_buffer(buf, offset, 32, 276 &kaddr, &map_start, &map_len); 277 if (err) 278 return 1; 279 cur_len = min(len, map_len - (offset - map_start)); 280 crc = btrfs_csum_data(root, kaddr + offset - map_start, 281 crc, cur_len); 282 len -= cur_len; 283 offset += cur_len; 284 } 285 if (csum_size > sizeof(inline_result)) { 286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 287 if (!result) 288 return 1; 289 } else { 290 result = (char *)&inline_result; 291 } 292 293 btrfs_csum_final(crc, result); 294 295 if (verify) { 296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 297 u32 val; 298 u32 found = 0; 299 memcpy(&found, result, csum_size); 300 301 read_extent_buffer(buf, &val, 0, csum_size); 302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify " 303 "failed on %llu wanted %X found %X " 304 "level %d\n", 305 root->fs_info->sb->s_id, 306 (unsigned long long)buf->start, val, found, 307 btrfs_header_level(buf)); 308 if (result != (char *)&inline_result) 309 kfree(result); 310 return 1; 311 } 312 } else { 313 write_extent_buffer(buf, result, 0, csum_size); 314 } 315 if (result != (char *)&inline_result) 316 kfree(result); 317 return 0; 318 } 319 320 /* 321 * we can't consider a given block up to date unless the transid of the 322 * block matches the transid in the parent node's pointer. This is how we 323 * detect blocks that either didn't get written at all or got written 324 * in the wrong place. 325 */ 326 static int verify_parent_transid(struct extent_io_tree *io_tree, 327 struct extent_buffer *eb, u64 parent_transid, 328 int atomic) 329 { 330 struct extent_state *cached_state = NULL; 331 int ret; 332 333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 334 return 0; 335 336 if (atomic) 337 return -EAGAIN; 338 339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 340 0, &cached_state); 341 if (extent_buffer_uptodate(eb) && 342 btrfs_header_generation(eb) == parent_transid) { 343 ret = 0; 344 goto out; 345 } 346 printk_ratelimited("parent transid verify failed on %llu wanted %llu " 347 "found %llu\n", 348 (unsigned long long)eb->start, 349 (unsigned long long)parent_transid, 350 (unsigned long long)btrfs_header_generation(eb)); 351 ret = 1; 352 clear_extent_buffer_uptodate(eb); 353 out: 354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 355 &cached_state, GFP_NOFS); 356 return ret; 357 } 358 359 /* 360 * helper to read a given tree block, doing retries as required when 361 * the checksums don't match and we have alternate mirrors to try. 362 */ 363 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 364 struct extent_buffer *eb, 365 u64 start, u64 parent_transid) 366 { 367 struct extent_io_tree *io_tree; 368 int failed = 0; 369 int ret; 370 int num_copies = 0; 371 int mirror_num = 0; 372 int failed_mirror = 0; 373 374 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 375 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 376 while (1) { 377 ret = read_extent_buffer_pages(io_tree, eb, start, 378 WAIT_COMPLETE, 379 btree_get_extent, mirror_num); 380 if (!ret && !verify_parent_transid(io_tree, eb, 381 parent_transid, 0)) 382 break; 383 384 /* 385 * This buffer's crc is fine, but its contents are corrupted, so 386 * there is no reason to read the other copies, they won't be 387 * any less wrong. 388 */ 389 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 390 break; 391 392 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 393 eb->start, eb->len); 394 if (num_copies == 1) 395 break; 396 397 if (!failed_mirror) { 398 failed = 1; 399 failed_mirror = eb->read_mirror; 400 } 401 402 mirror_num++; 403 if (mirror_num == failed_mirror) 404 mirror_num++; 405 406 if (mirror_num > num_copies) 407 break; 408 } 409 410 if (failed && !ret && failed_mirror) 411 repair_eb_io_failure(root, eb, failed_mirror); 412 413 return ret; 414 } 415 416 /* 417 * checksum a dirty tree block before IO. This has extra checks to make sure 418 * we only fill in the checksum field in the first page of a multi-page block 419 */ 420 421 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 422 { 423 struct extent_io_tree *tree; 424 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 425 u64 found_start; 426 struct extent_buffer *eb; 427 428 tree = &BTRFS_I(page->mapping->host)->io_tree; 429 430 eb = (struct extent_buffer *)page->private; 431 if (page != eb->pages[0]) 432 return 0; 433 found_start = btrfs_header_bytenr(eb); 434 if (found_start != start) { 435 WARN_ON(1); 436 return 0; 437 } 438 if (eb->pages[0] != page) { 439 WARN_ON(1); 440 return 0; 441 } 442 if (!PageUptodate(page)) { 443 WARN_ON(1); 444 return 0; 445 } 446 csum_tree_block(root, eb, 0); 447 return 0; 448 } 449 450 static int check_tree_block_fsid(struct btrfs_root *root, 451 struct extent_buffer *eb) 452 { 453 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 454 u8 fsid[BTRFS_UUID_SIZE]; 455 int ret = 1; 456 457 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 458 BTRFS_FSID_SIZE); 459 while (fs_devices) { 460 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 461 ret = 0; 462 break; 463 } 464 fs_devices = fs_devices->seed; 465 } 466 return ret; 467 } 468 469 #define CORRUPT(reason, eb, root, slot) \ 470 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \ 471 "root=%llu, slot=%d\n", reason, \ 472 (unsigned long long)btrfs_header_bytenr(eb), \ 473 (unsigned long long)root->objectid, slot) 474 475 static noinline int check_leaf(struct btrfs_root *root, 476 struct extent_buffer *leaf) 477 { 478 struct btrfs_key key; 479 struct btrfs_key leaf_key; 480 u32 nritems = btrfs_header_nritems(leaf); 481 int slot; 482 483 if (nritems == 0) 484 return 0; 485 486 /* Check the 0 item */ 487 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 488 BTRFS_LEAF_DATA_SIZE(root)) { 489 CORRUPT("invalid item offset size pair", leaf, root, 0); 490 return -EIO; 491 } 492 493 /* 494 * Check to make sure each items keys are in the correct order and their 495 * offsets make sense. We only have to loop through nritems-1 because 496 * we check the current slot against the next slot, which verifies the 497 * next slot's offset+size makes sense and that the current's slot 498 * offset is correct. 499 */ 500 for (slot = 0; slot < nritems - 1; slot++) { 501 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 502 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 503 504 /* Make sure the keys are in the right order */ 505 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 506 CORRUPT("bad key order", leaf, root, slot); 507 return -EIO; 508 } 509 510 /* 511 * Make sure the offset and ends are right, remember that the 512 * item data starts at the end of the leaf and grows towards the 513 * front. 514 */ 515 if (btrfs_item_offset_nr(leaf, slot) != 516 btrfs_item_end_nr(leaf, slot + 1)) { 517 CORRUPT("slot offset bad", leaf, root, slot); 518 return -EIO; 519 } 520 521 /* 522 * Check to make sure that we don't point outside of the leaf, 523 * just incase all the items are consistent to eachother, but 524 * all point outside of the leaf. 525 */ 526 if (btrfs_item_end_nr(leaf, slot) > 527 BTRFS_LEAF_DATA_SIZE(root)) { 528 CORRUPT("slot end outside of leaf", leaf, root, slot); 529 return -EIO; 530 } 531 } 532 533 return 0; 534 } 535 536 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree, 537 struct page *page, int max_walk) 538 { 539 struct extent_buffer *eb; 540 u64 start = page_offset(page); 541 u64 target = start; 542 u64 min_start; 543 544 if (start < max_walk) 545 min_start = 0; 546 else 547 min_start = start - max_walk; 548 549 while (start >= min_start) { 550 eb = find_extent_buffer(tree, start, 0); 551 if (eb) { 552 /* 553 * we found an extent buffer and it contains our page 554 * horray! 555 */ 556 if (eb->start <= target && 557 eb->start + eb->len > target) 558 return eb; 559 560 /* we found an extent buffer that wasn't for us */ 561 free_extent_buffer(eb); 562 return NULL; 563 } 564 if (start == 0) 565 break; 566 start -= PAGE_CACHE_SIZE; 567 } 568 return NULL; 569 } 570 571 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 572 struct extent_state *state, int mirror) 573 { 574 struct extent_io_tree *tree; 575 u64 found_start; 576 int found_level; 577 struct extent_buffer *eb; 578 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 579 int ret = 0; 580 int reads_done; 581 582 if (!page->private) 583 goto out; 584 585 tree = &BTRFS_I(page->mapping->host)->io_tree; 586 eb = (struct extent_buffer *)page->private; 587 588 /* the pending IO might have been the only thing that kept this buffer 589 * in memory. Make sure we have a ref for all this other checks 590 */ 591 extent_buffer_get(eb); 592 593 reads_done = atomic_dec_and_test(&eb->io_pages); 594 if (!reads_done) 595 goto err; 596 597 eb->read_mirror = mirror; 598 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 599 ret = -EIO; 600 goto err; 601 } 602 603 found_start = btrfs_header_bytenr(eb); 604 if (found_start != eb->start) { 605 printk_ratelimited(KERN_INFO "btrfs bad tree block start " 606 "%llu %llu\n", 607 (unsigned long long)found_start, 608 (unsigned long long)eb->start); 609 ret = -EIO; 610 goto err; 611 } 612 if (check_tree_block_fsid(root, eb)) { 613 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n", 614 (unsigned long long)eb->start); 615 ret = -EIO; 616 goto err; 617 } 618 found_level = btrfs_header_level(eb); 619 620 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 621 eb, found_level); 622 623 ret = csum_tree_block(root, eb, 1); 624 if (ret) { 625 ret = -EIO; 626 goto err; 627 } 628 629 /* 630 * If this is a leaf block and it is corrupt, set the corrupt bit so 631 * that we don't try and read the other copies of this block, just 632 * return -EIO. 633 */ 634 if (found_level == 0 && check_leaf(root, eb)) { 635 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 636 ret = -EIO; 637 } 638 639 if (!ret) 640 set_extent_buffer_uptodate(eb); 641 err: 642 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) { 643 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags); 644 btree_readahead_hook(root, eb, eb->start, ret); 645 } 646 647 if (ret) 648 clear_extent_buffer_uptodate(eb); 649 free_extent_buffer(eb); 650 out: 651 return ret; 652 } 653 654 static int btree_io_failed_hook(struct page *page, int failed_mirror) 655 { 656 struct extent_buffer *eb; 657 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 658 659 eb = (struct extent_buffer *)page->private; 660 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 661 eb->read_mirror = failed_mirror; 662 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 663 btree_readahead_hook(root, eb, eb->start, -EIO); 664 return -EIO; /* we fixed nothing */ 665 } 666 667 static void end_workqueue_bio(struct bio *bio, int err) 668 { 669 struct end_io_wq *end_io_wq = bio->bi_private; 670 struct btrfs_fs_info *fs_info; 671 672 fs_info = end_io_wq->info; 673 end_io_wq->error = err; 674 end_io_wq->work.func = end_workqueue_fn; 675 end_io_wq->work.flags = 0; 676 677 if (bio->bi_rw & REQ_WRITE) { 678 if (end_io_wq->metadata == 1) 679 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 680 &end_io_wq->work); 681 else if (end_io_wq->metadata == 2) 682 btrfs_queue_worker(&fs_info->endio_freespace_worker, 683 &end_io_wq->work); 684 else 685 btrfs_queue_worker(&fs_info->endio_write_workers, 686 &end_io_wq->work); 687 } else { 688 if (end_io_wq->metadata) 689 btrfs_queue_worker(&fs_info->endio_meta_workers, 690 &end_io_wq->work); 691 else 692 btrfs_queue_worker(&fs_info->endio_workers, 693 &end_io_wq->work); 694 } 695 } 696 697 /* 698 * For the metadata arg you want 699 * 700 * 0 - if data 701 * 1 - if normal metadta 702 * 2 - if writing to the free space cache area 703 */ 704 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 705 int metadata) 706 { 707 struct end_io_wq *end_io_wq; 708 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 709 if (!end_io_wq) 710 return -ENOMEM; 711 712 end_io_wq->private = bio->bi_private; 713 end_io_wq->end_io = bio->bi_end_io; 714 end_io_wq->info = info; 715 end_io_wq->error = 0; 716 end_io_wq->bio = bio; 717 end_io_wq->metadata = metadata; 718 719 bio->bi_private = end_io_wq; 720 bio->bi_end_io = end_workqueue_bio; 721 return 0; 722 } 723 724 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 725 { 726 unsigned long limit = min_t(unsigned long, 727 info->workers.max_workers, 728 info->fs_devices->open_devices); 729 return 256 * limit; 730 } 731 732 static void run_one_async_start(struct btrfs_work *work) 733 { 734 struct async_submit_bio *async; 735 int ret; 736 737 async = container_of(work, struct async_submit_bio, work); 738 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 739 async->mirror_num, async->bio_flags, 740 async->bio_offset); 741 if (ret) 742 async->error = ret; 743 } 744 745 static void run_one_async_done(struct btrfs_work *work) 746 { 747 struct btrfs_fs_info *fs_info; 748 struct async_submit_bio *async; 749 int limit; 750 751 async = container_of(work, struct async_submit_bio, work); 752 fs_info = BTRFS_I(async->inode)->root->fs_info; 753 754 limit = btrfs_async_submit_limit(fs_info); 755 limit = limit * 2 / 3; 756 757 atomic_dec(&fs_info->nr_async_submits); 758 759 if (atomic_read(&fs_info->nr_async_submits) < limit && 760 waitqueue_active(&fs_info->async_submit_wait)) 761 wake_up(&fs_info->async_submit_wait); 