xref: /linux/fs/btrfs/disk-io.c (revision 3ff78451b8e446e9a548b98a0d4dd8d24dc5780b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "dev-replace.h"
33 #include "raid56.h"
34 #include "sysfs.h"
35 #include "qgroup.h"
36 #include "compression.h"
37 #include "tree-checker.h"
38 #include "ref-verify.h"
39 #include "block-group.h"
40 #include "discard.h"
41 #include "space-info.h"
42 #include "zoned.h"
43 #include "subpage.h"
44 #include "fs.h"
45 #include "accessors.h"
46 #include "extent-tree.h"
47 #include "root-tree.h"
48 #include "defrag.h"
49 #include "uuid-tree.h"
50 #include "relocation.h"
51 #include "scrub.h"
52 #include "super.h"
53 
54 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
55 				 BTRFS_HEADER_FLAG_RELOC |\
56 				 BTRFS_SUPER_FLAG_ERROR |\
57 				 BTRFS_SUPER_FLAG_SEEDING |\
58 				 BTRFS_SUPER_FLAG_METADUMP |\
59 				 BTRFS_SUPER_FLAG_METADUMP_V2)
60 
61 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
62 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
63 
64 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
65 {
66 	if (fs_info->csum_shash)
67 		crypto_free_shash(fs_info->csum_shash);
68 }
69 
70 /*
71  * Compute the csum of a btree block and store the result to provided buffer.
72  */
73 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
74 {
75 	struct btrfs_fs_info *fs_info = buf->fs_info;
76 	int num_pages;
77 	u32 first_page_part;
78 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
79 	char *kaddr;
80 	int i;
81 
82 	shash->tfm = fs_info->csum_shash;
83 	crypto_shash_init(shash);
84 
85 	if (buf->addr) {
86 		/* Pages are contiguous, handle them as a big one. */
87 		kaddr = buf->addr;
88 		first_page_part = fs_info->nodesize;
89 		num_pages = 1;
90 	} else {
91 		kaddr = folio_address(buf->folios[0]);
92 		first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
93 		num_pages = num_extent_pages(buf);
94 	}
95 
96 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
97 			    first_page_part - BTRFS_CSUM_SIZE);
98 
99 	/*
100 	 * Multiple single-page folios case would reach here.
101 	 *
102 	 * nodesize <= PAGE_SIZE and large folio all handled by above
103 	 * crypto_shash_update() already.
104 	 */
105 	for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
106 		kaddr = folio_address(buf->folios[i]);
107 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
108 	}
109 	memset(result, 0, BTRFS_CSUM_SIZE);
110 	crypto_shash_final(shash, result);
111 }
112 
113 /*
114  * we can't consider a given block up to date unless the transid of the
115  * block matches the transid in the parent node's pointer.  This is how we
116  * detect blocks that either didn't get written at all or got written
117  * in the wrong place.
118  */
119 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
120 {
121 	if (!extent_buffer_uptodate(eb))
122 		return 0;
123 
124 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
125 		return 1;
126 
127 	if (atomic)
128 		return -EAGAIN;
129 
130 	if (!extent_buffer_uptodate(eb) ||
131 	    btrfs_header_generation(eb) != parent_transid) {
132 		btrfs_err_rl(eb->fs_info,
133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
134 			eb->start, eb->read_mirror,
135 			parent_transid, btrfs_header_generation(eb));
136 		clear_extent_buffer_uptodate(eb);
137 		return 0;
138 	}
139 	return 1;
140 }
141 
142 static bool btrfs_supported_super_csum(u16 csum_type)
143 {
144 	switch (csum_type) {
145 	case BTRFS_CSUM_TYPE_CRC32:
146 	case BTRFS_CSUM_TYPE_XXHASH:
147 	case BTRFS_CSUM_TYPE_SHA256:
148 	case BTRFS_CSUM_TYPE_BLAKE2:
149 		return true;
150 	default:
151 		return false;
152 	}
153 }
154 
155 /*
156  * Return 0 if the superblock checksum type matches the checksum value of that
157  * algorithm. Pass the raw disk superblock data.
158  */
159 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
160 			   const struct btrfs_super_block *disk_sb)
161 {
162 	char result[BTRFS_CSUM_SIZE];
163 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
164 
165 	shash->tfm = fs_info->csum_shash;
166 
167 	/*
168 	 * The super_block structure does not span the whole
169 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
170 	 * filled with zeros and is included in the checksum.
171 	 */
172 	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
173 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
174 
175 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
176 		return 1;
177 
178 	return 0;
179 }
180 
181 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
182 				      int mirror_num)
183 {
184 	struct btrfs_fs_info *fs_info = eb->fs_info;
185 	int num_folios = num_extent_folios(eb);
186 	int ret = 0;
187 
188 	if (sb_rdonly(fs_info->sb))
189 		return -EROFS;
190 
191 	for (int i = 0; i < num_folios; i++) {
192 		struct folio *folio = eb->folios[i];
193 		u64 start = max_t(u64, eb->start, folio_pos(folio));
194 		u64 end = min_t(u64, eb->start + eb->len,
195 				folio_pos(folio) + eb->folio_size);
196 		u32 len = end - start;
197 
198 		ret = btrfs_repair_io_failure(fs_info, 0, start, len,
199 					      start, folio, offset_in_folio(folio, start),
200 					      mirror_num);
201 		if (ret)
202 			break;
203 	}
204 
205 	return ret;
206 }
207 
208 /*
209  * helper to read a given tree block, doing retries as required when
210  * the checksums don't match and we have alternate mirrors to try.
211  *
212  * @check:		expected tree parentness check, see the comments of the
213  *			structure for details.
214  */
215 int btrfs_read_extent_buffer(struct extent_buffer *eb,
216 			     struct btrfs_tree_parent_check *check)
217 {
218 	struct btrfs_fs_info *fs_info = eb->fs_info;
219 	int failed = 0;
220 	int ret;
221 	int num_copies = 0;
222 	int mirror_num = 0;
223 	int failed_mirror = 0;
224 
225 	ASSERT(check);
226 
227 	while (1) {
228 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
229 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
230 		if (!ret)
231 			break;
232 
233 		num_copies = btrfs_num_copies(fs_info,
234 					      eb->start, eb->len);
235 		if (num_copies == 1)
236 			break;
237 
238 		if (!failed_mirror) {
239 			failed = 1;
240 			failed_mirror = eb->read_mirror;
241 		}
242 
243 		mirror_num++;
244 		if (mirror_num == failed_mirror)
245 			mirror_num++;
246 
247 		if (mirror_num > num_copies)
248 			break;
249 	}
250 
251 	if (failed && !ret && failed_mirror)
252 		btrfs_repair_eb_io_failure(eb, failed_mirror);
253 
254 	return ret;
255 }
256 
257 /*
258  * Checksum a dirty tree block before IO.
259  */
260 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
261 {
262 	struct extent_buffer *eb = bbio->private;
263 	struct btrfs_fs_info *fs_info = eb->fs_info;
264 	u64 found_start = btrfs_header_bytenr(eb);
265 	u64 last_trans;
266 	u8 result[BTRFS_CSUM_SIZE];
267 	int ret;
268 
269 	/* Btree blocks are always contiguous on disk. */
270 	if (WARN_ON_ONCE(bbio->file_offset != eb->start))
271 		return BLK_STS_IOERR;
272 	if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
273 		return BLK_STS_IOERR;
274 
275 	/*
276 	 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
277 	 * checksum it but zero-out its content. This is done to preserve
278 	 * ordering of I/O without unnecessarily writing out data.
279 	 */
280 	if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
281 		memzero_extent_buffer(eb, 0, eb->len);
282 		return BLK_STS_OK;
283 	}
284 
285 	if (WARN_ON_ONCE(found_start != eb->start))
286 		return BLK_STS_IOERR;
287 	if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0],
288 					       eb->start, eb->len)))
289 		return BLK_STS_IOERR;
290 
291 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
292 				    offsetof(struct btrfs_header, fsid),
293 				    BTRFS_FSID_SIZE) == 0);
294 	csum_tree_block(eb, result);
295 
296 	if (btrfs_header_level(eb))
297 		ret = btrfs_check_node(eb);
298 	else
299 		ret = btrfs_check_leaf(eb);
300 
301 	if (ret < 0)
302 		goto error;
303 
304 	/*
305 	 * Also check the generation, the eb reached here must be newer than
306 	 * last committed. Or something seriously wrong happened.
307 	 */
308 	last_trans = btrfs_get_last_trans_committed(fs_info);
309 	if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
310 		ret = -EUCLEAN;
311 		btrfs_err(fs_info,
312 			"block=%llu bad generation, have %llu expect > %llu",
313 			  eb->start, btrfs_header_generation(eb), last_trans);
314 		goto error;
315 	}
316 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
317 	return BLK_STS_OK;
318 
319 error:
320 	btrfs_print_tree(eb, 0);
321 	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
322 		  eb->start);
323 	/*
324 	 * Be noisy if this is an extent buffer from a log tree. We don't abort
325 	 * a transaction in case there's a bad log tree extent buffer, we just
326 	 * fallback to a transaction commit. Still we want to know when there is
327 	 * a bad log tree extent buffer, as that may signal a bug somewhere.
328 	 */
329 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
330 		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
331 	return errno_to_blk_status(ret);
332 }
333 
334 static bool check_tree_block_fsid(struct extent_buffer *eb)
335 {
336 	struct btrfs_fs_info *fs_info = eb->fs_info;
337 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
338 	u8 fsid[BTRFS_FSID_SIZE];
339 
340 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
341 			   BTRFS_FSID_SIZE);
342 
343 	/*
344 	 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
345 	 * This is then overwritten by metadata_uuid if it is present in the
346 	 * device_list_add(). The same true for a seed device as well. So use of
347 	 * fs_devices::metadata_uuid is appropriate here.
348 	 */
349 	if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
350 		return false;
351 
352 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
353 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
354 			return false;
355 
356 	return true;
357 }
358 
359 /* Do basic extent buffer checks at read time */
360 int btrfs_validate_extent_buffer(struct extent_buffer *eb,
361 				 struct btrfs_tree_parent_check *check)
362 {
363 	struct btrfs_fs_info *fs_info = eb->fs_info;
364 	u64 found_start;
365 	const u32 csum_size = fs_info->csum_size;
366 	u8 found_level;
367 	u8 result[BTRFS_CSUM_SIZE];
368 	const u8 *header_csum;
369 	int ret = 0;
370 
371 	ASSERT(check);
372 
373 	found_start = btrfs_header_bytenr(eb);
374 	if (found_start != eb->start) {
375 		btrfs_err_rl(fs_info,
376 			"bad tree block start, mirror %u want %llu have %llu",
377 			     eb->read_mirror, eb->start, found_start);
378 		ret = -EIO;
379 		goto out;
380 	}
381 	if (check_tree_block_fsid(eb)) {
382 		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
383 			     eb->start, eb->read_mirror);
384 		ret = -EIO;
385 		goto out;
386 	}
387 	found_level = btrfs_header_level(eb);
388 	if (found_level >= BTRFS_MAX_LEVEL) {
389 		btrfs_err(fs_info,
390 			"bad tree block level, mirror %u level %d on logical %llu",
391 			eb->read_mirror, btrfs_header_level(eb), eb->start);
392 		ret = -EIO;
393 		goto out;
394 	}
395 
396 	csum_tree_block(eb, result);
397 	header_csum = folio_address(eb->folios[0]) +
398 		get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
399 
400 	if (memcmp(result, header_csum, csum_size) != 0) {
401 		btrfs_warn_rl(fs_info,
402 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
403 			      eb->start, eb->read_mirror,
404 			      CSUM_FMT_VALUE(csum_size, header_csum),
405 			      CSUM_FMT_VALUE(csum_size, result),
406 			      btrfs_header_level(eb));
407 		ret = -EUCLEAN;
408 		goto out;
409 	}
410 
411 	if (found_level != check->level) {
412 		btrfs_err(fs_info,
413 		"level verify failed on logical %llu mirror %u wanted %u found %u",
414 			  eb->start, eb->read_mirror, check->level, found_level);
415 		ret = -EIO;
416 		goto out;
417 	}
418 	if (unlikely(check->transid &&
419 		     btrfs_header_generation(eb) != check->transid)) {
420 		btrfs_err_rl(eb->fs_info,
421 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
422 				eb->start, eb->read_mirror, check->transid,
423 				btrfs_header_generation(eb));
424 		ret = -EIO;
425 		goto out;
426 	}
427 	if (check->has_first_key) {
428 		struct btrfs_key *expect_key = &check->first_key;
429 		struct btrfs_key found_key;
430 
431 		if (found_level)
432 			btrfs_node_key_to_cpu(eb, &found_key, 0);
433 		else
434 			btrfs_item_key_to_cpu(eb, &found_key, 0);
435 		if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
436 			btrfs_err(fs_info,
437 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
438 				  eb->start, check->transid,
439 				  expect_key->objectid,
440 				  expect_key->type, expect_key->offset,
441 				  found_key.objectid, found_key.type,
442 				  found_key.offset);
443 			ret = -EUCLEAN;
444 			goto out;
445 		}
446 	}
447 	if (check->owner_root) {
448 		ret = btrfs_check_eb_owner(eb, check->owner_root);
449 		if (ret < 0)
450 			goto out;
451 	}
452 
453 	/*
454 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
455 	 * that we don't try and read the other copies of this block, just
456 	 * return -EIO.
457 	 */
458 	if (found_level == 0 && btrfs_check_leaf(eb)) {
459 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
460 		ret = -EIO;
461 	}
462 
463 	if (found_level > 0 && btrfs_check_node(eb))
464 		ret = -EIO;
465 
466 	if (ret)
467 		btrfs_err(fs_info,
468 		"read time tree block corruption detected on logical %llu mirror %u",
469 			  eb->start, eb->read_mirror);
470 out:
471 	return ret;
472 }
473 
474 #ifdef CONFIG_MIGRATION
475 static int btree_migrate_folio(struct address_space *mapping,
476 		struct folio *dst, struct folio *src, enum migrate_mode mode)
477 {
478 	/*
479 	 * we can't safely write a btree page from here,
480 	 * we haven't done the locking hook
481 	 */
482 	if (folio_test_dirty(src))
483 		return -EAGAIN;
484 	/*
485 	 * Buffers may be managed in a filesystem specific way.
486 	 * We must have no buffers or drop them.
487 	 */
488 	if (folio_get_private(src) &&
489 	    !filemap_release_folio(src, GFP_KERNEL))
490 		return -EAGAIN;
491 	return migrate_folio(mapping, dst, src, mode);
492 }
493 #else
494 #define btree_migrate_folio NULL
495 #endif
496 
497 static int btree_writepages(struct address_space *mapping,
498 			    struct writeback_control *wbc)
499 {
500 	int ret;
501 
502 	if (wbc->sync_mode == WB_SYNC_NONE) {
503 		struct btrfs_fs_info *fs_info;
504 
505 		if (wbc->for_kupdate)
506 			return 0;
507 
508 		fs_info = inode_to_fs_info(mapping->host);
509 		/* this is a bit racy, but that's ok */
510 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
511 					     BTRFS_DIRTY_METADATA_THRESH,
512 					     fs_info->dirty_metadata_batch);
513 		if (ret < 0)
514 			return 0;
515 	}
516 	return btree_write_cache_pages(mapping, wbc);
517 }
518 
519 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
520 {
521 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
522 		return false;
523 
524 	return try_release_extent_buffer(&folio->page);
525 }
526 
527 static void btree_invalidate_folio(struct folio *folio, size_t offset,
528 				 size_t length)
529 {
530 	struct extent_io_tree *tree;
531 
532 	tree = &folio_to_inode(folio)->io_tree;
533 	extent_invalidate_folio(tree, folio, offset);
534 	btree_release_folio(folio, GFP_NOFS);
535 	if (folio_get_private(folio)) {
536 		btrfs_warn(folio_to_fs_info(folio),
537 			   "folio private not zero on folio %llu",
538 			   (unsigned long long)folio_pos(folio));
539 		folio_detach_private(folio);
540 	}
541 }
542 
543 #ifdef DEBUG
544 static bool btree_dirty_folio(struct address_space *mapping,
545 		struct folio *folio)
546 {
547 	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
548 	struct btrfs_subpage_info *spi = fs_info->subpage_info;
549 	struct btrfs_subpage *subpage;
550 	struct extent_buffer *eb;
551 	int cur_bit = 0;
552 	u64 page_start = folio_pos(folio);
553 
554 	if (fs_info->sectorsize == PAGE_SIZE) {
555 		eb = folio_get_private(folio);
556 		BUG_ON(!eb);
557 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
558 		BUG_ON(!atomic_read(&eb->refs));
559 		btrfs_assert_tree_write_locked(eb);
560 		return filemap_dirty_folio(mapping, folio);
561 	}
562 
563 	ASSERT(spi);
564 	subpage = folio_get_private(folio);
565 
566 	for (cur_bit = spi->dirty_offset;
567 	     cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
568 	     cur_bit++) {
569 		unsigned long flags;
570 		u64 cur;
571 
572 		spin_lock_irqsave(&subpage->lock, flags);
573 		if (!test_bit(cur_bit, subpage->bitmaps)) {
574 			spin_unlock_irqrestore(&subpage->lock, flags);
575 			continue;
576 		}
577 		spin_unlock_irqrestore(&subpage->lock, flags);
578 		cur = page_start + cur_bit * fs_info->sectorsize;
579 
580 		eb = find_extent_buffer(fs_info, cur);
581 		ASSERT(eb);
582 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
583 		ASSERT(atomic_read(&eb->refs));
584 		btrfs_assert_tree_write_locked(eb);
585 		free_extent_buffer(eb);
586 
587 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
588 	}
589 	return filemap_dirty_folio(mapping, folio);
590 }
591 #else
592 #define btree_dirty_folio filemap_dirty_folio
593 #endif
594 
595 static const struct address_space_operations btree_aops = {
596 	.writepages	= btree_writepages,
597 	.release_folio	= btree_release_folio,
598 	.invalidate_folio = btree_invalidate_folio,
599 	.migrate_folio	= btree_migrate_folio,
600 	.dirty_folio	= btree_dirty_folio,
601 };
602 
603 struct extent_buffer *btrfs_find_create_tree_block(
604 						struct btrfs_fs_info *fs_info,
605 						u64 bytenr, u64 owner_root,
606 						int level)
607 {
608 	if (btrfs_is_testing(fs_info))
609 		return alloc_test_extent_buffer(fs_info, bytenr);
610 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
611 }
612 
613 /*
614  * Read tree block at logical address @bytenr and do variant basic but critical
615  * verification.
616  *
617  * @check:		expected tree parentness check, see comments of the
618  *			structure for details.
