1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "dev-replace.h" 33 #include "raid56.h" 34 #include "sysfs.h" 35 #include "qgroup.h" 36 #include "compression.h" 37 #include "tree-checker.h" 38 #include "ref-verify.h" 39 #include "block-group.h" 40 #include "discard.h" 41 #include "space-info.h" 42 #include "zoned.h" 43 #include "subpage.h" 44 #include "fs.h" 45 #include "accessors.h" 46 #include "extent-tree.h" 47 #include "root-tree.h" 48 #include "defrag.h" 49 #include "uuid-tree.h" 50 #include "relocation.h" 51 #include "scrub.h" 52 #include "super.h" 53 54 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 55 BTRFS_HEADER_FLAG_RELOC |\ 56 BTRFS_SUPER_FLAG_ERROR |\ 57 BTRFS_SUPER_FLAG_SEEDING |\ 58 BTRFS_SUPER_FLAG_METADUMP |\ 59 BTRFS_SUPER_FLAG_METADUMP_V2) 60 61 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 62 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 63 64 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 65 { 66 if (fs_info->csum_shash) 67 crypto_free_shash(fs_info->csum_shash); 68 } 69 70 /* 71 * Compute the csum of a btree block and store the result to provided buffer. 72 */ 73 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 74 { 75 struct btrfs_fs_info *fs_info = buf->fs_info; 76 int num_pages; 77 u32 first_page_part; 78 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 79 char *kaddr; 80 int i; 81 82 shash->tfm = fs_info->csum_shash; 83 crypto_shash_init(shash); 84 85 if (buf->addr) { 86 /* Pages are contiguous, handle them as a big one. */ 87 kaddr = buf->addr; 88 first_page_part = fs_info->nodesize; 89 num_pages = 1; 90 } else { 91 kaddr = folio_address(buf->folios[0]); 92 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 93 num_pages = num_extent_pages(buf); 94 } 95 96 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 97 first_page_part - BTRFS_CSUM_SIZE); 98 99 /* 100 * Multiple single-page folios case would reach here. 101 * 102 * nodesize <= PAGE_SIZE and large folio all handled by above 103 * crypto_shash_update() already. 104 */ 105 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { 106 kaddr = folio_address(buf->folios[i]); 107 crypto_shash_update(shash, kaddr, PAGE_SIZE); 108 } 109 memset(result, 0, BTRFS_CSUM_SIZE); 110 crypto_shash_final(shash, result); 111 } 112 113 /* 114 * we can't consider a given block up to date unless the transid of the 115 * block matches the transid in the parent node's pointer. This is how we 116 * detect blocks that either didn't get written at all or got written 117 * in the wrong place. 118 */ 119 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic) 120 { 121 if (!extent_buffer_uptodate(eb)) 122 return 0; 123 124 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 125 return 1; 126 127 if (atomic) 128 return -EAGAIN; 129 130 if (!extent_buffer_uptodate(eb) || 131 btrfs_header_generation(eb) != parent_transid) { 132 btrfs_err_rl(eb->fs_info, 133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 134 eb->start, eb->read_mirror, 135 parent_transid, btrfs_header_generation(eb)); 136 clear_extent_buffer_uptodate(eb); 137 return 0; 138 } 139 return 1; 140 } 141 142 static bool btrfs_supported_super_csum(u16 csum_type) 143 { 144 switch (csum_type) { 145 case BTRFS_CSUM_TYPE_CRC32: 146 case BTRFS_CSUM_TYPE_XXHASH: 147 case BTRFS_CSUM_TYPE_SHA256: 148 case BTRFS_CSUM_TYPE_BLAKE2: 149 return true; 150 default: 151 return false; 152 } 153 } 154 155 /* 156 * Return 0 if the superblock checksum type matches the checksum value of that 157 * algorithm. Pass the raw disk superblock data. 158 */ 159 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 160 const struct btrfs_super_block *disk_sb) 161 { 162 char result[BTRFS_CSUM_SIZE]; 163 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 164 165 shash->tfm = fs_info->csum_shash; 166 167 /* 168 * The super_block structure does not span the whole 169 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 170 * filled with zeros and is included in the checksum. 171 */ 172 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 173 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 174 175 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 176 return 1; 177 178 return 0; 179 } 180 181 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 182 int mirror_num) 183 { 184 struct btrfs_fs_info *fs_info = eb->fs_info; 185 int num_folios = num_extent_folios(eb); 186 int ret = 0; 187 188 if (sb_rdonly(fs_info->sb)) 189 return -EROFS; 190 191 for (int i = 0; i < num_folios; i++) { 192 struct folio *folio = eb->folios[i]; 193 u64 start = max_t(u64, eb->start, folio_pos(folio)); 194 u64 end = min_t(u64, eb->start + eb->len, 195 folio_pos(folio) + eb->folio_size); 196 u32 len = end - start; 197 198 ret = btrfs_repair_io_failure(fs_info, 0, start, len, 199 start, folio, offset_in_folio(folio, start), 200 mirror_num); 201 if (ret) 202 break; 203 } 204 205 return ret; 206 } 207 208 /* 209 * helper to read a given tree block, doing retries as required when 210 * the checksums don't match and we have alternate mirrors to try. 211 * 212 * @check: expected tree parentness check, see the comments of the 213 * structure for details. 214 */ 215 int btrfs_read_extent_buffer(struct extent_buffer *eb, 216 struct btrfs_tree_parent_check *check) 217 { 218 struct btrfs_fs_info *fs_info = eb->fs_info; 219 int failed = 0; 220 int ret; 221 int num_copies = 0; 222 int mirror_num = 0; 223 int failed_mirror = 0; 224 225 ASSERT(check); 226 227 while (1) { 228 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 229 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check); 230 if (!ret) 231 break; 232 233 num_copies = btrfs_num_copies(fs_info, 234 eb->start, eb->len); 235 if (num_copies == 1) 236 break; 237 238 if (!failed_mirror) { 239 failed = 1; 240 failed_mirror = eb->read_mirror; 241 } 242 243 mirror_num++; 244 if (mirror_num == failed_mirror) 245 mirror_num++; 246 247 if (mirror_num > num_copies) 248 break; 249 } 250 251 if (failed && !ret && failed_mirror) 252 btrfs_repair_eb_io_failure(eb, failed_mirror); 253 254 return ret; 255 } 256 257 /* 258 * Checksum a dirty tree block before IO. 259 */ 260 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio) 261 { 262 struct extent_buffer *eb = bbio->private; 263 struct btrfs_fs_info *fs_info = eb->fs_info; 264 u64 found_start = btrfs_header_bytenr(eb); 265 u64 last_trans; 266 u8 result[BTRFS_CSUM_SIZE]; 267 int ret; 268 269 /* Btree blocks are always contiguous on disk. */ 270 if (WARN_ON_ONCE(bbio->file_offset != eb->start)) 271 return BLK_STS_IOERR; 272 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len)) 273 return BLK_STS_IOERR; 274 275 /* 276 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't 277 * checksum it but zero-out its content. This is done to preserve 278 * ordering of I/O without unnecessarily writing out data. 279 */ 280 if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) { 281 memzero_extent_buffer(eb, 0, eb->len); 282 return BLK_STS_OK; 283 } 284 285 if (WARN_ON_ONCE(found_start != eb->start)) 286 return BLK_STS_IOERR; 287 if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0], 288 eb->start, eb->len))) 289 return BLK_STS_IOERR; 290 291 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 292 offsetof(struct btrfs_header, fsid), 293 BTRFS_FSID_SIZE) == 0); 294 csum_tree_block(eb, result); 295 296 if (btrfs_header_level(eb)) 297 ret = btrfs_check_node(eb); 298 else 299 ret = btrfs_check_leaf(eb); 300 301 if (ret < 0) 302 goto error; 303 304 /* 305 * Also check the generation, the eb reached here must be newer than 306 * last committed. Or something seriously wrong happened. 307 */ 308 last_trans = btrfs_get_last_trans_committed(fs_info); 309 if (unlikely(btrfs_header_generation(eb) <= last_trans)) { 310 ret = -EUCLEAN; 311 btrfs_err(fs_info, 312 "block=%llu bad generation, have %llu expect > %llu", 313 eb->start, btrfs_header_generation(eb), last_trans); 314 goto error; 315 } 316 write_extent_buffer(eb, result, 0, fs_info->csum_size); 317 return BLK_STS_OK; 318 319 error: 320 btrfs_print_tree(eb, 0); 321 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 322 eb->start); 323 /* 324 * Be noisy if this is an extent buffer from a log tree. We don't abort 325 * a transaction in case there's a bad log tree extent buffer, we just 326 * fallback to a transaction commit. Still we want to know when there is 327 * a bad log tree extent buffer, as that may signal a bug somewhere. 328 */ 329 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 330 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 331 return errno_to_blk_status(ret); 332 } 333 334 static bool check_tree_block_fsid(struct extent_buffer *eb) 335 { 336 struct btrfs_fs_info *fs_info = eb->fs_info; 337 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 338 u8 fsid[BTRFS_FSID_SIZE]; 339 340 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 341 BTRFS_FSID_SIZE); 342 343 /* 344 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid. 345 * This is then overwritten by metadata_uuid if it is present in the 346 * device_list_add(). The same true for a seed device as well. So use of 347 * fs_devices::metadata_uuid is appropriate here. 348 */ 349 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0) 350 return false; 351 352 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 353 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 354 return false; 355 356 return true; 357 } 358 359 /* Do basic extent buffer checks at read time */ 360 int btrfs_validate_extent_buffer(struct extent_buffer *eb, 361 struct btrfs_tree_parent_check *check) 362 { 363 struct btrfs_fs_info *fs_info = eb->fs_info; 364 u64 found_start; 365 const u32 csum_size = fs_info->csum_size; 366 u8 found_level; 367 u8 result[BTRFS_CSUM_SIZE]; 368 const u8 *header_csum; 369 int ret = 0; 370 371 ASSERT(check); 372 373 found_start = btrfs_header_bytenr(eb); 374 if (found_start != eb->start) { 375 btrfs_err_rl(fs_info, 376 "bad tree block start, mirror %u want %llu have %llu", 377 eb->read_mirror, eb->start, found_start); 378 ret = -EIO; 379 goto out; 380 } 381 if (check_tree_block_fsid(eb)) { 382 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 383 eb->start, eb->read_mirror); 384 ret = -EIO; 385 goto out; 386 } 387 found_level = btrfs_header_level(eb); 388 if (found_level >= BTRFS_MAX_LEVEL) { 389 btrfs_err(fs_info, 390 "bad tree block level, mirror %u level %d on logical %llu", 391 eb->read_mirror, btrfs_header_level(eb), eb->start); 392 ret = -EIO; 393 goto out; 394 } 395 396 csum_tree_block(eb, result); 397 header_csum = folio_address(eb->folios[0]) + 398 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum)); 399 400 if (memcmp(result, header_csum, csum_size) != 0) { 401 btrfs_warn_rl(fs_info, 402 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d", 403 eb->start, eb->read_mirror, 404 CSUM_FMT_VALUE(csum_size, header_csum), 405 CSUM_FMT_VALUE(csum_size, result), 406 btrfs_header_level(eb)); 407 ret = -EUCLEAN; 408 goto out; 409 } 410 411 if (found_level != check->level) { 412 btrfs_err(fs_info, 413 "level verify failed on logical %llu mirror %u wanted %u found %u", 414 eb->start, eb->read_mirror, check->level, found_level); 415 ret = -EIO; 416 goto out; 417 } 418 if (unlikely(check->transid && 419 btrfs_header_generation(eb) != check->transid)) { 420 btrfs_err_rl(eb->fs_info, 421 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 422 eb->start, eb->read_mirror, check->transid, 423 btrfs_header_generation(eb)); 424 ret = -EIO; 425 goto out; 426 } 427 if (check->has_first_key) { 428 struct btrfs_key *expect_key = &check->first_key; 429 struct btrfs_key found_key; 430 431 if (found_level) 432 btrfs_node_key_to_cpu(eb, &found_key, 0); 433 else 434 btrfs_item_key_to_cpu(eb, &found_key, 0); 435 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 436 btrfs_err(fs_info, 437 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 438 eb->start, check->transid, 439 expect_key->objectid, 440 expect_key->type, expect_key->offset, 441 found_key.objectid, found_key.type, 442 found_key.offset); 443 ret = -EUCLEAN; 444 goto out; 445 } 446 } 447 if (check->owner_root) { 448 ret = btrfs_check_eb_owner(eb, check->owner_root); 449 if (ret < 0) 450 goto out; 451 } 452 453 /* 454 * If this is a leaf block and it is corrupt, set the corrupt bit so 455 * that we don't try and read the other copies of this block, just 456 * return -EIO. 457 */ 458 if (found_level == 0 && btrfs_check_leaf(eb)) { 459 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 460 ret = -EIO; 461 } 462 463 if (found_level > 0 && btrfs_check_node(eb)) 464 ret = -EIO; 465 466 if (ret) 467 btrfs_err(fs_info, 468 "read time tree block corruption detected on logical %llu mirror %u", 469 eb->start, eb->read_mirror); 470 out: 471 return ret; 472 } 473 474 #ifdef CONFIG_MIGRATION 475 static int btree_migrate_folio(struct address_space *mapping, 476 struct folio *dst, struct folio *src, enum migrate_mode mode) 477 { 478 /* 479 * we can't safely write a btree page from here, 480 * we haven't done the locking hook 481 */ 482 if (folio_test_dirty(src)) 483 return -EAGAIN; 484 /* 485 * Buffers may be managed in a filesystem specific way. 486 * We must have no buffers or drop them. 487 */ 488 if (folio_get_private(src) && 489 !filemap_release_folio(src, GFP_KERNEL)) 490 return -EAGAIN; 491 return migrate_folio(mapping, dst, src, mode); 492 } 493 #else 494 #define btree_migrate_folio NULL 495 #endif 496 497 static int btree_writepages(struct address_space *mapping, 498 struct writeback_control *wbc) 499 { 500 int ret; 501 502 if (wbc->sync_mode == WB_SYNC_NONE) { 503 struct btrfs_fs_info *fs_info; 504 505 if (wbc->for_kupdate) 506 return 0; 507 508 fs_info = inode_to_fs_info(mapping->host); 509 /* this is a bit racy, but that's ok */ 510 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 511 BTRFS_DIRTY_METADATA_THRESH, 512 fs_info->dirty_metadata_batch); 513 if (ret < 0) 514 return 0; 515 } 516 return btree_write_cache_pages(mapping, wbc); 517 } 518 519 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 520 { 521 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 522 return false; 523 524 return try_release_extent_buffer(&folio->page); 525 } 526 527 static void btree_invalidate_folio(struct folio *folio, size_t offset, 528 size_t length) 529 { 530 struct extent_io_tree *tree; 531 532 tree = &folio_to_inode(folio)->io_tree; 533 extent_invalidate_folio(tree, folio, offset); 534 btree_release_folio(folio, GFP_NOFS); 535 if (folio_get_private(folio)) { 536 btrfs_warn(folio_to_fs_info(folio), 537 "folio private not zero on folio %llu", 538 (unsigned long long)folio_pos(folio)); 539 folio_detach_private(folio); 540 } 541 } 542 543 #ifdef DEBUG 544 static bool btree_dirty_folio(struct address_space *mapping, 545 struct folio *folio) 546 { 547 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 548 struct btrfs_subpage_info *spi = fs_info->subpage_info; 549 struct btrfs_subpage *subpage; 550 struct extent_buffer *eb; 551 int cur_bit = 0; 552 u64 page_start = folio_pos(folio); 553 554 if (fs_info->sectorsize == PAGE_SIZE) { 555 eb = folio_get_private(folio); 556 BUG_ON(!eb); 557 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 558 BUG_ON(!atomic_read(&eb->refs)); 559 btrfs_assert_tree_write_locked(eb); 560 return filemap_dirty_folio(mapping, folio); 561 } 562 563 ASSERT(spi); 564 subpage = folio_get_private(folio); 565 566 for (cur_bit = spi->dirty_offset; 567 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits; 568 cur_bit++) { 569 unsigned long flags; 570 u64 cur; 571 572 spin_lock_irqsave(&subpage->lock, flags); 573 if (!test_bit(cur_bit, subpage->bitmaps)) { 574 spin_unlock_irqrestore(&subpage->lock, flags); 575 continue; 576 } 577 spin_unlock_irqrestore(&subpage->lock, flags); 578 cur = page_start + cur_bit * fs_info->sectorsize; 579 580 eb = find_extent_buffer(fs_info, cur); 581 ASSERT(eb); 582 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 583 ASSERT(atomic_read(&eb->refs)); 584 btrfs_assert_tree_write_locked(eb); 585 free_extent_buffer(eb); 586 587 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1; 588 } 589 return filemap_dirty_folio(mapping, folio); 590 } 591 #else 592 #define btree_dirty_folio filemap_dirty_folio 593 #endif 594 595 static const struct address_space_operations btree_aops = { 596 .writepages = btree_writepages, 597 .release_folio = btree_release_folio, 598 .invalidate_folio = btree_invalidate_folio, 599 .migrate_folio = btree_migrate_folio, 600 .dirty_folio = btree_dirty_folio, 601 }; 602 603 struct extent_buffer *btrfs_find_create_tree_block( 604 struct btrfs_fs_info *fs_info, 605 u64 bytenr, u64 owner_root, 606 int level) 607 { 608 if (btrfs_is_testing(fs_info)) 609 return alloc_test_extent_buffer(fs_info, bytenr); 610 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 611 } 612 613 /* 614 * Read tree block at logical address @bytenr and do variant basic but critical 615 * verification. 616 * 617 * @check: expected tree parentness check, see comments of the 618 * structure for details. 