762 763 /* If an error occured we just want to clean up the bio and move on */ 764 if (async->error) { 765 bio_endio(async->bio, async->error); 766 return; 767 } 768 769 async->submit_bio_done(async->inode, async->rw, async->bio, 770 async->mirror_num, async->bio_flags, 771 async->bio_offset); 772 } 773 774 static void run_one_async_free(struct btrfs_work *work) 775 { 776 struct async_submit_bio *async; 777 778 async = container_of(work, struct async_submit_bio, work); 779 kfree(async); 780 } 781 782 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 783 int rw, struct bio *bio, int mirror_num, 784 unsigned long bio_flags, 785 u64 bio_offset, 786 extent_submit_bio_hook_t *submit_bio_start, 787 extent_submit_bio_hook_t *submit_bio_done) 788 { 789 struct async_submit_bio *async; 790 791 async = kmalloc(sizeof(*async), GFP_NOFS); 792 if (!async) 793 return -ENOMEM; 794 795 async->inode = inode; 796 async->rw = rw; 797 async->bio = bio; 798 async->mirror_num = mirror_num; 799 async->submit_bio_start = submit_bio_start; 800 async->submit_bio_done = submit_bio_done; 801 802 async->work.func = run_one_async_start; 803 async->work.ordered_func = run_one_async_done; 804 async->work.ordered_free = run_one_async_free; 805 806 async->work.flags = 0; 807 async->bio_flags = bio_flags; 808 async->bio_offset = bio_offset; 809 810 async->error = 0; 811 812 atomic_inc(&fs_info->nr_async_submits); 813 814 if (rw & REQ_SYNC) 815 btrfs_set_work_high_prio(&async->work); 816 817 btrfs_queue_worker(&fs_info->workers, &async->work); 818 819 while (atomic_read(&fs_info->async_submit_draining) && 820 atomic_read(&fs_info->nr_async_submits)) { 821 wait_event(fs_info->async_submit_wait, 822 (atomic_read(&fs_info->nr_async_submits) == 0)); 823 } 824 825 return 0; 826 } 827 828 static int btree_csum_one_bio(struct bio *bio) 829 { 830 struct bio_vec *bvec = bio->bi_io_vec; 831 int bio_index = 0; 832 struct btrfs_root *root; 833 int ret = 0; 834 835 WARN_ON(bio->bi_vcnt <= 0); 836 while (bio_index < bio->bi_vcnt) { 837 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 838 ret = csum_dirty_buffer(root, bvec->bv_page); 839 if (ret) 840 break; 841 bio_index++; 842 bvec++; 843 } 844 return ret; 845 } 846 847 static int __btree_submit_bio_start(struct inode *inode, int rw, 848 struct bio *bio, int mirror_num, 849 unsigned long bio_flags, 850 u64 bio_offset) 851 { 852 /* 853 * when we're called for a write, we're already in the async 854 * submission context. Just jump into btrfs_map_bio 855 */ 856 return btree_csum_one_bio(bio); 857 } 858 859 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 860 int mirror_num, unsigned long bio_flags, 861 u64 bio_offset) 862 { 863 /* 864 * when we're called for a write, we're already in the async 865 * submission context. Just jump into btrfs_map_bio 866 */ 867 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 868 } 869 870 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 871 int mirror_num, unsigned long bio_flags, 872 u64 bio_offset) 873 { 874 int ret; 875 876 if (!(rw & REQ_WRITE)) { 877 878 /* 879 * called for a read, do the setup so that checksum validation 880 * can happen in the async kernel threads 881 */ 882 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 883 bio, 1); 884 if (ret) 885 return ret; 886 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 887 mirror_num, 0); 888 } 889 890 /* 891 * kthread helpers are used to submit writes so that checksumming 892 * can happen in parallel across all CPUs 893 */ 894 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 895 inode, rw, bio, mirror_num, 0, 896 bio_offset, 897 __btree_submit_bio_start, 898 __btree_submit_bio_done); 899 } 900 901 #ifdef CONFIG_MIGRATION 902 static int btree_migratepage(struct address_space *mapping, 903 struct page *newpage, struct page *page, 904 enum migrate_mode mode) 905 { 906 /* 907 * we can't safely write a btree page from here, 908 * we haven't done the locking hook 909 */ 910 if (PageDirty(page)) 911 return -EAGAIN; 912 /* 913 * Buffers may be managed in a filesystem specific way. 914 * We must have no buffers or drop them. 915 */ 916 if (page_has_private(page) && 917 !try_to_release_page(page, GFP_KERNEL)) 918 return -EAGAIN; 919 return migrate_page(mapping, newpage, page, mode); 920 } 921 #endif 922 923 924 static int btree_writepages(struct address_space *mapping, 925 struct writeback_control *wbc) 926 { 927 struct extent_io_tree *tree; 928 tree = &BTRFS_I(mapping->host)->io_tree; 929 if (wbc->sync_mode == WB_SYNC_NONE) { 930 struct btrfs_root *root = BTRFS_I(mapping->host)->root; 931 u64 num_dirty; 932 unsigned long thresh = 32 * 1024 * 1024; 933 934 if (wbc->for_kupdate) 935 return 0; 936 937 /* this is a bit racy, but that's ok */ 938 num_dirty = root->fs_info->dirty_metadata_bytes; 939 if (num_dirty < thresh) 940 return 0; 941 } 942 return btree_write_cache_pages(mapping, wbc); 943 } 944 945 static int btree_readpage(struct file *file, struct page *page) 946 { 947 struct extent_io_tree *tree; 948 tree = &BTRFS_I(page->mapping->host)->io_tree; 949 return extent_read_full_page(tree, page, btree_get_extent, 0); 950 } 951 952 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 953 { 954 if (PageWriteback(page) || PageDirty(page)) 955 return 0; 956 /* 957 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing 958 * slab allocation from alloc_extent_state down the callchain where 959 * it'd hit a BUG_ON as those flags are not allowed. 960 */ 961 gfp_flags &= ~GFP_SLAB_BUG_MASK; 962 963 return try_release_extent_buffer(page, gfp_flags); 964 } 965 966 static void btree_invalidatepage(struct page *page, unsigned long offset) 967 { 968 struct extent_io_tree *tree; 969 tree = &BTRFS_I(page->mapping->host)->io_tree; 970 extent_invalidatepage(tree, page, offset); 971 btree_releasepage(page, GFP_NOFS); 972 if (PagePrivate(page)) { 973 printk(KERN_WARNING "btrfs warning page private not zero " 974 "on page %llu\n", (unsigned long long)page_offset(page)); 975 ClearPagePrivate(page); 976 set_page_private(page, 0); 977 page_cache_release(page); 978 } 979 } 980 981 static int btree_set_page_dirty(struct page *page) 982 { 983 struct extent_buffer *eb; 984 985 BUG_ON(!PagePrivate(page)); 986 eb = (struct extent_buffer *)page->private; 987 BUG_ON(!eb); 988 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 989 BUG_ON(!atomic_read(&eb->refs)); 990 btrfs_assert_tree_locked(eb); 991 return __set_page_dirty_nobuffers(page); 992 } 993 994 static const struct address_space_operations btree_aops = { 995 .readpage = btree_readpage, 996 .writepages = btree_writepages, 997 .releasepage = btree_releasepage, 998 .invalidatepage = btree_invalidatepage, 999 #ifdef CONFIG_MIGRATION 1000 .migratepage = btree_migratepage, 1001 #endif 1002 .set_page_dirty = btree_set_page_dirty, 1003 }; 1004 1005 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1006 u64 parent_transid) 1007 { 1008 struct extent_buffer *buf = NULL; 1009 struct inode *btree_inode = root->fs_info->btree_inode; 1010 int ret = 0; 1011 1012 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1013 if (!buf) 1014 return 0; 1015 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1016 buf, 0, WAIT_NONE, btree_get_extent, 0); 1017 free_extent_buffer(buf); 1018 return ret; 1019 } 1020 1021 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1022 int mirror_num, struct extent_buffer **eb) 1023 { 1024 struct extent_buffer *buf = NULL; 1025 struct inode *btree_inode = root->fs_info->btree_inode; 1026 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1027 int ret; 1028 1029 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1030 if (!buf) 1031 return 0; 1032 1033 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1034 1035 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1036 btree_get_extent, mirror_num); 1037 if (ret) { 1038 free_extent_buffer(buf); 1039 return ret; 1040 } 1041 1042 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1043 free_extent_buffer(buf); 1044 return -EIO; 1045 } else if (extent_buffer_uptodate(buf)) { 1046 *eb = buf; 1047 } else { 1048 free_extent_buffer(buf); 1049 } 1050 return 0; 1051 } 1052 1053 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 1054 u64 bytenr, u32 blocksize) 1055 { 1056 struct inode *btree_inode = root->fs_info->btree_inode; 1057 struct extent_buffer *eb; 1058 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1059 bytenr, blocksize); 1060 return eb; 1061 } 1062 1063 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1064 u64 bytenr, u32 blocksize) 1065 { 1066 struct inode *btree_inode = root->fs_info->btree_inode; 1067 struct extent_buffer *eb; 1068 1069 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1070 bytenr, blocksize); 1071 return eb; 1072 } 1073 1074 1075 int btrfs_write_tree_block(struct extent_buffer *buf) 1076 { 1077 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1078 buf->start + buf->len - 1); 1079 } 1080 1081 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1082 { 1083 return filemap_fdatawait_range(buf->pages[0]->mapping, 1084 buf->start, buf->start + buf->len - 1); 1085 } 1086 1087 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1088 u32 blocksize, u64 parent_transid) 1089 { 1090 struct extent_buffer *buf = NULL; 1091 int ret; 1092 1093 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1094 if (!buf) 1095 return NULL; 1096 1097 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1098 return buf; 1099 1100 } 1101 1102 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1103 struct extent_buffer *buf) 1104 { 1105 if (btrfs_header_generation(buf) == 1106 root->fs_info->running_transaction->transid) { 1107 btrfs_assert_tree_locked(buf); 1108 1109 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1110 spin_lock(&root->fs_info->delalloc_lock); 1111 if (root->fs_info->dirty_metadata_bytes >= buf->len) 1112 root->fs_info->dirty_metadata_bytes -= buf->len; 1113 else { 1114 spin_unlock(&root->fs_info->delalloc_lock); 1115 btrfs_panic(root->fs_info, -EOVERFLOW, 1116 "Can't clear %lu bytes from " 1117 " dirty_mdatadata_bytes (%llu)", 1118 buf->len, 1119 root->fs_info->dirty_metadata_bytes); 1120 } 1121 spin_unlock(&root->fs_info->delalloc_lock); 1122 } 1123 1124 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1125 btrfs_set_lock_blocking(buf); 1126 clear_extent_buffer_dirty(buf); 1127 } 1128 } 1129 1130 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 1131 u32 stripesize, struct btrfs_root *root, 1132 struct btrfs_fs_info *fs_info, 1133 u64 objectid) 1134 { 1135 root->node = NULL; 1136 root->commit_root = NULL; 1137 root->sectorsize = sectorsize; 1138 root->nodesize = nodesize; 1139 root->leafsize = leafsize; 1140 root->stripesize = stripesize; 1141 root->ref_cows = 0; 1142 root->track_dirty = 0; 1143 root->in_radix = 0; 1144 root->orphan_item_inserted = 0; 1145 root->orphan_cleanup_state = 0; 1146 1147 root->objectid = objectid; 1148 root->last_trans = 0; 1149 root->highest_objectid = 0; 1150 root->name = NULL; 1151 root->inode_tree = RB_ROOT; 1152 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1153 root->block_rsv = NULL; 1154 root->orphan_block_rsv = NULL; 1155 1156 INIT_LIST_HEAD(&root->dirty_list); 1157 INIT_LIST_HEAD(&root->root_list); 1158 spin_lock_init(&root->orphan_lock); 1159 spin_lock_init(&root->inode_lock); 1160 spin_lock_init(&root->accounting_lock); 1161 mutex_init(&root->objectid_mutex); 1162 mutex_init(&root->log_mutex); 1163 init_waitqueue_head(&root->log_writer_wait); 1164 init_waitqueue_head(&root->log_commit_wait[0]); 1165 init_waitqueue_head(&root->log_commit_wait[1]); 1166 atomic_set(&root->log_commit[0], 0); 1167 atomic_set(&root->log_commit[1], 0); 1168 atomic_set(&root->log_writers, 0); 1169 atomic_set(&root->orphan_inodes, 0); 1170 root->log_batch = 0; 1171 root->log_transid = 0; 1172 root->last_log_commit = 0; 1173 extent_io_tree_init(&root->dirty_log_pages, 1174 fs_info->btree_inode->i_mapping); 1175 1176 memset(&root->root_key, 0, sizeof(root->root_key)); 1177 memset(&root->root_item, 0, sizeof(root->root_item)); 1178 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1179 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1180 root->defrag_trans_start = fs_info->generation; 1181 init_completion(&root->kobj_unregister); 1182 root->defrag_running = 0; 1183 root->root_key.objectid = objectid; 1184 root->anon_dev = 0; 1185 1186 spin_lock_init(&root->root_times_lock); 1187 } 1188 1189 static int __must_check find_and_setup_root(struct btrfs_root *tree_root, 1190 struct btrfs_fs_info *fs_info, 1191 u64 objectid, 1192 struct btrfs_root *root) 1193 { 1194 int ret; 1195 u32 blocksize; 1196 u64 generation; 1197 1198 __setup_root(tree_root->nodesize, tree_root->leafsize, 1199 tree_root->sectorsize, tree_root->stripesize, 1200 root, fs_info, objectid); 1201 ret = btrfs_find_last_root(tree_root, objectid, 1202 &root->root_item, &root->root_key); 1203 if (ret > 0) 1204 return -ENOENT; 1205 else if (ret < 0) 1206 return ret; 1207 1208 generation = btrfs_root_generation(&root->root_item); 1209 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1210 root->commit_root = NULL; 1211 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1212 blocksize, generation); 1213 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) { 1214 free_extent_buffer(root->node); 1215 