xref: /linux/fs/btrfs/disk-io.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56 
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61 				    int read_only);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 				      struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 					struct extent_io_tree *dirty_pages,
68 					int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 				       struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
73 
74 /*
75  * end_io_wq structs are used to do processing in task context when an IO is
76  * complete.  This is used during reads to verify checksums, and it is used
77  * by writes to insert metadata for new file extents after IO is complete.
78  */
79 struct end_io_wq {
80 	struct bio *bio;
81 	bio_end_io_t *end_io;
82 	void *private;
83 	struct btrfs_fs_info *info;
84 	int error;
85 	int metadata;
86 	struct list_head list;
87 	struct btrfs_work work;
88 };
89 
90 /*
91  * async submit bios are used to offload expensive checksumming
92  * onto the worker threads.  They checksum file and metadata bios
93  * just before they are sent down the IO stack.
94  */
95 struct async_submit_bio {
96 	struct inode *inode;
97 	struct bio *bio;
98 	struct list_head list;
99 	extent_submit_bio_hook_t *submit_bio_start;
100 	extent_submit_bio_hook_t *submit_bio_done;
101 	int rw;
102 	int mirror_num;
103 	unsigned long bio_flags;
104 	/*
105 	 * bio_offset is optional, can be used if the pages in the bio
106 	 * can't tell us where in the file the bio should go
107 	 */
108 	u64 bio_offset;
109 	struct btrfs_work work;
110 	int error;
111 };
112 
113 /*
114  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
115  * eb, the lockdep key is determined by the btrfs_root it belongs to and
116  * the level the eb occupies in the tree.
117  *
118  * Different roots are used for different purposes and may nest inside each
119  * other and they require separate keysets.  As lockdep keys should be
120  * static, assign keysets according to the purpose of the root as indicated
121  * by btrfs_root->objectid.  This ensures that all special purpose roots
122  * have separate keysets.
123  *
124  * Lock-nesting across peer nodes is always done with the immediate parent
125  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
126  * subclass to avoid triggering lockdep warning in such cases.
127  *
128  * The key is set by the readpage_end_io_hook after the buffer has passed
129  * csum validation but before the pages are unlocked.  It is also set by
130  * btrfs_init_new_buffer on freshly allocated blocks.
131  *
132  * We also add a check to make sure the highest level of the tree is the
133  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
134  * needs update as well.
135  */
136 #ifdef CONFIG_DEBUG_LOCK_ALLOC
137 # if BTRFS_MAX_LEVEL != 8
138 #  error
139 # endif
140 
141 static struct btrfs_lockdep_keyset {
142 	u64			id;		/* root objectid */
143 	const char		*name_stem;	/* lock name stem */
144 	char			names[BTRFS_MAX_LEVEL + 1][20];
145 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
146 } btrfs_lockdep_keysets[] = {
147 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
148 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
149 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
150 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
151 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
152 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
153 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
154 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
155 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
156 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
157 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
158 	{ .id = 0,				.name_stem = "tree"	},
159 };
160 
161 void __init btrfs_init_lockdep(void)
162 {
163 	int i, j;
164 
165 	/* initialize lockdep class names */
166 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
167 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
168 
169 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
170 			snprintf(ks->names[j], sizeof(ks->names[j]),
171 				 "btrfs-%s-%02d", ks->name_stem, j);
172 	}
173 }
174 
175 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
176 				    int level)
177 {
178 	struct btrfs_lockdep_keyset *ks;
179 
180 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
181 
182 	/* find the matching keyset, id 0 is the default entry */
183 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
184 		if (ks->id == objectid)
185 			break;
186 
187 	lockdep_set_class_and_name(&eb->lock,
188 				   &ks->keys[level], ks->names[level]);
189 }
190 
191 #endif
192 
193 /*
194  * extents on the btree inode are pretty simple, there's one extent
195  * that covers the entire device
196  */
197 static struct extent_map *btree_get_extent(struct inode *inode,
198 		struct page *page, size_t pg_offset, u64 start, u64 len,
199 		int create)
200 {
201 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
202 	struct extent_map *em;
203 	int ret;
204 
205 	read_lock(&em_tree->lock);
206 	em = lookup_extent_mapping(em_tree, start, len);
207 	if (em) {
208 		em->bdev =
209 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
210 		read_unlock(&em_tree->lock);
211 		goto out;
212 	}
213 	read_unlock(&em_tree->lock);
214 
215 	em = alloc_extent_map();
216 	if (!em) {
217 		em = ERR_PTR(-ENOMEM);
218 		goto out;
219 	}
220 	em->start = 0;
221 	em->len = (u64)-1;
222 	em->block_len = (u64)-1;
223 	em->block_start = 0;
224 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
225 
226 	write_lock(&em_tree->lock);
227 	ret = add_extent_mapping(em_tree, em, 0);
228 	if (ret == -EEXIST) {
229 		free_extent_map(em);
230 		em = lookup_extent_mapping(em_tree, start, len);
231 		if (!em)
232 			em = ERR_PTR(-EIO);
233 	} else if (ret) {
234 		free_extent_map(em);
235 		em = ERR_PTR(ret);
236 	}
237 	write_unlock(&em_tree->lock);
238 
239 out:
240 	return em;
241 }
242 
243 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
244 {
245 	return btrfs_crc32c(seed, data, len);
246 }
247 
248 void btrfs_csum_final(u32 crc, char *result)
249 {
250 	put_unaligned_le32(~crc, result);
251 }
252 
253 /*
254  * compute the csum for a btree block, and either verify it or write it
255  * into the csum field of the block.
256  */
257 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258 			   int verify)
259 {
260 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
261 	char *result = NULL;
262 	unsigned long len;
263 	unsigned long cur_len;
264 	unsigned long offset = BTRFS_CSUM_SIZE;
265 	char *kaddr;
266 	unsigned long map_start;
267 	unsigned long map_len;
268 	int err;
269 	u32 crc = ~(u32)0;
270 	unsigned long inline_result;
271 
272 	len = buf->len - offset;
273 	while (len > 0) {
274 		err = map_private_extent_buffer(buf, offset, 32,
275 					&kaddr, &map_start, &map_len);
276 		if (err)
277 			return 1;
278 		cur_len = min(len, map_len - (offset - map_start));
279 		crc = btrfs_csum_data(kaddr + offset - map_start,
280 				      crc, cur_len);
281 		len -= cur_len;
282 		offset += cur_len;
283 	}
284 	if (csum_size > sizeof(inline_result)) {
285 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286 		if (!result)
287 			return 1;
288 	} else {
289 		result = (char *)&inline_result;
290 	}
291 
292 	btrfs_csum_final(crc, result);
293 
294 	if (verify) {
295 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
296 			u32 val;
297 			u32 found = 0;
298 			memcpy(&found, result, csum_size);
299 
300 			read_extent_buffer(buf, &val, 0, csum_size);
301 			printk_ratelimited(KERN_INFO
302 				"BTRFS: %s checksum verify failed on %llu wanted %X found %X "
303 				"level %d\n",
304 				root->fs_info->sb->s_id, buf->start,
305 				val, found, btrfs_header_level(buf));
306 			if (result != (char *)&inline_result)
307 				kfree(result);
308 			return 1;
309 		}
310 	} else {
311 		write_extent_buffer(buf, result, 0, csum_size);
312 	}
313 	if (result != (char *)&inline_result)
314 		kfree(result);
315 	return 0;
316 }
317 
318 /*
319  * we can't consider a given block up to date unless the transid of the
320  * block matches the transid in the parent node's pointer.  This is how we
321  * detect blocks that either didn't get written at all or got written
322  * in the wrong place.
323  */
324 static int verify_parent_transid(struct extent_io_tree *io_tree,
325 				 struct extent_buffer *eb, u64 parent_transid,
326 				 int atomic)
327 {
328 	struct extent_state *cached_state = NULL;
329 	int ret;
330 	bool need_lock = (current->journal_info ==
331 			  (void *)BTRFS_SEND_TRANS_STUB);
332 
333 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 		return 0;
335 
336 	if (atomic)
337 		return -EAGAIN;
338 
339 	if (need_lock) {
340 		btrfs_tree_read_lock(eb);
341 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
342 	}
343 
344 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
345 			 0, &cached_state);
346 	if (extent_buffer_uptodate(eb) &&
347 	    btrfs_header_generation(eb) == parent_transid) {
348 		ret = 0;
349 		goto out;
350 	}
351 	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
352 		       "found %llu\n",
353 		       eb->start, parent_transid, btrfs_header_generation(eb));
354 	ret = 1;
355 
356 	/*
357 	 * Things reading via commit roots that don't have normal protection,
358 	 * like send, can have a really old block in cache that may point at a
359 	 * block that has been free'd and re-allocated.  So don't clear uptodate
360 	 * if we find an eb that is under IO (dirty/writeback) because we could
361 	 * end up reading in the stale data and then writing it back out and
362 	 * making everybody very sad.
363 	 */
364 	if (!extent_buffer_under_io(eb))
365 		clear_extent_buffer_uptodate(eb);
366 out:
367 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
368 			     &cached_state, GFP_NOFS);
369 	if (need_lock)
370 		btrfs_tree_read_unlock_blocking(eb);
371 	return ret;
372 }
373 
374 /*
375  * Return 0 if the superblock checksum type matches the checksum value of that
376  * algorithm. Pass the raw disk superblock data.
377  */
378 static int btrfs_check_super_csum(char *raw_disk_sb)
379 {
380 	struct btrfs_super_block *disk_sb =
381 		(struct btrfs_super_block *)raw_disk_sb;
382 	u16 csum_type = btrfs_super_csum_type(disk_sb);
383 	int ret = 0;
384 
385 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
386 		u32 crc = ~(u32)0;
387 		const int csum_size = sizeof(crc);
388 		char result[csum_size];
389 
390 		/*
391 		 * The super_block structure does not span the whole
392 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
393 		 * is filled with zeros and is included in the checkum.
394 		 */
395 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
396 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
397 		btrfs_csum_final(crc, result);
398 
399 		if (memcmp(raw_disk_sb, result, csum_size))
400 			ret = 1;
401 
402 		if (ret && btrfs_super_generation(disk_sb) < 10) {
403 			printk(KERN_WARNING
404 				"BTRFS: super block crcs don't match, older mkfs detected\n");
405 			ret = 0;
406 		}
407 	}
408 
409 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
410 		printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
411 				csum_type);
412 		ret = 1;
413 	}
414 
415 	return ret;
416 }
417 
418 /*
419  * helper to read a given tree block, doing retries as required when
420  * the checksums don't match and we have alternate mirrors to try.
421  */
422 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
423 					  struct extent_buffer *eb,
424 					  u64 start, u64 parent_transid)
425 {
426 	struct extent_io_tree *io_tree;
427 	int failed = 0;
428 	int ret;
429 	int num_copies = 0;
430 	int mirror_num = 0;
431 	int failed_mirror = 0;
432 
433 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
434 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
435 	while (1) {
436 		ret = read_extent_buffer_pages(io_tree, eb, start,
437 					       WAIT_COMPLETE,
438 					       btree_get_extent, mirror_num);
439 		if (!ret) {
440 			if (!verify_parent_transid(io_tree, eb,
441 						   parent_transid, 0))
442 				break;
443 			else
444 				ret = -EIO;
445 		}
446 
447 		/*
448 		 * This buffer's crc is fine, but its contents are corrupted, so
449 		 * there is no reason to read the other copies, they won't be
450 		 * any less wrong.
