xref: /linux/fs/btrfs/disk-io.c (revision 3b27d13940c3710a1128527c43719cb0bb05d73b)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56 
57 static const struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 				    int read_only);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 				      struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 					struct extent_io_tree *dirty_pages,
68 					int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 				       struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
73 
74 /*
75  * btrfs_end_io_wq structs are used to do processing in task context when an IO
76  * is complete.  This is used during reads to verify checksums, and it is used
77  * by writes to insert metadata for new file extents after IO is complete.
78  */
79 struct btrfs_end_io_wq {
80 	struct bio *bio;
81 	bio_end_io_t *end_io;
82 	void *private;
83 	struct btrfs_fs_info *info;
84 	int error;
85 	enum btrfs_wq_endio_type metadata;
86 	struct list_head list;
87 	struct btrfs_work work;
88 };
89 
90 static struct kmem_cache *btrfs_end_io_wq_cache;
91 
92 int __init btrfs_end_io_wq_init(void)
93 {
94 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95 					sizeof(struct btrfs_end_io_wq),
96 					0,
97 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98 					NULL);
99 	if (!btrfs_end_io_wq_cache)
100 		return -ENOMEM;
101 	return 0;
102 }
103 
104 void btrfs_end_io_wq_exit(void)
105 {
106 	if (btrfs_end_io_wq_cache)
107 		kmem_cache_destroy(btrfs_end_io_wq_cache);
108 }
109 
110 /*
111  * async submit bios are used to offload expensive checksumming
112  * onto the worker threads.  They checksum file and metadata bios
113  * just before they are sent down the IO stack.
114  */
115 struct async_submit_bio {
116 	struct inode *inode;
117 	struct bio *bio;
118 	struct list_head list;
119 	extent_submit_bio_hook_t *submit_bio_start;
120 	extent_submit_bio_hook_t *submit_bio_done;
121 	int rw;
122 	int mirror_num;
123 	unsigned long bio_flags;
124 	/*
125 	 * bio_offset is optional, can be used if the pages in the bio
126 	 * can't tell us where in the file the bio should go
127 	 */
128 	u64 bio_offset;
129 	struct btrfs_work work;
130 	int error;
131 };
132 
133 /*
134  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
135  * eb, the lockdep key is determined by the btrfs_root it belongs to and
136  * the level the eb occupies in the tree.
137  *
138  * Different roots are used for different purposes and may nest inside each
139  * other and they require separate keysets.  As lockdep keys should be
140  * static, assign keysets according to the purpose of the root as indicated
141  * by btrfs_root->objectid.  This ensures that all special purpose roots
142  * have separate keysets.
143  *
144  * Lock-nesting across peer nodes is always done with the immediate parent
145  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
146  * subclass to avoid triggering lockdep warning in such cases.
147  *
148  * The key is set by the readpage_end_io_hook after the buffer has passed
149  * csum validation but before the pages are unlocked.  It is also set by
150  * btrfs_init_new_buffer on freshly allocated blocks.
151  *
152  * We also add a check to make sure the highest level of the tree is the
153  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
154  * needs update as well.
155  */
156 #ifdef CONFIG_DEBUG_LOCK_ALLOC
157 # if BTRFS_MAX_LEVEL != 8
158 #  error
159 # endif
160 
161 static struct btrfs_lockdep_keyset {
162 	u64			id;		/* root objectid */
163 	const char		*name_stem;	/* lock name stem */
164 	char			names[BTRFS_MAX_LEVEL + 1][20];
165 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
166 } btrfs_lockdep_keysets[] = {
167 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
168 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
169 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
170 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
171 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
172 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
173 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
174 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
175 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
176 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
177 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
178 	{ .id = 0,				.name_stem = "tree"	},
179 };
180 
181 void __init btrfs_init_lockdep(void)
182 {
183 	int i, j;
184 
185 	/* initialize lockdep class names */
186 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188 
189 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190 			snprintf(ks->names[j], sizeof(ks->names[j]),
191 				 "btrfs-%s-%02d", ks->name_stem, j);
192 	}
193 }
194 
195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196 				    int level)
197 {
198 	struct btrfs_lockdep_keyset *ks;
199 
200 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
201 
202 	/* find the matching keyset, id 0 is the default entry */
203 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204 		if (ks->id == objectid)
205 			break;
206 
207 	lockdep_set_class_and_name(&eb->lock,
208 				   &ks->keys[level], ks->names[level]);
209 }
210 
211 #endif
212 
213 /*
214  * extents on the btree inode are pretty simple, there's one extent
215  * that covers the entire device
216  */
217 static struct extent_map *btree_get_extent(struct inode *inode,
218 		struct page *page, size_t pg_offset, u64 start, u64 len,
219 		int create)
220 {
221 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222 	struct extent_map *em;
223 	int ret;
224 
225 	read_lock(&em_tree->lock);
226 	em = lookup_extent_mapping(em_tree, start, len);
227 	if (em) {
228 		em->bdev =
229 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
230 		read_unlock(&em_tree->lock);
231 		goto out;
232 	}
233 	read_unlock(&em_tree->lock);
234 
235 	em = alloc_extent_map();
236 	if (!em) {
237 		em = ERR_PTR(-ENOMEM);
238 		goto out;
239 	}
240 	em->start = 0;
241 	em->len = (u64)-1;
242 	em->block_len = (u64)-1;
243 	em->block_start = 0;
244 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
245 
246 	write_lock(&em_tree->lock);
247 	ret = add_extent_mapping(em_tree, em, 0);
248 	if (ret == -EEXIST) {
249 		free_extent_map(em);
250 		em = lookup_extent_mapping(em_tree, start, len);
251 		if (!em)
252 			em = ERR_PTR(-EIO);
253 	} else if (ret) {
254 		free_extent_map(em);
255 		em = ERR_PTR(ret);
256 	}
257 	write_unlock(&em_tree->lock);
258 
259 out:
260 	return em;
261 }
262 
263 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
264 {
265 	return btrfs_crc32c(seed, data, len);
266 }
267 
268 void btrfs_csum_final(u32 crc, char *result)
269 {
270 	put_unaligned_le32(~crc, result);
271 }
272 
273 /*
274  * compute the csum for a btree block, and either verify it or write it
275  * into the csum field of the block.
276  */
277 static int csum_tree_block(struct btrfs_fs_info *fs_info,
278 			   struct extent_buffer *buf,
279 			   int verify)
280 {
281 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
282 	char *result = NULL;
283 	unsigned long len;
284 	unsigned long cur_len;
285 	unsigned long offset = BTRFS_CSUM_SIZE;
286 	char *kaddr;
287 	unsigned long map_start;
288 	unsigned long map_len;
289 	int err;
290 	u32 crc = ~(u32)0;
291 	unsigned long inline_result;
292 
293 	len = buf->len - offset;
294 	while (len > 0) {
295 		err = map_private_extent_buffer(buf, offset, 32,
296 					&kaddr, &map_start, &map_len);
297 		if (err)
298 			return 1;
299 		cur_len = min(len, map_len - (offset - map_start));
300 		crc = btrfs_csum_data(kaddr + offset - map_start,
301 				      crc, cur_len);
302 		len -= cur_len;
303 		offset += cur_len;
304 	}
305 	if (csum_size > sizeof(inline_result)) {
306 		result = kzalloc(csum_size, GFP_NOFS);
307 		if (!result)
308 			return 1;
309 	} else {
310 		result = (char *)&inline_result;
311 	}
312 
313 	btrfs_csum_final(crc, result);
314 
315 	if (verify) {
316 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
317 			u32 val;
318 			u32 found = 0;
319 			memcpy(&found, result, csum_size);
320 
321 			read_extent_buffer(buf, &val, 0, csum_size);
322 			printk_ratelimited(KERN_WARNING
323 				"BTRFS: %s checksum verify failed on %llu wanted %X found %X "
324 				"level %d\n",
325 				fs_info->sb->s_id, buf->start,
326 				val, found, btrfs_header_level(buf));
327 			if (result != (char *)&inline_result)
328 				kfree(result);
329 			return 1;
330 		}
331 	} else {
332 		write_extent_buffer(buf, result, 0, csum_size);
333 	}
334 	if (result != (char *)&inline_result)
335 		kfree(result);
336 	return 0;
337 }
338 
339 /*
340  * we can't consider a given block up to date unless the transid of the
341  * block matches the transid in the parent node's pointer.  This is how we
342  * detect blocks that either didn't get written at all or got written
343  * in the wrong place.
344  */
345 static int verify_parent_transid(struct extent_io_tree *io_tree,
346 				 struct extent_buffer *eb, u64 parent_transid,
347 				 int atomic)
348 {
349 	struct extent_state *cached_state = NULL;
350 	int ret;
351 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
352 
353 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
354 		return 0;
355 
356 	if (atomic)
357 		return -EAGAIN;
358 
359 	if (need_lock) {
360 		btrfs_tree_read_lock(eb);
361 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
362 	}
363 
364 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
365 			 0, &cached_state);
366 	if (extent_buffer_uptodate(eb) &&
367 	    btrfs_header_generation(eb) == parent_transid) {
368 		ret = 0;
369 		goto out;
370 	}
371 	printk_ratelimited(KERN_ERR
372 	    "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
373 			eb->fs_info->sb->s_id, eb->start,
374 			parent_transid, btrfs_header_generation(eb));
375 	ret = 1;
376 
377 	/*
378 	 * Things reading via commit roots that don't have normal protection,
379 	 * like send, can have a really old block in cache that may point at a
380 	 * block that has been free'd and re-allocated.  So don't clear uptodate
381 	 * if we find an eb that is under IO (dirty/writeback) because we could
382 	 * end up reading in the stale data and then writing it back out and
383 	 * making everybody very sad.
384 	 */
385 	if (!extent_buffer_under_io(eb))
386 		clear_extent_buffer_uptodate(eb);
387 out:
388 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
389 			     &cached_state, GFP_NOFS);
390 	if (need_lock)
391 		btrfs_tree_read_unlock_blocking(eb);
392 	return ret;
393 }
394 
395 /*
396  * Return 0 if the superblock checksum type matches the checksum value of that
397  * algorithm. Pass the raw disk superblock data.
398  */
399 static int btrfs_check_super_csum(char *raw_disk_sb)
400 {
401 	struct btrfs_super_block *disk_sb =
402 		(struct btrfs_super_block *)raw_disk_sb;
403 	u16 csum_type = btrfs_super_csum_type(disk_sb);
404 	int ret = 0;
405 
406 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
407 		u32 crc = ~(u32)0;
408 		const int csum_size = sizeof(crc);
409 		char result[csum_size];
410 
411 		/*
412 		 * The super_block structure does not span the whole
413 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
414 		 * is filled with zeros and is included in the checkum.
415 		 */
416 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
417 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
418 		btrfs_csum_final(crc, result);
419 
420 		if (memcmp(raw_disk_sb, result, csum_size))
421 			ret = 1;
422 	}
423 
424 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
425 		printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
426 				csum_type);
427 		ret = 1;
428 	}
429 
430 	return ret;
431 }
432 
433 /*
434  * helper to read a given tree block, doing retries as required when
435  * the checksums don't match and we have alternate mirrors to try.
436  */
437 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
438 					  struct extent_buffer *eb,
439 					  u64 start, u64 parent_transid)
440 {
441 	struct extent_io_tree *io_tree;
442 	int failed = 0;
443 	int ret;
444 	int num_copies = 0;
445 	int mirror_num = 0;
446 	int failed_mirror = 0;
447 
448 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
449 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
450 	while (1) {
451 		ret = read_extent_buffer_pages(io_tree, eb, start,
452 					       WAIT_COMPLETE,
453 					       btree_get_extent, mirror_num);
454 		if (!ret) {
455 			if (!verify_parent_transid(io_tree, eb,
456 						   parent_transid, 0))
457 				break;
458 			else
459 				ret = -EIO;
460 		}
461 
462 		/*
463 		 * This buffer's crc is fine, but its contents are corrupted, so
464 		 * there is no reason to read the other copies, they won't be
465 		 * any less wrong.
466 		 */
467 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
468 			break;
469 
470 		num_copies = btrfs_num_copies(root->fs_info,
471 					      eb->start, eb->len);
472 		if (num_copies == 1)
473 			break;
474 
475 		if (!failed_mirror) {
476 			failed = 1;
477 			failed_mirror = eb->read_mirror;
478 		}
479 
480 		mirror_num++;
481 		if (mirror_num == failed_mirror)
482 			mirror_num++;
483 
484 		if (mirror_num > num_copies)
485 			break;
486 	}
487 
488 	if (failed && !ret && failed_mirror)
489 		repair_eb_io_failure(root, eb, failed_mirror);
490 
491 	return ret;
492 }
493 
494 /*
495  * checksum a dirty tree block before IO.  This has extra checks to make sure
496  * we only fill in the checksum field in the first page of a multi-page block
497  */
498 
499 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
500 {
501 	u64 start = page_offset(page);
502 	u64 found_start;
503 	struct extent_buffer *eb;
504 
505 	eb = (struct extent_buffer *)page->private;
506 	if (page != eb->pages[0])
507 		return 0;
508 	found_start = btrfs_header_bytenr(eb);
509 	if (WARN_ON(found_start != start || !PageUptodate(page)))
510 		return 0;
511 	csum_tree_block(fs_info, eb, 0);
512 	return 0;
513 }
514 
515 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
516 				 struct extent_buffer *eb)
517 {
518 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
519 	u8 fsid[BTRFS_UUID_SIZE];
520 	int ret = 1;
521 
522 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
523 	while (fs_devices) {
524 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
525 			ret = 0;
526 			break;
527 		}
528 		fs_devices = fs_devices->seed;
529 	}
530 	return ret;
531 }
532 
533 #define CORRUPT(reason, eb, root, slot)				\
534 	btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"	\
535 		   "root=%llu, slot=%d", reason,			\
536 	       btrfs_header_bytenr(eb),	root->objectid, slot)
537 
538 static noinline int check_leaf(struct btrfs_root *root,
539 			       struct extent_buffer *leaf)
540 {
541 	struct btrfs_key key;
542 	struct btrfs_key leaf_key;
543 	u32 nritems = btrfs_header_nritems(leaf);
544 	int slot;
545 
546 	if (nritems == 0)
547 		return 0;
548 
549 	/* Check the 0 item */
550 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
551 	    BTRFS_LEAF_DATA_SIZE(root)) {
552 		CORRUPT("invalid item offset size pair", leaf, root, 0);
553 		return -EIO;
554 	}
555 
556 	/*
557 	 * Check to make sure each items keys are in the correct order and their
558 	 * offsets make sense.  We only have to loop through nritems-1 because
559 	 * we check the current slot against the next slot, which verifies the
560 	 * next slot's offset+size makes sense and that the current's slot
561 	 * offset is correct.
562 	 */
563 	for (slot = 0; slot < nritems - 1; slot++) {
564 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
565 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
566 
567 		/* Make sure the keys are in the right order */
568 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
569 			CORRUPT("bad key order", leaf, root, slot);
570 			return -EIO;
571 		}
572 
573 		/*
574 		 * Make sure the offset and ends are right, remember that the
575 		 * item data starts at the end of the leaf and grows towards the
576 		 * front.
577 		 */
578 		if (btrfs_item_offset_nr(leaf, slot) !=
579 			btrfs_item_end_nr(leaf, slot + 1)) {
580 			CORRUPT("slot offset bad", leaf, root, slot);
581 			return -EIO;
582 		}
583 
584 		/*
585 		 * Check to make sure that we don't point outside of the leaf,
586 		 * just incase all the items are consistent to eachother, but
587 		 * all point outside of the leaf.
588 		 */
589 		if (btrfs_item_end_nr(leaf, slot) >
590 		    BTRFS_LEAF_DATA_SIZE(root)) {
591 			CORRUPT("slot end outside of leaf", leaf, root, slot);
592 			return -EIO;
593 		}
594 	}
595 
596 	return 0;
597 }
598 
599 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
600 				      u64 phy_offset, struct page *page,
601 				      u64 start, u64 end, int mirror)
602 {
603 	u64 found_start;
604 	int found_level;
605 	struct extent_buffer *eb;
606 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
607 	int ret = 0;
608 	int reads_done;
609 
610 	if (!page->private)
611 		goto out;
612 
613 	eb = (struct extent_buffer *)page->private;
614 
615 	/* the pending IO might have been the only thing that kept this buffer
616 	 * in memory.  Make sure we have a ref for all this other checks
617 	 */
618 	extent_buffer_get(eb);
619 
620 	reads_done = atomic_dec_and_test(&eb->io_pages);
621 	if (!reads_done)
622 		goto err;
623 
624 	eb->read_mirror = mirror;
625 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
626 		ret = -EIO;
627 		goto err;
628 	}
629 
630 	found_start = btrfs_header_bytenr(eb);
631 	if (found_start != eb->start) {
632 		printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start "
633 			       "%llu %llu\n",
634 			       eb->fs_info->sb->s_id, found_start, eb->start);
635 		ret = -EIO;
636 		goto err;
637 	}
638 	if (check_tree_block_fsid(root->fs_info, eb)) {
639 		printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n",
640 			       eb->fs_info->sb->s_id, eb->start);
641 		ret = -EIO;
642 		goto err;
643 	}
644 	found_level = btrfs_header_level(eb);
645 	if (found_level >= BTRFS_MAX_LEVEL) {
646 		btrfs_err(root->fs_info, "bad tree block level %d",
647 			   (int)btrfs_header_level(eb));
648 		ret = -EIO;
649 		goto err;
650 	}
651 
652 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
653 				       eb, found_level);
654 
655 	ret = csum_tree_block(root->fs_info, eb, 1);
656 	if (ret) {
657 		ret = -EIO;
658 		goto err;
659 	}
660 
661 	/*
662 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
663 	 * that we don't try and read the other copies of this block, just
664 	 * return -EIO.