619  */
620 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
621 				      struct btrfs_tree_parent_check *check)
622 {
623 	struct extent_buffer *buf = NULL;
624 	int ret;
625 
626 	ASSERT(check);
627 
628 	buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
629 					   check->level);
630 	if (IS_ERR(buf))
631 		return buf;
632 
633 	ret = btrfs_read_extent_buffer(buf, check);
634 	if (ret) {
635 		free_extent_buffer_stale(buf);
636 		return ERR_PTR(ret);
637 	}
638 	if (btrfs_check_eb_owner(buf, check->owner_root)) {
639 		free_extent_buffer_stale(buf);
640 		return ERR_PTR(-EUCLEAN);
641 	}
642 	return buf;
643 
644 }
645 
646 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
647 			 u64 objectid)
648 {
649 	bool dummy = btrfs_is_testing(fs_info);
650 
651 	memset(&root->root_key, 0, sizeof(root->root_key));
652 	memset(&root->root_item, 0, sizeof(root->root_item));
653 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
654 	root->fs_info = fs_info;
655 	root->root_key.objectid = objectid;
656 	root->node = NULL;
657 	root->commit_root = NULL;
658 	root->state = 0;
659 	RB_CLEAR_NODE(&root->rb_node);
660 
661 	root->last_trans = 0;
662 	root->free_objectid = 0;
663 	root->nr_delalloc_inodes = 0;
664 	root->nr_ordered_extents = 0;
665 	root->inode_tree = RB_ROOT;
666 	xa_init(&root->delayed_nodes);
667 
668 	btrfs_init_root_block_rsv(root);
669 
670 	INIT_LIST_HEAD(&root->dirty_list);
671 	INIT_LIST_HEAD(&root->root_list);
672 	INIT_LIST_HEAD(&root->delalloc_inodes);
673 	INIT_LIST_HEAD(&root->delalloc_root);
674 	INIT_LIST_HEAD(&root->ordered_extents);
675 	INIT_LIST_HEAD(&root->ordered_root);
676 	INIT_LIST_HEAD(&root->reloc_dirty_list);
677 	spin_lock_init(&root->inode_lock);
678 	spin_lock_init(&root->delalloc_lock);
679 	spin_lock_init(&root->ordered_extent_lock);
680 	spin_lock_init(&root->accounting_lock);
681 	spin_lock_init(&root->qgroup_meta_rsv_lock);
682 	mutex_init(&root->objectid_mutex);
683 	mutex_init(&root->log_mutex);
684 	mutex_init(&root->ordered_extent_mutex);
685 	mutex_init(&root->delalloc_mutex);
686 	init_waitqueue_head(&root->qgroup_flush_wait);
687 	init_waitqueue_head(&root->log_writer_wait);
688 	init_waitqueue_head(&root->log_commit_wait[0]);
689 	init_waitqueue_head(&root->log_commit_wait[1]);
690 	INIT_LIST_HEAD(&root->log_ctxs[0]);
691 	INIT_LIST_HEAD(&root->log_ctxs[1]);
692 	atomic_set(&root->log_commit[0], 0);
693 	atomic_set(&root->log_commit[1], 0);
694 	atomic_set(&root->log_writers, 0);
695 	atomic_set(&root->log_batch, 0);
696 	refcount_set(&root->refs, 1);
697 	atomic_set(&root->snapshot_force_cow, 0);
698 	atomic_set(&root->nr_swapfiles, 0);
699 	btrfs_set_root_log_transid(root, 0);
700 	root->log_transid_committed = -1;
701 	btrfs_set_root_last_log_commit(root, 0);
702 	root->anon_dev = 0;
703 	if (!dummy) {
704 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
705 				    IO_TREE_ROOT_DIRTY_LOG_PAGES);
706 		extent_io_tree_init(fs_info, &root->log_csum_range,
707 				    IO_TREE_LOG_CSUM_RANGE);
708 	}
709 
710 	spin_lock_init(&root->root_item_lock);
711 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
712 #ifdef CONFIG_BTRFS_DEBUG
713 	INIT_LIST_HEAD(&root->leak_list);
714 	spin_lock(&fs_info->fs_roots_radix_lock);
715 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
716 	spin_unlock(&fs_info->fs_roots_radix_lock);
717 #endif
718 }
719 
720 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
721 					   u64 objectid, gfp_t flags)
722 {
723 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
724 	if (root)
725 		__setup_root(root, fs_info, objectid);
726 	return root;
727 }
728 
729 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
730 /* Should only be used by the testing infrastructure */
731 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
732 {
733 	struct btrfs_root *root;
734 
735 	if (!fs_info)
736 		return ERR_PTR(-EINVAL);
737 
738 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
739 	if (!root)
740 		return ERR_PTR(-ENOMEM);
741 
742 	/* We don't use the stripesize in selftest, set it as sectorsize */
743 	root->alloc_bytenr = 0;
744 
745 	return root;
746 }
747 #endif
748 
749 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
750 {
751 	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
752 	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
753 
754 	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
755 }
756 
757 static int global_root_key_cmp(const void *k, const struct rb_node *node)
758 {
759 	const struct btrfs_key *key = k;
760 	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
761 
762 	return btrfs_comp_cpu_keys(key, &root->root_key);
763 }
764 
765 int btrfs_global_root_insert(struct btrfs_root *root)
766 {
767 	struct btrfs_fs_info *fs_info = root->fs_info;
768 	struct rb_node *tmp;
769 	int ret = 0;
770 
771 	write_lock(&fs_info->global_root_lock);
772 	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
773 	write_unlock(&fs_info->global_root_lock);
774 
775 	if (tmp) {
776 		ret = -EEXIST;
777 		btrfs_warn(fs_info, "global root %llu %llu already exists",
778 			   btrfs_root_id(root), root->root_key.offset);
779 	}
780 	return ret;
781 }
782 
783 void btrfs_global_root_delete(struct btrfs_root *root)
784 {
785 	struct btrfs_fs_info *fs_info = root->fs_info;
786 
787 	write_lock(&fs_info->global_root_lock);
788 	rb_erase(&root->rb_node, &fs_info->global_root_tree);
789 	write_unlock(&fs_info->global_root_lock);
790 }
791 
792 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
793 				     struct btrfs_key *key)
794 {
795 	struct rb_node *node;
796 	struct btrfs_root *root = NULL;
797 
798 	read_lock(&fs_info->global_root_lock);
799 	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
800 	if (node)
801 		root = container_of(node, struct btrfs_root, rb_node);
802 	read_unlock(&fs_info->global_root_lock);
803 
804 	return root;
805 }
806 
807 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
808 {
809 	struct btrfs_block_group *block_group;
810 	u64 ret;
811 
812 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
813 		return 0;
814 
815 	if (bytenr)
816 		block_group = btrfs_lookup_block_group(fs_info, bytenr);
817 	else
818 		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
819 	ASSERT(block_group);
820 	if (!block_group)
821 		return 0;
822 	ret = block_group->global_root_id;
823 	btrfs_put_block_group(block_group);
824 
825 	return ret;
826 }
827 
828 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
829 {
830 	struct btrfs_key key = {
831 		.objectid = BTRFS_CSUM_TREE_OBJECTID,
832 		.type = BTRFS_ROOT_ITEM_KEY,
833 		.offset = btrfs_global_root_id(fs_info, bytenr),
834 	};
835 
836 	return btrfs_global_root(fs_info, &key);
837 }
838 
839 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
840 {
841 	struct btrfs_key key = {
842 		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
843 		.type = BTRFS_ROOT_ITEM_KEY,
844 		.offset = btrfs_global_root_id(fs_info, bytenr),
845 	};
846 
847 	return btrfs_global_root(fs_info, &key);
848 }
849 
850 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
851 {
852 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
853 		return fs_info->block_group_root;
854 	return btrfs_extent_root(fs_info, 0);
855 }
856 
857 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
858 				     u64 objectid)
859 {
860 	struct btrfs_fs_info *fs_info = trans->fs_info;
861 	struct extent_buffer *leaf;
862 	struct btrfs_root *tree_root = fs_info->tree_root;
863 	struct btrfs_root *root;
864 	struct btrfs_key key;
865 	unsigned int nofs_flag;
866 	int ret = 0;
867 
868 	/*
869 	 * We're holding a transaction handle, so use a NOFS memory allocation
870 	 * context to avoid deadlock if reclaim happens.
871 	 */
872 	nofs_flag = memalloc_nofs_save();
873 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
874 	memalloc_nofs_restore(nofs_flag);
875 	if (!root)
876 		return ERR_PTR(-ENOMEM);
877 
878 	root->root_key.objectid = objectid;
879 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
880 	root->root_key.offset = 0;
881 
882 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
883 				      0, BTRFS_NESTING_NORMAL);
884 	if (IS_ERR(leaf)) {
885 		ret = PTR_ERR(leaf);
886 		leaf = NULL;
887 		goto fail;
888 	}
889 
890 	root->node = leaf;
891 	btrfs_mark_buffer_dirty(trans, leaf);
892 
893 	root->commit_root = btrfs_root_node(root);
894 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
895 
896 	btrfs_set_root_flags(&root->root_item, 0);
897 	btrfs_set_root_limit(&root->root_item, 0);
898 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
899 	btrfs_set_root_generation(&root->root_item, trans->transid);
900 	btrfs_set_root_level(&root->root_item, 0);
901 	btrfs_set_root_refs(&root->root_item, 1);
902 	btrfs_set_root_used(&root->root_item, leaf->len);
903 	btrfs_set_root_last_snapshot(&root->root_item, 0);
904 	btrfs_set_root_dirid(&root->root_item, 0);
905 	if (is_fstree(objectid))
906 		generate_random_guid(root->root_item.uuid);
907 	else
908 		export_guid(root->root_item.uuid, &guid_null);
909 	btrfs_set_root_drop_level(&root->root_item, 0);
910 
911 	btrfs_tree_unlock(leaf);
912 
913 	key.objectid = objectid;
914 	key.type = BTRFS_ROOT_ITEM_KEY;
915 	key.offset = 0;
916 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
917 	if (ret)
918 		goto fail;
919 
920 	return root;
921 
922 fail:
923 	btrfs_put_root(root);
924 
925 	return ERR_PTR(ret);
926 }
927 
928 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
929 					 struct btrfs_fs_info *fs_info)
930 {
931 	struct btrfs_root *root;
932 
933 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
934 	if (!root)
935 		return ERR_PTR(-ENOMEM);
936 
937 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
938 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
939 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
940 
941 	return root;
942 }
943 
944 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
945 			      struct btrfs_root *root)
946 {
947 	struct extent_buffer *leaf;
948 
949 	/*
950 	 * DON'T set SHAREABLE bit for log trees.
951 	 *
952 	 * Log trees are not exposed to user space thus can't be snapshotted,
953 	 * and they go away before a real commit is actually done.
954 	 *
955 	 * They do store pointers to file data extents, and those reference
956 	 * counts still get updated (along with back refs to the log tree).
957 	 */
958 
959 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
960 			NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
961 	if (IS_ERR(leaf))
962 		return PTR_ERR(leaf);
963 
964 	root->node = leaf;
965 
966 	btrfs_mark_buffer_dirty(trans, root->node);
967 	btrfs_tree_unlock(root->node);
968 
969 	return 0;
970 }
971 
972 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
973 			     struct btrfs_fs_info *fs_info)
974 {
975 	struct btrfs_root *log_root;
976 
977 	log_root = alloc_log_tree(trans, fs_info);
978 	if (IS_ERR(log_root))
979 		return PTR_ERR(log_root);
980 
981 	if (!btrfs_is_zoned(fs_info)) {
982 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
983 
984 		if (ret) {
985 			btrfs_put_root(log_root);
986 			return ret;
987 		}
988 	}
989 
990 	WARN_ON(fs_info->log_root_tree);
991 	fs_info->log_root_tree = log_root;
992 	return 0;
993 }
994 
995 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
996 		       struct btrfs_root *root)
997 {
998 	struct btrfs_fs_info *fs_info = root->fs_info;
999 	struct btrfs_root *log_root;
1000 	struct btrfs_inode_item *inode_item;
1001 	int ret;
1002 
1003 	log_root = alloc_log_tree(trans, fs_info);
1004 	if (IS_ERR(log_root))
1005 		return PTR_ERR(log_root);
1006 
1007 	ret = btrfs_alloc_log_tree_node(trans, log_root);
1008 	if (ret) {
1009 		btrfs_put_root(log_root);
1010 		return ret;
1011 	}
1012 
1013 	log_root->last_trans = trans->transid;
1014 	log_root->root_key.offset = btrfs_root_id(root);
1015 
1016 	inode_item = &log_root->root_item.inode;
1017 	btrfs_set_stack_inode_generation(inode_item, 1);
1018 	btrfs_set_stack_inode_size(inode_item, 3);
1019 	btrfs_set_stack_inode_nlink(inode_item, 1);
1020 	btrfs_set_stack_inode_nbytes(inode_item,
1021 				     fs_info->nodesize);
1022 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1023 
1024 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1025 
1026 	WARN_ON(root->log_root);
1027 	root->log_root = log_root;
1028 	btrfs_set_root_log_transid(root, 0);
1029 	root->log_transid_committed = -1;
1030 	btrfs_set_root_last_log_commit(root, 0);
1031 	return 0;
1032 }
1033 
1034 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1035 					      struct btrfs_path *path,
1036 					      struct btrfs_key *key)
1037 {
1038 	struct btrfs_root *root;
1039 	struct btrfs_tree_parent_check check = { 0 };
1040 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1041 	u64 generation;
1042 	int ret;
1043 	int level;
1044 
1045 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1046 	if (!root)
1047 		return ERR_PTR(-ENOMEM);
1048 
1049 	ret = btrfs_find_root(tree_root, key, path,
1050 			      &root->root_item, &root->root_key);
1051 	if (ret) {
1052 		if (ret > 0)
1053 			ret = -ENOENT;
1054 		goto fail;
1055 	}
1056 
1057 	generation = btrfs_root_generation(&root->root_item);
1058 	level = btrfs_root_level(&root->root_item);
1059 	check.level = level;
1060 	check.transid = generation;
1061 	check.owner_root = key->objectid;
1062 	root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1063 				     &check);
1064 	if (IS_ERR(root->node)) {
1065 		ret = PTR_ERR(root->node);
1066 		root->node = NULL;
1067 		goto fail;
1068 	}
1069 	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1070 		ret = -EIO;
1071 		goto fail;
1072 	}
1073 
1074 	/*
1075 	 * For real fs, and not log/reloc trees, root owner must
1076 	 * match its root node owner
1077 	 */
1078 	if (!btrfs_is_testing(fs_info) &&
1079 	    btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1080 	    btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
1081 	    btrfs_root_id(root) != btrfs_header_owner(root->node)) {
1082 		btrfs_crit(fs_info,
1083 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1084 			   btrfs_root_id(root), root->node->start,
1085 			   btrfs_header_owner(root->node),
1086 			   btrfs_root_id(root));
1087 		ret = -EUCLEAN;
1088 		goto fail;
1089 	}
1090 	root->commit_root = btrfs_root_node(root);
1091 	return root;
1092 fail:
1093 	btrfs_put_root(root);
1094 	return ERR_PTR(ret);
1095 }
1096 
1097 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1098 					struct btrfs_key *key)
1099 {
1100 	struct btrfs_root *root;
1101 	struct btrfs_path *path;
1102 
1103 	path = btrfs_alloc_path();
1104 	if (!path)
1105 		return ERR_PTR(-ENOMEM);
1106 	root = read_tree_root_path(tree_root, path, key);
1107 	btrfs_free_path(path);
1108 
1109 	return root;
1110 }
1111 
1112 /*
1113  * Initialize subvolume root in-memory structure
1114  *
1115  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1116  */
1117 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1118 {
1119 	int ret;
1120 
1121 	btrfs_drew_lock_init(&root->snapshot_lock);
1122 
1123 	if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1124 	    !btrfs_is_data_reloc_root(root) &&
1125 	    is_fstree(btrfs_root_id(root))) {
1126 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1127 		btrfs_check_and_init_root_item(&root->root_item);
1128 	}
1129 
1130 	/*
1131 	 * Don't assign anonymous block device to roots that are not exposed to
1132 	 * userspace, the id pool is limited to 1M
1133 	 */
1134 	if (is_fstree(btrfs_root_id(root)) &&
1135 	    btrfs_root_refs(&root->root_item) > 0) {
1136 		if (!anon_dev) {
1137 			ret = get_anon_bdev(&root->anon_dev);
1138 			if (ret)
1139 				goto fail;
1140 		} else {
1141 			root->anon_dev = anon_dev;
1142 		}
1143 	}
1144 
1145 	mutex_lock(&root->objectid_mutex);
1146 	ret = btrfs_init_root_free_objectid(root);
1147 	if (ret) {
1148 		mutex_unlock(&root->objectid_mutex);
1149 		goto fail;
1150 	}
1151 
1152 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1153 
1154 	mutex_unlock(&root->objectid_mutex);
1155 
1156 	return 0;
1157 fail:
1158 	/* The caller is responsible to call btrfs_free_fs_root */
1159 	return ret;
1160 }
1161 
1162 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1163 					       u64 root_id)
1164 {
1165 	struct btrfs_root *root;
1166 
1167 	spin_lock(&fs_info->fs_roots_radix_lock);
1168 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1169 				 (unsigned long)root_id);
1170 	root = btrfs_grab_root(root);
1171 	spin_unlock(&fs_info->fs_roots_radix_lock);
1172 	return root;
1173 }
1174 
1175 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1176 						u64 objectid)
1177 {
1178 	struct btrfs_key key = {
1179 		.objectid = objectid,
1180 		.type = BTRFS_ROOT_ITEM_KEY,
1181 		.offset = 0,
1182 	};
1183 
1184 	switch (objectid) {
1185 	case BTRFS_ROOT_TREE_OBJECTID:
1186 		return btrfs_grab_root(fs_info->tree_root);
1187 	case BTRFS_EXTENT_TREE_OBJECTID:
1188 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1189 	case BTRFS_CHUNK_TREE_OBJECTID:
1190 		return btrfs_grab_root(fs_info->chunk_root);
1191 	case BTRFS_DEV_TREE_OBJECTID:
1192 		return btrfs_grab_root(fs_info->dev_root);
1193 	case BTRFS_CSUM_TREE_OBJECTID:
1194 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1195 	case BTRFS_QUOTA_TREE_OBJECTID:
1196 		return btrfs_grab_root(fs_info->quota_root);
1197 	case BTRFS_UUID_TREE_OBJECTID:
1198 		return btrfs_grab_root(fs_info->uuid_root);
1199 	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1200 		return btrfs_grab_root(fs_info->block_group_root);
1201 	case BTRFS_FREE_SPACE_TREE_OBJECTID:
1202 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1203 	case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1204 		return btrfs_grab_root(fs_info->stripe_root);
1205 	default:
1206 		return NULL;
1207 	}
1208 }
1209 
1210 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1211 			 struct btrfs_root *root)
1212 {
1213 	int ret;
1214 
1215 	ret = radix_tree_preload(GFP_NOFS);
1216 	if (ret)
1217 		return ret;
1218 
1219 	spin_lock(&fs_info->fs_roots_radix_lock);
1220 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1221 				(unsigned long)btrfs_root_id(root),
1222 				root);
1223 	if (ret == 0) {
1224 		btrfs_grab_root(root);
1225 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1226 	}
1227 	spin_unlock(&fs_info->fs_roots_radix_lock);
1228 	radix_tree_preload_end();
1229 
1230 	return ret;
1231 }
1232 
1233 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1234 {
1235 #ifdef CONFIG_BTRFS_DEBUG
1236 	struct btrfs_root *root;
1237 
1238 	while (!list_empty(&fs_info->allocated_roots)) {
1239 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1240 
1241 		root = list_first_entry(&fs_info->allocated_roots,
1242 					struct btrfs_root, leak_list);
1243 		btrfs_err(fs_info, "leaked root %s refcount %d",
1244 			  btrfs_root_name(&root->root_key, buf),
1245 			  refcount_read(&root->refs));
1246 		WARN_ON_ONCE(1);
1247 		while (refcount_read(&root->refs) > 1)
1248 			btrfs_put_root(root);
1249 		btrfs_put_root(root);
1250 	}
1251 #endif
1252 }
1253 
1254 static void free_global_roots(struct btrfs_fs_info *fs_info)
1255 {
1256 	struct btrfs_root *root;
1257 	struct rb_node *node;
1258 
1259 	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1260 		root = rb_entry(node, struct btrfs_root, rb_node);
1261 		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1262 		btrfs_put_root(root);
1263 	}
1264 }
1265 
1266 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1267 {
1268 	struct percpu_counter *em_counter = &fs_info->evictable_extent_maps;
1269 
1270 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1271 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1272 	percpu_counter_destroy(&fs_info->ordered_bytes);
1273 	if (percpu_counter_initialized(em_counter))
1274 		ASSERT(percpu_counter_sum_positive(em_counter) == 0);
1275 	percpu_counter_destroy(em_counter);
1276 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1277 	btrfs_free_csum_hash(fs_info);
1278 	btrfs_free_stripe_hash_table(fs_info);
1279 	btrfs_free_ref_cache(fs_info);
1280 	kfree(fs_info->balance_ctl);
1281 	kfree(fs_info->delayed_root);
1282 	free_global_roots(fs_info);
1283 	btrfs_put_root(fs_info->tree_root);
1284 	btrfs_put_root(fs_info->chunk_root);
1285 	btrfs_put_root(fs_info->dev_root);
1286 	btrfs_put_root(fs_info->quota_root);
1287 	btrfs_put_root(fs_info->uuid_root);
1288 	btrfs_put_root(fs_info->fs_root);
1289 	btrfs_put_root(fs_info->data_reloc_root);
1290 	btrfs_put_root(fs_info->block_group_root);
1291 	btrfs_put_root(fs_info->stripe_root);
1292 	btrfs_check_leaked_roots(fs_info);
1293 	btrfs_extent_buffer_leak_debug_check(fs_info);
1294 	kfree(fs_info->super_copy);
1295 	kfree(fs_info->super_for_commit);
1296 	kfree(fs_info->subpage_info);
1297 	kvfree(fs_info);
1298 }
1299 
1300 
1301 /*
1302  * Get an in-memory reference of a root structure.
