1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/slab.h> 30 #include <linux/migrate.h> 31 #include <linux/ratelimit.h> 32 #include <linux/uuid.h> 33 #include <linux/semaphore.h> 34 #include <asm/unaligned.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "hash.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "volumes.h" 41 #include "print-tree.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 #include "dev-replace.h" 49 #include "raid56.h" 50 #include "sysfs.h" 51 #include "qgroup.h" 52 53 #ifdef CONFIG_X86 54 #include <asm/cpufeature.h> 55 #endif 56 57 static const struct extent_io_ops btree_extent_io_ops; 58 static void end_workqueue_fn(struct btrfs_work *work); 59 static void free_fs_root(struct btrfs_root *root); 60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 61 int read_only); 62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 64 struct btrfs_root *root); 65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 66 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 67 struct extent_io_tree *dirty_pages, 68 int mark); 69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 70 struct extent_io_tree *pinned_extents); 71 static int btrfs_cleanup_transaction(struct btrfs_root *root); 72 static void btrfs_error_commit_super(struct btrfs_root *root); 73 74 /* 75 * btrfs_end_io_wq structs are used to do processing in task context when an IO 76 * is complete. This is used during reads to verify checksums, and it is used 77 * by writes to insert metadata for new file extents after IO is complete. 78 */ 79 struct btrfs_end_io_wq { 80 struct bio *bio; 81 bio_end_io_t *end_io; 82 void *private; 83 struct btrfs_fs_info *info; 84 int error; 85 enum btrfs_wq_endio_type metadata; 86 struct list_head list; 87 struct btrfs_work work; 88 }; 89 90 static struct kmem_cache *btrfs_end_io_wq_cache; 91 92 int __init btrfs_end_io_wq_init(void) 93 { 94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 95 sizeof(struct btrfs_end_io_wq), 96 0, 97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 98 NULL); 99 if (!btrfs_end_io_wq_cache) 100 return -ENOMEM; 101 return 0; 102 } 103 104 void btrfs_end_io_wq_exit(void) 105 { 106 if (btrfs_end_io_wq_cache) 107 kmem_cache_destroy(btrfs_end_io_wq_cache); 108 } 109 110 /* 111 * async submit bios are used to offload expensive checksumming 112 * onto the worker threads. They checksum file and metadata bios 113 * just before they are sent down the IO stack. 114 */ 115 struct async_submit_bio { 116 struct inode *inode; 117 struct bio *bio; 118 struct list_head list; 119 extent_submit_bio_hook_t *submit_bio_start; 120 extent_submit_bio_hook_t *submit_bio_done; 121 int rw; 122 int mirror_num; 123 unsigned long bio_flags; 124 /* 125 * bio_offset is optional, can be used if the pages in the bio 126 * can't tell us where in the file the bio should go 127 */ 128 u64 bio_offset; 129 struct btrfs_work work; 130 int error; 131 }; 132 133 /* 134 * Lockdep class keys for extent_buffer->lock's in this root. For a given 135 * eb, the lockdep key is determined by the btrfs_root it belongs to and 136 * the level the eb occupies in the tree. 137 * 138 * Different roots are used for different purposes and may nest inside each 139 * other and they require separate keysets. As lockdep keys should be 140 * static, assign keysets according to the purpose of the root as indicated 141 * by btrfs_root->objectid. This ensures that all special purpose roots 142 * have separate keysets. 143 * 144 * Lock-nesting across peer nodes is always done with the immediate parent 145 * node locked thus preventing deadlock. As lockdep doesn't know this, use 146 * subclass to avoid triggering lockdep warning in such cases. 147 * 148 * The key is set by the readpage_end_io_hook after the buffer has passed 149 * csum validation but before the pages are unlocked. It is also set by 150 * btrfs_init_new_buffer on freshly allocated blocks. 151 * 152 * We also add a check to make sure the highest level of the tree is the 153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 154 * needs update as well. 155 */ 156 #ifdef CONFIG_DEBUG_LOCK_ALLOC 157 # if BTRFS_MAX_LEVEL != 8 158 # error 159 # endif 160 161 static struct btrfs_lockdep_keyset { 162 u64 id; /* root objectid */ 163 const char *name_stem; /* lock name stem */ 164 char names[BTRFS_MAX_LEVEL + 1][20]; 165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 166 } btrfs_lockdep_keysets[] = { 167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 178 { .id = 0, .name_stem = "tree" }, 179 }; 180 181 void __init btrfs_init_lockdep(void) 182 { 183 int i, j; 184 185 /* initialize lockdep class names */ 186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 188 189 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 190 snprintf(ks->names[j], sizeof(ks->names[j]), 191 "btrfs-%s-%02d", ks->name_stem, j); 192 } 193 } 194 195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 196 int level) 197 { 198 struct btrfs_lockdep_keyset *ks; 199 200 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 201 202 /* find the matching keyset, id 0 is the default entry */ 203 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 204 if (ks->id == objectid) 205 break; 206 207 lockdep_set_class_and_name(&eb->lock, 208 &ks->keys[level], ks->names[level]); 209 } 210 211 #endif 212 213 /* 214 * extents on the btree inode are pretty simple, there's one extent 215 * that covers the entire device 216 */ 217 static struct extent_map *btree_get_extent(struct inode *inode, 218 struct page *page, size_t pg_offset, u64 start, u64 len, 219 int create) 220 { 221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 222 struct extent_map *em; 223 int ret; 224 225 read_lock(&em_tree->lock); 226 em = lookup_extent_mapping(em_tree, start, len); 227 if (em) { 228 em->bdev = 229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 230 read_unlock(&em_tree->lock); 231 goto out; 232 } 233 read_unlock(&em_tree->lock); 234 235 em = alloc_extent_map(); 236 if (!em) { 237 em = ERR_PTR(-ENOMEM); 238 goto out; 239 } 240 em->start = 0; 241 em->len = (u64)-1; 242 em->block_len = (u64)-1; 243 em->block_start = 0; 244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 245 246 write_lock(&em_tree->lock); 247 ret = add_extent_mapping(em_tree, em, 0); 248 if (ret == -EEXIST) { 249 free_extent_map(em); 250 em = lookup_extent_mapping(em_tree, start, len); 251 if (!em) 252 em = ERR_PTR(-EIO); 253 } else if (ret) { 254 free_extent_map(em); 255 em = ERR_PTR(ret); 256 } 257 write_unlock(&em_tree->lock); 258 259 out: 260 return em; 261 } 262 263 u32 btrfs_csum_data(char *data, u32 seed, size_t len) 264 { 265 return btrfs_crc32c(seed, data, len); 266 } 267 268 void btrfs_csum_final(u32 crc, char *result) 269 { 270 put_unaligned_le32(~crc, result); 271 } 272 273 /* 274 * compute the csum for a btree block, and either verify it or write it 275 * into the csum field of the block. 276 */ 277 static int csum_tree_block(struct btrfs_fs_info *fs_info, 278 struct extent_buffer *buf, 279 int verify) 280 { 281 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 282 char *result = NULL; 283 unsigned long len; 284 unsigned long cur_len; 285 unsigned long offset = BTRFS_CSUM_SIZE; 286 char *kaddr; 287 unsigned long map_start; 288 unsigned long map_len; 289 int err; 290 u32 crc = ~(u32)0; 291 unsigned long inline_result; 292 293 len = buf->len - offset; 294 while (len > 0) { 295 err = map_private_extent_buffer(buf, offset, 32, 296 &kaddr, &map_start, &map_len); 297 if (err) 298 return 1; 299 cur_len = min(len, map_len - (offset - map_start)); 300 crc = btrfs_csum_data(kaddr + offset - map_start, 301 crc, cur_len); 302 len -= cur_len; 303 offset += cur_len; 304 } 305 if (csum_size > sizeof(inline_result)) { 306 result = kzalloc(csum_size, GFP_NOFS); 307 if (!result) 308 return 1; 309 } else { 310 result = (char *)&inline_result; 311 } 312 313 btrfs_csum_final(crc, result); 314 315 if (verify) { 316 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 317 u32 val; 318 u32 found = 0; 319 memcpy(&found, result, csum_size); 320 321 read_extent_buffer(buf, &val, 0, csum_size); 322 printk_ratelimited(KERN_WARNING 323 "BTRFS: %s checksum verify failed on %llu wanted %X found %X " 324 "level %d\n", 325 fs_info->sb->s_id, buf->start, 326 val, found, btrfs_header_level(buf)); 327 if (result != (char *)&inline_result) 328 kfree(result); 329 return 1; 330 } 331 } else { 332 write_extent_buffer(buf, result, 0, csum_size); 333 } 334 if (result != (char *)&inline_result) 335 kfree(result); 336 return 0; 337 } 338 339 /* 340 * we can't consider a given block up to date unless the transid of the 341 * block matches the transid in the parent node's pointer. This is how we 342 * detect blocks that either didn't get written at all or got written 343 * in the wrong place. 344 */ 345 static int verify_parent_transid(struct extent_io_tree *io_tree, 346 struct extent_buffer *eb, u64 parent_transid, 347 int atomic) 348 { 349 struct extent_state *cached_state = NULL; 350 int ret; 351 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 352 353 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 354 return 0; 355 356 if (atomic) 357 return -EAGAIN; 358 359 if (need_lock) { 360 btrfs_tree_read_lock(eb); 361 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 362 } 363 364 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 365 0, &cached_state); 366 if (extent_buffer_uptodate(eb) && 367 btrfs_header_generation(eb) == parent_transid) { 368 ret = 0; 369 goto out; 370 } 371 printk_ratelimited(KERN_ERR 372 "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n", 373 eb->fs_info->sb->s_id, eb->start, 374 parent_transid, btrfs_header_generation(eb)); 375 ret = 1; 376 377 /* 378 * Things reading via commit roots that don't have normal protection, 379 * like send, can have a really old block in cache that may point at a 380 * block that has been free'd and re-allocated. So don't clear uptodate 381 * if we find an eb that is under IO (dirty/writeback) because we could 382 * end up reading in the stale data and then writing it back out and 383 * making everybody very sad. 384 */ 385 if (!extent_buffer_under_io(eb)) 386 clear_extent_buffer_uptodate(eb); 387 out: 388 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 389 &cached_state, GFP_NOFS); 390 if (need_lock) 391 btrfs_tree_read_unlock_blocking(eb); 392 return ret; 393 } 394 395 /* 396 * Return 0 if the superblock checksum type matches the checksum value of that 397 * algorithm. Pass the raw disk superblock data. 398 */ 399 static int btrfs_check_super_csum(char *raw_disk_sb) 400 { 401 struct btrfs_super_block *disk_sb = 402 (struct btrfs_super_block *)raw_disk_sb; 403 u16 csum_type = btrfs_super_csum_type(disk_sb); 404 int ret = 0; 405 406 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 407 u32 crc = ~(u32)0; 408 const int csum_size = sizeof(crc); 409 char result[csum_size]; 410 411 /* 412 * The super_block structure does not span the whole 413 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 414 * is filled with zeros and is included in the checkum. 415 */ 416 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 417 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 418 btrfs_csum_final(crc, result); 419 420 if (memcmp(raw_disk_sb, result, csum_size)) 421 ret = 1; 422 } 423 424 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 425 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n", 426 csum_type); 427 ret = 1; 428 } 429 430 return ret; 431 } 432 433 /* 434 * helper to read a given tree block, doing retries as required when 435 * the checksums don't match and we have alternate mirrors to try. 436 */ 437 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 438 struct extent_buffer *eb, 439 u64 start, u64 parent_transid) 440 { 441 struct extent_io_tree *io_tree; 442 int failed = 0; 443 int ret; 444 int num_copies = 0; 445 int mirror_num = 0; 446 int failed_mirror = 0; 447 448 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 449 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 450 while (1) { 451 ret = read_extent_buffer_pages(io_tree, eb, start, 452 WAIT_COMPLETE, 453 btree_get_extent, mirror_num); 454 if (!ret) { 455 if (!verify_parent_transid(io_tree, eb, 456 parent_transid, 0)) 457 break; 458 else 459 ret = -EIO; 460 } 461 462 /* 463 * This buffer's crc is fine, but its contents are corrupted, so 464 * there is no reason to read the other copies, they won't be 465 * any less wrong. 466 */ 467 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 468 break; 469 470 num_copies = btrfs_num_copies(root->fs_info, 471 eb->start, eb->len); 472 if (num_copies == 1) 473 break; 474 475 if (!failed_mirror) { 476 failed = 1; 477 failed_mirror = eb->read_mirror; 478 } 479 480 mirror_num++; 481 if (mirror_num == failed_mirror) 482 mirror_num++; 483 484 if (mirror_num > num_copies) 485 break; 486 } 487 488 if (failed && !ret && failed_mirror) 489 repair_eb_io_failure(root, eb, failed_mirror); 490 491 return ret; 492 } 493 494 /* 495 * checksum a dirty tree block before IO. This has extra checks to make sure 496 * we only fill in the checksum field in the first page of a multi-page block 497 */ 498 499 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 500 { 501 u64 start = page_offset(page); 502 u64 found_start; 503 struct extent_buffer *eb; 504 505 eb = (struct extent_buffer *)page->private; 506 if (page != eb->pages[0]) 507 return 0; 508 found_start = btrfs_header_bytenr(eb); 509 if (WARN_ON(found_start != start || !PageUptodate(page))) 510 return 0; 511 csum_tree_block(fs_info, eb, 0); 512 return 0; 513 } 514 515 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 516 struct extent_buffer *eb) 517 { 518 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 519 u8 fsid[BTRFS_UUID_SIZE]; 520 int ret = 1; 521 522 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 523 while (fs_devices) { 524 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 525 ret = 0; 526 break; 527 } 528 fs_devices = fs_devices->seed; 529 } 530 return ret; 531 } 532 533 #define CORRUPT(reason, eb, root, slot) \ 534 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \ 535 "root=%llu, slot=%d", reason, \ 536 btrfs_header_bytenr(eb), root->objectid, slot) 537 538 static noinline int check_leaf(struct btrfs_root *root, 539 struct extent_buffer *leaf) 540 { 541 struct btrfs_key key; 542 struct btrfs_key leaf_key; 543 u32 nritems = btrfs_header_nritems(leaf); 544 int slot; 545 546 if (nritems == 0) 547 return 0; 548 549 /* Check the 0 item */ 550 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 551 BTRFS_LEAF_DATA_SIZE(root)) { 552 CORRUPT("invalid item offset size pair", leaf, root, 0); 553 return -EIO; 554 } 555 556 /* 557 * Check to make sure each items keys are in the correct order and their 558 * offsets make sense. We only have to loop through nritems-1 because 559 * we check the current slot against the next slot, which verifies the 560 * next slot's offset+size makes sense and that the current's slot 561 * offset is correct. 562 */ 563 for (slot = 0; slot < nritems - 1; slot++) { 564 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 565 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 566 567 /* Make sure the keys are in the right order */ 568 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 569 CORRUPT("bad key order", leaf, root, slot); 570 return -EIO; 571 } 572 573 /* 574 * Make sure the offset and ends are right, remember that the 575 * item data starts at the end of the leaf and grows towards the 576 * front. 