1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/buffer_head.h> 11 #include <linux/workqueue.h> 12 #include <linux/kthread.h> 13 #include <linux/slab.h> 14 #include <linux/migrate.h> 15 #include <linux/ratelimit.h> 16 #include <linux/uuid.h> 17 #include <linux/semaphore.h> 18 #include <linux/error-injection.h> 19 #include <linux/crc32c.h> 20 #include <linux/sched/mm.h> 21 #include <asm/unaligned.h> 22 #include <crypto/hash.h> 23 #include "ctree.h" 24 #include "disk-io.h" 25 #include "transaction.h" 26 #include "btrfs_inode.h" 27 #include "volumes.h" 28 #include "print-tree.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "free-space-cache.h" 32 #include "free-space-tree.h" 33 #include "inode-map.h" 34 #include "check-integrity.h" 35 #include "rcu-string.h" 36 #include "dev-replace.h" 37 #include "raid56.h" 38 #include "sysfs.h" 39 #include "qgroup.h" 40 #include "compression.h" 41 #include "tree-checker.h" 42 #include "ref-verify.h" 43 #include "block-group.h" 44 45 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 46 BTRFS_HEADER_FLAG_RELOC |\ 47 BTRFS_SUPER_FLAG_ERROR |\ 48 BTRFS_SUPER_FLAG_SEEDING |\ 49 BTRFS_SUPER_FLAG_METADUMP |\ 50 BTRFS_SUPER_FLAG_METADUMP_V2) 51 52 static const struct extent_io_ops btree_extent_io_ops; 53 static void end_workqueue_fn(struct btrfs_work *work); 54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 56 struct btrfs_fs_info *fs_info); 57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 59 struct extent_io_tree *dirty_pages, 60 int mark); 61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 62 struct extent_io_tree *pinned_extents); 63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 65 66 /* 67 * btrfs_end_io_wq structs are used to do processing in task context when an IO 68 * is complete. This is used during reads to verify checksums, and it is used 69 * by writes to insert metadata for new file extents after IO is complete. 70 */ 71 struct btrfs_end_io_wq { 72 struct bio *bio; 73 bio_end_io_t *end_io; 74 void *private; 75 struct btrfs_fs_info *info; 76 blk_status_t status; 77 enum btrfs_wq_endio_type metadata; 78 struct btrfs_work work; 79 }; 80 81 static struct kmem_cache *btrfs_end_io_wq_cache; 82 83 int __init btrfs_end_io_wq_init(void) 84 { 85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 86 sizeof(struct btrfs_end_io_wq), 87 0, 88 SLAB_MEM_SPREAD, 89 NULL); 90 if (!btrfs_end_io_wq_cache) 91 return -ENOMEM; 92 return 0; 93 } 94 95 void __cold btrfs_end_io_wq_exit(void) 96 { 97 kmem_cache_destroy(btrfs_end_io_wq_cache); 98 } 99 100 /* 101 * async submit bios are used to offload expensive checksumming 102 * onto the worker threads. They checksum file and metadata bios 103 * just before they are sent down the IO stack. 104 */ 105 struct async_submit_bio { 106 void *private_data; 107 struct bio *bio; 108 extent_submit_bio_start_t *submit_bio_start; 109 int mirror_num; 110 /* 111 * bio_offset is optional, can be used if the pages in the bio 112 * can't tell us where in the file the bio should go 113 */ 114 u64 bio_offset; 115 struct btrfs_work work; 116 blk_status_t status; 117 }; 118 119 /* 120 * Lockdep class keys for extent_buffer->lock's in this root. For a given 121 * eb, the lockdep key is determined by the btrfs_root it belongs to and 122 * the level the eb occupies in the tree. 123 * 124 * Different roots are used for different purposes and may nest inside each 125 * other and they require separate keysets. As lockdep keys should be 126 * static, assign keysets according to the purpose of the root as indicated 127 * by btrfs_root->root_key.objectid. This ensures that all special purpose 128 * roots have separate keysets. 129 * 130 * Lock-nesting across peer nodes is always done with the immediate parent 131 * node locked thus preventing deadlock. As lockdep doesn't know this, use 132 * subclass to avoid triggering lockdep warning in such cases. 133 * 134 * The key is set by the readpage_end_io_hook after the buffer has passed 135 * csum validation but before the pages are unlocked. It is also set by 136 * btrfs_init_new_buffer on freshly allocated blocks. 137 * 138 * We also add a check to make sure the highest level of the tree is the 139 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 140 * needs update as well. 141 */ 142 #ifdef CONFIG_DEBUG_LOCK_ALLOC 143 # if BTRFS_MAX_LEVEL != 8 144 # error 145 # endif 146 147 static struct btrfs_lockdep_keyset { 148 u64 id; /* root objectid */ 149 const char *name_stem; /* lock name stem */ 150 char names[BTRFS_MAX_LEVEL + 1][20]; 151 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 152 } btrfs_lockdep_keysets[] = { 153 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 154 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 155 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 156 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 157 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 158 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 159 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 160 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 161 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 162 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 163 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 164 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 165 { .id = 0, .name_stem = "tree" }, 166 }; 167 168 void __init btrfs_init_lockdep(void) 169 { 170 int i, j; 171 172 /* initialize lockdep class names */ 173 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 174 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 175 176 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 177 snprintf(ks->names[j], sizeof(ks->names[j]), 178 "btrfs-%s-%02d", ks->name_stem, j); 179 } 180 } 181 182 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 183 int level) 184 { 185 struct btrfs_lockdep_keyset *ks; 186 187 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 188 189 /* find the matching keyset, id 0 is the default entry */ 190 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 191 if (ks->id == objectid) 192 break; 193 194 lockdep_set_class_and_name(&eb->lock, 195 &ks->keys[level], ks->names[level]); 196 } 197 198 #endif 199 200 /* 201 * extents on the btree inode are pretty simple, there's one extent 202 * that covers the entire device 203 */ 204 struct extent_map *btree_get_extent(struct btrfs_inode *inode, 205 struct page *page, size_t pg_offset, u64 start, u64 len, 206 int create) 207 { 208 struct btrfs_fs_info *fs_info = inode->root->fs_info; 209 struct extent_map_tree *em_tree = &inode->extent_tree; 210 struct extent_map *em; 211 int ret; 212 213 read_lock(&em_tree->lock); 214 em = lookup_extent_mapping(em_tree, start, len); 215 if (em) { 216 em->bdev = fs_info->fs_devices->latest_bdev; 217 read_unlock(&em_tree->lock); 218 goto out; 219 } 220 read_unlock(&em_tree->lock); 221 222 em = alloc_extent_map(); 223 if (!em) { 224 em = ERR_PTR(-ENOMEM); 225 goto out; 226 } 227 em->start = 0; 228 em->len = (u64)-1; 229 em->block_len = (u64)-1; 230 em->block_start = 0; 231 em->bdev = fs_info->fs_devices->latest_bdev; 232 233 write_lock(&em_tree->lock); 234 ret = add_extent_mapping(em_tree, em, 0); 235 if (ret == -EEXIST) { 236 free_extent_map(em); 237 em = lookup_extent_mapping(em_tree, start, len); 238 if (!em) 239 em = ERR_PTR(-EIO); 240 } else if (ret) { 241 free_extent_map(em); 242 em = ERR_PTR(ret); 243 } 244 write_unlock(&em_tree->lock); 245 246 out: 247 return em; 248 } 249 250 /* 251 * Compute the csum of a btree block and store the result to provided buffer. 252 * 253 * Returns error if the extent buffer cannot be mapped. 254 */ 255 static int csum_tree_block(struct extent_buffer *buf, u8 *result) 256 { 257 struct btrfs_fs_info *fs_info = buf->fs_info; 258 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 259 unsigned long len; 260 unsigned long cur_len; 261 unsigned long offset = BTRFS_CSUM_SIZE; 262 char *kaddr; 263 unsigned long map_start; 264 unsigned long map_len; 265 int err; 266 267 shash->tfm = fs_info->csum_shash; 268 crypto_shash_init(shash); 269 270 len = buf->len - offset; 271 272 while (len > 0) { 273 /* 274 * Note: we don't need to check for the err == 1 case here, as 275 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)' 276 * and 'min_len = 32' and the currently implemented mapping 277 * algorithm we cannot cross a page boundary. 278 */ 279 err = map_private_extent_buffer(buf, offset, 32, 280 &kaddr, &map_start, &map_len); 281 if (WARN_ON(err)) 282 return err; 283 cur_len = min(len, map_len - (offset - map_start)); 284 crypto_shash_update(shash, kaddr + offset - map_start, cur_len); 285 len -= cur_len; 286 offset += cur_len; 287 } 288 memset(result, 0, BTRFS_CSUM_SIZE); 289 290 crypto_shash_final(shash, result); 291 292 return 0; 293 } 294 295 /* 296 * we can't consider a given block up to date unless the transid of the 297 * block matches the transid in the parent node's pointer. This is how we 298 * detect blocks that either didn't get written at all or got written 299 * in the wrong place. 300 */ 301 static int verify_parent_transid(struct extent_io_tree *io_tree, 302 struct extent_buffer *eb, u64 parent_transid, 303 int atomic) 304 { 305 struct extent_state *cached_state = NULL; 306 int ret; 307 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 308 309 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 310 return 0; 311 312 if (atomic) 313 return -EAGAIN; 314 315 if (need_lock) { 316 btrfs_tree_read_lock(eb); 317 btrfs_set_lock_blocking_read(eb); 318 } 319 320 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 321 &cached_state); 322 if (extent_buffer_uptodate(eb) && 323 btrfs_header_generation(eb) == parent_transid) { 324 ret = 0; 325 goto out; 326 } 327 btrfs_err_rl(eb->fs_info, 328 "parent transid verify failed on %llu wanted %llu found %llu", 329 eb->start, 330 parent_transid, btrfs_header_generation(eb)); 331 ret = 1; 332 333 /* 334 * Things reading via commit roots that don't have normal protection, 335 * like send, can have a really old block in cache that may point at a 336 * block that has been freed and re-allocated. So don't clear uptodate 337 * if we find an eb that is under IO (dirty/writeback) because we could 338 * end up reading in the stale data and then writing it back out and 339 * making everybody very sad. 340 */ 341 if (!extent_buffer_under_io(eb)) 342 clear_extent_buffer_uptodate(eb); 343 out: 344 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 345 &cached_state); 346 if (need_lock) 347 btrfs_tree_read_unlock_blocking(eb); 348 return ret; 349 } 350 351 static bool btrfs_supported_super_csum(u16 csum_type) 352 { 353 switch (csum_type) { 354 case BTRFS_CSUM_TYPE_CRC32: 355 return true; 356 default: 357 return false; 358 } 359 } 360 361 /* 362 * Return 0 if the superblock checksum type matches the checksum value of that 363 * algorithm. Pass the raw disk superblock data. 364 */ 365 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 366 char *raw_disk_sb) 367 { 368 struct btrfs_super_block *disk_sb = 369 (struct btrfs_super_block *)raw_disk_sb; 370 char result[BTRFS_CSUM_SIZE]; 371 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 372 373 shash->tfm = fs_info->csum_shash; 374 crypto_shash_init(shash); 375 376 /* 377 * The super_block structure does not span the whole 378 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 379 * filled with zeros and is included in the checksum. 380 */ 381 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE, 382 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 383 crypto_shash_final(shash, result); 384 385 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb))) 386 return 1; 387 388 return 0; 389 } 390 391 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 392 struct btrfs_key *first_key, u64 parent_transid) 393 { 394 struct btrfs_fs_info *fs_info = eb->fs_info; 395 int found_level; 396 struct btrfs_key found_key; 397 int ret; 398 399 found_level = btrfs_header_level(eb); 400 if (found_level != level) { 401 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 402 KERN_ERR "BTRFS: tree level check failed\n"); 403 btrfs_err(fs_info, 404 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 405 eb->start, level, found_level); 406 return -EIO; 407 } 408 409 if (!first_key) 410 return 0; 411 412 /* 413 * For live tree block (new tree blocks in current transaction), 414 * we need proper lock context to avoid race, which is impossible here. 415 * So we only checks tree blocks which is read from disk, whose 416 * generation <= fs_info->last_trans_committed. 417 */ 418 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 419 return 0; 420 421 /* We have @first_key, so this @eb must have at least one item */ 422 if (btrfs_header_nritems(eb) == 0) { 423 btrfs_err(fs_info, 424 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 425 eb->start); 426 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 427 return -EUCLEAN; 428 } 429 430 if (found_level) 431 btrfs_node_key_to_cpu(eb, &found_key, 0); 432 else 433 btrfs_item_key_to_cpu(eb, &found_key, 0); 434 ret = btrfs_comp_cpu_keys(first_key, &found_key); 435 436 if (ret) { 437 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 438 KERN_ERR "BTRFS: tree first key check failed\n"); 439 btrfs_err(fs_info, 440 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 441 eb->start, parent_transid, first_key->objectid, 442 first_key->type, first_key->offset, 443 found_key.objectid, found_key.type, 444 found_key.offset); 445 } 446 return ret; 447 } 448 449 /* 450 * helper to read a given tree block, doing retries as required when 451 * the checksums don't match and we have alternate mirrors to try. 452 * 453 * @parent_transid: expected transid, skip check if 0 454 * @level: expected level, mandatory check 455 * @first_key: expected key of first slot, skip check if NULL 456 */ 457 static int btree_read_extent_buffer_pages(struct extent_buffer *eb, 458 u64 parent_transid, int level, 459 struct btrfs_key *first_key) 460 { 461 struct btrfs_fs_info *fs_info = eb->fs_info; 462 struct extent_io_tree *io_tree; 463 int failed = 0; 464 int ret; 465 int num_copies = 0; 466 int mirror_num = 0; 467 int failed_mirror = 0; 468 469 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 470 while (1) { 471 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 472 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num); 473 if (!ret) { 474 if (verify_parent_transid(io_tree, eb, 475 parent_transid, 0)) 476 ret = -EIO; 477 else if (btrfs_verify_level_key(eb, level, 478 first_key, parent_transid)) 479 ret = -EUCLEAN; 480 else 481 break; 482 } 483 484 num_copies = btrfs_num_copies(fs_info, 485 eb->start, eb->len); 486 if (num_copies == 1) 487 break; 488 489 if (!failed_mirror) { 490 failed = 1; 491 failed_mirror = eb->read_mirror; 492 } 493 494 mirror_num++; 495 if (mirror_num == failed_mirror) 496 mirror_num++; 497 498 if (mirror_num > num_copies) 499 break; 500 } 501 502 if (failed && !ret && failed_mirror) 503 btrfs_repair_eb_io_failure(eb, failed_mirror); 504 505 return ret; 506 } 507 508 /* 509 * checksum a dirty tree block before IO. This has extra checks to make sure 510 * we only fill in the checksum field in the first page of a multi-page block 511 */ 512 513 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 514 { 515 u64 start = page_offset(page); 516 u64 found_start; 517 u8 result[BTRFS_CSUM_SIZE]; 518 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 519 struct extent_buffer *eb; 520 int ret; 521 522 eb = (struct extent_buffer *)page->private; 523 if (page != eb->pages[0]) 524 return 0; 525 526 found_start = btrfs_header_bytenr(eb); 527 /* 528 * Please do not consolidate these warnings into a single if. 529 * It is useful to know what went wrong. 