1303  *
1304  * For essential trees like root/extent tree, we grab it from fs_info directly.
1305  * For subvolume trees, we check the cached filesystem roots first. If not
1306  * found, then read it from disk and add it to cached fs roots.
1307  *
1308  * Caller should release the root by calling btrfs_put_root() after the usage.
1309  *
1310  * NOTE: Reloc and log trees can't be read by this function as they share the
1311  *	 same root objectid.
1312  *
1313  * @objectid:	root id
1314  * @anon_dev:	preallocated anonymous block device number for new roots,
1315  *		pass NULL for a new allocation.
1316  * @check_ref:	whether to check root item references, If true, return -ENOENT
1317  *		for orphan roots
1318  */
1319 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1320 					     u64 objectid, dev_t *anon_dev,
1321 					     bool check_ref)
1322 {
1323 	struct btrfs_root *root;
1324 	struct btrfs_path *path;
1325 	struct btrfs_key key;
1326 	int ret;
1327 
1328 	root = btrfs_get_global_root(fs_info, objectid);
1329 	if (root)
1330 		return root;
1331 
1332 	/*
1333 	 * If we're called for non-subvolume trees, and above function didn't
1334 	 * find one, do not try to read it from disk.
1335 	 *
1336 	 * This is namely for free-space-tree and quota tree, which can change
1337 	 * at runtime and should only be grabbed from fs_info.
1338 	 */
1339 	if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1340 		return ERR_PTR(-ENOENT);
1341 again:
1342 	root = btrfs_lookup_fs_root(fs_info, objectid);
1343 	if (root) {
1344 		/*
1345 		 * Some other caller may have read out the newly inserted
1346 		 * subvolume already (for things like backref walk etc).  Not
1347 		 * that common but still possible.  In that case, we just need
1348 		 * to free the anon_dev.
1349 		 */
1350 		if (unlikely(anon_dev && *anon_dev)) {
1351 			free_anon_bdev(*anon_dev);
1352 			*anon_dev = 0;
1353 		}
1354 
1355 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1356 			btrfs_put_root(root);
1357 			return ERR_PTR(-ENOENT);
1358 		}
1359 		return root;
1360 	}
1361 
1362 	key.objectid = objectid;
1363 	key.type = BTRFS_ROOT_ITEM_KEY;
1364 	key.offset = (u64)-1;
1365 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1366 	if (IS_ERR(root))
1367 		return root;
1368 
1369 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1370 		ret = -ENOENT;
1371 		goto fail;
1372 	}
1373 
1374 	ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
1375 	if (ret)
1376 		goto fail;
1377 
1378 	path = btrfs_alloc_path();
1379 	if (!path) {
1380 		ret = -ENOMEM;
1381 		goto fail;
1382 	}
1383 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1384 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1385 	key.offset = objectid;
1386 
1387 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1388 	btrfs_free_path(path);
1389 	if (ret < 0)
1390 		goto fail;
1391 	if (ret == 0)
1392 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1393 
1394 	ret = btrfs_insert_fs_root(fs_info, root);
1395 	if (ret) {
1396 		if (ret == -EEXIST) {
1397 			btrfs_put_root(root);
1398 			goto again;
1399 		}
1400 		goto fail;
1401 	}
1402 	return root;
1403 fail:
1404 	/*
1405 	 * If our caller provided us an anonymous device, then it's his
1406 	 * responsibility to free it in case we fail. So we have to set our
1407 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1408 	 * and once again by our caller.
1409 	 */
1410 	if (anon_dev && *anon_dev)
1411 		root->anon_dev = 0;
1412 	btrfs_put_root(root);
1413 	return ERR_PTR(ret);
1414 }
1415 
1416 /*
1417  * Get in-memory reference of a root structure
1418  *
1419  * @objectid:	tree objectid
1420  * @check_ref:	if set, verify that the tree exists and the item has at least
1421  *		one reference
1422  */
1423 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1424 				     u64 objectid, bool check_ref)
1425 {
1426 	return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
1427 }
1428 
1429 /*
1430  * Get in-memory reference of a root structure, created as new, optionally pass
1431  * the anonymous block device id
1432  *
1433  * @objectid:	tree objectid
1434  * @anon_dev:	if NULL, allocate a new anonymous block device or use the
1435  *		parameter value if not NULL
1436  */
1437 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1438 					 u64 objectid, dev_t *anon_dev)
1439 {
1440 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1441 }
1442 
1443 /*
1444  * Return a root for the given objectid.
1445  *
1446  * @fs_info:	the fs_info
1447  * @objectid:	the objectid we need to lookup
1448  *
1449  * This is exclusively used for backref walking, and exists specifically because
1450  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1451  * creation time, which means we may have to read the tree_root in order to look
1452  * up a fs root that is not in memory.  If the root is not in memory we will
1453  * read the tree root commit root and look up the fs root from there.  This is a
1454  * temporary root, it will not be inserted into the radix tree as it doesn't
1455  * have the most uptodate information, it'll simply be discarded once the
1456  * backref code is finished using the root.
1457  */
1458 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1459 						 struct btrfs_path *path,
1460 						 u64 objectid)
1461 {
1462 	struct btrfs_root *root;
1463 	struct btrfs_key key;
1464 
1465 	ASSERT(path->search_commit_root && path->skip_locking);
1466 
1467 	/*
1468 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1469 	 * since this is called via the backref walking code we won't be looking
1470 	 * up a root that doesn't exist, unless there's corruption.  So if root
1471 	 * != NULL just return it.
1472 	 */
1473 	root = btrfs_get_global_root(fs_info, objectid);
1474 	if (root)
1475 		return root;
1476 
1477 	root = btrfs_lookup_fs_root(fs_info, objectid);
1478 	if (root)
1479 		return root;
1480 
1481 	key.objectid = objectid;
1482 	key.type = BTRFS_ROOT_ITEM_KEY;
1483 	key.offset = (u64)-1;
1484 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1485 	btrfs_release_path(path);
1486 
1487 	return root;
1488 }
1489 
1490 static int cleaner_kthread(void *arg)
1491 {
1492 	struct btrfs_fs_info *fs_info = arg;
1493 	int again;
1494 
1495 	while (1) {
1496 		again = 0;
1497 
1498 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1499 
1500 		/* Make the cleaner go to sleep early. */
1501 		if (btrfs_need_cleaner_sleep(fs_info))
1502 			goto sleep;
1503 
1504 		/*
1505 		 * Do not do anything if we might cause open_ctree() to block
1506 		 * before we have finished mounting the filesystem.
1507 		 */
1508 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1509 			goto sleep;
1510 
1511 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1512 			goto sleep;
1513 
1514 		/*
1515 		 * Avoid the problem that we change the status of the fs
1516 		 * during the above check and trylock.
1517 		 */
1518 		if (btrfs_need_cleaner_sleep(fs_info)) {
1519 			mutex_unlock(&fs_info->cleaner_mutex);
1520 			goto sleep;
1521 		}
1522 
1523 		if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1524 			btrfs_sysfs_feature_update(fs_info);
1525 
1526 		btrfs_run_delayed_iputs(fs_info);
1527 
1528 		again = btrfs_clean_one_deleted_snapshot(fs_info);
1529 		mutex_unlock(&fs_info->cleaner_mutex);
1530 
1531 		/*
1532 		 * The defragger has dealt with the R/O remount and umount,
1533 		 * needn't do anything special here.
1534 		 */
1535 		btrfs_run_defrag_inodes(fs_info);
1536 
1537 		/*
1538 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1539 		 * with relocation (btrfs_relocate_chunk) and relocation
1540 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1541 		 * after acquiring fs_info->reclaim_bgs_lock. So we
1542 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1543 		 * unused block groups.
1544 		 */
1545 		btrfs_delete_unused_bgs(fs_info);
1546 
1547 		/*
1548 		 * Reclaim block groups in the reclaim_bgs list after we deleted
1549 		 * all unused block_groups. This possibly gives us some more free
1550 		 * space.
1551 		 */
1552 		btrfs_reclaim_bgs(fs_info);
1553 sleep:
1554 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1555 		if (kthread_should_park())
1556 			kthread_parkme();
1557 		if (kthread_should_stop())
1558 			return 0;
1559 		if (!again) {
1560 			set_current_state(TASK_INTERRUPTIBLE);
1561 			schedule();
1562 			__set_current_state(TASK_RUNNING);
1563 		}
1564 	}
1565 }
1566 
1567 static int transaction_kthread(void *arg)
1568 {
1569 	struct btrfs_root *root = arg;
1570 	struct btrfs_fs_info *fs_info = root->fs_info;
1571 	struct btrfs_trans_handle *trans;
1572 	struct btrfs_transaction *cur;
1573 	u64 transid;
1574 	time64_t delta;
1575 	unsigned long delay;
1576 	bool cannot_commit;
1577 
1578 	do {
1579 		cannot_commit = false;
1580 		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1581 		mutex_lock(&fs_info->transaction_kthread_mutex);
1582 
1583 		spin_lock(&fs_info->trans_lock);
1584 		cur = fs_info->running_transaction;
1585 		if (!cur) {
1586 			spin_unlock(&fs_info->trans_lock);
1587 			goto sleep;
1588 		}
1589 
1590 		delta = ktime_get_seconds() - cur->start_time;
1591 		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1592 		    cur->state < TRANS_STATE_COMMIT_PREP &&
1593 		    delta < fs_info->commit_interval) {
1594 			spin_unlock(&fs_info->trans_lock);
1595 			delay -= msecs_to_jiffies((delta - 1) * 1000);
1596 			delay = min(delay,
1597 				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1598 			goto sleep;
1599 		}
1600 		transid = cur->transid;
1601 		spin_unlock(&fs_info->trans_lock);
1602 
1603 		/* If the file system is aborted, this will always fail. */
1604 		trans = btrfs_attach_transaction(root);
1605 		if (IS_ERR(trans)) {
1606 			if (PTR_ERR(trans) != -ENOENT)
1607 				cannot_commit = true;
1608 			goto sleep;
1609 		}
1610 		if (transid == trans->transid) {
1611 			btrfs_commit_transaction(trans);
1612 		} else {
1613 			btrfs_end_transaction(trans);
1614 		}
1615 sleep:
1616 		wake_up_process(fs_info->cleaner_kthread);
1617 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1618 
1619 		if (BTRFS_FS_ERROR(fs_info))
1620 			btrfs_cleanup_transaction(fs_info);
1621 		if (!kthread_should_stop() &&
1622 				(!btrfs_transaction_blocked(fs_info) ||
1623 				 cannot_commit))
1624 			schedule_timeout_interruptible(delay);
1625 	} while (!kthread_should_stop());
1626 	return 0;
1627 }
1628 
1629 /*
1630  * This will find the highest generation in the array of root backups.  The
1631  * index of the highest array is returned, or -EINVAL if we can't find
1632  * anything.
1633  *
1634  * We check to make sure the array is valid by comparing the
1635  * generation of the latest  root in the array with the generation
1636  * in the super block.  If they don't match we pitch it.
1637  */
1638 static int find_newest_super_backup(struct btrfs_fs_info *info)
1639 {
1640 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1641 	u64 cur;
1642 	struct btrfs_root_backup *root_backup;
1643 	int i;
1644 
1645 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1646 		root_backup = info->super_copy->super_roots + i;
1647 		cur = btrfs_backup_tree_root_gen(root_backup);
1648 		if (cur == newest_gen)
1649 			return i;
1650 	}
1651 
1652 	return -EINVAL;
1653 }
1654 
1655 /*
1656  * copy all the root pointers into the super backup array.
1657  * this will bump the backup pointer by one when it is
1658  * done
1659  */
1660 static void backup_super_roots(struct btrfs_fs_info *info)
1661 {
1662 	const int next_backup = info->backup_root_index;
1663 	struct btrfs_root_backup *root_backup;
1664 
1665 	root_backup = info->super_for_commit->super_roots + next_backup;
1666 
1667 	/*
1668 	 * make sure all of our padding and empty slots get zero filled
1669 	 * regardless of which ones we use today
1670 	 */
1671 	memset(root_backup, 0, sizeof(*root_backup));
1672 
1673 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1674 
1675 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1676 	btrfs_set_backup_tree_root_gen(root_backup,
1677 			       btrfs_header_generation(info->tree_root->node));
1678 
1679 	btrfs_set_backup_tree_root_level(root_backup,
1680 			       btrfs_header_level(info->tree_root->node));
1681 
1682 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1683 	btrfs_set_backup_chunk_root_gen(root_backup,
1684 			       btrfs_header_generation(info->chunk_root->node));
1685 	btrfs_set_backup_chunk_root_level(root_backup,
1686 			       btrfs_header_level(info->chunk_root->node));
1687 
1688 	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1689 		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1690 		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1691 
1692 		btrfs_set_backup_extent_root(root_backup,
1693 					     extent_root->node->start);
1694 		btrfs_set_backup_extent_root_gen(root_backup,
1695 				btrfs_header_generation(extent_root->node));
1696 		btrfs_set_backup_extent_root_level(root_backup,
1697 					btrfs_header_level(extent_root->node));
1698 
1699 		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1700 		btrfs_set_backup_csum_root_gen(root_backup,
1701 					       btrfs_header_generation(csum_root->node));
1702 		btrfs_set_backup_csum_root_level(root_backup,
1703 						 btrfs_header_level(csum_root->node));
1704 	}
1705 
1706 	/*
1707 	 * we might commit during log recovery, which happens before we set
1708 	 * the fs_root.  Make sure it is valid before we fill it in.
1709 	 */
1710 	if (info->fs_root && info->fs_root->node) {
1711 		btrfs_set_backup_fs_root(root_backup,
1712 					 info->fs_root->node->start);
1713 		btrfs_set_backup_fs_root_gen(root_backup,
1714 			       btrfs_header_generation(info->fs_root->node));
1715 		btrfs_set_backup_fs_root_level(root_backup,
1716 			       btrfs_header_level(info->fs_root->node));
1717 	}
1718 
1719 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1720 	btrfs_set_backup_dev_root_gen(root_backup,
1721 			       btrfs_header_generation(info->dev_root->node));
1722 	btrfs_set_backup_dev_root_level(root_backup,
1723 				       btrfs_header_level(info->dev_root->node));
1724 
1725 	btrfs_set_backup_total_bytes(root_backup,
1726 			     btrfs_super_total_bytes(info->super_copy));
1727 	btrfs_set_backup_bytes_used(root_backup,
1728 			     btrfs_super_bytes_used(info->super_copy));
1729 	btrfs_set_backup_num_devices(root_backup,
1730 			     btrfs_super_num_devices(info->super_copy));
1731 
1732 	/*
1733 	 * if we don't copy this out to the super_copy, it won't get remembered
1734 	 * for the next commit
1735 	 */
1736 	memcpy(&info->super_copy->super_roots,
1737 	       &info->super_for_commit->super_roots,
1738 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1739 }
1740 
1741 /*
1742  * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1743  * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1744  *
1745  * @fs_info:  filesystem whose backup roots need to be read
1746  * @priority: priority of backup root required
1747  *
1748  * Returns backup root index on success and -EINVAL otherwise.
1749  */
1750 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1751 {
1752 	int backup_index = find_newest_super_backup(fs_info);
1753 	struct btrfs_super_block *super = fs_info->super_copy;
1754 	struct btrfs_root_backup *root_backup;
1755 
1756 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1757 		if (priority == 0)
1758 			return backup_index;
1759 
1760 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1761 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1762 	} else {
1763 		return -EINVAL;
1764 	}
1765 
1766 	root_backup = super->super_roots + backup_index;
1767 
1768 	btrfs_set_super_generation(super,
1769 				   btrfs_backup_tree_root_gen(root_backup));
1770 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1771 	btrfs_set_super_root_level(super,
1772 				   btrfs_backup_tree_root_level(root_backup));
1773 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1774 
1775 	/*
1776 	 * Fixme: the total bytes and num_devices need to match or we should
1777 	 * need a fsck
1778 	 */
1779 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1780 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1781 
1782 	return backup_index;
1783 }
1784 
1785 /* helper to cleanup workers */
1786 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1787 {
1788 	btrfs_destroy_workqueue(fs_info->fixup_workers);
1789 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1790 	btrfs_destroy_workqueue(fs_info->workers);
1791 	if (fs_info->endio_workers)
1792 		destroy_workqueue(fs_info->endio_workers);
1793 	if (fs_info->rmw_workers)
1794 		destroy_workqueue(fs_info->rmw_workers);
1795 	if (fs_info->compressed_write_workers)
1796 		destroy_workqueue(fs_info->compressed_write_workers);
1797 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1798 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1799 	btrfs_destroy_workqueue(fs_info->delayed_workers);
1800 	btrfs_destroy_workqueue(fs_info->caching_workers);
1801 	btrfs_destroy_workqueue(fs_info->flush_workers);
1802 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1803 	if (fs_info->discard_ctl.discard_workers)
1804 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1805 	/*
1806 	 * Now that all other work queues are destroyed, we can safely destroy
1807 	 * the queues used for metadata I/O, since tasks from those other work
1808 	 * queues can do metadata I/O operations.
