xref: /linux/fs/btrfs/disk-io.c (revision 394d83c17fac2b7bcf05cb99d1e945135767bb6b)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include "compat.h"
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "volumes.h"
38 #include "print-tree.h"
39 #include "async-thread.h"
40 #include "locking.h"
41 #include "tree-log.h"
42 #include "free-space-cache.h"
43 
44 static struct extent_io_ops btree_extent_io_ops;
45 static void end_workqueue_fn(struct btrfs_work *work);
46 static void free_fs_root(struct btrfs_root *root);
47 
48 /*
49  * end_io_wq structs are used to do processing in task context when an IO is
50  * complete.  This is used during reads to verify checksums, and it is used
51  * by writes to insert metadata for new file extents after IO is complete.
52  */
53 struct end_io_wq {
54 	struct bio *bio;
55 	bio_end_io_t *end_io;
56 	void *private;
57 	struct btrfs_fs_info *info;
58 	int error;
59 	int metadata;
60 	struct list_head list;
61 	struct btrfs_work work;
62 };
63 
64 /*
65  * async submit bios are used to offload expensive checksumming
66  * onto the worker threads.  They checksum file and metadata bios
67  * just before they are sent down the IO stack.
68  */
69 struct async_submit_bio {
70 	struct inode *inode;
71 	struct bio *bio;
72 	struct list_head list;
73 	extent_submit_bio_hook_t *submit_bio_start;
74 	extent_submit_bio_hook_t *submit_bio_done;
75 	int rw;
76 	int mirror_num;
77 	unsigned long bio_flags;
78 	/*
79 	 * bio_offset is optional, can be used if the pages in the bio
80 	 * can't tell us where in the file the bio should go
81 	 */
82 	u64 bio_offset;
83 	struct btrfs_work work;
84 };
85 
86 /* These are used to set the lockdep class on the extent buffer locks.
87  * The class is set by the readpage_end_io_hook after the buffer has
88  * passed csum validation but before the pages are unlocked.
89  *
90  * The lockdep class is also set by btrfs_init_new_buffer on freshly
91  * allocated blocks.
92  *
93  * The class is based on the level in the tree block, which allows lockdep
94  * to know that lower nodes nest inside the locks of higher nodes.
95  *
96  * We also add a check to make sure the highest level of the tree is
97  * the same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this
98  * code needs update as well.
99  */
100 #ifdef CONFIG_DEBUG_LOCK_ALLOC
101 # if BTRFS_MAX_LEVEL != 8
102 #  error
103 # endif
104 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
105 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
106 	/* leaf */
107 	"btrfs-extent-00",
108 	"btrfs-extent-01",
109 	"btrfs-extent-02",
110 	"btrfs-extent-03",
111 	"btrfs-extent-04",
112 	"btrfs-extent-05",
113 	"btrfs-extent-06",
114 	"btrfs-extent-07",
115 	/* highest possible level */
116 	"btrfs-extent-08",
117 };
118 #endif
119 
120 /*
121  * extents on the btree inode are pretty simple, there's one extent
122  * that covers the entire device
123  */
124 static struct extent_map *btree_get_extent(struct inode *inode,
125 		struct page *page, size_t page_offset, u64 start, u64 len,
126 		int create)
127 {
128 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
129 	struct extent_map *em;
130 	int ret;
131 
132 	read_lock(&em_tree->lock);
133 	em = lookup_extent_mapping(em_tree, start, len);
134 	if (em) {
135 		em->bdev =
136 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
137 		read_unlock(&em_tree->lock);
138 		goto out;
139 	}
140 	read_unlock(&em_tree->lock);
141 
142 	em = alloc_extent_map(GFP_NOFS);
143 	if (!em) {
144 		em = ERR_PTR(-ENOMEM);
145 		goto out;
146 	}
147 	em->start = 0;
148 	em->len = (u64)-1;
149 	em->block_len = (u64)-1;
150 	em->block_start = 0;
151 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
152 
153 	write_lock(&em_tree->lock);
154 	ret = add_extent_mapping(em_tree, em);
155 	if (ret == -EEXIST) {
156 		u64 failed_start = em->start;
157 		u64 failed_len = em->len;
158 
159 		free_extent_map(em);
160 		em = lookup_extent_mapping(em_tree, start, len);
161 		if (em) {
162 			ret = 0;
163 		} else {
164 			em = lookup_extent_mapping(em_tree, failed_start,
165 						   failed_len);
166 			ret = -EIO;
167 		}
168 	} else if (ret) {
169 		free_extent_map(em);
170 		em = NULL;
171 	}
172 	write_unlock(&em_tree->lock);
173 
174 	if (ret)
175 		em = ERR_PTR(ret);
176 out:
177 	return em;
178 }
179 
180 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
181 {
182 	return crc32c(seed, data, len);
183 }
184 
185 void btrfs_csum_final(u32 crc, char *result)
186 {
187 	*(__le32 *)result = ~cpu_to_le32(crc);
188 }
189 
190 /*
191  * compute the csum for a btree block, and either verify it or write it
192  * into the csum field of the block.
193  */
194 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
195 			   int verify)
196 {
197 	u16 csum_size =
198 		btrfs_super_csum_size(&root->fs_info->super_copy);
199 	char *result = NULL;
200 	unsigned long len;
201 	unsigned long cur_len;
202 	unsigned long offset = BTRFS_CSUM_SIZE;
203 	char *map_token = NULL;
204 	char *kaddr;
205 	unsigned long map_start;
206 	unsigned long map_len;
207 	int err;
208 	u32 crc = ~(u32)0;
209 	unsigned long inline_result;
210 
211 	len = buf->len - offset;
212 	while (len > 0) {
213 		err = map_private_extent_buffer(buf, offset, 32,
214 					&map_token, &kaddr,
215 					&map_start, &map_len, KM_USER0);
216 		if (err)
217 			return 1;
218 		cur_len = min(len, map_len - (offset - map_start));
219 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
220 				      crc, cur_len);
221 		len -= cur_len;
222 		offset += cur_len;
223 		unmap_extent_buffer(buf, map_token, KM_USER0);
224 	}
225 	if (csum_size > sizeof(inline_result)) {
226 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
227 		if (!result)
228 			return 1;
229 	} else {
230 		result = (char *)&inline_result;
231 	}
232 
233 	btrfs_csum_final(crc, result);
234 
235 	if (verify) {
236 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
237 			u32 val;
238 			u32 found = 0;
239 			memcpy(&found, result, csum_size);
240 
241 			read_extent_buffer(buf, &val, 0, csum_size);
242 			if (printk_ratelimit()) {
243 				printk(KERN_INFO "btrfs: %s checksum verify "
244 				       "failed on %llu wanted %X found %X "
245 				       "level %d\n",
246 				       root->fs_info->sb->s_id,
247 				       (unsigned long long)buf->start, val, found,
248 				       btrfs_header_level(buf));
249 			}
250 			if (result != (char *)&inline_result)
251 				kfree(result);
252 			return 1;
253 		}
254 	} else {
255 		write_extent_buffer(buf, result, 0, csum_size);
256 	}
257 	if (result != (char *)&inline_result)
258 		kfree(result);
259 	return 0;
260 }
261 
262 /*
263  * we can't consider a given block up to date unless the transid of the
264  * block matches the transid in the parent node's pointer.  This is how we
265  * detect blocks that either didn't get written at all or got written
266  * in the wrong place.
267  */
268 static int verify_parent_transid(struct extent_io_tree *io_tree,
269 				 struct extent_buffer *eb, u64 parent_transid)
270 {
271 	struct extent_state *cached_state = NULL;
272 	int ret;
273 
274 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
275 		return 0;
276 
277 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
278 			 0, &cached_state, GFP_NOFS);
279 	if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
280 	    btrfs_header_generation(eb) == parent_transid) {
281 		ret = 0;
282 		goto out;
283 	}
284 	if (printk_ratelimit()) {
285 		printk("parent transid verify failed on %llu wanted %llu "
286 		       "found %llu\n",
287 		       (unsigned long long)eb->start,
288 		       (unsigned long long)parent_transid,
289 		       (unsigned long long)btrfs_header_generation(eb));
290 	}
291 	ret = 1;
292 	clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
293 out:
294 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
295 			     &cached_state, GFP_NOFS);
296 	return ret;
297 }
298 
299 /*
300  * helper to read a given tree block, doing retries as required when
301  * the checksums don't match and we have alternate mirrors to try.