root->node = NULL; 1216 return -EIO; 1217 } 1218 root->commit_root = btrfs_root_node(root); 1219 return 0; 1220 } 1221 1222 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1223 { 1224 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1225 if (root) 1226 root->fs_info = fs_info; 1227 return root; 1228 } 1229 1230 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1231 struct btrfs_fs_info *fs_info, 1232 u64 objectid) 1233 { 1234 struct extent_buffer *leaf; 1235 struct btrfs_root *tree_root = fs_info->tree_root; 1236 struct btrfs_root *root; 1237 struct btrfs_key key; 1238 int ret = 0; 1239 u64 bytenr; 1240 1241 root = btrfs_alloc_root(fs_info); 1242 if (!root) 1243 return ERR_PTR(-ENOMEM); 1244 1245 __setup_root(tree_root->nodesize, tree_root->leafsize, 1246 tree_root->sectorsize, tree_root->stripesize, 1247 root, fs_info, objectid); 1248 root->root_key.objectid = objectid; 1249 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1250 root->root_key.offset = 0; 1251 1252 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 1253 0, objectid, NULL, 0, 0, 0); 1254 if (IS_ERR(leaf)) { 1255 ret = PTR_ERR(leaf); 1256 goto fail; 1257 } 1258 1259 bytenr = leaf->start; 1260 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1261 btrfs_set_header_bytenr(leaf, leaf->start); 1262 btrfs_set_header_generation(leaf, trans->transid); 1263 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1264 btrfs_set_header_owner(leaf, objectid); 1265 root->node = leaf; 1266 1267 write_extent_buffer(leaf, fs_info->fsid, 1268 (unsigned long)btrfs_header_fsid(leaf), 1269 BTRFS_FSID_SIZE); 1270 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1271 (unsigned long)btrfs_header_chunk_tree_uuid(leaf), 1272 BTRFS_UUID_SIZE); 1273 btrfs_mark_buffer_dirty(leaf); 1274 1275 root->commit_root = btrfs_root_node(root); 1276 root->track_dirty = 1; 1277 1278 1279 root->root_item.flags = 0; 1280 root->root_item.byte_limit = 0; 1281 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1282 btrfs_set_root_generation(&root->root_item, trans->transid); 1283 btrfs_set_root_level(&root->root_item, 0); 1284 btrfs_set_root_refs(&root->root_item, 1); 1285 btrfs_set_root_used(&root->root_item, leaf->len); 1286 btrfs_set_root_last_snapshot(&root->root_item, 0); 1287 btrfs_set_root_dirid(&root->root_item, 0); 1288 root->root_item.drop_level = 0; 1289 1290 key.objectid = objectid; 1291 key.type = BTRFS_ROOT_ITEM_KEY; 1292 key.offset = 0; 1293 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1294 if (ret) 1295 goto fail; 1296 1297 btrfs_tree_unlock(leaf); 1298 1299 fail: 1300 if (ret) 1301 return ERR_PTR(ret); 1302 1303 return root; 1304 } 1305 1306 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1307 struct btrfs_fs_info *fs_info) 1308 { 1309 struct btrfs_root *root; 1310 struct btrfs_root *tree_root = fs_info->tree_root; 1311 struct extent_buffer *leaf; 1312 1313 root = btrfs_alloc_root(fs_info); 1314 if (!root) 1315 return ERR_PTR(-ENOMEM); 1316 1317 __setup_root(tree_root->nodesize, tree_root->leafsize, 1318 tree_root->sectorsize, tree_root->stripesize, 1319 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1320 1321 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1322 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1323 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1324 /* 1325 * log trees do not get reference counted because they go away 1326 * before a real commit is actually done. They do store pointers 1327 * to file data extents, and those reference counts still get 1328 * updated (along with back refs to the log tree). 1329 */ 1330 root->ref_cows = 0; 1331 1332 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1333 BTRFS_TREE_LOG_OBJECTID, NULL, 1334 0, 0, 0); 1335 if (IS_ERR(leaf)) { 1336 kfree(root); 1337 return ERR_CAST(leaf); 1338 } 1339 1340 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1341 btrfs_set_header_bytenr(leaf, leaf->start); 1342 btrfs_set_header_generation(leaf, trans->transid); 1343 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1344 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1345 root->node = leaf; 1346 1347 write_extent_buffer(root->node, root->fs_info->fsid, 1348 (unsigned long)btrfs_header_fsid(root->node), 1349 BTRFS_FSID_SIZE); 1350 btrfs_mark_buffer_dirty(root->node); 1351 btrfs_tree_unlock(root->node); 1352 return root; 1353 } 1354 1355 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1356 struct btrfs_fs_info *fs_info) 1357 { 1358 struct btrfs_root *log_root; 1359 1360 log_root = alloc_log_tree(trans, fs_info); 1361 if (IS_ERR(log_root)) 1362 return PTR_ERR(log_root); 1363 WARN_ON(fs_info->log_root_tree); 1364 fs_info->log_root_tree = log_root; 1365 return 0; 1366 } 1367 1368 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1369 struct btrfs_root *root) 1370 { 1371 struct btrfs_root *log_root; 1372 struct btrfs_inode_item *inode_item; 1373 1374 log_root = alloc_log_tree(trans, root->fs_info); 1375 if (IS_ERR(log_root)) 1376 return PTR_ERR(log_root); 1377 1378 log_root->last_trans = trans->transid; 1379 log_root->root_key.offset = root->root_key.objectid; 1380 1381 inode_item = &log_root->root_item.inode; 1382 inode_item->generation = cpu_to_le64(1); 1383 inode_item->size = cpu_to_le64(3); 1384 inode_item->nlink = cpu_to_le32(1); 1385 inode_item->nbytes = cpu_to_le64(root->leafsize); 1386 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1387 1388 btrfs_set_root_node(&log_root->root_item, log_root->node); 1389 1390 WARN_ON(root->log_root); 1391 root->log_root = log_root; 1392 root->log_transid = 0; 1393 root->last_log_commit = 0; 1394 return 0; 1395 } 1396 1397 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1398 struct btrfs_key *location) 1399 { 1400 struct btrfs_root *root; 1401 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1402 struct btrfs_path *path; 1403 struct extent_buffer *l; 1404 u64 generation; 1405 u32 blocksize; 1406 int ret = 0; 1407 int slot; 1408 1409 root = btrfs_alloc_root(fs_info); 1410 if (!root) 1411 return ERR_PTR(-ENOMEM); 1412 if (location->offset == (u64)-1) { 1413 ret = find_and_setup_root(tree_root, fs_info, 1414 location->objectid, root); 1415 if (ret) { 1416 kfree(root); 1417 return ERR_PTR(ret); 1418 } 1419 goto out; 1420 } 1421 1422 __setup_root(tree_root->nodesize, tree_root->leafsize, 1423 tree_root->sectorsize, tree_root->stripesize, 1424 root, fs_info, location->objectid); 1425 1426 path = btrfs_alloc_path(); 1427 if (!path) { 1428 kfree(root); 1429 return ERR_PTR(-ENOMEM); 1430 } 1431 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1432 if (ret == 0) { 1433 l = path->nodes[0]; 1434 slot = path->slots[0]; 1435 btrfs_read_root_item(tree_root, l, slot, &root->root_item); 1436 memcpy(&root->root_key, location, sizeof(*location)); 1437 } 1438 btrfs_free_path(path); 1439 if (ret) { 1440 kfree(root); 1441 if (ret > 0) 1442 ret = -ENOENT; 1443 return ERR_PTR(ret); 1444 } 1445 1446 generation = btrfs_root_generation(&root->root_item); 1447 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1448 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1449 blocksize, generation); 1450 root->commit_root = btrfs_root_node(root); 1451 BUG_ON(!root->node); /* -ENOMEM */ 1452 out: 1453 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { 1454 root->ref_cows = 1; 1455 btrfs_check_and_init_root_item(&root->root_item); 1456 } 1457 1458 return root; 1459 } 1460 1461 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1462 struct btrfs_key *location) 1463 { 1464 struct btrfs_root *root; 1465 int ret; 1466 1467 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1468 return fs_info->tree_root; 1469 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1470 return fs_info->extent_root; 1471 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1472 return fs_info->chunk_root; 1473 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1474 return fs_info->dev_root; 1475 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1476 return fs_info->csum_root; 1477 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1478 return fs_info->quota_root ? fs_info->quota_root : 1479 ERR_PTR(-ENOENT); 1480 again: 1481 spin_lock(&fs_info->fs_roots_radix_lock); 1482 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1483 (unsigned long)location->objectid); 1484 spin_unlock(&fs_info->fs_roots_radix_lock); 1485 if (root) 1486 return root; 1487 1488 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1489 if (IS_ERR(root)) 1490 return root; 1491 1492 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1493 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1494 GFP_NOFS); 1495 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1496 ret = -ENOMEM; 1497 goto fail; 1498 } 1499 1500 btrfs_init_free_ino_ctl(root); 1501 mutex_init(&root->fs_commit_mutex); 1502 spin_lock_init(&root->cache_lock); 1503 init_waitqueue_head(&root->cache_wait); 1504 1505 ret = get_anon_bdev(&root->anon_dev); 1506 if (ret) 1507 goto fail; 1508 1509 if (btrfs_root_refs(&root->root_item) == 0) { 1510 ret = -ENOENT; 1511 goto fail; 1512 } 1513 1514 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); 1515 if (ret < 0) 1516 goto fail; 1517 if (ret == 0) 1518 root->orphan_item_inserted = 1; 1519 1520 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1521 if (ret) 1522 goto fail; 1523 1524 spin_lock(&fs_info->fs_roots_radix_lock); 1525 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1526 (unsigned long)root->root_key.objectid, 1527 root); 1528 if (ret == 0) 1529 root->in_radix = 1; 1530 1531 spin_unlock(&fs_info->fs_roots_radix_lock); 1532 radix_tree_preload_end(); 1533 if (ret) { 1534 if (ret == -EEXIST) { 1535 free_fs_root(root); 1536 goto again; 1537 } 1538 goto fail; 1539 } 1540 1541 ret = btrfs_find_dead_roots(fs_info->tree_root, 1542 root->root_key.objectid); 1543 WARN_ON(ret); 1544 return root; 1545 fail: 1546 free_fs_root(root); 1547 return ERR_PTR(ret); 1548 } 1549 1550 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1551 { 1552 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1553 int ret = 0; 1554 struct btrfs_device *device; 1555 struct backing_dev_info *bdi; 1556 1557 rcu_read_lock(); 1558 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1559 if (!device->bdev) 1560 continue; 1561 bdi = blk_get_backing_dev_info(device->bdev); 1562 if (bdi && bdi_congested(bdi, bdi_bits)) { 1563 ret = 1; 1564 break; 1565 } 1566 } 1567 rcu_read_unlock(); 1568 return ret; 1569 } 1570 1571 /* 1572 * If this fails, caller must call bdi_destroy() to get rid of the 1573 * bdi again. 1574 */ 1575 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1576 { 1577 int err; 1578 1579 bdi->capabilities = BDI_CAP_MAP_COPY; 1580 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1581 if (err) 1582 return err; 1583 1584 bdi->ra_pages = default_backing_dev_info.ra_pages; 1585 bdi->congested_fn = btrfs_congested_fn; 1586 bdi->congested_data = info; 1587 return 0; 1588 } 1589 1590 /* 1591 * called by the kthread helper functions to finally call the bio end_io 1592 * functions. This is where read checksum verification actually happens 1593 */ 1594 static void end_workqueue_fn(struct btrfs_work *work) 1595 { 1596 struct bio *bio; 1597 struct end_io_wq *end_io_wq; 1598 struct btrfs_fs_info *fs_info; 1599 int error; 1600 1601 end_io_wq = container_of(work, struct end_io_wq, work); 1602 bio = end_io_wq->bio; 1603 fs_info = end_io_wq->info; 1604 1605 error = end_io_wq->error; 1606 bio->bi_private = end_io_wq->private; 1607 bio->bi_end_io = end_io_wq->end_io; 1608 kfree(end_io_wq); 1609 bio_endio(bio, error); 1610 } 1611 1612 static int cleaner_kthread(void *arg) 1613 { 1614 struct btrfs_root *root = arg; 1615 1616 do { 1617 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1618 1619 if (!(root->fs_info->sb->s_flags & MS_RDONLY) && 1620 mutex_trylock(&root->fs_info->cleaner_mutex)) { 1621 btrfs_run_delayed_iputs(root); 1622 btrfs_clean_old_snapshots(root); 1623 mutex_unlock(&root->fs_info->cleaner_mutex); 1624 btrfs_run_defrag_inodes(root->fs_info); 1625 } 1626 1627 if (!try_to_freeze()) { 1628 set_current_state(TASK_INTERRUPTIBLE); 1629 if (!kthread_should_stop()) 1630 schedule(); 1631 __set_current_state(TASK_RUNNING); 1632 } 1633 } while (!kthread_should_stop()); 1634 return 0; 1635 } 1636 1637 static int transaction_kthread(void *arg) 1638 { 1639 struct btrfs_root *root = arg; 1640 struct btrfs_trans_handle *trans; 1641 struct btrfs_transaction *cur; 1642 u64 transid; 1643 unsigned long now; 1644 unsigned long delay; 1645 bool cannot_commit; 1646 1647 do { 1648 cannot_commit = false; 1649 delay = HZ * 30; 1650 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1651 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1652 1653 spin_lock(&root->fs_info->trans_lock); 1654 cur = root->fs_info->running_transaction; 1655 if (!cur) { 1656 spin_unlock(&root->fs_info->trans_lock); 1657 goto sleep; 1658 } 1659 1660 now = get_seconds(); 1661 if (!cur->blocked && 1662 (now < cur->start_time || now - cur->start_time < 30)) { 1663 spin_unlock(&root->fs_info->trans_lock); 1664 delay = HZ * 5; 1665 goto sleep; 1666 } 1667 transid = cur->transid; 1668 spin_unlock(&root->fs_info->trans_lock); 1669 1670 /* If the file system is aborted, this will always fail. */ 1671 trans = btrfs_join_transaction(root); 1672 if (IS_ERR(trans)) { 1673 cannot_commit = true; 1674 goto sleep; 1675 } 1676 if (transid == trans->transid) { 1677 btrfs_commit_transaction(trans, root); 1678 } else { 1679 btrfs_end_transaction(trans, root); 1680 } 1681 sleep: 1682 wake_up_process(root->fs_info->cleaner_kthread); 1683 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1684 1685 if (!try_to_freeze()) { 1686 set_current_state(TASK_INTERRUPTIBLE); 1687 if (!kthread_should_stop() && 1688 (!btrfs_transaction_blocked(root->fs_info) || 1689 cannot_commit)) 1690 schedule_timeout(delay); 1691 __set_current_state(TASK_RUNNING); 1692 } 1693 } while (!kthread_should_stop()); 1694 return 0; 1695 } 1696 1697 /* 1698 * this will find the highest generation in the array of 1699 * root backups. The index of the highest array is returned, 1700 * or -1 if we can't find anything. 