1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 #include "block-group.h" 42 #include "discard.h" 43 #include "space-info.h" 44 #include "zoned.h" 45 #include "subpage.h" 46 #include "fs.h" 47 #include "accessors.h" 48 #include "extent-tree.h" 49 #include "root-tree.h" 50 #include "defrag.h" 51 #include "uuid-tree.h" 52 #include "relocation.h" 53 #include "scrub.h" 54 #include "super.h" 55 56 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 57 BTRFS_HEADER_FLAG_RELOC |\ 58 BTRFS_SUPER_FLAG_ERROR |\ 59 BTRFS_SUPER_FLAG_SEEDING |\ 60 BTRFS_SUPER_FLAG_METADUMP |\ 61 BTRFS_SUPER_FLAG_METADUMP_V2) 62 63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 65 struct btrfs_fs_info *fs_info); 66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 67 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 68 struct extent_io_tree *dirty_pages, 69 int mark); 70 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 71 struct extent_io_tree *pinned_extents); 72 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 73 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 74 75 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 76 { 77 if (fs_info->csum_shash) 78 crypto_free_shash(fs_info->csum_shash); 79 } 80 81 /* 82 * async submit bios are used to offload expensive checksumming 83 * onto the worker threads. They checksum file and metadata bios 84 * just before they are sent down the IO stack. 85 */ 86 struct async_submit_bio { 87 struct btrfs_inode *inode; 88 struct bio *bio; 89 enum btrfs_wq_submit_cmd submit_cmd; 90 int mirror_num; 91 92 /* Optional parameter for used by direct io */ 93 u64 dio_file_offset; 94 struct btrfs_work work; 95 blk_status_t status; 96 }; 97 98 /* 99 * Compute the csum of a btree block and store the result to provided buffer. 100 */ 101 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 102 { 103 struct btrfs_fs_info *fs_info = buf->fs_info; 104 const int num_pages = num_extent_pages(buf); 105 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 106 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 107 char *kaddr; 108 int i; 109 110 shash->tfm = fs_info->csum_shash; 111 crypto_shash_init(shash); 112 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start); 113 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 114 first_page_part - BTRFS_CSUM_SIZE); 115 116 for (i = 1; i < num_pages; i++) { 117 kaddr = page_address(buf->pages[i]); 118 crypto_shash_update(shash, kaddr, PAGE_SIZE); 119 } 120 memset(result, 0, BTRFS_CSUM_SIZE); 121 crypto_shash_final(shash, result); 122 } 123 124 /* 125 * we can't consider a given block up to date unless the transid of the 126 * block matches the transid in the parent node's pointer. This is how we 127 * detect blocks that either didn't get written at all or got written 128 * in the wrong place. 129 */ 130 static int verify_parent_transid(struct extent_io_tree *io_tree, 131 struct extent_buffer *eb, u64 parent_transid, 132 int atomic) 133 { 134 struct extent_state *cached_state = NULL; 135 int ret; 136 137 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 138 return 0; 139 140 if (atomic) 141 return -EAGAIN; 142 143 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state); 144 if (extent_buffer_uptodate(eb) && 145 btrfs_header_generation(eb) == parent_transid) { 146 ret = 0; 147 goto out; 148 } 149 btrfs_err_rl(eb->fs_info, 150 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 151 eb->start, eb->read_mirror, 152 parent_transid, btrfs_header_generation(eb)); 153 ret = 1; 154 clear_extent_buffer_uptodate(eb); 155 out: 156 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 157 &cached_state); 158 return ret; 159 } 160 161 static bool btrfs_supported_super_csum(u16 csum_type) 162 { 163 switch (csum_type) { 164 case BTRFS_CSUM_TYPE_CRC32: 165 case BTRFS_CSUM_TYPE_XXHASH: 166 case BTRFS_CSUM_TYPE_SHA256: 167 case BTRFS_CSUM_TYPE_BLAKE2: 168 return true; 169 default: 170 return false; 171 } 172 } 173 174 /* 175 * Return 0 if the superblock checksum type matches the checksum value of that 176 * algorithm. Pass the raw disk superblock data. 177 */ 178 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 179 const struct btrfs_super_block *disk_sb) 180 { 181 char result[BTRFS_CSUM_SIZE]; 182 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 183 184 shash->tfm = fs_info->csum_shash; 185 186 /* 187 * The super_block structure does not span the whole 188 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 189 * filled with zeros and is included in the checksum. 190 */ 191 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 192 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 193 194 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 195 return 1; 196 197 return 0; 198 } 199 200 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 201 struct btrfs_key *first_key, u64 parent_transid) 202 { 203 struct btrfs_fs_info *fs_info = eb->fs_info; 204 int found_level; 205 struct btrfs_key found_key; 206 int ret; 207 208 found_level = btrfs_header_level(eb); 209 if (found_level != level) { 210 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 211 KERN_ERR "BTRFS: tree level check failed\n"); 212 btrfs_err(fs_info, 213 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 214 eb->start, level, found_level); 215 return -EIO; 216 } 217 218 if (!first_key) 219 return 0; 220 221 /* 222 * For live tree block (new tree blocks in current transaction), 223 * we need proper lock context to avoid race, which is impossible here. 224 * So we only checks tree blocks which is read from disk, whose 225 * generation <= fs_info->last_trans_committed. 226 */ 227 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 228 return 0; 229 230 /* We have @first_key, so this @eb must have at least one item */ 231 if (btrfs_header_nritems(eb) == 0) { 232 btrfs_err(fs_info, 233 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 234 eb->start); 235 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 236 return -EUCLEAN; 237 } 238 239 if (found_level) 240 btrfs_node_key_to_cpu(eb, &found_key, 0); 241 else 242 btrfs_item_key_to_cpu(eb, &found_key, 0); 243 ret = btrfs_comp_cpu_keys(first_key, &found_key); 244 245 if (ret) { 246 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 247 KERN_ERR "BTRFS: tree first key check failed\n"); 248 btrfs_err(fs_info, 249 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 250 eb->start, parent_transid, first_key->objectid, 251 first_key->type, first_key->offset, 252 found_key.objectid, found_key.type, 253 found_key.offset); 254 } 255 return ret; 256 } 257 258 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 259 int mirror_num) 260 { 261 struct btrfs_fs_info *fs_info = eb->fs_info; 262 u64 start = eb->start; 263 int i, num_pages = num_extent_pages(eb); 264 int ret = 0; 265 266 if (sb_rdonly(fs_info->sb)) 267 return -EROFS; 268 269 for (i = 0; i < num_pages; i++) { 270 struct page *p = eb->pages[i]; 271 272 ret = btrfs_repair_io_failure(fs_info, 0, start, PAGE_SIZE, 273 start, p, start - page_offset(p), mirror_num); 274 if (ret) 275 break; 276 start += PAGE_SIZE; 277 } 278 279 return ret; 280 } 281 282 /* 283 * helper to read a given tree block, doing retries as required when 284 * the checksums don't match and we have alternate mirrors to try. 285 * 286 * @check: expected tree parentness check, see the comments of the 287 * structure for details. 288 */ 289 int btrfs_read_extent_buffer(struct extent_buffer *eb, 290 struct btrfs_tree_parent_check *check) 291 { 292 struct btrfs_fs_info *fs_info = eb->fs_info; 293 int failed = 0; 294 int ret; 295 int num_copies = 0; 296 int mirror_num = 0; 297 int failed_mirror = 0; 298 299 ASSERT(check); 300 301 while (1) { 302 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 303 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check); 304 if (!ret) 305 break; 306 307 num_copies = btrfs_num_copies(fs_info, 308 eb->start, eb->len); 309 if (num_copies == 1) 310 break; 311 312 if (!failed_mirror) { 313 failed = 1; 314 failed_mirror = eb->read_mirror; 315 } 316 317 mirror_num++; 318 if (mirror_num == failed_mirror) 319 mirror_num++; 320 321 if (mirror_num > num_copies) 322 break; 323 } 324 325 if (failed && !ret && failed_mirror) 326 btrfs_repair_eb_io_failure(eb, failed_mirror); 327 328 return ret; 329 } 330 331 static int csum_one_extent_buffer(struct extent_buffer *eb) 332 { 333 struct btrfs_fs_info *fs_info = eb->fs_info; 334 u8 result[BTRFS_CSUM_SIZE]; 335 int ret; 336 337 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 338 offsetof(struct btrfs_header, fsid), 339 BTRFS_FSID_SIZE) == 0); 340 csum_tree_block(eb, result); 341 342 if (btrfs_header_level(eb)) 343 ret = btrfs_check_node(eb); 344 else 345 ret = btrfs_check_leaf_full(eb); 346 347 if (ret < 0) 348 goto error; 349 350 /* 351 * Also check the generation, the eb reached here must be newer than 352 * last committed. Or something seriously wrong happened. 353 */ 354 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) { 355 ret = -EUCLEAN; 356 btrfs_err(fs_info, 357 "block=%llu bad generation, have %llu expect > %llu", 358 eb->start, btrfs_header_generation(eb), 359 fs_info->last_trans_committed); 360 goto error; 361 } 362 write_extent_buffer(eb, result, 0, fs_info->csum_size); 363 364 return 0; 365 366 error: 367 btrfs_print_tree(eb, 0); 368 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 369 eb->start); 370 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 371 return ret; 372 } 373 374 /* Checksum all dirty extent buffers in one bio_vec */ 375 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info, 376 struct bio_vec *bvec) 377 { 378 struct page *page = bvec->bv_page; 379 u64 bvec_start = page_offset(page) + bvec->bv_offset; 380 u64 cur; 381 int ret = 0; 382 383 for (cur = bvec_start; cur < bvec_start + bvec->bv_len; 384 cur += fs_info->nodesize) { 385 struct extent_buffer *eb; 386 bool uptodate; 387 388 eb = find_extent_buffer(fs_info, cur); 389 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur, 390 fs_info->nodesize); 391 392 /* A dirty eb shouldn't disappear from buffer_radix */ 393 if (WARN_ON(!eb)) 394 return -EUCLEAN; 395 396 if (WARN_ON(cur != btrfs_header_bytenr(eb))) { 397 free_extent_buffer(eb); 398 return -EUCLEAN; 399 } 400 if (WARN_ON(!uptodate)) { 401 free_extent_buffer(eb); 402 return -EUCLEAN; 403 } 404 405 ret = csum_one_extent_buffer(eb); 406 free_extent_buffer(eb); 407 if (ret < 0) 408 return ret; 409 } 410 return ret; 411 } 412 413 /* 414 * Checksum a dirty tree block before IO. This has extra checks to make sure 415 * we only fill in the checksum field in the first page of a multi-page block. 416 * For subpage extent buffers we need bvec to also read the offset in the page. 417 */ 418 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec) 419 { 420 struct page *page = bvec->bv_page; 421 u64 start = page_offset(page); 422 u64 found_start; 423 struct extent_buffer *eb; 424 425 if (fs_info->nodesize < PAGE_SIZE) 426 return csum_dirty_subpage_buffers(fs_info, bvec); 427 428 eb = (struct extent_buffer *)page->private; 429 if (page != eb->pages[0]) 430 return 0; 431 432 found_start = btrfs_header_bytenr(eb); 433 434 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) { 435 WARN_ON(found_start != 0); 436 return 0; 437 } 438 439 /* 440 * Please do not consolidate these warnings into a single if. 441 * It is useful to know what went wrong. 442 */ 443 if (WARN_ON(found_start != start)) 444 return -EUCLEAN; 445 if (WARN_ON(!PageUptodate(page))) 446 return -EUCLEAN; 447 448 return csum_one_extent_buffer(eb); 449 } 450 451 static int check_tree_block_fsid(struct extent_buffer *eb) 452 { 453 struct btrfs_fs_info *fs_info = eb->fs_info; 454 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 455 u8 fsid[BTRFS_FSID_SIZE]; 456 u8 *metadata_uuid; 457 458 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 459 BTRFS_FSID_SIZE); 460 /* 461 * Checking the incompat flag is only valid for the current fs. For 462 * seed devices it's forbidden to have their uuid changed so reading 463 * ->fsid in this case is fine 464 */ 465 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 466 metadata_uuid = fs_devices->metadata_uuid; 467 else 468 metadata_uuid = fs_devices->fsid; 469 470 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) 471 return 0; 472 473 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 474 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 475 return 0; 476 477 return 1; 478 } 479 480 /* Do basic extent buffer checks at read time */ 481 static int validate_extent_buffer(struct extent_buffer *eb, 482 struct btrfs_tree_parent_check *check) 483 { 484 struct btrfs_fs_info *fs_info = eb->fs_info; 485 u64 found_start; 486 const u32 csum_size = fs_info->csum_size; 487 u8 found_level; 488 u8 result[BTRFS_CSUM_SIZE]; 489 const u8 *header_csum; 490 int ret = 0; 491 492 ASSERT(check); 493 494 found_start = btrfs_header_bytenr(eb); 495 if (found_start != eb->start) { 496 btrfs_err_rl(fs_info, 497 "bad tree block start, mirror %u want %llu have %llu", 498 eb->read_mirror, eb->start, found_start); 499 ret = -EIO; 500 goto out; 501 } 502 if (check_tree_block_fsid(eb)) { 503 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 504 eb->start, eb->read_mirror); 505 ret = -EIO; 506 goto out; 507 } 508 found_level = btrfs_header_level(eb); 509 if (found_level >= BTRFS_MAX_LEVEL) { 510 btrfs_err(fs_info, 511 "bad tree block level, mirror %u level %d on logical %llu", 512 eb->read_mirror, btrfs_header_level(eb), eb->start); 513 ret = -EIO; 514 goto out; 515 } 516 517 csum_tree_block(eb, result); 518 header_csum = page_address(eb->pages[0]) + 519 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum)); 520 521 if (memcmp(result, header_csum, csum_size) != 0) { 522 btrfs_warn_rl(fs_info, 523 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d", 524 eb->start, eb->read_mirror, 525 CSUM_FMT_VALUE(csum_size, header_csum), 526 CSUM_FMT_VALUE(csum_size, result), 527 btrfs_header_level(eb)); 528 ret = -EUCLEAN; 529 goto out; 530 } 531 532 if (found_level != check->level) { 533 ret = -EIO; 534 goto out; 535 } 536 if (unlikely(check->transid && 537 btrfs_header_generation(eb) != check->transid)) { 538 btrfs_err_rl(eb->fs_info, 539 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 540 eb->start, eb->read_mirror, check->transid, 541 btrfs_header_generation(eb)); 542 ret = -EIO; 543 goto out; 544 } 545 if (check->has_first_key) { 546 struct btrfs_key *expect_key = &check->first_key; 547 struct btrfs_key found_key; 548 549 if (found_level) 550 btrfs_node_key_to_cpu(eb, &found_key, 0); 551 else 552 btrfs_item_key_to_cpu(eb, &found_key, 0); 553 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 554 btrfs_err(fs_info, 555 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 556 eb->start, check->transid, 557 expect_key->objectid, 558 expect_key->type, expect_key->offset, 559 found_key.objectid, found_key.type, 560 found_key.offset); 561 ret = -EUCLEAN; 562 goto out; 563 } 564 } 565 if (check->owner_root) { 566 ret = btrfs_check_eb_owner(eb, check->owner_root); 567 if (ret < 0) 568 goto out; 569 } 570 571 /* 572 * If this is a leaf block and it is corrupt, set the corrupt bit so 573 * that we don't try and read the other copies of this block, just 574 * return -EIO. 575 */ 576 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 577 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 578 ret = -EIO; 579 } 580 581 if (found_level > 0 && btrfs_check_node(eb)) 582 ret = -EIO; 583 584 if (!ret) 585 set_extent_buffer_uptodate(eb); 586 else 587 btrfs_err(fs_info, 588 "read time tree block corruption detected on logical %llu mirror %u", 589 eb->start, eb->read_mirror); 590 out: 591 return ret; 592 } 593 594 static int validate_subpage_buffer(struct page *page, u64 start, u64 end, 595 int mirror, struct btrfs_tree_parent_check *check) 596 { 597 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 598 struct extent_buffer *eb; 599 bool reads_done; 600 int ret = 0; 601 602 ASSERT(check); 603 604 /* 605 * We don't allow bio merge for subpage metadata read, so we should 606 * only get one eb for each endio hook. 607 */ 608 ASSERT(end == start + fs_info->nodesize - 1); 609 ASSERT(PagePrivate(page)); 610 611 eb = find_extent_buffer(fs_info, start); 612 /* 613 * When we are reading one tree block, eb must have been inserted into 614 * the radix tree. If not, something is wrong. 615 */ 616 ASSERT(eb); 617 618 reads_done = atomic_dec_and_test(&eb->io_pages); 619 /* Subpage read must finish in page read */ 620 ASSERT(reads_done); 621 622 eb->read_mirror = mirror; 623 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 624 ret = -EIO; 625 goto err; 626 } 627 ret = validate_extent_buffer(eb, check); 628 if (ret < 0) 629 goto err; 630 631 set_extent_buffer_uptodate(eb); 632 633 free_extent_buffer(eb); 634 return ret; 635 err: 636 /* 637 * end_bio_extent_readpage decrements io_pages in case of error, 638 * make sure it has something to decrement. 639 */ 640 atomic_inc(&eb->io_pages); 641 clear_extent_buffer_uptodate(eb); 642 free_extent_buffer(eb); 643 return ret; 644 } 645 646 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio, 647 struct page *page, u64 start, u64 end, 648 int mirror) 649 { 650 struct extent_buffer *eb; 651 int ret = 0; 652 int reads_done; 653 654 ASSERT(page->private); 655 656 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 657 return validate_subpage_buffer(page, start, end, mirror, 658 &bbio->parent_check); 659 660 eb = (struct extent_buffer *)page->private; 661 662 /* 663 * The pending IO might have been the only thing that kept this buffer 664 * in memory. Make sure we have a ref for all this other checks 665 */ 666 atomic_inc(&eb->refs); 667 668 reads_done = atomic_dec_and_test(&eb->io_pages); 669 if (!reads_done) 670 goto err; 671 672 eb->read_mirror = mirror; 673 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 674 ret = -EIO; 675 goto err; 676 } 677 ret = validate_extent_buffer(eb, &bbio->parent_check); 678 err: 679 if (ret) { 680 /* 681 * our io error hook is going to dec the io pages 682 * again, we have to make sure it has something 683 * to decrement 684 */ 685 atomic_inc(&eb->io_pages); 686 clear_extent_buffer_uptodate(eb); 687 } 688 free_extent_buffer(eb); 689 690 return ret; 691 } 692 693 static void run_one_async_start(struct btrfs_work *work) 694 { 695 struct async_submit_bio *async; 696 blk_status_t ret; 697 698 async = container_of(work, struct async_submit_bio, work); 699 switch (async->submit_cmd) { 700 case WQ_SUBMIT_METADATA: 701 ret = btree_submit_bio_start(async->bio); 702 break; 703 case WQ_SUBMIT_DATA: 704 ret = btrfs_submit_bio_start(async->inode, async->bio); 705 break; 706 case WQ_SUBMIT_DATA_DIO: 707 ret = btrfs_submit_bio_start_direct_io(async->inode, 708 async->bio, async->dio_file_offset); 709 break; 710 } 711 if (ret) 712 async->status = ret; 713 } 714 715 /* 716 * In order to insert checksums into the metadata in large chunks, we wait 717 * until bio submission time. All the pages in the bio are checksummed and 718 * sums are attached onto the ordered extent record. 719 * 720 * At IO completion time the csums attached on the ordered extent record are 721 * inserted into the tree. 722 */ 723 static void run_one_async_done(struct btrfs_work *work) 724 { 725 struct async_submit_bio *async = 726 container_of(work, struct async_submit_bio, work); 727 struct btrfs_inode *inode = async->inode; 728 struct btrfs_bio *bbio = btrfs_bio(async->bio); 729 730 /* If an error occurred we just want to clean up the bio and move on */ 731 if (async->status) { 732 btrfs_bio_end_io(bbio, async->status); 733 return; 734 } 735 736 /* 737 * All of the bios that pass through here are from async helpers. 738 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context. 739 * This changes nothing when cgroups aren't in use. 740 */ 741 async->bio->bi_opf |= REQ_CGROUP_PUNT; 742 btrfs_submit_bio(inode->root->fs_info, async->bio, async->mirror_num); 743 } 744 745 static void run_one_async_free(struct btrfs_work *work) 746 { 747 struct async_submit_bio *async; 748 749 async = container_of(work, struct async_submit_bio, work); 750 kfree(async); 751 } 752 753 /* 754 * Submit bio to an async queue. 