530 */ 531 if (WARN_ON(found_start != start)) 532 return -EUCLEAN; 533 if (WARN_ON(!PageUptodate(page))) 534 return -EUCLEAN; 535 536 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 537 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 538 539 if (csum_tree_block(eb, result)) 540 return -EINVAL; 541 542 if (btrfs_header_level(eb)) 543 ret = btrfs_check_node(eb); 544 else 545 ret = btrfs_check_leaf_full(eb); 546 547 if (ret < 0) { 548 btrfs_err(fs_info, 549 "block=%llu write time tree block corruption detected", 550 eb->start); 551 return ret; 552 } 553 write_extent_buffer(eb, result, 0, csum_size); 554 555 return 0; 556 } 557 558 static int check_tree_block_fsid(struct extent_buffer *eb) 559 { 560 struct btrfs_fs_info *fs_info = eb->fs_info; 561 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 562 u8 fsid[BTRFS_FSID_SIZE]; 563 int ret = 1; 564 565 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 566 while (fs_devices) { 567 u8 *metadata_uuid; 568 569 /* 570 * Checking the incompat flag is only valid for the current 571 * fs. For seed devices it's forbidden to have their uuid 572 * changed so reading ->fsid in this case is fine 573 */ 574 if (fs_devices == fs_info->fs_devices && 575 btrfs_fs_incompat(fs_info, METADATA_UUID)) 576 metadata_uuid = fs_devices->metadata_uuid; 577 else 578 metadata_uuid = fs_devices->fsid; 579 580 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) { 581 ret = 0; 582 break; 583 } 584 fs_devices = fs_devices->seed; 585 } 586 return ret; 587 } 588 589 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 590 u64 phy_offset, struct page *page, 591 u64 start, u64 end, int mirror) 592 { 593 u64 found_start; 594 int found_level; 595 struct extent_buffer *eb; 596 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 597 struct btrfs_fs_info *fs_info = root->fs_info; 598 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 599 int ret = 0; 600 u8 result[BTRFS_CSUM_SIZE]; 601 int reads_done; 602 603 if (!page->private) 604 goto out; 605 606 eb = (struct extent_buffer *)page->private; 607 608 /* the pending IO might have been the only thing that kept this buffer 609 * in memory. Make sure we have a ref for all this other checks 610 */ 611 extent_buffer_get(eb); 612 613 reads_done = atomic_dec_and_test(&eb->io_pages); 614 if (!reads_done) 615 goto err; 616 617 eb->read_mirror = mirror; 618 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 619 ret = -EIO; 620 goto err; 621 } 622 623 found_start = btrfs_header_bytenr(eb); 624 if (found_start != eb->start) { 625 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu", 626 eb->start, found_start); 627 ret = -EIO; 628 goto err; 629 } 630 if (check_tree_block_fsid(eb)) { 631 btrfs_err_rl(fs_info, "bad fsid on block %llu", 632 eb->start); 633 ret = -EIO; 634 goto err; 635 } 636 found_level = btrfs_header_level(eb); 637 if (found_level >= BTRFS_MAX_LEVEL) { 638 btrfs_err(fs_info, "bad tree block level %d on %llu", 639 (int)btrfs_header_level(eb), eb->start); 640 ret = -EIO; 641 goto err; 642 } 643 644 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 645 eb, found_level); 646 647 ret = csum_tree_block(eb, result); 648 if (ret) 649 goto err; 650 651 if (memcmp_extent_buffer(eb, result, 0, csum_size)) { 652 u32 val; 653 u32 found = 0; 654 655 memcpy(&found, result, csum_size); 656 657 read_extent_buffer(eb, &val, 0, csum_size); 658 btrfs_warn_rl(fs_info, 659 "%s checksum verify failed on %llu wanted %x found %x level %d", 660 fs_info->sb->s_id, eb->start, 661 val, found, btrfs_header_level(eb)); 662 ret = -EUCLEAN; 663 goto err; 664 } 665 666 /* 667 * If this is a leaf block and it is corrupt, set the corrupt bit so 668 * that we don't try and read the other copies of this block, just 669 * return -EIO. 670 */ 671 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 672 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 673 ret = -EIO; 674 } 675 676 if (found_level > 0 && btrfs_check_node(eb)) 677 ret = -EIO; 678 679 if (!ret) 680 set_extent_buffer_uptodate(eb); 681 else 682 btrfs_err(fs_info, 683 "block=%llu read time tree block corruption detected", 684 eb->start); 685 err: 686 if (reads_done && 687 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 688 btree_readahead_hook(eb, ret); 689 690 if (ret) { 691 /* 692 * our io error hook is going to dec the io pages 693 * again, we have to make sure it has something 694 * to decrement 695 */ 696 atomic_inc(&eb->io_pages); 697 clear_extent_buffer_uptodate(eb); 698 } 699 free_extent_buffer(eb); 700 out: 701 return ret; 702 } 703 704 static void end_workqueue_bio(struct bio *bio) 705 { 706 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 707 struct btrfs_fs_info *fs_info; 708 struct btrfs_workqueue *wq; 709 btrfs_work_func_t func; 710 711 fs_info = end_io_wq->info; 712 end_io_wq->status = bio->bi_status; 713 714 if (bio_op(bio) == REQ_OP_WRITE) { 715 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 716 wq = fs_info->endio_meta_write_workers; 717 func = btrfs_endio_meta_write_helper; 718 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 719 wq = fs_info->endio_freespace_worker; 720 func = btrfs_freespace_write_helper; 721 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 722 wq = fs_info->endio_raid56_workers; 723 func = btrfs_endio_raid56_helper; 724 } else { 725 wq = fs_info->endio_write_workers; 726 func = btrfs_endio_write_helper; 727 } 728 } else { 729 if (unlikely(end_io_wq->metadata == 730 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 731 wq = fs_info->endio_repair_workers; 732 func = btrfs_endio_repair_helper; 733 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 734 wq = fs_info->endio_raid56_workers; 735 func = btrfs_endio_raid56_helper; 736 } else if (end_io_wq->metadata) { 737 wq = fs_info->endio_meta_workers; 738 func = btrfs_endio_meta_helper; 739 } else { 740 wq = fs_info->endio_workers; 741 func = btrfs_endio_helper; 742 } 743 } 744 745 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 746 btrfs_queue_work(wq, &end_io_wq->work); 747 } 748 749 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 750 enum btrfs_wq_endio_type metadata) 751 { 752 struct btrfs_end_io_wq *end_io_wq; 753 754 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 755 if (!end_io_wq) 756 return BLK_STS_RESOURCE; 757 758 end_io_wq->private = bio->bi_private; 759 end_io_wq->end_io = bio->bi_end_io; 760 end_io_wq->info = info; 761 end_io_wq->status = 0; 762 end_io_wq->bio = bio; 763 end_io_wq->metadata = metadata; 764 765 bio->bi_private = end_io_wq; 766 bio->bi_end_io = end_workqueue_bio; 767 return 0; 768 } 769 770 static void run_one_async_start(struct btrfs_work *work) 771 { 772 struct async_submit_bio *async; 773 blk_status_t ret; 774 775 async = container_of(work, struct async_submit_bio, work); 776 ret = async->submit_bio_start(async->private_data, async->bio, 777 async->bio_offset); 778 if (ret) 779 async->status = ret; 780 } 781 782 /* 783 * In order to insert checksums into the metadata in large chunks, we wait 784 * until bio submission time. All the pages in the bio are checksummed and 785 * sums are attached onto the ordered extent record. 786 * 787 * At IO completion time the csums attached on the ordered extent record are 788 * inserted into the tree. 789 */ 790 static void run_one_async_done(struct btrfs_work *work) 791 { 792 struct async_submit_bio *async; 793 struct inode *inode; 794 blk_status_t ret; 795 796 async = container_of(work, struct async_submit_bio, work); 797 inode = async->private_data; 798 799 /* If an error occurred we just want to clean up the bio and move on */ 800 if (async->status) { 801 async->bio->bi_status = async->status; 802 bio_endio(async->bio); 803 return; 804 } 805 806 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, 807 async->mirror_num, 1); 808 if (ret) { 809 async->bio->bi_status = ret; 810 bio_endio(async->bio); 811 } 812 } 813 814 static void run_one_async_free(struct btrfs_work *work) 815 { 816 struct async_submit_bio *async; 817 818 async = container_of(work, struct async_submit_bio, work); 819 kfree(async); 820 } 821 822 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 823 int mirror_num, unsigned long bio_flags, 824 u64 bio_offset, void *private_data, 825 extent_submit_bio_start_t *submit_bio_start) 826 { 827 struct async_submit_bio *async; 828 829 async = kmalloc(sizeof(*async), GFP_NOFS); 830 if (!async) 831 return BLK_STS_RESOURCE; 832 833 async->private_data = private_data; 834 async->bio = bio; 835 async->mirror_num = mirror_num; 836 async->submit_bio_start = submit_bio_start; 837 838 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 839 run_one_async_done, run_one_async_free); 840 841 async->bio_offset = bio_offset; 842 843 async->status = 0; 844 845 if (op_is_sync(bio->bi_opf)) 846 btrfs_set_work_high_priority(&async->work); 847 848 btrfs_queue_work(fs_info->workers, &async->work); 849 return 0; 850 } 851 852 static blk_status_t btree_csum_one_bio(struct bio *bio) 853 { 854 struct bio_vec *bvec; 855 struct btrfs_root *root; 856 int ret = 0; 857 struct bvec_iter_all iter_all; 858 859 ASSERT(!bio_flagged(bio, BIO_CLONED)); 860 bio_for_each_segment_all(bvec, bio, iter_all) { 861 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 862 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 863 if (ret) 864 break; 865 } 866 867 return errno_to_blk_status(ret); 868 } 869 870 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, 871 u64 bio_offset) 872 { 873 /* 874 * when we're called for a write, we're already in the async 875 * submission context. Just jump into btrfs_map_bio 876 */ 877 return btree_csum_one_bio(bio); 878 } 879 880 static int check_async_write(struct btrfs_fs_info *fs_info, 881 struct btrfs_inode *bi) 882 { 883 if (atomic_read(&bi->sync_writers)) 884 return 0; 885 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags)) 886 return 0; 887 return 1; 888 } 889 890 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio, 891 int mirror_num, 892 unsigned long bio_flags) 893 { 894 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 895 int async = check_async_write(fs_info, BTRFS_I(inode)); 896 blk_status_t ret; 897 898 if (bio_op(bio) != REQ_OP_WRITE) { 899 /* 900 * called for a read, do the setup so that checksum validation 901 * can happen in the async kernel threads 902 */ 903 ret = btrfs_bio_wq_end_io(fs_info, bio, 904 BTRFS_WQ_ENDIO_METADATA); 905 if (ret) 906 goto out_w_error; 907 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 908 } else if (!async) { 909 ret = btree_csum_one_bio(bio); 910 if (ret) 911 goto out_w_error; 912 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 913 } else { 914 /* 915 * kthread helpers are used to submit writes so that 916 * checksumming can happen in parallel across all CPUs 917 */ 918 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 919 0, inode, btree_submit_bio_start); 920 } 921 922 if (ret) 923 goto out_w_error; 924 return 0; 925 926 out_w_error: 927 bio->bi_status = ret; 928 bio_endio(bio); 929 return ret; 930 } 931 932 #ifdef CONFIG_MIGRATION 933 static int btree_migratepage(struct address_space *mapping, 934 struct page *newpage, struct page *page, 935 enum migrate_mode mode) 936 { 937 /* 938 * we can't safely write a btree page from here, 939 * we haven't done the locking hook 940 */ 941 if (PageDirty(page)) 942 return -EAGAIN; 943 /* 944 * Buffers may be managed in a filesystem specific way. 945 * We must have no buffers or drop them. 946 */ 947 if (page_has_private(page) && 948 !try_to_release_page(page, GFP_KERNEL)) 949 return -EAGAIN; 950 return migrate_page(mapping, newpage, page, mode); 951 } 952 #endif 953 954 955 static int btree_writepages(struct address_space *mapping, 956 struct writeback_control *wbc) 957 { 958 struct btrfs_fs_info *fs_info; 959 int ret; 960 961 if (wbc->sync_mode == WB_SYNC_NONE) { 962 963 if (wbc->for_kupdate) 964 return 0; 965 966 fs_info = BTRFS_I(mapping->host)->root->fs_info; 967 /* this is a bit racy, but that's ok */ 968 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 969 BTRFS_DIRTY_METADATA_THRESH, 970 fs_info->dirty_metadata_batch); 971 if (ret < 0) 972 return 0; 973 } 974 return btree_write_cache_pages(mapping, wbc); 975 } 976 977 static int btree_readpage(struct file *file, struct page *page) 978 { 979 struct extent_io_tree *tree; 980 tree = &BTRFS_I(page->mapping->host)->io_tree; 981 return extent_read_full_page(tree, page, btree_get_extent, 0); 982 } 983 984 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 985 { 986 if (PageWriteback(page) || PageDirty(page)) 987 return 0; 988 989 return try_release_extent_buffer(page); 990 } 991 992 static void btree_invalidatepage(struct page *page, unsigned int offset, 993 unsigned int length) 994 { 995 struct extent_io_tree *tree; 996 tree = &BTRFS_I(page->mapping->host)->io_tree; 997 extent_invalidatepage(tree, page, offset); 998 btree_releasepage(page, GFP_NOFS); 999 if (PagePrivate(page)) { 1000 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1001 "page private not zero on page %llu", 1002 (unsigned long long)page_offset(page)); 1003 ClearPagePrivate(page); 1004 set_page_private(page, 0); 1005 put_page(page); 1006 } 1007 } 1008 1009 static int btree_set_page_dirty(struct page *page) 1010 { 1011 #ifdef DEBUG 1012 struct extent_buffer *eb; 1013 1014 BUG_ON(!PagePrivate(page)); 1015 eb = (struct extent_buffer *)page->private; 1016 BUG_ON(!eb); 1017 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1018 BUG_ON(!atomic_read(&eb->refs)); 1019 btrfs_assert_tree_locked(eb); 1020 #endif 1021 return __set_page_dirty_nobuffers(page); 1022 } 1023 1024 static const struct address_space_operations btree_aops = { 1025 .readpage = btree_readpage, 1026 .writepages = btree_writepages, 1027 .releasepage = btree_releasepage, 1028 .invalidatepage = btree_invalidatepage, 1029 #ifdef CONFIG_MIGRATION 1030 .migratepage = btree_migratepage, 1031 #endif 1032 .set_page_dirty = btree_set_page_dirty, 1033 }; 1034 1035 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 1036 { 1037 struct extent_buffer *buf = NULL; 1038 int ret; 1039 1040 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1041 if (IS_ERR(buf)) 1042 return; 1043 1044 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0); 1045 if (ret < 0) 1046 free_extent_buffer_stale(buf); 1047 else 1048 free_extent_buffer(buf); 1049 } 1050 1051 struct extent_buffer *btrfs_find_create_tree_block( 1052 struct btrfs_fs_info *fs_info, 1053 u64 bytenr) 1054 { 1055 if (btrfs_is_testing(fs_info)) 1056 return alloc_test_extent_buffer(fs_info, bytenr); 1057 return alloc_extent_buffer(fs_info, bytenr); 1058 } 1059 1060 /* 1061 * Read tree block at logical address @bytenr and do variant basic but critical 1062 * verification. 1063 * 1064 * @parent_transid: expected transid of this tree block, skip check if 0 1065 * @level: expected level, mandatory check 1066 * @first_key: expected key in slot 0, skip check if NULL 1067 */ 1068 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1069 u64 parent_transid, int level, 1070 struct btrfs_key *first_key) 1071 { 1072 struct extent_buffer *buf = NULL; 1073 int ret; 1074 1075 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1076 if (IS_ERR(buf)) 1077 return buf; 1078 1079 ret = btree_read_extent_buffer_pages(buf, parent_transid, 1080 level, first_key); 1081 if (ret) { 1082 free_extent_buffer_stale(buf); 1083 return ERR_PTR(ret); 1084 } 1085 return buf; 1086 1087 } 1088 1089 void btrfs_clean_tree_block(struct extent_buffer *buf) 1090 { 1091 struct btrfs_fs_info *fs_info = buf->fs_info; 1092 if (btrfs_header_generation(buf) == 1093 fs_info->running_transaction->transid) { 1094 btrfs_assert_tree_locked(buf); 1095 1096 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1097 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1098 -buf->len, 1099 fs_info->dirty_metadata_batch); 1100 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1101 btrfs_set_lock_blocking_write(buf); 1102 clear_extent_buffer_dirty(buf); 1103 } 1104 } 1105 } 1106 1107 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1108 { 1109 struct btrfs_subvolume_writers *writers; 1110 int ret; 1111 1112 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1113 if (!writers) 1114 return ERR_PTR(-ENOMEM); 1115 1116 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS); 1117 if (ret < 0) { 1118 kfree(writers); 1119 return ERR_PTR(ret); 1120 } 1121 1122 init_waitqueue_head(&writers->wait); 1123 return writers; 1124 } 1125 1126 static void 1127 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1128 { 1129 percpu_counter_destroy(&writers->counter); 1130 kfree(writers); 1131 } 1132 1133 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1134 u64 objectid) 1135 { 1136 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1137 root->node = NULL; 1138 root->commit_root = NULL; 1139 root->state = 0; 1140 root->orphan_cleanup_state = 0; 1141 1142 root->last_trans = 0; 1143 root->highest_objectid = 0; 1144 root->nr_delalloc_inodes = 0; 1145 root->nr_ordered_extents = 0; 1146 root->inode_tree = RB_ROOT; 1147 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1148 root->block_rsv = NULL; 1149 1150 INIT_LIST_HEAD(&root->dirty_list); 1151 INIT_LIST_HEAD(&root->root_list); 1152 INIT_LIST_HEAD(&root->delalloc_inodes); 1153 INIT_LIST_HEAD(&root->delalloc_root); 1154 INIT_LIST_HEAD(&root->ordered_extents); 1155 INIT_LIST_HEAD(&root->ordered_root); 1156 INIT_LIST_HEAD(&root->reloc_dirty_list); 1157 INIT_LIST_HEAD(&root->logged_list[0]); 1158 INIT_LIST_HEAD(&root->logged_list[1]); 1159 spin_lock_init(&root->inode_lock); 1160 spin_lock_init(&root->delalloc_lock); 1161 spin_lock_init(&root->ordered_extent_lock); 1162 spin_lock_init(&root->accounting_lock); 1163 spin_lock_init(&root->log_extents_lock[0]); 1164 spin_lock_init(&root->log_extents_lock[1]); 1165 spin_lock_init(&root->qgroup_meta_rsv_lock); 1166 mutex_init(&root->objectid_mutex); 1167 mutex_init(&root->log_mutex); 1168 mutex_init(&root->ordered_extent_mutex); 1169 mutex_init(&root->delalloc_mutex); 1170 init_waitqueue_head(&root->log_writer_wait); 1171 init_waitqueue_head(&root->log_commit_wait[0]); 1172 init_waitqueue_head(&root->log_commit_wait[1]); 1173 INIT_LIST_HEAD(&root->log_ctxs[0]); 1174 INIT_LIST_HEAD(&root->log_ctxs[1]); 1175 atomic_set(&root->log_commit[0], 0); 1176 atomic_set(&root->log_commit[1], 0); 1177 atomic_set(&root->log_writers, 0); 1178 atomic_set(&root->log_batch, 0); 1179 refcount_set(&root->refs, 1); 1180 atomic_set(&root->will_be_snapshotted, 0); 1181 atomic_set(&root->snapshot_force_cow, 0); 1182 atomic_set(&root->nr_swapfiles, 0); 1183 root->log_transid = 0; 1184 root->log_transid_committed = -1; 1185 root->last_log_commit = 0; 1186 if (!dummy) 1187 extent_io_tree_init(fs_info, &root->dirty_log_pages, 1188 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL); 1189 1190 memset(&root->root_key, 0, sizeof(root->root_key)); 1191 memset(&root->root_item, 0, sizeof(root->root_item)); 1192 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1193 if (!dummy) 1194 root->defrag_trans_start = fs_info->generation; 1195 else 1196 root->defrag_trans_start = 0; 1197 root->root_key.objectid = objectid; 1198 root->anon_dev = 0; 1199 1200 spin_lock_init(&root->root_item_lock); 1201 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 1202 } 1203 1204 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1205 gfp_t flags) 1206 { 1207 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1208 if (root) 1209 root->fs_info = fs_info; 1210 return root; 1211 } 1212 1213 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1214 /* Should only be used by the testing infrastructure */ 1215 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1216 { 1217 struct btrfs_root *root; 1218 1219 if (!fs_info) 1220 return ERR_PTR(-EINVAL); 1221 1222 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1223 if (!root) 1224 return ERR_PTR(-ENOMEM); 1225 1226 /* We don't use the stripesize in selftest, set it as sectorsize */ 1227 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 1228 root->alloc_bytenr = 0; 1229 1230 return root; 1231 } 1232 #endif 1233 1234 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1235 u64 objectid) 1236 { 1237 struct btrfs_fs_info *fs_info = trans->fs_info; 1238 struct extent_buffer *leaf; 1239 struct btrfs_root *tree_root = fs_info->tree_root; 1240 struct btrfs_root *root; 1241 struct btrfs_key key; 1242 unsigned int nofs_flag; 1243 int ret = 0; 1244 uuid_le uuid = NULL_UUID_LE; 1245 1246 /* 1247 * We're holding a transaction handle, so use a NOFS memory allocation 1248 * context to avoid deadlock if reclaim happens. 