302  */
303 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
304 					  struct extent_buffer *eb,
305 					  u64 start, u64 parent_transid)
306 {
307 	struct extent_io_tree *io_tree;
308 	int ret;
309 	int num_copies = 0;
310 	int mirror_num = 0;
311 
312 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
313 	while (1) {
314 		ret = read_extent_buffer_pages(io_tree, eb, start, 1,
315 					       btree_get_extent, mirror_num);
316 		if (!ret &&
317 		    !verify_parent_transid(io_tree, eb, parent_transid))
318 			return ret;
319 
320 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
321 					      eb->start, eb->len);
322 		if (num_copies == 1)
323 			return ret;
324 
325 		mirror_num++;
326 		if (mirror_num > num_copies)
327 			return ret;
328 	}
329 	return -EIO;
330 }
331 
332 /*
333  * checksum a dirty tree block before IO.  This has extra checks to make sure
334  * we only fill in the checksum field in the first page of a multi-page block
335  */
336 
337 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
338 {
339 	struct extent_io_tree *tree;
340 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
341 	u64 found_start;
342 	unsigned long len;
343 	struct extent_buffer *eb;
344 	int ret;
345 
346 	tree = &BTRFS_I(page->mapping->host)->io_tree;
347 
348 	if (page->private == EXTENT_PAGE_PRIVATE)
349 		goto out;
350 	if (!page->private)
351 		goto out;
352 	len = page->private >> 2;
353 	WARN_ON(len == 0);
354 
355 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
356 	ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
357 					     btrfs_header_generation(eb));
358 	BUG_ON(ret);
359 	WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
360 
361 	found_start = btrfs_header_bytenr(eb);
362 	if (found_start != start) {
363 		WARN_ON(1);
364 		goto err;
365 	}
366 	if (eb->first_page != page) {
367 		WARN_ON(1);
368 		goto err;
369 	}
370 	if (!PageUptodate(page)) {
371 		WARN_ON(1);
372 		goto err;
373 	}
374 	csum_tree_block(root, eb, 0);
375 err:
376 	free_extent_buffer(eb);
377 out:
378 	return 0;
379 }
380 
381 static int check_tree_block_fsid(struct btrfs_root *root,
382 				 struct extent_buffer *eb)
383 {
384 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
385 	u8 fsid[BTRFS_UUID_SIZE];
386 	int ret = 1;
387 
388 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
389 			   BTRFS_FSID_SIZE);
390 	while (fs_devices) {
391 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
392 			ret = 0;
393 			break;
394 		}
395 		fs_devices = fs_devices->seed;
396 	}
397 	return ret;
398 }
399 
400 #ifdef CONFIG_DEBUG_LOCK_ALLOC
401 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
402 {
403 	lockdep_set_class_and_name(&eb->lock,
404 			   &btrfs_eb_class[level],
405 			   btrfs_eb_name[level]);
406 }
407 #endif
408 
409 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
410 			       struct extent_state *state)
411 {
412 	struct extent_io_tree *tree;
413 	u64 found_start;
414 	int found_level;
415 	unsigned long len;
416 	struct extent_buffer *eb;
417 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
418 	int ret = 0;
419 
420 	tree = &BTRFS_I(page->mapping->host)->io_tree;
421 	if (page->private == EXTENT_PAGE_PRIVATE)
422 		goto out;
423 	if (!page->private)
424 		goto out;
425 
426 	len = page->private >> 2;
427 	WARN_ON(len == 0);
428 
429 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
430 
431 	found_start = btrfs_header_bytenr(eb);
432 	if (found_start != start) {
433 		if (printk_ratelimit()) {
434 			printk(KERN_INFO "btrfs bad tree block start "
435 			       "%llu %llu\n",
436 			       (unsigned long long)found_start,
437 			       (unsigned long long)eb->start);
438 		}
439 		ret = -EIO;
440 		goto err;
441 	}
442 	if (eb->first_page != page) {
443 		printk(KERN_INFO "btrfs bad first page %lu %lu\n",
444 		       eb->first_page->index, page->index);
445 		WARN_ON(1);
446 		ret = -EIO;
447 		goto err;
448 	}
449 	if (check_tree_block_fsid(root, eb)) {
450 		if (printk_ratelimit()) {
451 			printk(KERN_INFO "btrfs bad fsid on block %llu\n",
452 			       (unsigned long long)eb->start);
453 		}
454 		ret = -EIO;
455 		goto err;
456 	}
457 	found_level = btrfs_header_level(eb);
458 
459 	btrfs_set_buffer_lockdep_class(eb, found_level);
460 
461 	ret = csum_tree_block(root, eb, 1);
462 	if (ret)
463 		ret = -EIO;
464 
465 	end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
466 	end = eb->start + end - 1;
467 err:
468 	free_extent_buffer(eb);
469 out:
470 	return ret;
471 }
472 
473 static void end_workqueue_bio(struct bio *bio, int err)
474 {
475 	struct end_io_wq *end_io_wq = bio->bi_private;
476 	struct btrfs_fs_info *fs_info;
477 
478 	fs_info = end_io_wq->info;
479 	end_io_wq->error = err;
480 	end_io_wq->work.func = end_workqueue_fn;
481 	end_io_wq->work.flags = 0;
482 
483 	if (bio->bi_rw & REQ_WRITE) {
484 		if (end_io_wq->metadata == 1)
485 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
486 					   &end_io_wq->work);
487 		else if (end_io_wq->metadata == 2)
488 			btrfs_queue_worker(&fs_info->endio_freespace_worker,
489 					   &end_io_wq->work);
490 		else
491 			btrfs_queue_worker(&fs_info->endio_write_workers,
492 					   &end_io_wq->work);
493 	} else {
494 		if (end_io_wq->metadata)
495 			btrfs_queue_worker(&fs_info->endio_meta_workers,
496 					   &end_io_wq->work);
497 		else
498 			btrfs_queue_worker(&fs_info->endio_workers,
499 					   &end_io_wq->work);
500 	}
501 }
502 
503 /*
504  * For the metadata arg you want
505  *
506  * 0 - if data
507  * 1 - if normal metadta
508  * 2 - if writing to the free space cache area
509  */
510 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
511 			int metadata)
512 {
513 	struct end_io_wq *end_io_wq;
514 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
515 	if (!end_io_wq)
516 		return -ENOMEM;
517 
518 	end_io_wq->private = bio->bi_private;
519 	end_io_wq->end_io = bio->bi_end_io;
520 	end_io_wq->info = info;
521 	end_io_wq->error = 0;
522 	end_io_wq->bio = bio;
523 	end_io_wq->metadata = metadata;
524 
525 	bio->bi_private = end_io_wq;
526 	bio->bi_end_io = end_workqueue_bio;
527 	return 0;
528 }
529 
530 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
531 {
532 	unsigned long limit = min_t(unsigned long,
533 				    info->workers.max_workers,
534 				    info->fs_devices->open_devices);
535 	return 256 * limit;
536 }
537 
538 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
539 {
540 	return atomic_read(&info->nr_async_bios) >
541 		btrfs_async_submit_limit(info);
542 }
543 
544 static void run_one_async_start(struct btrfs_work *work)
545 {
546 	struct async_submit_bio *async;
547 
548 	async = container_of(work, struct  async_submit_bio, work);
549 	async->submit_bio_start(async->inode, async->rw, async->bio,
550 			       async->mirror_num, async->bio_flags,
551 			       async->bio_offset);
552 }
553 
554 static void run_one_async_done(struct btrfs_work *work)
555 {
556 	struct btrfs_fs_info *fs_info;
557 	struct async_submit_bio *async;
558 	int limit;
559 
560 	async = container_of(work, struct  async_submit_bio, work);
561 	fs_info = BTRFS_I(async->inode)->root->fs_info;
562 
563 	limit = btrfs_async_submit_limit(fs_info);
564 	limit = limit * 2 / 3;
565 
566 	atomic_dec(&fs_info->nr_async_submits);
567 
568 	if (atomic_read(&fs_info->nr_async_submits) < limit &&
569 	    waitqueue_active(&fs_info->async_submit_wait))
570 		wake_up(&fs_info->async_submit_wait);
571 
572 	async->submit_bio_done(async->inode, async->rw, async->bio,
573 			       async->mirror_num, async->bio_flags,
574 			       async->bio_offset);
575 }
576 
577 static void run_one_async_free(struct btrfs_work *work)
578 {
579 	struct async_submit_bio *async;
580 
581 	async = container_of(work, struct  async_submit_bio, work);
582 	kfree(async);
583 }
584 
585 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
586 			int rw, struct bio *bio, int mirror_num,
587 			unsigned long bio_flags,
588 			u64 bio_offset,
589 			extent_submit_bio_hook_t *submit_bio_start,
590 			extent_submit_bio_hook_t *submit_bio_done)
591 {
592 	struct async_submit_bio *async;
593 
594 	async = kmalloc(sizeof(*async), GFP_NOFS);
595 	if (!async)
596 		return -ENOMEM;
597 
598 	async->inode = inode;
599 	async->rw = rw;
600 	async->bio = bio;
601 	async->mirror_num = mirror_num;
602 	async->submit_bio_start = submit_bio_start;
603 	async->submit_bio_done = submit_bio_done;
604 
605 	async->work.func = run_one_async_start;
606 	async->work.ordered_func = run_one_async_done;
607 	async->work.ordered_free = run_one_async_free;
608 
609 	async->work.flags = 0;
610 	async->bio_flags = bio_flags;
611 	async->bio_offset = bio_offset;
612 
613 	atomic_inc(&fs_info->nr_async_submits);
614 
615 	if (rw & REQ_SYNC)
616 		btrfs_set_work_high_prio(&async->work);
617 
618 	btrfs_queue_worker(&fs_info->workers, &async->work);
619 
620 	while (atomic_read(&fs_info->async_submit_draining) &&
621 	      atomic_read(&fs_info->nr_async_submits)) {
622 		wait_event(fs_info->async_submit_wait,
623 			   (atomic_read(&fs_info->nr_async_submits) == 0));
624 	}
625 
626 	return 0;
627 }
628 
629 static int btree_csum_one_bio(struct bio *bio)
630 {
631 	struct bio_vec *bvec = bio->bi_io_vec;
632 	int bio_index = 0;
633 	struct btrfs_root *root;
634 
635 	WARN_ON(bio->bi_vcnt <= 0);
636 	while (bio_index < bio->bi_vcnt) {
637 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
638 		csum_dirty_buffer(root, bvec->bv_page);
639 		bio_index++;
640 		bvec++;
641 	}
642 	return 0;
643 }
644 
645 static int __btree_submit_bio_start(struct inode *inode, int rw,
646 				    struct bio *bio, int mirror_num,
647 				    unsigned long bio_flags,
648 				    u64 bio_offset)
649 {
650 	/*
651 	 * when we're called for a write, we're already in the async
652 	 * submission context.  Just jump into btrfs_map_bio
653 	 */
654 	btree_csum_one_bio(bio);
655 	return 0;
656 }
657 
658 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
659 				 int mirror_num, unsigned long bio_flags,
660 				 u64 bio_offset)
661 {
662 	/*
663 	 * when we're called for a write, we're already in the async
664 	 * submission context.  Just jump into btrfs_map_bio
665 	 */
666 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
667 }
668 
669 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
670 				 int mirror_num, unsigned long bio_flags,
671 				 u64 bio_offset)
672 {
673 	int ret;
674 
675 	ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
676 					  bio, 1);
677 	BUG_ON(ret);
678 
679 	if (!(rw & REQ_WRITE)) {
680 		/*
681 		 * called for a read, do the setup so that checksum validation
682 		 * can happen in the async kernel threads
683 		 */
684 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
685 				     mirror_num, 0);
686 	}
687 
688 	/*
689 	 * kthread helpers are used to submit writes so that checksumming
690 	 * can happen in parallel across all CPUs
691 	 */
692 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
693 				   inode, rw, bio, mirror_num, 0,
694 				   bio_offset,
695 				   __btree_submit_bio_start,
696 				   __btree_submit_bio_done);
697 }
698 
699 #ifdef CONFIG_MIGRATION
700 static int btree_migratepage(struct address_space *mapping,
701 			struct page *newpage, struct page *page)
702 {
703 	/*
704 	 * we can't safely write a btree page from here,
705 	 * we haven't done the locking hook
706 	 */
707 	if (PageDirty(page))
708 		return -EAGAIN;
709 	/*
710 	 * Buffers may be managed in a filesystem specific way.
711 	 * We must have no buffers or drop them.
