xref: /linux/fs/btrfs/disk-io.c (revision 4f58e6dceb0e44ca8f21568ed81e1df24e55964c)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53 
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57 
58 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
59 				 BTRFS_HEADER_FLAG_RELOC |\
60 				 BTRFS_SUPER_FLAG_ERROR |\
61 				 BTRFS_SUPER_FLAG_SEEDING |\
62 				 BTRFS_SUPER_FLAG_METADUMP)
63 
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68 				    int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 				      struct btrfs_root *root);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74 					struct extent_io_tree *dirty_pages,
75 					int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77 				       struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_root *root);
79 static void btrfs_error_commit_super(struct btrfs_root *root);
80 
81 /*
82  * btrfs_end_io_wq structs are used to do processing in task context when an IO
83  * is complete.  This is used during reads to verify checksums, and it is used
84  * by writes to insert metadata for new file extents after IO is complete.
85  */
86 struct btrfs_end_io_wq {
87 	struct bio *bio;
88 	bio_end_io_t *end_io;
89 	void *private;
90 	struct btrfs_fs_info *info;
91 	int error;
92 	enum btrfs_wq_endio_type metadata;
93 	struct list_head list;
94 	struct btrfs_work work;
95 };
96 
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98 
99 int __init btrfs_end_io_wq_init(void)
100 {
101 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 					sizeof(struct btrfs_end_io_wq),
103 					0,
104 					SLAB_MEM_SPREAD,
105 					NULL);
106 	if (!btrfs_end_io_wq_cache)
107 		return -ENOMEM;
108 	return 0;
109 }
110 
111 void btrfs_end_io_wq_exit(void)
112 {
113 	kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115 
116 /*
117  * async submit bios are used to offload expensive checksumming
118  * onto the worker threads.  They checksum file and metadata bios
119  * just before they are sent down the IO stack.
120  */
121 struct async_submit_bio {
122 	struct inode *inode;
123 	struct bio *bio;
124 	struct list_head list;
125 	extent_submit_bio_hook_t *submit_bio_start;
126 	extent_submit_bio_hook_t *submit_bio_done;
127 	int mirror_num;
128 	unsigned long bio_flags;
129 	/*
130 	 * bio_offset is optional, can be used if the pages in the bio
131 	 * can't tell us where in the file the bio should go
132 	 */
133 	u64 bio_offset;
134 	struct btrfs_work work;
135 	int error;
136 };
137 
138 /*
139  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
140  * eb, the lockdep key is determined by the btrfs_root it belongs to and
141  * the level the eb occupies in the tree.
142  *
143  * Different roots are used for different purposes and may nest inside each
144  * other and they require separate keysets.  As lockdep keys should be
145  * static, assign keysets according to the purpose of the root as indicated
146  * by btrfs_root->objectid.  This ensures that all special purpose roots
147  * have separate keysets.
148  *
149  * Lock-nesting across peer nodes is always done with the immediate parent
150  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
151  * subclass to avoid triggering lockdep warning in such cases.
152  *
153  * The key is set by the readpage_end_io_hook after the buffer has passed
154  * csum validation but before the pages are unlocked.  It is also set by
155  * btrfs_init_new_buffer on freshly allocated blocks.
156  *
157  * We also add a check to make sure the highest level of the tree is the
158  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
159  * needs update as well.
160  */
161 #ifdef CONFIG_DEBUG_LOCK_ALLOC
162 # if BTRFS_MAX_LEVEL != 8
163 #  error
164 # endif
165 
166 static struct btrfs_lockdep_keyset {
167 	u64			id;		/* root objectid */
168 	const char		*name_stem;	/* lock name stem */
169 	char			names[BTRFS_MAX_LEVEL + 1][20];
170 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
171 } btrfs_lockdep_keysets[] = {
172 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
173 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
174 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
175 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
176 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
177 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
178 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
179 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
180 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
181 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
182 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
183 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
184 	{ .id = 0,				.name_stem = "tree"	},
185 };
186 
187 void __init btrfs_init_lockdep(void)
188 {
189 	int i, j;
190 
191 	/* initialize lockdep class names */
192 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194 
195 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196 			snprintf(ks->names[j], sizeof(ks->names[j]),
197 				 "btrfs-%s-%02d", ks->name_stem, j);
198 	}
199 }
200 
201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202 				    int level)
203 {
204 	struct btrfs_lockdep_keyset *ks;
205 
206 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
207 
208 	/* find the matching keyset, id 0 is the default entry */
209 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210 		if (ks->id == objectid)
211 			break;
212 
213 	lockdep_set_class_and_name(&eb->lock,
214 				   &ks->keys[level], ks->names[level]);
215 }
216 
217 #endif
218 
219 /*
220  * extents on the btree inode are pretty simple, there's one extent
221  * that covers the entire device
222  */
223 static struct extent_map *btree_get_extent(struct inode *inode,
224 		struct page *page, size_t pg_offset, u64 start, u64 len,
225 		int create)
226 {
227 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
228 	struct extent_map *em;
229 	int ret;
230 
231 	read_lock(&em_tree->lock);
232 	em = lookup_extent_mapping(em_tree, start, len);
233 	if (em) {
234 		em->bdev =
235 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
236 		read_unlock(&em_tree->lock);
237 		goto out;
238 	}
239 	read_unlock(&em_tree->lock);
240 
241 	em = alloc_extent_map();
242 	if (!em) {
243 		em = ERR_PTR(-ENOMEM);
244 		goto out;
245 	}
246 	em->start = 0;
247 	em->len = (u64)-1;
248 	em->block_len = (u64)-1;
249 	em->block_start = 0;
250 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
251 
252 	write_lock(&em_tree->lock);
253 	ret = add_extent_mapping(em_tree, em, 0);
254 	if (ret == -EEXIST) {
255 		free_extent_map(em);
256 		em = lookup_extent_mapping(em_tree, start, len);
257 		if (!em)
258 			em = ERR_PTR(-EIO);
259 	} else if (ret) {
260 		free_extent_map(em);
261 		em = ERR_PTR(ret);
262 	}
263 	write_unlock(&em_tree->lock);
264 
265 out:
266 	return em;
267 }
268 
269 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
270 {
271 	return btrfs_crc32c(seed, data, len);
272 }
273 
274 void btrfs_csum_final(u32 crc, char *result)
275 {
276 	put_unaligned_le32(~crc, result);
277 }
278 
279 /*
280  * compute the csum for a btree block, and either verify it or write it
281  * into the csum field of the block.
282  */
283 static int csum_tree_block(struct btrfs_fs_info *fs_info,
284 			   struct extent_buffer *buf,
285 			   int verify)
286 {
287 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
288 	char *result = NULL;
289 	unsigned long len;
290 	unsigned long cur_len;
291 	unsigned long offset = BTRFS_CSUM_SIZE;
292 	char *kaddr;
293 	unsigned long map_start;
294 	unsigned long map_len;
295 	int err;
296 	u32 crc = ~(u32)0;
297 	unsigned long inline_result;
298 
299 	len = buf->len - offset;
300 	while (len > 0) {
301 		err = map_private_extent_buffer(buf, offset, 32,
302 					&kaddr, &map_start, &map_len);
303 		if (err)
304 			return err;
305 		cur_len = min(len, map_len - (offset - map_start));
306 		crc = btrfs_csum_data(kaddr + offset - map_start,
307 				      crc, cur_len);
308 		len -= cur_len;
309 		offset += cur_len;
310 	}
311 	if (csum_size > sizeof(inline_result)) {
312 		result = kzalloc(csum_size, GFP_NOFS);
313 		if (!result)
314 			return -ENOMEM;
315 	} else {
316 		result = (char *)&inline_result;
317 	}
318 
319 	btrfs_csum_final(crc, result);
320 
321 	if (verify) {
322 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
323 			u32 val;
324 			u32 found = 0;
325 			memcpy(&found, result, csum_size);
326 
327 			read_extent_buffer(buf, &val, 0, csum_size);
328 			btrfs_warn_rl(fs_info,
329 				"%s checksum verify failed on %llu wanted %X found %X level %d",
330 				fs_info->sb->s_id, buf->start,
331 				val, found, btrfs_header_level(buf));
332 			if (result != (char *)&inline_result)
333 				kfree(result);
334 			return -EUCLEAN;
335 		}
336 	} else {
337 		write_extent_buffer(buf, result, 0, csum_size);
338 	}
339 	if (result != (char *)&inline_result)
340 		kfree(result);
341 	return 0;
342 }
343 
344 /*
345  * we can't consider a given block up to date unless the transid of the
346  * block matches the transid in the parent node's pointer.  This is how we
347  * detect blocks that either didn't get written at all or got written
348  * in the wrong place.
349  */
350 static int verify_parent_transid(struct extent_io_tree *io_tree,
351 				 struct extent_buffer *eb, u64 parent_transid,
352 				 int atomic)
353 {
354 	struct extent_state *cached_state = NULL;
355 	int ret;
356 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
357 
358 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
359 		return 0;
360 
361 	if (atomic)
362 		return -EAGAIN;
363 
364 	if (need_lock) {
365 		btrfs_tree_read_lock(eb);
366 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
367 	}
368 
369 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
370 			 &cached_state);
371 	if (extent_buffer_uptodate(eb) &&
372 	    btrfs_header_generation(eb) == parent_transid) {
373 		ret = 0;
374 		goto out;
375 	}
376 	btrfs_err_rl(eb->fs_info,
377 		"parent transid verify failed on %llu wanted %llu found %llu",
378 			eb->start,
379 			parent_transid, btrfs_header_generation(eb));
380 	ret = 1;
381 
382 	/*
383 	 * Things reading via commit roots that don't have normal protection,
384 	 * like send, can have a really old block in cache that may point at a
385 	 * block that has been freed and re-allocated.  So don't clear uptodate
386 	 * if we find an eb that is under IO (dirty/writeback) because we could
387 	 * end up reading in the stale data and then writing it back out and
388 	 * making everybody very sad.
389 	 */
390 	if (!extent_buffer_under_io(eb))
391 		clear_extent_buffer_uptodate(eb);
392 out:
393 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
394 			     &cached_state, GFP_NOFS);
395 	if (need_lock)
396 		btrfs_tree_read_unlock_blocking(eb);
397 	return ret;
398 }
399 
400 /*
401  * Return 0 if the superblock checksum type matches the checksum value of that
402  * algorithm. Pass the raw disk superblock data.
403  */
404 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
405 				  char *raw_disk_sb)
406 {
407 	struct btrfs_super_block *disk_sb =
408 		(struct btrfs_super_block *)raw_disk_sb;
409 	u16 csum_type = btrfs_super_csum_type(disk_sb);
410 	int ret = 0;
411 
412 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413 		u32 crc = ~(u32)0;
414 		const int csum_size = sizeof(crc);
415 		char result[csum_size];
416 
417 		/*
418 		 * The super_block structure does not span the whole
419 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
420 		 * is filled with zeros and is included in the checksum.
421 		 */
422 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424 		btrfs_csum_final(crc, result);
425 
426 		if (memcmp(raw_disk_sb, result, csum_size))
427 			ret = 1;
428 	}
429 
430 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
431 		btrfs_err(fs_info, "unsupported checksum algorithm %u",
432 				csum_type);
433 		ret = 1;
434 	}
435 
436 	return ret;
437 }
438 
439 /*
440  * helper to read a given tree block, doing retries as required when
441  * the checksums don't match and we have alternate mirrors to try.
442  */
443 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
444 					  struct extent_buffer *eb,
445 					  u64 parent_transid)
446 {
447 	struct extent_io_tree *io_tree;
448 	int failed = 0;
449 	int ret;
450 	int num_copies = 0;
451 	int mirror_num = 0;
452 	int failed_mirror = 0;
453 
454 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
455 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
456 	while (1) {
457 		ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
458 					       btree_get_extent, mirror_num);
459 		if (!ret) {
460 			if (!verify_parent_transid(io_tree, eb,
461 						   parent_transid, 0))
462 				break;
463 			else
464 				ret = -EIO;
465 		}
466 
467 		/*
468 		 * This buffer's crc is fine, but its contents are corrupted, so
469 		 * there is no reason to read the other copies, they won't be
470 		 * any less wrong.
471 		 */
472 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
473 			break;
474 
475 		num_copies = btrfs_num_copies(root->fs_info,
476 					      eb->start, eb->len);
477 		if (num_copies == 1)
478 			break;
479 
480 		if (!failed_mirror) {
481 			failed = 1;
482 			failed_mirror = eb->read_mirror;
483 		}
484 
485 		mirror_num++;
486 		if (mirror_num == failed_mirror)
487 			mirror_num++;
488 
489 		if (mirror_num > num_copies)
490 			break;
491 	}
492 
493 	if (failed && !ret && failed_mirror)
494 		repair_eb_io_failure(root, eb, failed_mirror);
495 
496 	return ret;
497 }
498 
499 /*
500  * checksum a dirty tree block before IO.  This has extra checks to make sure
501  * we only fill in the checksum field in the first page of a multi-page block
502  */
503 
504 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
505 {
506 	u64 start = page_offset(page);
507 	u64 found_start;
508 	struct extent_buffer *eb;
509 
510 	eb = (struct extent_buffer *)page->private;
511 	if (page != eb->pages[0])
512 		return 0;
513 
514 	found_start = btrfs_header_bytenr(eb);
515 	/*
516 	 * Please do not consolidate these warnings into a single if.
517 	 * It is useful to know what went wrong.
518 	 */
519 	if (WARN_ON(found_start != start))
520 		return -EUCLEAN;
521 	if (WARN_ON(!PageUptodate(page)))
522 		return -EUCLEAN;
523 
524 	ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
525 			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
526 
527 	return csum_tree_block(fs_info, eb, 0);
528 }
529 
530 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
531 				 struct extent_buffer *eb)
532 {
533 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
534 	u8 fsid[BTRFS_UUID_SIZE];
535 	int ret = 1;
536 
537 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
538 	while (fs_devices) {
539 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
540 			ret = 0;
541 			break;
542 		}
543 		fs_devices = fs_devices->seed;
544 	}
545 	return ret;
546 }
547 
548 #define CORRUPT(reason, eb, root, slot)				\
549 	btrfs_crit(root->fs_info, "corrupt %s, %s: block=%llu,"	\
550 		   " root=%llu, slot=%d",			\
551 		   btrfs_header_level(eb) == 0 ? "leaf" : "node",\
552 		   reason, btrfs_header_bytenr(eb), root->objectid, slot)
553 
554 static noinline int check_leaf(struct btrfs_root *root,
555 			       struct extent_buffer *leaf)
556 {
557 	struct btrfs_key key;
558 	struct btrfs_key leaf_key;
559 	u32 nritems = btrfs_header_nritems(leaf);
560 	int slot;
561 
562 	if (nritems == 0) {
563 		struct btrfs_root *check_root;
564 
565 		key.objectid = btrfs_header_owner(leaf);
566 		key.type = BTRFS_ROOT_ITEM_KEY;
567 		key.offset = (u64)-1;
568 
569 		check_root = btrfs_get_fs_root(root->fs_info, &key, false);
570 		/*
571 		 * The only reason we also check NULL here is that during
572 		 * open_ctree() some roots has not yet been set up.
573 		 */
574 		if (!IS_ERR_OR_NULL(check_root)) {
575 			/* if leaf is the root, then it's fine */
576 			if (leaf->start !=
577 			    btrfs_root_bytenr(&check_root->root_item)) {
578 				CORRUPT("non-root leaf's nritems is 0",
579 					leaf, root, 0);
580 				return -EIO;
581 			}
582 		}
583 		return 0;
584 	}
585 
586 	/* Check the 0 item */
587 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
588 	    BTRFS_LEAF_DATA_SIZE(root)) {
589 		CORRUPT("invalid item offset size pair", leaf, root, 0);
590 		return -EIO;
591 	}
592 
593 	/*
594 	 * Check to make sure each items keys are in the correct order and their
595 	 * offsets make sense.  We only have to loop through nritems-1 because
596 	 * we check the current slot against the next slot, which verifies the
597 	 * next slot's offset+size makes sense and that the current's slot
598 	 * offset is correct.
599 	 */
600 	for (slot = 0; slot < nritems - 1; slot++) {
601 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
602 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
603 
604 		/* Make sure the keys are in the right order */
605 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
606 			CORRUPT("bad key order", leaf, root, slot);
607 			return -EIO;
608 		}
609 
610 		/*
611 		 * Make sure the offset and ends are right, remember that the
612 		 * item data starts at the end of the leaf and grows towards the
613 		 * front.
614 		 */
615 		if (btrfs_item_offset_nr(leaf, slot) !=
616 			btrfs_item_end_nr(leaf, slot + 1)) {
617 			CORRUPT("slot offset bad", leaf, root, slot);
618 			return -EIO;
619 		}
620 
621 		/*
622 		 * Check to make sure that we don't point outside of the leaf,
623 		 * just in case all the items are consistent to each other, but
624 		 * all point outside of the leaf.