1249 */ 1250 nofs_flag = memalloc_nofs_save(); 1251 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1252 memalloc_nofs_restore(nofs_flag); 1253 if (!root) 1254 return ERR_PTR(-ENOMEM); 1255 1256 __setup_root(root, fs_info, objectid); 1257 root->root_key.objectid = objectid; 1258 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1259 root->root_key.offset = 0; 1260 1261 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1262 if (IS_ERR(leaf)) { 1263 ret = PTR_ERR(leaf); 1264 leaf = NULL; 1265 goto fail; 1266 } 1267 1268 root->node = leaf; 1269 btrfs_mark_buffer_dirty(leaf); 1270 1271 root->commit_root = btrfs_root_node(root); 1272 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1273 1274 root->root_item.flags = 0; 1275 root->root_item.byte_limit = 0; 1276 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1277 btrfs_set_root_generation(&root->root_item, trans->transid); 1278 btrfs_set_root_level(&root->root_item, 0); 1279 btrfs_set_root_refs(&root->root_item, 1); 1280 btrfs_set_root_used(&root->root_item, leaf->len); 1281 btrfs_set_root_last_snapshot(&root->root_item, 0); 1282 btrfs_set_root_dirid(&root->root_item, 0); 1283 if (is_fstree(objectid)) 1284 uuid_le_gen(&uuid); 1285 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1286 root->root_item.drop_level = 0; 1287 1288 key.objectid = objectid; 1289 key.type = BTRFS_ROOT_ITEM_KEY; 1290 key.offset = 0; 1291 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1292 if (ret) 1293 goto fail; 1294 1295 btrfs_tree_unlock(leaf); 1296 1297 return root; 1298 1299 fail: 1300 if (leaf) { 1301 btrfs_tree_unlock(leaf); 1302 free_extent_buffer(root->commit_root); 1303 free_extent_buffer(leaf); 1304 } 1305 kfree(root); 1306 1307 return ERR_PTR(ret); 1308 } 1309 1310 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1311 struct btrfs_fs_info *fs_info) 1312 { 1313 struct btrfs_root *root; 1314 struct extent_buffer *leaf; 1315 1316 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1317 if (!root) 1318 return ERR_PTR(-ENOMEM); 1319 1320 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1321 1322 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1323 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1324 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1325 1326 /* 1327 * DON'T set REF_COWS for log trees 1328 * 1329 * log trees do not get reference counted because they go away 1330 * before a real commit is actually done. They do store pointers 1331 * to file data extents, and those reference counts still get 1332 * updated (along with back refs to the log tree). 1333 */ 1334 1335 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1336 NULL, 0, 0, 0); 1337 if (IS_ERR(leaf)) { 1338 kfree(root); 1339 return ERR_CAST(leaf); 1340 } 1341 1342 root->node = leaf; 1343 1344 btrfs_mark_buffer_dirty(root->node); 1345 btrfs_tree_unlock(root->node); 1346 return root; 1347 } 1348 1349 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1350 struct btrfs_fs_info *fs_info) 1351 { 1352 struct btrfs_root *log_root; 1353 1354 log_root = alloc_log_tree(trans, fs_info); 1355 if (IS_ERR(log_root)) 1356 return PTR_ERR(log_root); 1357 WARN_ON(fs_info->log_root_tree); 1358 fs_info->log_root_tree = log_root; 1359 return 0; 1360 } 1361 1362 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1363 struct btrfs_root *root) 1364 { 1365 struct btrfs_fs_info *fs_info = root->fs_info; 1366 struct btrfs_root *log_root; 1367 struct btrfs_inode_item *inode_item; 1368 1369 log_root = alloc_log_tree(trans, fs_info); 1370 if (IS_ERR(log_root)) 1371 return PTR_ERR(log_root); 1372 1373 log_root->last_trans = trans->transid; 1374 log_root->root_key.offset = root->root_key.objectid; 1375 1376 inode_item = &log_root->root_item.inode; 1377 btrfs_set_stack_inode_generation(inode_item, 1); 1378 btrfs_set_stack_inode_size(inode_item, 3); 1379 btrfs_set_stack_inode_nlink(inode_item, 1); 1380 btrfs_set_stack_inode_nbytes(inode_item, 1381 fs_info->nodesize); 1382 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1383 1384 btrfs_set_root_node(&log_root->root_item, log_root->node); 1385 1386 WARN_ON(root->log_root); 1387 root->log_root = log_root; 1388 root->log_transid = 0; 1389 root->log_transid_committed = -1; 1390 root->last_log_commit = 0; 1391 return 0; 1392 } 1393 1394 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1395 struct btrfs_key *key) 1396 { 1397 struct btrfs_root *root; 1398 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1399 struct btrfs_path *path; 1400 u64 generation; 1401 int ret; 1402 int level; 1403 1404 path = btrfs_alloc_path(); 1405 if (!path) 1406 return ERR_PTR(-ENOMEM); 1407 1408 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1409 if (!root) { 1410 ret = -ENOMEM; 1411 goto alloc_fail; 1412 } 1413 1414 __setup_root(root, fs_info, key->objectid); 1415 1416 ret = btrfs_find_root(tree_root, key, path, 1417 &root->root_item, &root->root_key); 1418 if (ret) { 1419 if (ret > 0) 1420 ret = -ENOENT; 1421 goto find_fail; 1422 } 1423 1424 generation = btrfs_root_generation(&root->root_item); 1425 level = btrfs_root_level(&root->root_item); 1426 root->node = read_tree_block(fs_info, 1427 btrfs_root_bytenr(&root->root_item), 1428 generation, level, NULL); 1429 if (IS_ERR(root->node)) { 1430 ret = PTR_ERR(root->node); 1431 goto find_fail; 1432 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1433 ret = -EIO; 1434 free_extent_buffer(root->node); 1435 goto find_fail; 1436 } 1437 root->commit_root = btrfs_root_node(root); 1438 out: 1439 btrfs_free_path(path); 1440 return root; 1441 1442 find_fail: 1443 kfree(root); 1444 alloc_fail: 1445 root = ERR_PTR(ret); 1446 goto out; 1447 } 1448 1449 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1450 struct btrfs_key *location) 1451 { 1452 struct btrfs_root *root; 1453 1454 root = btrfs_read_tree_root(tree_root, location); 1455 if (IS_ERR(root)) 1456 return root; 1457 1458 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1459 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1460 btrfs_check_and_init_root_item(&root->root_item); 1461 } 1462 1463 return root; 1464 } 1465 1466 int btrfs_init_fs_root(struct btrfs_root *root) 1467 { 1468 int ret; 1469 struct btrfs_subvolume_writers *writers; 1470 1471 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1472 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1473 GFP_NOFS); 1474 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1475 ret = -ENOMEM; 1476 goto fail; 1477 } 1478 1479 writers = btrfs_alloc_subvolume_writers(); 1480 if (IS_ERR(writers)) { 1481 ret = PTR_ERR(writers); 1482 goto fail; 1483 } 1484 root->subv_writers = writers; 1485 1486 btrfs_init_free_ino_ctl(root); 1487 spin_lock_init(&root->ino_cache_lock); 1488 init_waitqueue_head(&root->ino_cache_wait); 1489 1490 ret = get_anon_bdev(&root->anon_dev); 1491 if (ret) 1492 goto fail; 1493 1494 mutex_lock(&root->objectid_mutex); 1495 ret = btrfs_find_highest_objectid(root, 1496 &root->highest_objectid); 1497 if (ret) { 1498 mutex_unlock(&root->objectid_mutex); 1499 goto fail; 1500 } 1501 1502 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1503 1504 mutex_unlock(&root->objectid_mutex); 1505 1506 return 0; 1507 fail: 1508 /* The caller is responsible to call btrfs_free_fs_root */ 1509 return ret; 1510 } 1511 1512 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1513 u64 root_id) 1514 { 1515 struct btrfs_root *root; 1516 1517 spin_lock(&fs_info->fs_roots_radix_lock); 1518 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1519 (unsigned long)root_id); 1520 spin_unlock(&fs_info->fs_roots_radix_lock); 1521 return root; 1522 } 1523 1524 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1525 struct btrfs_root *root) 1526 { 1527 int ret; 1528 1529 ret = radix_tree_preload(GFP_NOFS); 1530 if (ret) 1531 return ret; 1532 1533 spin_lock(&fs_info->fs_roots_radix_lock); 1534 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1535 (unsigned long)root->root_key.objectid, 1536 root); 1537 if (ret == 0) 1538 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1539 spin_unlock(&fs_info->fs_roots_radix_lock); 1540 radix_tree_preload_end(); 1541 1542 return ret; 1543 } 1544 1545 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1546 struct btrfs_key *location, 1547 bool check_ref) 1548 { 1549 struct btrfs_root *root; 1550 struct btrfs_path *path; 1551 struct btrfs_key key; 1552 int ret; 1553 1554 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1555 return fs_info->tree_root; 1556 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1557 return fs_info->extent_root; 1558 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1559 return fs_info->chunk_root; 1560 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1561 return fs_info->dev_root; 1562 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1563 return fs_info->csum_root; 1564 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1565 return fs_info->quota_root ? fs_info->quota_root : 1566 ERR_PTR(-ENOENT); 1567 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1568 return fs_info->uuid_root ? fs_info->uuid_root : 1569 ERR_PTR(-ENOENT); 1570 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1571 return fs_info->free_space_root ? fs_info->free_space_root : 1572 ERR_PTR(-ENOENT); 1573 again: 1574 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1575 if (root) { 1576 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1577 return ERR_PTR(-ENOENT); 1578 return root; 1579 } 1580 1581 root = btrfs_read_fs_root(fs_info->tree_root, location); 1582 if (IS_ERR(root)) 1583 return root; 1584 1585 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1586 ret = -ENOENT; 1587 goto fail; 1588 } 1589 1590 ret = btrfs_init_fs_root(root); 1591 if (ret) 1592 goto fail; 1593 1594 path = btrfs_alloc_path(); 1595 if (!path) { 1596 ret = -ENOMEM; 1597 goto fail; 1598 } 1599 key.objectid = BTRFS_ORPHAN_OBJECTID; 1600 key.type = BTRFS_ORPHAN_ITEM_KEY; 1601 key.offset = location->objectid; 1602 1603 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1604 btrfs_free_path(path); 1605 if (ret < 0) 1606 goto fail; 1607 if (ret == 0) 1608 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1609 1610 ret = btrfs_insert_fs_root(fs_info, root); 1611 if (ret) { 1612 if (ret == -EEXIST) { 1613 btrfs_free_fs_root(root); 1614 goto again; 1615 } 1616 goto fail; 1617 } 1618 return root; 1619 fail: 1620 btrfs_free_fs_root(root); 1621 return ERR_PTR(ret); 1622 } 1623 1624 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1625 { 1626 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1627 int ret = 0; 1628 struct btrfs_device *device; 1629 struct backing_dev_info *bdi; 1630 1631 rcu_read_lock(); 1632 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1633 if (!device->bdev) 1634 continue; 1635 bdi = device->bdev->bd_bdi; 1636 if (bdi_congested(bdi, bdi_bits)) { 1637 ret = 1; 1638 break; 1639 } 1640 } 1641 rcu_read_unlock(); 1642 return ret; 1643 } 1644 1645 /* 1646 * called by the kthread helper functions to finally call the bio end_io 1647 * functions. This is where read checksum verification actually happens 1648 */ 1649 static void end_workqueue_fn(struct btrfs_work *work) 1650 { 1651 struct bio *bio; 1652 struct btrfs_end_io_wq *end_io_wq; 1653 1654 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1655 bio = end_io_wq->bio; 1656 1657 bio->bi_status = end_io_wq->status; 1658 bio->bi_private = end_io_wq->private; 1659 bio->bi_end_io = end_io_wq->end_io; 1660 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1661 bio_endio(bio); 1662 } 1663 1664 static int cleaner_kthread(void *arg) 1665 { 1666 struct btrfs_root *root = arg; 1667 struct btrfs_fs_info *fs_info = root->fs_info; 1668 int again; 1669 1670 while (1) { 1671 again = 0; 1672 1673 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1674 1675 /* Make the cleaner go to sleep early. */ 1676 if (btrfs_need_cleaner_sleep(fs_info)) 1677 goto sleep; 1678 1679 /* 1680 * Do not do anything if we might cause open_ctree() to block 1681 * before we have finished mounting the filesystem. 1682 */ 1683 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1684 goto sleep; 1685 1686 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1687 goto sleep; 1688 1689 /* 1690 * Avoid the problem that we change the status of the fs 1691 * during the above check and trylock. 1692 */ 1693 if (btrfs_need_cleaner_sleep(fs_info)) { 1694 mutex_unlock(&fs_info->cleaner_mutex); 1695 goto sleep; 1696 } 1697 1698 btrfs_run_delayed_iputs(fs_info); 1699 1700 again = btrfs_clean_one_deleted_snapshot(root); 1701 mutex_unlock(&fs_info->cleaner_mutex); 1702 1703 /* 1704 * The defragger has dealt with the R/O remount and umount, 1705 * needn't do anything special here. 1706 */ 1707 btrfs_run_defrag_inodes(fs_info); 1708 1709 /* 1710 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1711 * with relocation (btrfs_relocate_chunk) and relocation 1712 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1713 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1714 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1715 * unused block groups. 1716 */ 1717 btrfs_delete_unused_bgs(fs_info); 1718 sleep: 1719 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1720 if (kthread_should_park()) 1721 kthread_parkme(); 1722 if (kthread_should_stop()) 1723 return 0; 1724 if (!again) { 1725 set_current_state(TASK_INTERRUPTIBLE); 1726 schedule(); 1727 __set_current_state(TASK_RUNNING); 1728 } 1729 } 1730 } 1731 1732 static int transaction_kthread(void *arg) 1733 { 1734 struct btrfs_root *root = arg; 1735 struct btrfs_fs_info *fs_info = root->fs_info; 1736 struct btrfs_trans_handle *trans; 1737 struct btrfs_transaction *cur; 1738 u64 transid; 1739 time64_t now; 1740 unsigned long delay; 1741 bool cannot_commit; 1742 1743 do { 1744 cannot_commit = false; 1745 delay = HZ * fs_info->commit_interval; 1746 mutex_lock(&fs_info->transaction_kthread_mutex); 1747 1748 spin_lock(&fs_info->trans_lock); 1749 cur = fs_info->running_transaction; 1750 if (!cur) { 1751 spin_unlock(&fs_info->trans_lock); 1752 goto sleep; 1753 } 1754 1755 now = ktime_get_seconds(); 1756 if (cur->state < TRANS_STATE_BLOCKED && 1757 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) && 1758 (now < cur->start_time || 1759 now - cur->start_time < fs_info->commit_interval)) { 1760 spin_unlock(&fs_info->trans_lock); 1761 delay = HZ * 5; 1762 goto sleep; 1763 } 1764 transid = cur->transid; 1765 spin_unlock(&fs_info->trans_lock); 1766 1767 /* If the file system is aborted, this will always fail. */ 1768 trans = btrfs_attach_transaction(root); 1769 if (IS_ERR(trans)) { 1770 if (PTR_ERR(trans) != -ENOENT) 1771 cannot_commit = true; 1772 goto sleep; 1773 } 1774 if (transid == trans->transid) { 1775 btrfs_commit_transaction(trans); 1776 } else { 1777 btrfs_end_transaction(trans); 1778 } 1779 sleep: 1780 wake_up_process(fs_info->cleaner_kthread); 1781 mutex_unlock(&fs_info->transaction_kthread_mutex); 1782 1783 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1784 &fs_info->fs_state))) 1785 btrfs_cleanup_transaction(fs_info); 1786 if (!kthread_should_stop() && 1787 (!btrfs_transaction_blocked(fs_info) || 1788 cannot_commit)) 1789 schedule_timeout_interruptible(delay); 1790 } while (!kthread_should_stop()); 1791 return 0; 1792 } 1793 1794 /* 1795 * this will find the highest generation in the array of 1796 * root backups. The index of the highest array is returned, 1797 * or -1 if we can't find anything. 