712 	 */
713 	if (page_has_private(page) &&
714 	    !try_to_release_page(page, GFP_KERNEL))
715 		return -EAGAIN;
716 	return migrate_page(mapping, newpage, page);
717 }
718 #endif
719 
720 static int btree_writepage(struct page *page, struct writeback_control *wbc)
721 {
722 	struct extent_io_tree *tree;
723 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
724 	struct extent_buffer *eb;
725 	int was_dirty;
726 
727 	tree = &BTRFS_I(page->mapping->host)->io_tree;
728 	if (!(current->flags & PF_MEMALLOC)) {
729 		return extent_write_full_page(tree, page,
730 					      btree_get_extent, wbc);
731 	}
732 
733 	redirty_page_for_writepage(wbc, page);
734 	eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
735 	WARN_ON(!eb);
736 
737 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
738 	if (!was_dirty) {
739 		spin_lock(&root->fs_info->delalloc_lock);
740 		root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
741 		spin_unlock(&root->fs_info->delalloc_lock);
742 	}
743 	free_extent_buffer(eb);
744 
745 	unlock_page(page);
746 	return 0;
747 }
748 
749 static int btree_writepages(struct address_space *mapping,
750 			    struct writeback_control *wbc)
751 {
752 	struct extent_io_tree *tree;
753 	tree = &BTRFS_I(mapping->host)->io_tree;
754 	if (wbc->sync_mode == WB_SYNC_NONE) {
755 		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
756 		u64 num_dirty;
757 		unsigned long thresh = 32 * 1024 * 1024;
758 
759 		if (wbc->for_kupdate)
760 			return 0;
761 
762 		/* this is a bit racy, but that's ok */
763 		num_dirty = root->fs_info->dirty_metadata_bytes;
764 		if (num_dirty < thresh)
765 			return 0;
766 	}
767 	return extent_writepages(tree, mapping, btree_get_extent, wbc);
768 }
769 
770 static int btree_readpage(struct file *file, struct page *page)
771 {
772 	struct extent_io_tree *tree;
773 	tree = &BTRFS_I(page->mapping->host)->io_tree;
774 	return extent_read_full_page(tree, page, btree_get_extent);
775 }
776 
777 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
778 {
779 	struct extent_io_tree *tree;
780 	struct extent_map_tree *map;
781 	int ret;
782 
783 	if (PageWriteback(page) || PageDirty(page))
784 		return 0;
785 
786 	tree = &BTRFS_I(page->mapping->host)->io_tree;
787 	map = &BTRFS_I(page->mapping->host)->extent_tree;
788 
789 	ret = try_release_extent_state(map, tree, page, gfp_flags);
790 	if (!ret)
791 		return 0;
792 
793 	ret = try_release_extent_buffer(tree, page);
794 	if (ret == 1) {
795 		ClearPagePrivate(page);
796 		set_page_private(page, 0);
797 		page_cache_release(page);
798 	}
799 
800 	return ret;
801 }
802 
803 static void btree_invalidatepage(struct page *page, unsigned long offset)
804 {
805 	struct extent_io_tree *tree;
806 	tree = &BTRFS_I(page->mapping->host)->io_tree;
807 	extent_invalidatepage(tree, page, offset);
808 	btree_releasepage(page, GFP_NOFS);
809 	if (PagePrivate(page)) {
810 		printk(KERN_WARNING "btrfs warning page private not zero "
811 		       "on page %llu\n", (unsigned long long)page_offset(page));
812 		ClearPagePrivate(page);
813 		set_page_private(page, 0);
814 		page_cache_release(page);
815 	}
816 }
817 
818 static const struct address_space_operations btree_aops = {
819 	.readpage	= btree_readpage,
820 	.writepage	= btree_writepage,
821 	.writepages	= btree_writepages,
822 	.releasepage	= btree_releasepage,
823 	.invalidatepage = btree_invalidatepage,
824 	.sync_page	= block_sync_page,
825 #ifdef CONFIG_MIGRATION
826 	.migratepage	= btree_migratepage,
827 #endif
828 };
829 
830 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
831 			 u64 parent_transid)
832 {
833 	struct extent_buffer *buf = NULL;
834 	struct inode *btree_inode = root->fs_info->btree_inode;
835 	int ret = 0;
836 
837 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
838 	if (!buf)
839 		return 0;
840 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
841 				 buf, 0, 0, btree_get_extent, 0);
842 	free_extent_buffer(buf);
843 	return ret;
844 }
845 
846 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
847 					    u64 bytenr, u32 blocksize)
848 {
849 	struct inode *btree_inode = root->fs_info->btree_inode;
850 	struct extent_buffer *eb;
851 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
852 				bytenr, blocksize, GFP_NOFS);
853 	return eb;
854 }
855 
856 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
857 						 u64 bytenr, u32 blocksize)
858 {
859 	struct inode *btree_inode = root->fs_info->btree_inode;
860 	struct extent_buffer *eb;
861 
862 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
863 				 bytenr, blocksize, NULL, GFP_NOFS);
864 	return eb;
865 }
866 
867 
868 int btrfs_write_tree_block(struct extent_buffer *buf)
869 {
870 	return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
871 					buf->start + buf->len - 1);
872 }
873 
874 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
875 {
876 	return filemap_fdatawait_range(buf->first_page->mapping,
877 				       buf->start, buf->start + buf->len - 1);
878 }
879 
880 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
881 				      u32 blocksize, u64 parent_transid)
882 {
883 	struct extent_buffer *buf = NULL;
884 	int ret;
885 
886 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
887 	if (!buf)
888 		return NULL;
889 
890 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
891 
892 	if (ret == 0)
893 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
894 	return buf;
895 
896 }
897 
898 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
899 		     struct extent_buffer *buf)
900 {
901 	struct inode *btree_inode = root->fs_info->btree_inode;
902 	if (btrfs_header_generation(buf) ==
903 	    root->fs_info->running_transaction->transid) {
904 		btrfs_assert_tree_locked(buf);
905 
906 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
907 			spin_lock(&root->fs_info->delalloc_lock);
908 			if (root->fs_info->dirty_metadata_bytes >= buf->len)
909 				root->fs_info->dirty_metadata_bytes -= buf->len;
910 			else
911 				WARN_ON(1);
912 			spin_unlock(&root->fs_info->delalloc_lock);
913 		}
914 
915 		/* ugh, clear_extent_buffer_dirty needs to lock the page */
916 		btrfs_set_lock_blocking(buf);
917 		clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
918 					  buf);
919 	}
920 	return 0;
921 }
922 
923 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
924 			u32 stripesize, struct btrfs_root *root,
925 			struct btrfs_fs_info *fs_info,
926 			u64 objectid)
927 {
928 	root->node = NULL;
929 	root->commit_root = NULL;
930 	root->sectorsize = sectorsize;
931 	root->nodesize = nodesize;
932 	root->leafsize = leafsize;
933 	root->stripesize = stripesize;
934 	root->ref_cows = 0;
935 	root->track_dirty = 0;
936 	root->in_radix = 0;
937 	root->orphan_item_inserted = 0;
938 	root->orphan_cleanup_state = 0;
939 
940 	root->fs_info = fs_info;
941 	root->objectid = objectid;
942 	root->last_trans = 0;
943 	root->highest_objectid = 0;
944 	root->name = NULL;
945 	root->in_sysfs = 0;
946 	root->inode_tree = RB_ROOT;
947 	root->block_rsv = NULL;
948 	root->orphan_block_rsv = NULL;
949 
950 	INIT_LIST_HEAD(&root->dirty_list);
951 	INIT_LIST_HEAD(&root->orphan_list);
952 	INIT_LIST_HEAD(&root->root_list);
953 	spin_lock_init(&root->node_lock);
954 	spin_lock_init(&root->orphan_lock);
955 	spin_lock_init(&root->inode_lock);
956 	spin_lock_init(&root->accounting_lock);
957 	mutex_init(&root->objectid_mutex);
958 	mutex_init(&root->log_mutex);
959 	init_waitqueue_head(&root->log_writer_wait);
960 	init_waitqueue_head(&root->log_commit_wait[0]);
961 	init_waitqueue_head(&root->log_commit_wait[1]);
962 	atomic_set(&root->log_commit[0], 0);
963 	atomic_set(&root->log_commit[1], 0);
964 	atomic_set(&root->log_writers, 0);
965 	root->log_batch = 0;
966 	root->log_transid = 0;
967 	root->last_log_commit = 0;
968 	extent_io_tree_init(&root->dirty_log_pages,
969 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
970 
971 	memset(&root->root_key, 0, sizeof(root->root_key));
972 	memset(&root->root_item, 0, sizeof(root->root_item));
973 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
974 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
975 	root->defrag_trans_start = fs_info->generation;
976 	init_completion(&root->kobj_unregister);
977 	root->defrag_running = 0;
978 	root->root_key.objectid = objectid;
979 	root->anon_super.s_root = NULL;
980 	root->anon_super.s_dev = 0;
981 	INIT_LIST_HEAD(&root->anon_super.s_list);
982 	INIT_LIST_HEAD(&root->anon_super.s_instances);
983 	init_rwsem(&root->anon_super.s_umount);
984 
985 	return 0;
986 }
987 
988 static int find_and_setup_root(struct btrfs_root *tree_root,
989 			       struct btrfs_fs_info *fs_info,
990 			       u64 objectid,
991 			       struct btrfs_root *root)
992 {
993 	int ret;
994 	u32 blocksize;
995 	u64 generation;
996 
997 	__setup_root(tree_root->nodesize, tree_root->leafsize,
998 		     tree_root->sectorsize, tree_root->stripesize,
999 		     root, fs_info, objectid);
1000 	ret = btrfs_find_last_root(tree_root, objectid,
1001 				   &root->root_item, &root->root_key);
1002 	if (ret > 0)
1003 		return -ENOENT;
1004 	BUG_ON(ret);
1005 
1006 	generation = btrfs_root_generation(&root->root_item);
1007 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1008 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1009 				     blocksize, generation);
1010 	if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1011 		free_extent_buffer(root->node);
1012 		return -EIO;
1013 	}
1014 	root->commit_root = btrfs_root_node(root);
1015 	return 0;
1016 }
1017 
1018 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1019 					 struct btrfs_fs_info *fs_info)
1020 {
1021 	struct btrfs_root *root;
1022 	struct btrfs_root *tree_root = fs_info->tree_root;
1023 	struct extent_buffer *leaf;
1024 
1025 	root = kzalloc(sizeof(*root), GFP_NOFS);
1026 	if (!root)
1027 		return ERR_PTR(-ENOMEM);
1028 
1029 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1030 		     tree_root->sectorsize, tree_root->stripesize,
1031 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1032 
1033 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1034 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1035 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1036 	/*
1037 	 * log trees do not get reference counted because they go away
1038 	 * before a real commit is actually done.  They do store pointers
1039 	 * to file data extents, and those reference counts still get
1040 	 * updated (along with back refs to the log tree).