665 	 */
666 	if (found_level == 0 && check_leaf(root, eb)) {
667 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
668 		ret = -EIO;
669 	}
670 
671 	if (!ret)
672 		set_extent_buffer_uptodate(eb);
673 err:
674 	if (reads_done &&
675 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
676 		btree_readahead_hook(root, eb, eb->start, ret);
677 
678 	if (ret) {
679 		/*
680 		 * our io error hook is going to dec the io pages
681 		 * again, we have to make sure it has something
682 		 * to decrement
683 		 */
684 		atomic_inc(&eb->io_pages);
685 		clear_extent_buffer_uptodate(eb);
686 	}
687 	free_extent_buffer(eb);
688 out:
689 	return ret;
690 }
691 
692 static int btree_io_failed_hook(struct page *page, int failed_mirror)
693 {
694 	struct extent_buffer *eb;
695 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
696 
697 	eb = (struct extent_buffer *)page->private;
698 	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
699 	eb->read_mirror = failed_mirror;
700 	atomic_dec(&eb->io_pages);
701 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
702 		btree_readahead_hook(root, eb, eb->start, -EIO);
703 	return -EIO;	/* we fixed nothing */
704 }
705 
706 static void end_workqueue_bio(struct bio *bio, int err)
707 {
708 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
709 	struct btrfs_fs_info *fs_info;
710 	struct btrfs_workqueue *wq;
711 	btrfs_work_func_t func;
712 
713 	fs_info = end_io_wq->info;
714 	end_io_wq->error = err;
715 
716 	if (bio->bi_rw & REQ_WRITE) {
717 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
718 			wq = fs_info->endio_meta_write_workers;
719 			func = btrfs_endio_meta_write_helper;
720 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
721 			wq = fs_info->endio_freespace_worker;
722 			func = btrfs_freespace_write_helper;
723 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
724 			wq = fs_info->endio_raid56_workers;
725 			func = btrfs_endio_raid56_helper;
726 		} else {
727 			wq = fs_info->endio_write_workers;
728 			func = btrfs_endio_write_helper;
729 		}
730 	} else {
731 		if (unlikely(end_io_wq->metadata ==
732 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
733 			wq = fs_info->endio_repair_workers;
734 			func = btrfs_endio_repair_helper;
735 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
736 			wq = fs_info->endio_raid56_workers;
737 			func = btrfs_endio_raid56_helper;
738 		} else if (end_io_wq->metadata) {
739 			wq = fs_info->endio_meta_workers;
740 			func = btrfs_endio_meta_helper;
741 		} else {
742 			wq = fs_info->endio_workers;
743 			func = btrfs_endio_helper;
744 		}
745 	}
746 
747 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
748 	btrfs_queue_work(wq, &end_io_wq->work);
749 }
750 
751 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
752 			enum btrfs_wq_endio_type metadata)
753 {
754 	struct btrfs_end_io_wq *end_io_wq;
755 
756 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
757 	if (!end_io_wq)
758 		return -ENOMEM;
759 
760 	end_io_wq->private = bio->bi_private;
761 	end_io_wq->end_io = bio->bi_end_io;
762 	end_io_wq->info = info;
763 	end_io_wq->error = 0;
764 	end_io_wq->bio = bio;
765 	end_io_wq->metadata = metadata;
766 
767 	bio->bi_private = end_io_wq;
768 	bio->bi_end_io = end_workqueue_bio;
769 	return 0;
770 }
771 
772 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
773 {
774 	unsigned long limit = min_t(unsigned long,
775 				    info->thread_pool_size,
776 				    info->fs_devices->open_devices);
777 	return 256 * limit;
778 }
779 
780 static void run_one_async_start(struct btrfs_work *work)
781 {
782 	struct async_submit_bio *async;
783 	int ret;
784 
785 	async = container_of(work, struct  async_submit_bio, work);
786 	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
787 				      async->mirror_num, async->bio_flags,
788 				      async->bio_offset);
789 	if (ret)
790 		async->error = ret;
791 }
792 
793 static void run_one_async_done(struct btrfs_work *work)
794 {
795 	struct btrfs_fs_info *fs_info;
796 	struct async_submit_bio *async;
797 	int limit;
798 
799 	async = container_of(work, struct  async_submit_bio, work);
800 	fs_info = BTRFS_I(async->inode)->root->fs_info;
801 
802 	limit = btrfs_async_submit_limit(fs_info);
803 	limit = limit * 2 / 3;
804 
805 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
806 	    waitqueue_active(&fs_info->async_submit_wait))
807 		wake_up(&fs_info->async_submit_wait);
808 
809 	/* If an error occured we just want to clean up the bio and move on */
810 	if (async->error) {
811 		bio_endio(async->bio, async->error);
812 		return;
813 	}
814 
815 	async->submit_bio_done(async->inode, async->rw, async->bio,
816 			       async->mirror_num, async->bio_flags,
817 			       async->bio_offset);
818 }
819 
820 static void run_one_async_free(struct btrfs_work *work)
821 {
822 	struct async_submit_bio *async;
823 
824 	async = container_of(work, struct  async_submit_bio, work);
825 	kfree(async);
826 }
827 
828 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
829 			int rw, struct bio *bio, int mirror_num,
830 			unsigned long bio_flags,
831 			u64 bio_offset,
832 			extent_submit_bio_hook_t *submit_bio_start,
833 			extent_submit_bio_hook_t *submit_bio_done)
834 {
835 	struct async_submit_bio *async;
836 
837 	async = kmalloc(sizeof(*async), GFP_NOFS);
838 	if (!async)
839 		return -ENOMEM;
840 
841 	async->inode = inode;
842 	async->rw = rw;
843 	async->bio = bio;
844 	async->mirror_num = mirror_num;
845 	async->submit_bio_start = submit_bio_start;
846 	async->submit_bio_done = submit_bio_done;
847 
848 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
849 			run_one_async_done, run_one_async_free);
850 
851 	async->bio_flags = bio_flags;
852 	async->bio_offset = bio_offset;
853 
854 	async->error = 0;
855 
856 	atomic_inc(&fs_info->nr_async_submits);
857 
858 	if (rw & REQ_SYNC)
859 		btrfs_set_work_high_priority(&async->work);
860 
861 	btrfs_queue_work(fs_info->workers, &async->work);
862 
863 	while (atomic_read(&fs_info->async_submit_draining) &&
864 	      atomic_read(&fs_info->nr_async_submits)) {
865 		wait_event(fs_info->async_submit_wait,
866 			   (atomic_read(&fs_info->nr_async_submits) == 0));
867 	}
868 
869 	return 0;
870 }
871 
872 static int btree_csum_one_bio(struct bio *bio)
873 {
874 	struct bio_vec *bvec;
875 	struct btrfs_root *root;
876 	int i, ret = 0;
877 
878 	bio_for_each_segment_all(bvec, bio, i) {
879 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
880 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
881 		if (ret)
882 			break;
883 	}
884 
885 	return ret;
886 }
887 
888 static int __btree_submit_bio_start(struct inode *inode, int rw,
889 				    struct bio *bio, int mirror_num,
890 				    unsigned long bio_flags,
891 				    u64 bio_offset)
892 {
893 	/*
894 	 * when we're called for a write, we're already in the async
895 	 * submission context.  Just jump into btrfs_map_bio
896 	 */
897 	return btree_csum_one_bio(bio);
898 }
899 
900 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
901 				 int mirror_num, unsigned long bio_flags,
902 				 u64 bio_offset)
903 {
904 	int ret;
905 
906 	/*
907 	 * when we're called for a write, we're already in the async
908 	 * submission context.  Just jump into btrfs_map_bio
909 	 */
910 	ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
911 	if (ret)
912 		bio_endio(bio, ret);
913 	return ret;
914 }
915 
916 static int check_async_write(struct inode *inode, unsigned long bio_flags)
917 {
918 	if (bio_flags & EXTENT_BIO_TREE_LOG)
919 		return 0;
920 #ifdef CONFIG_X86
921 	if (cpu_has_xmm4_2)
922 		return 0;
923 #endif
924 	return 1;
925 }
926 
927 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
928 				 int mirror_num, unsigned long bio_flags,
929 				 u64 bio_offset)
930 {
931 	int async = check_async_write(inode, bio_flags);
932 	int ret;
933 
934 	if (!(rw & REQ_WRITE)) {
935 		/*
936 		 * called for a read, do the setup so that checksum validation
937 		 * can happen in the async kernel threads
938 		 */
939 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
940 					  bio, BTRFS_WQ_ENDIO_METADATA);
941 		if (ret)
942 			goto out_w_error;
943 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
944 				    mirror_num, 0);
945 	} else if (!async) {
946 		ret = btree_csum_one_bio(bio);
947 		if (ret)
948 			goto out_w_error;
949 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
950 				    mirror_num, 0);
951 	} else {
952 		/*
953 		 * kthread helpers are used to submit writes so that
954 		 * checksumming can happen in parallel across all CPUs
955 		 */
956 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
957 					  inode, rw, bio, mirror_num, 0,
958 					  bio_offset,
959 					  __btree_submit_bio_start,
960 					  __btree_submit_bio_done);
961 	}
962 
963 	if (ret) {
964 out_w_error:
965 		bio_endio(bio, ret);
966 	}
967 	return ret;
968 }
969 
970 #ifdef CONFIG_MIGRATION
971 static int btree_migratepage(struct address_space *mapping,
972 			struct page *newpage, struct page *page,
973 			enum migrate_mode mode)
974 {
975 	/*
976 	 * we can't safely write a btree page from here,
977 	 * we haven't done the locking hook
978 	 */
979 	if (PageDirty(page))
980 		return -EAGAIN;
981 	/*
982 	 * Buffers may be managed in a filesystem specific way.
983 	 * We must have no buffers or drop them.
984 	 */
985 	if (page_has_private(page) &&
986 	    !try_to_release_page(page, GFP_KERNEL))
987 		return -EAGAIN;
988 	return migrate_page(mapping, newpage, page, mode);
989 }
990 #endif
991 
992 
993 static int btree_writepages(struct address_space *mapping,
994 			    struct writeback_control *wbc)
995 {
996 	struct btrfs_fs_info *fs_info;
997 	int ret;
998 
999 	if (wbc->sync_mode == WB_SYNC_NONE) {
1000 
1001 		if (wbc->for_kupdate)
1002 			return 0;
1003 
1004 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
1005 		/* this is a bit racy, but that's ok */
1006 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1007 					     BTRFS_DIRTY_METADATA_THRESH);
1008 		if (ret < 0)
1009 			return 0;
1010 	}
1011 	return btree_write_cache_pages(mapping, wbc);
1012 }
1013 
1014 static int btree_readpage(struct file *file, struct page *page)
1015 {
1016 	struct extent_io_tree *tree;
1017 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1018 	return extent_read_full_page(tree, page, btree_get_extent, 0);
1019 }
1020 
1021 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1022 {
1023 	if (PageWriteback(page) || PageDirty(page))
1024 		return 0;
1025 
1026 	return try_release_extent_buffer(page);
1027 }
1028 
1029 static void btree_invalidatepage(struct page *page, unsigned int offset,
1030 				 unsigned int length)
1031 {
1032 	struct extent_io_tree *tree;
1033 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1034 	extent_invalidatepage(tree, page, offset);
1035 	btree_releasepage(page, GFP_NOFS);
1036 	if (PagePrivate(page)) {
1037 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1038 			   "page private not zero on page %llu",
1039 			   (unsigned long long)page_offset(page));
1040 		ClearPagePrivate(page);
1041 		set_page_private(page, 0);
1042 		page_cache_release(page);
1043 	}
1044 }
1045 
1046 static int btree_set_page_dirty(struct page *page)
1047 {
1048 #ifdef DEBUG
1049 	struct extent_buffer *eb;
1050 
1051 	BUG_ON(!PagePrivate(page));
1052 	eb = (struct extent_buffer *)page->private;
1053 	BUG_ON(!eb);
1054 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1055 	BUG_ON(!atomic_read(&eb->refs));
1056 	btrfs_assert_tree_locked(eb);
1057 #endif
1058 	return __set_page_dirty_nobuffers(page);
1059 }
1060 
1061 static const struct address_space_operations btree_aops = {
1062 	.readpage	= btree_readpage,
1063 	.writepages	= btree_writepages,
1064 	.releasepage	= btree_releasepage,
1065 	.invalidatepage = btree_invalidatepage,
1066 #ifdef CONFIG_MIGRATION
1067 	.migratepage	= btree_migratepage,
1068 #endif
1069 	.set_page_dirty = btree_set_page_dirty,
1070 };
1071 
1072 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1073 {
1074 	struct extent_buffer *buf = NULL;
1075 	struct inode *btree_inode = root->fs_info->btree_inode;
1076 
1077 	buf = btrfs_find_create_tree_block(root, bytenr);
1078 	if (!buf)
1079 		return;
1080 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1081 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1082 	free_extent_buffer(buf);
1083 }
1084 
1085 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1086 			 int mirror_num, struct extent_buffer **eb)
1087 {
1088 	struct extent_buffer *buf = NULL;
1089 	struct inode *btree_inode = root->fs_info->btree_inode;
1090 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1091 	int ret;
1092 
1093 	buf = btrfs_find_create_tree_block(root, bytenr);
1094 	if (!buf)
1095 		return 0;
1096 
1097 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1098 
1099 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1100 				       btree_get_extent, mirror_num);
1101 	if (ret) {
1102 		free_extent_buffer(buf);
1103 		return ret;
1104 	}
1105 
1106 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1107 		free_extent_buffer(buf);
1108 		return -EIO;
1109 	} else if (extent_buffer_uptodate(buf)) {
1110 		*eb = buf;
1111 	} else {
1112 		free_extent_buffer(buf);
1113 	}
1114 	return 0;
1115 }
1116 
1117 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1118 					    u64 bytenr)
1119 {
1120 	return find_extent_buffer(fs_info, bytenr);
1121 }
1122 
1123 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1124 						 u64 bytenr)
1125 {
1126 	if (btrfs_test_is_dummy_root(root))
1127 		return alloc_test_extent_buffer(root->fs_info, bytenr);
1128 	return alloc_extent_buffer(root->fs_info, bytenr);
1129 }
1130 
1131 
1132 int btrfs_write_tree_block(struct extent_buffer *buf)
1133 {
1134 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1135 					buf->start + buf->len - 1);
1136 }
1137 
1138 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1139 {
1140 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1141 				       buf->start, buf->start + buf->len - 1);
1142 }
1143 
1144 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1145 				      u64 parent_transid)
1146 {
1147 	struct extent_buffer *buf = NULL;
1148 	int ret;
1149 
1150 	buf = btrfs_find_create_tree_block(root, bytenr);
1151 	if (!buf)
1152 		return ERR_PTR(-ENOMEM);
1153 
1154 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1155 	if (ret) {
1156 		free_extent_buffer(buf);
1157 		return ERR_PTR(ret);
1158 	}
1159 	return buf;
1160 
1161 }
1162 
1163 void clean_tree_block(struct btrfs_trans_handle *trans,
1164 		      struct btrfs_fs_info *fs_info,
1165 		      struct extent_buffer *buf)
1166 {
1167 	if (btrfs_header_generation(buf) ==
1168 	    fs_info->running_transaction->transid) {
1169 		btrfs_assert_tree_locked(buf);
1170 
1171 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1172 			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1173 					     -buf->len,
1174 					     fs_info->dirty_metadata_batch);
1175 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1176 			btrfs_set_lock_blocking(buf);
1177 			clear_extent_buffer_dirty(buf);
1178 		}
1179 	}
1180 }
1181 
1182 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1183 {
1184 	struct btrfs_subvolume_writers *writers;
1185 	int ret;
1186 
1187 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1188 	if (!writers)
1189 		return ERR_PTR(-ENOMEM);
1190 
1191 	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1192 	if (ret < 0) {
1193 		kfree(writers);
1194 		return ERR_PTR(ret);
1195 	}
1196 
1197 	init_waitqueue_head(&writers->wait);
1198 	return writers;
1199 }
1200 
1201 static void
1202 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1203 {
1204 	percpu_counter_destroy(&writers->counter);
1205 	kfree(writers);
1206 }
1207 
1208 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1209 			 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1210 			 u64 objectid)
1211 {
1212 	root->node = NULL;
1213 	root->commit_root = NULL;
1214 	root->sectorsize = sectorsize;
1215 	root->nodesize = nodesize;
1216 	root->stripesize = stripesize;
1217 	root->state = 0;
1218 	root->orphan_cleanup_state = 0;
1219 
1220 	root->objectid = objectid;
1221 	root->last_trans = 0;
1222 	root->highest_objectid = 0;
1223 	root->nr_delalloc_inodes = 0;
1224 	root->nr_ordered_extents = 0;
1225 	root->name = NULL;
1226 	root->inode_tree = RB_ROOT;
1227 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1228 	root->block_rsv = NULL;
1229 	root->orphan_block_rsv = NULL;
1230 
1231 	INIT_LIST_HEAD(&root->dirty_list);
1232 	INIT_LIST_HEAD(&root->root_list);
1233 	INIT_LIST_HEAD(&root->delalloc_inodes);
1234 	INIT_LIST_HEAD(&root->delalloc_root);