755 * 756 * Retrun: 757 * - true if the work has been succesfuly submitted 758 * - false in case of error 759 */ 760 bool btrfs_wq_submit_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num, 761 u64 dio_file_offset, enum btrfs_wq_submit_cmd cmd) 762 { 763 struct btrfs_fs_info *fs_info = inode->root->fs_info; 764 struct async_submit_bio *async; 765 766 async = kmalloc(sizeof(*async), GFP_NOFS); 767 if (!async) 768 return false; 769 770 async->inode = inode; 771 async->bio = bio; 772 async->mirror_num = mirror_num; 773 async->submit_cmd = cmd; 774 775 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done, 776 run_one_async_free); 777 778 async->dio_file_offset = dio_file_offset; 779 780 async->status = 0; 781 782 if (op_is_sync(bio->bi_opf)) 783 btrfs_queue_work(fs_info->hipri_workers, &async->work); 784 else 785 btrfs_queue_work(fs_info->workers, &async->work); 786 return true; 787 } 788 789 static blk_status_t btree_csum_one_bio(struct bio *bio) 790 { 791 struct bio_vec *bvec; 792 struct btrfs_root *root; 793 int ret = 0; 794 struct bvec_iter_all iter_all; 795 796 ASSERT(!bio_flagged(bio, BIO_CLONED)); 797 bio_for_each_segment_all(bvec, bio, iter_all) { 798 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 799 ret = csum_dirty_buffer(root->fs_info, bvec); 800 if (ret) 801 break; 802 } 803 804 return errno_to_blk_status(ret); 805 } 806 807 blk_status_t btree_submit_bio_start(struct bio *bio) 808 { 809 /* 810 * when we're called for a write, we're already in the async 811 * submission context. Just jump into btrfs_submit_bio. 812 */ 813 return btree_csum_one_bio(bio); 814 } 815 816 static bool should_async_write(struct btrfs_fs_info *fs_info, 817 struct btrfs_inode *bi) 818 { 819 if (btrfs_is_zoned(fs_info)) 820 return false; 821 if (atomic_read(&bi->sync_writers)) 822 return false; 823 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 824 return false; 825 return true; 826 } 827 828 void btrfs_submit_metadata_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num) 829 { 830 struct btrfs_fs_info *fs_info = inode->root->fs_info; 831 struct btrfs_bio *bbio = btrfs_bio(bio); 832 blk_status_t ret; 833 834 bio->bi_opf |= REQ_META; 835 bbio->is_metadata = 1; 836 837 if (btrfs_op(bio) != BTRFS_MAP_WRITE) { 838 btrfs_submit_bio(fs_info, bio, mirror_num); 839 return; 840 } 841 842 /* 843 * Kthread helpers are used to submit writes so that checksumming can 844 * happen in parallel across all CPUs. 845 */ 846 if (should_async_write(fs_info, inode) && 847 btrfs_wq_submit_bio(inode, bio, mirror_num, 0, WQ_SUBMIT_METADATA)) 848 return; 849 850 ret = btree_csum_one_bio(bio); 851 if (ret) { 852 btrfs_bio_end_io(bbio, ret); 853 return; 854 } 855 856 btrfs_submit_bio(fs_info, bio, mirror_num); 857 } 858 859 #ifdef CONFIG_MIGRATION 860 static int btree_migrate_folio(struct address_space *mapping, 861 struct folio *dst, struct folio *src, enum migrate_mode mode) 862 { 863 /* 864 * we can't safely write a btree page from here, 865 * we haven't done the locking hook 866 */ 867 if (folio_test_dirty(src)) 868 return -EAGAIN; 869 /* 870 * Buffers may be managed in a filesystem specific way. 871 * We must have no buffers or drop them. 872 */ 873 if (folio_get_private(src) && 874 !filemap_release_folio(src, GFP_KERNEL)) 875 return -EAGAIN; 876 return migrate_folio(mapping, dst, src, mode); 877 } 878 #else 879 #define btree_migrate_folio NULL 880 #endif 881 882 static int btree_writepages(struct address_space *mapping, 883 struct writeback_control *wbc) 884 { 885 struct btrfs_fs_info *fs_info; 886 int ret; 887 888 if (wbc->sync_mode == WB_SYNC_NONE) { 889 890 if (wbc->for_kupdate) 891 return 0; 892 893 fs_info = BTRFS_I(mapping->host)->root->fs_info; 894 /* this is a bit racy, but that's ok */ 895 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 896 BTRFS_DIRTY_METADATA_THRESH, 897 fs_info->dirty_metadata_batch); 898 if (ret < 0) 899 return 0; 900 } 901 return btree_write_cache_pages(mapping, wbc); 902 } 903 904 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 905 { 906 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 907 return false; 908 909 return try_release_extent_buffer(&folio->page); 910 } 911 912 static void btree_invalidate_folio(struct folio *folio, size_t offset, 913 size_t length) 914 { 915 struct extent_io_tree *tree; 916 tree = &BTRFS_I(folio->mapping->host)->io_tree; 917 extent_invalidate_folio(tree, folio, offset); 918 btree_release_folio(folio, GFP_NOFS); 919 if (folio_get_private(folio)) { 920 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info, 921 "folio private not zero on folio %llu", 922 (unsigned long long)folio_pos(folio)); 923 folio_detach_private(folio); 924 } 925 } 926 927 #ifdef DEBUG 928 static bool btree_dirty_folio(struct address_space *mapping, 929 struct folio *folio) 930 { 931 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 932 struct btrfs_subpage *subpage; 933 struct extent_buffer *eb; 934 int cur_bit = 0; 935 u64 page_start = folio_pos(folio); 936 937 if (fs_info->sectorsize == PAGE_SIZE) { 938 eb = folio_get_private(folio); 939 BUG_ON(!eb); 940 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 941 BUG_ON(!atomic_read(&eb->refs)); 942 btrfs_assert_tree_write_locked(eb); 943 return filemap_dirty_folio(mapping, folio); 944 } 945 subpage = folio_get_private(folio); 946 947 ASSERT(subpage->dirty_bitmap); 948 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) { 949 unsigned long flags; 950 u64 cur; 951 u16 tmp = (1 << cur_bit); 952 953 spin_lock_irqsave(&subpage->lock, flags); 954 if (!(tmp & subpage->dirty_bitmap)) { 955 spin_unlock_irqrestore(&subpage->lock, flags); 956 cur_bit++; 957 continue; 958 } 959 spin_unlock_irqrestore(&subpage->lock, flags); 960 cur = page_start + cur_bit * fs_info->sectorsize; 961 962 eb = find_extent_buffer(fs_info, cur); 963 ASSERT(eb); 964 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 965 ASSERT(atomic_read(&eb->refs)); 966 btrfs_assert_tree_write_locked(eb); 967 free_extent_buffer(eb); 968 969 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits); 970 } 971 return filemap_dirty_folio(mapping, folio); 972 } 973 #else 974 #define btree_dirty_folio filemap_dirty_folio 975 #endif 976 977 static const struct address_space_operations btree_aops = { 978 .writepages = btree_writepages, 979 .release_folio = btree_release_folio, 980 .invalidate_folio = btree_invalidate_folio, 981 .migrate_folio = btree_migrate_folio, 982 .dirty_folio = btree_dirty_folio, 983 }; 984 985 struct extent_buffer *btrfs_find_create_tree_block( 986 struct btrfs_fs_info *fs_info, 987 u64 bytenr, u64 owner_root, 988 int level) 989 { 990 if (btrfs_is_testing(fs_info)) 991 return alloc_test_extent_buffer(fs_info, bytenr); 992 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 993 } 994 995 /* 996 * Read tree block at logical address @bytenr and do variant basic but critical 997 * verification. 998 * 999 * @check: expected tree parentness check, see comments of the 1000 * structure for details. 1001 */ 1002 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1003 struct btrfs_tree_parent_check *check) 1004 { 1005 struct extent_buffer *buf = NULL; 1006 int ret; 1007 1008 ASSERT(check); 1009 1010 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 1011 check->level); 1012 if (IS_ERR(buf)) 1013 return buf; 1014 1015 ret = btrfs_read_extent_buffer(buf, check); 1016 if (ret) { 1017 free_extent_buffer_stale(buf); 1018 return ERR_PTR(ret); 1019 } 1020 if (btrfs_check_eb_owner(buf, check->owner_root)) { 1021 free_extent_buffer_stale(buf); 1022 return ERR_PTR(-EUCLEAN); 1023 } 1024 return buf; 1025 1026 } 1027 1028 void btrfs_clean_tree_block(struct extent_buffer *buf) 1029 { 1030 struct btrfs_fs_info *fs_info = buf->fs_info; 1031 if (btrfs_header_generation(buf) == 1032 fs_info->running_transaction->transid) { 1033 btrfs_assert_tree_write_locked(buf); 1034 1035 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1036 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1037 -buf->len, 1038 fs_info->dirty_metadata_batch); 1039 clear_extent_buffer_dirty(buf); 1040 } 1041 } 1042 } 1043 1044 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1045 u64 objectid) 1046 { 1047 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1048 1049 memset(&root->root_key, 0, sizeof(root->root_key)); 1050 memset(&root->root_item, 0, sizeof(root->root_item)); 1051 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1052 root->fs_info = fs_info; 1053 root->root_key.objectid = objectid; 1054 root->node = NULL; 1055 root->commit_root = NULL; 1056 root->state = 0; 1057 RB_CLEAR_NODE(&root->rb_node); 1058 1059 root->last_trans = 0; 1060 root->free_objectid = 0; 1061 root->nr_delalloc_inodes = 0; 1062 root->nr_ordered_extents = 0; 1063 root->inode_tree = RB_ROOT; 1064 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1065 1066 btrfs_init_root_block_rsv(root); 1067 1068 INIT_LIST_HEAD(&root->dirty_list); 1069 INIT_LIST_HEAD(&root->root_list); 1070 INIT_LIST_HEAD(&root->delalloc_inodes); 1071 INIT_LIST_HEAD(&root->delalloc_root); 1072 INIT_LIST_HEAD(&root->ordered_extents); 1073 INIT_LIST_HEAD(&root->ordered_root); 1074 INIT_LIST_HEAD(&root->reloc_dirty_list); 1075 INIT_LIST_HEAD(&root->logged_list[0]); 1076 INIT_LIST_HEAD(&root->logged_list[1]); 1077 spin_lock_init(&root->inode_lock); 1078 spin_lock_init(&root->delalloc_lock); 1079 spin_lock_init(&root->ordered_extent_lock); 1080 spin_lock_init(&root->accounting_lock); 1081 spin_lock_init(&root->log_extents_lock[0]); 1082 spin_lock_init(&root->log_extents_lock[1]); 1083 spin_lock_init(&root->qgroup_meta_rsv_lock); 1084 mutex_init(&root->objectid_mutex); 1085 mutex_init(&root->log_mutex); 1086 mutex_init(&root->ordered_extent_mutex); 1087 mutex_init(&root->delalloc_mutex); 1088 init_waitqueue_head(&root->qgroup_flush_wait); 1089 init_waitqueue_head(&root->log_writer_wait); 1090 init_waitqueue_head(&root->log_commit_wait[0]); 1091 init_waitqueue_head(&root->log_commit_wait[1]); 1092 INIT_LIST_HEAD(&root->log_ctxs[0]); 1093 INIT_LIST_HEAD(&root->log_ctxs[1]); 1094 atomic_set(&root->log_commit[0], 0); 1095 atomic_set(&root->log_commit[1], 0); 1096 atomic_set(&root->log_writers, 0); 1097 atomic_set(&root->log_batch, 0); 1098 refcount_set(&root->refs, 1); 1099 atomic_set(&root->snapshot_force_cow, 0); 1100 atomic_set(&root->nr_swapfiles, 0); 1101 root->log_transid = 0; 1102 root->log_transid_committed = -1; 1103 root->last_log_commit = 0; 1104 root->anon_dev = 0; 1105 if (!dummy) { 1106 extent_io_tree_init(fs_info, &root->dirty_log_pages, 1107 IO_TREE_ROOT_DIRTY_LOG_PAGES); 1108 extent_io_tree_init(fs_info, &root->log_csum_range, 1109 IO_TREE_LOG_CSUM_RANGE); 1110 } 1111 1112 spin_lock_init(&root->root_item_lock); 1113 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1114 #ifdef CONFIG_BTRFS_DEBUG 1115 INIT_LIST_HEAD(&root->leak_list); 1116 spin_lock(&fs_info->fs_roots_radix_lock); 1117 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 1118 spin_unlock(&fs_info->fs_roots_radix_lock); 1119 #endif 1120 } 1121 1122 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1123 u64 objectid, gfp_t flags) 1124 { 1125 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1126 if (root) 1127 __setup_root(root, fs_info, objectid); 1128 return root; 1129 } 1130 1131 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1132 /* Should only be used by the testing infrastructure */ 1133 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1134 { 1135 struct btrfs_root *root; 1136 1137 if (!fs_info) 1138 return ERR_PTR(-EINVAL); 1139 1140 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 1141 if (!root) 1142 return ERR_PTR(-ENOMEM); 1143 1144 /* We don't use the stripesize in selftest, set it as sectorsize */ 1145 root->alloc_bytenr = 0; 1146 1147 return root; 1148 } 1149 #endif 1150 1151 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 1152 { 1153 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 1154 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 1155 1156 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 1157 } 1158 1159 static int global_root_key_cmp(const void *k, const struct rb_node *node) 1160 { 1161 const struct btrfs_key *key = k; 1162 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 1163 1164 return btrfs_comp_cpu_keys(key, &root->root_key); 1165 } 1166 1167 int btrfs_global_root_insert(struct btrfs_root *root) 1168 { 1169 struct btrfs_fs_info *fs_info = root->fs_info; 1170 struct rb_node *tmp; 1171 1172 write_lock(&fs_info->global_root_lock); 1173 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 1174 write_unlock(&fs_info->global_root_lock); 1175 ASSERT(!tmp); 1176 1177 return tmp ? -EEXIST : 0; 1178 } 1179 1180 void btrfs_global_root_delete(struct btrfs_root *root) 1181 { 1182 struct btrfs_fs_info *fs_info = root->fs_info; 1183 1184 write_lock(&fs_info->global_root_lock); 1185 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1186 write_unlock(&fs_info->global_root_lock); 1187 } 1188 1189 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 1190 struct btrfs_key *key) 1191 { 1192 struct rb_node *node; 1193 struct btrfs_root *root = NULL; 1194 1195 read_lock(&fs_info->global_root_lock); 1196 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 1197 if (node) 1198 root = container_of(node, struct btrfs_root, rb_node); 1199 read_unlock(&fs_info->global_root_lock); 1200 1201 return root; 1202 } 1203 1204 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 1205 { 1206 struct btrfs_block_group *block_group; 1207 u64 ret; 1208 1209 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 1210 return 0; 1211 1212 if (bytenr) 1213 block_group = btrfs_lookup_block_group(fs_info, bytenr); 1214 else 1215 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 1216 ASSERT(block_group); 1217 if (!block_group) 1218 return 0; 1219 ret = block_group->global_root_id; 1220 btrfs_put_block_group(block_group); 1221 1222 return ret; 1223 } 1224 1225 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1226 { 1227 struct btrfs_key key = { 1228 .objectid = BTRFS_CSUM_TREE_OBJECTID, 1229 .type = BTRFS_ROOT_ITEM_KEY, 1230 .offset = btrfs_global_root_id(fs_info, bytenr), 1231 }; 1232 1233 return btrfs_global_root(fs_info, &key); 1234 } 1235 1236 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1237 { 1238 struct btrfs_key key = { 1239 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 1240 .type = BTRFS_ROOT_ITEM_KEY, 1241 .offset = btrfs_global_root_id(fs_info, bytenr), 1242 }; 1243 1244 return btrfs_global_root(fs_info, &key); 1245 } 1246 1247 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) 1248 { 1249 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) 1250 return fs_info->block_group_root; 1251 return btrfs_extent_root(fs_info, 0); 1252 } 1253 1254 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1255 u64 objectid) 1256 { 1257 struct btrfs_fs_info *fs_info = trans->fs_info; 1258 struct extent_buffer *leaf; 1259 struct btrfs_root *tree_root = fs_info->tree_root; 1260 struct btrfs_root *root; 1261 struct btrfs_key key; 1262 unsigned int nofs_flag; 1263 int ret = 0; 1264 1265 /* 1266 * We're holding a transaction handle, so use a NOFS memory allocation 1267 * context to avoid deadlock if reclaim happens. 1268 */ 1269 nofs_flag = memalloc_nofs_save(); 1270 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 1271 memalloc_nofs_restore(nofs_flag); 1272 if (!root) 1273 return ERR_PTR(-ENOMEM); 1274 1275 root->root_key.objectid = objectid; 1276 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1277 root->root_key.offset = 0; 1278 1279 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 1280 BTRFS_NESTING_NORMAL); 1281 if (IS_ERR(leaf)) { 1282 ret = PTR_ERR(leaf); 1283 leaf = NULL; 1284 goto fail; 1285 } 1286 1287 root->node = leaf; 1288 btrfs_mark_buffer_dirty(leaf); 1289 1290 root->commit_root = btrfs_root_node(root); 1291 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1292 1293 btrfs_set_root_flags(&root->root_item, 0); 1294 btrfs_set_root_limit(&root->root_item, 0); 1295 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1296 btrfs_set_root_generation(&root->root_item, trans->transid); 1297 btrfs_set_root_level(&root->root_item, 0); 1298 btrfs_set_root_refs(&root->root_item, 1); 1299 btrfs_set_root_used(&root->root_item, leaf->len); 1300 btrfs_set_root_last_snapshot(&root->root_item, 0); 1301 btrfs_set_root_dirid(&root->root_item, 0); 1302 if (is_fstree(objectid)) 1303 generate_random_guid(root->root_item.uuid); 1304 else 1305 export_guid(root->root_item.uuid, &guid_null); 1306 btrfs_set_root_drop_level(&root->root_item, 0); 1307 1308 btrfs_tree_unlock(leaf); 1309 1310 key.objectid = objectid; 1311 key.type = BTRFS_ROOT_ITEM_KEY; 1312 key.offset = 0; 1313 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1314 if (ret) 1315 goto fail; 1316 1317 return root; 1318 1319 fail: 1320 btrfs_put_root(root); 1321 1322 return ERR_PTR(ret); 1323 } 1324 1325 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1326 struct btrfs_fs_info *fs_info) 1327 { 1328 struct btrfs_root *root; 1329 1330 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 1331 if (!root) 1332 return ERR_PTR(-ENOMEM); 1333 1334 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1335 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1336 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1337 1338 return root; 1339 } 1340 1341 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 1342 struct btrfs_root *root) 1343 { 1344 struct extent_buffer *leaf; 1345 1346 /* 1347 * DON'T set SHAREABLE bit for log trees. 1348 * 1349 * Log trees are not exposed to user space thus can't be snapshotted, 1350 * and they go away before a real commit is actually done. 1351 * 1352 * They do store pointers to file data extents, and those reference 1353 * counts still get updated (along with back refs to the log tree). 1354 */ 1355 1356 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1357 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); 1358 if (IS_ERR(leaf)) 1359 return PTR_ERR(leaf); 1360 1361 root->node = leaf; 1362 1363 btrfs_mark_buffer_dirty(root->node); 1364 btrfs_tree_unlock(root->node); 1365 1366 return 0; 1367 } 1368 1369 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1370 struct btrfs_fs_info *fs_info) 1371 { 1372 struct btrfs_root *log_root; 1373 1374 log_root = alloc_log_tree(trans, fs_info); 1375 if (IS_ERR(log_root)) 1376 return PTR_ERR(log_root); 1377 1378 if (!btrfs_is_zoned(fs_info)) { 1379 int ret = btrfs_alloc_log_tree_node(trans, log_root); 1380 1381 if (ret) { 1382 btrfs_put_root(log_root); 1383 return ret; 1384 } 1385 } 1386 1387 WARN_ON(fs_info->log_root_tree); 1388 fs_info->log_root_tree = log_root; 1389 return 0; 1390 } 1391 1392 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1393 struct btrfs_root *root) 1394 { 1395 struct btrfs_fs_info *fs_info = root->fs_info; 1396 struct btrfs_root *log_root; 1397 struct btrfs_inode_item *inode_item; 1398 int ret; 1399 1400 log_root = alloc_log_tree(trans, fs_info); 1401 if (IS_ERR(log_root)) 1402 return PTR_ERR(log_root); 1403 1404 ret = btrfs_alloc_log_tree_node(trans, log_root); 1405 if (ret) { 1406 btrfs_put_root(log_root); 1407 return ret; 1408 } 1409 1410 log_root->last_trans = trans->transid; 1411 log_root->root_key.offset = root->root_key.objectid; 1412 1413 inode_item = &log_root->root_item.inode; 1414 btrfs_set_stack_inode_generation(inode_item, 1); 1415 btrfs_set_stack_inode_size(inode_item, 3); 1416 btrfs_set_stack_inode_nlink(inode_item, 1); 1417 btrfs_set_stack_inode_nbytes(inode_item, 1418 fs_info->nodesize); 1419 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1420 1421 btrfs_set_root_node(&log_root->root_item, log_root->node); 1422 1423 WARN_ON(root->log_root); 1424 root->log_root = log_root; 1425 root->log_transid = 0; 1426 root->log_transid_committed = -1; 1427 root->last_log_commit = 0; 1428 return 0; 1429 } 1430 1431 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1432 struct btrfs_path *path, 1433 struct btrfs_key *key) 1434 { 1435 struct btrfs_root *root; 1436 struct btrfs_tree_parent_check check = { 0 }; 1437 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1438 u64 generation; 1439 int ret; 1440 int level; 1441 1442 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1443 if (!root) 1444 return ERR_PTR(-ENOMEM); 1445 1446 ret = btrfs_find_root(tree_root, key, path, 1447 &root->root_item, &root->root_key); 1448 if (ret) { 1449 if (ret > 0) 1450 ret = -ENOENT; 1451 goto fail; 1452 } 1453 1454 generation = btrfs_root_generation(&root->root_item); 1455 level = btrfs_root_level(&root->root_item); 1456 check.level = level; 1457 check.transid = generation; 1458 check.owner_root = key->objectid; 1459 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1460 &check); 1461 if (IS_ERR(root->node)) { 1462 ret = PTR_ERR(root->node); 1463 root->node = NULL; 1464 goto fail; 1465 } 1466 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1467 ret = -EIO; 