1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include <linux/slab.h> 31 #include <linux/migrate.h> 32 #include <asm/unaligned.h> 33 #include "compat.h" 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "transaction.h" 37 #include "btrfs_inode.h" 38 #include "volumes.h" 39 #include "print-tree.h" 40 #include "async-thread.h" 41 #include "locking.h" 42 #include "tree-log.h" 43 #include "free-space-cache.h" 44 45 static struct extent_io_ops btree_extent_io_ops; 46 static void end_workqueue_fn(struct btrfs_work *work); 47 static void free_fs_root(struct btrfs_root *root); 48 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 49 int read_only); 50 static int btrfs_destroy_ordered_operations(struct btrfs_root *root); 51 static int btrfs_destroy_ordered_extents(struct btrfs_root *root); 52 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 53 struct btrfs_root *root); 54 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t); 55 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 56 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 57 struct extent_io_tree *dirty_pages, 58 int mark); 59 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 60 struct extent_io_tree *pinned_extents); 61 static int btrfs_cleanup_transaction(struct btrfs_root *root); 62 63 /* 64 * end_io_wq structs are used to do processing in task context when an IO is 65 * complete. This is used during reads to verify checksums, and it is used 66 * by writes to insert metadata for new file extents after IO is complete. 67 */ 68 struct end_io_wq { 69 struct bio *bio; 70 bio_end_io_t *end_io; 71 void *private; 72 struct btrfs_fs_info *info; 73 int error; 74 int metadata; 75 struct list_head list; 76 struct btrfs_work work; 77 }; 78 79 /* 80 * async submit bios are used to offload expensive checksumming 81 * onto the worker threads. They checksum file and metadata bios 82 * just before they are sent down the IO stack. 83 */ 84 struct async_submit_bio { 85 struct inode *inode; 86 struct bio *bio; 87 struct list_head list; 88 extent_submit_bio_hook_t *submit_bio_start; 89 extent_submit_bio_hook_t *submit_bio_done; 90 int rw; 91 int mirror_num; 92 unsigned long bio_flags; 93 /* 94 * bio_offset is optional, can be used if the pages in the bio 95 * can't tell us where in the file the bio should go 96 */ 97 u64 bio_offset; 98 struct btrfs_work work; 99 }; 100 101 /* These are used to set the lockdep class on the extent buffer locks. 102 * The class is set by the readpage_end_io_hook after the buffer has 103 * passed csum validation but before the pages are unlocked. 104 * 105 * The lockdep class is also set by btrfs_init_new_buffer on freshly 106 * allocated blocks. 107 * 108 * The class is based on the level in the tree block, which allows lockdep 109 * to know that lower nodes nest inside the locks of higher nodes. 110 * 111 * We also add a check to make sure the highest level of the tree is 112 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this 113 * code needs update as well. 114 */ 115 #ifdef CONFIG_DEBUG_LOCK_ALLOC 116 # if BTRFS_MAX_LEVEL != 8 117 # error 118 # endif 119 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1]; 120 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = { 121 /* leaf */ 122 "btrfs-extent-00", 123 "btrfs-extent-01", 124 "btrfs-extent-02", 125 "btrfs-extent-03", 126 "btrfs-extent-04", 127 "btrfs-extent-05", 128 "btrfs-extent-06", 129 "btrfs-extent-07", 130 /* highest possible level */ 131 "btrfs-extent-08", 132 }; 133 #endif 134 135 /* 136 * extents on the btree inode are pretty simple, there's one extent 137 * that covers the entire device 138 */ 139 static struct extent_map *btree_get_extent(struct inode *inode, 140 struct page *page, size_t page_offset, u64 start, u64 len, 141 int create) 142 { 143 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 144 struct extent_map *em; 145 int ret; 146 147 read_lock(&em_tree->lock); 148 em = lookup_extent_mapping(em_tree, start, len); 149 if (em) { 150 em->bdev = 151 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 152 read_unlock(&em_tree->lock); 153 goto out; 154 } 155 read_unlock(&em_tree->lock); 156 157 em = alloc_extent_map(GFP_NOFS); 158 if (!em) { 159 em = ERR_PTR(-ENOMEM); 160 goto out; 161 } 162 em->start = 0; 163 em->len = (u64)-1; 164 em->block_len = (u64)-1; 165 em->block_start = 0; 166 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 167 168 write_lock(&em_tree->lock); 169 ret = add_extent_mapping(em_tree, em); 170 if (ret == -EEXIST) { 171 u64 failed_start = em->start; 172 u64 failed_len = em->len; 173 174 free_extent_map(em); 175 em = lookup_extent_mapping(em_tree, start, len); 176 if (em) { 177 ret = 0; 178 } else { 179 em = lookup_extent_mapping(em_tree, failed_start, 180 failed_len); 181 ret = -EIO; 182 } 183 } else if (ret) { 184 free_extent_map(em); 185 em = NULL; 186 } 187 write_unlock(&em_tree->lock); 188 189 if (ret) 190 em = ERR_PTR(ret); 191 out: 192 return em; 193 } 194 195 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 196 { 197 return crc32c(seed, data, len); 198 } 199 200 void btrfs_csum_final(u32 crc, char *result) 201 { 202 put_unaligned_le32(~crc, result); 203 } 204 205 /* 206 * compute the csum for a btree block, and either verify it or write it 207 * into the csum field of the block. 208 */ 209 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 210 int verify) 211 { 212 u16 csum_size = 213 btrfs_super_csum_size(&root->fs_info->super_copy); 214 char *result = NULL; 215 unsigned long len; 216 unsigned long cur_len; 217 unsigned long offset = BTRFS_CSUM_SIZE; 218 char *map_token = NULL; 219 char *kaddr; 220 unsigned long map_start; 221 unsigned long map_len; 222 int err; 223 u32 crc = ~(u32)0; 224 unsigned long inline_result; 225 226 len = buf->len - offset; 227 while (len > 0) { 228 err = map_private_extent_buffer(buf, offset, 32, 229 &map_token, &kaddr, 230 &map_start, &map_len, KM_USER0); 231 if (err) 232 return 1; 233 cur_len = min(len, map_len - (offset - map_start)); 234 crc = btrfs_csum_data(root, kaddr + offset - map_start, 235 crc, cur_len); 236 len -= cur_len; 237 offset += cur_len; 238 unmap_extent_buffer(buf, map_token, KM_USER0); 239 } 240 if (csum_size > sizeof(inline_result)) { 241 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 242 if (!result) 243 return 1; 244 } else { 245 result = (char *)&inline_result; 246 } 247 248 btrfs_csum_final(crc, result); 249 250 if (verify) { 251 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 252 u32 val; 253 u32 found = 0; 254 memcpy(&found, result, csum_size); 255 256 read_extent_buffer(buf, &val, 0, csum_size); 257 if (printk_ratelimit()) { 258 printk(KERN_INFO "btrfs: %s checksum verify " 259 "failed on %llu wanted %X found %X " 260 "level %d\n", 261 root->fs_info->sb->s_id, 262 (unsigned long long)buf->start, val, found, 263 btrfs_header_level(buf)); 264 } 265 if (result != (char *)&inline_result) 266 kfree(result); 267 return 1; 268 } 269 } else { 270 write_extent_buffer(buf, result, 0, csum_size); 271 } 272 if (result != (char *)&inline_result) 273 kfree(result); 274 return 0; 275 } 276 277 /* 278 * we can't consider a given block up to date unless the transid of the 279 * block matches the transid in the parent node's pointer. This is how we 280 * detect blocks that either didn't get written at all or got written 281 * in the wrong place. 282 */ 283 static int verify_parent_transid(struct extent_io_tree *io_tree, 284 struct extent_buffer *eb, u64 parent_transid) 285 { 286 struct extent_state *cached_state = NULL; 287 int ret; 288 289 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 290 return 0; 291 292 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 293 0, &cached_state, GFP_NOFS); 294 if (extent_buffer_uptodate(io_tree, eb, cached_state) && 295 btrfs_header_generation(eb) == parent_transid) { 296 ret = 0; 297 goto out; 298 } 299 if (printk_ratelimit()) { 300 printk("parent transid verify failed on %llu wanted %llu " 301 "found %llu\n", 302 (unsigned long long)eb->start, 303 (unsigned long long)parent_transid, 304 (unsigned long long)btrfs_header_generation(eb)); 305 } 306 ret = 1; 307 clear_extent_buffer_uptodate(io_tree, eb, &cached_state); 308 out: 309 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 310 &cached_state, GFP_NOFS); 311 return ret; 312 } 313 314 /* 315 * helper to read a given tree block, doing retries as required when 316 * the checksums don't match and we have alternate mirrors to try. 317 */ 318 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 319 struct extent_buffer *eb, 320 u64 start, u64 parent_transid) 321 { 322 struct extent_io_tree *io_tree; 323 int ret; 324 int num_copies = 0; 325 int mirror_num = 0; 326 327 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 328 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 329 while (1) { 330 ret = read_extent_buffer_pages(io_tree, eb, start, 1, 331 btree_get_extent, mirror_num); 332 if (!ret && 333 !verify_parent_transid(io_tree, eb, parent_transid)) 334 return ret; 335 336 /* 337 * This buffer's crc is fine, but its contents are corrupted, so 338 * there is no reason to read the other copies, they won't be 339 * any less wrong. 340 */ 341 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 342 return ret; 343 344 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 345 eb->start, eb->len); 346 if (num_copies == 1) 347 return ret; 348 349 mirror_num++; 350 if (mirror_num > num_copies) 351 return ret; 352 } 353 return -EIO; 354 } 355 356 /* 357 * checksum a dirty tree block before IO. This has extra checks to make sure 358 * we only fill in the checksum field in the first page of a multi-page block 359 */ 360 361 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 362 { 363 struct extent_io_tree *tree; 364 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 365 u64 found_start; 366 unsigned long len; 367 struct extent_buffer *eb; 368 int ret; 369 370 tree = &BTRFS_I(page->mapping->host)->io_tree; 371 372 if (page->private == EXTENT_PAGE_PRIVATE) { 373 WARN_ON(1); 374 goto out; 375 } 376 if (!page->private) { 377 WARN_ON(1); 378 goto out; 379 } 380 len = page->private >> 2; 381 WARN_ON(len == 0); 382 383 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 384 if (eb == NULL) { 385 WARN_ON(1); 386 goto out; 387 } 388 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE, 389 btrfs_header_generation(eb)); 390 BUG_ON(ret); 391 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN)); 392 393 found_start = btrfs_header_bytenr(eb); 394 if (found_start != start) { 395 WARN_ON(1); 396 goto err; 397 } 398 if (eb->first_page != page) { 399 WARN_ON(1); 400 goto err; 401 } 402 if (!PageUptodate(page)) { 403 WARN_ON(1); 404 goto err; 405 } 406 csum_tree_block(root, eb, 0); 407 err: 408 free_extent_buffer(eb); 409 out: 410 return 0; 411 } 412 413 static int check_tree_block_fsid(struct btrfs_root *root, 414 struct extent_buffer *eb) 415 { 416 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 417 u8 fsid[BTRFS_UUID_SIZE]; 418 int ret = 1; 419 420 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 421 BTRFS_FSID_SIZE); 422 while (fs_devices) { 423 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 424 ret = 0; 425 break; 426 } 427 fs_devices = fs_devices->seed; 428 } 429 return ret; 430 } 431 432 #define CORRUPT(reason, eb, root, slot) \ 433 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \ 434 "root=%llu, slot=%d\n", reason, \ 435 (unsigned long long)btrfs_header_bytenr(eb), \ 436 (unsigned long long)root->objectid, slot) 437 438 static noinline int check_leaf(struct btrfs_root *root, 439 struct extent_buffer *leaf) 440 { 441 struct btrfs_key key; 442 struct btrfs_key leaf_key; 443 u32 nritems = btrfs_header_nritems(leaf); 444 int slot; 445 446 if (nritems == 0) 447 return 0; 448 449 /* Check the 0 item */ 450 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 451 BTRFS_LEAF_DATA_SIZE(root)) { 452 CORRUPT("invalid item offset size pair", leaf, root, 0); 453 return -EIO; 454 } 455 456 /* 457 * Check to make sure each items keys are in the correct order and their 458 * offsets make sense. We only have to loop through nritems-1 because 459 * we check the current slot against the next slot, which verifies the 460 * next slot's offset+size makes sense and that the current's slot 461 * offset is correct. 