1235 	INIT_LIST_HEAD(&root->ordered_extents);
1236 	INIT_LIST_HEAD(&root->ordered_root);
1237 	INIT_LIST_HEAD(&root->logged_list[0]);
1238 	INIT_LIST_HEAD(&root->logged_list[1]);
1239 	spin_lock_init(&root->orphan_lock);
1240 	spin_lock_init(&root->inode_lock);
1241 	spin_lock_init(&root->delalloc_lock);
1242 	spin_lock_init(&root->ordered_extent_lock);
1243 	spin_lock_init(&root->accounting_lock);
1244 	spin_lock_init(&root->log_extents_lock[0]);
1245 	spin_lock_init(&root->log_extents_lock[1]);
1246 	mutex_init(&root->objectid_mutex);
1247 	mutex_init(&root->log_mutex);
1248 	mutex_init(&root->ordered_extent_mutex);
1249 	mutex_init(&root->delalloc_mutex);
1250 	init_waitqueue_head(&root->log_writer_wait);
1251 	init_waitqueue_head(&root->log_commit_wait[0]);
1252 	init_waitqueue_head(&root->log_commit_wait[1]);
1253 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1254 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1255 	atomic_set(&root->log_commit[0], 0);
1256 	atomic_set(&root->log_commit[1], 0);
1257 	atomic_set(&root->log_writers, 0);
1258 	atomic_set(&root->log_batch, 0);
1259 	atomic_set(&root->orphan_inodes, 0);
1260 	atomic_set(&root->refs, 1);
1261 	atomic_set(&root->will_be_snapshoted, 0);
1262 	root->log_transid = 0;
1263 	root->log_transid_committed = -1;
1264 	root->last_log_commit = 0;
1265 	if (fs_info)
1266 		extent_io_tree_init(&root->dirty_log_pages,
1267 				     fs_info->btree_inode->i_mapping);
1268 
1269 	memset(&root->root_key, 0, sizeof(root->root_key));
1270 	memset(&root->root_item, 0, sizeof(root->root_item));
1271 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1272 	if (fs_info)
1273 		root->defrag_trans_start = fs_info->generation;
1274 	else
1275 		root->defrag_trans_start = 0;
1276 	root->root_key.objectid = objectid;
1277 	root->anon_dev = 0;
1278 
1279 	spin_lock_init(&root->root_item_lock);
1280 }
1281 
1282 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1283 {
1284 	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1285 	if (root)
1286 		root->fs_info = fs_info;
1287 	return root;
1288 }
1289 
1290 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1291 /* Should only be used by the testing infrastructure */
1292 struct btrfs_root *btrfs_alloc_dummy_root(void)
1293 {
1294 	struct btrfs_root *root;
1295 
1296 	root = btrfs_alloc_root(NULL);
1297 	if (!root)
1298 		return ERR_PTR(-ENOMEM);
1299 	__setup_root(4096, 4096, 4096, root, NULL, 1);
1300 	set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1301 	root->alloc_bytenr = 0;
1302 
1303 	return root;
1304 }
1305 #endif
1306 
1307 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1308 				     struct btrfs_fs_info *fs_info,
1309 				     u64 objectid)
1310 {
1311 	struct extent_buffer *leaf;
1312 	struct btrfs_root *tree_root = fs_info->tree_root;
1313 	struct btrfs_root *root;
1314 	struct btrfs_key key;
1315 	int ret = 0;
1316 	uuid_le uuid;
1317 
1318 	root = btrfs_alloc_root(fs_info);
1319 	if (!root)
1320 		return ERR_PTR(-ENOMEM);
1321 
1322 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1323 		tree_root->stripesize, root, fs_info, objectid);
1324 	root->root_key.objectid = objectid;
1325 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1326 	root->root_key.offset = 0;
1327 
1328 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1329 	if (IS_ERR(leaf)) {
1330 		ret = PTR_ERR(leaf);
1331 		leaf = NULL;
1332 		goto fail;
1333 	}
1334 
1335 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1336 	btrfs_set_header_bytenr(leaf, leaf->start);
1337 	btrfs_set_header_generation(leaf, trans->transid);
1338 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1339 	btrfs_set_header_owner(leaf, objectid);
1340 	root->node = leaf;
1341 
1342 	write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1343 			    BTRFS_FSID_SIZE);
1344 	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1345 			    btrfs_header_chunk_tree_uuid(leaf),
1346 			    BTRFS_UUID_SIZE);
1347 	btrfs_mark_buffer_dirty(leaf);
1348 
1349 	root->commit_root = btrfs_root_node(root);
1350 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1351 
1352 	root->root_item.flags = 0;
1353 	root->root_item.byte_limit = 0;
1354 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1355 	btrfs_set_root_generation(&root->root_item, trans->transid);
1356 	btrfs_set_root_level(&root->root_item, 0);
1357 	btrfs_set_root_refs(&root->root_item, 1);
1358 	btrfs_set_root_used(&root->root_item, leaf->len);
1359 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1360 	btrfs_set_root_dirid(&root->root_item, 0);
1361 	uuid_le_gen(&uuid);
1362 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1363 	root->root_item.drop_level = 0;
1364 
1365 	key.objectid = objectid;
1366 	key.type = BTRFS_ROOT_ITEM_KEY;
1367 	key.offset = 0;
1368 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1369 	if (ret)
1370 		goto fail;
1371 
1372 	btrfs_tree_unlock(leaf);
1373 
1374 	return root;
1375 
1376 fail:
1377 	if (leaf) {
1378 		btrfs_tree_unlock(leaf);
1379 		free_extent_buffer(root->commit_root);
1380 		free_extent_buffer(leaf);
1381 	}
1382 	kfree(root);
1383 
1384 	return ERR_PTR(ret);
1385 }
1386 
1387 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1388 					 struct btrfs_fs_info *fs_info)
1389 {
1390 	struct btrfs_root *root;
1391 	struct btrfs_root *tree_root = fs_info->tree_root;
1392 	struct extent_buffer *leaf;
1393 
1394 	root = btrfs_alloc_root(fs_info);
1395 	if (!root)
1396 		return ERR_PTR(-ENOMEM);
1397 
1398 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1399 		     tree_root->stripesize, root, fs_info,
1400 		     BTRFS_TREE_LOG_OBJECTID);
1401 
1402 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1403 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1404 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1405 
1406 	/*
1407 	 * DON'T set REF_COWS for log trees
1408 	 *
1409 	 * log trees do not get reference counted because they go away
1410 	 * before a real commit is actually done.  They do store pointers
1411 	 * to file data extents, and those reference counts still get
1412 	 * updated (along with back refs to the log tree).
1413 	 */
1414 
1415 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1416 			NULL, 0, 0, 0);
1417 	if (IS_ERR(leaf)) {
1418 		kfree(root);
1419 		return ERR_CAST(leaf);
1420 	}
1421 
1422 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1423 	btrfs_set_header_bytenr(leaf, leaf->start);
1424 	btrfs_set_header_generation(leaf, trans->transid);
1425 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1426 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1427 	root->node = leaf;
1428 
1429 	write_extent_buffer(root->node, root->fs_info->fsid,
1430 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
1431 	btrfs_mark_buffer_dirty(root->node);
1432 	btrfs_tree_unlock(root->node);
1433 	return root;
1434 }
1435 
1436 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1437 			     struct btrfs_fs_info *fs_info)
1438 {
1439 	struct btrfs_root *log_root;
1440 
1441 	log_root = alloc_log_tree(trans, fs_info);
1442 	if (IS_ERR(log_root))
1443 		return PTR_ERR(log_root);
1444 	WARN_ON(fs_info->log_root_tree);
1445 	fs_info->log_root_tree = log_root;
1446 	return 0;
1447 }
1448 
1449 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1450 		       struct btrfs_root *root)
1451 {
1452 	struct btrfs_root *log_root;
1453 	struct btrfs_inode_item *inode_item;
1454 
1455 	log_root = alloc_log_tree(trans, root->fs_info);
1456 	if (IS_ERR(log_root))
1457 		return PTR_ERR(log_root);
1458 
1459 	log_root->last_trans = trans->transid;
1460 	log_root->root_key.offset = root->root_key.objectid;
1461 
1462 	inode_item = &log_root->root_item.inode;
1463 	btrfs_set_stack_inode_generation(inode_item, 1);
1464 	btrfs_set_stack_inode_size(inode_item, 3);
1465 	btrfs_set_stack_inode_nlink(inode_item, 1);
1466 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1467 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1468 
1469 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1470 
1471 	WARN_ON(root->log_root);
1472 	root->log_root = log_root;
1473 	root->log_transid = 0;
1474 	root->log_transid_committed = -1;
1475 	root->last_log_commit = 0;
1476 	return 0;
1477 }
1478 
1479 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1480 					       struct btrfs_key *key)
1481 {
1482 	struct btrfs_root *root;
1483 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1484 	struct btrfs_path *path;
1485 	u64 generation;
1486 	int ret;
1487 
1488 	path = btrfs_alloc_path();
1489 	if (!path)
1490 		return ERR_PTR(-ENOMEM);
1491 
1492 	root = btrfs_alloc_root(fs_info);
1493 	if (!root) {
1494 		ret = -ENOMEM;
1495 		goto alloc_fail;
1496 	}
1497 
1498 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1499 		tree_root->stripesize, root, fs_info, key->objectid);
1500 
1501 	ret = btrfs_find_root(tree_root, key, path,
1502 			      &root->root_item, &root->root_key);
1503 	if (ret) {
1504 		if (ret > 0)
1505 			ret = -ENOENT;
1506 		goto find_fail;
1507 	}
1508 
1509 	generation = btrfs_root_generation(&root->root_item);
1510 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1511 				     generation);
1512 	if (IS_ERR(root->node)) {
1513 		ret = PTR_ERR(root->node);
1514 		goto find_fail;
1515 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1516 		ret = -EIO;
1517 		free_extent_buffer(root->node);
1518 		goto find_fail;
1519 	}
1520 	root->commit_root = btrfs_root_node(root);
1521 out:
1522 	btrfs_free_path(path);
1523 	return root;
1524 
1525 find_fail:
1526 	kfree(root);
1527 alloc_fail:
1528 	root = ERR_PTR(ret);
1529 	goto out;
1530 }
1531 
1532 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1533 				      struct btrfs_key *location)
1534 {
1535 	struct btrfs_root *root;
1536 
1537 	root = btrfs_read_tree_root(tree_root, location);
1538 	if (IS_ERR(root))
1539 		return root;
1540 
1541 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1542 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1543 		btrfs_check_and_init_root_item(&root->root_item);
1544 	}
1545 
1546 	return root;
1547 }
1548 
1549 int btrfs_init_fs_root(struct btrfs_root *root)
1550 {
1551 	int ret;
1552 	struct btrfs_subvolume_writers *writers;
1553 
1554 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1555 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1556 					GFP_NOFS);
1557 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1558 		ret = -ENOMEM;
1559 		goto fail;
1560 	}
1561 
1562 	writers = btrfs_alloc_subvolume_writers();
1563 	if (IS_ERR(writers)) {
1564 		ret = PTR_ERR(writers);
1565 		goto fail;
1566 	}
1567 	root->subv_writers = writers;
1568 
1569 	btrfs_init_free_ino_ctl(root);
1570 	spin_lock_init(&root->ino_cache_lock);
1571 	init_waitqueue_head(&root->ino_cache_wait);
1572 
1573 	ret = get_anon_bdev(&root->anon_dev);
1574 	if (ret)
1575 		goto free_writers;
1576 	return 0;
1577 
1578 free_writers:
1579 	btrfs_free_subvolume_writers(root->subv_writers);
1580 fail:
1581 	kfree(root->free_ino_ctl);
1582 	kfree(root->free_ino_pinned);
1583 	return ret;
1584 }
1585 
1586 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1587 					       u64 root_id)
1588 {
1589 	struct btrfs_root *root;
1590 
1591 	spin_lock(&fs_info->fs_roots_radix_lock);
1592 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1593 				 (unsigned long)root_id);
1594 	spin_unlock(&fs_info->fs_roots_radix_lock);
1595 	return root;
1596 }
1597 
1598 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1599 			 struct btrfs_root *root)
1600 {
1601 	int ret;
1602 
1603 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1604 	if (ret)
1605 		return ret;
1606 
1607 	spin_lock(&fs_info->fs_roots_radix_lock);
1608 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1609 				(unsigned long)root->root_key.objectid,
1610 				root);
1611 	if (ret == 0)
1612 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1613 	spin_unlock(&fs_info->fs_roots_radix_lock);
1614 	radix_tree_preload_end();
1615 
1616 	return ret;
1617 }
1618 
1619 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1620 				     struct btrfs_key *location,
1621 				     bool check_ref)
1622 {
1623 	struct btrfs_root *root;
1624 	struct btrfs_path *path;
1625 	struct btrfs_key key;
1626 	int ret;
1627 
1628 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1629 		return fs_info->tree_root;
1630 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1631 		return fs_info->extent_root;
1632 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1633 		return fs_info->chunk_root;
1634 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1635 		return fs_info->dev_root;
1636 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1637 		return fs_info->csum_root;
1638 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1639 		return fs_info->quota_root ? fs_info->quota_root :
1640 					     ERR_PTR(-ENOENT);
1641 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1642 		return fs_info->uuid_root ? fs_info->uuid_root :
1643 					    ERR_PTR(-ENOENT);
1644 again:
1645 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1646 	if (root) {
1647 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1648 			return ERR_PTR(-ENOENT);
1649 		return root;
1650 	}
1651 
1652 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1653 	if (IS_ERR(root))
1654 		return root;
1655 
1656 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1657 		ret = -ENOENT;
1658 		goto fail;
1659 	}
1660 
1661 	ret = btrfs_init_fs_root(root);
1662 	if (ret)
1663 		goto fail;
1664 
1665 	path = btrfs_alloc_path();
1666 	if (!path) {
1667 		ret = -ENOMEM;
1668 		goto fail;
1669 	}
1670 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1671 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1672 	key.offset = location->objectid;
1673 
1674 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1675 	btrfs_free_path(path);
1676 	if (ret < 0)
1677 		goto fail;
1678 	if (ret == 0)
1679 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1680 
1681 	ret = btrfs_insert_fs_root(fs_info, root);
1682 	if (ret) {
1683 		if (ret == -EEXIST) {
1684 			free_fs_root(root);
1685 			goto again;
1686 		}
1687 		goto fail;
1688 	}
1689 	return root;
1690 fail:
1691 	free_fs_root(root);
1692 	return ERR_PTR(ret);
1693 }
1694 
1695 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1696 {
1697 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1698 	int ret = 0;
1699 	struct btrfs_device *device;
1700 	struct backing_dev_info *bdi;
1701 
1702 	rcu_read_lock();
1703 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1704 		if (!device->bdev)
1705 			continue;
1706 		bdi = blk_get_backing_dev_info(device->bdev);
1707 		if (bdi_congested(bdi, bdi_bits)) {
1708 			ret = 1;
1709 			break;
1710 		}
1711 	}
1712 	rcu_read_unlock();
1713 	return ret;
1714 }
1715 
1716 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1717 {
1718 	int err;
1719 
1720 	err = bdi_setup_and_register(bdi, "btrfs");
1721 	if (err)
1722 		return err;
1723 
1724 	bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1725 	bdi->congested_fn	= btrfs_congested_fn;
1726 	bdi->congested_data	= info;
1727 	return 0;
1728 }
1729 
1730 /*
1731  * called by the kthread helper functions to finally call the bio end_io
1732  * functions.  This is where read checksum verification actually happens
1733  */
1734 static void end_workqueue_fn(struct btrfs_work *work)
1735 {
1736 	struct bio *bio;
1737 	struct btrfs_end_io_wq *end_io_wq;
1738 	int error;
1739 
1740 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1741 	bio = end_io_wq->bio;
1742 
1743 	error = end_io_wq->error;
1744 	bio->bi_private = end_io_wq->private;
1745 	bio->bi_end_io = end_io_wq->end_io;
1746 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1747 	bio_endio(bio, error);
1748 }
1749 
1750 static int cleaner_kthread(void *arg)
1751 {
1752 	struct btrfs_root *root = arg;
1753 	int again;
1754 	struct btrfs_trans_handle *trans;
1755 
1756 	do {
1757 		again = 0;
1758 
1759 		/* Make the cleaner go to sleep early. */
1760 		if (btrfs_need_cleaner_sleep(root))
1761 			goto sleep;
1762 
1763 		if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1764 			goto sleep;
1765 
1766 		/*
1767 		 * Avoid the problem that we change the status of the fs
1768 		 * during the above check and trylock.
1769 		 */
1770 		if (btrfs_need_cleaner_sleep(root)) {
1771 			mutex_unlock(&root->fs_info->cleaner_mutex);
1772 			goto sleep;
1773 		}
1774 
1775 		btrfs_run_delayed_iputs(root);
1776 		again = btrfs_clean_one_deleted_snapshot(root);
1777 		mutex_unlock(&root->fs_info->cleaner_mutex);
1778 
1779 		/*
1780 		 * The defragger has dealt with the R/O remount and umount,
1781 		 * needn't do anything special here.
