1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include <linux/slab.h> 31 #include <linux/migrate.h> 32 #include "compat.h" 33 #include "ctree.h" 34 #include "disk-io.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "volumes.h" 38 #include "print-tree.h" 39 #include "async-thread.h" 40 #include "locking.h" 41 #include "tree-log.h" 42 #include "free-space-cache.h" 43 44 static struct extent_io_ops btree_extent_io_ops; 45 static void end_workqueue_fn(struct btrfs_work *work); 46 static void free_fs_root(struct btrfs_root *root); 47 48 /* 49 * end_io_wq structs are used to do processing in task context when an IO is 50 * complete. This is used during reads to verify checksums, and it is used 51 * by writes to insert metadata for new file extents after IO is complete. 52 */ 53 struct end_io_wq { 54 struct bio *bio; 55 bio_end_io_t *end_io; 56 void *private; 57 struct btrfs_fs_info *info; 58 int error; 59 int metadata; 60 struct list_head list; 61 struct btrfs_work work; 62 }; 63 64 /* 65 * async submit bios are used to offload expensive checksumming 66 * onto the worker threads. They checksum file and metadata bios 67 * just before they are sent down the IO stack. 68 */ 69 struct async_submit_bio { 70 struct inode *inode; 71 struct bio *bio; 72 struct list_head list; 73 extent_submit_bio_hook_t *submit_bio_start; 74 extent_submit_bio_hook_t *submit_bio_done; 75 int rw; 76 int mirror_num; 77 unsigned long bio_flags; 78 /* 79 * bio_offset is optional, can be used if the pages in the bio 80 * can't tell us where in the file the bio should go 81 */ 82 u64 bio_offset; 83 struct btrfs_work work; 84 }; 85 86 /* These are used to set the lockdep class on the extent buffer locks. 87 * The class is set by the readpage_end_io_hook after the buffer has 88 * passed csum validation but before the pages are unlocked. 89 * 90 * The lockdep class is also set by btrfs_init_new_buffer on freshly 91 * allocated blocks. 92 * 93 * The class is based on the level in the tree block, which allows lockdep 94 * to know that lower nodes nest inside the locks of higher nodes. 95 * 96 * We also add a check to make sure the highest level of the tree is 97 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this 98 * code needs update as well. 99 */ 100 #ifdef CONFIG_DEBUG_LOCK_ALLOC 101 # if BTRFS_MAX_LEVEL != 8 102 # error 103 # endif 104 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1]; 105 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = { 106 /* leaf */ 107 "btrfs-extent-00", 108 "btrfs-extent-01", 109 "btrfs-extent-02", 110 "btrfs-extent-03", 111 "btrfs-extent-04", 112 "btrfs-extent-05", 113 "btrfs-extent-06", 114 "btrfs-extent-07", 115 /* highest possible level */ 116 "btrfs-extent-08", 117 }; 118 #endif 119 120 /* 121 * extents on the btree inode are pretty simple, there's one extent 122 * that covers the entire device 123 */ 124 static struct extent_map *btree_get_extent(struct inode *inode, 125 struct page *page, size_t page_offset, u64 start, u64 len, 126 int create) 127 { 128 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 129 struct extent_map *em; 130 int ret; 131 132 read_lock(&em_tree->lock); 133 em = lookup_extent_mapping(em_tree, start, len); 134 if (em) { 135 em->bdev = 136 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 137 read_unlock(&em_tree->lock); 138 goto out; 139 } 140 read_unlock(&em_tree->lock); 141 142 em = alloc_extent_map(GFP_NOFS); 143 if (!em) { 144 em = ERR_PTR(-ENOMEM); 145 goto out; 146 } 147 em->start = 0; 148 em->len = (u64)-1; 149 em->block_len = (u64)-1; 150 em->block_start = 0; 151 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 152 153 write_lock(&em_tree->lock); 154 ret = add_extent_mapping(em_tree, em); 155 if (ret == -EEXIST) { 156 u64 failed_start = em->start; 157 u64 failed_len = em->len; 158 159 free_extent_map(em); 160 em = lookup_extent_mapping(em_tree, start, len); 161 if (em) { 162 ret = 0; 163 } else { 164 em = lookup_extent_mapping(em_tree, failed_start, 165 failed_len); 166 ret = -EIO; 167 } 168 } else if (ret) { 169 free_extent_map(em); 170 em = NULL; 171 } 172 write_unlock(&em_tree->lock); 173 174 if (ret) 175 em = ERR_PTR(ret); 176 out: 177 return em; 178 } 179 180 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 181 { 182 return crc32c(seed, data, len); 183 } 184 185 void btrfs_csum_final(u32 crc, char *result) 186 { 187 *(__le32 *)result = ~cpu_to_le32(crc); 188 } 189 190 /* 191 * compute the csum for a btree block, and either verify it or write it 192 * into the csum field of the block. 193 */ 194 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 195 int verify) 196 { 197 u16 csum_size = 198 btrfs_super_csum_size(&root->fs_info->super_copy); 199 char *result = NULL; 200 unsigned long len; 201 unsigned long cur_len; 202 unsigned long offset = BTRFS_CSUM_SIZE; 203 char *map_token = NULL; 204 char *kaddr; 205 unsigned long map_start; 206 unsigned long map_len; 207 int err; 208 u32 crc = ~(u32)0; 209 unsigned long inline_result; 210 211 len = buf->len - offset; 212 while (len > 0) { 213 err = map_private_extent_buffer(buf, offset, 32, 214 &map_token, &kaddr, 215 &map_start, &map_len, KM_USER0); 216 if (err) 217 return 1; 218 cur_len = min(len, map_len - (offset - map_start)); 219 crc = btrfs_csum_data(root, kaddr + offset - map_start, 220 crc, cur_len); 221 len -= cur_len; 222 offset += cur_len; 223 unmap_extent_buffer(buf, map_token, KM_USER0); 224 } 225 if (csum_size > sizeof(inline_result)) { 226 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 227 if (!result) 228 return 1; 229 } else { 230 result = (char *)&inline_result; 231 } 232 233 btrfs_csum_final(crc, result); 234 235 if (verify) { 236 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 237 u32 val; 238 u32 found = 0; 239 memcpy(&found, result, csum_size); 240 241 read_extent_buffer(buf, &val, 0, csum_size); 242 if (printk_ratelimit()) { 243 printk(KERN_INFO "btrfs: %s checksum verify " 244 "failed on %llu wanted %X found %X " 245 "level %d\n", 246 root->fs_info->sb->s_id, 247 (unsigned long long)buf->start, val, found, 248 btrfs_header_level(buf)); 249 } 250 if (result != (char *)&inline_result) 251 kfree(result); 252 return 1; 253 } 254 } else { 255 write_extent_buffer(buf, result, 0, csum_size); 256 } 257 if (result != (char *)&inline_result) 258 kfree(result); 259 return 0; 260 } 261 262 /* 263 * we can't consider a given block up to date unless the transid of the 264 * block matches the transid in the parent node's pointer. This is how we 265 * detect blocks that either didn't get written at all or got written 266 * in the wrong place. 267 */ 268 static int verify_parent_transid(struct extent_io_tree *io_tree, 269 struct extent_buffer *eb, u64 parent_transid) 270 { 271 struct extent_state *cached_state = NULL; 272 int ret; 273 274 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 275 return 0; 276 277 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 278 0, &cached_state, GFP_NOFS); 279 if (extent_buffer_uptodate(io_tree, eb, cached_state) && 280 btrfs_header_generation(eb) == parent_transid) { 281 ret = 0; 282 goto out; 283 } 284 if (printk_ratelimit()) { 285 printk("parent transid verify failed on %llu wanted %llu " 286 "found %llu\n", 287 (unsigned long long)eb->start, 288 (unsigned long long)parent_transid, 289 (unsigned long long)btrfs_header_generation(eb)); 290 } 291 ret = 1; 292 clear_extent_buffer_uptodate(io_tree, eb, &cached_state); 293 out: 294 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 295 &cached_state, GFP_NOFS); 296 return ret; 297 } 298 299 /* 300 * helper to read a given tree block, doing retries as required when 301 * the checksums don't match and we have alternate mirrors to try. 302 */ 303 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 304 struct extent_buffer *eb, 305 u64 start, u64 parent_transid) 306 { 307 struct extent_io_tree *io_tree; 308 int ret; 309 int num_copies = 0; 310 int mirror_num = 0; 311 312 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 313 while (1) { 314 ret = read_extent_buffer_pages(io_tree, eb, start, 1, 315 btree_get_extent, mirror_num); 316 if (!ret && 317 !verify_parent_transid(io_tree, eb, parent_transid)) 318 return ret; 319 320 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 321 eb->start, eb->len); 322 if (num_copies == 1) 323 return ret; 324 325 mirror_num++; 326 if (mirror_num > num_copies) 327 return ret; 328 } 329 return -EIO; 330 } 331 332 /* 333 * checksum a dirty tree block before IO. This has extra checks to make sure 334 * we only fill in the checksum field in the first page of a multi-page block 335 */ 336 337 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 338 { 339 struct extent_io_tree *tree; 340 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 341 u64 found_start; 342 unsigned long len; 343 struct extent_buffer *eb; 344 int ret; 345 346 tree = &BTRFS_I(page->mapping->host)->io_tree; 347 348 if (page->private == EXTENT_PAGE_PRIVATE) 349 goto out; 350 if (!page->private) 351 goto out; 352 len = page->private >> 2; 353 WARN_ON(len == 0); 354 355 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 356 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE, 357 btrfs_header_generation(eb)); 358 BUG_ON(ret); 359 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN)); 360 361 found_start = btrfs_header_bytenr(eb); 362 if (found_start != start) { 363 WARN_ON(1); 364 goto err; 365 } 366 if (eb->first_page != page) { 367 WARN_ON(1); 368 goto err; 369 } 370 if (!PageUptodate(page)) { 371 WARN_ON(1); 372 goto err; 373 } 374 csum_tree_block(root, eb, 