462 */ 463 for (slot = 0; slot < nritems - 1; slot++) { 464 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 465 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 466 467 /* Make sure the keys are in the right order */ 468 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 469 CORRUPT("bad key order", leaf, root, slot); 470 return -EIO; 471 } 472 473 /* 474 * Make sure the offset and ends are right, remember that the 475 * item data starts at the end of the leaf and grows towards the 476 * front. 477 */ 478 if (btrfs_item_offset_nr(leaf, slot) != 479 btrfs_item_end_nr(leaf, slot + 1)) { 480 CORRUPT("slot offset bad", leaf, root, slot); 481 return -EIO; 482 } 483 484 /* 485 * Check to make sure that we don't point outside of the leaf, 486 * just incase all the items are consistent to eachother, but 487 * all point outside of the leaf. 488 */ 489 if (btrfs_item_end_nr(leaf, slot) > 490 BTRFS_LEAF_DATA_SIZE(root)) { 491 CORRUPT("slot end outside of leaf", leaf, root, slot); 492 return -EIO; 493 } 494 } 495 496 return 0; 497 } 498 499 #ifdef CONFIG_DEBUG_LOCK_ALLOC 500 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level) 501 { 502 lockdep_set_class_and_name(&eb->lock, 503 &btrfs_eb_class[level], 504 btrfs_eb_name[level]); 505 } 506 #endif 507 508 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 509 struct extent_state *state) 510 { 511 struct extent_io_tree *tree; 512 u64 found_start; 513 int found_level; 514 unsigned long len; 515 struct extent_buffer *eb; 516 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 517 int ret = 0; 518 519 tree = &BTRFS_I(page->mapping->host)->io_tree; 520 if (page->private == EXTENT_PAGE_PRIVATE) 521 goto out; 522 if (!page->private) 523 goto out; 524 525 len = page->private >> 2; 526 WARN_ON(len == 0); 527 528 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 529 if (eb == NULL) { 530 ret = -EIO; 531 goto out; 532 } 533 534 found_start = btrfs_header_bytenr(eb); 535 if (found_start != start) { 536 if (printk_ratelimit()) { 537 printk(KERN_INFO "btrfs bad tree block start " 538 "%llu %llu\n", 539 (unsigned long long)found_start, 540 (unsigned long long)eb->start); 541 } 542 ret = -EIO; 543 goto err; 544 } 545 if (eb->first_page != page) { 546 printk(KERN_INFO "btrfs bad first page %lu %lu\n", 547 eb->first_page->index, page->index); 548 WARN_ON(1); 549 ret = -EIO; 550 goto err; 551 } 552 if (check_tree_block_fsid(root, eb)) { 553 if (printk_ratelimit()) { 554 printk(KERN_INFO "btrfs bad fsid on block %llu\n", 555 (unsigned long long)eb->start); 556 } 557 ret = -EIO; 558 goto err; 559 } 560 found_level = btrfs_header_level(eb); 561 562 btrfs_set_buffer_lockdep_class(eb, found_level); 563 564 ret = csum_tree_block(root, eb, 1); 565 if (ret) { 566 ret = -EIO; 567 goto err; 568 } 569 570 /* 571 * If this is a leaf block and it is corrupt, set the corrupt bit so 572 * that we don't try and read the other copies of this block, just 573 * return -EIO. 574 */ 575 if (found_level == 0 && check_leaf(root, eb)) { 576 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 577 ret = -EIO; 578 } 579 580 end = min_t(u64, eb->len, PAGE_CACHE_SIZE); 581 end = eb->start + end - 1; 582 err: 583 free_extent_buffer(eb); 584 out: 585 return ret; 586 } 587 588 static void end_workqueue_bio(struct bio *bio, int err) 589 { 590 struct end_io_wq *end_io_wq = bio->bi_private; 591 struct btrfs_fs_info *fs_info; 592 593 fs_info = end_io_wq->info; 594 end_io_wq->error = err; 595 end_io_wq->work.func = end_workqueue_fn; 596 end_io_wq->work.flags = 0; 597 598 if (bio->bi_rw & REQ_WRITE) { 599 if (end_io_wq->metadata == 1) 600 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 601 &end_io_wq->work); 602 else if (end_io_wq->metadata == 2) 603 btrfs_queue_worker(&fs_info->endio_freespace_worker, 604 &end_io_wq->work); 605 else 606 btrfs_queue_worker(&fs_info->endio_write_workers, 607 &end_io_wq->work); 608 } else { 609 if (end_io_wq->metadata) 610 btrfs_queue_worker(&fs_info->endio_meta_workers, 611 &end_io_wq->work); 612 else 613 btrfs_queue_worker(&fs_info->endio_workers, 614 &end_io_wq->work); 615 } 616 } 617 618 /* 619 * For the metadata arg you want 620 * 621 * 0 - if data 622 * 1 - if normal metadta 623 * 2 - if writing to the free space cache area 624 */ 625 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 626 int metadata) 627 { 628 struct end_io_wq *end_io_wq; 629 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 630 if (!end_io_wq) 631 return -ENOMEM; 632 633 end_io_wq->private = bio->bi_private; 634 end_io_wq->end_io = bio->bi_end_io; 635 end_io_wq->info = info; 636 end_io_wq->error = 0; 637 end_io_wq->bio = bio; 638 end_io_wq->metadata = metadata; 639 640 bio->bi_private = end_io_wq; 641 bio->bi_end_io = end_workqueue_bio; 642 return 0; 643 } 644 645 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 646 { 647 unsigned long limit = min_t(unsigned long, 648 info->workers.max_workers, 649 info->fs_devices->open_devices); 650 return 256 * limit; 651 } 652 653 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone) 654 { 655 return atomic_read(&info->nr_async_bios) > 656 btrfs_async_submit_limit(info); 657 } 658 659 static void run_one_async_start(struct btrfs_work *work) 660 { 661 struct async_submit_bio *async; 662 663 async = container_of(work, struct async_submit_bio, work); 664 async->submit_bio_start(async->inode, async->rw, async->bio, 665 async->mirror_num, async->bio_flags, 666 async->bio_offset); 667 } 668 669 static void run_one_async_done(struct btrfs_work *work) 670 { 671 struct btrfs_fs_info *fs_info; 672 struct async_submit_bio *async; 673 int limit; 674 675 async = container_of(work, struct async_submit_bio, work); 676 fs_info = BTRFS_I(async->inode)->root->fs_info; 677 678 limit = btrfs_async_submit_limit(fs_info); 679 limit = limit * 2 / 3; 680 681 atomic_dec(&fs_info->nr_async_submits); 682 683 if (atomic_read(&fs_info->nr_async_submits) < limit && 684 waitqueue_active(&fs_info->async_submit_wait)) 685 wake_up(&fs_info->async_submit_wait); 686 687 async->submit_bio_done(async->inode, async->rw, async->bio, 688 async->mirror_num, async->bio_flags, 689 async->bio_offset); 690 } 691 692 static void run_one_async_free(struct btrfs_work *work) 693 { 694 struct async_submit_bio *async; 695 696 async = container_of(work, struct async_submit_bio, work); 697 kfree(async); 698 } 699 700 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 701 int rw, struct bio *bio, int mirror_num, 702 unsigned long bio_flags, 703 u64 bio_offset, 704 extent_submit_bio_hook_t *submit_bio_start, 705 extent_submit_bio_hook_t *submit_bio_done) 706 { 707 struct async_submit_bio *async; 708 709 async = kmalloc(sizeof(*async), GFP_NOFS); 710 if (!async) 711 return -ENOMEM; 712 713 async->inode = inode; 714 async->rw = rw; 715 async->bio = bio; 716 async->mirror_num = mirror_num; 717 async->submit_bio_start = submit_bio_start; 718 async->submit_bio_done = submit_bio_done; 719 720 async->work.func = run_one_async_start; 721 async->work.ordered_func = run_one_async_done; 722 async->work.ordered_free = run_one_async_free; 723 724 async->work.flags = 0; 725 async->bio_flags = bio_flags; 726 async->bio_offset = bio_offset; 727 728 atomic_inc(&fs_info->nr_async_submits); 729 730 if (rw & REQ_SYNC) 731 btrfs_set_work_high_prio(&async->work); 732 733 btrfs_queue_worker(&fs_info->workers, &async->work); 734 735 while (atomic_read(&fs_info->async_submit_draining) && 736 atomic_read(&fs_info->nr_async_submits)) { 737 wait_event(fs_info->async_submit_wait, 738 (atomic_read(&fs_info->nr_async_submits) == 0)); 739 } 740 741 return 0; 742 } 743 744 static int btree_csum_one_bio(struct bio *bio) 745 { 746 struct bio_vec *bvec = bio->bi_io_vec; 747 int bio_index = 0; 748 struct btrfs_root *root; 749 750 WARN_ON(bio->bi_vcnt <= 0); 751 while (bio_index < bio->bi_vcnt) { 752 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 753 csum_dirty_buffer(root, bvec->bv_page); 754 bio_index++; 755 bvec++; 756 } 757 return 0; 758 } 759 760 static int __btree_submit_bio_start(struct inode *inode, int rw, 761 struct bio *bio, int mirror_num, 762 unsigned long bio_flags, 763 u64 bio_offset) 764 { 765 /* 766 * when we're called for a write, we're already in the async 767 * submission context. Just jump into btrfs_map_bio 768 */ 769 btree_csum_one_bio(bio); 770 return 0; 771 } 772 773 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 774 int mirror_num, unsigned long bio_flags, 775 u64 bio_offset) 776 { 777 /* 778 * when we're called for a write, we're already in the async 779 * submission context. Just jump into btrfs_map_bio 780 */ 781 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 782 } 783 784 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 785 int mirror_num, unsigned long bio_flags, 786 u64 bio_offset) 787 { 788 int ret; 789 790 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 791 bio, 1); 792 BUG_ON(ret); 793 794 if (!(rw & REQ_WRITE)) { 795 /* 796 * called for a read, do the setup so that checksum validation 797 * can happen in the async kernel threads 798 */ 799 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 800 mirror_num, 0); 801 } 802 803 /* 804 * kthread helpers are used to submit writes so that checksumming 805 * can happen in parallel across all CPUs 806 */ 807 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 808 inode, rw, bio, mirror_num, 0, 809 bio_offset, 810 __btree_submit_bio_start, 811 __btree_submit_bio_done); 812 } 813 814 #ifdef CONFIG_MIGRATION 815 static int btree_migratepage(struct address_space *mapping, 816 struct page *newpage, struct page *page) 817 { 818 /* 819 * we can't safely write a btree page from here, 820 * we haven't done the locking hook 821 */ 822 if (PageDirty(page)) 823 return -EAGAIN; 824 /* 825 * Buffers may be managed in a filesystem specific way. 826 * We must have no buffers or drop them. 827 */ 828 if (page_has_private(page) && 829 !try_to_release_page(page, GFP_KERNEL)) 830 return -EAGAIN; 831 return migrate_page(mapping, newpage, page); 832 } 833 #endif 834 835 static int btree_writepage(struct page *page, struct writeback_control *wbc) 836 { 837 struct extent_io_tree *tree; 838 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 839 struct extent_buffer *eb; 840 int was_dirty; 841 842 tree = &BTRFS_I(page->mapping->host)->io_tree; 843 if (!