1468 goto fail; 1469 } 1470 1471 /* 1472 * For real fs, and not log/reloc trees, root owner must 1473 * match its root node owner 1474 */ 1475 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) && 1476 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1477 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1478 root->root_key.objectid != btrfs_header_owner(root->node)) { 1479 btrfs_crit(fs_info, 1480 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1481 root->root_key.objectid, root->node->start, 1482 btrfs_header_owner(root->node), 1483 root->root_key.objectid); 1484 ret = -EUCLEAN; 1485 goto fail; 1486 } 1487 root->commit_root = btrfs_root_node(root); 1488 return root; 1489 fail: 1490 btrfs_put_root(root); 1491 return ERR_PTR(ret); 1492 } 1493 1494 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1495 struct btrfs_key *key) 1496 { 1497 struct btrfs_root *root; 1498 struct btrfs_path *path; 1499 1500 path = btrfs_alloc_path(); 1501 if (!path) 1502 return ERR_PTR(-ENOMEM); 1503 root = read_tree_root_path(tree_root, path, key); 1504 btrfs_free_path(path); 1505 1506 return root; 1507 } 1508 1509 /* 1510 * Initialize subvolume root in-memory structure 1511 * 1512 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1513 */ 1514 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1515 { 1516 int ret; 1517 unsigned int nofs_flag; 1518 1519 /* 1520 * We might be called under a transaction (e.g. indirect backref 1521 * resolution) which could deadlock if it triggers memory reclaim 1522 */ 1523 nofs_flag = memalloc_nofs_save(); 1524 ret = btrfs_drew_lock_init(&root->snapshot_lock); 1525 memalloc_nofs_restore(nofs_flag); 1526 if (ret) 1527 goto fail; 1528 1529 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1530 !btrfs_is_data_reloc_root(root)) { 1531 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1532 btrfs_check_and_init_root_item(&root->root_item); 1533 } 1534 1535 /* 1536 * Don't assign anonymous block device to roots that are not exposed to 1537 * userspace, the id pool is limited to 1M 1538 */ 1539 if (is_fstree(root->root_key.objectid) && 1540 btrfs_root_refs(&root->root_item) > 0) { 1541 if (!anon_dev) { 1542 ret = get_anon_bdev(&root->anon_dev); 1543 if (ret) 1544 goto fail; 1545 } else { 1546 root->anon_dev = anon_dev; 1547 } 1548 } 1549 1550 mutex_lock(&root->objectid_mutex); 1551 ret = btrfs_init_root_free_objectid(root); 1552 if (ret) { 1553 mutex_unlock(&root->objectid_mutex); 1554 goto fail; 1555 } 1556 1557 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1558 1559 mutex_unlock(&root->objectid_mutex); 1560 1561 return 0; 1562 fail: 1563 /* The caller is responsible to call btrfs_free_fs_root */ 1564 return ret; 1565 } 1566 1567 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1568 u64 root_id) 1569 { 1570 struct btrfs_root *root; 1571 1572 spin_lock(&fs_info->fs_roots_radix_lock); 1573 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1574 (unsigned long)root_id); 1575 if (root) 1576 root = btrfs_grab_root(root); 1577 spin_unlock(&fs_info->fs_roots_radix_lock); 1578 return root; 1579 } 1580 1581 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1582 u64 objectid) 1583 { 1584 struct btrfs_key key = { 1585 .objectid = objectid, 1586 .type = BTRFS_ROOT_ITEM_KEY, 1587 .offset = 0, 1588 }; 1589 1590 if (objectid == BTRFS_ROOT_TREE_OBJECTID) 1591 return btrfs_grab_root(fs_info->tree_root); 1592 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 1593 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1594 if (objectid == BTRFS_CHUNK_TREE_OBJECTID) 1595 return btrfs_grab_root(fs_info->chunk_root); 1596 if (objectid == BTRFS_DEV_TREE_OBJECTID) 1597 return btrfs_grab_root(fs_info->dev_root); 1598 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 1599 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1600 if (objectid == BTRFS_QUOTA_TREE_OBJECTID) 1601 return btrfs_grab_root(fs_info->quota_root) ? 1602 fs_info->quota_root : ERR_PTR(-ENOENT); 1603 if (objectid == BTRFS_UUID_TREE_OBJECTID) 1604 return btrfs_grab_root(fs_info->uuid_root) ? 1605 fs_info->uuid_root : ERR_PTR(-ENOENT); 1606 if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID) 1607 return btrfs_grab_root(fs_info->block_group_root) ? 1608 fs_info->block_group_root : ERR_PTR(-ENOENT); 1609 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) { 1610 struct btrfs_root *root = btrfs_global_root(fs_info, &key); 1611 1612 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT); 1613 } 1614 return NULL; 1615 } 1616 1617 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1618 struct btrfs_root *root) 1619 { 1620 int ret; 1621 1622 ret = radix_tree_preload(GFP_NOFS); 1623 if (ret) 1624 return ret; 1625 1626 spin_lock(&fs_info->fs_roots_radix_lock); 1627 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1628 (unsigned long)root->root_key.objectid, 1629 root); 1630 if (ret == 0) { 1631 btrfs_grab_root(root); 1632 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1633 } 1634 spin_unlock(&fs_info->fs_roots_radix_lock); 1635 radix_tree_preload_end(); 1636 1637 return ret; 1638 } 1639 1640 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1641 { 1642 #ifdef CONFIG_BTRFS_DEBUG 1643 struct btrfs_root *root; 1644 1645 while (!list_empty(&fs_info->allocated_roots)) { 1646 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1647 1648 root = list_first_entry(&fs_info->allocated_roots, 1649 struct btrfs_root, leak_list); 1650 btrfs_err(fs_info, "leaked root %s refcount %d", 1651 btrfs_root_name(&root->root_key, buf), 1652 refcount_read(&root->refs)); 1653 while (refcount_read(&root->refs) > 1) 1654 btrfs_put_root(root); 1655 btrfs_put_root(root); 1656 } 1657 #endif 1658 } 1659 1660 static void free_global_roots(struct btrfs_fs_info *fs_info) 1661 { 1662 struct btrfs_root *root; 1663 struct rb_node *node; 1664 1665 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1666 root = rb_entry(node, struct btrfs_root, rb_node); 1667 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1668 btrfs_put_root(root); 1669 } 1670 } 1671 1672 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1673 { 1674 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1675 percpu_counter_destroy(&fs_info->delalloc_bytes); 1676 percpu_counter_destroy(&fs_info->ordered_bytes); 1677 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1678 btrfs_free_csum_hash(fs_info); 1679 btrfs_free_stripe_hash_table(fs_info); 1680 btrfs_free_ref_cache(fs_info); 1681 kfree(fs_info->balance_ctl); 1682 kfree(fs_info->delayed_root); 1683 free_global_roots(fs_info); 1684 btrfs_put_root(fs_info->tree_root); 1685 btrfs_put_root(fs_info->chunk_root); 1686 btrfs_put_root(fs_info->dev_root); 1687 btrfs_put_root(fs_info->quota_root); 1688 btrfs_put_root(fs_info->uuid_root); 1689 btrfs_put_root(fs_info->fs_root); 1690 btrfs_put_root(fs_info->data_reloc_root); 1691 btrfs_put_root(fs_info->block_group_root); 1692 btrfs_check_leaked_roots(fs_info); 1693 btrfs_extent_buffer_leak_debug_check(fs_info); 1694 kfree(fs_info->super_copy); 1695 kfree(fs_info->super_for_commit); 1696 kfree(fs_info->subpage_info); 1697 kvfree(fs_info); 1698 } 1699 1700 1701 /* 1702 * Get an in-memory reference of a root structure. 1703 * 1704 * For essential trees like root/extent tree, we grab it from fs_info directly. 1705 * For subvolume trees, we check the cached filesystem roots first. If not 1706 * found, then read it from disk and add it to cached fs roots. 1707 * 1708 * Caller should release the root by calling btrfs_put_root() after the usage. 1709 * 1710 * NOTE: Reloc and log trees can't be read by this function as they share the 1711 * same root objectid. 1712 * 1713 * @objectid: root id 1714 * @anon_dev: preallocated anonymous block device number for new roots, 1715 * pass 0 for new allocation. 1716 * @check_ref: whether to check root item references, If true, return -ENOENT 1717 * for orphan roots 1718 */ 1719 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1720 u64 objectid, dev_t anon_dev, 1721 bool check_ref) 1722 { 1723 struct btrfs_root *root; 1724 struct btrfs_path *path; 1725 struct btrfs_key key; 1726 int ret; 1727 1728 root = btrfs_get_global_root(fs_info, objectid); 1729 if (root) 1730 return root; 1731 again: 1732 root = btrfs_lookup_fs_root(fs_info, objectid); 1733 if (root) { 1734 /* Shouldn't get preallocated anon_dev for cached roots */ 1735 ASSERT(!anon_dev); 1736 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1737 btrfs_put_root(root); 1738 return ERR_PTR(-ENOENT); 1739 } 1740 return root; 1741 } 1742 1743 key.objectid = objectid; 1744 key.type = BTRFS_ROOT_ITEM_KEY; 1745 key.offset = (u64)-1; 1746 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1747 if (IS_ERR(root)) 1748 return root; 1749 1750 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1751 ret = -ENOENT; 1752 goto fail; 1753 } 1754 1755 ret = btrfs_init_fs_root(root, anon_dev); 1756 if (ret) 1757 goto fail; 1758 1759 path = btrfs_alloc_path(); 1760 if (!path) { 1761 ret = -ENOMEM; 1762 goto fail; 1763 } 1764 key.objectid = BTRFS_ORPHAN_OBJECTID; 1765 key.type = BTRFS_ORPHAN_ITEM_KEY; 1766 key.offset = objectid; 1767 1768 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1769 btrfs_free_path(path); 1770 if (ret < 0) 1771 goto fail; 1772 if (ret == 0) 1773 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1774 1775 ret = btrfs_insert_fs_root(fs_info, root); 1776 if (ret) { 1777 if (ret == -EEXIST) { 1778 btrfs_put_root(root); 1779 goto again; 1780 } 1781 goto fail; 1782 } 1783 return root; 1784 fail: 1785 /* 1786 * If our caller provided us an anonymous device, then it's his 1787 * responsibility to free it in case we fail. So we have to set our 1788 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1789 * and once again by our caller. 1790 */ 1791 if (anon_dev) 1792 root->anon_dev = 0; 1793 btrfs_put_root(root); 1794 return ERR_PTR(ret); 1795 } 1796 1797 /* 1798 * Get in-memory reference of a root structure 1799 * 1800 * @objectid: tree objectid 1801 * @check_ref: if set, verify that the tree exists and the item has at least 1802 * one reference 1803 */ 1804 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1805 u64 objectid, bool check_ref) 1806 { 1807 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1808 } 1809 1810 /* 1811 * Get in-memory reference of a root structure, created as new, optionally pass 1812 * the anonymous block device id 1813 * 1814 * @objectid: tree objectid 1815 * @anon_dev: if zero, allocate a new anonymous block device or use the 1816 * parameter value 1817 */ 1818 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1819 u64 objectid, dev_t anon_dev) 1820 { 1821 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1822 } 1823 1824 /* 1825 * btrfs_get_fs_root_commit_root - return a root for the given objectid 1826 * @fs_info: the fs_info 1827 * @objectid: the objectid we need to lookup 1828 * 1829 * This is exclusively used for backref walking, and exists specifically because 1830 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1831 * creation time, which means we may have to read the tree_root in order to look 1832 * up a fs root that is not in memory. If the root is not in memory we will 1833 * read the tree root commit root and look up the fs root from there. This is a 1834 * temporary root, it will not be inserted into the radix tree as it doesn't 1835 * have the most uptodate information, it'll simply be discarded once the 1836 * backref code is finished using the root. 1837 */ 1838 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1839 struct btrfs_path *path, 1840 u64 objectid) 1841 { 1842 struct btrfs_root *root; 1843 struct btrfs_key key; 1844 1845 ASSERT(path->search_commit_root && path->skip_locking); 1846 1847 /* 1848 * This can return -ENOENT if we ask for a root that doesn't exist, but 1849 * since this is called via the backref walking code we won't be looking 1850 * up a root that doesn't exist, unless there's corruption. So if root 1851 * != NULL just return it. 1852 */ 1853 root = btrfs_get_global_root(fs_info, objectid); 1854 if (root) 1855 return root; 1856 1857 root = btrfs_lookup_fs_root(fs_info, objectid); 1858 if (root) 1859 return root; 1860 1861 key.objectid = objectid; 1862 key.type = BTRFS_ROOT_ITEM_KEY; 1863 key.offset = (u64)-1; 1864 root = read_tree_root_path(fs_info->tree_root, path, &key); 1865 btrfs_release_path(path); 1866 1867 return root; 1868 } 1869 1870 static int cleaner_kthread(void *arg) 1871 { 1872 struct btrfs_fs_info *fs_info = arg; 1873 int again; 1874 1875 while (1) { 1876 again = 0; 1877 1878 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1879 1880 /* Make the cleaner go to sleep early. */ 1881 if (btrfs_need_cleaner_sleep(fs_info)) 1882 goto sleep; 1883 1884 /* 1885 * Do not do anything if we might cause open_ctree() to block 1886 * before we have finished mounting the filesystem. 1887 */ 1888 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1889 goto sleep; 1890 1891 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1892 goto sleep; 1893 1894 /* 1895 * Avoid the problem that we change the status of the fs 1896 * during the above check and trylock. 1897 */ 1898 if (btrfs_need_cleaner_sleep(fs_info)) { 1899 mutex_unlock(&fs_info->cleaner_mutex); 1900 goto sleep; 1901 } 1902 1903 btrfs_run_delayed_iputs(fs_info); 1904 1905 again = btrfs_clean_one_deleted_snapshot(fs_info); 1906 mutex_unlock(&fs_info->cleaner_mutex); 1907 1908 /* 1909 * The defragger has dealt with the R/O remount and umount, 1910 * needn't do anything special here. 1911 */ 1912 btrfs_run_defrag_inodes(fs_info); 1913 1914 /* 1915 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1916 * with relocation (btrfs_relocate_chunk) and relocation 1917 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1918 * after acquiring fs_info->reclaim_bgs_lock. So we 1919 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1920 * unused block groups. 1921 */ 1922 btrfs_delete_unused_bgs(fs_info); 1923 1924 /* 1925 * Reclaim block groups in the reclaim_bgs list after we deleted 1926 * all unused block_groups. This possibly gives us some more free 1927 * space. 1928 */ 1929 btrfs_reclaim_bgs(fs_info); 1930 sleep: 1931 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1932 if (kthread_should_park()) 1933 kthread_parkme(); 1934 if (kthread_should_stop()) 1935 return 0; 1936 if (!again) { 1937 set_current_state(TASK_INTERRUPTIBLE); 1938 schedule(); 1939 __set_current_state(TASK_RUNNING); 1940 } 1941 } 1942 } 1943 1944 static int transaction_kthread(void *arg) 1945 { 1946 struct btrfs_root *root = arg; 1947 struct btrfs_fs_info *fs_info = root->fs_info; 1948 struct btrfs_trans_handle *trans; 1949 struct btrfs_transaction *cur; 1950 u64 transid; 1951 time64_t delta; 1952 unsigned long delay; 1953 bool cannot_commit; 1954 1955 do { 1956 cannot_commit = false; 1957 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1958 mutex_lock(&fs_info->transaction_kthread_mutex); 1959 1960 spin_lock(&fs_info->trans_lock); 1961 cur = fs_info->running_transaction; 1962 if (!cur) { 1963 spin_unlock(&fs_info->trans_lock); 1964 goto sleep; 1965 } 1966 1967 delta = ktime_get_seconds() - cur->start_time; 1968 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1969 cur->state < TRANS_STATE_COMMIT_START && 1970 delta < fs_info->commit_interval) { 1971 spin_unlock(&fs_info->trans_lock); 1972 delay -= msecs_to_jiffies((delta - 1) * 1000); 1973 delay = min(delay, 1974 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1975 goto sleep; 1976 } 1977 transid = cur->transid; 1978 spin_unlock(&fs_info->trans_lock); 1979 1980 /* If the file system is aborted, this will always fail. */ 1981 trans = btrfs_attach_transaction(root); 1982 if (IS_ERR(trans)) { 1983 if (PTR_ERR(trans) != -ENOENT) 1984 cannot_commit = true; 1985 goto sleep; 1986 } 1987 if (transid == trans->transid) { 1988 btrfs_commit_transaction(trans); 1989 } else { 1990 btrfs_end_transaction(trans); 1991 } 1992 sleep: 1993 wake_up_process(fs_info->cleaner_kthread); 1994 mutex_unlock(&fs_info->transaction_kthread_mutex); 1995 1996 if (BTRFS_FS_ERROR(fs_info)) 1997 btrfs_cleanup_transaction(fs_info); 1998 if (!kthread_should_stop() && 1999 (!btrfs_transaction_blocked(fs_info) || 2000 cannot_commit)) 2001 schedule_timeout_interruptible(delay); 2002 } while (!kthread_should_stop()); 2003 return 0; 2004 } 2005 2006 /* 2007 * This will find the highest generation in the array of root backups. The 2008 * index of the highest array is returned, or -EINVAL if we can't find 2009 * anything. 2010 * 2011 * We check to make sure the array is valid by comparing the 2012 * generation of the latest root in the array with the generation 2013 * in the super block. If they don't match we pitch it. 2014 */ 2015 static int find_newest_super_backup(struct btrfs_fs_info *info) 2016 { 2017 const u64 newest_gen = btrfs_super_generation(info->super_copy); 2018 u64 cur; 2019 struct btrfs_root_backup *root_backup; 2020 int i; 2021 2022 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2023 root_backup = info->super_copy->super_roots + i; 2024 cur = btrfs_backup_tree_root_gen(root_backup); 2025 if (cur == newest_gen) 2026 return i; 2027 } 2028 2029 return -EINVAL; 2030 } 2031 2032 /* 2033 * copy all the root pointers into the super backup array. 2034 * this will bump the backup pointer by one when it is 2035 * done 2036 */ 2037 static void backup_super_roots(struct btrfs_fs_info *info) 2038 { 2039 const int next_backup = info->backup_root_index; 2040 struct btrfs_root_backup *root_backup; 2041 2042 root_backup = info->super_for_commit->super_roots + next_backup; 2043 2044 /* 2045 * make sure all of our padding and empty slots get zero filled 2046 * regardless of which ones we use today 2047 */ 2048 memset(root_backup, 0, sizeof(*root_backup)); 2049 2050 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 2051 2052 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 2053 btrfs_set_backup_tree_root_gen(root_backup, 2054 btrfs_header_generation(info->tree_root->node)); 2055 2056 btrfs_set_backup_tree_root_level(root_backup, 2057 btrfs_header_level(info->tree_root->node)); 2058 2059 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 2060 btrfs_set_backup_chunk_root_gen(root_backup, 2061 btrfs_header_generation(info->chunk_root->node)); 2062 btrfs_set_backup_chunk_root_level(root_backup, 2063 btrfs_header_level(info->chunk_root->node)); 2064 2065 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 2066 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 2067 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 2068 2069 btrfs_set_backup_extent_root(root_backup, 2070 extent_root->node->start); 2071 btrfs_set_backup_extent_root_gen(root_backup, 2072 btrfs_header_generation(extent_root->node)); 2073 btrfs_set_backup_extent_root_level(root_backup, 2074 btrfs_header_level(extent_root->node)); 2075 2076 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 2077 btrfs_set_backup_csum_root_gen(root_backup, 2078 btrfs_header_generation(csum_root->node)); 2079 btrfs_set_backup_csum_root_level(root_backup, 2080 btrfs_header_level(csum_root->node)); 2081 } 2082 2083 /* 2084 * we might commit during log recovery, which happens before we set 2085 * the fs_root. Make sure it is valid before we fill it in. 2086 */ 2087 if (info->fs_root && info->fs_root->node) { 2088 btrfs_set_backup_fs_root(root_backup, 2089 info->fs_root->node->start); 2090 btrfs_set_backup_fs_root_gen(root_backup, 2091 btrfs_header_generation(info->fs_root->node)); 2092 btrfs_set_backup_fs_root_level(root_backup, 2093 btrfs_header_level(info->fs_root->node)); 2094 } 2095 2096 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 2097 btrfs_set_backup_dev_root_gen(root_backup, 2098 btrfs_header_generation(info->dev_root->node)); 2099 btrfs_set_backup_dev_root_level(root_backup, 2100 btrfs_header_level(info->dev_root->node)); 2101 2102 btrfs_set_backup_total_bytes(root_backup, 2103 btrfs_super_total_bytes(info->super_copy)); 2104 btrfs_set_backup_bytes_used(root_backup, 2105 btrfs_super_bytes_used(info->super_copy)); 2106 btrfs_set_backup_num_devices(root_backup, 2107 btrfs_super_num_devices(info->super_copy)); 2108 2109 /* 2110 * if we don't copy this out to the super_copy, it won't get remembered 2111 * for the next commit 2112 */ 2113 memcpy(&info->super_copy->super_roots, 2114 &info->super_for_commit->super_roots, 2115 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2116 } 2117 2118 /* 2119 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 2120 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 2121 * 2122 * fs_info - filesystem whose backup roots need to be read 2123 * priority - priority of backup root required 2124 * 2125 * Returns backup root index on success and -EINVAL otherwise. 