625 		 */
626 		if (btrfs_item_end_nr(leaf, slot) >
627 		    BTRFS_LEAF_DATA_SIZE(root)) {
628 			CORRUPT("slot end outside of leaf", leaf, root, slot);
629 			return -EIO;
630 		}
631 	}
632 
633 	return 0;
634 }
635 
636 static int check_node(struct btrfs_root *root, struct extent_buffer *node)
637 {
638 	unsigned long nr = btrfs_header_nritems(node);
639 	struct btrfs_key key, next_key;
640 	int slot;
641 	u64 bytenr;
642 	int ret = 0;
643 
644 	if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root)) {
645 		btrfs_crit(root->fs_info,
646 			   "corrupt node: block %llu root %llu nritems %lu",
647 			   node->start, root->objectid, nr);
648 		return -EIO;
649 	}
650 
651 	for (slot = 0; slot < nr - 1; slot++) {
652 		bytenr = btrfs_node_blockptr(node, slot);
653 		btrfs_node_key_to_cpu(node, &key, slot);
654 		btrfs_node_key_to_cpu(node, &next_key, slot + 1);
655 
656 		if (!bytenr) {
657 			CORRUPT("invalid item slot", node, root, slot);
658 			ret = -EIO;
659 			goto out;
660 		}
661 
662 		if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
663 			CORRUPT("bad key order", node, root, slot);
664 			ret = -EIO;
665 			goto out;
666 		}
667 	}
668 out:
669 	return ret;
670 }
671 
672 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
673 				      u64 phy_offset, struct page *page,
674 				      u64 start, u64 end, int mirror)
675 {
676 	u64 found_start;
677 	int found_level;
678 	struct extent_buffer *eb;
679 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
680 	struct btrfs_fs_info *fs_info = root->fs_info;
681 	int ret = 0;
682 	int reads_done;
683 
684 	if (!page->private)
685 		goto out;
686 
687 	eb = (struct extent_buffer *)page->private;
688 
689 	/* the pending IO might have been the only thing that kept this buffer
690 	 * in memory.  Make sure we have a ref for all this other checks
691 	 */
692 	extent_buffer_get(eb);
693 
694 	reads_done = atomic_dec_and_test(&eb->io_pages);
695 	if (!reads_done)
696 		goto err;
697 
698 	eb->read_mirror = mirror;
699 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
700 		ret = -EIO;
701 		goto err;
702 	}
703 
704 	found_start = btrfs_header_bytenr(eb);
705 	if (found_start != eb->start) {
706 		btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
707 			     found_start, eb->start);
708 		ret = -EIO;
709 		goto err;
710 	}
711 	if (check_tree_block_fsid(fs_info, eb)) {
712 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
713 			     eb->start);
714 		ret = -EIO;
715 		goto err;
716 	}
717 	found_level = btrfs_header_level(eb);
718 	if (found_level >= BTRFS_MAX_LEVEL) {
719 		btrfs_err(fs_info, "bad tree block level %d",
720 			  (int)btrfs_header_level(eb));
721 		ret = -EIO;
722 		goto err;
723 	}
724 
725 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
726 				       eb, found_level);
727 
728 	ret = csum_tree_block(fs_info, eb, 1);
729 	if (ret)
730 		goto err;
731 
732 	/*
733 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
734 	 * that we don't try and read the other copies of this block, just
735 	 * return -EIO.
736 	 */
737 	if (found_level == 0 && check_leaf(root, eb)) {
738 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
739 		ret = -EIO;
740 	}
741 
742 	if (found_level > 0 && check_node(root, eb))
743 		ret = -EIO;
744 
745 	if (!ret)
746 		set_extent_buffer_uptodate(eb);
747 err:
748 	if (reads_done &&
749 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
750 		btree_readahead_hook(fs_info, eb, eb->start, ret);
751 
752 	if (ret) {
753 		/*
754 		 * our io error hook is going to dec the io pages
755 		 * again, we have to make sure it has something
756 		 * to decrement
757 		 */
758 		atomic_inc(&eb->io_pages);
759 		clear_extent_buffer_uptodate(eb);
760 	}
761 	free_extent_buffer(eb);
762 out:
763 	return ret;
764 }
765 
766 static int btree_io_failed_hook(struct page *page, int failed_mirror)
767 {
768 	struct extent_buffer *eb;
769 
770 	eb = (struct extent_buffer *)page->private;
771 	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
772 	eb->read_mirror = failed_mirror;
773 	atomic_dec(&eb->io_pages);
774 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
775 		btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
776 	return -EIO;	/* we fixed nothing */
777 }
778 
779 static void end_workqueue_bio(struct bio *bio)
780 {
781 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
782 	struct btrfs_fs_info *fs_info;
783 	struct btrfs_workqueue *wq;
784 	btrfs_work_func_t func;
785 
786 	fs_info = end_io_wq->info;
787 	end_io_wq->error = bio->bi_error;
788 
789 	if (bio_op(bio) == REQ_OP_WRITE) {
790 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
791 			wq = fs_info->endio_meta_write_workers;
792 			func = btrfs_endio_meta_write_helper;
793 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
794 			wq = fs_info->endio_freespace_worker;
795 			func = btrfs_freespace_write_helper;
796 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
797 			wq = fs_info->endio_raid56_workers;
798 			func = btrfs_endio_raid56_helper;
799 		} else {
800 			wq = fs_info->endio_write_workers;
801 			func = btrfs_endio_write_helper;
802 		}
803 	} else {
804 		if (unlikely(end_io_wq->metadata ==
805 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
806 			wq = fs_info->endio_repair_workers;
807 			func = btrfs_endio_repair_helper;
808 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
809 			wq = fs_info->endio_raid56_workers;
810 			func = btrfs_endio_raid56_helper;
811 		} else if (end_io_wq->metadata) {
812 			wq = fs_info->endio_meta_workers;
813 			func = btrfs_endio_meta_helper;
814 		} else {
815 			wq = fs_info->endio_workers;
816 			func = btrfs_endio_helper;
817 		}
818 	}
819 
820 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
821 	btrfs_queue_work(wq, &end_io_wq->work);
822 }
823 
824 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
825 			enum btrfs_wq_endio_type metadata)
826 {
827 	struct btrfs_end_io_wq *end_io_wq;
828 
829 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
830 	if (!end_io_wq)
831 		return -ENOMEM;
832 
833 	end_io_wq->private = bio->bi_private;
834 	end_io_wq->end_io = bio->bi_end_io;
835 	end_io_wq->info = info;
836 	end_io_wq->error = 0;
837 	end_io_wq->bio = bio;
838 	end_io_wq->metadata = metadata;
839 
840 	bio->bi_private = end_io_wq;
841 	bio->bi_end_io = end_workqueue_bio;
842 	return 0;
843 }
844 
845 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
846 {
847 	unsigned long limit = min_t(unsigned long,
848 				    info->thread_pool_size,
849 				    info->fs_devices->open_devices);
850 	return 256 * limit;
851 }
852 
853 static void run_one_async_start(struct btrfs_work *work)
854 {
855 	struct async_submit_bio *async;
856 	int ret;
857 
858 	async = container_of(work, struct  async_submit_bio, work);
859 	ret = async->submit_bio_start(async->inode, async->bio,
860 				      async->mirror_num, async->bio_flags,
861 				      async->bio_offset);
862 	if (ret)
863 		async->error = ret;
864 }
865 
866 static void run_one_async_done(struct btrfs_work *work)
867 {
868 	struct btrfs_fs_info *fs_info;
869 	struct async_submit_bio *async;
870 	int limit;
871 
872 	async = container_of(work, struct  async_submit_bio, work);
873 	fs_info = BTRFS_I(async->inode)->root->fs_info;
874 
875 	limit = btrfs_async_submit_limit(fs_info);
876 	limit = limit * 2 / 3;
877 
878 	/*
879 	 * atomic_dec_return implies a barrier for waitqueue_active
880 	 */
881 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
882 	    waitqueue_active(&fs_info->async_submit_wait))
883 		wake_up(&fs_info->async_submit_wait);
884 
885 	/* If an error occurred we just want to clean up the bio and move on */
886 	if (async->error) {
887 		async->bio->bi_error = async->error;
888 		bio_endio(async->bio);
889 		return;
890 	}
891 
892 	async->submit_bio_done(async->inode, async->bio, async->mirror_num,
893 			       async->bio_flags, async->bio_offset);
894 }
895 
896 static void run_one_async_free(struct btrfs_work *work)
897 {
898 	struct async_submit_bio *async;
899 
900 	async = container_of(work, struct  async_submit_bio, work);
901 	kfree(async);
902 }
903 
904 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
905 			struct bio *bio, int mirror_num,
906 			unsigned long bio_flags,
907 			u64 bio_offset,
908 			extent_submit_bio_hook_t *submit_bio_start,
909 			extent_submit_bio_hook_t *submit_bio_done)
910 {
911 	struct async_submit_bio *async;
912 
913 	async = kmalloc(sizeof(*async), GFP_NOFS);
914 	if (!async)
915 		return -ENOMEM;
916 
917 	async->inode = inode;
918 	async->bio = bio;
919 	async->mirror_num = mirror_num;
920 	async->submit_bio_start = submit_bio_start;
921 	async->submit_bio_done = submit_bio_done;
922 
923 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
924 			run_one_async_done, run_one_async_free);
925 
926 	async->bio_flags = bio_flags;
927 	async->bio_offset = bio_offset;
928 
929 	async->error = 0;
930 
931 	atomic_inc(&fs_info->nr_async_submits);
932 
933 	if (bio->bi_opf & REQ_SYNC)
934 		btrfs_set_work_high_priority(&async->work);
935 
936 	btrfs_queue_work(fs_info->workers, &async->work);
937 
938 	while (atomic_read(&fs_info->async_submit_draining) &&
939 	      atomic_read(&fs_info->nr_async_submits)) {
940 		wait_event(fs_info->async_submit_wait,
941 			   (atomic_read(&fs_info->nr_async_submits) == 0));
942 	}
943 
944 	return 0;
945 }
946 
947 static int btree_csum_one_bio(struct bio *bio)
948 {
949 	struct bio_vec *bvec;
950 	struct btrfs_root *root;
951 	int i, ret = 0;
952 
953 	bio_for_each_segment_all(bvec, bio, i) {
954 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
955 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
956 		if (ret)
957 			break;
958 	}
959 
960 	return ret;
961 }
962 
963 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
964 				    int mirror_num, unsigned long bio_flags,
965 				    u64 bio_offset)
966 {
967 	/*
968 	 * when we're called for a write, we're already in the async
969 	 * submission context.  Just jump into btrfs_map_bio
970 	 */
971 	return btree_csum_one_bio(bio);
972 }
973 
974 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
975 				 int mirror_num, unsigned long bio_flags,
976 				 u64 bio_offset)
977 {
978 	int ret;
979 
980 	/*
981 	 * when we're called for a write, we're already in the async
982 	 * submission context.  Just jump into btrfs_map_bio
983 	 */
984 	ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1);
985 	if (ret) {
986 		bio->bi_error = ret;
987 		bio_endio(bio);
988 	}
989 	return ret;
990 }
991 
992 static int check_async_write(struct inode *inode, unsigned long bio_flags)
993 {
994 	if (bio_flags & EXTENT_BIO_TREE_LOG)
995 		return 0;
996 #ifdef CONFIG_X86
997 	if (static_cpu_has(X86_FEATURE_XMM4_2))
998 		return 0;
999 #endif
1000 	return 1;
1001 }
1002 
1003 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
1004 				 int mirror_num, unsigned long bio_flags,
1005 				 u64 bio_offset)
1006 {
1007 	int async = check_async_write(inode, bio_flags);
1008 	int ret;
1009 
1010 	if (bio_op(bio) != REQ_OP_WRITE) {
1011 		/*
1012 		 * called for a read, do the setup so that checksum validation
1013 		 * can happen in the async kernel threads
1014 		 */
1015 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
1016 					  bio, BTRFS_WQ_ENDIO_METADATA);
1017 		if (ret)
1018 			goto out_w_error;
1019 		ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
1020 	} else if (!async) {
1021 		ret = btree_csum_one_bio(bio);
1022 		if (ret)
1023 			goto out_w_error;
1024 		ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
1025 	} else {
1026 		/*
1027 		 * kthread helpers are used to submit writes so that
1028 		 * checksumming can happen in parallel across all CPUs
1029 		 */
1030 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1031 					  inode, bio, mirror_num, 0,
1032 					  bio_offset,
1033 					  __btree_submit_bio_start,
1034 					  __btree_submit_bio_done);
1035 	}
1036 
1037 	if (ret)
1038 		goto out_w_error;
1039 	return 0;
1040 
1041 out_w_error:
1042 	bio->bi_error = ret;
1043 	bio_endio(bio);
1044 	return ret;
1045 }
1046 
1047 #ifdef CONFIG_MIGRATION
1048 static int btree_migratepage(struct address_space *mapping,
1049 			struct page *newpage, struct page *page,
1050 			enum migrate_mode mode)
1051 {
1052 	/*
1053 	 * we can't safely write a btree page from here,
1054 	 * we haven't done the locking hook
1055 	 */
1056 	if (PageDirty(page))
1057 		return -EAGAIN;
1058 	/*
1059 	 * Buffers may be managed in a filesystem specific way.
1060 	 * We must have no buffers or drop them.
1061 	 */
1062 	if (page_has_private(page) &&
1063 	    !try_to_release_page(page, GFP_KERNEL))
1064 		return -EAGAIN;
1065 	return migrate_page(mapping, newpage, page, mode);
1066 }
1067 #endif
1068 
1069 
1070 static int btree_writepages(struct address_space *mapping,
1071 			    struct writeback_control *wbc)
1072 {
1073 	struct btrfs_fs_info *fs_info;
1074 	int ret;
1075 
1076 	if (wbc->sync_mode == WB_SYNC_NONE) {
1077 
1078 		if (wbc->for_kupdate)
1079 			return 0;
1080 
1081 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
1082 		/* this is a bit racy, but that's ok */
1083 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1084 					     BTRFS_DIRTY_METADATA_THRESH);
1085 		if (ret < 0)
1086 			return 0;
1087 	}
1088 	return btree_write_cache_pages(mapping, wbc);
1089 }
1090 
1091 static int btree_readpage(struct file *file, struct page *page)
1092 {
1093 	struct extent_io_tree *tree;
1094 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1095 	return extent_read_full_page(tree, page, btree_get_extent, 0);
1096 }
1097 
1098 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1099 {
1100 	if (PageWriteback(page) || PageDirty(page))
1101 		return 0;
1102 
1103 	return try_release_extent_buffer(page);
1104 }
1105 
1106 static void btree_invalidatepage(struct page *page, unsigned int offset,
1107 				 unsigned int length)
1108 {
1109 	struct extent_io_tree *tree;
1110 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1111 	extent_invalidatepage(tree, page, offset);
1112 	btree_releasepage(page, GFP_NOFS);
1113 	if (PagePrivate(page)) {
1114 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1115 			   "page private not zero on page %llu",
1116 			   (unsigned long long)page_offset(page));
1117 		ClearPagePrivate(page);
1118 		set_page_private(page, 0);
1119 		put_page(page);
1120 	}
1121 }
1122 
1123 static int btree_set_page_dirty(struct page *page)
1124 {
1125 #ifdef DEBUG
1126 	struct extent_buffer *eb;
1127 
1128 	BUG_ON(!PagePrivate(page));
1129 	eb = (struct extent_buffer *)page->private;
1130 	BUG_ON(!eb);
1131 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1132 	BUG_ON(!atomic_read(&eb->refs));
1133 	btrfs_assert_tree_locked(eb);
1134 #endif
1135 	return __set_page_dirty_nobuffers(page);
1136 }
1137 
1138 static const struct address_space_operations btree_aops = {
1139 	.readpage	= btree_readpage,
1140 	.writepages	= btree_writepages,
1141 	.releasepage	= btree_releasepage,
1142 	.invalidatepage = btree_invalidatepage,
1143 #ifdef CONFIG_MIGRATION
1144 	.migratepage	= btree_migratepage,
1145 #endif
1146 	.set_page_dirty = btree_set_page_dirty,
1147 };
1148 
1149 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1150 {
1151 	struct extent_buffer *buf = NULL;
1152 	struct inode *btree_inode = root->fs_info->btree_inode;
1153 
1154 	buf = btrfs_find_create_tree_block(root, bytenr);
1155 	if (IS_ERR(buf))
1156 		return;
1157 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1158 				 buf, WAIT_NONE, btree_get_extent, 0);
1159 	free_extent_buffer(buf);
1160 }
1161 
1162 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1163 			 int mirror_num, struct extent_buffer **eb)
1164 {
1165 	struct extent_buffer *buf = NULL;
1166 	struct inode *btree_inode = root->fs_info->btree_inode;
1167 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1168 	int ret;
1169 
1170 	buf = btrfs_find_create_tree_block(root, bytenr);
1171 	if (IS_ERR(buf))
1172 		return 0;
1173 
1174 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1175 
1176 	ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1177 				       btree_get_extent, mirror_num);
1178 	if (ret) {
1179 		free_extent_buffer(buf);
1180 		return ret;
1181 	}
1182 
1183 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1184 		free_extent_buffer(buf);
1185 		return -EIO;
1186 	} else if (extent_buffer_uptodate(buf)) {
1187 		*eb = buf;
1188 	} else {
1189 		free_extent_buffer(buf);
1190 	}
1191 	return 0;
1192 }
1193 
1194 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1195 					    u64 bytenr)
1196 {
1197 	return find_extent_buffer(fs_info, bytenr);
1198 }
1199 
1200 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1201 						 u64 bytenr)
1202 {
1203 	if (btrfs_is_testing(root->fs_info))
1204 		return alloc_test_extent_buffer(root->fs_info, bytenr,
1205 				root->nodesize);
1206 	return alloc_extent_buffer(root->fs_info, bytenr);
1207 }
1208 
1209 
1210 int btrfs_write_tree_block(struct extent_buffer *buf)
1211 {
1212 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1213 					buf->start + buf->len - 1);
1214 }
1215 
1216 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1217 {
1218 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1219 				       buf->start, buf->start + buf->len - 1);
1220 }
1221 
1222 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1223 				      u64 parent_transid)
1224 {
1225 	struct extent_buffer *buf = NULL;
1226 	int ret;
1227 
1228 	buf = btrfs_find_create_tree_block(root, bytenr);
1229 	if (IS_ERR(buf))
1230 		return buf;
1231 
1232 	ret = btree_read_extent_buffer_pages(root, buf, parent_transid);
1233 	if (ret) {
1234 		free_extent_buffer(buf);
1235 		return ERR_PTR(ret);
1236 	}
1237 	return buf;
1238 
1239 }
1240 
1241 void clean_tree_block(struct btrfs_trans_handle *trans,
1242 		      struct btrfs_fs_info *fs_info,
1243 		      struct extent_buffer *buf)
1244 {
1245 	if (btrfs_header_generation(buf) ==
1246 	    fs_info->running_transaction->transid) {
1247 		btrfs_assert_tree_locked(buf);
1248 
1249 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1250 			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1251 					     -buf->len,
1252 					     fs_info->dirty_metadata_batch);
1253 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1254 			btrfs_set_lock_blocking(buf);
1255 			clear_extent_buffer_dirty(buf);
1256 		}
1257 	}
1258 }
1259 
1260 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1261 {