1041 	 */
1042 	root->ref_cows = 0;
1043 
1044 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1045 				      BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1046 	if (IS_ERR(leaf)) {
1047 		kfree(root);
1048 		return ERR_CAST(leaf);
1049 	}
1050 
1051 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1052 	btrfs_set_header_bytenr(leaf, leaf->start);
1053 	btrfs_set_header_generation(leaf, trans->transid);
1054 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1055 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1056 	root->node = leaf;
1057 
1058 	write_extent_buffer(root->node, root->fs_info->fsid,
1059 			    (unsigned long)btrfs_header_fsid(root->node),
1060 			    BTRFS_FSID_SIZE);
1061 	btrfs_mark_buffer_dirty(root->node);
1062 	btrfs_tree_unlock(root->node);
1063 	return root;
1064 }
1065 
1066 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1067 			     struct btrfs_fs_info *fs_info)
1068 {
1069 	struct btrfs_root *log_root;
1070 
1071 	log_root = alloc_log_tree(trans, fs_info);
1072 	if (IS_ERR(log_root))
1073 		return PTR_ERR(log_root);
1074 	WARN_ON(fs_info->log_root_tree);
1075 	fs_info->log_root_tree = log_root;
1076 	return 0;
1077 }
1078 
1079 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1080 		       struct btrfs_root *root)
1081 {
1082 	struct btrfs_root *log_root;
1083 	struct btrfs_inode_item *inode_item;
1084 
1085 	log_root = alloc_log_tree(trans, root->fs_info);
1086 	if (IS_ERR(log_root))
1087 		return PTR_ERR(log_root);
1088 
1089 	log_root->last_trans = trans->transid;
1090 	log_root->root_key.offset = root->root_key.objectid;
1091 
1092 	inode_item = &log_root->root_item.inode;
1093 	inode_item->generation = cpu_to_le64(1);
1094 	inode_item->size = cpu_to_le64(3);
1095 	inode_item->nlink = cpu_to_le32(1);
1096 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1097 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1098 
1099 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1100 
1101 	WARN_ON(root->log_root);
1102 	root->log_root = log_root;
1103 	root->log_transid = 0;
1104 	root->last_log_commit = 0;
1105 	return 0;
1106 }
1107 
1108 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1109 					       struct btrfs_key *location)
1110 {
1111 	struct btrfs_root *root;
1112 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1113 	struct btrfs_path *path;
1114 	struct extent_buffer *l;
1115 	u64 generation;
1116 	u32 blocksize;
1117 	int ret = 0;
1118 
1119 	root = kzalloc(sizeof(*root), GFP_NOFS);
1120 	if (!root)
1121 		return ERR_PTR(-ENOMEM);
1122 	if (location->offset == (u64)-1) {
1123 		ret = find_and_setup_root(tree_root, fs_info,
1124 					  location->objectid, root);
1125 		if (ret) {
1126 			kfree(root);
1127 			return ERR_PTR(ret);
1128 		}
1129 		goto out;
1130 	}
1131 
1132 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1133 		     tree_root->sectorsize, tree_root->stripesize,
1134 		     root, fs_info, location->objectid);
1135 
1136 	path = btrfs_alloc_path();
1137 	BUG_ON(!path);
1138 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1139 	if (ret == 0) {
1140 		l = path->nodes[0];
1141 		read_extent_buffer(l, &root->root_item,
1142 				btrfs_item_ptr_offset(l, path->slots[0]),
1143 				sizeof(root->root_item));
1144 		memcpy(&root->root_key, location, sizeof(*location));
1145 	}
1146 	btrfs_free_path(path);
1147 	if (ret) {
1148 		if (ret > 0)
1149 			ret = -ENOENT;
1150 		return ERR_PTR(ret);
1151 	}
1152 
1153 	generation = btrfs_root_generation(&root->root_item);
1154 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1155 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1156 				     blocksize, generation);
1157 	root->commit_root = btrfs_root_node(root);
1158 	BUG_ON(!root->node);
1159 out:
1160 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID)
1161 		root->ref_cows = 1;
1162 
1163 	return root;
1164 }
1165 
1166 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1167 					u64 root_objectid)
1168 {
1169 	struct btrfs_root *root;
1170 
1171 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1172 		return fs_info->tree_root;
1173 	if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1174 		return fs_info->extent_root;
1175 
1176 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1177 				 (unsigned long)root_objectid);
1178 	return root;
1179 }
1180 
1181 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1182 					      struct btrfs_key *location)
1183 {
1184 	struct btrfs_root *root;
1185 	int ret;
1186 
1187 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1188 		return fs_info->tree_root;
1189 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1190 		return fs_info->extent_root;
1191 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1192 		return fs_info->chunk_root;
1193 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1194 		return fs_info->dev_root;
1195 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1196 		return fs_info->csum_root;
1197 again:
1198 	spin_lock(&fs_info->fs_roots_radix_lock);
1199 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1200 				 (unsigned long)location->objectid);
1201 	spin_unlock(&fs_info->fs_roots_radix_lock);
1202 	if (root)
1203 		return root;
1204 
1205 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1206 	if (IS_ERR(root))
1207 		return root;
1208 
1209 	set_anon_super(&root->anon_super, NULL);
1210 
1211 	if (btrfs_root_refs(&root->root_item) == 0) {
1212 		ret = -ENOENT;
1213 		goto fail;
1214 	}
1215 
1216 	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1217 	if (ret < 0)
1218 		goto fail;
1219 	if (ret == 0)
1220 		root->orphan_item_inserted = 1;
1221 
1222 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1223 	if (ret)
1224 		goto fail;
1225 
1226 	spin_lock(&fs_info->fs_roots_radix_lock);
1227 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1228 				(unsigned long)root->root_key.objectid,
1229 				root);
1230 	if (ret == 0)
1231 		root->in_radix = 1;
1232 
1233 	spin_unlock(&fs_info->fs_roots_radix_lock);
1234 	radix_tree_preload_end();
1235 	if (ret) {
1236 		if (ret == -EEXIST) {
1237 			free_fs_root(root);
1238 			goto again;
1239 		}
1240 		goto fail;
1241 	}
1242 
1243 	ret = btrfs_find_dead_roots(fs_info->tree_root,
1244 				    root->root_key.objectid);
1245 	WARN_ON(ret);
1246 	return root;
1247 fail:
1248 	free_fs_root(root);
1249 	return ERR_PTR(ret);
1250 }
1251 
1252 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1253 				      struct btrfs_key *location,
1254 				      const char *name, int namelen)
1255 {
1256 	return btrfs_read_fs_root_no_name(fs_info, location);
1257 #if 0
1258 	struct btrfs_root *root;
1259 	int ret;
1260 
1261 	root = btrfs_read_fs_root_no_name(fs_info, location);
1262 	if (!root)
1263 		return NULL;
1264 
1265 	if (root->in_sysfs)
1266 		return root;
1267 
1268 	ret = btrfs_set_root_name(root, name, namelen);
1269 	if (ret) {
1270 		free_extent_buffer(root->node);
1271 		kfree(root);
1272 		return ERR_PTR(ret);
1273 	}
1274 
1275 	ret = btrfs_sysfs_add_root(root);
1276 	if (ret) {
1277 		free_extent_buffer(root->node);
1278 		kfree(root->name);
1279 		kfree(root);
1280 		return ERR_PTR(ret);
1281 	}
1282 	root->in_sysfs = 1;
1283 	return root;
1284 #endif
1285 }
1286 
1287 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1288 {
1289 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1290 	int ret = 0;
1291 	struct btrfs_device *device;
1292 	struct backing_dev_info *bdi;
1293 
1294 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1295 		if (!device->bdev)
1296 			continue;
1297 		bdi = blk_get_backing_dev_info(device->bdev);
1298 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1299 			ret = 1;
1300 			break;
1301 		}
1302 	}
1303 	return ret;
1304 }
1305 
1306 /*
1307  * this unplugs every device on the box, and it is only used when page
1308  * is null
1309  */
1310 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1311 {
1312 	struct btrfs_device *device;
1313 	struct btrfs_fs_info *info;
1314 
1315 	info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1316 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1317 		if (!device->bdev)
1318 			continue;
1319 
1320 		bdi = blk_get_backing_dev_info(device->bdev);
1321 		if (bdi->unplug_io_fn)
1322 			bdi->unplug_io_fn(bdi, page);
1323 	}
1324 }
1325 
1326 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1327 {
1328 	struct inode *inode;
1329 	struct extent_map_tree *em_tree;
1330 	struct extent_map *em;
1331 	struct address_space *mapping;
1332 	u64 offset;
1333 
1334 	/* the generic O_DIRECT read code does this */
1335 	if (1 || !page) {
1336 		__unplug_io_fn(bdi, page);
1337 		return;
1338 	}
1339 
1340 	/*
1341 	 * page->mapping may change at any time.  Get a consistent copy
1342 	 * and use that for everything below
1343 	 */
1344 	smp_mb();
1345 	mapping = page->mapping;
1346 	if (!mapping)
1347 		return;
1348 
1349 	inode = mapping->host;
1350 
1351 	/*
1352 	 * don't do the expensive searching for a small number of
1353 	 * devices
1354 	 */
1355 	if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1356 		__unplug_io_fn(bdi, page);
1357 		return;
1358 	}
1359 
1360 	offset = page_offset(page);
1361 
1362 	em_tree = &BTRFS_I(inode)->extent_tree;
1363 	read_lock(&em_tree->lock);
1364 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1365 	read_unlock(&em_tree->lock);
1366 	if (!em) {
1367 		__unplug_io_fn(bdi, page);
1368 		return;
1369 	}
1370 
1371 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1372 		free_extent_map(em);
1373 		__unplug_io_fn(bdi, page);
1374 		return;
1375 	}
1376 	offset = offset - em->start;
1377 	btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1378 			  em->block_start + offset, page);
1379 	free_extent_map(em);
1380 }
1381 
1382 /*
1383  * If this fails, caller must call bdi_destroy() to get rid of the
1384  * bdi again.