577 */ 578 if (btrfs_item_offset_nr(leaf, slot) != 579 btrfs_item_end_nr(leaf, slot + 1)) { 580 CORRUPT("slot offset bad", leaf, root, slot); 581 return -EIO; 582 } 583 584 /* 585 * Check to make sure that we don't point outside of the leaf, 586 * just incase all the items are consistent to eachother, but 587 * all point outside of the leaf. 588 */ 589 if (btrfs_item_end_nr(leaf, slot) > 590 BTRFS_LEAF_DATA_SIZE(root)) { 591 CORRUPT("slot end outside of leaf", leaf, root, slot); 592 return -EIO; 593 } 594 } 595 596 return 0; 597 } 598 599 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 600 u64 phy_offset, struct page *page, 601 u64 start, u64 end, int mirror) 602 { 603 u64 found_start; 604 int found_level; 605 struct extent_buffer *eb; 606 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 607 int ret = 0; 608 int reads_done; 609 610 if (!page->private) 611 goto out; 612 613 eb = (struct extent_buffer *)page->private; 614 615 /* the pending IO might have been the only thing that kept this buffer 616 * in memory. Make sure we have a ref for all this other checks 617 */ 618 extent_buffer_get(eb); 619 620 reads_done = atomic_dec_and_test(&eb->io_pages); 621 if (!reads_done) 622 goto err; 623 624 eb->read_mirror = mirror; 625 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 626 ret = -EIO; 627 goto err; 628 } 629 630 found_start = btrfs_header_bytenr(eb); 631 if (found_start != eb->start) { 632 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start " 633 "%llu %llu\n", 634 eb->fs_info->sb->s_id, found_start, eb->start); 635 ret = -EIO; 636 goto err; 637 } 638 if (check_tree_block_fsid(root->fs_info, eb)) { 639 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n", 640 eb->fs_info->sb->s_id, eb->start); 641 ret = -EIO; 642 goto err; 643 } 644 found_level = btrfs_header_level(eb); 645 if (found_level >= BTRFS_MAX_LEVEL) { 646 btrfs_err(root->fs_info, "bad tree block level %d", 647 (int)btrfs_header_level(eb)); 648 ret = -EIO; 649 goto err; 650 } 651 652 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 653 eb, found_level); 654 655 ret = csum_tree_block(root->fs_info, eb, 1); 656 if (ret) { 657 ret = -EIO; 658 goto err; 659 } 660 661 /* 662 * If this is a leaf block and it is corrupt, set the corrupt bit so 663 * that we don't try and read the other copies of this block, just 664 * return -EIO. 665 */ 666 if (found_level == 0 && check_leaf(root, eb)) { 667 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 668 ret = -EIO; 669 } 670 671 if (!ret) 672 set_extent_buffer_uptodate(eb); 673 err: 674 if (reads_done && 675 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 676 btree_readahead_hook(root, eb, eb->start, ret); 677 678 if (ret) { 679 /* 680 * our io error hook is going to dec the io pages 681 * again, we have to make sure it has something 682 * to decrement 683 */ 684 atomic_inc(&eb->io_pages); 685 clear_extent_buffer_uptodate(eb); 686 } 687 free_extent_buffer(eb); 688 out: 689 return ret; 690 } 691 692 static int btree_io_failed_hook(struct page *page, int failed_mirror) 693 { 694 struct extent_buffer *eb; 695 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 696 697 eb = (struct extent_buffer *)page->private; 698 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 699 eb->read_mirror = failed_mirror; 700 atomic_dec(&eb->io_pages); 701 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 702 btree_readahead_hook(root, eb, eb->start, -EIO); 703 return -EIO; /* we fixed nothing */ 704 } 705 706 static void end_workqueue_bio(struct bio *bio, int err) 707 { 708 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 709 struct btrfs_fs_info *fs_info; 710 struct btrfs_workqueue *wq; 711 btrfs_work_func_t func; 712 713 fs_info = end_io_wq->info; 714 end_io_wq->error = err; 715 716 if (bio->bi_rw & REQ_WRITE) { 717 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 718 wq = fs_info->endio_meta_write_workers; 719 func = btrfs_endio_meta_write_helper; 720 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 721 wq = fs_info->endio_freespace_worker; 722 func = btrfs_freespace_write_helper; 723 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 724 wq = fs_info->endio_raid56_workers; 725 func = btrfs_endio_raid56_helper; 726 } else { 727 wq = fs_info->endio_write_workers; 728 func = btrfs_endio_write_helper; 729 } 730 } else { 731 if (unlikely(end_io_wq->metadata == 732 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 733 wq = fs_info->endio_repair_workers; 734 func = btrfs_endio_repair_helper; 735 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 736 wq = fs_info->endio_raid56_workers; 737 func = btrfs_endio_raid56_helper; 738 } else if (end_io_wq->metadata) { 739 wq = fs_info->endio_meta_workers; 740 func = btrfs_endio_meta_helper; 741 } else { 742 wq = fs_info->endio_workers; 743 func = btrfs_endio_helper; 744 } 745 } 746 747 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 748 btrfs_queue_work(wq, &end_io_wq->work); 749 } 750 751 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 752 enum btrfs_wq_endio_type metadata) 753 { 754 struct btrfs_end_io_wq *end_io_wq; 755 756 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 757 if (!end_io_wq) 758 return -ENOMEM; 759 760 end_io_wq->private = bio->bi_private; 761 end_io_wq->end_io = bio->bi_end_io; 762 end_io_wq->info = info; 763 end_io_wq->error = 0; 764 end_io_wq->bio = bio; 765 end_io_wq->metadata = metadata; 766 767 bio->bi_private = end_io_wq; 768 bio->bi_end_io = end_workqueue_bio; 769 return 0; 770 } 771 772 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 773 { 774 unsigned long limit = min_t(unsigned long, 775 info->thread_pool_size, 776 info->fs_devices->open_devices); 777 return 256 * limit; 778 } 779 780 static void run_one_async_start(struct btrfs_work *work) 781 { 782 struct async_submit_bio *async; 783 int ret; 784 785 async = container_of(work, struct async_submit_bio, work); 786 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 787 async->mirror_num, async->bio_flags, 788 async->bio_offset); 789 if (ret) 790 async->error = ret; 791 } 792 793 static void run_one_async_done(struct btrfs_work *work) 794 { 795 struct btrfs_fs_info *fs_info; 796 struct async_submit_bio *async; 797 int limit; 798 799 async = container_of(work, struct async_submit_bio, work); 800 fs_info = BTRFS_I(async->inode)->root->fs_info; 801 802 limit = btrfs_async_submit_limit(fs_info); 803 limit = limit * 2 / 3; 804 805 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 806 waitqueue_active(&fs_info->async_submit_wait)) 807 wake_up(&fs_info->async_submit_wait); 808 809 /* If an error occured we just want to clean up the bio and move on */ 810 if (async->error) { 811 bio_endio(async->bio, async->error); 812 return; 813 } 814 815 async->submit_bio_done(async->inode, async->rw, async->bio, 816 async->mirror_num, async->bio_flags, 817 async->bio_offset); 818 } 819 820 static void run_one_async_free(struct btrfs_work *work) 821 { 822 struct async_submit_bio *async; 823 824 async = container_of(work, struct async_submit_bio, work); 825 kfree(async); 826 } 827 828 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 829 int rw, struct bio *bio, int mirror_num, 830 unsigned long bio_flags, 831 u64 bio_offset, 832 extent_submit_bio_hook_t *submit_bio_start, 833 extent_submit_bio_hook_t *submit_bio_done) 834 { 835 struct async_submit_bio *async; 836 837 async = kmalloc(sizeof(*async), GFP_NOFS); 838 if (!async) 839 return -ENOMEM; 840 841 async->inode = inode; 842 async->rw = rw; 843 async->bio = bio; 844 async->mirror_num = mirror_num; 845 async->submit_bio_start = submit_bio_start; 846 async->submit_bio_done = submit_bio_done; 847 848 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 849 run_one_async_done, run_one_async_free); 850 851 async->bio_flags = bio_flags; 852 async->bio_offset = bio_offset; 853 854 async->error = 0; 855 856 atomic_inc(&fs_info->nr_async_submits); 857 858 if (rw & REQ_SYNC) 859 btrfs_set_work_high_priority(&async->work); 860 861 btrfs_queue_work(fs_info->workers, &async->work); 862 863 while (atomic_read(&fs_info->async_submit_draining) && 864 atomic_read(&fs_info->nr_async_submits)) { 865 wait_event(fs_info->async_submit_wait, 866 (atomic_read(&fs_info->nr_async_submits) == 0)); 867 } 868 869 return 0; 870 } 871 872 static int btree_csum_one_bio(struct bio *bio) 873 { 874 struct bio_vec *bvec; 875 struct btrfs_root *root; 876 int i, ret = 0; 877 878 bio_for_each_segment_all(bvec, bio, i) { 879 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 880 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 881 if (ret) 882 break; 883 } 884 885 return ret; 886 } 887 888 static int __btree_submit_bio_start(struct inode *inode, int rw, 889 struct bio *bio, int mirror_num, 890 unsigned long bio_flags, 891 u64 bio_offset) 892 { 893 /* 894 * when we're called for a write, we're already in the async 895 * submission context. Just jump into btrfs_map_bio 896 */ 897 return btree_csum_one_bio(bio); 898 } 899 900 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 901 int mirror_num, unsigned long bio_flags, 902 u64 bio_offset) 903 { 904 int ret; 905 906 /* 907 * when we're called for a write, we're already in the async 908 * submission context. Just jump into btrfs_map_bio 909 */ 910 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 911 if (ret) 912 bio_endio(bio, ret); 913 return ret; 914 } 915 916 static int check_async_write(struct inode *inode, unsigned long bio_flags) 917 { 918 if (bio_flags & EXTENT_BIO_TREE_LOG) 919 return 0; 920 #ifdef CONFIG_X86 921 if (cpu_has_xmm4_2) 922 return 0; 923 #endif 924 return 1; 925 } 926 927 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 928 int mirror_num, unsigned long bio_flags, 929 u64 bio_offset) 930 { 931 int async = check_async_write(inode, bio_flags); 932 int ret; 933 934 if (!(rw & REQ_WRITE)) { 935 /* 936 * called for a read, do the setup so that checksum validation 937 * can happen in the async kernel threads 938 */ 939 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 940 bio, BTRFS_WQ_ENDIO_METADATA); 941 if (ret) 942 goto out_w_error; 943 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 944 mirror_num, 0); 945 } else if (!async) { 946 ret = btree_csum_one_bio(bio); 947 if (ret) 948 goto out_w_error; 949 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 950 mirror_num, 0); 951 } else { 952 /* 953 * kthread helpers are used to submit writes so that 954 * checksumming can happen in parallel across all CPUs 955 */ 956 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 957 inode, rw, bio, mirror_num, 0, 958 bio_offset, 959 __btree_submit_bio_start, 960 __btree_submit_bio_done); 961 } 962 963 if (ret) { 964 out_w_error: 965 bio_endio(bio, ret); 966 } 967 return ret; 968 } 969 970 #ifdef CONFIG_MIGRATION 971 static int btree_migratepage(struct address_space *mapping, 972 struct page *newpage, struct page *page, 973 enum migrate_mode mode) 974 { 975 /* 976 * we can't safely write a btree page from here, 977 * we haven't done the locking hook 978 */ 979 if (PageDirty(page)) 980 return -EAGAIN; 981 /* 982 * Buffers may be managed in a filesystem specific way. 983 * We must have no buffers or drop them. 984 */ 985 if (page_has_private(page) && 986 !try_to_release_page(page, GFP_KERNEL)) 987 return -EAGAIN; 988 return migrate_page(mapping, newpage, page, mode); 989 } 990 #endif 991 992 993 static int btree_writepages(struct address_space *mapping, 994 struct writeback_control *wbc) 995 { 996 struct btrfs_fs_info *fs_info; 997 int ret; 998 999 if (wbc->sync_mode == WB_SYNC_NONE) { 1000 1001 if (wbc->for_kupdate) 1002 return 0; 1003 1004 fs_info = BTRFS_I(mapping->host)->root->fs_info; 1005 /* this is a bit racy, but that's ok */ 1006 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 1007 BTRFS_DIRTY_METADATA_THRESH); 1008 if (ret < 0) 1009 return 0; 1010 } 1011 return btree_write_cache_pages(mapping, wbc); 1012 } 1013 1014 static int btree_readpage(struct file *file, struct page *page) 1015 { 1016 struct extent_io_tree *tree; 1017 tree = &BTRFS_I(page->mapping->host)->io_tree; 1018 return extent_read_full_page(tree, page, btree_get_extent, 0); 1019 } 1020 1021 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1022 { 1023 if (PageWriteback(page) || PageDirty(page)) 1024 return 0; 1025 1026 return try_release_extent_buffer(page); 1027 } 1028 1029 static void btree_invalidatepage(struct page *page, unsigned int offset, 1030 unsigned int length) 1031 { 1032 struct extent_io_tree *tree; 1033 tree = &BTRFS_I(page->mapping->host)->io_tree; 1034 extent_invalidatepage(tree, page, offset); 1035 btree_releasepage(page, GFP_NOFS); 1036 if (PagePrivate(page)) { 1037 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1038 "page private not zero on page %llu", 1039 (unsigned long long)page_offset(page)); 1040 ClearPagePrivate(page); 1041 set_page_private(page, 0); 1042 page_cache_release(page); 1043 } 1044 } 1045 1046 static int btree_set_page_dirty(struct page *page) 1047 { 1048 #ifdef DEBUG 1049 struct extent_buffer *eb; 1050 1051 BUG_ON(!PagePrivate(page)); 1052 eb = (struct extent_buffer *)page->private; 1053 BUG_ON(!eb); 1054 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1055 BUG_ON(!atomic_read(&eb->refs)); 1056 btrfs_assert_tree_locked(eb); 1057 #endif 1058 return __set_page_dirty_nobuffers(page); 1059 } 1060 1061 static const struct address_space_operations btree_aops = { 1062 .readpage = btree_readpage, 1063 .writepages = btree_writepages, 1064 .releasepage = btree_releasepage, 1065 .invalidatepage = btree_invalidatepage, 1066 #ifdef CONFIG_MIGRATION 1067 .migratepage = btree_migratepage, 1068 #endif 1069 .set_page_dirty = btree_set_page_dirty, 1070 }; 1071 1072 void readahead_tree_block(struct btrfs_root *root, u64 bytenr) 1073 { 1074 struct extent_buffer *buf = NULL; 1075 struct inode *btree_inode = root->fs_info->btree_inode; 1076 1077 buf = btrfs_find_create_tree_block(root, bytenr); 1078 if (!buf) 1079 return; 1080 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1081 buf, 0, WAIT_NONE, btree_get_extent, 0); 1082 free_extent_buffer(buf); 1083 } 1084 1085 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, 1086 int mirror_num, struct extent_buffer **eb) 1087 { 1088 struct extent_buffer *buf = NULL; 1089 struct inode *btree_inode = root->fs_info->btree_inode; 1090 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1091 int ret; 1092 1093 buf = btrfs_find_create_tree_block(root, bytenr); 1094 if (!buf) 1095 return 0; 1096 1097 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1098 1099 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1100 btree_get_extent, mirror_num); 1101 if (ret) { 1102 free_extent_buffer(buf); 1103 return ret; 1104 } 1105 1106 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1107 free_extent_buffer(buf); 1108 return -EIO; 1109 } else if (extent_buffer_uptodate(buf)) { 1110 *eb = buf; 1111 } else { 1112 free_extent_buffer(buf); 1113 } 1114 return 0; 1115 } 1116 1117 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info, 1118 u64 bytenr) 1119 { 1120 return find_extent_buffer(fs_info, bytenr); 1121 } 1122 1123 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1124 u64 bytenr) 1125 { 1126 if (btrfs_test_is_dummy_root(root)) 1127 return alloc_test_extent_buffer(root->fs_info, bytenr); 1128 return alloc_extent_buffer(root->fs_info, bytenr); 1129 } 1130 1131 1132 int btrfs_write_tree_block(struct extent_buffer *buf) 1133 { 1134 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1135 buf->start + buf->len - 1); 1136 } 1137 1138 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1139 { 1140 return filemap_fdatawait_range(buf->pages[0]->mapping, 1141 buf->start, buf->start + buf->len - 1); 1142 } 1143 1144 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1145 u64 parent_transid) 1146 { 1147 struct extent_buffer *buf = NULL; 1148 int ret; 1149 1150 buf = btrfs_find_create_tree_block(root, bytenr); 1151 if (!buf) 1152 return ERR_PTR(-ENOMEM); 1153 1154 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1155 if (ret) { 1156 free_extent_buffer(buf); 1157 return ERR_PTR(ret); 1158 } 1159 return buf; 1160 1161 } 1162 1163 void clean_tree_block(struct btrfs_trans_handle *trans, 1164 struct btrfs_fs_info *fs_info, 1165 struct extent_buffer *buf) 1166 { 1167 if (btrfs_header_generation(buf) == 1168 fs_info->running_transaction->transid) { 1169 btrfs_assert_tree_locked(buf); 1170 1171 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1172 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1173 -buf->len, 1174 fs_info->dirty_metadata_batch); 1175 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1176 btrfs_set_lock_blocking(buf); 1177 clear_extent_buffer_dirty(buf); 1178 } 1179 } 1180 } 1181 1182 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1183 { 1184 struct btrfs_subvolume_writers *writers; 1185 int ret; 1186 1187 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1188 if (!writers) 1189 return ERR_PTR(-ENOMEM); 1190 1191 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL); 1192 if (ret < 0) { 1193 kfree(writers); 1194 return ERR_PTR(ret); 1195 } 1196 1197 init_waitqueue_head(&writers->wait); 1198 return writers; 1199 } 1200 1201 static void 1202 