0); 375 err: 376 free_extent_buffer(eb); 377 out: 378 return 0; 379 } 380 381 static int check_tree_block_fsid(struct btrfs_root *root, 382 struct extent_buffer *eb) 383 { 384 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 385 u8 fsid[BTRFS_UUID_SIZE]; 386 int ret = 1; 387 388 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 389 BTRFS_FSID_SIZE); 390 while (fs_devices) { 391 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 392 ret = 0; 393 break; 394 } 395 fs_devices = fs_devices->seed; 396 } 397 return ret; 398 } 399 400 #ifdef CONFIG_DEBUG_LOCK_ALLOC 401 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level) 402 { 403 lockdep_set_class_and_name(&eb->lock, 404 &btrfs_eb_class[level], 405 btrfs_eb_name[level]); 406 } 407 #endif 408 409 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 410 struct extent_state *state) 411 { 412 struct extent_io_tree *tree; 413 u64 found_start; 414 int found_level; 415 unsigned long len; 416 struct extent_buffer *eb; 417 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 418 int ret = 0; 419 420 tree = &BTRFS_I(page->mapping->host)->io_tree; 421 if (page->private == EXTENT_PAGE_PRIVATE) 422 goto out; 423 if (!page->private) 424 goto out; 425 426 len = page->private >> 2; 427 WARN_ON(len == 0); 428 429 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 430 431 found_start = btrfs_header_bytenr(eb); 432 if (found_start != start) { 433 if (printk_ratelimit()) { 434 printk(KERN_INFO "btrfs bad tree block start " 435 "%llu %llu\n", 436 (unsigned long long)found_start, 437 (unsigned long long)eb->start); 438 } 439 ret = -EIO; 440 goto err; 441 } 442 if (eb->first_page != page) { 443 printk(KERN_INFO "btrfs bad first page %lu %lu\n", 444 eb->first_page->index, page->index); 445 WARN_ON(1); 446 ret = -EIO; 447 goto err; 448 } 449 if (check_tree_block_fsid(root, eb)) { 450 if (printk_ratelimit()) { 451 printk(KERN_INFO "btrfs bad fsid on block %llu\n", 452 (unsigned long long)eb->start); 453 } 454 ret = -EIO; 455 goto err; 456 } 457 found_level = btrfs_header_level(eb); 458 459 btrfs_set_buffer_lockdep_class(eb, found_level); 460 461 ret = csum_tree_block(root, eb, 1); 462 if (ret) 463 ret = -EIO; 464 465 end = min_t(u64, eb->len, PAGE_CACHE_SIZE); 466 end = eb->start + end - 1; 467 err: 468 free_extent_buffer(eb); 469 out: 470 return ret; 471 } 472 473 static void end_workqueue_bio(struct bio *bio, int err) 474 { 475 struct end_io_wq *end_io_wq = bio->bi_private; 476 struct btrfs_fs_info *fs_info; 477 478 fs_info = end_io_wq->info; 479 end_io_wq->error = err; 480 end_io_wq->work.func = end_workqueue_fn; 481 end_io_wq->work.flags = 0; 482 483 if (bio->bi_rw & REQ_WRITE) { 484 if (end_io_wq->metadata == 1) 485 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 486 &end_io_wq->work); 487 else if (end_io_wq->metadata == 2) 488 btrfs_queue_worker(&fs_info->endio_freespace_worker, 489 &end_io_wq->work); 490 else 491 btrfs_queue_worker(&fs_info->endio_write_workers, 492 &end_io_wq->work); 493 } else { 494 if (end_io_wq->metadata) 495 btrfs_queue_worker(&fs_info->endio_meta_workers, 496 &end_io_wq->work); 497 else 498 btrfs_queue_worker(&fs_info->endio_workers, 499 &end_io_wq->work); 500 } 501 } 502 503 /* 504 * For the metadata arg you want 505 * 506 * 0 - if data 507 * 1 - if normal metadta 508 * 2 - if writing to the free space cache area 509 */ 510 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 511 int metadata) 512 { 513 struct end_io_wq *end_io_wq; 514 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 515 if (!end_io_wq) 516 return -ENOMEM; 517 518 end_io_wq->private = bio->bi_private; 519 end_io_wq->end_io = bio->bi_end_io; 520 end_io_wq->info = info; 521 end_io_wq->error = 0; 522 end_io_wq->bio = bio; 523 end_io_wq->metadata = metadata; 524 525 bio->bi_private = end_io_wq; 526 bio->bi_end_io = end_workqueue_bio; 527 return 0; 528 } 529 530 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 531 { 532 unsigned long limit = min_t(unsigned long, 533 info->workers.max_workers, 534 info->fs_devices->open_devices); 535 return 256 * limit; 536 } 537 538 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone) 539 { 540 return atomic_read(&info->nr_async_bios) > 541 btrfs_async_submit_limit(info); 542 } 543 544 static void run_one_async_start(struct btrfs_work *work) 545 { 546 struct async_submit_bio *async; 547 548 async = container_of(work, struct async_submit_bio, work); 549 async->submit_bio_start(async->inode, async->rw, async->bio, 550 async->mirror_num, async->bio_flags, 551 async->bio_offset); 552 } 553 554 static void run_one_async_done(struct btrfs_work *work) 555 { 556 struct btrfs_fs_info *fs_info; 557 struct async_submit_bio *async; 558 int limit; 559 560 async = container_of(work, struct async_submit_bio, work); 561 fs_info = BTRFS_I(async->inode)->root->fs_info; 562 563 limit = btrfs_async_submit_limit(fs_info); 564 limit = limit * 2 / 3; 565 566 atomic_dec(&fs_info->nr_async_submits); 567 568 if (atomic_read(&fs_info->nr_async_submits) < limit && 569 waitqueue_active(&fs_info->async_submit_wait)) 570 wake_up(&fs_info->async_submit_wait); 571 572 async->submit_bio_done(async->inode, async->rw, async->bio, 573 async->mirror_num, async->bio_flags, 574 async->bio_offset); 575 } 576 577 static void run_one_async_free(struct btrfs_work *work) 578 { 579 struct async_submit_bio *async; 580 581 async = container_of(work, struct async_submit_bio, work); 582 kfree(async); 583 } 584 585 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 586 int rw, struct bio *bio, int mirror_num, 587 unsigned long bio_flags, 588 u64 bio_offset, 589 extent_submit_bio_hook_t *submit_bio_start, 590 extent_submit_bio_hook_t *submit_bio_done) 591 { 592 struct async_submit_bio *async; 593 594 async = kmalloc(sizeof(*async), GFP_NOFS); 595 if (!async) 596 return -ENOMEM; 597 598 async->inode = inode; 599 async->rw = rw; 600 async->bio = bio; 601 async->mirror_num = mirror_num; 602 async->submit_bio_start = submit_bio_start; 603 async->submit_bio_done = submit_bio_done; 604 605 async->work.func = run_one_async_start; 606 async->work.ordered_func = run_one_async_done; 607 async->work.ordered_free = run_one_async_free; 608 609 async->work.flags = 0; 610 async->bio_flags = bio_flags; 611 async->bio_offset = bio_offset; 612 613 atomic_inc(&fs_info->nr_async_submits); 614 615 if (rw & REQ_SYNC) 616 btrfs_set_work_high_prio(&async->work); 617 618 btrfs_queue_worker(&fs_info->workers, &async->work); 619 620 while (atomic_read(&fs_info->async_submit_draining) && 621 atomic_read(&fs_info->nr_async_submits)) { 622 wait_event(fs_info->async_submit_wait, 623 (atomic_read(&fs_info->nr_async_submits) == 0)); 624 } 625 626 return 0; 627 } 628 629 static int btree_csum_one_bio(struct bio *bio) 630 { 631 struct bio_vec *bvec = bio->bi_io_vec; 632 int bio_index = 0; 633 struct btrfs_root *root; 634 635 WARN_ON(bio->bi_vcnt <= 0); 636 while (bio_index < bio->bi_vcnt) { 637 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 638 csum_dirty_buffer(root, bvec->bv_page); 639 bio_index++; 640 bvec++; 641 } 642 return 0; 643 } 644 645 static int __btree_submit_bio_start(struct inode *inode, int rw, 646 struct bio *bio, int mirror_num, 647 unsigned long bio_flags, 648 u64 bio_offset) 649 { 650 /* 651 * when we're called for a write, we're already in the async 652 * submission context. Just jump into btrfs_map_bio 653 */ 654 btree_csum_one_bio(bio); 655 return 0; 656 } 657 658 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 659 int mirror_num, unsigned long bio_flags, 660 u64 bio_offset) 661 { 662 /* 663 * when we're called for a write, we're already in the async 664 * submission context. Just jump into btrfs_map_bio 665 */ 666 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 667 } 668 669 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 670 int mirror_num, unsigned long bio_flags, 671 u64 bio_offset) 672 { 673 int ret; 674 675 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 676 bio, 1); 677 BUG_ON(ret); 678 679 if (!(rw & REQ_WRITE)) { 680 /* 681 * called for a read, do the setup so that checksum validation 682 * can happen in the async kernel threads 683 */ 684 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 685 mirror_num, 0); 686 } 687 688 /* 689 * kthread helpers are used to submit writes so that checksumming 690 * can happen in parallel across all CPUs 691 */ 692 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 693 inode, rw, bio, mirror_num, 0, 694 bio_offset, 695 __btree_submit_bio_start, 696 __btree_submit_bio_done); 697 } 698 699 #ifdef CONFIG_MIGRATION 700 static int btree_migratepage(struct address_space *mapping, 701 struct page *newpage, struct page *page) 702 { 703 /* 704 * we can't safely write a btree page from here, 705 * we haven't done the locking hook 706 */ 707 if (PageDirty(page)) 708 return -EAGAIN; 709 /* 710 * Buffers may be managed in a filesystem specific way. 711 * We must have no buffers or drop them. 712 */ 713 if (page_has_private(page) && 714 !try_to_release_page(page, GFP_KERNEL)) 715 return -EAGAIN; 716 return migrate_page(mapping, newpage, page); 717 } 718 #endif 719 720 static int btree_writepage(struct page *page, struct writeback_control *wbc) 721 { 722 struct extent_io_tree *tree; 723 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 724 struct extent_buffer *eb; 725 int was_dirty; 726 727 tree = &BTRFS_I(page->mapping->host)->io_tree; 728 if (!