1262 	struct btrfs_subvolume_writers *writers;
1263 	int ret;
1264 
1265 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1266 	if (!writers)
1267 		return ERR_PTR(-ENOMEM);
1268 
1269 	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1270 	if (ret < 0) {
1271 		kfree(writers);
1272 		return ERR_PTR(ret);
1273 	}
1274 
1275 	init_waitqueue_head(&writers->wait);
1276 	return writers;
1277 }
1278 
1279 static void
1280 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1281 {
1282 	percpu_counter_destroy(&writers->counter);
1283 	kfree(writers);
1284 }
1285 
1286 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1287 			 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1288 			 u64 objectid)
1289 {
1290 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1291 	root->node = NULL;
1292 	root->commit_root = NULL;
1293 	root->sectorsize = sectorsize;
1294 	root->nodesize = nodesize;
1295 	root->stripesize = stripesize;
1296 	root->state = 0;
1297 	root->orphan_cleanup_state = 0;
1298 
1299 	root->objectid = objectid;
1300 	root->last_trans = 0;
1301 	root->highest_objectid = 0;
1302 	root->nr_delalloc_inodes = 0;
1303 	root->nr_ordered_extents = 0;
1304 	root->name = NULL;
1305 	root->inode_tree = RB_ROOT;
1306 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1307 	root->block_rsv = NULL;
1308 	root->orphan_block_rsv = NULL;
1309 
1310 	INIT_LIST_HEAD(&root->dirty_list);
1311 	INIT_LIST_HEAD(&root->root_list);
1312 	INIT_LIST_HEAD(&root->delalloc_inodes);
1313 	INIT_LIST_HEAD(&root->delalloc_root);
1314 	INIT_LIST_HEAD(&root->ordered_extents);
1315 	INIT_LIST_HEAD(&root->ordered_root);
1316 	INIT_LIST_HEAD(&root->logged_list[0]);
1317 	INIT_LIST_HEAD(&root->logged_list[1]);
1318 	spin_lock_init(&root->orphan_lock);
1319 	spin_lock_init(&root->inode_lock);
1320 	spin_lock_init(&root->delalloc_lock);
1321 	spin_lock_init(&root->ordered_extent_lock);
1322 	spin_lock_init(&root->accounting_lock);
1323 	spin_lock_init(&root->log_extents_lock[0]);
1324 	spin_lock_init(&root->log_extents_lock[1]);
1325 	mutex_init(&root->objectid_mutex);
1326 	mutex_init(&root->log_mutex);
1327 	mutex_init(&root->ordered_extent_mutex);
1328 	mutex_init(&root->delalloc_mutex);
1329 	init_waitqueue_head(&root->log_writer_wait);
1330 	init_waitqueue_head(&root->log_commit_wait[0]);
1331 	init_waitqueue_head(&root->log_commit_wait[1]);
1332 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1333 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1334 	atomic_set(&root->log_commit[0], 0);
1335 	atomic_set(&root->log_commit[1], 0);
1336 	atomic_set(&root->log_writers, 0);
1337 	atomic_set(&root->log_batch, 0);
1338 	atomic_set(&root->orphan_inodes, 0);
1339 	atomic_set(&root->refs, 1);
1340 	atomic_set(&root->will_be_snapshoted, 0);
1341 	atomic_set(&root->qgroup_meta_rsv, 0);
1342 	root->log_transid = 0;
1343 	root->log_transid_committed = -1;
1344 	root->last_log_commit = 0;
1345 	if (!dummy)
1346 		extent_io_tree_init(&root->dirty_log_pages,
1347 				     fs_info->btree_inode->i_mapping);
1348 
1349 	memset(&root->root_key, 0, sizeof(root->root_key));
1350 	memset(&root->root_item, 0, sizeof(root->root_item));
1351 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1352 	if (!dummy)
1353 		root->defrag_trans_start = fs_info->generation;
1354 	else
1355 		root->defrag_trans_start = 0;
1356 	root->root_key.objectid = objectid;
1357 	root->anon_dev = 0;
1358 
1359 	spin_lock_init(&root->root_item_lock);
1360 }
1361 
1362 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1363 		gfp_t flags)
1364 {
1365 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1366 	if (root)
1367 		root->fs_info = fs_info;
1368 	return root;
1369 }
1370 
1371 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1372 /* Should only be used by the testing infrastructure */
1373 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info,
1374 					  u32 sectorsize, u32 nodesize)
1375 {
1376 	struct btrfs_root *root;
1377 
1378 	if (!fs_info)
1379 		return ERR_PTR(-EINVAL);
1380 
1381 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1382 	if (!root)
1383 		return ERR_PTR(-ENOMEM);
1384 	/* We don't use the stripesize in selftest, set it as sectorsize */
1385 	__setup_root(nodesize, sectorsize, sectorsize, root, fs_info,
1386 			BTRFS_ROOT_TREE_OBJECTID);
1387 	root->alloc_bytenr = 0;
1388 
1389 	return root;
1390 }
1391 #endif
1392 
1393 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1394 				     struct btrfs_fs_info *fs_info,
1395 				     u64 objectid)
1396 {
1397 	struct extent_buffer *leaf;
1398 	struct btrfs_root *tree_root = fs_info->tree_root;
1399 	struct btrfs_root *root;
1400 	struct btrfs_key key;
1401 	int ret = 0;
1402 	uuid_le uuid;
1403 
1404 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1405 	if (!root)
1406 		return ERR_PTR(-ENOMEM);
1407 
1408 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1409 		tree_root->stripesize, root, fs_info, objectid);
1410 	root->root_key.objectid = objectid;
1411 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1412 	root->root_key.offset = 0;
1413 
1414 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1415 	if (IS_ERR(leaf)) {
1416 		ret = PTR_ERR(leaf);
1417 		leaf = NULL;
1418 		goto fail;
1419 	}
1420 
1421 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1422 	btrfs_set_header_bytenr(leaf, leaf->start);
1423 	btrfs_set_header_generation(leaf, trans->transid);
1424 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1425 	btrfs_set_header_owner(leaf, objectid);
1426 	root->node = leaf;
1427 
1428 	write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1429 			    BTRFS_FSID_SIZE);
1430 	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1431 			    btrfs_header_chunk_tree_uuid(leaf),
1432 			    BTRFS_UUID_SIZE);
1433 	btrfs_mark_buffer_dirty(leaf);
1434 
1435 	root->commit_root = btrfs_root_node(root);
1436 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1437 
1438 	root->root_item.flags = 0;
1439 	root->root_item.byte_limit = 0;
1440 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1441 	btrfs_set_root_generation(&root->root_item, trans->transid);
1442 	btrfs_set_root_level(&root->root_item, 0);
1443 	btrfs_set_root_refs(&root->root_item, 1);
1444 	btrfs_set_root_used(&root->root_item, leaf->len);
1445 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1446 	btrfs_set_root_dirid(&root->root_item, 0);
1447 	uuid_le_gen(&uuid);
1448 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1449 	root->root_item.drop_level = 0;
1450 
1451 	key.objectid = objectid;
1452 	key.type = BTRFS_ROOT_ITEM_KEY;
1453 	key.offset = 0;
1454 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1455 	if (ret)
1456 		goto fail;
1457 
1458 	btrfs_tree_unlock(leaf);
1459 
1460 	return root;
1461 
1462 fail:
1463 	if (leaf) {
1464 		btrfs_tree_unlock(leaf);
1465 		free_extent_buffer(root->commit_root);
1466 		free_extent_buffer(leaf);
1467 	}
1468 	kfree(root);
1469 
1470 	return ERR_PTR(ret);
1471 }
1472 
1473 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1474 					 struct btrfs_fs_info *fs_info)
1475 {
1476 	struct btrfs_root *root;
1477 	struct btrfs_root *tree_root = fs_info->tree_root;
1478 	struct extent_buffer *leaf;
1479 
1480 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1481 	if (!root)
1482 		return ERR_PTR(-ENOMEM);
1483 
1484 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1485 		     tree_root->stripesize, root, fs_info,
1486 		     BTRFS_TREE_LOG_OBJECTID);
1487 
1488 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1489 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1490 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1491 
1492 	/*
1493 	 * DON'T set REF_COWS for log trees
1494 	 *
1495 	 * log trees do not get reference counted because they go away
1496 	 * before a real commit is actually done.  They do store pointers
1497 	 * to file data extents, and those reference counts still get
1498 	 * updated (along with back refs to the log tree).
1499 	 */
1500 
1501 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1502 			NULL, 0, 0, 0);
1503 	if (IS_ERR(leaf)) {
1504 		kfree(root);
1505 		return ERR_CAST(leaf);
1506 	}
1507 
1508 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1509 	btrfs_set_header_bytenr(leaf, leaf->start);
1510 	btrfs_set_header_generation(leaf, trans->transid);
1511 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1512 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1513 	root->node = leaf;
1514 
1515 	write_extent_buffer(root->node, root->fs_info->fsid,
1516 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
1517 	btrfs_mark_buffer_dirty(root->node);
1518 	btrfs_tree_unlock(root->node);
1519 	return root;
1520 }
1521 
1522 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1523 			     struct btrfs_fs_info *fs_info)
1524 {
1525 	struct btrfs_root *log_root;
1526 
1527 	log_root = alloc_log_tree(trans, fs_info);
1528 	if (IS_ERR(log_root))
1529 		return PTR_ERR(log_root);
1530 	WARN_ON(fs_info->log_root_tree);
1531 	fs_info->log_root_tree = log_root;
1532 	return 0;
1533 }
1534 
1535 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1536 		       struct btrfs_root *root)
1537 {
1538 	struct btrfs_root *log_root;
1539 	struct btrfs_inode_item *inode_item;
1540 
1541 	log_root = alloc_log_tree(trans, root->fs_info);
1542 	if (IS_ERR(log_root))
1543 		return PTR_ERR(log_root);
1544 
1545 	log_root->last_trans = trans->transid;
1546 	log_root->root_key.offset = root->root_key.objectid;
1547 
1548 	inode_item = &log_root->root_item.inode;
1549 	btrfs_set_stack_inode_generation(inode_item, 1);
1550 	btrfs_set_stack_inode_size(inode_item, 3);
1551 	btrfs_set_stack_inode_nlink(inode_item, 1);
1552 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1553 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1554 
1555 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1556 
1557 	WARN_ON(root->log_root);
1558 	root->log_root = log_root;
1559 	root->log_transid = 0;
1560 	root->log_transid_committed = -1;
1561 	root->last_log_commit = 0;
1562 	return 0;
1563 }
1564 
1565 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1566 					       struct btrfs_key *key)
1567 {
1568 	struct btrfs_root *root;
1569 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1570 	struct btrfs_path *path;
1571 	u64 generation;
1572 	int ret;
1573 
1574 	path = btrfs_alloc_path();
1575 	if (!path)
1576 		return ERR_PTR(-ENOMEM);
1577 
1578 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1579 	if (!root) {
1580 		ret = -ENOMEM;
1581 		goto alloc_fail;
1582 	}
1583 
1584 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1585 		tree_root->stripesize, root, fs_info, key->objectid);
1586 
1587 	ret = btrfs_find_root(tree_root, key, path,
1588 			      &root->root_item, &root->root_key);
1589 	if (ret) {
1590 		if (ret > 0)
1591 			ret = -ENOENT;
1592 		goto find_fail;
1593 	}
1594 
1595 	generation = btrfs_root_generation(&root->root_item);
1596 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1597 				     generation);
1598 	if (IS_ERR(root->node)) {
1599 		ret = PTR_ERR(root->node);
1600 		goto find_fail;
1601 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1602 		ret = -EIO;
1603 		free_extent_buffer(root->node);
1604 		goto find_fail;
1605 	}
1606 	root->commit_root = btrfs_root_node(root);
1607 out:
1608 	btrfs_free_path(path);
1609 	return root;
1610 
1611 find_fail:
1612 	kfree(root);
1613 alloc_fail:
1614 	root = ERR_PTR(ret);
1615 	goto out;
1616 }
1617 
1618 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1619 				      struct btrfs_key *location)
1620 {
1621 	struct btrfs_root *root;
1622 
1623 	root = btrfs_read_tree_root(tree_root, location);
1624 	if (IS_ERR(root))
1625 		return root;
1626 
1627 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1628 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1629 		btrfs_check_and_init_root_item(&root->root_item);
1630 	}
1631 
1632 	return root;
1633 }
1634 
1635 int btrfs_init_fs_root(struct btrfs_root *root)
1636 {
1637 	int ret;
1638 	struct btrfs_subvolume_writers *writers;
1639 
1640 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1641 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1642 					GFP_NOFS);
1643 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1644 		ret = -ENOMEM;
1645 		goto fail;
1646 	}
1647 
1648 	writers = btrfs_alloc_subvolume_writers();
1649 	if (IS_ERR(writers)) {
1650 		ret = PTR_ERR(writers);
1651 		goto fail;
1652 	}
1653 	root->subv_writers = writers;
1654 
1655 	btrfs_init_free_ino_ctl(root);
1656 	spin_lock_init(&root->ino_cache_lock);
1657 	init_waitqueue_head(&root->ino_cache_wait);
1658 
1659 	ret = get_anon_bdev(&root->anon_dev);
1660 	if (ret)
1661 		goto fail;
1662 
1663 	mutex_lock(&root->objectid_mutex);
1664 	ret = btrfs_find_highest_objectid(root,
1665 					&root->highest_objectid);
1666 	if (ret) {
1667 		mutex_unlock(&root->objectid_mutex);
1668 		goto fail;
1669 	}
1670 
1671 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1672 
1673 	mutex_unlock(&root->objectid_mutex);
1674 
1675 	return 0;
1676 fail:
1677 	/* the caller is responsible to call free_fs_root */
1678 	return ret;
1679 }
1680 
1681 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1682 					u64 root_id)
1683 {
1684 	struct btrfs_root *root;
1685 
1686 	spin_lock(&fs_info->fs_roots_radix_lock);
1687 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1688 				 (unsigned long)root_id);
1689 	spin_unlock(&fs_info->fs_roots_radix_lock);
1690 	return root;
1691 }
1692 
1693 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1694 			 struct btrfs_root *root)
1695 {
1696 	int ret;
1697 
1698 	ret = radix_tree_preload(GFP_NOFS);
1699 	if (ret)
1700 		return ret;
1701 
1702 	spin_lock(&fs_info->fs_roots_radix_lock);
1703 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1704 				(unsigned long)root->root_key.objectid,
1705 				root);
1706 	if (ret == 0)
1707 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1708 	spin_unlock(&fs_info->fs_roots_radix_lock);
1709 	radix_tree_preload_end();
1710 
1711 	return ret;
1712 }
1713 
1714 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1715 				     struct btrfs_key *location,
1716 				     bool check_ref)
1717 {
1718 	struct btrfs_root *root;
1719 	struct btrfs_path *path;
1720 	struct btrfs_key key;
1721 	int ret;
1722 
1723 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1724 		return fs_info->tree_root;
1725 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1726 		return fs_info->extent_root;
1727 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1728 		return fs_info->chunk_root;
1729 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1730 		return fs_info->dev_root;
1731 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1732 		return fs_info->csum_root;
1733 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1734 		return fs_info->quota_root ? fs_info->quota_root :
1735 					     ERR_PTR(-ENOENT);
1736 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1737 		return fs_info->uuid_root ? fs_info->uuid_root :
1738 					    ERR_PTR(-ENOENT);
1739 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1740 		return fs_info->free_space_root ? fs_info->free_space_root :
1741 						  ERR_PTR(-ENOENT);
1742 again:
1743 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1744 	if (root) {
1745 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1746 			return ERR_PTR(-ENOENT);
1747 		return root;
1748 	}
1749 
1750 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1751 	if (IS_ERR(root))
1752 		return root;
1753 
1754 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1755 		ret = -ENOENT;
1756 		goto fail;
1757 	}
1758 
1759 	ret = btrfs_init_fs_root(root);
1760 	if (ret)
1761 		goto fail;
1762 
1763 	path = btrfs_alloc_path();
1764 	if (!path) {
1765 		ret = -ENOMEM;
1766 		goto fail;
1767 	}
1768 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1769 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1770 	key.offset = location->objectid;
1771 
1772 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1773 	btrfs_free_path(path);
1774 	if (ret < 0)
1775 		goto fail;
1776 	if (ret == 0)
1777 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1778 
1779 	ret = btrfs_insert_fs_root(fs_info, root);
1780 	if (ret) {
1781 		if (ret == -EEXIST) {
1782 			free_fs_root(root);
1783 			goto again;
1784 		}
1785 		goto fail;
1786 	}
1787 	return root;
1788 fail:
1789 	free_fs_root(root);
1790 	return ERR_PTR(ret);
1791 }
1792 
1793 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1794 {
1795 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1796 	int ret = 0;
1797 	struct btrfs_device *device;
1798 	struct backing_dev_info *bdi;
1799 
1800 	rcu_read_lock();
1801 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1802 		if (!device->bdev)
1803 			continue;
1804 		bdi = blk_get_backing_dev_info(device->bdev);
1805 		if (bdi_congested(bdi, bdi_bits)) {
1806 			ret = 1;
1807 			break;
1808 		}
1809 	}
1810 	rcu_read_unlock();
1811 	return ret;
1812 }
1813 
1814 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1815 {
1816 	int err;
1817 
1818 	err = bdi_setup_and_register(bdi, "btrfs");
1819 	if (err)
1820 		return err;
1821 
1822 	bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1823 	bdi->congested_fn	= btrfs_congested_fn;
1824 	bdi->congested_data	= info;
1825 	bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1826 	return 0;
1827 }
1828 
1829 /*
1830  * called by the kthread helper functions to finally call the bio end_io
1831  * functions.  This is where read checksum verification actually happens
1832  */
1833 static void end_workqueue_fn(struct btrfs_work *work)
1834 {
1835 	struct bio *bio;
1836 	struct btrfs_end_io_wq *end_io_wq;
1837 
1838 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1839 	bio = end_io_wq->bio;
1840 
1841 	bio->bi_error = end_io_wq->error;
1842 	bio->bi_private = end_io_wq->private;
1843 	bio->bi_end_io = end_io_wq->end_io;
1844 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1845 	bio_endio(bio);
1846 }
1847 
1848 static int cleaner_kthread(void *arg)
1849 {
1850 	struct btrfs_root *root = arg;
1851 	int again;
1852 	struct btrfs_trans_handle *trans;
1853 
1854 	do {
1855 		again = 0;
1856 
1857 		/* Make the cleaner go to sleep early. */
1858 		if (btrfs_need_cleaner_sleep(root))
1859 			goto sleep;
1860 
1861 		/*
1862 		 * Do not do anything if we might cause open_ctree() to block
1863 		 * before we have finished mounting the filesystem.