619 */ 620 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 621 struct btrfs_tree_parent_check *check) 622 { 623 struct extent_buffer *buf = NULL; 624 int ret; 625 626 ASSERT(check); 627 628 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 629 check->level); 630 if (IS_ERR(buf)) 631 return buf; 632 633 ret = btrfs_read_extent_buffer(buf, check); 634 if (ret) { 635 free_extent_buffer_stale(buf); 636 return ERR_PTR(ret); 637 } 638 if (btrfs_check_eb_owner(buf, check->owner_root)) { 639 free_extent_buffer_stale(buf); 640 return ERR_PTR(-EUCLEAN); 641 } 642 return buf; 643 644 } 645 646 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 647 u64 objectid) 648 { 649 bool dummy = btrfs_is_testing(fs_info); 650 651 memset(&root->root_key, 0, sizeof(root->root_key)); 652 memset(&root->root_item, 0, sizeof(root->root_item)); 653 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 654 root->fs_info = fs_info; 655 root->root_key.objectid = objectid; 656 root->node = NULL; 657 root->commit_root = NULL; 658 root->state = 0; 659 RB_CLEAR_NODE(&root->rb_node); 660 661 root->last_trans = 0; 662 root->free_objectid = 0; 663 root->nr_delalloc_inodes = 0; 664 root->nr_ordered_extents = 0; 665 root->inode_tree = RB_ROOT; 666 xa_init(&root->delayed_nodes); 667 668 btrfs_init_root_block_rsv(root); 669 670 INIT_LIST_HEAD(&root->dirty_list); 671 INIT_LIST_HEAD(&root->root_list); 672 INIT_LIST_HEAD(&root->delalloc_inodes); 673 INIT_LIST_HEAD(&root->delalloc_root); 674 INIT_LIST_HEAD(&root->ordered_extents); 675 INIT_LIST_HEAD(&root->ordered_root); 676 INIT_LIST_HEAD(&root->reloc_dirty_list); 677 spin_lock_init(&root->inode_lock); 678 spin_lock_init(&root->delalloc_lock); 679 spin_lock_init(&root->ordered_extent_lock); 680 spin_lock_init(&root->accounting_lock); 681 spin_lock_init(&root->qgroup_meta_rsv_lock); 682 mutex_init(&root->objectid_mutex); 683 mutex_init(&root->log_mutex); 684 mutex_init(&root->ordered_extent_mutex); 685 mutex_init(&root->delalloc_mutex); 686 init_waitqueue_head(&root->qgroup_flush_wait); 687 init_waitqueue_head(&root->log_writer_wait); 688 init_waitqueue_head(&root->log_commit_wait[0]); 689 init_waitqueue_head(&root->log_commit_wait[1]); 690 INIT_LIST_HEAD(&root->log_ctxs[0]); 691 INIT_LIST_HEAD(&root->log_ctxs[1]); 692 atomic_set(&root->log_commit[0], 0); 693 atomic_set(&root->log_commit[1], 0); 694 atomic_set(&root->log_writers, 0); 695 atomic_set(&root->log_batch, 0); 696 refcount_set(&root->refs, 1); 697 atomic_set(&root->snapshot_force_cow, 0); 698 atomic_set(&root->nr_swapfiles, 0); 699 btrfs_set_root_log_transid(root, 0); 700 root->log_transid_committed = -1; 701 btrfs_set_root_last_log_commit(root, 0); 702 root->anon_dev = 0; 703 if (!dummy) { 704 extent_io_tree_init(fs_info, &root->dirty_log_pages, 705 IO_TREE_ROOT_DIRTY_LOG_PAGES); 706 extent_io_tree_init(fs_info, &root->log_csum_range, 707 IO_TREE_LOG_CSUM_RANGE); 708 } 709 710 spin_lock_init(&root->root_item_lock); 711 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 712 #ifdef CONFIG_BTRFS_DEBUG 713 INIT_LIST_HEAD(&root->leak_list); 714 spin_lock(&fs_info->fs_roots_radix_lock); 715 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 716 spin_unlock(&fs_info->fs_roots_radix_lock); 717 #endif 718 } 719 720 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 721 u64 objectid, gfp_t flags) 722 { 723 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 724 if (root) 725 __setup_root(root, fs_info, objectid); 726 return root; 727 } 728 729 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 730 /* Should only be used by the testing infrastructure */ 731 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 732 { 733 struct btrfs_root *root; 734 735 if (!fs_info) 736 return ERR_PTR(-EINVAL); 737 738 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 739 if (!root) 740 return ERR_PTR(-ENOMEM); 741 742 /* We don't use the stripesize in selftest, set it as sectorsize */ 743 root->alloc_bytenr = 0; 744 745 return root; 746 } 747 #endif 748 749 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 750 { 751 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 752 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 753 754 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 755 } 756 757 static int global_root_key_cmp(const void *k, const struct rb_node *node) 758 { 759 const struct btrfs_key *key = k; 760 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 761 762 return btrfs_comp_cpu_keys(key, &root->root_key); 763 } 764 765 int btrfs_global_root_insert(struct btrfs_root *root) 766 { 767 struct btrfs_fs_info *fs_info = root->fs_info; 768 struct rb_node *tmp; 769 int ret = 0; 770 771 write_lock(&fs_info->global_root_lock); 772 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 773 write_unlock(&fs_info->global_root_lock); 774 775 if (tmp) { 776 ret = -EEXIST; 777 btrfs_warn(fs_info, "global root %llu %llu already exists", 778 btrfs_root_id(root), root->root_key.offset); 779 } 780 return ret; 781 } 782 783 void btrfs_global_root_delete(struct btrfs_root *root) 784 { 785 struct btrfs_fs_info *fs_info = root->fs_info; 786 787 write_lock(&fs_info->global_root_lock); 788 rb_erase(&root->rb_node, &fs_info->global_root_tree); 789 write_unlock(&fs_info->global_root_lock); 790 } 791 792 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 793 struct btrfs_key *key) 794 { 795 struct rb_node *node; 796 struct btrfs_root *root = NULL; 797 798 read_lock(&fs_info->global_root_lock); 799 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 800 if (node) 801 root = container_of(node, struct btrfs_root, rb_node); 802 read_unlock(&fs_info->global_root_lock); 803 804 return root; 805 } 806 807 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 808 { 809 struct btrfs_block_group *block_group; 810 u64 ret; 811 812 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 813 return 0; 814 815 if (bytenr) 816 block_group = btrfs_lookup_block_group(fs_info, bytenr); 817 else 818 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 819 ASSERT(block_group); 820 if (!block_group) 821 return 0; 822 ret = block_group->global_root_id; 823 btrfs_put_block_group(block_group); 824 825 return ret; 826 } 827 828 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 829 { 830 struct btrfs_key key = { 831 .objectid = BTRFS_CSUM_TREE_OBJECTID, 832 .type = BTRFS_ROOT_ITEM_KEY, 833 .offset = btrfs_global_root_id(fs_info, bytenr), 834 }; 835 836 return btrfs_global_root(fs_info, &key); 837 } 838 839 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 840 { 841 struct btrfs_key key = { 842 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 843 .type = BTRFS_ROOT_ITEM_KEY, 844 .offset = btrfs_global_root_id(fs_info, bytenr), 845 }; 846 847 return btrfs_global_root(fs_info, &key); 848 } 849 850 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) 851 { 852 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) 853 return fs_info->block_group_root; 854 return btrfs_extent_root(fs_info, 0); 855 } 856 857 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 858 u64 objectid) 859 { 860 struct btrfs_fs_info *fs_info = trans->fs_info; 861 struct extent_buffer *leaf; 862 struct btrfs_root *tree_root = fs_info->tree_root; 863 struct btrfs_root *root; 864 struct btrfs_key key; 865 unsigned int nofs_flag; 866 int ret = 0; 867 868 /* 869 * We're holding a transaction handle, so use a NOFS memory allocation 870 * context to avoid deadlock if reclaim happens. 871 */ 872 nofs_flag = memalloc_nofs_save(); 873 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 874 memalloc_nofs_restore(nofs_flag); 875 if (!root) 876 return ERR_PTR(-ENOMEM); 877 878 root->root_key.objectid = objectid; 879 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 880 root->root_key.offset = 0; 881 882 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 883 0, BTRFS_NESTING_NORMAL); 884 if (IS_ERR(leaf)) { 885 ret = PTR_ERR(leaf); 886 leaf = NULL; 887 goto fail; 888 } 889 890 root->node = leaf; 891 btrfs_mark_buffer_dirty(trans, leaf); 892 893 root->commit_root = btrfs_root_node(root); 894 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 895 896 btrfs_set_root_flags(&root->root_item, 0); 897 btrfs_set_root_limit(&root->root_item, 0); 898 btrfs_set_root_bytenr(&root->root_item, leaf->start); 899 btrfs_set_root_generation(&root->root_item, trans->transid); 900 btrfs_set_root_level(&root->root_item, 0); 901 btrfs_set_root_refs(&root->root_item, 1); 902 btrfs_set_root_used(&root->root_item, leaf->len); 903 btrfs_set_root_last_snapshot(&root->root_item, 0); 904 btrfs_set_root_dirid(&root->root_item, 0); 905 if (is_fstree(objectid)) 906 generate_random_guid(root->root_item.uuid); 907 else 908 export_guid(root->root_item.uuid, &guid_null); 909 btrfs_set_root_drop_level(&root->root_item, 0); 910 911 btrfs_tree_unlock(leaf); 912 913 key.objectid = objectid; 914 key.type = BTRFS_ROOT_ITEM_KEY; 915 key.offset = 0; 916 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 917 if (ret) 918 goto fail; 919 920 return root; 921 922 fail: 923 btrfs_put_root(root); 924 925 return ERR_PTR(ret); 926 } 927 928 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 929 struct btrfs_fs_info *fs_info) 930 { 931 struct btrfs_root *root; 932 933 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 934 if (!root) 935 return ERR_PTR(-ENOMEM); 936 937 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 938 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 939 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 940 941 return root; 942 } 943 944 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 945 struct btrfs_root *root) 946 { 947 struct extent_buffer *leaf; 948 949 /* 950 * DON'T set SHAREABLE bit for log trees. 951 * 952 * Log trees are not exposed to user space thus can't be snapshotted, 953 * and they go away before a real commit is actually done. 954 * 955 * They do store pointers to file data extents, and those reference 956 * counts still get updated (along with back refs to the log tree). 957 */ 958 959 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 960 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL); 961 if (IS_ERR(leaf)) 962 return PTR_ERR(leaf); 963 964 root->node = leaf; 965 966 btrfs_mark_buffer_dirty(trans, root->node); 967 btrfs_tree_unlock(root->node); 968 969 return 0; 970 } 971 972 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 973 struct btrfs_fs_info *fs_info) 974 { 975 struct btrfs_root *log_root; 976 977 log_root = alloc_log_tree(trans, fs_info); 978 if (IS_ERR(log_root)) 979 return PTR_ERR(log_root); 980 981 if (!btrfs_is_zoned(fs_info)) { 982 int ret = btrfs_alloc_log_tree_node(trans, log_root); 983 984 if (ret) { 985 btrfs_put_root(log_root); 986 return ret; 987 } 988 } 989 990 WARN_ON(fs_info->log_root_tree); 991 fs_info->log_root_tree = log_root; 992 return 0; 993 } 994 995 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 996 struct btrfs_root *root) 997 { 998 struct btrfs_fs_info *fs_info = root->fs_info; 999 struct btrfs_root *log_root; 1000 struct btrfs_inode_item *inode_item; 1001 int ret; 1002 1003 log_root = alloc_log_tree(trans, fs_info); 1004 if (IS_ERR(log_root)) 1005 return PTR_ERR(log_root); 1006 1007 ret = btrfs_alloc_log_tree_node(trans, log_root); 1008 if (ret) { 1009 btrfs_put_root(log_root); 1010 return ret; 1011 } 1012 1013 log_root->last_trans = trans->transid; 1014 log_root->root_key.offset = btrfs_root_id(root); 1015 1016 inode_item = &log_root->root_item.inode; 1017 btrfs_set_stack_inode_generation(inode_item, 1); 1018 btrfs_set_stack_inode_size(inode_item, 3); 1019 btrfs_set_stack_inode_nlink(inode_item, 1); 1020 btrfs_set_stack_inode_nbytes(inode_item, 1021 fs_info->nodesize); 1022 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1023 1024 btrfs_set_root_node(&log_root->root_item, log_root->node); 1025 1026 WARN_ON(root->log_root); 1027 root->log_root = log_root; 1028 btrfs_set_root_log_transid(root, 0); 1029 root->log_transid_committed = -1; 1030 btrfs_set_root_last_log_commit(root, 0); 1031 return 0; 1032 } 1033 1034 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1035 struct btrfs_path *path, 1036 struct btrfs_key *key) 1037 { 1038 struct btrfs_root *root; 1039 struct btrfs_tree_parent_check check = { 0 }; 1040 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1041 u64 generation; 1042 int ret; 1043 int level; 1044 1045 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1046 if (!root) 1047 return ERR_PTR(-ENOMEM); 1048 1049 ret = btrfs_find_root(tree_root, key, path, 1050 &root->root_item, &root->root_key); 1051 if (ret) { 1052 if (ret > 0) 1053 ret = -ENOENT; 1054 goto fail; 1055 } 1056 1057 generation = btrfs_root_generation(&root->root_item); 1058 level = btrfs_root_level(&root->root_item); 1059 check.level = level; 1060 check.transid = generation; 1061 check.owner_root = key->objectid; 1062 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1063 &check); 1064 if (IS_ERR(root->node)) { 1065 ret = PTR_ERR(root->node); 1066 root->node = NULL; 1067 goto fail; 1068 } 1069 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1070 ret = -EIO; 1071 goto fail; 1072 } 1073 1074 /* 1075 * For real fs, and not log/reloc trees, root owner must 1076 * match its root node owner 1077 */ 1078 if (!btrfs_is_testing(fs_info) && 1079 btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && 1080 btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID && 1081 btrfs_root_id(root) != btrfs_header_owner(root->node)) { 1082 btrfs_crit(fs_info, 1083 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1084 btrfs_root_id(root), root->node->start, 1085 btrfs_header_owner(root->node), 1086 btrfs_root_id(root)); 1087 ret = -EUCLEAN; 1088 goto fail; 1089 } 1090 root->commit_root = btrfs_root_node(root); 1091 return root; 1092 fail: 1093 btrfs_put_root(root); 1094 return ERR_PTR(ret); 1095 } 1096 1097 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1098 struct btrfs_key *key) 1099 { 1100 struct btrfs_root *root; 1101 struct btrfs_path *path; 1102 1103 path = btrfs_alloc_path(); 1104 if (!path) 1105 return ERR_PTR(-ENOMEM); 1106 root = read_tree_root_path(tree_root, path, key); 1107 btrfs_free_path(path); 1108 1109 return root; 1110 } 1111 1112 /* 1113 * Initialize subvolume root in-memory structure 1114 * 1115 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1116 */ 1117 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1118 { 1119 int ret; 1120 1121 btrfs_drew_lock_init(&root->snapshot_lock); 1122 1123 if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && 1124 !btrfs_is_data_reloc_root(root) && 1125 is_fstree(btrfs_root_id(root))) { 1126 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1127 btrfs_check_and_init_root_item(&root->root_item); 1128 } 1129 1130 /* 1131 * Don't assign anonymous block device to roots that are not exposed to 1132 * userspace, the id pool is limited to 1M 1133 */ 1134 if (is_fstree(btrfs_root_id(root)) && 1135 btrfs_root_refs(&root->root_item) > 0) { 1136 if (!anon_dev) { 1137 ret = get_anon_bdev(&root->anon_dev); 1138 if (ret) 1139 goto fail; 1140 } else { 1141 root->anon_dev = anon_dev; 1142 } 1143 } 1144 1145 mutex_lock(&root->objectid_mutex); 1146 ret = btrfs_init_root_free_objectid(root); 1147 if (ret) { 1148 mutex_unlock(&root->objectid_mutex); 1149 goto fail; 1150 } 1151 1152 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1153 1154 mutex_unlock(&root->objectid_mutex); 1155 1156 return 0; 1157 fail: 1158 /* The caller is responsible to call btrfs_free_fs_root */ 1159 return ret; 1160 } 1161 1162 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1163 u64 root_id) 1164 { 1165 struct btrfs_root *root; 1166 1167 spin_lock(&fs_info->fs_roots_radix_lock); 1168 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1169 (unsigned long)root_id); 1170 root = btrfs_grab_root(root); 1171 spin_unlock(&fs_info->fs_roots_radix_lock); 1172 return root; 1173 } 1174 1175 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1176 u64 objectid) 1177 { 1178 struct btrfs_key key = { 1179 .objectid = objectid, 1180 .type = BTRFS_ROOT_ITEM_KEY, 1181 .offset = 0, 1182 }; 1183 1184 switch (objectid) { 1185 case BTRFS_ROOT_TREE_OBJECTID: 1186 return btrfs_grab_root(fs_info->tree_root); 1187 case BTRFS_EXTENT_TREE_OBJECTID: 1188 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1189 case BTRFS_CHUNK_TREE_OBJECTID: 1190 return btrfs_grab_root(fs_info->chunk_root); 1191 case BTRFS_DEV_TREE_OBJECTID: 1192 return btrfs_grab_root(fs_info->dev_root); 1193 case BTRFS_CSUM_TREE_OBJECTID: 1194 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1195 case BTRFS_QUOTA_TREE_OBJECTID: 1196 return btrfs_grab_root(fs_info->quota_root); 1197 case BTRFS_UUID_TREE_OBJECTID: 1198 return btrfs_grab_root(fs_info->uuid_root); 1199 case BTRFS_BLOCK_GROUP_TREE_OBJECTID: 1200 return btrfs_grab_root(fs_info->block_group_root); 1201 case BTRFS_FREE_SPACE_TREE_OBJECTID: 1202 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1203 case BTRFS_RAID_STRIPE_TREE_OBJECTID: 1204 return btrfs_grab_root(fs_info->stripe_root); 1205 default: 1206 return NULL; 1207 } 1208 } 1209 1210 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1211 struct btrfs_root *root) 1212 { 1213 int ret; 1214 1215 ret = radix_tree_preload(GFP_NOFS); 1216 if (ret) 1217 return ret; 1218 1219 spin_lock(&fs_info->fs_roots_radix_lock); 1220 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1221 (unsigned long)btrfs_root_id(root), 1222 root); 1223 if (ret == 0) { 1224 btrfs_grab_root(root); 1225 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1226 } 1227 spin_unlock(&fs_info->fs_roots_radix_lock); 1228 radix_tree_preload_end(); 1229 1230 return ret; 1231 } 1232 1233 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1234 { 1235 #ifdef CONFIG_BTRFS_DEBUG 1236 struct btrfs_root *root; 1237 1238 while (!list_empty(&fs_info->allocated_roots)) { 1239 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1240 1241 root = list_first_entry(&fs_info->allocated_roots, 1242 struct btrfs_root, leak_list); 1243 btrfs_err(fs_info, "leaked root %s refcount %d", 1244 btrfs_root_name(&root->root_key, buf), 1245 refcount_read(&root->refs)); 1246 WARN_ON_ONCE(1); 1247 while (refcount_read(&root->refs) > 1) 1248 btrfs_put_root(root); 1249 btrfs_put_root(root); 1250 } 1251 #endif 1252 } 1253 1254 static void free_global_roots(struct btrfs_fs_info *fs_info) 1255 { 1256 struct btrfs_root *root; 1257 struct rb_node *node; 1258 1259 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1260 root = rb_entry(node, struct btrfs_root, rb_node); 1261 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1262 btrfs_put_root(root); 1263 } 1264 } 1265 1266 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1267 { 1268 struct percpu_counter *em_counter = &fs_info->evictable_extent_maps; 1269 1270 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1271 percpu_counter_destroy(&fs_info->delalloc_bytes); 1272 percpu_counter_destroy(&fs_info->ordered_bytes); 1273 if (percpu_counter_initialized(em_counter)) 1274 ASSERT(percpu_counter_sum_positive(em_counter) == 0); 1275 percpu_counter_destroy(em_counter); 1276 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1277 btrfs_free_csum_hash(fs_info); 1278 btrfs_free_stripe_hash_table(fs_info); 1279 btrfs_free_ref_cache(fs_info); 1280 kfree(fs_info->balance_ctl); 1281 kfree(fs_info->delayed_root); 1282 free_global_roots(fs_info); 1283 btrfs_put_root(fs_info->tree_root); 1284 btrfs_put_root(fs_info->chunk_root); 1285 btrfs_put_root(fs_info->dev_root); 1286 btrfs_put_root(fs_info->quota_root); 1287 btrfs_put_root(fs_info->uuid_root); 1288 btrfs_put_root(fs_info->fs_root); 1289 btrfs_put_root(fs_info->data_reloc_root); 1290 btrfs_put_root(fs_info->block_group_root); 1291 btrfs_put_root(fs_info->stripe_root); 1292 btrfs_check_leaked_roots(fs_info); 1293 btrfs_extent_buffer_leak_debug_check(fs_info); 1294 kfree(fs_info->super_copy); 1295 kfree(fs_info->super_for_commit); 1296 kfree(fs_info->subpage_info); 1297 kvfree(fs_info); 1298 } 1299 1300 1301 /* 1302 * Get an in-memory reference of a root structure. 1303 * 1304 * For essential trees like root/extent tree, we grab it from fs_info directly. 1305 * For subvolume trees, we check the cached filesystem roots first. If not 1306 * found, then read it from disk and add it to cached fs roots. 1307 * 1308 * Caller should release the root by calling btrfs_put_root() after the usage. 1309 * 1310 * NOTE: Reloc and log trees can't be read by this function as they share the 1311 * same root objectid. 1312 * 1313 * @objectid: root id 1314 * @anon_dev: preallocated anonymous block device number for new roots, 1315 * pass NULL for a new allocation. 