(current->flags & PF_MEMALLOC)) { 729 return extent_write_full_page(tree, page, 730 btree_get_extent, wbc); 731 } 732 733 redirty_page_for_writepage(wbc, page); 734 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE); 735 WARN_ON(!eb); 736 737 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 738 if (!was_dirty) { 739 spin_lock(&root->fs_info->delalloc_lock); 740 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE; 741 spin_unlock(&root->fs_info->delalloc_lock); 742 } 743 free_extent_buffer(eb); 744 745 unlock_page(page); 746 return 0; 747 } 748 749 static int btree_writepages(struct address_space *mapping, 750 struct writeback_control *wbc) 751 { 752 struct extent_io_tree *tree; 753 tree = &BTRFS_I(mapping->host)->io_tree; 754 if (wbc->sync_mode == WB_SYNC_NONE) { 755 struct btrfs_root *root = BTRFS_I(mapping->host)->root; 756 u64 num_dirty; 757 unsigned long thresh = 32 * 1024 * 1024; 758 759 if (wbc->for_kupdate) 760 return 0; 761 762 /* this is a bit racy, but that's ok */ 763 num_dirty = root->fs_info->dirty_metadata_bytes; 764 if (num_dirty < thresh) 765 return 0; 766 } 767 return extent_writepages(tree, mapping, btree_get_extent, wbc); 768 } 769 770 static int btree_readpage(struct file *file, struct page *page) 771 { 772 struct extent_io_tree *tree; 773 tree = &BTRFS_I(page->mapping->host)->io_tree; 774 return extent_read_full_page(tree, page, btree_get_extent); 775 } 776 777 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 778 { 779 struct extent_io_tree *tree; 780 struct extent_map_tree *map; 781 int ret; 782 783 if (PageWriteback(page) || PageDirty(page)) 784 return 0; 785 786 tree = &BTRFS_I(page->mapping->host)->io_tree; 787 map = &BTRFS_I(page->mapping->host)->extent_tree; 788 789 ret = try_release_extent_state(map, tree, page, gfp_flags); 790 if (!ret) 791 return 0; 792 793 ret = try_release_extent_buffer(tree, page); 794 if (ret == 1) { 795 ClearPagePrivate(page); 796 set_page_private(page, 0); 797 page_cache_release(page); 798 } 799 800 return ret; 801 } 802 803 static void btree_invalidatepage(struct page *page, unsigned long offset) 804 { 805 struct extent_io_tree *tree; 806 tree = &BTRFS_I(page->mapping->host)->io_tree; 807 extent_invalidatepage(tree, page, offset); 808 btree_releasepage(page, GFP_NOFS); 809 if (PagePrivate(page)) { 810 printk(KERN_WARNING "btrfs warning page private not zero " 811 "on page %llu\n", (unsigned long long)page_offset(page)); 812 ClearPagePrivate(page); 813 set_page_private(page, 0); 814 page_cache_release(page); 815 } 816 } 817 818 static const struct address_space_operations btree_aops = { 819 .readpage = btree_readpage, 820 .writepage = btree_writepage, 821 .writepages = btree_writepages, 822 .releasepage = btree_releasepage, 823 .invalidatepage = btree_invalidatepage, 824 .sync_page = block_sync_page, 825 #ifdef CONFIG_MIGRATION 826 .migratepage = btree_migratepage, 827 #endif 828 }; 829 830 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 831 u64 parent_transid) 832 { 833 struct extent_buffer *buf = NULL; 834 struct inode *btree_inode = root->fs_info->btree_inode; 835 int ret = 0; 836 837 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 838 if (!buf) 839 return 0; 840 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 841 buf, 0, 0, btree_get_extent, 0); 842 free_extent_buffer(buf); 843 return ret; 844 } 845 846 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 847 u64 bytenr, u32 blocksize) 848 { 849 struct inode *btree_inode = root->fs_info->btree_inode; 850 struct extent_buffer *eb; 851 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 852 bytenr, blocksize, GFP_NOFS); 853 return eb; 854 } 855 856 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 857 u64 bytenr, u32 blocksize) 858 { 859 struct inode *btree_inode = root->fs_info->btree_inode; 860 struct extent_buffer *eb; 861 862 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 863 bytenr, blocksize, NULL, GFP_NOFS); 864 return eb; 865 } 866 867 868 int btrfs_write_tree_block(struct extent_buffer *buf) 869 { 870 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start, 871 buf->start + buf->len - 1); 872 } 873 874 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 875 { 876 return filemap_fdatawait_range(buf->first_page->mapping, 877 buf->start, buf->start + buf->len - 1); 878 } 879 880 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 881 u32 blocksize, u64 parent_transid) 882 { 883 struct extent_buffer *buf = NULL; 884 int ret; 885 886 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 887 if (!buf) 888 return NULL; 889 890 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 891 892 if (ret == 0) 893 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 894 return buf; 895 896 } 897 898 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 899 struct extent_buffer *buf) 900 { 901 struct inode *btree_inode = root->fs_info->btree_inode; 902 if (btrfs_header_generation(buf) == 903 root->fs_info->running_transaction->transid) { 904 btrfs_assert_tree_locked(buf); 905 906 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 907 spin_lock(&root->fs_info->delalloc_lock); 908 if (root->fs_info->dirty_metadata_bytes >= buf->len) 909 root->fs_info->dirty_metadata_bytes -= buf->len; 910 else 911 WARN_ON(1); 912 spin_unlock(&root->fs_info->delalloc_lock); 913 } 914 915 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 916 btrfs_set_lock_blocking(buf); 917 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 918 buf); 919 } 920 return 0; 921 } 922 923 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 924 u32 stripesize, struct btrfs_root *root, 925 struct btrfs_fs_info *fs_info, 926 u64 objectid) 927 { 928 root->node = NULL; 929 root->commit_root = NULL; 930 root->sectorsize = sectorsize; 931 root->nodesize = nodesize; 932 root->leafsize = leafsize; 933 root->stripesize = stripesize; 934 root->ref_cows = 0; 935 root->track_dirty = 0; 936 root->in_radix = 0; 937 root->orphan_item_inserted = 0; 938 root->orphan_cleanup_state = 0; 939 940 root->fs_info = fs_info; 941 root->objectid = objectid; 942 root->last_trans = 0; 943 root->highest_objectid = 0; 944 root->name = NULL; 945 root->in_sysfs = 0; 946 root->inode_tree = RB_ROOT; 947 root->block_rsv = NULL; 948 root->orphan_block_rsv = NULL; 949 950 INIT_LIST_HEAD(&root->dirty_list); 951 INIT_LIST_HEAD(&root->orphan_list); 952 INIT_LIST_HEAD(&root->root_list); 953 spin_lock_init(&root->node_lock); 954 spin_lock_init(&root->orphan_lock); 955 spin_lock_init(&root->inode_lock); 956 spin_lock_init(&root->accounting_lock); 957 mutex_init(&root->objectid_mutex); 958 mutex_init(&root->log_mutex); 959 init_waitqueue_head(&root->log_writer_wait); 960 init_waitqueue_head(&root->log_commit_wait[0]); 961 init_waitqueue_head(&root->log_commit_wait[1]); 962 atomic_set(&root->log_commit[0], 0); 963 atomic_set(&root->log_commit[1], 0); 964 atomic_set(&root->log_writers, 0); 965 root->log_batch = 0; 966 root->log_transid = 0; 967 root->last_log_commit = 0; 968 extent_io_tree_init(&root->dirty_log_pages, 969 fs_info->btree_inode->i_mapping, GFP_NOFS); 970 971 memset(&root->root_key, 0, sizeof(root->root_key)); 972 memset(&root->root_item, 0, sizeof(root->root_item)); 973 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 974 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 975 root->defrag_trans_start = fs_info->generation; 976 init_completion(&root->kobj_unregister); 977 root->defrag_running = 0; 978 root->root_key.objectid = objectid; 979 root->anon_super.s_root = NULL; 980 root->anon_super.s_dev = 0; 981 INIT_LIST_HEAD(&root->anon_super.s_list); 982 INIT_LIST_HEAD(&root->anon_super.s_instances); 983 init_rwsem(&root->anon_super.s_umount); 984 985 return 0; 986 } 987 988 static int find_and_setup_root(struct btrfs_root *tree_root, 989 struct btrfs_fs_info *fs_info, 990 u64 objectid, 991 struct btrfs_root *root) 992 { 993 int ret; 994 u32 blocksize; 995 u64 generation; 996 997 __setup_root(tree_root->nodesize, tree_root->leafsize, 998 tree_root->sectorsize, tree_root->stripesize, 999 root, fs_info, objectid); 1000 ret = btrfs_find_last_root(tree_root, objectid, 1001 &root->root_item, &root->root_key); 1002 if (ret > 0) 1003 return -ENOENT; 1004 BUG_ON(ret); 1005 1006 generation = btrfs_root_generation(&root->root_item); 1007 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1008 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1009 blocksize, generation); 1010 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) { 1011 free_extent_buffer(root->node); 1012 return -EIO; 1013 } 1014 root->commit_root = btrfs_root_node(root); 1015 return 0; 1016 } 1017 1018 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1019 struct btrfs_fs_info *fs_info) 1020 { 1021 struct btrfs_root *root; 1022 struct btrfs_root *tree_root = fs_info->tree_root; 1023 struct extent_buffer *leaf; 1024 1025 root = kzalloc(sizeof(*root), GFP_NOFS); 1026 if (!root) 1027 return ERR_PTR(-ENOMEM); 1028 1029 __setup_root(tree_root->nodesize, tree_root->leafsize, 1030 tree_root->sectorsize, tree_root->stripesize, 1031 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1032 1033 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1034 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1035 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1036 /* 1037 * log trees do not get reference counted because they go away 1038 * before a real commit is actually done. They do store pointers 1039 * to file data extents, and those reference counts still get 1040 * updated (along with back refs to the log tree). 