(current->flags & PF_MEMALLOC)) { 844 return extent_write_full_page(tree, page, 845 btree_get_extent, wbc); 846 } 847 848 redirty_page_for_writepage(wbc, page); 849 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE); 850 WARN_ON(!eb); 851 852 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 853 if (!was_dirty) { 854 spin_lock(&root->fs_info->delalloc_lock); 855 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE; 856 spin_unlock(&root->fs_info->delalloc_lock); 857 } 858 free_extent_buffer(eb); 859 860 unlock_page(page); 861 return 0; 862 } 863 864 static int btree_writepages(struct address_space *mapping, 865 struct writeback_control *wbc) 866 { 867 struct extent_io_tree *tree; 868 tree = &BTRFS_I(mapping->host)->io_tree; 869 if (wbc->sync_mode == WB_SYNC_NONE) { 870 struct btrfs_root *root = BTRFS_I(mapping->host)->root; 871 u64 num_dirty; 872 unsigned long thresh = 32 * 1024 * 1024; 873 874 if (wbc->for_kupdate) 875 return 0; 876 877 /* this is a bit racy, but that's ok */ 878 num_dirty = root->fs_info->dirty_metadata_bytes; 879 if (num_dirty < thresh) 880 return 0; 881 } 882 return extent_writepages(tree, mapping, btree_get_extent, wbc); 883 } 884 885 static int btree_readpage(struct file *file, struct page *page) 886 { 887 struct extent_io_tree *tree; 888 tree = &BTRFS_I(page->mapping->host)->io_tree; 889 return extent_read_full_page(tree, page, btree_get_extent); 890 } 891 892 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 893 { 894 struct extent_io_tree *tree; 895 struct extent_map_tree *map; 896 int ret; 897 898 if (PageWriteback(page) || PageDirty(page)) 899 return 0; 900 901 tree = &BTRFS_I(page->mapping->host)->io_tree; 902 map = &BTRFS_I(page->mapping->host)->extent_tree; 903 904 ret = try_release_extent_state(map, tree, page, gfp_flags); 905 if (!ret) 906 return 0; 907 908 ret = try_release_extent_buffer(tree, page); 909 if (ret == 1) { 910 ClearPagePrivate(page); 911 set_page_private(page, 0); 912 page_cache_release(page); 913 } 914 915 return ret; 916 } 917 918 static void btree_invalidatepage(struct page *page, unsigned long offset) 919 { 920 struct extent_io_tree *tree; 921 tree = &BTRFS_I(page->mapping->host)->io_tree; 922 extent_invalidatepage(tree, page, offset); 923 btree_releasepage(page, GFP_NOFS); 924 if (PagePrivate(page)) { 925 printk(KERN_WARNING "btrfs warning page private not zero " 926 "on page %llu\n", (unsigned long long)page_offset(page)); 927 ClearPagePrivate(page); 928 set_page_private(page, 0); 929 page_cache_release(page); 930 } 931 } 932 933 static const struct address_space_operations btree_aops = { 934 .readpage = btree_readpage, 935 .writepage = btree_writepage, 936 .writepages = btree_writepages, 937 .releasepage = btree_releasepage, 938 .invalidatepage = btree_invalidatepage, 939 #ifdef CONFIG_MIGRATION 940 .migratepage = btree_migratepage, 941 #endif 942 }; 943 944 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 945 u64 parent_transid) 946 { 947 struct extent_buffer *buf = NULL; 948 struct inode *btree_inode = root->fs_info->btree_inode; 949 int ret = 0; 950 951 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 952 if (!buf) 953 return 0; 954 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 955 buf, 0, 0, btree_get_extent, 0); 956 free_extent_buffer(buf); 957 return ret; 958 } 959 960 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 961 u64 bytenr, u32 blocksize) 962 { 963 struct inode *btree_inode = root->fs_info->btree_inode; 964 struct extent_buffer *eb; 965 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 966 bytenr, blocksize, GFP_NOFS); 967 return eb; 968 } 969 970 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 971 u64 bytenr, u32 blocksize) 972 { 973 struct inode *btree_inode = root->fs_info->btree_inode; 974 struct extent_buffer *eb; 975 976 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 977 bytenr, blocksize, NULL, GFP_NOFS); 978 return eb; 979 } 980 981 982 int btrfs_write_tree_block(struct extent_buffer *buf) 983 { 984 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start, 985 buf->start + buf->len - 1); 986 } 987 988 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 989 { 990 return filemap_fdatawait_range(buf->first_page->mapping, 991 buf->start, buf->start + buf->len - 1); 992 } 993 994 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 995 u32 blocksize, u64 parent_transid) 996 { 997 struct extent_buffer *buf = NULL; 998 int ret; 999 1000 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1001 if (!buf) 1002 return NULL; 1003 1004 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1005 1006 if (ret == 0) 1007 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 1008 return buf; 1009 1010 } 1011 1012 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1013 struct extent_buffer *buf) 1014 { 1015 struct inode *btree_inode = root->fs_info->btree_inode; 1016 if (btrfs_header_generation(buf) == 1017 root->fs_info->running_transaction->transid) { 1018 btrfs_assert_tree_locked(buf); 1019 1020 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1021 spin_lock(&root->fs_info->delalloc_lock); 1022 if (root->fs_info->dirty_metadata_bytes >= buf->len) 1023 root->fs_info->dirty_metadata_bytes -= buf->len; 1024 else 1025 WARN_ON(1); 1026 spin_unlock(&root->fs_info->delalloc_lock); 1027 } 1028 1029 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1030 btrfs_set_lock_blocking(buf); 1031 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 1032 buf); 1033 } 1034 return 0; 1035 } 1036 1037 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 1038 u32 stripesize, struct btrfs_root *root, 1039 struct btrfs_fs_info *fs_info, 1040 u64 objectid) 1041 { 1042 root->node = NULL; 1043 root->commit_root = NULL; 1044 root->sectorsize = sectorsize; 1045 root->nodesize = nodesize; 1046 root->leafsize = leafsize; 1047 root->stripesize = stripesize; 1048 root->ref_cows = 0; 1049 root->track_dirty = 0; 1050 root->in_radix = 0; 1051 root->orphan_item_inserted = 0; 1052 root->orphan_cleanup_state = 0; 1053 1054 root->fs_info = fs_info; 1055 root->objectid = objectid; 1056 root->last_trans = 0; 1057 root->highest_objectid = 0; 1058 root->name = NULL; 1059 root->in_sysfs = 0; 1060 root->inode_tree = RB_ROOT; 1061 root->block_rsv = NULL; 1062 root->orphan_block_rsv = NULL; 1063 1064 INIT_LIST_HEAD(&root->dirty_list); 1065 INIT_LIST_HEAD(&root->orphan_list); 1066 INIT_LIST_HEAD(&root->root_list); 1067 spin_lock_init(&root->node_lock); 1068 spin_lock_init(&root->orphan_lock); 1069 spin_lock_init(&root->inode_lock); 1070 spin_lock_init(&root->accounting_lock); 1071 mutex_init(&root->objectid_mutex); 1072 mutex_init(&root->log_mutex); 1073 init_waitqueue_head(&root->log_writer_wait); 1074 init_waitqueue_head(&root->log_commit_wait[0]); 1075 init_waitqueue_head(&root->log_commit_wait[1]); 1076 atomic_set(&root->log_commit[0], 0); 1077 atomic_set(&root->log_commit[1], 0); 1078 atomic_set(&root->log_writers, 0); 1079 root->log_batch = 0; 1080 root->log_transid = 0; 1081 root->last_log_commit = 0; 1082 extent_io_tree_init(&root->dirty_log_pages, 1083 fs_info->btree_inode->i_mapping, GFP_NOFS); 1084 1085 memset(&root->root_key, 0, sizeof(root->root_key)); 1086 memset(&root->root_item, 0, sizeof(root->root_item)); 1087 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1088 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1089 root->defrag_trans_start = fs_info->generation; 1090 init_completion(&root->kobj_unregister); 1091 root->defrag_running = 0; 1092 root->root_key.objectid = objectid; 1093 root->anon_super.s_root = NULL; 1094 root->anon_super.s_dev = 0; 1095 INIT_LIST_HEAD(&root->anon_super.s_list); 1096 INIT_LIST_HEAD(&root->anon_super.s_instances); 1097 init_rwsem(&root->anon_super.s_umount); 1098 1099 return 0; 1100 } 1101 1102 static int find_and_setup_root(struct btrfs_root *tree_root, 1103 struct btrfs_fs_info *fs_info, 1104 u64 objectid, 1105 struct btrfs_root *root) 1106 { 1107 int ret; 1108 u32 blocksize; 1109 u64 generation; 1110 1111 __setup_root(tree_root->nodesize, tree_root->leafsize, 1112 tree_root->sectorsize, tree_root->stripesize, 1113 root, fs_info, objectid); 1114 ret = btrfs_find_last_root(tree_root, objectid, 1115 &root->root_item, &root->root_key); 1116 if (ret > 0) 1117 return -ENOENT; 1118 BUG_ON(ret); 1119 1120 generation = btrfs_root_generation(&root->root_item); 1121 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1122 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1123 blocksize, generation); 1124 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) { 1125 free_extent_buffer(root->node); 1126 return -EIO; 1127 } 1128 root->commit_root = btrfs_root_node(root); 1129 return 0; 1130 } 1131 1132 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1133 struct btrfs_fs_info *fs_info) 1134 { 1135 struct btrfs_root *root; 1136 struct btrfs_root *tree_root = fs_info->tree_root; 1137 struct extent_buffer *leaf; 1138 1139 root = kzalloc(sizeof(*root), GFP_NOFS); 1140 if (!root) 1141 return ERR_PTR(-ENOMEM); 1142 1143 __setup_root(tree_root->nodesize, tree_root->leafsize, 1144 tree_root->sectorsize, tree_root->stripesize, 1145 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1146 1147 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1148 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1149 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1150 /* 1151 * log trees do not get reference counted because they go away 1152 * before a real commit is actually done. They do store pointers 1153 * to file data extents, and those reference counts still get 1154 * updated (along with back refs to the log tree). 