1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <linux/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "dev-replace.h" 33 #include "raid56.h" 34 #include "sysfs.h" 35 #include "qgroup.h" 36 #include "compression.h" 37 #include "tree-checker.h" 38 #include "ref-verify.h" 39 #include "block-group.h" 40 #include "discard.h" 41 #include "space-info.h" 42 #include "zoned.h" 43 #include "subpage.h" 44 #include "fs.h" 45 #include "accessors.h" 46 #include "extent-tree.h" 47 #include "root-tree.h" 48 #include "defrag.h" 49 #include "uuid-tree.h" 50 #include "relocation.h" 51 #include "scrub.h" 52 #include "super.h" 53 54 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 55 BTRFS_HEADER_FLAG_RELOC |\ 56 BTRFS_SUPER_FLAG_ERROR |\ 57 BTRFS_SUPER_FLAG_SEEDING |\ 58 BTRFS_SUPER_FLAG_METADUMP |\ 59 BTRFS_SUPER_FLAG_METADUMP_V2) 60 61 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 62 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 63 64 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 65 { 66 if (fs_info->csum_shash) 67 crypto_free_shash(fs_info->csum_shash); 68 } 69 70 /* 71 * Compute the csum of a btree block and store the result to provided buffer. 72 */ 73 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 74 { 75 struct btrfs_fs_info *fs_info = buf->fs_info; 76 int num_pages; 77 u32 first_page_part; 78 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 79 char *kaddr; 80 int i; 81 82 shash->tfm = fs_info->csum_shash; 83 crypto_shash_init(shash); 84 85 if (buf->addr) { 86 /* Pages are contiguous, handle them as a big one. */ 87 kaddr = buf->addr; 88 first_page_part = fs_info->nodesize; 89 num_pages = 1; 90 } else { 91 kaddr = folio_address(buf->folios[0]); 92 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 93 num_pages = num_extent_pages(buf); 94 } 95 96 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 97 first_page_part - BTRFS_CSUM_SIZE); 98 99 /* 100 * Multiple single-page folios case would reach here. 101 * 102 * nodesize <= PAGE_SIZE and large folio all handled by above 103 * crypto_shash_update() already. 104 */ 105 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { 106 kaddr = folio_address(buf->folios[i]); 107 crypto_shash_update(shash, kaddr, PAGE_SIZE); 108 } 109 memset(result, 0, BTRFS_CSUM_SIZE); 110 crypto_shash_final(shash, result); 111 } 112 113 /* 114 * we can't consider a given block up to date unless the transid of the 115 * block matches the transid in the parent node's pointer. This is how we 116 * detect blocks that either didn't get written at all or got written 117 * in the wrong place. 118 */ 119 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic) 120 { 121 if (!extent_buffer_uptodate(eb)) 122 return 0; 123 124 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 125 return 1; 126 127 if (atomic) 128 return -EAGAIN; 129 130 if (!extent_buffer_uptodate(eb) || 131 btrfs_header_generation(eb) != parent_transid) { 132 btrfs_err_rl(eb->fs_info, 133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 134 eb->start, eb->read_mirror, 135 parent_transid, btrfs_header_generation(eb)); 136 clear_extent_buffer_uptodate(eb); 137 return 0; 138 } 139 return 1; 140 } 141 142 static bool btrfs_supported_super_csum(u16 csum_type) 143 { 144 switch (csum_type) { 145 case BTRFS_CSUM_TYPE_CRC32: 146 case BTRFS_CSUM_TYPE_XXHASH: 147 case BTRFS_CSUM_TYPE_SHA256: 148 case BTRFS_CSUM_TYPE_BLAKE2: 149 return true; 150 default: 151 return false; 152 } 153 } 154 155 /* 156 * Return 0 if the superblock checksum type matches the checksum value of that 157 * algorithm. Pass the raw disk superblock data. 158 */ 159 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 160 const struct btrfs_super_block *disk_sb) 161 { 162 char result[BTRFS_CSUM_SIZE]; 163 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 164 165 shash->tfm = fs_info->csum_shash; 166 167 /* 168 * The super_block structure does not span the whole 169 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 170 * filled with zeros and is included in the checksum. 171 */ 172 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 173 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 174 175 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 176 return 1; 177 178 return 0; 179 } 180 181 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 182 int mirror_num) 183 { 184 struct btrfs_fs_info *fs_info = eb->fs_info; 185 int num_folios = num_extent_folios(eb); 186 int ret = 0; 187 188 if (sb_rdonly(fs_info->sb)) 189 return -EROFS; 190 191 for (int i = 0; i < num_folios; i++) { 192 struct folio *folio = eb->folios[i]; 193 u64 start = max_t(u64, eb->start, folio_pos(folio)); 194 u64 end = min_t(u64, eb->start + eb->len, 195 folio_pos(folio) + eb->folio_size); 196 u32 len = end - start; 197 198 ret = btrfs_repair_io_failure(fs_info, 0, start, len, 199 start, folio, offset_in_folio(folio, start), 200 mirror_num); 201 if (ret) 202 break; 203 } 204 205 return ret; 206 } 207 208 /* 209 * helper to read a given tree block, doing retries as required when 210 * the checksums don't match and we have alternate mirrors to try. 211 * 212 * @check: expected tree parentness check, see the comments of the 213 * structure for details. 214 */ 215 int btrfs_read_extent_buffer(struct extent_buffer *eb, 216 const struct btrfs_tree_parent_check *check) 217 { 218 struct btrfs_fs_info *fs_info = eb->fs_info; 219 int failed = 0; 220 int ret; 221 int num_copies = 0; 222 int mirror_num = 0; 223 int failed_mirror = 0; 224 225 ASSERT(check); 226 227 while (1) { 228 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 229 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check); 230 if (!ret) 231 break; 232 233 num_copies = btrfs_num_copies(fs_info, 234 eb->start, eb->len); 235 if (num_copies == 1) 236 break; 237 238 if (!failed_mirror) { 239 failed = 1; 240 failed_mirror = eb->read_mirror; 241 } 242 243 mirror_num++; 244 if (mirror_num == failed_mirror) 245 mirror_num++; 246 247 if (mirror_num > num_copies) 248 break; 249 } 250 251 if (failed && !ret && failed_mirror) 252 btrfs_repair_eb_io_failure(eb, failed_mirror); 253 254 return ret; 255 } 256 257 /* 258 * Checksum a dirty tree block before IO. 259 */ 260 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio) 261 { 262 struct extent_buffer *eb = bbio->private; 263 struct btrfs_fs_info *fs_info = eb->fs_info; 264 u64 found_start = btrfs_header_bytenr(eb); 265 u64 last_trans; 266 u8 result[BTRFS_CSUM_SIZE]; 267 int ret; 268 269 /* Btree blocks are always contiguous on disk. */ 270 if (WARN_ON_ONCE(bbio->file_offset != eb->start)) 271 return BLK_STS_IOERR; 272 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len)) 273 return BLK_STS_IOERR; 274 275 /* 276 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't 277 * checksum it but zero-out its content. This is done to preserve 278 * ordering of I/O without unnecessarily writing out data. 279 */ 280 if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) { 281 memzero_extent_buffer(eb, 0, eb->len); 282 return BLK_STS_OK; 283 } 284 285 if (WARN_ON_ONCE(found_start != eb->start)) 286 return BLK_STS_IOERR; 287 if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0], 288 eb->start, eb->len))) 289 return BLK_STS_IOERR; 290 291 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 292 offsetof(struct btrfs_header, fsid), 293 BTRFS_FSID_SIZE) == 0); 294 csum_tree_block(eb, result); 295 296 if (btrfs_header_level(eb)) 297 ret = btrfs_check_node(eb); 298 else 299 ret = btrfs_check_leaf(eb); 300 301 if (ret < 0) 302 goto error; 303 304 /* 305 * Also check the generation, the eb reached here must be newer than 306 * last committed. Or something seriously wrong happened. 307 */ 308 last_trans = btrfs_get_last_trans_committed(fs_info); 309 if (unlikely(btrfs_header_generation(eb) <= last_trans)) { 310 ret = -EUCLEAN; 311 btrfs_err(fs_info, 312 "block=%llu bad generation, have %llu expect > %llu", 313 eb->start, btrfs_header_generation(eb), last_trans); 314 goto error; 315 } 316 write_extent_buffer(eb, result, 0, fs_info->csum_size); 317 return BLK_STS_OK; 318 319 error: 320 btrfs_print_tree(eb, 0); 321 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 322 eb->start); 323 /* 324 * Be noisy if this is an extent buffer from a log tree. We don't abort 325 * a transaction in case there's a bad log tree extent buffer, we just 326 * fallback to a transaction commit. Still we want to know when there is 327 * a bad log tree extent buffer, as that may signal a bug somewhere. 328 */ 329 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 330 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 331 return errno_to_blk_status(ret); 332 } 333 334 static bool check_tree_block_fsid(struct extent_buffer *eb) 335 { 336 struct btrfs_fs_info *fs_info = eb->fs_info; 337 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 338 u8 fsid[BTRFS_FSID_SIZE]; 339 340 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 341 BTRFS_FSID_SIZE); 342 343 /* 344 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid. 345 * This is then overwritten by metadata_uuid if it is present in the 346 * device_list_add(). The same true for a seed device as well. So use of 347 * fs_devices::metadata_uuid is appropriate here. 348 */ 349 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0) 350 return false; 351 352 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 353 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 354 return false; 355 356 return true; 357 } 358 359 /* Do basic extent buffer checks at read time */ 360 int btrfs_validate_extent_buffer(struct extent_buffer *eb, 361 const struct btrfs_tree_parent_check *check) 362 { 363 struct btrfs_fs_info *fs_info = eb->fs_info; 364 u64 found_start; 365 const u32 csum_size = fs_info->csum_size; 366 u8 found_level; 367 u8 result[BTRFS_CSUM_SIZE]; 368 const u8 *header_csum; 369 int ret = 0; 370 const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS); 371 372 ASSERT(check); 373 374 found_start = btrfs_header_bytenr(eb); 375 if (found_start != eb->start) { 376 btrfs_err_rl(fs_info, 377 "bad tree block start, mirror %u want %llu have %llu", 378 eb->read_mirror, eb->start, found_start); 379 ret = -EIO; 380 goto out; 381 } 382 if (check_tree_block_fsid(eb)) { 383 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 384 eb->start, eb->read_mirror); 385 ret = -EIO; 386 goto out; 387 } 388 found_level = btrfs_header_level(eb); 389 if (found_level >= BTRFS_MAX_LEVEL) { 390 btrfs_err(fs_info, 391 "bad tree block level, mirror %u level %d on logical %llu", 392 eb->read_mirror, btrfs_header_level(eb), eb->start); 393 ret = -EIO; 394 goto out; 395 } 396 397 csum_tree_block(eb, result); 398 header_csum = folio_address(eb->folios[0]) + 399 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum)); 400 401 if (memcmp(result, header_csum, csum_size) != 0) { 402 btrfs_warn_rl(fs_info, 403 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d%s", 404 eb->start, eb->read_mirror, 405 CSUM_FMT_VALUE(csum_size, header_csum), 406 CSUM_FMT_VALUE(csum_size, result), 407 btrfs_header_level(eb), 408 ignore_csum ? ", ignored" : ""); 409 if (!ignore_csum) { 410 ret = -EUCLEAN; 411 goto out; 412 } 413 } 414 415 if (found_level != check->level) { 416 btrfs_err(fs_info, 417 "level verify failed on logical %llu mirror %u wanted %u found %u", 418 eb->start, eb->read_mirror, check->level, found_level); 419 ret = -EIO; 420 goto out; 421 } 422 if (unlikely(check->transid && 423 btrfs_header_generation(eb) != check->transid)) { 424 btrfs_err_rl(eb->fs_info, 425 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 426 eb->start, eb->read_mirror, check->transid, 427 btrfs_header_generation(eb)); 428 ret = -EIO; 429 goto out; 430 } 431 if (check->has_first_key) { 432 const struct btrfs_key *expect_key = &check->first_key; 433 struct btrfs_key found_key; 434 435 if (found_level) 436 btrfs_node_key_to_cpu(eb, &found_key, 0); 437 else 438 btrfs_item_key_to_cpu(eb, &found_key, 0); 439 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 440 btrfs_err(fs_info, 441 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 442 eb->start, check->transid, 443 expect_key->objectid, 444 expect_key->type, expect_key->offset, 445 found_key.objectid, found_key.type, 446 found_key.offset); 447 ret = -EUCLEAN; 448 goto out; 449 } 450 } 451 if (check->owner_root) { 452 ret = btrfs_check_eb_owner(eb, check->owner_root); 453 if (ret < 0) 454 goto out; 455 } 456 457 /* 458 * If this is a leaf block and it is corrupt, set the corrupt bit so 459 * that we don't try and read the other copies of this block, just 460 * return -EIO. 461 */ 462 if (found_level == 0 && btrfs_check_leaf(eb)) { 463 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 464 ret = -EIO; 465 } 466 467 if (found_level > 0 && btrfs_check_node(eb)) 468 ret = -EIO; 469 470 if (ret) 471 btrfs_err(fs_info, 472 "read time tree block corruption detected on logical %llu mirror %u", 473 eb->start, eb->read_mirror); 474 out: 475 return ret; 476 } 477 478 #ifdef CONFIG_MIGRATION 479 static int btree_migrate_folio(struct address_space *mapping, 480 struct folio *dst, struct folio *src, enum migrate_mode mode) 481 { 482 /* 483 * we can't safely write a btree page from here, 484 * we haven't done the locking hook 485 */ 486 if (folio_test_dirty(src)) 487 return -EAGAIN; 488 /* 489 * Buffers may be managed in a filesystem specific way. 490 * We must have no buffers or drop them. 491 */ 492 if (folio_get_private(src) && 493 !filemap_release_folio(src, GFP_KERNEL)) 494 return -EAGAIN; 495 return migrate_folio(mapping, dst, src, mode); 496 } 497 #else 498 #define btree_migrate_folio NULL 499 #endif 500 501 static int btree_writepages(struct address_space *mapping, 502 struct writeback_control *wbc) 503 { 504 int ret; 505 506 if (wbc->sync_mode == WB_SYNC_NONE) { 507 struct btrfs_fs_info *fs_info; 508 509 if (wbc->for_kupdate) 510 return 0; 511 512 fs_info = inode_to_fs_info(mapping->host); 513 /* this is a bit racy, but that's ok */ 514 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 515 BTRFS_DIRTY_METADATA_THRESH, 516 fs_info->dirty_metadata_batch); 517 if (ret < 0) 518 return 0; 519 } 520 return btree_write_cache_pages(mapping, wbc); 521 } 522 523 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 524 { 525 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 526 return false; 527 528 return try_release_extent_buffer(folio); 529 } 530 531 static void btree_invalidate_folio(struct folio *folio, size_t offset, 532 size_t length) 533 { 534 struct extent_io_tree *tree; 535 536 tree = &folio_to_inode(folio)->io_tree; 537 extent_invalidate_folio(tree, folio, offset); 538 btree_release_folio(folio, GFP_NOFS); 539 if (folio_get_private(folio)) { 540 btrfs_warn(folio_to_fs_info(folio), 541 "folio private not zero on folio %llu", 542 (unsigned long long)folio_pos(folio)); 543 folio_detach_private(folio); 544 } 545 } 546 547 #ifdef DEBUG 548 static bool btree_dirty_folio(struct address_space *mapping, 549 struct folio *folio) 550 { 551 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 552 struct btrfs_subpage_info *spi = fs_info->subpage_info; 553 struct btrfs_subpage *subpage; 554 struct extent_buffer *eb; 555 int cur_bit = 0; 556 u64 page_start = folio_pos(folio); 557 558 if (fs_info->sectorsize == PAGE_SIZE) { 559 eb = folio_get_private(folio); 560 BUG_ON(!eb); 561 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 562 BUG_ON(!atomic_read(&eb->refs)); 563 btrfs_assert_tree_write_locked(eb); 564 return filemap_dirty_folio(mapping, folio); 565 } 566 567 ASSERT(spi); 568 subpage = folio_get_private(folio); 569 570 for (cur_bit = spi->dirty_offset; 571 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits; 572 cur_bit++) { 573 unsigned long flags; 574 u64 cur; 575 576 spin_lock_irqsave(&subpage->lock, flags); 577 if (!test_bit(cur_bit, subpage->bitmaps)) { 578 spin_unlock_irqrestore(&subpage->lock, flags); 579 continue; 580 } 581 spin_unlock_irqrestore(&subpage->lock, flags); 582 cur = page_start + cur_bit * fs_info->sectorsize; 583 584 eb = find_extent_buffer(fs_info, cur); 585 ASSERT(eb); 586 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 587 ASSERT(atomic_read(&eb->refs)); 588 btrfs_assert_tree_write_locked(eb); 589 free_extent_buffer(eb); 590 591 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1; 592 } 593 return filemap_dirty_folio(mapping, folio); 594 } 595 #else 596 #define btree_dirty_folio filemap_dirty_folio 597 #endif 598 599 static const struct address_space_operations btree_aops = { 600 .writepages = btree_writepages, 601 .release_folio = btree_release_folio, 602 .invalidate_folio = btree_invalidate_folio, 603 .migrate_folio = btree_migrate_folio, 604 .dirty_folio = btree_dirty_folio, 605 }; 606 607 struct extent_buffer *btrfs_find_create_tree_block( 608 struct btrfs_fs_info *fs_info, 609 u64 bytenr, u64 owner_root, 610 int level) 611 { 612 if (btrfs_is_testing(fs_info)) 613 return alloc_test_extent_buffer(fs_info, bytenr); 614 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 615 } 616 617 /* 618 * Read tree block at logical address @bytenr and do variant basic but critical 619 * verification. 620 * 621 * @check: expected tree parentness check, see comments of the 622 * structure for details. 