1782 		 */
1783 		btrfs_run_defrag_inodes(root->fs_info);
1784 
1785 		/*
1786 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1787 		 * with relocation (btrfs_relocate_chunk) and relocation
1788 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1789 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1790 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1791 		 * unused block groups.
1792 		 */
1793 		btrfs_delete_unused_bgs(root->fs_info);
1794 sleep:
1795 		if (!try_to_freeze() && !again) {
1796 			set_current_state(TASK_INTERRUPTIBLE);
1797 			if (!kthread_should_stop())
1798 				schedule();
1799 			__set_current_state(TASK_RUNNING);
1800 		}
1801 	} while (!kthread_should_stop());
1802 
1803 	/*
1804 	 * Transaction kthread is stopped before us and wakes us up.
1805 	 * However we might have started a new transaction and COWed some
1806 	 * tree blocks when deleting unused block groups for example. So
1807 	 * make sure we commit the transaction we started to have a clean
1808 	 * shutdown when evicting the btree inode - if it has dirty pages
1809 	 * when we do the final iput() on it, eviction will trigger a
1810 	 * writeback for it which will fail with null pointer dereferences
1811 	 * since work queues and other resources were already released and
1812 	 * destroyed by the time the iput/eviction/writeback is made.
1813 	 */
1814 	trans = btrfs_attach_transaction(root);
1815 	if (IS_ERR(trans)) {
1816 		if (PTR_ERR(trans) != -ENOENT)
1817 			btrfs_err(root->fs_info,
1818 				  "cleaner transaction attach returned %ld",
1819 				  PTR_ERR(trans));
1820 	} else {
1821 		int ret;
1822 
1823 		ret = btrfs_commit_transaction(trans, root);
1824 		if (ret)
1825 			btrfs_err(root->fs_info,
1826 				  "cleaner open transaction commit returned %d",
1827 				  ret);
1828 	}
1829 
1830 	return 0;
1831 }
1832 
1833 static int transaction_kthread(void *arg)
1834 {
1835 	struct btrfs_root *root = arg;
1836 	struct btrfs_trans_handle *trans;
1837 	struct btrfs_transaction *cur;
1838 	u64 transid;
1839 	unsigned long now;
1840 	unsigned long delay;
1841 	bool cannot_commit;
1842 
1843 	do {
1844 		cannot_commit = false;
1845 		delay = HZ * root->fs_info->commit_interval;
1846 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1847 
1848 		spin_lock(&root->fs_info->trans_lock);
1849 		cur = root->fs_info->running_transaction;
1850 		if (!cur) {
1851 			spin_unlock(&root->fs_info->trans_lock);
1852 			goto sleep;
1853 		}
1854 
1855 		now = get_seconds();
1856 		if (cur->state < TRANS_STATE_BLOCKED &&
1857 		    (now < cur->start_time ||
1858 		     now - cur->start_time < root->fs_info->commit_interval)) {
1859 			spin_unlock(&root->fs_info->trans_lock);
1860 			delay = HZ * 5;
1861 			goto sleep;
1862 		}
1863 		transid = cur->transid;
1864 		spin_unlock(&root->fs_info->trans_lock);
1865 
1866 		/* If the file system is aborted, this will always fail. */
1867 		trans = btrfs_attach_transaction(root);
1868 		if (IS_ERR(trans)) {
1869 			if (PTR_ERR(trans) != -ENOENT)
1870 				cannot_commit = true;
1871 			goto sleep;
1872 		}
1873 		if (transid == trans->transid) {
1874 			btrfs_commit_transaction(trans, root);
1875 		} else {
1876 			btrfs_end_transaction(trans, root);
1877 		}
1878 sleep:
1879 		wake_up_process(root->fs_info->cleaner_kthread);
1880 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1881 
1882 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1883 				      &root->fs_info->fs_state)))
1884 			btrfs_cleanup_transaction(root);
1885 		if (!try_to_freeze()) {
1886 			set_current_state(TASK_INTERRUPTIBLE);
1887 			if (!kthread_should_stop() &&
1888 			    (!btrfs_transaction_blocked(root->fs_info) ||
1889 			     cannot_commit))
1890 				schedule_timeout(delay);
1891 			__set_current_state(TASK_RUNNING);
1892 		}
1893 	} while (!kthread_should_stop());
1894 	return 0;
1895 }
1896 
1897 /*
1898  * this will find the highest generation in the array of
1899  * root backups.  The index of the highest array is returned,
1900  * or -1 if we can't find anything.
1901  *
1902  * We check to make sure the array is valid by comparing the
1903  * generation of the latest  root in the array with the generation
1904  * in the super block.  If they don't match we pitch it.
1905  */
1906 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1907 {
1908 	u64 cur;
1909 	int newest_index = -1;
1910 	struct btrfs_root_backup *root_backup;
1911 	int i;
1912 
1913 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1914 		root_backup = info->super_copy->super_roots + i;
1915 		cur = btrfs_backup_tree_root_gen(root_backup);
1916 		if (cur == newest_gen)
1917 			newest_index = i;
1918 	}
1919 
1920 	/* check to see if we actually wrapped around */
1921 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1922 		root_backup = info->super_copy->super_roots;
1923 		cur = btrfs_backup_tree_root_gen(root_backup);
1924 		if (cur == newest_gen)
1925 			newest_index = 0;
1926 	}
1927 	return newest_index;
1928 }
1929 
1930 
1931 /*
1932  * find the oldest backup so we know where to store new entries
1933  * in the backup array.  This will set the backup_root_index
1934  * field in the fs_info struct
1935  */
1936 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1937 				     u64 newest_gen)
1938 {
1939 	int newest_index = -1;
1940 
1941 	newest_index = find_newest_super_backup(info, newest_gen);
1942 	/* if there was garbage in there, just move along */
1943 	if (newest_index == -1) {
1944 		info->backup_root_index = 0;
1945 	} else {
1946 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1947 	}
1948 }
1949 
1950 /*
1951  * copy all the root pointers into the super backup array.
1952  * this will bump the backup pointer by one when it is
1953  * done
1954  */
1955 static void backup_super_roots(struct btrfs_fs_info *info)
1956 {
1957 	int next_backup;
1958 	struct btrfs_root_backup *root_backup;
1959 	int last_backup;
1960 
1961 	next_backup = info->backup_root_index;
1962 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1963 		BTRFS_NUM_BACKUP_ROOTS;
1964 
1965 	/*
1966 	 * just overwrite the last backup if we're at the same generation
1967 	 * this happens only at umount
1968 	 */
1969 	root_backup = info->super_for_commit->super_roots + last_backup;
1970 	if (btrfs_backup_tree_root_gen(root_backup) ==
1971 	    btrfs_header_generation(info->tree_root->node))
1972 		next_backup = last_backup;
1973 
1974 	root_backup = info->super_for_commit->super_roots + next_backup;
1975 
1976 	/*
1977 	 * make sure all of our padding and empty slots get zero filled
1978 	 * regardless of which ones we use today
1979 	 */
1980 	memset(root_backup, 0, sizeof(*root_backup));
1981 
1982 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1983 
1984 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1985 	btrfs_set_backup_tree_root_gen(root_backup,
1986 			       btrfs_header_generation(info->tree_root->node));
1987 
1988 	btrfs_set_backup_tree_root_level(root_backup,
1989 			       btrfs_header_level(info->tree_root->node));
1990 
1991 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1992 	btrfs_set_backup_chunk_root_gen(root_backup,
1993 			       btrfs_header_generation(info->chunk_root->node));
1994 	btrfs_set_backup_chunk_root_level(root_backup,
1995 			       btrfs_header_level(info->chunk_root->node));
1996 
1997 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1998 	btrfs_set_backup_extent_root_gen(root_backup,
1999 			       btrfs_header_generation(info->extent_root->node));
2000 	btrfs_set_backup_extent_root_level(root_backup,
2001 			       btrfs_header_level(info->extent_root->node));
2002 
2003 	/*
2004 	 * we might commit during log recovery, which happens before we set
2005 	 * the fs_root.  Make sure it is valid before we fill it in.
2006 	 */
2007 	if (info->fs_root && info->fs_root->node) {
2008 		btrfs_set_backup_fs_root(root_backup,
2009 					 info->fs_root->node->start);
2010 		btrfs_set_backup_fs_root_gen(root_backup,
2011 			       btrfs_header_generation(info->fs_root->node));
2012 		btrfs_set_backup_fs_root_level(root_backup,
2013 			       btrfs_header_level(info->fs_root->node));
2014 	}
2015 
2016 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2017 	btrfs_set_backup_dev_root_gen(root_backup,
2018 			       btrfs_header_generation(info->dev_root->node));
2019 	btrfs_set_backup_dev_root_level(root_backup,
2020 				       btrfs_header_level(info->dev_root->node));
2021 
2022 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2023 	btrfs_set_backup_csum_root_gen(root_backup,
2024 			       btrfs_header_generation(info->csum_root->node));
2025 	btrfs_set_backup_csum_root_level(root_backup,
2026 			       btrfs_header_level(info->csum_root->node));
2027 
2028 	btrfs_set_backup_total_bytes(root_backup,
2029 			     btrfs_super_total_bytes(info->super_copy));
2030 	btrfs_set_backup_bytes_used(root_backup,
2031 			     btrfs_super_bytes_used(info->super_copy));
2032 	btrfs_set_backup_num_devices(root_backup,
2033 			     btrfs_super_num_devices(info->super_copy));
2034 
2035 	/*
2036 	 * if we don't copy this out to the super_copy, it won't get remembered
2037 	 * for the next commit
2038 	 */
2039 	memcpy(&info->super_copy->super_roots,
2040 	       &info->super_for_commit->super_roots,
2041 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2042 }
2043 
2044 /*
2045  * this copies info out of the root backup array and back into
2046  * the in-memory super block.  It is meant to help iterate through
2047  * the array, so you send it the number of backups you've already
2048  * tried and the last backup index you used.
2049  *
2050  * this returns -1 when it has tried all the backups
2051  */
2052 static noinline int next_root_backup(struct btrfs_fs_info *info,
2053 				     struct btrfs_super_block *super,
2054 				     int *num_backups_tried, int *backup_index)
2055 {
2056 	struct btrfs_root_backup *root_backup;
2057 	int newest = *backup_index;
2058 
2059 	if (*num_backups_tried == 0) {
2060 		u64 gen = btrfs_super_generation(super);
2061 
2062 		newest = find_newest_super_backup(info, gen);
2063 		if (newest == -1)
2064 			return -1;
2065 
2066 		*backup_index = newest;
2067 		*num_backups_tried = 1;
2068 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2069 		/* we've tried all the backups, all done */
2070 		return -1;
2071 	} else {
2072 		/* jump to the next oldest backup */
2073 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2074 			BTRFS_NUM_BACKUP_ROOTS;
2075 		*backup_index = newest;
2076 		*num_backups_tried += 1;
2077 	}
2078 	root_backup = super->super_roots + newest;
2079 
2080 	btrfs_set_super_generation(super,
2081 				   btrfs_backup_tree_root_gen(root_backup));
2082 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2083 	btrfs_set_super_root_level(super,
2084 				   btrfs_backup_tree_root_level(root_backup));
2085 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2086 
2087 	/*
2088 	 * fixme: the total bytes and num_devices need to match or we should
2089 	 * need a fsck
2090 	 */
2091 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2092 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2093 	return 0;
2094 }
2095 
2096 /* helper to cleanup workers */
2097 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2098 {
2099 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2100 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2101 	btrfs_destroy_workqueue(fs_info->workers);
2102 	btrfs_destroy_workqueue(fs_info->endio_workers);
2103 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2104 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2105 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2106 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2107 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2108 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2109 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2110 	btrfs_destroy_workqueue(fs_info->submit_workers);
2111 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2112 	btrfs_destroy_workqueue(fs_info->caching_workers);
2113 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2114 	btrfs_destroy_workqueue(fs_info->flush_workers);
2115 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2116 	btrfs_destroy_workqueue(fs_info->extent_workers);
2117 }
2118 
2119 static void free_root_extent_buffers(struct btrfs_root *root)
2120 {
2121 	if (root) {
2122 		free_extent_buffer(root->node);
2123 		free_extent_buffer(root->commit_root);
2124 		root->node = NULL;
2125 		root->commit_root = NULL;
2126 	}
2127 }
2128 
2129 /* helper to cleanup tree roots */
2130 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2131 {
2132 	free_root_extent_buffers(info->tree_root);
2133 
2134 	free_root_extent_buffers(info->dev_root);
2135 	free_root_extent_buffers(info->extent_root);
2136 	free_root_extent_buffers(info->csum_root);
2137 	free_root_extent_buffers(info->quota_root);
2138 	free_root_extent_buffers(info->uuid_root);
2139 	if (chunk_root)
2140 		free_root_extent_buffers(info->chunk_root);
2141 }
2142 
2143 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2144 {
2145 	int ret;
2146 	struct btrfs_root *gang[8];
2147 	int i;
2148 
2149 	while (!list_empty(&fs_info->dead_roots)) {
2150 		gang[0] = list_entry(fs_info->dead_roots.next,
2151 				     struct btrfs_root, root_list);
2152 		list_del(&gang[0]->root_list);
2153 
2154 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2155 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2156 		} else {
2157 			free_extent_buffer(gang[0]->node);
2158 			free_extent_buffer(gang[0]->commit_root);
2159 			btrfs_put_fs_root(gang[0]);
2160 		}
2161 	}
2162 
2163 	while (1) {
2164 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2165 					     (void **)gang, 0,
2166 					     ARRAY_SIZE(gang));
2167 		if (!ret)
2168 			break;
2169 		for (i = 0; i < ret; i++)
2170 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2171 	}
2172 
2173 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2174 		btrfs_free_log_root_tree(NULL, fs_info);
2175 		btrfs_destroy_pinned_extent(fs_info->tree_root,
2176 					    fs_info->pinned_extents);
2177 	}
2178 }
2179 
2180 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2181 {
2182 	mutex_init(&fs_info->scrub_lock);
2183 	atomic_set(&fs_info->scrubs_running, 0);
2184 	atomic_set(&fs_info->scrub_pause_req, 0);
2185 	atomic_set(&fs_info->scrubs_paused, 0);
2186 	atomic_set(&fs_info->scrub_cancel_req, 0);
2187 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2188 	fs_info->scrub_workers_refcnt = 0;
2189 }
2190 
2191 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2192 {
2193 	spin_lock_init(&fs_info->balance_lock);
2194 	mutex_init(&fs_info->balance_mutex);
2195 	atomic_set(&fs_info->balance_running, 0);
2196 	atomic_set(&fs_info->balance_pause_req, 0);
2197 	atomic_set(&fs_info->balance_cancel_req, 0);
2198 	fs_info->balance_ctl = NULL;
2199 	init_waitqueue_head(&fs_info->balance_wait_q);
2200 }
2201 
2202 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2203 				   struct btrfs_root *tree_root)
2204 {
2205 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2206 	set_nlink(fs_info->btree_inode, 1);
2207 	/*
2208 	 * we set the i_size on the btree inode to the max possible int.