1155 */ 1156 root->ref_cows = 0; 1157 1158 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1159 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0); 1160 if (IS_ERR(leaf)) { 1161 kfree(root); 1162 return ERR_CAST(leaf); 1163 } 1164 1165 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1166 btrfs_set_header_bytenr(leaf, leaf->start); 1167 btrfs_set_header_generation(leaf, trans->transid); 1168 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1169 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1170 root->node = leaf; 1171 1172 write_extent_buffer(root->node, root->fs_info->fsid, 1173 (unsigned long)btrfs_header_fsid(root->node), 1174 BTRFS_FSID_SIZE); 1175 btrfs_mark_buffer_dirty(root->node); 1176 btrfs_tree_unlock(root->node); 1177 return root; 1178 } 1179 1180 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1181 struct btrfs_fs_info *fs_info) 1182 { 1183 struct btrfs_root *log_root; 1184 1185 log_root = alloc_log_tree(trans, fs_info); 1186 if (IS_ERR(log_root)) 1187 return PTR_ERR(log_root); 1188 WARN_ON(fs_info->log_root_tree); 1189 fs_info->log_root_tree = log_root; 1190 return 0; 1191 } 1192 1193 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1194 struct btrfs_root *root) 1195 { 1196 struct btrfs_root *log_root; 1197 struct btrfs_inode_item *inode_item; 1198 1199 log_root = alloc_log_tree(trans, root->fs_info); 1200 if (IS_ERR(log_root)) 1201 return PTR_ERR(log_root); 1202 1203 log_root->last_trans = trans->transid; 1204 log_root->root_key.offset = root->root_key.objectid; 1205 1206 inode_item = &log_root->root_item.inode; 1207 inode_item->generation = cpu_to_le64(1); 1208 inode_item->size = cpu_to_le64(3); 1209 inode_item->nlink = cpu_to_le32(1); 1210 inode_item->nbytes = cpu_to_le64(root->leafsize); 1211 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1212 1213 btrfs_set_root_node(&log_root->root_item, log_root->node); 1214 1215 WARN_ON(root->log_root); 1216 root->log_root = log_root; 1217 root->log_transid = 0; 1218 root->last_log_commit = 0; 1219 return 0; 1220 } 1221 1222 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1223 struct btrfs_key *location) 1224 { 1225 struct btrfs_root *root; 1226 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1227 struct btrfs_path *path; 1228 struct extent_buffer *l; 1229 u64 generation; 1230 u32 blocksize; 1231 int ret = 0; 1232 1233 root = kzalloc(sizeof(*root), GFP_NOFS); 1234 if (!root) 1235 return ERR_PTR(-ENOMEM); 1236 if (location->offset == (u64)-1) { 1237 ret = find_and_setup_root(tree_root, fs_info, 1238 location->objectid, root); 1239 if (ret) { 1240 kfree(root); 1241 return ERR_PTR(ret); 1242 } 1243 goto out; 1244 } 1245 1246 __setup_root(tree_root->nodesize, tree_root->leafsize, 1247 tree_root->sectorsize, tree_root->stripesize, 1248 root, fs_info, location->objectid); 1249 1250 path = btrfs_alloc_path(); 1251 if (!path) { 1252 kfree(root); 1253 return ERR_PTR(-ENOMEM); 1254 } 1255 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1256 if (ret == 0) { 1257 l = path->nodes[0]; 1258 read_extent_buffer(l, &root->root_item, 1259 btrfs_item_ptr_offset(l, path->slots[0]), 1260 sizeof(root->root_item)); 1261 memcpy(&root->root_key, location, sizeof(*location)); 1262 } 1263 btrfs_free_path(path); 1264 if (ret) { 1265 kfree(root); 1266 if (ret > 0) 1267 ret = -ENOENT; 1268 return ERR_PTR(ret); 1269 } 1270 1271 generation = btrfs_root_generation(&root->root_item); 1272 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1273 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1274 blocksize, generation); 1275 root->commit_root = btrfs_root_node(root); 1276 BUG_ON(!root->node); 1277 out: 1278 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { 1279 root->ref_cows = 1; 1280 btrfs_check_and_init_root_item(&root->root_item); 1281 } 1282 1283 return root; 1284 } 1285 1286 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1287 u64 root_objectid) 1288 { 1289 struct btrfs_root *root; 1290 1291 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID) 1292 return fs_info->tree_root; 1293 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID) 1294 return fs_info->extent_root; 1295 1296 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1297 (unsigned long)root_objectid); 1298 return root; 1299 } 1300 1301 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1302 struct btrfs_key *location) 1303 { 1304 struct btrfs_root *root; 1305 int ret; 1306 1307 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1308 return fs_info->tree_root; 1309 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1310 return fs_info->extent_root; 1311 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1312 return fs_info->chunk_root; 1313 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1314 return fs_info->dev_root; 1315 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1316 return fs_info->csum_root; 1317 again: 1318 spin_lock(&fs_info->fs_roots_radix_lock); 1319 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1320 (unsigned long)location->objectid); 1321 spin_unlock(&fs_info->fs_roots_radix_lock); 1322 if (root) 1323 return root; 1324 1325 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1326 if (IS_ERR(root)) 1327 return root; 1328 1329 set_anon_super(&root->anon_super, NULL); 1330 1331 if (btrfs_root_refs(&root->root_item) == 0) { 1332 ret = -ENOENT; 1333 goto fail; 1334 } 1335 1336 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); 1337 if (ret < 0) 1338 goto fail; 1339 if (ret == 0) 1340 root->orphan_item_inserted = 1; 1341 1342 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1343 if (ret) 1344 goto fail; 1345 1346 spin_lock(&fs_info->fs_roots_radix_lock); 1347 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1348 (unsigned long)root->root_key.objectid, 1349 root); 1350 if (ret == 0) 1351 root->in_radix = 1; 1352 1353 spin_unlock(&fs_info->fs_roots_radix_lock); 1354 radix_tree_preload_end(); 1355 if (ret) { 1356 if (ret == -EEXIST) { 1357 free_fs_root(root); 1358 goto again; 1359 } 1360 goto fail; 1361 } 1362 1363 ret = btrfs_find_dead_roots(fs_info->tree_root, 1364 root->root_key.objectid); 1365 WARN_ON(ret); 1366 return root; 1367 fail: 1368 free_fs_root(root); 1369 return ERR_PTR(ret); 1370 } 1371 1372 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info, 1373 struct btrfs_key *location, 1374 const char *name, int namelen) 1375 { 1376 return btrfs_read_fs_root_no_name(fs_info, location); 1377 #if 0 1378 struct btrfs_root *root; 1379 int ret; 1380 1381 root = btrfs_read_fs_root_no_name(fs_info, location); 1382 if (!root) 1383 return NULL; 1384 1385 if (root->in_sysfs) 1386 return root; 1387 1388 ret = btrfs_set_root_name(root, name, namelen); 1389 if (ret) { 1390 free_extent_buffer(root->node); 1391 kfree(root); 1392 return ERR_PTR(ret); 1393 } 1394 1395 ret = btrfs_sysfs_add_root(root); 1396 if (ret) { 1397 free_extent_buffer(root->node); 1398 kfree(root->name); 1399 kfree(root); 1400 return ERR_PTR(ret); 1401 } 1402 root->in_sysfs = 1; 1403 return root; 1404 #endif 1405 } 1406 1407 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1408 { 1409 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1410 int ret = 0; 1411 struct btrfs_device *device; 1412 struct backing_dev_info *bdi; 1413 1414 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1415 if (!device->bdev) 1416 continue; 1417 bdi = blk_get_backing_dev_info(device->bdev); 1418 if (bdi && bdi_congested(bdi, bdi_bits)) { 1419 ret = 1; 1420 break; 1421 } 1422 } 1423 return ret; 1424 } 1425 1426 /* 1427 * If this fails, caller must call bdi_destroy() to get rid of the 1428 * bdi again. 1429 */ 1430 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1431 { 1432 int err; 1433 1434 bdi->capabilities = BDI_CAP_MAP_COPY; 1435 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1436 if (err) 1437 return err; 1438 1439 bdi->ra_pages = default_backing_dev_info.ra_pages; 1440 bdi->congested_fn = btrfs_congested_fn; 1441 bdi->congested_data = info; 1442 return 0; 1443 } 1444 1445 static int bio_ready_for_csum(struct bio *bio) 1446 { 1447 u64 length = 0; 1448 u64 buf_len = 0; 1449 u64 start = 0; 1450 struct page *page; 1451 struct extent_io_tree *io_tree = NULL; 1452 struct bio_vec *bvec; 1453 int i; 1454 int ret; 1455 1456 bio_for_each_segment(bvec, bio, i) { 1457 page = bvec->bv_page; 1458 if (page->private == EXTENT_PAGE_PRIVATE) { 1459 length += bvec->bv_len; 1460 continue; 1461 } 1462 if (!page->private) { 1463 length += bvec->bv_len; 1464 continue; 1465 } 1466 length = bvec->bv_len; 1467 buf_len = page->private >> 2; 1468 start = page_offset(page) + bvec->bv_offset; 1469 io_tree = &BTRFS_I(page->mapping->host)->io_tree; 1470 } 1471 /* are we fully contained in this bio? */ 1472 if (buf_len <= length) 1473 return 1; 1474 1475 ret = extent_range_uptodate(io_tree, start + length, 1476 start + buf_len - 1); 1477 return ret; 1478 } 1479 1480 /* 1481 * called by the kthread helper functions to finally call the bio end_io 1482 * functions. This is where read checksum verification actually happens 1483 */ 1484 static void end_workqueue_fn(struct btrfs_work *work) 1485 { 1486 struct bio *bio; 1487 struct end_io_wq *end_io_wq; 1488 struct btrfs_fs_info *fs_info; 1489 int error; 1490 1491 end_io_wq = container_of(work, struct end_io_wq, work); 1492 bio = end_io_wq->bio; 1493 fs_info = end_io_wq->info; 1494 1495 /* metadata bio reads are special because the whole tree block must 1496 * be checksummed at once. This makes sure the entire block is in 1497 * ram and up to date before trying to verify things. For 1498 * blocksize <= pagesize, it is basically a noop 1499 */ 1500 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata && 1501 !bio_ready_for_csum(bio)) { 1502 btrfs_queue_worker(&fs_info->endio_meta_workers, 1503 &end_io_wq->work); 1504 return; 1505 } 1506 error = end_io_wq->error; 1507 bio->bi_private = end_io_wq->private; 1508 bio->bi_end_io = end_io_wq->end_io; 1509 kfree(end_io_wq); 1510 bio_endio(bio, error); 1511 } 1512 1513 static int cleaner_kthread(void *arg) 1514 { 1515 struct btrfs_root *root = arg; 1516 1517 do { 1518 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1519 1520 if (!(root->fs_info->sb->s_flags & MS_RDONLY) && 1521 mutex_trylock(&root->fs_info->cleaner_mutex)) { 1522 btrfs_run_delayed_iputs(root); 1523 btrfs_clean_old_snapshots(root); 1524 mutex_unlock(&root->fs_info->cleaner_mutex); 1525 } 1526 1527 if (freezing(current)) { 1528 refrigerator(); 1529 } else { 1530 set_current_state(TASK_INTERRUPTIBLE); 1531 if (!kthread_should_stop()) 1532 schedule(); 1533 __set_current_state(TASK_RUNNING); 1534 } 1535 } while (!kthread_should_stop()); 1536 return 0; 1537 } 1538 1539 static int transaction_kthread(void *arg) 1540 { 1541 struct btrfs_root *root = arg; 1542 struct btrfs_trans_handle *trans; 1543 struct btrfs_transaction *cur; 1544 u64 transid; 1545 unsigned long now; 1546 unsigned long delay; 1547 int ret; 1548 1549 do { 1550 delay = HZ * 30; 1551 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1552 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1553 1554 spin_lock(&root->fs_info->new_trans_lock); 1555 cur = root->fs_info->running_transaction; 1556 if (!cur) { 1557 spin_unlock(&root->fs_info->new_trans_lock); 1558 goto sleep; 1559 } 1560 1561 now = get_seconds(); 1562 if (!cur->blocked && 1563 (now < cur->start_time || now - cur->start_time < 30)) { 1564 spin_unlock(&root->fs_info->new_trans_lock); 1565 delay = HZ * 5; 1566 goto sleep; 1567 } 1568 transid = cur->transid; 1569 spin_unlock(&root->fs_info->new_trans_lock); 1570 1571 trans = btrfs_join_transaction(root, 1); 1572 BUG_ON(IS_ERR(trans)); 1573 if (transid == trans->transid) { 1574 ret = btrfs_commit_transaction(trans, root); 1575 BUG_ON(ret); 1576 } else { 1577 btrfs_end_transaction(trans, root); 1578 } 1579 sleep: 1580 wake_up_process(root->fs_info->cleaner_kthread); 1581 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1582 1583 if (freezing(current)) { 1584 refrigerator(); 1585 } else { 1586 set_current_state(TASK_INTERRUPTIBLE); 1587 if (!kthread_should_stop() && 1588 !btrfs_transaction_blocked(root->fs_info)) 1589 schedule_timeout(delay); 1590 __set_current_state(TASK_RUNNING); 1591 } 1592 } while (!kthread_should_stop()); 1593 return 0; 1594 } 1595 1596 struct btrfs_root *open_ctree(struct super_block *sb, 1597 struct btrfs_fs_devices *fs_devices, 1598 char *options) 1599 { 1600 u32 sectorsize; 1601 u32 nodesize; 1602 u32 leafsize; 1603 u32 blocksize; 1604 u32 stripesize; 1605 u64 generation; 1606 u64 features; 1607 struct btrfs_key location; 