1798 * 1799 * We check to make sure the array is valid by comparing the 1800 * generation of the latest root in the array with the generation 1801 * in the super block. If they don't match we pitch it. 1802 */ 1803 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1804 { 1805 u64 cur; 1806 int newest_index = -1; 1807 struct btrfs_root_backup *root_backup; 1808 int i; 1809 1810 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1811 root_backup = info->super_copy->super_roots + i; 1812 cur = btrfs_backup_tree_root_gen(root_backup); 1813 if (cur == newest_gen) 1814 newest_index = i; 1815 } 1816 1817 /* check to see if we actually wrapped around */ 1818 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1819 root_backup = info->super_copy->super_roots; 1820 cur = btrfs_backup_tree_root_gen(root_backup); 1821 if (cur == newest_gen) 1822 newest_index = 0; 1823 } 1824 return newest_index; 1825 } 1826 1827 1828 /* 1829 * find the oldest backup so we know where to store new entries 1830 * in the backup array. This will set the backup_root_index 1831 * field in the fs_info struct 1832 */ 1833 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1834 u64 newest_gen) 1835 { 1836 int newest_index = -1; 1837 1838 newest_index = find_newest_super_backup(info, newest_gen); 1839 /* if there was garbage in there, just move along */ 1840 if (newest_index == -1) { 1841 info->backup_root_index = 0; 1842 } else { 1843 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1844 } 1845 } 1846 1847 /* 1848 * copy all the root pointers into the super backup array. 1849 * this will bump the backup pointer by one when it is 1850 * done 1851 */ 1852 static void backup_super_roots(struct btrfs_fs_info *info) 1853 { 1854 int next_backup; 1855 struct btrfs_root_backup *root_backup; 1856 int last_backup; 1857 1858 next_backup = info->backup_root_index; 1859 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1860 BTRFS_NUM_BACKUP_ROOTS; 1861 1862 /* 1863 * just overwrite the last backup if we're at the same generation 1864 * this happens only at umount 1865 */ 1866 root_backup = info->super_for_commit->super_roots + last_backup; 1867 if (btrfs_backup_tree_root_gen(root_backup) == 1868 btrfs_header_generation(info->tree_root->node)) 1869 next_backup = last_backup; 1870 1871 root_backup = info->super_for_commit->super_roots + next_backup; 1872 1873 /* 1874 * make sure all of our padding and empty slots get zero filled 1875 * regardless of which ones we use today 1876 */ 1877 memset(root_backup, 0, sizeof(*root_backup)); 1878 1879 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1880 1881 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1882 btrfs_set_backup_tree_root_gen(root_backup, 1883 btrfs_header_generation(info->tree_root->node)); 1884 1885 btrfs_set_backup_tree_root_level(root_backup, 1886 btrfs_header_level(info->tree_root->node)); 1887 1888 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1889 btrfs_set_backup_chunk_root_gen(root_backup, 1890 btrfs_header_generation(info->chunk_root->node)); 1891 btrfs_set_backup_chunk_root_level(root_backup, 1892 btrfs_header_level(info->chunk_root->node)); 1893 1894 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1895 btrfs_set_backup_extent_root_gen(root_backup, 1896 btrfs_header_generation(info->extent_root->node)); 1897 btrfs_set_backup_extent_root_level(root_backup, 1898 btrfs_header_level(info->extent_root->node)); 1899 1900 /* 1901 * we might commit during log recovery, which happens before we set 1902 * the fs_root. Make sure it is valid before we fill it in. 1903 */ 1904 if (info->fs_root && info->fs_root->node) { 1905 btrfs_set_backup_fs_root(root_backup, 1906 info->fs_root->node->start); 1907 btrfs_set_backup_fs_root_gen(root_backup, 1908 btrfs_header_generation(info->fs_root->node)); 1909 btrfs_set_backup_fs_root_level(root_backup, 1910 btrfs_header_level(info->fs_root->node)); 1911 } 1912 1913 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1914 btrfs_set_backup_dev_root_gen(root_backup, 1915 btrfs_header_generation(info->dev_root->node)); 1916 btrfs_set_backup_dev_root_level(root_backup, 1917 btrfs_header_level(info->dev_root->node)); 1918 1919 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1920 btrfs_set_backup_csum_root_gen(root_backup, 1921 btrfs_header_generation(info->csum_root->node)); 1922 btrfs_set_backup_csum_root_level(root_backup, 1923 btrfs_header_level(info->csum_root->node)); 1924 1925 btrfs_set_backup_total_bytes(root_backup, 1926 btrfs_super_total_bytes(info->super_copy)); 1927 btrfs_set_backup_bytes_used(root_backup, 1928 btrfs_super_bytes_used(info->super_copy)); 1929 btrfs_set_backup_num_devices(root_backup, 1930 btrfs_super_num_devices(info->super_copy)); 1931 1932 /* 1933 * if we don't copy this out to the super_copy, it won't get remembered 1934 * for the next commit 1935 */ 1936 memcpy(&info->super_copy->super_roots, 1937 &info->super_for_commit->super_roots, 1938 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1939 } 1940 1941 /* 1942 * this copies info out of the root backup array and back into 1943 * the in-memory super block. It is meant to help iterate through 1944 * the array, so you send it the number of backups you've already 1945 * tried and the last backup index you used. 1946 * 1947 * this returns -1 when it has tried all the backups 1948 */ 1949 static noinline int next_root_backup(struct btrfs_fs_info *info, 1950 struct btrfs_super_block *super, 1951 int *num_backups_tried, int *backup_index) 1952 { 1953 struct btrfs_root_backup *root_backup; 1954 int newest = *backup_index; 1955 1956 if (*num_backups_tried == 0) { 1957 u64 gen = btrfs_super_generation(super); 1958 1959 newest = find_newest_super_backup(info, gen); 1960 if (newest == -1) 1961 return -1; 1962 1963 *backup_index = newest; 1964 *num_backups_tried = 1; 1965 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1966 /* we've tried all the backups, all done */ 1967 return -1; 1968 } else { 1969 /* jump to the next oldest backup */ 1970 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1971 BTRFS_NUM_BACKUP_ROOTS; 1972 *backup_index = newest; 1973 *num_backups_tried += 1; 1974 } 1975 root_backup = super->super_roots + newest; 1976 1977 btrfs_set_super_generation(super, 1978 btrfs_backup_tree_root_gen(root_backup)); 1979 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1980 btrfs_set_super_root_level(super, 1981 btrfs_backup_tree_root_level(root_backup)); 1982 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1983 1984 /* 1985 * fixme: the total bytes and num_devices need to match or we should 1986 * need a fsck 1987 */ 1988 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1989 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1990 return 0; 1991 } 1992 1993 /* helper to cleanup workers */ 1994 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1995 { 1996 btrfs_destroy_workqueue(fs_info->fixup_workers); 1997 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1998 btrfs_destroy_workqueue(fs_info->workers); 1999 btrfs_destroy_workqueue(fs_info->endio_workers); 2000 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2001 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2002 btrfs_destroy_workqueue(fs_info->rmw_workers); 2003 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2004 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2005 btrfs_destroy_workqueue(fs_info->submit_workers); 2006 btrfs_destroy_workqueue(fs_info->delayed_workers); 2007 btrfs_destroy_workqueue(fs_info->caching_workers); 2008 btrfs_destroy_workqueue(fs_info->readahead_workers); 2009 btrfs_destroy_workqueue(fs_info->flush_workers); 2010 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2011 btrfs_destroy_workqueue(fs_info->extent_workers); 2012 /* 2013 * Now that all other work queues are destroyed, we can safely destroy 2014 * the queues used for metadata I/O, since tasks from those other work 2015 * queues can do metadata I/O operations. 2016 */ 2017 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2018 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2019 } 2020 2021 static void free_root_extent_buffers(struct btrfs_root *root) 2022 { 2023 if (root) { 2024 free_extent_buffer(root->node); 2025 free_extent_buffer(root->commit_root); 2026 root->node = NULL; 2027 root->commit_root = NULL; 2028 } 2029 } 2030 2031 /* helper to cleanup tree roots */ 2032 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2033 { 2034 free_root_extent_buffers(info->tree_root); 2035 2036 free_root_extent_buffers(info->dev_root); 2037 free_root_extent_buffers(info->extent_root); 2038 free_root_extent_buffers(info->csum_root); 2039 free_root_extent_buffers(info->quota_root); 2040 free_root_extent_buffers(info->uuid_root); 2041 if (chunk_root) 2042 free_root_extent_buffers(info->chunk_root); 2043 free_root_extent_buffers(info->free_space_root); 2044 } 2045 2046 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2047 { 2048 int ret; 2049 struct btrfs_root *gang[8]; 2050 int i; 2051 2052 while (!list_empty(&fs_info->dead_roots)) { 2053 gang[0] = list_entry(fs_info->dead_roots.next, 2054 struct btrfs_root, root_list); 2055 list_del(&gang[0]->root_list); 2056 2057 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2058 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2059 } else { 2060 free_extent_buffer(gang[0]->node); 2061 free_extent_buffer(gang[0]->commit_root); 2062 btrfs_put_fs_root(gang[0]); 2063 } 2064 } 2065 2066 while (1) { 2067 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2068 (void **)gang, 0, 2069 ARRAY_SIZE(gang)); 2070 if (!ret) 2071 break; 2072 for (i = 0; i < ret; i++) 2073 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2074 } 2075 2076 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2077 btrfs_free_log_root_tree(NULL, fs_info); 2078 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 2079 } 2080 } 2081 2082 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2083 { 2084 mutex_init(&fs_info->scrub_lock); 2085 atomic_set(&fs_info->scrubs_running, 0); 2086 atomic_set(&fs_info->scrub_pause_req, 0); 2087 atomic_set(&fs_info->scrubs_paused, 0); 2088 atomic_set(&fs_info->scrub_cancel_req, 0); 2089 init_waitqueue_head(&fs_info->scrub_pause_wait); 2090 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2091 } 2092 2093 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2094 { 2095 spin_lock_init(&fs_info->balance_lock); 2096 mutex_init(&fs_info->balance_mutex); 2097 atomic_set(&fs_info->balance_pause_req, 0); 2098 atomic_set(&fs_info->balance_cancel_req, 0); 2099 fs_info->balance_ctl = NULL; 2100 init_waitqueue_head(&fs_info->balance_wait_q); 2101 } 2102 2103 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2104 { 2105 struct inode *inode = fs_info->btree_inode; 2106 2107 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2108 set_nlink(inode, 1); 2109 /* 2110 * we set the i_size on the btree inode to the max possible int. 2111 * the real end of the address space is determined by all of 2112 * the devices in the system 2113 */ 2114 inode->i_size = OFFSET_MAX; 2115 inode->i_mapping->a_ops = &btree_aops; 2116 2117 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2118 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2119 IO_TREE_INODE_IO, inode); 2120 BTRFS_I(inode)->io_tree.track_uptodate = false; 2121 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2122 2123 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2124 2125 BTRFS_I(inode)->root = fs_info->tree_root; 2126 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2127 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2128 btrfs_insert_inode_hash(inode); 2129 } 2130 2131 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2132 { 2133 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2134 init_rwsem(&fs_info->dev_replace.rwsem); 2135 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2136 } 2137 2138 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2139 { 2140 spin_lock_init(&fs_info->qgroup_lock); 2141 mutex_init(&fs_info->qgroup_ioctl_lock); 2142 fs_info->qgroup_tree = RB_ROOT; 2143 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2144 fs_info->qgroup_seq = 1; 2145 fs_info->qgroup_ulist = NULL; 2146 fs_info->qgroup_rescan_running = false; 2147 mutex_init(&fs_info->qgroup_rescan_lock); 2148 } 2149 2150 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2151 struct btrfs_fs_devices *fs_devices) 2152 { 2153 u32 max_active = fs_info->thread_pool_size; 2154 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2155 2156 fs_info->workers = 2157 btrfs_alloc_workqueue(fs_info, "worker", 2158 flags | WQ_HIGHPRI, max_active, 16); 2159 2160 fs_info->delalloc_workers = 2161 btrfs_alloc_workqueue(fs_info, "delalloc", 2162 flags, max_active, 2); 2163 2164 fs_info->flush_workers = 2165 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2166 flags, max_active, 0); 2167 2168 fs_info->caching_workers = 2169 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2170 2171 /* 2172 * a higher idle thresh on the submit workers makes it much more 2173 * likely that bios will be send down in a sane order to the 2174 * devices 2175 */ 2176 fs_info->submit_workers = 2177 btrfs_alloc_workqueue(fs_info, "submit", flags, 2178 min_t(u64, fs_devices->num_devices, 2179 max_active), 64); 2180 2181 fs_info->fixup_workers = 2182 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2183 2184 /* 2185 * endios are largely parallel and should have a very 2186 * low idle thresh 2187 */ 2188 fs_info->endio_workers = 2189 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2190 fs_info->endio_meta_workers = 2191 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2192 max_active, 4); 2193 fs_info->endio_meta_write_workers = 2194 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2195 max_active, 2); 2196 fs_info->endio_raid56_workers = 2197 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2198 max_active, 4); 2199 fs_info->endio_repair_workers = 2200 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2201 fs_info->rmw_workers = 2202 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2203 fs_info->endio_write_workers = 2204 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2205 max_active, 2); 2206 fs_info->endio_freespace_worker = 2207 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2208 max_active, 0); 2209 fs_info->delayed_workers = 2210 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2211 max_active, 0); 2212 fs_info->readahead_workers = 2213 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2214 max_active, 2); 2215 fs_info->qgroup_rescan_workers = 2216 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2217 fs_info->extent_workers = 2218 btrfs_alloc_workqueue(fs_info, "extent-refs", flags, 2219 min_t(u64, fs_devices->num_devices, 2220 max_active), 8); 2221 2222 if (!(fs_info->workers && fs_info->delalloc_workers && 2223 fs_info->submit_workers && fs_info->flush_workers && 2224 fs_info->endio_workers && fs_info->endio_meta_workers && 2225 fs_info->endio_meta_write_workers && 2226 fs_info->endio_repair_workers && 2227 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2228 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2229 fs_info->caching_workers && fs_info->readahead_workers && 2230 fs_info->fixup_workers && fs_info->delayed_workers && 2231 fs_info->extent_workers && 2232 fs_info->qgroup_rescan_workers)) { 2233 return -ENOMEM; 2234 } 2235 2236 return 0; 2237 } 2238 2239 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2240 { 2241 struct crypto_shash *csum_shash; 2242 const char *csum_name = btrfs_super_csum_name(csum_type); 2243 2244 csum_shash = crypto_alloc_shash(csum_name, 0, 0); 2245 2246 if (IS_ERR(csum_shash)) { 2247 btrfs_err(fs_info, "error allocating %s hash for checksum", 2248 csum_name); 2249 return PTR_ERR(csum_shash); 2250 } 2251 2252 fs_info->csum_shash = csum_shash; 2253 2254 return 0; 2255 } 2256 2257 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 2258 { 2259 crypto_free_shash(fs_info->csum_shash); 2260 } 2261 2262 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2263 struct btrfs_fs_devices *fs_devices) 2264 { 2265 int ret; 2266 struct btrfs_root *log_tree_root; 2267 struct btrfs_super_block *disk_super = fs_info->super_copy; 2268 u64 bytenr = btrfs_super_log_root(disk_super); 2269 int level = btrfs_super_log_root_level(disk_super); 2270 2271 if (fs_devices->rw_devices == 0) { 2272 btrfs_warn(fs_info, "log replay required on RO media"); 2273 return -EIO; 2274 } 2275 2276 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2277 if (!log_tree_root) 2278 return -ENOMEM; 2279 2280 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2281 2282 log_tree_root->node = read_tree_block(fs_info, bytenr, 2283 fs_info->generation + 1, 2284 level, NULL); 2285 if (IS_ERR(log_tree_root->node)) { 2286 btrfs_warn(fs_info, "failed to read log tree"); 2287 ret = PTR_ERR(log_tree_root->node); 2288 kfree(log_tree_root); 2289 return ret; 2290 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2291 btrfs_err(fs_info, "failed to read log tree"); 2292 free_extent_buffer(log_tree_root->node); 2293 kfree(log_tree_root); 2294 return -EIO; 2295 } 2296 /* returns with log_tree_root freed on success */ 2297 ret = btrfs_recover_log_trees(log_tree_root); 2298 if (ret) { 2299 btrfs_handle_fs_error(fs_info, ret, 2300 "Failed to recover log tree"); 2301 free_extent_buffer(log_tree_root->node); 2302 kfree(log_tree_root); 2303 return ret; 2304 } 2305 2306 if (sb_rdonly(fs_info->sb)) { 2307 ret = btrfs_commit_super(fs_info); 2308 if (ret) 2309 return ret; 2310 } 2311 2312 return 0; 2313 } 2314 2315 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2316 { 2317 struct btrfs_root *tree_root = fs_info->tree_root; 2318 struct btrfs_root *root; 2319 struct btrfs_key location; 2320 int ret; 2321 2322 BUG_ON(!fs_info->tree_root); 2323 2324 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2325 