1316 * @check_ref: whether to check root item references, If true, return -ENOENT 1317 * for orphan roots 1318 */ 1319 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1320 u64 objectid, dev_t *anon_dev, 1321 bool check_ref) 1322 { 1323 struct btrfs_root *root; 1324 struct btrfs_path *path; 1325 struct btrfs_key key; 1326 int ret; 1327 1328 root = btrfs_get_global_root(fs_info, objectid); 1329 if (root) 1330 return root; 1331 1332 /* 1333 * If we're called for non-subvolume trees, and above function didn't 1334 * find one, do not try to read it from disk. 1335 * 1336 * This is namely for free-space-tree and quota tree, which can change 1337 * at runtime and should only be grabbed from fs_info. 1338 */ 1339 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) 1340 return ERR_PTR(-ENOENT); 1341 again: 1342 root = btrfs_lookup_fs_root(fs_info, objectid); 1343 if (root) { 1344 /* 1345 * Some other caller may have read out the newly inserted 1346 * subvolume already (for things like backref walk etc). Not 1347 * that common but still possible. In that case, we just need 1348 * to free the anon_dev. 1349 */ 1350 if (unlikely(anon_dev && *anon_dev)) { 1351 free_anon_bdev(*anon_dev); 1352 *anon_dev = 0; 1353 } 1354 1355 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1356 btrfs_put_root(root); 1357 return ERR_PTR(-ENOENT); 1358 } 1359 return root; 1360 } 1361 1362 key.objectid = objectid; 1363 key.type = BTRFS_ROOT_ITEM_KEY; 1364 key.offset = (u64)-1; 1365 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1366 if (IS_ERR(root)) 1367 return root; 1368 1369 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1370 ret = -ENOENT; 1371 goto fail; 1372 } 1373 1374 ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0); 1375 if (ret) 1376 goto fail; 1377 1378 path = btrfs_alloc_path(); 1379 if (!path) { 1380 ret = -ENOMEM; 1381 goto fail; 1382 } 1383 key.objectid = BTRFS_ORPHAN_OBJECTID; 1384 key.type = BTRFS_ORPHAN_ITEM_KEY; 1385 key.offset = objectid; 1386 1387 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1388 btrfs_free_path(path); 1389 if (ret < 0) 1390 goto fail; 1391 if (ret == 0) 1392 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1393 1394 ret = btrfs_insert_fs_root(fs_info, root); 1395 if (ret) { 1396 if (ret == -EEXIST) { 1397 btrfs_put_root(root); 1398 goto again; 1399 } 1400 goto fail; 1401 } 1402 return root; 1403 fail: 1404 /* 1405 * If our caller provided us an anonymous device, then it's his 1406 * responsibility to free it in case we fail. So we have to set our 1407 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1408 * and once again by our caller. 1409 */ 1410 if (anon_dev && *anon_dev) 1411 root->anon_dev = 0; 1412 btrfs_put_root(root); 1413 return ERR_PTR(ret); 1414 } 1415 1416 /* 1417 * Get in-memory reference of a root structure 1418 * 1419 * @objectid: tree objectid 1420 * @check_ref: if set, verify that the tree exists and the item has at least 1421 * one reference 1422 */ 1423 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1424 u64 objectid, bool check_ref) 1425 { 1426 return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref); 1427 } 1428 1429 /* 1430 * Get in-memory reference of a root structure, created as new, optionally pass 1431 * the anonymous block device id 1432 * 1433 * @objectid: tree objectid 1434 * @anon_dev: if NULL, allocate a new anonymous block device or use the 1435 * parameter value if not NULL 1436 */ 1437 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1438 u64 objectid, dev_t *anon_dev) 1439 { 1440 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1441 } 1442 1443 /* 1444 * Return a root for the given objectid. 1445 * 1446 * @fs_info: the fs_info 1447 * @objectid: the objectid we need to lookup 1448 * 1449 * This is exclusively used for backref walking, and exists specifically because 1450 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1451 * creation time, which means we may have to read the tree_root in order to look 1452 * up a fs root that is not in memory. If the root is not in memory we will 1453 * read the tree root commit root and look up the fs root from there. This is a 1454 * temporary root, it will not be inserted into the radix tree as it doesn't 1455 * have the most uptodate information, it'll simply be discarded once the 1456 * backref code is finished using the root. 1457 */ 1458 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1459 struct btrfs_path *path, 1460 u64 objectid) 1461 { 1462 struct btrfs_root *root; 1463 struct btrfs_key key; 1464 1465 ASSERT(path->search_commit_root && path->skip_locking); 1466 1467 /* 1468 * This can return -ENOENT if we ask for a root that doesn't exist, but 1469 * since this is called via the backref walking code we won't be looking 1470 * up a root that doesn't exist, unless there's corruption. So if root 1471 * != NULL just return it. 1472 */ 1473 root = btrfs_get_global_root(fs_info, objectid); 1474 if (root) 1475 return root; 1476 1477 root = btrfs_lookup_fs_root(fs_info, objectid); 1478 if (root) 1479 return root; 1480 1481 key.objectid = objectid; 1482 key.type = BTRFS_ROOT_ITEM_KEY; 1483 key.offset = (u64)-1; 1484 root = read_tree_root_path(fs_info->tree_root, path, &key); 1485 btrfs_release_path(path); 1486 1487 return root; 1488 } 1489 1490 static int cleaner_kthread(void *arg) 1491 { 1492 struct btrfs_fs_info *fs_info = arg; 1493 int again; 1494 1495 while (1) { 1496 again = 0; 1497 1498 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1499 1500 /* Make the cleaner go to sleep early. */ 1501 if (btrfs_need_cleaner_sleep(fs_info)) 1502 goto sleep; 1503 1504 /* 1505 * Do not do anything if we might cause open_ctree() to block 1506 * before we have finished mounting the filesystem. 1507 */ 1508 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1509 goto sleep; 1510 1511 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1512 goto sleep; 1513 1514 /* 1515 * Avoid the problem that we change the status of the fs 1516 * during the above check and trylock. 1517 */ 1518 if (btrfs_need_cleaner_sleep(fs_info)) { 1519 mutex_unlock(&fs_info->cleaner_mutex); 1520 goto sleep; 1521 } 1522 1523 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) 1524 btrfs_sysfs_feature_update(fs_info); 1525 1526 btrfs_run_delayed_iputs(fs_info); 1527 1528 again = btrfs_clean_one_deleted_snapshot(fs_info); 1529 mutex_unlock(&fs_info->cleaner_mutex); 1530 1531 /* 1532 * The defragger has dealt with the R/O remount and umount, 1533 * needn't do anything special here. 1534 */ 1535 btrfs_run_defrag_inodes(fs_info); 1536 1537 /* 1538 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1539 * with relocation (btrfs_relocate_chunk) and relocation 1540 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1541 * after acquiring fs_info->reclaim_bgs_lock. So we 1542 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1543 * unused block groups. 1544 */ 1545 btrfs_delete_unused_bgs(fs_info); 1546 1547 /* 1548 * Reclaim block groups in the reclaim_bgs list after we deleted 1549 * all unused block_groups. This possibly gives us some more free 1550 * space. 1551 */ 1552 btrfs_reclaim_bgs(fs_info); 1553 sleep: 1554 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1555 if (kthread_should_park()) 1556 kthread_parkme(); 1557 if (kthread_should_stop()) 1558 return 0; 1559 if (!again) { 1560 set_current_state(TASK_INTERRUPTIBLE); 1561 schedule(); 1562 __set_current_state(TASK_RUNNING); 1563 } 1564 } 1565 } 1566 1567 static int transaction_kthread(void *arg) 1568 { 1569 struct btrfs_root *root = arg; 1570 struct btrfs_fs_info *fs_info = root->fs_info; 1571 struct btrfs_trans_handle *trans; 1572 struct btrfs_transaction *cur; 1573 u64 transid; 1574 time64_t delta; 1575 unsigned long delay; 1576 bool cannot_commit; 1577 1578 do { 1579 cannot_commit = false; 1580 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1581 mutex_lock(&fs_info->transaction_kthread_mutex); 1582 1583 spin_lock(&fs_info->trans_lock); 1584 cur = fs_info->running_transaction; 1585 if (!cur) { 1586 spin_unlock(&fs_info->trans_lock); 1587 goto sleep; 1588 } 1589 1590 delta = ktime_get_seconds() - cur->start_time; 1591 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1592 cur->state < TRANS_STATE_COMMIT_PREP && 1593 delta < fs_info->commit_interval) { 1594 spin_unlock(&fs_info->trans_lock); 1595 delay -= msecs_to_jiffies((delta - 1) * 1000); 1596 delay = min(delay, 1597 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1598 goto sleep; 1599 } 1600 transid = cur->transid; 1601 spin_unlock(&fs_info->trans_lock); 1602 1603 /* If the file system is aborted, this will always fail. */ 1604 trans = btrfs_attach_transaction(root); 1605 if (IS_ERR(trans)) { 1606 if (PTR_ERR(trans) != -ENOENT) 1607 cannot_commit = true; 1608 goto sleep; 1609 } 1610 if (transid == trans->transid) { 1611 btrfs_commit_transaction(trans); 1612 } else { 1613 btrfs_end_transaction(trans); 1614 } 1615 sleep: 1616 wake_up_process(fs_info->cleaner_kthread); 1617 mutex_unlock(&fs_info->transaction_kthread_mutex); 1618 1619 if (BTRFS_FS_ERROR(fs_info)) 1620 btrfs_cleanup_transaction(fs_info); 1621 if (!kthread_should_stop() && 1622 (!btrfs_transaction_blocked(fs_info) || 1623 cannot_commit)) 1624 schedule_timeout_interruptible(delay); 1625 } while (!kthread_should_stop()); 1626 return 0; 1627 } 1628 1629 /* 1630 * This will find the highest generation in the array of root backups. The 1631 * index of the highest array is returned, or -EINVAL if we can't find 1632 * anything. 1633 * 1634 * We check to make sure the array is valid by comparing the 1635 * generation of the latest root in the array with the generation 1636 * in the super block. If they don't match we pitch it. 1637 */ 1638 static int find_newest_super_backup(struct btrfs_fs_info *info) 1639 { 1640 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1641 u64 cur; 1642 struct btrfs_root_backup *root_backup; 1643 int i; 1644 1645 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1646 root_backup = info->super_copy->super_roots + i; 1647 cur = btrfs_backup_tree_root_gen(root_backup); 1648 if (cur == newest_gen) 1649 return i; 1650 } 1651 1652 return -EINVAL; 1653 } 1654 1655 /* 1656 * copy all the root pointers into the super backup array. 1657 * this will bump the backup pointer by one when it is 1658 * done 1659 */ 1660 static void backup_super_roots(struct btrfs_fs_info *info) 1661 { 1662 const int next_backup = info->backup_root_index; 1663 struct btrfs_root_backup *root_backup; 1664 1665 root_backup = info->super_for_commit->super_roots + next_backup; 1666 1667 /* 1668 * make sure all of our padding and empty slots get zero filled 1669 * regardless of which ones we use today 1670 */ 1671 memset(root_backup, 0, sizeof(*root_backup)); 1672 1673 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1674 1675 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1676 btrfs_set_backup_tree_root_gen(root_backup, 1677 btrfs_header_generation(info->tree_root->node)); 1678 1679 btrfs_set_backup_tree_root_level(root_backup, 1680 btrfs_header_level(info->tree_root->node)); 1681 1682 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1683 btrfs_set_backup_chunk_root_gen(root_backup, 1684 btrfs_header_generation(info->chunk_root->node)); 1685 btrfs_set_backup_chunk_root_level(root_backup, 1686 btrfs_header_level(info->chunk_root->node)); 1687 1688 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1689 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1690 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1691 1692 btrfs_set_backup_extent_root(root_backup, 1693 extent_root->node->start); 1694 btrfs_set_backup_extent_root_gen(root_backup, 1695 btrfs_header_generation(extent_root->node)); 1696 btrfs_set_backup_extent_root_level(root_backup, 1697 btrfs_header_level(extent_root->node)); 1698 1699 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1700 btrfs_set_backup_csum_root_gen(root_backup, 1701 btrfs_header_generation(csum_root->node)); 1702 btrfs_set_backup_csum_root_level(root_backup, 1703 btrfs_header_level(csum_root->node)); 1704 } 1705 1706 /* 1707 * we might commit during log recovery, which happens before we set 1708 * the fs_root. Make sure it is valid before we fill it in. 1709 */ 1710 if (info->fs_root && info->fs_root->node) { 1711 btrfs_set_backup_fs_root(root_backup, 1712 info->fs_root->node->start); 1713 btrfs_set_backup_fs_root_gen(root_backup, 1714 btrfs_header_generation(info->fs_root->node)); 1715 btrfs_set_backup_fs_root_level(root_backup, 1716 btrfs_header_level(info->fs_root->node)); 1717 } 1718 1719 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1720 btrfs_set_backup_dev_root_gen(root_backup, 1721 btrfs_header_generation(info->dev_root->node)); 1722 btrfs_set_backup_dev_root_level(root_backup, 1723 btrfs_header_level(info->dev_root->node)); 1724 1725 btrfs_set_backup_total_bytes(root_backup, 1726 btrfs_super_total_bytes(info->super_copy)); 1727 btrfs_set_backup_bytes_used(root_backup, 1728 btrfs_super_bytes_used(info->super_copy)); 1729 btrfs_set_backup_num_devices(root_backup, 1730 btrfs_super_num_devices(info->super_copy)); 1731 1732 /* 1733 * if we don't copy this out to the super_copy, it won't get remembered 1734 * for the next commit 1735 */ 1736 memcpy(&info->super_copy->super_roots, 1737 &info->super_for_commit->super_roots, 1738 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1739 } 1740 1741 /* 1742 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio 1743 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1744 * 1745 * @fs_info: filesystem whose backup roots need to be read 1746 * @priority: priority of backup root required 1747 * 1748 * Returns backup root index on success and -EINVAL otherwise. 1749 */ 1750 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1751 { 1752 int backup_index = find_newest_super_backup(fs_info); 1753 struct btrfs_super_block *super = fs_info->super_copy; 1754 struct btrfs_root_backup *root_backup; 1755 1756 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1757 if (priority == 0) 1758 return backup_index; 1759 1760 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1761 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1762 } else { 1763 return -EINVAL; 1764 } 1765 1766 root_backup = super->super_roots + backup_index; 1767 1768 btrfs_set_super_generation(super, 1769 btrfs_backup_tree_root_gen(root_backup)); 1770 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1771 btrfs_set_super_root_level(super, 1772 btrfs_backup_tree_root_level(root_backup)); 1773 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1774 1775 /* 1776 * Fixme: the total bytes and num_devices need to match or we should 1777 * need a fsck 1778 */ 1779 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1780 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1781 1782 return backup_index; 1783 } 1784 1785 /* helper to cleanup workers */ 1786 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1787 { 1788 btrfs_destroy_workqueue(fs_info->fixup_workers); 1789 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1790 btrfs_destroy_workqueue(fs_info->workers); 1791 if (fs_info->endio_workers) 1792 destroy_workqueue(fs_info->endio_workers); 1793 if (fs_info->rmw_workers) 1794 destroy_workqueue(fs_info->rmw_workers); 1795 if (fs_info->compressed_write_workers) 1796 destroy_workqueue(fs_info->compressed_write_workers); 1797 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1798 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1799 btrfs_destroy_workqueue(fs_info->delayed_workers); 1800 btrfs_destroy_workqueue(fs_info->caching_workers); 1801 btrfs_destroy_workqueue(fs_info->flush_workers); 1802 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1803 if (fs_info->discard_ctl.discard_workers) 1804 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1805 /* 1806 * Now that all other work queues are destroyed, we can safely destroy 1807 * the queues used for metadata I/O, since tasks from those other work 1808 * queues can do metadata I/O operations. 1809 */ 1810 if (fs_info->endio_meta_workers) 1811 destroy_workqueue(fs_info->endio_meta_workers); 1812 } 1813 1814 static void free_root_extent_buffers(struct btrfs_root *root) 1815 { 1816 if (root) { 1817 free_extent_buffer(root->node); 1818 free_extent_buffer(root->commit_root); 1819 root->node = NULL; 1820 root->commit_root = NULL; 1821 } 1822 } 1823 1824 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 1825 { 1826 struct btrfs_root *root, *tmp; 1827 1828 rbtree_postorder_for_each_entry_safe(root, tmp, 1829 &fs_info->global_root_tree, 1830 rb_node) 1831 free_root_extent_buffers(root); 1832 } 1833 1834 /* helper to cleanup tree roots */ 1835 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1836 { 1837 free_root_extent_buffers(info->tree_root); 1838 1839 free_global_root_pointers(info); 1840 free_root_extent_buffers(info->dev_root); 1841 free_root_extent_buffers(info->quota_root); 1842 free_root_extent_buffers(info->uuid_root); 1843 free_root_extent_buffers(info->fs_root); 1844 free_root_extent_buffers(info->data_reloc_root); 1845 free_root_extent_buffers(info->block_group_root); 1846 free_root_extent_buffers(info->stripe_root); 1847 if (free_chunk_root) 1848 free_root_extent_buffers(info->chunk_root); 1849 } 1850 1851 void btrfs_put_root(struct btrfs_root *root) 1852 { 1853 if (!root) 1854 return; 1855 1856 if (refcount_dec_and_test(&root->refs)) { 1857 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 1858 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 1859 if (root->anon_dev) 1860 free_anon_bdev(root->anon_dev); 1861 free_root_extent_buffers(root); 1862 #ifdef CONFIG_BTRFS_DEBUG 1863 spin_lock(&root->fs_info->fs_roots_radix_lock); 1864 list_del_init(&root->leak_list); 1865 spin_unlock(&root->fs_info->fs_roots_radix_lock); 1866 #endif 1867 kfree(root); 1868 } 1869 } 1870 1871 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 1872 { 1873 int ret; 1874 struct btrfs_root *gang[8]; 1875 int i; 1876 1877 while (!list_empty(&fs_info->dead_roots)) { 1878 gang[0] = list_entry(fs_info->dead_roots.next, 1879 struct btrfs_root, root_list); 1880 list_del(&gang[0]->root_list); 1881 1882 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 1883 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 1884 btrfs_put_root(gang[0]); 1885 } 1886 1887 while (1) { 1888 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 1889 (void **)gang, 0, 1890 ARRAY_SIZE(gang)); 1891 if (!ret) 1892 break; 1893 for (i = 0; i < ret; i++) 1894 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 1895 } 1896 } 1897 1898 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 1899 { 1900 mutex_init(&fs_info->scrub_lock); 1901 atomic_set(&fs_info->scrubs_running, 0); 1902 atomic_set(&fs_info->scrub_pause_req, 0); 1903 atomic_set(&fs_info->scrubs_paused, 0); 1904 atomic_set(&fs_info->scrub_cancel_req, 0); 1905 init_waitqueue_head(&fs_info->scrub_pause_wait); 1906 refcount_set(&fs_info->scrub_workers_refcnt, 0); 1907 } 1908 1909 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 1910 { 1911 spin_lock_init(&fs_info->balance_lock); 1912 mutex_init(&fs_info->balance_mutex); 1913 atomic_set(&fs_info->balance_pause_req, 0); 1914 atomic_set(&fs_info->balance_cancel_req, 0); 1915 fs_info->balance_ctl = NULL; 1916 init_waitqueue_head(&fs_info->balance_wait_q); 1917 atomic_set(&fs_info->reloc_cancel_req, 0); 1918 } 1919 1920 static int btrfs_init_btree_inode(struct super_block *sb) 1921 { 1922 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1923 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 