451 		 */
452 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
453 			break;
454 
455 		num_copies = btrfs_num_copies(root->fs_info,
456 					      eb->start, eb->len);
457 		if (num_copies == 1)
458 			break;
459 
460 		if (!failed_mirror) {
461 			failed = 1;
462 			failed_mirror = eb->read_mirror;
463 		}
464 
465 		mirror_num++;
466 		if (mirror_num == failed_mirror)
467 			mirror_num++;
468 
469 		if (mirror_num > num_copies)
470 			break;
471 	}
472 
473 	if (failed && !ret && failed_mirror)
474 		repair_eb_io_failure(root, eb, failed_mirror);
475 
476 	return ret;
477 }
478 
479 /*
480  * checksum a dirty tree block before IO.  This has extra checks to make sure
481  * we only fill in the checksum field in the first page of a multi-page block
482  */
483 
484 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
485 {
486 	u64 start = page_offset(page);
487 	u64 found_start;
488 	struct extent_buffer *eb;
489 
490 	eb = (struct extent_buffer *)page->private;
491 	if (page != eb->pages[0])
492 		return 0;
493 	found_start = btrfs_header_bytenr(eb);
494 	if (WARN_ON(found_start != start || !PageUptodate(page)))
495 		return 0;
496 	csum_tree_block(root, eb, 0);
497 	return 0;
498 }
499 
500 static int check_tree_block_fsid(struct btrfs_root *root,
501 				 struct extent_buffer *eb)
502 {
503 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
504 	u8 fsid[BTRFS_UUID_SIZE];
505 	int ret = 1;
506 
507 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
508 	while (fs_devices) {
509 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
510 			ret = 0;
511 			break;
512 		}
513 		fs_devices = fs_devices->seed;
514 	}
515 	return ret;
516 }
517 
518 #define CORRUPT(reason, eb, root, slot)				\
519 	btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"	\
520 		   "root=%llu, slot=%d", reason,			\
521 	       btrfs_header_bytenr(eb),	root->objectid, slot)
522 
523 static noinline int check_leaf(struct btrfs_root *root,
524 			       struct extent_buffer *leaf)
525 {
526 	struct btrfs_key key;
527 	struct btrfs_key leaf_key;
528 	u32 nritems = btrfs_header_nritems(leaf);
529 	int slot;
530 
531 	if (nritems == 0)
532 		return 0;
533 
534 	/* Check the 0 item */
535 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
536 	    BTRFS_LEAF_DATA_SIZE(root)) {
537 		CORRUPT("invalid item offset size pair", leaf, root, 0);
538 		return -EIO;
539 	}
540 
541 	/*
542 	 * Check to make sure each items keys are in the correct order and their
543 	 * offsets make sense.  We only have to loop through nritems-1 because
544 	 * we check the current slot against the next slot, which verifies the
545 	 * next slot's offset+size makes sense and that the current's slot
546 	 * offset is correct.
547 	 */
548 	for (slot = 0; slot < nritems - 1; slot++) {
549 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
550 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
551 
552 		/* Make sure the keys are in the right order */
553 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
554 			CORRUPT("bad key order", leaf, root, slot);
555 			return -EIO;
556 		}
557 
558 		/*
559 		 * Make sure the offset and ends are right, remember that the
560 		 * item data starts at the end of the leaf and grows towards the
561 		 * front.
562 		 */
563 		if (btrfs_item_offset_nr(leaf, slot) !=
564 			btrfs_item_end_nr(leaf, slot + 1)) {
565 			CORRUPT("slot offset bad", leaf, root, slot);
566 			return -EIO;
567 		}
568 
569 		/*
570 		 * Check to make sure that we don't point outside of the leaf,
571 		 * just incase all the items are consistent to eachother, but
572 		 * all point outside of the leaf.
573 		 */
574 		if (btrfs_item_end_nr(leaf, slot) >
575 		    BTRFS_LEAF_DATA_SIZE(root)) {
576 			CORRUPT("slot end outside of leaf", leaf, root, slot);
577 			return -EIO;
578 		}
579 	}
580 
581 	return 0;
582 }
583 
584 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
585 				      u64 phy_offset, struct page *page,
586 				      u64 start, u64 end, int mirror)
587 {
588 	u64 found_start;
589 	int found_level;
590 	struct extent_buffer *eb;
591 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
592 	int ret = 0;
593 	int reads_done;
594 
595 	if (!page->private)
596 		goto out;
597 
598 	eb = (struct extent_buffer *)page->private;
599 
600 	/* the pending IO might have been the only thing that kept this buffer
601 	 * in memory.  Make sure we have a ref for all this other checks
602 	 */
603 	extent_buffer_get(eb);
604 
605 	reads_done = atomic_dec_and_test(&eb->io_pages);
606 	if (!reads_done)
607 		goto err;
608 
609 	eb->read_mirror = mirror;
610 	if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
611 		ret = -EIO;
612 		goto err;
613 	}
614 
615 	found_start = btrfs_header_bytenr(eb);
616 	if (found_start != eb->start) {
617 		printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
618 			       "%llu %llu\n",
619 			       found_start, eb->start);
620 		ret = -EIO;
621 		goto err;
622 	}
623 	if (check_tree_block_fsid(root, eb)) {
624 		printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
625 			       eb->start);
626 		ret = -EIO;
627 		goto err;
628 	}
629 	found_level = btrfs_header_level(eb);
630 	if (found_level >= BTRFS_MAX_LEVEL) {
631 		btrfs_info(root->fs_info, "bad tree block level %d",
632 			   (int)btrfs_header_level(eb));
633 		ret = -EIO;
634 		goto err;
635 	}
636 
637 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
638 				       eb, found_level);
639 
640 	ret = csum_tree_block(root, eb, 1);
641 	if (ret) {
642 		ret = -EIO;
643 		goto err;
644 	}
645 
646 	/*
647 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
648 	 * that we don't try and read the other copies of this block, just
649 	 * return -EIO.
650 	 */
651 	if (found_level == 0 && check_leaf(root, eb)) {
652 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
653 		ret = -EIO;
654 	}
655 
656 	if (!ret)
657 		set_extent_buffer_uptodate(eb);
658 err:
659 	if (reads_done &&
660 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
661 		btree_readahead_hook(root, eb, eb->start, ret);
662 
663 	if (ret) {
664 		/*
665 		 * our io error hook is going to dec the io pages
666 		 * again, we have to make sure it has something
667 		 * to decrement
668 		 */
669 		atomic_inc(&eb->io_pages);
670 		clear_extent_buffer_uptodate(eb);
671 	}
672 	free_extent_buffer(eb);
673 out:
674 	return ret;
675 }
676 
677 static int btree_io_failed_hook(struct page *page, int failed_mirror)
678 {
679 	struct extent_buffer *eb;
680 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
681 
682 	eb = (struct extent_buffer *)page->private;
683 	set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
684 	eb->read_mirror = failed_mirror;
685 	atomic_dec(&eb->io_pages);
686 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
687 		btree_readahead_hook(root, eb, eb->start, -EIO);
688 	return -EIO;	/* we fixed nothing */
689 }
690 
691 static void end_workqueue_bio(struct bio *bio, int err)
692 {
693 	struct end_io_wq *end_io_wq = bio->bi_private;
694 	struct btrfs_fs_info *fs_info;
695 	struct btrfs_workqueue *wq;
696 	btrfs_work_func_t func;
697 
698 	fs_info = end_io_wq->info;
699 	end_io_wq->error = err;
700 
701 	if (bio->bi_rw & REQ_WRITE) {
702 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
703 			wq = fs_info->endio_meta_write_workers;
704 			func = btrfs_endio_meta_write_helper;
705 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
706 			wq = fs_info->endio_freespace_worker;
707 			func = btrfs_freespace_write_helper;
708 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
709 			wq = fs_info->endio_raid56_workers;
710 			func = btrfs_endio_raid56_helper;
711 		} else {
712 			wq = fs_info->endio_write_workers;
713 			func = btrfs_endio_write_helper;
714 		}
715 	} else {
716 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
717 			wq = fs_info->endio_raid56_workers;
718 			func = btrfs_endio_raid56_helper;
719 		} else if (end_io_wq->metadata) {
720 			wq = fs_info->endio_meta_workers;
721 			func = btrfs_endio_meta_helper;
722 		} else {
723 			wq = fs_info->endio_workers;
724 			func = btrfs_endio_helper;
725 		}
726 	}
727 
728 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
729 	btrfs_queue_work(wq, &end_io_wq->work);
730 }
731 
732 /*
733  * For the metadata arg you want
734  *
735  * 0 - if data
736  * 1 - if normal metadta
737  * 2 - if writing to the free space cache area
738  * 3 - raid parity work
739  */
740 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
741 			int metadata)
742 {
743 	struct end_io_wq *end_io_wq;
744 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
745 	if (!end_io_wq)
746 		return -ENOMEM;
747 
748 	end_io_wq->private = bio->bi_private;
749 	end_io_wq->end_io = bio->bi_end_io;
750 	end_io_wq->info = info;
751 	end_io_wq->error = 0;
752 	end_io_wq->bio = bio;
753 	end_io_wq->metadata = metadata;
754 
755 	bio->bi_private = end_io_wq;
756 	bio->bi_end_io = end_workqueue_bio;
757 	return 0;
758 }
759 
760 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
761 {
762 	unsigned long limit = min_t(unsigned long,
763 				    info->thread_pool_size,
764 				    info->fs_devices->open_devices);
765 	return 256 * limit;
766 }
767 
768 static void run_one_async_start(struct btrfs_work *work)
769 {
770 	struct async_submit_bio *async;
771 	int ret;
772 
773 	async = container_of(work, struct  async_submit_bio, work);
774 	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
775 				      async->mirror_num, async->bio_flags,
776 				      async->bio_offset);
777 	if (ret)
778 		async->error = ret;
779 }
780 
781 static void run_one_async_done(struct btrfs_work *work)
782 {
783 	struct btrfs_fs_info *fs_info;
784 	struct async_submit_bio *async;
785 	int limit;
786 
787 	async = container_of(work, struct  async_submit_bio, work);
788 	fs_info = BTRFS_I(async->inode)->root->fs_info;
789 
790 	limit = btrfs_async_submit_limit(fs_info);
791 	limit = limit * 2 / 3;
792 
793 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
794 	    waitqueue_active(&fs_info->async_submit_wait))
795 		wake_up(&fs_info->async_submit_wait);
796 
797 	/* If an error occured we just want to clean up the bio and move on */
798 	if (async->error) {
799 		bio_endio(async->bio, async->error);
800 		return;
801 	}
802 
803 	async->submit_bio_done(async->inode, async->rw, async->bio,
804 			       async->mirror_num, async->bio_flags,
805 			       async->bio_offset);
806 }
807 
808 static void run_one_async_free(struct btrfs_work *work)
809 {
810 	struct async_submit_bio *async;
811 
812 	async = container_of(work, struct  async_submit_bio, work);
813 	kfree(async);
814 }
815 
816 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
817 			int rw, struct bio *bio, int mirror_num,
818 			unsigned long bio_flags,
819 			u64 bio_offset,
820 			extent_submit_bio_hook_t *submit_bio_start,
821 			extent_submit_bio_hook_t *submit_bio_done)
822 {
823 	struct async_submit_bio *async;
824 
825 	async = kmalloc(sizeof(*async), GFP_NOFS);
826 	if (!async)
827 		return -ENOMEM;
828 
829 	async->inode = inode;
830 	async->rw = rw;
831 	async->bio = bio;
832 	async->mirror_num = mirror_num;
833 	async->submit_bio_start = submit_bio_start;
834 	async->submit_bio_done = submit_bio_done;
835 
836 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
837 			run_one_async_done, run_one_async_free);
838 
839 	async->bio_flags = bio_flags;
840 	async->bio_offset = bio_offset;
841 
842 	async->error = 0;
843 
844 	atomic_inc(&fs_info->nr_async_submits);
845 
846 	if (rw & REQ_SYNC)
847 		btrfs_set_work_high_priority(&async->work);
848 
849 	btrfs_queue_work(fs_info->workers, &async->work);
850 
851 	while (atomic_read(&fs_info->async_submit_draining) &&
852 	      atomic_read(&fs_info->nr_async_submits)) {
853 		wait_event(fs_info->async_submit_wait,
854 			   (atomic_read(&fs_info->nr_async_submits) == 0));
855 	}
856 
857 	return 0;
858 }
859 
860 static int btree_csum_one_bio(struct bio *bio)
861 {
862 	struct bio_vec *bvec;
863 	struct btrfs_root *root;
864 	int i, ret = 0;
865 
866 	bio_for_each_segment_all(bvec, bio, i) {
867 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
868 		ret = csum_dirty_buffer(root, bvec->bv_page);
869 		if (ret)
870 			break;
871 	}
872 
873 	return ret;
874 }
875 
876 static int __btree_submit_bio_start(struct inode *inode, int rw,
877 				    struct bio *bio, int mirror_num,
878 				    unsigned long bio_flags,
879 				    u64 bio_offset)
880 {
881 	/*
882 	 * when we're called for a write, we're already in the async
883 	 * submission context.  Just jump into btrfs_map_bio
884 	 */
885 	return btree_csum_one_bio(bio);
886 }
887 
888 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
889 				 int mirror_num, unsigned long bio_flags,
890 				 u64 bio_offset)
891 {
892 	int ret;
893 
894 	/*
895 	 * when we're called for a write, we're already in the async
896 	 * submission context.  Just jump into btrfs_map_bio
897 	 */
898 	ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
899 	if (ret)
900 		bio_endio(bio, ret);
901 	return ret;
902 }
903 
904 static int check_async_write(struct inode *inode, unsigned long bio_flags)
905 {
906 	if (bio_flags & EXTENT_BIO_TREE_LOG)
907 		return 0;
908 #ifdef CONFIG_X86
909 	if (cpu_has_xmm4_2)
910 		return 0;
911 #endif
912 	return 1;
913 }
914 
915 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
916 				 int mirror_num, unsigned long bio_flags,
917 				 u64 bio_offset)
918 {
919 	int async = check_async_write(inode, bio_flags);
920 	int ret;
921 
922 	if (!(rw & REQ_WRITE)) {
923 		/*
924 		 * called for a read, do the setup so that checksum validation
925 		 * can happen in the async kernel threads
926 		 */
927 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
928 					  bio, 1);
929 		if (ret)
930 			goto out_w_error;
931 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
932 				    mirror_num, 0);
933 	} else if (!async) {
934 		ret = btree_csum_one_bio(bio);
935 		if (ret)
936 			goto out_w_error;
937 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
938 				    mirror_num, 0);
939 	} else {
940 		/*
941 		 * kthread helpers are used to submit writes so that
942 		 * checksumming can happen in parallel across all CPUs
943 		 */
944 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
945 					  inode, rw, bio, mirror_num, 0,
946 					  bio_offset,
947 					  __btree_submit_bio_start,
948 					  __btree_submit_bio_done);
949 	}
950 
951 	if (ret) {
952 out_w_error:
953 		bio_endio(bio, ret);
954 	}
955 	return ret;
956 }
957 
958 #ifdef CONFIG_MIGRATION
959 static int btree_migratepage(struct address_space *mapping,
960 			struct page *newpage, struct page *page,
961 			enum migrate_mode mode)
962 {
963 	/*
964 	 * we can't safely write a btree page from here,
965 	 * we haven't done the locking hook
966 	 */
967 	if (PageDirty(page))
968 		return -EAGAIN;
969 	/*
970 	 * Buffers may be managed in a filesystem specific way.