2126 */ 2127 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 2128 { 2129 int backup_index = find_newest_super_backup(fs_info); 2130 struct btrfs_super_block *super = fs_info->super_copy; 2131 struct btrfs_root_backup *root_backup; 2132 2133 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 2134 if (priority == 0) 2135 return backup_index; 2136 2137 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 2138 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 2139 } else { 2140 return -EINVAL; 2141 } 2142 2143 root_backup = super->super_roots + backup_index; 2144 2145 btrfs_set_super_generation(super, 2146 btrfs_backup_tree_root_gen(root_backup)); 2147 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2148 btrfs_set_super_root_level(super, 2149 btrfs_backup_tree_root_level(root_backup)); 2150 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2151 2152 /* 2153 * Fixme: the total bytes and num_devices need to match or we should 2154 * need a fsck 2155 */ 2156 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2157 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2158 2159 return backup_index; 2160 } 2161 2162 /* helper to cleanup workers */ 2163 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2164 { 2165 btrfs_destroy_workqueue(fs_info->fixup_workers); 2166 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2167 btrfs_destroy_workqueue(fs_info->hipri_workers); 2168 btrfs_destroy_workqueue(fs_info->workers); 2169 if (fs_info->endio_workers) 2170 destroy_workqueue(fs_info->endio_workers); 2171 if (fs_info->rmw_workers) 2172 destroy_workqueue(fs_info->rmw_workers); 2173 if (fs_info->compressed_write_workers) 2174 destroy_workqueue(fs_info->compressed_write_workers); 2175 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2176 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2177 btrfs_destroy_workqueue(fs_info->delayed_workers); 2178 btrfs_destroy_workqueue(fs_info->caching_workers); 2179 btrfs_destroy_workqueue(fs_info->flush_workers); 2180 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2181 if (fs_info->discard_ctl.discard_workers) 2182 destroy_workqueue(fs_info->discard_ctl.discard_workers); 2183 /* 2184 * Now that all other work queues are destroyed, we can safely destroy 2185 * the queues used for metadata I/O, since tasks from those other work 2186 * queues can do metadata I/O operations. 2187 */ 2188 if (fs_info->endio_meta_workers) 2189 destroy_workqueue(fs_info->endio_meta_workers); 2190 } 2191 2192 static void free_root_extent_buffers(struct btrfs_root *root) 2193 { 2194 if (root) { 2195 free_extent_buffer(root->node); 2196 free_extent_buffer(root->commit_root); 2197 root->node = NULL; 2198 root->commit_root = NULL; 2199 } 2200 } 2201 2202 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 2203 { 2204 struct btrfs_root *root, *tmp; 2205 2206 rbtree_postorder_for_each_entry_safe(root, tmp, 2207 &fs_info->global_root_tree, 2208 rb_node) 2209 free_root_extent_buffers(root); 2210 } 2211 2212 /* helper to cleanup tree roots */ 2213 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 2214 { 2215 free_root_extent_buffers(info->tree_root); 2216 2217 free_global_root_pointers(info); 2218 free_root_extent_buffers(info->dev_root); 2219 free_root_extent_buffers(info->quota_root); 2220 free_root_extent_buffers(info->uuid_root); 2221 free_root_extent_buffers(info->fs_root); 2222 free_root_extent_buffers(info->data_reloc_root); 2223 free_root_extent_buffers(info->block_group_root); 2224 if (free_chunk_root) 2225 free_root_extent_buffers(info->chunk_root); 2226 } 2227 2228 void btrfs_put_root(struct btrfs_root *root) 2229 { 2230 if (!root) 2231 return; 2232 2233 if (refcount_dec_and_test(&root->refs)) { 2234 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2235 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 2236 if (root->anon_dev) 2237 free_anon_bdev(root->anon_dev); 2238 btrfs_drew_lock_destroy(&root->snapshot_lock); 2239 free_root_extent_buffers(root); 2240 #ifdef CONFIG_BTRFS_DEBUG 2241 spin_lock(&root->fs_info->fs_roots_radix_lock); 2242 list_del_init(&root->leak_list); 2243 spin_unlock(&root->fs_info->fs_roots_radix_lock); 2244 #endif 2245 kfree(root); 2246 } 2247 } 2248 2249 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2250 { 2251 int ret; 2252 struct btrfs_root *gang[8]; 2253 int i; 2254 2255 while (!list_empty(&fs_info->dead_roots)) { 2256 gang[0] = list_entry(fs_info->dead_roots.next, 2257 struct btrfs_root, root_list); 2258 list_del(&gang[0]->root_list); 2259 2260 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 2261 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2262 btrfs_put_root(gang[0]); 2263 } 2264 2265 while (1) { 2266 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2267 (void **)gang, 0, 2268 ARRAY_SIZE(gang)); 2269 if (!ret) 2270 break; 2271 for (i = 0; i < ret; i++) 2272 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2273 } 2274 } 2275 2276 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2277 { 2278 mutex_init(&fs_info->scrub_lock); 2279 atomic_set(&fs_info->scrubs_running, 0); 2280 atomic_set(&fs_info->scrub_pause_req, 0); 2281 atomic_set(&fs_info->scrubs_paused, 0); 2282 atomic_set(&fs_info->scrub_cancel_req, 0); 2283 init_waitqueue_head(&fs_info->scrub_pause_wait); 2284 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2285 } 2286 2287 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2288 { 2289 spin_lock_init(&fs_info->balance_lock); 2290 mutex_init(&fs_info->balance_mutex); 2291 atomic_set(&fs_info->balance_pause_req, 0); 2292 atomic_set(&fs_info->balance_cancel_req, 0); 2293 fs_info->balance_ctl = NULL; 2294 init_waitqueue_head(&fs_info->balance_wait_q); 2295 atomic_set(&fs_info->reloc_cancel_req, 0); 2296 } 2297 2298 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2299 { 2300 struct inode *inode = fs_info->btree_inode; 2301 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 2302 fs_info->tree_root); 2303 2304 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2305 set_nlink(inode, 1); 2306 /* 2307 * we set the i_size on the btree inode to the max possible int. 2308 * the real end of the address space is determined by all of 2309 * the devices in the system 2310 */ 2311 inode->i_size = OFFSET_MAX; 2312 inode->i_mapping->a_ops = &btree_aops; 2313 2314 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2315 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2316 IO_TREE_BTREE_INODE_IO); 2317 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2318 2319 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 2320 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID; 2321 BTRFS_I(inode)->location.type = 0; 2322 BTRFS_I(inode)->location.offset = 0; 2323 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2324 __insert_inode_hash(inode, hash); 2325 } 2326 2327 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2328 { 2329 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2330 init_rwsem(&fs_info->dev_replace.rwsem); 2331 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2332 } 2333 2334 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2335 { 2336 spin_lock_init(&fs_info->qgroup_lock); 2337 mutex_init(&fs_info->qgroup_ioctl_lock); 2338 fs_info->qgroup_tree = RB_ROOT; 2339 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2340 fs_info->qgroup_seq = 1; 2341 fs_info->qgroup_ulist = NULL; 2342 fs_info->qgroup_rescan_running = false; 2343 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL; 2344 mutex_init(&fs_info->qgroup_rescan_lock); 2345 } 2346 2347 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 2348 { 2349 u32 max_active = fs_info->thread_pool_size; 2350 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2351 2352 fs_info->workers = 2353 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 2354 fs_info->hipri_workers = 2355 btrfs_alloc_workqueue(fs_info, "worker-high", 2356 flags | WQ_HIGHPRI, max_active, 16); 2357 2358 fs_info->delalloc_workers = 2359 btrfs_alloc_workqueue(fs_info, "delalloc", 2360 flags, max_active, 2); 2361 2362 fs_info->flush_workers = 2363 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2364 flags, max_active, 0); 2365 2366 fs_info->caching_workers = 2367 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2368 2369 fs_info->fixup_workers = 2370 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2371 2372 fs_info->endio_workers = 2373 alloc_workqueue("btrfs-endio", flags, max_active); 2374 fs_info->endio_meta_workers = 2375 alloc_workqueue("btrfs-endio-meta", flags, max_active); 2376 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 2377 fs_info->endio_write_workers = 2378 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2379 max_active, 2); 2380 fs_info->compressed_write_workers = 2381 alloc_workqueue("btrfs-compressed-write", flags, max_active); 2382 fs_info->endio_freespace_worker = 2383 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2384 max_active, 0); 2385 fs_info->delayed_workers = 2386 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2387 max_active, 0); 2388 fs_info->qgroup_rescan_workers = 2389 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2390 fs_info->discard_ctl.discard_workers = 2391 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2392 2393 if (!(fs_info->workers && fs_info->hipri_workers && 2394 fs_info->delalloc_workers && fs_info->flush_workers && 2395 fs_info->endio_workers && fs_info->endio_meta_workers && 2396 fs_info->compressed_write_workers && 2397 fs_info->endio_write_workers && 2398 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2399 fs_info->caching_workers && fs_info->fixup_workers && 2400 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2401 fs_info->discard_ctl.discard_workers)) { 2402 return -ENOMEM; 2403 } 2404 2405 return 0; 2406 } 2407 2408 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2409 { 2410 struct crypto_shash *csum_shash; 2411 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2412 2413 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2414 2415 if (IS_ERR(csum_shash)) { 2416 btrfs_err(fs_info, "error allocating %s hash for checksum", 2417 csum_driver); 2418 return PTR_ERR(csum_shash); 2419 } 2420 2421 fs_info->csum_shash = csum_shash; 2422 2423 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2424 btrfs_super_csum_name(csum_type), 2425 crypto_shash_driver_name(csum_shash)); 2426 return 0; 2427 } 2428 2429 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2430 struct btrfs_fs_devices *fs_devices) 2431 { 2432 int ret; 2433 struct btrfs_tree_parent_check check = { 0 }; 2434 struct btrfs_root *log_tree_root; 2435 struct btrfs_super_block *disk_super = fs_info->super_copy; 2436 u64 bytenr = btrfs_super_log_root(disk_super); 2437 int level = btrfs_super_log_root_level(disk_super); 2438 2439 if (fs_devices->rw_devices == 0) { 2440 btrfs_warn(fs_info, "log replay required on RO media"); 2441 return -EIO; 2442 } 2443 2444 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2445 GFP_KERNEL); 2446 if (!log_tree_root) 2447 return -ENOMEM; 2448 2449 check.level = level; 2450 check.transid = fs_info->generation + 1; 2451 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2452 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2453 if (IS_ERR(log_tree_root->node)) { 2454 btrfs_warn(fs_info, "failed to read log tree"); 2455 ret = PTR_ERR(log_tree_root->node); 2456 log_tree_root->node = NULL; 2457 btrfs_put_root(log_tree_root); 2458 return ret; 2459 } 2460 if (!extent_buffer_uptodate(log_tree_root->node)) { 2461 btrfs_err(fs_info, "failed to read log tree"); 2462 btrfs_put_root(log_tree_root); 2463 return -EIO; 2464 } 2465 2466 /* returns with log_tree_root freed on success */ 2467 ret = btrfs_recover_log_trees(log_tree_root); 2468 if (ret) { 2469 btrfs_handle_fs_error(fs_info, ret, 2470 "Failed to recover log tree"); 2471 btrfs_put_root(log_tree_root); 2472 return ret; 2473 } 2474 2475 if (sb_rdonly(fs_info->sb)) { 2476 ret = btrfs_commit_super(fs_info); 2477 if (ret) 2478 return ret; 2479 } 2480 2481 return 0; 2482 } 2483 2484 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2485 struct btrfs_path *path, u64 objectid, 2486 const char *name) 2487 { 2488 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2489 struct btrfs_root *root; 2490 u64 max_global_id = 0; 2491 int ret; 2492 struct btrfs_key key = { 2493 .objectid = objectid, 2494 .type = BTRFS_ROOT_ITEM_KEY, 2495 .offset = 0, 2496 }; 2497 bool found = false; 2498 2499 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2500 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2501 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2502 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2503 return 0; 2504 } 2505 2506 while (1) { 2507 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2508 if (ret < 0) 2509 break; 2510 2511 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2512 ret = btrfs_next_leaf(tree_root, path); 2513 if (ret) { 2514 if (ret > 0) 2515 ret = 0; 2516 break; 2517 } 2518 } 2519 ret = 0; 2520 2521 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2522 if (key.objectid != objectid) 2523 break; 2524 btrfs_release_path(path); 2525 2526 /* 2527 * Just worry about this for extent tree, it'll be the same for 2528 * everybody. 2529 */ 2530 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2531 max_global_id = max(max_global_id, key.offset); 2532 2533 found = true; 2534 root = read_tree_root_path(tree_root, path, &key); 2535 if (IS_ERR(root)) { 2536 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2537 ret = PTR_ERR(root); 2538 break; 2539 } 2540 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2541 ret = btrfs_global_root_insert(root); 2542 if (ret) { 2543 btrfs_put_root(root); 2544 break; 2545 } 2546 key.offset++; 2547 } 2548 btrfs_release_path(path); 2549 2550 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2551 fs_info->nr_global_roots = max_global_id + 1; 2552 2553 if (!found || ret) { 2554 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2555 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2556 2557 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2558 ret = ret ? ret : -ENOENT; 2559 else 2560 ret = 0; 2561 btrfs_err(fs_info, "failed to load root %s", name); 2562 } 2563 return ret; 2564 } 2565 2566 static int load_global_roots(struct btrfs_root *tree_root) 2567 { 2568 struct btrfs_path *path; 2569 int ret = 0; 2570 2571 path = btrfs_alloc_path(); 2572 if (!path) 2573 return -ENOMEM; 2574 2575 ret = load_global_roots_objectid(tree_root, path, 2576 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2577 if (ret) 2578 goto out; 2579 ret = load_global_roots_objectid(tree_root, path, 2580 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2581 if (ret) 2582 goto out; 2583 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2584 goto out; 2585 ret = load_global_roots_objectid(tree_root, path, 2586 BTRFS_FREE_SPACE_TREE_OBJECTID, 2587 "free space"); 2588 out: 2589 btrfs_free_path(path); 2590 return ret; 2591 } 2592 2593 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2594 { 2595 struct btrfs_root *tree_root = fs_info->tree_root; 2596 struct btrfs_root *root; 2597 struct btrfs_key location; 2598 int ret; 2599 2600 BUG_ON(!fs_info->tree_root); 2601 2602 ret = load_global_roots(tree_root); 2603 if (ret) 2604 return ret; 2605 2606 location.type = BTRFS_ROOT_ITEM_KEY; 2607 location.offset = 0; 2608 2609 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2610 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2611 root = btrfs_read_tree_root(tree_root, &location); 2612 if (IS_ERR(root)) { 2613 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2614 ret = PTR_ERR(root); 2615 goto out; 2616 } 2617 } else { 2618 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2619 fs_info->block_group_root = root; 2620 } 2621 } 2622 2623 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2624 root = btrfs_read_tree_root(tree_root, &location); 2625 if (IS_ERR(root)) { 2626 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2627 ret = PTR_ERR(root); 2628 goto out; 2629 } 2630 } else { 2631 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2632 fs_info->dev_root = root; 2633 } 2634 /* Initialize fs_info for all devices in any case */ 2635 ret = btrfs_init_devices_late(fs_info); 2636 if (ret) 2637 goto out; 2638 2639 /* 2640 * This tree can share blocks with some other fs tree during relocation 2641 * and we need a proper setup by btrfs_get_fs_root 2642 */ 2643 root = btrfs_get_fs_root(tree_root->fs_info, 2644 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2645 if (IS_ERR(root)) { 2646 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2647 ret = PTR_ERR(root); 2648 goto out; 2649 } 2650 } else { 2651 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2652 fs_info->data_reloc_root = root; 2653 } 2654 2655 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2656 root = btrfs_read_tree_root(tree_root, &location); 2657 if (!IS_ERR(root)) { 2658 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2659 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2660 fs_info->quota_root = root; 2661 } 2662 2663 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2664 root = btrfs_read_tree_root(tree_root, &location); 2665 if (IS_ERR(root)) { 2666 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2667 ret = PTR_ERR(root); 2668 if (ret != -ENOENT) 2669 goto out; 2670 } 2671 } else { 2672 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2673 fs_info->uuid_root = root; 2674 } 2675 2676 return 0; 2677 out: 2678 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2679 location.objectid, ret); 2680 return ret; 2681 } 2682 2683 /* 2684 * Real super block validation 2685 * NOTE: super csum type and incompat features will not be checked here. 2686 * 2687 * @sb: super block to check 2688 * @mirror_num: the super block number to check its bytenr: 2689 * 0 the primary (1st) sb 2690 * 1, 2 2nd and 3rd backup copy 2691 * -1 skip bytenr check 2692 */ 2693 int btrfs_validate_super(struct btrfs_fs_info *fs_info, 2694 struct btrfs_super_block *sb, int mirror_num) 2695 { 2696 u64 nodesize = btrfs_super_nodesize(sb); 2697 u64 sectorsize = btrfs_super_sectorsize(sb); 2698 int ret = 0; 2699 2700 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2701 btrfs_err(fs_info, "no valid FS found"); 2702 ret = -EINVAL; 2703 } 2704 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2705 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2706 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2707 ret = -EINVAL; 2708 } 2709 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2710 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2711 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2712 ret = -EINVAL; 2713 } 2714 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2715 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2716 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2717 ret = -EINVAL; 2718 } 2719 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2720 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2721 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2722 ret = -EINVAL; 2723 } 2724 2725 /* 2726 * Check sectorsize and nodesize first, other check will need it. 2727 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2728 */ 2729 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2730 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2731 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2732 ret = -EINVAL; 2733 } 2734 2735 /* 2736 * We only support at most two sectorsizes: 4K and PAGE_SIZE. 2737 * 2738 * We can support 16K sectorsize with 64K page size without problem, 2739 * but such sectorsize/pagesize combination doesn't make much sense. 2740 * 4K will be our future standard, PAGE_SIZE is supported from the very 2741 * beginning. 