623 */ 624 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 625 struct btrfs_tree_parent_check *check) 626 { 627 struct extent_buffer *buf = NULL; 628 int ret; 629 630 ASSERT(check); 631 632 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 633 check->level); 634 if (IS_ERR(buf)) 635 return buf; 636 637 ret = btrfs_read_extent_buffer(buf, check); 638 if (ret) { 639 free_extent_buffer_stale(buf); 640 return ERR_PTR(ret); 641 } 642 return buf; 643 644 } 645 646 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 647 u64 objectid) 648 { 649 bool dummy = btrfs_is_testing(fs_info); 650 651 memset(&root->root_key, 0, sizeof(root->root_key)); 652 memset(&root->root_item, 0, sizeof(root->root_item)); 653 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 654 root->fs_info = fs_info; 655 root->root_key.objectid = objectid; 656 root->node = NULL; 657 root->commit_root = NULL; 658 root->state = 0; 659 RB_CLEAR_NODE(&root->rb_node); 660 661 btrfs_set_root_last_trans(root, 0); 662 root->free_objectid = 0; 663 root->nr_delalloc_inodes = 0; 664 root->nr_ordered_extents = 0; 665 xa_init(&root->inodes); 666 xa_init(&root->delayed_nodes); 667 668 btrfs_init_root_block_rsv(root); 669 670 INIT_LIST_HEAD(&root->dirty_list); 671 INIT_LIST_HEAD(&root->root_list); 672 INIT_LIST_HEAD(&root->delalloc_inodes); 673 INIT_LIST_HEAD(&root->delalloc_root); 674 INIT_LIST_HEAD(&root->ordered_extents); 675 INIT_LIST_HEAD(&root->ordered_root); 676 INIT_LIST_HEAD(&root->reloc_dirty_list); 677 spin_lock_init(&root->delalloc_lock); 678 spin_lock_init(&root->ordered_extent_lock); 679 spin_lock_init(&root->accounting_lock); 680 spin_lock_init(&root->qgroup_meta_rsv_lock); 681 mutex_init(&root->objectid_mutex); 682 mutex_init(&root->log_mutex); 683 mutex_init(&root->ordered_extent_mutex); 684 mutex_init(&root->delalloc_mutex); 685 init_waitqueue_head(&root->qgroup_flush_wait); 686 init_waitqueue_head(&root->log_writer_wait); 687 init_waitqueue_head(&root->log_commit_wait[0]); 688 init_waitqueue_head(&root->log_commit_wait[1]); 689 INIT_LIST_HEAD(&root->log_ctxs[0]); 690 INIT_LIST_HEAD(&root->log_ctxs[1]); 691 atomic_set(&root->log_commit[0], 0); 692 atomic_set(&root->log_commit[1], 0); 693 atomic_set(&root->log_writers, 0); 694 atomic_set(&root->log_batch, 0); 695 refcount_set(&root->refs, 1); 696 atomic_set(&root->snapshot_force_cow, 0); 697 atomic_set(&root->nr_swapfiles, 0); 698 btrfs_set_root_log_transid(root, 0); 699 root->log_transid_committed = -1; 700 btrfs_set_root_last_log_commit(root, 0); 701 root->anon_dev = 0; 702 if (!dummy) { 703 extent_io_tree_init(fs_info, &root->dirty_log_pages, 704 IO_TREE_ROOT_DIRTY_LOG_PAGES); 705 extent_io_tree_init(fs_info, &root->log_csum_range, 706 IO_TREE_LOG_CSUM_RANGE); 707 } 708 709 spin_lock_init(&root->root_item_lock); 710 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 711 #ifdef CONFIG_BTRFS_DEBUG 712 INIT_LIST_HEAD(&root->leak_list); 713 spin_lock(&fs_info->fs_roots_radix_lock); 714 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 715 spin_unlock(&fs_info->fs_roots_radix_lock); 716 #endif 717 } 718 719 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 720 u64 objectid, gfp_t flags) 721 { 722 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 723 if (root) 724 __setup_root(root, fs_info, objectid); 725 return root; 726 } 727 728 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 729 /* Should only be used by the testing infrastructure */ 730 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 731 { 732 struct btrfs_root *root; 733 734 if (!fs_info) 735 return ERR_PTR(-EINVAL); 736 737 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 738 if (!root) 739 return ERR_PTR(-ENOMEM); 740 741 /* We don't use the stripesize in selftest, set it as sectorsize */ 742 root->alloc_bytenr = 0; 743 744 return root; 745 } 746 #endif 747 748 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 749 { 750 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 751 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 752 753 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 754 } 755 756 static int global_root_key_cmp(const void *k, const struct rb_node *node) 757 { 758 const struct btrfs_key *key = k; 759 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 760 761 return btrfs_comp_cpu_keys(key, &root->root_key); 762 } 763 764 int btrfs_global_root_insert(struct btrfs_root *root) 765 { 766 struct btrfs_fs_info *fs_info = root->fs_info; 767 struct rb_node *tmp; 768 int ret = 0; 769 770 write_lock(&fs_info->global_root_lock); 771 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 772 write_unlock(&fs_info->global_root_lock); 773 774 if (tmp) { 775 ret = -EEXIST; 776 btrfs_warn(fs_info, "global root %llu %llu already exists", 777 btrfs_root_id(root), root->root_key.offset); 778 } 779 return ret; 780 } 781 782 void btrfs_global_root_delete(struct btrfs_root *root) 783 { 784 struct btrfs_fs_info *fs_info = root->fs_info; 785 786 write_lock(&fs_info->global_root_lock); 787 rb_erase(&root->rb_node, &fs_info->global_root_tree); 788 write_unlock(&fs_info->global_root_lock); 789 } 790 791 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 792 struct btrfs_key *key) 793 { 794 struct rb_node *node; 795 struct btrfs_root *root = NULL; 796 797 read_lock(&fs_info->global_root_lock); 798 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 799 if (node) 800 root = container_of(node, struct btrfs_root, rb_node); 801 read_unlock(&fs_info->global_root_lock); 802 803 return root; 804 } 805 806 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 807 { 808 struct btrfs_block_group *block_group; 809 u64 ret; 810 811 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 812 return 0; 813 814 if (bytenr) 815 block_group = btrfs_lookup_block_group(fs_info, bytenr); 816 else 817 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 818 ASSERT(block_group); 819 if (!block_group) 820 return 0; 821 ret = block_group->global_root_id; 822 btrfs_put_block_group(block_group); 823 824 return ret; 825 } 826 827 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 828 { 829 struct btrfs_key key = { 830 .objectid = BTRFS_CSUM_TREE_OBJECTID, 831 .type = BTRFS_ROOT_ITEM_KEY, 832 .offset = btrfs_global_root_id(fs_info, bytenr), 833 }; 834 835 return btrfs_global_root(fs_info, &key); 836 } 837 838 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 839 { 840 struct btrfs_key key = { 841 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 842 .type = BTRFS_ROOT_ITEM_KEY, 843 .offset = btrfs_global_root_id(fs_info, bytenr), 844 }; 845 846 return btrfs_global_root(fs_info, &key); 847 } 848 849 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 850 u64 objectid) 851 { 852 struct btrfs_fs_info *fs_info = trans->fs_info; 853 struct extent_buffer *leaf; 854 struct btrfs_root *tree_root = fs_info->tree_root; 855 struct btrfs_root *root; 856 struct btrfs_key key; 857 unsigned int nofs_flag; 858 int ret = 0; 859 860 /* 861 * We're holding a transaction handle, so use a NOFS memory allocation 862 * context to avoid deadlock if reclaim happens. 863 */ 864 nofs_flag = memalloc_nofs_save(); 865 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 866 memalloc_nofs_restore(nofs_flag); 867 if (!root) 868 return ERR_PTR(-ENOMEM); 869 870 root->root_key.objectid = objectid; 871 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 872 root->root_key.offset = 0; 873 874 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 875 0, BTRFS_NESTING_NORMAL); 876 if (IS_ERR(leaf)) { 877 ret = PTR_ERR(leaf); 878 leaf = NULL; 879 goto fail; 880 } 881 882 root->node = leaf; 883 btrfs_mark_buffer_dirty(trans, leaf); 884 885 root->commit_root = btrfs_root_node(root); 886 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 887 888 btrfs_set_root_flags(&root->root_item, 0); 889 btrfs_set_root_limit(&root->root_item, 0); 890 btrfs_set_root_bytenr(&root->root_item, leaf->start); 891 btrfs_set_root_generation(&root->root_item, trans->transid); 892 btrfs_set_root_level(&root->root_item, 0); 893 btrfs_set_root_refs(&root->root_item, 1); 894 btrfs_set_root_used(&root->root_item, leaf->len); 895 btrfs_set_root_last_snapshot(&root->root_item, 0); 896 btrfs_set_root_dirid(&root->root_item, 0); 897 if (is_fstree(objectid)) 898 generate_random_guid(root->root_item.uuid); 899 else 900 export_guid(root->root_item.uuid, &guid_null); 901 btrfs_set_root_drop_level(&root->root_item, 0); 902 903 btrfs_tree_unlock(leaf); 904 905 key.objectid = objectid; 906 key.type = BTRFS_ROOT_ITEM_KEY; 907 key.offset = 0; 908 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 909 if (ret) 910 goto fail; 911 912 return root; 913 914 fail: 915 btrfs_put_root(root); 916 917 return ERR_PTR(ret); 918 } 919 920 static struct btrfs_root *alloc_log_tree(struct btrfs_fs_info *fs_info) 921 { 922 struct btrfs_root *root; 923 924 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 925 if (!root) 926 return ERR_PTR(-ENOMEM); 927 928 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 929 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 930 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 931 932 return root; 933 } 934 935 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 936 struct btrfs_root *root) 937 { 938 struct extent_buffer *leaf; 939 940 /* 941 * DON'T set SHAREABLE bit for log trees. 942 * 943 * Log trees are not exposed to user space thus can't be snapshotted, 944 * and they go away before a real commit is actually done. 945 * 946 * They do store pointers to file data extents, and those reference 947 * counts still get updated (along with back refs to the log tree). 948 */ 949 950 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 951 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL); 952 if (IS_ERR(leaf)) 953 return PTR_ERR(leaf); 954 955 root->node = leaf; 956 957 btrfs_mark_buffer_dirty(trans, root->node); 958 btrfs_tree_unlock(root->node); 959 960 return 0; 961 } 962 963 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 964 struct btrfs_fs_info *fs_info) 965 { 966 struct btrfs_root *log_root; 967 968 log_root = alloc_log_tree(fs_info); 969 if (IS_ERR(log_root)) 970 return PTR_ERR(log_root); 971 972 if (!btrfs_is_zoned(fs_info)) { 973 int ret = btrfs_alloc_log_tree_node(trans, log_root); 974 975 if (ret) { 976 btrfs_put_root(log_root); 977 return ret; 978 } 979 } 980 981 WARN_ON(fs_info->log_root_tree); 982 fs_info->log_root_tree = log_root; 983 return 0; 984 } 985 986 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 987 struct btrfs_root *root) 988 { 989 struct btrfs_fs_info *fs_info = root->fs_info; 990 struct btrfs_root *log_root; 991 struct btrfs_inode_item *inode_item; 992 int ret; 993 994 log_root = alloc_log_tree(fs_info); 995 if (IS_ERR(log_root)) 996 return PTR_ERR(log_root); 997 998 ret = btrfs_alloc_log_tree_node(trans, log_root); 999 if (ret) { 1000 btrfs_put_root(log_root); 1001 return ret; 1002 } 1003 1004 btrfs_set_root_last_trans(log_root, trans->transid); 1005 log_root->root_key.offset = btrfs_root_id(root); 1006 1007 inode_item = &log_root->root_item.inode; 1008 btrfs_set_stack_inode_generation(inode_item, 1); 1009 btrfs_set_stack_inode_size(inode_item, 3); 1010 btrfs_set_stack_inode_nlink(inode_item, 1); 1011 btrfs_set_stack_inode_nbytes(inode_item, 1012 fs_info->nodesize); 1013 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1014 1015 btrfs_set_root_node(&log_root->root_item, log_root->node); 1016 1017 WARN_ON(root->log_root); 1018 root->log_root = log_root; 1019 btrfs_set_root_log_transid(root, 0); 1020 root->log_transid_committed = -1; 1021 btrfs_set_root_last_log_commit(root, 0); 1022 return 0; 1023 } 1024 1025 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1026 struct btrfs_path *path, 1027 const struct btrfs_key *key) 1028 { 1029 struct btrfs_root *root; 1030 struct btrfs_tree_parent_check check = { 0 }; 1031 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1032 u64 generation; 1033 int ret; 1034 int level; 1035 1036 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1037 if (!root) 1038 return ERR_PTR(-ENOMEM); 1039 1040 ret = btrfs_find_root(tree_root, key, path, 1041 &root->root_item, &root->root_key); 1042 if (ret) { 1043 if (ret > 0) 1044 ret = -ENOENT; 1045 goto fail; 1046 } 1047 1048 generation = btrfs_root_generation(&root->root_item); 1049 level = btrfs_root_level(&root->root_item); 1050 check.level = level; 1051 check.transid = generation; 1052 check.owner_root = key->objectid; 1053 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1054 &check); 1055 if (IS_ERR(root->node)) { 1056 ret = PTR_ERR(root->node); 1057 root->node = NULL; 1058 goto fail; 1059 } 1060 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1061 ret = -EIO; 1062 goto fail; 1063 } 1064 1065 /* 1066 * For real fs, and not log/reloc trees, root owner must 1067 * match its root node owner 1068 */ 1069 if (!btrfs_is_testing(fs_info) && 1070 btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && 1071 btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID && 1072 btrfs_root_id(root) != btrfs_header_owner(root->node)) { 1073 btrfs_crit(fs_info, 1074 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1075 btrfs_root_id(root), root->node->start, 1076 btrfs_header_owner(root->node), 1077 btrfs_root_id(root)); 1078 ret = -EUCLEAN; 1079 goto fail; 1080 } 1081 root->commit_root = btrfs_root_node(root); 1082 return root; 1083 fail: 1084 btrfs_put_root(root); 1085 return ERR_PTR(ret); 1086 } 1087 1088 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1089 const struct btrfs_key *key) 1090 { 1091 struct btrfs_root *root; 1092 struct btrfs_path *path; 1093 1094 path = btrfs_alloc_path(); 1095 if (!path) 1096 return ERR_PTR(-ENOMEM); 1097 root = read_tree_root_path(tree_root, path, key); 1098 btrfs_free_path(path); 1099 1100 return root; 1101 } 1102 1103 /* 1104 * Initialize subvolume root in-memory structure 1105 * 1106 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1107 */ 1108 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1109 { 1110 int ret; 1111 1112 btrfs_drew_lock_init(&root->snapshot_lock); 1113 1114 if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && 1115 !btrfs_is_data_reloc_root(root) && 1116 is_fstree(btrfs_root_id(root))) { 1117 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1118 btrfs_check_and_init_root_item(&root->root_item); 1119 } 1120 1121 /* 1122 * Don't assign anonymous block device to roots that are not exposed to 1123 * userspace, the id pool is limited to 1M 1124 */ 1125 if (is_fstree(btrfs_root_id(root)) && 1126 btrfs_root_refs(&root->root_item) > 0) { 1127 if (!anon_dev) { 1128 ret = get_anon_bdev(&root->anon_dev); 1129 if (ret) 1130 goto fail; 1131 } else { 1132 root->anon_dev = anon_dev; 1133 } 1134 } 1135 1136 mutex_lock(&root->objectid_mutex); 1137 ret = btrfs_init_root_free_objectid(root); 1138 if (ret) { 1139 mutex_unlock(&root->objectid_mutex); 1140 goto fail; 1141 } 1142 1143 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1144 1145 mutex_unlock(&root->objectid_mutex); 1146 1147 return 0; 1148 fail: 1149 /* The caller is responsible to call btrfs_free_fs_root */ 1150 return ret; 1151 } 1152 1153 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1154 u64 root_id) 1155 { 1156 struct btrfs_root *root; 1157 1158 spin_lock(&fs_info->fs_roots_radix_lock); 1159 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1160 (unsigned long)root_id); 1161 root = btrfs_grab_root(root); 1162 spin_unlock(&fs_info->fs_roots_radix_lock); 1163 return root; 1164 } 1165 1166 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1167 u64 objectid) 1168 { 1169 struct btrfs_key key = { 1170 .objectid = objectid, 1171 .type = BTRFS_ROOT_ITEM_KEY, 1172 .offset = 0, 1173 }; 1174 1175 switch (objectid) { 1176 case BTRFS_ROOT_TREE_OBJECTID: 1177 return btrfs_grab_root(fs_info->tree_root); 1178 case BTRFS_EXTENT_TREE_OBJECTID: 1179 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1180 case BTRFS_CHUNK_TREE_OBJECTID: 1181 return btrfs_grab_root(fs_info->chunk_root); 1182 case BTRFS_DEV_TREE_OBJECTID: 1183 return btrfs_grab_root(fs_info->dev_root); 1184 case BTRFS_CSUM_TREE_OBJECTID: 1185 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1186 case BTRFS_QUOTA_TREE_OBJECTID: 1187 return btrfs_grab_root(fs_info->quota_root); 1188 case BTRFS_UUID_TREE_OBJECTID: 1189 return btrfs_grab_root(fs_info->uuid_root); 1190 case BTRFS_BLOCK_GROUP_TREE_OBJECTID: 1191 return btrfs_grab_root(fs_info->block_group_root); 1192 case BTRFS_FREE_SPACE_TREE_OBJECTID: 1193 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1194 case BTRFS_RAID_STRIPE_TREE_OBJECTID: 1195 return btrfs_grab_root(fs_info->stripe_root); 1196 default: 1197 return NULL; 1198 } 1199 } 1200 1201 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1202 struct btrfs_root *root) 1203 { 1204 int ret; 1205 1206 ret = radix_tree_preload(GFP_NOFS); 1207 if (ret) 1208 return ret; 1209 1210 spin_lock(&fs_info->fs_roots_radix_lock); 1211 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1212 (unsigned long)btrfs_root_id(root), 1213 root); 1214 if (ret == 0) { 1215 btrfs_grab_root(root); 1216 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1217 } 1218 spin_unlock(&fs_info->fs_roots_radix_lock); 1219 radix_tree_preload_end(); 1220 1221 return ret; 1222 } 1223 1224 void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info) 1225 { 1226 #ifdef CONFIG_BTRFS_DEBUG 1227 struct btrfs_root *root; 1228 1229 while (!list_empty(&fs_info->allocated_roots)) { 1230 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1231 1232 root = list_first_entry(&fs_info->allocated_roots, 1233 struct btrfs_root, leak_list); 1234 btrfs_err(fs_info, "leaked root %s refcount %d", 1235 btrfs_root_name(&root->root_key, buf), 1236 refcount_read(&root->refs)); 1237 WARN_ON_ONCE(1); 1238 while (refcount_read(&root->refs) > 1) 1239 btrfs_put_root(root); 1240 btrfs_put_root(root); 1241 } 1242 #endif 1243 } 1244 1245 static void free_global_roots(struct btrfs_fs_info *fs_info) 1246 { 1247 struct btrfs_root *root; 1248 struct rb_node *node; 1249 1250 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1251 root = rb_entry(node, struct btrfs_root, rb_node); 1252 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1253 btrfs_put_root(root); 1254 } 1255 } 1256 1257 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1258 { 1259 struct percpu_counter *em_counter = &fs_info->evictable_extent_maps; 1260 1261 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1262 percpu_counter_destroy(&fs_info->delalloc_bytes); 1263 percpu_counter_destroy(&fs_info->ordered_bytes); 1264 if (percpu_counter_initialized(em_counter)) 1265 ASSERT(percpu_counter_sum_positive(em_counter) == 0); 1266 percpu_counter_destroy(em_counter); 1267 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1268 btrfs_free_csum_hash(fs_info); 1269 btrfs_free_stripe_hash_table(fs_info); 1270 btrfs_free_ref_cache(fs_info); 1271 kfree(fs_info->balance_ctl); 1272 kfree(fs_info->delayed_root); 1273 free_global_roots(fs_info); 1274 btrfs_put_root(fs_info->tree_root); 1275 btrfs_put_root(fs_info->chunk_root); 1276 btrfs_put_root(fs_info->dev_root); 1277 btrfs_put_root(fs_info->quota_root); 1278 btrfs_put_root(fs_info->uuid_root); 1279 btrfs_put_root(fs_info->fs_root); 1280 btrfs_put_root(fs_info->data_reloc_root); 1281 btrfs_put_root(fs_info->block_group_root); 1282 btrfs_put_root(fs_info->stripe_root); 1283 btrfs_check_leaked_roots(fs_info); 1284 btrfs_extent_buffer_leak_debug_check(fs_info); 1285 kfree(fs_info->super_copy); 1286 kfree(fs_info->super_for_commit); 1287 kvfree(fs_info); 1288 } 1289 1290 1291 /* 1292 * Get an in-memory reference of a root structure. 1293 * 1294 * For essential trees like root/extent tree, we grab it from fs_info directly. 1295 * For subvolume trees, we check the cached filesystem roots first. If not 1296 * found, then read it from disk and add it to cached fs roots. 1297 * 1298 * Caller should release the root by calling btrfs_put_root() after the usage. 1299 * 1300 * NOTE: Reloc and log trees can't be read by this function as they share the 1301 * same root objectid. 1302 * 1303 * @objectid: root id 1304 * @anon_dev: preallocated anonymous block device number for new roots, 1305 * pass NULL for a new allocation. 