1608 struct buffer_head *bh; 1609 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root), 1610 GFP_NOFS); 1611 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root), 1612 GFP_NOFS); 1613 struct btrfs_root *tree_root = btrfs_sb(sb); 1614 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1615 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root), 1616 GFP_NOFS); 1617 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root), 1618 GFP_NOFS); 1619 struct btrfs_root *log_tree_root; 1620 1621 int ret; 1622 int err = -EINVAL; 1623 1624 struct btrfs_super_block *disk_super; 1625 1626 if (!extent_root || !tree_root || !fs_info || 1627 !chunk_root || !dev_root || !csum_root) { 1628 err = -ENOMEM; 1629 goto fail; 1630 } 1631 1632 ret = init_srcu_struct(&fs_info->subvol_srcu); 1633 if (ret) { 1634 err = ret; 1635 goto fail; 1636 } 1637 1638 ret = setup_bdi(fs_info, &fs_info->bdi); 1639 if (ret) { 1640 err = ret; 1641 goto fail_srcu; 1642 } 1643 1644 fs_info->btree_inode = new_inode(sb); 1645 if (!fs_info->btree_inode) { 1646 err = -ENOMEM; 1647 goto fail_bdi; 1648 } 1649 1650 fs_info->btree_inode->i_mapping->flags &= ~__GFP_FS; 1651 1652 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 1653 INIT_LIST_HEAD(&fs_info->trans_list); 1654 INIT_LIST_HEAD(&fs_info->dead_roots); 1655 INIT_LIST_HEAD(&fs_info->delayed_iputs); 1656 INIT_LIST_HEAD(&fs_info->hashers); 1657 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 1658 INIT_LIST_HEAD(&fs_info->ordered_operations); 1659 INIT_LIST_HEAD(&fs_info->caching_block_groups); 1660 spin_lock_init(&fs_info->delalloc_lock); 1661 spin_lock_init(&fs_info->new_trans_lock); 1662 spin_lock_init(&fs_info->ref_cache_lock); 1663 spin_lock_init(&fs_info->fs_roots_radix_lock); 1664 spin_lock_init(&fs_info->delayed_iput_lock); 1665 1666 init_completion(&fs_info->kobj_unregister); 1667 fs_info->tree_root = tree_root; 1668 fs_info->extent_root = extent_root; 1669 fs_info->csum_root = csum_root; 1670 fs_info->chunk_root = chunk_root; 1671 fs_info->dev_root = dev_root; 1672 fs_info->fs_devices = fs_devices; 1673 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 1674 INIT_LIST_HEAD(&fs_info->space_info); 1675 btrfs_mapping_init(&fs_info->mapping_tree); 1676 btrfs_init_block_rsv(&fs_info->global_block_rsv); 1677 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv); 1678 btrfs_init_block_rsv(&fs_info->trans_block_rsv); 1679 btrfs_init_block_rsv(&fs_info->chunk_block_rsv); 1680 btrfs_init_block_rsv(&fs_info->empty_block_rsv); 1681 INIT_LIST_HEAD(&fs_info->durable_block_rsv_list); 1682 mutex_init(&fs_info->durable_block_rsv_mutex); 1683 atomic_set(&fs_info->nr_async_submits, 0); 1684 atomic_set(&fs_info->async_delalloc_pages, 0); 1685 atomic_set(&fs_info->async_submit_draining, 0); 1686 atomic_set(&fs_info->nr_async_bios, 0); 1687 fs_info->sb = sb; 1688 fs_info->max_inline = 8192 * 1024; 1689 fs_info->metadata_ratio = 0; 1690 1691 fs_info->thread_pool_size = min_t(unsigned long, 1692 num_online_cpus() + 2, 8); 1693 1694 INIT_LIST_HEAD(&fs_info->ordered_extents); 1695 spin_lock_init(&fs_info->ordered_extent_lock); 1696 1697 sb->s_blocksize = 4096; 1698 sb->s_blocksize_bits = blksize_bits(4096); 1699 sb->s_bdi = &fs_info->bdi; 1700 1701 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 1702 fs_info->btree_inode->i_nlink = 1; 1703 /* 1704 * we set the i_size on the btree inode to the max possible int. 1705 * the real end of the address space is determined by all of 1706 * the devices in the system 1707 */ 1708 fs_info->btree_inode->i_size = OFFSET_MAX; 1709 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 1710 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 1711 1712 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 1713 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 1714 fs_info->btree_inode->i_mapping, 1715 GFP_NOFS); 1716 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree, 1717 GFP_NOFS); 1718 1719 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 1720 1721 BTRFS_I(fs_info->btree_inode)->root = tree_root; 1722 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 1723 sizeof(struct btrfs_key)); 1724 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1; 1725 insert_inode_hash(fs_info->btree_inode); 1726 1727 spin_lock_init(&fs_info->block_group_cache_lock); 1728 fs_info->block_group_cache_tree = RB_ROOT; 1729 1730 extent_io_tree_init(&fs_info->freed_extents[0], 1731 fs_info->btree_inode->i_mapping, GFP_NOFS); 1732 extent_io_tree_init(&fs_info->freed_extents[1], 1733 fs_info->btree_inode->i_mapping, GFP_NOFS); 1734 fs_info->pinned_extents = &fs_info->freed_extents[0]; 1735 fs_info->do_barriers = 1; 1736 1737 1738 mutex_init(&fs_info->trans_mutex); 1739 mutex_init(&fs_info->ordered_operations_mutex); 1740 mutex_init(&fs_info->tree_log_mutex); 1741 mutex_init(&fs_info->chunk_mutex); 1742 mutex_init(&fs_info->transaction_kthread_mutex); 1743 mutex_init(&fs_info->cleaner_mutex); 1744 mutex_init(&fs_info->volume_mutex); 1745 init_rwsem(&fs_info->extent_commit_sem); 1746 init_rwsem(&fs_info->cleanup_work_sem); 1747 init_rwsem(&fs_info->subvol_sem); 1748 1749 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 1750 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 1751 1752 init_waitqueue_head(&fs_info->transaction_throttle); 1753 init_waitqueue_head(&fs_info->transaction_wait); 1754 init_waitqueue_head(&fs_info->transaction_blocked_wait); 1755 init_waitqueue_head(&fs_info->async_submit_wait); 1756 1757 __setup_root(4096, 4096, 4096, 4096, tree_root, 1758 fs_info, BTRFS_ROOT_TREE_OBJECTID); 1759 1760 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 1761 if (!bh) { 1762 err = -EINVAL; 1763 goto fail_iput; 1764 } 1765 1766 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy)); 1767 memcpy(&fs_info->super_for_commit, &fs_info->super_copy, 1768 sizeof(fs_info->super_for_commit)); 1769 brelse(bh); 1770 1771 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE); 1772 1773 disk_super = &fs_info->super_copy; 1774 if (!btrfs_super_root(disk_super)) 1775 goto fail_iput; 1776 1777 /* check FS state, whether FS is broken. */ 1778 fs_info->fs_state |= btrfs_super_flags(disk_super); 1779 1780 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 1781 1782 /* 1783 * In the long term, we'll store the compression type in the super 1784 * block, and it'll be used for per file compression control. 1785 */ 1786 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 1787 1788 ret = btrfs_parse_options(tree_root, options); 1789 if (ret) { 1790 err = ret; 1791 goto fail_iput; 1792 } 1793 1794 features = btrfs_super_incompat_flags(disk_super) & 1795 ~BTRFS_FEATURE_INCOMPAT_SUPP; 1796 if (features) { 1797 printk(KERN_ERR "BTRFS: couldn't mount because of " 1798 "unsupported optional features (%Lx).\n", 1799 (unsigned long long)features); 1800 err = -EINVAL; 1801 goto fail_iput; 1802 } 1803 1804 features = btrfs_super_incompat_flags(disk_super); 1805 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 1806 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO) 1807 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 1808 btrfs_set_super_incompat_flags(disk_super, features); 1809 1810 features = btrfs_super_compat_ro_flags(disk_super) & 1811 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 1812 if (!(sb->s_flags & MS_RDONLY) && features) { 1813 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 1814 "unsupported option features (%Lx).\n", 1815 (unsigned long long)features); 1816 err = -EINVAL; 1817 goto fail_iput; 1818 } 1819 1820 btrfs_init_workers(&fs_info->generic_worker, 1821 "genwork", 1, NULL); 1822 1823 btrfs_init_workers(&fs_info->workers, "worker", 1824 fs_info->thread_pool_size, 1825 &fs_info->generic_worker); 1826 1827 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 1828 fs_info->thread_pool_size, 1829 &fs_info->generic_worker); 1830 1831 btrfs_init_workers(&fs_info->submit_workers, "submit", 1832 min_t(u64, fs_devices->num_devices, 1833 fs_info->thread_pool_size), 1834 &fs_info->generic_worker); 1835 1836 /* a higher idle thresh on the submit workers makes it much more 1837 * likely that bios will be send down in a sane order to the 1838 * devices 1839 */ 1840 fs_info->submit_workers.idle_thresh = 64; 1841 1842 fs_info->workers.idle_thresh = 16; 1843 fs_info->workers.ordered = 1; 1844 1845 fs_info->delalloc_workers.idle_thresh = 2; 1846 fs_info->delalloc_workers.ordered = 1; 1847 1848 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, 1849 &fs_info->generic_worker); 1850 btrfs_init_workers(&fs_info->endio_workers, "endio", 1851 fs_info->thread_pool_size, 1852 &fs_info->generic_worker); 1853 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 1854 fs_info->thread_pool_size, 1855 &fs_info->generic_worker); 1856 btrfs_init_workers(&fs_info->endio_meta_write_workers, 1857 "endio-meta-write", fs_info->thread_pool_size, 1858 &fs_info->generic_worker); 1859 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 1860 fs_info->thread_pool_size, 1861 &fs_info->generic_worker); 1862 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", 1863 1, &fs_info->generic_worker); 1864 1865 /* 1866 * endios are largely parallel and should have a very 1867 * low idle thresh 1868 */ 1869 fs_info->endio_workers.idle_thresh = 4; 1870 fs_info->endio_meta_workers.idle_thresh = 4; 1871 1872 fs_info->endio_write_workers.idle_thresh = 2; 1873 fs_info->endio_meta_write_workers.idle_thresh = 2; 1874 1875 btrfs_start_workers(&fs_info->workers, 1); 1876 btrfs_start_workers(&fs_info->generic_worker, 1); 1877 btrfs_start_workers(&fs_info->submit_workers, 1); 1878 btrfs_start_workers(&fs_info->delalloc_workers, 1); 1879 btrfs_start_workers(&fs_info->fixup_workers, 1); 1880 btrfs_start_workers(&fs_info->endio_workers, 1); 1881 btrfs_start_workers(&fs_info->endio_meta_workers, 1); 1882 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1); 1883 btrfs_start_workers(&fs_info->endio_write_workers, 1); 1884 btrfs_start_workers(&fs_info->endio_freespace_worker, 1); 1885 1886 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 1887 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 1888 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 1889 1890 nodesize = btrfs_super_nodesize(disk_super); 1891 leafsize = btrfs_super_leafsize(disk_super); 1892 sectorsize = btrfs_super_sectorsize(disk_super); 1893 stripesize = btrfs_super_stripesize(disk_super); 1894 tree_root->nodesize = nodesize; 1895 tree_root->leafsize = leafsize; 1896 tree_root->sectorsize = sectorsize; 1897 tree_root->stripesize = stripesize; 1898 1899 sb->s_blocksize = sectorsize; 1900 sb->s_blocksize_bits = blksize_bits(sectorsize); 1901 1902 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 1903 sizeof(disk_super->magic))) { 1904 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 1905 goto fail_sb_buffer; 1906 } 1907 1908 mutex_lock(&fs_info->chunk_mutex); 1909 ret = btrfs_read_sys_array(tree_root); 1910 mutex_unlock(&fs_info->chunk_mutex); 1911 if (ret) { 1912 printk(KERN_WARNING "btrfs: failed to read the system " 1913 "array on %s\n", sb->s_id); 1914 goto fail_sb_buffer; 1915 } 1916 1917 blocksize = btrfs_level_size(tree_root, 1918 btrfs_super_chunk_root_level(disk_super)); 