971 	 * We must have no buffers or drop them.
972 	 */
973 	if (page_has_private(page) &&
974 	    !try_to_release_page(page, GFP_KERNEL))
975 		return -EAGAIN;
976 	return migrate_page(mapping, newpage, page, mode);
977 }
978 #endif
979 
980 
981 static int btree_writepages(struct address_space *mapping,
982 			    struct writeback_control *wbc)
983 {
984 	struct btrfs_fs_info *fs_info;
985 	int ret;
986 
987 	if (wbc->sync_mode == WB_SYNC_NONE) {
988 
989 		if (wbc->for_kupdate)
990 			return 0;
991 
992 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
993 		/* this is a bit racy, but that's ok */
994 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
995 					     BTRFS_DIRTY_METADATA_THRESH);
996 		if (ret < 0)
997 			return 0;
998 	}
999 	return btree_write_cache_pages(mapping, wbc);
1000 }
1001 
1002 static int btree_readpage(struct file *file, struct page *page)
1003 {
1004 	struct extent_io_tree *tree;
1005 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1006 	return extent_read_full_page(tree, page, btree_get_extent, 0);
1007 }
1008 
1009 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1010 {
1011 	if (PageWriteback(page) || PageDirty(page))
1012 		return 0;
1013 
1014 	return try_release_extent_buffer(page);
1015 }
1016 
1017 static void btree_invalidatepage(struct page *page, unsigned int offset,
1018 				 unsigned int length)
1019 {
1020 	struct extent_io_tree *tree;
1021 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1022 	extent_invalidatepage(tree, page, offset);
1023 	btree_releasepage(page, GFP_NOFS);
1024 	if (PagePrivate(page)) {
1025 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1026 			   "page private not zero on page %llu",
1027 			   (unsigned long long)page_offset(page));
1028 		ClearPagePrivate(page);
1029 		set_page_private(page, 0);
1030 		page_cache_release(page);
1031 	}
1032 }
1033 
1034 static int btree_set_page_dirty(struct page *page)
1035 {
1036 #ifdef DEBUG
1037 	struct extent_buffer *eb;
1038 
1039 	BUG_ON(!PagePrivate(page));
1040 	eb = (struct extent_buffer *)page->private;
1041 	BUG_ON(!eb);
1042 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1043 	BUG_ON(!atomic_read(&eb->refs));
1044 	btrfs_assert_tree_locked(eb);
1045 #endif
1046 	return __set_page_dirty_nobuffers(page);
1047 }
1048 
1049 static const struct address_space_operations btree_aops = {
1050 	.readpage	= btree_readpage,
1051 	.writepages	= btree_writepages,
1052 	.releasepage	= btree_releasepage,
1053 	.invalidatepage = btree_invalidatepage,
1054 #ifdef CONFIG_MIGRATION
1055 	.migratepage	= btree_migratepage,
1056 #endif
1057 	.set_page_dirty = btree_set_page_dirty,
1058 };
1059 
1060 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1061 			 u64 parent_transid)
1062 {
1063 	struct extent_buffer *buf = NULL;
1064 	struct inode *btree_inode = root->fs_info->btree_inode;
1065 	int ret = 0;
1066 
1067 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1068 	if (!buf)
1069 		return 0;
1070 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1071 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1072 	free_extent_buffer(buf);
1073 	return ret;
1074 }
1075 
1076 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1077 			 int mirror_num, struct extent_buffer **eb)
1078 {
1079 	struct extent_buffer *buf = NULL;
1080 	struct inode *btree_inode = root->fs_info->btree_inode;
1081 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1082 	int ret;
1083 
1084 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1085 	if (!buf)
1086 		return 0;
1087 
1088 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1089 
1090 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1091 				       btree_get_extent, mirror_num);
1092 	if (ret) {
1093 		free_extent_buffer(buf);
1094 		return ret;
1095 	}
1096 
1097 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1098 		free_extent_buffer(buf);
1099 		return -EIO;
1100 	} else if (extent_buffer_uptodate(buf)) {
1101 		*eb = buf;
1102 	} else {
1103 		free_extent_buffer(buf);
1104 	}
1105 	return 0;
1106 }
1107 
1108 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1109 					    u64 bytenr, u32 blocksize)
1110 {
1111 	return find_extent_buffer(root->fs_info, bytenr);
1112 }
1113 
1114 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1115 						 u64 bytenr, u32 blocksize)
1116 {
1117 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1118 	if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
1119 		return alloc_test_extent_buffer(root->fs_info, bytenr,
1120 						blocksize);
1121 #endif
1122 	return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1123 }
1124 
1125 
1126 int btrfs_write_tree_block(struct extent_buffer *buf)
1127 {
1128 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1129 					buf->start + buf->len - 1);
1130 }
1131 
1132 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1133 {
1134 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1135 				       buf->start, buf->start + buf->len - 1);
1136 }
1137 
1138 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1139 				      u32 blocksize, u64 parent_transid)
1140 {
1141 	struct extent_buffer *buf = NULL;
1142 	int ret;
1143 
1144 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1145 	if (!buf)
1146 		return NULL;
1147 
1148 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1149 	if (ret) {
1150 		free_extent_buffer(buf);
1151 		return NULL;
1152 	}
1153 	return buf;
1154 
1155 }
1156 
1157 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1158 		      struct extent_buffer *buf)
1159 {
1160 	struct btrfs_fs_info *fs_info = root->fs_info;
1161 
1162 	if (btrfs_header_generation(buf) ==
1163 	    fs_info->running_transaction->transid) {
1164 		btrfs_assert_tree_locked(buf);
1165 
1166 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1167 			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1168 					     -buf->len,
1169 					     fs_info->dirty_metadata_batch);
1170 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1171 			btrfs_set_lock_blocking(buf);
1172 			clear_extent_buffer_dirty(buf);
1173 		}
1174 	}
1175 }
1176 
1177 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1178 {
1179 	struct btrfs_subvolume_writers *writers;
1180 	int ret;
1181 
1182 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1183 	if (!writers)
1184 		return ERR_PTR(-ENOMEM);
1185 
1186 	ret = percpu_counter_init(&writers->counter, 0);
1187 	if (ret < 0) {
1188 		kfree(writers);
1189 		return ERR_PTR(ret);
1190 	}
1191 
1192 	init_waitqueue_head(&writers->wait);
1193 	return writers;
1194 }
1195 
1196 static void
1197 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1198 {
1199 	percpu_counter_destroy(&writers->counter);
1200 	kfree(writers);
1201 }
1202 
1203 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1204 			 u32 stripesize, struct btrfs_root *root,
1205 			 struct btrfs_fs_info *fs_info,
1206 			 u64 objectid)
1207 {
1208 	root->node = NULL;
1209 	root->commit_root = NULL;
1210 	root->sectorsize = sectorsize;
1211 	root->nodesize = nodesize;
1212 	root->leafsize = leafsize;
1213 	root->stripesize = stripesize;
1214 	root->state = 0;
1215 	root->orphan_cleanup_state = 0;
1216 
1217 	root->objectid = objectid;
1218 	root->last_trans = 0;
1219 	root->highest_objectid = 0;
1220 	root->nr_delalloc_inodes = 0;
1221 	root->nr_ordered_extents = 0;
1222 	root->name = NULL;
1223 	root->inode_tree = RB_ROOT;
1224 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1225 	root->block_rsv = NULL;
1226 	root->orphan_block_rsv = NULL;
1227 
1228 	INIT_LIST_HEAD(&root->dirty_list);
1229 	INIT_LIST_HEAD(&root->root_list);
1230 	INIT_LIST_HEAD(&root->delalloc_inodes);
1231 	INIT_LIST_HEAD(&root->delalloc_root);
1232 	INIT_LIST_HEAD(&root->ordered_extents);
1233 	INIT_LIST_HEAD(&root->ordered_root);
1234 	INIT_LIST_HEAD(&root->logged_list[0]);
1235 	INIT_LIST_HEAD(&root->logged_list[1]);
1236 	spin_lock_init(&root->orphan_lock);
1237 	spin_lock_init(&root->inode_lock);
1238 	spin_lock_init(&root->delalloc_lock);
1239 	spin_lock_init(&root->ordered_extent_lock);
1240 	spin_lock_init(&root->accounting_lock);
1241 	spin_lock_init(&root->log_extents_lock[0]);
1242 	spin_lock_init(&root->log_extents_lock[1]);
1243 	mutex_init(&root->objectid_mutex);
1244 	mutex_init(&root->log_mutex);
1245 	mutex_init(&root->ordered_extent_mutex);
1246 	mutex_init(&root->delalloc_mutex);
1247 	init_waitqueue_head(&root->log_writer_wait);
1248 	init_waitqueue_head(&root->log_commit_wait[0]);
1249 	init_waitqueue_head(&root->log_commit_wait[1]);
1250 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1251 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1252 	atomic_set(&root->log_commit[0], 0);
1253 	atomic_set(&root->log_commit[1], 0);
1254 	atomic_set(&root->log_writers, 0);
1255 	atomic_set(&root->log_batch, 0);
1256 	atomic_set(&root->orphan_inodes, 0);
1257 	atomic_set(&root->refs, 1);
1258 	atomic_set(&root->will_be_snapshoted, 0);
1259 	root->log_transid = 0;
1260 	root->log_transid_committed = -1;
1261 	root->last_log_commit = 0;
1262 	if (fs_info)
1263 		extent_io_tree_init(&root->dirty_log_pages,
1264 				     fs_info->btree_inode->i_mapping);
1265 
1266 	memset(&root->root_key, 0, sizeof(root->root_key));
1267 	memset(&root->root_item, 0, sizeof(root->root_item));
1268 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1269 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1270 	if (fs_info)
1271 		root->defrag_trans_start = fs_info->generation;
1272 	else
1273 		root->defrag_trans_start = 0;
1274 	init_completion(&root->kobj_unregister);
1275 	root->root_key.objectid = objectid;
1276 	root->anon_dev = 0;
1277 
1278 	spin_lock_init(&root->root_item_lock);
1279 }
1280 
1281 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1282 {
1283 	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1284 	if (root)
1285 		root->fs_info = fs_info;
1286 	return root;
1287 }
1288 
1289 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1290 /* Should only be used by the testing infrastructure */
1291 struct btrfs_root *btrfs_alloc_dummy_root(void)
1292 {
1293 	struct btrfs_root *root;
1294 
1295 	root = btrfs_alloc_root(NULL);
1296 	if (!root)
1297 		return ERR_PTR(-ENOMEM);
1298 	__setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1299 	set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1300 	root->alloc_bytenr = 0;
1301 
1302 	return root;
1303 }
1304 #endif
1305 
1306 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1307 				     struct btrfs_fs_info *fs_info,
1308 				     u64 objectid)
1309 {
1310 	struct extent_buffer *leaf;
1311 	struct btrfs_root *tree_root = fs_info->tree_root;
1312 	struct btrfs_root *root;
1313 	struct btrfs_key key;
1314 	int ret = 0;
1315 	uuid_le uuid;
1316 
1317 	root = btrfs_alloc_root(fs_info);
1318 	if (!root)
1319 		return ERR_PTR(-ENOMEM);
1320 
1321 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1322 		     tree_root->sectorsize, tree_root->stripesize,
1323 		     root, fs_info, objectid);
1324 	root->root_key.objectid = objectid;
1325 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1326 	root->root_key.offset = 0;
1327 
1328 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1329 				      0, objectid, NULL, 0, 0, 0);
1330 	if (IS_ERR(leaf)) {
1331 		ret = PTR_ERR(leaf);
1332 		leaf = NULL;
1333 		goto fail;
1334 	}
1335 
1336 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1337 	btrfs_set_header_bytenr(leaf, leaf->start);
1338 	btrfs_set_header_generation(leaf, trans->transid);
1339 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1340 	btrfs_set_header_owner(leaf, objectid);
1341 	root->node = leaf;
1342 
1343 	write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1344 			    BTRFS_FSID_SIZE);
1345 	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1346 			    btrfs_header_chunk_tree_uuid(leaf),
1347 			    BTRFS_UUID_SIZE);
1348 	btrfs_mark_buffer_dirty(leaf);
1349 
1350 	root->commit_root = btrfs_root_node(root);
1351 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1352 
1353 	root->root_item.flags = 0;
1354 	root->root_item.byte_limit = 0;
1355 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1356 	btrfs_set_root_generation(&root->root_item, trans->transid);
1357 	btrfs_set_root_level(&root->root_item, 0);
1358 	btrfs_set_root_refs(&root->root_item, 1);
1359 	btrfs_set_root_used(&root->root_item, leaf->len);
1360 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1361 	btrfs_set_root_dirid(&root->root_item, 0);
1362 	uuid_le_gen(&uuid);
1363 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1364 	root->root_item.drop_level = 0;
1365 
1366 	key.objectid = objectid;
1367 	key.type = BTRFS_ROOT_ITEM_KEY;
1368 	key.offset = 0;
1369 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1370 	if (ret)
1371 		goto fail;
1372 
1373 	btrfs_tree_unlock(leaf);
1374 
1375 	return root;
1376 
1377 fail:
1378 	if (leaf) {
1379 		btrfs_tree_unlock(leaf);
1380 		free_extent_buffer(root->commit_root);
1381 		free_extent_buffer(leaf);
1382 	}
1383 	kfree(root);
1384 
1385 	return ERR_PTR(ret);
1386 }
1387 
1388 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1389 					 struct btrfs_fs_info *fs_info)
1390 {
1391 	struct btrfs_root *root;
1392 	struct btrfs_root *tree_root = fs_info->tree_root;
1393 	struct extent_buffer *leaf;
1394 
1395 	root = btrfs_alloc_root(fs_info);
1396 	if (!root)
1397 		return ERR_PTR(-ENOMEM);
1398 
1399 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1400 		     tree_root->sectorsize, tree_root->stripesize,
1401 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1402 
1403 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1404 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1405 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1406 
1407 	/*
1408 	 * DON'T set REF_COWS for log trees
1409 	 *
1410 	 * log trees do not get reference counted because they go away
1411 	 * before a real commit is actually done.  They do store pointers
1412 	 * to file data extents, and those reference counts still get
1413 	 * updated (along with back refs to the log tree).