2742 */ 2743 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) { 2744 btrfs_err(fs_info, 2745 "sectorsize %llu not yet supported for page size %lu", 2746 sectorsize, PAGE_SIZE); 2747 ret = -EINVAL; 2748 } 2749 2750 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2751 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2752 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2753 ret = -EINVAL; 2754 } 2755 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2756 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2757 le32_to_cpu(sb->__unused_leafsize), nodesize); 2758 ret = -EINVAL; 2759 } 2760 2761 /* Root alignment check */ 2762 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2763 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2764 btrfs_super_root(sb)); 2765 ret = -EINVAL; 2766 } 2767 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2768 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2769 btrfs_super_chunk_root(sb)); 2770 ret = -EINVAL; 2771 } 2772 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2773 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2774 btrfs_super_log_root(sb)); 2775 ret = -EINVAL; 2776 } 2777 2778 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2779 BTRFS_FSID_SIZE)) { 2780 btrfs_err(fs_info, 2781 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2782 fs_info->super_copy->fsid, fs_info->fs_devices->fsid); 2783 ret = -EINVAL; 2784 } 2785 2786 if (btrfs_fs_incompat(fs_info, METADATA_UUID) && 2787 memcmp(fs_info->fs_devices->metadata_uuid, 2788 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) { 2789 btrfs_err(fs_info, 2790 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2791 fs_info->super_copy->metadata_uuid, 2792 fs_info->fs_devices->metadata_uuid); 2793 ret = -EINVAL; 2794 } 2795 2796 /* 2797 * Artificial requirement for block-group-tree to force newer features 2798 * (free-space-tree, no-holes) so the test matrix is smaller. 2799 */ 2800 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2801 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2802 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2803 btrfs_err(fs_info, 2804 "block-group-tree feature requires fres-space-tree and no-holes"); 2805 ret = -EINVAL; 2806 } 2807 2808 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2809 BTRFS_FSID_SIZE) != 0) { 2810 btrfs_err(fs_info, 2811 "dev_item UUID does not match metadata fsid: %pU != %pU", 2812 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2813 ret = -EINVAL; 2814 } 2815 2816 /* 2817 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2818 * done later 2819 */ 2820 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2821 btrfs_err(fs_info, "bytes_used is too small %llu", 2822 btrfs_super_bytes_used(sb)); 2823 ret = -EINVAL; 2824 } 2825 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2826 btrfs_err(fs_info, "invalid stripesize %u", 2827 btrfs_super_stripesize(sb)); 2828 ret = -EINVAL; 2829 } 2830 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2831 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2832 btrfs_super_num_devices(sb)); 2833 if (btrfs_super_num_devices(sb) == 0) { 2834 btrfs_err(fs_info, "number of devices is 0"); 2835 ret = -EINVAL; 2836 } 2837 2838 if (mirror_num >= 0 && 2839 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2840 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2841 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2842 ret = -EINVAL; 2843 } 2844 2845 /* 2846 * Obvious sys_chunk_array corruptions, it must hold at least one key 2847 * and one chunk 2848 */ 2849 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2850 btrfs_err(fs_info, "system chunk array too big %u > %u", 2851 btrfs_super_sys_array_size(sb), 2852 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2853 ret = -EINVAL; 2854 } 2855 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2856 + sizeof(struct btrfs_chunk)) { 2857 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2858 btrfs_super_sys_array_size(sb), 2859 sizeof(struct btrfs_disk_key) 2860 + sizeof(struct btrfs_chunk)); 2861 ret = -EINVAL; 2862 } 2863 2864 /* 2865 * The generation is a global counter, we'll trust it more than the others 2866 * but it's still possible that it's the one that's wrong. 2867 */ 2868 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2869 btrfs_warn(fs_info, 2870 "suspicious: generation < chunk_root_generation: %llu < %llu", 2871 btrfs_super_generation(sb), 2872 btrfs_super_chunk_root_generation(sb)); 2873 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2874 && btrfs_super_cache_generation(sb) != (u64)-1) 2875 btrfs_warn(fs_info, 2876 "suspicious: generation < cache_generation: %llu < %llu", 2877 btrfs_super_generation(sb), 2878 btrfs_super_cache_generation(sb)); 2879 2880 return ret; 2881 } 2882 2883 /* 2884 * Validation of super block at mount time. 2885 * Some checks already done early at mount time, like csum type and incompat 2886 * flags will be skipped. 2887 */ 2888 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2889 { 2890 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2891 } 2892 2893 /* 2894 * Validation of super block at write time. 2895 * Some checks like bytenr check will be skipped as their values will be 2896 * overwritten soon. 2897 * Extra checks like csum type and incompat flags will be done here. 2898 */ 2899 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2900 struct btrfs_super_block *sb) 2901 { 2902 int ret; 2903 2904 ret = btrfs_validate_super(fs_info, sb, -1); 2905 if (ret < 0) 2906 goto out; 2907 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2908 ret = -EUCLEAN; 2909 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2910 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2911 goto out; 2912 } 2913 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2914 ret = -EUCLEAN; 2915 btrfs_err(fs_info, 2916 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2917 btrfs_super_incompat_flags(sb), 2918 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2919 goto out; 2920 } 2921 out: 2922 if (ret < 0) 2923 btrfs_err(fs_info, 2924 "super block corruption detected before writing it to disk"); 2925 return ret; 2926 } 2927 2928 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2929 { 2930 struct btrfs_tree_parent_check check = { 2931 .level = level, 2932 .transid = gen, 2933 .owner_root = root->root_key.objectid 2934 }; 2935 int ret = 0; 2936 2937 root->node = read_tree_block(root->fs_info, bytenr, &check); 2938 if (IS_ERR(root->node)) { 2939 ret = PTR_ERR(root->node); 2940 root->node = NULL; 2941 return ret; 2942 } 2943 if (!extent_buffer_uptodate(root->node)) { 2944 free_extent_buffer(root->node); 2945 root->node = NULL; 2946 return -EIO; 2947 } 2948 2949 btrfs_set_root_node(&root->root_item, root->node); 2950 root->commit_root = btrfs_root_node(root); 2951 btrfs_set_root_refs(&root->root_item, 1); 2952 return ret; 2953 } 2954 2955 static int load_important_roots(struct btrfs_fs_info *fs_info) 2956 { 2957 struct btrfs_super_block *sb = fs_info->super_copy; 2958 u64 gen, bytenr; 2959 int level, ret; 2960 2961 bytenr = btrfs_super_root(sb); 2962 gen = btrfs_super_generation(sb); 2963 level = btrfs_super_root_level(sb); 2964 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2965 if (ret) { 2966 btrfs_warn(fs_info, "couldn't read tree root"); 2967 return ret; 2968 } 2969 return 0; 2970 } 2971 2972 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2973 { 2974 int backup_index = find_newest_super_backup(fs_info); 2975 struct btrfs_super_block *sb = fs_info->super_copy; 2976 struct btrfs_root *tree_root = fs_info->tree_root; 2977 bool handle_error = false; 2978 int ret = 0; 2979 int i; 2980 2981 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2982 if (handle_error) { 2983 if (!IS_ERR(tree_root->node)) 2984 free_extent_buffer(tree_root->node); 2985 tree_root->node = NULL; 2986 2987 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2988 break; 2989 2990 free_root_pointers(fs_info, 0); 2991 2992 /* 2993 * Don't use the log in recovery mode, it won't be 2994 * valid 2995 */ 2996 btrfs_set_super_log_root(sb, 0); 2997 2998 /* We can't trust the free space cache either */ 2999 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3000 3001 ret = read_backup_root(fs_info, i); 3002 backup_index = ret; 3003 if (ret < 0) 3004 return ret; 3005 } 3006 3007 ret = load_important_roots(fs_info); 3008 if (ret) { 3009 handle_error = true; 3010 continue; 3011 } 3012 3013 /* 3014 * No need to hold btrfs_root::objectid_mutex since the fs 3015 * hasn't been fully initialised and we are the only user 3016 */ 3017 ret = btrfs_init_root_free_objectid(tree_root); 3018 if (ret < 0) { 3019 handle_error = true; 3020 continue; 3021 } 3022 3023 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 3024 3025 ret = btrfs_read_roots(fs_info); 3026 if (ret < 0) { 3027 handle_error = true; 3028 continue; 3029 } 3030 3031 /* All successful */ 3032 fs_info->generation = btrfs_header_generation(tree_root->node); 3033 fs_info->last_trans_committed = fs_info->generation; 3034 fs_info->last_reloc_trans = 0; 3035 3036 /* Always begin writing backup roots after the one being used */ 3037 if (backup_index < 0) { 3038 fs_info->backup_root_index = 0; 3039 } else { 3040 fs_info->backup_root_index = backup_index + 1; 3041 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 3042 } 3043 break; 3044 } 3045 3046 return ret; 3047 } 3048 3049 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 3050 { 3051 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 3052 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 3053 INIT_LIST_HEAD(&fs_info->trans_list); 3054 INIT_LIST_HEAD(&fs_info->dead_roots); 3055 INIT_LIST_HEAD(&fs_info->delayed_iputs); 3056 INIT_LIST_HEAD(&fs_info->delalloc_roots); 3057 INIT_LIST_HEAD(&fs_info->caching_block_groups); 3058 spin_lock_init(&fs_info->delalloc_root_lock); 3059 spin_lock_init(&fs_info->trans_lock); 3060 spin_lock_init(&fs_info->fs_roots_radix_lock); 3061 spin_lock_init(&fs_info->delayed_iput_lock); 3062 spin_lock_init(&fs_info->defrag_inodes_lock); 3063 spin_lock_init(&fs_info->super_lock); 3064 spin_lock_init(&fs_info->buffer_lock); 3065 spin_lock_init(&fs_info->unused_bgs_lock); 3066 spin_lock_init(&fs_info->treelog_bg_lock); 3067 spin_lock_init(&fs_info->zone_active_bgs_lock); 3068 spin_lock_init(&fs_info->relocation_bg_lock); 3069 rwlock_init(&fs_info->tree_mod_log_lock); 3070 rwlock_init(&fs_info->global_root_lock); 3071 mutex_init(&fs_info->unused_bg_unpin_mutex); 3072 mutex_init(&fs_info->reclaim_bgs_lock); 3073 mutex_init(&fs_info->reloc_mutex); 3074 mutex_init(&fs_info->delalloc_root_mutex); 3075 mutex_init(&fs_info->zoned_meta_io_lock); 3076 mutex_init(&fs_info->zoned_data_reloc_io_lock); 3077 seqlock_init(&fs_info->profiles_lock); 3078 3079 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 3080 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 3081 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 3082 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 3083 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start, 3084 BTRFS_LOCKDEP_TRANS_COMMIT_START); 3085 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 3086 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 3087 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 3088 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 3089 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 3090 BTRFS_LOCKDEP_TRANS_COMPLETED); 3091 3092 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 3093 INIT_LIST_HEAD(&fs_info->space_info); 3094 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 3095 INIT_LIST_HEAD(&fs_info->unused_bgs); 3096 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 3097 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 3098 #ifdef CONFIG_BTRFS_DEBUG 3099 INIT_LIST_HEAD(&fs_info->allocated_roots); 3100 INIT_LIST_HEAD(&fs_info->allocated_ebs); 3101 spin_lock_init(&fs_info->eb_leak_lock); 3102 #endif 3103 extent_map_tree_init(&fs_info->mapping_tree); 3104 btrfs_init_block_rsv(&fs_info->global_block_rsv, 3105 BTRFS_BLOCK_RSV_GLOBAL); 3106 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 3107 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 3108 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 3109 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 3110 BTRFS_BLOCK_RSV_DELOPS); 3111 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 3112 BTRFS_BLOCK_RSV_DELREFS); 3113 3114 atomic_set(&fs_info->async_delalloc_pages, 0); 3115 atomic_set(&fs_info->defrag_running, 0); 3116 atomic_set(&fs_info->nr_delayed_iputs, 0); 3117 atomic64_set(&fs_info->tree_mod_seq, 0); 3118 fs_info->global_root_tree = RB_ROOT; 3119 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 3120 fs_info->metadata_ratio = 0; 3121 fs_info->defrag_inodes = RB_ROOT; 3122 atomic64_set(&fs_info->free_chunk_space, 0); 3123 fs_info->tree_mod_log = RB_ROOT; 3124 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 3125 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 3126 btrfs_init_ref_verify(fs_info); 3127 3128 fs_info->thread_pool_size = min_t(unsigned long, 3129 num_online_cpus() + 2, 8); 3130 3131 INIT_LIST_HEAD(&fs_info->ordered_roots); 3132 spin_lock_init(&fs_info->ordered_root_lock); 3133 3134 btrfs_init_scrub(fs_info); 3135 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3136 fs_info->check_integrity_print_mask = 0; 3137 #endif 3138 btrfs_init_balance(fs_info); 3139 btrfs_init_async_reclaim_work(fs_info); 3140 3141 rwlock_init(&fs_info->block_group_cache_lock); 3142 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 3143 3144 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 3145 IO_TREE_FS_EXCLUDED_EXTENTS); 3146 3147 mutex_init(&fs_info->ordered_operations_mutex); 3148 mutex_init(&fs_info->tree_log_mutex); 3149 mutex_init(&fs_info->chunk_mutex); 3150 mutex_init(&fs_info->transaction_kthread_mutex); 3151 mutex_init(&fs_info->cleaner_mutex); 3152 mutex_init(&fs_info->ro_block_group_mutex); 3153 init_rwsem(&fs_info->commit_root_sem); 3154 init_rwsem(&fs_info->cleanup_work_sem); 3155 init_rwsem(&fs_info->subvol_sem); 3156 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 3157 3158 btrfs_init_dev_replace_locks(fs_info); 3159 btrfs_init_qgroup(fs_info); 3160 btrfs_discard_init(fs_info); 3161 3162 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 3163 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 3164 3165 init_waitqueue_head(&fs_info->transaction_throttle); 3166 init_waitqueue_head(&fs_info->transaction_wait); 3167 init_waitqueue_head(&fs_info->transaction_blocked_wait); 3168 init_waitqueue_head(&fs_info->async_submit_wait); 3169 init_waitqueue_head(&fs_info->delayed_iputs_wait); 3170 3171 /* Usable values until the real ones are cached from the superblock */ 3172 fs_info->nodesize = 4096; 3173 fs_info->sectorsize = 4096; 3174 fs_info->sectorsize_bits = ilog2(4096); 3175 fs_info->stripesize = 4096; 3176 3177 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 3178 3179 spin_lock_init(&fs_info->swapfile_pins_lock); 3180 fs_info->swapfile_pins = RB_ROOT; 3181 3182 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 3183 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 3184 } 3185 3186 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 3187 { 3188 int ret; 3189 3190 fs_info->sb = sb; 3191 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 3192 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 3193 3194 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 3195 if (ret) 3196 return ret; 3197 3198 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 3199 if (ret) 3200 return ret; 3201 3202 fs_info->dirty_metadata_batch = PAGE_SIZE * 3203 (1 + ilog2(nr_cpu_ids)); 3204 3205 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 3206 if (ret) 3207 return ret; 3208 3209 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 3210 GFP_KERNEL); 3211 if (ret) 3212 return ret; 3213 3214 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 3215 GFP_KERNEL); 3216 if (!fs_info->delayed_root) 3217 return -ENOMEM; 3218 btrfs_init_delayed_root(fs_info->delayed_root); 3219 3220 if (sb_rdonly(sb)) 3221 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 3222 3223 return btrfs_alloc_stripe_hash_table(fs_info); 3224 } 3225 3226 static int btrfs_uuid_rescan_kthread(void *data) 3227 { 3228 struct btrfs_fs_info *fs_info = data; 3229 int ret; 3230 3231 /* 3232 * 1st step is to iterate through the existing UUID tree and 3233 * to delete all entries that contain outdated data. 3234 * 2nd step is to add all missing entries to the UUID tree. 3235 */ 3236 ret = btrfs_uuid_tree_iterate(fs_info); 3237 if (ret < 0) { 3238 if (ret != -EINTR) 3239 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 3240 ret); 3241 up(&fs_info->uuid_tree_rescan_sem); 3242 return ret; 3243 } 3244 return btrfs_uuid_scan_kthread(data); 3245 } 3246 3247 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 3248 { 3249 struct task_struct *task; 3250 3251 down(&fs_info->uuid_tree_rescan_sem); 3252 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 3253 if (IS_ERR(task)) { 3254 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3255 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 3256 up(&fs_info->uuid_tree_rescan_sem); 3257 return PTR_ERR(task); 3258 } 3259 3260 return 0; 3261 } 3262 3263 /* 3264 * Some options only have meaning at mount time and shouldn't persist across 3265 * remounts, or be displayed. Clear these at the end of mount and remount 3266 * code paths. 3267 */ 3268 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 3269 { 3270 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3271 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 3272 } 3273 3274 /* 3275 * Mounting logic specific to read-write file systems. Shared by open_ctree 3276 * and btrfs_remount when remounting from read-only to read-write. 3277 */ 3278 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 3279 { 3280 int ret; 3281 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 3282 bool clear_free_space_tree = false; 3283 3284 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3285 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3286 clear_free_space_tree = true; 3287 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3288 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3289 btrfs_warn(fs_info, "free space tree is invalid"); 3290 clear_free_space_tree = true; 3291 } 3292 3293 if (clear_free_space_tree) { 3294 btrfs_info(fs_info, "clearing free space tree"); 3295 ret = btrfs_clear_free_space_tree(fs_info); 3296 if (ret) { 3297 btrfs_warn(fs_info, 3298 "failed to clear free space tree: %d", ret); 3299 goto out; 3300 } 3301 } 3302 3303 /* 3304 * btrfs_find_orphan_roots() is responsible for finding all the dead 3305 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3306 * them into the fs_info->fs_roots_radix tree. This must be done before 3307 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3308 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3309 * item before the root's tree is deleted - this means that if we unmount 3310 * or crash before the deletion completes, on the next mount we will not 3311 * delete what remains of the tree because the orphan item does not 3312 * exists anymore, which is what tells us we have a pending deletion. 3313 */ 3314 ret = btrfs_find_orphan_roots(fs_info); 3315 if (ret) 3316 goto out; 3317 3318 ret = btrfs_cleanup_fs_roots(fs_info); 3319 if (ret) 3320 goto out; 3321 3322 down_read(&fs_info->cleanup_work_sem); 3323 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3324 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3325 up_read(&fs_info->cleanup_work_sem); 3326 goto out; 3327 } 3328 up_read(&fs_info->cleanup_work_sem); 3329 3330 mutex_lock(&fs_info->cleaner_mutex); 3331 ret = btrfs_recover_relocation(fs_info); 3332 mutex_unlock(&fs_info->cleaner_mutex); 3333 if (ret < 0) { 3334 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3335 goto out; 3336 } 3337 3338 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3339 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3340 btrfs_info(fs_info, "creating free space tree"); 3341 ret = btrfs_create_free_space_tree(fs_info); 3342 if (ret) { 3343 btrfs_warn(fs_info, 3344 "failed to create free space tree: %d", ret); 3345 goto out; 3346 } 3347 } 3348 3349 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3350 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3351 if (ret) 3352 goto out; 3353 } 3354 3355 ret = btrfs_resume_balance_async(fs_info); 3356 if (ret) 3357 goto out; 3358 3359 ret = btrfs_resume_dev_replace_async(fs_info); 3360 if (ret) { 3361 btrfs_warn(fs_info, "failed to resume dev_replace"); 3362 goto out; 3363 } 3364 3365 btrfs_qgroup_rescan_resume(fs_info); 3366 3367 if (!fs_info->uuid_root) { 3368 btrfs_info(fs_info, "creating UUID tree"); 3369 ret = btrfs_create_uuid_tree(fs_info); 3370 if (ret) { 3371 btrfs_warn(fs_info, 3372 "failed to create the UUID tree %d", ret); 3373 goto out; 3374 } 3375 } 3376 3377 out: 3378 return ret; 3379 } 3380 3381 /* 3382 * Do various sanity and dependency checks of different features. 