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1203 { 1204 percpu_counter_destroy(&writers->counter); 1205 kfree(writers); 1206 } 1207 1208 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize, 1209 struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1210 u64 objectid) 1211 { 1212 root->node = NULL; 1213 root->commit_root = NULL; 1214 root->sectorsize = sectorsize; 1215 root->nodesize = nodesize; 1216 root->stripesize = stripesize; 1217 root->state = 0; 1218 root->orphan_cleanup_state = 0; 1219 1220 root->objectid = objectid; 1221 root->last_trans = 0; 1222 root->highest_objectid = 0; 1223 root->nr_delalloc_inodes = 0; 1224 root->nr_ordered_extents = 0; 1225 root->name = NULL; 1226 root->inode_tree = RB_ROOT; 1227 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1228 root->block_rsv = NULL; 1229 root->orphan_block_rsv = NULL; 1230 1231 INIT_LIST_HEAD(&root->dirty_list); 1232 INIT_LIST_HEAD(&root->root_list); 1233 INIT_LIST_HEAD(&root->delalloc_inodes); 1234 INIT_LIST_HEAD(&root->delalloc_root); 1235 INIT_LIST_HEAD(&root->ordered_extents); 1236 INIT_LIST_HEAD(&root->ordered_root); 1237 INIT_LIST_HEAD(&root->logged_list[0]); 1238 INIT_LIST_HEAD(&root->logged_list[1]); 1239 spin_lock_init(&root->orphan_lock); 1240 spin_lock_init(&root->inode_lock); 1241 spin_lock_init(&root->delalloc_lock); 1242 spin_lock_init(&root->ordered_extent_lock); 1243 spin_lock_init(&root->accounting_lock); 1244 spin_lock_init(&root->log_extents_lock[0]); 1245 spin_lock_init(&root->log_extents_lock[1]); 1246 mutex_init(&root->objectid_mutex); 1247 mutex_init(&root->log_mutex); 1248 mutex_init(&root->ordered_extent_mutex); 1249 mutex_init(&root->delalloc_mutex); 1250 init_waitqueue_head(&root->log_writer_wait); 1251 init_waitqueue_head(&root->log_commit_wait[0]); 1252 init_waitqueue_head(&root->log_commit_wait[1]); 1253 INIT_LIST_HEAD(&root->log_ctxs[0]); 1254 INIT_LIST_HEAD(&root->log_ctxs[1]); 1255 atomic_set(&root->log_commit[0], 0); 1256 atomic_set(&root->log_commit[1], 0); 1257 atomic_set(&root->log_writers, 0); 1258 atomic_set(&root->log_batch, 0); 1259 atomic_set(&root->orphan_inodes, 0); 1260 atomic_set(&root->refs, 1); 1261 atomic_set(&root->will_be_snapshoted, 0); 1262 root->log_transid = 0; 1263 root->log_transid_committed = -1; 1264 root->last_log_commit = 0; 1265 if (fs_info) 1266 extent_io_tree_init(&root->dirty_log_pages, 1267 fs_info->btree_inode->i_mapping); 1268 1269 memset(&root->root_key, 0, sizeof(root->root_key)); 1270 memset(&root->root_item, 0, sizeof(root->root_item)); 1271 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1272 if (fs_info) 1273 root->defrag_trans_start = fs_info->generation; 1274 else 1275 root->defrag_trans_start = 0; 1276 root->root_key.objectid = objectid; 1277 root->anon_dev = 0; 1278 1279 spin_lock_init(&root->root_item_lock); 1280 } 1281 1282 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1283 { 1284 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1285 if (root) 1286 root->fs_info = fs_info; 1287 return root; 1288 } 1289 1290 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1291 /* Should only be used by the testing infrastructure */ 1292 struct btrfs_root *btrfs_alloc_dummy_root(void) 1293 { 1294 struct btrfs_root *root; 1295 1296 root = btrfs_alloc_root(NULL); 1297 if (!root) 1298 return ERR_PTR(-ENOMEM); 1299 __setup_root(4096, 4096, 4096, root, NULL, 1); 1300 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state); 1301 root->alloc_bytenr = 0; 1302 1303 return root; 1304 } 1305 #endif 1306 1307 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1308 struct btrfs_fs_info *fs_info, 1309 u64 objectid) 1310 { 1311 struct extent_buffer *leaf; 1312 struct btrfs_root *tree_root = fs_info->tree_root; 1313 struct btrfs_root *root; 1314 struct btrfs_key key; 1315 int ret = 0; 1316 uuid_le uuid; 1317 1318 root = btrfs_alloc_root(fs_info); 1319 if (!root) 1320 return ERR_PTR(-ENOMEM); 1321 1322 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1323 tree_root->stripesize, root, fs_info, objectid); 1324 root->root_key.objectid = objectid; 1325 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1326 root->root_key.offset = 0; 1327 1328 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1329 if (IS_ERR(leaf)) { 1330 ret = PTR_ERR(leaf); 1331 leaf = NULL; 1332 goto fail; 1333 } 1334 1335 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1336 btrfs_set_header_bytenr(leaf, leaf->start); 1337 btrfs_set_header_generation(leaf, trans->transid); 1338 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1339 btrfs_set_header_owner(leaf, objectid); 1340 root->node = leaf; 1341 1342 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(), 1343 BTRFS_FSID_SIZE); 1344 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1345 btrfs_header_chunk_tree_uuid(leaf), 1346 BTRFS_UUID_SIZE); 1347 btrfs_mark_buffer_dirty(leaf); 1348 1349 root->commit_root = btrfs_root_node(root); 1350 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1351 1352 root->root_item.flags = 0; 1353 root->root_item.byte_limit = 0; 1354 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1355 btrfs_set_root_generation(&root->root_item, trans->transid); 1356 btrfs_set_root_level(&root->root_item, 0); 1357 btrfs_set_root_refs(&root->root_item, 1); 1358 btrfs_set_root_used(&root->root_item, leaf->len); 1359 btrfs_set_root_last_snapshot(&root->root_item, 0); 1360 btrfs_set_root_dirid(&root->root_item, 0); 1361 uuid_le_gen(&uuid); 1362 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1363 root->root_item.drop_level = 0; 1364 1365 key.objectid = objectid; 1366 key.type = BTRFS_ROOT_ITEM_KEY; 1367 key.offset = 0; 1368 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1369 if (ret) 1370 goto fail; 1371 1372 btrfs_tree_unlock(leaf); 1373 1374 return root; 1375 1376 fail: 1377 if (leaf) { 1378 btrfs_tree_unlock(leaf); 1379 free_extent_buffer(root->commit_root); 1380 free_extent_buffer(leaf); 1381 } 1382 kfree(root); 1383 1384 return ERR_PTR(ret); 1385 } 1386 1387 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1388 struct btrfs_fs_info *fs_info) 1389 { 1390 struct btrfs_root *root; 1391 struct btrfs_root *tree_root = fs_info->tree_root; 1392 struct extent_buffer *leaf; 1393 1394 root = btrfs_alloc_root(fs_info); 1395 if (!root) 1396 return ERR_PTR(-ENOMEM); 1397 1398 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1399 tree_root->stripesize, root, fs_info, 1400 BTRFS_TREE_LOG_OBJECTID); 1401 1402 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1403 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1404 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1405 1406 /* 1407 * DON'T set REF_COWS for log trees 1408 * 1409 * log trees do not get reference counted because they go away 1410 * before a real commit is actually done. They do store pointers 1411 * to file data extents, and those reference counts still get 1412 * updated (along with back refs to the log tree). 1413 */ 1414 1415 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1416 NULL, 0, 0, 0); 1417 if (IS_ERR(leaf)) { 1418 kfree(root); 1419 return ERR_CAST(leaf); 1420 } 1421 1422 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1423 btrfs_set_header_bytenr(leaf, leaf->start); 1424 btrfs_set_header_generation(leaf, trans->transid); 1425 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1426 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1427 root->node = leaf; 1428 1429 write_extent_buffer(root->node, root->fs_info->fsid, 1430 btrfs_header_fsid(), BTRFS_FSID_SIZE); 1431 btrfs_mark_buffer_dirty(root->node); 1432 btrfs_tree_unlock(root->node); 1433 return root; 1434 } 1435 1436 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1437 struct btrfs_fs_info *fs_info) 1438 { 1439 struct btrfs_root *log_root; 1440 1441 log_root = alloc_log_tree(trans, fs_info); 1442 if (IS_ERR(log_root)) 1443 return PTR_ERR(log_root); 1444 WARN_ON(fs_info->log_root_tree); 1445 fs_info->log_root_tree = log_root; 1446 return 0; 1447 } 1448 1449 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1450 struct btrfs_root *root) 1451 { 1452 struct btrfs_root *log_root; 1453 struct btrfs_inode_item *inode_item; 1454 1455 log_root = alloc_log_tree(trans, root->fs_info); 1456 if (IS_ERR(log_root)) 1457 return PTR_ERR(log_root); 1458 1459 log_root->last_trans = trans->transid; 1460 log_root->root_key.offset = root->root_key.objectid; 1461 1462 inode_item = &log_root->root_item.inode; 1463 btrfs_set_stack_inode_generation(inode_item, 1); 1464 btrfs_set_stack_inode_size(inode_item, 3); 1465 btrfs_set_stack_inode_nlink(inode_item, 1); 1466 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize); 1467 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1468 1469 btrfs_set_root_node(&log_root->root_item, log_root->node); 1470 1471 WARN_ON(root->log_root); 1472 root->log_root = log_root; 1473 root->log_transid = 0; 1474 root->log_transid_committed = -1; 1475 root->last_log_commit = 0; 1476 return 0; 1477 } 1478 1479 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1480 struct btrfs_key *key) 1481 { 1482 struct btrfs_root *root; 1483 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1484 struct btrfs_path *path; 1485 u64 generation; 1486 int ret; 1487 1488 path = btrfs_alloc_path(); 1489 if (!path) 1490 return ERR_PTR(-ENOMEM); 1491 1492 root = btrfs_alloc_root(fs_info); 1493 if (!root) { 1494 ret = -ENOMEM; 1495 goto alloc_fail; 1496 } 1497 1498 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1499 tree_root->stripesize, root, fs_info, key->objectid); 1500 1501 ret = btrfs_find_root(tree_root, key, path, 1502 &root->root_item, &root->root_key); 1503 if (ret) { 1504 if (ret > 0) 1505 ret = -ENOENT; 1506 goto find_fail; 1507 } 1508 1509 generation = btrfs_root_generation(&root->root_item); 1510 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1511 generation); 1512 if (IS_ERR(root->node)) { 1513 ret = PTR_ERR(root->node); 1514 goto find_fail; 1515 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1516 ret = -EIO; 1517 free_extent_buffer(root->node); 1518 goto find_fail; 1519 } 1520 root->commit_root = btrfs_root_node(root); 1521 out: 1522 btrfs_free_path(path); 1523 return root; 1524 1525 find_fail: 1526 kfree(root); 1527 alloc_fail: 1528 root = ERR_PTR(ret); 1529 goto out; 1530 } 1531 1532 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1533 struct btrfs_key *location) 1534 { 1535 struct btrfs_root *root; 1536 1537 root = btrfs_read_tree_root(tree_root, location); 1538 if (IS_ERR(root)) 1539 return root; 1540 1541 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1542 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1543 btrfs_check_and_init_root_item(&root->root_item); 1544 } 1545 1546 return root; 1547 } 1548 1549 int btrfs_init_fs_root(struct btrfs_root *root) 1550 { 1551 int ret; 1552 struct btrfs_subvolume_writers *writers; 1553 1554 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1555 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1556 GFP_NOFS); 1557 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1558 ret = -ENOMEM; 1559 goto fail; 1560 } 1561 1562 writers = btrfs_alloc_subvolume_writers(); 1563 if (IS_ERR(writers)) { 1564 ret = PTR_ERR(writers); 1565 goto fail; 1566 } 1567 root->subv_writers = writers; 1568 1569 btrfs_init_free_ino_ctl(root); 1570 spin_lock_init(&root->ino_cache_lock); 1571 init_waitqueue_head(&root->ino_cache_wait); 1572 1573 ret = get_anon_bdev(&root->anon_dev); 1574 if (ret) 1575 goto free_writers; 1576 return 0; 1577 1578 free_writers: 1579 btrfs_free_subvolume_writers(root->subv_writers); 1580 fail: 1581 kfree(root->free_ino_ctl); 1582 kfree(root->free_ino_pinned); 1583 return ret; 1584 } 1585 1586 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1587 u64 root_id) 1588 { 1589 struct btrfs_root *root; 1590 1591 spin_lock(&fs_info->fs_roots_radix_lock); 1592 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1593 (unsigned long)root_id); 1594 spin_unlock(&fs_info->fs_roots_radix_lock); 1595 return root; 1596 } 1597 1598 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1599 struct btrfs_root *root) 1600 { 1601 int ret; 1602 1603 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1604 if (ret) 1605 return ret; 1606 1607 spin_lock(&fs_info->fs_roots_radix_lock); 1608 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1609 (unsigned long)root->root_key.objectid, 1610 root); 1611 if (ret == 0) 1612 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1613 spin_unlock(&fs_info->fs_roots_radix_lock); 1614 radix_tree_preload_end(); 1615 1616 return ret; 1617 } 1618 1619 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1620 struct btrfs_key *location, 1621 bool check_ref) 1622 { 1623 struct btrfs_root *root; 1624 struct btrfs_path *path; 1625 struct btrfs_key key; 1626 int ret; 1627 1628 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1629 return fs_info->tree_root; 1630 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1631 return fs_info->extent_root; 1632 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1633 return fs_info->chunk_root; 1634 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1635 return fs_info->dev_root; 1636 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1637 return fs_info->csum_root; 1638 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1639 return fs_info->quota_root ? fs_info->quota_root : 1640 ERR_PTR(-ENOENT); 1641 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1642 return fs_info->uuid_root ? fs_info->uuid_root : 1643 ERR_PTR(-ENOENT); 1644 again: 1645 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1646 if (root) { 1647 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1648 return ERR_PTR(-ENOENT); 1649 return root; 1650 } 1651 1652 root = btrfs_read_fs_root(fs_info->tree_root, location); 1653 if (IS_ERR(root)) 1654 return root; 1655 1656 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1657 ret = -ENOENT; 1658 goto fail; 1659 } 1660 1661 ret = btrfs_init_fs_root(root); 1662 if (ret) 1663 goto fail; 1664 1665 path = btrfs_alloc_path(); 1666 if (!path) { 1667 ret = -ENOMEM; 1668 goto fail; 1669 } 1670 key.objectid = BTRFS_ORPHAN_OBJECTID; 1671 key.type = BTRFS_ORPHAN_ITEM_KEY; 1672 key.offset = location->objectid; 1673 1674 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1675 btrfs_free_path(path); 1676 if (ret < 0) 1677 goto fail; 1678 if (ret == 0) 1679 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1680 1681 ret = btrfs_insert_fs_root(fs_info, root); 1682 if (ret) { 1683 if (ret == -EEXIST) { 1684 free_fs_root(root); 1685 goto again; 1686 } 1687 goto fail; 1688 } 1689 return root; 1690 fail: 1691 free_fs_root(root); 1692 return ERR_PTR(ret); 1693 } 1694 1695 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1696 { 1697 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1698 int ret = 0; 1699 struct btrfs_device *device; 1700 struct backing_dev_info *bdi; 1701 1702 rcu_read_lock(); 1703 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1704 if (!device->bdev) 1705 continue; 1706 bdi = blk_get_backing_dev_info(device->bdev); 1707 if (bdi_congested(bdi, bdi_bits)) { 1708 ret = 1; 1709 break; 1710 } 1711 } 1712 rcu_read_unlock(); 1713 return ret; 1714 } 1715 1716 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1717 { 1718 int err; 1719 1720 err = bdi_setup_and_register(bdi, "btrfs"); 1721 if (err) 1722 return err; 1723 1724 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE; 1725 bdi->congested_fn = btrfs_congested_fn; 1726 bdi->congested_data = info; 1727 return 0; 1728 } 1729 1730 /* 1731 * called by the kthread helper functions to finally call the bio end_io 1732 * functions. This is where read checksum verification actually happens 1733 */ 1734 static void end_workqueue_fn(struct btrfs_work *work) 1735 { 1736 struct bio *bio; 1737 struct btrfs_end_io_wq *end_io_wq; 1738 int error; 1739 1740 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1741 bio = end_io_wq->bio; 1742 1743 error = end_io_wq->error; 1744 bio->bi_private = end_io_wq->private; 1745 bio->bi_end_io = end_io_wq->end_io; 1746 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1747 bio_endio(bio, error); 1748 } 1749 1750 static int cleaner_kthread(void *arg) 1751 { 1752 struct btrfs_root *root = arg; 1753 int again; 1754 struct btrfs_trans_handle *trans; 1755 1756 do { 1757 again = 0; 1758 1759 /* Make the cleaner go to sleep early. */ 1760 if (btrfs_need_cleaner_sleep(root)) 1761 goto sleep; 1762 1763 if (!mutex_trylock(&root->fs_info->cleaner_mutex)) 1764 goto sleep; 1765 1766 /* 1767 * Avoid the problem that we change the status of the fs 1768 * during the above check and trylock. 