1701 * 1702 * We check to make sure the array is valid by comparing the 1703 * generation of the latest root in the array with the generation 1704 * in the super block. If they don't match we pitch it. 1705 */ 1706 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1707 { 1708 u64 cur; 1709 int newest_index = -1; 1710 struct btrfs_root_backup *root_backup; 1711 int i; 1712 1713 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1714 root_backup = info->super_copy->super_roots + i; 1715 cur = btrfs_backup_tree_root_gen(root_backup); 1716 if (cur == newest_gen) 1717 newest_index = i; 1718 } 1719 1720 /* check to see if we actually wrapped around */ 1721 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1722 root_backup = info->super_copy->super_roots; 1723 cur = btrfs_backup_tree_root_gen(root_backup); 1724 if (cur == newest_gen) 1725 newest_index = 0; 1726 } 1727 return newest_index; 1728 } 1729 1730 1731 /* 1732 * find the oldest backup so we know where to store new entries 1733 * in the backup array. This will set the backup_root_index 1734 * field in the fs_info struct 1735 */ 1736 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1737 u64 newest_gen) 1738 { 1739 int newest_index = -1; 1740 1741 newest_index = find_newest_super_backup(info, newest_gen); 1742 /* if there was garbage in there, just move along */ 1743 if (newest_index == -1) { 1744 info->backup_root_index = 0; 1745 } else { 1746 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1747 } 1748 } 1749 1750 /* 1751 * copy all the root pointers into the super backup array. 1752 * this will bump the backup pointer by one when it is 1753 * done 1754 */ 1755 static void backup_super_roots(struct btrfs_fs_info *info) 1756 { 1757 int next_backup; 1758 struct btrfs_root_backup *root_backup; 1759 int last_backup; 1760 1761 next_backup = info->backup_root_index; 1762 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1763 BTRFS_NUM_BACKUP_ROOTS; 1764 1765 /* 1766 * just overwrite the last backup if we're at the same generation 1767 * this happens only at umount 1768 */ 1769 root_backup = info->super_for_commit->super_roots + last_backup; 1770 if (btrfs_backup_tree_root_gen(root_backup) == 1771 btrfs_header_generation(info->tree_root->node)) 1772 next_backup = last_backup; 1773 1774 root_backup = info->super_for_commit->super_roots + next_backup; 1775 1776 /* 1777 * make sure all of our padding and empty slots get zero filled 1778 * regardless of which ones we use today 1779 */ 1780 memset(root_backup, 0, sizeof(*root_backup)); 1781 1782 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1783 1784 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1785 btrfs_set_backup_tree_root_gen(root_backup, 1786 btrfs_header_generation(info->tree_root->node)); 1787 1788 btrfs_set_backup_tree_root_level(root_backup, 1789 btrfs_header_level(info->tree_root->node)); 1790 1791 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1792 btrfs_set_backup_chunk_root_gen(root_backup, 1793 btrfs_header_generation(info->chunk_root->node)); 1794 btrfs_set_backup_chunk_root_level(root_backup, 1795 btrfs_header_level(info->chunk_root->node)); 1796 1797 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1798 btrfs_set_backup_extent_root_gen(root_backup, 1799 btrfs_header_generation(info->extent_root->node)); 1800 btrfs_set_backup_extent_root_level(root_backup, 1801 btrfs_header_level(info->extent_root->node)); 1802 1803 /* 1804 * we might commit during log recovery, which happens before we set 1805 * the fs_root. Make sure it is valid before we fill it in. 1806 */ 1807 if (info->fs_root && info->fs_root->node) { 1808 btrfs_set_backup_fs_root(root_backup, 1809 info->fs_root->node->start); 1810 btrfs_set_backup_fs_root_gen(root_backup, 1811 btrfs_header_generation(info->fs_root->node)); 1812 btrfs_set_backup_fs_root_level(root_backup, 1813 btrfs_header_level(info->fs_root->node)); 1814 } 1815 1816 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1817 btrfs_set_backup_dev_root_gen(root_backup, 1818 btrfs_header_generation(info->dev_root->node)); 1819 btrfs_set_backup_dev_root_level(root_backup, 1820 btrfs_header_level(info->dev_root->node)); 1821 1822 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1823 btrfs_set_backup_csum_root_gen(root_backup, 1824 btrfs_header_generation(info->csum_root->node)); 1825 btrfs_set_backup_csum_root_level(root_backup, 1826 btrfs_header_level(info->csum_root->node)); 1827 1828 btrfs_set_backup_total_bytes(root_backup, 1829 btrfs_super_total_bytes(info->super_copy)); 1830 btrfs_set_backup_bytes_used(root_backup, 1831 btrfs_super_bytes_used(info->super_copy)); 1832 btrfs_set_backup_num_devices(root_backup, 1833 btrfs_super_num_devices(info->super_copy)); 1834 1835 /* 1836 * if we don't copy this out to the super_copy, it won't get remembered 1837 * for the next commit 1838 */ 1839 memcpy(&info->super_copy->super_roots, 1840 &info->super_for_commit->super_roots, 1841 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1842 } 1843 1844 /* 1845 * this copies info out of the root backup array and back into 1846 * the in-memory super block. It is meant to help iterate through 1847 * the array, so you send it the number of backups you've already 1848 * tried and the last backup index you used. 1849 * 1850 * this returns -1 when it has tried all the backups 1851 */ 1852 static noinline int next_root_backup(struct btrfs_fs_info *info, 1853 struct btrfs_super_block *super, 1854 int *num_backups_tried, int *backup_index) 1855 { 1856 struct btrfs_root_backup *root_backup; 1857 int newest = *backup_index; 1858 1859 if (*num_backups_tried == 0) { 1860 u64 gen = btrfs_super_generation(super); 1861 1862 newest = find_newest_super_backup(info, gen); 1863 if (newest == -1) 1864 return -1; 1865 1866 *backup_index = newest; 1867 *num_backups_tried = 1; 1868 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1869 /* we've tried all the backups, all done */ 1870 return -1; 1871 } else { 1872 /* jump to the next oldest backup */ 1873 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1874 BTRFS_NUM_BACKUP_ROOTS; 1875 *backup_index = newest; 1876 *num_backups_tried += 1; 1877 } 1878 root_backup = super->super_roots + newest; 1879 1880 btrfs_set_super_generation(super, 1881 btrfs_backup_tree_root_gen(root_backup)); 1882 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1883 btrfs_set_super_root_level(super, 1884 btrfs_backup_tree_root_level(root_backup)); 1885 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1886 1887 /* 1888 * fixme: the total bytes and num_devices need to match or we should 1889 * need a fsck 1890 */ 1891 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1892 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1893 return 0; 1894 } 1895 1896 /* helper to cleanup tree roots */ 1897 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 1898 { 1899 free_extent_buffer(info->tree_root->node); 1900 free_extent_buffer(info->tree_root->commit_root); 1901 free_extent_buffer(info->dev_root->node); 1902 free_extent_buffer(info->dev_root->commit_root); 1903 free_extent_buffer(info->extent_root->node); 1904 free_extent_buffer(info->extent_root->commit_root); 1905 free_extent_buffer(info->csum_root->node); 1906 free_extent_buffer(info->csum_root->commit_root); 1907 if (info->quota_root) { 1908 free_extent_buffer(info->quota_root->node); 1909 free_extent_buffer(info->quota_root->commit_root); 1910 } 1911 1912 info->tree_root->node = NULL; 1913 info->tree_root->commit_root = NULL; 1914 info->dev_root->node = NULL; 1915 info->dev_root->commit_root = NULL; 1916 info->extent_root->node = NULL; 1917 info->extent_root->commit_root = NULL; 1918 info->csum_root->node = NULL; 1919 info->csum_root->commit_root = NULL; 1920 if (info->quota_root) { 1921 info->quota_root->node = NULL; 1922 info->quota_root->commit_root = NULL; 1923 } 1924 1925 if (chunk_root) { 1926 free_extent_buffer(info->chunk_root->node); 1927 free_extent_buffer(info->chunk_root->commit_root); 1928 info->chunk_root->node = NULL; 1929 info->chunk_root->commit_root = NULL; 1930 } 1931 } 1932 1933 1934 int open_ctree(struct super_block *sb, 1935 struct btrfs_fs_devices *fs_devices, 1936 char *options) 1937 { 1938 u32 sectorsize; 1939 u32 nodesize; 1940 u32 leafsize; 1941 u32 blocksize; 1942 u32 stripesize; 1943 u64 generation; 1944 u64 features; 1945 struct btrfs_key location; 1946 struct buffer_head *bh; 1947 struct btrfs_super_block *disk_super; 1948 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1949 struct btrfs_root *tree_root; 1950 struct btrfs_root *extent_root; 1951 struct btrfs_root *csum_root; 1952 struct btrfs_root *chunk_root; 1953 struct btrfs_root *dev_root; 1954 struct btrfs_root *quota_root; 1955 struct btrfs_root *log_tree_root; 1956 int ret; 1957 int err = -EINVAL; 1958 int num_backups_tried = 0; 1959 int backup_index = 0; 1960 1961 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 1962 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info); 1963 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info); 1964 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 1965 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info); 1966 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info); 1967 1968 if (!tree_root || !extent_root || !csum_root || 1969 !chunk_root || !dev_root || !quota_root) { 1970 err = -ENOMEM; 1971 goto fail; 1972 } 1973 1974 ret = init_srcu_struct(&fs_info->subvol_srcu); 1975 if (ret) { 1976 err = ret; 1977 goto fail; 1978 } 1979 1980 ret = setup_bdi(fs_info, &fs_info->bdi); 1981 if (ret) { 1982 err = ret; 1983 goto fail_srcu; 1984 } 1985 1986 fs_info->btree_inode = new_inode(sb); 1987 if (!fs_info->btree_inode) { 1988 err = -ENOMEM; 1989 goto fail_bdi; 1990 } 1991 1992 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 1993 1994 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 1995 INIT_LIST_HEAD(&fs_info->trans_list); 1996 INIT_LIST_HEAD(&fs_info->dead_roots); 1997 INIT_LIST_HEAD(&fs_info->delayed_iputs); 1998 INIT_LIST_HEAD(&fs_info->hashers); 1999 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 2000 INIT_LIST_HEAD(&fs_info->ordered_operations); 2001 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2002 spin_lock_init(&fs_info->delalloc_lock); 2003 spin_lock_init(&fs_info->trans_lock); 2004 spin_lock_init(&fs_info->ref_cache_lock); 2005 spin_lock_init(&fs_info->fs_roots_radix_lock); 2006 spin_lock_init(&fs_info->delayed_iput_lock); 2007 spin_lock_init(&fs_info->defrag_inodes_lock); 2008 spin_lock_init(&fs_info->free_chunk_lock); 2009 spin_lock_init(&fs_info->tree_mod_seq_lock); 2010 rwlock_init(&fs_info->tree_mod_log_lock); 2011 mutex_init(&fs_info->reloc_mutex); 2012 2013 init_completion(&fs_info->kobj_unregister); 2014 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2015 INIT_LIST_HEAD(&fs_info->space_info); 2016 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2017 btrfs_mapping_init(&fs_info->mapping_tree); 2018 btrfs_init_block_rsv(&fs_info->global_block_rsv); 2019 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv); 2020 btrfs_init_block_rsv(&fs_info->trans_block_rsv); 2021 btrfs_init_block_rsv(&fs_info->chunk_block_rsv); 2022 btrfs_init_block_rsv(&fs_info->empty_block_rsv); 2023 btrfs_init_block_rsv(&fs_info->delayed_block_rsv); 2024 atomic_set(&fs_info->nr_async_submits, 0); 2025 atomic_set(&fs_info->async_delalloc_pages, 0); 2026 atomic_set(&fs_info->async_submit_draining, 0); 2027 atomic_set(&fs_info->nr_async_bios, 0); 2028 atomic_set(&fs_info->defrag_running, 0); 2029 atomic_set(&fs_info->tree_mod_seq, 0); 2030 fs_info->sb = sb; 2031 fs_info->max_inline = 8192 * 1024; 2032 fs_info->metadata_ratio = 0; 2033 fs_info->defrag_inodes = RB_ROOT; 2034 fs_info->trans_no_join = 0; 2035 fs_info->free_chunk_space = 0; 2036 fs_info->tree_mod_log = RB_ROOT; 2037 2038 init_waitqueue_head(&fs_info->tree_mod_seq_wait); 2039 2040 /* readahead state */ 2041 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 2042 spin_lock_init(&fs_info->reada_lock); 2043 2044 fs_info->thread_pool_size = min_t(unsigned long, 2045 num_online_cpus() + 2, 8); 2046 2047 INIT_LIST_HEAD(&fs_info->ordered_extents); 2048 spin_lock_init(&fs_info->ordered_extent_lock); 2049 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2050 GFP_NOFS); 2051 if (!fs_info->delayed_root) { 2052 err = -ENOMEM; 2053 goto fail_iput; 2054 } 2055 btrfs_init_delayed_root(fs_info->delayed_root); 2056 2057 mutex_init(&fs_info->scrub_lock); 2058 atomic_set(&fs_info->scrubs_running, 