1041 */ 1042 root->ref_cows = 0; 1043 1044 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1045 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0); 1046 if (IS_ERR(leaf)) { 1047 kfree(root); 1048 return ERR_CAST(leaf); 1049 } 1050 1051 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1052 btrfs_set_header_bytenr(leaf, leaf->start); 1053 btrfs_set_header_generation(leaf, trans->transid); 1054 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1055 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1056 root->node = leaf; 1057 1058 write_extent_buffer(root->node, root->fs_info->fsid, 1059 (unsigned long)btrfs_header_fsid(root->node), 1060 BTRFS_FSID_SIZE); 1061 btrfs_mark_buffer_dirty(root->node); 1062 btrfs_tree_unlock(root->node); 1063 return root; 1064 } 1065 1066 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1067 struct btrfs_fs_info *fs_info) 1068 { 1069 struct btrfs_root *log_root; 1070 1071 log_root = alloc_log_tree(trans, fs_info); 1072 if (IS_ERR(log_root)) 1073 return PTR_ERR(log_root); 1074 WARN_ON(fs_info->log_root_tree); 1075 fs_info->log_root_tree = log_root; 1076 return 0; 1077 } 1078 1079 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1080 struct btrfs_root *root) 1081 { 1082 struct btrfs_root *log_root; 1083 struct btrfs_inode_item *inode_item; 1084 1085 log_root = alloc_log_tree(trans, root->fs_info); 1086 if (IS_ERR(log_root)) 1087 return PTR_ERR(log_root); 1088 1089 log_root->last_trans = trans->transid; 1090 log_root->root_key.offset = root->root_key.objectid; 1091 1092 inode_item = &log_root->root_item.inode; 1093 inode_item->generation = cpu_to_le64(1); 1094 inode_item->size = cpu_to_le64(3); 1095 inode_item->nlink = cpu_to_le32(1); 1096 inode_item->nbytes = cpu_to_le64(root->leafsize); 1097 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1098 1099 btrfs_set_root_node(&log_root->root_item, log_root->node); 1100 1101 WARN_ON(root->log_root); 1102 root->log_root = log_root; 1103 root->log_transid = 0; 1104 root->last_log_commit = 0; 1105 return 0; 1106 } 1107 1108 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1109 struct btrfs_key *location) 1110 { 1111 struct btrfs_root *root; 1112 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1113 struct btrfs_path *path; 1114 struct extent_buffer *l; 1115 u64 generation; 1116 u32 blocksize; 1117 int ret = 0; 1118 1119 root = kzalloc(sizeof(*root), GFP_NOFS); 1120 if (!root) 1121 return ERR_PTR(-ENOMEM); 1122 if (location->offset == (u64)-1) { 1123 ret = find_and_setup_root(tree_root, fs_info, 1124 location->objectid, root); 1125 if (ret) { 1126 kfree(root); 1127 return ERR_PTR(ret); 1128 } 1129 goto out; 1130 } 1131 1132 __setup_root(tree_root->nodesize, tree_root->leafsize, 1133 tree_root->sectorsize, tree_root->stripesize, 1134 root, fs_info, location->objectid); 1135 1136 path = btrfs_alloc_path(); 1137 BUG_ON(!path); 1138 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1139 if (ret == 0) { 1140 l = path->nodes[0]; 1141 read_extent_buffer(l, &root->root_item, 1142 btrfs_item_ptr_offset(l, path->slots[0]), 1143 sizeof(root->root_item)); 1144 memcpy(&root->root_key, location, sizeof(*location)); 1145 } 1146 btrfs_free_path(path); 1147 if (ret) { 1148 if (ret > 0) 1149 ret = -ENOENT; 1150 return ERR_PTR(ret); 1151 } 1152 1153 generation = btrfs_root_generation(&root->root_item); 1154 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1155 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1156 blocksize, generation); 1157 root->commit_root = btrfs_root_node(root); 1158 BUG_ON(!root->node); 1159 out: 1160 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) 1161 root->ref_cows = 1; 1162 1163 return root; 1164 } 1165 1166 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1167 u64 root_objectid) 1168 { 1169 struct btrfs_root *root; 1170 1171 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID) 1172 return fs_info->tree_root; 1173 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID) 1174 return fs_info->extent_root; 1175 1176 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1177 (unsigned long)root_objectid); 1178 return root; 1179 } 1180 1181 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1182 struct btrfs_key *location) 1183 { 1184 struct btrfs_root *root; 1185 int ret; 1186 1187 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1188 return fs_info->tree_root; 1189 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1190 return fs_info->extent_root; 1191 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1192 return fs_info->chunk_root; 1193 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1194 return fs_info->dev_root; 1195 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1196 return fs_info->csum_root; 1197 again: 1198 spin_lock(&fs_info->fs_roots_radix_lock); 1199 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1200 (unsigned long)location->objectid); 1201 spin_unlock(&fs_info->fs_roots_radix_lock); 1202 if (root) 1203 return root; 1204 1205 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1206 if (IS_ERR(root)) 1207 return root; 1208 1209 set_anon_super(&root->anon_super, NULL); 1210 1211 if (btrfs_root_refs(&root->root_item) == 0) { 1212 ret = -ENOENT; 1213 goto fail; 1214 } 1215 1216 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); 1217 if (ret < 0) 1218 goto fail; 1219 if (ret == 0) 1220 root->orphan_item_inserted = 1; 1221 1222 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1223 if (ret) 1224 goto fail; 1225 1226 spin_lock(&fs_info->fs_roots_radix_lock); 1227 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1228 (unsigned long)root->root_key.objectid, 1229 root); 1230 if (ret == 0) 1231 root->in_radix = 1; 1232 1233 spin_unlock(&fs_info->fs_roots_radix_lock); 1234 radix_tree_preload_end(); 1235 if (ret) { 1236 if (ret == -EEXIST) { 1237 free_fs_root(root); 1238 goto again; 1239 } 1240 goto fail; 1241 } 1242 1243 ret = btrfs_find_dead_roots(fs_info->tree_root, 1244 root->root_key.objectid); 1245 WARN_ON(ret); 1246 return root; 1247 fail: 1248 free_fs_root(root); 1249 return ERR_PTR(ret); 1250 } 1251 1252 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info, 1253 struct btrfs_key *location, 1254 const char *name, int namelen) 1255 { 1256 return btrfs_read_fs_root_no_name(fs_info, location); 1257 #if 0 1258 struct btrfs_root *root; 1259 int ret; 1260 1261 root = btrfs_read_fs_root_no_name(fs_info, location); 1262 if (!root) 1263 return NULL; 1264 1265 if (root->in_sysfs) 1266 return root; 1267 1268 ret = btrfs_set_root_name(root, name, namelen); 1269 if (ret) { 1270 free_extent_buffer(root->node); 1271 kfree(root); 1272 return ERR_PTR(ret); 1273 } 1274 1275 ret = btrfs_sysfs_add_root(root); 1276 if (ret) { 1277 free_extent_buffer(root->node); 1278 kfree(root->name); 1279 kfree(root); 1280 return ERR_PTR(ret); 1281 } 1282 root->in_sysfs = 1; 1283 return root; 1284 #endif 1285 } 1286 1287 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1288 { 1289 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1290 int ret = 0; 1291 struct btrfs_device *device; 1292 struct backing_dev_info *bdi; 1293 1294 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1295 if (!device->bdev) 1296 continue; 1297 bdi = blk_get_backing_dev_info(device->bdev); 1298 if (bdi && bdi_congested(bdi, bdi_bits)) { 1299 ret = 1; 1300 break; 1301 } 1302 } 1303 return ret; 1304 } 1305 1306 /* 1307 * this unplugs every device on the box, and it is only used when page 1308 * is null 1309 */ 1310 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1311 { 1312 struct btrfs_device *device; 1313 struct btrfs_fs_info *info; 1314 1315 info = (struct btrfs_fs_info *)bdi->unplug_io_data; 1316 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1317 if (!device->bdev) 1318 continue; 1319 1320 bdi = blk_get_backing_dev_info(device->bdev); 1321 if (bdi->unplug_io_fn) 1322 bdi->unplug_io_fn(bdi, page); 1323 } 1324 } 1325 1326 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1327 { 1328 struct inode *inode; 1329 struct extent_map_tree *em_tree; 1330 struct extent_map *em; 1331 struct address_space *mapping; 1332 u64 offset; 1333 1334 /* the generic O_DIRECT read code does this */ 1335 if (1 || !page) { 1336 __unplug_io_fn(bdi, page); 1337 return; 1338 } 1339 1340 /* 1341 * page->mapping may change at any time. Get a consistent copy 1342 * and use that for everything below 1343 */ 1344 smp_mb(); 1345 mapping = page->mapping; 1346 if (!mapping) 1347 return; 1348 1349 inode = mapping->host; 1350 1351 /* 1352 * don't do the expensive searching for a small number of 1353 * devices 1354 */ 1355 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) { 1356 __unplug_io_fn(bdi, page); 1357 return; 1358 } 1359 1360 offset = page_offset(page); 1361 1362 em_tree = &BTRFS_I(inode)->extent_tree; 1363 read_lock(&em_tree->lock); 1364 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 1365 read_unlock(&em_tree->lock); 1366 if (!em) { 1367 __unplug_io_fn(bdi, page); 1368 return; 1369 } 1370 1371 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1372 free_extent_map(em); 1373 __unplug_io_fn(bdi, page); 1374 return; 1375 } 1376 offset = offset - em->start; 1377 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree, 1378 em->block_start + offset, page); 1379 free_extent_map(em); 1380 } 1381 1382 /* 1383 * If this fails, caller must call bdi_destroy() to get rid of the 1384 * bdi again. 