1414 	 */
1415 
1416 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1417 				      BTRFS_TREE_LOG_OBJECTID, NULL,
1418 				      0, 0, 0);
1419 	if (IS_ERR(leaf)) {
1420 		kfree(root);
1421 		return ERR_CAST(leaf);
1422 	}
1423 
1424 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1425 	btrfs_set_header_bytenr(leaf, leaf->start);
1426 	btrfs_set_header_generation(leaf, trans->transid);
1427 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1428 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1429 	root->node = leaf;
1430 
1431 	write_extent_buffer(root->node, root->fs_info->fsid,
1432 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
1433 	btrfs_mark_buffer_dirty(root->node);
1434 	btrfs_tree_unlock(root->node);
1435 	return root;
1436 }
1437 
1438 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1439 			     struct btrfs_fs_info *fs_info)
1440 {
1441 	struct btrfs_root *log_root;
1442 
1443 	log_root = alloc_log_tree(trans, fs_info);
1444 	if (IS_ERR(log_root))
1445 		return PTR_ERR(log_root);
1446 	WARN_ON(fs_info->log_root_tree);
1447 	fs_info->log_root_tree = log_root;
1448 	return 0;
1449 }
1450 
1451 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1452 		       struct btrfs_root *root)
1453 {
1454 	struct btrfs_root *log_root;
1455 	struct btrfs_inode_item *inode_item;
1456 
1457 	log_root = alloc_log_tree(trans, root->fs_info);
1458 	if (IS_ERR(log_root))
1459 		return PTR_ERR(log_root);
1460 
1461 	log_root->last_trans = trans->transid;
1462 	log_root->root_key.offset = root->root_key.objectid;
1463 
1464 	inode_item = &log_root->root_item.inode;
1465 	btrfs_set_stack_inode_generation(inode_item, 1);
1466 	btrfs_set_stack_inode_size(inode_item, 3);
1467 	btrfs_set_stack_inode_nlink(inode_item, 1);
1468 	btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1469 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1470 
1471 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1472 
1473 	WARN_ON(root->log_root);
1474 	root->log_root = log_root;
1475 	root->log_transid = 0;
1476 	root->log_transid_committed = -1;
1477 	root->last_log_commit = 0;
1478 	return 0;
1479 }
1480 
1481 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1482 					       struct btrfs_key *key)
1483 {
1484 	struct btrfs_root *root;
1485 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1486 	struct btrfs_path *path;
1487 	u64 generation;
1488 	u32 blocksize;
1489 	int ret;
1490 
1491 	path = btrfs_alloc_path();
1492 	if (!path)
1493 		return ERR_PTR(-ENOMEM);
1494 
1495 	root = btrfs_alloc_root(fs_info);
1496 	if (!root) {
1497 		ret = -ENOMEM;
1498 		goto alloc_fail;
1499 	}
1500 
1501 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1502 		     tree_root->sectorsize, tree_root->stripesize,
1503 		     root, fs_info, key->objectid);
1504 
1505 	ret = btrfs_find_root(tree_root, key, path,
1506 			      &root->root_item, &root->root_key);
1507 	if (ret) {
1508 		if (ret > 0)
1509 			ret = -ENOENT;
1510 		goto find_fail;
1511 	}
1512 
1513 	generation = btrfs_root_generation(&root->root_item);
1514 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1515 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1516 				     blocksize, generation);
1517 	if (!root->node) {
1518 		ret = -ENOMEM;
1519 		goto find_fail;
1520 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1521 		ret = -EIO;
1522 		goto read_fail;
1523 	}
1524 	root->commit_root = btrfs_root_node(root);
1525 out:
1526 	btrfs_free_path(path);
1527 	return root;
1528 
1529 read_fail:
1530 	free_extent_buffer(root->node);
1531 find_fail:
1532 	kfree(root);
1533 alloc_fail:
1534 	root = ERR_PTR(ret);
1535 	goto out;
1536 }
1537 
1538 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1539 				      struct btrfs_key *location)
1540 {
1541 	struct btrfs_root *root;
1542 
1543 	root = btrfs_read_tree_root(tree_root, location);
1544 	if (IS_ERR(root))
1545 		return root;
1546 
1547 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1548 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1549 		btrfs_check_and_init_root_item(&root->root_item);
1550 	}
1551 
1552 	return root;
1553 }
1554 
1555 int btrfs_init_fs_root(struct btrfs_root *root)
1556 {
1557 	int ret;
1558 	struct btrfs_subvolume_writers *writers;
1559 
1560 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1561 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1562 					GFP_NOFS);
1563 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1564 		ret = -ENOMEM;
1565 		goto fail;
1566 	}
1567 
1568 	writers = btrfs_alloc_subvolume_writers();
1569 	if (IS_ERR(writers)) {
1570 		ret = PTR_ERR(writers);
1571 		goto fail;
1572 	}
1573 	root->subv_writers = writers;
1574 
1575 	btrfs_init_free_ino_ctl(root);
1576 	spin_lock_init(&root->cache_lock);
1577 	init_waitqueue_head(&root->cache_wait);
1578 
1579 	ret = get_anon_bdev(&root->anon_dev);
1580 	if (ret)
1581 		goto free_writers;
1582 	return 0;
1583 
1584 free_writers:
1585 	btrfs_free_subvolume_writers(root->subv_writers);
1586 fail:
1587 	kfree(root->free_ino_ctl);
1588 	kfree(root->free_ino_pinned);
1589 	return ret;
1590 }
1591 
1592 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1593 					       u64 root_id)
1594 {
1595 	struct btrfs_root *root;
1596 
1597 	spin_lock(&fs_info->fs_roots_radix_lock);
1598 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1599 				 (unsigned long)root_id);
1600 	spin_unlock(&fs_info->fs_roots_radix_lock);
1601 	return root;
1602 }
1603 
1604 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1605 			 struct btrfs_root *root)
1606 {
1607 	int ret;
1608 
1609 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1610 	if (ret)
1611 		return ret;
1612 
1613 	spin_lock(&fs_info->fs_roots_radix_lock);
1614 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1615 				(unsigned long)root->root_key.objectid,
1616 				root);
1617 	if (ret == 0)
1618 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1619 	spin_unlock(&fs_info->fs_roots_radix_lock);
1620 	radix_tree_preload_end();
1621 
1622 	return ret;
1623 }
1624 
1625 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1626 				     struct btrfs_key *location,
1627 				     bool check_ref)
1628 {
1629 	struct btrfs_root *root;
1630 	int ret;
1631 
1632 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1633 		return fs_info->tree_root;
1634 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1635 		return fs_info->extent_root;
1636 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1637 		return fs_info->chunk_root;
1638 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1639 		return fs_info->dev_root;
1640 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1641 		return fs_info->csum_root;
1642 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1643 		return fs_info->quota_root ? fs_info->quota_root :
1644 					     ERR_PTR(-ENOENT);
1645 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1646 		return fs_info->uuid_root ? fs_info->uuid_root :
1647 					    ERR_PTR(-ENOENT);
1648 again:
1649 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1650 	if (root) {
1651 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1652 			return ERR_PTR(-ENOENT);
1653 		return root;
1654 	}
1655 
1656 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1657 	if (IS_ERR(root))
1658 		return root;
1659 
1660 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1661 		ret = -ENOENT;
1662 		goto fail;
1663 	}
1664 
1665 	ret = btrfs_init_fs_root(root);
1666 	if (ret)
1667 		goto fail;
1668 
1669 	ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1670 			location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1671 	if (ret < 0)
1672 		goto fail;
1673 	if (ret == 0)
1674 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1675 
1676 	ret = btrfs_insert_fs_root(fs_info, root);
1677 	if (ret) {
1678 		if (ret == -EEXIST) {
1679 			free_fs_root(root);
1680 			goto again;
1681 		}
1682 		goto fail;
1683 	}
1684 	return root;
1685 fail:
1686 	free_fs_root(root);
1687 	return ERR_PTR(ret);
1688 }
1689 
1690 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1691 {
1692 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1693 	int ret = 0;
1694 	struct btrfs_device *device;
1695 	struct backing_dev_info *bdi;
1696 
1697 	rcu_read_lock();
1698 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1699 		if (!device->bdev)
1700 			continue;
1701 		bdi = blk_get_backing_dev_info(device->bdev);
1702 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1703 			ret = 1;
1704 			break;
1705 		}
1706 	}
1707 	rcu_read_unlock();
1708 	return ret;
1709 }
1710 
1711 /*
1712  * If this fails, caller must call bdi_destroy() to get rid of the
1713  * bdi again.