1864 		 */
1865 		if (!test_bit(BTRFS_FS_OPEN, &root->fs_info->flags))
1866 			goto sleep;
1867 
1868 		if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1869 			goto sleep;
1870 
1871 		/*
1872 		 * Avoid the problem that we change the status of the fs
1873 		 * during the above check and trylock.
1874 		 */
1875 		if (btrfs_need_cleaner_sleep(root)) {
1876 			mutex_unlock(&root->fs_info->cleaner_mutex);
1877 			goto sleep;
1878 		}
1879 
1880 		mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1881 		btrfs_run_delayed_iputs(root);
1882 		mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1883 
1884 		again = btrfs_clean_one_deleted_snapshot(root);
1885 		mutex_unlock(&root->fs_info->cleaner_mutex);
1886 
1887 		/*
1888 		 * The defragger has dealt with the R/O remount and umount,
1889 		 * needn't do anything special here.
1890 		 */
1891 		btrfs_run_defrag_inodes(root->fs_info);
1892 
1893 		/*
1894 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1895 		 * with relocation (btrfs_relocate_chunk) and relocation
1896 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1897 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1898 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1899 		 * unused block groups.
1900 		 */
1901 		btrfs_delete_unused_bgs(root->fs_info);
1902 sleep:
1903 		if (!again) {
1904 			set_current_state(TASK_INTERRUPTIBLE);
1905 			if (!kthread_should_stop())
1906 				schedule();
1907 			__set_current_state(TASK_RUNNING);
1908 		}
1909 	} while (!kthread_should_stop());
1910 
1911 	/*
1912 	 * Transaction kthread is stopped before us and wakes us up.
1913 	 * However we might have started a new transaction and COWed some
1914 	 * tree blocks when deleting unused block groups for example. So
1915 	 * make sure we commit the transaction we started to have a clean
1916 	 * shutdown when evicting the btree inode - if it has dirty pages
1917 	 * when we do the final iput() on it, eviction will trigger a
1918 	 * writeback for it which will fail with null pointer dereferences
1919 	 * since work queues and other resources were already released and
1920 	 * destroyed by the time the iput/eviction/writeback is made.
1921 	 */
1922 	trans = btrfs_attach_transaction(root);
1923 	if (IS_ERR(trans)) {
1924 		if (PTR_ERR(trans) != -ENOENT)
1925 			btrfs_err(root->fs_info,
1926 				  "cleaner transaction attach returned %ld",
1927 				  PTR_ERR(trans));
1928 	} else {
1929 		int ret;
1930 
1931 		ret = btrfs_commit_transaction(trans, root);
1932 		if (ret)
1933 			btrfs_err(root->fs_info,
1934 				  "cleaner open transaction commit returned %d",
1935 				  ret);
1936 	}
1937 
1938 	return 0;
1939 }
1940 
1941 static int transaction_kthread(void *arg)
1942 {
1943 	struct btrfs_root *root = arg;
1944 	struct btrfs_trans_handle *trans;
1945 	struct btrfs_transaction *cur;
1946 	u64 transid;
1947 	unsigned long now;
1948 	unsigned long delay;
1949 	bool cannot_commit;
1950 
1951 	do {
1952 		cannot_commit = false;
1953 		delay = HZ * root->fs_info->commit_interval;
1954 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1955 
1956 		spin_lock(&root->fs_info->trans_lock);
1957 		cur = root->fs_info->running_transaction;
1958 		if (!cur) {
1959 			spin_unlock(&root->fs_info->trans_lock);
1960 			goto sleep;
1961 		}
1962 
1963 		now = get_seconds();
1964 		if (cur->state < TRANS_STATE_BLOCKED &&
1965 		    (now < cur->start_time ||
1966 		     now - cur->start_time < root->fs_info->commit_interval)) {
1967 			spin_unlock(&root->fs_info->trans_lock);
1968 			delay = HZ * 5;
1969 			goto sleep;
1970 		}
1971 		transid = cur->transid;
1972 		spin_unlock(&root->fs_info->trans_lock);
1973 
1974 		/* If the file system is aborted, this will always fail. */
1975 		trans = btrfs_attach_transaction(root);
1976 		if (IS_ERR(trans)) {
1977 			if (PTR_ERR(trans) != -ENOENT)
1978 				cannot_commit = true;
1979 			goto sleep;
1980 		}
1981 		if (transid == trans->transid) {
1982 			btrfs_commit_transaction(trans, root);
1983 		} else {
1984 			btrfs_end_transaction(trans, root);
1985 		}
1986 sleep:
1987 		wake_up_process(root->fs_info->cleaner_kthread);
1988 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1989 
1990 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1991 				      &root->fs_info->fs_state)))
1992 			btrfs_cleanup_transaction(root);
1993 		set_current_state(TASK_INTERRUPTIBLE);
1994 		if (!kthread_should_stop() &&
1995 				(!btrfs_transaction_blocked(root->fs_info) ||
1996 				 cannot_commit))
1997 			schedule_timeout(delay);
1998 		__set_current_state(TASK_RUNNING);
1999 	} while (!kthread_should_stop());
2000 	return 0;
2001 }
2002 
2003 /*
2004  * this will find the highest generation in the array of
2005  * root backups.  The index of the highest array is returned,
2006  * or -1 if we can't find anything.
2007  *
2008  * We check to make sure the array is valid by comparing the
2009  * generation of the latest  root in the array with the generation
2010  * in the super block.  If they don't match we pitch it.
2011  */
2012 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
2013 {
2014 	u64 cur;
2015 	int newest_index = -1;
2016 	struct btrfs_root_backup *root_backup;
2017 	int i;
2018 
2019 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2020 		root_backup = info->super_copy->super_roots + i;
2021 		cur = btrfs_backup_tree_root_gen(root_backup);
2022 		if (cur == newest_gen)
2023 			newest_index = i;
2024 	}
2025 
2026 	/* check to see if we actually wrapped around */
2027 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2028 		root_backup = info->super_copy->super_roots;
2029 		cur = btrfs_backup_tree_root_gen(root_backup);
2030 		if (cur == newest_gen)
2031 			newest_index = 0;
2032 	}
2033 	return newest_index;
2034 }
2035 
2036 
2037 /*
2038  * find the oldest backup so we know where to store new entries
2039  * in the backup array.  This will set the backup_root_index
2040  * field in the fs_info struct
2041  */
2042 static void find_oldest_super_backup(struct btrfs_fs_info *info,
2043 				     u64 newest_gen)
2044 {
2045 	int newest_index = -1;
2046 
2047 	newest_index = find_newest_super_backup(info, newest_gen);
2048 	/* if there was garbage in there, just move along */
2049 	if (newest_index == -1) {
2050 		info->backup_root_index = 0;
2051 	} else {
2052 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2053 	}
2054 }
2055 
2056 /*
2057  * copy all the root pointers into the super backup array.
2058  * this will bump the backup pointer by one when it is
2059  * done
2060  */
2061 static void backup_super_roots(struct btrfs_fs_info *info)
2062 {
2063 	int next_backup;
2064 	struct btrfs_root_backup *root_backup;
2065 	int last_backup;
2066 
2067 	next_backup = info->backup_root_index;
2068 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2069 		BTRFS_NUM_BACKUP_ROOTS;
2070 
2071 	/*
2072 	 * just overwrite the last backup if we're at the same generation
2073 	 * this happens only at umount
2074 	 */
2075 	root_backup = info->super_for_commit->super_roots + last_backup;
2076 	if (btrfs_backup_tree_root_gen(root_backup) ==
2077 	    btrfs_header_generation(info->tree_root->node))
2078 		next_backup = last_backup;
2079 
2080 	root_backup = info->super_for_commit->super_roots + next_backup;
2081 
2082 	/*
2083 	 * make sure all of our padding and empty slots get zero filled
2084 	 * regardless of which ones we use today
2085 	 */
2086 	memset(root_backup, 0, sizeof(*root_backup));
2087 
2088 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2089 
2090 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2091 	btrfs_set_backup_tree_root_gen(root_backup,
2092 			       btrfs_header_generation(info->tree_root->node));
2093 
2094 	btrfs_set_backup_tree_root_level(root_backup,
2095 			       btrfs_header_level(info->tree_root->node));
2096 
2097 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2098 	btrfs_set_backup_chunk_root_gen(root_backup,
2099 			       btrfs_header_generation(info->chunk_root->node));
2100 	btrfs_set_backup_chunk_root_level(root_backup,
2101 			       btrfs_header_level(info->chunk_root->node));
2102 
2103 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2104 	btrfs_set_backup_extent_root_gen(root_backup,
2105 			       btrfs_header_generation(info->extent_root->node));
2106 	btrfs_set_backup_extent_root_level(root_backup,
2107 			       btrfs_header_level(info->extent_root->node));
2108 
2109 	/*
2110 	 * we might commit during log recovery, which happens before we set
2111 	 * the fs_root.  Make sure it is valid before we fill it in.
2112 	 */
2113 	if (info->fs_root && info->fs_root->node) {
2114 		btrfs_set_backup_fs_root(root_backup,
2115 					 info->fs_root->node->start);
2116 		btrfs_set_backup_fs_root_gen(root_backup,
2117 			       btrfs_header_generation(info->fs_root->node));
2118 		btrfs_set_backup_fs_root_level(root_backup,
2119 			       btrfs_header_level(info->fs_root->node));
2120 	}
2121 
2122 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2123 	btrfs_set_backup_dev_root_gen(root_backup,
2124 			       btrfs_header_generation(info->dev_root->node));
2125 	btrfs_set_backup_dev_root_level(root_backup,
2126 				       btrfs_header_level(info->dev_root->node));
2127 
2128 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2129 	btrfs_set_backup_csum_root_gen(root_backup,
2130 			       btrfs_header_generation(info->csum_root->node));
2131 	btrfs_set_backup_csum_root_level(root_backup,
2132 			       btrfs_header_level(info->csum_root->node));
2133 
2134 	btrfs_set_backup_total_bytes(root_backup,
2135 			     btrfs_super_total_bytes(info->super_copy));
2136 	btrfs_set_backup_bytes_used(root_backup,
2137 			     btrfs_super_bytes_used(info->super_copy));
2138 	btrfs_set_backup_num_devices(root_backup,
2139 			     btrfs_super_num_devices(info->super_copy));
2140 
2141 	/*
2142 	 * if we don't copy this out to the super_copy, it won't get remembered
2143 	 * for the next commit
2144 	 */
2145 	memcpy(&info->super_copy->super_roots,
2146 	       &info->super_for_commit->super_roots,
2147 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2148 }
2149 
2150 /*
2151  * this copies info out of the root backup array and back into
2152  * the in-memory super block.  It is meant to help iterate through
2153  * the array, so you send it the number of backups you've already
2154  * tried and the last backup index you used.
2155  *
2156  * this returns -1 when it has tried all the backups
2157  */
2158 static noinline int next_root_backup(struct btrfs_fs_info *info,
2159 				     struct btrfs_super_block *super,
2160 				     int *num_backups_tried, int *backup_index)
2161 {
2162 	struct btrfs_root_backup *root_backup;
2163 	int newest = *backup_index;
2164 
2165 	if (*num_backups_tried == 0) {
2166 		u64 gen = btrfs_super_generation(super);
2167 
2168 		newest = find_newest_super_backup(info, gen);
2169 		if (newest == -1)
2170 			return -1;
2171 
2172 		*backup_index = newest;
2173 		*num_backups_tried = 1;
2174 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2175 		/* we've tried all the backups, all done */
2176 		return -1;
2177 	} else {
2178 		/* jump to the next oldest backup */
2179 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2180 			BTRFS_NUM_BACKUP_ROOTS;
2181 		*backup_index = newest;
2182 		*num_backups_tried += 1;
2183 	}
2184 	root_backup = super->super_roots + newest;
2185 
2186 	btrfs_set_super_generation(super,
2187 				   btrfs_backup_tree_root_gen(root_backup));
2188 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2189 	btrfs_set_super_root_level(super,
2190 				   btrfs_backup_tree_root_level(root_backup));
2191 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2192 
2193 	/*
2194 	 * fixme: the total bytes and num_devices need to match or we should
2195 	 * need a fsck
2196 	 */
2197 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2198 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2199 	return 0;
2200 }
2201 
2202 /* helper to cleanup workers */
2203 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2204 {
2205 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2206 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2207 	btrfs_destroy_workqueue(fs_info->workers);
2208 	btrfs_destroy_workqueue(fs_info->endio_workers);
2209 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2210 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2211 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2212 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2213 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2214 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2215 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2216 	btrfs_destroy_workqueue(fs_info->submit_workers);
2217 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2218 	btrfs_destroy_workqueue(fs_info->caching_workers);
2219 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2220 	btrfs_destroy_workqueue(fs_info->flush_workers);
2221 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2222 	btrfs_destroy_workqueue(fs_info->extent_workers);
2223 }
2224 
2225 static void free_root_extent_buffers(struct btrfs_root *root)
2226 {
2227 	if (root) {
2228 		free_extent_buffer(root->node);
2229 		free_extent_buffer(root->commit_root);
2230 		root->node = NULL;
2231 		root->commit_root = NULL;
2232 	}
2233 }
2234 
2235 /* helper to cleanup tree roots */
2236 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2237 {
2238 	free_root_extent_buffers(info->tree_root);
2239 
2240 	free_root_extent_buffers(info->dev_root);
2241 	free_root_extent_buffers(info->extent_root);
2242 	free_root_extent_buffers(info->csum_root);
2243 	free_root_extent_buffers(info->quota_root);
2244 	free_root_extent_buffers(info->uuid_root);
2245 	if (chunk_root)
2246 		free_root_extent_buffers(info->chunk_root);
2247 	free_root_extent_buffers(info->free_space_root);
2248 }
2249 
2250 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2251 {
2252 	int ret;
2253 	struct btrfs_root *gang[8];
2254 	int i;
2255 
2256 	while (!list_empty(&fs_info->dead_roots)) {
2257 		gang[0] = list_entry(fs_info->dead_roots.next,
2258 				     struct btrfs_root, root_list);
2259 		list_del(&gang[0]->root_list);
2260 
2261 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2262 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2263 		} else {
2264 			free_extent_buffer(gang[0]->node);
2265 			free_extent_buffer(gang[0]->commit_root);
2266 			btrfs_put_fs_root(gang[0]);
2267 		}
2268 	}
2269 
2270 	while (1) {
2271 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2272 					     (void **)gang, 0,
2273 					     ARRAY_SIZE(gang));
2274 		if (!ret)
2275 			break;
2276 		for (i = 0; i < ret; i++)
2277 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2278 	}
2279 
2280 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2281 		btrfs_free_log_root_tree(NULL, fs_info);
2282 		btrfs_destroy_pinned_extent(fs_info->tree_root,
2283 					    fs_info->pinned_extents);
2284 	}
2285 }
2286 
2287 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2288 {
2289 	mutex_init(&fs_info->scrub_lock);
2290 	atomic_set(&fs_info->scrubs_running, 0);
2291 	atomic_set(&fs_info->scrub_pause_req, 0);
2292 	atomic_set(&fs_info->scrubs_paused, 0);
2293 	atomic_set(&fs_info->scrub_cancel_req, 0);
2294 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2295 	fs_info->scrub_workers_refcnt = 0;
2296 }
2297 
2298 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2299 {
2300 	spin_lock_init(&fs_info->balance_lock);
2301 	mutex_init(&fs_info->balance_mutex);
2302 	atomic_set(&fs_info->balance_running, 0);
2303 	atomic_set(&fs_info->balance_pause_req, 0);
2304 	atomic_set(&fs_info->balance_cancel_req, 0);
2305 	fs_info->balance_ctl = NULL;
2306 	init_waitqueue_head(&fs_info->balance_wait_q);
2307 }
2308 
2309 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2310 				   struct btrfs_root *tree_root)
2311 {
2312 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2313 	set_nlink(fs_info->btree_inode, 1);
2314 	/*
2315 	 * we set the i_size on the btree inode to the max possible int.