0); 2059 atomic_set(&fs_info->scrub_pause_req, 0); 2060 atomic_set(&fs_info->scrubs_paused, 0); 2061 atomic_set(&fs_info->scrub_cancel_req, 0); 2062 init_waitqueue_head(&fs_info->scrub_pause_wait); 2063 init_rwsem(&fs_info->scrub_super_lock); 2064 fs_info->scrub_workers_refcnt = 0; 2065 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2066 fs_info->check_integrity_print_mask = 0; 2067 #endif 2068 2069 spin_lock_init(&fs_info->balance_lock); 2070 mutex_init(&fs_info->balance_mutex); 2071 atomic_set(&fs_info->balance_running, 0); 2072 atomic_set(&fs_info->balance_pause_req, 0); 2073 atomic_set(&fs_info->balance_cancel_req, 0); 2074 fs_info->balance_ctl = NULL; 2075 init_waitqueue_head(&fs_info->balance_wait_q); 2076 2077 sb->s_blocksize = 4096; 2078 sb->s_blocksize_bits = blksize_bits(4096); 2079 sb->s_bdi = &fs_info->bdi; 2080 2081 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2082 set_nlink(fs_info->btree_inode, 1); 2083 /* 2084 * we set the i_size on the btree inode to the max possible int. 2085 * the real end of the address space is determined by all of 2086 * the devices in the system 2087 */ 2088 fs_info->btree_inode->i_size = OFFSET_MAX; 2089 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2090 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 2091 2092 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2093 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2094 fs_info->btree_inode->i_mapping); 2095 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2096 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2097 2098 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2099 2100 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2101 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2102 sizeof(struct btrfs_key)); 2103 set_bit(BTRFS_INODE_DUMMY, 2104 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2105 insert_inode_hash(fs_info->btree_inode); 2106 2107 spin_lock_init(&fs_info->block_group_cache_lock); 2108 fs_info->block_group_cache_tree = RB_ROOT; 2109 2110 extent_io_tree_init(&fs_info->freed_extents[0], 2111 fs_info->btree_inode->i_mapping); 2112 extent_io_tree_init(&fs_info->freed_extents[1], 2113 fs_info->btree_inode->i_mapping); 2114 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2115 fs_info->do_barriers = 1; 2116 2117 2118 mutex_init(&fs_info->ordered_operations_mutex); 2119 mutex_init(&fs_info->tree_log_mutex); 2120 mutex_init(&fs_info->chunk_mutex); 2121 mutex_init(&fs_info->transaction_kthread_mutex); 2122 mutex_init(&fs_info->cleaner_mutex); 2123 mutex_init(&fs_info->volume_mutex); 2124 init_rwsem(&fs_info->extent_commit_sem); 2125 init_rwsem(&fs_info->cleanup_work_sem); 2126 init_rwsem(&fs_info->subvol_sem); 2127 2128 spin_lock_init(&fs_info->qgroup_lock); 2129 fs_info->qgroup_tree = RB_ROOT; 2130 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2131 fs_info->qgroup_seq = 1; 2132 fs_info->quota_enabled = 0; 2133 fs_info->pending_quota_state = 0; 2134 2135 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2136 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2137 2138 init_waitqueue_head(&fs_info->transaction_throttle); 2139 init_waitqueue_head(&fs_info->transaction_wait); 2140 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2141 init_waitqueue_head(&fs_info->async_submit_wait); 2142 2143 __setup_root(4096, 4096, 4096, 4096, tree_root, 2144 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2145 2146 invalidate_bdev(fs_devices->latest_bdev); 2147 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2148 if (!bh) { 2149 err = -EINVAL; 2150 goto fail_alloc; 2151 } 2152 2153 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2154 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2155 sizeof(*fs_info->super_for_commit)); 2156 brelse(bh); 2157 2158 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2159 2160 disk_super = fs_info->super_copy; 2161 if (!btrfs_super_root(disk_super)) 2162 goto fail_alloc; 2163 2164 /* check FS state, whether FS is broken. */ 2165 fs_info->fs_state |= btrfs_super_flags(disk_super); 2166 2167 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2168 if (ret) { 2169 printk(KERN_ERR "btrfs: superblock contains fatal errors\n"); 2170 err = ret; 2171 goto fail_alloc; 2172 } 2173 2174 /* 2175 * run through our array of backup supers and setup 2176 * our ring pointer to the oldest one 2177 */ 2178 generation = btrfs_super_generation(disk_super); 2179 find_oldest_super_backup(fs_info, generation); 2180 2181 /* 2182 * In the long term, we'll store the compression type in the super 2183 * block, and it'll be used for per file compression control. 2184 */ 2185 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2186 2187 ret = btrfs_parse_options(tree_root, options); 2188 if (ret) { 2189 err = ret; 2190 goto fail_alloc; 2191 } 2192 2193 features = btrfs_super_incompat_flags(disk_super) & 2194 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2195 if (features) { 2196 printk(KERN_ERR "BTRFS: couldn't mount because of " 2197 "unsupported optional features (%Lx).\n", 2198 (unsigned long long)features); 2199 err = -EINVAL; 2200 goto fail_alloc; 2201 } 2202 2203 if (btrfs_super_leafsize(disk_super) != 2204 btrfs_super_nodesize(disk_super)) { 2205 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2206 "blocksizes don't match. node %d leaf %d\n", 2207 btrfs_super_nodesize(disk_super), 2208 btrfs_super_leafsize(disk_super)); 2209 err = -EINVAL; 2210 goto fail_alloc; 2211 } 2212 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2213 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2214 "blocksize (%d) was too large\n", 2215 btrfs_super_leafsize(disk_super)); 2216 err = -EINVAL; 2217 goto fail_alloc; 2218 } 2219 2220 features = btrfs_super_incompat_flags(disk_super); 2221 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2222 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2223 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2224 2225 /* 2226 * flag our filesystem as having big metadata blocks if 2227 * they are bigger than the page size 2228 */ 2229 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) { 2230 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2231 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n"); 2232 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2233 } 2234 2235 nodesize = btrfs_super_nodesize(disk_super); 2236 leafsize = btrfs_super_leafsize(disk_super); 2237 sectorsize = btrfs_super_sectorsize(disk_super); 2238 stripesize = btrfs_super_stripesize(disk_super); 2239 2240 /* 2241 * mixed block groups end up with duplicate but slightly offset 2242 * extent buffers for the same range. It leads to corruptions 2243 */ 2244 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2245 (sectorsize != leafsize)) { 2246 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes " 2247 "are not allowed for mixed block groups on %s\n", 2248 sb->s_id); 2249 goto fail_alloc; 2250 } 2251 2252 btrfs_set_super_incompat_flags(disk_super, features); 2253 2254 features = btrfs_super_compat_ro_flags(disk_super) & 2255 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2256 if (!(sb->s_flags & MS_RDONLY) && features) { 2257 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2258 "unsupported option features (%Lx).\n", 2259 (unsigned long long)features); 2260 err = -EINVAL; 2261 goto fail_alloc; 2262 } 2263 2264 btrfs_init_workers(&fs_info->generic_worker, 2265 "genwork", 1, NULL); 2266 2267 btrfs_init_workers(&fs_info->workers, "worker", 2268 fs_info->thread_pool_size, 2269 &fs_info->generic_worker); 2270 2271 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 2272 fs_info->thread_pool_size, 2273 &fs_info->generic_worker); 2274 2275 btrfs_init_workers(&fs_info->submit_workers, "submit", 2276 min_t(u64, fs_devices->num_devices, 2277 fs_info->thread_pool_size), 2278 &fs_info->generic_worker); 2279 2280 btrfs_init_workers(&fs_info->caching_workers, "cache", 2281 2, &fs_info->generic_worker); 2282 2283 /* a higher idle thresh on the submit workers makes it much more 2284 * likely that bios will be send down in a sane order to the 2285 * devices 2286 */ 2287 fs_info->submit_workers.idle_thresh = 64; 2288 2289 fs_info->workers.idle_thresh = 16; 2290 fs_info->workers.ordered = 1; 2291 2292 fs_info->delalloc_workers.idle_thresh = 2; 2293 fs_info->delalloc_workers.ordered = 1; 2294 2295 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, 2296 &fs_info->generic_worker); 2297 btrfs_init_workers(&fs_info->endio_workers, "endio", 2298 fs_info->thread_pool_size, 2299 &fs_info->generic_worker); 2300 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 2301 fs_info->thread_pool_size, 2302 &fs_info->generic_worker); 2303 btrfs_init_workers(&fs_info->endio_meta_write_workers, 2304 "endio-meta-write", fs_info->thread_pool_size, 2305 &fs_info->generic_worker); 2306 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 2307 fs_info->thread_pool_size, 2308 &fs_info->generic_worker); 2309 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", 2310 1, &fs_info->generic_worker); 2311 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta", 2312 fs_info->thread_pool_size, 2313 &fs_info->generic_worker); 2314 btrfs_init_workers(&fs_info->readahead_workers, "readahead", 2315 fs_info->thread_pool_size, 2316 &fs_info->generic_worker); 2317 2318 /* 2319 * endios are largely parallel and should have a very 2320 * low idle thresh 2321 */ 2322 fs_info->endio_workers.idle_thresh = 4; 2323 fs_info->endio_meta_workers.idle_thresh = 4; 2324 2325 fs_info->endio_write_workers.idle_thresh = 2; 2326 fs_info->endio_meta_write_workers.idle_thresh = 2; 2327 fs_info->readahead_workers.idle_thresh = 2; 2328 2329 /* 2330 * btrfs_start_workers can really only fail because of ENOMEM so just 2331 * return -ENOMEM if any of these fail. 2332 */ 2333 ret = btrfs_start_workers(&fs_info->workers); 2334 ret |= btrfs_start_workers(&fs_info->generic_worker); 2335 ret |= btrfs_start_workers(&fs_info->submit_workers); 2336 ret |= btrfs_start_workers(&fs_info->delalloc_workers); 2337 ret |= btrfs_start_workers(&fs_info->fixup_workers); 2338 ret |= btrfs_start_workers(&fs_info->endio_workers); 2339 ret |= btrfs_start_workers(&fs_info->endio_meta_workers); 2340 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers); 2341 ret |= btrfs_start_workers(&fs_info->endio_write_workers); 2342 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker); 2343 ret |= btrfs_start_workers(&fs_info->delayed_workers); 2344 ret |= btrfs_start_workers(&fs_info->caching_workers); 2345 ret |= btrfs_start_workers(&fs_info->readahead_workers); 2346 if (ret) { 2347 err = -ENOMEM; 2348 goto fail_sb_buffer; 2349 } 2350 2351 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2352 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2353 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2354 2355 tree_root->nodesize = nodesize; 2356 tree_root->leafsize = leafsize; 2357 tree_root->sectorsize = sectorsize; 2358 tree_root->stripesize = stripesize; 2359 2360 sb->s_blocksize = sectorsize; 2361 sb->s_blocksize_bits = blksize_bits(sectorsize); 2362 2363 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 2364 sizeof(disk_super->magic))) { 2365 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 2366 goto fail_sb_buffer; 2367 } 2368 2369 if (sectorsize != PAGE_SIZE) { 2370 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) " 2371 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2372 goto fail_sb_buffer; 2373 } 2374 2375 mutex_lock(&fs_info->chunk_mutex); 2376 ret = btrfs_read_sys_array(tree_root); 2377 mutex_unlock(&fs_info->chunk_mutex); 2378 if (ret) { 2379 printk(KERN_WARNING "btrfs: failed to read the system " 2380 "array on %s\n", sb->s_id); 2381 goto fail_sb_buffer; 2382 } 2383 2384 blocksize = btrfs_level_size(tree_root, 2385 btrfs_super_chunk_root_level(disk_super)); 2386 generation = btrfs_super_chunk_root_generation(disk_super); 2387 2388 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2389 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2390 2391 chunk_root->node = read_tree_block(chunk_root, 2392 btrfs_super_chunk_root(disk_super), 2393 blocksize, generation); 2394 BUG_ON(!chunk_root->node); /* -ENOMEM */ 2395 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 2396 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 2397 sb->s_id); 2398 goto fail_tree_roots; 2399 } 2400 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2401 chunk_root->commit_root = btrfs_root_node(chunk_root); 2402 2403 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2404 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 2405 BTRFS_UUID_SIZE); 2406 2407 ret = btrfs_read_chunk_tree(chunk_root); 2408 if (ret) { 2409 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 2410 sb->s_id); 2411 goto fail_tree_roots; 2412 } 2413 2414 btrfs_close_extra_devices(fs_devices); 2415 2416 if (!fs_devices->latest_bdev) { 2417 printk(KERN_CRIT "btrfs: failed to read devices on %s\n", 2418 sb->s_id); 2419 goto fail_tree_roots; 2420 } 2421 2422 retry_root_backup: 2423 blocksize = btrfs_level_size(tree_root, 2424 btrfs_super_root_level(disk_super)); 2425 generation = btrfs_super_generation(disk_super); 2426 2427 tree_root->node = read_tree_block(tree_root, 2428 btrfs_super_root(disk_super), 2429 blocksize, generation); 