1809 	 */
1810 	if (fs_info->endio_meta_workers)
1811 		destroy_workqueue(fs_info->endio_meta_workers);
1812 }
1813 
1814 static void free_root_extent_buffers(struct btrfs_root *root)
1815 {
1816 	if (root) {
1817 		free_extent_buffer(root->node);
1818 		free_extent_buffer(root->commit_root);
1819 		root->node = NULL;
1820 		root->commit_root = NULL;
1821 	}
1822 }
1823 
1824 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1825 {
1826 	struct btrfs_root *root, *tmp;
1827 
1828 	rbtree_postorder_for_each_entry_safe(root, tmp,
1829 					     &fs_info->global_root_tree,
1830 					     rb_node)
1831 		free_root_extent_buffers(root);
1832 }
1833 
1834 /* helper to cleanup tree roots */
1835 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1836 {
1837 	free_root_extent_buffers(info->tree_root);
1838 
1839 	free_global_root_pointers(info);
1840 	free_root_extent_buffers(info->dev_root);
1841 	free_root_extent_buffers(info->quota_root);
1842 	free_root_extent_buffers(info->uuid_root);
1843 	free_root_extent_buffers(info->fs_root);
1844 	free_root_extent_buffers(info->data_reloc_root);
1845 	free_root_extent_buffers(info->block_group_root);
1846 	free_root_extent_buffers(info->stripe_root);
1847 	if (free_chunk_root)
1848 		free_root_extent_buffers(info->chunk_root);
1849 }
1850 
1851 void btrfs_put_root(struct btrfs_root *root)
1852 {
1853 	if (!root)
1854 		return;
1855 
1856 	if (refcount_dec_and_test(&root->refs)) {
1857 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1858 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1859 		if (root->anon_dev)
1860 			free_anon_bdev(root->anon_dev);
1861 		free_root_extent_buffers(root);
1862 #ifdef CONFIG_BTRFS_DEBUG
1863 		spin_lock(&root->fs_info->fs_roots_radix_lock);
1864 		list_del_init(&root->leak_list);
1865 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
1866 #endif
1867 		kfree(root);
1868 	}
1869 }
1870 
1871 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1872 {
1873 	int ret;
1874 	struct btrfs_root *gang[8];
1875 	int i;
1876 
1877 	while (!list_empty(&fs_info->dead_roots)) {
1878 		gang[0] = list_entry(fs_info->dead_roots.next,
1879 				     struct btrfs_root, root_list);
1880 		list_del(&gang[0]->root_list);
1881 
1882 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1883 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1884 		btrfs_put_root(gang[0]);
1885 	}
1886 
1887 	while (1) {
1888 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1889 					     (void **)gang, 0,
1890 					     ARRAY_SIZE(gang));
1891 		if (!ret)
1892 			break;
1893 		for (i = 0; i < ret; i++)
1894 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1895 	}
1896 }
1897 
1898 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1899 {
1900 	mutex_init(&fs_info->scrub_lock);
1901 	atomic_set(&fs_info->scrubs_running, 0);
1902 	atomic_set(&fs_info->scrub_pause_req, 0);
1903 	atomic_set(&fs_info->scrubs_paused, 0);
1904 	atomic_set(&fs_info->scrub_cancel_req, 0);
1905 	init_waitqueue_head(&fs_info->scrub_pause_wait);
1906 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
1907 }
1908 
1909 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1910 {
1911 	spin_lock_init(&fs_info->balance_lock);
1912 	mutex_init(&fs_info->balance_mutex);
1913 	atomic_set(&fs_info->balance_pause_req, 0);
1914 	atomic_set(&fs_info->balance_cancel_req, 0);
1915 	fs_info->balance_ctl = NULL;
1916 	init_waitqueue_head(&fs_info->balance_wait_q);
1917 	atomic_set(&fs_info->reloc_cancel_req, 0);
1918 }
1919 
1920 static int btrfs_init_btree_inode(struct super_block *sb)
1921 {
1922 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1923 	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1924 					      fs_info->tree_root);
1925 	struct inode *inode;
1926 
1927 	inode = new_inode(sb);
1928 	if (!inode)
1929 		return -ENOMEM;
1930 
1931 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1932 	set_nlink(inode, 1);
1933 	/*
1934 	 * we set the i_size on the btree inode to the max possible int.
1935 	 * the real end of the address space is determined by all of
1936 	 * the devices in the system
1937 	 */
1938 	inode->i_size = OFFSET_MAX;
1939 	inode->i_mapping->a_ops = &btree_aops;
1940 	mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1941 
1942 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
1943 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1944 			    IO_TREE_BTREE_INODE_IO);
1945 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1946 
1947 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1948 	BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1949 	BTRFS_I(inode)->location.type = 0;
1950 	BTRFS_I(inode)->location.offset = 0;
1951 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1952 	__insert_inode_hash(inode, hash);
1953 	fs_info->btree_inode = inode;
1954 
1955 	return 0;
1956 }
1957 
1958 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1959 {
1960 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1961 	init_rwsem(&fs_info->dev_replace.rwsem);
1962 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1963 }
1964 
1965 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1966 {
1967 	spin_lock_init(&fs_info->qgroup_lock);
1968 	mutex_init(&fs_info->qgroup_ioctl_lock);
1969 	fs_info->qgroup_tree = RB_ROOT;
1970 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1971 	fs_info->qgroup_seq = 1;
1972 	fs_info->qgroup_ulist = NULL;
1973 	fs_info->qgroup_rescan_running = false;
1974 	fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
1975 	mutex_init(&fs_info->qgroup_rescan_lock);
1976 }
1977 
1978 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1979 {
1980 	u32 max_active = fs_info->thread_pool_size;
1981 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1982 	unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1983 
1984 	fs_info->workers =
1985 		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1986 
1987 	fs_info->delalloc_workers =
1988 		btrfs_alloc_workqueue(fs_info, "delalloc",
1989 				      flags, max_active, 2);
1990 
1991 	fs_info->flush_workers =
1992 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1993 				      flags, max_active, 0);
1994 
1995 	fs_info->caching_workers =
1996 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1997 
1998 	fs_info->fixup_workers =
1999 		btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
2000 
2001 	fs_info->endio_workers =
2002 		alloc_workqueue("btrfs-endio", flags, max_active);
2003 	fs_info->endio_meta_workers =
2004 		alloc_workqueue("btrfs-endio-meta", flags, max_active);
2005 	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2006 	fs_info->endio_write_workers =
2007 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2008 				      max_active, 2);
2009 	fs_info->compressed_write_workers =
2010 		alloc_workqueue("btrfs-compressed-write", flags, max_active);
2011 	fs_info->endio_freespace_worker =
2012 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2013 				      max_active, 0);
2014 	fs_info->delayed_workers =
2015 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2016 				      max_active, 0);
2017 	fs_info->qgroup_rescan_workers =
2018 		btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
2019 					      ordered_flags);
2020 	fs_info->discard_ctl.discard_workers =
2021 		alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
2022 
2023 	if (!(fs_info->workers &&
2024 	      fs_info->delalloc_workers && fs_info->flush_workers &&
2025 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2026 	      fs_info->compressed_write_workers &&
2027 	      fs_info->endio_write_workers &&
2028 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2029 	      fs_info->caching_workers && fs_info->fixup_workers &&
2030 	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2031 	      fs_info->discard_ctl.discard_workers)) {
2032 		return -ENOMEM;
2033 	}
2034 
2035 	return 0;
2036 }
2037 
2038 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2039 {
2040 	struct crypto_shash *csum_shash;
2041 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2042 
2043 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2044 
2045 	if (IS_ERR(csum_shash)) {
2046 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2047 			  csum_driver);
2048 		return PTR_ERR(csum_shash);
2049 	}
2050 
2051 	fs_info->csum_shash = csum_shash;
2052 
2053 	/*
2054 	 * Check if the checksum implementation is a fast accelerated one.
2055 	 * As-is this is a bit of a hack and should be replaced once the csum
2056 	 * implementations provide that information themselves.
2057 	 */
2058 	switch (csum_type) {
2059 	case BTRFS_CSUM_TYPE_CRC32:
2060 		if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2061 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2062 		break;
2063 	case BTRFS_CSUM_TYPE_XXHASH:
2064 		set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2065 		break;
2066 	default:
2067 		break;
2068 	}
2069 
2070 	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2071 			btrfs_super_csum_name(csum_type),
2072 			crypto_shash_driver_name(csum_shash));
2073 	return 0;
2074 }
2075 
2076 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2077 			    struct btrfs_fs_devices *fs_devices)
2078 {
2079 	int ret;
2080 	struct btrfs_tree_parent_check check = { 0 };
2081 	struct btrfs_root *log_tree_root;
2082 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2083 	u64 bytenr = btrfs_super_log_root(disk_super);
2084 	int level = btrfs_super_log_root_level(disk_super);
2085 
2086 	if (fs_devices->rw_devices == 0) {
2087 		btrfs_warn(fs_info, "log replay required on RO media");
2088 		return -EIO;
2089 	}
2090 
2091 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2092 					 GFP_KERNEL);
2093 	if (!log_tree_root)
2094 		return -ENOMEM;
2095 
2096 	check.level = level;
2097 	check.transid = fs_info->generation + 1;
2098 	check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2099 	log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2100 	if (IS_ERR(log_tree_root->node)) {
2101 		btrfs_warn(fs_info, "failed to read log tree");
2102 		ret = PTR_ERR(log_tree_root->node);
2103 		log_tree_root->node = NULL;
2104 		btrfs_put_root(log_tree_root);
2105 		return ret;
2106 	}
2107 	if (!extent_buffer_uptodate(log_tree_root->node)) {
2108 		btrfs_err(fs_info, "failed to read log tree");
2109 		btrfs_put_root(log_tree_root);
2110 		return -EIO;
2111 	}
2112 
2113 	/* returns with log_tree_root freed on success */
2114 	ret = btrfs_recover_log_trees(log_tree_root);
2115 	if (ret) {
2116 		btrfs_handle_fs_error(fs_info, ret,
2117 				      "Failed to recover log tree");
2118 		btrfs_put_root(log_tree_root);
2119 		return ret;
2120 	}
2121 
2122 	if (sb_rdonly(fs_info->sb)) {
2123 		ret = btrfs_commit_super(fs_info);
2124 		if (ret)
2125 			return ret;
2126 	}
2127 
2128 	return 0;
2129 }
2130 
2131 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2132 				      struct btrfs_path *path, u64 objectid,
2133 				      const char *name)
2134 {
2135 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2136 	struct btrfs_root *root;
2137 	u64 max_global_id = 0;
2138 	int ret;
2139 	struct btrfs_key key = {
2140 		.objectid = objectid,
2141 		.type = BTRFS_ROOT_ITEM_KEY,
2142 		.offset = 0,
2143 	};
2144 	bool found = false;
2145 
2146 	/* If we have IGNOREDATACSUMS skip loading these roots. */
2147 	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2148 	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2149 		set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2150 		return 0;
2151 	}
2152 
2153 	while (1) {
2154 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2155 		if (ret < 0)
2156 			break;
2157 
2158 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2159 			ret = btrfs_next_leaf(tree_root, path);
2160 			if (ret) {
2161 				if (ret > 0)
2162 					ret = 0;
2163 				break;
2164 			}
2165 		}
2166 		ret = 0;
2167 
2168 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2169 		if (key.objectid != objectid)
2170 			break;
2171 		btrfs_release_path(path);
2172 
2173 		/*
2174 		 * Just worry about this for extent tree, it'll be the same for
2175 		 * everybody.
2176 		 */
2177 		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2178 			max_global_id = max(max_global_id, key.offset);
2179 
2180 		found = true;
2181 		root = read_tree_root_path(tree_root, path, &key);
2182 		if (IS_ERR(root)) {
2183 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2184 				ret = PTR_ERR(root);
2185 			break;
2186 		}
2187 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2188 		ret = btrfs_global_root_insert(root);
2189 		if (ret) {
2190 			btrfs_put_root(root);
2191 			break;
2192 		}
2193 		key.offset++;
2194 	}
2195 	btrfs_release_path(path);
2196 
2197 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2198 		fs_info->nr_global_roots = max_global_id + 1;
2199 
2200 	if (!found || ret) {
2201 		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2202 			set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2203 
2204 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2205 			ret = ret ? ret : -ENOENT;
2206 		else
2207 			ret = 0;
2208 		btrfs_err(fs_info, "failed to load root %s", name);
2209 	}
2210 	return ret;
2211 }
2212 
2213 static int load_global_roots(struct btrfs_root *tree_root)
2214 {
2215 	struct btrfs_path *path;
2216 	int ret = 0;
2217 
2218 	path = btrfs_alloc_path();
2219 	if (!path)
2220 		return -ENOMEM;
2221 
2222 	ret = load_global_roots_objectid(tree_root, path,
2223 					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2224 	if (ret)
2225 		goto out;
2226 	ret = load_global_roots_objectid(tree_root, path,
2227 					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2228 	if (ret)
2229 		goto out;
2230 	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2231 		goto out;
2232 	ret = load_global_roots_objectid(tree_root, path,
2233 					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2234 					 "free space");
2235 out:
2236 	btrfs_free_path(path);
2237 	return ret;
2238 }
2239 
2240 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2241 {
2242 	struct btrfs_root *tree_root = fs_info->tree_root;
2243 	struct btrfs_root *root;
2244 	struct btrfs_key location;
2245 	int ret;
2246 
2247 	ASSERT(fs_info->tree_root);
2248 
2249 	ret = load_global_roots(tree_root);
2250 	if (ret)
2251 		return ret;
2252 
2253 	location.type = BTRFS_ROOT_ITEM_KEY;
2254 	location.offset = 0;
2255 
2256 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2257 		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2258 		root = btrfs_read_tree_root(tree_root, &location);
2259 		if (IS_ERR(root)) {
2260 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2261 				ret = PTR_ERR(root);
2262 				goto out;
2263 			}
2264 		} else {
2265 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2266 			fs_info->block_group_root = root;
2267 		}
2268 	}
2269 
2270 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2271 	root = btrfs_read_tree_root(tree_root, &location);
2272 	if (IS_ERR(root)) {
2273 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2274 			ret = PTR_ERR(root);
2275 			goto out;
2276 		}
2277 	} else {
2278 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2279 		fs_info->dev_root = root;
2280 	}
2281 	/* Initialize fs_info for all devices in any case */
2282 	ret = btrfs_init_devices_late(fs_info);
2283 	if (ret)
2284 		goto out;
2285 
2286 	/*
2287 	 * This tree can share blocks with some other fs tree during relocation
2288 	 * and we need a proper setup by btrfs_get_fs_root
2289 	 */
2290 	root = btrfs_get_fs_root(tree_root->fs_info,
2291 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2292 	if (IS_ERR(root)) {
2293 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2294 			ret = PTR_ERR(root);
2295 			goto out;
2296 		}
2297 	} else {
2298 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2299 		fs_info->data_reloc_root = root;
2300 	}
2301 
2302 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2303 	root = btrfs_read_tree_root(tree_root, &location);
2304 	if (!IS_ERR(root)) {
2305 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2306 		fs_info->quota_root = root;
2307 	}
2308 
2309 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2310 	root = btrfs_read_tree_root(tree_root, &location);
2311 	if (IS_ERR(root)) {
2312 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2313 			ret = PTR_ERR(root);
2314 			if (ret != -ENOENT)
2315 				goto out;
2316 		}
2317 	} else {
2318 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2319 		fs_info->uuid_root = root;
2320 	}
2321 
2322 	if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2323 		location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2324 		root = btrfs_read_tree_root(tree_root, &location);
2325 		if (IS_ERR(root)) {
2326 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2327 				ret = PTR_ERR(root);
2328 				goto out;
2329 			}
2330 		} else {
2331 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2332 			fs_info->stripe_root = root;
2333 		}
2334 	}
2335 
2336 	return 0;
2337 out:
2338 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2339 		   location.objectid, ret);
2340 	return ret;
2341 }
2342 
2343 /*
2344  * Real super block validation
2345  * NOTE: super csum type and incompat features will not be checked here.
2346  *
2347  * @sb:		super block to check
2348  * @mirror_num:	the super block number to check its bytenr:
2349  * 		0	the primary (1st) sb
2350  * 		1, 2	2nd and 3rd backup copy
2351  * 	       -1	skip bytenr check
2352  */
2353 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2354 			 struct btrfs_super_block *sb, int mirror_num)
2355 {
2356 	u64 nodesize = btrfs_super_nodesize(sb);
2357 	u64 sectorsize = btrfs_super_sectorsize(sb);
2358 	int ret = 0;
2359 
2360 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2361 		btrfs_err(fs_info, "no valid FS found");
2362 		ret = -EINVAL;
2363 	}
2364 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2365 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2366 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2367 		ret = -EINVAL;
2368 	}
2369 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2370 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2371 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2372 		ret = -EINVAL;
2373 	}
2374 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2375 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2376 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2377 		ret = -EINVAL;
2378 	}
2379 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2380 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2381 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2382 		ret = -EINVAL;
2383 	}
2384 
2385 	/*
2386 	 * Check sectorsize and nodesize first, other check will need it.
2387 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2388 	 */
2389 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2390 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2391 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2392 		ret = -EINVAL;
2393 	}
2394 
2395 	/*
2396 	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2397 	 *
2398 	 * We can support 16K sectorsize with 64K page size without problem,
2399 	 * but such sectorsize/pagesize combination doesn't make much sense.
2400 	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2401 	 * beginning.
2402 	 */
2403 	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2404 		btrfs_err(fs_info,
2405 			"sectorsize %llu not yet supported for page size %lu",
2406 			sectorsize, PAGE_SIZE);
2407 		ret = -EINVAL;
2408 	}
2409 
2410 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2411 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2412 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2413 		ret = -EINVAL;
2414 	}
2415 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2416 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2417 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2418 		ret = -EINVAL;
2419 	}
2420 
2421 	/* Root alignment check */
2422 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2423 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2424 			   btrfs_super_root(sb));
2425 		ret = -EINVAL;
2426 	}
2427 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2428 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2429 			   btrfs_super_chunk_root(sb));
2430 		ret = -EINVAL;
2431 	}
2432 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2433 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2434 			   btrfs_super_log_root(sb));
2435 		ret = -EINVAL;
2436 	}
2437 
2438 	if (!fs_info->fs_devices->temp_fsid &&
2439 	    memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2440 		btrfs_err(fs_info,
2441 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2442 			  sb->fsid, fs_info->fs_devices->fsid);
2443 		ret = -EINVAL;
2444 	}
2445 
2446 	if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2447 		   BTRFS_FSID_SIZE) != 0) {
2448 		btrfs_err(fs_info,
2449 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2450 			  btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2451 		ret = -EINVAL;
2452 	}
2453 
2454 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2455 		   BTRFS_FSID_SIZE) != 0) {
2456 		btrfs_err(fs_info,
2457 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2458 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2459 		ret = -EINVAL;
2460 	}
2461 
2462 	/*
2463 	 * Artificial requirement for block-group-tree to force newer features
2464 	 * (free-space-tree, no-holes) so the test matrix is smaller.
2465 	 */
2466 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2467 	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2468 	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2469 		btrfs_err(fs_info,
2470 		"block-group-tree feature requires fres-space-tree and no-holes");
2471 		ret = -EINVAL;
2472 	}
2473 
2474 	/*
2475 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2476 	 * done later
2477 	 */
2478 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2479 		btrfs_err(fs_info, "bytes_used is too small %llu",
2480 			  btrfs_super_bytes_used(sb));
2481 		ret = -EINVAL;
2482 	}
2483 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2484 		btrfs_err(fs_info, "invalid stripesize %u",
2485 			  btrfs_super_stripesize(sb));
2486 		ret = -EINVAL;
2487 	}
2488 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2489 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2490 			   btrfs_super_num_devices(sb));
2491 	if (btrfs_super_num_devices(sb) == 0) {
2492 		btrfs_err(fs_info, "number of devices is 0");
2493 		ret = -EINVAL;
2494 	}
2495 
2496 	if (mirror_num >= 0 &&
2497 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2498 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2499 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2500 		ret = -EINVAL;
2501 	}
2502 
2503 	/*
2504 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2505 	 * and one chunk
2506 	 */
2507 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2508 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2509 			  btrfs_super_sys_array_size(sb),
2510 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2511 		ret = -EINVAL;
2512 	}
2513 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2514 			+ sizeof(struct btrfs_chunk)) {
2515 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2516 			  btrfs_super_sys_array_size(sb),
2517 			  sizeof(struct btrfs_disk_key)
2518 			  + sizeof(struct btrfs_chunk));
2519 		ret = -EINVAL;
2520 	}
2521 
2522 	/*
2523 	 * The generation is a global counter, we'll trust it more than the others
2524 	 * but it's still possible that it's the one that's wrong.
2525 	 */
2526 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2527 		btrfs_warn(fs_info,
2528 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2529 			btrfs_super_generation(sb),
2530 			btrfs_super_chunk_root_generation(sb));
2531 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2532 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2533 		btrfs_warn(fs_info,
2534 			"suspicious: generation < cache_generation: %llu < %llu",
2535 			btrfs_super_generation(sb),
2536 			btrfs_super_cache_generation(sb));
2537 
2538 	return ret;
2539 }
2540 
2541 /*
2542  * Validation of super block at mount time.