2316 	 * the real end of the address space is determined by all of
2317 	 * the devices in the system
2318 	 */
2319 	fs_info->btree_inode->i_size = OFFSET_MAX;
2320 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2321 
2322 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2323 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2324 			     fs_info->btree_inode->i_mapping);
2325 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2326 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2327 
2328 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2329 
2330 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2331 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2332 	       sizeof(struct btrfs_key));
2333 	set_bit(BTRFS_INODE_DUMMY,
2334 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2335 	btrfs_insert_inode_hash(fs_info->btree_inode);
2336 }
2337 
2338 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2339 {
2340 	fs_info->dev_replace.lock_owner = 0;
2341 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2342 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2343 	rwlock_init(&fs_info->dev_replace.lock);
2344 	atomic_set(&fs_info->dev_replace.read_locks, 0);
2345 	atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2346 	init_waitqueue_head(&fs_info->replace_wait);
2347 	init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2348 }
2349 
2350 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2351 {
2352 	spin_lock_init(&fs_info->qgroup_lock);
2353 	mutex_init(&fs_info->qgroup_ioctl_lock);
2354 	fs_info->qgroup_tree = RB_ROOT;
2355 	fs_info->qgroup_op_tree = RB_ROOT;
2356 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2357 	fs_info->qgroup_seq = 1;
2358 	fs_info->qgroup_ulist = NULL;
2359 	fs_info->qgroup_rescan_running = false;
2360 	mutex_init(&fs_info->qgroup_rescan_lock);
2361 }
2362 
2363 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2364 		struct btrfs_fs_devices *fs_devices)
2365 {
2366 	int max_active = fs_info->thread_pool_size;
2367 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2368 
2369 	fs_info->workers =
2370 		btrfs_alloc_workqueue(fs_info, "worker",
2371 				      flags | WQ_HIGHPRI, max_active, 16);
2372 
2373 	fs_info->delalloc_workers =
2374 		btrfs_alloc_workqueue(fs_info, "delalloc",
2375 				      flags, max_active, 2);
2376 
2377 	fs_info->flush_workers =
2378 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2379 				      flags, max_active, 0);
2380 
2381 	fs_info->caching_workers =
2382 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2383 
2384 	/*
2385 	 * a higher idle thresh on the submit workers makes it much more
2386 	 * likely that bios will be send down in a sane order to the
2387 	 * devices
2388 	 */
2389 	fs_info->submit_workers =
2390 		btrfs_alloc_workqueue(fs_info, "submit", flags,
2391 				      min_t(u64, fs_devices->num_devices,
2392 					    max_active), 64);
2393 
2394 	fs_info->fixup_workers =
2395 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2396 
2397 	/*
2398 	 * endios are largely parallel and should have a very
2399 	 * low idle thresh
2400 	 */
2401 	fs_info->endio_workers =
2402 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2403 	fs_info->endio_meta_workers =
2404 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2405 				      max_active, 4);
2406 	fs_info->endio_meta_write_workers =
2407 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2408 				      max_active, 2);
2409 	fs_info->endio_raid56_workers =
2410 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2411 				      max_active, 4);
2412 	fs_info->endio_repair_workers =
2413 		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2414 	fs_info->rmw_workers =
2415 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2416 	fs_info->endio_write_workers =
2417 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2418 				      max_active, 2);
2419 	fs_info->endio_freespace_worker =
2420 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2421 				      max_active, 0);
2422 	fs_info->delayed_workers =
2423 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2424 				      max_active, 0);
2425 	fs_info->readahead_workers =
2426 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2427 				      max_active, 2);
2428 	fs_info->qgroup_rescan_workers =
2429 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2430 	fs_info->extent_workers =
2431 		btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2432 				      min_t(u64, fs_devices->num_devices,
2433 					    max_active), 8);
2434 
2435 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2436 	      fs_info->submit_workers && fs_info->flush_workers &&
2437 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2438 	      fs_info->endio_meta_write_workers &&
2439 	      fs_info->endio_repair_workers &&
2440 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2441 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2442 	      fs_info->caching_workers && fs_info->readahead_workers &&
2443 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2444 	      fs_info->extent_workers &&
2445 	      fs_info->qgroup_rescan_workers)) {
2446 		return -ENOMEM;
2447 	}
2448 
2449 	return 0;
2450 }
2451 
2452 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2453 			    struct btrfs_fs_devices *fs_devices)
2454 {
2455 	int ret;
2456 	struct btrfs_root *tree_root = fs_info->tree_root;
2457 	struct btrfs_root *log_tree_root;
2458 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2459 	u64 bytenr = btrfs_super_log_root(disk_super);
2460 
2461 	if (fs_devices->rw_devices == 0) {
2462 		btrfs_warn(fs_info, "log replay required on RO media");
2463 		return -EIO;
2464 	}
2465 
2466 	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2467 	if (!log_tree_root)
2468 		return -ENOMEM;
2469 
2470 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
2471 			tree_root->stripesize, log_tree_root, fs_info,
2472 			BTRFS_TREE_LOG_OBJECTID);
2473 
2474 	log_tree_root->node = read_tree_block(tree_root, bytenr,
2475 			fs_info->generation + 1);
2476 	if (IS_ERR(log_tree_root->node)) {
2477 		btrfs_warn(fs_info, "failed to read log tree");
2478 		ret = PTR_ERR(log_tree_root->node);
2479 		kfree(log_tree_root);
2480 		return ret;
2481 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2482 		btrfs_err(fs_info, "failed to read log tree");
2483 		free_extent_buffer(log_tree_root->node);
2484 		kfree(log_tree_root);
2485 		return -EIO;
2486 	}
2487 	/* returns with log_tree_root freed on success */
2488 	ret = btrfs_recover_log_trees(log_tree_root);
2489 	if (ret) {
2490 		btrfs_handle_fs_error(tree_root->fs_info, ret,
2491 			    "Failed to recover log tree");
2492 		free_extent_buffer(log_tree_root->node);
2493 		kfree(log_tree_root);
2494 		return ret;
2495 	}
2496 
2497 	if (fs_info->sb->s_flags & MS_RDONLY) {
2498 		ret = btrfs_commit_super(tree_root);
2499 		if (ret)
2500 			return ret;
2501 	}
2502 
2503 	return 0;
2504 }
2505 
2506 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2507 			    struct btrfs_root *tree_root)
2508 {
2509 	struct btrfs_root *root;
2510 	struct btrfs_key location;
2511 	int ret;
2512 
2513 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2514 	location.type = BTRFS_ROOT_ITEM_KEY;
2515 	location.offset = 0;
2516 
2517 	root = btrfs_read_tree_root(tree_root, &location);
2518 	if (IS_ERR(root))
2519 		return PTR_ERR(root);
2520 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2521 	fs_info->extent_root = root;
2522 
2523 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2524 	root = btrfs_read_tree_root(tree_root, &location);
2525 	if (IS_ERR(root))
2526 		return PTR_ERR(root);
2527 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2528 	fs_info->dev_root = root;
2529 	btrfs_init_devices_late(fs_info);
2530 
2531 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2532 	root = btrfs_read_tree_root(tree_root, &location);
2533 	if (IS_ERR(root))
2534 		return PTR_ERR(root);
2535 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2536 	fs_info->csum_root = root;
2537 
2538 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2539 	root = btrfs_read_tree_root(tree_root, &location);
2540 	if (!IS_ERR(root)) {
2541 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2542 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2543 		fs_info->quota_root = root;
2544 	}
2545 
2546 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2547 	root = btrfs_read_tree_root(tree_root, &location);
2548 	if (IS_ERR(root)) {
2549 		ret = PTR_ERR(root);
2550 		if (ret != -ENOENT)
2551 			return ret;
2552 	} else {
2553 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2554 		fs_info->uuid_root = root;
2555 	}
2556 
2557 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2558 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2559 		root = btrfs_read_tree_root(tree_root, &location);
2560 		if (IS_ERR(root))
2561 			return PTR_ERR(root);
2562 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2563 		fs_info->free_space_root = root;
2564 	}
2565 
2566 	return 0;
2567 }
2568 
2569 int open_ctree(struct super_block *sb,
2570 	       struct btrfs_fs_devices *fs_devices,
2571 	       char *options)
2572 {
2573 	u32 sectorsize;
2574 	u32 nodesize;
2575 	u32 stripesize;
2576 	u64 generation;
2577 	u64 features;
2578 	struct btrfs_key location;
2579 	struct buffer_head *bh;
2580 	struct btrfs_super_block *disk_super;
2581 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2582 	struct btrfs_root *tree_root;
2583 	struct btrfs_root *chunk_root;
2584 	int ret;
2585 	int err = -EINVAL;
2586 	int num_backups_tried = 0;
2587 	int backup_index = 0;
2588 	int max_active;
2589 
2590 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2591 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2592 	if (!tree_root || !chunk_root) {
2593 		err = -ENOMEM;
2594 		goto fail;
2595 	}
2596 
2597 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2598 	if (ret) {
2599 		err = ret;
2600 		goto fail;
2601 	}
2602 
2603 	ret = setup_bdi(fs_info, &fs_info->bdi);
2604 	if (ret) {
2605 		err = ret;
2606 		goto fail_srcu;
2607 	}
2608 
2609 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2610 	if (ret) {
2611 		err = ret;
2612 		goto fail_bdi;
2613 	}
2614 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2615 					(1 + ilog2(nr_cpu_ids));
2616 
2617 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2618 	if (ret) {
2619 		err = ret;
2620 		goto fail_dirty_metadata_bytes;
2621 	}
2622 
2623 	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2624 	if (ret) {
2625 		err = ret;
2626 		goto fail_delalloc_bytes;
2627 	}
2628 
2629 	fs_info->btree_inode = new_inode(sb);
2630 	if (!fs_info->btree_inode) {
2631 		err = -ENOMEM;
2632 		goto fail_bio_counter;
2633 	}
2634 
2635 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2636 
2637 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2638 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2639 	INIT_LIST_HEAD(&fs_info->trans_list);
2640 	INIT_LIST_HEAD(&fs_info->dead_roots);
2641 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2642 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2643 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2644 	spin_lock_init(&fs_info->delalloc_root_lock);
2645 	spin_lock_init(&fs_info->trans_lock);
2646 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2647 	spin_lock_init(&fs_info->delayed_iput_lock);
2648 	spin_lock_init(&fs_info->defrag_inodes_lock);
2649 	spin_lock_init(&fs_info->free_chunk_lock);
2650 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2651 	spin_lock_init(&fs_info->super_lock);
2652 	spin_lock_init(&fs_info->qgroup_op_lock);
2653 	spin_lock_init(&fs_info->buffer_lock);
2654 	spin_lock_init(&fs_info->unused_bgs_lock);
2655 	rwlock_init(&fs_info->tree_mod_log_lock);
2656 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2657 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2658 	mutex_init(&fs_info->reloc_mutex);
2659 	mutex_init(&fs_info->delalloc_root_mutex);
2660 	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2661 	seqlock_init(&fs_info->profiles_lock);
2662 
2663 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2664 	INIT_LIST_HEAD(&fs_info->space_info);
2665 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2666 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2667 	btrfs_mapping_init(&fs_info->mapping_tree);
2668 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2669 			     BTRFS_BLOCK_RSV_GLOBAL);
2670 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2671 			     BTRFS_BLOCK_RSV_DELALLOC);
2672 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2673 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2674 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2675 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2676 			     BTRFS_BLOCK_RSV_DELOPS);
2677 	atomic_set(&fs_info->nr_async_submits, 0);
2678 	atomic_set(&fs_info->async_delalloc_pages, 0);
2679 	atomic_set(&fs_info->async_submit_draining, 0);
2680 	atomic_set(&fs_info->nr_async_bios, 0);
2681 	atomic_set(&fs_info->defrag_running, 0);
2682 	atomic_set(&fs_info->qgroup_op_seq, 0);
2683 	atomic_set(&fs_info->reada_works_cnt, 0);
2684 	atomic64_set(&fs_info->tree_mod_seq, 0);
2685 	fs_info->fs_frozen = 0;
2686 	fs_info->sb = sb;
2687 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2688 	fs_info->metadata_ratio = 0;
2689 	fs_info->defrag_inodes = RB_ROOT;
2690 	fs_info->free_chunk_space = 0;
2691 	fs_info->tree_mod_log = RB_ROOT;
2692 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2693 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2694 	/* readahead state */
2695 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2696 	spin_lock_init(&fs_info->reada_lock);
2697 
2698 	fs_info->thread_pool_size = min_t(unsigned long,
2699 					  num_online_cpus() + 2, 8);
2700 
2701 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2702 	spin_lock_init(&fs_info->ordered_root_lock);
2703 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2704 					GFP_KERNEL);
2705 	if (!fs_info->delayed_root) {
2706 		err = -ENOMEM;
2707 		goto fail_iput;
2708 	}
2709 	btrfs_init_delayed_root(fs_info->delayed_root);
2710 
2711 	btrfs_init_scrub(fs_info);
2712 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2713 	fs_info->check_integrity_print_mask = 0;
2714 #endif
2715 	btrfs_init_balance(fs_info);
2716 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2717 
2718 	sb->s_blocksize = 4096;
2719 	sb->s_blocksize_bits = blksize_bits(4096);
2720 	sb->s_bdi = &fs_info->bdi;
2721 
2722 	btrfs_init_btree_inode(fs_info, tree_root);
2723 
2724 	spin_lock_init(&fs_info->block_group_cache_lock);
2725 	fs_info->block_group_cache_tree = RB_ROOT;
2726 	fs_info->first_logical_byte = (u64)-1;
2727 
2728 	extent_io_tree_init(&fs_info->freed_extents[0],
2729 			     fs_info->btree_inode->i_mapping);
2730 	extent_io_tree_init(&fs_info->freed_extents[1],
2731 			     fs_info->btree_inode->i_mapping);
2732 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2733 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2734 
2735 	mutex_init(&fs_info->ordered_operations_mutex);
2736 	mutex_init(&fs_info->tree_log_mutex);
2737 	mutex_init(&fs_info->chunk_mutex);
2738 	mutex_init(&fs_info->transaction_kthread_mutex);
2739 	mutex_init(&fs_info->cleaner_mutex);
2740 	mutex_init(&fs_info->volume_mutex);
2741 	mutex_init(&fs_info->ro_block_group_mutex);
2742 	init_rwsem(&fs_info->commit_root_sem);
2743 	init_rwsem(&fs_info->cleanup_work_sem);
2744 	init_rwsem(&fs_info->subvol_sem);
2745 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2746 
2747 	btrfs_init_dev_replace_locks(fs_info);
2748 	btrfs_init_qgroup(fs_info);
2749 
2750 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2751 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2752 
2753 	init_waitqueue_head(&fs_info->transaction_throttle);
2754 	init_waitqueue_head(&fs_info->transaction_wait);
2755 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2756 	init_waitqueue_head(&fs_info->async_submit_wait);
2757 
2758 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2759 
2760 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2761 	if (ret) {
2762 		err = ret;
2763 		goto fail_alloc;
2764 	}
2765 
2766 	__setup_root(4096, 4096, 4096, tree_root,
2767 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2768 
2769 	invalidate_bdev(fs_devices->latest_bdev);
2770 
2771 	/*
2772 	 * Read super block and check the signature bytes only
2773 	 */
2774 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2775 	if (IS_ERR(bh)) {
2776 		err = PTR_ERR(bh);
2777 		goto fail_alloc;
2778 	}
2779 
2780 	/*
2781 	 * We want to check superblock checksum, the type is stored inside.
2782 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2783 	 */
2784 	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2785 		btrfs_err(fs_info, "superblock checksum mismatch");
2786 		err = -EINVAL;
2787 		brelse(bh);
2788 		goto fail_alloc;
2789 	}
2790 
2791 	/*
2792 	 * super_copy is zeroed at allocation time and we never touch the
2793 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2794 	 * the whole block of INFO_SIZE
2795 	 */
2796 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2797 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2798 	       sizeof(*fs_info->super_for_commit));
2799 	brelse(bh);
2800 
2801 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2802 
2803 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2804 	if (ret) {
2805 		btrfs_err(fs_info, "superblock contains fatal errors");
2806 		err = -EINVAL;
2807 		goto fail_alloc;
2808 	}
2809 
2810 	disk_super = fs_info->super_copy;
2811 	if (!btrfs_super_root(disk_super))
2812 		goto fail_alloc;
2813 
2814 	/* check FS state, whether FS is broken. */
2815 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2816 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2817 
2818 	/*
2819 	 * run through our array of backup supers and setup
2820 	 * our ring pointer to the oldest one
2821 	 */
2822 	generation = btrfs_super_generation(disk_super);
2823 	find_oldest_super_backup(fs_info, generation);
2824 
2825 	/*
2826 	 * In the long term, we'll store the compression type in the super
2827 	 * block, and it'll be used for per file compression control.
2828 	 */
2829 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2830 
2831 	ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2832 	if (ret) {
2833 		err = ret;
2834 		goto fail_alloc;
2835 	}
2836 
2837 	features = btrfs_super_incompat_flags(disk_super) &
2838 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2839 	if (features) {
2840 		btrfs_err(fs_info,
2841 		    "cannot mount because of unsupported optional features (%llx)",
2842 		    features);
2843 		err = -EINVAL;
2844 		goto fail_alloc;
2845 	}
2846 
2847 	features = btrfs_super_incompat_flags(disk_super);
2848 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2849 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2850 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2851 
2852 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2853 		btrfs_info(fs_info, "has skinny extents");
2854 
2855 	/*
2856 	 * flag our filesystem as having big metadata blocks if
2857 	 * they are bigger than the page size
2858 	 */
2859 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2860 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2861 			btrfs_info(fs_info,
2862 				"flagging fs with big metadata feature");
2863 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2864 	}
2865 
2866 	nodesize = btrfs_super_nodesize(disk_super);
2867 	sectorsize = btrfs_super_sectorsize(disk_super);
2868 	stripesize = sectorsize;
2869 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2870 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2871 
2872 	/*
2873 	 * mixed block groups end up with duplicate but slightly offset
2874 	 * extent buffers for the same range.  It leads to corruptions
2875 	 */
2876 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2877 	    (sectorsize != nodesize)) {
2878 		btrfs_err(fs_info,
2879 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2880 			nodesize, sectorsize);
2881 		goto fail_alloc;
2882 	}
2883 
2884 	/*
2885 	 * Needn't use the lock because there is no other task which will
2886 	 * update the flag.