1306 * @check_ref: whether to check root item references, If true, return -ENOENT 1307 * for orphan roots 1308 */ 1309 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1310 u64 objectid, dev_t *anon_dev, 1311 bool check_ref) 1312 { 1313 struct btrfs_root *root; 1314 struct btrfs_path *path; 1315 struct btrfs_key key; 1316 int ret; 1317 1318 root = btrfs_get_global_root(fs_info, objectid); 1319 if (root) 1320 return root; 1321 1322 /* 1323 * If we're called for non-subvolume trees, and above function didn't 1324 * find one, do not try to read it from disk. 1325 * 1326 * This is namely for free-space-tree and quota tree, which can change 1327 * at runtime and should only be grabbed from fs_info. 1328 */ 1329 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) 1330 return ERR_PTR(-ENOENT); 1331 again: 1332 root = btrfs_lookup_fs_root(fs_info, objectid); 1333 if (root) { 1334 /* 1335 * Some other caller may have read out the newly inserted 1336 * subvolume already (for things like backref walk etc). Not 1337 * that common but still possible. In that case, we just need 1338 * to free the anon_dev. 1339 */ 1340 if (unlikely(anon_dev && *anon_dev)) { 1341 free_anon_bdev(*anon_dev); 1342 *anon_dev = 0; 1343 } 1344 1345 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1346 btrfs_put_root(root); 1347 return ERR_PTR(-ENOENT); 1348 } 1349 return root; 1350 } 1351 1352 key.objectid = objectid; 1353 key.type = BTRFS_ROOT_ITEM_KEY; 1354 key.offset = (u64)-1; 1355 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1356 if (IS_ERR(root)) 1357 return root; 1358 1359 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1360 ret = -ENOENT; 1361 goto fail; 1362 } 1363 1364 ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0); 1365 if (ret) 1366 goto fail; 1367 1368 path = btrfs_alloc_path(); 1369 if (!path) { 1370 ret = -ENOMEM; 1371 goto fail; 1372 } 1373 key.objectid = BTRFS_ORPHAN_OBJECTID; 1374 key.type = BTRFS_ORPHAN_ITEM_KEY; 1375 key.offset = objectid; 1376 1377 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1378 btrfs_free_path(path); 1379 if (ret < 0) 1380 goto fail; 1381 if (ret == 0) 1382 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1383 1384 ret = btrfs_insert_fs_root(fs_info, root); 1385 if (ret) { 1386 if (ret == -EEXIST) { 1387 btrfs_put_root(root); 1388 goto again; 1389 } 1390 goto fail; 1391 } 1392 return root; 1393 fail: 1394 /* 1395 * If our caller provided us an anonymous device, then it's his 1396 * responsibility to free it in case we fail. So we have to set our 1397 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1398 * and once again by our caller. 1399 */ 1400 if (anon_dev && *anon_dev) 1401 root->anon_dev = 0; 1402 btrfs_put_root(root); 1403 return ERR_PTR(ret); 1404 } 1405 1406 /* 1407 * Get in-memory reference of a root structure 1408 * 1409 * @objectid: tree objectid 1410 * @check_ref: if set, verify that the tree exists and the item has at least 1411 * one reference 1412 */ 1413 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1414 u64 objectid, bool check_ref) 1415 { 1416 return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref); 1417 } 1418 1419 /* 1420 * Get in-memory reference of a root structure, created as new, optionally pass 1421 * the anonymous block device id 1422 * 1423 * @objectid: tree objectid 1424 * @anon_dev: if NULL, allocate a new anonymous block device or use the 1425 * parameter value if not NULL 1426 */ 1427 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1428 u64 objectid, dev_t *anon_dev) 1429 { 1430 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1431 } 1432 1433 /* 1434 * Return a root for the given objectid. 1435 * 1436 * @fs_info: the fs_info 1437 * @objectid: the objectid we need to lookup 1438 * 1439 * This is exclusively used for backref walking, and exists specifically because 1440 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1441 * creation time, which means we may have to read the tree_root in order to look 1442 * up a fs root that is not in memory. If the root is not in memory we will 1443 * read the tree root commit root and look up the fs root from there. This is a 1444 * temporary root, it will not be inserted into the radix tree as it doesn't 1445 * have the most uptodate information, it'll simply be discarded once the 1446 * backref code is finished using the root. 1447 */ 1448 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1449 struct btrfs_path *path, 1450 u64 objectid) 1451 { 1452 struct btrfs_root *root; 1453 struct btrfs_key key; 1454 1455 ASSERT(path->search_commit_root && path->skip_locking); 1456 1457 /* 1458 * This can return -ENOENT if we ask for a root that doesn't exist, but 1459 * since this is called via the backref walking code we won't be looking 1460 * up a root that doesn't exist, unless there's corruption. So if root 1461 * != NULL just return it. 1462 */ 1463 root = btrfs_get_global_root(fs_info, objectid); 1464 if (root) 1465 return root; 1466 1467 root = btrfs_lookup_fs_root(fs_info, objectid); 1468 if (root) 1469 return root; 1470 1471 key.objectid = objectid; 1472 key.type = BTRFS_ROOT_ITEM_KEY; 1473 key.offset = (u64)-1; 1474 root = read_tree_root_path(fs_info->tree_root, path, &key); 1475 btrfs_release_path(path); 1476 1477 return root; 1478 } 1479 1480 static int cleaner_kthread(void *arg) 1481 { 1482 struct btrfs_fs_info *fs_info = arg; 1483 int again; 1484 1485 while (1) { 1486 again = 0; 1487 1488 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1489 1490 /* Make the cleaner go to sleep early. */ 1491 if (btrfs_need_cleaner_sleep(fs_info)) 1492 goto sleep; 1493 1494 /* 1495 * Do not do anything if we might cause open_ctree() to block 1496 * before we have finished mounting the filesystem. 1497 */ 1498 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1499 goto sleep; 1500 1501 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1502 goto sleep; 1503 1504 /* 1505 * Avoid the problem that we change the status of the fs 1506 * during the above check and trylock. 1507 */ 1508 if (btrfs_need_cleaner_sleep(fs_info)) { 1509 mutex_unlock(&fs_info->cleaner_mutex); 1510 goto sleep; 1511 } 1512 1513 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) 1514 btrfs_sysfs_feature_update(fs_info); 1515 1516 btrfs_run_delayed_iputs(fs_info); 1517 1518 again = btrfs_clean_one_deleted_snapshot(fs_info); 1519 mutex_unlock(&fs_info->cleaner_mutex); 1520 1521 /* 1522 * The defragger has dealt with the R/O remount and umount, 1523 * needn't do anything special here. 1524 */ 1525 btrfs_run_defrag_inodes(fs_info); 1526 1527 /* 1528 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1529 * with relocation (btrfs_relocate_chunk) and relocation 1530 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1531 * after acquiring fs_info->reclaim_bgs_lock. So we 1532 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1533 * unused block groups. 1534 */ 1535 btrfs_delete_unused_bgs(fs_info); 1536 1537 /* 1538 * Reclaim block groups in the reclaim_bgs list after we deleted 1539 * all unused block_groups. This possibly gives us some more free 1540 * space. 1541 */ 1542 btrfs_reclaim_bgs(fs_info); 1543 sleep: 1544 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1545 if (kthread_should_park()) 1546 kthread_parkme(); 1547 if (kthread_should_stop()) 1548 return 0; 1549 if (!again) { 1550 set_current_state(TASK_INTERRUPTIBLE); 1551 schedule(); 1552 __set_current_state(TASK_RUNNING); 1553 } 1554 } 1555 } 1556 1557 static int transaction_kthread(void *arg) 1558 { 1559 struct btrfs_root *root = arg; 1560 struct btrfs_fs_info *fs_info = root->fs_info; 1561 struct btrfs_trans_handle *trans; 1562 struct btrfs_transaction *cur; 1563 u64 transid; 1564 time64_t delta; 1565 unsigned long delay; 1566 bool cannot_commit; 1567 1568 do { 1569 cannot_commit = false; 1570 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1571 mutex_lock(&fs_info->transaction_kthread_mutex); 1572 1573 spin_lock(&fs_info->trans_lock); 1574 cur = fs_info->running_transaction; 1575 if (!cur) { 1576 spin_unlock(&fs_info->trans_lock); 1577 goto sleep; 1578 } 1579 1580 delta = ktime_get_seconds() - cur->start_time; 1581 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1582 cur->state < TRANS_STATE_COMMIT_PREP && 1583 delta < fs_info->commit_interval) { 1584 spin_unlock(&fs_info->trans_lock); 1585 delay -= msecs_to_jiffies((delta - 1) * 1000); 1586 delay = min(delay, 1587 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1588 goto sleep; 1589 } 1590 transid = cur->transid; 1591 spin_unlock(&fs_info->trans_lock); 1592 1593 /* If the file system is aborted, this will always fail. */ 1594 trans = btrfs_attach_transaction(root); 1595 if (IS_ERR(trans)) { 1596 if (PTR_ERR(trans) != -ENOENT) 1597 cannot_commit = true; 1598 goto sleep; 1599 } 1600 if (transid == trans->transid) { 1601 btrfs_commit_transaction(trans); 1602 } else { 1603 btrfs_end_transaction(trans); 1604 } 1605 sleep: 1606 wake_up_process(fs_info->cleaner_kthread); 1607 mutex_unlock(&fs_info->transaction_kthread_mutex); 1608 1609 if (BTRFS_FS_ERROR(fs_info)) 1610 btrfs_cleanup_transaction(fs_info); 1611 if (!kthread_should_stop() && 1612 (!btrfs_transaction_blocked(fs_info) || 1613 cannot_commit)) 1614 schedule_timeout_interruptible(delay); 1615 } while (!kthread_should_stop()); 1616 return 0; 1617 } 1618 1619 /* 1620 * This will find the highest generation in the array of root backups. The 1621 * index of the highest array is returned, or -EINVAL if we can't find 1622 * anything. 1623 * 1624 * We check to make sure the array is valid by comparing the 1625 * generation of the latest root in the array with the generation 1626 * in the super block. If they don't match we pitch it. 1627 */ 1628 static int find_newest_super_backup(struct btrfs_fs_info *info) 1629 { 1630 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1631 u64 cur; 1632 struct btrfs_root_backup *root_backup; 1633 int i; 1634 1635 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1636 root_backup = info->super_copy->super_roots + i; 1637 cur = btrfs_backup_tree_root_gen(root_backup); 1638 if (cur == newest_gen) 1639 return i; 1640 } 1641 1642 return -EINVAL; 1643 } 1644 1645 /* 1646 * copy all the root pointers into the super backup array. 1647 * this will bump the backup pointer by one when it is 1648 * done 1649 */ 1650 static void backup_super_roots(struct btrfs_fs_info *info) 1651 { 1652 const int next_backup = info->backup_root_index; 1653 struct btrfs_root_backup *root_backup; 1654 1655 root_backup = info->super_for_commit->super_roots + next_backup; 1656 1657 /* 1658 * make sure all of our padding and empty slots get zero filled 1659 * regardless of which ones we use today 1660 */ 1661 memset(root_backup, 0, sizeof(*root_backup)); 1662 1663 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1664 1665 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1666 btrfs_set_backup_tree_root_gen(root_backup, 1667 btrfs_header_generation(info->tree_root->node)); 1668 1669 btrfs_set_backup_tree_root_level(root_backup, 1670 btrfs_header_level(info->tree_root->node)); 1671 1672 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1673 btrfs_set_backup_chunk_root_gen(root_backup, 1674 btrfs_header_generation(info->chunk_root->node)); 1675 btrfs_set_backup_chunk_root_level(root_backup, 1676 btrfs_header_level(info->chunk_root->node)); 1677 1678 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1679 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1680 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1681 1682 btrfs_set_backup_extent_root(root_backup, 1683 extent_root->node->start); 1684 btrfs_set_backup_extent_root_gen(root_backup, 1685 btrfs_header_generation(extent_root->node)); 1686 btrfs_set_backup_extent_root_level(root_backup, 1687 btrfs_header_level(extent_root->node)); 1688 1689 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1690 btrfs_set_backup_csum_root_gen(root_backup, 1691 btrfs_header_generation(csum_root->node)); 1692 btrfs_set_backup_csum_root_level(root_backup, 1693 btrfs_header_level(csum_root->node)); 1694 } 1695 1696 /* 1697 * we might commit during log recovery, which happens before we set 1698 * the fs_root. Make sure it is valid before we fill it in. 1699 */ 1700 if (info->fs_root && info->fs_root->node) { 1701 btrfs_set_backup_fs_root(root_backup, 1702 info->fs_root->node->start); 1703 btrfs_set_backup_fs_root_gen(root_backup, 1704 btrfs_header_generation(info->fs_root->node)); 1705 btrfs_set_backup_fs_root_level(root_backup, 1706 btrfs_header_level(info->fs_root->node)); 1707 } 1708 1709 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1710 btrfs_set_backup_dev_root_gen(root_backup, 1711 btrfs_header_generation(info->dev_root->node)); 1712 btrfs_set_backup_dev_root_level(root_backup, 1713 btrfs_header_level(info->dev_root->node)); 1714 1715 btrfs_set_backup_total_bytes(root_backup, 1716 btrfs_super_total_bytes(info->super_copy)); 1717 btrfs_set_backup_bytes_used(root_backup, 1718 btrfs_super_bytes_used(info->super_copy)); 1719 btrfs_set_backup_num_devices(root_backup, 1720 btrfs_super_num_devices(info->super_copy)); 1721 1722 /* 1723 * if we don't copy this out to the super_copy, it won't get remembered 1724 * for the next commit 1725 */ 1726 memcpy(&info->super_copy->super_roots, 1727 &info->super_for_commit->super_roots, 1728 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1729 } 1730 1731 /* 1732 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio 1733 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1734 * 1735 * @fs_info: filesystem whose backup roots need to be read 1736 * @priority: priority of backup root required 1737 * 1738 * Returns backup root index on success and -EINVAL otherwise. 1739 */ 1740 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1741 { 1742 int backup_index = find_newest_super_backup(fs_info); 1743 struct btrfs_super_block *super = fs_info->super_copy; 1744 struct btrfs_root_backup *root_backup; 1745 1746 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1747 if (priority == 0) 1748 return backup_index; 1749 1750 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1751 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1752 } else { 1753 return -EINVAL; 1754 } 1755 1756 root_backup = super->super_roots + backup_index; 1757 1758 btrfs_set_super_generation(super, 1759 btrfs_backup_tree_root_gen(root_backup)); 1760 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1761 btrfs_set_super_root_level(super, 1762 btrfs_backup_tree_root_level(root_backup)); 1763 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1764 1765 /* 1766 * Fixme: the total bytes and num_devices need to match or we should 1767 * need a fsck 1768 */ 1769 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1770 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1771 1772 return backup_index; 1773 } 1774 1775 /* helper to cleanup workers */ 1776 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1777 { 1778 btrfs_destroy_workqueue(fs_info->fixup_workers); 1779 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1780 btrfs_destroy_workqueue(fs_info->workers); 1781 if (fs_info->endio_workers) 1782 destroy_workqueue(fs_info->endio_workers); 1783 if (fs_info->rmw_workers) 1784 destroy_workqueue(fs_info->rmw_workers); 1785 if (fs_info->compressed_write_workers) 1786 destroy_workqueue(fs_info->compressed_write_workers); 1787 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1788 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1789 btrfs_destroy_workqueue(fs_info->delayed_workers); 1790 btrfs_destroy_workqueue(fs_info->caching_workers); 1791 btrfs_destroy_workqueue(fs_info->flush_workers); 1792 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1793 if (fs_info->discard_ctl.discard_workers) 1794 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1795 /* 1796 * Now that all other work queues are destroyed, we can safely destroy 1797 * the queues used for metadata I/O, since tasks from those other work 1798 * queues can do metadata I/O operations. 1799 */ 1800 if (fs_info->endio_meta_workers) 1801 destroy_workqueue(fs_info->endio_meta_workers); 1802 } 1803 1804 static void free_root_extent_buffers(struct btrfs_root *root) 1805 { 1806 if (root) { 1807 free_extent_buffer(root->node); 1808 free_extent_buffer(root->commit_root); 1809 root->node = NULL; 1810 root->commit_root = NULL; 1811 } 1812 } 1813 1814 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 1815 { 1816 struct btrfs_root *root, *tmp; 1817 1818 rbtree_postorder_for_each_entry_safe(root, tmp, 1819 &fs_info->global_root_tree, 1820 rb_node) 1821 free_root_extent_buffers(root); 1822 } 1823 1824 /* helper to cleanup tree roots */ 1825 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1826 { 1827 free_root_extent_buffers(info->tree_root); 1828 1829 free_global_root_pointers(info); 1830 free_root_extent_buffers(info->dev_root); 1831 free_root_extent_buffers(info->quota_root); 1832 free_root_extent_buffers(info->uuid_root); 1833 free_root_extent_buffers(info->fs_root); 1834 free_root_extent_buffers(info->data_reloc_root); 1835 free_root_extent_buffers(info->block_group_root); 1836 free_root_extent_buffers(info->stripe_root); 1837 if (free_chunk_root) 1838 free_root_extent_buffers(info->chunk_root); 1839 } 1840 1841 void btrfs_put_root(struct btrfs_root *root) 1842 { 1843 if (!root) 1844 return; 1845 1846 if (refcount_dec_and_test(&root->refs)) { 1847 if (WARN_ON(!xa_empty(&root->inodes))) 1848 xa_destroy(&root->inodes); 1849 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 1850 if (root->anon_dev) 1851 free_anon_bdev(root->anon_dev); 1852 free_root_extent_buffers(root); 1853 #ifdef CONFIG_BTRFS_DEBUG 1854 spin_lock(&root->fs_info->fs_roots_radix_lock); 1855 list_del_init(&root->leak_list); 1856 spin_unlock(&root->fs_info->fs_roots_radix_lock); 1857 #endif 1858 kfree(root); 1859 } 1860 } 1861 1862 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 1863 { 1864 int ret; 1865 struct btrfs_root *gang[8]; 1866 int i; 1867 1868 while (!list_empty(&fs_info->dead_roots)) { 1869 gang[0] = list_entry(fs_info->dead_roots.next, 1870 struct btrfs_root, root_list); 1871 list_del(&gang[0]->root_list); 1872 1873 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 1874 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 1875 btrfs_put_root(gang[0]); 1876 } 1877 1878 while (1) { 1879 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 1880 (void **)gang, 0, 1881 ARRAY_SIZE(gang)); 1882 if (!ret) 1883 break; 1884 for (i = 0; i < ret; i++) 1885 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 1886 } 1887 } 1888 1889 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 1890 { 1891 mutex_init(&fs_info->scrub_lock); 1892 atomic_set(&fs_info->scrubs_running, 0); 1893 atomic_set(&fs_info->scrub_pause_req, 0); 1894 atomic_set(&fs_info->scrubs_paused, 0); 1895 atomic_set(&fs_info->scrub_cancel_req, 0); 1896 init_waitqueue_head(&fs_info->scrub_pause_wait); 1897 refcount_set(&fs_info->scrub_workers_refcnt, 0); 1898 } 1899 1900 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 1901 { 1902 spin_lock_init(&fs_info->balance_lock); 1903 mutex_init(&fs_info->balance_mutex); 1904 atomic_set(&fs_info->balance_pause_req, 0); 1905 atomic_set(&fs_info->balance_cancel_req, 