1385 */ 1386 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1387 { 1388 int err; 1389 1390 bdi->capabilities = BDI_CAP_MAP_COPY; 1391 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1392 if (err) 1393 return err; 1394 1395 bdi->ra_pages = default_backing_dev_info.ra_pages; 1396 bdi->unplug_io_fn = btrfs_unplug_io_fn; 1397 bdi->unplug_io_data = info; 1398 bdi->congested_fn = btrfs_congested_fn; 1399 bdi->congested_data = info; 1400 return 0; 1401 } 1402 1403 static int bio_ready_for_csum(struct bio *bio) 1404 { 1405 u64 length = 0; 1406 u64 buf_len = 0; 1407 u64 start = 0; 1408 struct page *page; 1409 struct extent_io_tree *io_tree = NULL; 1410 struct bio_vec *bvec; 1411 int i; 1412 int ret; 1413 1414 bio_for_each_segment(bvec, bio, i) { 1415 page = bvec->bv_page; 1416 if (page->private == EXTENT_PAGE_PRIVATE) { 1417 length += bvec->bv_len; 1418 continue; 1419 } 1420 if (!page->private) { 1421 length += bvec->bv_len; 1422 continue; 1423 } 1424 length = bvec->bv_len; 1425 buf_len = page->private >> 2; 1426 start = page_offset(page) + bvec->bv_offset; 1427 io_tree = &BTRFS_I(page->mapping->host)->io_tree; 1428 } 1429 /* are we fully contained in this bio? */ 1430 if (buf_len <= length) 1431 return 1; 1432 1433 ret = extent_range_uptodate(io_tree, start + length, 1434 start + buf_len - 1); 1435 return ret; 1436 } 1437 1438 /* 1439 * called by the kthread helper functions to finally call the bio end_io 1440 * functions. This is where read checksum verification actually happens 1441 */ 1442 static void end_workqueue_fn(struct btrfs_work *work) 1443 { 1444 struct bio *bio; 1445 struct end_io_wq *end_io_wq; 1446 struct btrfs_fs_info *fs_info; 1447 int error; 1448 1449 end_io_wq = container_of(work, struct end_io_wq, work); 1450 bio = end_io_wq->bio; 1451 fs_info = end_io_wq->info; 1452 1453 /* metadata bio reads are special because the whole tree block must 1454 * be checksummed at once. This makes sure the entire block is in 1455 * ram and up to date before trying to verify things. For 1456 * blocksize <= pagesize, it is basically a noop 1457 */ 1458 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata && 1459 !bio_ready_for_csum(bio)) { 1460 btrfs_queue_worker(&fs_info->endio_meta_workers, 1461 &end_io_wq->work); 1462 return; 1463 } 1464 error = end_io_wq->error; 1465 bio->bi_private = end_io_wq->private; 1466 bio->bi_end_io = end_io_wq->end_io; 1467 kfree(end_io_wq); 1468 bio_endio(bio, error); 1469 } 1470 1471 static int cleaner_kthread(void *arg) 1472 { 1473 struct btrfs_root *root = arg; 1474 1475 do { 1476 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1477 1478 if (!(root->fs_info->sb->s_flags & MS_RDONLY) && 1479 mutex_trylock(&root->fs_info->cleaner_mutex)) { 1480 btrfs_run_delayed_iputs(root); 1481 btrfs_clean_old_snapshots(root); 1482 mutex_unlock(&root->fs_info->cleaner_mutex); 1483 } 1484 1485 if (freezing(current)) { 1486 refrigerator(); 1487 } else { 1488 set_current_state(TASK_INTERRUPTIBLE); 1489 if (!kthread_should_stop()) 1490 schedule(); 1491 __set_current_state(TASK_RUNNING); 1492 } 1493 } while (!kthread_should_stop()); 1494 return 0; 1495 } 1496 1497 static int transaction_kthread(void *arg) 1498 { 1499 struct btrfs_root *root = arg; 1500 struct btrfs_trans_handle *trans; 1501 struct btrfs_transaction *cur; 1502 u64 transid; 1503 unsigned long now; 1504 unsigned long delay; 1505 int ret; 1506 1507 do { 1508 delay = HZ * 30; 1509 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1510 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1511 1512 spin_lock(&root->fs_info->new_trans_lock); 1513 cur = root->fs_info->running_transaction; 1514 if (!cur) { 1515 spin_unlock(&root->fs_info->new_trans_lock); 1516 goto sleep; 1517 } 1518 1519 now = get_seconds(); 1520 if (!cur->blocked && 1521 (now < cur->start_time || now - cur->start_time < 30)) { 1522 spin_unlock(&root->fs_info->new_trans_lock); 1523 delay = HZ * 5; 1524 goto sleep; 1525 } 1526 transid = cur->transid; 1527 spin_unlock(&root->fs_info->new_trans_lock); 1528 1529 trans = btrfs_join_transaction(root, 1); 1530 if (transid == trans->transid) { 1531 ret = btrfs_commit_transaction(trans, root); 1532 BUG_ON(ret); 1533 } else { 1534 btrfs_end_transaction(trans, root); 1535 } 1536 sleep: 1537 wake_up_process(root->fs_info->cleaner_kthread); 1538 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1539 1540 if (freezing(current)) { 1541 refrigerator(); 1542 } else { 1543 set_current_state(TASK_INTERRUPTIBLE); 1544 if (!kthread_should_stop() && 1545 !btrfs_transaction_blocked(root->fs_info)) 1546 schedule_timeout(delay); 1547 __set_current_state(TASK_RUNNING); 1548 } 1549 } while (!kthread_should_stop()); 1550 return 0; 1551 } 1552 1553 struct btrfs_root *open_ctree(struct super_block *sb, 1554 struct btrfs_fs_devices *fs_devices, 1555 char *options) 1556 { 1557 u32 sectorsize; 1558 u32 nodesize; 1559 u32 leafsize; 1560 u32 blocksize; 1561 u32 stripesize; 1562 u64 generation; 1563 u64 features; 1564 struct btrfs_key location; 1565 struct buffer_head *bh; 1566 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root), 1567 GFP_NOFS); 1568 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root), 1569 GFP_NOFS); 1570 struct btrfs_root *tree_root = btrfs_sb(sb); 1571 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1572 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root), 1573 GFP_NOFS); 1574 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root), 1575 GFP_NOFS); 1576 struct btrfs_root *log_tree_root; 1577 1578 int ret; 1579 int err = -EINVAL; 1580 1581 struct btrfs_super_block *disk_super; 1582 1583 if (!extent_root || !tree_root || !fs_info || 1584 !chunk_root || !dev_root || !csum_root) { 1585 err = -ENOMEM; 1586 goto fail; 1587 } 1588 1589 ret = init_srcu_struct(&fs_info->subvol_srcu); 1590 if (ret) { 1591 err = ret; 1592 goto fail; 1593 } 1594 1595 ret = setup_bdi(fs_info, &fs_info->bdi); 1596 if (ret) { 1597 err = ret; 1598 goto fail_srcu; 1599 } 1600 1601 fs_info->btree_inode = new_inode(sb); 1602 if (!fs_info->btree_inode) { 1603 err = -ENOMEM; 1604 goto fail_bdi; 1605 } 1606 1607 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 1608 INIT_LIST_HEAD(&fs_info->trans_list); 1609 INIT_LIST_HEAD(&fs_info->dead_roots); 1610 INIT_LIST_HEAD(&fs_info->delayed_iputs); 1611 INIT_LIST_HEAD(&fs_info->hashers); 1612 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 1613 INIT_LIST_HEAD(&fs_info->ordered_operations); 1614 INIT_LIST_HEAD(&fs_info->caching_block_groups); 1615 spin_lock_init(&fs_info->delalloc_lock); 1616 spin_lock_init(&fs_info->new_trans_lock); 1617 spin_lock_init(&fs_info->ref_cache_lock); 1618 spin_lock_init(&fs_info->fs_roots_radix_lock); 1619 spin_lock_init(&fs_info->delayed_iput_lock); 1620 1621 init_completion(&fs_info->kobj_unregister); 1622 fs_info->tree_root = tree_root; 1623 fs_info->extent_root = extent_root; 1624 fs_info->csum_root = csum_root; 1625 fs_info->chunk_root = chunk_root; 1626 fs_info->dev_root = dev_root; 1627 fs_info->fs_devices = fs_devices; 1628 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 1629 INIT_LIST_HEAD(&fs_info->space_info); 1630 btrfs_mapping_init(&fs_info->mapping_tree); 1631 btrfs_init_block_rsv(&fs_info->global_block_rsv); 1632 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv); 1633 btrfs_init_block_rsv(&fs_info->trans_block_rsv); 1634 btrfs_init_block_rsv(&fs_info->chunk_block_rsv); 1635 btrfs_init_block_rsv(&fs_info->empty_block_rsv); 1636 INIT_LIST_HEAD(&fs_info->durable_block_rsv_list); 1637 mutex_init(&fs_info->durable_block_rsv_mutex); 1638 atomic_set(&fs_info->nr_async_submits, 0); 1639 atomic_set(&fs_info->async_delalloc_pages, 0); 1640 atomic_set(&fs_info->async_submit_draining, 0); 1641 atomic_set(&fs_info->nr_async_bios, 0); 1642 fs_info->sb = sb; 1643 fs_info->max_inline = 8192 * 1024; 1644 fs_info->metadata_ratio = 0; 1645 1646 fs_info->thread_pool_size = min_t(unsigned long, 1647 num_online_cpus() + 2, 8); 1648 1649 INIT_LIST_HEAD(&fs_info->ordered_extents); 1650 spin_lock_init(&fs_info->ordered_extent_lock); 1651 1652 sb->s_blocksize = 4096; 1653 sb->s_blocksize_bits = blksize_bits(4096); 1654 sb->s_bdi = &fs_info->bdi; 1655 1656 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 1657 fs_info->btree_inode->i_nlink = 1; 1658 /* 1659 * we set the i_size on the btree inode to the max possible int. 1660 * the real end of the address space is determined by all of 1661 * the devices in the system 1662 */ 1663 fs_info->btree_inode->i_size = OFFSET_MAX; 1664 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 1665 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 1666 1667 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 1668 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 1669 fs_info->btree_inode->i_mapping, 1670 GFP_NOFS); 1671 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree, 1672 GFP_NOFS); 1673 1674 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 1675 1676 BTRFS_I(fs_info->btree_inode)->root = tree_root; 1677 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 1678 sizeof(struct btrfs_key)); 1679 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1; 1680 insert_inode_hash(fs_info->btree_inode); 1681 1682 spin_lock_init(&fs_info->block_group_cache_lock); 1683 fs_info->block_group_cache_tree = RB_ROOT; 1684 1685 extent_io_tree_init(&fs_info->freed_extents[0], 1686 fs_info->btree_inode->i_mapping, GFP_NOFS); 1687 extent_io_tree_init(&fs_info->freed_extents[1], 1688 fs_info->btree_inode->i_mapping, GFP_NOFS); 1689 fs_info->pinned_extents = &fs_info->freed_extents[0]; 1690 fs_info->do_barriers = 1; 1691 1692 1693 mutex_init(&fs_info->trans_mutex); 1694 mutex_init(&fs_info->ordered_operations_mutex); 1695 mutex_init(&fs_info->tree_log_mutex); 1696 mutex_init(&fs_info->chunk_mutex); 1697 mutex_init(&fs_info->transaction_kthread_mutex); 1698 mutex_init(&fs_info->cleaner_mutex); 1699 mutex_init(&fs_info->volume_mutex); 1700 init_rwsem(&fs_info->extent_commit_sem); 1701 init_rwsem(&fs_info->cleanup_work_sem); 1702 init_rwsem(&fs_info->subvol_sem); 1703 1704 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 1705 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 1706 1707 init_waitqueue_head(&fs_info->transaction_throttle); 1708 init_waitqueue_head(&fs_info->transaction_wait); 1709 init_waitqueue_head(&fs_info->transaction_blocked_wait); 1710 init_waitqueue_head(&fs_info->async_submit_wait); 1711 1712 __setup_root(4096, 4096, 4096, 4096, tree_root, 1713 fs_info, BTRFS_ROOT_TREE_OBJECTID); 1714 1715 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 1716 if (!bh) 1717 goto fail_iput; 1718 1719 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy)); 1720 memcpy(&fs_info->super_for_commit, &fs_info->super_copy, 1721 sizeof(fs_info->super_for_commit)); 1722 brelse(bh); 1723 1724 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE); 1725 1726 disk_super = &fs_info->super_copy; 1727 if (!btrfs_super_root(disk_super)) 1728 goto fail_iput; 1729 1730 ret = btrfs_parse_options(tree_root, options); 1731 if (ret) { 1732 err = ret; 1733 goto fail_iput; 1734 } 1735 1736 features = btrfs_super_incompat_flags(disk_super) & 1737 ~BTRFS_FEATURE_INCOMPAT_SUPP; 1738 if (features) { 1739 printk(KERN_ERR "BTRFS: couldn't mount because of " 1740 "unsupported optional features (%Lx).