3383 * 3384 * This is the place for less strict checks (like for subpage or artificial 3385 * feature dependencies). 3386 * 3387 * For strict checks or possible corruption detection, see 3388 * btrfs_validate_super(). 3389 * 3390 * This should be called after btrfs_parse_options(), as some mount options 3391 * (space cache related) can modify on-disk format like free space tree and 3392 * screw up certain feature dependencies. 3393 */ 3394 int btrfs_check_features(struct btrfs_fs_info *fs_info, struct super_block *sb) 3395 { 3396 struct btrfs_super_block *disk_super = fs_info->super_copy; 3397 u64 incompat = btrfs_super_incompat_flags(disk_super); 3398 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3399 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3400 3401 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3402 btrfs_err(fs_info, 3403 "cannot mount because of unknown incompat features (0x%llx)", 3404 incompat); 3405 return -EINVAL; 3406 } 3407 3408 /* Runtime limitation for mixed block groups. */ 3409 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3410 (fs_info->sectorsize != fs_info->nodesize)) { 3411 btrfs_err(fs_info, 3412 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3413 fs_info->nodesize, fs_info->sectorsize); 3414 return -EINVAL; 3415 } 3416 3417 /* Mixed backref is an always-enabled feature. */ 3418 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3419 3420 /* Set compression related flags just in case. */ 3421 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3422 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3423 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3424 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3425 3426 /* 3427 * An ancient flag, which should really be marked deprecated. 3428 * Such runtime limitation doesn't really need a incompat flag. 3429 */ 3430 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3431 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3432 3433 if (compat_ro_unsupp && !sb_rdonly(sb)) { 3434 btrfs_err(fs_info, 3435 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3436 compat_ro); 3437 return -EINVAL; 3438 } 3439 3440 /* 3441 * We have unsupported RO compat features, although RO mounted, we 3442 * should not cause any metadata writes, including log replay. 3443 * Or we could screw up whatever the new feature requires. 3444 */ 3445 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3446 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3447 btrfs_err(fs_info, 3448 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3449 compat_ro); 3450 return -EINVAL; 3451 } 3452 3453 /* 3454 * Artificial limitations for block group tree, to force 3455 * block-group-tree to rely on no-holes and free-space-tree. 3456 */ 3457 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3458 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3459 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3460 btrfs_err(fs_info, 3461 "block-group-tree feature requires no-holes and free-space-tree features"); 3462 return -EINVAL; 3463 } 3464 3465 /* 3466 * Subpage runtime limitation on v1 cache. 3467 * 3468 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3469 * we're already defaulting to v2 cache, no need to bother v1 as it's 3470 * going to be deprecated anyway. 3471 */ 3472 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3473 btrfs_warn(fs_info, 3474 "v1 space cache is not supported for page size %lu with sectorsize %u", 3475 PAGE_SIZE, fs_info->sectorsize); 3476 return -EINVAL; 3477 } 3478 3479 /* This can be called by remount, we need to protect the super block. */ 3480 spin_lock(&fs_info->super_lock); 3481 btrfs_set_super_incompat_flags(disk_super, incompat); 3482 spin_unlock(&fs_info->super_lock); 3483 3484 return 0; 3485 } 3486 3487 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3488 char *options) 3489 { 3490 u32 sectorsize; 3491 u32 nodesize; 3492 u32 stripesize; 3493 u64 generation; 3494 u64 features; 3495 u16 csum_type; 3496 struct btrfs_super_block *disk_super; 3497 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3498 struct btrfs_root *tree_root; 3499 struct btrfs_root *chunk_root; 3500 int ret; 3501 int err = -EINVAL; 3502 int level; 3503 3504 ret = init_mount_fs_info(fs_info, sb); 3505 if (ret) { 3506 err = ret; 3507 goto fail; 3508 } 3509 3510 /* These need to be init'ed before we start creating inodes and such. */ 3511 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3512 GFP_KERNEL); 3513 fs_info->tree_root = tree_root; 3514 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3515 GFP_KERNEL); 3516 fs_info->chunk_root = chunk_root; 3517 if (!tree_root || !chunk_root) { 3518 err = -ENOMEM; 3519 goto fail; 3520 } 3521 3522 fs_info->btree_inode = new_inode(sb); 3523 if (!fs_info->btree_inode) { 3524 err = -ENOMEM; 3525 goto fail; 3526 } 3527 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 3528 btrfs_init_btree_inode(fs_info); 3529 3530 invalidate_bdev(fs_devices->latest_dev->bdev); 3531 3532 /* 3533 * Read super block and check the signature bytes only 3534 */ 3535 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3536 if (IS_ERR(disk_super)) { 3537 err = PTR_ERR(disk_super); 3538 goto fail_alloc; 3539 } 3540 3541 /* 3542 * Verify the type first, if that or the checksum value are 3543 * corrupted, we'll find out 3544 */ 3545 csum_type = btrfs_super_csum_type(disk_super); 3546 if (!btrfs_supported_super_csum(csum_type)) { 3547 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3548 csum_type); 3549 err = -EINVAL; 3550 btrfs_release_disk_super(disk_super); 3551 goto fail_alloc; 3552 } 3553 3554 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3555 3556 ret = btrfs_init_csum_hash(fs_info, csum_type); 3557 if (ret) { 3558 err = ret; 3559 btrfs_release_disk_super(disk_super); 3560 goto fail_alloc; 3561 } 3562 3563 /* 3564 * We want to check superblock checksum, the type is stored inside. 3565 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3566 */ 3567 if (btrfs_check_super_csum(fs_info, disk_super)) { 3568 btrfs_err(fs_info, "superblock checksum mismatch"); 3569 err = -EINVAL; 3570 btrfs_release_disk_super(disk_super); 3571 goto fail_alloc; 3572 } 3573 3574 /* 3575 * super_copy is zeroed at allocation time and we never touch the 3576 * following bytes up to INFO_SIZE, the checksum is calculated from 3577 * the whole block of INFO_SIZE 3578 */ 3579 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3580 btrfs_release_disk_super(disk_super); 3581 3582 disk_super = fs_info->super_copy; 3583 3584 3585 features = btrfs_super_flags(disk_super); 3586 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 3587 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 3588 btrfs_set_super_flags(disk_super, features); 3589 btrfs_info(fs_info, 3590 "found metadata UUID change in progress flag, clearing"); 3591 } 3592 3593 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3594 sizeof(*fs_info->super_for_commit)); 3595 3596 ret = btrfs_validate_mount_super(fs_info); 3597 if (ret) { 3598 btrfs_err(fs_info, "superblock contains fatal errors"); 3599 err = -EINVAL; 3600 goto fail_alloc; 3601 } 3602 3603 if (!btrfs_super_root(disk_super)) 3604 goto fail_alloc; 3605 3606 /* check FS state, whether FS is broken. */ 3607 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3608 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 3609 3610 /* 3611 * In the long term, we'll store the compression type in the super 3612 * block, and it'll be used for per file compression control. 3613 */ 3614 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 3615 3616 3617 /* Set up fs_info before parsing mount options */ 3618 nodesize = btrfs_super_nodesize(disk_super); 3619 sectorsize = btrfs_super_sectorsize(disk_super); 3620 stripesize = sectorsize; 3621 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3622 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3623 3624 fs_info->nodesize = nodesize; 3625 fs_info->sectorsize = sectorsize; 3626 fs_info->sectorsize_bits = ilog2(sectorsize); 3627 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3628 fs_info->stripesize = stripesize; 3629 3630 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 3631 if (ret) { 3632 err = ret; 3633 goto fail_alloc; 3634 } 3635 3636 ret = btrfs_check_features(fs_info, sb); 3637 if (ret < 0) { 3638 err = ret; 3639 goto fail_alloc; 3640 } 3641 3642 if (sectorsize < PAGE_SIZE) { 3643 struct btrfs_subpage_info *subpage_info; 3644 3645 /* 3646 * V1 space cache has some hardcoded PAGE_SIZE usage, and is 3647 * going to be deprecated. 3648 * 3649 * Force to use v2 cache for subpage case. 3650 */ 3651 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 3652 btrfs_set_and_info(fs_info, FREE_SPACE_TREE, 3653 "forcing free space tree for sector size %u with page size %lu", 3654 sectorsize, PAGE_SIZE); 3655 3656 btrfs_warn(fs_info, 3657 "read-write for sector size %u with page size %lu is experimental", 3658 sectorsize, PAGE_SIZE); 3659 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL); 3660 if (!subpage_info) 3661 goto fail_alloc; 3662 btrfs_init_subpage_info(subpage_info, sectorsize); 3663 fs_info->subpage_info = subpage_info; 3664 } 3665 3666 ret = btrfs_init_workqueues(fs_info); 3667 if (ret) { 3668 err = ret; 3669 goto fail_sb_buffer; 3670 } 3671 3672 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3673 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3674 3675 sb->s_blocksize = sectorsize; 3676 sb->s_blocksize_bits = blksize_bits(sectorsize); 3677 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3678 3679 mutex_lock(&fs_info->chunk_mutex); 3680 ret = btrfs_read_sys_array(fs_info); 3681 mutex_unlock(&fs_info->chunk_mutex); 3682 if (ret) { 3683 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3684 goto fail_sb_buffer; 3685 } 3686 3687 generation = btrfs_super_chunk_root_generation(disk_super); 3688 level = btrfs_super_chunk_root_level(disk_super); 3689 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3690 generation, level); 3691 if (ret) { 3692 btrfs_err(fs_info, "failed to read chunk root"); 3693 goto fail_tree_roots; 3694 } 3695 3696 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3697 offsetof(struct btrfs_header, chunk_tree_uuid), 3698 BTRFS_UUID_SIZE); 3699 3700 ret = btrfs_read_chunk_tree(fs_info); 3701 if (ret) { 3702 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3703 goto fail_tree_roots; 3704 } 3705 3706 /* 3707 * At this point we know all the devices that make this filesystem, 3708 * including the seed devices but we don't know yet if the replace 3709 * target is required. So free devices that are not part of this 3710 * filesystem but skip the replace target device which is checked 3711 * below in btrfs_init_dev_replace(). 3712 */ 3713 btrfs_free_extra_devids(fs_devices); 3714 if (!fs_devices->latest_dev->bdev) { 3715 btrfs_err(fs_info, "failed to read devices"); 3716 goto fail_tree_roots; 3717 } 3718 3719 ret = init_tree_roots(fs_info); 3720 if (ret) 3721 goto fail_tree_roots; 3722 3723 /* 3724 * Get zone type information of zoned block devices. This will also 3725 * handle emulation of a zoned filesystem if a regular device has the 3726 * zoned incompat feature flag set. 3727 */ 3728 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3729 if (ret) { 3730 btrfs_err(fs_info, 3731 "zoned: failed to read device zone info: %d", 3732 ret); 3733 goto fail_block_groups; 3734 } 3735 3736 /* 3737 * If we have a uuid root and we're not being told to rescan we need to 3738 * check the generation here so we can set the 3739 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3740 * transaction during a balance or the log replay without updating the 3741 * uuid generation, and then if we crash we would rescan the uuid tree, 3742 * even though it was perfectly fine. 3743 */ 3744 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3745 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3746 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3747 3748 ret = btrfs_verify_dev_extents(fs_info); 3749 if (ret) { 3750 btrfs_err(fs_info, 3751 "failed to verify dev extents against chunks: %d", 3752 ret); 3753 goto fail_block_groups; 3754 } 3755 ret = btrfs_recover_balance(fs_info); 3756 if (ret) { 3757 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3758 goto fail_block_groups; 3759 } 3760 3761 ret = btrfs_init_dev_stats(fs_info); 3762 if (ret) { 3763 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3764 goto fail_block_groups; 3765 } 3766 3767 ret = btrfs_init_dev_replace(fs_info); 3768 if (ret) { 3769 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3770 goto fail_block_groups; 3771 } 3772 3773 ret = btrfs_check_zoned_mode(fs_info); 3774 if (ret) { 3775 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3776 ret); 3777 goto fail_block_groups; 3778 } 3779 3780 ret = btrfs_sysfs_add_fsid(fs_devices); 3781 if (ret) { 3782 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3783 ret); 3784 goto fail_block_groups; 3785 } 3786 3787 ret = btrfs_sysfs_add_mounted(fs_info); 3788 if (ret) { 3789 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3790 goto fail_fsdev_sysfs; 3791 } 3792 3793 ret = btrfs_init_space_info(fs_info); 3794 if (ret) { 3795 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3796 goto fail_sysfs; 3797 } 3798 3799 ret = btrfs_read_block_groups(fs_info); 3800 if (ret) { 3801 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3802 goto fail_sysfs; 3803 } 3804 3805 btrfs_free_zone_cache(fs_info); 3806 3807 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3808 !btrfs_check_rw_degradable(fs_info, NULL)) { 3809 btrfs_warn(fs_info, 3810 "writable mount is not allowed due to too many missing devices"); 3811 goto fail_sysfs; 3812 } 3813 3814 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3815 "btrfs-cleaner"); 3816 if (IS_ERR(fs_info->cleaner_kthread)) 3817 goto fail_sysfs; 3818 3819 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3820 tree_root, 3821 "btrfs-transaction"); 3822 if (IS_ERR(fs_info->transaction_kthread)) 3823 goto fail_cleaner; 3824 3825 if (!btrfs_test_opt(fs_info, NOSSD) && 3826 !fs_info->fs_devices->rotating) { 3827 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3828 } 3829 3830 /* 3831 * For devices supporting discard turn on discard=async automatically, 3832 * unless it's already set or disabled. This could be turned off by 3833 * nodiscard for the same mount. 3834 */ 3835 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) || 3836 btrfs_test_opt(fs_info, DISCARD_ASYNC) || 3837 btrfs_test_opt(fs_info, NODISCARD)) && 3838 fs_info->fs_devices->discardable) { 3839 btrfs_set_and_info(fs_info, DISCARD_ASYNC, 3840 "auto enabling async discard"); 3841 btrfs_clear_opt(fs_info->mount_opt, NODISCARD); 3842 } 3843 3844 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3845 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3846 ret = btrfsic_mount(fs_info, fs_devices, 3847 btrfs_test_opt(fs_info, 3848 CHECK_INTEGRITY_DATA) ? 1 : 0, 3849 fs_info->check_integrity_print_mask); 3850 if (ret) 3851 btrfs_warn(fs_info, 3852 "failed to initialize integrity check module: %d", 3853 ret); 3854 } 3855 #endif 3856 ret = btrfs_read_qgroup_config(fs_info); 3857 if (ret) 3858 goto fail_trans_kthread; 3859 3860 if (btrfs_build_ref_tree(fs_info)) 3861 btrfs_err(fs_info, "couldn't build ref tree"); 3862 3863 /* do not make disk changes in broken FS or nologreplay is given */ 3864 if (btrfs_super_log_root(disk_super) != 0 && 3865 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3866 btrfs_info(fs_info, "start tree-log replay"); 3867 ret = btrfs_replay_log(fs_info, fs_devices); 3868 if (ret) { 3869 err = ret; 3870 goto fail_qgroup; 3871 } 3872 } 3873 3874 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3875 if (IS_ERR(fs_info->fs_root)) { 3876 err = PTR_ERR(fs_info->fs_root); 3877 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3878 fs_info->fs_root = NULL; 3879 goto fail_qgroup; 3880 } 3881 3882 if (sb_rdonly(sb)) 3883 goto clear_oneshot; 3884 3885 ret = btrfs_start_pre_rw_mount(fs_info); 3886 if (ret) { 3887 close_ctree(fs_info); 3888 return ret; 3889 } 3890 btrfs_discard_resume(fs_info); 3891 3892 if (fs_info->uuid_root && 3893 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3894 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3895 btrfs_info(fs_info, "checking UUID tree"); 3896 ret = btrfs_check_uuid_tree(fs_info); 3897 if (ret) { 3898 btrfs_warn(fs_info, 3899 "failed to check the UUID tree: %d", ret); 3900 close_ctree(fs_info); 3901 return ret; 3902 } 3903 } 3904 3905 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3906 3907 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3908 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3909 wake_up_process(fs_info->cleaner_kthread); 3910 3911 clear_oneshot: 3912 btrfs_clear_oneshot_options(fs_info); 3913 return 0; 3914 3915 fail_qgroup: 3916 btrfs_free_qgroup_config(fs_info); 3917 fail_trans_kthread: 3918 kthread_stop(fs_info->transaction_kthread); 3919 btrfs_cleanup_transaction(fs_info); 3920 btrfs_free_fs_roots(fs_info); 3921 fail_cleaner: 3922 kthread_stop(fs_info->cleaner_kthread); 3923 3924 /* 3925 * make sure we're done with the btree inode before we stop our 3926 * kthreads 3927 */ 3928 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3929 3930 fail_sysfs: 3931 btrfs_sysfs_remove_mounted(fs_info); 3932 3933 fail_fsdev_sysfs: 3934 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3935 3936 fail_block_groups: 3937 btrfs_put_block_group_cache(fs_info); 3938 3939 fail_tree_roots: 3940 if (fs_info->data_reloc_root) 3941 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3942 free_root_pointers(fs_info, true); 3943 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3944 3945 fail_sb_buffer: 3946 btrfs_stop_all_workers(fs_info); 3947 btrfs_free_block_groups(fs_info); 3948 fail_alloc: 3949 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3950 3951 iput(fs_info->btree_inode); 3952 fail: 3953 btrfs_close_devices(fs_info->fs_devices); 3954 return err; 3955 } 3956 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3957 3958 static void btrfs_end_super_write(struct bio *bio) 3959 { 3960 struct btrfs_device *device = bio->bi_private; 3961 struct bio_vec *bvec; 3962 struct bvec_iter_all iter_all; 3963 struct page *page; 3964 3965 bio_for_each_segment_all(bvec, bio, iter_all) { 3966 page = bvec->bv_page; 3967 3968 if (bio->bi_status) { 3969 btrfs_warn_rl_in_rcu(device->fs_info, 3970 "lost page write due to IO error on %s (%d)", 3971 btrfs_dev_name(device), 3972 blk_status_to_errno(bio->bi_status)); 3973 ClearPageUptodate(page); 3974 SetPageError(page); 3975 btrfs_dev_stat_inc_and_print(device, 3976 BTRFS_DEV_STAT_WRITE_ERRS); 3977 } else { 3978 SetPageUptodate(page); 3979 } 3980 3981 put_page(page); 3982 unlock_page(page); 3983 } 3984 3985 bio_put(bio); 3986 } 3987 3988 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3989 int copy_num, bool drop_cache) 3990 { 3991 struct btrfs_super_block *super; 3992 struct page *page; 3993 u64 bytenr, bytenr_orig; 3994 struct address_space *mapping = bdev->bd_inode->i_mapping; 3995 int ret; 3996 3997 bytenr_orig = btrfs_sb_offset(copy_num); 3998 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3999 if (ret == -ENOENT) 4000 return ERR_PTR(-EINVAL); 4001 else if (ret) 4002 return ERR_PTR(ret); 4003 4004 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 4005 return ERR_PTR(-EINVAL); 4006 4007 if (drop_cache) { 4008 /* This should only be called with the primary sb. */ 4009 ASSERT(copy_num == 0); 4010 4011 /* 4012 * Drop the page of the primary superblock, so later read will 4013 * always read from the device. 4014 */ 4015 invalidate_inode_pages2_range(mapping, 4016 bytenr >> PAGE_SHIFT, 4017 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 4018 } 4019 4020 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 4021 if (IS_ERR(page)) 4022 return ERR_CAST(page); 4023 4024 super = page_address(page); 4025 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 4026 btrfs_release_disk_super(super); 4027 return ERR_PTR(-ENODATA); 4028 } 4029 4030 if (btrfs_super_bytenr(super) != bytenr_orig) { 4031 btrfs_release_disk_super(super); 4032 return ERR_PTR(-EINVAL); 4033 } 4034 4035 return super; 4036 } 4037 4038 4039 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 4040 { 4041 struct btrfs_super_block *super, *latest = NULL; 4042 int i; 4043 u64 transid = 0; 4044 4045 /* we would like to check all the supers, but that would make 4046 * a btrfs mount succeed after a mkfs from a different FS. 4047 * So, we need to add a special mount option to scan for 4048 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 4049 */ 4050 for (i = 0; i < 1; i++) { 4051 super = btrfs_read_dev_one_super(bdev, i, false); 4052 if (IS_ERR(super)) 4053 continue; 4054 4055 if (!latest || btrfs_super_generation(super) > transid) { 4056 if (latest) 4057 btrfs_release_disk_super(super); 4058 4059 latest = super; 4060 transid = btrfs_super_generation(super); 4061 } 4062 } 4063 4064 return super; 4065 } 4066 4067 /* 4068 * Write superblock @sb to the @device. Do not wait for completion, all the 4069 * pages we use for writing are locked. 