0); 1906 fs_info->balance_ctl = NULL; 1907 init_waitqueue_head(&fs_info->balance_wait_q); 1908 atomic_set(&fs_info->reloc_cancel_req, 0); 1909 } 1910 1911 static int btrfs_init_btree_inode(struct super_block *sb) 1912 { 1913 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1914 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 1915 fs_info->tree_root); 1916 struct inode *inode; 1917 1918 inode = new_inode(sb); 1919 if (!inode) 1920 return -ENOMEM; 1921 1922 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID); 1923 set_nlink(inode, 1); 1924 /* 1925 * we set the i_size on the btree inode to the max possible int. 1926 * the real end of the address space is determined by all of 1927 * the devices in the system 1928 */ 1929 inode->i_size = OFFSET_MAX; 1930 inode->i_mapping->a_ops = &btree_aops; 1931 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); 1932 1933 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 1934 IO_TREE_BTREE_INODE_IO); 1935 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 1936 1937 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 1938 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 1939 __insert_inode_hash(inode, hash); 1940 fs_info->btree_inode = inode; 1941 1942 return 0; 1943 } 1944 1945 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 1946 { 1947 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 1948 init_rwsem(&fs_info->dev_replace.rwsem); 1949 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 1950 } 1951 1952 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 1953 { 1954 spin_lock_init(&fs_info->qgroup_lock); 1955 mutex_init(&fs_info->qgroup_ioctl_lock); 1956 fs_info->qgroup_tree = RB_ROOT; 1957 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 1958 fs_info->qgroup_seq = 1; 1959 fs_info->qgroup_ulist = NULL; 1960 fs_info->qgroup_rescan_running = false; 1961 fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT; 1962 mutex_init(&fs_info->qgroup_rescan_lock); 1963 } 1964 1965 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 1966 { 1967 u32 max_active = fs_info->thread_pool_size; 1968 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 1969 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE; 1970 1971 fs_info->workers = 1972 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 1973 1974 fs_info->delalloc_workers = 1975 btrfs_alloc_workqueue(fs_info, "delalloc", 1976 flags, max_active, 2); 1977 1978 fs_info->flush_workers = 1979 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 1980 flags, max_active, 0); 1981 1982 fs_info->caching_workers = 1983 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 1984 1985 fs_info->fixup_workers = 1986 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags); 1987 1988 fs_info->endio_workers = 1989 alloc_workqueue("btrfs-endio", flags, max_active); 1990 fs_info->endio_meta_workers = 1991 alloc_workqueue("btrfs-endio-meta", flags, max_active); 1992 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 1993 fs_info->endio_write_workers = 1994 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 1995 max_active, 2); 1996 fs_info->compressed_write_workers = 1997 alloc_workqueue("btrfs-compressed-write", flags, max_active); 1998 fs_info->endio_freespace_worker = 1999 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2000 max_active, 0); 2001 fs_info->delayed_workers = 2002 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2003 max_active, 0); 2004 fs_info->qgroup_rescan_workers = 2005 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan", 2006 ordered_flags); 2007 fs_info->discard_ctl.discard_workers = 2008 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE); 2009 2010 if (!(fs_info->workers && 2011 fs_info->delalloc_workers && fs_info->flush_workers && 2012 fs_info->endio_workers && fs_info->endio_meta_workers && 2013 fs_info->compressed_write_workers && 2014 fs_info->endio_write_workers && 2015 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2016 fs_info->caching_workers && fs_info->fixup_workers && 2017 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2018 fs_info->discard_ctl.discard_workers)) { 2019 return -ENOMEM; 2020 } 2021 2022 return 0; 2023 } 2024 2025 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2026 { 2027 struct crypto_shash *csum_shash; 2028 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2029 2030 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2031 2032 if (IS_ERR(csum_shash)) { 2033 btrfs_err(fs_info, "error allocating %s hash for checksum", 2034 csum_driver); 2035 return PTR_ERR(csum_shash); 2036 } 2037 2038 fs_info->csum_shash = csum_shash; 2039 2040 /* 2041 * Check if the checksum implementation is a fast accelerated one. 2042 * As-is this is a bit of a hack and should be replaced once the csum 2043 * implementations provide that information themselves. 2044 */ 2045 switch (csum_type) { 2046 case BTRFS_CSUM_TYPE_CRC32: 2047 if (!strstr(crypto_shash_driver_name(csum_shash), "generic")) 2048 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2049 break; 2050 case BTRFS_CSUM_TYPE_XXHASH: 2051 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2052 break; 2053 default: 2054 break; 2055 } 2056 2057 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2058 btrfs_super_csum_name(csum_type), 2059 crypto_shash_driver_name(csum_shash)); 2060 return 0; 2061 } 2062 2063 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2064 struct btrfs_fs_devices *fs_devices) 2065 { 2066 int ret; 2067 struct btrfs_tree_parent_check check = { 0 }; 2068 struct btrfs_root *log_tree_root; 2069 struct btrfs_super_block *disk_super = fs_info->super_copy; 2070 u64 bytenr = btrfs_super_log_root(disk_super); 2071 int level = btrfs_super_log_root_level(disk_super); 2072 2073 if (fs_devices->rw_devices == 0) { 2074 btrfs_warn(fs_info, "log replay required on RO media"); 2075 return -EIO; 2076 } 2077 2078 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2079 GFP_KERNEL); 2080 if (!log_tree_root) 2081 return -ENOMEM; 2082 2083 check.level = level; 2084 check.transid = fs_info->generation + 1; 2085 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2086 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2087 if (IS_ERR(log_tree_root->node)) { 2088 btrfs_warn(fs_info, "failed to read log tree"); 2089 ret = PTR_ERR(log_tree_root->node); 2090 log_tree_root->node = NULL; 2091 btrfs_put_root(log_tree_root); 2092 return ret; 2093 } 2094 if (!extent_buffer_uptodate(log_tree_root->node)) { 2095 btrfs_err(fs_info, "failed to read log tree"); 2096 btrfs_put_root(log_tree_root); 2097 return -EIO; 2098 } 2099 2100 /* returns with log_tree_root freed on success */ 2101 ret = btrfs_recover_log_trees(log_tree_root); 2102 if (ret) { 2103 btrfs_handle_fs_error(fs_info, ret, 2104 "Failed to recover log tree"); 2105 btrfs_put_root(log_tree_root); 2106 return ret; 2107 } 2108 2109 if (sb_rdonly(fs_info->sb)) { 2110 ret = btrfs_commit_super(fs_info); 2111 if (ret) 2112 return ret; 2113 } 2114 2115 return 0; 2116 } 2117 2118 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2119 struct btrfs_path *path, u64 objectid, 2120 const char *name) 2121 { 2122 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2123 struct btrfs_root *root; 2124 u64 max_global_id = 0; 2125 int ret; 2126 struct btrfs_key key = { 2127 .objectid = objectid, 2128 .type = BTRFS_ROOT_ITEM_KEY, 2129 .offset = 0, 2130 }; 2131 bool found = false; 2132 2133 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2134 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2135 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2136 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); 2137 return 0; 2138 } 2139 2140 while (1) { 2141 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2142 if (ret < 0) 2143 break; 2144 2145 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2146 ret = btrfs_next_leaf(tree_root, path); 2147 if (ret) { 2148 if (ret > 0) 2149 ret = 0; 2150 break; 2151 } 2152 } 2153 ret = 0; 2154 2155 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2156 if (key.objectid != objectid) 2157 break; 2158 btrfs_release_path(path); 2159 2160 /* 2161 * Just worry about this for extent tree, it'll be the same for 2162 * everybody. 2163 */ 2164 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2165 max_global_id = max(max_global_id, key.offset); 2166 2167 found = true; 2168 root = read_tree_root_path(tree_root, path, &key); 2169 if (IS_ERR(root)) { 2170 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2171 ret = PTR_ERR(root); 2172 break; 2173 } 2174 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2175 ret = btrfs_global_root_insert(root); 2176 if (ret) { 2177 btrfs_put_root(root); 2178 break; 2179 } 2180 key.offset++; 2181 } 2182 btrfs_release_path(path); 2183 2184 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2185 fs_info->nr_global_roots = max_global_id + 1; 2186 2187 if (!found || ret) { 2188 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2189 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); 2190 2191 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2192 ret = ret ? ret : -ENOENT; 2193 else 2194 ret = 0; 2195 btrfs_err(fs_info, "failed to load root %s", name); 2196 } 2197 return ret; 2198 } 2199 2200 static int load_global_roots(struct btrfs_root *tree_root) 2201 { 2202 struct btrfs_path *path; 2203 int ret = 0; 2204 2205 path = btrfs_alloc_path(); 2206 if (!path) 2207 return -ENOMEM; 2208 2209 ret = load_global_roots_objectid(tree_root, path, 2210 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2211 if (ret) 2212 goto out; 2213 ret = load_global_roots_objectid(tree_root, path, 2214 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2215 if (ret) 2216 goto out; 2217 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2218 goto out; 2219 ret = load_global_roots_objectid(tree_root, path, 2220 BTRFS_FREE_SPACE_TREE_OBJECTID, 2221 "free space"); 2222 out: 2223 btrfs_free_path(path); 2224 return ret; 2225 } 2226 2227 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2228 { 2229 struct btrfs_root *tree_root = fs_info->tree_root; 2230 struct btrfs_root *root; 2231 struct btrfs_key location; 2232 int ret; 2233 2234 ASSERT(fs_info->tree_root); 2235 2236 ret = load_global_roots(tree_root); 2237 if (ret) 2238 return ret; 2239 2240 location.type = BTRFS_ROOT_ITEM_KEY; 2241 location.offset = 0; 2242 2243 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2244 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2245 root = btrfs_read_tree_root(tree_root, &location); 2246 if (IS_ERR(root)) { 2247 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2248 ret = PTR_ERR(root); 2249 goto out; 2250 } 2251 } else { 2252 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2253 fs_info->block_group_root = root; 2254 } 2255 } 2256 2257 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2258 root = btrfs_read_tree_root(tree_root, &location); 2259 if (IS_ERR(root)) { 2260 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2261 ret = PTR_ERR(root); 2262 goto out; 2263 } 2264 } else { 2265 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2266 fs_info->dev_root = root; 2267 } 2268 /* Initialize fs_info for all devices in any case */ 2269 ret = btrfs_init_devices_late(fs_info); 2270 if (ret) 2271 goto out; 2272 2273 /* 2274 * This tree can share blocks with some other fs tree during relocation 2275 * and we need a proper setup by btrfs_get_fs_root 2276 */ 2277 root = btrfs_get_fs_root(tree_root->fs_info, 2278 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2279 if (IS_ERR(root)) { 2280 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2281 ret = PTR_ERR(root); 2282 goto out; 2283 } 2284 } else { 2285 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2286 fs_info->data_reloc_root = root; 2287 } 2288 2289 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2290 root = btrfs_read_tree_root(tree_root, &location); 2291 if (!IS_ERR(root)) { 2292 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2293 fs_info->quota_root = root; 2294 } 2295 2296 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2297 root = btrfs_read_tree_root(tree_root, &location); 2298 if (IS_ERR(root)) { 2299 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2300 ret = PTR_ERR(root); 2301 if (ret != -ENOENT) 2302 goto out; 2303 } 2304 } else { 2305 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2306 fs_info->uuid_root = root; 2307 } 2308 2309 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) { 2310 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID; 2311 root = btrfs_read_tree_root(tree_root, &location); 2312 if (IS_ERR(root)) { 2313 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2314 ret = PTR_ERR(root); 2315 goto out; 2316 } 2317 } else { 2318 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2319 fs_info->stripe_root = root; 2320 } 2321 } 2322 2323 return 0; 2324 out: 2325 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2326 location.objectid, ret); 2327 return ret; 2328 } 2329 2330 /* 2331 * Real super block validation 2332 * NOTE: super csum type and incompat features will not be checked here. 2333 * 2334 * @sb: super block to check 2335 * @mirror_num: the super block number to check its bytenr: 2336 * 0 the primary (1st) sb 2337 * 1, 2 2nd and 3rd backup copy 2338 * -1 skip bytenr check 2339 */ 2340 int btrfs_validate_super(const struct btrfs_fs_info *fs_info, 2341 const struct btrfs_super_block *sb, int mirror_num) 2342 { 2343 u64 nodesize = btrfs_super_nodesize(sb); 2344 u64 sectorsize = btrfs_super_sectorsize(sb); 2345 int ret = 0; 2346 const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS); 2347 2348 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2349 btrfs_err(fs_info, "no valid FS found"); 2350 ret = -EINVAL; 2351 } 2352 if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) { 2353 if (!ignore_flags) { 2354 btrfs_err(fs_info, 2355 "unrecognized or unsupported super flag 0x%llx", 2356 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2357 ret = -EINVAL; 2358 } else { 2359 btrfs_info(fs_info, 2360 "unrecognized or unsupported super flags: 0x%llx, ignored", 2361 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2362 } 2363 } 2364 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2365 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2366 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2367 ret = -EINVAL; 2368 } 2369 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2370 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2371 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2372 ret = -EINVAL; 2373 } 2374 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2375 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2376 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2377 ret = -EINVAL; 2378 } 2379 2380 /* 2381 * Check sectorsize and nodesize first, other check will need it. 2382 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2383 */ 2384 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2385 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2386 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2387 ret = -EINVAL; 2388 } 2389 2390 /* 2391 * We only support at most two sectorsizes: 4K and PAGE_SIZE. 2392 * 2393 * We can support 16K sectorsize with 64K page size without problem, 2394 * but such sectorsize/pagesize combination doesn't make much sense. 2395 * 4K will be our future standard, PAGE_SIZE is supported from the very 2396 * beginning. 2397 */ 2398 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) { 2399 btrfs_err(fs_info, 2400 "sectorsize %llu not yet supported for page size %lu", 2401 sectorsize, PAGE_SIZE); 2402 ret = -EINVAL; 2403 } 2404 2405 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2406 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2407 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2408 ret = -EINVAL; 2409 } 2410 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2411 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2412 le32_to_cpu(sb->__unused_leafsize), nodesize); 2413 ret = -EINVAL; 2414 } 2415 2416 /* Root alignment check */ 2417 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2418 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2419 btrfs_super_root(sb)); 2420 ret = -EINVAL; 2421 } 2422 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2423 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2424 btrfs_super_chunk_root(sb)); 2425 ret = -EINVAL; 2426 } 2427 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2428 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2429 btrfs_super_log_root(sb)); 2430 ret = -EINVAL; 2431 } 2432 2433 if (!fs_info->fs_devices->temp_fsid && 2434 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) { 2435 btrfs_err(fs_info, 2436 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2437 sb->fsid, fs_info->fs_devices->fsid); 2438 ret = -EINVAL; 2439 } 2440 2441 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb), 2442 BTRFS_FSID_SIZE) != 0) { 2443 btrfs_err(fs_info, 2444 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2445 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid); 2446 ret = -EINVAL; 2447 } 2448 2449 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2450 BTRFS_FSID_SIZE) != 0) { 2451 btrfs_err(fs_info, 2452 "dev_item UUID does not match metadata fsid: %pU != %pU", 2453 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2454 ret = -EINVAL; 2455 } 2456 2457 /* 2458 * Artificial requirement for block-group-tree to force newer features 2459 * (free-space-tree, no-holes) so the test matrix is smaller. 2460 */ 2461 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2462 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2463 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2464 btrfs_err(fs_info, 2465 "block-group-tree feature requires free-space-tree and no-holes"); 2466 ret = -EINVAL; 2467 } 2468 2469 /* 2470 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2471 * done later 2472 */ 2473 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2474 btrfs_err(fs_info, "bytes_used is too small %llu", 2475 btrfs_super_bytes_used(sb)); 2476 ret = -EINVAL; 2477 } 2478 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2479 btrfs_err(fs_info, "invalid stripesize %u", 2480 btrfs_super_stripesize(sb)); 2481 ret = -EINVAL; 2482 } 2483 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2484 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2485 btrfs_super_num_devices(sb)); 2486 if (btrfs_super_num_devices(sb) == 0) { 2487 btrfs_err(fs_info, "number of devices is 0"); 2488 ret = -EINVAL; 2489 } 2490 2491 if (mirror_num >= 0 && 2492 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2493 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2494 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2495 ret = -EINVAL; 2496 } 2497 2498 /* 2499 * Obvious sys_chunk_array corruptions, it must hold at least one key 2500 * and one chunk 2501 */ 2502 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2503 btrfs_err(fs_info, "system chunk array too big %u > %u", 2504 btrfs_super_sys_array_size(sb), 2505 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2506 ret = -EINVAL; 2507 } 2508 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2509 + sizeof(struct btrfs_chunk)) { 2510 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2511 btrfs_super_sys_array_size(sb), 2512 sizeof(struct btrfs_disk_key) 2513 + sizeof(struct btrfs_chunk)); 2514 ret = -EINVAL; 2515 } 2516 2517 /* 2518 * The generation is a global counter, we'll trust it more than the others 2519 * but it's still possible that it's the one that's wrong. 