location.type = BTRFS_ROOT_ITEM_KEY; 2326 location.offset = 0; 2327 2328 root = btrfs_read_tree_root(tree_root, &location); 2329 if (IS_ERR(root)) { 2330 ret = PTR_ERR(root); 2331 goto out; 2332 } 2333 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2334 fs_info->extent_root = root; 2335 2336 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2337 root = btrfs_read_tree_root(tree_root, &location); 2338 if (IS_ERR(root)) { 2339 ret = PTR_ERR(root); 2340 goto out; 2341 } 2342 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2343 fs_info->dev_root = root; 2344 btrfs_init_devices_late(fs_info); 2345 2346 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2347 root = btrfs_read_tree_root(tree_root, &location); 2348 if (IS_ERR(root)) { 2349 ret = PTR_ERR(root); 2350 goto out; 2351 } 2352 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2353 fs_info->csum_root = root; 2354 2355 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2356 root = btrfs_read_tree_root(tree_root, &location); 2357 if (!IS_ERR(root)) { 2358 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2359 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2360 fs_info->quota_root = root; 2361 } 2362 2363 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2364 root = btrfs_read_tree_root(tree_root, &location); 2365 if (IS_ERR(root)) { 2366 ret = PTR_ERR(root); 2367 if (ret != -ENOENT) 2368 goto out; 2369 } else { 2370 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2371 fs_info->uuid_root = root; 2372 } 2373 2374 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2375 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2376 root = btrfs_read_tree_root(tree_root, &location); 2377 if (IS_ERR(root)) { 2378 ret = PTR_ERR(root); 2379 goto out; 2380 } 2381 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2382 fs_info->free_space_root = root; 2383 } 2384 2385 return 0; 2386 out: 2387 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2388 location.objectid, ret); 2389 return ret; 2390 } 2391 2392 /* 2393 * Real super block validation 2394 * NOTE: super csum type and incompat features will not be checked here. 2395 * 2396 * @sb: super block to check 2397 * @mirror_num: the super block number to check its bytenr: 2398 * 0 the primary (1st) sb 2399 * 1, 2 2nd and 3rd backup copy 2400 * -1 skip bytenr check 2401 */ 2402 static int validate_super(struct btrfs_fs_info *fs_info, 2403 struct btrfs_super_block *sb, int mirror_num) 2404 { 2405 u64 nodesize = btrfs_super_nodesize(sb); 2406 u64 sectorsize = btrfs_super_sectorsize(sb); 2407 int ret = 0; 2408 2409 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2410 btrfs_err(fs_info, "no valid FS found"); 2411 ret = -EINVAL; 2412 } 2413 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2414 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2415 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2416 ret = -EINVAL; 2417 } 2418 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2419 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2420 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2421 ret = -EINVAL; 2422 } 2423 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2424 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2425 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2426 ret = -EINVAL; 2427 } 2428 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2429 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2430 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2431 ret = -EINVAL; 2432 } 2433 2434 /* 2435 * Check sectorsize and nodesize first, other check will need it. 2436 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2437 */ 2438 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2439 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2440 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2441 ret = -EINVAL; 2442 } 2443 /* Only PAGE SIZE is supported yet */ 2444 if (sectorsize != PAGE_SIZE) { 2445 btrfs_err(fs_info, 2446 "sectorsize %llu not supported yet, only support %lu", 2447 sectorsize, PAGE_SIZE); 2448 ret = -EINVAL; 2449 } 2450 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2451 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2452 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2453 ret = -EINVAL; 2454 } 2455 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2456 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2457 le32_to_cpu(sb->__unused_leafsize), nodesize); 2458 ret = -EINVAL; 2459 } 2460 2461 /* Root alignment check */ 2462 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2463 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2464 btrfs_super_root(sb)); 2465 ret = -EINVAL; 2466 } 2467 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2468 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2469 btrfs_super_chunk_root(sb)); 2470 ret = -EINVAL; 2471 } 2472 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2473 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2474 btrfs_super_log_root(sb)); 2475 ret = -EINVAL; 2476 } 2477 2478 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2479 BTRFS_FSID_SIZE) != 0) { 2480 btrfs_err(fs_info, 2481 "dev_item UUID does not match metadata fsid: %pU != %pU", 2482 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2483 ret = -EINVAL; 2484 } 2485 2486 /* 2487 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2488 * done later 2489 */ 2490 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2491 btrfs_err(fs_info, "bytes_used is too small %llu", 2492 btrfs_super_bytes_used(sb)); 2493 ret = -EINVAL; 2494 } 2495 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2496 btrfs_err(fs_info, "invalid stripesize %u", 2497 btrfs_super_stripesize(sb)); 2498 ret = -EINVAL; 2499 } 2500 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2501 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2502 btrfs_super_num_devices(sb)); 2503 if (btrfs_super_num_devices(sb) == 0) { 2504 btrfs_err(fs_info, "number of devices is 0"); 2505 ret = -EINVAL; 2506 } 2507 2508 if (mirror_num >= 0 && 2509 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2510 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2511 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2512 ret = -EINVAL; 2513 } 2514 2515 /* 2516 * Obvious sys_chunk_array corruptions, it must hold at least one key 2517 * and one chunk 2518 */ 2519 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2520 btrfs_err(fs_info, "system chunk array too big %u > %u", 2521 btrfs_super_sys_array_size(sb), 2522 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2523 ret = -EINVAL; 2524 } 2525 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2526 + sizeof(struct btrfs_chunk)) { 2527 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2528 btrfs_super_sys_array_size(sb), 2529 sizeof(struct btrfs_disk_key) 2530 + sizeof(struct btrfs_chunk)); 2531 ret = -EINVAL; 2532 } 2533 2534 /* 2535 * The generation is a global counter, we'll trust it more than the others 2536 * but it's still possible that it's the one that's wrong. 2537 */ 2538 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2539 btrfs_warn(fs_info, 2540 "suspicious: generation < chunk_root_generation: %llu < %llu", 2541 btrfs_super_generation(sb), 2542 btrfs_super_chunk_root_generation(sb)); 2543 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2544 && btrfs_super_cache_generation(sb) != (u64)-1) 2545 btrfs_warn(fs_info, 2546 "suspicious: generation < cache_generation: %llu < %llu", 2547 btrfs_super_generation(sb), 2548 btrfs_super_cache_generation(sb)); 2549 2550 return ret; 2551 } 2552 2553 /* 2554 * Validation of super block at mount time. 2555 * Some checks already done early at mount time, like csum type and incompat 2556 * flags will be skipped. 2557 */ 2558 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2559 { 2560 return validate_super(fs_info, fs_info->super_copy, 0); 2561 } 2562 2563 /* 2564 * Validation of super block at write time. 2565 * Some checks like bytenr check will be skipped as their values will be 2566 * overwritten soon. 2567 * Extra checks like csum type and incompat flags will be done here. 2568 */ 2569 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2570 struct btrfs_super_block *sb) 2571 { 2572 int ret; 2573 2574 ret = validate_super(fs_info, sb, -1); 2575 if (ret < 0) 2576 goto out; 2577 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2578 ret = -EUCLEAN; 2579 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2580 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2581 goto out; 2582 } 2583 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2584 ret = -EUCLEAN; 2585 btrfs_err(fs_info, 2586 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2587 btrfs_super_incompat_flags(sb), 2588 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2589 goto out; 2590 } 2591 out: 2592 if (ret < 0) 2593 btrfs_err(fs_info, 2594 "super block corruption detected before writing it to disk"); 2595 return ret; 2596 } 2597 2598 int open_ctree(struct super_block *sb, 2599 struct btrfs_fs_devices *fs_devices, 2600 char *options) 2601 { 2602 u32 sectorsize; 2603 u32 nodesize; 2604 u32 stripesize; 2605 u64 generation; 2606 u64 features; 2607 u16 csum_type; 2608 struct btrfs_key location; 2609 struct buffer_head *bh; 2610 struct btrfs_super_block *disk_super; 2611 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2612 struct btrfs_root *tree_root; 2613 struct btrfs_root *chunk_root; 2614 int ret; 2615 int err = -EINVAL; 2616 int num_backups_tried = 0; 2617 int backup_index = 0; 2618 int clear_free_space_tree = 0; 2619 int level; 2620 2621 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2622 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2623 if (!tree_root || !chunk_root) { 2624 err = -ENOMEM; 2625 goto fail; 2626 } 2627 2628 ret = init_srcu_struct(&fs_info->subvol_srcu); 2629 if (ret) { 2630 err = ret; 2631 goto fail; 2632 } 2633 2634 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL); 2635 if (ret) { 2636 err = ret; 2637 goto fail_srcu; 2638 } 2639 2640 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2641 if (ret) { 2642 err = ret; 2643 goto fail_dio_bytes; 2644 } 2645 fs_info->dirty_metadata_batch = PAGE_SIZE * 2646 (1 + ilog2(nr_cpu_ids)); 2647 2648 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2649 if (ret) { 2650 err = ret; 2651 goto fail_dirty_metadata_bytes; 2652 } 2653 2654 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2655 GFP_KERNEL); 2656 if (ret) { 2657 err = ret; 2658 goto fail_delalloc_bytes; 2659 } 2660 2661 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2662 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2663 INIT_LIST_HEAD(&fs_info->trans_list); 2664 INIT_LIST_HEAD(&fs_info->dead_roots); 2665 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2666 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2667 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2668 spin_lock_init(&fs_info->delalloc_root_lock); 2669 spin_lock_init(&fs_info->trans_lock); 2670 spin_lock_init(&fs_info->fs_roots_radix_lock); 2671 spin_lock_init(&fs_info->delayed_iput_lock); 2672 spin_lock_init(&fs_info->defrag_inodes_lock); 2673 spin_lock_init(&fs_info->tree_mod_seq_lock); 2674 spin_lock_init(&fs_info->super_lock); 2675 spin_lock_init(&fs_info->buffer_lock); 2676 spin_lock_init(&fs_info->unused_bgs_lock); 2677 rwlock_init(&fs_info->tree_mod_log_lock); 2678 mutex_init(&fs_info->unused_bg_unpin_mutex); 2679 mutex_init(&fs_info->delete_unused_bgs_mutex); 2680 mutex_init(&fs_info->reloc_mutex); 2681 mutex_init(&fs_info->delalloc_root_mutex); 2682 seqlock_init(&fs_info->profiles_lock); 2683 2684 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2685 INIT_LIST_HEAD(&fs_info->space_info); 2686 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2687 INIT_LIST_HEAD(&fs_info->unused_bgs); 2688 extent_map_tree_init(&fs_info->mapping_tree); 2689 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2690 BTRFS_BLOCK_RSV_GLOBAL); 2691 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2692 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2693 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2694 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2695 BTRFS_BLOCK_RSV_DELOPS); 2696 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2697 BTRFS_BLOCK_RSV_DELREFS); 2698 2699 atomic_set(&fs_info->async_delalloc_pages, 0); 2700 atomic_set(&fs_info->defrag_running, 0); 2701 atomic_set(&fs_info->reada_works_cnt, 0); 2702 atomic_set(&fs_info->nr_delayed_iputs, 0); 2703 atomic64_set(&fs_info->tree_mod_seq, 0); 2704 fs_info->sb = sb; 2705 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2706 fs_info->metadata_ratio = 0; 2707 fs_info->defrag_inodes = RB_ROOT; 2708 atomic64_set(&fs_info->free_chunk_space, 0); 2709 fs_info->tree_mod_log = RB_ROOT; 2710 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2711 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2712 /* readahead state */ 2713 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2714 spin_lock_init(&fs_info->reada_lock); 2715 btrfs_init_ref_verify(fs_info); 2716 2717 fs_info->thread_pool_size = min_t(unsigned long, 2718 num_online_cpus() + 2, 8); 2719 2720 INIT_LIST_HEAD(&fs_info->ordered_roots); 2721 spin_lock_init(&fs_info->ordered_root_lock); 2722 2723 fs_info->btree_inode = new_inode(sb); 2724 if (!fs_info->btree_inode) { 2725 err = -ENOMEM; 2726 goto fail_bio_counter; 2727 } 2728 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2729 2730 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2731 GFP_KERNEL); 2732 if (!fs_info->delayed_root) { 2733 err = -ENOMEM; 2734 goto fail_iput; 2735 } 2736 btrfs_init_delayed_root(fs_info->delayed_root); 2737 2738 btrfs_init_scrub(fs_info); 2739 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2740 fs_info->check_integrity_print_mask = 0; 2741 #endif 2742 btrfs_init_balance(fs_info); 2743 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2744 2745 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2746 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2747 2748 btrfs_init_btree_inode(fs_info); 2749 2750 spin_lock_init(&fs_info->block_group_cache_lock); 2751 fs_info->block_group_cache_tree = RB_ROOT; 2752 fs_info->first_logical_byte = (u64)-1; 2753 2754 extent_io_tree_init(fs_info, &fs_info->freed_extents[0], 2755 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL); 2756 extent_io_tree_init(fs_info, &fs_info->freed_extents[1], 2757 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL); 2758 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2759 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2760 2761 mutex_init(&fs_info->ordered_operations_mutex); 2762 mutex_init(&fs_info->tree_log_mutex); 2763 mutex_init(&fs_info->chunk_mutex); 2764 mutex_init(&fs_info->transaction_kthread_mutex); 2765 mutex_init(&fs_info->cleaner_mutex); 2766 mutex_init(&fs_info->ro_block_group_mutex); 2767 init_rwsem(&fs_info->commit_root_sem); 2768 init_rwsem(&fs_info->cleanup_work_sem); 2769 init_rwsem(&fs_info->subvol_sem); 2770 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2771 2772 btrfs_init_dev_replace_locks(fs_info); 2773 btrfs_init_qgroup(fs_info); 2774 2775 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2776 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2777 2778 init_waitqueue_head(&fs_info->transaction_throttle); 2779 init_waitqueue_head(&fs_info->transaction_wait); 2780 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2781 init_waitqueue_head(&fs_info->async_submit_wait); 2782 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2783 2784 /* Usable values until the real ones are cached from the superblock */ 2785 fs_info->nodesize = 4096; 2786 fs_info->sectorsize = 4096; 2787 fs_info->stripesize = 4096; 2788 2789 spin_lock_init(&fs_info->swapfile_pins_lock); 2790 fs_info->swapfile_pins = RB_ROOT; 2791 2792 fs_info->send_in_progress = 0; 2793 2794 ret = btrfs_alloc_stripe_hash_table(fs_info); 2795 if (ret) { 2796 err = ret; 2797 goto fail_alloc; 2798 } 2799 2800 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 2801 2802 invalidate_bdev(fs_devices->latest_bdev); 2803 2804 /* 2805 * Read super block and check the signature bytes only 2806 */ 2807 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2808 if (IS_ERR(bh)) { 2809 err = PTR_ERR(bh); 2810 goto fail_alloc; 2811 } 2812 2813 /* 2814 * Verify the type first, if that or the the checksum value are 2815 * corrupted, we'll find out 2816 */ 2817 csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data); 2818 if (!btrfs_supported_super_csum(csum_type)) { 2819 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 2820 csum_type); 2821 err = -EINVAL; 2822 brelse(bh); 2823 goto fail_alloc; 2824 } 2825 2826 ret = btrfs_init_csum_hash(fs_info, csum_type); 2827 if (ret) { 2828 err = ret; 2829 goto fail_alloc; 2830 } 2831 2832 /* 2833 * We want to check superblock checksum, the type is stored inside. 