1919 generation = btrfs_super_chunk_root_generation(disk_super); 1920 1921 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1922 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 1923 1924 chunk_root->node = read_tree_block(chunk_root, 1925 btrfs_super_chunk_root(disk_super), 1926 blocksize, generation); 1927 BUG_ON(!chunk_root->node); 1928 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 1929 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 1930 sb->s_id); 1931 goto fail_chunk_root; 1932 } 1933 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 1934 chunk_root->commit_root = btrfs_root_node(chunk_root); 1935 1936 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 1937 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 1938 BTRFS_UUID_SIZE); 1939 1940 mutex_lock(&fs_info->chunk_mutex); 1941 ret = btrfs_read_chunk_tree(chunk_root); 1942 mutex_unlock(&fs_info->chunk_mutex); 1943 if (ret) { 1944 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 1945 sb->s_id); 1946 goto fail_chunk_root; 1947 } 1948 1949 btrfs_close_extra_devices(fs_devices); 1950 1951 blocksize = btrfs_level_size(tree_root, 1952 btrfs_super_root_level(disk_super)); 1953 generation = btrfs_super_generation(disk_super); 1954 1955 tree_root->node = read_tree_block(tree_root, 1956 btrfs_super_root(disk_super), 1957 blocksize, generation); 1958 if (!tree_root->node) 1959 goto fail_chunk_root; 1960 if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 1961 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 1962 sb->s_id); 1963 goto fail_tree_root; 1964 } 1965 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 1966 tree_root->commit_root = btrfs_root_node(tree_root); 1967 1968 ret = find_and_setup_root(tree_root, fs_info, 1969 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 1970 if (ret) 1971 goto fail_tree_root; 1972 extent_root->track_dirty = 1; 1973 1974 ret = find_and_setup_root(tree_root, fs_info, 1975 BTRFS_DEV_TREE_OBJECTID, dev_root); 1976 if (ret) 1977 goto fail_extent_root; 1978 dev_root->track_dirty = 1; 1979 1980 ret = find_and_setup_root(tree_root, fs_info, 1981 BTRFS_CSUM_TREE_OBJECTID, csum_root); 1982 if (ret) 1983 goto fail_dev_root; 1984 1985 csum_root->track_dirty = 1; 1986 1987 fs_info->generation = generation; 1988 fs_info->last_trans_committed = generation; 1989 fs_info->data_alloc_profile = (u64)-1; 1990 fs_info->metadata_alloc_profile = (u64)-1; 1991 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile; 1992 1993 ret = btrfs_init_space_info(fs_info); 1994 if (ret) { 1995 printk(KERN_ERR "Failed to initial space info: %d\n", ret); 1996 goto fail_block_groups; 1997 } 1998 1999 ret = btrfs_read_block_groups(extent_root); 2000 if (ret) { 2001 printk(KERN_ERR "Failed to read block groups: %d\n", ret); 2002 goto fail_block_groups; 2003 } 2004 2005 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2006 "btrfs-cleaner"); 2007 if (IS_ERR(fs_info->cleaner_kthread)) 2008 goto fail_block_groups; 2009 2010 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2011 tree_root, 2012 "btrfs-transaction"); 2013 if (IS_ERR(fs_info->transaction_kthread)) 2014 goto fail_cleaner; 2015 2016 if (!btrfs_test_opt(tree_root, SSD) && 2017 !btrfs_test_opt(tree_root, NOSSD) && 2018 !fs_info->fs_devices->rotating) { 2019 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 2020 "mode\n"); 2021 btrfs_set_opt(fs_info->mount_opt, SSD); 2022 } 2023 2024 /* do not make disk changes in broken FS */ 2025 if (btrfs_super_log_root(disk_super) != 0 && 2026 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) { 2027 u64 bytenr = btrfs_super_log_root(disk_super); 2028 2029 if (fs_devices->rw_devices == 0) { 2030 printk(KERN_WARNING "Btrfs log replay required " 2031 "on RO media\n"); 2032 err = -EIO; 2033 goto fail_trans_kthread; 2034 } 2035 blocksize = 2036 btrfs_level_size(tree_root, 2037 btrfs_super_log_root_level(disk_super)); 2038 2039 log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS); 2040 if (!log_tree_root) { 2041 err = -ENOMEM; 2042 goto fail_trans_kthread; 2043 } 2044 2045 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2046 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2047 2048 log_tree_root->node = read_tree_block(tree_root, bytenr, 2049 blocksize, 2050 generation + 1); 2051 ret = btrfs_recover_log_trees(log_tree_root); 2052 BUG_ON(ret); 2053 2054 if (sb->s_flags & MS_RDONLY) { 2055 ret = btrfs_commit_super(tree_root); 2056 BUG_ON(ret); 2057 } 2058 } 2059 2060 ret = btrfs_find_orphan_roots(tree_root); 2061 BUG_ON(ret); 2062 2063 if (!(sb->s_flags & MS_RDONLY)) { 2064 ret = btrfs_cleanup_fs_roots(fs_info); 2065 BUG_ON(ret); 2066 2067 ret = btrfs_recover_relocation(tree_root); 2068 if (ret < 0) { 2069 printk(KERN_WARNING 2070 "btrfs: failed to recover relocation\n"); 2071 err = -EINVAL; 2072 goto fail_trans_kthread; 2073 } 2074 } 2075 2076 location.objectid = BTRFS_FS_TREE_OBJECTID; 2077 location.type = BTRFS_ROOT_ITEM_KEY; 2078 location.offset = (u64)-1; 2079 2080 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2081 if (!fs_info->fs_root) 2082 goto fail_trans_kthread; 2083 if (IS_ERR(fs_info->fs_root)) { 2084 err = PTR_ERR(fs_info->fs_root); 2085 goto fail_trans_kthread; 2086 } 2087 2088 if (!(sb->s_flags & MS_RDONLY)) { 2089 down_read(&fs_info->cleanup_work_sem); 2090 err = btrfs_orphan_cleanup(fs_info->fs_root); 2091 if (!err) 2092 err = btrfs_orphan_cleanup(fs_info->tree_root); 2093 up_read(&fs_info->cleanup_work_sem); 2094 if (err) { 2095 close_ctree(tree_root); 2096 return ERR_PTR(err); 2097 } 2098 } 2099 2100 return tree_root; 2101 2102 fail_trans_kthread: 2103 kthread_stop(fs_info->transaction_kthread); 2104 fail_cleaner: 2105 kthread_stop(fs_info->cleaner_kthread); 2106 2107 /* 2108 * make sure we're done with the btree inode before we stop our 2109 * kthreads 2110 */ 2111 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2112 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2113 2114 fail_block_groups: 2115 btrfs_free_block_groups(fs_info); 2116 free_extent_buffer(csum_root->node); 2117 free_extent_buffer(csum_root->commit_root); 2118 fail_dev_root: 2119 free_extent_buffer(dev_root->node); 2120 free_extent_buffer(dev_root->commit_root); 2121 fail_extent_root: 2122 free_extent_buffer(extent_root->node); 2123 free_extent_buffer(extent_root->commit_root); 2124 fail_tree_root: 2125 free_extent_buffer(tree_root->node); 2126 free_extent_buffer(tree_root->commit_root); 2127 fail_chunk_root: 2128 free_extent_buffer(chunk_root->node); 2129 free_extent_buffer(chunk_root->commit_root); 2130 fail_sb_buffer: 2131 btrfs_stop_workers(&fs_info->generic_worker); 2132 btrfs_stop_workers(&fs_info->fixup_workers); 2133 btrfs_stop_workers(&fs_info->delalloc_workers); 2134 btrfs_stop_workers(&fs_info->workers); 2135 btrfs_stop_workers(&fs_info->endio_workers); 2136 btrfs_stop_workers(&fs_info->endio_meta_workers); 2137 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2138 btrfs_stop_workers(&fs_info->endio_write_workers); 2139 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2140 btrfs_stop_workers(&fs_info->submit_workers); 2141 fail_iput: 2142 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2143 iput(fs_info->btree_inode); 2144 2145 btrfs_close_devices(fs_info->fs_devices); 2146 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2147 fail_bdi: 2148 bdi_destroy(&fs_info->bdi); 2149 fail_srcu: 2150 cleanup_srcu_struct(&fs_info->subvol_srcu); 2151 fail: 2152 kfree(extent_root); 2153 kfree(tree_root); 2154 kfree(fs_info); 2155 kfree(chunk_root); 2156 kfree(dev_root); 2157 kfree(csum_root); 2158 return ERR_PTR(err); 2159 } 2160 2161 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 2162 { 2163 char b[BDEVNAME_SIZE]; 2164 2165 if (uptodate) { 2166 set_buffer_uptodate(bh); 2167 } else { 2168 if (printk_ratelimit()) { 2169 printk(KERN_WARNING "lost page write due to " 2170 "I/O error on %s\n", 2171 bdevname(bh->b_bdev, b)); 2172 } 2173 /* note, we dont' set_buffer_write_io_error because we have 2174 * our own ways of dealing with the IO errors 2175 */ 2176 clear_buffer_uptodate(bh); 2177 } 2178 unlock_buffer(bh); 2179 put_bh(bh); 2180 } 2181 2182 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 2183 { 2184 struct buffer_head *bh; 2185 struct buffer_head *latest = NULL; 2186 struct btrfs_super_block *super; 2187 int i; 2188 u64 transid = 0; 2189 u64 bytenr; 2190 2191 /* we would like to check all the supers, but that would make 2192 * a btrfs mount succeed after a mkfs from a different FS. 2193 * So, we need to add a special mount option to scan for 2194 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 2195 */ 2196 for (i = 0; i < 1; i++) { 2197 bytenr = btrfs_sb_offset(i); 2198 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 2199 break; 2200 bh = __bread(bdev, bytenr / 4096, 4096); 2201 if (!bh) 2202 continue; 2203 2204 super = (struct btrfs_super_block *)bh->b_data; 2205 if (btrfs_super_bytenr(super) != bytenr || 2206 strncmp((char *)(&super->magic), BTRFS_MAGIC, 2207 sizeof(super->magic))) { 2208 brelse(bh); 2209 continue; 2210 } 2211 2212 if (!latest || btrfs_super_generation(super) > transid) { 2213 brelse(latest); 2214 latest = bh; 2215 transid = btrfs_super_generation(super); 2216 } else { 2217 brelse(bh); 2218 } 2219 } 2220 return latest; 2221 } 2222 2223 /* 2224 * this should be called twice, once with wait == 0 and 2225 * once with wait == 1. When wait == 0 is done, all the buffer heads 2226 * we write are pinned. 2227 * 2228 * They are released when wait == 1 is done. 2229 * max_mirrors must be the same for both runs, and it indicates how 2230 * many supers on this one device should be written. 2231 * 2232 * max_mirrors == 0 means to write them all. 2233 */ 2234 static int write_dev_supers(struct btrfs_device *device, 2235 struct btrfs_super_block *sb, 2236 int do_barriers, int wait, int max_mirrors) 2237 { 2238 struct buffer_head *bh; 2239 int i; 2240 int ret; 2241 int errors = 0; 2242 u32 crc; 2243 u64 bytenr; 2244 int last_barrier = 0; 2245 2246 if (max_mirrors == 0) 2247 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2248 2249 /* make sure only the last submit_bh does a barrier */ 2250 if (do_barriers) { 2251 for (i = 0; i < max_mirrors; i++) { 2252 bytenr = btrfs_sb_offset(i); 2253 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 2254 device->total_bytes) 2255 break; 2256 last_barrier = i; 2257 } 2258 } 2259 2260 for (i = 0; i < max_mirrors; i++) { 2261 bytenr = btrfs_sb_offset(i); 2262 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2263 break; 2264 2265 if (wait) { 2266 bh = __find_get_block(device->bdev, bytenr / 4096, 2267 BTRFS_SUPER_INFO_SIZE); 2268 BUG_ON(!bh); 2269 wait_on_buffer(bh); 2270 if (!buffer_uptodate(bh)) 2271 errors++; 2272 2273 /* drop our reference */ 2274 brelse(bh); 2275 2276 /* drop the reference from the wait == 0 run */ 2277 brelse(bh); 2278 continue; 2279 } else { 2280 btrfs_set_super_bytenr(sb, bytenr); 2281 2282 crc = ~(u32)0; 2283 crc = btrfs_csum_data(NULL, (char *)sb + 2284 BTRFS_CSUM_SIZE, crc, 2285 BTRFS_SUPER_INFO_SIZE - 2286 BTRFS_CSUM_SIZE); 2287 btrfs_csum_final(crc, sb->csum); 2288 2289 /* 2290 * one reference for us, and we leave it for the 2291 * caller 2292 */ 2293 bh = __getblk(device->bdev, bytenr / 4096, 2294 BTRFS_SUPER_INFO_SIZE); 2295 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2296 2297 /* one reference for submit_bh */ 2298 get_bh(bh); 2299 2300 set_buffer_uptodate(bh); 2301 lock_buffer(bh); 2302 bh->b_end_io = btrfs_end_buffer_write_sync; 2303 } 2304 2305 if (i == last_barrier && do_barriers) 2306 ret = submit_bh(WRITE_FLUSH_FUA, bh); 2307 else 2308 ret = submit_bh(WRITE_SYNC, bh); 2309 2310 if (ret) 2311 errors++; 2312 } 2313 return errors < i ? 