1769 */ 1770 if (btrfs_need_cleaner_sleep(root)) { 1771 mutex_unlock(&root->fs_info->cleaner_mutex); 1772 goto sleep; 1773 } 1774 1775 btrfs_run_delayed_iputs(root); 1776 again = btrfs_clean_one_deleted_snapshot(root); 1777 mutex_unlock(&root->fs_info->cleaner_mutex); 1778 1779 /* 1780 * The defragger has dealt with the R/O remount and umount, 1781 * needn't do anything special here. 1782 */ 1783 btrfs_run_defrag_inodes(root->fs_info); 1784 1785 /* 1786 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1787 * with relocation (btrfs_relocate_chunk) and relocation 1788 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1789 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1790 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1791 * unused block groups. 1792 */ 1793 btrfs_delete_unused_bgs(root->fs_info); 1794 sleep: 1795 if (!try_to_freeze() && !again) { 1796 set_current_state(TASK_INTERRUPTIBLE); 1797 if (!kthread_should_stop()) 1798 schedule(); 1799 __set_current_state(TASK_RUNNING); 1800 } 1801 } while (!kthread_should_stop()); 1802 1803 /* 1804 * Transaction kthread is stopped before us and wakes us up. 1805 * However we might have started a new transaction and COWed some 1806 * tree blocks when deleting unused block groups for example. So 1807 * make sure we commit the transaction we started to have a clean 1808 * shutdown when evicting the btree inode - if it has dirty pages 1809 * when we do the final iput() on it, eviction will trigger a 1810 * writeback for it which will fail with null pointer dereferences 1811 * since work queues and other resources were already released and 1812 * destroyed by the time the iput/eviction/writeback is made. 1813 */ 1814 trans = btrfs_attach_transaction(root); 1815 if (IS_ERR(trans)) { 1816 if (PTR_ERR(trans) != -ENOENT) 1817 btrfs_err(root->fs_info, 1818 "cleaner transaction attach returned %ld", 1819 PTR_ERR(trans)); 1820 } else { 1821 int ret; 1822 1823 ret = btrfs_commit_transaction(trans, root); 1824 if (ret) 1825 btrfs_err(root->fs_info, 1826 "cleaner open transaction commit returned %d", 1827 ret); 1828 } 1829 1830 return 0; 1831 } 1832 1833 static int transaction_kthread(void *arg) 1834 { 1835 struct btrfs_root *root = arg; 1836 struct btrfs_trans_handle *trans; 1837 struct btrfs_transaction *cur; 1838 u64 transid; 1839 unsigned long now; 1840 unsigned long delay; 1841 bool cannot_commit; 1842 1843 do { 1844 cannot_commit = false; 1845 delay = HZ * root->fs_info->commit_interval; 1846 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1847 1848 spin_lock(&root->fs_info->trans_lock); 1849 cur = root->fs_info->running_transaction; 1850 if (!cur) { 1851 spin_unlock(&root->fs_info->trans_lock); 1852 goto sleep; 1853 } 1854 1855 now = get_seconds(); 1856 if (cur->state < TRANS_STATE_BLOCKED && 1857 (now < cur->start_time || 1858 now - cur->start_time < root->fs_info->commit_interval)) { 1859 spin_unlock(&root->fs_info->trans_lock); 1860 delay = HZ * 5; 1861 goto sleep; 1862 } 1863 transid = cur->transid; 1864 spin_unlock(&root->fs_info->trans_lock); 1865 1866 /* If the file system is aborted, this will always fail. */ 1867 trans = btrfs_attach_transaction(root); 1868 if (IS_ERR(trans)) { 1869 if (PTR_ERR(trans) != -ENOENT) 1870 cannot_commit = true; 1871 goto sleep; 1872 } 1873 if (transid == trans->transid) { 1874 btrfs_commit_transaction(trans, root); 1875 } else { 1876 btrfs_end_transaction(trans, root); 1877 } 1878 sleep: 1879 wake_up_process(root->fs_info->cleaner_kthread); 1880 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1881 1882 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1883 &root->fs_info->fs_state))) 1884 btrfs_cleanup_transaction(root); 1885 if (!try_to_freeze()) { 1886 set_current_state(TASK_INTERRUPTIBLE); 1887 if (!kthread_should_stop() && 1888 (!btrfs_transaction_blocked(root->fs_info) || 1889 cannot_commit)) 1890 schedule_timeout(delay); 1891 __set_current_state(TASK_RUNNING); 1892 } 1893 } while (!kthread_should_stop()); 1894 return 0; 1895 } 1896 1897 /* 1898 * this will find the highest generation in the array of 1899 * root backups. The index of the highest array is returned, 1900 * or -1 if we can't find anything. 1901 * 1902 * We check to make sure the array is valid by comparing the 1903 * generation of the latest root in the array with the generation 1904 * in the super block. If they don't match we pitch it. 1905 */ 1906 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1907 { 1908 u64 cur; 1909 int newest_index = -1; 1910 struct btrfs_root_backup *root_backup; 1911 int i; 1912 1913 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1914 root_backup = info->super_copy->super_roots + i; 1915 cur = btrfs_backup_tree_root_gen(root_backup); 1916 if (cur == newest_gen) 1917 newest_index = i; 1918 } 1919 1920 /* check to see if we actually wrapped around */ 1921 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1922 root_backup = info->super_copy->super_roots; 1923 cur = btrfs_backup_tree_root_gen(root_backup); 1924 if (cur == newest_gen) 1925 newest_index = 0; 1926 } 1927 return newest_index; 1928 } 1929 1930 1931 /* 1932 * find the oldest backup so we know where to store new entries 1933 * in the backup array. This will set the backup_root_index 1934 * field in the fs_info struct 1935 */ 1936 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1937 u64 newest_gen) 1938 { 1939 int newest_index = -1; 1940 1941 newest_index = find_newest_super_backup(info, newest_gen); 1942 /* if there was garbage in there, just move along */ 1943 if (newest_index == -1) { 1944 info->backup_root_index = 0; 1945 } else { 1946 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1947 } 1948 } 1949 1950 /* 1951 * copy all the root pointers into the super backup array. 1952 * this will bump the backup pointer by one when it is 1953 * done 1954 */ 1955 static void backup_super_roots(struct btrfs_fs_info *info) 1956 { 1957 int next_backup; 1958 struct btrfs_root_backup *root_backup; 1959 int last_backup; 1960 1961 next_backup = info->backup_root_index; 1962 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1963 BTRFS_NUM_BACKUP_ROOTS; 1964 1965 /* 1966 * just overwrite the last backup if we're at the same generation 1967 * this happens only at umount 1968 */ 1969 root_backup = info->super_for_commit->super_roots + last_backup; 1970 if (btrfs_backup_tree_root_gen(root_backup) == 1971 btrfs_header_generation(info->tree_root->node)) 1972 next_backup = last_backup; 1973 1974 root_backup = info->super_for_commit->super_roots + next_backup; 1975 1976 /* 1977 * make sure all of our padding and empty slots get zero filled 1978 * regardless of which ones we use today 1979 */ 1980 memset(root_backup, 0, sizeof(*root_backup)); 1981 1982 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1983 1984 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1985 btrfs_set_backup_tree_root_gen(root_backup, 1986 btrfs_header_generation(info->tree_root->node)); 1987 1988 btrfs_set_backup_tree_root_level(root_backup, 1989 btrfs_header_level(info->tree_root->node)); 1990 1991 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1992 btrfs_set_backup_chunk_root_gen(root_backup, 1993 btrfs_header_generation(info->chunk_root->node)); 1994 btrfs_set_backup_chunk_root_level(root_backup, 1995 btrfs_header_level(info->chunk_root->node)); 1996 1997 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1998 btrfs_set_backup_extent_root_gen(root_backup, 1999 btrfs_header_generation(info->extent_root->node)); 2000 btrfs_set_backup_extent_root_level(root_backup, 2001 btrfs_header_level(info->extent_root->node)); 2002 2003 /* 2004 * we might commit during log recovery, which happens before we set 2005 * the fs_root. Make sure it is valid before we fill it in. 2006 */ 2007 if (info->fs_root && info->fs_root->node) { 2008 btrfs_set_backup_fs_root(root_backup, 2009 info->fs_root->node->start); 2010 btrfs_set_backup_fs_root_gen(root_backup, 2011 btrfs_header_generation(info->fs_root->node)); 2012 btrfs_set_backup_fs_root_level(root_backup, 2013 btrfs_header_level(info->fs_root->node)); 2014 } 2015 2016 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 2017 btrfs_set_backup_dev_root_gen(root_backup, 2018 btrfs_header_generation(info->dev_root->node)); 2019 btrfs_set_backup_dev_root_level(root_backup, 2020 btrfs_header_level(info->dev_root->node)); 2021 2022 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 2023 btrfs_set_backup_csum_root_gen(root_backup, 2024 btrfs_header_generation(info->csum_root->node)); 2025 btrfs_set_backup_csum_root_level(root_backup, 2026 btrfs_header_level(info->csum_root->node)); 2027 2028 btrfs_set_backup_total_bytes(root_backup, 2029 btrfs_super_total_bytes(info->super_copy)); 2030 btrfs_set_backup_bytes_used(root_backup, 2031 btrfs_super_bytes_used(info->super_copy)); 2032 btrfs_set_backup_num_devices(root_backup, 2033 btrfs_super_num_devices(info->super_copy)); 2034 2035 /* 2036 * if we don't copy this out to the super_copy, it won't get remembered 2037 * for the next commit 2038 */ 2039 memcpy(&info->super_copy->super_roots, 2040 &info->super_for_commit->super_roots, 2041 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2042 } 2043 2044 /* 2045 * this copies info out of the root backup array and back into 2046 * the in-memory super block. It is meant to help iterate through 2047 * the array, so you send it the number of backups you've already 2048 * tried and the last backup index you used. 2049 * 2050 * this returns -1 when it has tried all the backups 2051 */ 2052 static noinline int next_root_backup(struct btrfs_fs_info *info, 2053 struct btrfs_super_block *super, 2054 int *num_backups_tried, int *backup_index) 2055 { 2056 struct btrfs_root_backup *root_backup; 2057 int newest = *backup_index; 2058 2059 if (*num_backups_tried == 0) { 2060 u64 gen = btrfs_super_generation(super); 2061 2062 newest = find_newest_super_backup(info, gen); 2063 if (newest == -1) 2064 return -1; 2065 2066 *backup_index = newest; 2067 *num_backups_tried = 1; 2068 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2069 /* we've tried all the backups, all done */ 2070 return -1; 2071 } else { 2072 /* jump to the next oldest backup */ 2073 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2074 BTRFS_NUM_BACKUP_ROOTS; 2075 *backup_index = newest; 2076 *num_backups_tried += 1; 2077 } 2078 root_backup = super->super_roots + newest; 2079 2080 btrfs_set_super_generation(super, 2081 btrfs_backup_tree_root_gen(root_backup)); 2082 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2083 btrfs_set_super_root_level(super, 2084 btrfs_backup_tree_root_level(root_backup)); 2085 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2086 2087 /* 2088 * fixme: the total bytes and num_devices need to match or we should 2089 * need a fsck 2090 */ 2091 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2092 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2093 return 0; 2094 } 2095 2096 /* helper to cleanup workers */ 2097 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2098 { 2099 btrfs_destroy_workqueue(fs_info->fixup_workers); 2100 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2101 btrfs_destroy_workqueue(fs_info->workers); 2102 btrfs_destroy_workqueue(fs_info->endio_workers); 2103 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2104 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2105 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2106 btrfs_destroy_workqueue(fs_info->rmw_workers); 2107 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2108 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2109 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2110 btrfs_destroy_workqueue(fs_info->submit_workers); 2111 btrfs_destroy_workqueue(fs_info->delayed_workers); 2112 btrfs_destroy_workqueue(fs_info->caching_workers); 2113 btrfs_destroy_workqueue(fs_info->readahead_workers); 2114 btrfs_destroy_workqueue(fs_info->flush_workers); 2115 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2116 btrfs_destroy_workqueue(fs_info->extent_workers); 2117 } 2118 2119 static void free_root_extent_buffers(struct btrfs_root *root) 2120 { 2121 if (root) { 2122 free_extent_buffer(root->node); 2123 free_extent_buffer(root->commit_root); 2124 root->node = NULL; 2125 root->commit_root = NULL; 2126 } 2127 } 2128 2129 /* helper to cleanup tree roots */ 2130 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2131 { 2132 free_root_extent_buffers(info->tree_root); 2133 2134 free_root_extent_buffers(info->dev_root); 2135 free_root_extent_buffers(info->extent_root); 2136 free_root_extent_buffers(info->csum_root); 2137 free_root_extent_buffers(info->quota_root); 2138 free_root_extent_buffers(info->uuid_root); 2139 if (chunk_root) 2140 free_root_extent_buffers(info->chunk_root); 2141 } 2142 2143 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2144 { 2145 int ret; 2146 struct btrfs_root *gang[8]; 2147 int i; 2148 2149 while (!list_empty(&fs_info->dead_roots)) { 2150 gang[0] = list_entry(fs_info->dead_roots.next, 2151 struct btrfs_root, root_list); 2152 list_del(&gang[0]->root_list); 2153 2154 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2155 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2156 } else { 2157 free_extent_buffer(gang[0]->node); 2158 free_extent_buffer(gang[0]->commit_root); 2159 btrfs_put_fs_root(gang[0]); 2160 } 2161 } 2162 2163 while (1) { 2164 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2165 (void **)gang, 0, 2166 ARRAY_SIZE(gang)); 2167 if (!ret) 2168 break; 2169 for (i = 0; i < ret; i++) 2170 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2171 } 2172 2173 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2174 btrfs_free_log_root_tree(NULL, fs_info); 2175 btrfs_destroy_pinned_extent(fs_info->tree_root, 2176 fs_info->pinned_extents); 2177 } 2178 } 2179 2180 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2181 { 2182 mutex_init(&fs_info->scrub_lock); 2183 atomic_set(&fs_info->scrubs_running, 0); 2184 atomic_set(&fs_info->scrub_pause_req, 0); 2185 atomic_set(&fs_info->scrubs_paused, 0); 2186 atomic_set(&fs_info->scrub_cancel_req, 0); 2187 init_waitqueue_head(&fs_info->scrub_pause_wait); 2188 fs_info->scrub_workers_refcnt = 0; 2189 } 2190 2191 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2192 { 2193 spin_lock_init(&fs_info->balance_lock); 2194 mutex_init(&fs_info->balance_mutex); 2195 atomic_set(&fs_info->balance_running, 0); 2196 atomic_set(&fs_info->balance_pause_req, 0); 2197 atomic_set(&fs_info->balance_cancel_req, 0); 2198 fs_info->balance_ctl = NULL; 2199 init_waitqueue_head(&fs_info->balance_wait_q); 2200 } 2201 2202 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info, 2203 struct btrfs_root *tree_root) 2204 { 2205 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2206 set_nlink(fs_info->btree_inode, 1); 2207 /* 2208 * we set the i_size on the btree inode to the max possible int. 2209 * the real end of the address space is determined by all of 2210 * the devices in the system 2211 */ 2212 fs_info->btree_inode->i_size = OFFSET_MAX; 2213 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2214 2215 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2216 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2217 fs_info->btree_inode->i_mapping); 2218 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2219 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2220 2221 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2222 2223 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2224 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2225 sizeof(struct btrfs_key)); 2226 set_bit(BTRFS_INODE_DUMMY, 2227 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2228 btrfs_insert_inode_hash(fs_info->btree_inode); 2229 } 2230 2231 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2232 { 2233 fs_info->dev_replace.lock_owner = 0; 2234 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2235 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2236 mutex_init(&fs_info->dev_replace.lock_management_lock); 2237 mutex_init(&fs_info->dev_replace.lock); 2238 init_waitqueue_head(&fs_info->replace_wait); 2239 } 2240 2241 