2887 	 */
2888 	btrfs_set_super_incompat_flags(disk_super, features);
2889 
2890 	features = btrfs_super_compat_ro_flags(disk_super) &
2891 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2892 	if (!(sb->s_flags & MS_RDONLY) && features) {
2893 		btrfs_err(fs_info,
2894 	"cannot mount read-write because of unsupported optional features (%llx)",
2895 		       features);
2896 		err = -EINVAL;
2897 		goto fail_alloc;
2898 	}
2899 
2900 	max_active = fs_info->thread_pool_size;
2901 
2902 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2903 	if (ret) {
2904 		err = ret;
2905 		goto fail_sb_buffer;
2906 	}
2907 
2908 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2909 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2910 				    SZ_4M / PAGE_SIZE);
2911 
2912 	tree_root->nodesize = nodesize;
2913 	tree_root->sectorsize = sectorsize;
2914 	tree_root->stripesize = stripesize;
2915 
2916 	sb->s_blocksize = sectorsize;
2917 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2918 
2919 	mutex_lock(&fs_info->chunk_mutex);
2920 	ret = btrfs_read_sys_array(tree_root);
2921 	mutex_unlock(&fs_info->chunk_mutex);
2922 	if (ret) {
2923 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
2924 		goto fail_sb_buffer;
2925 	}
2926 
2927 	generation = btrfs_super_chunk_root_generation(disk_super);
2928 
2929 	__setup_root(nodesize, sectorsize, stripesize, chunk_root,
2930 		     fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2931 
2932 	chunk_root->node = read_tree_block(chunk_root,
2933 					   btrfs_super_chunk_root(disk_super),
2934 					   generation);
2935 	if (IS_ERR(chunk_root->node) ||
2936 	    !extent_buffer_uptodate(chunk_root->node)) {
2937 		btrfs_err(fs_info, "failed to read chunk root");
2938 		if (!IS_ERR(chunk_root->node))
2939 			free_extent_buffer(chunk_root->node);
2940 		chunk_root->node = NULL;
2941 		goto fail_tree_roots;
2942 	}
2943 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2944 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2945 
2946 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2947 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2948 
2949 	ret = btrfs_read_chunk_tree(chunk_root);
2950 	if (ret) {
2951 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2952 		goto fail_tree_roots;
2953 	}
2954 
2955 	/*
2956 	 * keep the device that is marked to be the target device for the
2957 	 * dev_replace procedure
2958 	 */
2959 	btrfs_close_extra_devices(fs_devices, 0);
2960 
2961 	if (!fs_devices->latest_bdev) {
2962 		btrfs_err(fs_info, "failed to read devices");
2963 		goto fail_tree_roots;
2964 	}
2965 
2966 retry_root_backup:
2967 	generation = btrfs_super_generation(disk_super);
2968 
2969 	tree_root->node = read_tree_block(tree_root,
2970 					  btrfs_super_root(disk_super),
2971 					  generation);
2972 	if (IS_ERR(tree_root->node) ||
2973 	    !extent_buffer_uptodate(tree_root->node)) {
2974 		btrfs_warn(fs_info, "failed to read tree root");
2975 		if (!IS_ERR(tree_root->node))
2976 			free_extent_buffer(tree_root->node);
2977 		tree_root->node = NULL;
2978 		goto recovery_tree_root;
2979 	}
2980 
2981 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2982 	tree_root->commit_root = btrfs_root_node(tree_root);
2983 	btrfs_set_root_refs(&tree_root->root_item, 1);
2984 
2985 	mutex_lock(&tree_root->objectid_mutex);
2986 	ret = btrfs_find_highest_objectid(tree_root,
2987 					&tree_root->highest_objectid);
2988 	if (ret) {
2989 		mutex_unlock(&tree_root->objectid_mutex);
2990 		goto recovery_tree_root;
2991 	}
2992 
2993 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2994 
2995 	mutex_unlock(&tree_root->objectid_mutex);
2996 
2997 	ret = btrfs_read_roots(fs_info, tree_root);
2998 	if (ret)
2999 		goto recovery_tree_root;
3000 
3001 	fs_info->generation = generation;
3002 	fs_info->last_trans_committed = generation;
3003 
3004 	ret = btrfs_recover_balance(fs_info);
3005 	if (ret) {
3006 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3007 		goto fail_block_groups;
3008 	}
3009 
3010 	ret = btrfs_init_dev_stats(fs_info);
3011 	if (ret) {
3012 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3013 		goto fail_block_groups;
3014 	}
3015 
3016 	ret = btrfs_init_dev_replace(fs_info);
3017 	if (ret) {
3018 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3019 		goto fail_block_groups;
3020 	}
3021 
3022 	btrfs_close_extra_devices(fs_devices, 1);
3023 
3024 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3025 	if (ret) {
3026 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3027 				ret);
3028 		goto fail_block_groups;
3029 	}
3030 
3031 	ret = btrfs_sysfs_add_device(fs_devices);
3032 	if (ret) {
3033 		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3034 				ret);
3035 		goto fail_fsdev_sysfs;
3036 	}
3037 
3038 	ret = btrfs_sysfs_add_mounted(fs_info);
3039 	if (ret) {
3040 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3041 		goto fail_fsdev_sysfs;
3042 	}
3043 
3044 	ret = btrfs_init_space_info(fs_info);
3045 	if (ret) {
3046 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3047 		goto fail_sysfs;
3048 	}
3049 
3050 	ret = btrfs_read_block_groups(fs_info->extent_root);
3051 	if (ret) {
3052 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3053 		goto fail_sysfs;
3054 	}
3055 	fs_info->num_tolerated_disk_barrier_failures =
3056 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3057 	if (fs_info->fs_devices->missing_devices >
3058 	     fs_info->num_tolerated_disk_barrier_failures &&
3059 	    !(sb->s_flags & MS_RDONLY)) {
3060 		btrfs_warn(fs_info,
3061 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3062 			fs_info->fs_devices->missing_devices,
3063 			fs_info->num_tolerated_disk_barrier_failures);
3064 		goto fail_sysfs;
3065 	}
3066 
3067 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3068 					       "btrfs-cleaner");
3069 	if (IS_ERR(fs_info->cleaner_kthread))
3070 		goto fail_sysfs;
3071 
3072 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3073 						   tree_root,
3074 						   "btrfs-transaction");
3075 	if (IS_ERR(fs_info->transaction_kthread))
3076 		goto fail_cleaner;
3077 
3078 	if (!btrfs_test_opt(tree_root->fs_info, SSD) &&
3079 	    !btrfs_test_opt(tree_root->fs_info, NOSSD) &&
3080 	    !fs_info->fs_devices->rotating) {
3081 		btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3082 		btrfs_set_opt(fs_info->mount_opt, SSD);
3083 	}
3084 
3085 	/*
3086 	 * Mount does not set all options immediately, we can do it now and do
3087 	 * not have to wait for transaction commit
3088 	 */
3089 	btrfs_apply_pending_changes(fs_info);
3090 
3091 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3092 	if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) {
3093 		ret = btrfsic_mount(tree_root, fs_devices,
3094 				    btrfs_test_opt(tree_root->fs_info,
3095 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3096 				    1 : 0,
3097 				    fs_info->check_integrity_print_mask);
3098 		if (ret)
3099 			btrfs_warn(fs_info,
3100 				"failed to initialize integrity check module: %d",
3101 				ret);
3102 	}
3103 #endif
3104 	ret = btrfs_read_qgroup_config(fs_info);
3105 	if (ret)
3106 		goto fail_trans_kthread;
3107 
3108 	/* do not make disk changes in broken FS or nologreplay is given */
3109 	if (btrfs_super_log_root(disk_super) != 0 &&
3110 	    !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) {
3111 		ret = btrfs_replay_log(fs_info, fs_devices);
3112 		if (ret) {
3113 			err = ret;
3114 			goto fail_qgroup;
3115 		}
3116 	}
3117 
3118 	ret = btrfs_find_orphan_roots(tree_root);
3119 	if (ret)
3120 		goto fail_qgroup;
3121 
3122 	if (!(sb->s_flags & MS_RDONLY)) {
3123 		ret = btrfs_cleanup_fs_roots(fs_info);
3124 		if (ret)
3125 			goto fail_qgroup;
3126 
3127 		mutex_lock(&fs_info->cleaner_mutex);
3128 		ret = btrfs_recover_relocation(tree_root);
3129 		mutex_unlock(&fs_info->cleaner_mutex);
3130 		if (ret < 0) {
3131 			btrfs_warn(fs_info, "failed to recover relocation: %d",
3132 					ret);
3133 			err = -EINVAL;
3134 			goto fail_qgroup;
3135 		}
3136 	}
3137 
3138 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3139 	location.type = BTRFS_ROOT_ITEM_KEY;
3140 	location.offset = 0;
3141 
3142 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3143 	if (IS_ERR(fs_info->fs_root)) {
3144 		err = PTR_ERR(fs_info->fs_root);
3145 		goto fail_qgroup;
3146 	}
3147 
3148 	if (sb->s_flags & MS_RDONLY)
3149 		return 0;
3150 
3151 	if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) &&
3152 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3153 		btrfs_info(fs_info, "creating free space tree");
3154 		ret = btrfs_create_free_space_tree(fs_info);
3155 		if (ret) {
3156 			btrfs_warn(fs_info,
3157 				"failed to create free space tree: %d", ret);
3158 			close_ctree(tree_root);
3159 			return ret;
3160 		}
3161 	}
3162 
3163 	down_read(&fs_info->cleanup_work_sem);
3164 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3165 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3166 		up_read(&fs_info->cleanup_work_sem);
3167 		close_ctree(tree_root);
3168 		return ret;
3169 	}
3170 	up_read(&fs_info->cleanup_work_sem);
3171 
3172 	ret = btrfs_resume_balance_async(fs_info);
3173 	if (ret) {
3174 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3175 		close_ctree(tree_root);
3176 		return ret;
3177 	}
3178 
3179 	ret = btrfs_resume_dev_replace_async(fs_info);
3180 	if (ret) {
3181 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3182 		close_ctree(tree_root);
3183 		return ret;
3184 	}
3185 
3186 	btrfs_qgroup_rescan_resume(fs_info);
3187 
3188 	if (btrfs_test_opt(tree_root->fs_info, CLEAR_CACHE) &&
3189 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3190 		btrfs_info(fs_info, "clearing free space tree");
3191 		ret = btrfs_clear_free_space_tree(fs_info);
3192 		if (ret) {
3193 			btrfs_warn(fs_info,
3194 				"failed to clear free space tree: %d", ret);
3195 			close_ctree(tree_root);
3196 			return ret;
3197 		}
3198 	}
3199 
3200 	if (!fs_info->uuid_root) {
3201 		btrfs_info(fs_info, "creating UUID tree");
3202 		ret = btrfs_create_uuid_tree(fs_info);
3203 		if (ret) {
3204 			btrfs_warn(fs_info,
3205 				"failed to create the UUID tree: %d", ret);
3206 			close_ctree(tree_root);
3207 			return ret;
3208 		}
3209 	} else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) ||
3210 		   fs_info->generation !=
3211 				btrfs_super_uuid_tree_generation(disk_super)) {
3212 		btrfs_info(fs_info, "checking UUID tree");
3213 		ret = btrfs_check_uuid_tree(fs_info);
3214 		if (ret) {
3215 			btrfs_warn(fs_info,
3216 				"failed to check the UUID tree: %d", ret);
3217 			close_ctree(tree_root);
3218 			return ret;
3219 		}
3220 	} else {
3221 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3222 	}
3223 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3224 
3225 	/*
3226 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3227 	 * no need to keep the flag
3228 	 */
3229 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3230 
3231 	return 0;
3232 
3233 fail_qgroup:
3234 	btrfs_free_qgroup_config(fs_info);
3235 fail_trans_kthread:
3236 	kthread_stop(fs_info->transaction_kthread);
3237 	btrfs_cleanup_transaction(fs_info->tree_root);
3238 	btrfs_free_fs_roots(fs_info);
3239 fail_cleaner:
3240 	kthread_stop(fs_info->cleaner_kthread);
3241 
3242 	/*
3243 	 * make sure we're done with the btree inode before we stop our
3244 	 * kthreads
3245 	 */
3246 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3247 
3248 fail_sysfs:
3249 	btrfs_sysfs_remove_mounted(fs_info);
3250 
3251 fail_fsdev_sysfs:
3252 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3253 
3254 fail_block_groups:
3255 	btrfs_put_block_group_cache(fs_info);
3256 	btrfs_free_block_groups(fs_info);
3257 
3258 fail_tree_roots:
3259 	free_root_pointers(fs_info, 1);
3260 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3261 
3262 fail_sb_buffer:
3263 	btrfs_stop_all_workers(fs_info);
3264 fail_alloc:
3265 fail_iput:
3266 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3267 
3268 	iput(fs_info->btree_inode);
3269 fail_bio_counter:
3270 	percpu_counter_destroy(&fs_info->bio_counter);
3271 fail_delalloc_bytes:
3272 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3273 fail_dirty_metadata_bytes:
3274 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3275 fail_bdi:
3276 	bdi_destroy(&fs_info->bdi);
3277 fail_srcu:
3278 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3279 fail:
3280 	btrfs_free_stripe_hash_table(fs_info);
3281 	btrfs_close_devices(fs_info->fs_devices);
3282 	return err;
3283 
3284 recovery_tree_root:
3285 	if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT))
3286 		goto fail_tree_roots;
3287 
3288 	free_root_pointers(fs_info, 0);
3289 
3290 	/* don't use the log in recovery mode, it won't be valid */
3291 	btrfs_set_super_log_root(disk_super, 0);
3292 
3293 	/* we can't trust the free space cache either */
3294 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3295 
3296 	ret = next_root_backup(fs_info, fs_info->super_copy,
3297 			       &num_backups_tried, &backup_index);
3298 	if (ret == -1)
3299 		goto fail_block_groups;
3300 	goto retry_root_backup;
3301 }
3302 
3303 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3304 {
3305 	if (uptodate) {
3306 		set_buffer_uptodate(bh);
3307 	} else {
3308 		struct btrfs_device *device = (struct btrfs_device *)
3309 			bh->b_private;
3310 
3311 		btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3312 				"lost page write due to IO error on %s",
3313 					  rcu_str_deref(device->name));
3314 		/* note, we don't set_buffer_write_io_error because we have
3315 		 * our own ways of dealing with the IO errors
3316 		 */
3317 		clear_buffer_uptodate(bh);
3318 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3319 	}
3320 	unlock_buffer(bh);
3321 	put_bh(bh);
3322 }
3323 
3324 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3325 			struct buffer_head **bh_ret)
3326 {
3327 	struct buffer_head *bh;
3328 	struct btrfs_super_block *super;
3329 	u64 bytenr;
3330 
3331 	bytenr = btrfs_sb_offset(copy_num);
3332 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3333 		return -EINVAL;
3334 
3335 	bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3336 	/*
3337 	 * If we fail to read from the underlying devices, as of now
3338 	 * the best option we have is to mark it EIO.
3339 	 */
3340 	if (!bh)
3341 		return -EIO;
3342 
3343 	super = (struct btrfs_super_block *)bh->b_data;
3344 	if (btrfs_super_bytenr(super) != bytenr ||
3345 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3346 		brelse(bh);
3347 		return -EINVAL;
3348 	}
3349 
3350 	*bh_ret = bh;
3351 	return 0;
3352 }
3353 
3354 
3355 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3356 {
3357 	struct buffer_head *bh;
3358 	struct buffer_head *latest = NULL;
3359 	struct btrfs_super_block *super;
3360 	int i;
3361 	u64 transid = 0;
3362 	int ret = -EINVAL;
3363 
3364 	/* we would like to check all the supers, but that would make
3365 	 * a btrfs mount succeed after a mkfs from a different FS.
3366 	 * So, we need to add a special mount option to scan for
3367 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3368 	 */
3369 	for (i = 0; i < 1; i++) {
3370 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3371 		if (ret)
3372 			continue;
3373 
3374 		super = (struct btrfs_super_block *)bh->b_data;
3375 
3376 		if (!latest || btrfs_super_generation(super) > transid) {
3377 			brelse(latest);
3378 			latest = bh;
3379 			transid = btrfs_super_generation(super);
3380 		} else {
3381 			brelse(bh);
3382 		}
3383 	}
3384 
3385 	if (!latest)
3386 		return ERR_PTR(ret);
3387 
3388 	return latest;
3389 }
3390 
3391 /*
3392  * this should be called twice, once with wait == 0 and
3393  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3394  * we write are pinned.
3395  *
3396  * They are released when wait == 1 is done.
3397  * max_mirrors must be the same for both runs, and it indicates how
3398  * many supers on this one device should be written.
3399  *
3400  * max_mirrors == 0 means to write them all.
3401  */
3402 static int write_dev_supers(struct btrfs_device *device,
3403 			    struct btrfs_super_block *sb,
3404 			    int do_barriers, int wait, int max_mirrors)
3405 {
3406 	struct buffer_head *bh;
3407 	int i;
3408 	int ret;
3409 	int errors = 0;
3410 	u32 crc;
3411 	u64 bytenr;
3412 
3413 	if (max_mirrors == 0)
3414 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3415 
3416 	for (i = 0; i < max_mirrors; i++) {
3417 		bytenr = btrfs_sb_offset(i);
3418 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3419 		    device->commit_total_bytes)
3420 			break;
3421 
3422 		if (wait) {
3423 			bh = __find_get_block(device->bdev, bytenr / 4096,
3424 					      BTRFS_SUPER_INFO_SIZE);
3425 			if (!bh) {
3426 				errors++;
3427 				continue;
3428 			}
3429 			wait_on_buffer(bh);
3430 			if (!buffer_uptodate(bh))
3431 				errors++;
3432 
3433 			/* drop our reference */
3434 			brelse(bh);
3435 
3436 			/* drop the reference from the wait == 0 run */
3437 			brelse(bh);
3438 			continue;
3439 		} else {
3440 			btrfs_set_super_bytenr(sb, bytenr);
3441 
3442 			crc = ~(u32)0;
3443 			crc = btrfs_csum_data((char *)sb +
3444 					      BTRFS_CSUM_SIZE, crc,
3445 					      BTRFS_SUPER_INFO_SIZE -
3446 					      BTRFS_CSUM_SIZE);
3447 			btrfs_csum_final(crc, sb->csum);
3448 
3449 			/*
3450 			 * one reference for us, and we leave it for the
3451 			 * caller
3452 			 */
3453 			bh = __getblk(device->bdev, bytenr / 4096,
3454 				      BTRFS_SUPER_INFO_SIZE);
3455 			if (!bh) {
3456 				btrfs_err(device->dev_root->fs_info,
3457 				    "couldn't get super buffer head for bytenr %llu",
3458 				    bytenr);
3459 				errors++;
3460 				continue;
3461 			}
3462 
3463 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3464 
3465 			/* one reference for submit_bh */
3466 			get_bh(bh);
3467 
3468 			set_buffer_uptodate(bh);
3469 			lock_buffer(bh);
3470 			bh->b_end_io = btrfs_end_buffer_write_sync;
3471 			bh->b_private = device;
3472 		}
3473 
3474 		/*
3475 		 * we fua the first super.  The others we allow
3476 		 * to go down lazy.
3477 		 */
3478 		if (i == 0)
3479 			ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
3480 		else
3481 			ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
3482 		if (ret)
3483 			errors++;
3484 	}
3485 	return errors < i ? 0 : -1;
3486 }
3487 
3488 /*
3489  * endio for the write_dev_flush, this will wake anyone waiting
3490  * for the barrier when it is done
3491  */
3492 static void btrfs_end_empty_barrier(struct bio *bio)
3493 {
3494 	if (bio->bi_private)
3495 		complete(bio->bi_private);
3496 	bio_put(bio);
3497 }
3498 
3499 /*
3500  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3501  * sent down.  With wait == 1, it waits for the previous flush.