2430 if (!tree_root->node || 2431 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 2432 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 2433 sb->s_id); 2434 2435 goto recovery_tree_root; 2436 } 2437 2438 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2439 tree_root->commit_root = btrfs_root_node(tree_root); 2440 2441 ret = find_and_setup_root(tree_root, fs_info, 2442 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 2443 if (ret) 2444 goto recovery_tree_root; 2445 extent_root->track_dirty = 1; 2446 2447 ret = find_and_setup_root(tree_root, fs_info, 2448 BTRFS_DEV_TREE_OBJECTID, dev_root); 2449 if (ret) 2450 goto recovery_tree_root; 2451 dev_root->track_dirty = 1; 2452 2453 ret = find_and_setup_root(tree_root, fs_info, 2454 BTRFS_CSUM_TREE_OBJECTID, csum_root); 2455 if (ret) 2456 goto recovery_tree_root; 2457 csum_root->track_dirty = 1; 2458 2459 ret = find_and_setup_root(tree_root, fs_info, 2460 BTRFS_QUOTA_TREE_OBJECTID, quota_root); 2461 if (ret) { 2462 kfree(quota_root); 2463 quota_root = fs_info->quota_root = NULL; 2464 } else { 2465 quota_root->track_dirty = 1; 2466 fs_info->quota_enabled = 1; 2467 fs_info->pending_quota_state = 1; 2468 } 2469 2470 fs_info->generation = generation; 2471 fs_info->last_trans_committed = generation; 2472 2473 ret = btrfs_recover_balance(fs_info); 2474 if (ret) { 2475 printk(KERN_WARNING "btrfs: failed to recover balance\n"); 2476 goto fail_block_groups; 2477 } 2478 2479 ret = btrfs_init_dev_stats(fs_info); 2480 if (ret) { 2481 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n", 2482 ret); 2483 goto fail_block_groups; 2484 } 2485 2486 ret = btrfs_init_space_info(fs_info); 2487 if (ret) { 2488 printk(KERN_ERR "Failed to initial space info: %d\n", ret); 2489 goto fail_block_groups; 2490 } 2491 2492 ret = btrfs_read_block_groups(extent_root); 2493 if (ret) { 2494 printk(KERN_ERR "Failed to read block groups: %d\n", ret); 2495 goto fail_block_groups; 2496 } 2497 2498 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2499 "btrfs-cleaner"); 2500 if (IS_ERR(fs_info->cleaner_kthread)) 2501 goto fail_block_groups; 2502 2503 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2504 tree_root, 2505 "btrfs-transaction"); 2506 if (IS_ERR(fs_info->transaction_kthread)) 2507 goto fail_cleaner; 2508 2509 if (!btrfs_test_opt(tree_root, SSD) && 2510 !btrfs_test_opt(tree_root, NOSSD) && 2511 !fs_info->fs_devices->rotating) { 2512 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 2513 "mode\n"); 2514 btrfs_set_opt(fs_info->mount_opt, SSD); 2515 } 2516 2517 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2518 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2519 ret = btrfsic_mount(tree_root, fs_devices, 2520 btrfs_test_opt(tree_root, 2521 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2522 1 : 0, 2523 fs_info->check_integrity_print_mask); 2524 if (ret) 2525 printk(KERN_WARNING "btrfs: failed to initialize" 2526 " integrity check module %s\n", sb->s_id); 2527 } 2528 #endif 2529 ret = btrfs_read_qgroup_config(fs_info); 2530 if (ret) 2531 goto fail_trans_kthread; 2532 2533 /* do not make disk changes in broken FS */ 2534 if (btrfs_super_log_root(disk_super) != 0 && 2535 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) { 2536 u64 bytenr = btrfs_super_log_root(disk_super); 2537 2538 if (fs_devices->rw_devices == 0) { 2539 printk(KERN_WARNING "Btrfs log replay required " 2540 "on RO media\n"); 2541 err = -EIO; 2542 goto fail_qgroup; 2543 } 2544 blocksize = 2545 btrfs_level_size(tree_root, 2546 btrfs_super_log_root_level(disk_super)); 2547 2548 log_tree_root = btrfs_alloc_root(fs_info); 2549 if (!log_tree_root) { 2550 err = -ENOMEM; 2551 goto fail_qgroup; 2552 } 2553 2554 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2555 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2556 2557 log_tree_root->node = read_tree_block(tree_root, bytenr, 2558 blocksize, 2559 generation + 1); 2560 /* returns with log_tree_root freed on success */ 2561 ret = btrfs_recover_log_trees(log_tree_root); 2562 if (ret) { 2563 btrfs_error(tree_root->fs_info, ret, 2564 "Failed to recover log tree"); 2565 free_extent_buffer(log_tree_root->node); 2566 kfree(log_tree_root); 2567 goto fail_trans_kthread; 2568 } 2569 2570 if (sb->s_flags & MS_RDONLY) { 2571 ret = btrfs_commit_super(tree_root); 2572 if (ret) 2573 goto fail_trans_kthread; 2574 } 2575 } 2576 2577 ret = btrfs_find_orphan_roots(tree_root); 2578 if (ret) 2579 goto fail_trans_kthread; 2580 2581 if (!(sb->s_flags & MS_RDONLY)) { 2582 ret = btrfs_cleanup_fs_roots(fs_info); 2583 if (ret) 2584 goto fail_trans_kthread; 2585 2586 ret = btrfs_recover_relocation(tree_root); 2587 if (ret < 0) { 2588 printk(KERN_WARNING 2589 "btrfs: failed to recover relocation\n"); 2590 err = -EINVAL; 2591 goto fail_qgroup; 2592 } 2593 } 2594 2595 location.objectid = BTRFS_FS_TREE_OBJECTID; 2596 location.type = BTRFS_ROOT_ITEM_KEY; 2597 location.offset = (u64)-1; 2598 2599 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2600 if (!fs_info->fs_root) 2601 goto fail_qgroup; 2602 if (IS_ERR(fs_info->fs_root)) { 2603 err = PTR_ERR(fs_info->fs_root); 2604 goto fail_qgroup; 2605 } 2606 2607 if (sb->s_flags & MS_RDONLY) 2608 return 0; 2609 2610 down_read(&fs_info->cleanup_work_sem); 2611 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 2612 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 2613 up_read(&fs_info->cleanup_work_sem); 2614 close_ctree(tree_root); 2615 return ret; 2616 } 2617 up_read(&fs_info->cleanup_work_sem); 2618 2619 ret = btrfs_resume_balance_async(fs_info); 2620 if (ret) { 2621 printk(KERN_WARNING "btrfs: failed to resume balance\n"); 2622 close_ctree(tree_root); 2623 return ret; 2624 } 2625 2626 return 0; 2627 2628 fail_qgroup: 2629 btrfs_free_qgroup_config(fs_info); 2630 fail_trans_kthread: 2631 kthread_stop(fs_info->transaction_kthread); 2632 fail_cleaner: 2633 kthread_stop(fs_info->cleaner_kthread); 2634 2635 /* 2636 * make sure we're done with the btree inode before we stop our 2637 * kthreads 2638 */ 2639 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2640 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2641 2642 fail_block_groups: 2643 btrfs_free_block_groups(fs_info); 2644 2645 fail_tree_roots: 2646 free_root_pointers(fs_info, 1); 2647 2648 fail_sb_buffer: 2649 btrfs_stop_workers(&fs_info->generic_worker); 2650 btrfs_stop_workers(&fs_info->readahead_workers); 2651 btrfs_stop_workers(&fs_info->fixup_workers); 2652 btrfs_stop_workers(&fs_info->delalloc_workers); 2653 btrfs_stop_workers(&fs_info->workers); 2654 btrfs_stop_workers(&fs_info->endio_workers); 2655 btrfs_stop_workers(&fs_info->endio_meta_workers); 2656 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2657 btrfs_stop_workers(&fs_info->endio_write_workers); 2658 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2659 btrfs_stop_workers(&fs_info->submit_workers); 2660 btrfs_stop_workers(&fs_info->delayed_workers); 2661 btrfs_stop_workers(&fs_info->caching_workers); 2662 fail_alloc: 2663 fail_iput: 2664 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2665 2666 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2667 iput(fs_info->btree_inode); 2668 fail_bdi: 2669 bdi_destroy(&fs_info->bdi); 2670 fail_srcu: 2671 cleanup_srcu_struct(&fs_info->subvol_srcu); 2672 fail: 2673 btrfs_close_devices(fs_info->fs_devices); 2674 return err; 2675 2676 recovery_tree_root: 2677 if (!btrfs_test_opt(tree_root, RECOVERY)) 2678 goto fail_tree_roots; 2679 2680 free_root_pointers(fs_info, 0); 2681 2682 /* don't use the log in recovery mode, it won't be valid */ 2683 btrfs_set_super_log_root(disk_super, 0); 2684 2685 /* we can't trust the free space cache either */ 2686 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2687 2688 ret = next_root_backup(fs_info, fs_info->super_copy, 2689 &num_backups_tried, &backup_index); 2690 if (ret == -1) 2691 goto fail_block_groups; 2692 goto retry_root_backup; 2693 } 2694 2695 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 2696 { 2697 if (uptodate) { 2698 set_buffer_uptodate(bh); 2699 } else { 2700 struct btrfs_device *device = (struct btrfs_device *) 2701 bh->b_private; 2702 2703 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to " 2704 "I/O error on %s\n", 2705 rcu_str_deref(device->name)); 2706 /* note, we dont' set_buffer_write_io_error because we have 2707 * our own ways of dealing with the IO errors 2708 */ 2709 clear_buffer_uptodate(bh); 2710 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 2711 } 2712 unlock_buffer(bh); 2713 put_bh(bh); 2714 } 2715 2716 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 2717 { 2718 struct buffer_head *bh; 2719 struct buffer_head *latest = NULL; 2720 struct btrfs_super_block *super; 2721 int i; 2722 u64 transid = 0; 2723 u64 bytenr; 2724 2725 /* we would like to check all the supers, but that would make 2726 * a btrfs mount succeed after a mkfs from a different FS. 2727 * So, we need to add a special mount option to scan for 2728 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 2729 */ 2730 for (i = 0; i < 1; i++) { 2731 bytenr = btrfs_sb_offset(i); 2732 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 2733 break; 2734 bh = __bread(bdev, bytenr / 4096, 4096); 2735 if (!bh) 2736 continue; 2737 2738 super = (struct btrfs_super_block *)bh->b_data; 2739 if (btrfs_super_bytenr(super) != bytenr || 2740 strncmp((char *)(&super->magic), BTRFS_MAGIC, 2741 sizeof(super->magic))) { 2742 brelse(bh); 2743 continue; 2744 } 2745 2746 if (!latest || btrfs_super_generation(super) > transid) { 2747 brelse(latest); 2748 latest = bh; 2749 transid = btrfs_super_generation(super); 2750 } else { 2751 brelse(bh); 2752 } 2753 } 2754 return latest; 2755 } 2756 2757 /* 2758 * this should be called twice, once with wait == 0 and 2759 * once with wait == 1. When wait == 0 is done, all the buffer heads 2760 * we write are pinned. 2761 * 2762 * They are released when wait == 1 is done. 2763 * max_mirrors must be the same for both runs, and it indicates how 2764 * many supers on this one device should be written. 2765 * 2766 * max_mirrors == 0 means to write them all. 2767 */ 2768 static int write_dev_supers(struct btrfs_device *device, 2769 struct btrfs_super_block *sb, 2770 int do_barriers, int wait, int max_mirrors) 2771 { 2772 struct buffer_head *bh; 2773 int i; 2774 int ret; 2775 int errors = 0; 2776 u32 crc; 2777 u64 bytenr; 2778 2779 if (max_mirrors == 0) 2780 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2781 2782 for (i = 0; i < max_mirrors; i++) { 2783 bytenr = btrfs_sb_offset(i); 2784 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2785 break; 2786 2787 if (wait) { 2788 bh = __find_get_block(device->bdev, bytenr / 4096, 2789 BTRFS_SUPER_INFO_SIZE); 2790 BUG_ON(!bh); 2791 wait_on_buffer(bh); 2792 if (!buffer_uptodate(bh)) 2793 errors++; 2794 2795 /* drop our reference */ 2796 brelse(bh); 2797 2798 /* drop the reference from the wait == 0 run */ 2799 brelse(bh); 2800 continue; 2801 } else { 2802 btrfs_set_super_bytenr(sb, bytenr); 2803 2804 crc = ~(u32)0; 2805 crc = btrfs_csum_data(NULL, (char *)sb + 2806 BTRFS_CSUM_SIZE, crc, 2807 BTRFS_SUPER_INFO_SIZE - 2808 BTRFS_CSUM_SIZE); 2809 btrfs_csum_final(crc, sb->csum); 2810 2811 /* 2812 * one reference for us, and we leave it for the 2813 * caller 2814 */ 2815 bh = __getblk(device->bdev, bytenr / 4096, 2816 BTRFS_SUPER_INFO_SIZE); 2817 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2818 2819 /* one reference for submit_bh */ 2820 get_bh(bh); 2821 2822 set_buffer_uptodate(bh); 2823 lock_buffer(bh); 2824 bh->b_end_io = btrfs_end_buffer_write_sync; 2825 bh->b_private = device; 2826 } 2827 2828 /* 2829 * we fua the first super. The others we allow 2830 * to go down lazy. 2831 */ 2832 ret = btrfsic_submit_bh(WRITE_FUA, bh); 2833 if (ret) 2834 errors++; 2835 } 2836 return errors < i ? 0 : -1; 2837 } 2838 2839 /* 2840 * endio for the write_dev_flush, this will wake anyone waiting 2841 * for the barrier when it is done 2842 */ 2843 static void btrfs_end_empty_barrier(struct bio *bio, int err) 2844 { 2845 if (err) { 2846 if (err == -EOPNOTSUPP) 2847 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2848 clear_bit(BIO_UPTODATE, &bio->bi_flags); 2849 } 2850 if (bio->bi_private) 2851 complete(bio->bi_private); 2852 bio_put(bio); 2853 } 2854 2855 /* 2856 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 2857 * sent down. With wait == 1, it waits for the previous flush. 