1924 fs_info->tree_root); 1925 struct inode *inode; 1926 1927 inode = new_inode(sb); 1928 if (!inode) 1929 return -ENOMEM; 1930 1931 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 1932 set_nlink(inode, 1); 1933 /* 1934 * we set the i_size on the btree inode to the max possible int. 1935 * the real end of the address space is determined by all of 1936 * the devices in the system 1937 */ 1938 inode->i_size = OFFSET_MAX; 1939 inode->i_mapping->a_ops = &btree_aops; 1940 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); 1941 1942 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 1943 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 1944 IO_TREE_BTREE_INODE_IO); 1945 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 1946 1947 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 1948 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID; 1949 BTRFS_I(inode)->location.type = 0; 1950 BTRFS_I(inode)->location.offset = 0; 1951 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 1952 __insert_inode_hash(inode, hash); 1953 fs_info->btree_inode = inode; 1954 1955 return 0; 1956 } 1957 1958 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 1959 { 1960 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 1961 init_rwsem(&fs_info->dev_replace.rwsem); 1962 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 1963 } 1964 1965 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 1966 { 1967 spin_lock_init(&fs_info->qgroup_lock); 1968 mutex_init(&fs_info->qgroup_ioctl_lock); 1969 fs_info->qgroup_tree = RB_ROOT; 1970 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 1971 fs_info->qgroup_seq = 1; 1972 fs_info->qgroup_ulist = NULL; 1973 fs_info->qgroup_rescan_running = false; 1974 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL; 1975 mutex_init(&fs_info->qgroup_rescan_lock); 1976 } 1977 1978 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 1979 { 1980 u32 max_active = fs_info->thread_pool_size; 1981 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 1982 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE; 1983 1984 fs_info->workers = 1985 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 1986 1987 fs_info->delalloc_workers = 1988 btrfs_alloc_workqueue(fs_info, "delalloc", 1989 flags, max_active, 2); 1990 1991 fs_info->flush_workers = 1992 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 1993 flags, max_active, 0); 1994 1995 fs_info->caching_workers = 1996 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 1997 1998 fs_info->fixup_workers = 1999 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags); 2000 2001 fs_info->endio_workers = 2002 alloc_workqueue("btrfs-endio", flags, max_active); 2003 fs_info->endio_meta_workers = 2004 alloc_workqueue("btrfs-endio-meta", flags, max_active); 2005 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 2006 fs_info->endio_write_workers = 2007 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2008 max_active, 2); 2009 fs_info->compressed_write_workers = 2010 alloc_workqueue("btrfs-compressed-write", flags, max_active); 2011 fs_info->endio_freespace_worker = 2012 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2013 max_active, 0); 2014 fs_info->delayed_workers = 2015 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2016 max_active, 0); 2017 fs_info->qgroup_rescan_workers = 2018 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan", 2019 ordered_flags); 2020 fs_info->discard_ctl.discard_workers = 2021 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE); 2022 2023 if (!(fs_info->workers && 2024 fs_info->delalloc_workers && fs_info->flush_workers && 2025 fs_info->endio_workers && fs_info->endio_meta_workers && 2026 fs_info->compressed_write_workers && 2027 fs_info->endio_write_workers && 2028 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2029 fs_info->caching_workers && fs_info->fixup_workers && 2030 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2031 fs_info->discard_ctl.discard_workers)) { 2032 return -ENOMEM; 2033 } 2034 2035 return 0; 2036 } 2037 2038 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2039 { 2040 struct crypto_shash *csum_shash; 2041 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2042 2043 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2044 2045 if (IS_ERR(csum_shash)) { 2046 btrfs_err(fs_info, "error allocating %s hash for checksum", 2047 csum_driver); 2048 return PTR_ERR(csum_shash); 2049 } 2050 2051 fs_info->csum_shash = csum_shash; 2052 2053 /* 2054 * Check if the checksum implementation is a fast accelerated one. 2055 * As-is this is a bit of a hack and should be replaced once the csum 2056 * implementations provide that information themselves. 2057 */ 2058 switch (csum_type) { 2059 case BTRFS_CSUM_TYPE_CRC32: 2060 if (!strstr(crypto_shash_driver_name(csum_shash), "generic")) 2061 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2062 break; 2063 case BTRFS_CSUM_TYPE_XXHASH: 2064 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2065 break; 2066 default: 2067 break; 2068 } 2069 2070 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2071 btrfs_super_csum_name(csum_type), 2072 crypto_shash_driver_name(csum_shash)); 2073 return 0; 2074 } 2075 2076 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2077 struct btrfs_fs_devices *fs_devices) 2078 { 2079 int ret; 2080 struct btrfs_tree_parent_check check = { 0 }; 2081 struct btrfs_root *log_tree_root; 2082 struct btrfs_super_block *disk_super = fs_info->super_copy; 2083 u64 bytenr = btrfs_super_log_root(disk_super); 2084 int level = btrfs_super_log_root_level(disk_super); 2085 2086 if (fs_devices->rw_devices == 0) { 2087 btrfs_warn(fs_info, "log replay required on RO media"); 2088 return -EIO; 2089 } 2090 2091 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2092 GFP_KERNEL); 2093 if (!log_tree_root) 2094 return -ENOMEM; 2095 2096 check.level = level; 2097 check.transid = fs_info->generation + 1; 2098 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2099 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2100 if (IS_ERR(log_tree_root->node)) { 2101 btrfs_warn(fs_info, "failed to read log tree"); 2102 ret = PTR_ERR(log_tree_root->node); 2103 log_tree_root->node = NULL; 2104 btrfs_put_root(log_tree_root); 2105 return ret; 2106 } 2107 if (!extent_buffer_uptodate(log_tree_root->node)) { 2108 btrfs_err(fs_info, "failed to read log tree"); 2109 btrfs_put_root(log_tree_root); 2110 return -EIO; 2111 } 2112 2113 /* returns with log_tree_root freed on success */ 2114 ret = btrfs_recover_log_trees(log_tree_root); 2115 if (ret) { 2116 btrfs_handle_fs_error(fs_info, ret, 2117 "Failed to recover log tree"); 2118 btrfs_put_root(log_tree_root); 2119 return ret; 2120 } 2121 2122 if (sb_rdonly(fs_info->sb)) { 2123 ret = btrfs_commit_super(fs_info); 2124 if (ret) 2125 return ret; 2126 } 2127 2128 return 0; 2129 } 2130 2131 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2132 struct btrfs_path *path, u64 objectid, 2133 const char *name) 2134 { 2135 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2136 struct btrfs_root *root; 2137 u64 max_global_id = 0; 2138 int ret; 2139 struct btrfs_key key = { 2140 .objectid = objectid, 2141 .type = BTRFS_ROOT_ITEM_KEY, 2142 .offset = 0, 2143 }; 2144 bool found = false; 2145 2146 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2147 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2148 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2149 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2150 return 0; 2151 } 2152 2153 while (1) { 2154 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2155 if (ret < 0) 2156 break; 2157 2158 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2159 ret = btrfs_next_leaf(tree_root, path); 2160 if (ret) { 2161 if (ret > 0) 2162 ret = 0; 2163 break; 2164 } 2165 } 2166 ret = 0; 2167 2168 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2169 if (key.objectid != objectid) 2170 break; 2171 btrfs_release_path(path); 2172 2173 /* 2174 * Just worry about this for extent tree, it'll be the same for 2175 * everybody. 2176 */ 2177 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2178 max_global_id = max(max_global_id, key.offset); 2179 2180 found = true; 2181 root = read_tree_root_path(tree_root, path, &key); 2182 if (IS_ERR(root)) { 2183 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2184 ret = PTR_ERR(root); 2185 break; 2186 } 2187 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2188 ret = btrfs_global_root_insert(root); 2189 if (ret) { 2190 btrfs_put_root(root); 2191 break; 2192 } 2193 key.offset++; 2194 } 2195 btrfs_release_path(path); 2196 2197 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2198 fs_info->nr_global_roots = max_global_id + 1; 2199 2200 if (!found || ret) { 2201 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2202 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2203 2204 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2205 ret = ret ? ret : -ENOENT; 2206 else 2207 ret = 0; 2208 btrfs_err(fs_info, "failed to load root %s", name); 2209 } 2210 return ret; 2211 } 2212 2213 static int load_global_roots(struct btrfs_root *tree_root) 2214 { 2215 struct btrfs_path *path; 2216 int ret = 0; 2217 2218 path = btrfs_alloc_path(); 2219 if (!path) 2220 return -ENOMEM; 2221 2222 ret = load_global_roots_objectid(tree_root, path, 2223 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2224 if (ret) 2225 goto out; 2226 ret = load_global_roots_objectid(tree_root, path, 2227 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2228 if (ret) 2229 goto out; 2230 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2231 goto out; 2232 ret = load_global_roots_objectid(tree_root, path, 2233 BTRFS_FREE_SPACE_TREE_OBJECTID, 2234 "free space"); 2235 out: 2236 btrfs_free_path(path); 2237 return ret; 2238 } 2239 2240 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2241 { 2242 struct btrfs_root *tree_root = fs_info->tree_root; 2243 struct btrfs_root *root; 2244 struct btrfs_key location; 2245 int ret; 2246 2247 ASSERT(fs_info->tree_root); 2248 2249 ret = load_global_roots(tree_root); 2250 if (ret) 2251 return ret; 2252 2253 location.type = BTRFS_ROOT_ITEM_KEY; 2254 location.offset = 0; 2255 2256 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2257 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2258 root = btrfs_read_tree_root(tree_root, &location); 2259 if (IS_ERR(root)) { 2260 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2261 ret = PTR_ERR(root); 2262 goto out; 2263 } 2264 } else { 2265 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2266 fs_info->block_group_root = root; 2267 } 2268 } 2269 2270 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2271 root = btrfs_read_tree_root(tree_root, &location); 2272 if (IS_ERR(root)) { 2273 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2274 ret = PTR_ERR(root); 2275 goto out; 2276 } 2277 } else { 2278 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2279 fs_info->dev_root = root; 2280 } 2281 /* Initialize fs_info for all devices in any case */ 2282 ret = btrfs_init_devices_late(fs_info); 2283 if (ret) 2284 goto out; 2285 2286 /* 2287 * This tree can share blocks with some other fs tree during relocation 2288 * and we need a proper setup by btrfs_get_fs_root 2289 */ 2290 root = btrfs_get_fs_root(tree_root->fs_info, 2291 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2292 if (IS_ERR(root)) { 2293 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2294 ret = PTR_ERR(root); 2295 goto out; 2296 } 2297 } else { 2298 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2299 fs_info->data_reloc_root = root; 2300 } 2301 2302 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2303 root = btrfs_read_tree_root(tree_root, &location); 2304 if (!IS_ERR(root)) { 2305 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2306 fs_info->quota_root = root; 2307 } 2308 2309 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2310 root = btrfs_read_tree_root(tree_root, &location); 2311 if (IS_ERR(root)) { 2312 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2313 ret = PTR_ERR(root); 2314 if (ret != -ENOENT) 2315 goto out; 2316 } 2317 } else { 2318 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2319 fs_info->uuid_root = root; 2320 } 2321 2322 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) { 2323 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID; 2324 root = btrfs_read_tree_root(tree_root, &location); 2325 if (IS_ERR(root)) { 2326 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2327 ret = PTR_ERR(root); 2328 goto out; 2329 } 2330 } else { 2331 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2332 fs_info->stripe_root = root; 2333 } 2334 } 2335 2336 return 0; 2337 out: 2338 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2339 location.objectid, ret); 2340 return ret; 2341 } 2342 2343 /* 2344 * Real super block validation 2345 * NOTE: super csum type and incompat features will not be checked here. 2346 * 2347 * @sb: super block to check 2348 * @mirror_num: the super block number to check its bytenr: 2349 * 0 the primary (1st) sb 2350 * 1, 2 2nd and 3rd backup copy 2351 * -1 skip bytenr check 2352 */ 2353 int btrfs_validate_super(struct btrfs_fs_info *fs_info, 2354 struct btrfs_super_block *sb, int mirror_num) 2355 { 2356 u64 nodesize = btrfs_super_nodesize(sb); 2357 u64 sectorsize = btrfs_super_sectorsize(sb); 2358 int ret = 0; 2359 2360 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2361 btrfs_err(fs_info, "no valid FS found"); 2362 ret = -EINVAL; 2363 } 2364 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2365 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2366 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2367 ret = -EINVAL; 2368 } 2369 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2370 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2371 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2372 ret = -EINVAL; 2373 } 2374 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2375 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2376 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2377 ret = -EINVAL; 2378 } 2379 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2380 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2381 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2382 ret = -EINVAL; 2383 } 2384 2385 /* 2386 * Check sectorsize and nodesize first, other check will need it. 2387 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2388 */ 2389 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2390 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2391 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2392 ret = -EINVAL; 2393 } 2394 2395 /* 2396 * We only support at most two sectorsizes: 4K and PAGE_SIZE. 2397 * 2398 * We can support 16K sectorsize with 64K page size without problem, 2399 * but such sectorsize/pagesize combination doesn't make much sense. 2400 * 4K will be our future standard, PAGE_SIZE is supported from the very 2401 * beginning. 2402 */ 2403 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) { 2404 btrfs_err(fs_info, 2405 "sectorsize %llu not yet supported for page size %lu", 2406 sectorsize, PAGE_SIZE); 2407 ret = -EINVAL; 2408 } 2409 2410 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2411 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2412 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2413 ret = -EINVAL; 2414 } 2415 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2416 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2417 le32_to_cpu(sb->__unused_leafsize), nodesize); 2418 ret = -EINVAL; 2419 } 2420 2421 /* Root alignment check */ 2422 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2423 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2424 btrfs_super_root(sb)); 2425 ret = -EINVAL; 2426 } 2427 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2428 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2429 btrfs_super_chunk_root(sb)); 2430 ret = -EINVAL; 2431 } 2432 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2433 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2434 btrfs_super_log_root(sb)); 2435 ret = -EINVAL; 2436 } 2437 2438 if (!fs_info->fs_devices->temp_fsid && 2439 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) { 2440 btrfs_err(fs_info, 2441 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2442 sb->fsid, fs_info->fs_devices->fsid); 2443 ret = -EINVAL; 2444 } 2445 2446 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb), 2447 BTRFS_FSID_SIZE) != 0) { 2448 btrfs_err(fs_info, 2449 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2450 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid); 2451 ret = -EINVAL; 2452 } 2453 2454 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2455 BTRFS_FSID_SIZE) != 0) { 2456 btrfs_err(fs_info, 2457 "dev_item UUID does not match metadata fsid: %pU != %pU", 2458 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2459 ret = -EINVAL; 2460 } 2461 2462 /* 2463 * Artificial requirement for block-group-tree to force newer features 2464 * (free-space-tree, no-holes) so the test matrix is smaller. 2465 */ 2466 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2467 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2468 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2469 btrfs_err(fs_info, 2470 "block-group-tree feature requires fres-space-tree and no-holes"); 2471 ret = -EINVAL; 2472 } 2473 2474 /* 2475 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2476 * done later 2477 */ 2478 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2479 btrfs_err(fs_info, "bytes_used is too small %llu", 2480 btrfs_super_bytes_used(sb)); 2481 ret = -EINVAL; 2482 } 2483 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2484 btrfs_err(fs_info, "invalid stripesize %u", 2485 btrfs_super_stripesize(sb)); 2486 ret = -EINVAL; 2487 } 2488 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2489 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2490 btrfs_super_num_devices(sb)); 2491 if (btrfs_super_num_devices(sb) == 0) { 2492 btrfs_err(fs_info, "number of devices is 0"); 2493 ret = -EINVAL; 2494 } 2495 2496 if (mirror_num >= 0 && 2497 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2498 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2499 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2500 ret = -EINVAL; 2501 } 2502 2503 /* 2504 * Obvious sys_chunk_array corruptions, it must hold at least one key 2505 * and one chunk 2506 */ 2507 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2508 btrfs_err(fs_info, "system chunk array too big %u > %u", 2509 btrfs_super_sys_array_size(sb), 2510 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2511 ret = -EINVAL; 2512 } 2513 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2514 + sizeof(struct btrfs_chunk)) { 2515 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2516 btrfs_super_sys_array_size(sb), 2517 sizeof(struct btrfs_disk_key) 2518 + sizeof(struct btrfs_chunk)); 2519 ret = -EINVAL; 2520 } 2521 2522 /* 2523 * The generation is a global counter, we'll trust it more than the others 2524 * but it's still possible that it's the one that's wrong. 