2834 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2835 */ 2836 if (btrfs_check_super_csum(fs_info, bh->b_data)) { 2837 btrfs_err(fs_info, "superblock checksum mismatch"); 2838 err = -EINVAL; 2839 brelse(bh); 2840 goto fail_csum; 2841 } 2842 2843 /* 2844 * super_copy is zeroed at allocation time and we never touch the 2845 * following bytes up to INFO_SIZE, the checksum is calculated from 2846 * the whole block of INFO_SIZE 2847 */ 2848 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2849 brelse(bh); 2850 2851 disk_super = fs_info->super_copy; 2852 2853 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2854 BTRFS_FSID_SIZE)); 2855 2856 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) { 2857 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid, 2858 fs_info->super_copy->metadata_uuid, 2859 BTRFS_FSID_SIZE)); 2860 } 2861 2862 features = btrfs_super_flags(disk_super); 2863 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 2864 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 2865 btrfs_set_super_flags(disk_super, features); 2866 btrfs_info(fs_info, 2867 "found metadata UUID change in progress flag, clearing"); 2868 } 2869 2870 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2871 sizeof(*fs_info->super_for_commit)); 2872 2873 ret = btrfs_validate_mount_super(fs_info); 2874 if (ret) { 2875 btrfs_err(fs_info, "superblock contains fatal errors"); 2876 err = -EINVAL; 2877 goto fail_csum; 2878 } 2879 2880 if (!btrfs_super_root(disk_super)) 2881 goto fail_csum; 2882 2883 /* check FS state, whether FS is broken. */ 2884 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2885 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2886 2887 /* 2888 * run through our array of backup supers and setup 2889 * our ring pointer to the oldest one 2890 */ 2891 generation = btrfs_super_generation(disk_super); 2892 find_oldest_super_backup(fs_info, generation); 2893 2894 /* 2895 * In the long term, we'll store the compression type in the super 2896 * block, and it'll be used for per file compression control. 2897 */ 2898 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2899 2900 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2901 if (ret) { 2902 err = ret; 2903 goto fail_csum; 2904 } 2905 2906 features = btrfs_super_incompat_flags(disk_super) & 2907 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2908 if (features) { 2909 btrfs_err(fs_info, 2910 "cannot mount because of unsupported optional features (%llx)", 2911 features); 2912 err = -EINVAL; 2913 goto fail_csum; 2914 } 2915 2916 features = btrfs_super_incompat_flags(disk_super); 2917 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2918 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2919 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2920 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 2921 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 2922 2923 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2924 btrfs_info(fs_info, "has skinny extents"); 2925 2926 /* 2927 * flag our filesystem as having big metadata blocks if 2928 * they are bigger than the page size 2929 */ 2930 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2931 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2932 btrfs_info(fs_info, 2933 "flagging fs with big metadata feature"); 2934 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2935 } 2936 2937 nodesize = btrfs_super_nodesize(disk_super); 2938 sectorsize = btrfs_super_sectorsize(disk_super); 2939 stripesize = sectorsize; 2940 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2941 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2942 2943 /* Cache block sizes */ 2944 fs_info->nodesize = nodesize; 2945 fs_info->sectorsize = sectorsize; 2946 fs_info->stripesize = stripesize; 2947 2948 /* 2949 * mixed block groups end up with duplicate but slightly offset 2950 * extent buffers for the same range. It leads to corruptions 2951 */ 2952 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2953 (sectorsize != nodesize)) { 2954 btrfs_err(fs_info, 2955 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2956 nodesize, sectorsize); 2957 goto fail_csum; 2958 } 2959 2960 /* 2961 * Needn't use the lock because there is no other task which will 2962 * update the flag. 2963 */ 2964 btrfs_set_super_incompat_flags(disk_super, features); 2965 2966 features = btrfs_super_compat_ro_flags(disk_super) & 2967 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2968 if (!sb_rdonly(sb) && features) { 2969 btrfs_err(fs_info, 2970 "cannot mount read-write because of unsupported optional features (%llx)", 2971 features); 2972 err = -EINVAL; 2973 goto fail_csum; 2974 } 2975 2976 ret = btrfs_init_workqueues(fs_info, fs_devices); 2977 if (ret) { 2978 err = ret; 2979 goto fail_sb_buffer; 2980 } 2981 2982 sb->s_bdi->congested_fn = btrfs_congested_fn; 2983 sb->s_bdi->congested_data = fs_info; 2984 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 2985 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES; 2986 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 2987 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 2988 2989 sb->s_blocksize = sectorsize; 2990 sb->s_blocksize_bits = blksize_bits(sectorsize); 2991 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 2992 2993 mutex_lock(&fs_info->chunk_mutex); 2994 ret = btrfs_read_sys_array(fs_info); 2995 mutex_unlock(&fs_info->chunk_mutex); 2996 if (ret) { 2997 btrfs_err(fs_info, "failed to read the system array: %d", ret); 2998 goto fail_sb_buffer; 2999 } 3000 3001 generation = btrfs_super_chunk_root_generation(disk_super); 3002 level = btrfs_super_chunk_root_level(disk_super); 3003 3004 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 3005 3006 chunk_root->node = read_tree_block(fs_info, 3007 btrfs_super_chunk_root(disk_super), 3008 generation, level, NULL); 3009 if (IS_ERR(chunk_root->node) || 3010 !extent_buffer_uptodate(chunk_root->node)) { 3011 btrfs_err(fs_info, "failed to read chunk root"); 3012 if (!IS_ERR(chunk_root->node)) 3013 free_extent_buffer(chunk_root->node); 3014 chunk_root->node = NULL; 3015 goto fail_tree_roots; 3016 } 3017 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 3018 chunk_root->commit_root = btrfs_root_node(chunk_root); 3019 3020 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3021 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 3022 3023 ret = btrfs_read_chunk_tree(fs_info); 3024 if (ret) { 3025 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3026 goto fail_tree_roots; 3027 } 3028 3029 /* 3030 * Keep the devid that is marked to be the target device for the 3031 * device replace procedure 3032 */ 3033 btrfs_free_extra_devids(fs_devices, 0); 3034 3035 if (!fs_devices->latest_bdev) { 3036 btrfs_err(fs_info, "failed to read devices"); 3037 goto fail_tree_roots; 3038 } 3039 3040 retry_root_backup: 3041 generation = btrfs_super_generation(disk_super); 3042 level = btrfs_super_root_level(disk_super); 3043 3044 tree_root->node = read_tree_block(fs_info, 3045 btrfs_super_root(disk_super), 3046 generation, level, NULL); 3047 if (IS_ERR(tree_root->node) || 3048 !extent_buffer_uptodate(tree_root->node)) { 3049 btrfs_warn(fs_info, "failed to read tree root"); 3050 if (!IS_ERR(tree_root->node)) 3051 free_extent_buffer(tree_root->node); 3052 tree_root->node = NULL; 3053 goto recovery_tree_root; 3054 } 3055 3056 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 3057 tree_root->commit_root = btrfs_root_node(tree_root); 3058 btrfs_set_root_refs(&tree_root->root_item, 1); 3059 3060 mutex_lock(&tree_root->objectid_mutex); 3061 ret = btrfs_find_highest_objectid(tree_root, 3062 &tree_root->highest_objectid); 3063 if (ret) { 3064 mutex_unlock(&tree_root->objectid_mutex); 3065 goto recovery_tree_root; 3066 } 3067 3068 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 3069 3070 mutex_unlock(&tree_root->objectid_mutex); 3071 3072 ret = btrfs_read_roots(fs_info); 3073 if (ret) 3074 goto recovery_tree_root; 3075 3076 fs_info->generation = generation; 3077 fs_info->last_trans_committed = generation; 3078 3079 ret = btrfs_verify_dev_extents(fs_info); 3080 if (ret) { 3081 btrfs_err(fs_info, 3082 "failed to verify dev extents against chunks: %d", 3083 ret); 3084 goto fail_block_groups; 3085 } 3086 ret = btrfs_recover_balance(fs_info); 3087 if (ret) { 3088 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3089 goto fail_block_groups; 3090 } 3091 3092 ret = btrfs_init_dev_stats(fs_info); 3093 if (ret) { 3094 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3095 goto fail_block_groups; 3096 } 3097 3098 ret = btrfs_init_dev_replace(fs_info); 3099 if (ret) { 3100 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3101 goto fail_block_groups; 3102 } 3103 3104 btrfs_free_extra_devids(fs_devices, 1); 3105 3106 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 3107 if (ret) { 3108 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3109 ret); 3110 goto fail_block_groups; 3111 } 3112 3113 ret = btrfs_sysfs_add_device(fs_devices); 3114 if (ret) { 3115 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 3116 ret); 3117 goto fail_fsdev_sysfs; 3118 } 3119 3120 ret = btrfs_sysfs_add_mounted(fs_info); 3121 if (ret) { 3122 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3123 goto fail_fsdev_sysfs; 3124 } 3125 3126 ret = btrfs_init_space_info(fs_info); 3127 if (ret) { 3128 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3129 goto fail_sysfs; 3130 } 3131 3132 ret = btrfs_read_block_groups(fs_info); 3133 if (ret) { 3134 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3135 goto fail_sysfs; 3136 } 3137 3138 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 3139 btrfs_warn(fs_info, 3140 "writable mount is not allowed due to too many missing devices"); 3141 goto fail_sysfs; 3142 } 3143 3144 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3145 "btrfs-cleaner"); 3146 if (IS_ERR(fs_info->cleaner_kthread)) 3147 goto fail_sysfs; 3148 3149 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3150 tree_root, 3151 "btrfs-transaction"); 3152 if (IS_ERR(fs_info->transaction_kthread)) 3153 goto fail_cleaner; 3154 3155 if (!btrfs_test_opt(fs_info, NOSSD) && 3156 !fs_info->fs_devices->rotating) { 3157 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3158 } 3159 3160 /* 3161 * Mount does not set all options immediately, we can do it now and do 3162 * not have to wait for transaction commit 3163 */ 3164 btrfs_apply_pending_changes(fs_info); 3165 3166 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3167 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3168 ret = btrfsic_mount(fs_info, fs_devices, 3169 btrfs_test_opt(fs_info, 3170 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3171 1 : 0, 3172 fs_info->check_integrity_print_mask); 3173 if (ret) 3174 btrfs_warn(fs_info, 3175 "failed to initialize integrity check module: %d", 3176 ret); 3177 } 3178 #endif 3179 ret = btrfs_read_qgroup_config(fs_info); 3180 if (ret) 3181 goto fail_trans_kthread; 3182 3183 if (btrfs_build_ref_tree(fs_info)) 3184 btrfs_err(fs_info, "couldn't build ref tree"); 3185 3186 /* do not make disk changes in broken FS or nologreplay is given */ 3187 if (btrfs_super_log_root(disk_super) != 0 && 3188 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3189 ret = btrfs_replay_log(fs_info, fs_devices); 3190 if (ret) { 3191 err = ret; 3192 goto fail_qgroup; 3193 } 3194 } 3195 3196 ret = btrfs_find_orphan_roots(fs_info); 3197 if (ret) 3198 goto fail_qgroup; 3199 3200 if (!sb_rdonly(sb)) { 3201 ret = btrfs_cleanup_fs_roots(fs_info); 3202 if (ret) 3203 goto fail_qgroup; 3204 3205 mutex_lock(&fs_info->cleaner_mutex); 3206 ret = btrfs_recover_relocation(tree_root); 3207 mutex_unlock(&fs_info->cleaner_mutex); 3208 if (ret < 0) { 3209 btrfs_warn(fs_info, "failed to recover relocation: %d", 3210 ret); 3211 err = -EINVAL; 3212 goto fail_qgroup; 3213 } 3214 } 3215 3216 location.objectid = BTRFS_FS_TREE_OBJECTID; 3217 location.type = BTRFS_ROOT_ITEM_KEY; 3218 location.offset = 0; 3219 3220 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3221 if (IS_ERR(fs_info->fs_root)) { 3222 err = PTR_ERR(fs_info->fs_root); 3223 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3224 goto fail_qgroup; 3225 } 3226 3227 if (sb_rdonly(sb)) 3228 return 0; 3229 3230 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3231 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3232 clear_free_space_tree = 1; 3233 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3234 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3235 btrfs_warn(fs_info, "free space tree is invalid"); 3236 clear_free_space_tree = 1; 3237 } 3238 3239 if (clear_free_space_tree) { 3240 btrfs_info(fs_info, "clearing free space tree"); 3241 ret = btrfs_clear_free_space_tree(fs_info); 3242 if (ret) { 3243 btrfs_warn(fs_info, 3244 "failed to clear free space tree: %d", ret); 3245 close_ctree(fs_info); 3246 return ret; 3247 } 3248 } 3249 3250 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3251 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3252 btrfs_info(fs_info, "creating free space tree"); 3253 ret = btrfs_create_free_space_tree(fs_info); 3254 if (ret) { 3255 btrfs_warn(fs_info, 3256 "failed to create free space tree: %d", ret); 3257 close_ctree(fs_info); 3258 return ret; 3259 } 3260 } 3261 3262 down_read(&fs_info->cleanup_work_sem); 3263 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3264 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3265 up_read(&fs_info->cleanup_work_sem); 3266 close_ctree(fs_info); 3267 return ret; 3268 } 3269 up_read(&fs_info->cleanup_work_sem); 3270 3271 ret = btrfs_resume_balance_async(fs_info); 3272 if (ret) { 3273 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3274 close_ctree(fs_info); 3275 return ret; 3276 } 3277 3278 ret = btrfs_resume_dev_replace_async(fs_info); 3279 if (ret) { 3280 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3281 close_ctree(fs_info); 3282 return ret; 3283 } 3284 3285 btrfs_qgroup_rescan_resume(fs_info); 3286 3287 if (!fs_info->uuid_root) { 3288 btrfs_info(fs_info, "creating UUID tree"); 3289 ret = btrfs_create_uuid_tree(fs_info); 3290 if (ret) { 3291 btrfs_warn(fs_info, 3292 "failed to create the UUID tree: %d", ret); 3293 close_ctree(fs_info); 3294 return ret; 3295 } 3296 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3297 fs_info->generation != 3298 btrfs_super_uuid_tree_generation(disk_super)) { 3299 btrfs_info(fs_info, "checking UUID tree"); 3300 ret = btrfs_check_uuid_tree(fs_info); 3301 if (ret) { 3302 btrfs_warn(fs_info, 3303 "failed to check the UUID tree: %d", ret); 3304 close_ctree(fs_info); 3305 return ret; 3306 } 3307 } else { 3308 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3309 } 3310 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3311 3312 /* 3313 * backuproot only affect mount behavior, and if open_ctree succeeded, 3314 * no need to keep the flag 3315 */ 3316 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3317 3318 return 0; 3319 3320 fail_qgroup: 3321 btrfs_free_qgroup_config(fs_info); 3322 fail_trans_kthread: 3323 kthread_stop(fs_info->transaction_kthread); 3324 btrfs_cleanup_transaction(fs_info); 3325 btrfs_free_fs_roots(fs_info); 3326 fail_cleaner: 3327 kthread_stop(fs_info->cleaner_kthread); 3328 3329 /* 3330 * make sure we're done with the btree inode before we stop our 3331 * kthreads 3332 */ 3333 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3334 3335 fail_sysfs: 3336 btrfs_sysfs_remove_mounted(fs_info); 3337 3338 fail_fsdev_sysfs: 3339 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3340 3341 fail_block_groups: 3342 btrfs_put_block_group_cache(fs_info); 3343 3344 fail_tree_roots: 3345 free_root_pointers(fs_info, 1); 3346 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3347 3348 fail_sb_buffer: 3349 btrfs_stop_all_workers(fs_info); 3350 btrfs_free_block_groups(fs_info); 3351 fail_csum: 3352 btrfs_free_csum_hash(fs_info); 3353 fail_alloc: 3354 fail_iput: 3355 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3356 3357 iput(fs_info->btree_inode); 3358 fail_bio_counter: 3359 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 3360 fail_delalloc_bytes: 3361 percpu_counter_destroy(&fs_info->delalloc_bytes); 3362 fail_dirty_metadata_bytes: 3363 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3364 fail_dio_bytes: 3365 percpu_counter_destroy(&fs_info->dio_bytes); 3366 fail_srcu: 3367 cleanup_srcu_struct(&fs_info->subvol_srcu); 3368 fail: 3369 btrfs_free_stripe_hash_table(fs_info); 3370 btrfs_close_devices(fs_info->fs_devices); 3371 return err; 3372 3373 recovery_tree_root: 3374 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 3375 goto fail_tree_roots; 3376 3377 free_root_pointers(fs_info, 0); 3378 3379 /* don't use the log in recovery mode, it won't be valid */ 3380 btrfs_set_super_log_root(disk_super, 0); 3381 3382 /* we can't trust the free space cache either */ 3383 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3384 3385 ret = next_root_backup(fs_info, fs_info->super_copy, 3386 &num_backups_tried, &backup_index); 3387 if (ret == -1) 3388 goto fail_block_groups; 3389 goto retry_root_backup; 3390 } 3391 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3392 3393 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3394 { 3395 if (uptodate) { 3396 set_buffer_uptodate(bh); 3397 } else { 3398 struct btrfs_device *device = (struct btrfs_device *) 3399 bh->b_private; 3400 3401 btrfs_warn_rl_in_rcu(device->fs_info, 3402 "lost page write due to IO error on %s", 3403 rcu_str_deref(device->name)); 3404 /* note, we don't set_buffer_write_io_error because we have 3405 * our own ways of dealing with the IO errors 3406 */ 3407 clear_buffer_uptodate(bh); 3408 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3409 } 3410 unlock_buffer(bh); 3411 put_bh(bh); 3412 } 3413 3414 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3415 struct buffer_head **bh_ret) 3416 { 3417 struct buffer_head *bh; 3418 struct btrfs_super_block *super; 3419 u64 bytenr; 3420 3421 bytenr = btrfs_sb_offset(copy_num); 3422 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3423 return -EINVAL; 3424 3425 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE); 3426 /* 3427 * If we fail to read from the underlying devices, as of now 3428 * the best option we have is to mark it EIO. 3429 */ 3430 if (!bh) 3431 return -EIO; 3432 3433 super = (struct btrfs_super_block *)bh->b_data; 3434 if (btrfs_super_bytenr(super) != bytenr || 3435 btrfs_super_magic(super) != BTRFS_MAGIC) { 3436 brelse(bh); 3437 return -EINVAL; 3438 } 3439 3440 *bh_ret = bh; 3441 return 0; 3442 } 3443 3444 3445 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3446 { 3447 struct buffer_head *bh; 3448 struct buffer_head *latest = NULL; 3449 struct btrfs_super_block *super; 3450 int i; 3451 u64 transid = 0; 3452 int ret = -EINVAL; 3453 3454 /* we would like to check all the supers, but that would make 3455 * a btrfs mount succeed after a mkfs from a different FS. 3456 * So, we need to add a special mount option to scan for 3457 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3458 */ 3459 for (i = 0; i < 1; i++) { 3460 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3461 if (ret) 3462 continue; 3463 3464 super = (struct btrfs_super_block *)bh->b_data; 3465 3466 if (!latest || btrfs_super_generation(super) > transid) { 3467 brelse(latest); 3468 latest = bh; 3469 transid = btrfs_super_generation(super); 3470 } else { 3471 brelse(bh); 3472 } 3473 } 3474 3475 if (!latest) 3476 return ERR_PTR(ret); 3477 3478 return latest; 3479 } 3480 3481 /* 3482 * Write superblock @sb to the @device. Do not wait for completion, all the 3483 * buffer heads we write are pinned. 