\n", 1741 (unsigned long long)features); 1742 err = -EINVAL; 1743 goto fail_iput; 1744 } 1745 1746 features = btrfs_super_incompat_flags(disk_super); 1747 if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) { 1748 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 1749 btrfs_set_super_incompat_flags(disk_super, features); 1750 } 1751 1752 features = btrfs_super_compat_ro_flags(disk_super) & 1753 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 1754 if (!(sb->s_flags & MS_RDONLY) && features) { 1755 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 1756 "unsupported option features (%Lx).\n", 1757 (unsigned long long)features); 1758 err = -EINVAL; 1759 goto fail_iput; 1760 } 1761 1762 btrfs_init_workers(&fs_info->generic_worker, 1763 "genwork", 1, NULL); 1764 1765 btrfs_init_workers(&fs_info->workers, "worker", 1766 fs_info->thread_pool_size, 1767 &fs_info->generic_worker); 1768 1769 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 1770 fs_info->thread_pool_size, 1771 &fs_info->generic_worker); 1772 1773 btrfs_init_workers(&fs_info->submit_workers, "submit", 1774 min_t(u64, fs_devices->num_devices, 1775 fs_info->thread_pool_size), 1776 &fs_info->generic_worker); 1777 1778 /* a higher idle thresh on the submit workers makes it much more 1779 * likely that bios will be send down in a sane order to the 1780 * devices 1781 */ 1782 fs_info->submit_workers.idle_thresh = 64; 1783 1784 fs_info->workers.idle_thresh = 16; 1785 fs_info->workers.ordered = 1; 1786 1787 fs_info->delalloc_workers.idle_thresh = 2; 1788 fs_info->delalloc_workers.ordered = 1; 1789 1790 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, 1791 &fs_info->generic_worker); 1792 btrfs_init_workers(&fs_info->endio_workers, "endio", 1793 fs_info->thread_pool_size, 1794 &fs_info->generic_worker); 1795 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 1796 fs_info->thread_pool_size, 1797 &fs_info->generic_worker); 1798 btrfs_init_workers(&fs_info->endio_meta_write_workers, 1799 "endio-meta-write", fs_info->thread_pool_size, 1800 &fs_info->generic_worker); 1801 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 1802 fs_info->thread_pool_size, 1803 &fs_info->generic_worker); 1804 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", 1805 1, &fs_info->generic_worker); 1806 1807 /* 1808 * endios are largely parallel and should have a very 1809 * low idle thresh 1810 */ 1811 fs_info->endio_workers.idle_thresh = 4; 1812 fs_info->endio_meta_workers.idle_thresh = 4; 1813 1814 fs_info->endio_write_workers.idle_thresh = 2; 1815 fs_info->endio_meta_write_workers.idle_thresh = 2; 1816 1817 btrfs_start_workers(&fs_info->workers, 1); 1818 btrfs_start_workers(&fs_info->generic_worker, 1); 1819 btrfs_start_workers(&fs_info->submit_workers, 1); 1820 btrfs_start_workers(&fs_info->delalloc_workers, 1); 1821 btrfs_start_workers(&fs_info->fixup_workers, 1); 1822 btrfs_start_workers(&fs_info->endio_workers, 1); 1823 btrfs_start_workers(&fs_info->endio_meta_workers, 1); 1824 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1); 1825 btrfs_start_workers(&fs_info->endio_write_workers, 1); 1826 btrfs_start_workers(&fs_info->endio_freespace_worker, 1); 1827 1828 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 1829 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 1830 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 1831 1832 nodesize = btrfs_super_nodesize(disk_super); 1833 leafsize = btrfs_super_leafsize(disk_super); 1834 sectorsize = btrfs_super_sectorsize(disk_super); 1835 stripesize = btrfs_super_stripesize(disk_super); 1836 tree_root->nodesize = nodesize; 1837 tree_root->leafsize = leafsize; 1838 tree_root->sectorsize = sectorsize; 1839 tree_root->stripesize = stripesize; 1840 1841 sb->s_blocksize = sectorsize; 1842 sb->s_blocksize_bits = blksize_bits(sectorsize); 1843 1844 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 1845 sizeof(disk_super->magic))) { 1846 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 1847 goto fail_sb_buffer; 1848 } 1849 1850 mutex_lock(&fs_info->chunk_mutex); 1851 ret = btrfs_read_sys_array(tree_root); 1852 mutex_unlock(&fs_info->chunk_mutex); 1853 if (ret) { 1854 printk(KERN_WARNING "btrfs: failed to read the system " 1855 "array on %s\n", sb->s_id); 1856 goto fail_sb_buffer; 1857 } 1858 1859 blocksize = btrfs_level_size(tree_root, 1860 btrfs_super_chunk_root_level(disk_super)); 1861 generation = btrfs_super_chunk_root_generation(disk_super); 1862 1863 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1864 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 1865 1866 chunk_root->node = read_tree_block(chunk_root, 1867 btrfs_super_chunk_root(disk_super), 1868 blocksize, generation); 1869 BUG_ON(!chunk_root->node); 1870 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 1871 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 1872 sb->s_id); 1873 goto fail_chunk_root; 1874 } 1875 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 1876 chunk_root->commit_root = btrfs_root_node(chunk_root); 1877 1878 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 1879 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 1880 BTRFS_UUID_SIZE); 1881 1882 mutex_lock(&fs_info->chunk_mutex); 1883 ret = btrfs_read_chunk_tree(chunk_root); 1884 mutex_unlock(&fs_info->chunk_mutex); 1885 if (ret) { 1886 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 1887 sb->s_id); 1888 goto fail_chunk_root; 1889 } 1890 1891 btrfs_close_extra_devices(fs_devices); 1892 1893 blocksize = btrfs_level_size(tree_root, 1894 btrfs_super_root_level(disk_super)); 1895 generation = btrfs_super_generation(disk_super); 1896 1897 tree_root->node = read_tree_block(tree_root, 1898 btrfs_super_root(disk_super), 1899 blocksize, generation); 1900 if (!tree_root->node) 1901 goto fail_chunk_root; 1902 if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 1903 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 1904 sb->s_id); 1905 goto fail_tree_root; 1906 } 1907 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 1908 tree_root->commit_root = btrfs_root_node(tree_root); 1909 1910 ret = find_and_setup_root(tree_root, fs_info, 1911 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 1912 if (ret) 1913 goto fail_tree_root; 1914 extent_root->track_dirty = 1; 1915 1916 ret = find_and_setup_root(tree_root, fs_info, 1917 BTRFS_DEV_TREE_OBJECTID, dev_root); 1918 if (ret) 1919 goto fail_extent_root; 1920 dev_root->track_dirty = 1; 1921 1922 ret = find_and_setup_root(tree_root, fs_info, 1923 BTRFS_CSUM_TREE_OBJECTID, csum_root); 1924 if (ret) 1925 goto fail_dev_root; 1926 1927 csum_root->track_dirty = 1; 1928 1929 fs_info->generation = generation; 1930 fs_info->last_trans_committed = generation; 1931 fs_info->data_alloc_profile = (u64)-1; 1932 fs_info->metadata_alloc_profile = (u64)-1; 1933 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile; 1934 1935 ret = btrfs_read_block_groups(extent_root); 1936 if (ret) { 1937 printk(KERN_ERR "Failed to read block groups: %d\n", ret); 1938 goto fail_block_groups; 1939 } 1940 1941 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 1942 "btrfs-cleaner"); 1943 if (IS_ERR(fs_info->cleaner_kthread)) 1944 goto fail_block_groups; 1945 1946 fs_info->transaction_kthread = kthread_run(transaction_kthread, 1947 tree_root, 1948 "btrfs-transaction"); 1949 if (IS_ERR(fs_info->transaction_kthread)) 1950 goto fail_cleaner; 1951 1952 if (!btrfs_test_opt(tree_root, SSD) && 1953 !btrfs_test_opt(tree_root, NOSSD) && 1954 !fs_info->fs_devices->rotating) { 1955 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 1956 "mode\n"); 1957 btrfs_set_opt(fs_info->mount_opt, SSD); 1958 } 1959 1960 if (btrfs_super_log_root(disk_super) != 0) { 1961 u64 bytenr = btrfs_super_log_root(disk_super); 1962 1963 if (fs_devices->rw_devices == 0) { 1964 printk(KERN_WARNING "Btrfs log replay required " 1965 "on RO media\n"); 1966 err = -EIO; 1967 goto fail_trans_kthread; 1968 } 1969 blocksize = 1970 btrfs_level_size(tree_root, 1971 btrfs_super_log_root_level(disk_super)); 1972 1973 log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS); 1974 if (!log_tree_root) { 1975 err = -ENOMEM; 1976 goto fail_trans_kthread; 1977 } 1978 1979 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1980 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1981 1982 log_tree_root->node = read_tree_block(tree_root, bytenr, 1983 blocksize, 1984 generation + 1); 1985 ret = btrfs_recover_log_trees(log_tree_root); 1986 BUG_ON(ret); 1987 1988 if (sb->s_flags & MS_RDONLY) { 1989 ret = btrfs_commit_super(tree_root); 1990 BUG_ON(ret); 1991 } 1992 } 1993 1994 ret = btrfs_find_orphan_roots(tree_root); 1995 BUG_ON(ret); 1996 1997 if (!