1714  */
1715 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1716 {
1717 	int err;
1718 
1719 	bdi->capabilities = BDI_CAP_MAP_COPY;
1720 	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1721 	if (err)
1722 		return err;
1723 
1724 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1725 	bdi->congested_fn	= btrfs_congested_fn;
1726 	bdi->congested_data	= info;
1727 	return 0;
1728 }
1729 
1730 /*
1731  * called by the kthread helper functions to finally call the bio end_io
1732  * functions.  This is where read checksum verification actually happens
1733  */
1734 static void end_workqueue_fn(struct btrfs_work *work)
1735 {
1736 	struct bio *bio;
1737 	struct end_io_wq *end_io_wq;
1738 	int error;
1739 
1740 	end_io_wq = container_of(work, struct end_io_wq, work);
1741 	bio = end_io_wq->bio;
1742 
1743 	error = end_io_wq->error;
1744 	bio->bi_private = end_io_wq->private;
1745 	bio->bi_end_io = end_io_wq->end_io;
1746 	kfree(end_io_wq);
1747 	bio_endio_nodec(bio, error);
1748 }
1749 
1750 static int cleaner_kthread(void *arg)
1751 {
1752 	struct btrfs_root *root = arg;
1753 	int again;
1754 
1755 	do {
1756 		again = 0;
1757 
1758 		/* Make the cleaner go to sleep early. */
1759 		if (btrfs_need_cleaner_sleep(root))
1760 			goto sleep;
1761 
1762 		if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1763 			goto sleep;
1764 
1765 		/*
1766 		 * Avoid the problem that we change the status of the fs
1767 		 * during the above check and trylock.
1768 		 */
1769 		if (btrfs_need_cleaner_sleep(root)) {
1770 			mutex_unlock(&root->fs_info->cleaner_mutex);
1771 			goto sleep;
1772 		}
1773 
1774 		btrfs_run_delayed_iputs(root);
1775 		again = btrfs_clean_one_deleted_snapshot(root);
1776 		mutex_unlock(&root->fs_info->cleaner_mutex);
1777 
1778 		/*
1779 		 * The defragger has dealt with the R/O remount and umount,
1780 		 * needn't do anything special here.
1781 		 */
1782 		btrfs_run_defrag_inodes(root->fs_info);
1783 sleep:
1784 		if (!try_to_freeze() && !again) {
1785 			set_current_state(TASK_INTERRUPTIBLE);
1786 			if (!kthread_should_stop())
1787 				schedule();
1788 			__set_current_state(TASK_RUNNING);
1789 		}
1790 	} while (!kthread_should_stop());
1791 	return 0;
1792 }
1793 
1794 static int transaction_kthread(void *arg)
1795 {
1796 	struct btrfs_root *root = arg;
1797 	struct btrfs_trans_handle *trans;
1798 	struct btrfs_transaction *cur;
1799 	u64 transid;
1800 	unsigned long now;
1801 	unsigned long delay;
1802 	bool cannot_commit;
1803 
1804 	do {
1805 		cannot_commit = false;
1806 		delay = HZ * root->fs_info->commit_interval;
1807 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1808 
1809 		spin_lock(&root->fs_info->trans_lock);
1810 		cur = root->fs_info->running_transaction;
1811 		if (!cur) {
1812 			spin_unlock(&root->fs_info->trans_lock);
1813 			goto sleep;
1814 		}
1815 
1816 		now = get_seconds();
1817 		if (cur->state < TRANS_STATE_BLOCKED &&
1818 		    (now < cur->start_time ||
1819 		     now - cur->start_time < root->fs_info->commit_interval)) {
1820 			spin_unlock(&root->fs_info->trans_lock);
1821 			delay = HZ * 5;
1822 			goto sleep;
1823 		}
1824 		transid = cur->transid;
1825 		spin_unlock(&root->fs_info->trans_lock);
1826 
1827 		/* If the file system is aborted, this will always fail. */
1828 		trans = btrfs_attach_transaction(root);
1829 		if (IS_ERR(trans)) {
1830 			if (PTR_ERR(trans) != -ENOENT)
1831 				cannot_commit = true;
1832 			goto sleep;
1833 		}
1834 		if (transid == trans->transid) {
1835 			btrfs_commit_transaction(trans, root);
1836 		} else {
1837 			btrfs_end_transaction(trans, root);
1838 		}
1839 sleep:
1840 		wake_up_process(root->fs_info->cleaner_kthread);
1841 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1842 
1843 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1844 				      &root->fs_info->fs_state)))
1845 			btrfs_cleanup_transaction(root);
1846 		if (!try_to_freeze()) {
1847 			set_current_state(TASK_INTERRUPTIBLE);
1848 			if (!kthread_should_stop() &&
1849 			    (!btrfs_transaction_blocked(root->fs_info) ||
1850 			     cannot_commit))
1851 				schedule_timeout(delay);
1852 			__set_current_state(TASK_RUNNING);
1853 		}
1854 	} while (!kthread_should_stop());
1855 	return 0;
1856 }
1857 
1858 /*
1859  * this will find the highest generation in the array of
1860  * root backups.  The index of the highest array is returned,
1861  * or -1 if we can't find anything.
1862  *
1863  * We check to make sure the array is valid by comparing the
1864  * generation of the latest  root in the array with the generation
1865  * in the super block.  If they don't match we pitch it.
1866  */
1867 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1868 {
1869 	u64 cur;
1870 	int newest_index = -1;
1871 	struct btrfs_root_backup *root_backup;
1872 	int i;
1873 
1874 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1875 		root_backup = info->super_copy->super_roots + i;
1876 		cur = btrfs_backup_tree_root_gen(root_backup);
1877 		if (cur == newest_gen)
1878 			newest_index = i;
1879 	}
1880 
1881 	/* check to see if we actually wrapped around */
1882 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1883 		root_backup = info->super_copy->super_roots;
1884 		cur = btrfs_backup_tree_root_gen(root_backup);
1885 		if (cur == newest_gen)
1886 			newest_index = 0;
1887 	}
1888 	return newest_index;
1889 }
1890 
1891 
1892 /*
1893  * find the oldest backup so we know where to store new entries
1894  * in the backup array.  This will set the backup_root_index
1895  * field in the fs_info struct
1896  */
1897 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1898 				     u64 newest_gen)
1899 {
1900 	int newest_index = -1;
1901 
1902 	newest_index = find_newest_super_backup(info, newest_gen);
1903 	/* if there was garbage in there, just move along */
1904 	if (newest_index == -1) {
1905 		info->backup_root_index = 0;
1906 	} else {
1907 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1908 	}
1909 }
1910 
1911 /*
1912  * copy all the root pointers into the super backup array.
1913  * this will bump the backup pointer by one when it is
1914  * done
1915  */
1916 static void backup_super_roots(struct btrfs_fs_info *info)
1917 {
1918 	int next_backup;
1919 	struct btrfs_root_backup *root_backup;
1920 	int last_backup;
1921 
1922 	next_backup = info->backup_root_index;
1923 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1924 		BTRFS_NUM_BACKUP_ROOTS;
1925 
1926 	/*
1927 	 * just overwrite the last backup if we're at the same generation
1928 	 * this happens only at umount
1929 	 */
1930 	root_backup = info->super_for_commit->super_roots + last_backup;
1931 	if (btrfs_backup_tree_root_gen(root_backup) ==
1932 	    btrfs_header_generation(info->tree_root->node))
1933 		next_backup = last_backup;
1934 
1935 	root_backup = info->super_for_commit->super_roots + next_backup;
1936 
1937 	/*
1938 	 * make sure all of our padding and empty slots get zero filled
1939 	 * regardless of which ones we use today
1940 	 */
1941 	memset(root_backup, 0, sizeof(*root_backup));
1942 
1943 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1944 
1945 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1946 	btrfs_set_backup_tree_root_gen(root_backup,
1947 			       btrfs_header_generation(info->tree_root->node));
1948 
1949 	btrfs_set_backup_tree_root_level(root_backup,
1950 			       btrfs_header_level(info->tree_root->node));
1951 
1952 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1953 	btrfs_set_backup_chunk_root_gen(root_backup,
1954 			       btrfs_header_generation(info->chunk_root->node));
1955 	btrfs_set_backup_chunk_root_level(root_backup,
1956 			       btrfs_header_level(info->chunk_root->node));
1957 
1958 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1959 	btrfs_set_backup_extent_root_gen(root_backup,
1960 			       btrfs_header_generation(info->extent_root->node));
1961 	btrfs_set_backup_extent_root_level(root_backup,
1962 			       btrfs_header_level(info->extent_root->node));
1963 
1964 	/*
1965 	 * we might commit during log recovery, which happens before we set
1966 	 * the fs_root.  Make sure it is valid before we fill it in.
1967 	 */
1968 	if (info->fs_root && info->fs_root->node) {
1969 		btrfs_set_backup_fs_root(root_backup,
1970 					 info->fs_root->node->start);
1971 		btrfs_set_backup_fs_root_gen(root_backup,
1972 			       btrfs_header_generation(info->fs_root->node));
1973 		btrfs_set_backup_fs_root_level(root_backup,
1974 			       btrfs_header_level(info->fs_root->node));
1975 	}
1976 
1977 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1978 	btrfs_set_backup_dev_root_gen(root_backup,
1979 			       btrfs_header_generation(info->dev_root->node));
1980 	btrfs_set_backup_dev_root_level(root_backup,
1981 				       btrfs_header_level(info->dev_root->node));
1982 
1983 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1984 	btrfs_set_backup_csum_root_gen(root_backup,
1985 			       btrfs_header_generation(info->csum_root->node));
1986 	btrfs_set_backup_csum_root_level(root_backup,
1987 			       btrfs_header_level(info->csum_root->node));
1988 
1989 	btrfs_set_backup_total_bytes(root_backup,
1990 			     btrfs_super_total_bytes(info->super_copy));
1991 	btrfs_set_backup_bytes_used(root_backup,
1992 			     btrfs_super_bytes_used(info->super_copy));
1993 	btrfs_set_backup_num_devices(root_backup,
1994 			     btrfs_super_num_devices(info->super_copy));
1995 
1996 	/*
1997 	 * if we don't copy this out to the super_copy, it won't get remembered
1998 	 * for the next commit
1999 	 */
2000 	memcpy(&info->super_copy->super_roots,
2001 	       &info->super_for_commit->super_roots,
2002 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2003 }
2004 
2005 /*
2006  * this copies info out of the root backup array and back into
2007  * the in-memory super block.  It is meant to help iterate through
2008  * the array, so you send it the number of backups you've already
2009  * tried and the last backup index you used.