2209 	 * the real end of the address space is determined by all of
2210 	 * the devices in the system
2211 	 */
2212 	fs_info->btree_inode->i_size = OFFSET_MAX;
2213 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2214 
2215 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2216 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2217 			     fs_info->btree_inode->i_mapping);
2218 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2219 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2220 
2221 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2222 
2223 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2224 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2225 	       sizeof(struct btrfs_key));
2226 	set_bit(BTRFS_INODE_DUMMY,
2227 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2228 	btrfs_insert_inode_hash(fs_info->btree_inode);
2229 }
2230 
2231 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2232 {
2233 	fs_info->dev_replace.lock_owner = 0;
2234 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2235 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2236 	mutex_init(&fs_info->dev_replace.lock_management_lock);
2237 	mutex_init(&fs_info->dev_replace.lock);
2238 	init_waitqueue_head(&fs_info->replace_wait);
2239 }
2240 
2241 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2242 {
2243 	spin_lock_init(&fs_info->qgroup_lock);
2244 	mutex_init(&fs_info->qgroup_ioctl_lock);
2245 	fs_info->qgroup_tree = RB_ROOT;
2246 	fs_info->qgroup_op_tree = RB_ROOT;
2247 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2248 	fs_info->qgroup_seq = 1;
2249 	fs_info->quota_enabled = 0;
2250 	fs_info->pending_quota_state = 0;
2251 	fs_info->qgroup_ulist = NULL;
2252 	mutex_init(&fs_info->qgroup_rescan_lock);
2253 }
2254 
2255 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2256 		struct btrfs_fs_devices *fs_devices)
2257 {
2258 	int max_active = fs_info->thread_pool_size;
2259 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2260 
2261 	fs_info->workers =
2262 		btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2263 				      max_active, 16);
2264 
2265 	fs_info->delalloc_workers =
2266 		btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2267 
2268 	fs_info->flush_workers =
2269 		btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2270 
2271 	fs_info->caching_workers =
2272 		btrfs_alloc_workqueue("cache", flags, max_active, 0);
2273 
2274 	/*
2275 	 * a higher idle thresh on the submit workers makes it much more
2276 	 * likely that bios will be send down in a sane order to the
2277 	 * devices
2278 	 */
2279 	fs_info->submit_workers =
2280 		btrfs_alloc_workqueue("submit", flags,
2281 				      min_t(u64, fs_devices->num_devices,
2282 					    max_active), 64);
2283 
2284 	fs_info->fixup_workers =
2285 		btrfs_alloc_workqueue("fixup", flags, 1, 0);
2286 
2287 	/*
2288 	 * endios are largely parallel and should have a very
2289 	 * low idle thresh
2290 	 */
2291 	fs_info->endio_workers =
2292 		btrfs_alloc_workqueue("endio", flags, max_active, 4);
2293 	fs_info->endio_meta_workers =
2294 		btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2295 	fs_info->endio_meta_write_workers =
2296 		btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2297 	fs_info->endio_raid56_workers =
2298 		btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2299 	fs_info->endio_repair_workers =
2300 		btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2301 	fs_info->rmw_workers =
2302 		btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2303 	fs_info->endio_write_workers =
2304 		btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2305 	fs_info->endio_freespace_worker =
2306 		btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2307 	fs_info->delayed_workers =
2308 		btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2309 	fs_info->readahead_workers =
2310 		btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2311 	fs_info->qgroup_rescan_workers =
2312 		btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2313 	fs_info->extent_workers =
2314 		btrfs_alloc_workqueue("extent-refs", flags,
2315 				      min_t(u64, fs_devices->num_devices,
2316 					    max_active), 8);
2317 
2318 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2319 	      fs_info->submit_workers && fs_info->flush_workers &&
2320 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2321 	      fs_info->endio_meta_write_workers &&
2322 	      fs_info->endio_repair_workers &&
2323 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2324 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2325 	      fs_info->caching_workers && fs_info->readahead_workers &&
2326 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2327 	      fs_info->extent_workers &&
2328 	      fs_info->qgroup_rescan_workers)) {
2329 		return -ENOMEM;
2330 	}
2331 
2332 	return 0;
2333 }
2334 
2335 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2336 			    struct btrfs_fs_devices *fs_devices)
2337 {
2338 	int ret;
2339 	struct btrfs_root *tree_root = fs_info->tree_root;
2340 	struct btrfs_root *log_tree_root;
2341 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2342 	u64 bytenr = btrfs_super_log_root(disk_super);
2343 
2344 	if (fs_devices->rw_devices == 0) {
2345 		printk(KERN_WARNING "BTRFS: log replay required "
2346 		       "on RO media\n");
2347 		return -EIO;
2348 	}
2349 
2350 	log_tree_root = btrfs_alloc_root(fs_info);
2351 	if (!log_tree_root)
2352 		return -ENOMEM;
2353 
2354 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
2355 			tree_root->stripesize, log_tree_root, fs_info,
2356 			BTRFS_TREE_LOG_OBJECTID);
2357 
2358 	log_tree_root->node = read_tree_block(tree_root, bytenr,
2359 			fs_info->generation + 1);
2360 	if (IS_ERR(log_tree_root->node)) {
2361 		printk(KERN_ERR "BTRFS: failed to read log tree\n");
2362 		ret = PTR_ERR(log_tree_root->node);
2363 		kfree(log_tree_root);
2364 		return ret;
2365 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2366 		printk(KERN_ERR "BTRFS: failed to read log tree\n");
2367 		free_extent_buffer(log_tree_root->node);
2368 		kfree(log_tree_root);
2369 		return -EIO;
2370 	}
2371 	/* returns with log_tree_root freed on success */
2372 	ret = btrfs_recover_log_trees(log_tree_root);
2373 	if (ret) {
2374 		btrfs_error(tree_root->fs_info, ret,
2375 			    "Failed to recover log tree");
2376 		free_extent_buffer(log_tree_root->node);
2377 		kfree(log_tree_root);
2378 		return ret;
2379 	}
2380 
2381 	if (fs_info->sb->s_flags & MS_RDONLY) {
2382 		ret = btrfs_commit_super(tree_root);
2383 		if (ret)
2384 			return ret;
2385 	}
2386 
2387 	return 0;
2388 }
2389 
2390 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2391 			    struct btrfs_root *tree_root)
2392 {
2393 	struct btrfs_root *root;
2394 	struct btrfs_key location;
2395 	int ret;
2396 
2397 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2398 	location.type = BTRFS_ROOT_ITEM_KEY;
2399 	location.offset = 0;
2400 
2401 	root = btrfs_read_tree_root(tree_root, &location);
2402 	if (IS_ERR(root))
2403 		return PTR_ERR(root);
2404 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2405 	fs_info->extent_root = root;
2406 
2407 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2408 	root = btrfs_read_tree_root(tree_root, &location);
2409 	if (IS_ERR(root))
2410 		return PTR_ERR(root);
2411 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2412 	fs_info->dev_root = root;
2413 	btrfs_init_devices_late(fs_info);
2414 
2415 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2416 	root = btrfs_read_tree_root(tree_root, &location);
2417 	if (IS_ERR(root))
2418 		return PTR_ERR(root);
2419 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2420 	fs_info->csum_root = root;
2421 
2422 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2423 	root = btrfs_read_tree_root(tree_root, &location);
2424 	if (!IS_ERR(root)) {
2425 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2426 		fs_info->quota_enabled = 1;
2427 		fs_info->pending_quota_state = 1;
2428 		fs_info->quota_root = root;
2429 	}
2430 
2431 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2432 	root = btrfs_read_tree_root(tree_root, &location);
2433 	if (IS_ERR(root)) {
2434 		ret = PTR_ERR(root);
2435 		if (ret != -ENOENT)
2436 			return ret;
2437 	} else {
2438 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2439 		fs_info->uuid_root = root;
2440 	}
2441 
2442 	return 0;
2443 }
2444 
2445 int open_ctree(struct super_block *sb,
2446 	       struct btrfs_fs_devices *fs_devices,
2447 	       char *options)
2448 {
2449 	u32 sectorsize;
2450 	u32 nodesize;
2451 	u32 stripesize;
2452 	u64 generation;
2453 	u64 features;
2454 	struct btrfs_key location;
2455 	struct buffer_head *bh;
2456 	struct btrfs_super_block *disk_super;
2457 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2458 	struct btrfs_root *tree_root;
2459 	struct btrfs_root *chunk_root;
2460 	int ret;
2461 	int err = -EINVAL;
2462 	int num_backups_tried = 0;
2463 	int backup_index = 0;
2464 	int max_active;
2465 
2466 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2467 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2468 	if (!tree_root || !chunk_root) {
2469 		err = -ENOMEM;
2470 		goto fail;
2471 	}
2472 
2473 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2474 	if (ret) {
2475 		err = ret;
2476 		goto fail;
2477 	}
2478 
2479 	ret = setup_bdi(fs_info, &fs_info->bdi);
2480 	if (ret) {
2481 		err = ret;
2482 		goto fail_srcu;
2483 	}
2484 
2485 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2486 	if (ret) {
2487 		err = ret;
2488 		goto fail_bdi;
2489 	}
2490 	fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2491 					(1 + ilog2(nr_cpu_ids));
2492 
2493 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2494 	if (ret) {
2495 		err = ret;
2496 		goto fail_dirty_metadata_bytes;
2497 	}
2498 
2499 	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2500 	if (ret) {
2501 		err = ret;
2502 		goto fail_delalloc_bytes;
2503 	}
2504 
2505 	fs_info->btree_inode = new_inode(sb);
2506 	if (!fs_info->btree_inode) {
2507 		err = -ENOMEM;
2508 		goto fail_bio_counter;
2509 	}
2510 
2511 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2512 
2513 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2514 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2515 	INIT_LIST_HEAD(&fs_info->trans_list);
2516 	INIT_LIST_HEAD(&fs_info->dead_roots);
2517 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2518 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2519 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2520 	spin_lock_init(&fs_info->delalloc_root_lock);
2521 	spin_lock_init(&fs_info->trans_lock);
2522 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2523 	spin_lock_init(&fs_info->delayed_iput_lock);
2524 	spin_lock_init(&fs_info->defrag_inodes_lock);
2525 	spin_lock_init(&fs_info->free_chunk_lock);
2526 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2527 	spin_lock_init(&fs_info->super_lock);
2528 	spin_lock_init(&fs_info->qgroup_op_lock);
2529 	spin_lock_init(&fs_info->buffer_lock);
2530 	spin_lock_init(&fs_info->unused_bgs_lock);
2531 	rwlock_init(&fs_info->tree_mod_log_lock);
2532 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2533 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2534 	mutex_init(&fs_info->reloc_mutex);
2535 	mutex_init(&fs_info->delalloc_root_mutex);
2536 	seqlock_init(&fs_info->profiles_lock);
2537 	init_rwsem(&fs_info->delayed_iput_sem);
2538 
2539 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2540 	INIT_LIST_HEAD(&fs_info->space_info);
2541 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2542 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2543 	btrfs_mapping_init(&fs_info->mapping_tree);
2544 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2545 			     BTRFS_BLOCK_RSV_GLOBAL);
2546 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2547 			     BTRFS_BLOCK_RSV_DELALLOC);
2548 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2549 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2550 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2551 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2552 			     BTRFS_BLOCK_RSV_DELOPS);
2553 	atomic_set(&fs_info->nr_async_submits, 0);
2554 	atomic_set(&fs_info->async_delalloc_pages, 0);
2555 	atomic_set(&fs_info->async_submit_draining, 0);
2556 	atomic_set(&fs_info->nr_async_bios, 0);
2557 	atomic_set(&fs_info->defrag_running, 0);
2558 	atomic_set(&fs_info->qgroup_op_seq, 0);
2559 	atomic64_set(&fs_info->tree_mod_seq, 0);
2560 	fs_info->sb = sb;
2561 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2562 	fs_info->metadata_ratio = 0;
2563 	fs_info->defrag_inodes = RB_ROOT;
2564 	fs_info->free_chunk_space = 0;
2565 	fs_info->tree_mod_log = RB_ROOT;
2566 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2567 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2568 	/* readahead state */
2569 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2570 	spin_lock_init(&fs_info->reada_lock);
2571 
2572 	fs_info->thread_pool_size = min_t(unsigned long,
2573 					  num_online_cpus() + 2, 8);
2574 
2575 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2576 	spin_lock_init(&fs_info->ordered_root_lock);
2577 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2578 					GFP_NOFS);
2579 	if (!fs_info->delayed_root) {
2580 		err = -ENOMEM;
2581 		goto fail_iput;
2582 	}
2583 	btrfs_init_delayed_root(fs_info->delayed_root);
2584 
2585 	btrfs_init_scrub(fs_info);
2586 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2587 	fs_info->check_integrity_print_mask = 0;
2588 #endif
2589 	btrfs_init_balance(fs_info);
2590 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2591 
2592 	sb->s_blocksize = 4096;
2593 	sb->s_blocksize_bits = blksize_bits(4096);
2594 	sb->s_bdi = &fs_info->bdi;
2595 
2596 	btrfs_init_btree_inode(fs_info, tree_root);
2597 
2598 	spin_lock_init(&fs_info->block_group_cache_lock);
2599 	fs_info->block_group_cache_tree = RB_ROOT;
2600 	fs_info->first_logical_byte = (u64)-1;
2601 
2602 	extent_io_tree_init(&fs_info->freed_extents[0],
2603 			     fs_info->btree_inode->i_mapping);
2604 	extent_io_tree_init(&fs_info->freed_extents[1],
2605 			     fs_info->btree_inode->i_mapping);
2606 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2607 	fs_info->do_barriers = 1;
2608 
2609 
2610 	mutex_init(&fs_info->ordered_operations_mutex);
2611 	mutex_init(&fs_info->ordered_extent_flush_mutex);
2612 	mutex_init(&fs_info->tree_log_mutex);
2613 	mutex_init(&fs_info->chunk_mutex);
2614 	mutex_init(&fs_info->transaction_kthread_mutex);
2615 	mutex_init(&fs_info->cleaner_mutex);
2616 	mutex_init(&fs_info->volume_mutex);
2617 	mutex_init(&fs_info->ro_block_group_mutex);
2618 	init_rwsem(&fs_info->commit_root_sem);
2619 	init_rwsem(&fs_info->cleanup_work_sem);
2620 	init_rwsem(&fs_info->subvol_sem);
2621 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2622 
2623 	btrfs_init_dev_replace_locks(fs_info);
2624 	btrfs_init_qgroup(fs_info);
2625 
2626 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2627 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2628 
2629 	init_waitqueue_head(&fs_info->transaction_throttle);
2630 	init_waitqueue_head(&fs_info->transaction_wait);
2631 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2632 	init_waitqueue_head(&fs_info->async_submit_wait);
2633 
2634 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2635 
2636 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2637 	if (ret) {
2638 		err = ret;
2639 		goto fail_alloc;
2640 	}
2641 
2642 	__setup_root(4096, 4096, 4096, tree_root,
2643 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2644 
2645 	invalidate_bdev(fs_devices->latest_bdev);
2646 
2647 	/*
2648 	 * Read super block and check the signature bytes only
2649 	 */
2650 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2651 	if (!bh) {
2652 		err = -EINVAL;
2653 		goto fail_alloc;
2654 	}
2655 
2656 	/*
2657 	 * We want to check superblock checksum, the type is stored inside.
2658 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2659 	 */
2660 	if (btrfs_check_super_csum(bh->b_data)) {
2661 		printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2662 		err = -EINVAL;
2663 		goto fail_alloc;
2664 	}
2665 
2666 	/*
2667 	 * super_copy is zeroed at allocation time and we never touch the
2668 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2669 	 * the whole block of INFO_SIZE
2670 	 */
2671 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2672 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2673 	       sizeof(*fs_info->super_for_commit));
2674 	brelse(bh);
2675 
2676 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2677 
2678 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2679 	if (ret) {
2680 		printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2681 		err = -EINVAL;
2682 		goto fail_alloc;
2683 	}
2684 
2685 	disk_super = fs_info->super_copy;
2686 	if (!btrfs_super_root(disk_super))
2687 		goto fail_alloc;
2688 
2689 	/* check FS state, whether FS is broken. */
2690 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2691 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2692 
2693 	/*
2694 	 * run through our array of backup supers and setup
2695 	 * our ring pointer to the oldest one
2696 	 */
2697 	generation = btrfs_super_generation(disk_super);
2698 	find_oldest_super_backup(fs_info, generation);
2699 
2700 	/*
2701 	 * In the long term, we'll store the compression type in the super
2702 	 * block, and it'll be used for per file compression control.
2703 	 */
2704 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2705 
2706 	ret = btrfs_parse_options(tree_root, options);
2707 	if (ret) {
2708 		err = ret;
2709 		goto fail_alloc;
2710 	}
2711 
2712 	features = btrfs_super_incompat_flags(disk_super) &
2713 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2714 	if (features) {
2715 		printk(KERN_ERR "BTRFS: couldn't mount because of "
2716 		       "unsupported optional features (%Lx).\n",
2717 		       features);
2718 		err = -EINVAL;
2719 		goto fail_alloc;
2720 	}
2721 
2722 	/*
2723 	 * Leafsize and nodesize were always equal, this is only a sanity check.
2724 	 */
2725 	if (le32_to_cpu(disk_super->__unused_leafsize) !=
2726 	    btrfs_super_nodesize(disk_super)) {
2727 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2728 		       "blocksizes don't match.  node %d leaf %d\n",
2729 		       btrfs_super_nodesize(disk_super),
2730 		       le32_to_cpu(disk_super->__unused_leafsize));
2731 		err = -EINVAL;
2732 		goto fail_alloc;
2733 	}
2734 	if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2735 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2736 		       "blocksize (%d) was too large\n",
2737 		       btrfs_super_nodesize(disk_super));
2738 		err = -EINVAL;
2739 		goto fail_alloc;
2740 	}
2741 
2742 	features = btrfs_super_incompat_flags(disk_super);
2743 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2744 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2745 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2746 
2747 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2748 		printk(KERN_INFO "BTRFS: has skinny extents\n");
2749 
2750 	/*
2751 	 * flag our filesystem as having big metadata blocks if
2752 	 * they are bigger than the page size
2753 	 */
2754 	if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2755 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2756 			printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2757 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2758 	}
2759 
2760 	nodesize = btrfs_super_nodesize(disk_super);
2761 	sectorsize = btrfs_super_sectorsize(disk_super);
2762 	stripesize = btrfs_super_stripesize(disk_super);
2763 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2764 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2765 
2766 	/*
2767 	 * mixed block groups end up with duplicate but slightly offset
2768 	 * extent buffers for the same range.  It leads to corruptions
2769 	 */
2770 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2771 	    (sectorsize != nodesize)) {
2772 		printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2773 				"are not allowed for mixed block groups on %s\n",
2774 				sb->s_id);
2775 		goto fail_alloc;
2776 	}
2777 
2778 	/*
2779 	 * Needn't use the lock because there is no other task which will
2780 	 * update the flag.