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2242 { 2243 spin_lock_init(&fs_info->qgroup_lock); 2244 mutex_init(&fs_info->qgroup_ioctl_lock); 2245 fs_info->qgroup_tree = RB_ROOT; 2246 fs_info->qgroup_op_tree = RB_ROOT; 2247 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2248 fs_info->qgroup_seq = 1; 2249 fs_info->quota_enabled = 0; 2250 fs_info->pending_quota_state = 0; 2251 fs_info->qgroup_ulist = NULL; 2252 mutex_init(&fs_info->qgroup_rescan_lock); 2253 } 2254 2255 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2256 struct btrfs_fs_devices *fs_devices) 2257 { 2258 int max_active = fs_info->thread_pool_size; 2259 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2260 2261 fs_info->workers = 2262 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI, 2263 max_active, 16); 2264 2265 fs_info->delalloc_workers = 2266 btrfs_alloc_workqueue("delalloc", flags, max_active, 2); 2267 2268 fs_info->flush_workers = 2269 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0); 2270 2271 fs_info->caching_workers = 2272 btrfs_alloc_workqueue("cache", flags, max_active, 0); 2273 2274 /* 2275 * a higher idle thresh on the submit workers makes it much more 2276 * likely that bios will be send down in a sane order to the 2277 * devices 2278 */ 2279 fs_info->submit_workers = 2280 btrfs_alloc_workqueue("submit", flags, 2281 min_t(u64, fs_devices->num_devices, 2282 max_active), 64); 2283 2284 fs_info->fixup_workers = 2285 btrfs_alloc_workqueue("fixup", flags, 1, 0); 2286 2287 /* 2288 * endios are largely parallel and should have a very 2289 * low idle thresh 2290 */ 2291 fs_info->endio_workers = 2292 btrfs_alloc_workqueue("endio", flags, max_active, 4); 2293 fs_info->endio_meta_workers = 2294 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4); 2295 fs_info->endio_meta_write_workers = 2296 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2); 2297 fs_info->endio_raid56_workers = 2298 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4); 2299 fs_info->endio_repair_workers = 2300 btrfs_alloc_workqueue("endio-repair", flags, 1, 0); 2301 fs_info->rmw_workers = 2302 btrfs_alloc_workqueue("rmw", flags, max_active, 2); 2303 fs_info->endio_write_workers = 2304 btrfs_alloc_workqueue("endio-write", flags, max_active, 2); 2305 fs_info->endio_freespace_worker = 2306 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0); 2307 fs_info->delayed_workers = 2308 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0); 2309 fs_info->readahead_workers = 2310 btrfs_alloc_workqueue("readahead", flags, max_active, 2); 2311 fs_info->qgroup_rescan_workers = 2312 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0); 2313 fs_info->extent_workers = 2314 btrfs_alloc_workqueue("extent-refs", flags, 2315 min_t(u64, fs_devices->num_devices, 2316 max_active), 8); 2317 2318 if (!(fs_info->workers && fs_info->delalloc_workers && 2319 fs_info->submit_workers && fs_info->flush_workers && 2320 fs_info->endio_workers && fs_info->endio_meta_workers && 2321 fs_info->endio_meta_write_workers && 2322 fs_info->endio_repair_workers && 2323 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2324 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2325 fs_info->caching_workers && fs_info->readahead_workers && 2326 fs_info->fixup_workers && fs_info->delayed_workers && 2327 fs_info->extent_workers && 2328 fs_info->qgroup_rescan_workers)) { 2329 return -ENOMEM; 2330 } 2331 2332 return 0; 2333 } 2334 2335 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2336 struct btrfs_fs_devices *fs_devices) 2337 { 2338 int ret; 2339 struct btrfs_root *tree_root = fs_info->tree_root; 2340 struct btrfs_root *log_tree_root; 2341 struct btrfs_super_block *disk_super = fs_info->super_copy; 2342 u64 bytenr = btrfs_super_log_root(disk_super); 2343 2344 if (fs_devices->rw_devices == 0) { 2345 printk(KERN_WARNING "BTRFS: log replay required " 2346 "on RO media\n"); 2347 return -EIO; 2348 } 2349 2350 log_tree_root = btrfs_alloc_root(fs_info); 2351 if (!log_tree_root) 2352 return -ENOMEM; 2353 2354 __setup_root(tree_root->nodesize, tree_root->sectorsize, 2355 tree_root->stripesize, log_tree_root, fs_info, 2356 BTRFS_TREE_LOG_OBJECTID); 2357 2358 log_tree_root->node = read_tree_block(tree_root, bytenr, 2359 fs_info->generation + 1); 2360 if (IS_ERR(log_tree_root->node)) { 2361 printk(KERN_ERR "BTRFS: failed to read log tree\n"); 2362 ret = PTR_ERR(log_tree_root->node); 2363 kfree(log_tree_root); 2364 return ret; 2365 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2366 printk(KERN_ERR "BTRFS: failed to read log tree\n"); 2367 free_extent_buffer(log_tree_root->node); 2368 kfree(log_tree_root); 2369 return -EIO; 2370 } 2371 /* returns with log_tree_root freed on success */ 2372 ret = btrfs_recover_log_trees(log_tree_root); 2373 if (ret) { 2374 btrfs_error(tree_root->fs_info, ret, 2375 "Failed to recover log tree"); 2376 free_extent_buffer(log_tree_root->node); 2377 kfree(log_tree_root); 2378 return ret; 2379 } 2380 2381 if (fs_info->sb->s_flags & MS_RDONLY) { 2382 ret = btrfs_commit_super(tree_root); 2383 if (ret) 2384 return ret; 2385 } 2386 2387 return 0; 2388 } 2389 2390 static int btrfs_read_roots(struct btrfs_fs_info *fs_info, 2391 struct btrfs_root *tree_root) 2392 { 2393 struct btrfs_root *root; 2394 struct btrfs_key location; 2395 int ret; 2396 2397 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2398 location.type = BTRFS_ROOT_ITEM_KEY; 2399 location.offset = 0; 2400 2401 root = btrfs_read_tree_root(tree_root, &location); 2402 if (IS_ERR(root)) 2403 return PTR_ERR(root); 2404 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2405 fs_info->extent_root = root; 2406 2407 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2408 root = btrfs_read_tree_root(tree_root, &location); 2409 if (IS_ERR(root)) 2410 return PTR_ERR(root); 2411 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2412 fs_info->dev_root = root; 2413 btrfs_init_devices_late(fs_info); 2414 2415 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2416 root = btrfs_read_tree_root(tree_root, &location); 2417 if (IS_ERR(root)) 2418 return PTR_ERR(root); 2419 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2420 fs_info->csum_root = root; 2421 2422 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2423 root = btrfs_read_tree_root(tree_root, &location); 2424 if (!IS_ERR(root)) { 2425 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2426 fs_info->quota_enabled = 1; 2427 fs_info->pending_quota_state = 1; 2428 fs_info->quota_root = root; 2429 } 2430 2431 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2432 root = btrfs_read_tree_root(tree_root, &location); 2433 if (IS_ERR(root)) { 2434 ret = PTR_ERR(root); 2435 if (ret != -ENOENT) 2436 return ret; 2437 } else { 2438 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2439 fs_info->uuid_root = root; 2440 } 2441 2442 return 0; 2443 } 2444 2445 int open_ctree(struct super_block *sb, 2446 struct btrfs_fs_devices *fs_devices, 2447 char *options) 2448 { 2449 u32 sectorsize; 2450 u32 nodesize; 2451 u32 stripesize; 2452 u64 generation; 2453 u64 features; 2454 struct btrfs_key location; 2455 struct buffer_head *bh; 2456 struct btrfs_super_block *disk_super; 2457 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2458 struct btrfs_root *tree_root; 2459 struct btrfs_root *chunk_root; 2460 int ret; 2461 int err = -EINVAL; 2462 int num_backups_tried = 0; 2463 int backup_index = 0; 2464 int max_active; 2465 2466 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 2467 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 2468 if (!tree_root || !chunk_root) { 2469 err = -ENOMEM; 2470 goto fail; 2471 } 2472 2473 ret = init_srcu_struct(&fs_info->subvol_srcu); 2474 if (ret) { 2475 err = ret; 2476 goto fail; 2477 } 2478 2479 ret = setup_bdi(fs_info, &fs_info->bdi); 2480 if (ret) { 2481 err = ret; 2482 goto fail_srcu; 2483 } 2484 2485 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2486 if (ret) { 2487 err = ret; 2488 goto fail_bdi; 2489 } 2490 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE * 2491 (1 + ilog2(nr_cpu_ids)); 2492 2493 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2494 if (ret) { 2495 err = ret; 2496 goto fail_dirty_metadata_bytes; 2497 } 2498 2499 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); 2500 if (ret) { 2501 err = ret; 2502 goto fail_delalloc_bytes; 2503 } 2504 2505 fs_info->btree_inode = new_inode(sb); 2506 if (!fs_info->btree_inode) { 2507 err = -ENOMEM; 2508 goto fail_bio_counter; 2509 } 2510 2511 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2512 2513 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2514 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2515 INIT_LIST_HEAD(&fs_info->trans_list); 2516 INIT_LIST_HEAD(&fs_info->dead_roots); 2517 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2518 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2519 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2520 spin_lock_init(&fs_info->delalloc_root_lock); 2521 spin_lock_init(&fs_info->trans_lock); 2522 spin_lock_init(&fs_info->fs_roots_radix_lock); 2523 spin_lock_init(&fs_info->delayed_iput_lock); 2524 spin_lock_init(&fs_info->defrag_inodes_lock); 2525 spin_lock_init(&fs_info->free_chunk_lock); 2526 spin_lock_init(&fs_info->tree_mod_seq_lock); 2527 spin_lock_init(&fs_info->super_lock); 2528 spin_lock_init(&fs_info->qgroup_op_lock); 2529 spin_lock_init(&fs_info->buffer_lock); 2530 spin_lock_init(&fs_info->unused_bgs_lock); 2531 rwlock_init(&fs_info->tree_mod_log_lock); 2532 mutex_init(&fs_info->unused_bg_unpin_mutex); 2533 mutex_init(&fs_info->delete_unused_bgs_mutex); 2534 mutex_init(&fs_info->reloc_mutex); 2535 mutex_init(&fs_info->delalloc_root_mutex); 2536 seqlock_init(&fs_info->profiles_lock); 2537 init_rwsem(&fs_info->delayed_iput_sem); 2538 2539 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2540 INIT_LIST_HEAD(&fs_info->space_info); 2541 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2542 INIT_LIST_HEAD(&fs_info->unused_bgs); 2543 btrfs_mapping_init(&fs_info->mapping_tree); 2544 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2545 BTRFS_BLOCK_RSV_GLOBAL); 2546 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2547 BTRFS_BLOCK_RSV_DELALLOC); 2548 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2549 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2550 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2551 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2552 BTRFS_BLOCK_RSV_DELOPS); 2553 atomic_set(&fs_info->nr_async_submits, 0); 2554 atomic_set(&fs_info->async_delalloc_pages, 0); 2555 atomic_set(&fs_info->async_submit_draining, 0); 2556 atomic_set(&fs_info->nr_async_bios, 0); 2557 atomic_set(&fs_info->defrag_running, 0); 2558 atomic_set(&fs_info->qgroup_op_seq, 0); 2559 atomic64_set(&fs_info->tree_mod_seq, 0); 2560 fs_info->sb = sb; 2561 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2562 fs_info->metadata_ratio = 0; 2563 fs_info->defrag_inodes = RB_ROOT; 2564 fs_info->free_chunk_space = 0; 2565 fs_info->tree_mod_log = RB_ROOT; 2566 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2567 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2568 /* readahead state */ 2569 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 2570 spin_lock_init(&fs_info->reada_lock); 2571 2572 fs_info->thread_pool_size = min_t(unsigned long, 2573 num_online_cpus() + 2, 8); 2574 2575 INIT_LIST_HEAD(&fs_info->ordered_roots); 2576 spin_lock_init(&fs_info->ordered_root_lock); 2577 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2578 GFP_NOFS); 2579 if (!fs_info->delayed_root) { 2580 err = -ENOMEM; 2581 goto fail_iput; 2582 } 2583 btrfs_init_delayed_root(fs_info->delayed_root); 2584 2585 btrfs_init_scrub(fs_info); 2586 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2587 fs_info->check_integrity_print_mask = 0; 2588 #endif 2589 btrfs_init_balance(fs_info); 2590 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2591 2592 sb->s_blocksize = 4096; 2593 sb->s_blocksize_bits = blksize_bits(4096); 2594 sb->s_bdi = &fs_info->bdi; 2595 2596 btrfs_init_btree_inode(fs_info, tree_root); 2597 2598 spin_lock_init(&fs_info->block_group_cache_lock); 2599 fs_info->block_group_cache_tree = RB_ROOT; 2600 fs_info->first_logical_byte = (u64)-1; 2601 2602 extent_io_tree_init(&fs_info->freed_extents[0], 2603 fs_info->btree_inode->i_mapping); 2604 extent_io_tree_init(&fs_info->freed_extents[1], 2605 fs_info->btree_inode->i_mapping); 2606 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2607 fs_info->do_barriers = 1; 2608 2609 2610 mutex_init(&fs_info->ordered_operations_mutex); 2611 mutex_init(&fs_info->ordered_extent_flush_mutex); 2612 mutex_init(&fs_info->tree_log_mutex); 2613 mutex_init(&fs_info->chunk_mutex); 2614 mutex_init(&fs_info->transaction_kthread_mutex); 2615 mutex_init(&fs_info->cleaner_mutex); 2616 mutex_init(&fs_info->volume_mutex); 2617 mutex_init(&fs_info->ro_block_group_mutex); 2618 init_rwsem(&fs_info->commit_root_sem); 2619 init_rwsem(&fs_info->cleanup_work_sem); 2620 init_rwsem(&fs_info->subvol_sem); 2621 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2622 2623 btrfs_init_dev_replace_locks(fs_info); 2624 btrfs_init_qgroup(fs_info); 2625 2626 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2627 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2628 2629 init_waitqueue_head(&fs_info->transaction_throttle); 2630 init_waitqueue_head(&fs_info->transaction_wait); 2631 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2632 init_waitqueue_head(&fs_info->async_submit_wait); 2633 2634 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2635 2636 ret = btrfs_alloc_stripe_hash_table(fs_info); 2637 if (ret) { 2638 err = ret; 2639 goto fail_alloc; 2640 } 2641 2642 __setup_root(4096, 4096, 4096, tree_root, 2643 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2644 2645 invalidate_bdev(fs_devices->latest_bdev); 2646 2647 /* 2648 * Read super block and check the signature bytes only 2649 */ 2650 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2651 if (!bh) { 2652 err = -EINVAL; 2653 goto fail_alloc; 2654 } 2655 2656 /* 2657 * We want to check superblock checksum, the type is stored inside. 2658 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2659 */ 2660 if (btrfs_check_super_csum(bh->b_data)) { 2661 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n"); 2662 err = -EINVAL; 2663 goto fail_alloc; 2664 } 2665 2666 /* 2667 * super_copy is zeroed at allocation time and we never touch the 2668 * following bytes up to INFO_SIZE, the checksum is calculated from 2669 * the whole block of INFO_SIZE 2670 */ 2671 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2672 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2673 sizeof(*fs_info->super_for_commit)); 2674 brelse(bh); 2675 2676 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2677 2678 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2679 if (ret) { 2680 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n"); 2681 err = -EINVAL; 2682 goto fail_alloc; 2683 } 2684 2685 disk_super = fs_info->super_copy; 2686 if (!btrfs_super_root(disk_super)) 2687 goto fail_alloc; 2688 2689 /* check FS state, whether FS is broken. */ 2690 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2691 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2692 2693 /* 2694 * run through our array of backup supers and setup 2695 * our ring pointer to the oldest one 2696 */ 2697 generation = btrfs_super_generation(disk_super); 2698 find_oldest_super_backup(fs_info, generation); 2699 2700 /* 2701 * In the long term, we'll store the compression type in the super 2702 * block, and it'll be used for per file compression control. 2703 */ 2704 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2705 2706 ret = btrfs_parse_options(tree_root, options); 2707 if (ret) { 2708 err = ret; 2709 goto fail_alloc; 2710 } 2711 2712 features = btrfs_super_incompat_flags(disk_super) & 2713 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2714 if (features) { 2715 printk(KERN_ERR "BTRFS: couldn't mount because of " 2716 "unsupported optional features (%Lx).\n", 2717 features); 2718 err = -EINVAL; 2719 goto fail_alloc; 2720 } 2721 2722 /* 2723 * Leafsize and nodesize were always equal, this is only a sanity check. 