2858 * 2859 * any device where the flush fails with eopnotsupp are flagged as not-barrier 2860 * capable 2861 */ 2862 static int write_dev_flush(struct btrfs_device *device, int wait) 2863 { 2864 struct bio *bio; 2865 int ret = 0; 2866 2867 if (device->nobarriers) 2868 return 0; 2869 2870 if (wait) { 2871 bio = device->flush_bio; 2872 if (!bio) 2873 return 0; 2874 2875 wait_for_completion(&device->flush_wait); 2876 2877 if (bio_flagged(bio, BIO_EOPNOTSUPP)) { 2878 printk_in_rcu("btrfs: disabling barriers on dev %s\n", 2879 rcu_str_deref(device->name)); 2880 device->nobarriers = 1; 2881 } 2882 if (!bio_flagged(bio, BIO_UPTODATE)) { 2883 ret = -EIO; 2884 if (!bio_flagged(bio, BIO_EOPNOTSUPP)) 2885 btrfs_dev_stat_inc_and_print(device, 2886 BTRFS_DEV_STAT_FLUSH_ERRS); 2887 } 2888 2889 /* drop the reference from the wait == 0 run */ 2890 bio_put(bio); 2891 device->flush_bio = NULL; 2892 2893 return ret; 2894 } 2895 2896 /* 2897 * one reference for us, and we leave it for the 2898 * caller 2899 */ 2900 device->flush_bio = NULL; 2901 bio = bio_alloc(GFP_NOFS, 0); 2902 if (!bio) 2903 return -ENOMEM; 2904 2905 bio->bi_end_io = btrfs_end_empty_barrier; 2906 bio->bi_bdev = device->bdev; 2907 init_completion(&device->flush_wait); 2908 bio->bi_private = &device->flush_wait; 2909 device->flush_bio = bio; 2910 2911 bio_get(bio); 2912 btrfsic_submit_bio(WRITE_FLUSH, bio); 2913 2914 return 0; 2915 } 2916 2917 /* 2918 * send an empty flush down to each device in parallel, 2919 * then wait for them 2920 */ 2921 static int barrier_all_devices(struct btrfs_fs_info *info) 2922 { 2923 struct list_head *head; 2924 struct btrfs_device *dev; 2925 int errors = 0; 2926 int ret; 2927 2928 /* send down all the barriers */ 2929 head = &info->fs_devices->devices; 2930 list_for_each_entry_rcu(dev, head, dev_list) { 2931 if (!dev->bdev) { 2932 errors++; 2933 continue; 2934 } 2935 if (!dev->in_fs_metadata || !dev->writeable) 2936 continue; 2937 2938 ret = write_dev_flush(dev, 0); 2939 if (ret) 2940 errors++; 2941 } 2942 2943 /* wait for all the barriers */ 2944 list_for_each_entry_rcu(dev, head, dev_list) { 2945 if (!dev->bdev) { 2946 errors++; 2947 continue; 2948 } 2949 if (!dev->in_fs_metadata || !dev->writeable) 2950 continue; 2951 2952 ret = write_dev_flush(dev, 1); 2953 if (ret) 2954 errors++; 2955 } 2956 if (errors) 2957 return -EIO; 2958 return 0; 2959 } 2960 2961 int write_all_supers(struct btrfs_root *root, int max_mirrors) 2962 { 2963 struct list_head *head; 2964 struct btrfs_device *dev; 2965 struct btrfs_super_block *sb; 2966 struct btrfs_dev_item *dev_item; 2967 int ret; 2968 int do_barriers; 2969 int max_errors; 2970 int total_errors = 0; 2971 u64 flags; 2972 2973 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 2974 do_barriers = !btrfs_test_opt(root, NOBARRIER); 2975 backup_super_roots(root->fs_info); 2976 2977 sb = root->fs_info->super_for_commit; 2978 dev_item = &sb->dev_item; 2979 2980 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2981 head = &root->fs_info->fs_devices->devices; 2982 2983 if (do_barriers) 2984 barrier_all_devices(root->fs_info); 2985 2986 list_for_each_entry_rcu(dev, head, dev_list) { 2987 if (!dev->bdev) { 2988 total_errors++; 2989 continue; 2990 } 2991 if (!dev->in_fs_metadata || !dev->writeable) 2992 continue; 2993 2994 btrfs_set_stack_device_generation(dev_item, 0); 2995 btrfs_set_stack_device_type(dev_item, dev->type); 2996 btrfs_set_stack_device_id(dev_item, dev->devid); 2997 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 2998 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 2999 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3000 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3001 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3002 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3003 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3004 3005 flags = btrfs_super_flags(sb); 3006 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3007 3008 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3009 if (ret) 3010 total_errors++; 3011 } 3012 if (total_errors > max_errors) { 3013 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 3014 total_errors); 3015 3016 /* This shouldn't happen. FUA is masked off if unsupported */ 3017 BUG(); 3018 } 3019 3020 total_errors = 0; 3021 list_for_each_entry_rcu(dev, head, dev_list) { 3022 if (!dev->bdev) 3023 continue; 3024 if (!dev->in_fs_metadata || !dev->writeable) 3025 continue; 3026 3027 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3028 if (ret) 3029 total_errors++; 3030 } 3031 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3032 if (total_errors > max_errors) { 3033 btrfs_error(root->fs_info, -EIO, 3034 "%d errors while writing supers", total_errors); 3035 return -EIO; 3036 } 3037 return 0; 3038 } 3039 3040 int write_ctree_super(struct btrfs_trans_handle *trans, 3041 struct btrfs_root *root, int max_mirrors) 3042 { 3043 int ret; 3044 3045 ret = write_all_supers(root, max_mirrors); 3046 return ret; 3047 } 3048 3049 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 3050 { 3051 spin_lock(&fs_info->fs_roots_radix_lock); 3052 radix_tree_delete(&fs_info->fs_roots_radix, 3053 (unsigned long)root->root_key.objectid); 3054 spin_unlock(&fs_info->fs_roots_radix_lock); 3055 3056 if (btrfs_root_refs(&root->root_item) == 0) 3057 synchronize_srcu(&fs_info->subvol_srcu); 3058 3059 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3060 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3061 free_fs_root(root); 3062 } 3063 3064 static void free_fs_root(struct btrfs_root *root) 3065 { 3066 iput(root->cache_inode); 3067 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3068 if (root->anon_dev) 3069 free_anon_bdev(root->anon_dev); 3070 free_extent_buffer(root->node); 3071 free_extent_buffer(root->commit_root); 3072 kfree(root->free_ino_ctl); 3073 kfree(root->free_ino_pinned); 3074 kfree(root->name); 3075 kfree(root); 3076 } 3077 3078 static void del_fs_roots(struct btrfs_fs_info *fs_info) 3079 { 3080 int ret; 3081 struct btrfs_root *gang[8]; 3082 int i; 3083 3084 while (!list_empty(&fs_info->dead_roots)) { 3085 gang[0] = list_entry(fs_info->dead_roots.next, 3086 struct btrfs_root, root_list); 3087 list_del(&gang[0]->root_list); 3088 3089 if (gang[0]->in_radix) { 3090 btrfs_free_fs_root(fs_info, gang[0]); 3091 } else { 3092 free_extent_buffer(gang[0]->node); 3093 free_extent_buffer(gang[0]->commit_root); 3094 kfree(gang[0]); 3095 } 3096 } 3097 3098 while (1) { 3099 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3100 (void **)gang, 0, 3101 ARRAY_SIZE(gang)); 3102 if (!ret) 3103 break; 3104 for (i = 0; i < ret; i++) 3105 btrfs_free_fs_root(fs_info, gang[i]); 3106 } 3107 } 3108 3109 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3110 { 3111 u64 root_objectid = 0; 3112 struct btrfs_root *gang[8]; 3113 int i; 3114 int ret; 3115 3116 while (1) { 3117 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3118 (void **)gang, root_objectid, 3119 ARRAY_SIZE(gang)); 3120 if (!ret) 3121 break; 3122 3123 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3124 for (i = 0; i < ret; i++) { 3125 int err; 3126 3127 root_objectid = gang[i]->root_key.objectid; 3128 err = btrfs_orphan_cleanup(gang[i]); 3129 if (err) 3130 return err; 3131 } 3132 root_objectid++; 3133 } 3134 return 0; 3135 } 3136 3137 int btrfs_commit_super(struct btrfs_root *root) 3138 { 3139 struct btrfs_trans_handle *trans; 3140 int ret; 3141 3142 mutex_lock(&root->fs_info->cleaner_mutex); 3143 btrfs_run_delayed_iputs(root); 3144 btrfs_clean_old_snapshots(root); 3145 mutex_unlock(&root->fs_info->cleaner_mutex); 3146 3147 /* wait until ongoing cleanup work done */ 3148 down_write(&root->fs_info->cleanup_work_sem); 3149 up_write(&root->fs_info->cleanup_work_sem); 3150 3151 trans = btrfs_join_transaction(root); 3152 if (IS_ERR(trans)) 3153 return PTR_ERR(trans); 3154 ret = btrfs_commit_transaction(trans, root); 3155 if (ret) 3156 return ret; 3157 /* run commit again to drop the original snapshot */ 3158 trans = btrfs_join_transaction(root); 3159 if (IS_ERR(trans)) 3160 return PTR_ERR(trans); 3161 ret = btrfs_commit_transaction(trans, root); 3162 if (ret) 3163 return ret; 3164 ret = btrfs_write_and_wait_transaction(NULL, root); 3165 if (ret) { 3166 btrfs_error(root->fs_info, ret, 3167 "Failed to sync btree inode to disk."); 3168 return ret; 3169 } 3170 3171 ret = write_ctree_super(NULL, root, 0); 3172 return ret; 3173 } 3174 3175 int close_ctree(struct btrfs_root *root) 3176 { 3177 struct btrfs_fs_info *fs_info = root->fs_info; 3178 int ret; 3179 3180 fs_info->closing = 1; 3181 smp_mb(); 3182 3183 /* pause restriper - we want to resume on mount */ 3184 btrfs_pause_balance(root->fs_info); 3185 3186 btrfs_scrub_cancel(root); 3187 3188 /* wait for any defraggers to finish */ 3189 wait_event(fs_info->transaction_wait, 3190 (atomic_read(&fs_info->defrag_running) == 0)); 3191 3192 /* clear out the rbtree of defraggable inodes */ 3193 btrfs_run_defrag_inodes(fs_info); 3194 3195 /* 3196 * Here come 2 situations when btrfs is broken to flip readonly: 3197 * 3198 * 1. when btrfs flips readonly somewhere else before 3199 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag, 3200 * and btrfs will skip to write sb directly to keep 3201 * ERROR state on disk. 3202 * 3203 * 2. when btrfs flips readonly just in btrfs_commit_super, 3204 * and in such case, btrfs cannot write sb via btrfs_commit_super, 3205 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag, 3206 * btrfs will cleanup all FS resources first and write sb then. 3207 */ 3208 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3209 ret = btrfs_commit_super(root); 3210 if (ret) 3211 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 3212 } 3213 3214 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 3215 ret = btrfs_error_commit_super(root); 3216 if (ret) 3217 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 3218 } 3219 3220 btrfs_put_block_group_cache(fs_info); 3221 3222 kthread_stop(fs_info->transaction_kthread); 3223 kthread_stop(fs_info->cleaner_kthread); 3224 3225 fs_info->closing = 2; 3226 smp_mb(); 3227 3228 btrfs_free_qgroup_config(root->fs_info); 3229 3230 if (fs_info->delalloc_bytes) { 3231 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 3232 (unsigned long long)fs_info->delalloc_bytes); 3233 } 3234 if (fs_info->total_ref_cache_size) { 3235 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", 3236 (unsigned long long)fs_info->total_ref_cache_size); 3237 } 3238 3239 free_extent_buffer(fs_info->extent_root->node); 3240 free_extent_buffer(fs_info->extent_root->commit_root); 3241 free_extent_buffer(fs_info->tree_root->node); 3242 free_extent_buffer(fs_info->tree_root->commit_root); 3243 free_extent_buffer(fs_info->chunk_root->node); 3244 free_extent_buffer(fs_info->chunk_root->commit_root); 3245 free_extent_buffer(fs_info->dev_root->node); 3246 free_extent_buffer(fs_info->dev_root->commit_root); 3247 free_extent_buffer(fs_info->csum_root->node); 3248 free_extent_buffer(fs_info->csum_root->commit_root); 3249 if (fs_info->quota_root) { 3250 free_extent_buffer(fs_info->quota_root->node); 3251 free_extent_buffer(fs_info->quota_root->commit_root); 3252 } 3253 3254 btrfs_free_block_groups(fs_info); 3255 3256 del_fs_roots(fs_info); 3257 3258 iput(fs_info->btree_inode); 3259 3260 btrfs_stop_workers(&fs_info->generic_worker); 3261 btrfs_stop_workers(&fs_info->fixup_workers); 3262 btrfs_stop_workers(&fs_info->delalloc_workers); 3263 btrfs_stop_workers(&fs_info->workers); 3264 btrfs_stop_workers(&fs_info->endio_workers); 3265 btrfs_stop_workers(&fs_info->endio_meta_workers); 3266 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 3267 btrfs_stop_workers(&fs_info->endio_write_workers); 3268 btrfs_stop_workers(&fs_info->endio_freespace_worker); 3269 btrfs_stop_workers(&fs_info->submit_workers); 3270 btrfs_stop_workers(&fs_info->delayed_workers); 3271 btrfs_stop_workers(&fs_info->caching_workers); 3272 btrfs_stop_workers(&fs_info->readahead_workers); 3273 3274 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3275 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3276 btrfsic_unmount(root, fs_info->fs_devices); 3277 #endif 3278 3279 btrfs_close_devices(fs_info->fs_devices); 3280 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3281 3282 bdi_destroy(&fs_info->bdi); 3283 cleanup_srcu_struct(&fs_info->subvol_srcu); 3284 3285 return 0; 3286 } 3287 3288 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3289 int atomic) 3290 { 3291 int ret; 3292 struct inode *btree_inode = buf->pages[0]->mapping->host; 3293 3294 ret = extent_buffer_uptodate(buf); 3295 if (!ret) 3296 return ret; 3297 3298 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3299 parent_transid, atomic); 3300 if (ret == -EAGAIN) 3301 return ret; 3302 return !ret; 3303 } 3304 3305 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3306 { 3307 return set_extent_buffer_uptodate(buf); 3308 } 3309 3310 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3311 { 3312 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3313 u64 transid = btrfs_header_generation(buf); 3314 int was_dirty; 3315 3316 btrfs_assert_tree_locked(buf); 3317 if (transid != root->fs_info->generation) { 3318 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 3319 "found %llu running %llu\n", 3320 (unsigned long long)buf->start, 3321 (unsigned long long)transid, 3322 (unsigned long long)root->fs_info->generation); 3323 WARN_ON(1); 3324 } 3325 was_dirty = set_extent_buffer_dirty(buf); 3326 if (!was_dirty) { 3327 spin_lock(&root->fs_info->delalloc_lock); 3328 root->fs_info->dirty_metadata_bytes += buf->len; 3329 spin_unlock(&root->fs_info->delalloc_lock); 3330 } 3331 } 3332 3333 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 3334 { 3335 /* 3336 * looks as though older kernels can get into trouble with 3337 * this code, they end up stuck in balance_dirty_pages forever 3338 */ 3339 u64 num_dirty; 3340 unsigned long thresh = 32 * 1024 * 1024; 3341 3342 if (current->flags & PF_MEMALLOC) 3343 return; 3344 3345 btrfs_balance_delayed_items(root); 3346 3347 num_dirty = root->fs_info->dirty_metadata_bytes; 3348 3349 if (num_dirty > thresh) { 3350 balance_dirty_pages_ratelimited_nr( 