3484 * 3485 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3486 * the expected device size at commit time. Note that max_mirrors must be 3487 * same for write and wait phases. 3488 * 3489 * Return number of errors when buffer head is not found or submission fails. 3490 */ 3491 static int write_dev_supers(struct btrfs_device *device, 3492 struct btrfs_super_block *sb, int max_mirrors) 3493 { 3494 struct btrfs_fs_info *fs_info = device->fs_info; 3495 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3496 struct buffer_head *bh; 3497 int i; 3498 int ret; 3499 int errors = 0; 3500 u64 bytenr; 3501 int op_flags; 3502 3503 if (max_mirrors == 0) 3504 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3505 3506 shash->tfm = fs_info->csum_shash; 3507 3508 for (i = 0; i < max_mirrors; i++) { 3509 bytenr = btrfs_sb_offset(i); 3510 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3511 device->commit_total_bytes) 3512 break; 3513 3514 btrfs_set_super_bytenr(sb, bytenr); 3515 3516 crypto_shash_init(shash); 3517 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3518 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 3519 crypto_shash_final(shash, sb->csum); 3520 3521 /* One reference for us, and we leave it for the caller */ 3522 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, 3523 BTRFS_SUPER_INFO_SIZE); 3524 if (!bh) { 3525 btrfs_err(device->fs_info, 3526 "couldn't get super buffer head for bytenr %llu", 3527 bytenr); 3528 errors++; 3529 continue; 3530 } 3531 3532 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3533 3534 /* one reference for submit_bh */ 3535 get_bh(bh); 3536 3537 set_buffer_uptodate(bh); 3538 lock_buffer(bh); 3539 bh->b_end_io = btrfs_end_buffer_write_sync; 3540 bh->b_private = device; 3541 3542 /* 3543 * we fua the first super. The others we allow 3544 * to go down lazy. 3545 */ 3546 op_flags = REQ_SYNC | REQ_META | REQ_PRIO; 3547 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3548 op_flags |= REQ_FUA; 3549 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh); 3550 if (ret) 3551 errors++; 3552 } 3553 return errors < i ? 0 : -1; 3554 } 3555 3556 /* 3557 * Wait for write completion of superblocks done by write_dev_supers, 3558 * @max_mirrors same for write and wait phases. 3559 * 3560 * Return number of errors when buffer head is not found or not marked up to 3561 * date. 3562 */ 3563 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3564 { 3565 struct buffer_head *bh; 3566 int i; 3567 int errors = 0; 3568 bool primary_failed = false; 3569 u64 bytenr; 3570 3571 if (max_mirrors == 0) 3572 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3573 3574 for (i = 0; i < max_mirrors; i++) { 3575 bytenr = btrfs_sb_offset(i); 3576 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3577 device->commit_total_bytes) 3578 break; 3579 3580 bh = __find_get_block(device->bdev, 3581 bytenr / BTRFS_BDEV_BLOCKSIZE, 3582 BTRFS_SUPER_INFO_SIZE); 3583 if (!bh) { 3584 errors++; 3585 if (i == 0) 3586 primary_failed = true; 3587 continue; 3588 } 3589 wait_on_buffer(bh); 3590 if (!buffer_uptodate(bh)) { 3591 errors++; 3592 if (i == 0) 3593 primary_failed = true; 3594 } 3595 3596 /* drop our reference */ 3597 brelse(bh); 3598 3599 /* drop the reference from the writing run */ 3600 brelse(bh); 3601 } 3602 3603 /* log error, force error return */ 3604 if (primary_failed) { 3605 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3606 device->devid); 3607 return -1; 3608 } 3609 3610 return errors < i ? 0 : -1; 3611 } 3612 3613 /* 3614 * endio for the write_dev_flush, this will wake anyone waiting 3615 * for the barrier when it is done 3616 */ 3617 static void btrfs_end_empty_barrier(struct bio *bio) 3618 { 3619 complete(bio->bi_private); 3620 } 3621 3622 /* 3623 * Submit a flush request to the device if it supports it. Error handling is 3624 * done in the waiting counterpart. 3625 */ 3626 static void write_dev_flush(struct btrfs_device *device) 3627 { 3628 struct request_queue *q = bdev_get_queue(device->bdev); 3629 struct bio *bio = device->flush_bio; 3630 3631 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3632 return; 3633 3634 bio_reset(bio); 3635 bio->bi_end_io = btrfs_end_empty_barrier; 3636 bio_set_dev(bio, device->bdev); 3637 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3638 init_completion(&device->flush_wait); 3639 bio->bi_private = &device->flush_wait; 3640 3641 btrfsic_submit_bio(bio); 3642 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3643 } 3644 3645 /* 3646 * If the flush bio has been submitted by write_dev_flush, wait for it. 3647 */ 3648 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3649 { 3650 struct bio *bio = device->flush_bio; 3651 3652 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3653 return BLK_STS_OK; 3654 3655 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3656 wait_for_completion_io(&device->flush_wait); 3657 3658 return bio->bi_status; 3659 } 3660 3661 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3662 { 3663 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3664 return -EIO; 3665 return 0; 3666 } 3667 3668 /* 3669 * send an empty flush down to each device in parallel, 3670 * then wait for them 3671 */ 3672 static int barrier_all_devices(struct btrfs_fs_info *info) 3673 { 3674 struct list_head *head; 3675 struct btrfs_device *dev; 3676 int errors_wait = 0; 3677 blk_status_t ret; 3678 3679 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3680 /* send down all the barriers */ 3681 head = &info->fs_devices->devices; 3682 list_for_each_entry(dev, head, dev_list) { 3683 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3684 continue; 3685 if (!dev->bdev) 3686 continue; 3687 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3688 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3689 continue; 3690 3691 write_dev_flush(dev); 3692 dev->last_flush_error = BLK_STS_OK; 3693 } 3694 3695 /* wait for all the barriers */ 3696 list_for_each_entry(dev, head, dev_list) { 3697 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3698 continue; 3699 if (!dev->bdev) { 3700 errors_wait++; 3701 continue; 3702 } 3703 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3704 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3705 continue; 3706 3707 ret = wait_dev_flush(dev); 3708 if (ret) { 3709 dev->last_flush_error = ret; 3710 btrfs_dev_stat_inc_and_print(dev, 3711 BTRFS_DEV_STAT_FLUSH_ERRS); 3712 errors_wait++; 3713 } 3714 } 3715 3716 if (errors_wait) { 3717 /* 3718 * At some point we need the status of all disks 3719 * to arrive at the volume status. So error checking 3720 * is being pushed to a separate loop. 3721 */ 3722 return check_barrier_error(info); 3723 } 3724 return 0; 3725 } 3726 3727 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3728 { 3729 int raid_type; 3730 int min_tolerated = INT_MAX; 3731 3732 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3733 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3734 min_tolerated = min_t(int, min_tolerated, 3735 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3736 tolerated_failures); 3737 3738 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3739 if (raid_type == BTRFS_RAID_SINGLE) 3740 continue; 3741 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3742 continue; 3743 min_tolerated = min_t(int, min_tolerated, 3744 btrfs_raid_array[raid_type]. 3745 tolerated_failures); 3746 } 3747 3748 if (min_tolerated == INT_MAX) { 3749 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3750 min_tolerated = 0; 3751 } 3752 3753 return min_tolerated; 3754 } 3755 3756 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3757 { 3758 struct list_head *head; 3759 struct btrfs_device *dev; 3760 struct btrfs_super_block *sb; 3761 struct btrfs_dev_item *dev_item; 3762 int ret; 3763 int do_barriers; 3764 int max_errors; 3765 int total_errors = 0; 3766 u64 flags; 3767 3768 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3769 3770 /* 3771 * max_mirrors == 0 indicates we're from commit_transaction, 3772 * not from fsync where the tree roots in fs_info have not 3773 * been consistent on disk. 3774 */ 3775 if (max_mirrors == 0) 3776 backup_super_roots(fs_info); 3777 3778 sb = fs_info->super_for_commit; 3779 dev_item = &sb->dev_item; 3780 3781 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3782 head = &fs_info->fs_devices->devices; 3783 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3784 3785 if (do_barriers) { 3786 ret = barrier_all_devices(fs_info); 3787 if (ret) { 3788 mutex_unlock( 3789 &fs_info->fs_devices->device_list_mutex); 3790 btrfs_handle_fs_error(fs_info, ret, 3791 "errors while submitting device barriers."); 3792 return ret; 3793 } 3794 } 3795 3796 list_for_each_entry(dev, head, dev_list) { 3797 if (!dev->bdev) { 3798 total_errors++; 3799 continue; 3800 } 3801 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3802 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3803 continue; 3804 3805 btrfs_set_stack_device_generation(dev_item, 0); 3806 btrfs_set_stack_device_type(dev_item, dev->type); 3807 btrfs_set_stack_device_id(dev_item, dev->devid); 3808 btrfs_set_stack_device_total_bytes(dev_item, 3809 dev->commit_total_bytes); 3810 btrfs_set_stack_device_bytes_used(dev_item, 3811 dev->commit_bytes_used); 3812 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3813 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3814 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3815 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3816 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 3817 BTRFS_FSID_SIZE); 3818 3819 flags = btrfs_super_flags(sb); 3820 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3821 3822 ret = btrfs_validate_write_super(fs_info, sb); 3823 if (ret < 0) { 3824 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3825 btrfs_handle_fs_error(fs_info, -EUCLEAN, 3826 "unexpected superblock corruption detected"); 3827 return -EUCLEAN; 3828 } 3829 3830 ret = write_dev_supers(dev, sb, max_mirrors); 3831 if (ret) 3832 total_errors++; 3833 } 3834 if (total_errors > max_errors) { 3835 btrfs_err(fs_info, "%d errors while writing supers", 3836 total_errors); 3837 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3838 3839 /* FUA is masked off if unsupported and can't be the reason */ 3840 btrfs_handle_fs_error(fs_info, -EIO, 3841 "%d errors while writing supers", 3842 total_errors); 3843 return -EIO; 3844 } 3845 3846 total_errors = 0; 3847 list_for_each_entry(dev, head, dev_list) { 3848 if (!dev->bdev) 3849 continue; 3850 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3851 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3852 continue; 3853 3854 ret = wait_dev_supers(dev, max_mirrors); 3855 if (ret) 3856 total_errors++; 3857 } 3858 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3859 if (total_errors > max_errors) { 3860 btrfs_handle_fs_error(fs_info, -EIO, 3861 "%d errors while writing supers", 3862 total_errors); 3863 return -EIO; 3864 } 3865 return 0; 3866 } 3867 3868 /* Drop a fs root from the radix tree and free it. */ 3869 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3870 struct btrfs_root *root) 3871 { 3872 spin_lock(&fs_info->fs_roots_radix_lock); 3873 radix_tree_delete(&fs_info->fs_roots_radix, 3874 (unsigned long)root->root_key.objectid); 3875 spin_unlock(&fs_info->fs_roots_radix_lock); 3876 3877 if (btrfs_root_refs(&root->root_item) == 0) 3878 synchronize_srcu(&fs_info->subvol_srcu); 3879 3880 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3881 btrfs_free_log(NULL, root); 3882 if (root->reloc_root) { 3883 free_extent_buffer(root->reloc_root->node); 3884 free_extent_buffer(root->reloc_root->commit_root); 3885 btrfs_put_fs_root(root->reloc_root); 3886 root->reloc_root = NULL; 3887 } 3888 } 3889 3890 if (root->free_ino_pinned) 3891 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3892 if (root->free_ino_ctl) 3893 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3894 btrfs_free_fs_root(root); 3895 } 3896 3897 void btrfs_free_fs_root(struct btrfs_root *root) 3898 { 3899 iput(root->ino_cache_inode); 3900 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3901 if (root->anon_dev) 3902 free_anon_bdev(root->anon_dev); 3903 if (root->subv_writers) 3904 btrfs_free_subvolume_writers(root->subv_writers); 3905 free_extent_buffer(root->node); 3906 free_extent_buffer(root->commit_root); 3907 kfree(root->free_ino_ctl); 3908 kfree(root->free_ino_pinned); 3909 btrfs_put_fs_root(root); 3910 } 3911 3912 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3913 { 3914 u64 root_objectid = 0; 3915 struct btrfs_root *gang[8]; 3916 int i = 0; 3917 int err = 0; 3918 unsigned int ret = 0; 3919 int index; 3920 3921 while (1) { 3922 index = srcu_read_lock(&fs_info->subvol_srcu); 3923 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3924 (void **)gang, root_objectid, 3925 ARRAY_SIZE(gang)); 3926 if (!ret) { 3927 srcu_read_unlock(&fs_info->subvol_srcu, index); 3928 break; 3929 } 3930 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3931 3932 for (i = 0; i < ret; i++) { 3933 /* Avoid to grab roots in dead_roots */ 3934 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3935 gang[i] = NULL; 3936 continue; 3937 } 3938 /* grab all the search result for later use */ 3939 gang[i] = btrfs_grab_fs_root(gang[i]); 3940 } 3941 srcu_read_unlock(&fs_info->subvol_srcu, index); 3942 3943 for (i = 0; i < ret; i++) { 3944 if (!gang[i]) 3945 continue; 3946 root_objectid = gang[i]->root_key.objectid; 3947 err = btrfs_orphan_cleanup(gang[i]); 3948 if (err) 3949 break; 3950 btrfs_put_fs_root(gang[i]); 3951 } 3952 root_objectid++; 3953 } 3954 3955 /* release the uncleaned roots due to error */ 3956 for (; i < ret; i++) { 3957 if (gang[i]) 3958 btrfs_put_fs_root(gang[i]); 3959 } 3960 return err; 3961 } 3962 3963 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3964 { 3965 struct btrfs_root *root = fs_info->tree_root; 3966 struct btrfs_trans_handle *trans; 3967 3968 mutex_lock(&fs_info->cleaner_mutex); 3969 btrfs_run_delayed_iputs(fs_info); 3970 mutex_unlock(&fs_info->cleaner_mutex); 3971 wake_up_process(fs_info->cleaner_kthread); 3972 3973 /* wait until ongoing cleanup work done */ 3974 down_write(&fs_info->cleanup_work_sem); 3975 up_write(&fs_info->cleanup_work_sem); 3976 3977 trans = btrfs_join_transaction(root); 3978 if (IS_ERR(trans)) 3979 return PTR_ERR(trans); 3980 return btrfs_commit_transaction(trans); 3981 } 3982 3983 void close_ctree(struct btrfs_fs_info *fs_info) 3984 { 3985 int ret; 3986 3987 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3988 /* 3989 * We don't want the cleaner to start new transactions, add more delayed 3990 * iputs, etc. while we're closing. We can't use kthread_stop() yet 3991 * because that frees the task_struct, and the transaction kthread might 3992 * still try to wake up the cleaner. 3993 */ 3994 kthread_park(fs_info->cleaner_kthread); 3995 3996 /* wait for the qgroup rescan worker to stop */ 3997 btrfs_qgroup_wait_for_completion(fs_info, false); 3998 3999 /* wait for the uuid_scan task to finish */ 4000 down(&fs_info->uuid_tree_rescan_sem); 4001 /* avoid complains from lockdep et al., set sem back to initial state */ 4002 up(&fs_info->uuid_tree_rescan_sem); 4003 4004 /* pause restriper - we want to resume on mount */ 4005 btrfs_pause_balance(fs_info); 4006 4007 btrfs_dev_replace_suspend_for_unmount(fs_info); 4008 4009 btrfs_scrub_cancel(fs_info); 4010 4011 /* wait for any defraggers to finish */ 4012 wait_event(fs_info->transaction_wait, 4013 (atomic_read(&fs_info->defrag_running) == 0)); 4014 4015 /* clear out the rbtree of defraggable inodes */ 4016 btrfs_cleanup_defrag_inodes(fs_info); 4017 4018 cancel_work_sync(&fs_info->async_reclaim_work); 4019 4020 if (!sb_rdonly(fs_info->sb)) { 4021 /* 4022 * The cleaner kthread is stopped, so do one final pass over 4023 * unused block groups. 