2543  * Some checks already done early at mount time, like csum type and incompat
2544  * flags will be skipped.
2545  */
2546 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2547 {
2548 	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2549 }
2550 
2551 /*
2552  * Validation of super block at write time.
2553  * Some checks like bytenr check will be skipped as their values will be
2554  * overwritten soon.
2555  * Extra checks like csum type and incompat flags will be done here.
2556  */
2557 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2558 				      struct btrfs_super_block *sb)
2559 {
2560 	int ret;
2561 
2562 	ret = btrfs_validate_super(fs_info, sb, -1);
2563 	if (ret < 0)
2564 		goto out;
2565 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2566 		ret = -EUCLEAN;
2567 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2568 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2569 		goto out;
2570 	}
2571 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2572 		ret = -EUCLEAN;
2573 		btrfs_err(fs_info,
2574 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2575 			  btrfs_super_incompat_flags(sb),
2576 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2577 		goto out;
2578 	}
2579 out:
2580 	if (ret < 0)
2581 		btrfs_err(fs_info,
2582 		"super block corruption detected before writing it to disk");
2583 	return ret;
2584 }
2585 
2586 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2587 {
2588 	struct btrfs_tree_parent_check check = {
2589 		.level = level,
2590 		.transid = gen,
2591 		.owner_root = btrfs_root_id(root)
2592 	};
2593 	int ret = 0;
2594 
2595 	root->node = read_tree_block(root->fs_info, bytenr, &check);
2596 	if (IS_ERR(root->node)) {
2597 		ret = PTR_ERR(root->node);
2598 		root->node = NULL;
2599 		return ret;
2600 	}
2601 	if (!extent_buffer_uptodate(root->node)) {
2602 		free_extent_buffer(root->node);
2603 		root->node = NULL;
2604 		return -EIO;
2605 	}
2606 
2607 	btrfs_set_root_node(&root->root_item, root->node);
2608 	root->commit_root = btrfs_root_node(root);
2609 	btrfs_set_root_refs(&root->root_item, 1);
2610 	return ret;
2611 }
2612 
2613 static int load_important_roots(struct btrfs_fs_info *fs_info)
2614 {
2615 	struct btrfs_super_block *sb = fs_info->super_copy;
2616 	u64 gen, bytenr;
2617 	int level, ret;
2618 
2619 	bytenr = btrfs_super_root(sb);
2620 	gen = btrfs_super_generation(sb);
2621 	level = btrfs_super_root_level(sb);
2622 	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2623 	if (ret) {
2624 		btrfs_warn(fs_info, "couldn't read tree root");
2625 		return ret;
2626 	}
2627 	return 0;
2628 }
2629 
2630 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2631 {
2632 	int backup_index = find_newest_super_backup(fs_info);
2633 	struct btrfs_super_block *sb = fs_info->super_copy;
2634 	struct btrfs_root *tree_root = fs_info->tree_root;
2635 	bool handle_error = false;
2636 	int ret = 0;
2637 	int i;
2638 
2639 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2640 		if (handle_error) {
2641 			if (!IS_ERR(tree_root->node))
2642 				free_extent_buffer(tree_root->node);
2643 			tree_root->node = NULL;
2644 
2645 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2646 				break;
2647 
2648 			free_root_pointers(fs_info, 0);
2649 
2650 			/*
2651 			 * Don't use the log in recovery mode, it won't be
2652 			 * valid
2653 			 */
2654 			btrfs_set_super_log_root(sb, 0);
2655 
2656 			btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2657 			ret = read_backup_root(fs_info, i);
2658 			backup_index = ret;
2659 			if (ret < 0)
2660 				return ret;
2661 		}
2662 
2663 		ret = load_important_roots(fs_info);
2664 		if (ret) {
2665 			handle_error = true;
2666 			continue;
2667 		}
2668 
2669 		/*
2670 		 * No need to hold btrfs_root::objectid_mutex since the fs
2671 		 * hasn't been fully initialised and we are the only user
2672 		 */
2673 		ret = btrfs_init_root_free_objectid(tree_root);
2674 		if (ret < 0) {
2675 			handle_error = true;
2676 			continue;
2677 		}
2678 
2679 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2680 
2681 		ret = btrfs_read_roots(fs_info);
2682 		if (ret < 0) {
2683 			handle_error = true;
2684 			continue;
2685 		}
2686 
2687 		/* All successful */
2688 		fs_info->generation = btrfs_header_generation(tree_root->node);
2689 		btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2690 		fs_info->last_reloc_trans = 0;
2691 
2692 		/* Always begin writing backup roots after the one being used */
2693 		if (backup_index < 0) {
2694 			fs_info->backup_root_index = 0;
2695 		} else {
2696 			fs_info->backup_root_index = backup_index + 1;
2697 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2698 		}
2699 		break;
2700 	}
2701 
2702 	return ret;
2703 }
2704 
2705 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2706 {
2707 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2708 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2709 	INIT_LIST_HEAD(&fs_info->trans_list);
2710 	INIT_LIST_HEAD(&fs_info->dead_roots);
2711 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2712 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2713 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2714 	spin_lock_init(&fs_info->delalloc_root_lock);
2715 	spin_lock_init(&fs_info->trans_lock);
2716 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2717 	spin_lock_init(&fs_info->delayed_iput_lock);
2718 	spin_lock_init(&fs_info->defrag_inodes_lock);
2719 	spin_lock_init(&fs_info->super_lock);
2720 	spin_lock_init(&fs_info->buffer_lock);
2721 	spin_lock_init(&fs_info->unused_bgs_lock);
2722 	spin_lock_init(&fs_info->treelog_bg_lock);
2723 	spin_lock_init(&fs_info->zone_active_bgs_lock);
2724 	spin_lock_init(&fs_info->relocation_bg_lock);
2725 	rwlock_init(&fs_info->tree_mod_log_lock);
2726 	rwlock_init(&fs_info->global_root_lock);
2727 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2728 	mutex_init(&fs_info->reclaim_bgs_lock);
2729 	mutex_init(&fs_info->reloc_mutex);
2730 	mutex_init(&fs_info->delalloc_root_mutex);
2731 	mutex_init(&fs_info->zoned_meta_io_lock);
2732 	mutex_init(&fs_info->zoned_data_reloc_io_lock);
2733 	seqlock_init(&fs_info->profiles_lock);
2734 
2735 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2736 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2737 	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2738 	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2739 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2740 				     BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2741 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2742 				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2743 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2744 				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2745 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2746 				     BTRFS_LOCKDEP_TRANS_COMPLETED);
2747 
2748 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2749 	INIT_LIST_HEAD(&fs_info->space_info);
2750 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2751 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2752 	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2753 	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2754 #ifdef CONFIG_BTRFS_DEBUG
2755 	INIT_LIST_HEAD(&fs_info->allocated_roots);
2756 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2757 	spin_lock_init(&fs_info->eb_leak_lock);
2758 #endif
2759 	fs_info->mapping_tree = RB_ROOT_CACHED;
2760 	rwlock_init(&fs_info->mapping_tree_lock);
2761 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2762 			     BTRFS_BLOCK_RSV_GLOBAL);
2763 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2764 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2765 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2766 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2767 			     BTRFS_BLOCK_RSV_DELOPS);
2768 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2769 			     BTRFS_BLOCK_RSV_DELREFS);
2770 
2771 	atomic_set(&fs_info->async_delalloc_pages, 0);
2772 	atomic_set(&fs_info->defrag_running, 0);
2773 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2774 	atomic64_set(&fs_info->tree_mod_seq, 0);
2775 	fs_info->global_root_tree = RB_ROOT;
2776 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2777 	fs_info->metadata_ratio = 0;
2778 	fs_info->defrag_inodes = RB_ROOT;
2779 	atomic64_set(&fs_info->free_chunk_space, 0);
2780 	fs_info->tree_mod_log = RB_ROOT;
2781 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2782 	btrfs_init_ref_verify(fs_info);
2783 
2784 	fs_info->thread_pool_size = min_t(unsigned long,
2785 					  num_online_cpus() + 2, 8);
2786 
2787 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2788 	spin_lock_init(&fs_info->ordered_root_lock);
2789 
2790 	btrfs_init_scrub(fs_info);
2791 	btrfs_init_balance(fs_info);
2792 	btrfs_init_async_reclaim_work(fs_info);
2793 
2794 	rwlock_init(&fs_info->block_group_cache_lock);
2795 	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2796 
2797 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2798 			    IO_TREE_FS_EXCLUDED_EXTENTS);
2799 
2800 	mutex_init(&fs_info->ordered_operations_mutex);
2801 	mutex_init(&fs_info->tree_log_mutex);
2802 	mutex_init(&fs_info->chunk_mutex);
2803 	mutex_init(&fs_info->transaction_kthread_mutex);
2804 	mutex_init(&fs_info->cleaner_mutex);
2805 	mutex_init(&fs_info->ro_block_group_mutex);
2806 	init_rwsem(&fs_info->commit_root_sem);
2807 	init_rwsem(&fs_info->cleanup_work_sem);
2808 	init_rwsem(&fs_info->subvol_sem);
2809 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2810 
2811 	btrfs_init_dev_replace_locks(fs_info);
2812 	btrfs_init_qgroup(fs_info);
2813 	btrfs_discard_init(fs_info);
2814 
2815 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2816 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2817 
2818 	init_waitqueue_head(&fs_info->transaction_throttle);
2819 	init_waitqueue_head(&fs_info->transaction_wait);
2820 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2821 	init_waitqueue_head(&fs_info->async_submit_wait);
2822 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2823 
2824 	/* Usable values until the real ones are cached from the superblock */
2825 	fs_info->nodesize = 4096;
2826 	fs_info->sectorsize = 4096;
2827 	fs_info->sectorsize_bits = ilog2(4096);
2828 	fs_info->stripesize = 4096;
2829 
2830 	/* Default compress algorithm when user does -o compress */
2831 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2832 
2833 	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2834 
2835 	spin_lock_init(&fs_info->swapfile_pins_lock);
2836 	fs_info->swapfile_pins = RB_ROOT;
2837 
2838 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2839 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2840 }
2841 
2842 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2843 {
2844 	int ret;
2845 
2846 	fs_info->sb = sb;
2847 	/* Temporary fixed values for block size until we read the superblock. */
2848 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2849 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2850 
2851 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2852 	if (ret)
2853 		return ret;
2854 
2855 	ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL);
2856 	if (ret)
2857 		return ret;
2858 
2859 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2860 	if (ret)
2861 		return ret;
2862 
2863 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2864 					(1 + ilog2(nr_cpu_ids));
2865 
2866 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2867 	if (ret)
2868 		return ret;
2869 
2870 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2871 			GFP_KERNEL);
2872 	if (ret)
2873 		return ret;
2874 
2875 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2876 					GFP_KERNEL);
2877 	if (!fs_info->delayed_root)
2878 		return -ENOMEM;
2879 	btrfs_init_delayed_root(fs_info->delayed_root);
2880 
2881 	if (sb_rdonly(sb))
2882 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2883 
2884 	return btrfs_alloc_stripe_hash_table(fs_info);
2885 }
2886 
2887 static int btrfs_uuid_rescan_kthread(void *data)
2888 {
2889 	struct btrfs_fs_info *fs_info = data;
2890 	int ret;
2891 
2892 	/*
2893 	 * 1st step is to iterate through the existing UUID tree and
2894 	 * to delete all entries that contain outdated data.
2895 	 * 2nd step is to add all missing entries to the UUID tree.
2896 	 */
2897 	ret = btrfs_uuid_tree_iterate(fs_info);
2898 	if (ret < 0) {
2899 		if (ret != -EINTR)
2900 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2901 				   ret);
2902 		up(&fs_info->uuid_tree_rescan_sem);
2903 		return ret;
2904 	}
2905 	return btrfs_uuid_scan_kthread(data);
2906 }
2907 
2908 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2909 {
2910 	struct task_struct *task;
2911 
2912 	down(&fs_info->uuid_tree_rescan_sem);
2913 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2914 	if (IS_ERR(task)) {
2915 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2916 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2917 		up(&fs_info->uuid_tree_rescan_sem);
2918 		return PTR_ERR(task);
2919 	}
2920 
2921 	return 0;
2922 }
2923 
2924 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2925 {
2926 	u64 root_objectid = 0;
2927 	struct btrfs_root *gang[8];
2928 	int i = 0;
2929 	int err = 0;
2930 	unsigned int ret = 0;
2931 
2932 	while (1) {
2933 		spin_lock(&fs_info->fs_roots_radix_lock);
2934 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2935 					     (void **)gang, root_objectid,
2936 					     ARRAY_SIZE(gang));
2937 		if (!ret) {
2938 			spin_unlock(&fs_info->fs_roots_radix_lock);
2939 			break;
2940 		}
2941 		root_objectid = btrfs_root_id(gang[ret - 1]) + 1;
2942 
2943 		for (i = 0; i < ret; i++) {
2944 			/* Avoid to grab roots in dead_roots. */
2945 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2946 				gang[i] = NULL;
2947 				continue;
2948 			}
2949 			/* Grab all the search result for later use. */
2950 			gang[i] = btrfs_grab_root(gang[i]);
2951 		}
2952 		spin_unlock(&fs_info->fs_roots_radix_lock);
2953 
2954 		for (i = 0; i < ret; i++) {
2955 			if (!gang[i])
2956 				continue;
2957 			root_objectid = btrfs_root_id(gang[i]);
2958 			err = btrfs_orphan_cleanup(gang[i]);
2959 			if (err)
2960 				goto out;
2961 			btrfs_put_root(gang[i]);
2962 		}
2963 		root_objectid++;
2964 	}
2965 out:
2966 	/* Release the uncleaned roots due to error. */
2967 	for (; i < ret; i++) {
2968 		if (gang[i])
2969 			btrfs_put_root(gang[i]);
2970 	}
2971 	return err;
2972 }
2973 
2974 /*
2975  * Mounting logic specific to read-write file systems. Shared by open_ctree
2976  * and btrfs_remount when remounting from read-only to read-write.
2977  */
2978 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2979 {
2980 	int ret;
2981 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2982 	bool rebuild_free_space_tree = false;
2983 
2984 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2985 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2986 		if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2987 			btrfs_warn(fs_info,
2988 				   "'clear_cache' option is ignored with extent tree v2");
2989 		else
2990 			rebuild_free_space_tree = true;
2991 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2992 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2993 		btrfs_warn(fs_info, "free space tree is invalid");
2994 		rebuild_free_space_tree = true;
2995 	}
2996 
2997 	if (rebuild_free_space_tree) {
2998 		btrfs_info(fs_info, "rebuilding free space tree");
2999 		ret = btrfs_rebuild_free_space_tree(fs_info);
3000 		if (ret) {
3001 			btrfs_warn(fs_info,
3002 				   "failed to rebuild free space tree: %d", ret);
3003 			goto out;
3004 		}
3005 	}
3006 
3007 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3008 	    !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3009 		btrfs_info(fs_info, "disabling free space tree");
3010 		ret = btrfs_delete_free_space_tree(fs_info);
3011 		if (ret) {
3012 			btrfs_warn(fs_info,
3013 				   "failed to disable free space tree: %d", ret);
3014 			goto out;
3015 		}
3016 	}
3017 
3018 	/*
3019 	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3020 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3021 	 * them into the fs_info->fs_roots_radix tree. This must be done before
3022 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3023 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3024 	 * item before the root's tree is deleted - this means that if we unmount
3025 	 * or crash before the deletion completes, on the next mount we will not
3026 	 * delete what remains of the tree because the orphan item does not
3027 	 * exists anymore, which is what tells us we have a pending deletion.
3028 	 */
3029 	ret = btrfs_find_orphan_roots(fs_info);
3030 	if (ret)
3031 		goto out;
3032 
3033 	ret = btrfs_cleanup_fs_roots(fs_info);
3034 	if (ret)
3035 		goto out;
3036 
3037 	down_read(&fs_info->cleanup_work_sem);
3038 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3039 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3040 		up_read(&fs_info->cleanup_work_sem);
3041 		goto out;
3042 	}
3043 	up_read(&fs_info->cleanup_work_sem);
3044 
3045 	mutex_lock(&fs_info->cleaner_mutex);
3046 	ret = btrfs_recover_relocation(fs_info);
3047 	mutex_unlock(&fs_info->cleaner_mutex);
3048 	if (ret < 0) {
3049 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3050 		goto out;
3051 	}
3052 
3053 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3054 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3055 		btrfs_info(fs_info, "creating free space tree");
3056 		ret = btrfs_create_free_space_tree(fs_info);
3057 		if (ret) {
3058 			btrfs_warn(fs_info,
3059 				"failed to create free space tree: %d", ret);
3060 			goto out;
3061 		}
3062 	}
3063 
3064 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3065 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3066 		if (ret)
3067 			goto out;
3068 	}
3069 
3070 	ret = btrfs_resume_balance_async(fs_info);
3071 	if (ret)
3072 		goto out;
3073 
3074 	ret = btrfs_resume_dev_replace_async(fs_info);
3075 	if (ret) {
3076 		btrfs_warn(fs_info, "failed to resume dev_replace");
3077 		goto out;
3078 	}
3079 
3080 	btrfs_qgroup_rescan_resume(fs_info);
3081 
3082 	if (!fs_info->uuid_root) {
3083 		btrfs_info(fs_info, "creating UUID tree");
3084 		ret = btrfs_create_uuid_tree(fs_info);
3085 		if (ret) {
3086 			btrfs_warn(fs_info,
3087 				   "failed to create the UUID tree %d", ret);
3088 			goto out;
3089 		}
3090 	}
3091 
3092 out:
3093 	return ret;
3094 }
3095 
3096 /*
3097  * Do various sanity and dependency checks of different features.
3098  *
3099  * @is_rw_mount:	If the mount is read-write.
3100  *
3101  * This is the place for less strict checks (like for subpage or artificial
3102  * feature dependencies).
3103  *
3104  * For strict checks or possible corruption detection, see
3105  * btrfs_validate_super().
3106  *
3107  * This should be called after btrfs_parse_options(), as some mount options
3108  * (space cache related) can modify on-disk format like free space tree and
3109  * screw up certain feature dependencies.
3110  */
3111 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3112 {
3113 	struct btrfs_super_block *disk_super = fs_info->super_copy;
3114 	u64 incompat = btrfs_super_incompat_flags(disk_super);
3115 	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3116 	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3117 
3118 	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3119 		btrfs_err(fs_info,
3120 		"cannot mount because of unknown incompat features (0x%llx)",
3121 		    incompat);
3122 		return -EINVAL;
3123 	}
3124 
3125 	/* Runtime limitation for mixed block groups. */
3126 	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3127 	    (fs_info->sectorsize != fs_info->nodesize)) {
3128 		btrfs_err(fs_info,
3129 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3130 			fs_info->nodesize, fs_info->sectorsize);
3131 		return -EINVAL;
3132 	}
3133 
3134 	/* Mixed backref is an always-enabled feature. */
3135 	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3136 
3137 	/* Set compression related flags just in case. */
3138 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3139 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3140 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3141 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3142 
3143 	/*
3144 	 * An ancient flag, which should really be marked deprecated.
3145 	 * Such runtime limitation doesn't really need a incompat flag.
3146 	 */
3147 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3148 		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3149 
3150 	if (compat_ro_unsupp && is_rw_mount) {
3151 		btrfs_err(fs_info,
3152 	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3153 		       compat_ro);
3154 		return -EINVAL;
3155 	}
3156 
3157 	/*
3158 	 * We have unsupported RO compat features, although RO mounted, we
3159 	 * should not cause any metadata writes, including log replay.
3160 	 * Or we could screw up whatever the new feature requires.