2525 */ 2526 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2527 btrfs_warn(fs_info, 2528 "suspicious: generation < chunk_root_generation: %llu < %llu", 2529 btrfs_super_generation(sb), 2530 btrfs_super_chunk_root_generation(sb)); 2531 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2532 && btrfs_super_cache_generation(sb) != (u64)-1) 2533 btrfs_warn(fs_info, 2534 "suspicious: generation < cache_generation: %llu < %llu", 2535 btrfs_super_generation(sb), 2536 btrfs_super_cache_generation(sb)); 2537 2538 return ret; 2539 } 2540 2541 /* 2542 * Validation of super block at mount time. 2543 * Some checks already done early at mount time, like csum type and incompat 2544 * flags will be skipped. 2545 */ 2546 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2547 { 2548 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2549 } 2550 2551 /* 2552 * Validation of super block at write time. 2553 * Some checks like bytenr check will be skipped as their values will be 2554 * overwritten soon. 2555 * Extra checks like csum type and incompat flags will be done here. 2556 */ 2557 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2558 struct btrfs_super_block *sb) 2559 { 2560 int ret; 2561 2562 ret = btrfs_validate_super(fs_info, sb, -1); 2563 if (ret < 0) 2564 goto out; 2565 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2566 ret = -EUCLEAN; 2567 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2568 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2569 goto out; 2570 } 2571 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2572 ret = -EUCLEAN; 2573 btrfs_err(fs_info, 2574 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2575 btrfs_super_incompat_flags(sb), 2576 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2577 goto out; 2578 } 2579 out: 2580 if (ret < 0) 2581 btrfs_err(fs_info, 2582 "super block corruption detected before writing it to disk"); 2583 return ret; 2584 } 2585 2586 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2587 { 2588 struct btrfs_tree_parent_check check = { 2589 .level = level, 2590 .transid = gen, 2591 .owner_root = btrfs_root_id(root) 2592 }; 2593 int ret = 0; 2594 2595 root->node = read_tree_block(root->fs_info, bytenr, &check); 2596 if (IS_ERR(root->node)) { 2597 ret = PTR_ERR(root->node); 2598 root->node = NULL; 2599 return ret; 2600 } 2601 if (!extent_buffer_uptodate(root->node)) { 2602 free_extent_buffer(root->node); 2603 root->node = NULL; 2604 return -EIO; 2605 } 2606 2607 btrfs_set_root_node(&root->root_item, root->node); 2608 root->commit_root = btrfs_root_node(root); 2609 btrfs_set_root_refs(&root->root_item, 1); 2610 return ret; 2611 } 2612 2613 static int load_important_roots(struct btrfs_fs_info *fs_info) 2614 { 2615 struct btrfs_super_block *sb = fs_info->super_copy; 2616 u64 gen, bytenr; 2617 int level, ret; 2618 2619 bytenr = btrfs_super_root(sb); 2620 gen = btrfs_super_generation(sb); 2621 level = btrfs_super_root_level(sb); 2622 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2623 if (ret) { 2624 btrfs_warn(fs_info, "couldn't read tree root"); 2625 return ret; 2626 } 2627 return 0; 2628 } 2629 2630 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2631 { 2632 int backup_index = find_newest_super_backup(fs_info); 2633 struct btrfs_super_block *sb = fs_info->super_copy; 2634 struct btrfs_root *tree_root = fs_info->tree_root; 2635 bool handle_error = false; 2636 int ret = 0; 2637 int i; 2638 2639 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2640 if (handle_error) { 2641 if (!IS_ERR(tree_root->node)) 2642 free_extent_buffer(tree_root->node); 2643 tree_root->node = NULL; 2644 2645 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2646 break; 2647 2648 free_root_pointers(fs_info, 0); 2649 2650 /* 2651 * Don't use the log in recovery mode, it won't be 2652 * valid 2653 */ 2654 btrfs_set_super_log_root(sb, 0); 2655 2656 btrfs_warn(fs_info, "try to load backup roots slot %d", i); 2657 ret = read_backup_root(fs_info, i); 2658 backup_index = ret; 2659 if (ret < 0) 2660 return ret; 2661 } 2662 2663 ret = load_important_roots(fs_info); 2664 if (ret) { 2665 handle_error = true; 2666 continue; 2667 } 2668 2669 /* 2670 * No need to hold btrfs_root::objectid_mutex since the fs 2671 * hasn't been fully initialised and we are the only user 2672 */ 2673 ret = btrfs_init_root_free_objectid(tree_root); 2674 if (ret < 0) { 2675 handle_error = true; 2676 continue; 2677 } 2678 2679 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2680 2681 ret = btrfs_read_roots(fs_info); 2682 if (ret < 0) { 2683 handle_error = true; 2684 continue; 2685 } 2686 2687 /* All successful */ 2688 fs_info->generation = btrfs_header_generation(tree_root->node); 2689 btrfs_set_last_trans_committed(fs_info, fs_info->generation); 2690 fs_info->last_reloc_trans = 0; 2691 2692 /* Always begin writing backup roots after the one being used */ 2693 if (backup_index < 0) { 2694 fs_info->backup_root_index = 0; 2695 } else { 2696 fs_info->backup_root_index = backup_index + 1; 2697 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2698 } 2699 break; 2700 } 2701 2702 return ret; 2703 } 2704 2705 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2706 { 2707 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2708 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2709 INIT_LIST_HEAD(&fs_info->trans_list); 2710 INIT_LIST_HEAD(&fs_info->dead_roots); 2711 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2712 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2713 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2714 spin_lock_init(&fs_info->delalloc_root_lock); 2715 spin_lock_init(&fs_info->trans_lock); 2716 spin_lock_init(&fs_info->fs_roots_radix_lock); 2717 spin_lock_init(&fs_info->delayed_iput_lock); 2718 spin_lock_init(&fs_info->defrag_inodes_lock); 2719 spin_lock_init(&fs_info->super_lock); 2720 spin_lock_init(&fs_info->buffer_lock); 2721 spin_lock_init(&fs_info->unused_bgs_lock); 2722 spin_lock_init(&fs_info->treelog_bg_lock); 2723 spin_lock_init(&fs_info->zone_active_bgs_lock); 2724 spin_lock_init(&fs_info->relocation_bg_lock); 2725 rwlock_init(&fs_info->tree_mod_log_lock); 2726 rwlock_init(&fs_info->global_root_lock); 2727 mutex_init(&fs_info->unused_bg_unpin_mutex); 2728 mutex_init(&fs_info->reclaim_bgs_lock); 2729 mutex_init(&fs_info->reloc_mutex); 2730 mutex_init(&fs_info->delalloc_root_mutex); 2731 mutex_init(&fs_info->zoned_meta_io_lock); 2732 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2733 seqlock_init(&fs_info->profiles_lock); 2734 2735 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2736 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2737 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2738 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2739 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep, 2740 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2741 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2742 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2743 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 2744 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2745 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 2746 BTRFS_LOCKDEP_TRANS_COMPLETED); 2747 2748 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2749 INIT_LIST_HEAD(&fs_info->space_info); 2750 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2751 INIT_LIST_HEAD(&fs_info->unused_bgs); 2752 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2753 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2754 #ifdef CONFIG_BTRFS_DEBUG 2755 INIT_LIST_HEAD(&fs_info->allocated_roots); 2756 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2757 spin_lock_init(&fs_info->eb_leak_lock); 2758 #endif 2759 fs_info->mapping_tree = RB_ROOT_CACHED; 2760 rwlock_init(&fs_info->mapping_tree_lock); 2761 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2762 BTRFS_BLOCK_RSV_GLOBAL); 2763 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2764 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2765 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2766 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2767 BTRFS_BLOCK_RSV_DELOPS); 2768 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2769 BTRFS_BLOCK_RSV_DELREFS); 2770 2771 atomic_set(&fs_info->async_delalloc_pages, 0); 2772 atomic_set(&fs_info->defrag_running, 0); 2773 atomic_set(&fs_info->nr_delayed_iputs, 0); 2774 atomic64_set(&fs_info->tree_mod_seq, 0); 2775 fs_info->global_root_tree = RB_ROOT; 2776 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2777 fs_info->metadata_ratio = 0; 2778 fs_info->defrag_inodes = RB_ROOT; 2779 atomic64_set(&fs_info->free_chunk_space, 0); 2780 fs_info->tree_mod_log = RB_ROOT; 2781 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2782 btrfs_init_ref_verify(fs_info); 2783 2784 fs_info->thread_pool_size = min_t(unsigned long, 2785 num_online_cpus() + 2, 8); 2786 2787 INIT_LIST_HEAD(&fs_info->ordered_roots); 2788 spin_lock_init(&fs_info->ordered_root_lock); 2789 2790 btrfs_init_scrub(fs_info); 2791 btrfs_init_balance(fs_info); 2792 btrfs_init_async_reclaim_work(fs_info); 2793 2794 rwlock_init(&fs_info->block_group_cache_lock); 2795 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 2796 2797 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2798 IO_TREE_FS_EXCLUDED_EXTENTS); 2799 2800 mutex_init(&fs_info->ordered_operations_mutex); 2801 mutex_init(&fs_info->tree_log_mutex); 2802 mutex_init(&fs_info->chunk_mutex); 2803 mutex_init(&fs_info->transaction_kthread_mutex); 2804 mutex_init(&fs_info->cleaner_mutex); 2805 mutex_init(&fs_info->ro_block_group_mutex); 2806 init_rwsem(&fs_info->commit_root_sem); 2807 init_rwsem(&fs_info->cleanup_work_sem); 2808 init_rwsem(&fs_info->subvol_sem); 2809 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2810 2811 btrfs_init_dev_replace_locks(fs_info); 2812 btrfs_init_qgroup(fs_info); 2813 btrfs_discard_init(fs_info); 2814 2815 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2816 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2817 2818 init_waitqueue_head(&fs_info->transaction_throttle); 2819 init_waitqueue_head(&fs_info->transaction_wait); 2820 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2821 init_waitqueue_head(&fs_info->async_submit_wait); 2822 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2823 2824 /* Usable values until the real ones are cached from the superblock */ 2825 fs_info->nodesize = 4096; 2826 fs_info->sectorsize = 4096; 2827 fs_info->sectorsize_bits = ilog2(4096); 2828 fs_info->stripesize = 4096; 2829 2830 /* Default compress algorithm when user does -o compress */ 2831 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2832 2833 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 2834 2835 spin_lock_init(&fs_info->swapfile_pins_lock); 2836 fs_info->swapfile_pins = RB_ROOT; 2837 2838 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 2839 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 2840 } 2841 2842 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2843 { 2844 int ret; 2845 2846 fs_info->sb = sb; 2847 /* Temporary fixed values for block size until we read the superblock. */ 2848 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2849 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2850 2851 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 2852 if (ret) 2853 return ret; 2854 2855 ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL); 2856 if (ret) 2857 return ret; 2858 2859 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2860 if (ret) 2861 return ret; 2862 2863 fs_info->dirty_metadata_batch = PAGE_SIZE * 2864 (1 + ilog2(nr_cpu_ids)); 2865 2866 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2867 if (ret) 2868 return ret; 2869 2870 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2871 GFP_KERNEL); 2872 if (ret) 2873 return ret; 2874 2875 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2876 GFP_KERNEL); 2877 if (!fs_info->delayed_root) 2878 return -ENOMEM; 2879 btrfs_init_delayed_root(fs_info->delayed_root); 2880 2881 if (sb_rdonly(sb)) 2882 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2883 2884 return btrfs_alloc_stripe_hash_table(fs_info); 2885 } 2886 2887 static int btrfs_uuid_rescan_kthread(void *data) 2888 { 2889 struct btrfs_fs_info *fs_info = data; 2890 int ret; 2891 2892 /* 2893 * 1st step is to iterate through the existing UUID tree and 2894 * to delete all entries that contain outdated data. 2895 * 2nd step is to add all missing entries to the UUID tree. 2896 */ 2897 ret = btrfs_uuid_tree_iterate(fs_info); 2898 if (ret < 0) { 2899 if (ret != -EINTR) 2900 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2901 ret); 2902 up(&fs_info->uuid_tree_rescan_sem); 2903 return ret; 2904 } 2905 return btrfs_uuid_scan_kthread(data); 2906 } 2907 2908 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2909 { 2910 struct task_struct *task; 2911 2912 down(&fs_info->uuid_tree_rescan_sem); 2913 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2914 if (IS_ERR(task)) { 2915 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2916 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2917 up(&fs_info->uuid_tree_rescan_sem); 2918 return PTR_ERR(task); 2919 } 2920 2921 return 0; 2922 } 2923 2924 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2925 { 2926 u64 root_objectid = 0; 2927 struct btrfs_root *gang[8]; 2928 int i = 0; 2929 int err = 0; 2930 unsigned int ret = 0; 2931 2932 while (1) { 2933 spin_lock(&fs_info->fs_roots_radix_lock); 2934 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2935 (void **)gang, root_objectid, 2936 ARRAY_SIZE(gang)); 2937 if (!ret) { 2938 spin_unlock(&fs_info->fs_roots_radix_lock); 2939 break; 2940 } 2941 root_objectid = btrfs_root_id(gang[ret - 1]) + 1; 2942 2943 for (i = 0; i < ret; i++) { 2944 /* Avoid to grab roots in dead_roots. */ 2945 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 2946 gang[i] = NULL; 2947 continue; 2948 } 2949 /* Grab all the search result for later use. */ 2950 gang[i] = btrfs_grab_root(gang[i]); 2951 } 2952 spin_unlock(&fs_info->fs_roots_radix_lock); 2953 2954 for (i = 0; i < ret; i++) { 2955 if (!gang[i]) 2956 continue; 2957 root_objectid = btrfs_root_id(gang[i]); 2958 err = btrfs_orphan_cleanup(gang[i]); 2959 if (err) 2960 goto out; 2961 btrfs_put_root(gang[i]); 2962 } 2963 root_objectid++; 2964 } 2965 out: 2966 /* Release the uncleaned roots due to error. */ 2967 for (; i < ret; i++) { 2968 if (gang[i]) 2969 btrfs_put_root(gang[i]); 2970 } 2971 return err; 2972 } 2973 2974 /* 2975 * Mounting logic specific to read-write file systems. Shared by open_ctree 2976 * and btrfs_remount when remounting from read-only to read-write. 2977 */ 2978 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 2979 { 2980 int ret; 2981 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 2982 bool rebuild_free_space_tree = false; 2983 2984 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 2985 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2986 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2987 btrfs_warn(fs_info, 2988 "'clear_cache' option is ignored with extent tree v2"); 2989 else 2990 rebuild_free_space_tree = true; 2991 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 2992 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 2993 btrfs_warn(fs_info, "free space tree is invalid"); 2994 rebuild_free_space_tree = true; 2995 } 2996 2997 if (rebuild_free_space_tree) { 2998 btrfs_info(fs_info, "rebuilding free space tree"); 2999 ret = btrfs_rebuild_free_space_tree(fs_info); 3000 if (ret) { 3001 btrfs_warn(fs_info, 3002 "failed to rebuild free space tree: %d", ret); 3003 goto out; 3004 } 3005 } 3006 3007 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3008 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 3009 btrfs_info(fs_info, "disabling free space tree"); 3010 ret = btrfs_delete_free_space_tree(fs_info); 3011 if (ret) { 3012 btrfs_warn(fs_info, 3013 "failed to disable free space tree: %d", ret); 3014 goto out; 3015 } 3016 } 3017 3018 /* 3019 * btrfs_find_orphan_roots() is responsible for finding all the dead 3020 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3021 * them into the fs_info->fs_roots_radix tree. This must be done before 3022 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3023 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3024 * item before the root's tree is deleted - this means that if we unmount 3025 * or crash before the deletion completes, on the next mount we will not 3026 * delete what remains of the tree because the orphan item does not 3027 * exists anymore, which is what tells us we have a pending deletion. 3028 */ 3029 ret = btrfs_find_orphan_roots(fs_info); 3030 if (ret) 3031 goto out; 3032 3033 ret = btrfs_cleanup_fs_roots(fs_info); 3034 if (ret) 3035 goto out; 3036 3037 down_read(&fs_info->cleanup_work_sem); 3038 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3039 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3040 up_read(&fs_info->cleanup_work_sem); 3041 goto out; 3042 } 3043 up_read(&fs_info->cleanup_work_sem); 3044 3045 mutex_lock(&fs_info->cleaner_mutex); 3046 ret = btrfs_recover_relocation(fs_info); 3047 mutex_unlock(&fs_info->cleaner_mutex); 3048 if (ret < 0) { 3049 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3050 goto out; 3051 } 3052 3053 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3054 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3055 btrfs_info(fs_info, "creating free space tree"); 3056 ret = btrfs_create_free_space_tree(fs_info); 3057 if (ret) { 3058 btrfs_warn(fs_info, 3059 "failed to create free space tree: %d", ret); 3060 goto out; 3061 } 3062 } 3063 3064 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3065 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3066 if (ret) 3067 goto out; 3068 } 3069 3070 ret = btrfs_resume_balance_async(fs_info); 3071 if (ret) 3072 goto out; 3073 3074 ret = btrfs_resume_dev_replace_async(fs_info); 3075 if (ret) { 3076 btrfs_warn(fs_info, "failed to resume dev_replace"); 3077 goto out; 3078 } 3079 3080 btrfs_qgroup_rescan_resume(fs_info); 3081 3082 if (!fs_info->uuid_root) { 3083 btrfs_info(fs_info, "creating UUID tree"); 3084 ret = btrfs_create_uuid_tree(fs_info); 3085 if (ret) { 3086 btrfs_warn(fs_info, 3087 "failed to create the UUID tree %d", ret); 3088 goto out; 3089 } 3090 } 3091 3092 out: 3093 return ret; 3094 } 3095 3096 /* 3097 * Do various sanity and dependency checks of different features. 3098 * 3099 * @is_rw_mount: If the mount is read-write. 3100 * 3101 * This is the place for less strict checks (like for subpage or artificial 3102 * feature dependencies). 3103 * 3104 * For strict checks or possible corruption detection, see 3105 * btrfs_validate_super(). 3106 * 3107 * This should be called after btrfs_parse_options(), as some mount options 3108 * (space cache related) can modify on-disk format like free space tree and 3109 * screw up certain feature dependencies. 