2724 */ 2725 if (le32_to_cpu(disk_super->__unused_leafsize) != 2726 btrfs_super_nodesize(disk_super)) { 2727 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2728 "blocksizes don't match. node %d leaf %d\n", 2729 btrfs_super_nodesize(disk_super), 2730 le32_to_cpu(disk_super->__unused_leafsize)); 2731 err = -EINVAL; 2732 goto fail_alloc; 2733 } 2734 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2735 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2736 "blocksize (%d) was too large\n", 2737 btrfs_super_nodesize(disk_super)); 2738 err = -EINVAL; 2739 goto fail_alloc; 2740 } 2741 2742 features = btrfs_super_incompat_flags(disk_super); 2743 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2744 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2745 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2746 2747 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2748 printk(KERN_INFO "BTRFS: has skinny extents\n"); 2749 2750 /* 2751 * flag our filesystem as having big metadata blocks if 2752 * they are bigger than the page size 2753 */ 2754 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) { 2755 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2756 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n"); 2757 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2758 } 2759 2760 nodesize = btrfs_super_nodesize(disk_super); 2761 sectorsize = btrfs_super_sectorsize(disk_super); 2762 stripesize = btrfs_super_stripesize(disk_super); 2763 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2764 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2765 2766 /* 2767 * mixed block groups end up with duplicate but slightly offset 2768 * extent buffers for the same range. It leads to corruptions 2769 */ 2770 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2771 (sectorsize != nodesize)) { 2772 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes " 2773 "are not allowed for mixed block groups on %s\n", 2774 sb->s_id); 2775 goto fail_alloc; 2776 } 2777 2778 /* 2779 * Needn't use the lock because there is no other task which will 2780 * update the flag. 2781 */ 2782 btrfs_set_super_incompat_flags(disk_super, features); 2783 2784 features = btrfs_super_compat_ro_flags(disk_super) & 2785 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2786 if (!(sb->s_flags & MS_RDONLY) && features) { 2787 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2788 "unsupported option features (%Lx).\n", 2789 features); 2790 err = -EINVAL; 2791 goto fail_alloc; 2792 } 2793 2794 max_active = fs_info->thread_pool_size; 2795 2796 ret = btrfs_init_workqueues(fs_info, fs_devices); 2797 if (ret) { 2798 err = ret; 2799 goto fail_sb_buffer; 2800 } 2801 2802 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2803 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2804 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2805 2806 tree_root->nodesize = nodesize; 2807 tree_root->sectorsize = sectorsize; 2808 tree_root->stripesize = stripesize; 2809 2810 sb->s_blocksize = sectorsize; 2811 sb->s_blocksize_bits = blksize_bits(sectorsize); 2812 2813 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 2814 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id); 2815 goto fail_sb_buffer; 2816 } 2817 2818 if (sectorsize != PAGE_SIZE) { 2819 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) " 2820 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2821 goto fail_sb_buffer; 2822 } 2823 2824 mutex_lock(&fs_info->chunk_mutex); 2825 ret = btrfs_read_sys_array(tree_root); 2826 mutex_unlock(&fs_info->chunk_mutex); 2827 if (ret) { 2828 printk(KERN_ERR "BTRFS: failed to read the system " 2829 "array on %s\n", sb->s_id); 2830 goto fail_sb_buffer; 2831 } 2832 2833 generation = btrfs_super_chunk_root_generation(disk_super); 2834 2835 __setup_root(nodesize, sectorsize, stripesize, chunk_root, 2836 fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2837 2838 chunk_root->node = read_tree_block(chunk_root, 2839 btrfs_super_chunk_root(disk_super), 2840 generation); 2841 if (IS_ERR(chunk_root->node) || 2842 !extent_buffer_uptodate(chunk_root->node)) { 2843 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n", 2844 sb->s_id); 2845 chunk_root->node = NULL; 2846 goto fail_tree_roots; 2847 } 2848 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2849 chunk_root->commit_root = btrfs_root_node(chunk_root); 2850 2851 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2852 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2853 2854 ret = btrfs_read_chunk_tree(chunk_root); 2855 if (ret) { 2856 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n", 2857 sb->s_id); 2858 goto fail_tree_roots; 2859 } 2860 2861 /* 2862 * keep the device that is marked to be the target device for the 2863 * dev_replace procedure 2864 */ 2865 btrfs_close_extra_devices(fs_devices, 0); 2866 2867 if (!fs_devices->latest_bdev) { 2868 printk(KERN_ERR "BTRFS: failed to read devices on %s\n", 2869 sb->s_id); 2870 goto fail_tree_roots; 2871 } 2872 2873 retry_root_backup: 2874 generation = btrfs_super_generation(disk_super); 2875 2876 tree_root->node = read_tree_block(tree_root, 2877 btrfs_super_root(disk_super), 2878 generation); 2879 if (IS_ERR(tree_root->node) || 2880 !extent_buffer_uptodate(tree_root->node)) { 2881 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n", 2882 sb->s_id); 2883 tree_root->node = NULL; 2884 goto recovery_tree_root; 2885 } 2886 2887 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2888 tree_root->commit_root = btrfs_root_node(tree_root); 2889 btrfs_set_root_refs(&tree_root->root_item, 1); 2890 2891 ret = btrfs_read_roots(fs_info, tree_root); 2892 if (ret) 2893 goto recovery_tree_root; 2894 2895 fs_info->generation = generation; 2896 fs_info->last_trans_committed = generation; 2897 2898 ret = btrfs_recover_balance(fs_info); 2899 if (ret) { 2900 printk(KERN_ERR "BTRFS: failed to recover balance\n"); 2901 goto fail_block_groups; 2902 } 2903 2904 ret = btrfs_init_dev_stats(fs_info); 2905 if (ret) { 2906 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n", 2907 ret); 2908 goto fail_block_groups; 2909 } 2910 2911 ret = btrfs_init_dev_replace(fs_info); 2912 if (ret) { 2913 pr_err("BTRFS: failed to init dev_replace: %d\n", ret); 2914 goto fail_block_groups; 2915 } 2916 2917 btrfs_close_extra_devices(fs_devices, 1); 2918 2919 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 2920 if (ret) { 2921 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret); 2922 goto fail_block_groups; 2923 } 2924 2925 ret = btrfs_sysfs_add_device(fs_devices); 2926 if (ret) { 2927 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret); 2928 goto fail_fsdev_sysfs; 2929 } 2930 2931 ret = btrfs_sysfs_add_one(fs_info); 2932 if (ret) { 2933 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret); 2934 goto fail_fsdev_sysfs; 2935 } 2936 2937 ret = btrfs_init_space_info(fs_info); 2938 if (ret) { 2939 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret); 2940 goto fail_sysfs; 2941 } 2942 2943 ret = btrfs_read_block_groups(fs_info->extent_root); 2944 if (ret) { 2945 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret); 2946 goto fail_sysfs; 2947 } 2948 fs_info->num_tolerated_disk_barrier_failures = 2949 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2950 if (fs_info->fs_devices->missing_devices > 2951 fs_info->num_tolerated_disk_barrier_failures && 2952 !(sb->s_flags & MS_RDONLY)) { 2953 printk(KERN_WARNING "BTRFS: " 2954 "too many missing devices, writeable mount is not allowed\n"); 2955 goto fail_sysfs; 2956 } 2957 2958 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2959 "btrfs-cleaner"); 2960 if (IS_ERR(fs_info->cleaner_kthread)) 2961 goto fail_sysfs; 2962 2963 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2964 tree_root, 2965 "btrfs-transaction"); 2966 if (IS_ERR(fs_info->transaction_kthread)) 2967 goto fail_cleaner; 2968 2969 if (!btrfs_test_opt(tree_root, SSD) && 2970 !btrfs_test_opt(tree_root, NOSSD) && 2971 !fs_info->fs_devices->rotating) { 2972 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD " 2973 "mode\n"); 2974 btrfs_set_opt(fs_info->mount_opt, SSD); 2975 } 2976 2977 /* 2978 * Mount does not set all options immediatelly, we can do it now and do 2979 * not have to wait for transaction commit 2980 */ 2981 btrfs_apply_pending_changes(fs_info); 2982 2983 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2984 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2985 ret = btrfsic_mount(tree_root, fs_devices, 2986 btrfs_test_opt(tree_root, 2987 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2988 1 : 0, 2989 fs_info->check_integrity_print_mask); 2990 if (ret) 2991 printk(KERN_WARNING "BTRFS: failed to initialize" 2992 " integrity check module %s\n", sb->s_id); 2993 } 2994 #endif 2995 ret = btrfs_read_qgroup_config(fs_info); 2996 if (ret) 2997 goto fail_trans_kthread; 2998 2999 /* do not make disk changes in broken FS */ 3000 if (btrfs_super_log_root(disk_super) != 0) { 3001 ret = btrfs_replay_log(fs_info, fs_devices); 3002 if (ret) { 3003 err = ret; 3004 goto fail_qgroup; 3005 } 3006 } 3007 3008 ret = btrfs_find_orphan_roots(tree_root); 3009 if (ret) 3010 goto fail_qgroup; 3011 3012 if (!(sb->s_flags & MS_RDONLY)) { 3013 ret = btrfs_cleanup_fs_roots(fs_info); 3014 if (ret) 3015 goto fail_qgroup; 3016 3017 mutex_lock(&fs_info->cleaner_mutex); 3018 ret = btrfs_recover_relocation(tree_root); 3019 mutex_unlock(&fs_info->cleaner_mutex); 3020 if (ret < 0) { 3021 printk(KERN_WARNING 3022 "BTRFS: failed to recover relocation\n"); 3023 err = -EINVAL; 3024 goto fail_qgroup; 3025 } 3026 } 3027 3028 location.objectid = BTRFS_FS_TREE_OBJECTID; 3029 location.type = BTRFS_ROOT_ITEM_KEY; 3030 location.offset = 0; 3031 3032 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3033 if (IS_ERR(fs_info->fs_root)) { 3034 err = PTR_ERR(fs_info->fs_root); 3035 goto fail_qgroup; 3036 } 3037 3038 if (sb->s_flags & MS_RDONLY) 3039 return 0; 3040 3041 down_read(&fs_info->cleanup_work_sem); 3042 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3043 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3044 up_read(&fs_info->cleanup_work_sem); 3045 close_ctree(tree_root); 3046 return ret; 3047 } 3048 up_read(&fs_info->cleanup_work_sem); 3049 3050 ret = btrfs_resume_balance_async(fs_info); 3051 if (ret) { 3052 printk(KERN_WARNING "BTRFS: failed to resume balance\n"); 3053 close_ctree(tree_root); 3054 return ret; 3055 } 3056 3057 ret = btrfs_resume_dev_replace_async(fs_info); 3058 if (ret) { 3059 pr_warn("BTRFS: failed to resume dev_replace\n"); 3060 close_ctree(tree_root); 3061 return ret; 3062 } 3063 3064 btrfs_qgroup_rescan_resume(fs_info); 3065 3066 if (!fs_info->uuid_root) { 3067 pr_info("BTRFS: creating UUID tree\n"); 3068 ret = btrfs_create_uuid_tree(fs_info); 3069 if (ret) { 3070 pr_warn("BTRFS: failed to create the UUID tree %d\n", 3071 ret); 3072 close_ctree(tree_root); 3073 return ret; 3074 } 3075 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) || 3076 fs_info->generation != 3077 btrfs_super_uuid_tree_generation(disk_super)) { 3078 pr_info("BTRFS: checking UUID tree\n"); 3079 ret = btrfs_check_uuid_tree(fs_info); 3080 if (ret) { 3081 pr_warn("BTRFS: failed to check the UUID tree %d\n", 3082 ret); 3083 close_ctree(tree_root); 3084 return ret; 3085 } 3086 } else { 3087 fs_info->update_uuid_tree_gen = 1; 3088 } 3089 3090 fs_info->open = 1; 3091 3092 return 0; 3093 3094 fail_qgroup: 3095 btrfs_free_qgroup_config(fs_info); 3096 fail_trans_kthread: 3097 kthread_stop(fs_info->transaction_kthread); 3098 btrfs_cleanup_transaction(fs_info->tree_root); 3099 btrfs_free_fs_roots(fs_info); 3100 fail_cleaner: 3101 kthread_stop(fs_info->cleaner_kthread); 3102 3103 /* 3104 * make sure we're done with the btree inode before we stop our 3105 * kthreads 3106 */ 3107 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3108 3109 fail_sysfs: 3110 btrfs_sysfs_remove_one(fs_info); 3111 3112 fail_fsdev_sysfs: 3113 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3114 3115 fail_block_groups: 3116 btrfs_put_block_group_cache(fs_info); 3117 btrfs_free_block_groups(fs_info); 3118 3119 fail_tree_roots: 3120 free_root_pointers(fs_info, 1); 3121 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3122 3123 fail_sb_buffer: 3124 btrfs_stop_all_workers(fs_info); 3125 fail_alloc: 3126 fail_iput: 3127 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3128 3129 iput(fs_info->btree_inode); 3130 fail_bio_counter: 3131 percpu_counter_destroy(&fs_info->bio_counter); 3132 fail_delalloc_bytes: 3133 percpu_counter_destroy(&fs_info->delalloc_bytes); 3134 fail_dirty_metadata_bytes: 3135 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3136 fail_bdi: 3137 bdi_destroy(&fs_info->bdi); 3138 fail_srcu: 3139 cleanup_srcu_struct(&fs_info->subvol_srcu); 3140 fail: 3141 btrfs_free_stripe_hash_table(fs_info); 3142 btrfs_close_devices(fs_info->fs_devices); 3143 return err; 3144 3145 recovery_tree_root: 3146 if (!btrfs_test_opt(tree_root, RECOVERY)) 3147 goto fail_tree_roots; 3148 3149 free_root_pointers(fs_info, 0); 3150 3151 /* don't use the log in recovery mode, it won't be valid */ 3152 btrfs_set_super_log_root(disk_super, 0); 3153 3154 /* we can't trust the free space cache either */ 3155 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3156 3157 ret = next_root_backup(fs_info, fs_info->super_copy, 3158 &num_backups_tried, &backup_index); 3159 if (ret == -1) 3160 goto fail_block_groups; 3161 goto retry_root_backup; 3162 } 3163 3164 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3165 { 3166 if (uptodate) { 3167 set_buffer_uptodate(bh); 3168 } else { 3169 struct btrfs_device *device = (struct btrfs_device *) 3170 bh->b_private; 3171 3172 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to " 3173 "I/O error on %s\n", 3174 rcu_str_deref(device->name)); 3175 /* note, we dont' set_buffer_write_io_error because we have 3176 * our own ways of dealing with the IO errors 3177 */ 3178 clear_buffer_uptodate(bh); 3179 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3180 } 3181 unlock_buffer(bh); 3182 put_bh(bh); 3183 } 3184 3185 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3186 { 3187 struct buffer_head *bh; 3188 struct buffer_head *latest = NULL; 3189 struct btrfs_super_block *super; 3190 int i; 3191 u64 transid = 0; 3192 u64 bytenr; 3193 3194 /* we would like to check all the supers, but that would make 3195 * a btrfs mount succeed after a mkfs from a different FS. 3196 * So, we need to add a special mount option to scan for 3197 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3198 */ 3199 for (i = 0; i < 1; i++) { 3200 bytenr = btrfs_sb_offset(i); 3201 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3202 i_size_read(bdev->bd_inode)) 3203 break; 3204 bh = __bread(bdev, bytenr / 4096, 3205 BTRFS_SUPER_INFO_SIZE); 3206 if (!bh) 3207 continue; 3208 3209 super = (struct btrfs_super_block *)bh->b_data; 3210 if (btrfs_super_bytenr(super) != bytenr || 3211 btrfs_super_magic(super) != BTRFS_MAGIC) { 3212 brelse(bh); 3213 continue; 3214 } 3215 3216 if (!latest || btrfs_super_generation(super) > transid) { 3217 brelse(latest); 3218 latest = bh; 3219 transid = btrfs_super_generation(super); 3220 } else { 3221 brelse(bh); 3222 } 3223 } 3224 return latest; 3225 } 3226 3227 /* 3228 * this should be called twice, once with wait == 0 and 3229 * once with wait == 1. When wait == 0 is done, all the buffer heads 3230 * we write are pinned. 3231 * 3232 * They are released when wait == 1 is done. 3233 * max_mirrors must be the same for both runs, and it indicates how 3234 * many supers on this one device should be written. 