3161 	 */
3162 	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3163 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3164 		btrfs_err(fs_info,
3165 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3166 			  compat_ro);
3167 		return -EINVAL;
3168 	}
3169 
3170 	/*
3171 	 * Artificial limitations for block group tree, to force
3172 	 * block-group-tree to rely on no-holes and free-space-tree.
3173 	 */
3174 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3175 	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3176 	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3177 		btrfs_err(fs_info,
3178 "block-group-tree feature requires no-holes and free-space-tree features");
3179 		return -EINVAL;
3180 	}
3181 
3182 	/*
3183 	 * Subpage runtime limitation on v1 cache.
3184 	 *
3185 	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3186 	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3187 	 * going to be deprecated anyway.
3188 	 */
3189 	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3190 		btrfs_warn(fs_info,
3191 	"v1 space cache is not supported for page size %lu with sectorsize %u",
3192 			   PAGE_SIZE, fs_info->sectorsize);
3193 		return -EINVAL;
3194 	}
3195 
3196 	/* This can be called by remount, we need to protect the super block. */
3197 	spin_lock(&fs_info->super_lock);
3198 	btrfs_set_super_incompat_flags(disk_super, incompat);
3199 	spin_unlock(&fs_info->super_lock);
3200 
3201 	return 0;
3202 }
3203 
3204 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3205 		      char *options)
3206 {
3207 	u32 sectorsize;
3208 	u32 nodesize;
3209 	u32 stripesize;
3210 	u64 generation;
3211 	u16 csum_type;
3212 	struct btrfs_super_block *disk_super;
3213 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3214 	struct btrfs_root *tree_root;
3215 	struct btrfs_root *chunk_root;
3216 	int ret;
3217 	int level;
3218 
3219 	ret = init_mount_fs_info(fs_info, sb);
3220 	if (ret)
3221 		goto fail;
3222 
3223 	/* These need to be init'ed before we start creating inodes and such. */
3224 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3225 				     GFP_KERNEL);
3226 	fs_info->tree_root = tree_root;
3227 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3228 				      GFP_KERNEL);
3229 	fs_info->chunk_root = chunk_root;
3230 	if (!tree_root || !chunk_root) {
3231 		ret = -ENOMEM;
3232 		goto fail;
3233 	}
3234 
3235 	ret = btrfs_init_btree_inode(sb);
3236 	if (ret)
3237 		goto fail;
3238 
3239 	invalidate_bdev(fs_devices->latest_dev->bdev);
3240 
3241 	/*
3242 	 * Read super block and check the signature bytes only
3243 	 */
3244 	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3245 	if (IS_ERR(disk_super)) {
3246 		ret = PTR_ERR(disk_super);
3247 		goto fail_alloc;
3248 	}
3249 
3250 	btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3251 	/*
3252 	 * Verify the type first, if that or the checksum value are
3253 	 * corrupted, we'll find out
3254 	 */
3255 	csum_type = btrfs_super_csum_type(disk_super);
3256 	if (!btrfs_supported_super_csum(csum_type)) {
3257 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3258 			  csum_type);
3259 		ret = -EINVAL;
3260 		btrfs_release_disk_super(disk_super);
3261 		goto fail_alloc;
3262 	}
3263 
3264 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3265 
3266 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3267 	if (ret) {
3268 		btrfs_release_disk_super(disk_super);
3269 		goto fail_alloc;
3270 	}
3271 
3272 	/*
3273 	 * We want to check superblock checksum, the type is stored inside.
3274 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3275 	 */
3276 	if (btrfs_check_super_csum(fs_info, disk_super)) {
3277 		btrfs_err(fs_info, "superblock checksum mismatch");
3278 		ret = -EINVAL;
3279 		btrfs_release_disk_super(disk_super);
3280 		goto fail_alloc;
3281 	}
3282 
3283 	/*
3284 	 * super_copy is zeroed at allocation time and we never touch the
3285 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3286 	 * the whole block of INFO_SIZE
3287 	 */
3288 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3289 	btrfs_release_disk_super(disk_super);
3290 
3291 	disk_super = fs_info->super_copy;
3292 
3293 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3294 	       sizeof(*fs_info->super_for_commit));
3295 
3296 	ret = btrfs_validate_mount_super(fs_info);
3297 	if (ret) {
3298 		btrfs_err(fs_info, "superblock contains fatal errors");
3299 		ret = -EINVAL;
3300 		goto fail_alloc;
3301 	}
3302 
3303 	if (!btrfs_super_root(disk_super)) {
3304 		btrfs_err(fs_info, "invalid superblock tree root bytenr");
3305 		ret = -EINVAL;
3306 		goto fail_alloc;
3307 	}
3308 
3309 	/* check FS state, whether FS is broken. */
3310 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3311 		WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3312 
3313 	/* Set up fs_info before parsing mount options */
3314 	nodesize = btrfs_super_nodesize(disk_super);
3315 	sectorsize = btrfs_super_sectorsize(disk_super);
3316 	stripesize = sectorsize;
3317 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3318 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3319 
3320 	fs_info->nodesize = nodesize;
3321 	fs_info->sectorsize = sectorsize;
3322 	fs_info->sectorsize_bits = ilog2(sectorsize);
3323 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3324 	fs_info->stripesize = stripesize;
3325 
3326 	/*
3327 	 * Handle the space caching options appropriately now that we have the
3328 	 * super block loaded and validated.
3329 	 */
3330 	btrfs_set_free_space_cache_settings(fs_info);
3331 
3332 	if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3333 		ret = -EINVAL;
3334 		goto fail_alloc;
3335 	}
3336 
3337 	ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3338 	if (ret < 0)
3339 		goto fail_alloc;
3340 
3341 	/*
3342 	 * At this point our mount options are validated, if we set ->max_inline
3343 	 * to something non-standard make sure we truncate it to sectorsize.
3344 	 */
3345 	fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3346 
3347 	if (sectorsize < PAGE_SIZE) {
3348 		struct btrfs_subpage_info *subpage_info;
3349 
3350 		btrfs_warn(fs_info,
3351 		"read-write for sector size %u with page size %lu is experimental",
3352 			   sectorsize, PAGE_SIZE);
3353 		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3354 		if (!subpage_info) {
3355 			ret = -ENOMEM;
3356 			goto fail_alloc;
3357 		}
3358 		btrfs_init_subpage_info(subpage_info, sectorsize);
3359 		fs_info->subpage_info = subpage_info;
3360 	}
3361 
3362 	ret = btrfs_init_workqueues(fs_info);
3363 	if (ret)
3364 		goto fail_sb_buffer;
3365 
3366 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3367 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3368 
3369 	/* Update the values for the current filesystem. */
3370 	sb->s_blocksize = sectorsize;
3371 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3372 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3373 
3374 	mutex_lock(&fs_info->chunk_mutex);
3375 	ret = btrfs_read_sys_array(fs_info);
3376 	mutex_unlock(&fs_info->chunk_mutex);
3377 	if (ret) {
3378 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3379 		goto fail_sb_buffer;
3380 	}
3381 
3382 	generation = btrfs_super_chunk_root_generation(disk_super);
3383 	level = btrfs_super_chunk_root_level(disk_super);
3384 	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3385 			      generation, level);
3386 	if (ret) {
3387 		btrfs_err(fs_info, "failed to read chunk root");
3388 		goto fail_tree_roots;
3389 	}
3390 
3391 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3392 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3393 			   BTRFS_UUID_SIZE);
3394 
3395 	ret = btrfs_read_chunk_tree(fs_info);
3396 	if (ret) {
3397 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3398 		goto fail_tree_roots;
3399 	}
3400 
3401 	/*
3402 	 * At this point we know all the devices that make this filesystem,
3403 	 * including the seed devices but we don't know yet if the replace
3404 	 * target is required. So free devices that are not part of this
3405 	 * filesystem but skip the replace target device which is checked
3406 	 * below in btrfs_init_dev_replace().
3407 	 */
3408 	btrfs_free_extra_devids(fs_devices);
3409 	if (!fs_devices->latest_dev->bdev) {
3410 		btrfs_err(fs_info, "failed to read devices");
3411 		ret = -EIO;
3412 		goto fail_tree_roots;
3413 	}
3414 
3415 	ret = init_tree_roots(fs_info);
3416 	if (ret)
3417 		goto fail_tree_roots;
3418 
3419 	/*
3420 	 * Get zone type information of zoned block devices. This will also
3421 	 * handle emulation of a zoned filesystem if a regular device has the
3422 	 * zoned incompat feature flag set.
3423 	 */
3424 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3425 	if (ret) {
3426 		btrfs_err(fs_info,
3427 			  "zoned: failed to read device zone info: %d", ret);
3428 		goto fail_block_groups;
3429 	}
3430 
3431 	/*
3432 	 * If we have a uuid root and we're not being told to rescan we need to
3433 	 * check the generation here so we can set the
3434 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3435 	 * transaction during a balance or the log replay without updating the
3436 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3437 	 * even though it was perfectly fine.
3438 	 */
3439 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3440 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3441 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3442 
3443 	ret = btrfs_verify_dev_extents(fs_info);
3444 	if (ret) {
3445 		btrfs_err(fs_info,
3446 			  "failed to verify dev extents against chunks: %d",
3447 			  ret);
3448 		goto fail_block_groups;
3449 	}
3450 	ret = btrfs_recover_balance(fs_info);
3451 	if (ret) {
3452 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3453 		goto fail_block_groups;
3454 	}
3455 
3456 	ret = btrfs_init_dev_stats(fs_info);
3457 	if (ret) {
3458 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3459 		goto fail_block_groups;
3460 	}
3461 
3462 	ret = btrfs_init_dev_replace(fs_info);
3463 	if (ret) {
3464 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3465 		goto fail_block_groups;
3466 	}
3467 
3468 	ret = btrfs_check_zoned_mode(fs_info);
3469 	if (ret) {
3470 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3471 			  ret);
3472 		goto fail_block_groups;
3473 	}
3474 
3475 	ret = btrfs_sysfs_add_fsid(fs_devices);
3476 	if (ret) {
3477 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3478 				ret);
3479 		goto fail_block_groups;
3480 	}
3481 
3482 	ret = btrfs_sysfs_add_mounted(fs_info);
3483 	if (ret) {
3484 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3485 		goto fail_fsdev_sysfs;
3486 	}
3487 
3488 	ret = btrfs_init_space_info(fs_info);
3489 	if (ret) {
3490 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3491 		goto fail_sysfs;
3492 	}
3493 
3494 	ret = btrfs_read_block_groups(fs_info);
3495 	if (ret) {
3496 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3497 		goto fail_sysfs;
3498 	}
3499 
3500 	btrfs_free_zone_cache(fs_info);
3501 
3502 	btrfs_check_active_zone_reservation(fs_info);
3503 
3504 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3505 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3506 		btrfs_warn(fs_info,
3507 		"writable mount is not allowed due to too many missing devices");
3508 		ret = -EINVAL;
3509 		goto fail_sysfs;
3510 	}
3511 
3512 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3513 					       "btrfs-cleaner");
3514 	if (IS_ERR(fs_info->cleaner_kthread)) {
3515 		ret = PTR_ERR(fs_info->cleaner_kthread);
3516 		goto fail_sysfs;
3517 	}
3518 
3519 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3520 						   tree_root,
3521 						   "btrfs-transaction");
3522 	if (IS_ERR(fs_info->transaction_kthread)) {
3523 		ret = PTR_ERR(fs_info->transaction_kthread);
3524 		goto fail_cleaner;
3525 	}
3526 
3527 	ret = btrfs_read_qgroup_config(fs_info);
3528 	if (ret)
3529 		goto fail_trans_kthread;
3530 
3531 	if (btrfs_build_ref_tree(fs_info))
3532 		btrfs_err(fs_info, "couldn't build ref tree");
3533 
3534 	/* do not make disk changes in broken FS or nologreplay is given */
3535 	if (btrfs_super_log_root(disk_super) != 0 &&
3536 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3537 		btrfs_info(fs_info, "start tree-log replay");
3538 		ret = btrfs_replay_log(fs_info, fs_devices);
3539 		if (ret)
3540 			goto fail_qgroup;
3541 	}
3542 
3543 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3544 	if (IS_ERR(fs_info->fs_root)) {
3545 		ret = PTR_ERR(fs_info->fs_root);
3546 		btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3547 		fs_info->fs_root = NULL;
3548 		goto fail_qgroup;
3549 	}
3550 
3551 	if (sb_rdonly(sb))
3552 		return 0;
3553 
3554 	ret = btrfs_start_pre_rw_mount(fs_info);
3555 	if (ret) {
3556 		close_ctree(fs_info);
3557 		return ret;
3558 	}
3559 	btrfs_discard_resume(fs_info);
3560 
3561 	if (fs_info->uuid_root &&
3562 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3563 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3564 		btrfs_info(fs_info, "checking UUID tree");
3565 		ret = btrfs_check_uuid_tree(fs_info);
3566 		if (ret) {
3567 			btrfs_warn(fs_info,
3568 				"failed to check the UUID tree: %d", ret);
3569 			close_ctree(fs_info);
3570 			return ret;
3571 		}
3572 	}
3573 
3574 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3575 
3576 	/* Kick the cleaner thread so it'll start deleting snapshots. */
3577 	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3578 		wake_up_process(fs_info->cleaner_kthread);
3579 
3580 	return 0;
3581 
3582 fail_qgroup:
3583 	btrfs_free_qgroup_config(fs_info);
3584 fail_trans_kthread:
3585 	kthread_stop(fs_info->transaction_kthread);
3586 	btrfs_cleanup_transaction(fs_info);
3587 	btrfs_free_fs_roots(fs_info);
3588 fail_cleaner:
3589 	kthread_stop(fs_info->cleaner_kthread);
3590 
3591 	/*
3592 	 * make sure we're done with the btree inode before we stop our
3593 	 * kthreads
3594 	 */
3595 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3596 
3597 fail_sysfs:
3598 	btrfs_sysfs_remove_mounted(fs_info);
3599 
3600 fail_fsdev_sysfs:
3601 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3602 
3603 fail_block_groups:
3604 	btrfs_put_block_group_cache(fs_info);
3605 
3606 fail_tree_roots:
3607 	if (fs_info->data_reloc_root)
3608 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3609 	free_root_pointers(fs_info, true);
3610 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3611 
3612 fail_sb_buffer:
3613 	btrfs_stop_all_workers(fs_info);
3614 	btrfs_free_block_groups(fs_info);
3615 fail_alloc:
3616 	btrfs_mapping_tree_free(fs_info);
3617 
3618 	iput(fs_info->btree_inode);
3619 fail:
3620 	btrfs_close_devices(fs_info->fs_devices);
3621 	ASSERT(ret < 0);
3622 	return ret;
3623 }
3624 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3625 
3626 static void btrfs_end_super_write(struct bio *bio)
3627 {
3628 	struct btrfs_device *device = bio->bi_private;
3629 	struct folio_iter fi;
3630 
3631 	bio_for_each_folio_all(fi, bio) {
3632 		if (bio->bi_status) {
3633 			btrfs_warn_rl_in_rcu(device->fs_info,
3634 				"lost super block write due to IO error on %s (%d)",
3635 				btrfs_dev_name(device),
3636 				blk_status_to_errno(bio->bi_status));
3637 			btrfs_dev_stat_inc_and_print(device,
3638 						     BTRFS_DEV_STAT_WRITE_ERRS);
3639 			/* Ensure failure if the primary sb fails. */
3640 			if (bio->bi_opf & REQ_FUA)
3641 				atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR,
3642 					   &device->sb_write_errors);
3643 			else
3644 				atomic_inc(&device->sb_write_errors);
3645 		}
3646 		folio_unlock(fi.folio);
3647 		folio_put(fi.folio);
3648 	}
3649 
3650 	bio_put(bio);
3651 }
3652 
3653 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3654 						   int copy_num, bool drop_cache)
3655 {
3656 	struct btrfs_super_block *super;
3657 	struct page *page;
3658 	u64 bytenr, bytenr_orig;
3659 	struct address_space *mapping = bdev->bd_mapping;
3660 	int ret;
3661 
3662 	bytenr_orig = btrfs_sb_offset(copy_num);
3663 	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3664 	if (ret == -ENOENT)
3665 		return ERR_PTR(-EINVAL);
3666 	else if (ret)
3667 		return ERR_PTR(ret);
3668 
3669 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3670 		return ERR_PTR(-EINVAL);
3671 
3672 	if (drop_cache) {
3673 		/* This should only be called with the primary sb. */
3674 		ASSERT(copy_num == 0);
3675 
3676 		/*
3677 		 * Drop the page of the primary superblock, so later read will
3678 		 * always read from the device.
3679 		 */
3680 		invalidate_inode_pages2_range(mapping,
3681 				bytenr >> PAGE_SHIFT,
3682 				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3683 	}
3684 
3685 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3686 	if (IS_ERR(page))
3687 		return ERR_CAST(page);
3688 
3689 	super = page_address(page);
3690 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3691 		btrfs_release_disk_super(super);
3692 		return ERR_PTR(-ENODATA);
3693 	}
3694 
3695 	if (btrfs_super_bytenr(super) != bytenr_orig) {
3696 		btrfs_release_disk_super(super);
3697 		return ERR_PTR(-EINVAL);
3698 	}
3699 
3700 	return super;
3701 }
3702 
3703 
3704 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3705 {
3706 	struct btrfs_super_block *super, *latest = NULL;
3707 	int i;
3708 	u64 transid = 0;
3709 
3710 	/* we would like to check all the supers, but that would make
3711 	 * a btrfs mount succeed after a mkfs from a different FS.
3712 	 * So, we need to add a special mount option to scan for
3713 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3714 	 */
3715 	for (i = 0; i < 1; i++) {
3716 		super = btrfs_read_dev_one_super(bdev, i, false);
3717 		if (IS_ERR(super))
3718 			continue;
3719 
3720 		if (!latest || btrfs_super_generation(super) > transid) {
3721 			if (latest)
3722 				btrfs_release_disk_super(super);
3723 
3724 			latest = super;
3725 			transid = btrfs_super_generation(super);
3726 		}
3727 	}
3728 
3729 	return super;
3730 }
3731 
3732 /*
3733  * Write superblock @sb to the @device. Do not wait for completion, all the
3734  * folios we use for writing are locked.
3735  *
3736  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3737  * the expected device size at commit time. Note that max_mirrors must be
3738  * same for write and wait phases.
3739  *
3740  * Return number of errors when folio is not found or submission fails.
3741  */
3742 static int write_dev_supers(struct btrfs_device *device,
3743 			    struct btrfs_super_block *sb, int max_mirrors)
3744 {
3745 	struct btrfs_fs_info *fs_info = device->fs_info;
3746 	struct address_space *mapping = device->bdev->bd_mapping;
3747 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3748 	int i;
3749 	int ret;
3750 	u64 bytenr, bytenr_orig;
3751 
3752 	atomic_set(&device->sb_write_errors, 0);
3753 
3754 	if (max_mirrors == 0)
3755 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3756 
3757 	shash->tfm = fs_info->csum_shash;
3758 
3759 	for (i = 0; i < max_mirrors; i++) {
3760 		struct folio *folio;
3761 		struct bio *bio;
3762 		struct btrfs_super_block *disk_super;
3763 		size_t offset;
3764 
3765 		bytenr_orig = btrfs_sb_offset(i);
3766 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3767 		if (ret == -ENOENT) {
3768 			continue;
3769 		} else if (ret < 0) {
3770 			btrfs_err(device->fs_info,
3771 				"couldn't get super block location for mirror %d",
3772 				i);
3773 			atomic_inc(&device->sb_write_errors);
3774 			continue;
3775 		}
3776 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3777 		    device->commit_total_bytes)
3778 			break;
3779 
3780 		btrfs_set_super_bytenr(sb, bytenr_orig);
3781 
3782 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3783 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3784 				    sb->csum);
3785 
3786 		folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT,
3787 					    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3788 					    GFP_NOFS);
3789 		if (IS_ERR(folio)) {
3790 			btrfs_err(device->fs_info,
3791 			    "couldn't get super block page for bytenr %llu",
3792 			    bytenr);
3793 			atomic_inc(&device->sb_write_errors);
3794 			continue;
3795 		}
3796 		ASSERT(folio_order(folio) == 0);
3797 
3798 		offset = offset_in_folio(folio, bytenr);
3799 		disk_super = folio_address(folio) + offset;
3800 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3801 
3802 		/*
3803 		 * Directly use bios here instead of relying on the page cache
3804 		 * to do I/O, so we don't lose the ability to do integrity
3805 		 * checking.