0 : -1; 2314 } 2315 2316 int write_all_supers(struct btrfs_root *root, int max_mirrors) 2317 { 2318 struct list_head *head; 2319 struct btrfs_device *dev; 2320 struct btrfs_super_block *sb; 2321 struct btrfs_dev_item *dev_item; 2322 int ret; 2323 int do_barriers; 2324 int max_errors; 2325 int total_errors = 0; 2326 u64 flags; 2327 2328 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1; 2329 do_barriers = !btrfs_test_opt(root, NOBARRIER); 2330 2331 sb = &root->fs_info->super_for_commit; 2332 dev_item = &sb->dev_item; 2333 2334 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2335 head = &root->fs_info->fs_devices->devices; 2336 list_for_each_entry(dev, head, dev_list) { 2337 if (!dev->bdev) { 2338 total_errors++; 2339 continue; 2340 } 2341 if (!dev->in_fs_metadata || !dev->writeable) 2342 continue; 2343 2344 btrfs_set_stack_device_generation(dev_item, 0); 2345 btrfs_set_stack_device_type(dev_item, dev->type); 2346 btrfs_set_stack_device_id(dev_item, dev->devid); 2347 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 2348 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 2349 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 2350 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 2351 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 2352 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 2353 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2354 2355 flags = btrfs_super_flags(sb); 2356 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 2357 2358 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 2359 if (ret) 2360 total_errors++; 2361 } 2362 if (total_errors > max_errors) { 2363 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2364 total_errors); 2365 BUG(); 2366 } 2367 2368 total_errors = 0; 2369 list_for_each_entry(dev, head, dev_list) { 2370 if (!dev->bdev) 2371 continue; 2372 if (!dev->in_fs_metadata || !dev->writeable) 2373 continue; 2374 2375 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 2376 if (ret) 2377 total_errors++; 2378 } 2379 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2380 if (total_errors > max_errors) { 2381 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2382 total_errors); 2383 BUG(); 2384 } 2385 return 0; 2386 } 2387 2388 int write_ctree_super(struct btrfs_trans_handle *trans, 2389 struct btrfs_root *root, int max_mirrors) 2390 { 2391 int ret; 2392 2393 ret = write_all_supers(root, max_mirrors); 2394 return ret; 2395 } 2396 2397 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2398 { 2399 spin_lock(&fs_info->fs_roots_radix_lock); 2400 radix_tree_delete(&fs_info->fs_roots_radix, 2401 (unsigned long)root->root_key.objectid); 2402 spin_unlock(&fs_info->fs_roots_radix_lock); 2403 2404 if (btrfs_root_refs(&root->root_item) == 0) 2405 synchronize_srcu(&fs_info->subvol_srcu); 2406 2407 free_fs_root(root); 2408 return 0; 2409 } 2410 2411 static void free_fs_root(struct btrfs_root *root) 2412 { 2413 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2414 if (root->anon_super.s_dev) { 2415 down_write(&root->anon_super.s_umount); 2416 kill_anon_super(&root->anon_super); 2417 } 2418 free_extent_buffer(root->node); 2419 free_extent_buffer(root->commit_root); 2420 kfree(root->name); 2421 kfree(root); 2422 } 2423 2424 static int del_fs_roots(struct btrfs_fs_info *fs_info) 2425 { 2426 int ret; 2427 struct btrfs_root *gang[8]; 2428 int i; 2429 2430 while (!list_empty(&fs_info->dead_roots)) { 2431 gang[0] = list_entry(fs_info->dead_roots.next, 2432 struct btrfs_root, root_list); 2433 list_del(&gang[0]->root_list); 2434 2435 if (gang[0]->in_radix) { 2436 btrfs_free_fs_root(fs_info, gang[0]); 2437 } else { 2438 free_extent_buffer(gang[0]->node); 2439 free_extent_buffer(gang[0]->commit_root); 2440 kfree(gang[0]); 2441 } 2442 } 2443 2444 while (1) { 2445 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2446 (void **)gang, 0, 2447 ARRAY_SIZE(gang)); 2448 if (!ret) 2449 break; 2450 for (i = 0; i < ret; i++) 2451 btrfs_free_fs_root(fs_info, gang[i]); 2452 } 2453 return 0; 2454 } 2455 2456 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2457 { 2458 u64 root_objectid = 0; 2459 struct btrfs_root *gang[8]; 2460 int i; 2461 int ret; 2462 2463 while (1) { 2464 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2465 (void **)gang, root_objectid, 2466 ARRAY_SIZE(gang)); 2467 if (!ret) 2468 break; 2469 2470 root_objectid = gang[ret - 1]->root_key.objectid + 1; 2471 for (i = 0; i < ret; i++) { 2472 int err; 2473 2474 root_objectid = gang[i]->root_key.objectid; 2475 err = btrfs_orphan_cleanup(gang[i]); 2476 if (err) 2477 return err; 2478 } 2479 root_objectid++; 2480 } 2481 return 0; 2482 } 2483 2484 int btrfs_commit_super(struct btrfs_root *root) 2485 { 2486 struct btrfs_trans_handle *trans; 2487 int ret; 2488 2489 mutex_lock(&root->fs_info->cleaner_mutex); 2490 btrfs_run_delayed_iputs(root); 2491 btrfs_clean_old_snapshots(root); 2492 mutex_unlock(&root->fs_info->cleaner_mutex); 2493 2494 /* wait until ongoing cleanup work done */ 2495 down_write(&root->fs_info->cleanup_work_sem); 2496 up_write(&root->fs_info->cleanup_work_sem); 2497 2498 trans = btrfs_join_transaction(root, 1); 2499 if (IS_ERR(trans)) 2500 return PTR_ERR(trans); 2501 ret = btrfs_commit_transaction(trans, root); 2502 BUG_ON(ret); 2503 /* run commit again to drop the original snapshot */ 2504 trans = btrfs_join_transaction(root, 1); 2505 if (IS_ERR(trans)) 2506 return PTR_ERR(trans); 2507 btrfs_commit_transaction(trans, root); 2508 ret = btrfs_write_and_wait_transaction(NULL, root); 2509 BUG_ON(ret); 2510 2511 ret = write_ctree_super(NULL, root, 0); 2512 return ret; 2513 } 2514 2515 int close_ctree(struct btrfs_root *root) 2516 { 2517 struct btrfs_fs_info *fs_info = root->fs_info; 2518 int ret; 2519 2520 fs_info->closing = 1; 2521 smp_mb(); 2522 2523 btrfs_put_block_group_cache(fs_info); 2524 2525 /* 2526 * Here come 2 situations when btrfs is broken to flip readonly: 2527 * 2528 * 1. when btrfs flips readonly somewhere else before 2529 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag, 2530 * and btrfs will skip to write sb directly to keep 2531 * ERROR state on disk. 2532 * 2533 * 2. when btrfs flips readonly just in btrfs_commit_super, 2534 * and in such case, btrfs cannot write sb via btrfs_commit_super, 2535 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag, 2536 * btrfs will cleanup all FS resources first and write sb then. 2537 */ 2538 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 2539 ret = btrfs_commit_super(root); 2540 if (ret) 2541 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 2542 } 2543 2544 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 2545 ret = btrfs_error_commit_super(root); 2546 if (ret) 2547 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 2548 } 2549 2550 kthread_stop(root->fs_info->transaction_kthread); 2551 kthread_stop(root->fs_info->cleaner_kthread); 2552 2553 fs_info->closing = 2; 2554 smp_mb(); 2555 2556 if (fs_info->delalloc_bytes) { 2557 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 2558 (unsigned long long)fs_info->delalloc_bytes); 2559 } 2560 if (fs_info->total_ref_cache_size) { 2561 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", 2562 (unsigned long long)fs_info->total_ref_cache_size); 2563 } 2564 2565 free_extent_buffer(fs_info->extent_root->node); 2566 free_extent_buffer(fs_info->extent_root->commit_root); 2567 free_extent_buffer(fs_info->tree_root->node); 2568 free_extent_buffer(fs_info->tree_root->commit_root); 2569 free_extent_buffer(root->fs_info->chunk_root->node); 2570 free_extent_buffer(root->fs_info->chunk_root->commit_root); 2571 free_extent_buffer(root->fs_info->dev_root->node); 2572 free_extent_buffer(root->fs_info->dev_root->commit_root); 2573 free_extent_buffer(root->fs_info->csum_root->node); 2574 free_extent_buffer(root->fs_info->csum_root->commit_root); 2575 2576 btrfs_free_block_groups(root->fs_info); 2577 2578 del_fs_roots(fs_info); 2579 2580 iput(fs_info->btree_inode); 2581 2582 btrfs_stop_workers(&fs_info->generic_worker); 2583 btrfs_stop_workers(&fs_info->fixup_workers); 2584 btrfs_stop_workers(&fs_info->delalloc_workers); 2585 btrfs_stop_workers(&fs_info->workers); 2586 btrfs_stop_workers(&fs_info->endio_workers); 2587 btrfs_stop_workers(&fs_info->endio_meta_workers); 2588 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2589 btrfs_stop_workers(&fs_info->endio_write_workers); 2590 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2591 btrfs_stop_workers(&fs_info->submit_workers); 2592 2593 btrfs_close_devices(fs_info->fs_devices); 2594 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2595 2596 bdi_destroy(&fs_info->bdi); 2597 cleanup_srcu_struct(&fs_info->subvol_srcu); 2598 2599 kfree(fs_info->extent_root); 2600 kfree(fs_info->tree_root); 2601 kfree(fs_info->chunk_root); 2602 kfree(fs_info->dev_root); 2603 kfree(fs_info->csum_root); 2604 kfree(fs_info); 2605 2606 return 0; 2607 } 2608 2609 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) 2610 { 2611 int ret; 2612 struct inode *btree_inode = buf->first_page->mapping->host; 2613 2614 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf, 2615 NULL); 2616 if (!ret) 2617 return ret; 2618 2619 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 2620 parent_transid); 2621 return !ret; 2622 } 2623 2624 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 2625 { 2626 struct inode *btree_inode = buf->first_page->mapping->host; 2627 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, 2628 buf); 2629 } 2630 2631 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 2632 { 2633 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2634 u64 transid = btrfs_header_generation(buf); 2635 struct inode *btree_inode = root->fs_info->btree_inode; 2636 int was_dirty; 2637 2638 btrfs_assert_tree_locked(buf); 2639 if (transid != root->fs_info->generation) { 2640 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 2641 "found %llu running %llu\n", 2642 (unsigned long long)buf->start, 2643 (unsigned long long)transid, 2644 (unsigned long long)root->fs_info->generation); 2645 WARN_ON(1); 2646 } 2647 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 2648 buf); 2649 if (!was_dirty) { 2650 spin_lock(&root->fs_info->delalloc_lock); 2651 root->fs_info->dirty_metadata_bytes += buf->len; 2652 spin_unlock(&root->fs_info->delalloc_lock); 2653 } 2654 } 2655 2656 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 2657 { 2658 /* 2659 * looks as though older kernels can get into trouble with 2660 * this code, they end up stuck in balance_dirty_pages forever 2661 */ 2662 u64 num_dirty; 2663 unsigned long thresh = 32 * 1024 * 1024; 2664 2665 if (current->flags & PF_MEMALLOC) 2666 return; 2667 2668 num_dirty = root->fs_info->dirty_metadata_bytes; 2669 2670 if (num_dirty > thresh) { 2671 balance_dirty_pages_ratelimited_nr( 2672 root->fs_info->btree_inode->i_mapping, 1); 2673 } 2674 return; 2675 } 2676 2677 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 2678 { 2679 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2680 int ret; 2681 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 2682 if (ret == 0) 2683 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 2684 return ret; 2685 } 2686 2687 int btree_lock_page_hook(struct page *page) 2688 { 2689 struct inode *inode = page->mapping->host; 2690 struct btrfs_root *root = BTRFS_I(inode)->root; 2691 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2692 struct extent_buffer *eb; 2693 unsigned long len; 2694 u64 bytenr = page_offset(page); 2695 2696 if (page->private == EXTENT_PAGE_PRIVATE) 2697 goto out; 2698 2699 len = page->private >> 2; 2700 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS); 2701 if (!eb) 2702 goto out; 2703 2704 btrfs_tree_lock(eb); 2705 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 2706 2707 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 2708 spin_lock(&root->fs_info->delalloc_lock); 2709 if (root->fs_info->dirty_metadata_bytes >= eb->len) 2710 root->fs_info->dirty_metadata_bytes -= eb->len; 2711 else 2712 WARN_ON(1); 2713 spin_unlock(&root->fs_info->delalloc_lock); 2714 } 2715 2716 btrfs_tree_unlock(eb); 2717 free_extent_buffer(eb); 2718 out: 2719 lock_page(page); 2720 return 0; 2721 } 2722 2723 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 2724 int read_only) 2725 { 2726 if (read_only) 2727 return; 2728 2729 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) 2730 printk(KERN_WARNING "warning: mount fs with errors, " 2731 "running btrfsck is recommended\n"); 2732 } 2733 2734 int btrfs_error_commit_super(struct btrfs_root *root) 2735 { 2736 int ret; 2737 2738 mutex_lock(&root->fs_info->cleaner_mutex); 2739 btrfs_run_delayed_iputs(root); 2740 mutex_unlock(&root->fs_info->cleaner_mutex); 2741 2742 down_write(&root->fs_info->cleanup_work_sem); 2743 up_write(&root->fs_info->cleanup_work_sem); 2744 2745 /* cleanup FS via transaction */ 2746 btrfs_cleanup_transaction(root); 2747 2748 ret = write_ctree_super(NULL, root, 0); 2749 2750 return ret; 2751 } 2752 2753 static int btrfs_destroy_ordered_operations(struct btrfs_root *root) 2754 { 2755 struct btrfs_inode *btrfs_inode; 2756 struct list_head splice; 2757 2758 INIT_LIST_HEAD(&splice); 2759 2760 mutex_lock(&root->fs_info->ordered_operations_mutex); 2761 spin_lock(&root->fs_info->ordered_extent_lock); 2762 2763 list_splice_init(&root->fs_info->ordered_operations, &splice); 2764 while (!list_empty(&splice)) { 2765 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 2766 ordered_operations); 2767 2768 list_del_init(&btrfs_inode->ordered_operations); 2769 2770 btrfs_invalidate_inodes(btrfs_inode->root); 2771 } 2772 2773 spin_unlock(&root->fs_info->ordered_extent_lock); 2774 mutex_unlock(&root->fs_info->ordered_operations_mutex); 2775 2776 return 0; 2777 } 2778 2779 static int btrfs_destroy_ordered_extents(struct btrfs_root *root) 2780 { 2781 struct list_head splice; 2782 struct btrfs_ordered_extent *ordered; 2783 struct inode *inode; 2784 2785 INIT_LIST_HEAD(&splice); 2786 2787 spin_lock(&root->fs_info->ordered_extent_lock); 2788 2789 list_splice_init(&root->fs_info->ordered_extents, &splice); 2790 while (!list_empty(&splice)) { 2791 ordered = list_entry(splice.next, struct btrfs_ordered_extent, 2792 root_extent_list); 2793 2794 list_del_init(&ordered->root_extent_list); 2795 atomic_inc(&ordered->refs); 2796 2797 /* the inode may be getting freed (in sys_unlink path). */ 2798 inode = igrab(ordered->inode); 2799 2800 spin_unlock(&root->fs_info->ordered_extent_lock); 2801 if (inode) 2802 iput(inode); 2803 2804 atomic_set(&ordered->refs, 1); 2805 btrfs_put_ordered_extent(ordered); 2806 2807 spin_lock(&root->fs_info->ordered_extent_lock); 2808 } 2809 2810 spin_unlock(&root->fs_info->ordered_extent_lock); 2811 2812 return 0; 2813 } 2814 2815 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 2816 struct btrfs_root *root) 2817 { 2818 struct rb_node *node; 2819 struct btrfs_delayed_ref_root *delayed_refs; 2820 struct btrfs_delayed_ref_node *ref; 2821 int ret = 0; 2822 2823 delayed_refs = &trans->delayed_refs; 2824 2825 spin_lock(&delayed_refs->lock); 2826 if (delayed_refs->num_entries == 0) { 2827 spin_unlock(&delayed_refs->lock); 2828 printk(KERN_INFO "delayed_refs has NO entry\n"); 2829 return ret; 2830 } 2831 2832 node = rb_first(&delayed_refs->root); 2833 while (node) { 2834 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2835 node = rb_next(node); 2836 2837 ref->in_tree = 0; 2838 rb_erase(&ref->rb_node, &delayed_refs->root); 2839 delayed_refs->num_entries--; 2840 2841 atomic_set(&ref->refs, 1); 2842 if (btrfs_delayed_ref_is_head(ref)) { 2843 struct btrfs_delayed_ref_head *head; 2844 2845 head = btrfs_delayed_node_to_head(ref); 2846 mutex_lock(&head->mutex); 2847 kfree(head->extent_op); 2848 delayed_refs->num_heads--; 2849 if (list_empty(&head->cluster)) 2850 delayed_refs->num_heads_ready--; 2851 list_del_init(&head->cluster); 2852 mutex_unlock(&head->mutex); 2853 } 2854 2855 spin_unlock(&delayed_refs->lock); 2856 btrfs_put_delayed_ref(ref); 2857 2858 cond_resched(); 2859 spin_lock(&delayed_refs->lock); 2860 } 2861 2862 spin_unlock(&delayed_refs->lock); 2863 2864 return ret; 2865 } 2866 2867 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t) 2868 { 2869 struct btrfs_pending_snapshot *snapshot; 2870 struct list_head splice; 2871 2872 INIT_LIST_HEAD(&splice); 2873 2874 list_splice_init(&t->pending_snapshots, &splice); 2875 2876 while (!list_empty(&splice)) { 2877 snapshot = list_entry(splice.next, 2878 struct btrfs_pending_snapshot, 2879 list); 2880 2881 list_del_init(&snapshot->list); 2882 2883 kfree(snapshot); 2884 } 2885 2886 return 0; 2887 } 2888 2889 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 2890 { 2891 struct btrfs_inode *btrfs_inode; 2892 struct list_head splice; 2893 2894 INIT_LIST_HEAD(&splice); 2895 2896 list_splice_init(&root->fs_info->delalloc_inodes, &splice); 2897 2898 spin_lock(&root->fs_info->delalloc_lock); 2899 2900 while (!list_empty(&splice)) { 2901 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 2902 delalloc_inodes); 2903 2904 list_del_init(&btrfs_inode->delalloc_inodes); 2905 2906 btrfs_invalidate_inodes(btrfs_inode->root); 2907 } 2908 2909 spin_unlock(&root->fs_info->delalloc_lock); 2910 2911 return 0; 2912 } 2913 2914 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 2915 struct extent_io_tree *dirty_pages, 2916 int mark) 2917 { 2918 int ret; 2919 struct page *page; 2920 struct inode *btree_inode = root->fs_info->btree_inode; 2921 struct extent_buffer *eb; 2922 u64 start = 0; 2923 u64 end; 2924 u64 offset; 2925 unsigned long index; 2926 2927 while (1) { 2928 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 2929 mark); 2930 if (ret) 2931 break; 2932 2933 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 2934 while (start <= end) { 2935 index = start >> PAGE_CACHE_SHIFT; 2936 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 2937 page = find_get_page(btree_inode->i_mapping, index); 2938 if (!page) 2939 continue; 2940 offset = page_offset(page); 2941 2942 spin_lock(&dirty_pages->buffer_lock); 2943 eb = radix_tree_lookup( 2944 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer, 2945 offset >> PAGE_CACHE_SHIFT); 2946 spin_unlock(&dirty_pages->buffer_lock); 2947 if (eb) { 2948 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY, 2949 &eb->bflags); 2950 atomic_set(&eb->refs, 1); 2951 } 2952 if (PageWriteback(page)) 2953 end_page_writeback(page); 2954 2955 lock_page(page); 2956 if (PageDirty(page)) { 2957 clear_page_dirty_for_io(page); 2958 spin_lock_irq(&page->mapping->tree_lock); 2959 radix_tree_tag_clear(&page->mapping->page_tree, 2960 page_index(page), 2961 PAGECACHE_TAG_DIRTY); 2962 spin_unlock_irq(&page->mapping->tree_lock); 2963 } 2964 2965 page->mapping->a_ops->invalidatepage(page, 0); 2966 unlock_page(page); 2967 } 2968 } 2969 2970 return ret; 2971 } 2972 2973 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 2974 struct extent_io_tree *pinned_extents) 2975 { 2976 struct extent_io_tree *unpin; 2977 u64 start; 2978 u64 end; 2979 int ret; 2980 2981 unpin = pinned_extents; 2982 while (1) { 2983 ret = find_first_extent_bit(unpin, 0, &start, &end, 2984 EXTENT_DIRTY); 2985 if (ret) 2986 break; 2987 2988 /* opt_discard */ 2989 if (btrfs_test_opt(root, DISCARD)) 2990 ret = btrfs_error_discard_extent(root, start, 2991 end + 1 - start, 2992 NULL); 2993 2994 clear_extent_dirty(unpin, start, end, GFP_NOFS); 2995 btrfs_error_unpin_extent_range(root, start, end); 2996 cond_resched(); 2997 } 2998 2999 return 0; 3000 } 3001 3002 static int btrfs_cleanup_transaction(struct btrfs_root *root) 3003 { 3004 struct btrfs_transaction *t; 3005 LIST_HEAD(list); 3006 3007 WARN_ON(1); 3008 3009 mutex_lock(&root->fs_info->trans_mutex); 3010 mutex_lock(&root->fs_info->transaction_kthread_mutex); 3011 3012 list_splice_init(&root->fs_info->trans_list, &list); 3013 while (!list_empty(&list)) { 3014 t = list_entry(list.next, struct btrfs_transaction, list); 3015 if (!t) 3016 break; 3017 3018 btrfs_destroy_ordered_operations(root); 3019 3020 btrfs_destroy_ordered_extents(root); 3021 3022 btrfs_destroy_delayed_refs(t, root); 3023 3024 btrfs_block_rsv_release(root, 3025 &root->fs_info->trans_block_rsv, 3026 t->dirty_pages.dirty_bytes); 3027 3028 /* FIXME: cleanup wait for commit */ 3029 t->in_commit = 1; 3030 t->blocked = 1; 3031 if (waitqueue_active(&root->fs_info->transaction_blocked_wait)) 3032 wake_up(&root->fs_info->transaction_blocked_wait); 3033 3034 t->blocked = 0; 3035 if (waitqueue_active(&root->fs_info->transaction_wait)) 3036 wake_up(&root->fs_info->transaction_wait); 3037 mutex_unlock(&root->fs_info->trans_mutex); 3038 3039 mutex_lock(&root->fs_info->trans_mutex); 3040 t->commit_done = 1; 3041 if (waitqueue_active(&t->commit_wait)) 3042 wake_up(&t->commit_wait); 3043 mutex_unlock(&root->fs_info->trans_mutex); 3044 3045 mutex_lock(&root->fs_info->trans_mutex); 3046 3047 btrfs_destroy_pending_snapshots(t); 3048 3049 btrfs_destroy_delalloc_inodes(root); 3050 3051 spin_lock(&root->fs_info->new_trans_lock); 3052 root->fs_info->running_transaction = NULL; 3053 spin_unlock(&root->fs_info->new_trans_lock); 3054 3055 btrfs_destroy_marked_extents(root, &t->dirty_pages, 3056 EXTENT_DIRTY); 3057 3058 btrfs_destroy_pinned_extent(root, 3059 root->fs_info->pinned_extents); 3060 3061 atomic_set(&t->use_count, 0); 3062 list_del_init(&t->list); 3063 memset(t, 0, sizeof(*t)); 3064 kmem_cache_free(btrfs_transaction_cachep, t); 3065 } 3066 3067 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 3068 mutex_unlock(&root->fs_info->trans_mutex); 3069 3070 return 0; 3071 } 3072 3073 static struct extent_io_ops btree_extent_io_ops = { 3074 .write_cache_pages_lock_hook = btree_lock_page_hook, 3075 .readpage_end_io_hook = btree_readpage_end_io_hook, 3076 .submit_bio_hook = btree_submit_bio_hook, 3077 /* note we're sharing with inode.c for the merge bio hook */ 3078 .merge_bio_hook = btrfs_merge_bio_hook, 3079 }; 3080