4070 * 4071 * Write @max_mirrors copies of the superblock, where 0 means default that fit 4072 * the expected device size at commit time. Note that max_mirrors must be 4073 * same for write and wait phases. 4074 * 4075 * Return number of errors when page is not found or submission fails. 4076 */ 4077 static int write_dev_supers(struct btrfs_device *device, 4078 struct btrfs_super_block *sb, int max_mirrors) 4079 { 4080 struct btrfs_fs_info *fs_info = device->fs_info; 4081 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 4082 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 4083 int i; 4084 int errors = 0; 4085 int ret; 4086 u64 bytenr, bytenr_orig; 4087 4088 if (max_mirrors == 0) 4089 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 4090 4091 shash->tfm = fs_info->csum_shash; 4092 4093 for (i = 0; i < max_mirrors; i++) { 4094 struct page *page; 4095 struct bio *bio; 4096 struct btrfs_super_block *disk_super; 4097 4098 bytenr_orig = btrfs_sb_offset(i); 4099 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 4100 if (ret == -ENOENT) { 4101 continue; 4102 } else if (ret < 0) { 4103 btrfs_err(device->fs_info, 4104 "couldn't get super block location for mirror %d", 4105 i); 4106 errors++; 4107 continue; 4108 } 4109 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 4110 device->commit_total_bytes) 4111 break; 4112 4113 btrfs_set_super_bytenr(sb, bytenr_orig); 4114 4115 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 4116 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 4117 sb->csum); 4118 4119 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 4120 GFP_NOFS); 4121 if (!page) { 4122 btrfs_err(device->fs_info, 4123 "couldn't get super block page for bytenr %llu", 4124 bytenr); 4125 errors++; 4126 continue; 4127 } 4128 4129 /* Bump the refcount for wait_dev_supers() */ 4130 get_page(page); 4131 4132 disk_super = page_address(page); 4133 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 4134 4135 /* 4136 * Directly use bios here instead of relying on the page cache 4137 * to do I/O, so we don't lose the ability to do integrity 4138 * checking. 4139 */ 4140 bio = bio_alloc(device->bdev, 1, 4141 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 4142 GFP_NOFS); 4143 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 4144 bio->bi_private = device; 4145 bio->bi_end_io = btrfs_end_super_write; 4146 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 4147 offset_in_page(bytenr)); 4148 4149 /* 4150 * We FUA only the first super block. The others we allow to 4151 * go down lazy and there's a short window where the on-disk 4152 * copies might still contain the older version. 4153 */ 4154 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 4155 bio->bi_opf |= REQ_FUA; 4156 4157 btrfsic_check_bio(bio); 4158 submit_bio(bio); 4159 4160 if (btrfs_advance_sb_log(device, i)) 4161 errors++; 4162 } 4163 return errors < i ? 0 : -1; 4164 } 4165 4166 /* 4167 * Wait for write completion of superblocks done by write_dev_supers, 4168 * @max_mirrors same for write and wait phases. 4169 * 4170 * Return number of errors when page is not found or not marked up to 4171 * date. 4172 */ 4173 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 4174 { 4175 int i; 4176 int errors = 0; 4177 bool primary_failed = false; 4178 int ret; 4179 u64 bytenr; 4180 4181 if (max_mirrors == 0) 4182 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 4183 4184 for (i = 0; i < max_mirrors; i++) { 4185 struct page *page; 4186 4187 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 4188 if (ret == -ENOENT) { 4189 break; 4190 } else if (ret < 0) { 4191 errors++; 4192 if (i == 0) 4193 primary_failed = true; 4194 continue; 4195 } 4196 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 4197 device->commit_total_bytes) 4198 break; 4199 4200 page = find_get_page(device->bdev->bd_inode->i_mapping, 4201 bytenr >> PAGE_SHIFT); 4202 if (!page) { 4203 errors++; 4204 if (i == 0) 4205 primary_failed = true; 4206 continue; 4207 } 4208 /* Page is submitted locked and unlocked once the IO completes */ 4209 wait_on_page_locked(page); 4210 if (PageError(page)) { 4211 errors++; 4212 if (i == 0) 4213 primary_failed = true; 4214 } 4215 4216 /* Drop our reference */ 4217 put_page(page); 4218 4219 /* Drop the reference from the writing run */ 4220 put_page(page); 4221 } 4222 4223 /* log error, force error return */ 4224 if (primary_failed) { 4225 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 4226 device->devid); 4227 return -1; 4228 } 4229 4230 return errors < i ? 0 : -1; 4231 } 4232 4233 /* 4234 * endio for the write_dev_flush, this will wake anyone waiting 4235 * for the barrier when it is done 4236 */ 4237 static void btrfs_end_empty_barrier(struct bio *bio) 4238 { 4239 bio_uninit(bio); 4240 complete(bio->bi_private); 4241 } 4242 4243 /* 4244 * Submit a flush request to the device if it supports it. Error handling is 4245 * done in the waiting counterpart. 4246 */ 4247 static void write_dev_flush(struct btrfs_device *device) 4248 { 4249 struct bio *bio = &device->flush_bio; 4250 4251 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4252 /* 4253 * When a disk has write caching disabled, we skip submission of a bio 4254 * with flush and sync requests before writing the superblock, since 4255 * it's not needed. However when the integrity checker is enabled, this 4256 * results in reports that there are metadata blocks referred by a 4257 * superblock that were not properly flushed. So don't skip the bio 4258 * submission only when the integrity checker is enabled for the sake 4259 * of simplicity, since this is a debug tool and not meant for use in 4260 * non-debug builds. 4261 */ 4262 if (!bdev_write_cache(device->bdev)) 4263 return; 4264 #endif 4265 4266 bio_init(bio, device->bdev, NULL, 0, 4267 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 4268 bio->bi_end_io = btrfs_end_empty_barrier; 4269 init_completion(&device->flush_wait); 4270 bio->bi_private = &device->flush_wait; 4271 4272 btrfsic_check_bio(bio); 4273 submit_bio(bio); 4274 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 4275 } 4276 4277 /* 4278 * If the flush bio has been submitted by write_dev_flush, wait for it. 4279 */ 4280 static blk_status_t wait_dev_flush(struct btrfs_device *device) 4281 { 4282 struct bio *bio = &device->flush_bio; 4283 4284 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 4285 return BLK_STS_OK; 4286 4287 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 4288 wait_for_completion_io(&device->flush_wait); 4289 4290 return bio->bi_status; 4291 } 4292 4293 static int check_barrier_error(struct btrfs_fs_info *fs_info) 4294 { 4295 if (!btrfs_check_rw_degradable(fs_info, NULL)) 4296 return -EIO; 4297 return 0; 4298 } 4299 4300 /* 4301 * send an empty flush down to each device in parallel, 4302 * then wait for them 4303 */ 4304 static int barrier_all_devices(struct btrfs_fs_info *info) 4305 { 4306 struct list_head *head; 4307 struct btrfs_device *dev; 4308 int errors_wait = 0; 4309 blk_status_t ret; 4310 4311 lockdep_assert_held(&info->fs_devices->device_list_mutex); 4312 /* send down all the barriers */ 4313 head = &info->fs_devices->devices; 4314 list_for_each_entry(dev, head, dev_list) { 4315 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4316 continue; 4317 if (!dev->bdev) 4318 continue; 4319 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4320 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4321 continue; 4322 4323 write_dev_flush(dev); 4324 dev->last_flush_error = BLK_STS_OK; 4325 } 4326 4327 /* wait for all the barriers */ 4328 list_for_each_entry(dev, head, dev_list) { 4329 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4330 continue; 4331 if (!dev->bdev) { 4332 errors_wait++; 4333 continue; 4334 } 4335 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4336 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4337 continue; 4338 4339 ret = wait_dev_flush(dev); 4340 if (ret) { 4341 dev->last_flush_error = ret; 4342 btrfs_dev_stat_inc_and_print(dev, 4343 BTRFS_DEV_STAT_FLUSH_ERRS); 4344 errors_wait++; 4345 } 4346 } 4347 4348 if (errors_wait) { 4349 /* 4350 * At some point we need the status of all disks 4351 * to arrive at the volume status. So error checking 4352 * is being pushed to a separate loop. 4353 */ 4354 return check_barrier_error(info); 4355 } 4356 return 0; 4357 } 4358 4359 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 4360 { 4361 int raid_type; 4362 int min_tolerated = INT_MAX; 4363 4364 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 4365 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 4366 min_tolerated = min_t(int, min_tolerated, 4367 btrfs_raid_array[BTRFS_RAID_SINGLE]. 4368 tolerated_failures); 4369 4370 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4371 if (raid_type == BTRFS_RAID_SINGLE) 4372 continue; 4373 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 4374 continue; 4375 min_tolerated = min_t(int, min_tolerated, 4376 btrfs_raid_array[raid_type]. 4377 tolerated_failures); 4378 } 4379 4380 if (min_tolerated == INT_MAX) { 4381 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4382 min_tolerated = 0; 4383 } 4384 4385 return min_tolerated; 4386 } 4387 4388 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4389 { 4390 struct list_head *head; 4391 struct btrfs_device *dev; 4392 struct btrfs_super_block *sb; 4393 struct btrfs_dev_item *dev_item; 4394 int ret; 4395 int do_barriers; 4396 int max_errors; 4397 int total_errors = 0; 4398 u64 flags; 4399 4400 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4401 4402 /* 4403 * max_mirrors == 0 indicates we're from commit_transaction, 4404 * not from fsync where the tree roots in fs_info have not 4405 * been consistent on disk. 4406 */ 4407 if (max_mirrors == 0) 4408 backup_super_roots(fs_info); 4409 4410 sb = fs_info->super_for_commit; 4411 dev_item = &sb->dev_item; 4412 4413 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4414 head = &fs_info->fs_devices->devices; 4415 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4416 4417 if (do_barriers) { 4418 ret = barrier_all_devices(fs_info); 4419 if (ret) { 4420 mutex_unlock( 4421 &fs_info->fs_devices->device_list_mutex); 4422 btrfs_handle_fs_error(fs_info, ret, 4423 "errors while submitting device barriers."); 4424 return ret; 4425 } 4426 } 4427 4428 list_for_each_entry(dev, head, dev_list) { 4429 if (!dev->bdev) { 4430 total_errors++; 4431 continue; 4432 } 4433 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4434 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4435 continue; 4436 4437 btrfs_set_stack_device_generation(dev_item, 0); 4438 btrfs_set_stack_device_type(dev_item, dev->type); 4439 btrfs_set_stack_device_id(dev_item, dev->devid); 4440 btrfs_set_stack_device_total_bytes(dev_item, 4441 dev->commit_total_bytes); 4442 btrfs_set_stack_device_bytes_used(dev_item, 4443 dev->commit_bytes_used); 4444 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4445 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4446 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4447 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4448 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4449 BTRFS_FSID_SIZE); 4450 4451 flags = btrfs_super_flags(sb); 4452 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4453 4454 ret = btrfs_validate_write_super(fs_info, sb); 4455 if (ret < 0) { 4456 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4457 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4458 "unexpected superblock corruption detected"); 4459 return -EUCLEAN; 4460 } 4461 4462 ret = write_dev_supers(dev, sb, max_mirrors); 4463 if (ret) 4464 total_errors++; 4465 } 4466 if (total_errors > max_errors) { 4467 btrfs_err(fs_info, "%d errors while writing supers", 4468 total_errors); 4469 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4470 4471 /* FUA is masked off if unsupported and can't be the reason */ 4472 btrfs_handle_fs_error(fs_info, -EIO, 4473 "%d errors while writing supers", 4474 total_errors); 4475 return -EIO; 4476 } 4477 4478 total_errors = 0; 4479 list_for_each_entry(dev, head, dev_list) { 4480 if (!dev->bdev) 4481 continue; 4482 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4483 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4484 continue; 4485 4486 ret = wait_dev_supers(dev, max_mirrors); 4487 if (ret) 4488 total_errors++; 4489 } 4490 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4491 if (total_errors > max_errors) { 4492 btrfs_handle_fs_error(fs_info, -EIO, 4493 "%d errors while writing supers", 4494 total_errors); 4495 return -EIO; 4496 } 4497 return 0; 4498 } 4499 4500 /* Drop a fs root from the radix tree and free it. */ 4501 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4502 struct btrfs_root *root) 4503 { 4504 bool drop_ref = false; 4505 4506 spin_lock(&fs_info->fs_roots_radix_lock); 4507 radix_tree_delete(&fs_info->fs_roots_radix, 4508 (unsigned long)root->root_key.objectid); 4509 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4510 drop_ref = true; 4511 spin_unlock(&fs_info->fs_roots_radix_lock); 4512 4513 if (BTRFS_FS_ERROR(fs_info)) { 4514 ASSERT(root->log_root == NULL); 4515 if (root->reloc_root) { 4516 btrfs_put_root(root->reloc_root); 4517 root->reloc_root = NULL; 4518 } 4519 } 4520 4521 if (drop_ref) 4522 btrfs_put_root(root); 4523 } 4524 4525 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 4526 { 4527 u64 root_objectid = 0; 4528 struct btrfs_root *gang[8]; 4529 int i = 0; 4530 int err = 0; 4531 unsigned int ret = 0; 4532 4533 while (1) { 4534 spin_lock(&fs_info->fs_roots_radix_lock); 4535 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4536 (void **)gang, root_objectid, 4537 ARRAY_SIZE(gang)); 4538 if (!ret) { 4539 spin_unlock(&fs_info->fs_roots_radix_lock); 4540 break; 4541 } 4542 root_objectid = gang[ret - 1]->root_key.objectid + 1; 4543 4544 for (i = 0; i < ret; i++) { 4545 /* Avoid to grab roots in dead_roots */ 4546 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 4547 gang[i] = NULL; 4548 continue; 4549 } 4550 /* grab all the search result for later use */ 4551 gang[i] = btrfs_grab_root(gang[i]); 4552 } 4553 spin_unlock(&fs_info->fs_roots_radix_lock); 4554 4555 for (i = 0; i < ret; i++) { 4556 if (!gang[i]) 4557 continue; 4558 root_objectid = gang[i]->root_key.objectid; 4559 err = btrfs_orphan_cleanup(gang[i]); 4560 if (err) 4561 break; 4562 btrfs_put_root(gang[i]); 4563 } 4564 root_objectid++; 4565 } 4566 4567 /* release the uncleaned roots due to error */ 4568 for (; i < ret; i++) { 4569 if (gang[i]) 4570 btrfs_put_root(gang[i]); 4571 } 4572 return err; 4573 } 4574 4575 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4576 { 4577 struct btrfs_root *root = fs_info->tree_root; 4578 struct btrfs_trans_handle *trans; 4579 4580 mutex_lock(&fs_info->cleaner_mutex); 4581 btrfs_run_delayed_iputs(fs_info); 4582 mutex_unlock(&fs_info->cleaner_mutex); 4583 wake_up_process(fs_info->cleaner_kthread); 4584 4585 /* wait until ongoing cleanup work done */ 4586 down_write(&fs_info->cleanup_work_sem); 4587 up_write(&fs_info->cleanup_work_sem); 4588 4589 trans = btrfs_join_transaction(root); 4590 if (IS_ERR(trans)) 4591 return PTR_ERR(trans); 4592 return btrfs_commit_transaction(trans); 4593 } 4594 4595 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4596 { 4597 struct btrfs_transaction *trans; 4598 struct btrfs_transaction *tmp; 4599 bool found = false; 4600 4601 if (list_empty(&fs_info->trans_list)) 4602 return; 4603 4604 /* 4605 * This function is only called at the very end of close_ctree(), 4606 * thus no other running transaction, no need to take trans_lock. 4607 */ 4608 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4609 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4610 struct extent_state *cached = NULL; 4611 u64 dirty_bytes = 0; 4612 u64 cur = 0; 4613 u64 found_start; 4614 u64 found_end; 4615 4616 found = true; 4617 while (!find_first_extent_bit(&trans->dirty_pages, cur, 4618 &found_start, &found_end, EXTENT_DIRTY, &cached)) { 4619 dirty_bytes += found_end + 1 - found_start; 4620 cur = found_end + 1; 4621 } 4622 btrfs_warn(fs_info, 4623 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4624 trans->transid, dirty_bytes); 4625 btrfs_cleanup_one_transaction(trans, fs_info); 4626 4627 if (trans == fs_info->running_transaction) 4628 fs_info->running_transaction = NULL; 4629 list_del_init(&trans->list); 4630 4631 btrfs_put_transaction(trans); 4632 trace_btrfs_transaction_commit(fs_info); 4633 } 4634 ASSERT(!found); 4635 } 4636 4637 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4638 { 4639 int ret; 4640 4641 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4642 4643 /* 4644 * If we had UNFINISHED_DROPS we could still be processing them, so 4645 * clear that bit and wake up relocation so it can stop. 4646 * We must do this before stopping the block group reclaim task, because 4647 * at btrfs_relocate_block_group() we wait for this bit, and after the 4648 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4649 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4650 * return 1. 4651 */ 4652 btrfs_wake_unfinished_drop(fs_info); 4653 4654 /* 4655 * We may have the reclaim task running and relocating a data block group, 4656 * in which case it may create delayed iputs. So stop it before we park 4657 * the cleaner kthread otherwise we can get new delayed iputs after 4658 * parking the cleaner, and that can make the async reclaim task to hang 4659 * if it's waiting for delayed iputs to complete, since the cleaner is 4660 * parked and can not run delayed iputs - this will make us hang when 4661 * trying to stop the async reclaim task. 4662 */ 4663 cancel_work_sync(&fs_info->reclaim_bgs_work); 4664 /* 4665 * We don't want the cleaner to start new transactions, add more delayed 4666 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4667 * because that frees the task_struct, and the transaction kthread might 4668 * still try to wake up the cleaner. 4669 */ 4670 kthread_park(fs_info->cleaner_kthread); 4671 4672 /* wait for the qgroup rescan worker to stop */ 4673 btrfs_qgroup_wait_for_completion(fs_info, false); 4674 4675 /* wait for the uuid_scan task to finish */ 4676 down(&fs_info->uuid_tree_rescan_sem); 4677 /* avoid complains from lockdep et al., set sem back to initial state */ 4678 up(&fs_info->uuid_tree_rescan_sem); 4679 4680 /* pause restriper - we want to resume on mount */ 4681 btrfs_pause_balance(fs_info); 4682 4683 btrfs_dev_replace_suspend_for_unmount(fs_info); 4684 4685 btrfs_scrub_cancel(fs_info); 4686 4687 /* wait for any defraggers to finish */ 4688 wait_event(fs_info->transaction_wait, 4689 (atomic_read(&fs_info->defrag_running) == 0)); 4690 4691 /* clear out the rbtree of defraggable inodes */ 4692 btrfs_cleanup_defrag_inodes(fs_info); 4693 4694 /* 4695 * After we parked the cleaner kthread, ordered extents may have 4696 * completed and created new delayed iputs. If one of the async reclaim 4697 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4698 * can hang forever trying to stop it, because if a delayed iput is 4699 * added after it ran btrfs_run_delayed_iputs() and before it called 4700 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4701 * no one else to run iputs. 4702 * 4703 * So wait for all ongoing ordered extents to complete and then run 4704 * delayed iputs. This works because once we reach this point no one 4705 * can either create new ordered extents nor create delayed iputs 4706 * through some other means. 4707 * 4708 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4709 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4710 * but the delayed iput for the respective inode is made only when doing 4711 * the final btrfs_put_ordered_extent() (which must happen at 4712 * btrfs_finish_ordered_io() when we are unmounting). 