3351 root->fs_info->btree_inode->i_mapping, 1); 3352 } 3353 return; 3354 } 3355 3356 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 3357 { 3358 /* 3359 * looks as though older kernels can get into trouble with 3360 * this code, they end up stuck in balance_dirty_pages forever 3361 */ 3362 u64 num_dirty; 3363 unsigned long thresh = 32 * 1024 * 1024; 3364 3365 if (current->flags & PF_MEMALLOC) 3366 return; 3367 3368 num_dirty = root->fs_info->dirty_metadata_bytes; 3369 3370 if (num_dirty > thresh) { 3371 balance_dirty_pages_ratelimited_nr( 3372 root->fs_info->btree_inode->i_mapping, 1); 3373 } 3374 return; 3375 } 3376 3377 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3378 { 3379 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3380 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3381 } 3382 3383 int btree_lock_page_hook(struct page *page, void *data, 3384 void (*flush_fn)(void *)) 3385 { 3386 struct inode *inode = page->mapping->host; 3387 struct btrfs_root *root = BTRFS_I(inode)->root; 3388 struct extent_buffer *eb; 3389 3390 /* 3391 * We culled this eb but the page is still hanging out on the mapping, 3392 * carry on. 3393 */ 3394 if (!PagePrivate(page)) 3395 goto out; 3396 3397 eb = (struct extent_buffer *)page->private; 3398 if (!eb) { 3399 WARN_ON(1); 3400 goto out; 3401 } 3402 if (page != eb->pages[0]) 3403 goto out; 3404 3405 if (!btrfs_try_tree_write_lock(eb)) { 3406 flush_fn(data); 3407 btrfs_tree_lock(eb); 3408 } 3409 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3410 3411 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3412 spin_lock(&root->fs_info->delalloc_lock); 3413 if (root->fs_info->dirty_metadata_bytes >= eb->len) 3414 root->fs_info->dirty_metadata_bytes -= eb->len; 3415 else 3416 WARN_ON(1); 3417 spin_unlock(&root->fs_info->delalloc_lock); 3418 } 3419 3420 btrfs_tree_unlock(eb); 3421 out: 3422 if (!trylock_page(page)) { 3423 flush_fn(data); 3424 lock_page(page); 3425 } 3426 return 0; 3427 } 3428 3429 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3430 int read_only) 3431 { 3432 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) { 3433 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n"); 3434 return -EINVAL; 3435 } 3436 3437 if (read_only) 3438 return 0; 3439 3440 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 3441 printk(KERN_WARNING "warning: mount fs with errors, " 3442 "running btrfsck is recommended\n"); 3443 } 3444 3445 return 0; 3446 } 3447 3448 int btrfs_error_commit_super(struct btrfs_root *root) 3449 { 3450 int ret; 3451 3452 mutex_lock(&root->fs_info->cleaner_mutex); 3453 btrfs_run_delayed_iputs(root); 3454 mutex_unlock(&root->fs_info->cleaner_mutex); 3455 3456 down_write(&root->fs_info->cleanup_work_sem); 3457 up_write(&root->fs_info->cleanup_work_sem); 3458 3459 /* cleanup FS via transaction */ 3460 btrfs_cleanup_transaction(root); 3461 3462 ret = write_ctree_super(NULL, root, 0); 3463 3464 return ret; 3465 } 3466 3467 static void btrfs_destroy_ordered_operations(struct btrfs_root *root) 3468 { 3469 struct btrfs_inode *btrfs_inode; 3470 struct list_head splice; 3471 3472 INIT_LIST_HEAD(&splice); 3473 3474 mutex_lock(&root->fs_info->ordered_operations_mutex); 3475 spin_lock(&root->fs_info->ordered_extent_lock); 3476 3477 list_splice_init(&root->fs_info->ordered_operations, &splice); 3478 while (!list_empty(&splice)) { 3479 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3480 ordered_operations); 3481 3482 list_del_init(&btrfs_inode->ordered_operations); 3483 3484 btrfs_invalidate_inodes(btrfs_inode->root); 3485 } 3486 3487 spin_unlock(&root->fs_info->ordered_extent_lock); 3488 mutex_unlock(&root->fs_info->ordered_operations_mutex); 3489 } 3490 3491 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 3492 { 3493 struct list_head splice; 3494 struct btrfs_ordered_extent *ordered; 3495 struct inode *inode; 3496 3497 INIT_LIST_HEAD(&splice); 3498 3499 spin_lock(&root->fs_info->ordered_extent_lock); 3500 3501 list_splice_init(&root->fs_info->ordered_extents, &splice); 3502 while (!list_empty(&splice)) { 3503 ordered = list_entry(splice.next, struct btrfs_ordered_extent, 3504 root_extent_list); 3505 3506 list_del_init(&ordered->root_extent_list); 3507 atomic_inc(&ordered->refs); 3508 3509 /* the inode may be getting freed (in sys_unlink path). */ 3510 inode = igrab(ordered->inode); 3511 3512 spin_unlock(&root->fs_info->ordered_extent_lock); 3513 if (inode) 3514 iput(inode); 3515 3516 atomic_set(&ordered->refs, 1); 3517 btrfs_put_ordered_extent(ordered); 3518 3519 spin_lock(&root->fs_info->ordered_extent_lock); 3520 } 3521 3522 spin_unlock(&root->fs_info->ordered_extent_lock); 3523 } 3524 3525 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 3526 struct btrfs_root *root) 3527 { 3528 struct rb_node *node; 3529 struct btrfs_delayed_ref_root *delayed_refs; 3530 struct btrfs_delayed_ref_node *ref; 3531 int ret = 0; 3532 3533 delayed_refs = &trans->delayed_refs; 3534 3535 spin_lock(&delayed_refs->lock); 3536 if (delayed_refs->num_entries == 0) { 3537 spin_unlock(&delayed_refs->lock); 3538 printk(KERN_INFO "delayed_refs has NO entry\n"); 3539 return ret; 3540 } 3541 3542 while ((node = rb_first(&delayed_refs->root)) != NULL) { 3543 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 3544 3545 atomic_set(&ref->refs, 1); 3546 if (btrfs_delayed_ref_is_head(ref)) { 3547 struct btrfs_delayed_ref_head *head; 3548 3549 head = btrfs_delayed_node_to_head(ref); 3550 if (!mutex_trylock(&head->mutex)) { 3551 atomic_inc(&ref->refs); 3552 spin_unlock(&delayed_refs->lock); 3553 3554 /* Need to wait for the delayed ref to run */ 3555 mutex_lock(&head->mutex); 3556 mutex_unlock(&head->mutex); 3557 btrfs_put_delayed_ref(ref); 3558 3559 spin_lock(&delayed_refs->lock); 3560 continue; 3561 } 3562 3563 kfree(head->extent_op); 3564 delayed_refs->num_heads--; 3565 if (list_empty(&head->cluster)) 3566 delayed_refs->num_heads_ready--; 3567 list_del_init(&head->cluster); 3568 } 3569 ref->in_tree = 0; 3570 rb_erase(&ref->rb_node, &delayed_refs->root); 3571 delayed_refs->num_entries--; 3572 3573 spin_unlock(&delayed_refs->lock); 3574 btrfs_put_delayed_ref(ref); 3575 3576 cond_resched(); 3577 spin_lock(&delayed_refs->lock); 3578 } 3579 3580 spin_unlock(&delayed_refs->lock); 3581 3582 return ret; 3583 } 3584 3585 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t) 3586 { 3587 struct btrfs_pending_snapshot *snapshot; 3588 struct list_head splice; 3589 3590 INIT_LIST_HEAD(&splice); 3591 3592 list_splice_init(&t->pending_snapshots, &splice); 3593 3594 while (!list_empty(&splice)) { 3595 snapshot = list_entry(splice.next, 3596 struct btrfs_pending_snapshot, 3597 list); 3598 3599 list_del_init(&snapshot->list); 3600 3601 kfree(snapshot); 3602 } 3603 } 3604 3605 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 3606 { 3607 struct btrfs_inode *btrfs_inode; 3608 struct list_head splice; 3609 3610 INIT_LIST_HEAD(&splice); 3611 3612 spin_lock(&root->fs_info->delalloc_lock); 3613 list_splice_init(&root->fs_info->delalloc_inodes, &splice); 3614 3615 while (!list_empty(&splice)) { 3616 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3617 delalloc_inodes); 3618 3619 list_del_init(&btrfs_inode->delalloc_inodes); 3620 3621 btrfs_invalidate_inodes(btrfs_inode->root); 3622 } 3623 3624 spin_unlock(&root->fs_info->delalloc_lock); 3625 } 3626 3627 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 3628 struct extent_io_tree *dirty_pages, 3629 int mark) 3630 { 3631 int ret; 3632 struct page *page; 3633 struct inode *btree_inode = root->fs_info->btree_inode; 3634 struct extent_buffer *eb; 3635 u64 start = 0; 3636 u64 end; 3637 u64 offset; 3638 unsigned long index; 3639 3640 while (1) { 3641 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 3642 mark); 3643 if (ret) 3644 break; 3645 3646 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 3647 while (start <= end) { 3648 index = start >> PAGE_CACHE_SHIFT; 3649 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 3650 page = find_get_page(btree_inode->i_mapping, index); 3651 if (!page) 3652 continue; 3653 offset = page_offset(page); 3654 3655 spin_lock(&dirty_pages->buffer_lock); 3656 eb = radix_tree_lookup( 3657 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer, 3658 offset >> PAGE_CACHE_SHIFT); 3659 spin_unlock(&dirty_pages->buffer_lock); 3660 if (eb) 3661 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY, 3662 &eb->bflags); 3663 if (PageWriteback(page)) 3664 end_page_writeback(page); 3665 3666 lock_page(page); 3667 if (PageDirty(page)) { 3668 clear_page_dirty_for_io(page); 3669 spin_lock_irq(&page->mapping->tree_lock); 3670 radix_tree_tag_clear(&page->mapping->page_tree, 3671 page_index(page), 3672 PAGECACHE_TAG_DIRTY); 3673 spin_unlock_irq(&page->mapping->tree_lock); 3674 } 3675 3676 unlock_page(page); 3677 page_cache_release(page); 3678 } 3679 } 3680 3681 return ret; 3682 } 3683 3684 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 3685 struct extent_io_tree *pinned_extents) 3686 { 3687 struct extent_io_tree *unpin; 3688 u64 start; 3689 u64 end; 3690 int ret; 3691 bool loop = true; 3692 3693 unpin = pinned_extents; 3694 again: 3695 while (1) { 3696 ret = find_first_extent_bit(unpin, 0, &start, &end, 3697 EXTENT_DIRTY); 3698 if (ret) 3699 break; 3700 3701 /* opt_discard */ 3702 if (btrfs_test_opt(root, DISCARD)) 3703 ret = btrfs_error_discard_extent(root, start, 3704 end + 1 - start, 3705 NULL); 3706 3707 clear_extent_dirty(unpin, start, end, GFP_NOFS); 3708 btrfs_error_unpin_extent_range(root, start, end); 3709 cond_resched(); 3710 } 3711 3712 if (loop) { 3713 if (unpin == &root->fs_info->freed_extents[0]) 3714 unpin = &root->fs_info->freed_extents[1]; 3715 else 3716 unpin = &root->fs_info->freed_extents[0]; 3717 loop = false; 3718 goto again; 3719 } 3720 3721 return 0; 3722 } 3723 3724 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 3725 struct btrfs_root *root) 3726 { 3727 btrfs_destroy_delayed_refs(cur_trans, root); 3728 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 3729 cur_trans->dirty_pages.dirty_bytes); 3730 3731 /* FIXME: cleanup wait for commit */ 3732 cur_trans->in_commit = 1; 3733 cur_trans->blocked = 1; 3734 wake_up(&root->fs_info->transaction_blocked_wait); 3735 3736 cur_trans->blocked = 0; 3737 wake_up(&root->fs_info->transaction_wait); 3738 3739 cur_trans->commit_done = 1; 3740 wake_up(&cur_trans->commit_wait); 3741 3742 btrfs_destroy_delayed_inodes(root); 3743 btrfs_assert_delayed_root_empty(root); 3744 3745 btrfs_destroy_pending_snapshots(cur_trans); 3746 3747 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 3748 EXTENT_DIRTY); 3749 btrfs_destroy_pinned_extent(root, 3750 root->fs_info->pinned_extents); 3751 3752 /* 3753 memset(cur_trans, 0, sizeof(*cur_trans)); 3754 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 3755 */ 3756 } 3757 3758 int btrfs_cleanup_transaction(struct btrfs_root *root) 3759 { 3760 struct btrfs_transaction *t; 3761 LIST_HEAD(list); 3762 3763 mutex_lock(&root->fs_info->transaction_kthread_mutex); 3764 3765 spin_lock(&root->fs_info->trans_lock); 3766 list_splice_init(&root->fs_info->trans_list, &list); 3767 root->fs_info->trans_no_join = 1; 3768 spin_unlock(&root->fs_info->trans_lock); 3769 3770 while (!list_empty(&list)) { 3771 t = list_entry(list.next, struct btrfs_transaction, list); 3772 if (!t) 3773 break; 3774 3775 btrfs_destroy_ordered_operations(root); 3776 3777 btrfs_destroy_ordered_extents(root); 3778 3779 btrfs_destroy_delayed_refs(t, root); 3780 3781 btrfs_block_rsv_release(root, 3782 &root->fs_info->trans_block_rsv, 3783 t->dirty_pages.dirty_bytes); 3784 3785 /* FIXME: cleanup wait for commit */ 3786 t->in_commit = 1; 3787 t->blocked = 1; 3788 if (waitqueue_active(&root->fs_info->transaction_blocked_wait)) 3789 wake_up(&root->fs_info->transaction_blocked_wait); 3790 3791 t->blocked = 0; 3792 if (waitqueue_active(&root->fs_info->transaction_wait)) 3793 wake_up(&root->fs_info->transaction_wait); 3794 3795 t->commit_done = 1; 3796 if (waitqueue_active(&t->commit_wait)) 3797 wake_up(&t->commit_wait); 3798 3799 btrfs_destroy_delayed_inodes(root); 3800 btrfs_assert_delayed_root_empty(root); 3801 3802 btrfs_destroy_pending_snapshots(t); 3803 3804 btrfs_destroy_delalloc_inodes(root); 3805 3806 spin_lock(&root->fs_info->trans_lock); 3807 root->fs_info->running_transaction = NULL; 3808 spin_unlock(&root->fs_info->trans_lock); 3809 3810 btrfs_destroy_marked_extents(root, &t->dirty_pages, 3811 EXTENT_DIRTY); 3812 3813 btrfs_destroy_pinned_extent(root, 3814 root->fs_info->pinned_extents); 3815 3816 atomic_set(&t->use_count, 0); 3817 list_del_init(&t->list); 3818 memset(t, 0, sizeof(*t)); 3819 kmem_cache_free(btrfs_transaction_cachep, t); 3820 } 3821 3822 spin_lock(&root->fs_info->trans_lock); 3823 root->fs_info->trans_no_join = 0; 3824 spin_unlock(&root->fs_info->trans_lock); 3825 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 3826 3827 return 0; 3828 } 3829 3830 static struct extent_io_ops btree_extent_io_ops = { 3831 .write_cache_pages_lock_hook = btree_lock_page_hook, 3832 .readpage_end_io_hook = btree_readpage_end_io_hook, 3833 .readpage_io_failed_hook = btree_io_failed_hook, 3834 .submit_bio_hook = btree_submit_bio_hook, 3835 /* note we're sharing with inode.c for the merge bio hook */ 3836 .merge_bio_hook = btrfs_merge_bio_hook, 3837 }; 3838