3110 */ 3111 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3112 { 3113 struct btrfs_super_block *disk_super = fs_info->super_copy; 3114 u64 incompat = btrfs_super_incompat_flags(disk_super); 3115 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3116 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3117 3118 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3119 btrfs_err(fs_info, 3120 "cannot mount because of unknown incompat features (0x%llx)", 3121 incompat); 3122 return -EINVAL; 3123 } 3124 3125 /* Runtime limitation for mixed block groups. */ 3126 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3127 (fs_info->sectorsize != fs_info->nodesize)) { 3128 btrfs_err(fs_info, 3129 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3130 fs_info->nodesize, fs_info->sectorsize); 3131 return -EINVAL; 3132 } 3133 3134 /* Mixed backref is an always-enabled feature. */ 3135 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3136 3137 /* Set compression related flags just in case. */ 3138 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3139 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3140 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3141 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3142 3143 /* 3144 * An ancient flag, which should really be marked deprecated. 3145 * Such runtime limitation doesn't really need a incompat flag. 3146 */ 3147 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3148 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3149 3150 if (compat_ro_unsupp && is_rw_mount) { 3151 btrfs_err(fs_info, 3152 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3153 compat_ro); 3154 return -EINVAL; 3155 } 3156 3157 /* 3158 * We have unsupported RO compat features, although RO mounted, we 3159 * should not cause any metadata writes, including log replay. 3160 * Or we could screw up whatever the new feature requires. 3161 */ 3162 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3163 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3164 btrfs_err(fs_info, 3165 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3166 compat_ro); 3167 return -EINVAL; 3168 } 3169 3170 /* 3171 * Artificial limitations for block group tree, to force 3172 * block-group-tree to rely on no-holes and free-space-tree. 3173 */ 3174 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3175 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3176 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3177 btrfs_err(fs_info, 3178 "block-group-tree feature requires no-holes and free-space-tree features"); 3179 return -EINVAL; 3180 } 3181 3182 /* 3183 * Subpage runtime limitation on v1 cache. 3184 * 3185 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3186 * we're already defaulting to v2 cache, no need to bother v1 as it's 3187 * going to be deprecated anyway. 3188 */ 3189 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3190 btrfs_warn(fs_info, 3191 "v1 space cache is not supported for page size %lu with sectorsize %u", 3192 PAGE_SIZE, fs_info->sectorsize); 3193 return -EINVAL; 3194 } 3195 3196 /* This can be called by remount, we need to protect the super block. */ 3197 spin_lock(&fs_info->super_lock); 3198 btrfs_set_super_incompat_flags(disk_super, incompat); 3199 spin_unlock(&fs_info->super_lock); 3200 3201 return 0; 3202 } 3203 3204 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3205 char *options) 3206 { 3207 u32 sectorsize; 3208 u32 nodesize; 3209 u32 stripesize; 3210 u64 generation; 3211 u16 csum_type; 3212 struct btrfs_super_block *disk_super; 3213 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3214 struct btrfs_root *tree_root; 3215 struct btrfs_root *chunk_root; 3216 int ret; 3217 int level; 3218 3219 ret = init_mount_fs_info(fs_info, sb); 3220 if (ret) 3221 goto fail; 3222 3223 /* These need to be init'ed before we start creating inodes and such. */ 3224 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3225 GFP_KERNEL); 3226 fs_info->tree_root = tree_root; 3227 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3228 GFP_KERNEL); 3229 fs_info->chunk_root = chunk_root; 3230 if (!tree_root || !chunk_root) { 3231 ret = -ENOMEM; 3232 goto fail; 3233 } 3234 3235 ret = btrfs_init_btree_inode(sb); 3236 if (ret) 3237 goto fail; 3238 3239 invalidate_bdev(fs_devices->latest_dev->bdev); 3240 3241 /* 3242 * Read super block and check the signature bytes only 3243 */ 3244 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3245 if (IS_ERR(disk_super)) { 3246 ret = PTR_ERR(disk_super); 3247 goto fail_alloc; 3248 } 3249 3250 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid); 3251 /* 3252 * Verify the type first, if that or the checksum value are 3253 * corrupted, we'll find out 3254 */ 3255 csum_type = btrfs_super_csum_type(disk_super); 3256 if (!btrfs_supported_super_csum(csum_type)) { 3257 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3258 csum_type); 3259 ret = -EINVAL; 3260 btrfs_release_disk_super(disk_super); 3261 goto fail_alloc; 3262 } 3263 3264 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3265 3266 ret = btrfs_init_csum_hash(fs_info, csum_type); 3267 if (ret) { 3268 btrfs_release_disk_super(disk_super); 3269 goto fail_alloc; 3270 } 3271 3272 /* 3273 * We want to check superblock checksum, the type is stored inside. 3274 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3275 */ 3276 if (btrfs_check_super_csum(fs_info, disk_super)) { 3277 btrfs_err(fs_info, "superblock checksum mismatch"); 3278 ret = -EINVAL; 3279 btrfs_release_disk_super(disk_super); 3280 goto fail_alloc; 3281 } 3282 3283 /* 3284 * super_copy is zeroed at allocation time and we never touch the 3285 * following bytes up to INFO_SIZE, the checksum is calculated from 3286 * the whole block of INFO_SIZE 3287 */ 3288 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3289 btrfs_release_disk_super(disk_super); 3290 3291 disk_super = fs_info->super_copy; 3292 3293 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3294 sizeof(*fs_info->super_for_commit)); 3295 3296 ret = btrfs_validate_mount_super(fs_info); 3297 if (ret) { 3298 btrfs_err(fs_info, "superblock contains fatal errors"); 3299 ret = -EINVAL; 3300 goto fail_alloc; 3301 } 3302 3303 if (!btrfs_super_root(disk_super)) { 3304 btrfs_err(fs_info, "invalid superblock tree root bytenr"); 3305 ret = -EINVAL; 3306 goto fail_alloc; 3307 } 3308 3309 /* check FS state, whether FS is broken. */ 3310 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3311 WRITE_ONCE(fs_info->fs_error, -EUCLEAN); 3312 3313 /* Set up fs_info before parsing mount options */ 3314 nodesize = btrfs_super_nodesize(disk_super); 3315 sectorsize = btrfs_super_sectorsize(disk_super); 3316 stripesize = sectorsize; 3317 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3318 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3319 3320 fs_info->nodesize = nodesize; 3321 fs_info->sectorsize = sectorsize; 3322 fs_info->sectorsize_bits = ilog2(sectorsize); 3323 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3324 fs_info->stripesize = stripesize; 3325 3326 /* 3327 * Handle the space caching options appropriately now that we have the 3328 * super block loaded and validated. 3329 */ 3330 btrfs_set_free_space_cache_settings(fs_info); 3331 3332 if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) { 3333 ret = -EINVAL; 3334 goto fail_alloc; 3335 } 3336 3337 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3338 if (ret < 0) 3339 goto fail_alloc; 3340 3341 /* 3342 * At this point our mount options are validated, if we set ->max_inline 3343 * to something non-standard make sure we truncate it to sectorsize. 3344 */ 3345 fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize); 3346 3347 if (sectorsize < PAGE_SIZE) { 3348 struct btrfs_subpage_info *subpage_info; 3349 3350 btrfs_warn(fs_info, 3351 "read-write for sector size %u with page size %lu is experimental", 3352 sectorsize, PAGE_SIZE); 3353 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL); 3354 if (!subpage_info) { 3355 ret = -ENOMEM; 3356 goto fail_alloc; 3357 } 3358 btrfs_init_subpage_info(subpage_info, sectorsize); 3359 fs_info->subpage_info = subpage_info; 3360 } 3361 3362 ret = btrfs_init_workqueues(fs_info); 3363 if (ret) 3364 goto fail_sb_buffer; 3365 3366 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3367 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3368 3369 /* Update the values for the current filesystem. */ 3370 sb->s_blocksize = sectorsize; 3371 sb->s_blocksize_bits = blksize_bits(sectorsize); 3372 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3373 3374 mutex_lock(&fs_info->chunk_mutex); 3375 ret = btrfs_read_sys_array(fs_info); 3376 mutex_unlock(&fs_info->chunk_mutex); 3377 if (ret) { 3378 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3379 goto fail_sb_buffer; 3380 } 3381 3382 generation = btrfs_super_chunk_root_generation(disk_super); 3383 level = btrfs_super_chunk_root_level(disk_super); 3384 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3385 generation, level); 3386 if (ret) { 3387 btrfs_err(fs_info, "failed to read chunk root"); 3388 goto fail_tree_roots; 3389 } 3390 3391 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3392 offsetof(struct btrfs_header, chunk_tree_uuid), 3393 BTRFS_UUID_SIZE); 3394 3395 ret = btrfs_read_chunk_tree(fs_info); 3396 if (ret) { 3397 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3398 goto fail_tree_roots; 3399 } 3400 3401 /* 3402 * At this point we know all the devices that make this filesystem, 3403 * including the seed devices but we don't know yet if the replace 3404 * target is required. So free devices that are not part of this 3405 * filesystem but skip the replace target device which is checked 3406 * below in btrfs_init_dev_replace(). 3407 */ 3408 btrfs_free_extra_devids(fs_devices); 3409 if (!fs_devices->latest_dev->bdev) { 3410 btrfs_err(fs_info, "failed to read devices"); 3411 ret = -EIO; 3412 goto fail_tree_roots; 3413 } 3414 3415 ret = init_tree_roots(fs_info); 3416 if (ret) 3417 goto fail_tree_roots; 3418 3419 /* 3420 * Get zone type information of zoned block devices. This will also 3421 * handle emulation of a zoned filesystem if a regular device has the 3422 * zoned incompat feature flag set. 3423 */ 3424 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3425 if (ret) { 3426 btrfs_err(fs_info, 3427 "zoned: failed to read device zone info: %d", ret); 3428 goto fail_block_groups; 3429 } 3430 3431 /* 3432 * If we have a uuid root and we're not being told to rescan we need to 3433 * check the generation here so we can set the 3434 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3435 * transaction during a balance or the log replay without updating the 3436 * uuid generation, and then if we crash we would rescan the uuid tree, 3437 * even though it was perfectly fine. 3438 */ 3439 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3440 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3441 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3442 3443 ret = btrfs_verify_dev_extents(fs_info); 3444 if (ret) { 3445 btrfs_err(fs_info, 3446 "failed to verify dev extents against chunks: %d", 3447 ret); 3448 goto fail_block_groups; 3449 } 3450 ret = btrfs_recover_balance(fs_info); 3451 if (ret) { 3452 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3453 goto fail_block_groups; 3454 } 3455 3456 ret = btrfs_init_dev_stats(fs_info); 3457 if (ret) { 3458 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3459 goto fail_block_groups; 3460 } 3461 3462 ret = btrfs_init_dev_replace(fs_info); 3463 if (ret) { 3464 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3465 goto fail_block_groups; 3466 } 3467 3468 ret = btrfs_check_zoned_mode(fs_info); 3469 if (ret) { 3470 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3471 ret); 3472 goto fail_block_groups; 3473 } 3474 3475 ret = btrfs_sysfs_add_fsid(fs_devices); 3476 if (ret) { 3477 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3478 ret); 3479 goto fail_block_groups; 3480 } 3481 3482 ret = btrfs_sysfs_add_mounted(fs_info); 3483 if (ret) { 3484 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3485 goto fail_fsdev_sysfs; 3486 } 3487 3488 ret = btrfs_init_space_info(fs_info); 3489 if (ret) { 3490 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3491 goto fail_sysfs; 3492 } 3493 3494 ret = btrfs_read_block_groups(fs_info); 3495 if (ret) { 3496 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3497 goto fail_sysfs; 3498 } 3499 3500 btrfs_free_zone_cache(fs_info); 3501 3502 btrfs_check_active_zone_reservation(fs_info); 3503 3504 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3505 !btrfs_check_rw_degradable(fs_info, NULL)) { 3506 btrfs_warn(fs_info, 3507 "writable mount is not allowed due to too many missing devices"); 3508 ret = -EINVAL; 3509 goto fail_sysfs; 3510 } 3511 3512 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3513 "btrfs-cleaner"); 3514 if (IS_ERR(fs_info->cleaner_kthread)) { 3515 ret = PTR_ERR(fs_info->cleaner_kthread); 3516 goto fail_sysfs; 3517 } 3518 3519 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3520 tree_root, 3521 "btrfs-transaction"); 3522 if (IS_ERR(fs_info->transaction_kthread)) { 3523 ret = PTR_ERR(fs_info->transaction_kthread); 3524 goto fail_cleaner; 3525 } 3526 3527 ret = btrfs_read_qgroup_config(fs_info); 3528 if (ret) 3529 goto fail_trans_kthread; 3530 3531 if (btrfs_build_ref_tree(fs_info)) 3532 btrfs_err(fs_info, "couldn't build ref tree"); 3533 3534 /* do not make disk changes in broken FS or nologreplay is given */ 3535 if (btrfs_super_log_root(disk_super) != 0 && 3536 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3537 btrfs_info(fs_info, "start tree-log replay"); 3538 ret = btrfs_replay_log(fs_info, fs_devices); 3539 if (ret) 3540 goto fail_qgroup; 3541 } 3542 3543 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3544 if (IS_ERR(fs_info->fs_root)) { 3545 ret = PTR_ERR(fs_info->fs_root); 3546 btrfs_warn(fs_info, "failed to read fs tree: %d", ret); 3547 fs_info->fs_root = NULL; 3548 goto fail_qgroup; 3549 } 3550 3551 if (sb_rdonly(sb)) 3552 return 0; 3553 3554 ret = btrfs_start_pre_rw_mount(fs_info); 3555 if (ret) { 3556 close_ctree(fs_info); 3557 return ret; 3558 } 3559 btrfs_discard_resume(fs_info); 3560 3561 if (fs_info->uuid_root && 3562 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3563 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3564 btrfs_info(fs_info, "checking UUID tree"); 3565 ret = btrfs_check_uuid_tree(fs_info); 3566 if (ret) { 3567 btrfs_warn(fs_info, 3568 "failed to check the UUID tree: %d", ret); 3569 close_ctree(fs_info); 3570 return ret; 3571 } 3572 } 3573 3574 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3575 3576 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3577 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3578 wake_up_process(fs_info->cleaner_kthread); 3579 3580 return 0; 3581 3582 fail_qgroup: 3583 btrfs_free_qgroup_config(fs_info); 3584 fail_trans_kthread: 3585 kthread_stop(fs_info->transaction_kthread); 3586 btrfs_cleanup_transaction(fs_info); 3587 btrfs_free_fs_roots(fs_info); 3588 fail_cleaner: 3589 kthread_stop(fs_info->cleaner_kthread); 3590 3591 /* 3592 * make sure we're done with the btree inode before we stop our 3593 * kthreads 3594 */ 3595 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3596 3597 fail_sysfs: 3598 btrfs_sysfs_remove_mounted(fs_info); 3599 3600 fail_fsdev_sysfs: 3601 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3602 3603 fail_block_groups: 3604 btrfs_put_block_group_cache(fs_info); 3605 3606 fail_tree_roots: 3607 if (fs_info->data_reloc_root) 3608 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3609 free_root_pointers(fs_info, true); 3610 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3611 3612 fail_sb_buffer: 3613 btrfs_stop_all_workers(fs_info); 3614 btrfs_free_block_groups(fs_info); 3615 fail_alloc: 3616 btrfs_mapping_tree_free(fs_info); 3617 3618 iput(fs_info->btree_inode); 3619 fail: 3620 btrfs_close_devices(fs_info->fs_devices); 3621 ASSERT(ret < 0); 3622 return ret; 3623 } 3624 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3625 3626 static void btrfs_end_super_write(struct bio *bio) 3627 { 3628 struct btrfs_device *device = bio->bi_private; 3629 struct folio_iter fi; 3630 3631 bio_for_each_folio_all(fi, bio) { 3632 if (bio->bi_status) { 3633 btrfs_warn_rl_in_rcu(device->fs_info, 3634 "lost super block write due to IO error on %s (%d)", 3635 btrfs_dev_name(device), 3636 blk_status_to_errno(bio->bi_status)); 3637 btrfs_dev_stat_inc_and_print(device, 3638 BTRFS_DEV_STAT_WRITE_ERRS); 3639 /* Ensure failure if the primary sb fails. */ 3640 if (bio->bi_opf & REQ_FUA) 3641 atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR, 3642 &device->sb_write_errors); 3643 else 3644 atomic_inc(&device->sb_write_errors); 3645 } 3646 folio_unlock(fi.folio); 3647 folio_put(fi.folio); 3648 } 3649 3650 bio_put(bio); 3651 } 3652 3653 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3654 int copy_num, bool drop_cache) 3655 { 3656 struct btrfs_super_block *super; 3657 struct page *page; 3658 u64 bytenr, bytenr_orig; 3659 struct address_space *mapping = bdev->bd_mapping; 3660 int ret; 3661 3662 bytenr_orig = btrfs_sb_offset(copy_num); 3663 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3664 if (ret == -ENOENT) 3665 return ERR_PTR(-EINVAL); 3666 else if (ret) 3667 return ERR_PTR(ret); 3668 3669 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 3670 return ERR_PTR(-EINVAL); 3671 3672 if (drop_cache) { 3673 /* This should only be called with the primary sb. */ 3674 ASSERT(copy_num == 0); 3675 3676 /* 3677 * Drop the page of the primary superblock, so later read will 3678 * always read from the device. 3679 */ 3680 invalidate_inode_pages2_range(mapping, 3681 bytenr >> PAGE_SHIFT, 3682 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 3683 } 3684 3685 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3686 if (IS_ERR(page)) 3687 return ERR_CAST(page); 3688 3689 super = page_address(page); 3690 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3691 btrfs_release_disk_super(super); 3692 return ERR_PTR(-ENODATA); 3693 } 3694 3695 if (btrfs_super_bytenr(super) != bytenr_orig) { 3696 btrfs_release_disk_super(super); 3697 return ERR_PTR(-EINVAL); 3698 } 3699 3700 return super; 3701 } 3702 3703 3704 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3705 { 3706 struct btrfs_super_block *super, *latest = NULL; 3707 int i; 3708 u64 transid = 0; 3709 3710 /* we would like to check all the supers, but that would make 3711 * a btrfs mount succeed after a mkfs from a different FS. 3712 * So, we need to add a special mount option to scan for 3713 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3714 */ 3715 for (i = 0; i < 1; i++) { 3716 super = btrfs_read_dev_one_super(bdev, i, false); 3717 if (IS_ERR(super)) 3718 continue; 3719 3720 if (!latest || btrfs_super_generation(super) > transid) { 3721 if (latest) 3722 btrfs_release_disk_super(super); 3723 3724 latest = super; 3725 transid = btrfs_super_generation(super); 3726 } 3727 } 3728 3729 return super; 3730 } 3731 3732 /* 3733 * Write superblock @sb to the @device. Do not wait for completion, all the 3734 * folios we use for writing are locked. 