1385  */
1386 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1387 {
1388 	int err;
1389 
1390 	bdi->capabilities = BDI_CAP_MAP_COPY;
1391 	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1392 	if (err)
1393 		return err;
1394 
1395 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1396 	bdi->unplug_io_fn	= btrfs_unplug_io_fn;
1397 	bdi->unplug_io_data	= info;
1398 	bdi->congested_fn	= btrfs_congested_fn;
1399 	bdi->congested_data	= info;
1400 	return 0;
1401 }
1402 
1403 static int bio_ready_for_csum(struct bio *bio)
1404 {
1405 	u64 length = 0;
1406 	u64 buf_len = 0;
1407 	u64 start = 0;
1408 	struct page *page;
1409 	struct extent_io_tree *io_tree = NULL;
1410 	struct bio_vec *bvec;
1411 	int i;
1412 	int ret;
1413 
1414 	bio_for_each_segment(bvec, bio, i) {
1415 		page = bvec->bv_page;
1416 		if (page->private == EXTENT_PAGE_PRIVATE) {
1417 			length += bvec->bv_len;
1418 			continue;
1419 		}
1420 		if (!page->private) {
1421 			length += bvec->bv_len;
1422 			continue;
1423 		}
1424 		length = bvec->bv_len;
1425 		buf_len = page->private >> 2;
1426 		start = page_offset(page) + bvec->bv_offset;
1427 		io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1428 	}
1429 	/* are we fully contained in this bio? */
1430 	if (buf_len <= length)
1431 		return 1;
1432 
1433 	ret = extent_range_uptodate(io_tree, start + length,
1434 				    start + buf_len - 1);
1435 	return ret;
1436 }
1437 
1438 /*
1439  * called by the kthread helper functions to finally call the bio end_io
1440  * functions.  This is where read checksum verification actually happens
1441  */
1442 static void end_workqueue_fn(struct btrfs_work *work)
1443 {
1444 	struct bio *bio;
1445 	struct end_io_wq *end_io_wq;
1446 	struct btrfs_fs_info *fs_info;
1447 	int error;
1448 
1449 	end_io_wq = container_of(work, struct end_io_wq, work);
1450 	bio = end_io_wq->bio;
1451 	fs_info = end_io_wq->info;
1452 
1453 	/* metadata bio reads are special because the whole tree block must
1454 	 * be checksummed at once.  This makes sure the entire block is in
1455 	 * ram and up to date before trying to verify things.  For
1456 	 * blocksize <= pagesize, it is basically a noop
1457 	 */
1458 	if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
1459 	    !bio_ready_for_csum(bio)) {
1460 		btrfs_queue_worker(&fs_info->endio_meta_workers,
1461 				   &end_io_wq->work);
1462 		return;
1463 	}
1464 	error = end_io_wq->error;
1465 	bio->bi_private = end_io_wq->private;
1466 	bio->bi_end_io = end_io_wq->end_io;
1467 	kfree(end_io_wq);
1468 	bio_endio(bio, error);
1469 }
1470 
1471 static int cleaner_kthread(void *arg)
1472 {
1473 	struct btrfs_root *root = arg;
1474 
1475 	do {
1476 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1477 
1478 		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1479 		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
1480 			btrfs_run_delayed_iputs(root);
1481 			btrfs_clean_old_snapshots(root);
1482 			mutex_unlock(&root->fs_info->cleaner_mutex);
1483 		}
1484 
1485 		if (freezing(current)) {
1486 			refrigerator();
1487 		} else {
1488 			set_current_state(TASK_INTERRUPTIBLE);
1489 			if (!kthread_should_stop())
1490 				schedule();
1491 			__set_current_state(TASK_RUNNING);
1492 		}
1493 	} while (!kthread_should_stop());
1494 	return 0;
1495 }
1496 
1497 static int transaction_kthread(void *arg)
1498 {
1499 	struct btrfs_root *root = arg;
1500 	struct btrfs_trans_handle *trans;
1501 	struct btrfs_transaction *cur;
1502 	u64 transid;
1503 	unsigned long now;
1504 	unsigned long delay;
1505 	int ret;
1506 
1507 	do {
1508 		delay = HZ * 30;
1509 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1510 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1511 
1512 		spin_lock(&root->fs_info->new_trans_lock);
1513 		cur = root->fs_info->running_transaction;
1514 		if (!cur) {
1515 			spin_unlock(&root->fs_info->new_trans_lock);
1516 			goto sleep;
1517 		}
1518 
1519 		now = get_seconds();
1520 		if (!cur->blocked &&
1521 		    (now < cur->start_time || now - cur->start_time < 30)) {
1522 			spin_unlock(&root->fs_info->new_trans_lock);
1523 			delay = HZ * 5;
1524 			goto sleep;
1525 		}
1526 		transid = cur->transid;
1527 		spin_unlock(&root->fs_info->new_trans_lock);
1528 
1529 		trans = btrfs_join_transaction(root, 1);
1530 		if (transid == trans->transid) {
1531 			ret = btrfs_commit_transaction(trans, root);
1532 			BUG_ON(ret);
1533 		} else {
1534 			btrfs_end_transaction(trans, root);
1535 		}
1536 sleep:
1537 		wake_up_process(root->fs_info->cleaner_kthread);
1538 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1539 
1540 		if (freezing(current)) {
1541 			refrigerator();
1542 		} else {
1543 			set_current_state(TASK_INTERRUPTIBLE);
1544 			if (!kthread_should_stop() &&
1545 			    !btrfs_transaction_blocked(root->fs_info))
1546 				schedule_timeout(delay);
1547 			__set_current_state(TASK_RUNNING);
1548 		}
1549 	} while (!kthread_should_stop());
1550 	return 0;
1551 }
1552 
1553 struct btrfs_root *open_ctree(struct super_block *sb,
1554 			      struct btrfs_fs_devices *fs_devices,
1555 			      char *options)
1556 {
1557 	u32 sectorsize;
1558 	u32 nodesize;
1559 	u32 leafsize;
1560 	u32 blocksize;
1561 	u32 stripesize;
1562 	u64 generation;
1563 	u64 features;
1564 	struct btrfs_key location;
1565 	struct buffer_head *bh;
1566 	struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1567 						 GFP_NOFS);
1568 	struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1569 						 GFP_NOFS);
1570 	struct btrfs_root *tree_root = btrfs_sb(sb);
1571 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1572 	struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1573 						GFP_NOFS);
1574 	struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1575 					      GFP_NOFS);
1576 	struct btrfs_root *log_tree_root;
1577 
1578 	int ret;
1579 	int err = -EINVAL;
1580 
1581 	struct btrfs_super_block *disk_super;
1582 
1583 	if (!extent_root || !tree_root || !fs_info ||
1584 	    !chunk_root || !dev_root || !csum_root) {
1585 		err = -ENOMEM;
1586 		goto fail;
1587 	}
1588 
1589 	ret = init_srcu_struct(&fs_info->subvol_srcu);
1590 	if (ret) {
1591 		err = ret;
1592 		goto fail;
1593 	}
1594 
1595 	ret = setup_bdi(fs_info, &fs_info->bdi);
1596 	if (ret) {
1597 		err = ret;
1598 		goto fail_srcu;
1599 	}
1600 
1601 	fs_info->btree_inode = new_inode(sb);
1602 	if (!fs_info->btree_inode) {
1603 		err = -ENOMEM;
1604 		goto fail_bdi;
1605 	}
1606 
1607 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1608 	INIT_LIST_HEAD(&fs_info->trans_list);
1609 	INIT_LIST_HEAD(&fs_info->dead_roots);
1610 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
1611 	INIT_LIST_HEAD(&fs_info->hashers);
1612 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1613 	INIT_LIST_HEAD(&fs_info->ordered_operations);
1614 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
1615 	spin_lock_init(&fs_info->delalloc_lock);
1616 	spin_lock_init(&fs_info->new_trans_lock);
1617 	spin_lock_init(&fs_info->ref_cache_lock);
1618 	spin_lock_init(&fs_info->fs_roots_radix_lock);
1619 	spin_lock_init(&fs_info->delayed_iput_lock);
1620 
1621 	init_completion(&fs_info->kobj_unregister);
1622 	fs_info->tree_root = tree_root;
1623 	fs_info->extent_root = extent_root;
1624 	fs_info->csum_root = csum_root;
1625 	fs_info->chunk_root = chunk_root;
1626 	fs_info->dev_root = dev_root;
1627 	fs_info->fs_devices = fs_devices;
1628 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1629 	INIT_LIST_HEAD(&fs_info->space_info);
1630 	btrfs_mapping_init(&fs_info->mapping_tree);
1631 	btrfs_init_block_rsv(&fs_info->global_block_rsv);
1632 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1633 	btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1634 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1635 	btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1636 	INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
1637 	mutex_init(&fs_info->durable_block_rsv_mutex);
1638 	atomic_set(&fs_info->nr_async_submits, 0);
1639 	atomic_set(&fs_info->async_delalloc_pages, 0);
1640 	atomic_set(&fs_info->async_submit_draining, 0);
1641 	atomic_set(&fs_info->nr_async_bios, 0);
1642 	fs_info->sb = sb;
1643 	fs_info->max_inline = 8192 * 1024;
1644 	fs_info->metadata_ratio = 0;
1645 
1646 	fs_info->thread_pool_size = min_t(unsigned long,
1647 					  num_online_cpus() + 2, 8);
1648 
1649 	INIT_LIST_HEAD(&fs_info->ordered_extents);
1650 	spin_lock_init(&fs_info->ordered_extent_lock);
1651 
1652 	sb->s_blocksize = 4096;
1653 	sb->s_blocksize_bits = blksize_bits(4096);
1654 	sb->s_bdi = &fs_info->bdi;
1655 
1656 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1657 	fs_info->btree_inode->i_nlink = 1;
1658 	/*
1659 	 * we set the i_size on the btree inode to the max possible int.