2010  *
2011  * this returns -1 when it has tried all the backups
2012  */
2013 static noinline int next_root_backup(struct btrfs_fs_info *info,
2014 				     struct btrfs_super_block *super,
2015 				     int *num_backups_tried, int *backup_index)
2016 {
2017 	struct btrfs_root_backup *root_backup;
2018 	int newest = *backup_index;
2019 
2020 	if (*num_backups_tried == 0) {
2021 		u64 gen = btrfs_super_generation(super);
2022 
2023 		newest = find_newest_super_backup(info, gen);
2024 		if (newest == -1)
2025 			return -1;
2026 
2027 		*backup_index = newest;
2028 		*num_backups_tried = 1;
2029 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2030 		/* we've tried all the backups, all done */
2031 		return -1;
2032 	} else {
2033 		/* jump to the next oldest backup */
2034 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2035 			BTRFS_NUM_BACKUP_ROOTS;
2036 		*backup_index = newest;
2037 		*num_backups_tried += 1;
2038 	}
2039 	root_backup = super->super_roots + newest;
2040 
2041 	btrfs_set_super_generation(super,
2042 				   btrfs_backup_tree_root_gen(root_backup));
2043 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2044 	btrfs_set_super_root_level(super,
2045 				   btrfs_backup_tree_root_level(root_backup));
2046 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2047 
2048 	/*
2049 	 * fixme: the total bytes and num_devices need to match or we should
2050 	 * need a fsck
2051 	 */
2052 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2053 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2054 	return 0;
2055 }
2056 
2057 /* helper to cleanup workers */
2058 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2059 {
2060 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2061 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2062 	btrfs_destroy_workqueue(fs_info->workers);
2063 	btrfs_destroy_workqueue(fs_info->endio_workers);
2064 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2065 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2066 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2067 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2068 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2069 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2070 	btrfs_destroy_workqueue(fs_info->submit_workers);
2071 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2072 	btrfs_destroy_workqueue(fs_info->caching_workers);
2073 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2074 	btrfs_destroy_workqueue(fs_info->flush_workers);
2075 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2076 	btrfs_destroy_workqueue(fs_info->extent_workers);
2077 }
2078 
2079 static void free_root_extent_buffers(struct btrfs_root *root)
2080 {
2081 	if (root) {
2082 		free_extent_buffer(root->node);
2083 		free_extent_buffer(root->commit_root);
2084 		root->node = NULL;
2085 		root->commit_root = NULL;
2086 	}
2087 }
2088 
2089 /* helper to cleanup tree roots */
2090 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2091 {
2092 	free_root_extent_buffers(info->tree_root);
2093 
2094 	free_root_extent_buffers(info->dev_root);
2095 	free_root_extent_buffers(info->extent_root);
2096 	free_root_extent_buffers(info->csum_root);
2097 	free_root_extent_buffers(info->quota_root);
2098 	free_root_extent_buffers(info->uuid_root);
2099 	if (chunk_root)
2100 		free_root_extent_buffers(info->chunk_root);
2101 }
2102 
2103 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2104 {
2105 	int ret;
2106 	struct btrfs_root *gang[8];
2107 	int i;
2108 
2109 	while (!list_empty(&fs_info->dead_roots)) {
2110 		gang[0] = list_entry(fs_info->dead_roots.next,
2111 				     struct btrfs_root, root_list);
2112 		list_del(&gang[0]->root_list);
2113 
2114 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2115 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2116 		} else {
2117 			free_extent_buffer(gang[0]->node);
2118 			free_extent_buffer(gang[0]->commit_root);
2119 			btrfs_put_fs_root(gang[0]);
2120 		}
2121 	}
2122 
2123 	while (1) {
2124 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2125 					     (void **)gang, 0,
2126 					     ARRAY_SIZE(gang));
2127 		if (!ret)
2128 			break;
2129 		for (i = 0; i < ret; i++)
2130 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2131 	}
2132 
2133 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2134 		btrfs_free_log_root_tree(NULL, fs_info);
2135 		btrfs_destroy_pinned_extent(fs_info->tree_root,
2136 					    fs_info->pinned_extents);
2137 	}
2138 }
2139 
2140 int open_ctree(struct super_block *sb,
2141 	       struct btrfs_fs_devices *fs_devices,
2142 	       char *options)
2143 {
2144 	u32 sectorsize;
2145 	u32 nodesize;
2146 	u32 leafsize;
2147 	u32 blocksize;
2148 	u32 stripesize;
2149 	u64 generation;
2150 	u64 features;
2151 	struct btrfs_key location;
2152 	struct buffer_head *bh;
2153 	struct btrfs_super_block *disk_super;
2154 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2155 	struct btrfs_root *tree_root;
2156 	struct btrfs_root *extent_root;
2157 	struct btrfs_root *csum_root;
2158 	struct btrfs_root *chunk_root;
2159 	struct btrfs_root *dev_root;
2160 	struct btrfs_root *quota_root;
2161 	struct btrfs_root *uuid_root;
2162 	struct btrfs_root *log_tree_root;
2163 	int ret;
2164 	int err = -EINVAL;
2165 	int num_backups_tried = 0;
2166 	int backup_index = 0;
2167 	int max_active;
2168 	int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2169 	bool create_uuid_tree;
2170 	bool check_uuid_tree;
2171 
2172 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2173 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2174 	if (!tree_root || !chunk_root) {
2175 		err = -ENOMEM;
2176 		goto fail;
2177 	}
2178 
2179 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2180 	if (ret) {
2181 		err = ret;
2182 		goto fail;
2183 	}
2184 
2185 	ret = setup_bdi(fs_info, &fs_info->bdi);
2186 	if (ret) {
2187 		err = ret;
2188 		goto fail_srcu;
2189 	}
2190 
2191 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2192 	if (ret) {
2193 		err = ret;
2194 		goto fail_bdi;
2195 	}
2196 	fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2197 					(1 + ilog2(nr_cpu_ids));
2198 
2199 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2200 	if (ret) {
2201 		err = ret;
2202 		goto fail_dirty_metadata_bytes;
2203 	}
2204 
2205 	ret = percpu_counter_init(&fs_info->bio_counter, 0);
2206 	if (ret) {
2207 		err = ret;
2208 		goto fail_delalloc_bytes;
2209 	}
2210 
2211 	fs_info->btree_inode = new_inode(sb);
2212 	if (!fs_info->btree_inode) {
2213 		err = -ENOMEM;
2214 		goto fail_bio_counter;
2215 	}
2216 
2217 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2218 
2219 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2220 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2221 	INIT_LIST_HEAD(&fs_info->trans_list);
2222 	INIT_LIST_HEAD(&fs_info->dead_roots);
2223 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2224 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2225 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2226 	spin_lock_init(&fs_info->delalloc_root_lock);
2227 	spin_lock_init(&fs_info->trans_lock);
2228 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2229 	spin_lock_init(&fs_info->delayed_iput_lock);
2230 	spin_lock_init(&fs_info->defrag_inodes_lock);
2231 	spin_lock_init(&fs_info->free_chunk_lock);
2232 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2233 	spin_lock_init(&fs_info->super_lock);
2234 	spin_lock_init(&fs_info->qgroup_op_lock);
2235 	spin_lock_init(&fs_info->buffer_lock);
2236 	rwlock_init(&fs_info->tree_mod_log_lock);
2237 	mutex_init(&fs_info->reloc_mutex);
2238 	mutex_init(&fs_info->delalloc_root_mutex);
2239 	seqlock_init(&fs_info->profiles_lock);
2240 
2241 	init_completion(&fs_info->kobj_unregister);
2242 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2243 	INIT_LIST_HEAD(&fs_info->space_info);
2244 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2245 	btrfs_mapping_init(&fs_info->mapping_tree);
2246 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2247 			     BTRFS_BLOCK_RSV_GLOBAL);
2248 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2249 			     BTRFS_BLOCK_RSV_DELALLOC);
2250 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2251 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2252 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2253 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2254 			     BTRFS_BLOCK_RSV_DELOPS);
2255 	atomic_set(&fs_info->nr_async_submits, 0);
2256 	atomic_set(&fs_info->async_delalloc_pages, 0);
2257 	atomic_set(&fs_info->async_submit_draining, 0);
2258 	atomic_set(&fs_info->nr_async_bios, 0);
2259 	atomic_set(&fs_info->defrag_running, 0);
2260 	atomic_set(&fs_info->qgroup_op_seq, 0);
2261 	atomic64_set(&fs_info->tree_mod_seq, 0);
2262 	fs_info->sb = sb;
2263 	fs_info->max_inline = 8192 * 1024;
2264 	fs_info->metadata_ratio = 0;
2265 	fs_info->defrag_inodes = RB_ROOT;
2266 	fs_info->free_chunk_space = 0;
2267 	fs_info->tree_mod_log = RB_ROOT;
2268 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2269 	fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2270 	/* readahead state */
2271 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2272 	spin_lock_init(&fs_info->reada_lock);
2273 
2274 	fs_info->thread_pool_size = min_t(unsigned long,
2275 					  num_online_cpus() + 2, 8);
2276 
2277 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2278 	spin_lock_init(&fs_info->ordered_root_lock);
2279 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2280 					GFP_NOFS);
2281 	if (!fs_info->delayed_root) {
2282 		err = -ENOMEM;
2283 		goto fail_iput;
2284 	}
2285 	btrfs_init_delayed_root(fs_info->delayed_root);
2286 
2287 	mutex_init(&fs_info->scrub_lock);
2288 	atomic_set(&fs_info->scrubs_running, 0);
2289 	atomic_set(&fs_info->scrub_pause_req, 0);
2290 	atomic_set(&fs_info->scrubs_paused, 0);
2291 	atomic_set(&fs_info->scrub_cancel_req, 0);
2292 	init_waitqueue_head(&fs_info->replace_wait);
2293 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2294 	fs_info->scrub_workers_refcnt = 0;
2295 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2296 	fs_info->check_integrity_print_mask = 0;
2297 #endif
2298 
2299 	spin_lock_init(&fs_info->balance_lock);
2300 	mutex_init(&fs_info->balance_mutex);
2301 	atomic_set(&fs_info->balance_running, 0);
2302 	atomic_set(&fs_info->balance_pause_req, 0);
2303 	atomic_set(&fs_info->balance_cancel_req, 0);
2304 	fs_info->balance_ctl = NULL;
2305 	init_waitqueue_head(&fs_info->balance_wait_q);
2306 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2307 
2308 	sb->s_blocksize = 4096;
2309 	sb->s_blocksize_bits = blksize_bits(4096);
2310 	sb->s_bdi = &fs_info->bdi;
2311 
2312 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2313 	set_nlink(fs_info->btree_inode, 1);
2314 	/*
2315 	 * we set the i_size on the btree inode to the max possible int.
2316 	 * the real end of the address space is determined by all of
2317 	 * the devices in the system
2318 	 */
2319 	fs_info->btree_inode->i_size = OFFSET_MAX;
2320 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2321 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2322 
2323 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2324 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2325 			     fs_info->btree_inode->i_mapping);
2326 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2327 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2328 
2329 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2330 
2331 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2332 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2333 	       sizeof(struct btrfs_key));
2334 	set_bit(BTRFS_INODE_DUMMY,
2335 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2336 	btrfs_insert_inode_hash(fs_info->btree_inode);
2337 
2338 	spin_lock_init(&fs_info->block_group_cache_lock);
2339 	fs_info->block_group_cache_tree = RB_ROOT;
2340 	fs_info->first_logical_byte = (u64)-1;
2341 
2342 	extent_io_tree_init(&fs_info->freed_extents[0],
2343 			     fs_info->btree_inode->i_mapping);
2344 	extent_io_tree_init(&fs_info->freed_extents[1],
2345 			     fs_info->btree_inode->i_mapping);
2346 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2347 	fs_info->do_barriers = 1;
2348 
2349 
2350 	mutex_init(&fs_info->ordered_operations_mutex);
2351 	mutex_init(&fs_info->ordered_extent_flush_mutex);
2352 	mutex_init(&fs_info->tree_log_mutex);
2353 	mutex_init(&fs_info->chunk_mutex);
2354 	mutex_init(&fs_info->transaction_kthread_mutex);
2355 	mutex_init(&fs_info->cleaner_mutex);
2356 	mutex_init(&fs_info->volume_mutex);
2357 	init_rwsem(&fs_info->commit_root_sem);
2358 	init_rwsem(&fs_info->cleanup_work_sem);
2359 	init_rwsem(&fs_info->subvol_sem);
2360 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2361 	fs_info->dev_replace.lock_owner = 0;
2362 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2363 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2364 	mutex_init(&fs_info->dev_replace.lock_management_lock);
2365 	mutex_init(&fs_info->dev_replace.lock);
2366 
2367 	spin_lock_init(&fs_info->qgroup_lock);
2368 	mutex_init(&fs_info->qgroup_ioctl_lock);
2369 	fs_info->qgroup_tree = RB_ROOT;
2370 	fs_info->qgroup_op_tree = RB_ROOT;
2371 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2372 	fs_info->qgroup_seq = 1;
2373 	fs_info->quota_enabled = 0;
2374 	fs_info->pending_quota_state = 0;
2375 	fs_info->qgroup_ulist = NULL;
2376 	mutex_init(&fs_info->qgroup_rescan_lock);
2377 
2378 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2379 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2380 
2381 	init_waitqueue_head(&fs_info->transaction_throttle);
2382 	init_waitqueue_head(&fs_info->transaction_wait);
2383 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2384 	init_waitqueue_head(&fs_info->async_submit_wait);
2385 
2386 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2387 	if (ret) {
2388 		err = ret;
2389 		goto fail_alloc;
2390 	}
2391 
2392 	__setup_root(4096, 4096, 4096, 4096, tree_root,
2393 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2394 
2395 	invalidate_bdev(fs_devices->latest_bdev);
2396 
2397 	/*
2398 	 * Read super block and check the signature bytes only
2399 	 */
2400 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2401 	if (!bh) {
2402 		err = -EINVAL;
2403 		goto fail_alloc;
2404 	}
2405 
2406 	/*
2407 	 * We want to check superblock checksum, the type is stored inside.
2408 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2409 	 */
2410 	if (btrfs_check_super_csum(bh->b_data)) {
2411 		printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2412 		err = -EINVAL;
2413 		goto fail_alloc;
2414 	}
2415 
2416 	/*
2417 	 * super_copy is zeroed at allocation time and we never touch the
2418 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2419 	 * the whole block of INFO_SIZE
2420 	 */
2421 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2422 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2423 	       sizeof(*fs_info->super_for_commit));
2424 	brelse(bh);
2425 
2426 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2427 
2428 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2429 	if (ret) {
2430 		printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2431 		err = -EINVAL;
2432 		goto fail_alloc;
2433 	}
2434 
2435 	disk_super = fs_info->super_copy;
2436 	if (!btrfs_super_root(disk_super))
2437 		goto fail_alloc;
2438 
2439 	/* check FS state, whether FS is broken. */
2440 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2441 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2442 
2443 	/*
2444 	 * run through our array of backup supers and setup
2445 	 * our ring pointer to the oldest one
2446 	 */
2447 	generation = btrfs_super_generation(disk_super);
2448 	find_oldest_super_backup(fs_info, generation);
2449 
2450 	/*
2451 	 * In the long term, we'll store the compression type in the super
2452 	 * block, and it'll be used for per file compression control.