(sb->s_flags & MS_RDONLY)) { 1998 ret = btrfs_cleanup_fs_roots(fs_info); 1999 BUG_ON(ret); 2000 2001 ret = btrfs_recover_relocation(tree_root); 2002 if (ret < 0) { 2003 printk(KERN_WARNING 2004 "btrfs: failed to recover relocation\n"); 2005 err = -EINVAL; 2006 goto fail_trans_kthread; 2007 } 2008 } 2009 2010 location.objectid = BTRFS_FS_TREE_OBJECTID; 2011 location.type = BTRFS_ROOT_ITEM_KEY; 2012 location.offset = (u64)-1; 2013 2014 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2015 if (!fs_info->fs_root) 2016 goto fail_trans_kthread; 2017 if (IS_ERR(fs_info->fs_root)) { 2018 err = PTR_ERR(fs_info->fs_root); 2019 goto fail_trans_kthread; 2020 } 2021 2022 if (!(sb->s_flags & MS_RDONLY)) { 2023 down_read(&fs_info->cleanup_work_sem); 2024 btrfs_orphan_cleanup(fs_info->fs_root); 2025 btrfs_orphan_cleanup(fs_info->tree_root); 2026 up_read(&fs_info->cleanup_work_sem); 2027 } 2028 2029 return tree_root; 2030 2031 fail_trans_kthread: 2032 kthread_stop(fs_info->transaction_kthread); 2033 fail_cleaner: 2034 kthread_stop(fs_info->cleaner_kthread); 2035 2036 /* 2037 * make sure we're done with the btree inode before we stop our 2038 * kthreads 2039 */ 2040 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2041 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2042 2043 fail_block_groups: 2044 btrfs_free_block_groups(fs_info); 2045 free_extent_buffer(csum_root->node); 2046 free_extent_buffer(csum_root->commit_root); 2047 fail_dev_root: 2048 free_extent_buffer(dev_root->node); 2049 free_extent_buffer(dev_root->commit_root); 2050 fail_extent_root: 2051 free_extent_buffer(extent_root->node); 2052 free_extent_buffer(extent_root->commit_root); 2053 fail_tree_root: 2054 free_extent_buffer(tree_root->node); 2055 free_extent_buffer(tree_root->commit_root); 2056 fail_chunk_root: 2057 free_extent_buffer(chunk_root->node); 2058 free_extent_buffer(chunk_root->commit_root); 2059 fail_sb_buffer: 2060 btrfs_stop_workers(&fs_info->generic_worker); 2061 btrfs_stop_workers(&fs_info->fixup_workers); 2062 btrfs_stop_workers(&fs_info->delalloc_workers); 2063 btrfs_stop_workers(&fs_info->workers); 2064 btrfs_stop_workers(&fs_info->endio_workers); 2065 btrfs_stop_workers(&fs_info->endio_meta_workers); 2066 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2067 btrfs_stop_workers(&fs_info->endio_write_workers); 2068 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2069 btrfs_stop_workers(&fs_info->submit_workers); 2070 fail_iput: 2071 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2072 iput(fs_info->btree_inode); 2073 2074 btrfs_close_devices(fs_info->fs_devices); 2075 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2076 fail_bdi: 2077 bdi_destroy(&fs_info->bdi); 2078 fail_srcu: 2079 cleanup_srcu_struct(&fs_info->subvol_srcu); 2080 fail: 2081 kfree(extent_root); 2082 kfree(tree_root); 2083 kfree(fs_info); 2084 kfree(chunk_root); 2085 kfree(dev_root); 2086 kfree(csum_root); 2087 return ERR_PTR(err); 2088 } 2089 2090 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 2091 { 2092 char b[BDEVNAME_SIZE]; 2093 2094 if (uptodate) { 2095 set_buffer_uptodate(bh); 2096 } else { 2097 if (printk_ratelimit()) { 2098 printk(KERN_WARNING "lost page write due to " 2099 "I/O error on %s\n", 2100 bdevname(bh->b_bdev, b)); 2101 } 2102 /* note, we dont' set_buffer_write_io_error because we have 2103 * our own ways of dealing with the IO errors 2104 */ 2105 clear_buffer_uptodate(bh); 2106 } 2107 unlock_buffer(bh); 2108 put_bh(bh); 2109 } 2110 2111 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 2112 { 2113 struct buffer_head *bh; 2114 struct buffer_head *latest = NULL; 2115 struct btrfs_super_block *super; 2116 int i; 2117 u64 transid = 0; 2118 u64 bytenr; 2119 2120 /* we would like to check all the supers, but that would make 2121 * a btrfs mount succeed after a mkfs from a different FS. 2122 * So, we need to add a special mount option to scan for 2123 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 2124 */ 2125 for (i = 0; i < 1; i++) { 2126 bytenr = btrfs_sb_offset(i); 2127 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 2128 break; 2129 bh = __bread(bdev, bytenr / 4096, 4096); 2130 if (!bh) 2131 continue; 2132 2133 super = (struct btrfs_super_block *)bh->b_data; 2134 if (btrfs_super_bytenr(super) != bytenr || 2135 strncmp((char *)(&super->magic), BTRFS_MAGIC, 2136 sizeof(super->magic))) { 2137 brelse(bh); 2138 continue; 2139 } 2140 2141 if (!latest || btrfs_super_generation(super) > transid) { 2142 brelse(latest); 2143 latest = bh; 2144 transid = btrfs_super_generation(super); 2145 } else { 2146 brelse(bh); 2147 } 2148 } 2149 return latest; 2150 } 2151 2152 /* 2153 * this should be called twice, once with wait == 0 and 2154 * once with wait == 1. When wait == 0 is done, all the buffer heads 2155 * we write are pinned. 2156 * 2157 * They are released when wait == 1 is done. 2158 * max_mirrors must be the same for both runs, and it indicates how 2159 * many supers on this one device should be written. 2160 * 2161 * max_mirrors == 0 means to write them all. 2162 */ 2163 static int write_dev_supers(struct btrfs_device *device, 2164 struct btrfs_super_block *sb, 2165 int do_barriers, int wait, int max_mirrors) 2166 { 2167 struct buffer_head *bh; 2168 int i; 2169 int ret; 2170 int errors = 0; 2171 u32 crc; 2172 u64 bytenr; 2173 int last_barrier = 0; 2174 2175 if (max_mirrors == 0) 2176 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2177 2178 /* make sure only the last submit_bh does a barrier */ 2179 if (do_barriers) { 2180 for (i = 0; i < max_mirrors; i++) { 2181 bytenr = btrfs_sb_offset(i); 2182 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 2183 device->total_bytes) 2184 break; 2185 last_barrier = i; 2186 } 2187 } 2188 2189 for (i = 0; i < max_mirrors; i++) { 2190 bytenr = btrfs_sb_offset(i); 2191 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2192 break; 2193 2194 if (wait) { 2195 bh = __find_get_block(device->bdev, bytenr / 4096, 2196 BTRFS_SUPER_INFO_SIZE); 2197 BUG_ON(!bh); 2198 wait_on_buffer(bh); 2199 if (!buffer_uptodate(bh)) 2200 errors++; 2201 2202 /* drop our reference */ 2203 brelse(bh); 2204 2205 /* drop the reference from the wait == 0 run */ 2206 brelse(bh); 2207 continue; 2208 } else { 2209 btrfs_set_super_bytenr(sb, bytenr); 2210 2211 crc = ~(u32)0; 2212 crc = btrfs_csum_data(NULL, (char *)sb + 2213 BTRFS_CSUM_SIZE, crc, 2214 BTRFS_SUPER_INFO_SIZE - 2215 BTRFS_CSUM_SIZE); 2216 btrfs_csum_final(crc, sb->csum); 2217 2218 /* 2219 * one reference for us, and we leave it for the 2220 * caller 2221 */ 2222 bh = __getblk(device->bdev, bytenr / 4096, 2223 BTRFS_SUPER_INFO_SIZE); 2224 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2225 2226 /* one reference for submit_bh */ 2227 get_bh(bh); 2228 2229 set_buffer_uptodate(bh); 2230 lock_buffer(bh); 2231 bh->b_end_io = btrfs_end_buffer_write_sync; 2232 } 2233 2234 if (i == last_barrier && do_barriers) 2235 ret = submit_bh(WRITE_FLUSH_FUA, bh); 2236 else 2237 ret = submit_bh(WRITE_SYNC, bh); 2238 2239 if (ret) 2240 errors++; 2241 } 2242 return errors < i ? 0 : -1; 2243 } 2244 2245 int write_all_supers(struct btrfs_root *root, int max_mirrors) 2246 { 2247 struct list_head *head; 2248 struct btrfs_device *dev; 2249 struct btrfs_super_block *sb; 2250 struct btrfs_dev_item *dev_item; 2251 int ret; 2252 int do_barriers; 2253 int max_errors; 2254 int total_errors = 0; 2255 u64 flags; 2256 2257 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1; 2258 do_barriers = !btrfs_test_opt(root, NOBARRIER); 2259 2260 sb = &root->fs_info->super_for_commit; 2261 dev_item = &sb->dev_item; 2262 2263 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2264 head = &root->fs_info->fs_devices->devices; 2265 list_for_each_entry(dev, head, dev_list) { 2266 if (!dev->bdev) { 2267 total_errors++; 2268 continue; 2269 } 2270 if (!dev->in_fs_metadata || !dev->writeable) 2271 continue; 2272 2273 btrfs_set_stack_device_generation(dev_item, 0); 2274 btrfs_set_stack_device_type(dev_item, dev->type); 2275 btrfs_set_stack_device_id(dev_item, dev->devid); 2276 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 2277 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 2278 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 2279 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 2280 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 2281 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 2282 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2283 2284 flags = btrfs_super_flags(sb); 2285 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 2286 2287 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 2288 if (ret) 2289 total_errors++; 2290 } 2291 if (total_errors > max_errors) { 2292 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2293 total_errors); 2294 BUG(); 2295 } 2296 2297 total_errors = 0; 2298 list_for_each_entry(dev, head, dev_list) { 2299 if (!dev->bdev) 2300 continue; 2301 if (!dev->in_fs_metadata || !dev->writeable) 2302 continue; 2303 2304 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 2305 if (ret) 2306 total_errors++; 2307 } 2308 