1660 	 * the real end of the address space is determined by all of
1661 	 * the devices in the system
1662 	 */
1663 	fs_info->btree_inode->i_size = OFFSET_MAX;
1664 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1665 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1666 
1667 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1668 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1669 			     fs_info->btree_inode->i_mapping,
1670 			     GFP_NOFS);
1671 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1672 			     GFP_NOFS);
1673 
1674 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1675 
1676 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
1677 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1678 	       sizeof(struct btrfs_key));
1679 	BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1680 	insert_inode_hash(fs_info->btree_inode);
1681 
1682 	spin_lock_init(&fs_info->block_group_cache_lock);
1683 	fs_info->block_group_cache_tree = RB_ROOT;
1684 
1685 	extent_io_tree_init(&fs_info->freed_extents[0],
1686 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1687 	extent_io_tree_init(&fs_info->freed_extents[1],
1688 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1689 	fs_info->pinned_extents = &fs_info->freed_extents[0];
1690 	fs_info->do_barriers = 1;
1691 
1692 
1693 	mutex_init(&fs_info->trans_mutex);
1694 	mutex_init(&fs_info->ordered_operations_mutex);
1695 	mutex_init(&fs_info->tree_log_mutex);
1696 	mutex_init(&fs_info->chunk_mutex);
1697 	mutex_init(&fs_info->transaction_kthread_mutex);
1698 	mutex_init(&fs_info->cleaner_mutex);
1699 	mutex_init(&fs_info->volume_mutex);
1700 	init_rwsem(&fs_info->extent_commit_sem);
1701 	init_rwsem(&fs_info->cleanup_work_sem);
1702 	init_rwsem(&fs_info->subvol_sem);
1703 
1704 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1705 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1706 
1707 	init_waitqueue_head(&fs_info->transaction_throttle);
1708 	init_waitqueue_head(&fs_info->transaction_wait);
1709 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
1710 	init_waitqueue_head(&fs_info->async_submit_wait);
1711 
1712 	__setup_root(4096, 4096, 4096, 4096, tree_root,
1713 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
1714 
1715 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1716 	if (!bh)
1717 		goto fail_iput;
1718 
1719 	memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1720 	memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1721 	       sizeof(fs_info->super_for_commit));
1722 	brelse(bh);
1723 
1724 	memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1725 
1726 	disk_super = &fs_info->super_copy;
1727 	if (!btrfs_super_root(disk_super))
1728 		goto fail_iput;
1729 
1730 	ret = btrfs_parse_options(tree_root, options);
1731 	if (ret) {
1732 		err = ret;
1733 		goto fail_iput;
1734 	}
1735 
1736 	features = btrfs_super_incompat_flags(disk_super) &
1737 		~BTRFS_FEATURE_INCOMPAT_SUPP;
1738 	if (features) {
1739 		printk(KERN_ERR "BTRFS: couldn't mount because of "
1740 		       "unsupported optional features (%Lx).\n",
1741 		       (unsigned long long)features);
1742 		err = -EINVAL;
1743 		goto fail_iput;
1744 	}
1745 
1746 	features = btrfs_super_incompat_flags(disk_super);
1747 	if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
1748 		features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1749 		btrfs_set_super_incompat_flags(disk_super, features);
1750 	}
1751 
1752 	features = btrfs_super_compat_ro_flags(disk_super) &
1753 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
1754 	if (!(sb->s_flags & MS_RDONLY) && features) {
1755 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1756 		       "unsupported option features (%Lx).\n",
1757 		       (unsigned long long)features);
1758 		err = -EINVAL;
1759 		goto fail_iput;
1760 	}
1761 
1762 	btrfs_init_workers(&fs_info->generic_worker,
1763 			   "genwork", 1, NULL);
1764 
1765 	btrfs_init_workers(&fs_info->workers, "worker",
1766 			   fs_info->thread_pool_size,
1767 			   &fs_info->generic_worker);
1768 
1769 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1770 			   fs_info->thread_pool_size,
1771 			   &fs_info->generic_worker);
1772 
1773 	btrfs_init_workers(&fs_info->submit_workers, "submit",
1774 			   min_t(u64, fs_devices->num_devices,
1775 			   fs_info->thread_pool_size),
1776 			   &fs_info->generic_worker);
1777 
1778 	/* a higher idle thresh on the submit workers makes it much more
1779 	 * likely that bios will be send down in a sane order to the
1780 	 * devices
1781 	 */
1782 	fs_info->submit_workers.idle_thresh = 64;
1783 
1784 	fs_info->workers.idle_thresh = 16;
1785 	fs_info->workers.ordered = 1;
1786 
1787 	fs_info->delalloc_workers.idle_thresh = 2;
1788 	fs_info->delalloc_workers.ordered = 1;
1789 
1790 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
1791 			   &fs_info->generic_worker);
1792 	btrfs_init_workers(&fs_info->endio_workers, "endio",
1793 			   fs_info->thread_pool_size,
1794 			   &fs_info->generic_worker);
1795 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1796 			   fs_info->thread_pool_size,
1797 			   &fs_info->generic_worker);
1798 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
1799 			   "endio-meta-write", fs_info->thread_pool_size,
1800 			   &fs_info->generic_worker);
1801 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1802 			   fs_info->thread_pool_size,
1803 			   &fs_info->generic_worker);
1804 	btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
1805 			   1, &fs_info->generic_worker);
1806 
1807 	/*
1808 	 * endios are largely parallel and should have a very
1809 	 * low idle thresh
1810 	 */
1811 	fs_info->endio_workers.idle_thresh = 4;
1812 	fs_info->endio_meta_workers.idle_thresh = 4;
1813 
1814 	fs_info->endio_write_workers.idle_thresh = 2;
1815 	fs_info->endio_meta_write_workers.idle_thresh = 2;
1816 
1817 	btrfs_start_workers(&fs_info->workers, 1);
1818 	btrfs_start_workers(&fs_info->generic_worker, 1);
1819 	btrfs_start_workers(&fs_info->submit_workers, 1);
1820 	btrfs_start_workers(&fs_info->delalloc_workers, 1);
1821 	btrfs_start_workers(&fs_info->fixup_workers, 1);
1822 	btrfs_start_workers(&fs_info->endio_workers, 1);
1823 	btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1824 	btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1825 	btrfs_start_workers(&fs_info->endio_write_workers, 1);
1826 	btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
1827 
1828 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1829 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1830 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1831 
1832 	nodesize = btrfs_super_nodesize(disk_super);
1833 	leafsize = btrfs_super_leafsize(disk_super);
1834 	sectorsize = btrfs_super_sectorsize(disk_super);
1835 	stripesize = btrfs_super_stripesize(disk_super);
1836 	tree_root->nodesize = nodesize;
1837 	tree_root->leafsize = leafsize;
1838 	tree_root->sectorsize = sectorsize;
1839 	tree_root->stripesize = stripesize;
1840 
1841 	sb->s_blocksize = sectorsize;
1842 	sb->s_blocksize_bits = blksize_bits(sectorsize);
1843 
1844 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1845 		    sizeof(disk_super->magic))) {
1846 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1847 		goto fail_sb_buffer;
1848 	}
1849 
1850 	mutex_lock(&fs_info->chunk_mutex);
1851 	ret = btrfs_read_sys_array(tree_root);
1852 	mutex_unlock(&fs_info->chunk_mutex);
1853 	if (ret) {
1854 		printk(KERN_WARNING "btrfs: failed to read the system "
1855 		       "array on %s\n", sb->s_id);
1856 		goto fail_sb_buffer;
1857 	}
1858 
1859 	blocksize = btrfs_level_size(tree_root,
1860 				     btrfs_super_chunk_root_level(disk_super));
1861 	generation = btrfs_super_chunk_root_generation(disk_super);
1862 
1863 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
1864 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1865 
1866 	chunk_root->node = read_tree_block(chunk_root,
1867 					   btrfs_super_chunk_root(disk_super),
1868 					   blocksize, generation);
1869 	BUG_ON(!chunk_root->node);
1870 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1871 		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1872 		       sb->s_id);
1873 		goto fail_chunk_root;
1874 	}
1875 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1876 	chunk_root->commit_root = btrfs_root_node(chunk_root);
1877 
1878 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1879 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1880 	   BTRFS_UUID_SIZE);
1881 
1882 	mutex_lock(&fs_info->chunk_mutex);
1883 	ret = btrfs_read_chunk_tree(chunk_root);
1884 	mutex_unlock(&fs_info->chunk_mutex);
1885 	if (ret) {
1886 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1887 		       sb->s_id);
1888 		goto fail_chunk_root;
1889 	}
1890 
1891 	btrfs_close_extra_devices(fs_devices);
1892 
1893 	blocksize = btrfs_level_size(tree_root,
1894 				     btrfs_super_root_level(disk_super));
1895 	generation = btrfs_super_generation(disk_super);
1896 
1897 	tree_root->node = read_tree_block(tree_root,
1898 					  btrfs_super_root(disk_super),
1899 					  blocksize, generation);
1900 	if (!tree_root->node)
1901 		goto fail_chunk_root;
1902 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1903 		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1904 		       sb->s_id);
1905 		goto fail_tree_root;
1906 	}
1907 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1908 	tree_root->commit_root = btrfs_root_node(tree_root);
1909 
1910 	ret = find_and_setup_root(tree_root, fs_info,
1911 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1912 	if (ret)
1913 		goto fail_tree_root;
1914 	extent_root->track_dirty = 1;
1915 
1916 	ret = find_and_setup_root(tree_root, fs_info,
1917 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
1918 	if (ret)
1919 		goto fail_extent_root;
1920 	dev_root->track_dirty = 1;
1921 
1922 	ret = find_and_setup_root(tree_root, fs_info,
1923 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
1924 	if (ret)
1925 		goto fail_dev_root;
1926 
1927 	csum_root->track_dirty = 1;
1928 
1929 	fs_info->generation = generation;
1930 	fs_info->last_trans_committed = generation;
1931 	fs_info->data_alloc_profile = (u64)-1;
1932 	fs_info->metadata_alloc_profile = (u64)-1;
1933 	fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1934 
1935 	ret = btrfs_read_block_groups(extent_root);
1936 	if (ret) {
1937 		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
1938 		goto fail_block_groups;
1939 	}
1940 
1941 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1942 					       "btrfs-cleaner");
1943 	if (IS_ERR(fs_info->cleaner_kthread))