3806 		 */
3807 		bio = bio_alloc(device->bdev, 1,
3808 				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3809 				GFP_NOFS);
3810 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3811 		bio->bi_private = device;
3812 		bio->bi_end_io = btrfs_end_super_write;
3813 		bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset);
3814 
3815 		/*
3816 		 * We FUA only the first super block.  The others we allow to
3817 		 * go down lazy and there's a short window where the on-disk
3818 		 * copies might still contain the older version.
3819 		 */
3820 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3821 			bio->bi_opf |= REQ_FUA;
3822 		submit_bio(bio);
3823 
3824 		if (btrfs_advance_sb_log(device, i))
3825 			atomic_inc(&device->sb_write_errors);
3826 	}
3827 	return atomic_read(&device->sb_write_errors) < i ? 0 : -1;
3828 }
3829 
3830 /*
3831  * Wait for write completion of superblocks done by write_dev_supers,
3832  * @max_mirrors same for write and wait phases.
3833  *
3834  * Return -1 if primary super block write failed or when there were no super block
3835  * copies written. Otherwise 0.
3836  */
3837 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3838 {
3839 	int i;
3840 	int errors = 0;
3841 	bool primary_failed = false;
3842 	int ret;
3843 	u64 bytenr;
3844 
3845 	if (max_mirrors == 0)
3846 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3847 
3848 	for (i = 0; i < max_mirrors; i++) {
3849 		struct folio *folio;
3850 
3851 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3852 		if (ret == -ENOENT) {
3853 			break;
3854 		} else if (ret < 0) {
3855 			errors++;
3856 			if (i == 0)
3857 				primary_failed = true;
3858 			continue;
3859 		}
3860 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3861 		    device->commit_total_bytes)
3862 			break;
3863 
3864 		folio = filemap_get_folio(device->bdev->bd_mapping,
3865 					  bytenr >> PAGE_SHIFT);
3866 		/* If the folio has been removed, then we know it completed. */
3867 		if (IS_ERR(folio))
3868 			continue;
3869 		ASSERT(folio_order(folio) == 0);
3870 
3871 		/* Folio will be unlocked once the write completes. */
3872 		folio_wait_locked(folio);
3873 		folio_put(folio);
3874 	}
3875 
3876 	errors += atomic_read(&device->sb_write_errors);
3877 	if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR)
3878 		primary_failed = true;
3879 	if (primary_failed) {
3880 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3881 			  device->devid);
3882 		return -1;
3883 	}
3884 
3885 	return errors < i ? 0 : -1;
3886 }
3887 
3888 /*
3889  * endio for the write_dev_flush, this will wake anyone waiting
3890  * for the barrier when it is done
3891  */
3892 static void btrfs_end_empty_barrier(struct bio *bio)
3893 {
3894 	bio_uninit(bio);
3895 	complete(bio->bi_private);
3896 }
3897 
3898 /*
3899  * Submit a flush request to the device if it supports it. Error handling is
3900  * done in the waiting counterpart.
3901  */
3902 static void write_dev_flush(struct btrfs_device *device)
3903 {
3904 	struct bio *bio = &device->flush_bio;
3905 
3906 	device->last_flush_error = BLK_STS_OK;
3907 
3908 	bio_init(bio, device->bdev, NULL, 0,
3909 		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3910 	bio->bi_end_io = btrfs_end_empty_barrier;
3911 	init_completion(&device->flush_wait);
3912 	bio->bi_private = &device->flush_wait;
3913 	submit_bio(bio);
3914 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3915 }
3916 
3917 /*
3918  * If the flush bio has been submitted by write_dev_flush, wait for it.
3919  * Return true for any error, and false otherwise.
3920  */
3921 static bool wait_dev_flush(struct btrfs_device *device)
3922 {
3923 	struct bio *bio = &device->flush_bio;
3924 
3925 	if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3926 		return false;
3927 
3928 	wait_for_completion_io(&device->flush_wait);
3929 
3930 	if (bio->bi_status) {
3931 		device->last_flush_error = bio->bi_status;
3932 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3933 		return true;
3934 	}
3935 
3936 	return false;
3937 }
3938 
3939 /*
3940  * send an empty flush down to each device in parallel,
3941  * then wait for them
3942  */
3943 static int barrier_all_devices(struct btrfs_fs_info *info)
3944 {
3945 	struct list_head *head;
3946 	struct btrfs_device *dev;
3947 	int errors_wait = 0;
3948 
3949 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3950 	/* send down all the barriers */
3951 	head = &info->fs_devices->devices;
3952 	list_for_each_entry(dev, head, dev_list) {
3953 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3954 			continue;
3955 		if (!dev->bdev)
3956 			continue;
3957 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3958 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3959 			continue;
3960 
3961 		write_dev_flush(dev);
3962 	}
3963 
3964 	/* wait for all the barriers */
3965 	list_for_each_entry(dev, head, dev_list) {
3966 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3967 			continue;
3968 		if (!dev->bdev) {
3969 			errors_wait++;
3970 			continue;
3971 		}
3972 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3973 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3974 			continue;
3975 
3976 		if (wait_dev_flush(dev))
3977 			errors_wait++;
3978 	}
3979 
3980 	/*
3981 	 * Checks last_flush_error of disks in order to determine the device
3982 	 * state.
3983 	 */
3984 	if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3985 		return -EIO;
3986 
3987 	return 0;
3988 }
3989 
3990 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3991 {
3992 	int raid_type;
3993 	int min_tolerated = INT_MAX;
3994 
3995 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3996 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3997 		min_tolerated = min_t(int, min_tolerated,
3998 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3999 				    tolerated_failures);
4000 
4001 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4002 		if (raid_type == BTRFS_RAID_SINGLE)
4003 			continue;
4004 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4005 			continue;
4006 		min_tolerated = min_t(int, min_tolerated,
4007 				    btrfs_raid_array[raid_type].
4008 				    tolerated_failures);
4009 	}
4010 
4011 	if (min_tolerated == INT_MAX) {
4012 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4013 		min_tolerated = 0;
4014 	}
4015 
4016 	return min_tolerated;
4017 }
4018 
4019 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4020 {
4021 	struct list_head *head;
4022 	struct btrfs_device *dev;
4023 	struct btrfs_super_block *sb;
4024 	struct btrfs_dev_item *dev_item;
4025 	int ret;
4026 	int do_barriers;
4027 	int max_errors;
4028 	int total_errors = 0;
4029 	u64 flags;
4030 
4031 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4032 
4033 	/*
4034 	 * max_mirrors == 0 indicates we're from commit_transaction,
4035 	 * not from fsync where the tree roots in fs_info have not
4036 	 * been consistent on disk.
4037 	 */
4038 	if (max_mirrors == 0)
4039 		backup_super_roots(fs_info);
4040 
4041 	sb = fs_info->super_for_commit;
4042 	dev_item = &sb->dev_item;
4043 
4044 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4045 	head = &fs_info->fs_devices->devices;
4046 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4047 
4048 	if (do_barriers) {
4049 		ret = barrier_all_devices(fs_info);
4050 		if (ret) {
4051 			mutex_unlock(
4052 				&fs_info->fs_devices->device_list_mutex);
4053 			btrfs_handle_fs_error(fs_info, ret,
4054 					      "errors while submitting device barriers.");
4055 			return ret;
4056 		}
4057 	}
4058 
4059 	list_for_each_entry(dev, head, dev_list) {
4060 		if (!dev->bdev) {
4061 			total_errors++;
4062 			continue;
4063 		}
4064 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4065 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4066 			continue;
4067 
4068 		btrfs_set_stack_device_generation(dev_item, 0);
4069 		btrfs_set_stack_device_type(dev_item, dev->type);
4070 		btrfs_set_stack_device_id(dev_item, dev->devid);
4071 		btrfs_set_stack_device_total_bytes(dev_item,
4072 						   dev->commit_total_bytes);
4073 		btrfs_set_stack_device_bytes_used(dev_item,
4074 						  dev->commit_bytes_used);
4075 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4076 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4077 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4078 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4079 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4080 		       BTRFS_FSID_SIZE);
4081 
4082 		flags = btrfs_super_flags(sb);
4083 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4084 
4085 		ret = btrfs_validate_write_super(fs_info, sb);
4086 		if (ret < 0) {
4087 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4088 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4089 				"unexpected superblock corruption detected");
4090 			return -EUCLEAN;
4091 		}
4092 
4093 		ret = write_dev_supers(dev, sb, max_mirrors);
4094 		if (ret)
4095 			total_errors++;
4096 	}
4097 	if (total_errors > max_errors) {
4098 		btrfs_err(fs_info, "%d errors while writing supers",
4099 			  total_errors);
4100 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4101 
4102 		/* FUA is masked off if unsupported and can't be the reason */
4103 		btrfs_handle_fs_error(fs_info, -EIO,
4104 				      "%d errors while writing supers",
4105 				      total_errors);
4106 		return -EIO;
4107 	}
4108 
4109 	total_errors = 0;
4110 	list_for_each_entry(dev, head, dev_list) {
4111 		if (!dev->bdev)
4112 			continue;
4113 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4114 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4115 			continue;
4116 
4117 		ret = wait_dev_supers(dev, max_mirrors);
4118 		if (ret)
4119 			total_errors++;
4120 	}
4121 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4122 	if (total_errors > max_errors) {
4123 		btrfs_handle_fs_error(fs_info, -EIO,
4124 				      "%d errors while writing supers",
4125 				      total_errors);
4126 		return -EIO;
4127 	}
4128 	return 0;
4129 }
4130 
4131 /* Drop a fs root from the radix tree and free it. */
4132 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4133 				  struct btrfs_root *root)
4134 {
4135 	bool drop_ref = false;
4136 
4137 	spin_lock(&fs_info->fs_roots_radix_lock);
4138 	radix_tree_delete(&fs_info->fs_roots_radix,
4139 			  (unsigned long)btrfs_root_id(root));
4140 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4141 		drop_ref = true;
4142 	spin_unlock(&fs_info->fs_roots_radix_lock);
4143 
4144 	if (BTRFS_FS_ERROR(fs_info)) {
4145 		ASSERT(root->log_root == NULL);
4146 		if (root->reloc_root) {
4147 			btrfs_put_root(root->reloc_root);
4148 			root->reloc_root = NULL;
4149 		}
4150 	}
4151 
4152 	if (drop_ref)
4153 		btrfs_put_root(root);
4154 }
4155 
4156 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4157 {
4158 	struct btrfs_root *root = fs_info->tree_root;
4159 	struct btrfs_trans_handle *trans;
4160 
4161 	mutex_lock(&fs_info->cleaner_mutex);
4162 	btrfs_run_delayed_iputs(fs_info);
4163 	mutex_unlock(&fs_info->cleaner_mutex);
4164 	wake_up_process(fs_info->cleaner_kthread);
4165 
4166 	/* wait until ongoing cleanup work done */
4167 	down_write(&fs_info->cleanup_work_sem);
4168 	up_write(&fs_info->cleanup_work_sem);
4169 
4170 	trans = btrfs_join_transaction(root);
4171 	if (IS_ERR(trans))
4172 		return PTR_ERR(trans);
4173 	return btrfs_commit_transaction(trans);
4174 }
4175 
4176 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4177 {
4178 	struct btrfs_transaction *trans;
4179 	struct btrfs_transaction *tmp;
4180 	bool found = false;
4181 
4182 	/*
4183 	 * This function is only called at the very end of close_ctree(),
4184 	 * thus no other running transaction, no need to take trans_lock.
4185 	 */
4186 	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4187 	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4188 		struct extent_state *cached = NULL;
4189 		u64 dirty_bytes = 0;
4190 		u64 cur = 0;
4191 		u64 found_start;
4192 		u64 found_end;
4193 
4194 		found = true;
4195 		while (find_first_extent_bit(&trans->dirty_pages, cur,
4196 			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4197 			dirty_bytes += found_end + 1 - found_start;
4198 			cur = found_end + 1;
4199 		}
4200 		btrfs_warn(fs_info,
4201 	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4202 			   trans->transid, dirty_bytes);
4203 		btrfs_cleanup_one_transaction(trans, fs_info);
4204 
4205 		if (trans == fs_info->running_transaction)
4206 			fs_info->running_transaction = NULL;
4207 		list_del_init(&trans->list);
4208 
4209 		btrfs_put_transaction(trans);
4210 		trace_btrfs_transaction_commit(fs_info);
4211 	}
4212 	ASSERT(!found);
4213 }
4214 
4215 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4216 {
4217 	int ret;
4218 
4219 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4220 
4221 	/*
4222 	 * If we had UNFINISHED_DROPS we could still be processing them, so
4223 	 * clear that bit and wake up relocation so it can stop.
4224 	 * We must do this before stopping the block group reclaim task, because
4225 	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4226 	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4227 	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4228 	 * return 1.
4229 	 */
4230 	btrfs_wake_unfinished_drop(fs_info);
4231 
4232 	/*
4233 	 * We may have the reclaim task running and relocating a data block group,
4234 	 * in which case it may create delayed iputs. So stop it before we park
4235 	 * the cleaner kthread otherwise we can get new delayed iputs after
4236 	 * parking the cleaner, and that can make the async reclaim task to hang
4237 	 * if it's waiting for delayed iputs to complete, since the cleaner is
4238 	 * parked and can not run delayed iputs - this will make us hang when
4239 	 * trying to stop the async reclaim task.
4240 	 */
4241 	cancel_work_sync(&fs_info->reclaim_bgs_work);
4242 	/*
4243 	 * We don't want the cleaner to start new transactions, add more delayed
4244 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4245 	 * because that frees the task_struct, and the transaction kthread might
4246 	 * still try to wake up the cleaner.
4247 	 */
4248 	kthread_park(fs_info->cleaner_kthread);
4249 
4250 	/* wait for the qgroup rescan worker to stop */
4251 	btrfs_qgroup_wait_for_completion(fs_info, false);
4252 
4253 	/* wait for the uuid_scan task to finish */
4254 	down(&fs_info->uuid_tree_rescan_sem);
4255 	/* avoid complains from lockdep et al., set sem back to initial state */
4256 	up(&fs_info->uuid_tree_rescan_sem);
4257 
4258 	/* pause restriper - we want to resume on mount */
4259 	btrfs_pause_balance(fs_info);
4260 
4261 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4262 
4263 	btrfs_scrub_cancel(fs_info);
4264 
4265 	/* wait for any defraggers to finish */
4266 	wait_event(fs_info->transaction_wait,
4267 		   (atomic_read(&fs_info->defrag_running) == 0));
4268 
4269 	/* clear out the rbtree of defraggable inodes */
4270 	btrfs_cleanup_defrag_inodes(fs_info);
4271 
4272 	/*
4273 	 * After we parked the cleaner kthread, ordered extents may have
4274 	 * completed and created new delayed iputs. If one of the async reclaim
4275 	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4276 	 * can hang forever trying to stop it, because if a delayed iput is
4277 	 * added after it ran btrfs_run_delayed_iputs() and before it called
4278 	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4279 	 * no one else to run iputs.
4280 	 *
4281 	 * So wait for all ongoing ordered extents to complete and then run
4282 	 * delayed iputs. This works because once we reach this point no one
4283 	 * can either create new ordered extents nor create delayed iputs
4284 	 * through some other means.
4285 	 *
4286 	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4287 	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4288 	 * but the delayed iput for the respective inode is made only when doing
4289 	 * the final btrfs_put_ordered_extent() (which must happen at
4290 	 * btrfs_finish_ordered_io() when we are unmounting).
4291 	 */
4292 	btrfs_flush_workqueue(fs_info->endio_write_workers);
4293 	/* Ordered extents for free space inodes. */
4294 	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4295 	btrfs_run_delayed_iputs(fs_info);
4296 
4297 	cancel_work_sync(&fs_info->async_reclaim_work);
4298 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4299 	cancel_work_sync(&fs_info->preempt_reclaim_work);
4300 
4301 	/* Cancel or finish ongoing discard work */
4302 	btrfs_discard_cleanup(fs_info);
4303 
4304 	if (!sb_rdonly(fs_info->sb)) {
4305 		/*
4306 		 * The cleaner kthread is stopped, so do one final pass over
4307 		 * unused block groups.
4308 		 */
4309 		btrfs_delete_unused_bgs(fs_info);
4310 
4311 		/*
4312 		 * There might be existing delayed inode workers still running
4313 		 * and holding an empty delayed inode item. We must wait for
4314 		 * them to complete first because they can create a transaction.
4315 		 * This happens when someone calls btrfs_balance_delayed_items()
4316 		 * and then a transaction commit runs the same delayed nodes
4317 		 * before any delayed worker has done something with the nodes.
4318 		 * We must wait for any worker here and not at transaction
4319 		 * commit time since that could cause a deadlock.
4320 		 * This is a very rare case.
4321 		 */
4322 		btrfs_flush_workqueue(fs_info->delayed_workers);
4323 
4324 		ret = btrfs_commit_super(fs_info);
4325 		if (ret)
4326 			btrfs_err(fs_info, "commit super ret %d", ret);
4327 	}
4328 
4329 	if (BTRFS_FS_ERROR(fs_info))
4330 		btrfs_error_commit_super(fs_info);
4331 
4332 	kthread_stop(fs_info->transaction_kthread);
4333 	kthread_stop(fs_info->cleaner_kthread);
4334 
4335 	ASSERT(list_empty(&fs_info->delayed_iputs));
4336 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4337 
4338 	if (btrfs_check_quota_leak(fs_info)) {
4339 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4340 		btrfs_err(fs_info, "qgroup reserved space leaked");
4341 	}
4342 
4343 	btrfs_free_qgroup_config(fs_info);
4344 	ASSERT(list_empty(&fs_info->delalloc_roots));
4345 
4346 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4347 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4348 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4349 	}
4350 
4351 	if (percpu_counter_sum(&fs_info->ordered_bytes))
4352 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4353 			   percpu_counter_sum(&fs_info->ordered_bytes));
4354 
4355 	btrfs_sysfs_remove_mounted(fs_info);
4356 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4357 
4358 	btrfs_put_block_group_cache(fs_info);
4359 
4360 	/*
4361 	 * we must make sure there is not any read request to
4362 	 * submit after we stopping all workers.
4363 	 */
4364 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4365 	btrfs_stop_all_workers(fs_info);
4366 
4367 	/* We shouldn't have any transaction open at this point */
4368 	warn_about_uncommitted_trans(fs_info);
4369 
4370 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4371 	free_root_pointers(fs_info, true);
4372 	btrfs_free_fs_roots(fs_info);
4373 
4374 	/*
4375 	 * We must free the block groups after dropping the fs_roots as we could
4376 	 * have had an IO error and have left over tree log blocks that aren't
4377 	 * cleaned up until the fs roots are freed.  This makes the block group
4378 	 * accounting appear to be wrong because there's pending reserved bytes,
4379 	 * so make sure we do the block group cleanup afterwards.