4713 */ 4714 btrfs_flush_workqueue(fs_info->endio_write_workers); 4715 /* Ordered extents for free space inodes. */ 4716 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4717 btrfs_run_delayed_iputs(fs_info); 4718 4719 cancel_work_sync(&fs_info->async_reclaim_work); 4720 cancel_work_sync(&fs_info->async_data_reclaim_work); 4721 cancel_work_sync(&fs_info->preempt_reclaim_work); 4722 4723 /* Cancel or finish ongoing discard work */ 4724 btrfs_discard_cleanup(fs_info); 4725 4726 if (!sb_rdonly(fs_info->sb)) { 4727 /* 4728 * The cleaner kthread is stopped, so do one final pass over 4729 * unused block groups. 4730 */ 4731 btrfs_delete_unused_bgs(fs_info); 4732 4733 /* 4734 * There might be existing delayed inode workers still running 4735 * and holding an empty delayed inode item. We must wait for 4736 * them to complete first because they can create a transaction. 4737 * This happens when someone calls btrfs_balance_delayed_items() 4738 * and then a transaction commit runs the same delayed nodes 4739 * before any delayed worker has done something with the nodes. 4740 * We must wait for any worker here and not at transaction 4741 * commit time since that could cause a deadlock. 4742 * This is a very rare case. 4743 */ 4744 btrfs_flush_workqueue(fs_info->delayed_workers); 4745 4746 ret = btrfs_commit_super(fs_info); 4747 if (ret) 4748 btrfs_err(fs_info, "commit super ret %d", ret); 4749 } 4750 4751 if (BTRFS_FS_ERROR(fs_info)) 4752 btrfs_error_commit_super(fs_info); 4753 4754 kthread_stop(fs_info->transaction_kthread); 4755 kthread_stop(fs_info->cleaner_kthread); 4756 4757 ASSERT(list_empty(&fs_info->delayed_iputs)); 4758 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4759 4760 if (btrfs_check_quota_leak(fs_info)) { 4761 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4762 btrfs_err(fs_info, "qgroup reserved space leaked"); 4763 } 4764 4765 btrfs_free_qgroup_config(fs_info); 4766 ASSERT(list_empty(&fs_info->delalloc_roots)); 4767 4768 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4769 btrfs_info(fs_info, "at unmount delalloc count %lld", 4770 percpu_counter_sum(&fs_info->delalloc_bytes)); 4771 } 4772 4773 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4774 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4775 percpu_counter_sum(&fs_info->ordered_bytes)); 4776 4777 btrfs_sysfs_remove_mounted(fs_info); 4778 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4779 4780 btrfs_put_block_group_cache(fs_info); 4781 4782 /* 4783 * we must make sure there is not any read request to 4784 * submit after we stopping all workers. 4785 */ 4786 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4787 btrfs_stop_all_workers(fs_info); 4788 4789 /* We shouldn't have any transaction open at this point */ 4790 warn_about_uncommitted_trans(fs_info); 4791 4792 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4793 free_root_pointers(fs_info, true); 4794 btrfs_free_fs_roots(fs_info); 4795 4796 /* 4797 * We must free the block groups after dropping the fs_roots as we could 4798 * have had an IO error and have left over tree log blocks that aren't 4799 * cleaned up until the fs roots are freed. This makes the block group 4800 * accounting appear to be wrong because there's pending reserved bytes, 4801 * so make sure we do the block group cleanup afterwards. 4802 */ 4803 btrfs_free_block_groups(fs_info); 4804 4805 iput(fs_info->btree_inode); 4806 4807 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4808 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4809 btrfsic_unmount(fs_info->fs_devices); 4810 #endif 4811 4812 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4813 btrfs_close_devices(fs_info->fs_devices); 4814 } 4815 4816 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4817 int atomic) 4818 { 4819 int ret; 4820 struct inode *btree_inode = buf->pages[0]->mapping->host; 4821 4822 ret = extent_buffer_uptodate(buf); 4823 if (!ret) 4824 return ret; 4825 4826 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4827 parent_transid, atomic); 4828 if (ret == -EAGAIN) 4829 return ret; 4830 return !ret; 4831 } 4832 4833 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4834 { 4835 struct btrfs_fs_info *fs_info = buf->fs_info; 4836 u64 transid = btrfs_header_generation(buf); 4837 int was_dirty; 4838 4839 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4840 /* 4841 * This is a fast path so only do this check if we have sanity tests 4842 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4843 * outside of the sanity tests. 4844 */ 4845 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4846 return; 4847 #endif 4848 btrfs_assert_tree_write_locked(buf); 4849 if (transid != fs_info->generation) 4850 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4851 buf->start, transid, fs_info->generation); 4852 was_dirty = set_extent_buffer_dirty(buf); 4853 if (!was_dirty) 4854 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4855 buf->len, 4856 fs_info->dirty_metadata_batch); 4857 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4858 /* 4859 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4860 * but item data not updated. 4861 * So here we should only check item pointers, not item data. 4862 */ 4863 if (btrfs_header_level(buf) == 0 && 4864 btrfs_check_leaf_relaxed(buf)) { 4865 btrfs_print_leaf(buf); 4866 ASSERT(0); 4867 } 4868 #endif 4869 } 4870 4871 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4872 int flush_delayed) 4873 { 4874 /* 4875 * looks as though older kernels can get into trouble with 4876 * this code, they end up stuck in balance_dirty_pages forever 4877 */ 4878 int ret; 4879 4880 if (current->flags & PF_MEMALLOC) 4881 return; 4882 4883 if (flush_delayed) 4884 btrfs_balance_delayed_items(fs_info); 4885 4886 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4887 BTRFS_DIRTY_METADATA_THRESH, 4888 fs_info->dirty_metadata_batch); 4889 if (ret > 0) { 4890 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4891 } 4892 } 4893 4894 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4895 { 4896 __btrfs_btree_balance_dirty(fs_info, 1); 4897 } 4898 4899 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4900 { 4901 __btrfs_btree_balance_dirty(fs_info, 0); 4902 } 4903 4904 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4905 { 4906 /* cleanup FS via transaction */ 4907 btrfs_cleanup_transaction(fs_info); 4908 4909 mutex_lock(&fs_info->cleaner_mutex); 4910 btrfs_run_delayed_iputs(fs_info); 4911 mutex_unlock(&fs_info->cleaner_mutex); 4912 4913 down_write(&fs_info->cleanup_work_sem); 4914 up_write(&fs_info->cleanup_work_sem); 4915 } 4916 4917 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4918 { 4919 struct btrfs_root *gang[8]; 4920 u64 root_objectid = 0; 4921 int ret; 4922 4923 spin_lock(&fs_info->fs_roots_radix_lock); 4924 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4925 (void **)gang, root_objectid, 4926 ARRAY_SIZE(gang))) != 0) { 4927 int i; 4928 4929 for (i = 0; i < ret; i++) 4930 gang[i] = btrfs_grab_root(gang[i]); 4931 spin_unlock(&fs_info->fs_roots_radix_lock); 4932 4933 for (i = 0; i < ret; i++) { 4934 if (!gang[i]) 4935 continue; 4936 root_objectid = gang[i]->root_key.objectid; 4937 btrfs_free_log(NULL, gang[i]); 4938 btrfs_put_root(gang[i]); 4939 } 4940 root_objectid++; 4941 spin_lock(&fs_info->fs_roots_radix_lock); 4942 } 4943 spin_unlock(&fs_info->fs_roots_radix_lock); 4944 btrfs_free_log_root_tree(NULL, fs_info); 4945 } 4946 4947 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4948 { 4949 struct btrfs_ordered_extent *ordered; 4950 4951 spin_lock(&root->ordered_extent_lock); 4952 /* 4953 * This will just short circuit the ordered completion stuff which will 4954 * make sure the ordered extent gets properly cleaned up. 4955 */ 4956 list_for_each_entry(ordered, &root->ordered_extents, 4957 root_extent_list) 4958 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4959 spin_unlock(&root->ordered_extent_lock); 4960 } 4961 4962 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4963 { 4964 struct btrfs_root *root; 4965 struct list_head splice; 4966 4967 INIT_LIST_HEAD(&splice); 4968 4969 spin_lock(&fs_info->ordered_root_lock); 4970 list_splice_init(&fs_info->ordered_roots, &splice); 4971 while (!list_empty(&splice)) { 4972 root = list_first_entry(&splice, struct btrfs_root, 4973 ordered_root); 4974 list_move_tail(&root->ordered_root, 4975 &fs_info->ordered_roots); 4976 4977 spin_unlock(&fs_info->ordered_root_lock); 4978 btrfs_destroy_ordered_extents(root); 4979 4980 cond_resched(); 4981 spin_lock(&fs_info->ordered_root_lock); 4982 } 4983 spin_unlock(&fs_info->ordered_root_lock); 4984 4985 /* 4986 * We need this here because if we've been flipped read-only we won't 4987 * get sync() from the umount, so we need to make sure any ordered 4988 * extents that haven't had their dirty pages IO start writeout yet 4989 * actually get run and error out properly. 4990 */ 4991 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4992 } 4993 4994 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4995 struct btrfs_fs_info *fs_info) 4996 { 4997 struct rb_node *node; 4998 struct btrfs_delayed_ref_root *delayed_refs; 4999 struct btrfs_delayed_ref_node *ref; 5000 int ret = 0; 5001 5002 delayed_refs = &trans->delayed_refs; 5003 5004 spin_lock(&delayed_refs->lock); 5005 if (atomic_read(&delayed_refs->num_entries) == 0) { 5006 spin_unlock(&delayed_refs->lock); 5007 btrfs_debug(fs_info, "delayed_refs has NO entry"); 5008 return ret; 5009 } 5010 5011 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 5012 struct btrfs_delayed_ref_head *head; 5013 struct rb_node *n; 5014 bool pin_bytes = false; 5015 5016 head = rb_entry(node, struct btrfs_delayed_ref_head, 5017 href_node); 5018 if (btrfs_delayed_ref_lock(delayed_refs, head)) 5019 continue; 5020 5021 spin_lock(&head->lock); 5022 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 5023 ref = rb_entry(n, struct btrfs_delayed_ref_node, 5024 ref_node); 5025 ref->in_tree = 0; 5026 rb_erase_cached(&ref->ref_node, &head->ref_tree); 5027 RB_CLEAR_NODE(&ref->ref_node); 5028 if (!list_empty(&ref->add_list)) 5029 list_del(&ref->add_list); 5030 atomic_dec(&delayed_refs->num_entries); 5031 btrfs_put_delayed_ref(ref); 5032 } 5033 if (head->must_insert_reserved) 5034 pin_bytes = true; 5035 btrfs_free_delayed_extent_op(head->extent_op); 5036 btrfs_delete_ref_head(delayed_refs, head); 5037 spin_unlock(&head->lock); 5038 spin_unlock(&delayed_refs->lock); 5039 mutex_unlock(&head->mutex); 5040 5041 if (pin_bytes) { 5042 struct btrfs_block_group *cache; 5043 5044 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 5045 BUG_ON(!cache); 5046 5047 spin_lock(&cache->space_info->lock); 5048 spin_lock(&cache->lock); 5049 cache->pinned += head->num_bytes; 5050 btrfs_space_info_update_bytes_pinned(fs_info, 5051 cache->space_info, head->num_bytes); 5052 cache->reserved -= head->num_bytes; 5053 cache->space_info->bytes_reserved -= head->num_bytes; 5054 spin_unlock(&cache->lock); 5055 spin_unlock(&cache->space_info->lock); 5056 5057 btrfs_put_block_group(cache); 5058 5059 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 5060 head->bytenr + head->num_bytes - 1); 5061 } 5062 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 5063 btrfs_put_delayed_ref_head(head); 5064 cond_resched(); 5065 spin_lock(&delayed_refs->lock); 5066 } 5067 btrfs_qgroup_destroy_extent_records(trans); 5068 5069 spin_unlock(&delayed_refs->lock); 5070 5071 return ret; 5072 } 5073 5074 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 5075 { 5076 struct btrfs_inode *btrfs_inode; 5077 struct list_head splice; 5078 5079 INIT_LIST_HEAD(&splice); 5080 5081 spin_lock(&root->delalloc_lock); 5082 list_splice_init(&root->delalloc_inodes, &splice); 5083 5084 while (!list_empty(&splice)) { 5085 struct inode *inode = NULL; 5086 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 5087 delalloc_inodes); 5088 __btrfs_del_delalloc_inode(root, btrfs_inode); 5089 spin_unlock(&root->delalloc_lock); 5090 5091 /* 5092 * Make sure we get a live inode and that it'll not disappear 5093 * meanwhile. 5094 */ 5095 inode = igrab(&btrfs_inode->vfs_inode); 5096 if (inode) { 5097 invalidate_inode_pages2(inode->i_mapping); 5098 iput(inode); 5099 } 5100 spin_lock(&root->delalloc_lock); 5101 } 5102 spin_unlock(&root->delalloc_lock); 5103 } 5104 5105 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 5106 { 5107 struct btrfs_root *root; 5108 struct list_head splice; 5109 5110 INIT_LIST_HEAD(&splice); 5111 5112 spin_lock(&fs_info->delalloc_root_lock); 5113 list_splice_init(&fs_info->delalloc_roots, &splice); 5114 while (!list_empty(&splice)) { 5115 root = list_first_entry(&splice, struct btrfs_root, 5116 delalloc_root); 5117 root = btrfs_grab_root(root); 5118 BUG_ON(!root); 5119 spin_unlock(&fs_info->delalloc_root_lock); 5120 5121 btrfs_destroy_delalloc_inodes(root); 5122 btrfs_put_root(root); 5123 5124 spin_lock(&fs_info->delalloc_root_lock); 5125 } 5126 spin_unlock(&fs_info->delalloc_root_lock); 5127 } 5128 5129 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 5130 struct extent_io_tree *dirty_pages, 5131 int mark) 5132 { 5133 int ret; 5134 struct extent_buffer *eb; 5135 u64 start = 0; 5136 u64 end; 5137 5138 while (1) { 5139 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 5140 mark, NULL); 5141 if (ret) 5142 break; 5143 5144 clear_extent_bits(dirty_pages, start, end, mark); 5145 while (start <= end) { 5146 eb = find_extent_buffer(fs_info, start); 5147 start += fs_info->nodesize; 5148 if (!eb) 5149 continue; 5150 wait_on_extent_buffer_writeback(eb); 5151 5152 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 5153 &eb->bflags)) 5154 clear_extent_buffer_dirty(eb); 5155 free_extent_buffer_stale(eb); 5156 } 5157 } 5158 5159 return ret; 5160 } 5161 5162 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 5163 struct extent_io_tree *unpin) 5164 { 5165 u64 start; 5166 u64 end; 5167 int ret; 5168 5169 while (1) { 5170 struct extent_state *cached_state = NULL; 5171 5172 /* 5173 * The btrfs_finish_extent_commit() may get the same range as 5174 * ours between find_first_extent_bit and clear_extent_dirty. 5175 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 5176 * the same extent range. 5177 */ 5178 mutex_lock(&fs_info->unused_bg_unpin_mutex); 5179 ret = find_first_extent_bit(unpin, 0, &start, &end, 5180 EXTENT_DIRTY, &cached_state); 5181 if (ret) { 5182 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5183 break; 5184 } 5185 5186 clear_extent_dirty(unpin, start, end, &cached_state); 5187 free_extent_state(cached_state); 5188 btrfs_error_unpin_extent_range(fs_info, start, end); 5189 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5190 cond_resched(); 5191 } 5192 5193 return 0; 5194 } 5195 5196 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 5197 { 5198 struct inode *inode; 5199 5200 inode = cache->io_ctl.inode; 5201 if (inode) { 5202 invalidate_inode_pages2(inode->i_mapping); 5203 BTRFS_I(inode)->generation = 0; 5204 cache->io_ctl.inode = NULL; 5205 iput(inode); 5206 } 5207 ASSERT(cache->io_ctl.pages == NULL); 5208 btrfs_put_block_group(cache); 5209 } 5210 5211 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 5212 struct btrfs_fs_info *fs_info) 5213 { 5214 struct btrfs_block_group *cache; 5215 5216 spin_lock(&cur_trans->dirty_bgs_lock); 5217 while (!list_empty(&cur_trans->dirty_bgs)) { 5218 cache = list_first_entry(&cur_trans->dirty_bgs, 5219 struct btrfs_block_group, 5220 dirty_list); 5221 5222 if (!list_empty(&cache->io_list)) { 5223 spin_unlock(&cur_trans->dirty_bgs_lock); 5224 list_del_init(&cache->io_list); 5225 btrfs_cleanup_bg_io(cache); 5226 spin_lock(&cur_trans->dirty_bgs_lock); 5227 } 5228 5229 list_del_init(&cache->dirty_list); 5230 spin_lock(&cache->lock); 5231 cache->disk_cache_state = BTRFS_DC_ERROR; 5232 spin_unlock(&cache->lock); 5233 5234 spin_unlock(&cur_trans->dirty_bgs_lock); 5235 btrfs_put_block_group(cache); 5236 btrfs_delayed_refs_rsv_release(fs_info, 1); 5237 spin_lock(&cur_trans->dirty_bgs_lock); 5238 } 5239 spin_unlock(&cur_trans->dirty_bgs_lock); 5240 5241 /* 5242 * Refer to the definition of io_bgs member for details why it's safe 5243 * to use it without any locking 5244 */ 5245 while (!list_empty(&cur_trans->io_bgs)) { 5246 cache = list_first_entry(&cur_trans->io_bgs, 5247 struct btrfs_block_group, 5248 io_list); 5249 5250 list_del_init(&cache->io_list); 5251 spin_lock(&cache->lock); 5252 cache->disk_cache_state = BTRFS_DC_ERROR; 5253 spin_unlock(&cache->lock); 5254 btrfs_cleanup_bg_io(cache); 5255 } 5256 } 5257 5258 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 5259 struct btrfs_fs_info *fs_info) 5260 { 5261 struct btrfs_device *dev, *tmp; 5262 5263 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 5264 ASSERT(list_empty(&cur_trans->dirty_bgs)); 5265 ASSERT(list_empty(&cur_trans->io_bgs)); 5266 5267 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 5268 post_commit_list) { 5269 list_del_init(&dev->post_commit_list); 5270 } 5271 5272 btrfs_destroy_delayed_refs(cur_trans, fs_info); 5273 5274 cur_trans->state = TRANS_STATE_COMMIT_START; 5275 wake_up(&fs_info->transaction_blocked_wait); 5276 5277 cur_trans->state = TRANS_STATE_UNBLOCKED; 5278 wake_up(&fs_info->transaction_wait); 5279 5280 btrfs_destroy_delayed_inodes(fs_info); 5281 5282 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 5283 EXTENT_DIRTY); 5284 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 5285 5286 btrfs_free_redirty_list(cur_trans); 5287 5288 cur_trans->state =TRANS_STATE_COMPLETED; 5289 wake_up(&cur_trans->commit_wait); 5290 } 5291 5292 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 5293 { 5294 struct btrfs_transaction *t; 5295 5296 mutex_lock(&fs_info->transaction_kthread_mutex); 5297 5298 spin_lock(&fs_info->trans_lock); 5299 while (!list_empty(&fs_info->trans_list)) { 5300 t = list_first_entry(&fs_info->trans_list, 5301 struct btrfs_transaction, list); 5302 if (t->state >= TRANS_STATE_COMMIT_START) { 5303 refcount_inc(&t->use_count); 5304 spin_unlock(&fs_info->trans_lock); 5305 btrfs_wait_for_commit(fs_info, t->transid); 5306 btrfs_put_transaction(t); 5307 spin_lock(&fs_info->trans_lock); 5308 continue; 5309 } 5310 if (t == fs_info->running_transaction) { 5311 t->state = TRANS_STATE_COMMIT_DOING; 5312 spin_unlock(&fs_info->trans_lock); 5313 /* 5314 * We wait for 0 num_writers since we don't hold a trans 5315 * handle open currently for this transaction. 5316 */ 5317 wait_event(t->writer_wait, 5318 atomic_read(&t->num_writers) == 0); 5319 } else { 5320 spin_unlock(&fs_info->trans_lock); 5321 } 5322 btrfs_cleanup_one_transaction(t, fs_info); 5323 5324 spin_lock(&fs_info->trans_lock); 5325 if (t == fs_info->running_transaction) 5326 fs_info->running_transaction = NULL; 5327 list_del_init(&t->list); 5328 spin_unlock(&fs_info->trans_lock); 5329 5330 btrfs_put_transaction(t); 5331 trace_btrfs_transaction_commit(fs_info); 5332 spin_lock(&fs_info->trans_lock); 5333 } 5334 spin_unlock(&fs_info->trans_lock); 5335 btrfs_destroy_all_ordered_extents(fs_info); 5336 btrfs_destroy_delayed_inodes(fs_info); 5337 btrfs_assert_delayed_root_empty(fs_info); 5338 btrfs_destroy_all_delalloc_inodes(fs_info); 5339 btrfs_drop_all_logs(fs_info); 5340 mutex_unlock(&fs_info->transaction_kthread_mutex); 5341 5342 return 0; 5343 } 5344 5345 int btrfs_init_root_free_objectid(struct btrfs_root *root) 5346 { 5347 struct btrfs_path *path; 5348 int ret; 5349 struct extent_buffer *l; 5350 struct btrfs_key search_key; 5351 struct btrfs_key found_key; 5352 int slot; 5353 5354 path = btrfs_alloc_path(); 5355 if (!path) 5356 return -ENOMEM; 5357 5358 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 5359 search_key.type = -1; 5360 search_key.offset = (u64)-1; 5361 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5362 if (ret < 0) 5363 goto error; 5364 BUG_ON(ret == 0); /* Corruption */ 5365 if (path->slots[0] > 0) { 5366 slot = path->slots[0] - 1; 5367 l = path->nodes[0]; 5368 btrfs_item_key_to_cpu(l, &found_key, slot); 5369 root->free_objectid = max_t(u64, found_key.objectid + 1, 5370 BTRFS_FIRST_FREE_OBJECTID); 5371 } else { 5372 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 5373 } 5374 ret = 0; 5375 error: 5376 btrfs_free_path(path); 5377 return ret; 5378 } 5379 5380 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 5381 { 5382 int ret; 5383 mutex_lock(&root->objectid_mutex); 5384 5385 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 5386 btrfs_warn(root->fs_info, 5387 "the objectid of root %llu reaches its highest value", 5388 root->root_key.objectid); 5389 ret = -ENOSPC; 5390 goto out; 5391 } 5392 5393 *objectid = root->free_objectid++; 5394 ret = 0; 5395 out: 5396 mutex_unlock(&root->objectid_mutex); 5397 return ret; 5398 } 5399