3235 * 3236 * max_mirrors == 0 means to write them all. 3237 */ 3238 static int write_dev_supers(struct btrfs_device *device, 3239 struct btrfs_super_block *sb, 3240 int do_barriers, int wait, int max_mirrors) 3241 { 3242 struct buffer_head *bh; 3243 int i; 3244 int ret; 3245 int errors = 0; 3246 u32 crc; 3247 u64 bytenr; 3248 3249 if (max_mirrors == 0) 3250 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3251 3252 for (i = 0; i < max_mirrors; i++) { 3253 bytenr = btrfs_sb_offset(i); 3254 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3255 device->commit_total_bytes) 3256 break; 3257 3258 if (wait) { 3259 bh = __find_get_block(device->bdev, bytenr / 4096, 3260 BTRFS_SUPER_INFO_SIZE); 3261 if (!bh) { 3262 errors++; 3263 continue; 3264 } 3265 wait_on_buffer(bh); 3266 if (!buffer_uptodate(bh)) 3267 errors++; 3268 3269 /* drop our reference */ 3270 brelse(bh); 3271 3272 /* drop the reference from the wait == 0 run */ 3273 brelse(bh); 3274 continue; 3275 } else { 3276 btrfs_set_super_bytenr(sb, bytenr); 3277 3278 crc = ~(u32)0; 3279 crc = btrfs_csum_data((char *)sb + 3280 BTRFS_CSUM_SIZE, crc, 3281 BTRFS_SUPER_INFO_SIZE - 3282 BTRFS_CSUM_SIZE); 3283 btrfs_csum_final(crc, sb->csum); 3284 3285 /* 3286 * one reference for us, and we leave it for the 3287 * caller 3288 */ 3289 bh = __getblk(device->bdev, bytenr / 4096, 3290 BTRFS_SUPER_INFO_SIZE); 3291 if (!bh) { 3292 printk(KERN_ERR "BTRFS: couldn't get super " 3293 "buffer head for bytenr %Lu\n", bytenr); 3294 errors++; 3295 continue; 3296 } 3297 3298 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3299 3300 /* one reference for submit_bh */ 3301 get_bh(bh); 3302 3303 set_buffer_uptodate(bh); 3304 lock_buffer(bh); 3305 bh->b_end_io = btrfs_end_buffer_write_sync; 3306 bh->b_private = device; 3307 } 3308 3309 /* 3310 * we fua the first super. The others we allow 3311 * to go down lazy. 3312 */ 3313 if (i == 0) 3314 ret = btrfsic_submit_bh(WRITE_FUA, bh); 3315 else 3316 ret = btrfsic_submit_bh(WRITE_SYNC, bh); 3317 if (ret) 3318 errors++; 3319 } 3320 return errors < i ? 0 : -1; 3321 } 3322 3323 /* 3324 * endio for the write_dev_flush, this will wake anyone waiting 3325 * for the barrier when it is done 3326 */ 3327 static void btrfs_end_empty_barrier(struct bio *bio, int err) 3328 { 3329 if (err) 3330 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3331 if (bio->bi_private) 3332 complete(bio->bi_private); 3333 bio_put(bio); 3334 } 3335 3336 /* 3337 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3338 * sent down. With wait == 1, it waits for the previous flush. 3339 * 3340 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3341 * capable 3342 */ 3343 static int write_dev_flush(struct btrfs_device *device, int wait) 3344 { 3345 struct bio *bio; 3346 int ret = 0; 3347 3348 if (device->nobarriers) 3349 return 0; 3350 3351 if (wait) { 3352 bio = device->flush_bio; 3353 if (!bio) 3354 return 0; 3355 3356 wait_for_completion(&device->flush_wait); 3357 3358 if (!bio_flagged(bio, BIO_UPTODATE)) { 3359 ret = -EIO; 3360 btrfs_dev_stat_inc_and_print(device, 3361 BTRFS_DEV_STAT_FLUSH_ERRS); 3362 } 3363 3364 /* drop the reference from the wait == 0 run */ 3365 bio_put(bio); 3366 device->flush_bio = NULL; 3367 3368 return ret; 3369 } 3370 3371 /* 3372 * one reference for us, and we leave it for the 3373 * caller 3374 */ 3375 device->flush_bio = NULL; 3376 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3377 if (!bio) 3378 return -ENOMEM; 3379 3380 bio->bi_end_io = btrfs_end_empty_barrier; 3381 bio->bi_bdev = device->bdev; 3382 init_completion(&device->flush_wait); 3383 bio->bi_private = &device->flush_wait; 3384 device->flush_bio = bio; 3385 3386 bio_get(bio); 3387 btrfsic_submit_bio(WRITE_FLUSH, bio); 3388 3389 return 0; 3390 } 3391 3392 /* 3393 * send an empty flush down to each device in parallel, 3394 * then wait for them 3395 */ 3396 static int barrier_all_devices(struct btrfs_fs_info *info) 3397 { 3398 struct list_head *head; 3399 struct btrfs_device *dev; 3400 int errors_send = 0; 3401 int errors_wait = 0; 3402 int ret; 3403 3404 /* send down all the barriers */ 3405 head = &info->fs_devices->devices; 3406 list_for_each_entry_rcu(dev, head, dev_list) { 3407 if (dev->missing) 3408 continue; 3409 if (!dev->bdev) { 3410 errors_send++; 3411 continue; 3412 } 3413 if (!dev->in_fs_metadata || !dev->writeable) 3414 continue; 3415 3416 ret = write_dev_flush(dev, 0); 3417 if (ret) 3418 errors_send++; 3419 } 3420 3421 /* wait for all the barriers */ 3422 list_for_each_entry_rcu(dev, head, dev_list) { 3423 if (dev->missing) 3424 continue; 3425 if (!dev->bdev) { 3426 errors_wait++; 3427 continue; 3428 } 3429 if (!dev->in_fs_metadata || !dev->writeable) 3430 continue; 3431 3432 ret = write_dev_flush(dev, 1); 3433 if (ret) 3434 errors_wait++; 3435 } 3436 if (errors_send > info->num_tolerated_disk_barrier_failures || 3437 errors_wait > info->num_tolerated_disk_barrier_failures) 3438 return -EIO; 3439 return 0; 3440 } 3441 3442 int btrfs_calc_num_tolerated_disk_barrier_failures( 3443 struct btrfs_fs_info *fs_info) 3444 { 3445 struct btrfs_ioctl_space_info space; 3446 struct btrfs_space_info *sinfo; 3447 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3448 BTRFS_BLOCK_GROUP_SYSTEM, 3449 BTRFS_BLOCK_GROUP_METADATA, 3450 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3451 int num_types = 4; 3452 int i; 3453 int c; 3454 int num_tolerated_disk_barrier_failures = 3455 (int)fs_info->fs_devices->num_devices; 3456 3457 for (i = 0; i < num_types; i++) { 3458 struct btrfs_space_info *tmp; 3459 3460 sinfo = NULL; 3461 rcu_read_lock(); 3462 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3463 if (tmp->flags == types[i]) { 3464 sinfo = tmp; 3465 break; 3466 } 3467 } 3468 rcu_read_unlock(); 3469 3470 if (!sinfo) 3471 continue; 3472 3473 down_read(&sinfo->groups_sem); 3474 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3475 if (!list_empty(&sinfo->block_groups[c])) { 3476 u64 flags; 3477 3478 btrfs_get_block_group_info( 3479 &sinfo->block_groups[c], &space); 3480 if (space.total_bytes == 0 || 3481 space.used_bytes == 0) 3482 continue; 3483 flags = space.flags; 3484 /* 3485 * return 3486 * 0: if dup, single or RAID0 is configured for 3487 * any of metadata, system or data, else 3488 * 1: if RAID5 is configured, or if RAID1 or 3489 * RAID10 is configured and only two mirrors 3490 * are used, else 3491 * 2: if RAID6 is configured, else 3492 * num_mirrors - 1: if RAID1 or RAID10 is 3493 * configured and more than 3494 * 2 mirrors are used. 3495 */ 3496 if (num_tolerated_disk_barrier_failures > 0 && 3497 ((flags & (BTRFS_BLOCK_GROUP_DUP | 3498 BTRFS_BLOCK_GROUP_RAID0)) || 3499 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) 3500 == 0))) 3501 num_tolerated_disk_barrier_failures = 0; 3502 else if (num_tolerated_disk_barrier_failures > 1) { 3503 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3504 BTRFS_BLOCK_GROUP_RAID5 | 3505 BTRFS_BLOCK_GROUP_RAID10)) { 3506 num_tolerated_disk_barrier_failures = 1; 3507 } else if (flags & 3508 BTRFS_BLOCK_GROUP_RAID6) { 3509 num_tolerated_disk_barrier_failures = 2; 3510 } 3511 } 3512 } 3513 } 3514 up_read(&sinfo->groups_sem); 3515 } 3516 3517 return num_tolerated_disk_barrier_failures; 3518 } 3519 3520 static int write_all_supers(struct btrfs_root *root, int max_mirrors) 3521 { 3522 struct list_head *head; 3523 struct btrfs_device *dev; 3524 struct btrfs_super_block *sb; 3525 struct btrfs_dev_item *dev_item; 3526 int ret; 3527 int do_barriers; 3528 int max_errors; 3529 int total_errors = 0; 3530 u64 flags; 3531 3532 do_barriers = !btrfs_test_opt(root, NOBARRIER); 3533 backup_super_roots(root->fs_info); 3534 3535 sb = root->fs_info->super_for_commit; 3536 dev_item = &sb->dev_item; 3537 3538 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3539 head = &root->fs_info->fs_devices->devices; 3540 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3541 3542 if (do_barriers) { 3543 ret = barrier_all_devices(root->fs_info); 3544 if (ret) { 3545 mutex_unlock( 3546 &root->fs_info->fs_devices->device_list_mutex); 3547 btrfs_error(root->fs_info, ret, 3548 "errors while submitting device barriers."); 3549 return ret; 3550 } 3551 } 3552 3553 list_for_each_entry_rcu(dev, head, dev_list) { 3554 if (!dev->bdev) { 3555 total_errors++; 3556 continue; 3557 } 3558 if (!dev->in_fs_metadata || !dev->writeable) 3559 continue; 3560 3561 btrfs_set_stack_device_generation(dev_item, 0); 3562 btrfs_set_stack_device_type(dev_item, dev->type); 3563 btrfs_set_stack_device_id(dev_item, dev->devid); 3564 btrfs_set_stack_device_total_bytes(dev_item, 3565 dev->commit_total_bytes); 3566 btrfs_set_stack_device_bytes_used(dev_item, 3567 dev->commit_bytes_used); 3568 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3569 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3570 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3571 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3572 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3573 3574 flags = btrfs_super_flags(sb); 3575 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3576 3577 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3578 if (ret) 3579 total_errors++; 3580 } 3581 if (total_errors > max_errors) { 3582 btrfs_err(root->fs_info, "%d errors while writing supers", 3583 total_errors); 3584 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3585 3586 /* FUA is masked off if unsupported and can't be the reason */ 3587 btrfs_error(root->fs_info, -EIO, 3588 "%d errors while writing supers", total_errors); 3589 return -EIO; 3590 } 3591 3592 total_errors = 0; 3593 list_for_each_entry_rcu(dev, head, dev_list) { 3594 if (!dev->bdev) 3595 continue; 3596 if (!dev->in_fs_metadata || !dev->writeable) 3597 continue; 3598 3599 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3600 if (ret) 3601 total_errors++; 3602 } 3603 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3604 if (total_errors > max_errors) { 3605 btrfs_error(root->fs_info, -EIO, 3606 "%d errors while writing supers", total_errors); 3607 return -EIO; 3608 } 3609 return 0; 3610 } 3611 3612 int write_ctree_super(struct btrfs_trans_handle *trans, 3613 struct btrfs_root *root, int max_mirrors) 3614 { 3615 return write_all_supers(root, max_mirrors); 3616 } 3617 3618 /* Drop a fs root from the radix tree and free it. */ 3619 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3620 struct btrfs_root *root) 3621 { 3622 spin_lock(&fs_info->fs_roots_radix_lock); 3623 radix_tree_delete(&fs_info->fs_roots_radix, 3624 (unsigned long)root->root_key.objectid); 3625 spin_unlock(&fs_info->fs_roots_radix_lock); 3626 3627 if (btrfs_root_refs(&root->root_item) == 0) 3628 synchronize_srcu(&fs_info->subvol_srcu); 3629 3630 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3631 btrfs_free_log(NULL, root); 3632 3633 if (root->free_ino_pinned) 3634 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3635 if (root->free_ino_ctl) 3636 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3637 free_fs_root(root); 3638 } 3639 3640 static void free_fs_root(struct btrfs_root *root) 3641 { 3642 iput(root->ino_cache_inode); 3643 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3644 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3645 root->orphan_block_rsv = NULL; 3646 if (root->anon_dev) 3647 free_anon_bdev(root->anon_dev); 3648 if (root->subv_writers) 3649 btrfs_free_subvolume_writers(root->subv_writers); 3650 free_extent_buffer(root->node); 3651 free_extent_buffer(root->commit_root); 3652 kfree(root->free_ino_ctl); 3653 kfree(root->free_ino_pinned); 3654 kfree(root->name); 3655 btrfs_put_fs_root(root); 3656 } 3657 3658 void btrfs_free_fs_root(struct btrfs_root *root) 3659 { 3660 free_fs_root(root); 3661 } 3662 3663 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3664 { 3665 u64 root_objectid = 0; 3666 struct btrfs_root *gang[8]; 3667 int i = 0; 3668 int err = 0; 3669 unsigned int ret = 0; 3670 int index; 3671 3672 while (1) { 3673 index = srcu_read_lock(&fs_info->subvol_srcu); 3674 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3675 (void **)gang, root_objectid, 3676 ARRAY_SIZE(gang)); 3677 if (!ret) { 3678 srcu_read_unlock(&fs_info->subvol_srcu, index); 3679 break; 3680 } 3681 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3682 3683 for (i = 0; i < ret; i++) { 3684 /* Avoid to grab roots in dead_roots */ 3685 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3686 gang[i] = NULL; 3687 continue; 3688 } 3689 /* grab all the search result for later use */ 3690 gang[i] = btrfs_grab_fs_root(gang[i]); 3691 } 3692 srcu_read_unlock(&fs_info->subvol_srcu, index); 3693 3694 for (i = 0; i < ret; i++) { 3695 if (!gang[i]) 3696 continue; 3697 root_objectid = gang[i]->root_key.objectid; 3698 err = btrfs_orphan_cleanup(gang[i]); 3699 if (err) 3700 break; 3701 btrfs_put_fs_root(gang[i]); 3702 } 3703 root_objectid++; 3704 } 3705 3706 /* release the uncleaned roots due to error */ 3707 for (; i < ret; i++) { 3708 if (gang[i]) 3709 btrfs_put_fs_root(gang[i]); 3710 } 3711 return err; 3712 } 3713 3714 int btrfs_commit_super(struct btrfs_root *root) 3715 { 3716 struct btrfs_trans_handle *trans; 3717 3718 mutex_lock(&root->fs_info->cleaner_mutex); 3719 btrfs_run_delayed_iputs(root); 3720 mutex_unlock(&root->fs_info->cleaner_mutex); 3721 wake_up_process(root->fs_info->cleaner_kthread); 3722 3723 /* wait until ongoing cleanup work done */ 3724 down_write(&root->fs_info->cleanup_work_sem); 3725 up_write(&root->fs_info->cleanup_work_sem); 3726 3727 trans = btrfs_join_transaction(root); 3728 if (IS_ERR(trans)) 3729 return PTR_ERR(trans); 3730 return btrfs_commit_transaction(trans, root); 3731 } 3732 3733 void close_ctree(struct btrfs_root *root) 3734 { 3735 struct btrfs_fs_info *fs_info = root->fs_info; 3736 int ret; 3737 3738 fs_info->closing = 1; 3739 smp_mb(); 3740 3741 /* wait for the uuid_scan task to finish */ 3742 down(&fs_info->uuid_tree_rescan_sem); 3743 /* avoid complains from lockdep et al., set sem back to initial state */ 3744 up(&fs_info->uuid_tree_rescan_sem); 3745 3746 /* pause restriper - we want to resume on mount */ 3747 btrfs_pause_balance(fs_info); 3748 3749 btrfs_dev_replace_suspend_for_unmount(fs_info); 3750 3751 btrfs_scrub_cancel(fs_info); 3752 3753 /* wait for any defraggers to finish */ 3754 wait_event(fs_info->transaction_wait, 3755 (atomic_read(&fs_info->defrag_running) == 0)); 3756 3757 /* clear out the rbtree of defraggable inodes */ 3758 btrfs_cleanup_defrag_inodes(fs_info); 3759 3760 cancel_work_sync(&fs_info->async_reclaim_work); 3761 3762 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3763 ret = btrfs_commit_super(root); 3764 if (ret) 3765 btrfs_err(fs_info, "commit super ret %d", ret); 3766 } 3767 3768 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3769 btrfs_error_commit_super(root); 3770 3771 kthread_stop(fs_info->transaction_kthread); 3772 kthread_stop(fs_info->cleaner_kthread); 3773 3774 fs_info->closing = 2; 3775 smp_mb(); 3776 3777 btrfs_free_qgroup_config(fs_info); 3778 3779 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3780 btrfs_info(fs_info, "at unmount delalloc count %lld", 3781 percpu_counter_sum(&fs_info->delalloc_bytes)); 3782 } 3783 3784 btrfs_sysfs_remove_one(fs_info); 3785 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3786 3787 btrfs_free_fs_roots(fs_info); 3788 3789 btrfs_put_block_group_cache(fs_info); 3790 3791 btrfs_free_block_groups(fs_info); 3792 3793 /* 3794 * we must make sure there is not any read request to 3795 * submit after we stopping all workers. 3796 */ 3797 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3798 btrfs_stop_all_workers(fs_info); 3799 3800 fs_info->open = 0; 3801 free_root_pointers(fs_info, 1); 3802 3803 iput(fs_info->btree_inode); 3804 3805 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3806 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3807 btrfsic_unmount(root, fs_info->fs_devices); 3808 #endif 3809 3810 btrfs_close_devices(fs_info->fs_devices); 3811 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3812 3813 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3814 percpu_counter_destroy(&fs_info->delalloc_bytes); 3815 percpu_counter_destroy(&fs_info->bio_counter); 3816 bdi_destroy(&fs_info->bdi); 3817 cleanup_srcu_struct(&fs_info->subvol_srcu); 3818 3819 btrfs_free_stripe_hash_table(fs_info); 3820 3821 __btrfs_free_block_rsv(root->orphan_block_rsv); 3822 root->orphan_block_rsv = NULL; 3823 3824 lock_chunks(root); 3825 while (!list_empty(&fs_info->pinned_chunks)) { 3826 struct extent_map *em; 3827 3828 em = list_first_entry(&fs_info->pinned_chunks, 3829 struct extent_map, list); 3830 list_del_init(&em->list); 3831 free_extent_map(em); 3832 } 3833 unlock_chunks(root); 3834 } 3835 3836 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3837 int atomic) 3838 { 3839 int ret; 3840 struct inode *btree_inode = buf->pages[0]->mapping->host; 3841 3842 ret = extent_buffer_uptodate(buf); 3843 if (!ret) 3844 return ret; 3845 3846 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3847 parent_transid, atomic); 3848 if (ret == -EAGAIN) 3849 return ret; 3850 return !ret; 3851 } 3852 3853 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3854 { 3855 return set_extent_buffer_uptodate(buf); 3856 } 3857 3858 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3859 { 3860 struct btrfs_root *root; 3861 u64 transid = btrfs_header_generation(buf); 3862 int was_dirty; 3863 3864 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3865 /* 3866 * This is a fast path so only do this check if we have sanity tests 3867 * enabled. Normal people shouldn't be marking dummy buffers as dirty 3868 * outside of the sanity tests. 