2781 	 */
2782 	btrfs_set_super_incompat_flags(disk_super, features);
2783 
2784 	features = btrfs_super_compat_ro_flags(disk_super) &
2785 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2786 	if (!(sb->s_flags & MS_RDONLY) && features) {
2787 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2788 		       "unsupported option features (%Lx).\n",
2789 		       features);
2790 		err = -EINVAL;
2791 		goto fail_alloc;
2792 	}
2793 
2794 	max_active = fs_info->thread_pool_size;
2795 
2796 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2797 	if (ret) {
2798 		err = ret;
2799 		goto fail_sb_buffer;
2800 	}
2801 
2802 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2803 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2804 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2805 
2806 	tree_root->nodesize = nodesize;
2807 	tree_root->sectorsize = sectorsize;
2808 	tree_root->stripesize = stripesize;
2809 
2810 	sb->s_blocksize = sectorsize;
2811 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2812 
2813 	if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2814 		printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2815 		goto fail_sb_buffer;
2816 	}
2817 
2818 	if (sectorsize != PAGE_SIZE) {
2819 		printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2820 		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2821 		goto fail_sb_buffer;
2822 	}
2823 
2824 	mutex_lock(&fs_info->chunk_mutex);
2825 	ret = btrfs_read_sys_array(tree_root);
2826 	mutex_unlock(&fs_info->chunk_mutex);
2827 	if (ret) {
2828 		printk(KERN_ERR "BTRFS: failed to read the system "
2829 		       "array on %s\n", sb->s_id);
2830 		goto fail_sb_buffer;
2831 	}
2832 
2833 	generation = btrfs_super_chunk_root_generation(disk_super);
2834 
2835 	__setup_root(nodesize, sectorsize, stripesize, chunk_root,
2836 		     fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2837 
2838 	chunk_root->node = read_tree_block(chunk_root,
2839 					   btrfs_super_chunk_root(disk_super),
2840 					   generation);
2841 	if (IS_ERR(chunk_root->node) ||
2842 	    !extent_buffer_uptodate(chunk_root->node)) {
2843 		printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2844 		       sb->s_id);
2845 		chunk_root->node = NULL;
2846 		goto fail_tree_roots;
2847 	}
2848 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2849 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2850 
2851 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2852 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2853 
2854 	ret = btrfs_read_chunk_tree(chunk_root);
2855 	if (ret) {
2856 		printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2857 		       sb->s_id);
2858 		goto fail_tree_roots;
2859 	}
2860 
2861 	/*
2862 	 * keep the device that is marked to be the target device for the
2863 	 * dev_replace procedure
2864 	 */
2865 	btrfs_close_extra_devices(fs_devices, 0);
2866 
2867 	if (!fs_devices->latest_bdev) {
2868 		printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2869 		       sb->s_id);
2870 		goto fail_tree_roots;
2871 	}
2872 
2873 retry_root_backup:
2874 	generation = btrfs_super_generation(disk_super);
2875 
2876 	tree_root->node = read_tree_block(tree_root,
2877 					  btrfs_super_root(disk_super),
2878 					  generation);
2879 	if (IS_ERR(tree_root->node) ||
2880 	    !extent_buffer_uptodate(tree_root->node)) {
2881 		printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2882 		       sb->s_id);
2883 		tree_root->node = NULL;
2884 		goto recovery_tree_root;
2885 	}
2886 
2887 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2888 	tree_root->commit_root = btrfs_root_node(tree_root);
2889 	btrfs_set_root_refs(&tree_root->root_item, 1);
2890 
2891 	ret = btrfs_read_roots(fs_info, tree_root);
2892 	if (ret)
2893 		goto recovery_tree_root;
2894 
2895 	fs_info->generation = generation;
2896 	fs_info->last_trans_committed = generation;
2897 
2898 	ret = btrfs_recover_balance(fs_info);
2899 	if (ret) {
2900 		printk(KERN_ERR "BTRFS: failed to recover balance\n");
2901 		goto fail_block_groups;
2902 	}
2903 
2904 	ret = btrfs_init_dev_stats(fs_info);
2905 	if (ret) {
2906 		printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2907 		       ret);
2908 		goto fail_block_groups;
2909 	}
2910 
2911 	ret = btrfs_init_dev_replace(fs_info);
2912 	if (ret) {
2913 		pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2914 		goto fail_block_groups;
2915 	}
2916 
2917 	btrfs_close_extra_devices(fs_devices, 1);
2918 
2919 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2920 	if (ret) {
2921 		pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2922 		goto fail_block_groups;
2923 	}
2924 
2925 	ret = btrfs_sysfs_add_device(fs_devices);
2926 	if (ret) {
2927 		pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2928 		goto fail_fsdev_sysfs;
2929 	}
2930 
2931 	ret = btrfs_sysfs_add_one(fs_info);
2932 	if (ret) {
2933 		pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2934 		goto fail_fsdev_sysfs;
2935 	}
2936 
2937 	ret = btrfs_init_space_info(fs_info);
2938 	if (ret) {
2939 		printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2940 		goto fail_sysfs;
2941 	}
2942 
2943 	ret = btrfs_read_block_groups(fs_info->extent_root);
2944 	if (ret) {
2945 		printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2946 		goto fail_sysfs;
2947 	}
2948 	fs_info->num_tolerated_disk_barrier_failures =
2949 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2950 	if (fs_info->fs_devices->missing_devices >
2951 	     fs_info->num_tolerated_disk_barrier_failures &&
2952 	    !(sb->s_flags & MS_RDONLY)) {
2953 		printk(KERN_WARNING "BTRFS: "
2954 			"too many missing devices, writeable mount is not allowed\n");
2955 		goto fail_sysfs;
2956 	}
2957 
2958 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2959 					       "btrfs-cleaner");
2960 	if (IS_ERR(fs_info->cleaner_kthread))
2961 		goto fail_sysfs;
2962 
2963 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2964 						   tree_root,
2965 						   "btrfs-transaction");
2966 	if (IS_ERR(fs_info->transaction_kthread))
2967 		goto fail_cleaner;
2968 
2969 	if (!btrfs_test_opt(tree_root, SSD) &&
2970 	    !btrfs_test_opt(tree_root, NOSSD) &&
2971 	    !fs_info->fs_devices->rotating) {
2972 		printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2973 		       "mode\n");
2974 		btrfs_set_opt(fs_info->mount_opt, SSD);
2975 	}
2976 
2977 	/*
2978 	 * Mount does not set all options immediatelly, we can do it now and do
2979 	 * not have to wait for transaction commit
2980 	 */
2981 	btrfs_apply_pending_changes(fs_info);
2982 
2983 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2984 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2985 		ret = btrfsic_mount(tree_root, fs_devices,
2986 				    btrfs_test_opt(tree_root,
2987 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2988 				    1 : 0,
2989 				    fs_info->check_integrity_print_mask);
2990 		if (ret)
2991 			printk(KERN_WARNING "BTRFS: failed to initialize"
2992 			       " integrity check module %s\n", sb->s_id);
2993 	}
2994 #endif
2995 	ret = btrfs_read_qgroup_config(fs_info);
2996 	if (ret)
2997 		goto fail_trans_kthread;
2998 
2999 	/* do not make disk changes in broken FS */
3000 	if (btrfs_super_log_root(disk_super) != 0) {
3001 		ret = btrfs_replay_log(fs_info, fs_devices);
3002 		if (ret) {
3003 			err = ret;
3004 			goto fail_qgroup;
3005 		}
3006 	}
3007 
3008 	ret = btrfs_find_orphan_roots(tree_root);
3009 	if (ret)
3010 		goto fail_qgroup;
3011 
3012 	if (!(sb->s_flags & MS_RDONLY)) {
3013 		ret = btrfs_cleanup_fs_roots(fs_info);
3014 		if (ret)
3015 			goto fail_qgroup;
3016 
3017 		mutex_lock(&fs_info->cleaner_mutex);
3018 		ret = btrfs_recover_relocation(tree_root);
3019 		mutex_unlock(&fs_info->cleaner_mutex);
3020 		if (ret < 0) {
3021 			printk(KERN_WARNING
3022 			       "BTRFS: failed to recover relocation\n");
3023 			err = -EINVAL;
3024 			goto fail_qgroup;
3025 		}
3026 	}
3027 
3028 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3029 	location.type = BTRFS_ROOT_ITEM_KEY;
3030 	location.offset = 0;
3031 
3032 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3033 	if (IS_ERR(fs_info->fs_root)) {
3034 		err = PTR_ERR(fs_info->fs_root);
3035 		goto fail_qgroup;
3036 	}
3037 
3038 	if (sb->s_flags & MS_RDONLY)
3039 		return 0;
3040 
3041 	down_read(&fs_info->cleanup_work_sem);
3042 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3043 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3044 		up_read(&fs_info->cleanup_work_sem);
3045 		close_ctree(tree_root);
3046 		return ret;
3047 	}
3048 	up_read(&fs_info->cleanup_work_sem);
3049 
3050 	ret = btrfs_resume_balance_async(fs_info);
3051 	if (ret) {
3052 		printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3053 		close_ctree(tree_root);
3054 		return ret;
3055 	}
3056 
3057 	ret = btrfs_resume_dev_replace_async(fs_info);
3058 	if (ret) {
3059 		pr_warn("BTRFS: failed to resume dev_replace\n");
3060 		close_ctree(tree_root);
3061 		return ret;
3062 	}
3063 
3064 	btrfs_qgroup_rescan_resume(fs_info);
3065 
3066 	if (!fs_info->uuid_root) {
3067 		pr_info("BTRFS: creating UUID tree\n");
3068 		ret = btrfs_create_uuid_tree(fs_info);
3069 		if (ret) {
3070 			pr_warn("BTRFS: failed to create the UUID tree %d\n",
3071 				ret);
3072 			close_ctree(tree_root);
3073 			return ret;
3074 		}
3075 	} else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3076 		   fs_info->generation !=
3077 				btrfs_super_uuid_tree_generation(disk_super)) {
3078 		pr_info("BTRFS: checking UUID tree\n");
3079 		ret = btrfs_check_uuid_tree(fs_info);
3080 		if (ret) {
3081 			pr_warn("BTRFS: failed to check the UUID tree %d\n",
3082 				ret);
3083 			close_ctree(tree_root);
3084 			return ret;
3085 		}
3086 	} else {
3087 		fs_info->update_uuid_tree_gen = 1;
3088 	}
3089 
3090 	fs_info->open = 1;
3091 
3092 	return 0;
3093 
3094 fail_qgroup:
3095 	btrfs_free_qgroup_config(fs_info);
3096 fail_trans_kthread:
3097 	kthread_stop(fs_info->transaction_kthread);
3098 	btrfs_cleanup_transaction(fs_info->tree_root);
3099 	btrfs_free_fs_roots(fs_info);
3100 fail_cleaner:
3101 	kthread_stop(fs_info->cleaner_kthread);
3102 
3103 	/*
3104 	 * make sure we're done with the btree inode before we stop our
3105 	 * kthreads
3106 	 */
3107 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3108 
3109 fail_sysfs:
3110 	btrfs_sysfs_remove_one(fs_info);
3111 
3112 fail_fsdev_sysfs:
3113 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3114 
3115 fail_block_groups:
3116 	btrfs_put_block_group_cache(fs_info);
3117 	btrfs_free_block_groups(fs_info);
3118 
3119 fail_tree_roots:
3120 	free_root_pointers(fs_info, 1);
3121 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3122 
3123 fail_sb_buffer:
3124 	btrfs_stop_all_workers(fs_info);
3125 fail_alloc:
3126 fail_iput:
3127 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3128 
3129 	iput(fs_info->btree_inode);
3130 fail_bio_counter:
3131 	percpu_counter_destroy(&fs_info->bio_counter);
3132 fail_delalloc_bytes:
3133 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3134 fail_dirty_metadata_bytes:
3135 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3136 fail_bdi:
3137 	bdi_destroy(&fs_info->bdi);
3138 fail_srcu:
3139 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3140 fail:
3141 	btrfs_free_stripe_hash_table(fs_info);
3142 	btrfs_close_devices(fs_info->fs_devices);
3143 	return err;
3144 
3145 recovery_tree_root:
3146 	if (!btrfs_test_opt(tree_root, RECOVERY))
3147 		goto fail_tree_roots;
3148 
3149 	free_root_pointers(fs_info, 0);
3150 
3151 	/* don't use the log in recovery mode, it won't be valid */
3152 	btrfs_set_super_log_root(disk_super, 0);
3153 
3154 	/* we can't trust the free space cache either */
3155 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3156 
3157 	ret = next_root_backup(fs_info, fs_info->super_copy,
3158 			       &num_backups_tried, &backup_index);
3159 	if (ret == -1)
3160 		goto fail_block_groups;
3161 	goto retry_root_backup;
3162 }
3163 
3164 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3165 {
3166 	if (uptodate) {
3167 		set_buffer_uptodate(bh);
3168 	} else {
3169 		struct btrfs_device *device = (struct btrfs_device *)
3170 			bh->b_private;
3171 
3172 		printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3173 					  "I/O error on %s\n",
3174 					  rcu_str_deref(device->name));
3175 		/* note, we dont' set_buffer_write_io_error because we have
3176 		 * our own ways of dealing with the IO errors
3177 		 */
3178 		clear_buffer_uptodate(bh);
3179 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3180 	}
3181 	unlock_buffer(bh);
3182 	put_bh(bh);
3183 }
3184 
3185 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3186 {
3187 	struct buffer_head *bh;
3188 	struct buffer_head *latest = NULL;
3189 	struct btrfs_super_block *super;
3190 	int i;
3191 	u64 transid = 0;
3192 	u64 bytenr;
3193 
3194 	/* we would like to check all the supers, but that would make
3195 	 * a btrfs mount succeed after a mkfs from a different FS.
3196 	 * So, we need to add a special mount option to scan for
3197 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3198 	 */
3199 	for (i = 0; i < 1; i++) {
3200 		bytenr = btrfs_sb_offset(i);
3201 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3202 					i_size_read(bdev->bd_inode))
3203 			break;
3204 		bh = __bread(bdev, bytenr / 4096,
3205 					BTRFS_SUPER_INFO_SIZE);
3206 		if (!bh)
3207 			continue;
3208 
3209 		super = (struct btrfs_super_block *)bh->b_data;
3210 		if (btrfs_super_bytenr(super) != bytenr ||
3211 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3212 			brelse(bh);
3213 			continue;
3214 		}
3215 
3216 		if (!latest || btrfs_super_generation(super) > transid) {
3217 			brelse(latest);
3218 			latest = bh;
3219 			transid = btrfs_super_generation(super);
3220 		} else {
3221 			brelse(bh);
3222 		}
3223 	}
3224 	return latest;
3225 }
3226 
3227 /*
3228  * this should be called twice, once with wait == 0 and
3229  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3230  * we write are pinned.
3231  *
3232  * They are released when wait == 1 is done.
3233  * max_mirrors must be the same for both runs, and it indicates how
3234  * many supers on this one device should be written.
3235  *
3236  * max_mirrors == 0 means to write them all.
3237  */
3238 static int write_dev_supers(struct btrfs_device *device,
3239 			    struct btrfs_super_block *sb,
3240 			    int do_barriers, int wait, int max_mirrors)
3241 {
3242 	struct buffer_head *bh;
3243 	int i;
3244 	int ret;
3245 	int errors = 0;
3246 	u32 crc;
3247 	u64 bytenr;
3248 
3249 	if (max_mirrors == 0)
3250 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3251 
3252 	for (i = 0; i < max_mirrors; i++) {
3253 		bytenr = btrfs_sb_offset(i);
3254 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3255 		    device->commit_total_bytes)
3256 			break;
3257 
3258 		if (wait) {
3259 			bh = __find_get_block(device->bdev, bytenr / 4096,
3260 					      BTRFS_SUPER_INFO_SIZE);
3261 			if (!bh) {
3262 				errors++;
3263 				continue;
3264 			}
3265 			wait_on_buffer(bh);
3266 			if (!buffer_uptodate(bh))
3267 				errors++;
3268 
3269 			/* drop our reference */
3270 			brelse(bh);
3271 
3272 			/* drop the reference from the wait == 0 run */
3273 			brelse(bh);
3274 			continue;
3275 		} else {
3276 			btrfs_set_super_bytenr(sb, bytenr);
3277 
3278 			crc = ~(u32)0;
3279 			crc = btrfs_csum_data((char *)sb +
3280 					      BTRFS_CSUM_SIZE, crc,
3281 					      BTRFS_SUPER_INFO_SIZE -
3282 					      BTRFS_CSUM_SIZE);
3283 			btrfs_csum_final(crc, sb->csum);
3284 
3285 			/*
3286 			 * one reference for us, and we leave it for the
3287 			 * caller
3288 			 */
3289 			bh = __getblk(device->bdev, bytenr / 4096,
3290 				      BTRFS_SUPER_INFO_SIZE);
3291 			if (!bh) {
3292 				printk(KERN_ERR "BTRFS: couldn't get super "
3293 				       "buffer head for bytenr %Lu\n", bytenr);
3294 				errors++;
3295 				continue;
3296 			}
3297 
3298 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3299 
3300 			/* one reference for submit_bh */
3301 			get_bh(bh);
3302 
3303 			set_buffer_uptodate(bh);
3304 			lock_buffer(bh);
3305 			bh->b_end_io = btrfs_end_buffer_write_sync;
3306 			bh->b_private = device;
3307 		}
3308 
3309 		/*
3310 		 * we fua the first super.  The others we allow
3311 		 * to go down lazy.