1944 		goto fail_block_groups;
1945 
1946 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
1947 						   tree_root,
1948 						   "btrfs-transaction");
1949 	if (IS_ERR(fs_info->transaction_kthread))
1950 		goto fail_cleaner;
1951 
1952 	if (!btrfs_test_opt(tree_root, SSD) &&
1953 	    !btrfs_test_opt(tree_root, NOSSD) &&
1954 	    !fs_info->fs_devices->rotating) {
1955 		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1956 		       "mode\n");
1957 		btrfs_set_opt(fs_info->mount_opt, SSD);
1958 	}
1959 
1960 	if (btrfs_super_log_root(disk_super) != 0) {
1961 		u64 bytenr = btrfs_super_log_root(disk_super);
1962 
1963 		if (fs_devices->rw_devices == 0) {
1964 			printk(KERN_WARNING "Btrfs log replay required "
1965 			       "on RO media\n");
1966 			err = -EIO;
1967 			goto fail_trans_kthread;
1968 		}
1969 		blocksize =
1970 		     btrfs_level_size(tree_root,
1971 				      btrfs_super_log_root_level(disk_super));
1972 
1973 		log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
1974 		if (!log_tree_root) {
1975 			err = -ENOMEM;
1976 			goto fail_trans_kthread;
1977 		}
1978 
1979 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
1980 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1981 
1982 		log_tree_root->node = read_tree_block(tree_root, bytenr,
1983 						      blocksize,
1984 						      generation + 1);
1985 		ret = btrfs_recover_log_trees(log_tree_root);
1986 		BUG_ON(ret);
1987 
1988 		if (sb->s_flags & MS_RDONLY) {
1989 			ret =  btrfs_commit_super(tree_root);
1990 			BUG_ON(ret);
1991 		}
1992 	}
1993 
1994 	ret = btrfs_find_orphan_roots(tree_root);
1995 	BUG_ON(ret);
1996 
1997 	if (!(sb->s_flags & MS_RDONLY)) {
1998 		ret = btrfs_cleanup_fs_roots(fs_info);
1999 		BUG_ON(ret);
2000 
2001 		ret = btrfs_recover_relocation(tree_root);
2002 		if (ret < 0) {
2003 			printk(KERN_WARNING
2004 			       "btrfs: failed to recover relocation\n");
2005 			err = -EINVAL;
2006 			goto fail_trans_kthread;
2007 		}
2008 	}
2009 
2010 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2011 	location.type = BTRFS_ROOT_ITEM_KEY;
2012 	location.offset = (u64)-1;
2013 
2014 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2015 	if (!fs_info->fs_root)
2016 		goto fail_trans_kthread;
2017 	if (IS_ERR(fs_info->fs_root)) {
2018 		err = PTR_ERR(fs_info->fs_root);
2019 		goto fail_trans_kthread;
2020 	}
2021 
2022 	if (!(sb->s_flags & MS_RDONLY)) {
2023 		down_read(&fs_info->cleanup_work_sem);
2024 		btrfs_orphan_cleanup(fs_info->fs_root);
2025 		btrfs_orphan_cleanup(fs_info->tree_root);
2026 		up_read(&fs_info->cleanup_work_sem);
2027 	}
2028 
2029 	return tree_root;
2030 
2031 fail_trans_kthread:
2032 	kthread_stop(fs_info->transaction_kthread);
2033 fail_cleaner:
2034 	kthread_stop(fs_info->cleaner_kthread);
2035 
2036 	/*
2037 	 * make sure we're done with the btree inode before we stop our
2038 	 * kthreads
2039 	 */
2040 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2041 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2042 
2043 fail_block_groups:
2044 	btrfs_free_block_groups(fs_info);
2045 	free_extent_buffer(csum_root->node);
2046 	free_extent_buffer(csum_root->commit_root);
2047 fail_dev_root:
2048 	free_extent_buffer(dev_root->node);
2049 	free_extent_buffer(dev_root->commit_root);
2050 fail_extent_root:
2051 	free_extent_buffer(extent_root->node);
2052 	free_extent_buffer(extent_root->commit_root);
2053 fail_tree_root:
2054 	free_extent_buffer(tree_root->node);
2055 	free_extent_buffer(tree_root->commit_root);
2056 fail_chunk_root:
2057 	free_extent_buffer(chunk_root->node);
2058 	free_extent_buffer(chunk_root->commit_root);
2059 fail_sb_buffer:
2060 	btrfs_stop_workers(&fs_info->generic_worker);
2061 	btrfs_stop_workers(&fs_info->fixup_workers);
2062 	btrfs_stop_workers(&fs_info->delalloc_workers);
2063 	btrfs_stop_workers(&fs_info->workers);
2064 	btrfs_stop_workers(&fs_info->endio_workers);
2065 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2066 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2067 	btrfs_stop_workers(&fs_info->endio_write_workers);
2068 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2069 	btrfs_stop_workers(&fs_info->submit_workers);
2070 fail_iput:
2071 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2072 	iput(fs_info->btree_inode);
2073 
2074 	btrfs_close_devices(fs_info->fs_devices);
2075 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2076 fail_bdi:
2077 	bdi_destroy(&fs_info->bdi);
2078 fail_srcu:
2079 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2080 fail:
2081 	kfree(extent_root);
2082 	kfree(tree_root);
2083 	kfree(fs_info);
2084 	kfree(chunk_root);
2085 	kfree(dev_root);
2086 	kfree(csum_root);
2087 	return ERR_PTR(err);
2088 }
2089 
2090 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2091 {
2092 	char b[BDEVNAME_SIZE];
2093 
2094 	if (uptodate) {
2095 		set_buffer_uptodate(bh);
2096 	} else {
2097 		if (printk_ratelimit()) {
2098 			printk(KERN_WARNING "lost page write due to "
2099 					"I/O error on %s\n",
2100 				       bdevname(bh->b_bdev, b));
2101 		}
2102 		/* note, we dont' set_buffer_write_io_error because we have
2103 		 * our own ways of dealing with the IO errors
2104 		 */
2105 		clear_buffer_uptodate(bh);
2106 	}
2107 	unlock_buffer(bh);
2108 	put_bh(bh);
2109 }
2110 
2111 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2112 {
2113 	struct buffer_head *bh;
2114 	struct buffer_head *latest = NULL;
2115 	struct btrfs_super_block *super;
2116 	int i;
2117 	u64 transid = 0;
2118 	u64 bytenr;
2119 
2120 	/* we would like to check all the supers, but that would make
2121 	 * a btrfs mount succeed after a mkfs from a different FS.
2122 	 * So, we need to add a special mount option to scan for
2123 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2124 	 */
2125 	for (i = 0; i < 1; i++) {
2126 		bytenr = btrfs_sb_offset(i);
2127 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2128 			break;
2129 		bh = __bread(bdev, bytenr / 4096, 4096);
2130 		if (!bh)
2131 			continue;
2132 
2133 		super = (struct btrfs_super_block *)bh->b_data;
2134 		if (btrfs_super_bytenr(super) != bytenr ||
2135 		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2136 			    sizeof(super->magic))) {
2137 			brelse(bh);
2138 			continue;
2139 		}
2140 
2141 		if (!latest || btrfs_super_generation(super) > transid) {
2142 			brelse(latest);
2143 			latest = bh;
2144 			transid = btrfs_super_generation(super);
2145 		} else {
2146 			brelse(bh);
2147 		}
2148 	}
2149 	return latest;
2150 }
2151 
2152 /*
2153  * this should be called twice, once with wait == 0 and
2154  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2155  * we write are pinned.
2156  *
2157  * They are released when wait == 1 is done.
2158  * max_mirrors must be the same for both runs, and it indicates how
2159  * many supers on this one device should be written.
2160  *
2161  * max_mirrors == 0 means to write them all.
2162  */
2163 static int write_dev_supers(struct btrfs_device *device,
2164 			    struct btrfs_super_block *sb,
2165 			    int do_barriers, int wait, int max_mirrors)
2166 {
2167 	struct buffer_head *bh;
2168 	int i;
2169 	int ret;
2170 	int errors = 0;
2171 	u32 crc;
2172 	u64 bytenr;
2173 	int last_barrier = 0;
2174 
2175 	if (max_mirrors == 0)
2176 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2177 
2178 	/* make sure only the last submit_bh does a barrier */
2179 	if (do_barriers) {
2180 		for (i = 0; i < max_mirrors; i++) {
2181 			bytenr = btrfs_sb_offset(i);
2182 			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2183 			    device->total_bytes)
2184 				break;
2185 			last_barrier = i;
2186 		}
2187 	}
2188 
2189 	for (i = 0; i < max_mirrors; i++) {
2190 		bytenr = btrfs_sb_offset(i);
2191 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2192 			break;
2193 
2194 		if (wait) {
2195 			bh = __find_get_block(device->bdev, bytenr / 4096,
2196 					      BTRFS_SUPER_INFO_SIZE);
2197 			BUG_ON(!bh);
2198 			wait_on_buffer(bh);
2199 			if (!buffer_uptodate(bh))
2200 				errors++;
2201 
2202 			/* drop our reference */
2203 			brelse(bh);
2204 
2205 			/* drop the reference from the wait == 0 run */
2206 			brelse(bh);
2207 			continue;
2208 		} else {
2209 			btrfs_set_super_bytenr(sb, bytenr);
2210 
2211 			crc = ~(u32)0;
2212 			crc = btrfs_csum_data(NULL, (char *)sb +
2213 					      BTRFS_CSUM_SIZE, crc,
2214 					      BTRFS_SUPER_INFO_SIZE -
2215 					      BTRFS_CSUM_SIZE);
2216 			btrfs_csum_final(crc, sb->csum);
2217 
2218 			/*
2219 			 * one reference for us, and we leave it for the
2220 			 * caller
2221 			 */
2222 			bh = __getblk(device->bdev, bytenr / 4096,
2223 				      BTRFS_SUPER_INFO_SIZE);
2224 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2225 
2226 			/* one reference for submit_bh */
2227 			get_bh(bh);
2228 
2229 			set_buffer_uptodate(bh);
2230 			lock_buffer(bh);
2231 			bh->b_end_io = btrfs_end_buffer_write_sync;
2232 		}
2233 
2234 		if (i == last_barrier && do_barriers)
2235 			ret = submit_bh(WRITE_FLUSH_FUA, bh);
2236 		else
2237 			ret = submit_bh(WRITE_SYNC, bh);
2238 
2239 		if (ret)
2240 			errors++;
2241 	}
2242 	return errors < i ? 0 : -1;
2243 }
2244 
2245 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2246 {
2247 	struct list_head *head;
2248 	struct btrfs_device *dev;
2249 	struct btrfs_super_block *sb;
2250 	struct btrfs_dev_item *dev_item;
2251 	int ret;
2252 	int do_barriers;
2253 	int max_errors;
2254 	int total_errors = 0;
2255 	u64 flags;
2256 
2257 	max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2258 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2259 
2260 	sb = &root->fs_info->super_for_commit;
2261 	dev_item = &sb->dev_item;
2262 
2263 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2264 	head = &root->fs_info->fs_devices->devices;
2265 	list_for_each_entry(dev, head, dev_list) {
2266 		if (!dev->bdev) {
2267 			total_errors++;
2268 			continue;
2269 		}
2270 		if (!dev->in_fs_metadata || !dev->writeable)
2271 			continue;
2272 
2273 		btrfs_set_stack_device_generation(dev_item, 0);
2274 		btrfs_set_stack_device_type(dev_item, dev->type);
2275 		btrfs_set_stack_device_id(dev_item, dev->devid);
2276 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2277 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2278 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2279 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2280 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2281 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2282 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2283 
2284 		flags = btrfs_super_flags(sb);