4024 */ 4025 btrfs_delete_unused_bgs(fs_info); 4026 4027 ret = btrfs_commit_super(fs_info); 4028 if (ret) 4029 btrfs_err(fs_info, "commit super ret %d", ret); 4030 } 4031 4032 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 4033 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 4034 btrfs_error_commit_super(fs_info); 4035 4036 kthread_stop(fs_info->transaction_kthread); 4037 kthread_stop(fs_info->cleaner_kthread); 4038 4039 ASSERT(list_empty(&fs_info->delayed_iputs)); 4040 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4041 4042 btrfs_free_qgroup_config(fs_info); 4043 ASSERT(list_empty(&fs_info->delalloc_roots)); 4044 4045 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4046 btrfs_info(fs_info, "at unmount delalloc count %lld", 4047 percpu_counter_sum(&fs_info->delalloc_bytes)); 4048 } 4049 4050 if (percpu_counter_sum(&fs_info->dio_bytes)) 4051 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4052 percpu_counter_sum(&fs_info->dio_bytes)); 4053 4054 btrfs_sysfs_remove_mounted(fs_info); 4055 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4056 4057 btrfs_free_fs_roots(fs_info); 4058 4059 btrfs_put_block_group_cache(fs_info); 4060 4061 /* 4062 * we must make sure there is not any read request to 4063 * submit after we stopping all workers. 4064 */ 4065 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4066 btrfs_stop_all_workers(fs_info); 4067 4068 btrfs_free_block_groups(fs_info); 4069 4070 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4071 free_root_pointers(fs_info, 1); 4072 4073 iput(fs_info->btree_inode); 4074 4075 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4076 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4077 btrfsic_unmount(fs_info->fs_devices); 4078 #endif 4079 4080 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4081 btrfs_close_devices(fs_info->fs_devices); 4082 4083 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 4084 percpu_counter_destroy(&fs_info->delalloc_bytes); 4085 percpu_counter_destroy(&fs_info->dio_bytes); 4086 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 4087 cleanup_srcu_struct(&fs_info->subvol_srcu); 4088 4089 btrfs_free_csum_hash(fs_info); 4090 btrfs_free_stripe_hash_table(fs_info); 4091 btrfs_free_ref_cache(fs_info); 4092 } 4093 4094 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4095 int atomic) 4096 { 4097 int ret; 4098 struct inode *btree_inode = buf->pages[0]->mapping->host; 4099 4100 ret = extent_buffer_uptodate(buf); 4101 if (!ret) 4102 return ret; 4103 4104 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4105 parent_transid, atomic); 4106 if (ret == -EAGAIN) 4107 return ret; 4108 return !ret; 4109 } 4110 4111 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4112 { 4113 struct btrfs_fs_info *fs_info; 4114 struct btrfs_root *root; 4115 u64 transid = btrfs_header_generation(buf); 4116 int was_dirty; 4117 4118 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4119 /* 4120 * This is a fast path so only do this check if we have sanity tests 4121 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4122 * outside of the sanity tests. 4123 */ 4124 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4125 return; 4126 #endif 4127 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4128 fs_info = root->fs_info; 4129 btrfs_assert_tree_locked(buf); 4130 if (transid != fs_info->generation) 4131 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4132 buf->start, transid, fs_info->generation); 4133 was_dirty = set_extent_buffer_dirty(buf); 4134 if (!was_dirty) 4135 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4136 buf->len, 4137 fs_info->dirty_metadata_batch); 4138 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4139 /* 4140 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4141 * but item data not updated. 4142 * So here we should only check item pointers, not item data. 4143 */ 4144 if (btrfs_header_level(buf) == 0 && 4145 btrfs_check_leaf_relaxed(buf)) { 4146 btrfs_print_leaf(buf); 4147 ASSERT(0); 4148 } 4149 #endif 4150 } 4151 4152 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4153 int flush_delayed) 4154 { 4155 /* 4156 * looks as though older kernels can get into trouble with 4157 * this code, they end up stuck in balance_dirty_pages forever 4158 */ 4159 int ret; 4160 4161 if (current->flags & PF_MEMALLOC) 4162 return; 4163 4164 if (flush_delayed) 4165 btrfs_balance_delayed_items(fs_info); 4166 4167 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4168 BTRFS_DIRTY_METADATA_THRESH, 4169 fs_info->dirty_metadata_batch); 4170 if (ret > 0) { 4171 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4172 } 4173 } 4174 4175 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4176 { 4177 __btrfs_btree_balance_dirty(fs_info, 1); 4178 } 4179 4180 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4181 { 4182 __btrfs_btree_balance_dirty(fs_info, 0); 4183 } 4184 4185 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4186 struct btrfs_key *first_key) 4187 { 4188 return btree_read_extent_buffer_pages(buf, parent_transid, 4189 level, first_key); 4190 } 4191 4192 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4193 { 4194 /* cleanup FS via transaction */ 4195 btrfs_cleanup_transaction(fs_info); 4196 4197 mutex_lock(&fs_info->cleaner_mutex); 4198 btrfs_run_delayed_iputs(fs_info); 4199 mutex_unlock(&fs_info->cleaner_mutex); 4200 4201 down_write(&fs_info->cleanup_work_sem); 4202 up_write(&fs_info->cleanup_work_sem); 4203 } 4204 4205 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4206 { 4207 struct btrfs_ordered_extent *ordered; 4208 4209 spin_lock(&root->ordered_extent_lock); 4210 /* 4211 * This will just short circuit the ordered completion stuff which will 4212 * make sure the ordered extent gets properly cleaned up. 4213 */ 4214 list_for_each_entry(ordered, &root->ordered_extents, 4215 root_extent_list) 4216 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4217 spin_unlock(&root->ordered_extent_lock); 4218 } 4219 4220 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4221 { 4222 struct btrfs_root *root; 4223 struct list_head splice; 4224 4225 INIT_LIST_HEAD(&splice); 4226 4227 spin_lock(&fs_info->ordered_root_lock); 4228 list_splice_init(&fs_info->ordered_roots, &splice); 4229 while (!list_empty(&splice)) { 4230 root = list_first_entry(&splice, struct btrfs_root, 4231 ordered_root); 4232 list_move_tail(&root->ordered_root, 4233 &fs_info->ordered_roots); 4234 4235 spin_unlock(&fs_info->ordered_root_lock); 4236 btrfs_destroy_ordered_extents(root); 4237 4238 cond_resched(); 4239 spin_lock(&fs_info->ordered_root_lock); 4240 } 4241 spin_unlock(&fs_info->ordered_root_lock); 4242 4243 /* 4244 * We need this here because if we've been flipped read-only we won't 4245 * get sync() from the umount, so we need to make sure any ordered 4246 * extents that haven't had their dirty pages IO start writeout yet 4247 * actually get run and error out properly. 4248 */ 4249 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4250 } 4251 4252 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4253 struct btrfs_fs_info *fs_info) 4254 { 4255 struct rb_node *node; 4256 struct btrfs_delayed_ref_root *delayed_refs; 4257 struct btrfs_delayed_ref_node *ref; 4258 int ret = 0; 4259 4260 delayed_refs = &trans->delayed_refs; 4261 4262 spin_lock(&delayed_refs->lock); 4263 if (atomic_read(&delayed_refs->num_entries) == 0) { 4264 spin_unlock(&delayed_refs->lock); 4265 btrfs_info(fs_info, "delayed_refs has NO entry"); 4266 return ret; 4267 } 4268 4269 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4270 struct btrfs_delayed_ref_head *head; 4271 struct rb_node *n; 4272 bool pin_bytes = false; 4273 4274 head = rb_entry(node, struct btrfs_delayed_ref_head, 4275 href_node); 4276 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4277 continue; 4278 4279 spin_lock(&head->lock); 4280 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4281 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4282 ref_node); 4283 ref->in_tree = 0; 4284 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4285 RB_CLEAR_NODE(&ref->ref_node); 4286 if (!list_empty(&ref->add_list)) 4287 list_del(&ref->add_list); 4288 atomic_dec(&delayed_refs->num_entries); 4289 btrfs_put_delayed_ref(ref); 4290 } 4291 if (head->must_insert_reserved) 4292 pin_bytes = true; 4293 btrfs_free_delayed_extent_op(head->extent_op); 4294 btrfs_delete_ref_head(delayed_refs, head); 4295 spin_unlock(&head->lock); 4296 spin_unlock(&delayed_refs->lock); 4297 mutex_unlock(&head->mutex); 4298 4299 if (pin_bytes) 4300 btrfs_pin_extent(fs_info, head->bytenr, 4301 head->num_bytes, 1); 4302 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4303 btrfs_put_delayed_ref_head(head); 4304 cond_resched(); 4305 spin_lock(&delayed_refs->lock); 4306 } 4307 4308 spin_unlock(&delayed_refs->lock); 4309 4310 return ret; 4311 } 4312 4313 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4314 { 4315 struct btrfs_inode *btrfs_inode; 4316 struct list_head splice; 4317 4318 INIT_LIST_HEAD(&splice); 4319 4320 spin_lock(&root->delalloc_lock); 4321 list_splice_init(&root->delalloc_inodes, &splice); 4322 4323 while (!list_empty(&splice)) { 4324 struct inode *inode = NULL; 4325 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4326 delalloc_inodes); 4327 __btrfs_del_delalloc_inode(root, btrfs_inode); 4328 spin_unlock(&root->delalloc_lock); 4329 4330 /* 4331 * Make sure we get a live inode and that it'll not disappear 4332 * meanwhile. 4333 */ 4334 inode = igrab(&btrfs_inode->vfs_inode); 4335 if (inode) { 4336 invalidate_inode_pages2(inode->i_mapping); 4337 iput(inode); 4338 } 4339 spin_lock(&root->delalloc_lock); 4340 } 4341 spin_unlock(&root->delalloc_lock); 4342 } 4343 4344 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4345 { 4346 struct btrfs_root *root; 4347 struct list_head splice; 4348 4349 INIT_LIST_HEAD(&splice); 4350 4351 spin_lock(&fs_info->delalloc_root_lock); 4352 list_splice_init(&fs_info->delalloc_roots, &splice); 4353 while (!list_empty(&splice)) { 4354 root = list_first_entry(&splice, struct btrfs_root, 4355 delalloc_root); 4356 root = btrfs_grab_fs_root(root); 4357 BUG_ON(!root); 4358 spin_unlock(&fs_info->delalloc_root_lock); 4359 4360 btrfs_destroy_delalloc_inodes(root); 4361 btrfs_put_fs_root(root); 4362 4363 spin_lock(&fs_info->delalloc_root_lock); 4364 } 4365 spin_unlock(&fs_info->delalloc_root_lock); 4366 } 4367 4368 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4369 struct extent_io_tree *dirty_pages, 4370 int mark) 4371 { 4372 int ret; 4373 struct extent_buffer *eb; 4374 u64 start = 0; 4375 u64 end; 4376 4377 while (1) { 4378 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4379 mark, NULL); 4380 if (ret) 4381 break; 4382 4383 clear_extent_bits(dirty_pages, start, end, mark); 4384 while (start <= end) { 4385 eb = find_extent_buffer(fs_info, start); 4386 start += fs_info->nodesize; 4387 if (!eb) 4388 continue; 4389 wait_on_extent_buffer_writeback(eb); 4390 4391 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4392 &eb->bflags)) 4393 clear_extent_buffer_dirty(eb); 4394 free_extent_buffer_stale(eb); 4395 } 4396 } 4397 4398 return ret; 4399 } 4400 4401 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4402 struct extent_io_tree *pinned_extents) 4403 { 4404 struct extent_io_tree *unpin; 4405 u64 start; 4406 u64 end; 4407 int ret; 4408 bool loop = true; 4409 4410 unpin = pinned_extents; 4411 again: 4412 while (1) { 4413 struct extent_state *cached_state = NULL; 4414 4415 /* 4416 * The btrfs_finish_extent_commit() may get the same range as 4417 * ours between find_first_extent_bit and clear_extent_dirty. 4418 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4419 * the same extent range. 4420 */ 4421 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4422 ret = find_first_extent_bit(unpin, 0, &start, &end, 4423 EXTENT_DIRTY, &cached_state); 4424 if (ret) { 4425 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4426 break; 4427 } 4428 4429 clear_extent_dirty(unpin, start, end, &cached_state); 4430 free_extent_state(cached_state); 4431 btrfs_error_unpin_extent_range(fs_info, start, end); 4432 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4433 cond_resched(); 4434 } 4435 4436 if (loop) { 4437 if (unpin == &fs_info->freed_extents[0]) 4438 unpin = &fs_info->freed_extents[1]; 4439 else 4440 unpin = &fs_info->freed_extents[0]; 4441 loop = false; 4442 goto again; 4443 } 4444 4445 return 0; 4446 } 4447 4448 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache) 4449 { 4450 struct inode *inode; 4451 4452 inode = cache->io_ctl.inode; 4453 if (inode) { 4454 invalidate_inode_pages2(inode->i_mapping); 4455 BTRFS_I(inode)->generation = 0; 4456 cache->io_ctl.inode = NULL; 4457 iput(inode); 4458 } 4459 btrfs_put_block_group(cache); 4460 } 4461 4462 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4463 struct btrfs_fs_info *fs_info) 4464 { 4465 struct btrfs_block_group_cache *cache; 4466 4467 spin_lock(&cur_trans->dirty_bgs_lock); 4468 while (!list_empty(&cur_trans->dirty_bgs)) { 4469 cache = list_first_entry(&cur_trans->dirty_bgs, 4470 struct btrfs_block_group_cache, 4471 dirty_list); 4472 4473 if (!list_empty(&cache->io_list)) { 4474 spin_unlock(&cur_trans->dirty_bgs_lock); 4475 list_del_init(&cache->io_list); 4476 btrfs_cleanup_bg_io(cache); 4477 spin_lock(&cur_trans->dirty_bgs_lock); 4478 } 4479 4480 list_del_init(&cache->dirty_list); 4481 spin_lock(&cache->lock); 4482 cache->disk_cache_state = BTRFS_DC_ERROR; 4483 spin_unlock(&cache->lock); 4484 4485 spin_unlock(&cur_trans->dirty_bgs_lock); 4486 btrfs_put_block_group(cache); 4487 btrfs_delayed_refs_rsv_release(fs_info, 1); 4488 spin_lock(&cur_trans->dirty_bgs_lock); 4489 } 4490 spin_unlock(&cur_trans->dirty_bgs_lock); 4491 4492 /* 4493 * Refer to the definition of io_bgs member for details why it's safe 4494 * to use it without any locking 4495 */ 4496 while (!list_empty(&cur_trans->io_bgs)) { 4497 cache = list_first_entry(&cur_trans->io_bgs, 4498 struct btrfs_block_group_cache, 4499 io_list); 4500 4501 list_del_init(&cache->io_list); 4502 spin_lock(&cache->lock); 4503 cache->disk_cache_state = BTRFS_DC_ERROR; 4504 spin_unlock(&cache->lock); 4505 btrfs_cleanup_bg_io(cache); 4506 } 4507 } 4508 4509 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4510 struct btrfs_fs_info *fs_info) 4511 { 4512 struct btrfs_device *dev, *tmp; 4513 4514 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4515 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4516 ASSERT(list_empty(&cur_trans->io_bgs)); 4517 4518 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4519 post_commit_list) { 4520 list_del_init(&dev->post_commit_list); 4521 } 4522 4523 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4524 4525 cur_trans->state = TRANS_STATE_COMMIT_START; 4526 wake_up(&fs_info->transaction_blocked_wait); 4527 4528 cur_trans->state = TRANS_STATE_UNBLOCKED; 4529 wake_up(&fs_info->transaction_wait); 4530 4531 btrfs_destroy_delayed_inodes(fs_info); 4532 btrfs_assert_delayed_root_empty(fs_info); 4533 4534 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4535 EXTENT_DIRTY); 4536 btrfs_destroy_pinned_extent(fs_info, 4537 fs_info->pinned_extents); 4538 4539 cur_trans->state =TRANS_STATE_COMPLETED; 4540 wake_up(&cur_trans->commit_wait); 4541 } 4542 4543 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4544 { 4545 struct btrfs_transaction *t; 4546 4547 mutex_lock(&fs_info->transaction_kthread_mutex); 4548 4549 spin_lock(&fs_info->trans_lock); 4550 while (!list_empty(&fs_info->trans_list)) { 4551 t = list_first_entry(&fs_info->trans_list, 4552 struct btrfs_transaction, list); 4553 if (t->state >= TRANS_STATE_COMMIT_START) { 4554 refcount_inc(&t->use_count); 4555 spin_unlock(&fs_info->trans_lock); 4556 btrfs_wait_for_commit(fs_info, t->transid); 4557 btrfs_put_transaction(t); 4558 spin_lock(&fs_info->trans_lock); 4559 continue; 4560 } 4561 if (t == fs_info->running_transaction) { 4562 t->state = TRANS_STATE_COMMIT_DOING; 4563 spin_unlock(&fs_info->trans_lock); 4564 /* 4565 * We wait for 0 num_writers since we don't hold a trans 4566 * handle open currently for this transaction. 4567 */ 4568 wait_event(t->writer_wait, 4569 atomic_read(&t->num_writers) == 0); 4570 } else { 4571 spin_unlock(&fs_info->trans_lock); 4572 } 4573 btrfs_cleanup_one_transaction(t, fs_info); 4574 4575 spin_lock(&fs_info->trans_lock); 4576 if (t == fs_info->running_transaction) 4577 fs_info->running_transaction = NULL; 4578 list_del_init(&t->list); 4579 spin_unlock(&fs_info->trans_lock); 4580 4581 btrfs_put_transaction(t); 4582 trace_btrfs_transaction_commit(fs_info->tree_root); 4583 spin_lock(&fs_info->trans_lock); 4584 } 4585 spin_unlock(&fs_info->trans_lock); 4586 btrfs_destroy_all_ordered_extents(fs_info); 4587 btrfs_destroy_delayed_inodes(fs_info); 4588 btrfs_assert_delayed_root_empty(fs_info); 4589 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 4590 btrfs_destroy_all_delalloc_inodes(fs_info); 4591 mutex_unlock(&fs_info->transaction_kthread_mutex); 4592 4593 return 0; 4594 } 4595 4596 static const struct extent_io_ops btree_extent_io_ops = { 4597 /* mandatory callbacks */ 4598 .submit_bio_hook = btree_submit_bio_hook, 4599 .readpage_end_io_hook = btree_readpage_end_io_hook, 4600 }; 4601