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2309 if (total_errors > max_errors) { 2310 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2311 total_errors); 2312 BUG(); 2313 } 2314 return 0; 2315 } 2316 2317 int write_ctree_super(struct btrfs_trans_handle *trans, 2318 struct btrfs_root *root, int max_mirrors) 2319 { 2320 int ret; 2321 2322 ret = write_all_supers(root, max_mirrors); 2323 return ret; 2324 } 2325 2326 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2327 { 2328 spin_lock(&fs_info->fs_roots_radix_lock); 2329 radix_tree_delete(&fs_info->fs_roots_radix, 2330 (unsigned long)root->root_key.objectid); 2331 spin_unlock(&fs_info->fs_roots_radix_lock); 2332 2333 if (btrfs_root_refs(&root->root_item) == 0) 2334 synchronize_srcu(&fs_info->subvol_srcu); 2335 2336 free_fs_root(root); 2337 return 0; 2338 } 2339 2340 static void free_fs_root(struct btrfs_root *root) 2341 { 2342 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2343 if (root->anon_super.s_dev) { 2344 down_write(&root->anon_super.s_umount); 2345 kill_anon_super(&root->anon_super); 2346 } 2347 free_extent_buffer(root->node); 2348 free_extent_buffer(root->commit_root); 2349 kfree(root->name); 2350 kfree(root); 2351 } 2352 2353 static int del_fs_roots(struct btrfs_fs_info *fs_info) 2354 { 2355 int ret; 2356 struct btrfs_root *gang[8]; 2357 int i; 2358 2359 while (!list_empty(&fs_info->dead_roots)) { 2360 gang[0] = list_entry(fs_info->dead_roots.next, 2361 struct btrfs_root, root_list); 2362 list_del(&gang[0]->root_list); 2363 2364 if (gang[0]->in_radix) { 2365 btrfs_free_fs_root(fs_info, gang[0]); 2366 } else { 2367 free_extent_buffer(gang[0]->node); 2368 free_extent_buffer(gang[0]->commit_root); 2369 kfree(gang[0]); 2370 } 2371 } 2372 2373 while (1) { 2374 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2375 (void **)gang, 0, 2376 ARRAY_SIZE(gang)); 2377 if (!ret) 2378 break; 2379 for (i = 0; i < ret; i++) 2380 btrfs_free_fs_root(fs_info, gang[i]); 2381 } 2382 return 0; 2383 } 2384 2385 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2386 { 2387 u64 root_objectid = 0; 2388 struct btrfs_root *gang[8]; 2389 int i; 2390 int ret; 2391 2392 while (1) { 2393 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2394 (void **)gang, root_objectid, 2395 ARRAY_SIZE(gang)); 2396 if (!ret) 2397 break; 2398 2399 root_objectid = gang[ret - 1]->root_key.objectid + 1; 2400 for (i = 0; i < ret; i++) { 2401 root_objectid = gang[i]->root_key.objectid; 2402 btrfs_orphan_cleanup(gang[i]); 2403 } 2404 root_objectid++; 2405 } 2406 return 0; 2407 } 2408 2409 int btrfs_commit_super(struct btrfs_root *root) 2410 { 2411 struct btrfs_trans_handle *trans; 2412 int ret; 2413 2414 mutex_lock(&root->fs_info->cleaner_mutex); 2415 btrfs_run_delayed_iputs(root); 2416 btrfs_clean_old_snapshots(root); 2417 mutex_unlock(&root->fs_info->cleaner_mutex); 2418 2419 /* wait until ongoing cleanup work done */ 2420 down_write(&root->fs_info->cleanup_work_sem); 2421 up_write(&root->fs_info->cleanup_work_sem); 2422 2423 trans = btrfs_join_transaction(root, 1); 2424 ret = btrfs_commit_transaction(trans, root); 2425 BUG_ON(ret); 2426 /* run commit again to drop the original snapshot */ 2427 trans = btrfs_join_transaction(root, 1); 2428 btrfs_commit_transaction(trans, root); 2429 ret = btrfs_write_and_wait_transaction(NULL, root); 2430 BUG_ON(ret); 2431 2432 ret = write_ctree_super(NULL, root, 0); 2433 return ret; 2434 } 2435 2436 int close_ctree(struct btrfs_root *root) 2437 { 2438 struct btrfs_fs_info *fs_info = root->fs_info; 2439 int ret; 2440 2441 fs_info->closing = 1; 2442 smp_mb(); 2443 2444 btrfs_put_block_group_cache(fs_info); 2445 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 2446 ret = btrfs_commit_super(root); 2447 if (ret) 2448 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 2449 } 2450 2451 kthread_stop(root->fs_info->transaction_kthread); 2452 kthread_stop(root->fs_info->cleaner_kthread); 2453 2454 fs_info->closing = 2; 2455 smp_mb(); 2456 2457 if (fs_info->delalloc_bytes) { 2458 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 2459 (unsigned long long)fs_info->delalloc_bytes); 2460 } 2461 if (fs_info->total_ref_cache_size) { 2462 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", 2463 (unsigned long long)fs_info->total_ref_cache_size); 2464 } 2465 2466 free_extent_buffer(fs_info->extent_root->node); 2467 free_extent_buffer(fs_info->extent_root->commit_root); 2468 free_extent_buffer(fs_info->tree_root->node); 2469 free_extent_buffer(fs_info->tree_root->commit_root); 2470 free_extent_buffer(root->fs_info->chunk_root->node); 2471 free_extent_buffer(root->fs_info->chunk_root->commit_root); 2472 free_extent_buffer(root->fs_info->dev_root->node); 2473 free_extent_buffer(root->fs_info->dev_root->commit_root); 2474 free_extent_buffer(root->fs_info->csum_root->node); 2475 free_extent_buffer(root->fs_info->csum_root->commit_root); 2476 2477 btrfs_free_block_groups(root->fs_info); 2478 2479 del_fs_roots(fs_info); 2480 2481 iput(fs_info->btree_inode); 2482 2483 btrfs_stop_workers(&fs_info->generic_worker); 2484 btrfs_stop_workers(&fs_info->fixup_workers); 2485 btrfs_stop_workers(&fs_info->delalloc_workers); 2486 btrfs_stop_workers(&fs_info->workers); 2487 btrfs_stop_workers(&fs_info->endio_workers); 2488 btrfs_stop_workers(&fs_info->endio_meta_workers); 2489 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2490 btrfs_stop_workers(&fs_info->endio_write_workers); 2491 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2492 btrfs_stop_workers(&fs_info->submit_workers); 2493 2494 btrfs_close_devices(fs_info->fs_devices); 2495 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2496 2497 bdi_destroy(&fs_info->bdi); 2498 cleanup_srcu_struct(&fs_info->subvol_srcu); 2499 2500 kfree(fs_info->extent_root); 2501 kfree(fs_info->tree_root); 2502 kfree(fs_info->chunk_root); 2503 kfree(fs_info->dev_root); 2504 kfree(fs_info->csum_root); 2505 return 0; 2506 } 2507 2508 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) 2509 { 2510 int ret; 2511 struct inode *btree_inode = buf->first_page->mapping->host; 2512 2513 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf, 2514 NULL); 2515 if (!ret) 2516 return ret; 2517 2518 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 2519 parent_transid); 2520 return !ret; 2521 } 2522 2523 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 2524 { 2525 struct inode *btree_inode = buf->first_page->mapping->host; 2526 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, 2527 buf); 2528 } 2529 2530 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 2531 { 2532 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2533 u64 transid = btrfs_header_generation(buf); 2534 struct inode *btree_inode = root->fs_info->btree_inode; 2535 int was_dirty; 2536 2537 btrfs_assert_tree_locked(buf); 2538 if (transid != root->fs_info->generation) { 2539 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 2540 "found %llu running %llu\n", 2541 (unsigned long long)buf->start, 2542 (unsigned long long)transid, 2543 (unsigned long long)root->fs_info->generation); 2544 WARN_ON(1); 2545 } 2546 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 2547 buf); 2548 if (!was_dirty) { 2549 spin_lock(&root->fs_info->delalloc_lock); 2550 root->fs_info->dirty_metadata_bytes += buf->len; 2551 spin_unlock(&root->fs_info->delalloc_lock); 2552 } 2553 } 2554 2555 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 2556 { 2557 /* 2558 * looks as though older kernels can get into trouble with 2559 * this code, they end up stuck in balance_dirty_pages forever 2560 */ 2561 u64 num_dirty; 2562 unsigned long thresh = 32 * 1024 * 1024; 2563 2564 if (current->flags & PF_MEMALLOC) 2565 return; 2566 2567 num_dirty = root->fs_info->dirty_metadata_bytes; 2568 2569 if (num_dirty > thresh) { 2570 balance_dirty_pages_ratelimited_nr( 2571 root->fs_info->btree_inode->i_mapping, 1); 2572 } 2573 return; 2574 } 2575 2576 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 2577 { 2578 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2579 int ret; 2580 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 2581 if (ret == 0) 2582 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 2583 return ret; 2584 } 2585 2586 int btree_lock_page_hook(struct page *page) 2587 { 2588 struct inode *inode = page->mapping->host; 2589 struct btrfs_root *root = BTRFS_I(inode)->root; 2590 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2591 struct extent_buffer *eb; 2592 unsigned long len; 2593 u64 bytenr = page_offset(page); 2594 2595 if (page->private == EXTENT_PAGE_PRIVATE) 2596 goto out; 2597 2598 len = page->private >> 2; 2599 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS); 2600 if (!eb) 2601 goto out; 2602 2603 btrfs_tree_lock(eb); 2604 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 2605 2606 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 2607 spin_lock(&root->fs_info->delalloc_lock); 2608 if (root->fs_info->dirty_metadata_bytes >= eb->len) 2609 root->fs_info->dirty_metadata_bytes -= eb->len; 2610 else 2611 WARN_ON(1); 2612 spin_unlock(&root->fs_info->delalloc_lock); 2613 } 2614 2615 btrfs_tree_unlock(eb); 2616 free_extent_buffer(eb); 2617 out: 2618 lock_page(page); 2619 return 0; 2620 } 2621 2622 static struct extent_io_ops btree_extent_io_ops = { 2623 .write_cache_pages_lock_hook = btree_lock_page_hook, 2624 .readpage_end_io_hook = btree_readpage_end_io_hook, 2625 .submit_bio_hook = btree_submit_bio_hook, 2626 /* note we're sharing with inode.c for the merge bio hook */ 2627 .merge_bio_hook = btrfs_merge_bio_hook, 2628 }; 2629