3312 		 */
3313 		if (i == 0)
3314 			ret = btrfsic_submit_bh(WRITE_FUA, bh);
3315 		else
3316 			ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3317 		if (ret)
3318 			errors++;
3319 	}
3320 	return errors < i ? 0 : -1;
3321 }
3322 
3323 /*
3324  * endio for the write_dev_flush, this will wake anyone waiting
3325  * for the barrier when it is done
3326  */
3327 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3328 {
3329 	if (err)
3330 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
3331 	if (bio->bi_private)
3332 		complete(bio->bi_private);
3333 	bio_put(bio);
3334 }
3335 
3336 /*
3337  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3338  * sent down.  With wait == 1, it waits for the previous flush.
3339  *
3340  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3341  * capable
3342  */
3343 static int write_dev_flush(struct btrfs_device *device, int wait)
3344 {
3345 	struct bio *bio;
3346 	int ret = 0;
3347 
3348 	if (device->nobarriers)
3349 		return 0;
3350 
3351 	if (wait) {
3352 		bio = device->flush_bio;
3353 		if (!bio)
3354 			return 0;
3355 
3356 		wait_for_completion(&device->flush_wait);
3357 
3358 		if (!bio_flagged(bio, BIO_UPTODATE)) {
3359 			ret = -EIO;
3360 			btrfs_dev_stat_inc_and_print(device,
3361 				BTRFS_DEV_STAT_FLUSH_ERRS);
3362 		}
3363 
3364 		/* drop the reference from the wait == 0 run */
3365 		bio_put(bio);
3366 		device->flush_bio = NULL;
3367 
3368 		return ret;
3369 	}
3370 
3371 	/*
3372 	 * one reference for us, and we leave it for the
3373 	 * caller
3374 	 */
3375 	device->flush_bio = NULL;
3376 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3377 	if (!bio)
3378 		return -ENOMEM;
3379 
3380 	bio->bi_end_io = btrfs_end_empty_barrier;
3381 	bio->bi_bdev = device->bdev;
3382 	init_completion(&device->flush_wait);
3383 	bio->bi_private = &device->flush_wait;
3384 	device->flush_bio = bio;
3385 
3386 	bio_get(bio);
3387 	btrfsic_submit_bio(WRITE_FLUSH, bio);
3388 
3389 	return 0;
3390 }
3391 
3392 /*
3393  * send an empty flush down to each device in parallel,
3394  * then wait for them
3395  */
3396 static int barrier_all_devices(struct btrfs_fs_info *info)
3397 {
3398 	struct list_head *head;
3399 	struct btrfs_device *dev;
3400 	int errors_send = 0;
3401 	int errors_wait = 0;
3402 	int ret;
3403 
3404 	/* send down all the barriers */
3405 	head = &info->fs_devices->devices;
3406 	list_for_each_entry_rcu(dev, head, dev_list) {
3407 		if (dev->missing)
3408 			continue;
3409 		if (!dev->bdev) {
3410 			errors_send++;
3411 			continue;
3412 		}
3413 		if (!dev->in_fs_metadata || !dev->writeable)
3414 			continue;
3415 
3416 		ret = write_dev_flush(dev, 0);
3417 		if (ret)
3418 			errors_send++;
3419 	}
3420 
3421 	/* wait for all the barriers */
3422 	list_for_each_entry_rcu(dev, head, dev_list) {
3423 		if (dev->missing)
3424 			continue;
3425 		if (!dev->bdev) {
3426 			errors_wait++;
3427 			continue;
3428 		}
3429 		if (!dev->in_fs_metadata || !dev->writeable)
3430 			continue;
3431 
3432 		ret = write_dev_flush(dev, 1);
3433 		if (ret)
3434 			errors_wait++;
3435 	}
3436 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3437 	    errors_wait > info->num_tolerated_disk_barrier_failures)
3438 		return -EIO;
3439 	return 0;
3440 }
3441 
3442 int btrfs_calc_num_tolerated_disk_barrier_failures(
3443 	struct btrfs_fs_info *fs_info)
3444 {
3445 	struct btrfs_ioctl_space_info space;
3446 	struct btrfs_space_info *sinfo;
3447 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3448 		       BTRFS_BLOCK_GROUP_SYSTEM,
3449 		       BTRFS_BLOCK_GROUP_METADATA,
3450 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3451 	int num_types = 4;
3452 	int i;
3453 	int c;
3454 	int num_tolerated_disk_barrier_failures =
3455 		(int)fs_info->fs_devices->num_devices;
3456 
3457 	for (i = 0; i < num_types; i++) {
3458 		struct btrfs_space_info *tmp;
3459 
3460 		sinfo = NULL;
3461 		rcu_read_lock();
3462 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3463 			if (tmp->flags == types[i]) {
3464 				sinfo = tmp;
3465 				break;
3466 			}
3467 		}
3468 		rcu_read_unlock();
3469 
3470 		if (!sinfo)
3471 			continue;
3472 
3473 		down_read(&sinfo->groups_sem);
3474 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3475 			if (!list_empty(&sinfo->block_groups[c])) {
3476 				u64 flags;
3477 
3478 				btrfs_get_block_group_info(
3479 					&sinfo->block_groups[c], &space);
3480 				if (space.total_bytes == 0 ||
3481 				    space.used_bytes == 0)
3482 					continue;
3483 				flags = space.flags;
3484 				/*
3485 				 * return
3486 				 * 0: if dup, single or RAID0 is configured for
3487 				 *    any of metadata, system or data, else
3488 				 * 1: if RAID5 is configured, or if RAID1 or
3489 				 *    RAID10 is configured and only two mirrors
3490 				 *    are used, else
3491 				 * 2: if RAID6 is configured, else
3492 				 * num_mirrors - 1: if RAID1 or RAID10 is
3493 				 *                  configured and more than
3494 				 *                  2 mirrors are used.
3495 				 */
3496 				if (num_tolerated_disk_barrier_failures > 0 &&
3497 				    ((flags & (BTRFS_BLOCK_GROUP_DUP |
3498 					       BTRFS_BLOCK_GROUP_RAID0)) ||
3499 				     ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3500 				      == 0)))
3501 					num_tolerated_disk_barrier_failures = 0;
3502 				else if (num_tolerated_disk_barrier_failures > 1) {
3503 					if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3504 					    BTRFS_BLOCK_GROUP_RAID5 |
3505 					    BTRFS_BLOCK_GROUP_RAID10)) {
3506 						num_tolerated_disk_barrier_failures = 1;
3507 					} else if (flags &
3508 						   BTRFS_BLOCK_GROUP_RAID6) {
3509 						num_tolerated_disk_barrier_failures = 2;
3510 					}
3511 				}
3512 			}
3513 		}
3514 		up_read(&sinfo->groups_sem);
3515 	}
3516 
3517 	return num_tolerated_disk_barrier_failures;
3518 }
3519 
3520 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3521 {
3522 	struct list_head *head;
3523 	struct btrfs_device *dev;
3524 	struct btrfs_super_block *sb;
3525 	struct btrfs_dev_item *dev_item;
3526 	int ret;
3527 	int do_barriers;
3528 	int max_errors;
3529 	int total_errors = 0;
3530 	u64 flags;
3531 
3532 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
3533 	backup_super_roots(root->fs_info);
3534 
3535 	sb = root->fs_info->super_for_commit;
3536 	dev_item = &sb->dev_item;
3537 
3538 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3539 	head = &root->fs_info->fs_devices->devices;
3540 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3541 
3542 	if (do_barriers) {
3543 		ret = barrier_all_devices(root->fs_info);
3544 		if (ret) {
3545 			mutex_unlock(
3546 				&root->fs_info->fs_devices->device_list_mutex);
3547 			btrfs_error(root->fs_info, ret,
3548 				    "errors while submitting device barriers.");
3549 			return ret;
3550 		}
3551 	}
3552 
3553 	list_for_each_entry_rcu(dev, head, dev_list) {
3554 		if (!dev->bdev) {
3555 			total_errors++;
3556 			continue;
3557 		}
3558 		if (!dev->in_fs_metadata || !dev->writeable)
3559 			continue;
3560 
3561 		btrfs_set_stack_device_generation(dev_item, 0);
3562 		btrfs_set_stack_device_type(dev_item, dev->type);
3563 		btrfs_set_stack_device_id(dev_item, dev->devid);
3564 		btrfs_set_stack_device_total_bytes(dev_item,
3565 						   dev->commit_total_bytes);
3566 		btrfs_set_stack_device_bytes_used(dev_item,
3567 						  dev->commit_bytes_used);
3568 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3569 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3570 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3571 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3572 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3573 
3574 		flags = btrfs_super_flags(sb);
3575 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3576 
3577 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3578 		if (ret)
3579 			total_errors++;
3580 	}
3581 	if (total_errors > max_errors) {
3582 		btrfs_err(root->fs_info, "%d errors while writing supers",
3583 		       total_errors);
3584 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3585 
3586 		/* FUA is masked off if unsupported and can't be the reason */
3587 		btrfs_error(root->fs_info, -EIO,
3588 			    "%d errors while writing supers", total_errors);
3589 		return -EIO;
3590 	}
3591 
3592 	total_errors = 0;
3593 	list_for_each_entry_rcu(dev, head, dev_list) {
3594 		if (!dev->bdev)
3595 			continue;
3596 		if (!dev->in_fs_metadata || !dev->writeable)
3597 			continue;
3598 
3599 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3600 		if (ret)
3601 			total_errors++;
3602 	}
3603 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3604 	if (total_errors > max_errors) {
3605 		btrfs_error(root->fs_info, -EIO,
3606 			    "%d errors while writing supers", total_errors);
3607 		return -EIO;
3608 	}
3609 	return 0;
3610 }
3611 
3612 int write_ctree_super(struct btrfs_trans_handle *trans,
3613 		      struct btrfs_root *root, int max_mirrors)
3614 {
3615 	return write_all_supers(root, max_mirrors);
3616 }
3617 
3618 /* Drop a fs root from the radix tree and free it. */
3619 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3620 				  struct btrfs_root *root)
3621 {
3622 	spin_lock(&fs_info->fs_roots_radix_lock);
3623 	radix_tree_delete(&fs_info->fs_roots_radix,
3624 			  (unsigned long)root->root_key.objectid);
3625 	spin_unlock(&fs_info->fs_roots_radix_lock);
3626 
3627 	if (btrfs_root_refs(&root->root_item) == 0)
3628 		synchronize_srcu(&fs_info->subvol_srcu);
3629 
3630 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3631 		btrfs_free_log(NULL, root);
3632 
3633 	if (root->free_ino_pinned)
3634 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3635 	if (root->free_ino_ctl)
3636 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3637 	free_fs_root(root);
3638 }
3639 
3640 static void free_fs_root(struct btrfs_root *root)
3641 {
3642 	iput(root->ino_cache_inode);
3643 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3644 	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3645 	root->orphan_block_rsv = NULL;
3646 	if (root->anon_dev)
3647 		free_anon_bdev(root->anon_dev);
3648 	if (root->subv_writers)
3649 		btrfs_free_subvolume_writers(root->subv_writers);
3650 	free_extent_buffer(root->node);
3651 	free_extent_buffer(root->commit_root);
3652 	kfree(root->free_ino_ctl);
3653 	kfree(root->free_ino_pinned);
3654 	kfree(root->name);
3655 	btrfs_put_fs_root(root);
3656 }
3657 
3658 void btrfs_free_fs_root(struct btrfs_root *root)
3659 {
3660 	free_fs_root(root);
3661 }
3662 
3663 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3664 {
3665 	u64 root_objectid = 0;
3666 	struct btrfs_root *gang[8];
3667 	int i = 0;
3668 	int err = 0;
3669 	unsigned int ret = 0;
3670 	int index;
3671 
3672 	while (1) {
3673 		index = srcu_read_lock(&fs_info->subvol_srcu);
3674 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3675 					     (void **)gang, root_objectid,
3676 					     ARRAY_SIZE(gang));
3677 		if (!ret) {
3678 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3679 			break;
3680 		}
3681 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3682 
3683 		for (i = 0; i < ret; i++) {
3684 			/* Avoid to grab roots in dead_roots */
3685 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3686 				gang[i] = NULL;
3687 				continue;
3688 			}
3689 			/* grab all the search result for later use */
3690 			gang[i] = btrfs_grab_fs_root(gang[i]);
3691 		}
3692 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3693 
3694 		for (i = 0; i < ret; i++) {
3695 			if (!gang[i])
3696 				continue;
3697 			root_objectid = gang[i]->root_key.objectid;
3698 			err = btrfs_orphan_cleanup(gang[i]);
3699 			if (err)
3700 				break;
3701 			btrfs_put_fs_root(gang[i]);
3702 		}
3703 		root_objectid++;
3704 	}
3705 
3706 	/* release the uncleaned roots due to error */
3707 	for (; i < ret; i++) {
3708 		if (gang[i])
3709 			btrfs_put_fs_root(gang[i]);
3710 	}
3711 	return err;
3712 }
3713 
3714 int btrfs_commit_super(struct btrfs_root *root)
3715 {
3716 	struct btrfs_trans_handle *trans;
3717 
3718 	mutex_lock(&root->fs_info->cleaner_mutex);
3719 	btrfs_run_delayed_iputs(root);
3720 	mutex_unlock(&root->fs_info->cleaner_mutex);
3721 	wake_up_process(root->fs_info->cleaner_kthread);
3722 
3723 	/* wait until ongoing cleanup work done */
3724 	down_write(&root->fs_info->cleanup_work_sem);
3725 	up_write(&root->fs_info->cleanup_work_sem);
3726 
3727 	trans = btrfs_join_transaction(root);
3728 	if (IS_ERR(trans))
3729 		return PTR_ERR(trans);
3730 	return btrfs_commit_transaction(trans, root);
3731 }
3732 
3733 void close_ctree(struct btrfs_root *root)
3734 {
3735 	struct btrfs_fs_info *fs_info = root->fs_info;
3736 	int ret;
3737 
3738 	fs_info->closing = 1;
3739 	smp_mb();
3740 
3741 	/* wait for the uuid_scan task to finish */
3742 	down(&fs_info->uuid_tree_rescan_sem);
3743 	/* avoid complains from lockdep et al., set sem back to initial state */
3744 	up(&fs_info->uuid_tree_rescan_sem);
3745 
3746 	/* pause restriper - we want to resume on mount */
3747 	btrfs_pause_balance(fs_info);
3748 
3749 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3750 
3751 	btrfs_scrub_cancel(fs_info);
3752 
3753 	/* wait for any defraggers to finish */
3754 	wait_event(fs_info->transaction_wait,
3755 		   (atomic_read(&fs_info->defrag_running) == 0));
3756 
3757 	/* clear out the rbtree of defraggable inodes */
3758 	btrfs_cleanup_defrag_inodes(fs_info);
3759 
3760 	cancel_work_sync(&fs_info->async_reclaim_work);
3761 
3762 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3763 		ret = btrfs_commit_super(root);
3764 		if (ret)
3765 			btrfs_err(fs_info, "commit super ret %d", ret);
3766 	}
3767 
3768 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3769 		btrfs_error_commit_super(root);
3770 
3771 	kthread_stop(fs_info->transaction_kthread);
3772 	kthread_stop(fs_info->cleaner_kthread);
3773 
3774 	fs_info->closing = 2;
3775 	smp_mb();
3776 
3777 	btrfs_free_qgroup_config(fs_info);
3778 
3779 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3780 		btrfs_info(fs_info, "at unmount delalloc count %lld",
3781 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3782 	}
3783 
3784 	btrfs_sysfs_remove_one(fs_info);
3785 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3786 
3787 	btrfs_free_fs_roots(fs_info);
3788 
3789 	btrfs_put_block_group_cache(fs_info);
3790 
3791 	btrfs_free_block_groups(fs_info);
3792 
3793 	/*
3794 	 * we must make sure there is not any read request to
3795 	 * submit after we stopping all workers.
3796 	 */
3797 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3798 	btrfs_stop_all_workers(fs_info);
3799 
3800 	fs_info->open = 0;
3801 	free_root_pointers(fs_info, 1);
3802 
3803 	iput(fs_info->btree_inode);
3804 
3805 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3806 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3807 		btrfsic_unmount(root, fs_info->fs_devices);
3808 #endif
3809 
3810 	btrfs_close_devices(fs_info->fs_devices);
3811 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3812 
3813 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3814 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3815 	percpu_counter_destroy(&fs_info->bio_counter);
3816 	bdi_destroy(&fs_info->bdi);
3817 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3818 
3819 	btrfs_free_stripe_hash_table(fs_info);
3820 
3821 	__btrfs_free_block_rsv(root->orphan_block_rsv);
3822 	root->orphan_block_rsv = NULL;
3823 
3824 	lock_chunks(root);
3825 	while (!list_empty(&fs_info->pinned_chunks)) {
3826 		struct extent_map *em;
3827 
3828 		em = list_first_entry(&fs_info->pinned_chunks,
3829 				      struct extent_map, list);
3830 		list_del_init(&em->list);
3831 		free_extent_map(em);
3832 	}
3833 	unlock_chunks(root);
3834 }
3835 
3836 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3837 			  int atomic)
3838 {
3839 	int ret;
3840 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3841 
3842 	ret = extent_buffer_uptodate(buf);
3843 	if (!ret)
3844 		return ret;
3845 
3846 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3847 				    parent_transid, atomic);
3848 	if (ret == -EAGAIN)
3849 		return ret;
3850 	return !ret;
3851 }
3852 
3853 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3854 {
3855 	return set_extent_buffer_uptodate(buf);
3856 }
3857 
3858 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3859 {
3860 	struct btrfs_root *root;
3861 	u64 transid = btrfs_header_generation(buf);
3862 	int was_dirty;
3863 
3864 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3865 	/*
3866 	 * This is a fast path so only do this check if we have sanity tests
3867 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3868 	 * outside of the sanity tests.