3735 * 3736 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3737 * the expected device size at commit time. Note that max_mirrors must be 3738 * same for write and wait phases. 3739 * 3740 * Return number of errors when folio is not found or submission fails. 3741 */ 3742 static int write_dev_supers(struct btrfs_device *device, 3743 struct btrfs_super_block *sb, int max_mirrors) 3744 { 3745 struct btrfs_fs_info *fs_info = device->fs_info; 3746 struct address_space *mapping = device->bdev->bd_mapping; 3747 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3748 int i; 3749 int ret; 3750 u64 bytenr, bytenr_orig; 3751 3752 atomic_set(&device->sb_write_errors, 0); 3753 3754 if (max_mirrors == 0) 3755 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3756 3757 shash->tfm = fs_info->csum_shash; 3758 3759 for (i = 0; i < max_mirrors; i++) { 3760 struct folio *folio; 3761 struct bio *bio; 3762 struct btrfs_super_block *disk_super; 3763 size_t offset; 3764 3765 bytenr_orig = btrfs_sb_offset(i); 3766 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3767 if (ret == -ENOENT) { 3768 continue; 3769 } else if (ret < 0) { 3770 btrfs_err(device->fs_info, 3771 "couldn't get super block location for mirror %d", 3772 i); 3773 atomic_inc(&device->sb_write_errors); 3774 continue; 3775 } 3776 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3777 device->commit_total_bytes) 3778 break; 3779 3780 btrfs_set_super_bytenr(sb, bytenr_orig); 3781 3782 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3783 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3784 sb->csum); 3785 3786 folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT, 3787 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3788 GFP_NOFS); 3789 if (IS_ERR(folio)) { 3790 btrfs_err(device->fs_info, 3791 "couldn't get super block page for bytenr %llu", 3792 bytenr); 3793 atomic_inc(&device->sb_write_errors); 3794 continue; 3795 } 3796 ASSERT(folio_order(folio) == 0); 3797 3798 offset = offset_in_folio(folio, bytenr); 3799 disk_super = folio_address(folio) + offset; 3800 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3801 3802 /* 3803 * Directly use bios here instead of relying on the page cache 3804 * to do I/O, so we don't lose the ability to do integrity 3805 * checking. 3806 */ 3807 bio = bio_alloc(device->bdev, 1, 3808 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 3809 GFP_NOFS); 3810 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3811 bio->bi_private = device; 3812 bio->bi_end_io = btrfs_end_super_write; 3813 bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset); 3814 3815 /* 3816 * We FUA only the first super block. The others we allow to 3817 * go down lazy and there's a short window where the on-disk 3818 * copies might still contain the older version. 3819 */ 3820 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3821 bio->bi_opf |= REQ_FUA; 3822 submit_bio(bio); 3823 3824 if (btrfs_advance_sb_log(device, i)) 3825 atomic_inc(&device->sb_write_errors); 3826 } 3827 return atomic_read(&device->sb_write_errors) < i ? 0 : -1; 3828 } 3829 3830 /* 3831 * Wait for write completion of superblocks done by write_dev_supers, 3832 * @max_mirrors same for write and wait phases. 3833 * 3834 * Return -1 if primary super block write failed or when there were no super block 3835 * copies written. Otherwise 0. 3836 */ 3837 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3838 { 3839 int i; 3840 int errors = 0; 3841 bool primary_failed = false; 3842 int ret; 3843 u64 bytenr; 3844 3845 if (max_mirrors == 0) 3846 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3847 3848 for (i = 0; i < max_mirrors; i++) { 3849 struct folio *folio; 3850 3851 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 3852 if (ret == -ENOENT) { 3853 break; 3854 } else if (ret < 0) { 3855 errors++; 3856 if (i == 0) 3857 primary_failed = true; 3858 continue; 3859 } 3860 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3861 device->commit_total_bytes) 3862 break; 3863 3864 folio = filemap_get_folio(device->bdev->bd_mapping, 3865 bytenr >> PAGE_SHIFT); 3866 /* If the folio has been removed, then we know it completed. */ 3867 if (IS_ERR(folio)) 3868 continue; 3869 ASSERT(folio_order(folio) == 0); 3870 3871 /* Folio will be unlocked once the write completes. */ 3872 folio_wait_locked(folio); 3873 folio_put(folio); 3874 } 3875 3876 errors += atomic_read(&device->sb_write_errors); 3877 if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR) 3878 primary_failed = true; 3879 if (primary_failed) { 3880 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3881 device->devid); 3882 return -1; 3883 } 3884 3885 return errors < i ? 0 : -1; 3886 } 3887 3888 /* 3889 * endio for the write_dev_flush, this will wake anyone waiting 3890 * for the barrier when it is done 3891 */ 3892 static void btrfs_end_empty_barrier(struct bio *bio) 3893 { 3894 bio_uninit(bio); 3895 complete(bio->bi_private); 3896 } 3897 3898 /* 3899 * Submit a flush request to the device if it supports it. Error handling is 3900 * done in the waiting counterpart. 3901 */ 3902 static void write_dev_flush(struct btrfs_device *device) 3903 { 3904 struct bio *bio = &device->flush_bio; 3905 3906 device->last_flush_error = BLK_STS_OK; 3907 3908 bio_init(bio, device->bdev, NULL, 0, 3909 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 3910 bio->bi_end_io = btrfs_end_empty_barrier; 3911 init_completion(&device->flush_wait); 3912 bio->bi_private = &device->flush_wait; 3913 submit_bio(bio); 3914 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3915 } 3916 3917 /* 3918 * If the flush bio has been submitted by write_dev_flush, wait for it. 3919 * Return true for any error, and false otherwise. 3920 */ 3921 static bool wait_dev_flush(struct btrfs_device *device) 3922 { 3923 struct bio *bio = &device->flush_bio; 3924 3925 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3926 return false; 3927 3928 wait_for_completion_io(&device->flush_wait); 3929 3930 if (bio->bi_status) { 3931 device->last_flush_error = bio->bi_status; 3932 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); 3933 return true; 3934 } 3935 3936 return false; 3937 } 3938 3939 /* 3940 * send an empty flush down to each device in parallel, 3941 * then wait for them 3942 */ 3943 static int barrier_all_devices(struct btrfs_fs_info *info) 3944 { 3945 struct list_head *head; 3946 struct btrfs_device *dev; 3947 int errors_wait = 0; 3948 3949 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3950 /* send down all the barriers */ 3951 head = &info->fs_devices->devices; 3952 list_for_each_entry(dev, head, dev_list) { 3953 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3954 continue; 3955 if (!dev->bdev) 3956 continue; 3957 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3958 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3959 continue; 3960 3961 write_dev_flush(dev); 3962 } 3963 3964 /* wait for all the barriers */ 3965 list_for_each_entry(dev, head, dev_list) { 3966 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3967 continue; 3968 if (!dev->bdev) { 3969 errors_wait++; 3970 continue; 3971 } 3972 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3973 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3974 continue; 3975 3976 if (wait_dev_flush(dev)) 3977 errors_wait++; 3978 } 3979 3980 /* 3981 * Checks last_flush_error of disks in order to determine the device 3982 * state. 3983 */ 3984 if (errors_wait && !btrfs_check_rw_degradable(info, NULL)) 3985 return -EIO; 3986 3987 return 0; 3988 } 3989 3990 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3991 { 3992 int raid_type; 3993 int min_tolerated = INT_MAX; 3994 3995 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3996 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3997 min_tolerated = min_t(int, min_tolerated, 3998 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3999 tolerated_failures); 4000 4001 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4002 if (raid_type == BTRFS_RAID_SINGLE) 4003 continue; 4004 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 4005 continue; 4006 min_tolerated = min_t(int, min_tolerated, 4007 btrfs_raid_array[raid_type]. 4008 tolerated_failures); 4009 } 4010 4011 if (min_tolerated == INT_MAX) { 4012 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4013 min_tolerated = 0; 4014 } 4015 4016 return min_tolerated; 4017 } 4018 4019 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4020 { 4021 struct list_head *head; 4022 struct btrfs_device *dev; 4023 struct btrfs_super_block *sb; 4024 struct btrfs_dev_item *dev_item; 4025 int ret; 4026 int do_barriers; 4027 int max_errors; 4028 int total_errors = 0; 4029 u64 flags; 4030 4031 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4032 4033 /* 4034 * max_mirrors == 0 indicates we're from commit_transaction, 4035 * not from fsync where the tree roots in fs_info have not 4036 * been consistent on disk. 4037 */ 4038 if (max_mirrors == 0) 4039 backup_super_roots(fs_info); 4040 4041 sb = fs_info->super_for_commit; 4042 dev_item = &sb->dev_item; 4043 4044 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4045 head = &fs_info->fs_devices->devices; 4046 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4047 4048 if (do_barriers) { 4049 ret = barrier_all_devices(fs_info); 4050 if (ret) { 4051 mutex_unlock( 4052 &fs_info->fs_devices->device_list_mutex); 4053 btrfs_handle_fs_error(fs_info, ret, 4054 "errors while submitting device barriers."); 4055 return ret; 4056 } 4057 } 4058 4059 list_for_each_entry(dev, head, dev_list) { 4060 if (!dev->bdev) { 4061 total_errors++; 4062 continue; 4063 } 4064 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4065 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4066 continue; 4067 4068 btrfs_set_stack_device_generation(dev_item, 0); 4069 btrfs_set_stack_device_type(dev_item, dev->type); 4070 btrfs_set_stack_device_id(dev_item, dev->devid); 4071 btrfs_set_stack_device_total_bytes(dev_item, 4072 dev->commit_total_bytes); 4073 btrfs_set_stack_device_bytes_used(dev_item, 4074 dev->commit_bytes_used); 4075 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4076 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4077 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4078 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4079 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4080 BTRFS_FSID_SIZE); 4081 4082 flags = btrfs_super_flags(sb); 4083 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4084 4085 ret = btrfs_validate_write_super(fs_info, sb); 4086 if (ret < 0) { 4087 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4088 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4089 "unexpected superblock corruption detected"); 4090 return -EUCLEAN; 4091 } 4092 4093 ret = write_dev_supers(dev, sb, max_mirrors); 4094 if (ret) 4095 total_errors++; 4096 } 4097 if (total_errors > max_errors) { 4098 btrfs_err(fs_info, "%d errors while writing supers", 4099 total_errors); 4100 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4101 4102 /* FUA is masked off if unsupported and can't be the reason */ 4103 btrfs_handle_fs_error(fs_info, -EIO, 4104 "%d errors while writing supers", 4105 total_errors); 4106 return -EIO; 4107 } 4108 4109 total_errors = 0; 4110 list_for_each_entry(dev, head, dev_list) { 4111 if (!dev->bdev) 4112 continue; 4113 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4114 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4115 continue; 4116 4117 ret = wait_dev_supers(dev, max_mirrors); 4118 if (ret) 4119 total_errors++; 4120 } 4121 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4122 if (total_errors > max_errors) { 4123 btrfs_handle_fs_error(fs_info, -EIO, 4124 "%d errors while writing supers", 4125 total_errors); 4126 return -EIO; 4127 } 4128 return 0; 4129 } 4130 4131 /* Drop a fs root from the radix tree and free it. */ 4132 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4133 struct btrfs_root *root) 4134 { 4135 bool drop_ref = false; 4136 4137 spin_lock(&fs_info->fs_roots_radix_lock); 4138 radix_tree_delete(&fs_info->fs_roots_radix, 4139 (unsigned long)btrfs_root_id(root)); 4140 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4141 drop_ref = true; 4142 spin_unlock(&fs_info->fs_roots_radix_lock); 4143 4144 if (BTRFS_FS_ERROR(fs_info)) { 4145 ASSERT(root->log_root == NULL); 4146 if (root->reloc_root) { 4147 btrfs_put_root(root->reloc_root); 4148 root->reloc_root = NULL; 4149 } 4150 } 4151 4152 if (drop_ref) 4153 btrfs_put_root(root); 4154 } 4155 4156 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4157 { 4158 struct btrfs_root *root = fs_info->tree_root; 4159 struct btrfs_trans_handle *trans; 4160 4161 mutex_lock(&fs_info->cleaner_mutex); 4162 btrfs_run_delayed_iputs(fs_info); 4163 mutex_unlock(&fs_info->cleaner_mutex); 4164 wake_up_process(fs_info->cleaner_kthread); 4165 4166 /* wait until ongoing cleanup work done */ 4167 down_write(&fs_info->cleanup_work_sem); 4168 up_write(&fs_info->cleanup_work_sem); 4169 4170 trans = btrfs_join_transaction(root); 4171 if (IS_ERR(trans)) 4172 return PTR_ERR(trans); 4173 return btrfs_commit_transaction(trans); 4174 } 4175 4176 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4177 { 4178 struct btrfs_transaction *trans; 4179 struct btrfs_transaction *tmp; 4180 bool found = false; 4181 4182 /* 4183 * This function is only called at the very end of close_ctree(), 4184 * thus no other running transaction, no need to take trans_lock. 4185 */ 4186 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4187 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4188 struct extent_state *cached = NULL; 4189 u64 dirty_bytes = 0; 4190 u64 cur = 0; 4191 u64 found_start; 4192 u64 found_end; 4193 4194 found = true; 4195 while (find_first_extent_bit(&trans->dirty_pages, cur, 4196 &found_start, &found_end, EXTENT_DIRTY, &cached)) { 4197 dirty_bytes += found_end + 1 - found_start; 4198 cur = found_end + 1; 4199 } 4200 btrfs_warn(fs_info, 4201 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4202 trans->transid, dirty_bytes); 4203 btrfs_cleanup_one_transaction(trans, fs_info); 4204 4205 if (trans == fs_info->running_transaction) 4206 fs_info->running_transaction = NULL; 4207 list_del_init(&trans->list); 4208 4209 btrfs_put_transaction(trans); 4210 trace_btrfs_transaction_commit(fs_info); 4211 } 4212 ASSERT(!found); 4213 } 4214 4215 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4216 { 4217 int ret; 4218 4219 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4220 4221 /* 4222 * If we had UNFINISHED_DROPS we could still be processing them, so 4223 * clear that bit and wake up relocation so it can stop. 4224 * We must do this before stopping the block group reclaim task, because 4225 * at btrfs_relocate_block_group() we wait for this bit, and after the 4226 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4227 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4228 * return 1. 4229 */ 4230 btrfs_wake_unfinished_drop(fs_info); 4231 4232 /* 4233 * We may have the reclaim task running and relocating a data block group, 4234 * in which case it may create delayed iputs. So stop it before we park 4235 * the cleaner kthread otherwise we can get new delayed iputs after 4236 * parking the cleaner, and that can make the async reclaim task to hang 4237 * if it's waiting for delayed iputs to complete, since the cleaner is 4238 * parked and can not run delayed iputs - this will make us hang when 4239 * trying to stop the async reclaim task. 4240 */ 4241 cancel_work_sync(&fs_info->reclaim_bgs_work); 4242 /* 4243 * We don't want the cleaner to start new transactions, add more delayed 4244 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4245 * because that frees the task_struct, and the transaction kthread might 4246 * still try to wake up the cleaner. 4247 */ 4248 kthread_park(fs_info->cleaner_kthread); 4249 4250 /* wait for the qgroup rescan worker to stop */ 4251 btrfs_qgroup_wait_for_completion(fs_info, false); 4252 4253 /* wait for the uuid_scan task to finish */ 4254 down(&fs_info->uuid_tree_rescan_sem); 4255 /* avoid complains from lockdep et al., set sem back to initial state */ 4256 up(&fs_info->uuid_tree_rescan_sem); 4257 4258 /* pause restriper - we want to resume on mount */ 4259 btrfs_pause_balance(fs_info); 4260 4261 btrfs_dev_replace_suspend_for_unmount(fs_info); 4262 4263 btrfs_scrub_cancel(fs_info); 4264 4265 /* wait for any defraggers to finish */ 4266 wait_event(fs_info->transaction_wait, 4267 (atomic_read(&fs_info->defrag_running) == 0)); 4268 4269 /* clear out the rbtree of defraggable inodes */ 4270 btrfs_cleanup_defrag_inodes(fs_info); 4271 4272 /* 4273 * After we parked the cleaner kthread, ordered extents may have 4274 * completed and created new delayed iputs. If one of the async reclaim 4275 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4276 * can hang forever trying to stop it, because if a delayed iput is 4277 * added after it ran btrfs_run_delayed_iputs() and before it called 4278 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4279 * no one else to run iputs. 4280 * 4281 * So wait for all ongoing ordered extents to complete and then run 4282 * delayed iputs. This works because once we reach this point no one 4283 * can either create new ordered extents nor create delayed iputs 4284 * through some other means. 4285 * 4286 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4287 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4288 * but the delayed iput for the respective inode is made only when doing 4289 * the final btrfs_put_ordered_extent() (which must happen at 4290 * btrfs_finish_ordered_io() when we are unmounting). 4291 */ 4292 btrfs_flush_workqueue(fs_info->endio_write_workers); 4293 /* Ordered extents for free space inodes. */ 4294 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4295 btrfs_run_delayed_iputs(fs_info); 4296 4297 cancel_work_sync(&fs_info->async_reclaim_work); 4298 cancel_work_sync(&fs_info->async_data_reclaim_work); 4299 cancel_work_sync(&fs_info->preempt_reclaim_work); 4300 4301 /* Cancel or finish ongoing discard work */ 4302 btrfs_discard_cleanup(fs_info); 4303 4304 if (!sb_rdonly(fs_info->sb)) { 4305 /* 4306 * The cleaner kthread is stopped, so do one final pass over 4307 * unused block groups. 4308 */ 4309 btrfs_delete_unused_bgs(fs_info); 4310 4311 /* 4312 * There might be existing delayed inode workers still running 4313 * and holding an empty delayed inode item. We must wait for 4314 * them to complete first because they can create a transaction. 4315 * This happens when someone calls btrfs_balance_delayed_items() 4316 * and then a transaction commit runs the same delayed nodes 4317 * before any delayed worker has done something with the nodes. 4318 * We must wait for any worker here and not at transaction 4319 * commit time since that could cause a deadlock. 