4380 	 */
4381 	btrfs_free_block_groups(fs_info);
4382 
4383 	iput(fs_info->btree_inode);
4384 
4385 	btrfs_mapping_tree_free(fs_info);
4386 	btrfs_close_devices(fs_info->fs_devices);
4387 }
4388 
4389 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4390 			     struct extent_buffer *buf)
4391 {
4392 	struct btrfs_fs_info *fs_info = buf->fs_info;
4393 	u64 transid = btrfs_header_generation(buf);
4394 
4395 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4396 	/*
4397 	 * This is a fast path so only do this check if we have sanity tests
4398 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4399 	 * outside of the sanity tests.
4400 	 */
4401 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4402 		return;
4403 #endif
4404 	/* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4405 	ASSERT(trans->transid == fs_info->generation);
4406 	btrfs_assert_tree_write_locked(buf);
4407 	if (unlikely(transid != fs_info->generation)) {
4408 		btrfs_abort_transaction(trans, -EUCLEAN);
4409 		btrfs_crit(fs_info,
4410 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4411 			   buf->start, transid, fs_info->generation);
4412 	}
4413 	set_extent_buffer_dirty(buf);
4414 }
4415 
4416 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4417 					int flush_delayed)
4418 {
4419 	/*
4420 	 * looks as though older kernels can get into trouble with
4421 	 * this code, they end up stuck in balance_dirty_pages forever
4422 	 */
4423 	int ret;
4424 
4425 	if (current->flags & PF_MEMALLOC)
4426 		return;
4427 
4428 	if (flush_delayed)
4429 		btrfs_balance_delayed_items(fs_info);
4430 
4431 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4432 				     BTRFS_DIRTY_METADATA_THRESH,
4433 				     fs_info->dirty_metadata_batch);
4434 	if (ret > 0) {
4435 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4436 	}
4437 }
4438 
4439 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4440 {
4441 	__btrfs_btree_balance_dirty(fs_info, 1);
4442 }
4443 
4444 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4445 {
4446 	__btrfs_btree_balance_dirty(fs_info, 0);
4447 }
4448 
4449 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4450 {
4451 	/* cleanup FS via transaction */
4452 	btrfs_cleanup_transaction(fs_info);
4453 
4454 	mutex_lock(&fs_info->cleaner_mutex);
4455 	btrfs_run_delayed_iputs(fs_info);
4456 	mutex_unlock(&fs_info->cleaner_mutex);
4457 
4458 	down_write(&fs_info->cleanup_work_sem);
4459 	up_write(&fs_info->cleanup_work_sem);
4460 }
4461 
4462 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4463 {
4464 	struct btrfs_root *gang[8];
4465 	u64 root_objectid = 0;
4466 	int ret;
4467 
4468 	spin_lock(&fs_info->fs_roots_radix_lock);
4469 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4470 					     (void **)gang, root_objectid,
4471 					     ARRAY_SIZE(gang))) != 0) {
4472 		int i;
4473 
4474 		for (i = 0; i < ret; i++)
4475 			gang[i] = btrfs_grab_root(gang[i]);
4476 		spin_unlock(&fs_info->fs_roots_radix_lock);
4477 
4478 		for (i = 0; i < ret; i++) {
4479 			if (!gang[i])
4480 				continue;
4481 			root_objectid = btrfs_root_id(gang[i]);
4482 			btrfs_free_log(NULL, gang[i]);
4483 			btrfs_put_root(gang[i]);
4484 		}
4485 		root_objectid++;
4486 		spin_lock(&fs_info->fs_roots_radix_lock);
4487 	}
4488 	spin_unlock(&fs_info->fs_roots_radix_lock);
4489 	btrfs_free_log_root_tree(NULL, fs_info);
4490 }
4491 
4492 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4493 {
4494 	struct btrfs_ordered_extent *ordered;
4495 
4496 	spin_lock(&root->ordered_extent_lock);
4497 	/*
4498 	 * This will just short circuit the ordered completion stuff which will
4499 	 * make sure the ordered extent gets properly cleaned up.
4500 	 */
4501 	list_for_each_entry(ordered, &root->ordered_extents,
4502 			    root_extent_list)
4503 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4504 	spin_unlock(&root->ordered_extent_lock);
4505 }
4506 
4507 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4508 {
4509 	struct btrfs_root *root;
4510 	LIST_HEAD(splice);
4511 
4512 	spin_lock(&fs_info->ordered_root_lock);
4513 	list_splice_init(&fs_info->ordered_roots, &splice);
4514 	while (!list_empty(&splice)) {
4515 		root = list_first_entry(&splice, struct btrfs_root,
4516 					ordered_root);
4517 		list_move_tail(&root->ordered_root,
4518 			       &fs_info->ordered_roots);
4519 
4520 		spin_unlock(&fs_info->ordered_root_lock);
4521 		btrfs_destroy_ordered_extents(root);
4522 
4523 		cond_resched();
4524 		spin_lock(&fs_info->ordered_root_lock);
4525 	}
4526 	spin_unlock(&fs_info->ordered_root_lock);
4527 
4528 	/*
4529 	 * We need this here because if we've been flipped read-only we won't
4530 	 * get sync() from the umount, so we need to make sure any ordered
4531 	 * extents that haven't had their dirty pages IO start writeout yet
4532 	 * actually get run and error out properly.
4533 	 */
4534 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4535 }
4536 
4537 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4538 				       struct btrfs_fs_info *fs_info)
4539 {
4540 	struct rb_node *node;
4541 	struct btrfs_delayed_ref_root *delayed_refs;
4542 	struct btrfs_delayed_ref_node *ref;
4543 
4544 	delayed_refs = &trans->delayed_refs;
4545 
4546 	spin_lock(&delayed_refs->lock);
4547 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4548 		spin_unlock(&delayed_refs->lock);
4549 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4550 		return;
4551 	}
4552 
4553 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4554 		struct btrfs_delayed_ref_head *head;
4555 		struct rb_node *n;
4556 		bool pin_bytes = false;
4557 
4558 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4559 				href_node);
4560 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4561 			continue;
4562 
4563 		spin_lock(&head->lock);
4564 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4565 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4566 				       ref_node);
4567 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4568 			RB_CLEAR_NODE(&ref->ref_node);
4569 			if (!list_empty(&ref->add_list))
4570 				list_del(&ref->add_list);
4571 			atomic_dec(&delayed_refs->num_entries);
4572 			btrfs_put_delayed_ref(ref);
4573 			btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
4574 		}
4575 		if (head->must_insert_reserved)
4576 			pin_bytes = true;
4577 		btrfs_free_delayed_extent_op(head->extent_op);
4578 		btrfs_delete_ref_head(delayed_refs, head);
4579 		spin_unlock(&head->lock);
4580 		spin_unlock(&delayed_refs->lock);
4581 		mutex_unlock(&head->mutex);
4582 
4583 		if (pin_bytes) {
4584 			struct btrfs_block_group *cache;
4585 
4586 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4587 			BUG_ON(!cache);
4588 
4589 			spin_lock(&cache->space_info->lock);
4590 			spin_lock(&cache->lock);
4591 			cache->pinned += head->num_bytes;
4592 			btrfs_space_info_update_bytes_pinned(fs_info,
4593 				cache->space_info, head->num_bytes);
4594 			cache->reserved -= head->num_bytes;
4595 			cache->space_info->bytes_reserved -= head->num_bytes;
4596 			spin_unlock(&cache->lock);
4597 			spin_unlock(&cache->space_info->lock);
4598 
4599 			btrfs_put_block_group(cache);
4600 
4601 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4602 				head->bytenr + head->num_bytes - 1);
4603 		}
4604 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4605 		btrfs_put_delayed_ref_head(head);
4606 		cond_resched();
4607 		spin_lock(&delayed_refs->lock);
4608 	}
4609 	btrfs_qgroup_destroy_extent_records(trans);
4610 
4611 	spin_unlock(&delayed_refs->lock);
4612 }
4613 
4614 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4615 {
4616 	struct btrfs_inode *btrfs_inode;
4617 	LIST_HEAD(splice);
4618 
4619 	spin_lock(&root->delalloc_lock);
4620 	list_splice_init(&root->delalloc_inodes, &splice);
4621 
4622 	while (!list_empty(&splice)) {
4623 		struct inode *inode = NULL;
4624 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4625 					       delalloc_inodes);
4626 		btrfs_del_delalloc_inode(btrfs_inode);
4627 		spin_unlock(&root->delalloc_lock);
4628 
4629 		/*
4630 		 * Make sure we get a live inode and that it'll not disappear
4631 		 * meanwhile.
4632 		 */
4633 		inode = igrab(&btrfs_inode->vfs_inode);
4634 		if (inode) {
4635 			unsigned int nofs_flag;
4636 
4637 			nofs_flag = memalloc_nofs_save();
4638 			invalidate_inode_pages2(inode->i_mapping);
4639 			memalloc_nofs_restore(nofs_flag);
4640 			iput(inode);
4641 		}
4642 		spin_lock(&root->delalloc_lock);
4643 	}
4644 	spin_unlock(&root->delalloc_lock);
4645 }
4646 
4647 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4648 {
4649 	struct btrfs_root *root;
4650 	LIST_HEAD(splice);
4651 
4652 	spin_lock(&fs_info->delalloc_root_lock);
4653 	list_splice_init(&fs_info->delalloc_roots, &splice);
4654 	while (!list_empty(&splice)) {
4655 		root = list_first_entry(&splice, struct btrfs_root,
4656 					 delalloc_root);
4657 		root = btrfs_grab_root(root);
4658 		BUG_ON(!root);
4659 		spin_unlock(&fs_info->delalloc_root_lock);
4660 
4661 		btrfs_destroy_delalloc_inodes(root);
4662 		btrfs_put_root(root);
4663 
4664 		spin_lock(&fs_info->delalloc_root_lock);
4665 	}
4666 	spin_unlock(&fs_info->delalloc_root_lock);
4667 }
4668 
4669 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4670 					 struct extent_io_tree *dirty_pages,
4671 					 int mark)
4672 {
4673 	struct extent_buffer *eb;
4674 	u64 start = 0;
4675 	u64 end;
4676 
4677 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
4678 				     mark, NULL)) {
4679 		clear_extent_bits(dirty_pages, start, end, mark);
4680 		while (start <= end) {
4681 			eb = find_extent_buffer(fs_info, start);
4682 			start += fs_info->nodesize;
4683 			if (!eb)
4684 				continue;
4685 
4686 			btrfs_tree_lock(eb);
4687 			wait_on_extent_buffer_writeback(eb);
4688 			btrfs_clear_buffer_dirty(NULL, eb);
4689 			btrfs_tree_unlock(eb);
4690 
4691 			free_extent_buffer_stale(eb);
4692 		}
4693 	}
4694 }
4695 
4696 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4697 					struct extent_io_tree *unpin)
4698 {
4699 	u64 start;
4700 	u64 end;
4701 
4702 	while (1) {
4703 		struct extent_state *cached_state = NULL;
4704 
4705 		/*
4706 		 * The btrfs_finish_extent_commit() may get the same range as
4707 		 * ours between find_first_extent_bit and clear_extent_dirty.
4708 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4709 		 * the same extent range.
4710 		 */
4711 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4712 		if (!find_first_extent_bit(unpin, 0, &start, &end,
4713 					   EXTENT_DIRTY, &cached_state)) {
4714 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4715 			break;
4716 		}
4717 
4718 		clear_extent_dirty(unpin, start, end, &cached_state);
4719 		free_extent_state(cached_state);
4720 		btrfs_error_unpin_extent_range(fs_info, start, end);
4721 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4722 		cond_resched();
4723 	}
4724 }
4725 
4726 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4727 {
4728 	struct inode *inode;
4729 
4730 	inode = cache->io_ctl.inode;
4731 	if (inode) {
4732 		unsigned int nofs_flag;
4733 
4734 		nofs_flag = memalloc_nofs_save();
4735 		invalidate_inode_pages2(inode->i_mapping);
4736 		memalloc_nofs_restore(nofs_flag);
4737 
4738 		BTRFS_I(inode)->generation = 0;
4739 		cache->io_ctl.inode = NULL;
4740 		iput(inode);
4741 	}
4742 	ASSERT(cache->io_ctl.pages == NULL);
4743 	btrfs_put_block_group(cache);
4744 }
4745 
4746 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4747 			     struct btrfs_fs_info *fs_info)
4748 {
4749 	struct btrfs_block_group *cache;
4750 
4751 	spin_lock(&cur_trans->dirty_bgs_lock);
4752 	while (!list_empty(&cur_trans->dirty_bgs)) {
4753 		cache = list_first_entry(&cur_trans->dirty_bgs,
4754 					 struct btrfs_block_group,
4755 					 dirty_list);
4756 
4757 		if (!list_empty(&cache->io_list)) {
4758 			spin_unlock(&cur_trans->dirty_bgs_lock);
4759 			list_del_init(&cache->io_list);
4760 			btrfs_cleanup_bg_io(cache);
4761 			spin_lock(&cur_trans->dirty_bgs_lock);
4762 		}
4763 
4764 		list_del_init(&cache->dirty_list);
4765 		spin_lock(&cache->lock);
4766 		cache->disk_cache_state = BTRFS_DC_ERROR;
4767 		spin_unlock(&cache->lock);
4768 
4769 		spin_unlock(&cur_trans->dirty_bgs_lock);
4770 		btrfs_put_block_group(cache);
4771 		btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4772 		spin_lock(&cur_trans->dirty_bgs_lock);
4773 	}
4774 	spin_unlock(&cur_trans->dirty_bgs_lock);
4775 
4776 	/*
4777 	 * Refer to the definition of io_bgs member for details why it's safe
4778 	 * to use it without any locking
4779 	 */
4780 	while (!list_empty(&cur_trans->io_bgs)) {
4781 		cache = list_first_entry(&cur_trans->io_bgs,
4782 					 struct btrfs_block_group,
4783 					 io_list);
4784 
4785 		list_del_init(&cache->io_list);
4786 		spin_lock(&cache->lock);
4787 		cache->disk_cache_state = BTRFS_DC_ERROR;
4788 		spin_unlock(&cache->lock);
4789 		btrfs_cleanup_bg_io(cache);
4790 	}
4791 }
4792 
4793 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4794 {
4795 	struct btrfs_root *gang[8];
4796 	int i;
4797 	int ret;
4798 
4799 	spin_lock(&fs_info->fs_roots_radix_lock);
4800 	while (1) {
4801 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4802 						 (void **)gang, 0,
4803 						 ARRAY_SIZE(gang),
4804 						 BTRFS_ROOT_TRANS_TAG);
4805 		if (ret == 0)
4806 			break;
4807 		for (i = 0; i < ret; i++) {
4808 			struct btrfs_root *root = gang[i];
4809 
4810 			btrfs_qgroup_free_meta_all_pertrans(root);
4811 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
4812 					(unsigned long)btrfs_root_id(root),
4813 					BTRFS_ROOT_TRANS_TAG);
4814 		}
4815 	}
4816 	spin_unlock(&fs_info->fs_roots_radix_lock);
4817 }
4818 
4819 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4820 				   struct btrfs_fs_info *fs_info)
4821 {
4822 	struct btrfs_device *dev, *tmp;
4823 
4824 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4825 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4826 	ASSERT(list_empty(&cur_trans->io_bgs));
4827 
4828 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4829 				 post_commit_list) {
4830 		list_del_init(&dev->post_commit_list);
4831 	}
4832 
4833 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4834 
4835 	cur_trans->state = TRANS_STATE_COMMIT_START;
4836 	wake_up(&fs_info->transaction_blocked_wait);
4837 
4838 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4839 	wake_up(&fs_info->transaction_wait);
4840 
4841 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4842 				     EXTENT_DIRTY);
4843 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4844 
4845 	cur_trans->state =TRANS_STATE_COMPLETED;
4846 	wake_up(&cur_trans->commit_wait);
4847 }
4848 
4849 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4850 {
4851 	struct btrfs_transaction *t;
4852 
4853 	mutex_lock(&fs_info->transaction_kthread_mutex);
4854 
4855 	spin_lock(&fs_info->trans_lock);
4856 	while (!list_empty(&fs_info->trans_list)) {
4857 		t = list_first_entry(&fs_info->trans_list,
4858 				     struct btrfs_transaction, list);
4859 		if (t->state >= TRANS_STATE_COMMIT_PREP) {
4860 			refcount_inc(&t->use_count);
4861 			spin_unlock(&fs_info->trans_lock);
4862 			btrfs_wait_for_commit(fs_info, t->transid);
4863 			btrfs_put_transaction(t);
4864 			spin_lock(&fs_info->trans_lock);
4865 			continue;
4866 		}
4867 		if (t == fs_info->running_transaction) {
4868 			t->state = TRANS_STATE_COMMIT_DOING;
4869 			spin_unlock(&fs_info->trans_lock);
4870 			/*
4871 			 * We wait for 0 num_writers since we don't hold a trans
4872 			 * handle open currently for this transaction.
4873 			 */
4874 			wait_event(t->writer_wait,
4875 				   atomic_read(&t->num_writers) == 0);
4876 		} else {
4877 			spin_unlock(&fs_info->trans_lock);
4878 		}
4879 		btrfs_cleanup_one_transaction(t, fs_info);
4880 
4881 		spin_lock(&fs_info->trans_lock);
4882 		if (t == fs_info->running_transaction)
4883 			fs_info->running_transaction = NULL;
4884 		list_del_init(&t->list);
4885 		spin_unlock(&fs_info->trans_lock);
4886 
4887 		btrfs_put_transaction(t);
4888 		trace_btrfs_transaction_commit(fs_info);
4889 		spin_lock(&fs_info->trans_lock);
4890 	}
4891 	spin_unlock(&fs_info->trans_lock);
4892 	btrfs_destroy_all_ordered_extents(fs_info);
4893 	btrfs_destroy_delayed_inodes(fs_info);
4894 	btrfs_assert_delayed_root_empty(fs_info);
4895 	btrfs_destroy_all_delalloc_inodes(fs_info);
4896 	btrfs_drop_all_logs(fs_info);
4897 	btrfs_free_all_qgroup_pertrans(fs_info);
4898 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4899 
4900 	return 0;
4901 }
4902 
4903 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4904 {
4905 	struct btrfs_path *path;
4906 	int ret;
4907 	struct extent_buffer *l;
4908 	struct btrfs_key search_key;
4909 	struct btrfs_key found_key;
4910 	int slot;
4911 
4912 	path = btrfs_alloc_path();
4913 	if (!path)
4914 		return -ENOMEM;
4915 
4916 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4917 	search_key.type = -1;
4918 	search_key.offset = (u64)-1;
4919 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4920 	if (ret < 0)
4921 		goto error;
4922 	if (ret == 0) {
4923 		/*
4924 		 * Key with offset -1 found, there would have to exist a root
4925 		 * with such id, but this is out of valid range.
4926 		 */
4927 		ret = -EUCLEAN;
4928 		goto error;
4929 	}
4930 	if (path->slots[0] > 0) {
4931 		slot = path->slots[0] - 1;
4932 		l = path->nodes[0];
4933 		btrfs_item_key_to_cpu(l, &found_key, slot);
4934 		root->free_objectid = max_t(u64, found_key.objectid + 1,
4935 					    BTRFS_FIRST_FREE_OBJECTID);
4936 	} else {
4937 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4938 	}
4939 	ret = 0;
4940 error:
4941 	btrfs_free_path(path);
4942 	return ret;
4943 }
4944 
4945 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4946 {
4947 	int ret;
4948 	mutex_lock(&root->objectid_mutex);
4949 
4950 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4951 		btrfs_warn(root->fs_info,
4952 			   "the objectid of root %llu reaches its highest value",
4953 			   btrfs_root_id(root));
4954 		ret = -ENOSPC;
4955 		goto out;
4956 	}
4957 
4958 	*objectid = root->free_objectid++;
4959 	ret = 0;
4960 out:
4961 	mutex_unlock(&root->objectid_mutex);
4962 	return ret;
4963 }
4964