2453 	 */
2454 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2455 
2456 	ret = btrfs_parse_options(tree_root, options);
2457 	if (ret) {
2458 		err = ret;
2459 		goto fail_alloc;
2460 	}
2461 
2462 	features = btrfs_super_incompat_flags(disk_super) &
2463 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2464 	if (features) {
2465 		printk(KERN_ERR "BTRFS: couldn't mount because of "
2466 		       "unsupported optional features (%Lx).\n",
2467 		       features);
2468 		err = -EINVAL;
2469 		goto fail_alloc;
2470 	}
2471 
2472 	if (btrfs_super_leafsize(disk_super) !=
2473 	    btrfs_super_nodesize(disk_super)) {
2474 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2475 		       "blocksizes don't match.  node %d leaf %d\n",
2476 		       btrfs_super_nodesize(disk_super),
2477 		       btrfs_super_leafsize(disk_super));
2478 		err = -EINVAL;
2479 		goto fail_alloc;
2480 	}
2481 	if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2482 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2483 		       "blocksize (%d) was too large\n",
2484 		       btrfs_super_leafsize(disk_super));
2485 		err = -EINVAL;
2486 		goto fail_alloc;
2487 	}
2488 
2489 	features = btrfs_super_incompat_flags(disk_super);
2490 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2491 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2492 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2493 
2494 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2495 		printk(KERN_ERR "BTRFS: has skinny extents\n");
2496 
2497 	/*
2498 	 * flag our filesystem as having big metadata blocks if
2499 	 * they are bigger than the page size
2500 	 */
2501 	if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2502 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2503 			printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2504 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2505 	}
2506 
2507 	nodesize = btrfs_super_nodesize(disk_super);
2508 	leafsize = btrfs_super_leafsize(disk_super);
2509 	sectorsize = btrfs_super_sectorsize(disk_super);
2510 	stripesize = btrfs_super_stripesize(disk_super);
2511 	fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2512 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2513 
2514 	/*
2515 	 * mixed block groups end up with duplicate but slightly offset
2516 	 * extent buffers for the same range.  It leads to corruptions
2517 	 */
2518 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2519 	    (sectorsize != leafsize)) {
2520 		printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2521 				"are not allowed for mixed block groups on %s\n",
2522 				sb->s_id);
2523 		goto fail_alloc;
2524 	}
2525 
2526 	/*
2527 	 * Needn't use the lock because there is no other task which will
2528 	 * update the flag.
2529 	 */
2530 	btrfs_set_super_incompat_flags(disk_super, features);
2531 
2532 	features = btrfs_super_compat_ro_flags(disk_super) &
2533 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2534 	if (!(sb->s_flags & MS_RDONLY) && features) {
2535 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2536 		       "unsupported option features (%Lx).\n",
2537 		       features);
2538 		err = -EINVAL;
2539 		goto fail_alloc;
2540 	}
2541 
2542 	max_active = fs_info->thread_pool_size;
2543 
2544 	fs_info->workers =
2545 		btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2546 				      max_active, 16);
2547 
2548 	fs_info->delalloc_workers =
2549 		btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2550 
2551 	fs_info->flush_workers =
2552 		btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2553 
2554 	fs_info->caching_workers =
2555 		btrfs_alloc_workqueue("cache", flags, max_active, 0);
2556 
2557 	/*
2558 	 * a higher idle thresh on the submit workers makes it much more
2559 	 * likely that bios will be send down in a sane order to the
2560 	 * devices
2561 	 */
2562 	fs_info->submit_workers =
2563 		btrfs_alloc_workqueue("submit", flags,
2564 				      min_t(u64, fs_devices->num_devices,
2565 					    max_active), 64);
2566 
2567 	fs_info->fixup_workers =
2568 		btrfs_alloc_workqueue("fixup", flags, 1, 0);
2569 
2570 	/*
2571 	 * endios are largely parallel and should have a very
2572 	 * low idle thresh
2573 	 */
2574 	fs_info->endio_workers =
2575 		btrfs_alloc_workqueue("endio", flags, max_active, 4);
2576 	fs_info->endio_meta_workers =
2577 		btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2578 	fs_info->endio_meta_write_workers =
2579 		btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2580 	fs_info->endio_raid56_workers =
2581 		btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2582 	fs_info->rmw_workers =
2583 		btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2584 	fs_info->endio_write_workers =
2585 		btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2586 	fs_info->endio_freespace_worker =
2587 		btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2588 	fs_info->delayed_workers =
2589 		btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2590 	fs_info->readahead_workers =
2591 		btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2592 	fs_info->qgroup_rescan_workers =
2593 		btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2594 	fs_info->extent_workers =
2595 		btrfs_alloc_workqueue("extent-refs", flags,
2596 				      min_t(u64, fs_devices->num_devices,
2597 					    max_active), 8);
2598 
2599 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2600 	      fs_info->submit_workers && fs_info->flush_workers &&
2601 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2602 	      fs_info->endio_meta_write_workers &&
2603 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2604 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2605 	      fs_info->caching_workers && fs_info->readahead_workers &&
2606 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2607 	      fs_info->fixup_workers && fs_info->extent_workers &&
2608 	      fs_info->qgroup_rescan_workers)) {
2609 		err = -ENOMEM;
2610 		goto fail_sb_buffer;
2611 	}
2612 
2613 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2614 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2615 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2616 
2617 	tree_root->nodesize = nodesize;
2618 	tree_root->leafsize = leafsize;
2619 	tree_root->sectorsize = sectorsize;
2620 	tree_root->stripesize = stripesize;
2621 
2622 	sb->s_blocksize = sectorsize;
2623 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2624 
2625 	if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2626 		printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2627 		goto fail_sb_buffer;
2628 	}
2629 
2630 	if (sectorsize != PAGE_SIZE) {
2631 		printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2632 		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2633 		goto fail_sb_buffer;
2634 	}
2635 
2636 	mutex_lock(&fs_info->chunk_mutex);
2637 	ret = btrfs_read_sys_array(tree_root);
2638 	mutex_unlock(&fs_info->chunk_mutex);
2639 	if (ret) {
2640 		printk(KERN_WARNING "BTRFS: failed to read the system "
2641 		       "array on %s\n", sb->s_id);
2642 		goto fail_sb_buffer;
2643 	}
2644 
2645 	blocksize = btrfs_level_size(tree_root,
2646 				     btrfs_super_chunk_root_level(disk_super));
2647 	generation = btrfs_super_chunk_root_generation(disk_super);
2648 
2649 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
2650 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2651 
2652 	chunk_root->node = read_tree_block(chunk_root,
2653 					   btrfs_super_chunk_root(disk_super),
2654 					   blocksize, generation);
2655 	if (!chunk_root->node ||
2656 	    !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2657 		printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2658 		       sb->s_id);
2659 		goto fail_tree_roots;
2660 	}
2661 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2662 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2663 
2664 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2665 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2666 
2667 	ret = btrfs_read_chunk_tree(chunk_root);
2668 	if (ret) {
2669 		printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2670 		       sb->s_id);
2671 		goto fail_tree_roots;
2672 	}
2673 
2674 	/*
2675 	 * keep the device that is marked to be the target device for the
2676 	 * dev_replace procedure
2677 	 */
2678 	btrfs_close_extra_devices(fs_info, fs_devices, 0);
2679 
2680 	if (!fs_devices->latest_bdev) {
2681 		printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2682 		       sb->s_id);
2683 		goto fail_tree_roots;
2684 	}
2685 
2686 retry_root_backup:
2687 	blocksize = btrfs_level_size(tree_root,
2688 				     btrfs_super_root_level(disk_super));
2689 	generation = btrfs_super_generation(disk_super);
2690 
2691 	tree_root->node = read_tree_block(tree_root,
2692 					  btrfs_super_root(disk_super),
2693 					  blocksize, generation);
2694 	if (!tree_root->node ||
2695 	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2696 		printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2697 		       sb->s_id);
2698 
2699 		goto recovery_tree_root;
2700 	}
2701 
2702 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2703 	tree_root->commit_root = btrfs_root_node(tree_root);
2704 	btrfs_set_root_refs(&tree_root->root_item, 1);
2705 
2706 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2707 	location.type = BTRFS_ROOT_ITEM_KEY;
2708 	location.offset = 0;
2709 
2710 	extent_root = btrfs_read_tree_root(tree_root, &location);
2711 	if (IS_ERR(extent_root)) {
2712 		ret = PTR_ERR(extent_root);
2713 		goto recovery_tree_root;
2714 	}
2715 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
2716 	fs_info->extent_root = extent_root;
2717 
2718 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2719 	dev_root = btrfs_read_tree_root(tree_root, &location);
2720 	if (IS_ERR(dev_root)) {
2721 		ret = PTR_ERR(dev_root);
2722 		goto recovery_tree_root;
2723 	}
2724 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
2725 	fs_info->dev_root = dev_root;
2726 	btrfs_init_devices_late(fs_info);
2727 
2728 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2729 	csum_root = btrfs_read_tree_root(tree_root, &location);
2730 	if (IS_ERR(csum_root)) {
2731 		ret = PTR_ERR(csum_root);
2732 		goto recovery_tree_root;
2733 	}
2734 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
2735 	fs_info->csum_root = csum_root;
2736 
2737 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2738 	quota_root = btrfs_read_tree_root(tree_root, &location);
2739 	if (!IS_ERR(quota_root)) {
2740 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
2741 		fs_info->quota_enabled = 1;
2742 		fs_info->pending_quota_state = 1;
2743 		fs_info->quota_root = quota_root;
2744 	}
2745 
2746 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2747 	uuid_root = btrfs_read_tree_root(tree_root, &location);
2748 	if (IS_ERR(uuid_root)) {
2749 		ret = PTR_ERR(uuid_root);
2750 		if (ret != -ENOENT)
2751 			goto recovery_tree_root;
2752 		create_uuid_tree = true;
2753 		check_uuid_tree = false;
2754 	} else {
2755 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
2756 		fs_info->uuid_root = uuid_root;
2757 		create_uuid_tree = false;
2758 		check_uuid_tree =
2759 		    generation != btrfs_super_uuid_tree_generation(disk_super);
2760 	}
2761 
2762 	fs_info->generation = generation;
2763 	fs_info->last_trans_committed = generation;
2764 
2765 	ret = btrfs_recover_balance(fs_info);
2766 	if (ret) {
2767 		printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2768 		goto fail_block_groups;
2769 	}
2770 
2771 	ret = btrfs_init_dev_stats(fs_info);
2772 	if (ret) {
2773 		printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2774 		       ret);
2775 		goto fail_block_groups;
2776 	}
2777 
2778 	ret = btrfs_init_dev_replace(fs_info);
2779 	if (ret) {
2780 		pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2781 		goto fail_block_groups;
2782 	}
2783 
2784 	btrfs_close_extra_devices(fs_info, fs_devices, 1);
2785 
2786 	ret = btrfs_sysfs_add_one(fs_info);
2787 	if (ret) {
2788 		pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2789 		goto fail_block_groups;
2790 	}
2791 
2792 	ret = btrfs_init_space_info(fs_info);
2793 	if (ret) {
2794 		printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2795 		goto fail_sysfs;
2796 	}
2797 
2798 	ret = btrfs_read_block_groups(extent_root);
2799 	if (ret) {