4320 * This is a very rare case. 4321 */ 4322 btrfs_flush_workqueue(fs_info->delayed_workers); 4323 4324 ret = btrfs_commit_super(fs_info); 4325 if (ret) 4326 btrfs_err(fs_info, "commit super ret %d", ret); 4327 } 4328 4329 if (BTRFS_FS_ERROR(fs_info)) 4330 btrfs_error_commit_super(fs_info); 4331 4332 kthread_stop(fs_info->transaction_kthread); 4333 kthread_stop(fs_info->cleaner_kthread); 4334 4335 ASSERT(list_empty(&fs_info->delayed_iputs)); 4336 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4337 4338 if (btrfs_check_quota_leak(fs_info)) { 4339 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4340 btrfs_err(fs_info, "qgroup reserved space leaked"); 4341 } 4342 4343 btrfs_free_qgroup_config(fs_info); 4344 ASSERT(list_empty(&fs_info->delalloc_roots)); 4345 4346 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4347 btrfs_info(fs_info, "at unmount delalloc count %lld", 4348 percpu_counter_sum(&fs_info->delalloc_bytes)); 4349 } 4350 4351 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4352 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4353 percpu_counter_sum(&fs_info->ordered_bytes)); 4354 4355 btrfs_sysfs_remove_mounted(fs_info); 4356 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4357 4358 btrfs_put_block_group_cache(fs_info); 4359 4360 /* 4361 * we must make sure there is not any read request to 4362 * submit after we stopping all workers. 4363 */ 4364 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4365 btrfs_stop_all_workers(fs_info); 4366 4367 /* We shouldn't have any transaction open at this point */ 4368 warn_about_uncommitted_trans(fs_info); 4369 4370 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4371 free_root_pointers(fs_info, true); 4372 btrfs_free_fs_roots(fs_info); 4373 4374 /* 4375 * We must free the block groups after dropping the fs_roots as we could 4376 * have had an IO error and have left over tree log blocks that aren't 4377 * cleaned up until the fs roots are freed. This makes the block group 4378 * accounting appear to be wrong because there's pending reserved bytes, 4379 * so make sure we do the block group cleanup afterwards. 4380 */ 4381 btrfs_free_block_groups(fs_info); 4382 4383 iput(fs_info->btree_inode); 4384 4385 btrfs_mapping_tree_free(fs_info); 4386 btrfs_close_devices(fs_info->fs_devices); 4387 } 4388 4389 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans, 4390 struct extent_buffer *buf) 4391 { 4392 struct btrfs_fs_info *fs_info = buf->fs_info; 4393 u64 transid = btrfs_header_generation(buf); 4394 4395 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4396 /* 4397 * This is a fast path so only do this check if we have sanity tests 4398 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4399 * outside of the sanity tests. 4400 */ 4401 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4402 return; 4403 #endif 4404 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */ 4405 ASSERT(trans->transid == fs_info->generation); 4406 btrfs_assert_tree_write_locked(buf); 4407 if (unlikely(transid != fs_info->generation)) { 4408 btrfs_abort_transaction(trans, -EUCLEAN); 4409 btrfs_crit(fs_info, 4410 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu", 4411 buf->start, transid, fs_info->generation); 4412 } 4413 set_extent_buffer_dirty(buf); 4414 } 4415 4416 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4417 int flush_delayed) 4418 { 4419 /* 4420 * looks as though older kernels can get into trouble with 4421 * this code, they end up stuck in balance_dirty_pages forever 4422 */ 4423 int ret; 4424 4425 if (current->flags & PF_MEMALLOC) 4426 return; 4427 4428 if (flush_delayed) 4429 btrfs_balance_delayed_items(fs_info); 4430 4431 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4432 BTRFS_DIRTY_METADATA_THRESH, 4433 fs_info->dirty_metadata_batch); 4434 if (ret > 0) { 4435 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4436 } 4437 } 4438 4439 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4440 { 4441 __btrfs_btree_balance_dirty(fs_info, 1); 4442 } 4443 4444 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4445 { 4446 __btrfs_btree_balance_dirty(fs_info, 0); 4447 } 4448 4449 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4450 { 4451 /* cleanup FS via transaction */ 4452 btrfs_cleanup_transaction(fs_info); 4453 4454 mutex_lock(&fs_info->cleaner_mutex); 4455 btrfs_run_delayed_iputs(fs_info); 4456 mutex_unlock(&fs_info->cleaner_mutex); 4457 4458 down_write(&fs_info->cleanup_work_sem); 4459 up_write(&fs_info->cleanup_work_sem); 4460 } 4461 4462 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4463 { 4464 struct btrfs_root *gang[8]; 4465 u64 root_objectid = 0; 4466 int ret; 4467 4468 spin_lock(&fs_info->fs_roots_radix_lock); 4469 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4470 (void **)gang, root_objectid, 4471 ARRAY_SIZE(gang))) != 0) { 4472 int i; 4473 4474 for (i = 0; i < ret; i++) 4475 gang[i] = btrfs_grab_root(gang[i]); 4476 spin_unlock(&fs_info->fs_roots_radix_lock); 4477 4478 for (i = 0; i < ret; i++) { 4479 if (!gang[i]) 4480 continue; 4481 root_objectid = btrfs_root_id(gang[i]); 4482 btrfs_free_log(NULL, gang[i]); 4483 btrfs_put_root(gang[i]); 4484 } 4485 root_objectid++; 4486 spin_lock(&fs_info->fs_roots_radix_lock); 4487 } 4488 spin_unlock(&fs_info->fs_roots_radix_lock); 4489 btrfs_free_log_root_tree(NULL, fs_info); 4490 } 4491 4492 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4493 { 4494 struct btrfs_ordered_extent *ordered; 4495 4496 spin_lock(&root->ordered_extent_lock); 4497 /* 4498 * This will just short circuit the ordered completion stuff which will 4499 * make sure the ordered extent gets properly cleaned up. 4500 */ 4501 list_for_each_entry(ordered, &root->ordered_extents, 4502 root_extent_list) 4503 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4504 spin_unlock(&root->ordered_extent_lock); 4505 } 4506 4507 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4508 { 4509 struct btrfs_root *root; 4510 LIST_HEAD(splice); 4511 4512 spin_lock(&fs_info->ordered_root_lock); 4513 list_splice_init(&fs_info->ordered_roots, &splice); 4514 while (!list_empty(&splice)) { 4515 root = list_first_entry(&splice, struct btrfs_root, 4516 ordered_root); 4517 list_move_tail(&root->ordered_root, 4518 &fs_info->ordered_roots); 4519 4520 spin_unlock(&fs_info->ordered_root_lock); 4521 btrfs_destroy_ordered_extents(root); 4522 4523 cond_resched(); 4524 spin_lock(&fs_info->ordered_root_lock); 4525 } 4526 spin_unlock(&fs_info->ordered_root_lock); 4527 4528 /* 4529 * We need this here because if we've been flipped read-only we won't 4530 * get sync() from the umount, so we need to make sure any ordered 4531 * extents that haven't had their dirty pages IO start writeout yet 4532 * actually get run and error out properly. 4533 */ 4534 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4535 } 4536 4537 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4538 struct btrfs_fs_info *fs_info) 4539 { 4540 struct rb_node *node; 4541 struct btrfs_delayed_ref_root *delayed_refs = &trans->delayed_refs; 4542 struct btrfs_delayed_ref_node *ref; 4543 4544 spin_lock(&delayed_refs->lock); 4545 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4546 struct btrfs_delayed_ref_head *head; 4547 struct rb_node *n; 4548 bool pin_bytes = false; 4549 4550 head = rb_entry(node, struct btrfs_delayed_ref_head, 4551 href_node); 4552 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4553 continue; 4554 4555 spin_lock(&head->lock); 4556 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4557 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4558 ref_node); 4559 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4560 RB_CLEAR_NODE(&ref->ref_node); 4561 if (!list_empty(&ref->add_list)) 4562 list_del(&ref->add_list); 4563 atomic_dec(&delayed_refs->num_entries); 4564 btrfs_put_delayed_ref(ref); 4565 btrfs_delayed_refs_rsv_release(fs_info, 1, 0); 4566 } 4567 if (head->must_insert_reserved) 4568 pin_bytes = true; 4569 btrfs_free_delayed_extent_op(head->extent_op); 4570 btrfs_delete_ref_head(delayed_refs, head); 4571 spin_unlock(&head->lock); 4572 spin_unlock(&delayed_refs->lock); 4573 mutex_unlock(&head->mutex); 4574 4575 if (pin_bytes) { 4576 struct btrfs_block_group *cache; 4577 4578 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4579 BUG_ON(!cache); 4580 4581 spin_lock(&cache->space_info->lock); 4582 spin_lock(&cache->lock); 4583 cache->pinned += head->num_bytes; 4584 btrfs_space_info_update_bytes_pinned(fs_info, 4585 cache->space_info, head->num_bytes); 4586 cache->reserved -= head->num_bytes; 4587 cache->space_info->bytes_reserved -= head->num_bytes; 4588 spin_unlock(&cache->lock); 4589 spin_unlock(&cache->space_info->lock); 4590 4591 btrfs_put_block_group(cache); 4592 4593 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4594 head->bytenr + head->num_bytes - 1); 4595 } 4596 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4597 btrfs_put_delayed_ref_head(head); 4598 cond_resched(); 4599 spin_lock(&delayed_refs->lock); 4600 } 4601 btrfs_qgroup_destroy_extent_records(trans); 4602 4603 spin_unlock(&delayed_refs->lock); 4604 } 4605 4606 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4607 { 4608 struct btrfs_inode *btrfs_inode; 4609 LIST_HEAD(splice); 4610 4611 spin_lock(&root->delalloc_lock); 4612 list_splice_init(&root->delalloc_inodes, &splice); 4613 4614 while (!list_empty(&splice)) { 4615 struct inode *inode = NULL; 4616 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4617 delalloc_inodes); 4618 btrfs_del_delalloc_inode(btrfs_inode); 4619 spin_unlock(&root->delalloc_lock); 4620 4621 /* 4622 * Make sure we get a live inode and that it'll not disappear 4623 * meanwhile. 4624 */ 4625 inode = igrab(&btrfs_inode->vfs_inode); 4626 if (inode) { 4627 unsigned int nofs_flag; 4628 4629 nofs_flag = memalloc_nofs_save(); 4630 invalidate_inode_pages2(inode->i_mapping); 4631 memalloc_nofs_restore(nofs_flag); 4632 iput(inode); 4633 } 4634 spin_lock(&root->delalloc_lock); 4635 } 4636 spin_unlock(&root->delalloc_lock); 4637 } 4638 4639 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4640 { 4641 struct btrfs_root *root; 4642 LIST_HEAD(splice); 4643 4644 spin_lock(&fs_info->delalloc_root_lock); 4645 list_splice_init(&fs_info->delalloc_roots, &splice); 4646 while (!list_empty(&splice)) { 4647 root = list_first_entry(&splice, struct btrfs_root, 4648 delalloc_root); 4649 root = btrfs_grab_root(root); 4650 BUG_ON(!root); 4651 spin_unlock(&fs_info->delalloc_root_lock); 4652 4653 btrfs_destroy_delalloc_inodes(root); 4654 btrfs_put_root(root); 4655 4656 spin_lock(&fs_info->delalloc_root_lock); 4657 } 4658 spin_unlock(&fs_info->delalloc_root_lock); 4659 } 4660 4661 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4662 struct extent_io_tree *dirty_pages, 4663 int mark) 4664 { 4665 struct extent_buffer *eb; 4666 u64 start = 0; 4667 u64 end; 4668 4669 while (find_first_extent_bit(dirty_pages, start, &start, &end, 4670 mark, NULL)) { 4671 clear_extent_bits(dirty_pages, start, end, mark); 4672 while (start <= end) { 4673 eb = find_extent_buffer(fs_info, start); 4674 start += fs_info->nodesize; 4675 if (!eb) 4676 continue; 4677 4678 btrfs_tree_lock(eb); 4679 wait_on_extent_buffer_writeback(eb); 4680 btrfs_clear_buffer_dirty(NULL, eb); 4681 btrfs_tree_unlock(eb); 4682 4683 free_extent_buffer_stale(eb); 4684 } 4685 } 4686 } 4687 4688 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4689 struct extent_io_tree *unpin) 4690 { 4691 u64 start; 4692 u64 end; 4693 4694 while (1) { 4695 struct extent_state *cached_state = NULL; 4696 4697 /* 4698 * The btrfs_finish_extent_commit() may get the same range as 4699 * ours between find_first_extent_bit and clear_extent_dirty. 4700 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4701 * the same extent range. 4702 */ 4703 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4704 if (!find_first_extent_bit(unpin, 0, &start, &end, 4705 EXTENT_DIRTY, &cached_state)) { 4706 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4707 break; 4708 } 4709 4710 clear_extent_dirty(unpin, start, end, &cached_state); 4711 free_extent_state(cached_state); 4712 btrfs_error_unpin_extent_range(fs_info, start, end); 4713 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4714 cond_resched(); 4715 } 4716 } 4717 4718 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4719 { 4720 struct inode *inode; 4721 4722 inode = cache->io_ctl.inode; 4723 if (inode) { 4724 unsigned int nofs_flag; 4725 4726 nofs_flag = memalloc_nofs_save(); 4727 invalidate_inode_pages2(inode->i_mapping); 4728 memalloc_nofs_restore(nofs_flag); 4729 4730 BTRFS_I(inode)->generation = 0; 4731 cache->io_ctl.inode = NULL; 4732 iput(inode); 4733 } 4734 ASSERT(cache->io_ctl.pages == NULL); 4735 btrfs_put_block_group(cache); 4736 } 4737 4738 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4739 struct btrfs_fs_info *fs_info) 4740 { 4741 struct btrfs_block_group *cache; 4742 4743 spin_lock(&cur_trans->dirty_bgs_lock); 4744 while (!list_empty(&cur_trans->dirty_bgs)) { 4745 cache = list_first_entry(&cur_trans->dirty_bgs, 4746 struct btrfs_block_group, 4747 dirty_list); 4748 4749 if (!list_empty(&cache->io_list)) { 4750 spin_unlock(&cur_trans->dirty_bgs_lock); 4751 list_del_init(&cache->io_list); 4752 btrfs_cleanup_bg_io(cache); 4753 spin_lock(&cur_trans->dirty_bgs_lock); 4754 } 4755 4756 list_del_init(&cache->dirty_list); 4757 spin_lock(&cache->lock); 4758 cache->disk_cache_state = BTRFS_DC_ERROR; 4759 spin_unlock(&cache->lock); 4760 4761 spin_unlock(&cur_trans->dirty_bgs_lock); 4762 btrfs_put_block_group(cache); 4763 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 4764 spin_lock(&cur_trans->dirty_bgs_lock); 4765 } 4766 spin_unlock(&cur_trans->dirty_bgs_lock); 4767 4768 /* 4769 * Refer to the definition of io_bgs member for details why it's safe 4770 * to use it without any locking 4771 */ 4772 while (!list_empty(&cur_trans->io_bgs)) { 4773 cache = list_first_entry(&cur_trans->io_bgs, 4774 struct btrfs_block_group, 4775 io_list); 4776 4777 list_del_init(&cache->io_list); 4778 spin_lock(&cache->lock); 4779 cache->disk_cache_state = BTRFS_DC_ERROR; 4780 spin_unlock(&cache->lock); 4781 btrfs_cleanup_bg_io(cache); 4782 } 4783 } 4784 4785 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info) 4786 { 4787 struct btrfs_root *gang[8]; 4788 int i; 4789 int ret; 4790 4791 spin_lock(&fs_info->fs_roots_radix_lock); 4792 while (1) { 4793 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 4794 (void **)gang, 0, 4795 ARRAY_SIZE(gang), 4796 BTRFS_ROOT_TRANS_TAG); 4797 if (ret == 0) 4798 break; 4799 for (i = 0; i < ret; i++) { 4800 struct btrfs_root *root = gang[i]; 4801 4802 btrfs_qgroup_free_meta_all_pertrans(root); 4803 radix_tree_tag_clear(&fs_info->fs_roots_radix, 4804 (unsigned long)btrfs_root_id(root), 4805 BTRFS_ROOT_TRANS_TAG); 4806 } 4807 } 4808 spin_unlock(&fs_info->fs_roots_radix_lock); 4809 } 4810 4811 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4812 struct btrfs_fs_info *fs_info) 4813 { 4814 struct btrfs_device *dev, *tmp; 4815 4816 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4817 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4818 ASSERT(list_empty(&cur_trans->io_bgs)); 4819 4820 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4821 post_commit_list) { 4822 list_del_init(&dev->post_commit_list); 4823 } 4824 4825 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4826 4827 cur_trans->state = TRANS_STATE_COMMIT_START; 4828 wake_up(&fs_info->transaction_blocked_wait); 4829 4830 cur_trans->state = TRANS_STATE_UNBLOCKED; 4831 wake_up(&fs_info->transaction_wait); 4832 4833 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4834 EXTENT_DIRTY); 4835 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4836 4837 cur_trans->state =TRANS_STATE_COMPLETED; 4838 wake_up(&cur_trans->commit_wait); 4839 } 4840 4841 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4842 { 4843 struct btrfs_transaction *t; 4844 4845 mutex_lock(&fs_info->transaction_kthread_mutex); 4846 4847 spin_lock(&fs_info->trans_lock); 4848 while (!list_empty(&fs_info->trans_list)) { 4849 t = list_first_entry(&fs_info->trans_list, 4850 struct btrfs_transaction, list); 4851 if (t->state >= TRANS_STATE_COMMIT_PREP) { 4852 refcount_inc(&t->use_count); 4853 spin_unlock(&fs_info->trans_lock); 4854 btrfs_wait_for_commit(fs_info, t->transid); 4855 btrfs_put_transaction(t); 4856 spin_lock(&fs_info->trans_lock); 4857 continue; 4858 } 4859 if (t == fs_info->running_transaction) { 4860 t->state = TRANS_STATE_COMMIT_DOING; 4861 spin_unlock(&fs_info->trans_lock); 4862 /* 4863 * We wait for 0 num_writers since we don't hold a trans 4864 * handle open currently for this transaction. 4865 */ 4866 wait_event(t->writer_wait, 4867 atomic_read(&t->num_writers) == 0); 4868 } else { 4869 spin_unlock(&fs_info->trans_lock); 4870 } 4871 btrfs_cleanup_one_transaction(t, fs_info); 4872 4873 spin_lock(&fs_info->trans_lock); 4874 if (t == fs_info->running_transaction) 4875 fs_info->running_transaction = NULL; 4876 list_del_init(&t->list); 4877 spin_unlock(&fs_info->trans_lock); 4878 4879 btrfs_put_transaction(t); 4880 trace_btrfs_transaction_commit(fs_info); 4881 spin_lock(&fs_info->trans_lock); 4882 } 4883 spin_unlock(&fs_info->trans_lock); 4884 btrfs_destroy_all_ordered_extents(fs_info); 4885 btrfs_destroy_delayed_inodes(fs_info); 4886 btrfs_assert_delayed_root_empty(fs_info); 4887 btrfs_destroy_all_delalloc_inodes(fs_info); 4888 btrfs_drop_all_logs(fs_info); 4889 btrfs_free_all_qgroup_pertrans(fs_info); 4890 mutex_unlock(&fs_info->transaction_kthread_mutex); 4891 4892 return 0; 4893 } 4894 4895 int btrfs_init_root_free_objectid(struct btrfs_root *root) 4896 { 4897 struct btrfs_path *path; 4898 int ret; 4899 struct extent_buffer *l; 4900 struct btrfs_key search_key; 4901 struct btrfs_key found_key; 4902 int slot; 4903 4904 path = btrfs_alloc_path(); 4905 if (!path) 4906 return -ENOMEM; 4907 4908 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 4909 search_key.type = -1; 4910 search_key.offset = (u64)-1; 4911 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 4912 if (ret < 0) 4913 goto error; 4914 if (ret == 0) { 4915 /* 4916 * Key with offset -1 found, there would have to exist a root 4917 * with such id, but this is out of valid range. 4918 */ 4919 ret = -EUCLEAN; 4920 goto error; 4921 } 4922 if (path->slots[0] > 0) { 4923 slot = path->slots[0] - 1; 4924 l = path->nodes[0]; 4925 btrfs_item_key_to_cpu(l, &found_key, slot); 4926 root->free_objectid = max_t(u64, found_key.objectid + 1, 4927 BTRFS_FIRST_FREE_OBJECTID); 4928 } else { 4929 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 4930 } 4931 ret = 0; 4932 error: 4933 btrfs_free_path(path); 4934 return ret; 4935 } 4936 4937 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 4938 { 4939 int ret; 4940 mutex_lock(&root->objectid_mutex); 4941 4942 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 4943 btrfs_warn(root->fs_info, 4944 "the objectid of root %llu reaches its highest value", 4945 btrfs_root_id(root)); 4946 ret = -ENOSPC; 4947 goto out; 4948 } 4949 4950 *objectid = root->free_objectid++; 4951 ret = 0; 4952 out: 4953 mutex_unlock(&root->objectid_mutex); 4954 return ret; 4955 } 4956