3502  *
3503  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3504  * capable
3505  */
3506 static int write_dev_flush(struct btrfs_device *device, int wait)
3507 {
3508 	struct bio *bio;
3509 	int ret = 0;
3510 
3511 	if (device->nobarriers)
3512 		return 0;
3513 
3514 	if (wait) {
3515 		bio = device->flush_bio;
3516 		if (!bio)
3517 			return 0;
3518 
3519 		wait_for_completion(&device->flush_wait);
3520 
3521 		if (bio->bi_error) {
3522 			ret = bio->bi_error;
3523 			btrfs_dev_stat_inc_and_print(device,
3524 				BTRFS_DEV_STAT_FLUSH_ERRS);
3525 		}
3526 
3527 		/* drop the reference from the wait == 0 run */
3528 		bio_put(bio);
3529 		device->flush_bio = NULL;
3530 
3531 		return ret;
3532 	}
3533 
3534 	/*
3535 	 * one reference for us, and we leave it for the
3536 	 * caller
3537 	 */
3538 	device->flush_bio = NULL;
3539 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3540 	if (!bio)
3541 		return -ENOMEM;
3542 
3543 	bio->bi_end_io = btrfs_end_empty_barrier;
3544 	bio->bi_bdev = device->bdev;
3545 	bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
3546 	init_completion(&device->flush_wait);
3547 	bio->bi_private = &device->flush_wait;
3548 	device->flush_bio = bio;
3549 
3550 	bio_get(bio);
3551 	btrfsic_submit_bio(bio);
3552 
3553 	return 0;
3554 }
3555 
3556 /*
3557  * send an empty flush down to each device in parallel,
3558  * then wait for them
3559  */
3560 static int barrier_all_devices(struct btrfs_fs_info *info)
3561 {
3562 	struct list_head *head;
3563 	struct btrfs_device *dev;
3564 	int errors_send = 0;
3565 	int errors_wait = 0;
3566 	int ret;
3567 
3568 	/* send down all the barriers */
3569 	head = &info->fs_devices->devices;
3570 	list_for_each_entry_rcu(dev, head, dev_list) {
3571 		if (dev->missing)
3572 			continue;
3573 		if (!dev->bdev) {
3574 			errors_send++;
3575 			continue;
3576 		}
3577 		if (!dev->in_fs_metadata || !dev->writeable)
3578 			continue;
3579 
3580 		ret = write_dev_flush(dev, 0);
3581 		if (ret)
3582 			errors_send++;
3583 	}
3584 
3585 	/* wait for all the barriers */
3586 	list_for_each_entry_rcu(dev, head, dev_list) {
3587 		if (dev->missing)
3588 			continue;
3589 		if (!dev->bdev) {
3590 			errors_wait++;
3591 			continue;
3592 		}
3593 		if (!dev->in_fs_metadata || !dev->writeable)
3594 			continue;
3595 
3596 		ret = write_dev_flush(dev, 1);
3597 		if (ret)
3598 			errors_wait++;
3599 	}
3600 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3601 	    errors_wait > info->num_tolerated_disk_barrier_failures)
3602 		return -EIO;
3603 	return 0;
3604 }
3605 
3606 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3607 {
3608 	int raid_type;
3609 	int min_tolerated = INT_MAX;
3610 
3611 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3612 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3613 		min_tolerated = min(min_tolerated,
3614 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3615 				    tolerated_failures);
3616 
3617 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3618 		if (raid_type == BTRFS_RAID_SINGLE)
3619 			continue;
3620 		if (!(flags & btrfs_raid_group[raid_type]))
3621 			continue;
3622 		min_tolerated = min(min_tolerated,
3623 				    btrfs_raid_array[raid_type].
3624 				    tolerated_failures);
3625 	}
3626 
3627 	if (min_tolerated == INT_MAX) {
3628 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3629 		min_tolerated = 0;
3630 	}
3631 
3632 	return min_tolerated;
3633 }
3634 
3635 int btrfs_calc_num_tolerated_disk_barrier_failures(
3636 	struct btrfs_fs_info *fs_info)
3637 {
3638 	struct btrfs_ioctl_space_info space;
3639 	struct btrfs_space_info *sinfo;
3640 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3641 		       BTRFS_BLOCK_GROUP_SYSTEM,
3642 		       BTRFS_BLOCK_GROUP_METADATA,
3643 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3644 	int i;
3645 	int c;
3646 	int num_tolerated_disk_barrier_failures =
3647 		(int)fs_info->fs_devices->num_devices;
3648 
3649 	for (i = 0; i < ARRAY_SIZE(types); i++) {
3650 		struct btrfs_space_info *tmp;
3651 
3652 		sinfo = NULL;
3653 		rcu_read_lock();
3654 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3655 			if (tmp->flags == types[i]) {
3656 				sinfo = tmp;
3657 				break;
3658 			}
3659 		}
3660 		rcu_read_unlock();
3661 
3662 		if (!sinfo)
3663 			continue;
3664 
3665 		down_read(&sinfo->groups_sem);
3666 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3667 			u64 flags;
3668 
3669 			if (list_empty(&sinfo->block_groups[c]))
3670 				continue;
3671 
3672 			btrfs_get_block_group_info(&sinfo->block_groups[c],
3673 						   &space);
3674 			if (space.total_bytes == 0 || space.used_bytes == 0)
3675 				continue;
3676 			flags = space.flags;
3677 
3678 			num_tolerated_disk_barrier_failures = min(
3679 				num_tolerated_disk_barrier_failures,
3680 				btrfs_get_num_tolerated_disk_barrier_failures(
3681 					flags));
3682 		}
3683 		up_read(&sinfo->groups_sem);
3684 	}
3685 
3686 	return num_tolerated_disk_barrier_failures;
3687 }
3688 
3689 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3690 {
3691 	struct list_head *head;
3692 	struct btrfs_device *dev;
3693 	struct btrfs_super_block *sb;
3694 	struct btrfs_dev_item *dev_item;
3695 	int ret;
3696 	int do_barriers;
3697 	int max_errors;
3698 	int total_errors = 0;
3699 	u64 flags;
3700 
3701 	do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER);
3702 	backup_super_roots(root->fs_info);
3703 
3704 	sb = root->fs_info->super_for_commit;
3705 	dev_item = &sb->dev_item;
3706 
3707 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3708 	head = &root->fs_info->fs_devices->devices;
3709 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3710 
3711 	if (do_barriers) {
3712 		ret = barrier_all_devices(root->fs_info);
3713 		if (ret) {
3714 			mutex_unlock(
3715 				&root->fs_info->fs_devices->device_list_mutex);
3716 			btrfs_handle_fs_error(root->fs_info, ret,
3717 				    "errors while submitting device barriers.");
3718 			return ret;
3719 		}
3720 	}
3721 
3722 	list_for_each_entry_rcu(dev, head, dev_list) {
3723 		if (!dev->bdev) {
3724 			total_errors++;
3725 			continue;
3726 		}
3727 		if (!dev->in_fs_metadata || !dev->writeable)
3728 			continue;
3729 
3730 		btrfs_set_stack_device_generation(dev_item, 0);
3731 		btrfs_set_stack_device_type(dev_item, dev->type);
3732 		btrfs_set_stack_device_id(dev_item, dev->devid);
3733 		btrfs_set_stack_device_total_bytes(dev_item,
3734 						   dev->commit_total_bytes);
3735 		btrfs_set_stack_device_bytes_used(dev_item,
3736 						  dev->commit_bytes_used);
3737 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3738 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3739 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3740 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3741 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3742 
3743 		flags = btrfs_super_flags(sb);
3744 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3745 
3746 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3747 		if (ret)
3748 			total_errors++;
3749 	}
3750 	if (total_errors > max_errors) {
3751 		btrfs_err(root->fs_info, "%d errors while writing supers",
3752 		       total_errors);
3753 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3754 
3755 		/* FUA is masked off if unsupported and can't be the reason */
3756 		btrfs_handle_fs_error(root->fs_info, -EIO,
3757 			    "%d errors while writing supers", total_errors);
3758 		return -EIO;
3759 	}
3760 
3761 	total_errors = 0;
3762 	list_for_each_entry_rcu(dev, head, dev_list) {
3763 		if (!dev->bdev)
3764 			continue;
3765 		if (!dev->in_fs_metadata || !dev->writeable)
3766 			continue;
3767 
3768 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3769 		if (ret)
3770 			total_errors++;
3771 	}
3772 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3773 	if (total_errors > max_errors) {
3774 		btrfs_handle_fs_error(root->fs_info, -EIO,
3775 			    "%d errors while writing supers", total_errors);
3776 		return -EIO;
3777 	}
3778 	return 0;
3779 }
3780 
3781 int write_ctree_super(struct btrfs_trans_handle *trans,
3782 		      struct btrfs_root *root, int max_mirrors)
3783 {
3784 	return write_all_supers(root, max_mirrors);
3785 }
3786 
3787 /* Drop a fs root from the radix tree and free it. */
3788 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3789 				  struct btrfs_root *root)
3790 {
3791 	spin_lock(&fs_info->fs_roots_radix_lock);
3792 	radix_tree_delete(&fs_info->fs_roots_radix,
3793 			  (unsigned long)root->root_key.objectid);
3794 	spin_unlock(&fs_info->fs_roots_radix_lock);
3795 
3796 	if (btrfs_root_refs(&root->root_item) == 0)
3797 		synchronize_srcu(&fs_info->subvol_srcu);
3798 
3799 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3800 		btrfs_free_log(NULL, root);
3801 		if (root->reloc_root) {
3802 			free_extent_buffer(root->reloc_root->node);
3803 			free_extent_buffer(root->reloc_root->commit_root);
3804 			btrfs_put_fs_root(root->reloc_root);
3805 			root->reloc_root = NULL;
3806 		}
3807 	}
3808 
3809 	if (root->free_ino_pinned)
3810 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3811 	if (root->free_ino_ctl)
3812 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3813 	free_fs_root(root);
3814 }
3815 
3816 static void free_fs_root(struct btrfs_root *root)
3817 {
3818 	iput(root->ino_cache_inode);
3819 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3820 	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3821 	root->orphan_block_rsv = NULL;
3822 	if (root->anon_dev)
3823 		free_anon_bdev(root->anon_dev);
3824 	if (root->subv_writers)
3825 		btrfs_free_subvolume_writers(root->subv_writers);
3826 	free_extent_buffer(root->node);
3827 	free_extent_buffer(root->commit_root);
3828 	kfree(root->free_ino_ctl);
3829 	kfree(root->free_ino_pinned);
3830 	kfree(root->name);
3831 	btrfs_put_fs_root(root);
3832 }
3833 
3834 void btrfs_free_fs_root(struct btrfs_root *root)
3835 {
3836 	free_fs_root(root);
3837 }
3838 
3839 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3840 {
3841 	u64 root_objectid = 0;
3842 	struct btrfs_root *gang[8];
3843 	int i = 0;
3844 	int err = 0;
3845 	unsigned int ret = 0;
3846 	int index;
3847 
3848 	while (1) {
3849 		index = srcu_read_lock(&fs_info->subvol_srcu);
3850 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3851 					     (void **)gang, root_objectid,
3852 					     ARRAY_SIZE(gang));
3853 		if (!ret) {
3854 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3855 			break;
3856 		}
3857 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3858 
3859 		for (i = 0; i < ret; i++) {
3860 			/* Avoid to grab roots in dead_roots */
3861 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3862 				gang[i] = NULL;
3863 				continue;
3864 			}
3865 			/* grab all the search result for later use */
3866 			gang[i] = btrfs_grab_fs_root(gang[i]);
3867 		}
3868 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3869 
3870 		for (i = 0; i < ret; i++) {
3871 			if (!gang[i])
3872 				continue;
3873 			root_objectid = gang[i]->root_key.objectid;
3874 			err = btrfs_orphan_cleanup(gang[i]);
3875 			if (err)
3876 				break;
3877 			btrfs_put_fs_root(gang[i]);
3878 		}
3879 		root_objectid++;
3880 	}
3881 
3882 	/* release the uncleaned roots due to error */
3883 	for (; i < ret; i++) {
3884 		if (gang[i])
3885 			btrfs_put_fs_root(gang[i]);
3886 	}
3887 	return err;
3888 }
3889 
3890 int btrfs_commit_super(struct btrfs_root *root)
3891 {
3892 	struct btrfs_trans_handle *trans;
3893 
3894 	mutex_lock(&root->fs_info->cleaner_mutex);
3895 	btrfs_run_delayed_iputs(root);
3896 	mutex_unlock(&root->fs_info->cleaner_mutex);
3897 	wake_up_process(root->fs_info->cleaner_kthread);
3898 
3899 	/* wait until ongoing cleanup work done */
3900 	down_write(&root->fs_info->cleanup_work_sem);
3901 	up_write(&root->fs_info->cleanup_work_sem);
3902 
3903 	trans = btrfs_join_transaction(root);
3904 	if (IS_ERR(trans))
3905 		return PTR_ERR(trans);
3906 	return btrfs_commit_transaction(trans, root);
3907 }
3908 
3909 void close_ctree(struct btrfs_root *root)
3910 {
3911 	struct btrfs_fs_info *fs_info = root->fs_info;
3912 	int ret;
3913 
3914 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3915 
3916 	/* wait for the qgroup rescan worker to stop */
3917 	btrfs_qgroup_wait_for_completion(fs_info, false);
3918 
3919 	/* wait for the uuid_scan task to finish */
3920 	down(&fs_info->uuid_tree_rescan_sem);
3921 	/* avoid complains from lockdep et al., set sem back to initial state */
3922 	up(&fs_info->uuid_tree_rescan_sem);
3923 
3924 	/* pause restriper - we want to resume on mount */
3925 	btrfs_pause_balance(fs_info);
3926 
3927 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3928 
3929 	btrfs_scrub_cancel(fs_info);
3930 
3931 	/* wait for any defraggers to finish */
3932 	wait_event(fs_info->transaction_wait,
3933 		   (atomic_read(&fs_info->defrag_running) == 0));
3934 
3935 	/* clear out the rbtree of defraggable inodes */
3936 	btrfs_cleanup_defrag_inodes(fs_info);
3937 
3938 	cancel_work_sync(&fs_info->async_reclaim_work);
3939 
3940 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3941 		/*
3942 		 * If the cleaner thread is stopped and there are
3943 		 * block groups queued for removal, the deletion will be
3944 		 * skipped when we quit the cleaner thread.
3945 		 */
3946 		btrfs_delete_unused_bgs(root->fs_info);
3947 
3948 		ret = btrfs_commit_super(root);
3949 		if (ret)
3950 			btrfs_err(fs_info, "commit super ret %d", ret);
3951 	}
3952 
3953 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3954 		btrfs_error_commit_super(root);
3955 
3956 	kthread_stop(fs_info->transaction_kthread);
3957 	kthread_stop(fs_info->cleaner_kthread);
3958 
3959 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3960 
3961 	btrfs_free_qgroup_config(fs_info);
3962 
3963 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3964 		btrfs_info(fs_info, "at unmount delalloc count %lld",
3965 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3966 	}
3967 
3968 	btrfs_sysfs_remove_mounted(fs_info);
3969 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3970 
3971 	btrfs_free_fs_roots(fs_info);
3972 
3973 	btrfs_put_block_group_cache(fs_info);
3974 
3975 	btrfs_free_block_groups(fs_info);
3976 
3977 	/*
3978 	 * we must make sure there is not any read request to
3979 	 * submit after we stopping all workers.
3980 	 */
3981 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3982 	btrfs_stop_all_workers(fs_info);
3983 
3984 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3985 	free_root_pointers(fs_info, 1);
3986 
3987 	iput(fs_info->btree_inode);
3988 
3989 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3990 	if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY))
3991 		btrfsic_unmount(root, fs_info->fs_devices);
3992 #endif
3993 
3994 	btrfs_close_devices(fs_info->fs_devices);
3995 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3996 
3997 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3998 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3999 	percpu_counter_destroy(&fs_info->bio_counter);
4000 	bdi_destroy(&fs_info->bdi);
4001 	cleanup_srcu_struct(&fs_info->subvol_srcu);
4002 
4003 	btrfs_free_stripe_hash_table(fs_info);
4004 
4005 	__btrfs_free_block_rsv(root->orphan_block_rsv);
4006 	root->orphan_block_rsv = NULL;
4007 
4008 	lock_chunks(root);
4009 	while (!list_empty(&fs_info->pinned_chunks)) {
4010 		struct extent_map *em;
4011 
4012 		em = list_first_entry(&fs_info->pinned_chunks,
4013 				      struct extent_map, list);
4014 		list_del_init(&em->list);
4015 		free_extent_map(em);
4016 	}
4017 	unlock_chunks(root);
4018 }
4019 
4020 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4021 			  int atomic)
4022 {
4023 	int ret;
4024 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4025 
4026 	ret = extent_buffer_uptodate(buf);
4027 	if (!ret)
4028 		return ret;
4029 
4030 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4031 				    parent_transid, atomic);
4032 	if (ret == -EAGAIN)
4033 		return ret;
4034 	return !ret;
4035 }
4036 
4037 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4038 {
4039 	struct btrfs_root *root;
4040 	u64 transid = btrfs_header_generation(buf);
4041 	int was_dirty;
4042 
4043 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4044 	/*
4045 	 * This is a fast path so only do this check if we have sanity tests
4046 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
4047 	 * outside of the sanity tests.
4048 	 */
4049 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4050 		return;
4051 #endif
4052 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4053 	btrfs_assert_tree_locked(buf);
4054 	if (transid != root->fs_info->generation)
4055 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4056 			buf->start, transid, root->fs_info->generation);
4057 	was_dirty = set_extent_buffer_dirty(buf);
4058 	if (!was_dirty)
4059 		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
4060 				     buf->len,
4061 				     root->fs_info->dirty_metadata_batch);
4062 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4063 	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4064 		btrfs_print_leaf(root, buf);
4065 		ASSERT(0);
4066 	}
4067 #endif
4068 }
4069 
4070 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4071 					int flush_delayed)
4072 {
4073 	/*
4074 	 * looks as though older kernels can get into trouble with
4075 	 * this code, they end up stuck in balance_dirty_pages forever
4076 	 */
4077 	int ret;
4078 
4079 	if (current->flags & PF_MEMALLOC)
4080 		return;
4081 
4082 	if (flush_delayed)
4083 		btrfs_balance_delayed_items(root);
4084 
4085 	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4086 				     BTRFS_DIRTY_METADATA_THRESH);
4087 	if (ret > 0) {
4088 		balance_dirty_pages_ratelimited(
4089 				   root->fs_info->btree_inode->i_mapping);
4090 	}
4091 }
4092 
4093 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4094 {
4095 	__btrfs_btree_balance_dirty(root, 1);
4096 }
4097 
4098 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4099 {
4100 	__btrfs_btree_balance_dirty(root, 0);
4101 }
4102 
4103 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4104 {
4105 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4106 	return btree_read_extent_buffer_pages(root, buf, parent_transid);
4107 }
4108 
4109 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4110 			      int read_only)
4111 {
4112 	struct btrfs_super_block *sb = fs_info->super_copy;
4113 	u64 nodesize = btrfs_super_nodesize(sb);
4114 	u64 sectorsize = btrfs_super_sectorsize(sb);
4115 	int ret = 0;
4116 
4117 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4118 		btrfs_err(fs_info, "no valid FS found");
4119 		ret = -EINVAL;
4120 	}
4121 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4122 		btrfs_warn(fs_info, "unrecognized super flag: %llu",
4123 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4124 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4125 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
4126 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4127 		ret = -EINVAL;
4128 	}
4129 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4130 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
4131 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4132 		ret = -EINVAL;
4133 	}
4134 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4135 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
4136 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4137 		ret = -EINVAL;
4138 	}
4139 
4140 	/*
4141 	 * Check sectorsize and nodesize first, other check will need it.