2285 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2286 
2287 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2288 		if (ret)
2289 			total_errors++;
2290 	}
2291 	if (total_errors > max_errors) {
2292 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2293 		       total_errors);
2294 		BUG();
2295 	}
2296 
2297 	total_errors = 0;
2298 	list_for_each_entry(dev, head, dev_list) {
2299 		if (!dev->bdev)
2300 			continue;
2301 		if (!dev->in_fs_metadata || !dev->writeable)
2302 			continue;
2303 
2304 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2305 		if (ret)
2306 			total_errors++;
2307 	}
2308 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2309 	if (total_errors > max_errors) {
2310 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2311 		       total_errors);
2312 		BUG();
2313 	}
2314 	return 0;
2315 }
2316 
2317 int write_ctree_super(struct btrfs_trans_handle *trans,
2318 		      struct btrfs_root *root, int max_mirrors)
2319 {
2320 	int ret;
2321 
2322 	ret = write_all_supers(root, max_mirrors);
2323 	return ret;
2324 }
2325 
2326 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2327 {
2328 	spin_lock(&fs_info->fs_roots_radix_lock);
2329 	radix_tree_delete(&fs_info->fs_roots_radix,
2330 			  (unsigned long)root->root_key.objectid);
2331 	spin_unlock(&fs_info->fs_roots_radix_lock);
2332 
2333 	if (btrfs_root_refs(&root->root_item) == 0)
2334 		synchronize_srcu(&fs_info->subvol_srcu);
2335 
2336 	free_fs_root(root);
2337 	return 0;
2338 }
2339 
2340 static void free_fs_root(struct btrfs_root *root)
2341 {
2342 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2343 	if (root->anon_super.s_dev) {
2344 		down_write(&root->anon_super.s_umount);
2345 		kill_anon_super(&root->anon_super);
2346 	}
2347 	free_extent_buffer(root->node);
2348 	free_extent_buffer(root->commit_root);
2349 	kfree(root->name);
2350 	kfree(root);
2351 }
2352 
2353 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2354 {
2355 	int ret;
2356 	struct btrfs_root *gang[8];
2357 	int i;
2358 
2359 	while (!list_empty(&fs_info->dead_roots)) {
2360 		gang[0] = list_entry(fs_info->dead_roots.next,
2361 				     struct btrfs_root, root_list);
2362 		list_del(&gang[0]->root_list);
2363 
2364 		if (gang[0]->in_radix) {
2365 			btrfs_free_fs_root(fs_info, gang[0]);
2366 		} else {
2367 			free_extent_buffer(gang[0]->node);
2368 			free_extent_buffer(gang[0]->commit_root);
2369 			kfree(gang[0]);
2370 		}
2371 	}
2372 
2373 	while (1) {
2374 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2375 					     (void **)gang, 0,
2376 					     ARRAY_SIZE(gang));
2377 		if (!ret)
2378 			break;
2379 		for (i = 0; i < ret; i++)
2380 			btrfs_free_fs_root(fs_info, gang[i]);
2381 	}
2382 	return 0;
2383 }
2384 
2385 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2386 {
2387 	u64 root_objectid = 0;
2388 	struct btrfs_root *gang[8];
2389 	int i;
2390 	int ret;
2391 
2392 	while (1) {
2393 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2394 					     (void **)gang, root_objectid,
2395 					     ARRAY_SIZE(gang));
2396 		if (!ret)
2397 			break;
2398 
2399 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
2400 		for (i = 0; i < ret; i++) {
2401 			root_objectid = gang[i]->root_key.objectid;
2402 			btrfs_orphan_cleanup(gang[i]);
2403 		}
2404 		root_objectid++;
2405 	}
2406 	return 0;
2407 }
2408 
2409 int btrfs_commit_super(struct btrfs_root *root)
2410 {
2411 	struct btrfs_trans_handle *trans;
2412 	int ret;
2413 
2414 	mutex_lock(&root->fs_info->cleaner_mutex);
2415 	btrfs_run_delayed_iputs(root);
2416 	btrfs_clean_old_snapshots(root);
2417 	mutex_unlock(&root->fs_info->cleaner_mutex);
2418 
2419 	/* wait until ongoing cleanup work done */
2420 	down_write(&root->fs_info->cleanup_work_sem);
2421 	up_write(&root->fs_info->cleanup_work_sem);
2422 
2423 	trans = btrfs_join_transaction(root, 1);
2424 	ret = btrfs_commit_transaction(trans, root);
2425 	BUG_ON(ret);
2426 	/* run commit again to drop the original snapshot */
2427 	trans = btrfs_join_transaction(root, 1);
2428 	btrfs_commit_transaction(trans, root);
2429 	ret = btrfs_write_and_wait_transaction(NULL, root);
2430 	BUG_ON(ret);
2431 
2432 	ret = write_ctree_super(NULL, root, 0);
2433 	return ret;
2434 }
2435 
2436 int close_ctree(struct btrfs_root *root)
2437 {
2438 	struct btrfs_fs_info *fs_info = root->fs_info;
2439 	int ret;
2440 
2441 	fs_info->closing = 1;
2442 	smp_mb();
2443 
2444 	btrfs_put_block_group_cache(fs_info);
2445 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2446 		ret =  btrfs_commit_super(root);
2447 		if (ret)
2448 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2449 	}
2450 
2451 	kthread_stop(root->fs_info->transaction_kthread);
2452 	kthread_stop(root->fs_info->cleaner_kthread);
2453 
2454 	fs_info->closing = 2;
2455 	smp_mb();
2456 
2457 	if (fs_info->delalloc_bytes) {
2458 		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2459 		       (unsigned long long)fs_info->delalloc_bytes);
2460 	}
2461 	if (fs_info->total_ref_cache_size) {
2462 		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2463 		       (unsigned long long)fs_info->total_ref_cache_size);
2464 	}
2465 
2466 	free_extent_buffer(fs_info->extent_root->node);
2467 	free_extent_buffer(fs_info->extent_root->commit_root);
2468 	free_extent_buffer(fs_info->tree_root->node);
2469 	free_extent_buffer(fs_info->tree_root->commit_root);
2470 	free_extent_buffer(root->fs_info->chunk_root->node);
2471 	free_extent_buffer(root->fs_info->chunk_root->commit_root);
2472 	free_extent_buffer(root->fs_info->dev_root->node);
2473 	free_extent_buffer(root->fs_info->dev_root->commit_root);
2474 	free_extent_buffer(root->fs_info->csum_root->node);
2475 	free_extent_buffer(root->fs_info->csum_root->commit_root);
2476 
2477 	btrfs_free_block_groups(root->fs_info);
2478 
2479 	del_fs_roots(fs_info);
2480 
2481 	iput(fs_info->btree_inode);
2482 
2483 	btrfs_stop_workers(&fs_info->generic_worker);
2484 	btrfs_stop_workers(&fs_info->fixup_workers);
2485 	btrfs_stop_workers(&fs_info->delalloc_workers);
2486 	btrfs_stop_workers(&fs_info->workers);
2487 	btrfs_stop_workers(&fs_info->endio_workers);
2488 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2489 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2490 	btrfs_stop_workers(&fs_info->endio_write_workers);
2491 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2492 	btrfs_stop_workers(&fs_info->submit_workers);
2493 
2494 	btrfs_close_devices(fs_info->fs_devices);
2495 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2496 
2497 	bdi_destroy(&fs_info->bdi);
2498 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2499 
2500 	kfree(fs_info->extent_root);
2501 	kfree(fs_info->tree_root);
2502 	kfree(fs_info->chunk_root);
2503 	kfree(fs_info->dev_root);
2504 	kfree(fs_info->csum_root);
2505 	return 0;
2506 }
2507 
2508 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2509 {
2510 	int ret;
2511 	struct inode *btree_inode = buf->first_page->mapping->host;
2512 
2513 	ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
2514 				     NULL);
2515 	if (!ret)
2516 		return ret;
2517 
2518 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2519 				    parent_transid);
2520 	return !ret;
2521 }
2522 
2523 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2524 {
2525 	struct inode *btree_inode = buf->first_page->mapping->host;
2526 	return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2527 					  buf);
2528 }
2529 
2530 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2531 {
2532 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2533 	u64 transid = btrfs_header_generation(buf);
2534 	struct inode *btree_inode = root->fs_info->btree_inode;
2535 	int was_dirty;
2536 
2537 	btrfs_assert_tree_locked(buf);
2538 	if (transid != root->fs_info->generation) {
2539 		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2540 		       "found %llu running %llu\n",
2541 			(unsigned long long)buf->start,
2542 			(unsigned long long)transid,
2543 			(unsigned long long)root->fs_info->generation);
2544 		WARN_ON(1);
2545 	}
2546 	was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2547 					    buf);
2548 	if (!was_dirty) {
2549 		spin_lock(&root->fs_info->delalloc_lock);
2550 		root->fs_info->dirty_metadata_bytes += buf->len;
2551 		spin_unlock(&root->fs_info->delalloc_lock);
2552 	}
2553 }
2554 
2555 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2556 {
2557 	/*
2558 	 * looks as though older kernels can get into trouble with
2559 	 * this code, they end up stuck in balance_dirty_pages forever
2560 	 */
2561 	u64 num_dirty;
2562 	unsigned long thresh = 32 * 1024 * 1024;
2563 
2564 	if (current->flags & PF_MEMALLOC)
2565 		return;
2566 
2567 	num_dirty = root->fs_info->dirty_metadata_bytes;
2568 
2569 	if (num_dirty > thresh) {
2570 		balance_dirty_pages_ratelimited_nr(
2571 				   root->fs_info->btree_inode->i_mapping, 1);
2572 	}
2573 	return;
2574 }
2575 
2576 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2577 {
2578 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2579 	int ret;
2580 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2581 	if (ret == 0)
2582 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2583 	return ret;
2584 }
2585 
2586 int btree_lock_page_hook(struct page *page)
2587 {
2588 	struct inode *inode = page->mapping->host;
2589 	struct btrfs_root *root = BTRFS_I(inode)->root;
2590 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2591 	struct extent_buffer *eb;
2592 	unsigned long len;
2593 	u64 bytenr = page_offset(page);
2594 
2595 	if (page->private == EXTENT_PAGE_PRIVATE)
2596 		goto out;
2597 
2598 	len = page->private >> 2;
2599 	eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2600 	if (!eb)
2601 		goto out;
2602 
2603 	btrfs_tree_lock(eb);
2604 	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2605 
2606 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2607 		spin_lock(&root->fs_info->delalloc_lock);
2608 		if (root->fs_info->dirty_metadata_bytes >= eb->len)
2609 			root->fs_info->dirty_metadata_bytes -= eb->len;
2610 		else
2611 			WARN_ON(1);
2612 		spin_unlock(&root->fs_info->delalloc_lock);
2613 	}
2614 
2615 	btrfs_tree_unlock(eb);
2616 	free_extent_buffer(eb);
2617 out:
2618 	lock_page(page);
2619 	return 0;
2620 }
2621 
2622 static struct extent_io_ops btree_extent_io_ops = {
2623 	.write_cache_pages_lock_hook = btree_lock_page_hook,
2624 	.readpage_end_io_hook = btree_readpage_end_io_hook,
2625 	.submit_bio_hook = btree_submit_bio_hook,
2626 	/* note we're sharing with inode.c for the merge bio hook */
2627 	.merge_bio_hook = btrfs_merge_bio_hook,
2628 };
2629