2520 */ 2521 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2522 btrfs_warn(fs_info, 2523 "suspicious: generation < chunk_root_generation: %llu < %llu", 2524 btrfs_super_generation(sb), 2525 btrfs_super_chunk_root_generation(sb)); 2526 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2527 && btrfs_super_cache_generation(sb) != (u64)-1) 2528 btrfs_warn(fs_info, 2529 "suspicious: generation < cache_generation: %llu < %llu", 2530 btrfs_super_generation(sb), 2531 btrfs_super_cache_generation(sb)); 2532 2533 return ret; 2534 } 2535 2536 /* 2537 * Validation of super block at mount time. 2538 * Some checks already done early at mount time, like csum type and incompat 2539 * flags will be skipped. 2540 */ 2541 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2542 { 2543 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2544 } 2545 2546 /* 2547 * Validation of super block at write time. 2548 * Some checks like bytenr check will be skipped as their values will be 2549 * overwritten soon. 2550 * Extra checks like csum type and incompat flags will be done here. 2551 */ 2552 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2553 struct btrfs_super_block *sb) 2554 { 2555 int ret; 2556 2557 ret = btrfs_validate_super(fs_info, sb, -1); 2558 if (ret < 0) 2559 goto out; 2560 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2561 ret = -EUCLEAN; 2562 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2563 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2564 goto out; 2565 } 2566 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2567 ret = -EUCLEAN; 2568 btrfs_err(fs_info, 2569 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2570 btrfs_super_incompat_flags(sb), 2571 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2572 goto out; 2573 } 2574 out: 2575 if (ret < 0) 2576 btrfs_err(fs_info, 2577 "super block corruption detected before writing it to disk"); 2578 return ret; 2579 } 2580 2581 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2582 { 2583 struct btrfs_tree_parent_check check = { 2584 .level = level, 2585 .transid = gen, 2586 .owner_root = btrfs_root_id(root) 2587 }; 2588 int ret = 0; 2589 2590 root->node = read_tree_block(root->fs_info, bytenr, &check); 2591 if (IS_ERR(root->node)) { 2592 ret = PTR_ERR(root->node); 2593 root->node = NULL; 2594 return ret; 2595 } 2596 if (!extent_buffer_uptodate(root->node)) { 2597 free_extent_buffer(root->node); 2598 root->node = NULL; 2599 return -EIO; 2600 } 2601 2602 btrfs_set_root_node(&root->root_item, root->node); 2603 root->commit_root = btrfs_root_node(root); 2604 btrfs_set_root_refs(&root->root_item, 1); 2605 return ret; 2606 } 2607 2608 static int load_important_roots(struct btrfs_fs_info *fs_info) 2609 { 2610 struct btrfs_super_block *sb = fs_info->super_copy; 2611 u64 gen, bytenr; 2612 int level, ret; 2613 2614 bytenr = btrfs_super_root(sb); 2615 gen = btrfs_super_generation(sb); 2616 level = btrfs_super_root_level(sb); 2617 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2618 if (ret) { 2619 btrfs_warn(fs_info, "couldn't read tree root"); 2620 return ret; 2621 } 2622 return 0; 2623 } 2624 2625 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2626 { 2627 int backup_index = find_newest_super_backup(fs_info); 2628 struct btrfs_super_block *sb = fs_info->super_copy; 2629 struct btrfs_root *tree_root = fs_info->tree_root; 2630 bool handle_error = false; 2631 int ret = 0; 2632 int i; 2633 2634 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2635 if (handle_error) { 2636 if (!IS_ERR(tree_root->node)) 2637 free_extent_buffer(tree_root->node); 2638 tree_root->node = NULL; 2639 2640 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2641 break; 2642 2643 free_root_pointers(fs_info, 0); 2644 2645 /* 2646 * Don't use the log in recovery mode, it won't be 2647 * valid 2648 */ 2649 btrfs_set_super_log_root(sb, 0); 2650 2651 btrfs_warn(fs_info, "try to load backup roots slot %d", i); 2652 ret = read_backup_root(fs_info, i); 2653 backup_index = ret; 2654 if (ret < 0) 2655 return ret; 2656 } 2657 2658 ret = load_important_roots(fs_info); 2659 if (ret) { 2660 handle_error = true; 2661 continue; 2662 } 2663 2664 /* 2665 * No need to hold btrfs_root::objectid_mutex since the fs 2666 * hasn't been fully initialised and we are the only user 2667 */ 2668 ret = btrfs_init_root_free_objectid(tree_root); 2669 if (ret < 0) { 2670 handle_error = true; 2671 continue; 2672 } 2673 2674 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2675 2676 ret = btrfs_read_roots(fs_info); 2677 if (ret < 0) { 2678 handle_error = true; 2679 continue; 2680 } 2681 2682 /* All successful */ 2683 fs_info->generation = btrfs_header_generation(tree_root->node); 2684 btrfs_set_last_trans_committed(fs_info, fs_info->generation); 2685 fs_info->last_reloc_trans = 0; 2686 2687 /* Always begin writing backup roots after the one being used */ 2688 if (backup_index < 0) { 2689 fs_info->backup_root_index = 0; 2690 } else { 2691 fs_info->backup_root_index = backup_index + 1; 2692 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2693 } 2694 break; 2695 } 2696 2697 return ret; 2698 } 2699 2700 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2701 { 2702 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2703 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2704 INIT_LIST_HEAD(&fs_info->trans_list); 2705 INIT_LIST_HEAD(&fs_info->dead_roots); 2706 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2707 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2708 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2709 spin_lock_init(&fs_info->delalloc_root_lock); 2710 spin_lock_init(&fs_info->trans_lock); 2711 spin_lock_init(&fs_info->fs_roots_radix_lock); 2712 spin_lock_init(&fs_info->delayed_iput_lock); 2713 spin_lock_init(&fs_info->defrag_inodes_lock); 2714 spin_lock_init(&fs_info->super_lock); 2715 spin_lock_init(&fs_info->buffer_lock); 2716 spin_lock_init(&fs_info->unused_bgs_lock); 2717 spin_lock_init(&fs_info->treelog_bg_lock); 2718 spin_lock_init(&fs_info->zone_active_bgs_lock); 2719 spin_lock_init(&fs_info->relocation_bg_lock); 2720 rwlock_init(&fs_info->tree_mod_log_lock); 2721 rwlock_init(&fs_info->global_root_lock); 2722 mutex_init(&fs_info->unused_bg_unpin_mutex); 2723 mutex_init(&fs_info->reclaim_bgs_lock); 2724 mutex_init(&fs_info->reloc_mutex); 2725 mutex_init(&fs_info->delalloc_root_mutex); 2726 mutex_init(&fs_info->zoned_meta_io_lock); 2727 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2728 seqlock_init(&fs_info->profiles_lock); 2729 2730 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2731 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2732 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2733 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2734 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep, 2735 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2736 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2737 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2738 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 2739 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2740 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 2741 BTRFS_LOCKDEP_TRANS_COMPLETED); 2742 2743 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2744 INIT_LIST_HEAD(&fs_info->space_info); 2745 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2746 INIT_LIST_HEAD(&fs_info->unused_bgs); 2747 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2748 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2749 #ifdef CONFIG_BTRFS_DEBUG 2750 INIT_LIST_HEAD(&fs_info->allocated_roots); 2751 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2752 spin_lock_init(&fs_info->eb_leak_lock); 2753 #endif 2754 fs_info->mapping_tree = RB_ROOT_CACHED; 2755 rwlock_init(&fs_info->mapping_tree_lock); 2756 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2757 BTRFS_BLOCK_RSV_GLOBAL); 2758 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2759 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2760 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2761 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2762 BTRFS_BLOCK_RSV_DELOPS); 2763 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2764 BTRFS_BLOCK_RSV_DELREFS); 2765 2766 atomic_set(&fs_info->async_delalloc_pages, 0); 2767 atomic_set(&fs_info->defrag_running, 0); 2768 atomic_set(&fs_info->nr_delayed_iputs, 0); 2769 atomic64_set(&fs_info->tree_mod_seq, 0); 2770 fs_info->global_root_tree = RB_ROOT; 2771 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2772 fs_info->metadata_ratio = 0; 2773 fs_info->defrag_inodes = RB_ROOT; 2774 atomic64_set(&fs_info->free_chunk_space, 0); 2775 fs_info->tree_mod_log = RB_ROOT; 2776 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2777 btrfs_init_ref_verify(fs_info); 2778 2779 fs_info->thread_pool_size = min_t(unsigned long, 2780 num_online_cpus() + 2, 8); 2781 2782 INIT_LIST_HEAD(&fs_info->ordered_roots); 2783 spin_lock_init(&fs_info->ordered_root_lock); 2784 2785 btrfs_init_scrub(fs_info); 2786 btrfs_init_balance(fs_info); 2787 btrfs_init_async_reclaim_work(fs_info); 2788 btrfs_init_extent_map_shrinker_work(fs_info); 2789 2790 rwlock_init(&fs_info->block_group_cache_lock); 2791 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 2792 2793 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2794 IO_TREE_FS_EXCLUDED_EXTENTS); 2795 2796 mutex_init(&fs_info->ordered_operations_mutex); 2797 mutex_init(&fs_info->tree_log_mutex); 2798 mutex_init(&fs_info->chunk_mutex); 2799 mutex_init(&fs_info->transaction_kthread_mutex); 2800 mutex_init(&fs_info->cleaner_mutex); 2801 mutex_init(&fs_info->ro_block_group_mutex); 2802 init_rwsem(&fs_info->commit_root_sem); 2803 init_rwsem(&fs_info->cleanup_work_sem); 2804 init_rwsem(&fs_info->subvol_sem); 2805 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2806 2807 btrfs_init_dev_replace_locks(fs_info); 2808 btrfs_init_qgroup(fs_info); 2809 btrfs_discard_init(fs_info); 2810 2811 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2812 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2813 2814 init_waitqueue_head(&fs_info->transaction_throttle); 2815 init_waitqueue_head(&fs_info->transaction_wait); 2816 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2817 init_waitqueue_head(&fs_info->async_submit_wait); 2818 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2819 2820 /* Usable values until the real ones are cached from the superblock */ 2821 fs_info->nodesize = 4096; 2822 fs_info->sectorsize = 4096; 2823 fs_info->sectorsize_bits = ilog2(4096); 2824 fs_info->stripesize = 4096; 2825 2826 /* Default compress algorithm when user does -o compress */ 2827 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2828 2829 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 2830 2831 spin_lock_init(&fs_info->swapfile_pins_lock); 2832 fs_info->swapfile_pins = RB_ROOT; 2833 2834 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 2835 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 2836 } 2837 2838 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2839 { 2840 int ret; 2841 2842 fs_info->sb = sb; 2843 /* Temporary fixed values for block size until we read the superblock. */ 2844 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2845 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2846 2847 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 2848 if (ret) 2849 return ret; 2850 2851 ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL); 2852 if (ret) 2853 return ret; 2854 2855 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2856 if (ret) 2857 return ret; 2858 2859 fs_info->dirty_metadata_batch = PAGE_SIZE * 2860 (1 + ilog2(nr_cpu_ids)); 2861 2862 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2863 if (ret) 2864 return ret; 2865 2866 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2867 GFP_KERNEL); 2868 if (ret) 2869 return ret; 2870 2871 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2872 GFP_KERNEL); 2873 if (!fs_info->delayed_root) 2874 return -ENOMEM; 2875 btrfs_init_delayed_root(fs_info->delayed_root); 2876 2877 if (sb_rdonly(sb)) 2878 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2879 if (btrfs_test_opt(fs_info, IGNOREMETACSUMS)) 2880 set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state); 2881 2882 return btrfs_alloc_stripe_hash_table(fs_info); 2883 } 2884 2885 static int btrfs_uuid_rescan_kthread(void *data) 2886 { 2887 struct btrfs_fs_info *fs_info = data; 2888 int ret; 2889 2890 /* 2891 * 1st step is to iterate through the existing UUID tree and 2892 * to delete all entries that contain outdated data. 2893 * 2nd step is to add all missing entries to the UUID tree. 2894 */ 2895 ret = btrfs_uuid_tree_iterate(fs_info); 2896 if (ret < 0) { 2897 if (ret != -EINTR) 2898 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2899 ret); 2900 up(&fs_info->uuid_tree_rescan_sem); 2901 return ret; 2902 } 2903 return btrfs_uuid_scan_kthread(data); 2904 } 2905 2906 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2907 { 2908 struct task_struct *task; 2909 2910 down(&fs_info->uuid_tree_rescan_sem); 2911 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2912 if (IS_ERR(task)) { 2913 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2914 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2915 up(&fs_info->uuid_tree_rescan_sem); 2916 return PTR_ERR(task); 2917 } 2918 2919 return 0; 2920 } 2921 2922 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2923 { 2924 u64 root_objectid = 0; 2925 struct btrfs_root *gang[8]; 2926 int ret = 0; 2927 2928 while (1) { 2929 unsigned int found; 2930 2931 spin_lock(&fs_info->fs_roots_radix_lock); 2932 found = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2933 (void **)gang, root_objectid, 2934 ARRAY_SIZE(gang)); 2935 if (!found) { 2936 spin_unlock(&fs_info->fs_roots_radix_lock); 2937 break; 2938 } 2939 root_objectid = btrfs_root_id(gang[found - 1]) + 1; 2940 2941 for (int i = 0; i < found; i++) { 2942 /* Avoid to grab roots in dead_roots. */ 2943 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 2944 gang[i] = NULL; 2945 continue; 2946 } 2947 /* Grab all the search result for later use. */ 2948 gang[i] = btrfs_grab_root(gang[i]); 2949 } 2950 spin_unlock(&fs_info->fs_roots_radix_lock); 2951 2952 for (int i = 0; i < found; i++) { 2953 if (!gang[i]) 2954 continue; 2955 root_objectid = btrfs_root_id(gang[i]); 2956 /* 2957 * Continue to release the remaining roots after the first 2958 * error without cleanup and preserve the first error 2959 * for the return. 2960 */ 2961 if (!ret) 2962 ret = btrfs_orphan_cleanup(gang[i]); 2963 btrfs_put_root(gang[i]); 2964 } 2965 if (ret) 2966 break; 2967 2968 root_objectid++; 2969 } 2970 return ret; 2971 } 2972 2973 /* 2974 * Mounting logic specific to read-write file systems. Shared by open_ctree 2975 * and btrfs_remount when remounting from read-only to read-write. 2976 */ 2977 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 2978 { 2979 int ret; 2980 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 2981 bool rebuild_free_space_tree = false; 2982 2983 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 2984 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2985 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2986 btrfs_warn(fs_info, 2987 "'clear_cache' option is ignored with extent tree v2"); 2988 else 2989 rebuild_free_space_tree = true; 2990 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 2991 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 2992 btrfs_warn(fs_info, "free space tree is invalid"); 2993 rebuild_free_space_tree = true; 2994 } 2995 2996 if (rebuild_free_space_tree) { 2997 btrfs_info(fs_info, "rebuilding free space tree"); 2998 ret = btrfs_rebuild_free_space_tree(fs_info); 2999 if (ret) { 3000 btrfs_warn(fs_info, 3001 "failed to rebuild free space tree: %d", ret); 3002 goto out; 3003 } 3004 } 3005 3006 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3007 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 3008 btrfs_info(fs_info, "disabling free space tree"); 3009 ret = btrfs_delete_free_space_tree(fs_info); 3010 if (ret) { 3011 btrfs_warn(fs_info, 3012 "failed to disable free space tree: %d", ret); 3013 goto out; 3014 } 3015 } 3016 3017 /* 3018 * btrfs_find_orphan_roots() is responsible for finding all the dead 3019 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3020 * them into the fs_info->fs_roots_radix tree. This must be done before 3021 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3022 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3023 * item before the root's tree is deleted - this means that if we unmount 3024 * or crash before the deletion completes, on the next mount we will not 3025 * delete what remains of the tree because the orphan item does not 3026 * exists anymore, which is what tells us we have a pending deletion. 3027 */ 3028 ret = btrfs_find_orphan_roots(fs_info); 3029 if (ret) 3030 goto out; 3031 3032 ret = btrfs_cleanup_fs_roots(fs_info); 3033 if (ret) 3034 goto out; 3035 3036 down_read(&fs_info->cleanup_work_sem); 3037 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3038 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3039 up_read(&fs_info->cleanup_work_sem); 3040 goto out; 3041 } 3042 up_read(&fs_info->cleanup_work_sem); 3043 3044 mutex_lock(&fs_info->cleaner_mutex); 3045 ret = btrfs_recover_relocation(fs_info); 3046 mutex_unlock(&fs_info->cleaner_mutex); 3047 if (ret < 0) { 3048 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3049 goto out; 3050 } 3051 3052 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3053 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3054 btrfs_info(fs_info, "creating free space tree"); 3055 ret = btrfs_create_free_space_tree(fs_info); 3056 if (ret) { 3057 btrfs_warn(fs_info, 3058 "failed to create free space tree: %d", ret); 3059 goto out; 3060 } 3061 } 3062 3063 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3064 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3065 if (ret) 3066 goto out; 3067 } 3068 3069 ret = btrfs_resume_balance_async(fs_info); 3070 if (ret) 3071 goto out; 3072 3073 ret = btrfs_resume_dev_replace_async(fs_info); 3074 if (ret) { 3075 btrfs_warn(fs_info, "failed to resume dev_replace"); 3076 goto out; 3077 } 3078 3079 btrfs_qgroup_rescan_resume(fs_info); 3080 3081 if (!fs_info->uuid_root) { 3082 btrfs_info(fs_info, "creating UUID tree"); 3083 ret = btrfs_create_uuid_tree(fs_info); 3084 if (ret) { 3085 btrfs_warn(fs_info, 3086 "failed to create the UUID tree %d", ret); 3087 goto out; 3088 } 3089 } 3090 3091 out: 3092 return ret; 3093 } 3094 3095 /* 3096 * Do various sanity and dependency checks of different features. 