3869 */ 3870 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 3871 return; 3872 #endif 3873 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3874 btrfs_assert_tree_locked(buf); 3875 if (transid != root->fs_info->generation) 3876 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " 3877 "found %llu running %llu\n", 3878 buf->start, transid, root->fs_info->generation); 3879 was_dirty = set_extent_buffer_dirty(buf); 3880 if (!was_dirty) 3881 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, 3882 buf->len, 3883 root->fs_info->dirty_metadata_batch); 3884 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3885 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) { 3886 btrfs_print_leaf(root, buf); 3887 ASSERT(0); 3888 } 3889 #endif 3890 } 3891 3892 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 3893 int flush_delayed) 3894 { 3895 /* 3896 * looks as though older kernels can get into trouble with 3897 * this code, they end up stuck in balance_dirty_pages forever 3898 */ 3899 int ret; 3900 3901 if (current->flags & PF_MEMALLOC) 3902 return; 3903 3904 if (flush_delayed) 3905 btrfs_balance_delayed_items(root); 3906 3907 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, 3908 BTRFS_DIRTY_METADATA_THRESH); 3909 if (ret > 0) { 3910 balance_dirty_pages_ratelimited( 3911 root->fs_info->btree_inode->i_mapping); 3912 } 3913 return; 3914 } 3915 3916 void btrfs_btree_balance_dirty(struct btrfs_root *root) 3917 { 3918 __btrfs_btree_balance_dirty(root, 1); 3919 } 3920 3921 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 3922 { 3923 __btrfs_btree_balance_dirty(root, 0); 3924 } 3925 3926 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3927 { 3928 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3929 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3930 } 3931 3932 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3933 int read_only) 3934 { 3935 struct btrfs_super_block *sb = fs_info->super_copy; 3936 int ret = 0; 3937 3938 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 3939 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n", 3940 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 3941 ret = -EINVAL; 3942 } 3943 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 3944 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n", 3945 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 3946 ret = -EINVAL; 3947 } 3948 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 3949 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n", 3950 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 3951 ret = -EINVAL; 3952 } 3953 3954 /* 3955 * The common minimum, we don't know if we can trust the nodesize/sectorsize 3956 * items yet, they'll be verified later. Issue just a warning. 3957 */ 3958 if (!IS_ALIGNED(btrfs_super_root(sb), 4096)) 3959 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n", 3960 btrfs_super_root(sb)); 3961 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096)) 3962 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n", 3963 btrfs_super_chunk_root(sb)); 3964 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096)) 3965 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n", 3966 btrfs_super_log_root(sb)); 3967 3968 /* 3969 * Check the lower bound, the alignment and other constraints are 3970 * checked later. 3971 */ 3972 if (btrfs_super_nodesize(sb) < 4096) { 3973 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n", 3974 btrfs_super_nodesize(sb)); 3975 ret = -EINVAL; 3976 } 3977 if (btrfs_super_sectorsize(sb) < 4096) { 3978 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n", 3979 btrfs_super_sectorsize(sb)); 3980 ret = -EINVAL; 3981 } 3982 3983 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) { 3984 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n", 3985 fs_info->fsid, sb->dev_item.fsid); 3986 ret = -EINVAL; 3987 } 3988 3989 /* 3990 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 3991 * done later 3992 */ 3993 if (btrfs_super_num_devices(sb) > (1UL << 31)) 3994 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n", 3995 btrfs_super_num_devices(sb)); 3996 if (btrfs_super_num_devices(sb) == 0) { 3997 printk(KERN_ERR "BTRFS: number of devices is 0\n"); 3998 ret = -EINVAL; 3999 } 4000 4001 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) { 4002 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n", 4003 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 4004 ret = -EINVAL; 4005 } 4006 4007 /* 4008 * Obvious sys_chunk_array corruptions, it must hold at least one key 4009 * and one chunk 4010 */ 4011 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4012 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n", 4013 btrfs_super_sys_array_size(sb), 4014 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 4015 ret = -EINVAL; 4016 } 4017 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 4018 + sizeof(struct btrfs_chunk)) { 4019 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n", 4020 btrfs_super_sys_array_size(sb), 4021 sizeof(struct btrfs_disk_key) 4022 + sizeof(struct btrfs_chunk)); 4023 ret = -EINVAL; 4024 } 4025 4026 /* 4027 * The generation is a global counter, we'll trust it more than the others 4028 * but it's still possible that it's the one that's wrong. 4029 */ 4030 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 4031 printk(KERN_WARNING 4032 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n", 4033 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb)); 4034 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 4035 && btrfs_super_cache_generation(sb) != (u64)-1) 4036 printk(KERN_WARNING 4037 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n", 4038 btrfs_super_generation(sb), btrfs_super_cache_generation(sb)); 4039 4040 return ret; 4041 } 4042 4043 static void btrfs_error_commit_super(struct btrfs_root *root) 4044 { 4045 mutex_lock(&root->fs_info->cleaner_mutex); 4046 btrfs_run_delayed_iputs(root); 4047 mutex_unlock(&root->fs_info->cleaner_mutex); 4048 4049 down_write(&root->fs_info->cleanup_work_sem); 4050 up_write(&root->fs_info->cleanup_work_sem); 4051 4052 /* cleanup FS via transaction */ 4053 btrfs_cleanup_transaction(root); 4054 } 4055 4056 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4057 { 4058 struct btrfs_ordered_extent *ordered; 4059 4060 spin_lock(&root->ordered_extent_lock); 4061 /* 4062 * This will just short circuit the ordered completion stuff which will 4063 * make sure the ordered extent gets properly cleaned up. 4064 */ 4065 list_for_each_entry(ordered, &root->ordered_extents, 4066 root_extent_list) 4067 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4068 spin_unlock(&root->ordered_extent_lock); 4069 } 4070 4071 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4072 { 4073 struct btrfs_root *root; 4074 struct list_head splice; 4075 4076 INIT_LIST_HEAD(&splice); 4077 4078 spin_lock(&fs_info->ordered_root_lock); 4079 list_splice_init(&fs_info->ordered_roots, &splice); 4080 while (!list_empty(&splice)) { 4081 root = list_first_entry(&splice, struct btrfs_root, 4082 ordered_root); 4083 list_move_tail(&root->ordered_root, 4084 &fs_info->ordered_roots); 4085 4086 spin_unlock(&fs_info->ordered_root_lock); 4087 btrfs_destroy_ordered_extents(root); 4088 4089 cond_resched(); 4090 spin_lock(&fs_info->ordered_root_lock); 4091 } 4092 spin_unlock(&fs_info->ordered_root_lock); 4093 } 4094 4095 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4096 struct btrfs_root *root) 4097 { 4098 struct rb_node *node; 4099 struct btrfs_delayed_ref_root *delayed_refs; 4100 struct btrfs_delayed_ref_node *ref; 4101 int ret = 0; 4102 4103 delayed_refs = &trans->delayed_refs; 4104 4105 spin_lock(&delayed_refs->lock); 4106 if (atomic_read(&delayed_refs->num_entries) == 0) { 4107 spin_unlock(&delayed_refs->lock); 4108 btrfs_info(root->fs_info, "delayed_refs has NO entry"); 4109 return ret; 4110 } 4111 4112 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 4113 struct btrfs_delayed_ref_head *head; 4114 struct btrfs_delayed_ref_node *tmp; 4115 bool pin_bytes = false; 4116 4117 head = rb_entry(node, struct btrfs_delayed_ref_head, 4118 href_node); 4119 if (!mutex_trylock(&head->mutex)) { 4120 atomic_inc(&head->node.refs); 4121 spin_unlock(&delayed_refs->lock); 4122 4123 mutex_lock(&head->mutex); 4124 mutex_unlock(&head->mutex); 4125 btrfs_put_delayed_ref(&head->node); 4126 spin_lock(&delayed_refs->lock); 4127 continue; 4128 } 4129 spin_lock(&head->lock); 4130 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list, 4131 list) { 4132 ref->in_tree = 0; 4133 list_del(&ref->list); 4134 atomic_dec(&delayed_refs->num_entries); 4135 btrfs_put_delayed_ref(ref); 4136 } 4137 if (head->must_insert_reserved) 4138 pin_bytes = true; 4139 btrfs_free_delayed_extent_op(head->extent_op); 4140 delayed_refs->num_heads--; 4141 if (head->processing == 0) 4142 delayed_refs->num_heads_ready--; 4143 atomic_dec(&delayed_refs->num_entries); 4144 head->node.in_tree = 0; 4145 rb_erase(&head->href_node, &delayed_refs->href_root); 4146 spin_unlock(&head->lock); 4147 spin_unlock(&delayed_refs->lock); 4148 mutex_unlock(&head->mutex); 4149 4150 if (pin_bytes) 4151 btrfs_pin_extent(root, head->node.bytenr, 4152 head->node.num_bytes, 1); 4153 btrfs_put_delayed_ref(&head->node); 4154 cond_resched(); 4155 spin_lock(&delayed_refs->lock); 4156 } 4157 4158 spin_unlock(&delayed_refs->lock); 4159 4160 return ret; 4161 } 4162 4163 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4164 { 4165 struct btrfs_inode *btrfs_inode; 4166 struct list_head splice; 4167 4168 INIT_LIST_HEAD(&splice); 4169 4170 spin_lock(&root->delalloc_lock); 4171 list_splice_init(&root->delalloc_inodes, &splice); 4172 4173 while (!list_empty(&splice)) { 4174 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4175 delalloc_inodes); 4176 4177 list_del_init(&btrfs_inode->delalloc_inodes); 4178 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 4179 &btrfs_inode->runtime_flags); 4180 spin_unlock(&root->delalloc_lock); 4181 4182 btrfs_invalidate_inodes(btrfs_inode->root); 4183 4184 spin_lock(&root->delalloc_lock); 4185 } 4186 4187 spin_unlock(&root->delalloc_lock); 4188 } 4189 4190 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4191 { 4192 struct btrfs_root *root; 4193 struct list_head splice; 4194 4195 INIT_LIST_HEAD(&splice); 4196 4197 spin_lock(&fs_info->delalloc_root_lock); 4198 list_splice_init(&fs_info->delalloc_roots, &splice); 4199 while (!list_empty(&splice)) { 4200 root = list_first_entry(&splice, struct btrfs_root, 4201 delalloc_root); 4202 list_del_init(&root->delalloc_root); 4203 root = btrfs_grab_fs_root(root); 4204 BUG_ON(!root); 4205 spin_unlock(&fs_info->delalloc_root_lock); 4206 4207 btrfs_destroy_delalloc_inodes(root); 4208 btrfs_put_fs_root(root); 4209 4210 spin_lock(&fs_info->delalloc_root_lock); 4211 } 4212 spin_unlock(&fs_info->delalloc_root_lock); 4213 } 4214 4215 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 4216 struct extent_io_tree *dirty_pages, 4217 int mark) 4218 { 4219 int ret; 4220 struct extent_buffer *eb; 4221 u64 start = 0; 4222 u64 end; 4223 4224 while (1) { 4225 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4226 mark, NULL); 4227 if (ret) 4228 break; 4229 4230 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 4231 while (start <= end) { 4232 eb = btrfs_find_tree_block(root->fs_info, start); 4233 start += root->nodesize; 4234 if (!eb) 4235 continue; 4236 wait_on_extent_buffer_writeback(eb); 4237 4238 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4239 &eb->bflags)) 4240 clear_extent_buffer_dirty(eb); 4241 free_extent_buffer_stale(eb); 4242 } 4243 } 4244 4245 return ret; 4246 } 4247 4248 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 4249 struct extent_io_tree *pinned_extents) 4250 { 4251 struct extent_io_tree *unpin; 4252 u64 start; 4253 u64 end; 4254 int ret; 4255 bool loop = true; 4256 4257 unpin = pinned_extents; 4258 again: 4259 while (1) { 4260 ret = find_first_extent_bit(unpin, 0, &start, &end, 4261 EXTENT_DIRTY, NULL); 4262 if (ret) 4263 break; 4264 4265 clear_extent_dirty(unpin, start, end, GFP_NOFS); 4266 btrfs_error_unpin_extent_range(root, start, end); 4267 cond_resched(); 4268 } 4269 4270 if (loop) { 4271 if (unpin == &root->fs_info->freed_extents[0]) 4272 unpin = &root->fs_info->freed_extents[1]; 4273 else 4274 unpin = &root->fs_info->freed_extents[0]; 4275 loop = false; 4276 goto again; 4277 } 4278 4279 return 0; 4280 } 4281 4282 static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans, 4283 struct btrfs_fs_info *fs_info) 4284 { 4285 struct btrfs_ordered_extent *ordered; 4286 4287 spin_lock(&fs_info->trans_lock); 4288 while (!list_empty(&cur_trans->pending_ordered)) { 4289 ordered = list_first_entry(&cur_trans->pending_ordered, 4290 struct btrfs_ordered_extent, 4291 trans_list); 4292 list_del_init(&ordered->trans_list); 4293 spin_unlock(&fs_info->trans_lock); 4294 4295 btrfs_put_ordered_extent(ordered); 4296 spin_lock(&fs_info->trans_lock); 4297 } 4298 spin_unlock(&fs_info->trans_lock); 4299 } 4300 4301 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4302 struct btrfs_root *root) 4303 { 4304 btrfs_destroy_delayed_refs(cur_trans, root); 4305 4306 cur_trans->state = TRANS_STATE_COMMIT_START; 4307 wake_up(&root->fs_info->transaction_blocked_wait); 4308 4309 cur_trans->state = TRANS_STATE_UNBLOCKED; 4310 wake_up(&root->fs_info->transaction_wait); 4311 4312 btrfs_free_pending_ordered(cur_trans, root->fs_info); 4313 btrfs_destroy_delayed_inodes(root); 4314 btrfs_assert_delayed_root_empty(root); 4315 4316 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 4317 EXTENT_DIRTY); 4318 btrfs_destroy_pinned_extent(root, 4319 root->fs_info->pinned_extents); 4320 4321 cur_trans->state =TRANS_STATE_COMPLETED; 4322 wake_up(&cur_trans->commit_wait); 4323 4324 /* 4325 memset(cur_trans, 0, sizeof(*cur_trans)); 4326 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4327 */ 4328 } 4329 4330 static int btrfs_cleanup_transaction(struct btrfs_root *root) 4331 { 4332 struct btrfs_transaction *t; 4333 4334 mutex_lock(&root->fs_info->transaction_kthread_mutex); 4335 4336 spin_lock(&root->fs_info->trans_lock); 4337 while (!list_empty(&root->fs_info->trans_list)) { 4338 t = list_first_entry(&root->fs_info->trans_list, 4339 struct btrfs_transaction, list); 4340 if (t->state >= TRANS_STATE_COMMIT_START) { 4341 atomic_inc(&t->use_count); 4342 spin_unlock(&root->fs_info->trans_lock); 4343 btrfs_wait_for_commit(root, t->transid); 4344 btrfs_put_transaction(t); 4345 spin_lock(&root->fs_info->trans_lock); 4346 continue; 4347 } 4348 if (t == root->fs_info->running_transaction) { 4349 t->state = TRANS_STATE_COMMIT_DOING; 4350 spin_unlock(&root->fs_info->trans_lock); 4351 /* 4352 * We wait for 0 num_writers since we don't hold a trans 4353 * handle open currently for this transaction. 4354 */ 4355 wait_event(t->writer_wait, 4356 atomic_read(&t->num_writers) == 0); 4357 } else { 4358 spin_unlock(&root->fs_info->trans_lock); 4359 } 4360 btrfs_cleanup_one_transaction(t, root); 4361 4362 spin_lock(&root->fs_info->trans_lock); 4363 if (t == root->fs_info->running_transaction) 4364 root->fs_info->running_transaction = NULL; 4365 list_del_init(&t->list); 4366 spin_unlock(&root->fs_info->trans_lock); 4367 4368 btrfs_put_transaction(t); 4369 trace_btrfs_transaction_commit(root); 4370 spin_lock(&root->fs_info->trans_lock); 4371 } 4372 spin_unlock(&root->fs_info->trans_lock); 4373 btrfs_destroy_all_ordered_extents(root->fs_info); 4374 btrfs_destroy_delayed_inodes(root); 4375 btrfs_assert_delayed_root_empty(root); 4376 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents); 4377 btrfs_destroy_all_delalloc_inodes(root->fs_info); 4378 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 4379 4380 return 0; 4381 } 4382 4383 static const struct extent_io_ops btree_extent_io_ops = { 4384 .readpage_end_io_hook = btree_readpage_end_io_hook, 4385 .readpage_io_failed_hook = btree_io_failed_hook, 4386 .submit_bio_hook = btree_submit_bio_hook, 4387 /* note we're sharing with inode.c for the merge bio hook */ 4388 .merge_bio_hook = btrfs_merge_bio_hook, 4389 }; 4390