3869 	 */
3870 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3871 		return;
3872 #endif
3873 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3874 	btrfs_assert_tree_locked(buf);
3875 	if (transid != root->fs_info->generation)
3876 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3877 		       "found %llu running %llu\n",
3878 			buf->start, transid, root->fs_info->generation);
3879 	was_dirty = set_extent_buffer_dirty(buf);
3880 	if (!was_dirty)
3881 		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3882 				     buf->len,
3883 				     root->fs_info->dirty_metadata_batch);
3884 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3885 	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3886 		btrfs_print_leaf(root, buf);
3887 		ASSERT(0);
3888 	}
3889 #endif
3890 }
3891 
3892 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3893 					int flush_delayed)
3894 {
3895 	/*
3896 	 * looks as though older kernels can get into trouble with
3897 	 * this code, they end up stuck in balance_dirty_pages forever
3898 	 */
3899 	int ret;
3900 
3901 	if (current->flags & PF_MEMALLOC)
3902 		return;
3903 
3904 	if (flush_delayed)
3905 		btrfs_balance_delayed_items(root);
3906 
3907 	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3908 				     BTRFS_DIRTY_METADATA_THRESH);
3909 	if (ret > 0) {
3910 		balance_dirty_pages_ratelimited(
3911 				   root->fs_info->btree_inode->i_mapping);
3912 	}
3913 	return;
3914 }
3915 
3916 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3917 {
3918 	__btrfs_btree_balance_dirty(root, 1);
3919 }
3920 
3921 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3922 {
3923 	__btrfs_btree_balance_dirty(root, 0);
3924 }
3925 
3926 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3927 {
3928 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3929 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3930 }
3931 
3932 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3933 			      int read_only)
3934 {
3935 	struct btrfs_super_block *sb = fs_info->super_copy;
3936 	int ret = 0;
3937 
3938 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3939 		printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3940 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3941 		ret = -EINVAL;
3942 	}
3943 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3944 		printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3945 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3946 		ret = -EINVAL;
3947 	}
3948 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3949 		printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
3950 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3951 		ret = -EINVAL;
3952 	}
3953 
3954 	/*
3955 	 * The common minimum, we don't know if we can trust the nodesize/sectorsize
3956 	 * items yet, they'll be verified later. Issue just a warning.
3957 	 */
3958 	if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
3959 		printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
3960 				btrfs_super_root(sb));
3961 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
3962 		printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
3963 				btrfs_super_chunk_root(sb));
3964 	if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
3965 		printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
3966 				btrfs_super_log_root(sb));
3967 
3968 	/*
3969 	 * Check the lower bound, the alignment and other constraints are
3970 	 * checked later.
3971 	 */
3972 	if (btrfs_super_nodesize(sb) < 4096) {
3973 		printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
3974 				btrfs_super_nodesize(sb));
3975 		ret = -EINVAL;
3976 	}
3977 	if (btrfs_super_sectorsize(sb) < 4096) {
3978 		printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
3979 				btrfs_super_sectorsize(sb));
3980 		ret = -EINVAL;
3981 	}
3982 
3983 	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
3984 		printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
3985 				fs_info->fsid, sb->dev_item.fsid);
3986 		ret = -EINVAL;
3987 	}
3988 
3989 	/*
3990 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3991 	 * done later
3992 	 */
3993 	if (btrfs_super_num_devices(sb) > (1UL << 31))
3994 		printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
3995 				btrfs_super_num_devices(sb));
3996 	if (btrfs_super_num_devices(sb) == 0) {
3997 		printk(KERN_ERR "BTRFS: number of devices is 0\n");
3998 		ret = -EINVAL;
3999 	}
4000 
4001 	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4002 		printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4003 				btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4004 		ret = -EINVAL;
4005 	}
4006 
4007 	/*
4008 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
4009 	 * and one chunk
4010 	 */
4011 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4012 		printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4013 				btrfs_super_sys_array_size(sb),
4014 				BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4015 		ret = -EINVAL;
4016 	}
4017 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4018 			+ sizeof(struct btrfs_chunk)) {
4019 		printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4020 				btrfs_super_sys_array_size(sb),
4021 				sizeof(struct btrfs_disk_key)
4022 				+ sizeof(struct btrfs_chunk));
4023 		ret = -EINVAL;
4024 	}
4025 
4026 	/*
4027 	 * The generation is a global counter, we'll trust it more than the others
4028 	 * but it's still possible that it's the one that's wrong.
4029 	 */
4030 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4031 		printk(KERN_WARNING
4032 			"BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4033 			btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4034 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4035 	    && btrfs_super_cache_generation(sb) != (u64)-1)
4036 		printk(KERN_WARNING
4037 			"BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4038 			btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4039 
4040 	return ret;
4041 }
4042 
4043 static void btrfs_error_commit_super(struct btrfs_root *root)
4044 {
4045 	mutex_lock(&root->fs_info->cleaner_mutex);
4046 	btrfs_run_delayed_iputs(root);
4047 	mutex_unlock(&root->fs_info->cleaner_mutex);
4048 
4049 	down_write(&root->fs_info->cleanup_work_sem);
4050 	up_write(&root->fs_info->cleanup_work_sem);
4051 
4052 	/* cleanup FS via transaction */
4053 	btrfs_cleanup_transaction(root);
4054 }
4055 
4056 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4057 {
4058 	struct btrfs_ordered_extent *ordered;
4059 
4060 	spin_lock(&root->ordered_extent_lock);
4061 	/*
4062 	 * This will just short circuit the ordered completion stuff which will
4063 	 * make sure the ordered extent gets properly cleaned up.
4064 	 */
4065 	list_for_each_entry(ordered, &root->ordered_extents,
4066 			    root_extent_list)
4067 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4068 	spin_unlock(&root->ordered_extent_lock);
4069 }
4070 
4071 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4072 {
4073 	struct btrfs_root *root;
4074 	struct list_head splice;
4075 
4076 	INIT_LIST_HEAD(&splice);
4077 
4078 	spin_lock(&fs_info->ordered_root_lock);
4079 	list_splice_init(&fs_info->ordered_roots, &splice);
4080 	while (!list_empty(&splice)) {
4081 		root = list_first_entry(&splice, struct btrfs_root,
4082 					ordered_root);
4083 		list_move_tail(&root->ordered_root,
4084 			       &fs_info->ordered_roots);
4085 
4086 		spin_unlock(&fs_info->ordered_root_lock);
4087 		btrfs_destroy_ordered_extents(root);
4088 
4089 		cond_resched();
4090 		spin_lock(&fs_info->ordered_root_lock);
4091 	}
4092 	spin_unlock(&fs_info->ordered_root_lock);
4093 }
4094 
4095 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4096 				      struct btrfs_root *root)
4097 {
4098 	struct rb_node *node;
4099 	struct btrfs_delayed_ref_root *delayed_refs;
4100 	struct btrfs_delayed_ref_node *ref;
4101 	int ret = 0;
4102 
4103 	delayed_refs = &trans->delayed_refs;
4104 
4105 	spin_lock(&delayed_refs->lock);
4106 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4107 		spin_unlock(&delayed_refs->lock);
4108 		btrfs_info(root->fs_info, "delayed_refs has NO entry");
4109 		return ret;
4110 	}
4111 
4112 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4113 		struct btrfs_delayed_ref_head *head;
4114 		struct btrfs_delayed_ref_node *tmp;
4115 		bool pin_bytes = false;
4116 
4117 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4118 				href_node);
4119 		if (!mutex_trylock(&head->mutex)) {
4120 			atomic_inc(&head->node.refs);
4121 			spin_unlock(&delayed_refs->lock);
4122 
4123 			mutex_lock(&head->mutex);
4124 			mutex_unlock(&head->mutex);
4125 			btrfs_put_delayed_ref(&head->node);
4126 			spin_lock(&delayed_refs->lock);
4127 			continue;
4128 		}
4129 		spin_lock(&head->lock);
4130 		list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4131 						 list) {
4132 			ref->in_tree = 0;
4133 			list_del(&ref->list);
4134 			atomic_dec(&delayed_refs->num_entries);
4135 			btrfs_put_delayed_ref(ref);
4136 		}
4137 		if (head->must_insert_reserved)
4138 			pin_bytes = true;
4139 		btrfs_free_delayed_extent_op(head->extent_op);
4140 		delayed_refs->num_heads--;
4141 		if (head->processing == 0)
4142 			delayed_refs->num_heads_ready--;
4143 		atomic_dec(&delayed_refs->num_entries);
4144 		head->node.in_tree = 0;
4145 		rb_erase(&head->href_node, &delayed_refs->href_root);
4146 		spin_unlock(&head->lock);
4147 		spin_unlock(&delayed_refs->lock);
4148 		mutex_unlock(&head->mutex);
4149 
4150 		if (pin_bytes)
4151 			btrfs_pin_extent(root, head->node.bytenr,
4152 					 head->node.num_bytes, 1);
4153 		btrfs_put_delayed_ref(&head->node);
4154 		cond_resched();
4155 		spin_lock(&delayed_refs->lock);
4156 	}
4157 
4158 	spin_unlock(&delayed_refs->lock);
4159 
4160 	return ret;
4161 }
4162 
4163 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4164 {
4165 	struct btrfs_inode *btrfs_inode;
4166 	struct list_head splice;
4167 
4168 	INIT_LIST_HEAD(&splice);
4169 
4170 	spin_lock(&root->delalloc_lock);
4171 	list_splice_init(&root->delalloc_inodes, &splice);
4172 
4173 	while (!list_empty(&splice)) {
4174 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4175 					       delalloc_inodes);
4176 
4177 		list_del_init(&btrfs_inode->delalloc_inodes);
4178 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4179 			  &btrfs_inode->runtime_flags);
4180 		spin_unlock(&root->delalloc_lock);
4181 
4182 		btrfs_invalidate_inodes(btrfs_inode->root);
4183 
4184 		spin_lock(&root->delalloc_lock);
4185 	}
4186 
4187 	spin_unlock(&root->delalloc_lock);
4188 }
4189 
4190 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4191 {
4192 	struct btrfs_root *root;
4193 	struct list_head splice;
4194 
4195 	INIT_LIST_HEAD(&splice);
4196 
4197 	spin_lock(&fs_info->delalloc_root_lock);
4198 	list_splice_init(&fs_info->delalloc_roots, &splice);
4199 	while (!list_empty(&splice)) {
4200 		root = list_first_entry(&splice, struct btrfs_root,
4201 					 delalloc_root);
4202 		list_del_init(&root->delalloc_root);
4203 		root = btrfs_grab_fs_root(root);
4204 		BUG_ON(!root);
4205 		spin_unlock(&fs_info->delalloc_root_lock);
4206 
4207 		btrfs_destroy_delalloc_inodes(root);
4208 		btrfs_put_fs_root(root);
4209 
4210 		spin_lock(&fs_info->delalloc_root_lock);
4211 	}
4212 	spin_unlock(&fs_info->delalloc_root_lock);
4213 }
4214 
4215 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4216 					struct extent_io_tree *dirty_pages,
4217 					int mark)
4218 {
4219 	int ret;
4220 	struct extent_buffer *eb;
4221 	u64 start = 0;
4222 	u64 end;
4223 
4224 	while (1) {
4225 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4226 					    mark, NULL);
4227 		if (ret)
4228 			break;
4229 
4230 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4231 		while (start <= end) {
4232 			eb = btrfs_find_tree_block(root->fs_info, start);
4233 			start += root->nodesize;
4234 			if (!eb)
4235 				continue;
4236 			wait_on_extent_buffer_writeback(eb);
4237 
4238 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4239 					       &eb->bflags))
4240 				clear_extent_buffer_dirty(eb);
4241 			free_extent_buffer_stale(eb);
4242 		}
4243 	}
4244 
4245 	return ret;
4246 }
4247 
4248 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4249 				       struct extent_io_tree *pinned_extents)
4250 {
4251 	struct extent_io_tree *unpin;
4252 	u64 start;
4253 	u64 end;
4254 	int ret;
4255 	bool loop = true;
4256 
4257 	unpin = pinned_extents;
4258 again:
4259 	while (1) {
4260 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4261 					    EXTENT_DIRTY, NULL);
4262 		if (ret)
4263 			break;
4264 
4265 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
4266 		btrfs_error_unpin_extent_range(root, start, end);
4267 		cond_resched();
4268 	}
4269 
4270 	if (loop) {
4271 		if (unpin == &root->fs_info->freed_extents[0])
4272 			unpin = &root->fs_info->freed_extents[1];
4273 		else
4274 			unpin = &root->fs_info->freed_extents[0];
4275 		loop = false;
4276 		goto again;
4277 	}
4278 
4279 	return 0;
4280 }
4281 
4282 static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
4283 				       struct btrfs_fs_info *fs_info)
4284 {
4285 	struct btrfs_ordered_extent *ordered;
4286 
4287 	spin_lock(&fs_info->trans_lock);
4288 	while (!list_empty(&cur_trans->pending_ordered)) {
4289 		ordered = list_first_entry(&cur_trans->pending_ordered,
4290 					   struct btrfs_ordered_extent,
4291 					   trans_list);
4292 		list_del_init(&ordered->trans_list);
4293 		spin_unlock(&fs_info->trans_lock);
4294 
4295 		btrfs_put_ordered_extent(ordered);
4296 		spin_lock(&fs_info->trans_lock);
4297 	}
4298 	spin_unlock(&fs_info->trans_lock);
4299 }
4300 
4301 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4302 				   struct btrfs_root *root)
4303 {
4304 	btrfs_destroy_delayed_refs(cur_trans, root);
4305 
4306 	cur_trans->state = TRANS_STATE_COMMIT_START;
4307 	wake_up(&root->fs_info->transaction_blocked_wait);
4308 
4309 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4310 	wake_up(&root->fs_info->transaction_wait);
4311 
4312 	btrfs_free_pending_ordered(cur_trans, root->fs_info);
4313 	btrfs_destroy_delayed_inodes(root);
4314 	btrfs_assert_delayed_root_empty(root);
4315 
4316 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4317 				     EXTENT_DIRTY);
4318 	btrfs_destroy_pinned_extent(root,
4319 				    root->fs_info->pinned_extents);
4320 
4321 	cur_trans->state =TRANS_STATE_COMPLETED;
4322 	wake_up(&cur_trans->commit_wait);
4323 
4324 	/*
4325 	memset(cur_trans, 0, sizeof(*cur_trans));
4326 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4327 	*/
4328 }
4329 
4330 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4331 {
4332 	struct btrfs_transaction *t;
4333 
4334 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
4335 
4336 	spin_lock(&root->fs_info->trans_lock);
4337 	while (!list_empty(&root->fs_info->trans_list)) {
4338 		t = list_first_entry(&root->fs_info->trans_list,
4339 				     struct btrfs_transaction, list);
4340 		if (t->state >= TRANS_STATE_COMMIT_START) {
4341 			atomic_inc(&t->use_count);
4342 			spin_unlock(&root->fs_info->trans_lock);
4343 			btrfs_wait_for_commit(root, t->transid);
4344 			btrfs_put_transaction(t);
4345 			spin_lock(&root->fs_info->trans_lock);
4346 			continue;
4347 		}
4348 		if (t == root->fs_info->running_transaction) {
4349 			t->state = TRANS_STATE_COMMIT_DOING;
4350 			spin_unlock(&root->fs_info->trans_lock);
4351 			/*
4352 			 * We wait for 0 num_writers since we don't hold a trans
4353 			 * handle open currently for this transaction.
4354 			 */
4355 			wait_event(t->writer_wait,
4356 				   atomic_read(&t->num_writers) == 0);
4357 		} else {
4358 			spin_unlock(&root->fs_info->trans_lock);
4359 		}
4360 		btrfs_cleanup_one_transaction(t, root);
4361 
4362 		spin_lock(&root->fs_info->trans_lock);
4363 		if (t == root->fs_info->running_transaction)
4364 			root->fs_info->running_transaction = NULL;
4365 		list_del_init(&t->list);
4366 		spin_unlock(&root->fs_info->trans_lock);
4367 
4368 		btrfs_put_transaction(t);
4369 		trace_btrfs_transaction_commit(root);
4370 		spin_lock(&root->fs_info->trans_lock);
4371 	}
4372 	spin_unlock(&root->fs_info->trans_lock);
4373 	btrfs_destroy_all_ordered_extents(root->fs_info);
4374 	btrfs_destroy_delayed_inodes(root);
4375 	btrfs_assert_delayed_root_empty(root);
4376 	btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4377 	btrfs_destroy_all_delalloc_inodes(root->fs_info);
4378 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4379 
4380 	return 0;
4381 }
4382 
4383 static const struct extent_io_ops btree_extent_io_ops = {
4384 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4385 	.readpage_io_failed_hook = btree_io_failed_hook,
4386 	.submit_bio_hook = btree_submit_bio_hook,
4387 	/* note we're sharing with inode.c for the merge bio hook */
4388 	.merge_bio_hook = btrfs_merge_bio_hook,
4389 };
4390