3097 * 3098 * @is_rw_mount: If the mount is read-write. 3099 * 3100 * This is the place for less strict checks (like for subpage or artificial 3101 * feature dependencies). 3102 * 3103 * For strict checks or possible corruption detection, see 3104 * btrfs_validate_super(). 3105 * 3106 * This should be called after btrfs_parse_options(), as some mount options 3107 * (space cache related) can modify on-disk format like free space tree and 3108 * screw up certain feature dependencies. 3109 */ 3110 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3111 { 3112 struct btrfs_super_block *disk_super = fs_info->super_copy; 3113 u64 incompat = btrfs_super_incompat_flags(disk_super); 3114 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3115 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3116 3117 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3118 btrfs_err(fs_info, 3119 "cannot mount because of unknown incompat features (0x%llx)", 3120 incompat); 3121 return -EINVAL; 3122 } 3123 3124 /* Runtime limitation for mixed block groups. */ 3125 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3126 (fs_info->sectorsize != fs_info->nodesize)) { 3127 btrfs_err(fs_info, 3128 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3129 fs_info->nodesize, fs_info->sectorsize); 3130 return -EINVAL; 3131 } 3132 3133 /* Mixed backref is an always-enabled feature. */ 3134 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3135 3136 /* Set compression related flags just in case. */ 3137 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3138 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3139 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3140 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3141 3142 /* 3143 * An ancient flag, which should really be marked deprecated. 3144 * Such runtime limitation doesn't really need a incompat flag. 3145 */ 3146 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3147 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3148 3149 if (compat_ro_unsupp && is_rw_mount) { 3150 btrfs_err(fs_info, 3151 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3152 compat_ro); 3153 return -EINVAL; 3154 } 3155 3156 /* 3157 * We have unsupported RO compat features, although RO mounted, we 3158 * should not cause any metadata writes, including log replay. 3159 * Or we could screw up whatever the new feature requires. 3160 */ 3161 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3162 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3163 btrfs_err(fs_info, 3164 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3165 compat_ro); 3166 return -EINVAL; 3167 } 3168 3169 /* 3170 * Artificial limitations for block group tree, to force 3171 * block-group-tree to rely on no-holes and free-space-tree. 3172 */ 3173 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3174 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3175 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3176 btrfs_err(fs_info, 3177 "block-group-tree feature requires no-holes and free-space-tree features"); 3178 return -EINVAL; 3179 } 3180 3181 /* 3182 * Subpage runtime limitation on v1 cache. 3183 * 3184 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3185 * we're already defaulting to v2 cache, no need to bother v1 as it's 3186 * going to be deprecated anyway. 3187 */ 3188 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3189 btrfs_warn(fs_info, 3190 "v1 space cache is not supported for page size %lu with sectorsize %u", 3191 PAGE_SIZE, fs_info->sectorsize); 3192 return -EINVAL; 3193 } 3194 3195 /* This can be called by remount, we need to protect the super block. */ 3196 spin_lock(&fs_info->super_lock); 3197 btrfs_set_super_incompat_flags(disk_super, incompat); 3198 spin_unlock(&fs_info->super_lock); 3199 3200 return 0; 3201 } 3202 3203 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices) 3204 { 3205 u32 sectorsize; 3206 u32 nodesize; 3207 u32 stripesize; 3208 u64 generation; 3209 u16 csum_type; 3210 struct btrfs_super_block *disk_super; 3211 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3212 struct btrfs_root *tree_root; 3213 struct btrfs_root *chunk_root; 3214 int ret; 3215 int level; 3216 3217 ret = init_mount_fs_info(fs_info, sb); 3218 if (ret) 3219 goto fail; 3220 3221 /* These need to be init'ed before we start creating inodes and such. */ 3222 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3223 GFP_KERNEL); 3224 fs_info->tree_root = tree_root; 3225 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3226 GFP_KERNEL); 3227 fs_info->chunk_root = chunk_root; 3228 if (!tree_root || !chunk_root) { 3229 ret = -ENOMEM; 3230 goto fail; 3231 } 3232 3233 ret = btrfs_init_btree_inode(sb); 3234 if (ret) 3235 goto fail; 3236 3237 invalidate_bdev(fs_devices->latest_dev->bdev); 3238 3239 /* 3240 * Read super block and check the signature bytes only 3241 */ 3242 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3243 if (IS_ERR(disk_super)) { 3244 ret = PTR_ERR(disk_super); 3245 goto fail_alloc; 3246 } 3247 3248 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid); 3249 /* 3250 * Verify the type first, if that or the checksum value are 3251 * corrupted, we'll find out 3252 */ 3253 csum_type = btrfs_super_csum_type(disk_super); 3254 if (!btrfs_supported_super_csum(csum_type)) { 3255 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3256 csum_type); 3257 ret = -EINVAL; 3258 btrfs_release_disk_super(disk_super); 3259 goto fail_alloc; 3260 } 3261 3262 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3263 3264 ret = btrfs_init_csum_hash(fs_info, csum_type); 3265 if (ret) { 3266 btrfs_release_disk_super(disk_super); 3267 goto fail_alloc; 3268 } 3269 3270 /* 3271 * We want to check superblock checksum, the type is stored inside. 3272 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3273 */ 3274 if (btrfs_check_super_csum(fs_info, disk_super)) { 3275 btrfs_err(fs_info, "superblock checksum mismatch"); 3276 ret = -EINVAL; 3277 btrfs_release_disk_super(disk_super); 3278 goto fail_alloc; 3279 } 3280 3281 /* 3282 * super_copy is zeroed at allocation time and we never touch the 3283 * following bytes up to INFO_SIZE, the checksum is calculated from 3284 * the whole block of INFO_SIZE 3285 */ 3286 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3287 btrfs_release_disk_super(disk_super); 3288 3289 disk_super = fs_info->super_copy; 3290 3291 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3292 sizeof(*fs_info->super_for_commit)); 3293 3294 ret = btrfs_validate_mount_super(fs_info); 3295 if (ret) { 3296 btrfs_err(fs_info, "superblock contains fatal errors"); 3297 ret = -EINVAL; 3298 goto fail_alloc; 3299 } 3300 3301 if (!btrfs_super_root(disk_super)) { 3302 btrfs_err(fs_info, "invalid superblock tree root bytenr"); 3303 ret = -EINVAL; 3304 goto fail_alloc; 3305 } 3306 3307 /* check FS state, whether FS is broken. */ 3308 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3309 WRITE_ONCE(fs_info->fs_error, -EUCLEAN); 3310 3311 /* Set up fs_info before parsing mount options */ 3312 nodesize = btrfs_super_nodesize(disk_super); 3313 sectorsize = btrfs_super_sectorsize(disk_super); 3314 stripesize = sectorsize; 3315 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3316 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3317 3318 fs_info->nodesize = nodesize; 3319 fs_info->sectorsize = sectorsize; 3320 fs_info->sectorsize_bits = ilog2(sectorsize); 3321 fs_info->sectors_per_page = (PAGE_SIZE >> fs_info->sectorsize_bits); 3322 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3323 fs_info->stripesize = stripesize; 3324 3325 /* 3326 * Handle the space caching options appropriately now that we have the 3327 * super block loaded and validated. 3328 */ 3329 btrfs_set_free_space_cache_settings(fs_info); 3330 3331 if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) { 3332 ret = -EINVAL; 3333 goto fail_alloc; 3334 } 3335 3336 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3337 if (ret < 0) 3338 goto fail_alloc; 3339 3340 /* 3341 * At this point our mount options are validated, if we set ->max_inline 3342 * to something non-standard make sure we truncate it to sectorsize. 3343 */ 3344 fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize); 3345 3346 if (sectorsize < PAGE_SIZE) 3347 btrfs_warn(fs_info, 3348 "read-write for sector size %u with page size %lu is experimental", 3349 sectorsize, PAGE_SIZE); 3350 3351 ret = btrfs_init_workqueues(fs_info); 3352 if (ret) 3353 goto fail_sb_buffer; 3354 3355 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3356 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3357 3358 /* Update the values for the current filesystem. */ 3359 sb->s_blocksize = sectorsize; 3360 sb->s_blocksize_bits = blksize_bits(sectorsize); 3361 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3362 3363 mutex_lock(&fs_info->chunk_mutex); 3364 ret = btrfs_read_sys_array(fs_info); 3365 mutex_unlock(&fs_info->chunk_mutex); 3366 if (ret) { 3367 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3368 goto fail_sb_buffer; 3369 } 3370 3371 generation = btrfs_super_chunk_root_generation(disk_super); 3372 level = btrfs_super_chunk_root_level(disk_super); 3373 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3374 generation, level); 3375 if (ret) { 3376 btrfs_err(fs_info, "failed to read chunk root"); 3377 goto fail_tree_roots; 3378 } 3379 3380 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3381 offsetof(struct btrfs_header, chunk_tree_uuid), 3382 BTRFS_UUID_SIZE); 3383 3384 ret = btrfs_read_chunk_tree(fs_info); 3385 if (ret) { 3386 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3387 goto fail_tree_roots; 3388 } 3389 3390 /* 3391 * At this point we know all the devices that make this filesystem, 3392 * including the seed devices but we don't know yet if the replace 3393 * target is required. So free devices that are not part of this 3394 * filesystem but skip the replace target device which is checked 3395 * below in btrfs_init_dev_replace(). 3396 */ 3397 btrfs_free_extra_devids(fs_devices); 3398 if (!fs_devices->latest_dev->bdev) { 3399 btrfs_err(fs_info, "failed to read devices"); 3400 ret = -EIO; 3401 goto fail_tree_roots; 3402 } 3403 3404 ret = init_tree_roots(fs_info); 3405 if (ret) 3406 goto fail_tree_roots; 3407 3408 /* 3409 * Get zone type information of zoned block devices. This will also 3410 * handle emulation of a zoned filesystem if a regular device has the 3411 * zoned incompat feature flag set. 3412 */ 3413 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3414 if (ret) { 3415 btrfs_err(fs_info, 3416 "zoned: failed to read device zone info: %d", ret); 3417 goto fail_block_groups; 3418 } 3419 3420 /* 3421 * If we have a uuid root and we're not being told to rescan we need to 3422 * check the generation here so we can set the 3423 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3424 * transaction during a balance or the log replay without updating the 3425 * uuid generation, and then if we crash we would rescan the uuid tree, 3426 * even though it was perfectly fine. 3427 */ 3428 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3429 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3430 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3431 3432 ret = btrfs_verify_dev_extents(fs_info); 3433 if (ret) { 3434 btrfs_err(fs_info, 3435 "failed to verify dev extents against chunks: %d", 3436 ret); 3437 goto fail_block_groups; 3438 } 3439 ret = btrfs_recover_balance(fs_info); 3440 if (ret) { 3441 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3442 goto fail_block_groups; 3443 } 3444 3445 ret = btrfs_init_dev_stats(fs_info); 3446 if (ret) { 3447 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3448 goto fail_block_groups; 3449 } 3450 3451 ret = btrfs_init_dev_replace(fs_info); 3452 if (ret) { 3453 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3454 goto fail_block_groups; 3455 } 3456 3457 ret = btrfs_check_zoned_mode(fs_info); 3458 if (ret) { 3459 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3460 ret); 3461 goto fail_block_groups; 3462 } 3463 3464 ret = btrfs_sysfs_add_fsid(fs_devices); 3465 if (ret) { 3466 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3467 ret); 3468 goto fail_block_groups; 3469 } 3470 3471 ret = btrfs_sysfs_add_mounted(fs_info); 3472 if (ret) { 3473 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3474 goto fail_fsdev_sysfs; 3475 } 3476 3477 ret = btrfs_init_space_info(fs_info); 3478 if (ret) { 3479 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3480 goto fail_sysfs; 3481 } 3482 3483 ret = btrfs_read_block_groups(fs_info); 3484 if (ret) { 3485 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3486 goto fail_sysfs; 3487 } 3488 3489 btrfs_free_zone_cache(fs_info); 3490 3491 btrfs_check_active_zone_reservation(fs_info); 3492 3493 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3494 !btrfs_check_rw_degradable(fs_info, NULL)) { 3495 btrfs_warn(fs_info, 3496 "writable mount is not allowed due to too many missing devices"); 3497 ret = -EINVAL; 3498 goto fail_sysfs; 3499 } 3500 3501 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3502 "btrfs-cleaner"); 3503 if (IS_ERR(fs_info->cleaner_kthread)) { 3504 ret = PTR_ERR(fs_info->cleaner_kthread); 3505 goto fail_sysfs; 3506 } 3507 3508 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3509 tree_root, 3510 "btrfs-transaction"); 3511 if (IS_ERR(fs_info->transaction_kthread)) { 3512 ret = PTR_ERR(fs_info->transaction_kthread); 3513 goto fail_cleaner; 3514 } 3515 3516 ret = btrfs_read_qgroup_config(fs_info); 3517 if (ret) 3518 goto fail_trans_kthread; 3519 3520 if (btrfs_build_ref_tree(fs_info)) 3521 btrfs_err(fs_info, "couldn't build ref tree"); 3522 3523 /* do not make disk changes in broken FS or nologreplay is given */ 3524 if (btrfs_super_log_root(disk_super) != 0 && 3525 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3526 btrfs_info(fs_info, "start tree-log replay"); 3527 ret = btrfs_replay_log(fs_info, fs_devices); 3528 if (ret) 3529 goto fail_qgroup; 3530 } 3531 3532 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3533 if (IS_ERR(fs_info->fs_root)) { 3534 ret = PTR_ERR(fs_info->fs_root); 3535 btrfs_warn(fs_info, "failed to read fs tree: %d", ret); 3536 fs_info->fs_root = NULL; 3537 goto fail_qgroup; 3538 } 3539 3540 if (sb_rdonly(sb)) 3541 return 0; 3542 3543 ret = btrfs_start_pre_rw_mount(fs_info); 3544 if (ret) { 3545 close_ctree(fs_info); 3546 return ret; 3547 } 3548 btrfs_discard_resume(fs_info); 3549 3550 if (fs_info->uuid_root && 3551 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3552 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3553 btrfs_info(fs_info, "checking UUID tree"); 3554 ret = btrfs_check_uuid_tree(fs_info); 3555 if (ret) { 3556 btrfs_warn(fs_info, 3557 "failed to check the UUID tree: %d", ret); 3558 close_ctree(fs_info); 3559 return ret; 3560 } 3561 } 3562 3563 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3564 3565 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3566 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3567 wake_up_process(fs_info->cleaner_kthread); 3568 3569 return 0; 3570 3571 fail_qgroup: 3572 btrfs_free_qgroup_config(fs_info); 3573 fail_trans_kthread: 3574 kthread_stop(fs_info->transaction_kthread); 3575 btrfs_cleanup_transaction(fs_info); 3576 btrfs_free_fs_roots(fs_info); 3577 fail_cleaner: 3578 kthread_stop(fs_info->cleaner_kthread); 3579 3580 /* 3581 * make sure we're done with the btree inode before we stop our 3582 * kthreads 3583 */ 3584 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3585 3586 fail_sysfs: 3587 btrfs_sysfs_remove_mounted(fs_info); 3588 3589 fail_fsdev_sysfs: 3590 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3591 3592 fail_block_groups: 3593 btrfs_put_block_group_cache(fs_info); 3594 3595 fail_tree_roots: 3596 if (fs_info->data_reloc_root) 3597 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3598 free_root_pointers(fs_info, true); 3599 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3600 3601 fail_sb_buffer: 3602 btrfs_stop_all_workers(fs_info); 3603 btrfs_free_block_groups(fs_info); 3604 fail_alloc: 3605 btrfs_mapping_tree_free(fs_info); 3606 3607 iput(fs_info->btree_inode); 3608 fail: 3609 btrfs_close_devices(fs_info->fs_devices); 3610 ASSERT(ret < 0); 3611 return ret; 3612 } 3613 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3614 3615 static void btrfs_end_super_write(struct bio *bio) 3616 { 3617 struct btrfs_device *device = bio->bi_private; 3618 struct folio_iter fi; 3619 3620 bio_for_each_folio_all(fi, bio) { 3621 if (bio->bi_status) { 3622 btrfs_warn_rl_in_rcu(device->fs_info, 3623 "lost super block write due to IO error on %s (%d)", 3624 btrfs_dev_name(device), 3625 blk_status_to_errno(bio->bi_status)); 3626 btrfs_dev_stat_inc_and_print(device, 3627 BTRFS_DEV_STAT_WRITE_ERRS); 3628 /* Ensure failure if the primary sb fails. */ 3629 if (bio->bi_opf & REQ_FUA) 3630 atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR, 3631 &device->sb_write_errors); 3632 else 3633 atomic_inc(&device->sb_write_errors); 3634 } 3635 folio_unlock(fi.folio); 3636 folio_put(fi.folio); 3637 } 3638 3639 bio_put(bio); 3640 } 3641 3642 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3643 int copy_num, bool drop_cache) 3644 { 3645 struct btrfs_super_block *super; 3646 struct page *page; 3647 u64 bytenr, bytenr_orig; 3648 struct address_space *mapping = bdev->bd_mapping; 3649 int ret; 3650 3651 bytenr_orig = btrfs_sb_offset(copy_num); 3652 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3653 if (ret == -ENOENT) 3654 return ERR_PTR(-EINVAL); 3655 else if (ret) 3656 return ERR_PTR(ret); 3657 3658 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 3659 return ERR_PTR(-EINVAL); 3660 3661 if (drop_cache) { 3662 /* This should only be called with the primary sb. */ 3663 ASSERT(copy_num == 0); 3664 3665 /* 3666 * Drop the page of the primary superblock, so later read will 3667 * always read from the device. 