4142 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4143 	 */
4144 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4145 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4146 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
4147 		ret = -EINVAL;
4148 	}
4149 	/* Only PAGE SIZE is supported yet */
4150 	if (sectorsize != PAGE_SIZE) {
4151 		btrfs_err(fs_info,
4152 			"sectorsize %llu not supported yet, only support %lu",
4153 			sectorsize, PAGE_SIZE);
4154 		ret = -EINVAL;
4155 	}
4156 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4157 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4158 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
4159 		ret = -EINVAL;
4160 	}
4161 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4162 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4163 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
4164 		ret = -EINVAL;
4165 	}
4166 
4167 	/* Root alignment check */
4168 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4169 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4170 			   btrfs_super_root(sb));
4171 		ret = -EINVAL;
4172 	}
4173 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4174 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4175 			   btrfs_super_chunk_root(sb));
4176 		ret = -EINVAL;
4177 	}
4178 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4179 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
4180 			   btrfs_super_log_root(sb));
4181 		ret = -EINVAL;
4182 	}
4183 
4184 	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4185 		btrfs_err(fs_info,
4186 			   "dev_item UUID does not match fsid: %pU != %pU",
4187 			   fs_info->fsid, sb->dev_item.fsid);
4188 		ret = -EINVAL;
4189 	}
4190 
4191 	/*
4192 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4193 	 * done later
4194 	 */
4195 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4196 		btrfs_err(fs_info, "bytes_used is too small %llu",
4197 			  btrfs_super_bytes_used(sb));
4198 		ret = -EINVAL;
4199 	}
4200 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4201 		btrfs_err(fs_info, "invalid stripesize %u",
4202 			  btrfs_super_stripesize(sb));
4203 		ret = -EINVAL;
4204 	}
4205 	if (btrfs_super_num_devices(sb) > (1UL << 31))
4206 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
4207 			   btrfs_super_num_devices(sb));
4208 	if (btrfs_super_num_devices(sb) == 0) {
4209 		btrfs_err(fs_info, "number of devices is 0");
4210 		ret = -EINVAL;
4211 	}
4212 
4213 	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4214 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
4215 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4216 		ret = -EINVAL;
4217 	}
4218 
4219 	/*
4220 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
4221 	 * and one chunk
4222 	 */
4223 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4224 		btrfs_err(fs_info, "system chunk array too big %u > %u",
4225 			  btrfs_super_sys_array_size(sb),
4226 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4227 		ret = -EINVAL;
4228 	}
4229 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4230 			+ sizeof(struct btrfs_chunk)) {
4231 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
4232 			  btrfs_super_sys_array_size(sb),
4233 			  sizeof(struct btrfs_disk_key)
4234 			  + sizeof(struct btrfs_chunk));
4235 		ret = -EINVAL;
4236 	}
4237 
4238 	/*
4239 	 * The generation is a global counter, we'll trust it more than the others
4240 	 * but it's still possible that it's the one that's wrong.
4241 	 */
4242 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4243 		btrfs_warn(fs_info,
4244 			"suspicious: generation < chunk_root_generation: %llu < %llu",
4245 			btrfs_super_generation(sb),
4246 			btrfs_super_chunk_root_generation(sb));
4247 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4248 	    && btrfs_super_cache_generation(sb) != (u64)-1)
4249 		btrfs_warn(fs_info,
4250 			"suspicious: generation < cache_generation: %llu < %llu",
4251 			btrfs_super_generation(sb),
4252 			btrfs_super_cache_generation(sb));
4253 
4254 	return ret;
4255 }
4256 
4257 static void btrfs_error_commit_super(struct btrfs_root *root)
4258 {
4259 	mutex_lock(&root->fs_info->cleaner_mutex);
4260 	btrfs_run_delayed_iputs(root);
4261 	mutex_unlock(&root->fs_info->cleaner_mutex);
4262 
4263 	down_write(&root->fs_info->cleanup_work_sem);
4264 	up_write(&root->fs_info->cleanup_work_sem);
4265 
4266 	/* cleanup FS via transaction */
4267 	btrfs_cleanup_transaction(root);
4268 }
4269 
4270 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4271 {
4272 	struct btrfs_ordered_extent *ordered;
4273 
4274 	spin_lock(&root->ordered_extent_lock);
4275 	/*
4276 	 * This will just short circuit the ordered completion stuff which will
4277 	 * make sure the ordered extent gets properly cleaned up.
4278 	 */
4279 	list_for_each_entry(ordered, &root->ordered_extents,
4280 			    root_extent_list)
4281 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4282 	spin_unlock(&root->ordered_extent_lock);
4283 }
4284 
4285 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4286 {
4287 	struct btrfs_root *root;
4288 	struct list_head splice;
4289 
4290 	INIT_LIST_HEAD(&splice);
4291 
4292 	spin_lock(&fs_info->ordered_root_lock);
4293 	list_splice_init(&fs_info->ordered_roots, &splice);
4294 	while (!list_empty(&splice)) {
4295 		root = list_first_entry(&splice, struct btrfs_root,
4296 					ordered_root);
4297 		list_move_tail(&root->ordered_root,
4298 			       &fs_info->ordered_roots);
4299 
4300 		spin_unlock(&fs_info->ordered_root_lock);
4301 		btrfs_destroy_ordered_extents(root);
4302 
4303 		cond_resched();
4304 		spin_lock(&fs_info->ordered_root_lock);
4305 	}
4306 	spin_unlock(&fs_info->ordered_root_lock);
4307 }
4308 
4309 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4310 				      struct btrfs_root *root)
4311 {
4312 	struct rb_node *node;
4313 	struct btrfs_delayed_ref_root *delayed_refs;
4314 	struct btrfs_delayed_ref_node *ref;
4315 	int ret = 0;
4316 
4317 	delayed_refs = &trans->delayed_refs;
4318 
4319 	spin_lock(&delayed_refs->lock);
4320 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4321 		spin_unlock(&delayed_refs->lock);
4322 		btrfs_info(root->fs_info, "delayed_refs has NO entry");
4323 		return ret;
4324 	}
4325 
4326 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4327 		struct btrfs_delayed_ref_head *head;
4328 		struct btrfs_delayed_ref_node *tmp;
4329 		bool pin_bytes = false;
4330 
4331 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4332 				href_node);
4333 		if (!mutex_trylock(&head->mutex)) {
4334 			atomic_inc(&head->node.refs);
4335 			spin_unlock(&delayed_refs->lock);
4336 
4337 			mutex_lock(&head->mutex);
4338 			mutex_unlock(&head->mutex);
4339 			btrfs_put_delayed_ref(&head->node);
4340 			spin_lock(&delayed_refs->lock);
4341 			continue;
4342 		}
4343 		spin_lock(&head->lock);
4344 		list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4345 						 list) {
4346 			ref->in_tree = 0;
4347 			list_del(&ref->list);
4348 			atomic_dec(&delayed_refs->num_entries);
4349 			btrfs_put_delayed_ref(ref);
4350 		}
4351 		if (head->must_insert_reserved)
4352 			pin_bytes = true;
4353 		btrfs_free_delayed_extent_op(head->extent_op);
4354 		delayed_refs->num_heads--;
4355 		if (head->processing == 0)
4356 			delayed_refs->num_heads_ready--;
4357 		atomic_dec(&delayed_refs->num_entries);
4358 		head->node.in_tree = 0;
4359 		rb_erase(&head->href_node, &delayed_refs->href_root);
4360 		spin_unlock(&head->lock);
4361 		spin_unlock(&delayed_refs->lock);
4362 		mutex_unlock(&head->mutex);
4363 
4364 		if (pin_bytes)
4365 			btrfs_pin_extent(root, head->node.bytenr,
4366 					 head->node.num_bytes, 1);
4367 		btrfs_put_delayed_ref(&head->node);
4368 		cond_resched();
4369 		spin_lock(&delayed_refs->lock);
4370 	}
4371 
4372 	spin_unlock(&delayed_refs->lock);
4373 
4374 	return ret;
4375 }
4376 
4377 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4378 {
4379 	struct btrfs_inode *btrfs_inode;
4380 	struct list_head splice;
4381 
4382 	INIT_LIST_HEAD(&splice);
4383 
4384 	spin_lock(&root->delalloc_lock);
4385 	list_splice_init(&root->delalloc_inodes, &splice);
4386 
4387 	while (!list_empty(&splice)) {
4388 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4389 					       delalloc_inodes);
4390 
4391 		list_del_init(&btrfs_inode->delalloc_inodes);
4392 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4393 			  &btrfs_inode->runtime_flags);
4394 		spin_unlock(&root->delalloc_lock);
4395 
4396 		btrfs_invalidate_inodes(btrfs_inode->root);
4397 
4398 		spin_lock(&root->delalloc_lock);
4399 	}
4400 
4401 	spin_unlock(&root->delalloc_lock);
4402 }
4403 
4404 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4405 {
4406 	struct btrfs_root *root;
4407 	struct list_head splice;
4408 
4409 	INIT_LIST_HEAD(&splice);
4410 
4411 	spin_lock(&fs_info->delalloc_root_lock);
4412 	list_splice_init(&fs_info->delalloc_roots, &splice);
4413 	while (!list_empty(&splice)) {
4414 		root = list_first_entry(&splice, struct btrfs_root,
4415 					 delalloc_root);
4416 		list_del_init(&root->delalloc_root);
4417 		root = btrfs_grab_fs_root(root);
4418 		BUG_ON(!root);
4419 		spin_unlock(&fs_info->delalloc_root_lock);
4420 
4421 		btrfs_destroy_delalloc_inodes(root);
4422 		btrfs_put_fs_root(root);
4423 
4424 		spin_lock(&fs_info->delalloc_root_lock);
4425 	}
4426 	spin_unlock(&fs_info->delalloc_root_lock);
4427 }
4428 
4429 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4430 					struct extent_io_tree *dirty_pages,
4431 					int mark)
4432 {
4433 	int ret;
4434 	struct extent_buffer *eb;
4435 	u64 start = 0;
4436 	u64 end;
4437 
4438 	while (1) {
4439 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4440 					    mark, NULL);
4441 		if (ret)
4442 			break;
4443 
4444 		clear_extent_bits(dirty_pages, start, end, mark);
4445 		while (start <= end) {
4446 			eb = btrfs_find_tree_block(root->fs_info, start);
4447 			start += root->nodesize;
4448 			if (!eb)
4449 				continue;
4450 			wait_on_extent_buffer_writeback(eb);
4451 
4452 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4453 					       &eb->bflags))
4454 				clear_extent_buffer_dirty(eb);
4455 			free_extent_buffer_stale(eb);
4456 		}
4457 	}
4458 
4459 	return ret;
4460 }
4461 
4462 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4463 				       struct extent_io_tree *pinned_extents)
4464 {
4465 	struct extent_io_tree *unpin;
4466 	u64 start;
4467 	u64 end;
4468 	int ret;
4469 	bool loop = true;
4470 
4471 	unpin = pinned_extents;
4472 again:
4473 	while (1) {
4474 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4475 					    EXTENT_DIRTY, NULL);
4476 		if (ret)
4477 			break;
4478 
4479 		clear_extent_dirty(unpin, start, end);
4480 		btrfs_error_unpin_extent_range(root, start, end);
4481 		cond_resched();
4482 	}
4483 
4484 	if (loop) {
4485 		if (unpin == &root->fs_info->freed_extents[0])
4486 			unpin = &root->fs_info->freed_extents[1];
4487 		else
4488 			unpin = &root->fs_info->freed_extents[0];
4489 		loop = false;
4490 		goto again;
4491 	}
4492 
4493 	return 0;
4494 }
4495 
4496 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4497 {
4498 	struct inode *inode;
4499 
4500 	inode = cache->io_ctl.inode;
4501 	if (inode) {
4502 		invalidate_inode_pages2(inode->i_mapping);
4503 		BTRFS_I(inode)->generation = 0;
4504 		cache->io_ctl.inode = NULL;
4505 		iput(inode);
4506 	}
4507 	btrfs_put_block_group(cache);
4508 }
4509 
4510 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4511 			     struct btrfs_root *root)
4512 {
4513 	struct btrfs_block_group_cache *cache;
4514 
4515 	spin_lock(&cur_trans->dirty_bgs_lock);
4516 	while (!list_empty(&cur_trans->dirty_bgs)) {
4517 		cache = list_first_entry(&cur_trans->dirty_bgs,
4518 					 struct btrfs_block_group_cache,
4519 					 dirty_list);
4520 		if (!cache) {
4521 			btrfs_err(root->fs_info,
4522 				  "orphan block group dirty_bgs list");
4523 			spin_unlock(&cur_trans->dirty_bgs_lock);
4524 			return;
4525 		}
4526 
4527 		if (!list_empty(&cache->io_list)) {
4528 			spin_unlock(&cur_trans->dirty_bgs_lock);
4529 			list_del_init(&cache->io_list);
4530 			btrfs_cleanup_bg_io(cache);
4531 			spin_lock(&cur_trans->dirty_bgs_lock);
4532 		}
4533 
4534 		list_del_init(&cache->dirty_list);
4535 		spin_lock(&cache->lock);
4536 		cache->disk_cache_state = BTRFS_DC_ERROR;
4537 		spin_unlock(&cache->lock);
4538 
4539 		spin_unlock(&cur_trans->dirty_bgs_lock);
4540 		btrfs_put_block_group(cache);
4541 		spin_lock(&cur_trans->dirty_bgs_lock);
4542 	}
4543 	spin_unlock(&cur_trans->dirty_bgs_lock);
4544 
4545 	while (!list_empty(&cur_trans->io_bgs)) {
4546 		cache = list_first_entry(&cur_trans->io_bgs,
4547 					 struct btrfs_block_group_cache,
4548 					 io_list);
4549 		if (!cache) {
4550 			btrfs_err(root->fs_info,
4551 				  "orphan block group on io_bgs list");
4552 			return;
4553 		}
4554 
4555 		list_del_init(&cache->io_list);
4556 		spin_lock(&cache->lock);
4557 		cache->disk_cache_state = BTRFS_DC_ERROR;
4558 		spin_unlock(&cache->lock);
4559 		btrfs_cleanup_bg_io(cache);
4560 	}
4561 }
4562 
4563 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4564 				   struct btrfs_root *root)
4565 {
4566 	btrfs_cleanup_dirty_bgs(cur_trans, root);
4567 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4568 	ASSERT(list_empty(&cur_trans->io_bgs));
4569 
4570 	btrfs_destroy_delayed_refs(cur_trans, root);
4571 
4572 	cur_trans->state = TRANS_STATE_COMMIT_START;
4573 	wake_up(&root->fs_info->transaction_blocked_wait);
4574 
4575 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4576 	wake_up(&root->fs_info->transaction_wait);
4577 
4578 	btrfs_destroy_delayed_inodes(root);
4579 	btrfs_assert_delayed_root_empty(root);
4580 
4581 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4582 				     EXTENT_DIRTY);
4583 	btrfs_destroy_pinned_extent(root,
4584 				    root->fs_info->pinned_extents);
4585 
4586 	cur_trans->state =TRANS_STATE_COMPLETED;
4587 	wake_up(&cur_trans->commit_wait);
4588 
4589 	/*
4590 	memset(cur_trans, 0, sizeof(*cur_trans));
4591 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4592 	*/
4593 }
4594 
4595 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4596 {
4597 	struct btrfs_transaction *t;
4598 
4599 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
4600 
4601 	spin_lock(&root->fs_info->trans_lock);
4602 	while (!list_empty(&root->fs_info->trans_list)) {
4603 		t = list_first_entry(&root->fs_info->trans_list,
4604 				     struct btrfs_transaction, list);
4605 		if (t->state >= TRANS_STATE_COMMIT_START) {
4606 			atomic_inc(&t->use_count);
4607 			spin_unlock(&root->fs_info->trans_lock);
4608 			btrfs_wait_for_commit(root, t->transid);
4609 			btrfs_put_transaction(t);
4610 			spin_lock(&root->fs_info->trans_lock);
4611 			continue;
4612 		}
4613 		if (t == root->fs_info->running_transaction) {
4614 			t->state = TRANS_STATE_COMMIT_DOING;
4615 			spin_unlock(&root->fs_info->trans_lock);
4616 			/*
4617 			 * We wait for 0 num_writers since we don't hold a trans
4618 			 * handle open currently for this transaction.
4619 			 */
4620 			wait_event(t->writer_wait,
4621 				   atomic_read(&t->num_writers) == 0);
4622 		} else {
4623 			spin_unlock(&root->fs_info->trans_lock);
4624 		}
4625 		btrfs_cleanup_one_transaction(t, root);
4626 
4627 		spin_lock(&root->fs_info->trans_lock);
4628 		if (t == root->fs_info->running_transaction)
4629 			root->fs_info->running_transaction = NULL;
4630 		list_del_init(&t->list);
4631 		spin_unlock(&root->fs_info->trans_lock);
4632 
4633 		btrfs_put_transaction(t);
4634 		trace_btrfs_transaction_commit(root);
4635 		spin_lock(&root->fs_info->trans_lock);
4636 	}
4637 	spin_unlock(&root->fs_info->trans_lock);
4638 	btrfs_destroy_all_ordered_extents(root->fs_info);
4639 	btrfs_destroy_delayed_inodes(root);
4640 	btrfs_assert_delayed_root_empty(root);
4641 	btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4642 	btrfs_destroy_all_delalloc_inodes(root->fs_info);
4643 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4644 
4645 	return 0;
4646 }
4647 
4648 static const struct extent_io_ops btree_extent_io_ops = {
4649 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4650 	.readpage_io_failed_hook = btree_io_failed_hook,
4651 	.submit_bio_hook = btree_submit_bio_hook,
4652 	/* note we're sharing with inode.c for the merge bio hook */
4653 	.merge_bio_hook = btrfs_merge_bio_hook,
4654 };
4655