3668 */ 3669 invalidate_inode_pages2_range(mapping, 3670 bytenr >> PAGE_SHIFT, 3671 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 3672 } 3673 3674 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3675 if (IS_ERR(page)) 3676 return ERR_CAST(page); 3677 3678 super = page_address(page); 3679 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3680 btrfs_release_disk_super(super); 3681 return ERR_PTR(-ENODATA); 3682 } 3683 3684 if (btrfs_super_bytenr(super) != bytenr_orig) { 3685 btrfs_release_disk_super(super); 3686 return ERR_PTR(-EINVAL); 3687 } 3688 3689 return super; 3690 } 3691 3692 3693 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3694 { 3695 struct btrfs_super_block *super, *latest = NULL; 3696 int i; 3697 u64 transid = 0; 3698 3699 /* we would like to check all the supers, but that would make 3700 * a btrfs mount succeed after a mkfs from a different FS. 3701 * So, we need to add a special mount option to scan for 3702 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3703 */ 3704 for (i = 0; i < 1; i++) { 3705 super = btrfs_read_dev_one_super(bdev, i, false); 3706 if (IS_ERR(super)) 3707 continue; 3708 3709 if (!latest || btrfs_super_generation(super) > transid) { 3710 if (latest) 3711 btrfs_release_disk_super(super); 3712 3713 latest = super; 3714 transid = btrfs_super_generation(super); 3715 } 3716 } 3717 3718 return super; 3719 } 3720 3721 /* 3722 * Write superblock @sb to the @device. Do not wait for completion, all the 3723 * folios we use for writing are locked. 3724 * 3725 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3726 * the expected device size at commit time. Note that max_mirrors must be 3727 * same for write and wait phases. 3728 * 3729 * Return number of errors when folio is not found or submission fails. 3730 */ 3731 static int write_dev_supers(struct btrfs_device *device, 3732 struct btrfs_super_block *sb, int max_mirrors) 3733 { 3734 struct btrfs_fs_info *fs_info = device->fs_info; 3735 struct address_space *mapping = device->bdev->bd_mapping; 3736 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3737 int i; 3738 int ret; 3739 u64 bytenr, bytenr_orig; 3740 3741 atomic_set(&device->sb_write_errors, 0); 3742 3743 if (max_mirrors == 0) 3744 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3745 3746 shash->tfm = fs_info->csum_shash; 3747 3748 for (i = 0; i < max_mirrors; i++) { 3749 struct folio *folio; 3750 struct bio *bio; 3751 struct btrfs_super_block *disk_super; 3752 size_t offset; 3753 3754 bytenr_orig = btrfs_sb_offset(i); 3755 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3756 if (ret == -ENOENT) { 3757 continue; 3758 } else if (ret < 0) { 3759 btrfs_err(device->fs_info, 3760 "couldn't get super block location for mirror %d", 3761 i); 3762 atomic_inc(&device->sb_write_errors); 3763 continue; 3764 } 3765 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3766 device->commit_total_bytes) 3767 break; 3768 3769 btrfs_set_super_bytenr(sb, bytenr_orig); 3770 3771 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3772 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3773 sb->csum); 3774 3775 folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT, 3776 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3777 GFP_NOFS); 3778 if (IS_ERR(folio)) { 3779 btrfs_err(device->fs_info, 3780 "couldn't get super block page for bytenr %llu", 3781 bytenr); 3782 atomic_inc(&device->sb_write_errors); 3783 continue; 3784 } 3785 ASSERT(folio_order(folio) == 0); 3786 3787 offset = offset_in_folio(folio, bytenr); 3788 disk_super = folio_address(folio) + offset; 3789 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3790 3791 /* 3792 * Directly use bios here instead of relying on the page cache 3793 * to do I/O, so we don't lose the ability to do integrity 3794 * checking. 3795 */ 3796 bio = bio_alloc(device->bdev, 1, 3797 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 3798 GFP_NOFS); 3799 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3800 bio->bi_private = device; 3801 bio->bi_end_io = btrfs_end_super_write; 3802 bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset); 3803 3804 /* 3805 * We FUA only the first super block. The others we allow to 3806 * go down lazy and there's a short window where the on-disk 3807 * copies might still contain the older version. 3808 */ 3809 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3810 bio->bi_opf |= REQ_FUA; 3811 submit_bio(bio); 3812 3813 if (btrfs_advance_sb_log(device, i)) 3814 atomic_inc(&device->sb_write_errors); 3815 } 3816 return atomic_read(&device->sb_write_errors) < i ? 0 : -1; 3817 } 3818 3819 /* 3820 * Wait for write completion of superblocks done by write_dev_supers, 3821 * @max_mirrors same for write and wait phases. 3822 * 3823 * Return -1 if primary super block write failed or when there were no super block 3824 * copies written. Otherwise 0. 3825 */ 3826 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3827 { 3828 int i; 3829 int errors = 0; 3830 bool primary_failed = false; 3831 int ret; 3832 u64 bytenr; 3833 3834 if (max_mirrors == 0) 3835 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3836 3837 for (i = 0; i < max_mirrors; i++) { 3838 struct folio *folio; 3839 3840 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 3841 if (ret == -ENOENT) { 3842 break; 3843 } else if (ret < 0) { 3844 errors++; 3845 if (i == 0) 3846 primary_failed = true; 3847 continue; 3848 } 3849 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3850 device->commit_total_bytes) 3851 break; 3852 3853 folio = filemap_get_folio(device->bdev->bd_mapping, 3854 bytenr >> PAGE_SHIFT); 3855 /* If the folio has been removed, then we know it completed. */ 3856 if (IS_ERR(folio)) 3857 continue; 3858 ASSERT(folio_order(folio) == 0); 3859 3860 /* Folio will be unlocked once the write completes. */ 3861 folio_wait_locked(folio); 3862 folio_put(folio); 3863 } 3864 3865 errors += atomic_read(&device->sb_write_errors); 3866 if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR) 3867 primary_failed = true; 3868 if (primary_failed) { 3869 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3870 device->devid); 3871 return -1; 3872 } 3873 3874 return errors < i ? 0 : -1; 3875 } 3876 3877 /* 3878 * endio for the write_dev_flush, this will wake anyone waiting 3879 * for the barrier when it is done 3880 */ 3881 static void btrfs_end_empty_barrier(struct bio *bio) 3882 { 3883 bio_uninit(bio); 3884 complete(bio->bi_private); 3885 } 3886 3887 /* 3888 * Submit a flush request to the device if it supports it. Error handling is 3889 * done in the waiting counterpart. 3890 */ 3891 static void write_dev_flush(struct btrfs_device *device) 3892 { 3893 struct bio *bio = &device->flush_bio; 3894 3895 device->last_flush_error = BLK_STS_OK; 3896 3897 bio_init(bio, device->bdev, NULL, 0, 3898 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 3899 bio->bi_end_io = btrfs_end_empty_barrier; 3900 init_completion(&device->flush_wait); 3901 bio->bi_private = &device->flush_wait; 3902 submit_bio(bio); 3903 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3904 } 3905 3906 /* 3907 * If the flush bio has been submitted by write_dev_flush, wait for it. 3908 * Return true for any error, and false otherwise. 3909 */ 3910 static bool wait_dev_flush(struct btrfs_device *device) 3911 { 3912 struct bio *bio = &device->flush_bio; 3913 3914 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3915 return false; 3916 3917 wait_for_completion_io(&device->flush_wait); 3918 3919 if (bio->bi_status) { 3920 device->last_flush_error = bio->bi_status; 3921 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); 3922 return true; 3923 } 3924 3925 return false; 3926 } 3927 3928 /* 3929 * send an empty flush down to each device in parallel, 3930 * then wait for them 3931 */ 3932 static int barrier_all_devices(struct btrfs_fs_info *info) 3933 { 3934 struct list_head *head; 3935 struct btrfs_device *dev; 3936 int errors_wait = 0; 3937 3938 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3939 /* send down all the barriers */ 3940 head = &info->fs_devices->devices; 3941 list_for_each_entry(dev, head, dev_list) { 3942 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3943 continue; 3944 if (!dev->bdev) 3945 continue; 3946 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3947 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3948 continue; 3949 3950 write_dev_flush(dev); 3951 } 3952 3953 /* wait for all the barriers */ 3954 list_for_each_entry(dev, head, dev_list) { 3955 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3956 continue; 3957 if (!dev->bdev) { 3958 errors_wait++; 3959 continue; 3960 } 3961 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3962 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3963 continue; 3964 3965 if (wait_dev_flush(dev)) 3966 errors_wait++; 3967 } 3968 3969 /* 3970 * Checks last_flush_error of disks in order to determine the device 3971 * state. 3972 */ 3973 if (errors_wait && !btrfs_check_rw_degradable(info, NULL)) 3974 return -EIO; 3975 3976 return 0; 3977 } 3978 3979 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3980 { 3981 int raid_type; 3982 int min_tolerated = INT_MAX; 3983 3984 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3985 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3986 min_tolerated = min_t(int, min_tolerated, 3987 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3988 tolerated_failures); 3989 3990 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3991 if (raid_type == BTRFS_RAID_SINGLE) 3992 continue; 3993 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3994 continue; 3995 min_tolerated = min_t(int, min_tolerated, 3996 btrfs_raid_array[raid_type]. 3997 tolerated_failures); 3998 } 3999 4000 if (min_tolerated == INT_MAX) { 4001 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4002 min_tolerated = 0; 4003 } 4004 4005 return min_tolerated; 4006 } 4007 4008 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4009 { 4010 struct list_head *head; 4011 struct btrfs_device *dev; 4012 struct btrfs_super_block *sb; 4013 struct btrfs_dev_item *dev_item; 4014 int ret; 4015 int do_barriers; 4016 int max_errors; 4017 int total_errors = 0; 4018 u64 flags; 4019 4020 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4021 4022 /* 4023 * max_mirrors == 0 indicates we're from commit_transaction, 4024 * not from fsync where the tree roots in fs_info have not 4025 * been consistent on disk. 4026 */ 4027 if (max_mirrors == 0) 4028 backup_super_roots(fs_info); 4029 4030 sb = fs_info->super_for_commit; 4031 dev_item = &sb->dev_item; 4032 4033 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4034 head = &fs_info->fs_devices->devices; 4035 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4036 4037 if (do_barriers) { 4038 ret = barrier_all_devices(fs_info); 4039 if (ret) { 4040 mutex_unlock( 4041 &fs_info->fs_devices->device_list_mutex); 4042 btrfs_handle_fs_error(fs_info, ret, 4043 "errors while submitting device barriers."); 4044 return ret; 4045 } 4046 } 4047 4048 list_for_each_entry(dev, head, dev_list) { 4049 if (!dev->bdev) { 4050 total_errors++; 4051 continue; 4052 } 4053 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4054 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4055 continue; 4056 4057 btrfs_set_stack_device_generation(dev_item, 0); 4058 btrfs_set_stack_device_type(dev_item, dev->type); 4059 btrfs_set_stack_device_id(dev_item, dev->devid); 4060 btrfs_set_stack_device_total_bytes(dev_item, 4061 dev->commit_total_bytes); 4062 btrfs_set_stack_device_bytes_used(dev_item, 4063 dev->commit_bytes_used); 4064 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4065 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4066 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4067 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4068 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4069 BTRFS_FSID_SIZE); 4070 4071 flags = btrfs_super_flags(sb); 4072 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4073 4074 ret = btrfs_validate_write_super(fs_info, sb); 4075 if (ret < 0) { 4076 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4077 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4078 "unexpected superblock corruption detected"); 4079 return -EUCLEAN; 4080 } 4081 4082 ret = write_dev_supers(dev, sb, max_mirrors); 4083 if (ret) 4084 total_errors++; 4085 } 4086 if (total_errors > max_errors) { 4087 btrfs_err(fs_info, "%d errors while writing supers", 4088 total_errors); 4089 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4090 4091 /* FUA is masked off if unsupported and can't be the reason */ 4092 btrfs_handle_fs_error(fs_info, -EIO, 4093 "%d errors while writing supers", 4094 total_errors); 4095 return -EIO; 4096 } 4097 4098 total_errors = 0; 4099 list_for_each_entry(dev, head, dev_list) { 4100 if (!dev->bdev) 4101 continue; 4102 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4103 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4104 continue; 4105 4106 ret = wait_dev_supers(dev, max_mirrors); 4107 if (ret) 4108 total_errors++; 4109 } 4110 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4111 if (total_errors > max_errors) { 4112 btrfs_handle_fs_error(fs_info, -EIO, 4113 "%d errors while writing supers", 4114 total_errors); 4115 return -EIO; 4116 } 4117 return 0; 4118 } 4119 4120 /* Drop a fs root from the radix tree and free it. */ 4121 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4122 struct btrfs_root *root) 4123 { 4124 bool drop_ref = false; 4125 4126 spin_lock(&fs_info->fs_roots_radix_lock); 4127 radix_tree_delete(&fs_info->fs_roots_radix, 4128 (unsigned long)btrfs_root_id(root)); 4129 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4130 drop_ref = true; 4131 spin_unlock(&fs_info->fs_roots_radix_lock); 4132 4133 if (BTRFS_FS_ERROR(fs_info)) { 4134 ASSERT(root->log_root == NULL); 4135 if (root->reloc_root) { 4136 btrfs_put_root(root->reloc_root); 4137 root->reloc_root = NULL; 4138 } 4139 } 4140 4141 if (drop_ref) 4142 btrfs_put_root(root); 4143 } 4144 4145 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4146 { 4147 mutex_lock(&fs_info->cleaner_mutex); 4148 btrfs_run_delayed_iputs(fs_info); 4149 mutex_unlock(&fs_info->cleaner_mutex); 4150 wake_up_process(fs_info->cleaner_kthread); 4151 4152 /* wait until ongoing cleanup work done */ 4153 down_write(&fs_info->cleanup_work_sem); 4154 up_write(&fs_info->cleanup_work_sem); 4155 4156 return btrfs_commit_current_transaction(fs_info->tree_root); 4157 } 4158 4159 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4160 { 4161 struct btrfs_transaction *trans; 4162 struct btrfs_transaction *tmp; 4163 bool found = false; 4164 4165 /* 4166 * This function is only called at the very end of close_ctree(), 4167 * thus no other running transaction, no need to take trans_lock. 4168 */ 4169 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4170 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4171 struct extent_state *cached = NULL; 4172 u64 dirty_bytes = 0; 4173 u64 cur = 0; 4174 u64 found_start; 4175 u64 found_end; 4176 4177 found = true; 4178 while (find_first_extent_bit(&trans->dirty_pages, cur, 4179 &found_start, &found_end, EXTENT_DIRTY, &cached)) { 4180 dirty_bytes += found_end + 1 - found_start; 4181 cur = found_end + 1; 4182 } 4183 btrfs_warn(fs_info, 4184 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4185 trans->transid, dirty_bytes); 4186 btrfs_cleanup_one_transaction(trans); 4187 4188 if (trans == fs_info->running_transaction) 4189 fs_info->running_transaction = NULL; 4190 list_del_init(&trans->list); 4191 4192 btrfs_put_transaction(trans); 4193 trace_btrfs_transaction_commit(fs_info); 4194 } 4195 ASSERT(!found); 4196 } 4197 4198 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4199 { 4200 int ret; 4201 4202 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4203 4204 /* 4205 * If we had UNFINISHED_DROPS we could still be processing them, so 4206 * clear that bit and wake up relocation so it can stop. 4207 * We must do this before stopping the block group reclaim task, because 4208 * at btrfs_relocate_block_group() we wait for this bit, and after the 4209 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4210 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4211 * return 1. 4212 */ 4213 btrfs_wake_unfinished_drop(fs_info); 4214 4215 /* 4216 * We may have the reclaim task running and relocating a data block group, 4217 * in which case it may create delayed iputs. So stop it before we park 4218 * the cleaner kthread otherwise we can get new delayed iputs after 4219 * parking the cleaner, and that can make the async reclaim task to hang 4220 * if it's waiting for delayed iputs to complete, since the cleaner is 4221 * parked and can not run delayed iputs - this will make us hang when 4222 * trying to stop the async reclaim task. 4223 */ 4224 cancel_work_sync(&fs_info->reclaim_bgs_work); 4225 /* 4226 * We don't want the cleaner to start new transactions, add more delayed 4227 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4228 * because that frees the task_struct, and the transaction kthread might 4229 * still try to wake up the cleaner. 4230 */ 4231 kthread_park(fs_info->cleaner_kthread); 4232 4233 /* wait for the qgroup rescan worker to stop */ 4234 btrfs_qgroup_wait_for_completion(fs_info, false); 4235 4236 /* wait for the uuid_scan task to finish */ 4237 down(&fs_info->uuid_tree_rescan_sem); 4238 /* avoid complains from lockdep et al., set sem back to initial state */ 4239 up(&fs_info->uuid_tree_rescan_sem); 4240 4241 /* pause restriper - we want to resume on mount */ 4242 btrfs_pause_balance(fs_info); 4243 4244 btrfs_dev_replace_suspend_for_unmount(fs_info); 4245 4246 btrfs_scrub_cancel(fs_info); 4247 4248 /* wait for any defraggers to finish */ 4249 wait_event(fs_info->transaction_wait, 4250 (atomic_read(&fs_info->defrag_running) == 0)); 4251 4252 /* clear out the rbtree of defraggable inodes */ 4253 btrfs_cleanup_defrag_inodes(fs_info); 4254 4255 /* 4256 * Wait for any fixup workers to complete. 4257 * If we don't wait for them here and they are still running by the time 4258 * we call kthread_stop() against the cleaner kthread further below, we 4259 * get an use-after-free on the cleaner because the fixup worker adds an 4260 * inode to the list of delayed iputs and then attempts to wakeup the 4261 * cleaner kthread, which was already stopped and destroyed. We parked 4262 * already the cleaner, but below we run all pending delayed iputs. 4263 */ 4264 btrfs_flush_workqueue(fs_info->fixup_workers); 4265 /* 4266 * Similar case here, we have to wait for delalloc workers before we 4267 * proceed below and stop the cleaner kthread, otherwise we trigger a 4268 * use-after-tree on the cleaner kthread task_struct when a delalloc 4269 * worker running submit_compressed_extents() adds a delayed iput, which 4270 * does a wake up on the cleaner kthread, which was already freed below 4271 * when we call kthread_stop(). 4272 */ 4273 btrfs_flush_workqueue(fs_info->delalloc_workers); 4274 4275 /* 4276 * After we parked the cleaner kthread, ordered extents may have 4277 * completed and created new delayed iputs. If one of the async reclaim 4278 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4279 * can hang forever trying to stop it, because if a delayed iput is 4280 * added after it ran btrfs_run_delayed_iputs() and before it called 4281 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4282 * no one else to run iputs. 4283 * 4284 * So wait for all ongoing ordered extents to complete and then run 4285 * delayed iputs. This works because once we reach this point no one 4286 * can either create new ordered extents nor create delayed iputs 4287 * through some other means. 4288 * 4289 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4290 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4291 * but the delayed iput for the respective inode is made only when doing 4292 * the final btrfs_put_ordered_extent() (which must happen at 4293 * btrfs_finish_ordered_io() when we are unmounting). 4294 */ 4295 btrfs_flush_workqueue(fs_info->endio_write_workers); 4296 /* Ordered extents for free space inodes. */ 4297 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4298 btrfs_run_delayed_iputs(fs_info); 4299 4300 cancel_work_sync(&fs_info->async_reclaim_work); 4301 cancel_work_sync(&fs_info->async_data_reclaim_work); 4302 cancel_work_sync(&fs_info->preempt_reclaim_work); 4303 cancel_work_sync(&fs_info->em_shrinker_work); 4304 4305 /* Cancel or finish ongoing discard work */ 4306 btrfs_discard_cleanup(fs_info); 4307 4308 if (!sb_rdonly(fs_info->sb)) { 4309 /* 4310 * The cleaner kthread is stopped, so do one final pass over 4311 * unused block groups. 4312 */ 4313 btrfs_delete_unused_bgs(fs_info); 4314 4315 /* 4316 * There might be existing delayed inode workers still running 4317 * and holding an empty delayed inode item. We must wait for 4318 * them to complete first because they can create a transaction. 4319 * This happens when someone calls btrfs_balance_delayed_items() 4320 * and then a transaction commit runs the same delayed nodes 4321 * before any delayed worker has done something with the nodes. 4322 * We must wait for any worker here and not at transaction 4323 * commit time since that could cause a deadlock. 4324 * This is a very rare case. 4325 */ 4326 btrfs_flush_workqueue(fs_info->delayed_workers); 4327 4328 ret = btrfs_commit_super(fs_info); 4329 if (ret) 4330 btrfs_err(fs_info, "commit super ret %d", ret); 4331 } 4332 4333 if (BTRFS_FS_ERROR(fs_info)) 4334 btrfs_error_commit_super(fs_info); 4335 4336 kthread_stop(fs_info->transaction_kthread); 4337 kthread_stop(fs_info->cleaner_kthread); 4338 4339 ASSERT(list_empty(&fs_info->delayed_iputs)); 4340 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4341 4342 if (btrfs_check_quota_leak(fs_info)) { 4343 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4344 btrfs_err(fs_info, "qgroup reserved space leaked"); 4345 } 4346 4347 btrfs_free_qgroup_config(fs_info); 4348 ASSERT(list_empty(&fs_info->delalloc_roots)); 4349 4350 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4351 btrfs_info(fs_info, "at unmount delalloc count %lld", 4352 percpu_counter_sum(&fs_info->delalloc_bytes)); 4353 } 4354 4355 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4356 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4357 percpu_counter_sum(&fs_info->ordered_bytes)); 4358 4359 btrfs_sysfs_remove_mounted(fs_info); 4360 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4361 4362 btrfs_put_block_group_cache(fs_info); 4363 4364 /* 4365 * we must make sure there is not any read request to 4366 * submit after we stopping all workers. 4367 */ 4368 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4369 btrfs_stop_all_workers(fs_info); 4370 4371 /* We shouldn't have any transaction open at this point */ 4372 warn_about_uncommitted_trans(fs_info); 4373 4374 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4375 free_root_pointers(fs_info, true); 4376 btrfs_free_fs_roots(fs_info); 4377 4378 /* 4379 * We must free the block groups after dropping the fs_roots as we could 4380 * have had an IO error and have left over tree log blocks that aren't 4381 * cleaned up until the fs roots are freed. This makes the block group 4382 * accounting appear to be wrong because there's pending reserved bytes, 4383 * so make sure we do the block group cleanup afterwards. 4384 */ 4385 btrfs_free_block_groups(fs_info); 4386 4387 iput(fs_info->btree_inode); 4388 4389 btrfs_mapping_tree_free(fs_info); 4390 btrfs_close_devices(fs_info->fs_devices); 4391 } 4392 4393 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans, 4394 struct extent_buffer *buf) 4395 { 4396 struct btrfs_fs_info *fs_info = buf->fs_info; 4397 u64 transid = btrfs_header_generation(buf); 4398 4399 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4400 /* 4401 * This is a fast path so only do this check if we have sanity tests 4402 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4403 * outside of the sanity tests. 4404 */ 4405 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4406 return; 4407 #endif 4408 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */ 4409 ASSERT(trans->transid == fs_info->generation); 4410 btrfs_assert_tree_write_locked(buf); 4411 if (unlikely(transid != fs_info->generation)) { 4412 btrfs_abort_transaction(trans, -EUCLEAN); 4413 btrfs_crit(fs_info, 4414 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu", 4415 buf->start, transid, fs_info->generation); 4416 } 4417 set_extent_buffer_dirty(buf); 4418 } 4419 4420 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4421 int flush_delayed) 4422 { 4423 /* 4424 * looks as though older kernels can get into trouble with 4425 * this code, they end up stuck in balance_dirty_pages forever 4426 */ 4427 int ret; 4428 4429 if (current->flags & PF_MEMALLOC) 4430 return; 4431 4432 if (flush_delayed) 4433 btrfs_balance_delayed_items(fs_info); 4434 4435 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4436 BTRFS_DIRTY_METADATA_THRESH, 4437 fs_info->dirty_metadata_batch); 4438 if (ret > 0) { 4439 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4440 } 4441 } 4442 4443 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4444 { 4445 __btrfs_btree_balance_dirty(fs_info, 1); 4446 } 4447 4448 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4449 { 4450 __btrfs_btree_balance_dirty(fs_info, 0); 4451 } 4452 4453 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4454 { 4455 /* cleanup FS via transaction */ 4456 btrfs_cleanup_transaction(fs_info); 4457 4458 mutex_lock(&fs_info->cleaner_mutex); 4459 btrfs_run_delayed_iputs(fs_info); 4460 mutex_unlock(&fs_info->cleaner_mutex); 4461 4462 down_write(&fs_info->cleanup_work_sem); 4463 up_write(&fs_info->cleanup_work_sem); 4464 } 4465 4466 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4467 { 4468 struct btrfs_root *gang[8]; 4469 u64 root_objectid = 0; 4470 int ret; 4471 4472 spin_lock(&fs_info->fs_roots_radix_lock); 4473 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4474 (void **)gang, root_objectid, 4475 ARRAY_SIZE(gang))) != 0) { 4476 int i; 4477 4478 for (i = 0; i < ret; i++) 4479 gang[i] = btrfs_grab_root(gang[i]); 4480 spin_unlock(&fs_info->fs_roots_radix_lock); 4481 4482 for (i = 0; i < ret; i++) { 4483 if (!gang[i]) 4484 continue; 4485 root_objectid = btrfs_root_id(gang[i]); 4486 btrfs_free_log(NULL, gang[i]); 4487 btrfs_put_root(gang[i]); 4488 } 4489 root_objectid++; 4490 spin_lock(&fs_info->fs_roots_radix_lock); 4491 } 4492 spin_unlock(&fs_info->fs_roots_radix_lock); 4493 btrfs_free_log_root_tree(NULL, fs_info); 4494 } 4495 4496 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4497 { 4498 struct btrfs_ordered_extent *ordered; 4499 4500 spin_lock(&root->ordered_extent_lock); 4501 /* 4502 * This will just short circuit the ordered completion stuff which will 4503 * make sure the ordered extent gets properly cleaned up. 4504 */ 4505 list_for_each_entry(ordered, &root->ordered_extents, 4506 root_extent_list) 4507 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4508 spin_unlock(&root->ordered_extent_lock); 4509 } 4510 4511 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4512 { 4513 struct btrfs_root *root; 4514 LIST_HEAD(splice); 4515 4516 spin_lock(&fs_info->ordered_root_lock); 4517 list_splice_init(&fs_info->ordered_roots, &splice); 4518 while (!list_empty(&splice)) { 4519 root = list_first_entry(&splice, struct btrfs_root, 4520 ordered_root); 4521 list_move_tail(&root->ordered_root, 4522 &fs_info->ordered_roots); 4523 4524 spin_unlock(&fs_info->ordered_root_lock); 4525 btrfs_destroy_ordered_extents(root); 4526 4527 cond_resched(); 4528 spin_lock(&fs_info->ordered_root_lock); 4529 } 4530 spin_unlock(&fs_info->ordered_root_lock); 4531 4532 /* 4533 * We need this here because if we've been flipped read-only we won't 4534 * get sync() from the umount, so we need to make sure any ordered 4535 * extents that haven't had their dirty pages IO start writeout yet 4536 * actually get run and error out properly. 4537 */ 4538 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL); 4539 } 4540 4541 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4542 { 4543 struct btrfs_inode *btrfs_inode; 4544 LIST_HEAD(splice); 4545 4546 spin_lock(&root->delalloc_lock); 4547 list_splice_init(&root->delalloc_inodes, &splice); 4548 4549 while (!list_empty(&splice)) { 4550 struct inode *inode = NULL; 4551 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4552 delalloc_inodes); 4553 btrfs_del_delalloc_inode(btrfs_inode); 4554 spin_unlock(&root->delalloc_lock); 4555 4556 /* 4557 * Make sure we get a live inode and that it'll not disappear 4558 * meanwhile. 4559 */ 4560 inode = igrab(&btrfs_inode->vfs_inode); 4561 if (inode) { 4562 unsigned int nofs_flag; 4563 4564 nofs_flag = memalloc_nofs_save(); 4565 invalidate_inode_pages2(inode->i_mapping); 4566 memalloc_nofs_restore(nofs_flag); 4567 iput(inode); 4568 } 4569 spin_lock(&root->delalloc_lock); 4570 } 4571 spin_unlock(&root->delalloc_lock); 4572 } 4573 4574 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4575 { 4576 struct btrfs_root *root; 4577 LIST_HEAD(splice); 4578 4579 spin_lock(&fs_info->delalloc_root_lock); 4580 list_splice_init(&fs_info->delalloc_roots, &splice); 4581 while (!list_empty(&splice)) { 4582 root = list_first_entry(&splice, struct btrfs_root, 4583 delalloc_root); 4584 root = btrfs_grab_root(root); 4585 BUG_ON(!root); 4586 spin_unlock(&fs_info->delalloc_root_lock); 4587 4588 btrfs_destroy_delalloc_inodes(root); 4589 btrfs_put_root(root); 4590 4591 spin_lock(&fs_info->delalloc_root_lock); 4592 } 4593 spin_unlock(&fs_info->delalloc_root_lock); 4594 } 4595 4596 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4597 struct extent_io_tree *dirty_pages, 4598 int mark) 4599 { 4600 struct extent_buffer *eb; 4601 u64 start = 0; 4602 u64 end; 4603 4604 while (find_first_extent_bit(dirty_pages, start, &start, &end, 4605 mark, NULL)) { 4606 clear_extent_bits(dirty_pages, start, end, mark); 4607 while (start <= end) { 4608 eb = find_extent_buffer(fs_info, start); 4609 start += fs_info->nodesize; 4610 if (!eb) 4611 continue; 4612 4613 btrfs_tree_lock(eb); 4614 wait_on_extent_buffer_writeback(eb); 4615 btrfs_clear_buffer_dirty(NULL, eb); 4616 btrfs_tree_unlock(eb); 4617 4618 free_extent_buffer_stale(eb); 4619 } 4620 } 4621 } 4622 4623 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4624 struct extent_io_tree *unpin) 4625 { 4626 u64 start; 4627 u64 end; 4628 4629 while (1) { 4630 struct extent_state *cached_state = NULL; 4631 4632 /* 4633 * The btrfs_finish_extent_commit() may get the same range as 4634 * ours between find_first_extent_bit and clear_extent_dirty. 4635 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4636 * the same extent range. 4637 */ 4638 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4639 if (!find_first_extent_bit(unpin, 0, &start, &end, 4640 EXTENT_DIRTY, &cached_state)) { 4641 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4642 break; 4643 } 4644 4645 clear_extent_dirty(unpin, start, end, &cached_state); 4646 free_extent_state(cached_state); 4647 btrfs_error_unpin_extent_range(fs_info, start, end); 4648 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4649 cond_resched(); 4650 } 4651 } 4652 4653 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4654 { 4655 struct inode *inode; 4656 4657 inode = cache->io_ctl.inode; 4658 if (inode) { 4659 unsigned int nofs_flag; 4660 4661 nofs_flag = memalloc_nofs_save(); 4662 invalidate_inode_pages2(inode->i_mapping); 4663 memalloc_nofs_restore(nofs_flag); 4664 4665 BTRFS_I(inode)->generation = 0; 4666 cache->io_ctl.inode = NULL; 4667 iput(inode); 4668 } 4669 ASSERT(cache->io_ctl.pages == NULL); 4670 btrfs_put_block_group(cache); 4671 } 4672 4673 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4674 struct btrfs_fs_info *fs_info) 4675 { 4676 struct btrfs_block_group *cache; 4677 4678 spin_lock(&cur_trans->dirty_bgs_lock); 4679 while (!list_empty(&cur_trans->dirty_bgs)) { 4680 cache = list_first_entry(&cur_trans->dirty_bgs, 4681 struct btrfs_block_group, 4682 dirty_list); 4683 4684 if (!list_empty(&cache->io_list)) { 4685 spin_unlock(&cur_trans->dirty_bgs_lock); 4686 list_del_init(&cache->io_list); 4687 btrfs_cleanup_bg_io(cache); 4688 spin_lock(&cur_trans->dirty_bgs_lock); 4689 } 4690 4691 list_del_init(&cache->dirty_list); 4692 spin_lock(&cache->lock); 4693 cache->disk_cache_state = BTRFS_DC_ERROR; 4694 spin_unlock(&cache->lock); 4695 4696 spin_unlock(&cur_trans->dirty_bgs_lock); 4697 btrfs_put_block_group(cache); 4698 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 4699 spin_lock(&cur_trans->dirty_bgs_lock); 4700 } 4701 spin_unlock(&cur_trans->dirty_bgs_lock); 4702 4703 /* 4704 * Refer to the definition of io_bgs member for details why it's safe 4705 * to use it without any locking 4706 */ 4707 while (!list_empty(&cur_trans->io_bgs)) { 4708 cache = list_first_entry(&cur_trans->io_bgs, 4709 struct btrfs_block_group, 4710 io_list); 4711 4712 list_del_init(&cache->io_list); 4713 spin_lock(&cache->lock); 4714 cache->disk_cache_state = BTRFS_DC_ERROR; 4715 spin_unlock(&cache->lock); 4716 btrfs_cleanup_bg_io(cache); 4717 } 4718 } 4719 4720 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info) 4721 { 4722 struct btrfs_root *gang[8]; 4723 int i; 4724 int ret; 4725 4726 spin_lock(&fs_info->fs_roots_radix_lock); 4727 while (1) { 4728 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 4729 (void **)gang, 0, 4730 ARRAY_SIZE(gang), 4731 BTRFS_ROOT_TRANS_TAG); 4732 if (ret == 0) 4733 break; 4734 for (i = 0; i < ret; i++) { 4735 struct btrfs_root *root = gang[i]; 4736 4737 btrfs_qgroup_free_meta_all_pertrans(root); 4738 radix_tree_tag_clear(&fs_info->fs_roots_radix, 4739 (unsigned long)btrfs_root_id(root), 4740 BTRFS_ROOT_TRANS_TAG); 4741 } 4742 } 4743 spin_unlock(&fs_info->fs_roots_radix_lock); 4744 } 4745 4746 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans) 4747 { 4748 struct btrfs_fs_info *fs_info = cur_trans->fs_info; 4749 struct btrfs_device *dev, *tmp; 4750 4751 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4752 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4753 ASSERT(list_empty(&cur_trans->io_bgs)); 4754 4755 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4756 post_commit_list) { 4757 list_del_init(&dev->post_commit_list); 4758 } 4759 4760 btrfs_destroy_delayed_refs(cur_trans); 4761 4762 cur_trans->state = TRANS_STATE_COMMIT_START; 4763 wake_up(&fs_info->transaction_blocked_wait); 4764 4765 cur_trans->state = TRANS_STATE_UNBLOCKED; 4766 wake_up(&fs_info->transaction_wait); 4767 4768 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4769 EXTENT_DIRTY); 4770 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4771 4772 cur_trans->state =TRANS_STATE_COMPLETED; 4773 wake_up(&cur_trans->commit_wait); 4774 } 4775 4776 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4777 { 4778 struct btrfs_transaction *t; 4779 4780 mutex_lock(&fs_info->transaction_kthread_mutex); 4781 4782 spin_lock(&fs_info->trans_lock); 4783 while (!list_empty(&fs_info->trans_list)) { 4784 t = list_first_entry(&fs_info->trans_list, 4785 struct btrfs_transaction, list); 4786 if (t->state >= TRANS_STATE_COMMIT_PREP) { 4787 refcount_inc(&t->use_count); 4788 spin_unlock(&fs_info->trans_lock); 4789 btrfs_wait_for_commit(fs_info, t->transid); 4790 btrfs_put_transaction(t); 4791 spin_lock(&fs_info->trans_lock); 4792 continue; 4793 } 4794 if (t == fs_info->running_transaction) { 4795 t->state = TRANS_STATE_COMMIT_DOING; 4796 spin_unlock(&fs_info->trans_lock); 4797 /* 4798 * We wait for 0 num_writers since we don't hold a trans 4799 * handle open currently for this transaction. 4800 */ 4801 wait_event(t->writer_wait, 4802 atomic_read(&t->num_writers) == 0); 4803 } else { 4804 spin_unlock(&fs_info->trans_lock); 4805 } 4806 btrfs_cleanup_one_transaction(t); 4807 4808 spin_lock(&fs_info->trans_lock); 4809 if (t == fs_info->running_transaction) 4810 fs_info->running_transaction = NULL; 4811 list_del_init(&t->list); 4812 spin_unlock(&fs_info->trans_lock); 4813 4814 btrfs_put_transaction(t); 4815 trace_btrfs_transaction_commit(fs_info); 4816 spin_lock(&fs_info->trans_lock); 4817 } 4818 spin_unlock(&fs_info->trans_lock); 4819 btrfs_destroy_all_ordered_extents(fs_info); 4820 btrfs_destroy_delayed_inodes(fs_info); 4821 btrfs_assert_delayed_root_empty(fs_info); 4822 btrfs_destroy_all_delalloc_inodes(fs_info); 4823 btrfs_drop_all_logs(fs_info); 4824 btrfs_free_all_qgroup_pertrans(fs_info); 4825 mutex_unlock(&fs_info->transaction_kthread_mutex); 4826 4827 return 0; 4828 } 4829 4830 int btrfs_init_root_free_objectid(struct btrfs_root *root) 4831 { 4832 struct btrfs_path *path; 4833 int ret; 4834 struct extent_buffer *l; 4835 struct btrfs_key search_key; 4836 struct btrfs_key found_key; 4837 int slot; 4838 4839 path = btrfs_alloc_path(); 4840 if (!path) 4841 return -ENOMEM; 4842 4843 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 4844 search_key.type = -1; 4845 search_key.offset = (u64)-1; 4846 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 4847 if (ret < 0) 4848 goto error; 4849 if (ret == 0) { 4850 /* 4851 * Key with offset -1 found, there would have to exist a root 4852 * with such id, but this is out of valid range. 4853 */ 4854 ret = -EUCLEAN; 4855 goto error; 4856 } 4857 if (path->slots[0] > 0) { 4858 slot = path->slots[0] - 1; 4859 l = path->nodes[0]; 4860 btrfs_item_key_to_cpu(l, &found_key, slot); 4861 root->free_objectid = max_t(u64, found_key.objectid + 1, 4862 BTRFS_FIRST_FREE_OBJECTID); 4863 } else { 4864 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 4865 } 4866 ret = 0; 4867 error: 4868 btrfs_free_path(path); 4869 return ret; 4870 } 4871 4872 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 4873 { 4874 int ret; 4875 mutex_lock(&root->objectid_mutex); 4876 4877 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 4878 btrfs_warn(root->fs_info, 4879 "the objectid of root %llu reaches its highest value", 4880 btrfs_root_id(root)); 4881 ret = -ENOSPC; 4882 goto out; 4883 } 4884 4885 *objectid = root->free_objectid++; 4886 ret = 0; 4887 out: 4888 mutex_unlock(&root->objectid_mutex); 4889 return ret; 4890 } 4891