2800 		printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2801 		goto fail_sysfs;
2802 	}
2803 	fs_info->num_tolerated_disk_barrier_failures =
2804 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2805 	if (fs_info->fs_devices->missing_devices >
2806 	     fs_info->num_tolerated_disk_barrier_failures &&
2807 	    !(sb->s_flags & MS_RDONLY)) {
2808 		printk(KERN_WARNING "BTRFS: "
2809 			"too many missing devices, writeable mount is not allowed\n");
2810 		goto fail_sysfs;
2811 	}
2812 
2813 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2814 					       "btrfs-cleaner");
2815 	if (IS_ERR(fs_info->cleaner_kthread))
2816 		goto fail_sysfs;
2817 
2818 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2819 						   tree_root,
2820 						   "btrfs-transaction");
2821 	if (IS_ERR(fs_info->transaction_kthread))
2822 		goto fail_cleaner;
2823 
2824 	if (!btrfs_test_opt(tree_root, SSD) &&
2825 	    !btrfs_test_opt(tree_root, NOSSD) &&
2826 	    !fs_info->fs_devices->rotating) {
2827 		printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2828 		       "mode\n");
2829 		btrfs_set_opt(fs_info->mount_opt, SSD);
2830 	}
2831 
2832 	/* Set the real inode map cache flag */
2833 	if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2834 		btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2835 
2836 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2837 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2838 		ret = btrfsic_mount(tree_root, fs_devices,
2839 				    btrfs_test_opt(tree_root,
2840 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2841 				    1 : 0,
2842 				    fs_info->check_integrity_print_mask);
2843 		if (ret)
2844 			printk(KERN_WARNING "BTRFS: failed to initialize"
2845 			       " integrity check module %s\n", sb->s_id);
2846 	}
2847 #endif
2848 	ret = btrfs_read_qgroup_config(fs_info);
2849 	if (ret)
2850 		goto fail_trans_kthread;
2851 
2852 	/* do not make disk changes in broken FS */
2853 	if (btrfs_super_log_root(disk_super) != 0) {
2854 		u64 bytenr = btrfs_super_log_root(disk_super);
2855 
2856 		if (fs_devices->rw_devices == 0) {
2857 			printk(KERN_WARNING "BTRFS: log replay required "
2858 			       "on RO media\n");
2859 			err = -EIO;
2860 			goto fail_qgroup;
2861 		}
2862 		blocksize =
2863 		     btrfs_level_size(tree_root,
2864 				      btrfs_super_log_root_level(disk_super));
2865 
2866 		log_tree_root = btrfs_alloc_root(fs_info);
2867 		if (!log_tree_root) {
2868 			err = -ENOMEM;
2869 			goto fail_qgroup;
2870 		}
2871 
2872 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2873 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2874 
2875 		log_tree_root->node = read_tree_block(tree_root, bytenr,
2876 						      blocksize,
2877 						      generation + 1);
2878 		if (!log_tree_root->node ||
2879 		    !extent_buffer_uptodate(log_tree_root->node)) {
2880 			printk(KERN_ERR "BTRFS: failed to read log tree\n");
2881 			free_extent_buffer(log_tree_root->node);
2882 			kfree(log_tree_root);
2883 			goto fail_qgroup;
2884 		}
2885 		/* returns with log_tree_root freed on success */
2886 		ret = btrfs_recover_log_trees(log_tree_root);
2887 		if (ret) {
2888 			btrfs_error(tree_root->fs_info, ret,
2889 				    "Failed to recover log tree");
2890 			free_extent_buffer(log_tree_root->node);
2891 			kfree(log_tree_root);
2892 			goto fail_qgroup;
2893 		}
2894 
2895 		if (sb->s_flags & MS_RDONLY) {
2896 			ret = btrfs_commit_super(tree_root);
2897 			if (ret)
2898 				goto fail_qgroup;
2899 		}
2900 	}
2901 
2902 	ret = btrfs_find_orphan_roots(tree_root);
2903 	if (ret)
2904 		goto fail_qgroup;
2905 
2906 	if (!(sb->s_flags & MS_RDONLY)) {
2907 		ret = btrfs_cleanup_fs_roots(fs_info);
2908 		if (ret)
2909 			goto fail_qgroup;
2910 
2911 		mutex_lock(&fs_info->cleaner_mutex);
2912 		ret = btrfs_recover_relocation(tree_root);
2913 		mutex_unlock(&fs_info->cleaner_mutex);
2914 		if (ret < 0) {
2915 			printk(KERN_WARNING
2916 			       "BTRFS: failed to recover relocation\n");
2917 			err = -EINVAL;
2918 			goto fail_qgroup;
2919 		}
2920 	}
2921 
2922 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2923 	location.type = BTRFS_ROOT_ITEM_KEY;
2924 	location.offset = 0;
2925 
2926 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2927 	if (IS_ERR(fs_info->fs_root)) {
2928 		err = PTR_ERR(fs_info->fs_root);
2929 		goto fail_qgroup;
2930 	}
2931 
2932 	if (sb->s_flags & MS_RDONLY)
2933 		return 0;
2934 
2935 	down_read(&fs_info->cleanup_work_sem);
2936 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2937 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2938 		up_read(&fs_info->cleanup_work_sem);
2939 		close_ctree(tree_root);
2940 		return ret;
2941 	}
2942 	up_read(&fs_info->cleanup_work_sem);
2943 
2944 	ret = btrfs_resume_balance_async(fs_info);
2945 	if (ret) {
2946 		printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2947 		close_ctree(tree_root);
2948 		return ret;
2949 	}
2950 
2951 	ret = btrfs_resume_dev_replace_async(fs_info);
2952 	if (ret) {
2953 		pr_warn("BTRFS: failed to resume dev_replace\n");
2954 		close_ctree(tree_root);
2955 		return ret;
2956 	}
2957 
2958 	btrfs_qgroup_rescan_resume(fs_info);
2959 
2960 	if (create_uuid_tree) {
2961 		pr_info("BTRFS: creating UUID tree\n");
2962 		ret = btrfs_create_uuid_tree(fs_info);
2963 		if (ret) {
2964 			pr_warn("BTRFS: failed to create the UUID tree %d\n",
2965 				ret);
2966 			close_ctree(tree_root);
2967 			return ret;
2968 		}
2969 	} else if (check_uuid_tree ||
2970 		   btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2971 		pr_info("BTRFS: checking UUID tree\n");
2972 		ret = btrfs_check_uuid_tree(fs_info);
2973 		if (ret) {
2974 			pr_warn("BTRFS: failed to check the UUID tree %d\n",
2975 				ret);
2976 			close_ctree(tree_root);
2977 			return ret;
2978 		}
2979 	} else {
2980 		fs_info->update_uuid_tree_gen = 1;
2981 	}
2982 
2983 	return 0;
2984 
2985 fail_qgroup:
2986 	btrfs_free_qgroup_config(fs_info);
2987 fail_trans_kthread:
2988 	kthread_stop(fs_info->transaction_kthread);
2989 	btrfs_cleanup_transaction(fs_info->tree_root);
2990 	btrfs_free_fs_roots(fs_info);
2991 fail_cleaner:
2992 	kthread_stop(fs_info->cleaner_kthread);
2993 
2994 	/*
2995 	 * make sure we're done with the btree inode before we stop our
2996 	 * kthreads
2997 	 */
2998 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2999 
3000 fail_sysfs:
3001 	btrfs_sysfs_remove_one(fs_info);
3002 
3003 fail_block_groups:
3004 	btrfs_put_block_group_cache(fs_info);
3005 	btrfs_free_block_groups(fs_info);
3006 
3007 fail_tree_roots:
3008 	free_root_pointers(fs_info, 1);
3009 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3010 
3011 fail_sb_buffer:
3012 	btrfs_stop_all_workers(fs_info);
3013 fail_alloc:
3014 fail_iput:
3015 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3016 
3017 	iput(fs_info->btree_inode);
3018 fail_bio_counter:
3019 	percpu_counter_destroy(&fs_info->bio_counter);
3020 fail_delalloc_bytes:
3021 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3022 fail_dirty_metadata_bytes:
3023 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3024 fail_bdi:
3025 	bdi_destroy(&fs_info->bdi);
3026 fail_srcu:
3027 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3028 fail:
3029 	btrfs_free_stripe_hash_table(fs_info);
3030 	btrfs_close_devices(fs_info->fs_devices);
3031 	return err;
3032 
3033 recovery_tree_root:
3034 	if (!btrfs_test_opt(tree_root, RECOVERY))
3035 		goto fail_tree_roots;
3036 
3037 	free_root_pointers(fs_info, 0);
3038 
3039 	/* don't use the log in recovery mode, it won't be valid */
3040 	btrfs_set_super_log_root(disk_super, 0);
3041 
3042 	/* we can't trust the free space cache either */
3043 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3044 
3045 	ret = next_root_backup(fs_info, fs_info->super_copy,
3046 			       &num_backups_tried, &backup_index);
3047 	if (ret == -1)
3048 		goto fail_block_groups;
3049 	goto retry_root_backup;
3050 }
3051 
3052 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3053 {
3054 	if (uptodate) {
3055 		set_buffer_uptodate(bh);
3056 	} else {
3057 		struct btrfs_device *device = (struct btrfs_device *)
3058 			bh->b_private;
3059 
3060 		printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3061 					  "I/O error on %s\n",
3062 					  rcu_str_deref(device->name));
3063 		/* note, we dont' set_buffer_write_io_error because we have
3064 		 * our own ways of dealing with the IO errors
3065 		 */
3066 		clear_buffer_uptodate(bh);
3067 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3068 	}
3069 	unlock_buffer(bh);
3070 	put_bh(bh);
3071 }
3072 
3073 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3074 {
3075 	struct buffer_head *bh;
3076 	struct buffer_head *latest = NULL;
3077 	struct btrfs_super_block *super;
3078 	int i;
3079 	u64 transid = 0;
3080 	u64 bytenr;
3081 
3082 	/* we would like to check all the supers, but that would make
3083 	 * a btrfs mount succeed after a mkfs from a different FS.
3084 	 * So, we need to add a special mount option to scan for
3085 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3086 	 */
3087 	for (i = 0; i < 1; i++) {
3088 		bytenr = btrfs_sb_offset(i);
3089 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3090 					i_size_read(bdev->bd_inode))
3091 			break;
3092 		bh = __bread(bdev, bytenr / 4096,
3093 					BTRFS_SUPER_INFO_SIZE);
3094 		if (!bh)
3095 			continue;
3096 
3097 		super = (struct btrfs_super_block *)bh->b_data;
3098 		if (btrfs_super_bytenr(super) != bytenr ||
3099 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3100 			brelse(bh);
3101 			continue;
3102 		}
3103 
3104 		if (!latest || btrfs_super_generation(super) > transid) {
3105 			brelse(latest);
3106 			latest = bh;
3107 			transid = btrfs_super_generation(super);
3108 		} else {
3109 			brelse(bh);
3110 		}
3111 	}
3112 	return latest;
3113 }
3114 
3115 /*
3116  * this should be called twice, once with wait == 0 and
3117  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3118  * we write are pinned.
3119  *
3120  * They are released when wait == 1 is done.
3121  * max_mirrors must be the same for both runs, and it indicates how
3122  * many supers on this one device should be written.
3123  *
3124  * max_mirrors == 0 means to write them all.
3125  */
3126 static int write_dev_supers(struct btrfs_device *device,
3127 			    struct btrfs_super_block *sb,
3128 			    int do_barriers, int wait, int max_mirrors)
3129 {
3130 	struct buffer_head *bh;
3131 	int i;
3132 	int ret;
3133 	int errors = 0;
3134 	u32 crc;
3135 	u64 bytenr;
3136 
3137 	if (max_mirrors == 0)
3138 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3139 
3140 	for (i = 0; i < max_mirrors; i++) {
3141 		bytenr = btrfs_sb_offset(i);
3142 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3143 			break;
3144 
3145 		if (wait) {
3146 			bh = __find_get_block(device->bdev, bytenr / 4096,
3147 					      BTRFS_SUPER_INFO_SIZE);
3148 			if (!bh) {
3149 				errors++;
3150 				continue;
3151 			}
3152 			wait_on_buffer(bh);
3153 			if (!buffer_uptodate(bh))
3154 				errors++;
3155 
3156 			/* drop our reference */
3157 			brelse(bh);
3158 
3159 			/* drop the reference from the wait == 0 run */
3160 			brelse(bh);
3161 			continue;
3162 		} else {
3163 			btrfs_set_super_bytenr(sb, bytenr);
3164 
3165 			crc = ~(u32)0;
3166 			crc = btrfs_csum_data((char *)sb +
3167 					      BTRFS_CSUM_SIZE, crc,
3168 					      BTRFS_SUPER_INFO_SIZE -
3169 					      BTRFS_CSUM_SIZE);
3170 			btrfs_csum_final(crc, sb->csum);
3171 
3172 			/*
3173 			 * one reference for us, and we leave it for the
3174 			 * caller
3175 			 */
3176 			bh = __getblk(device->bdev, bytenr / 4096,
3177 				      BTRFS_SUPER_INFO_SIZE);
3178 			if (!bh) {
3179 				printk(KERN_ERR "BTRFS: couldn't get super "
3180 				       "buffer head for bytenr %Lu\n", bytenr);
3181 				errors++;
3182 				continue;
3183 			}
3184 
3185 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3186 
3187 			/* one reference for submit_bh */
3188 			get_bh(bh);
3189 
3190 			set_buffer_uptodate(bh);
3191 			lock_buffer(bh);
3192 			bh->b_end_io = btrfs_end_buffer_write_sync;
3193 			bh->b_private = device;
3194 		}
3195 
3196 		/*
3197 		 * we fua the first super.  The others we allow
3198 		 * to go down lazy.
3199 		 */
3200 		if (i == 0)
3201 			ret = btrfsic_submit_bh(WRITE_FUA, bh);
3202 		else
3203 			ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3204 		if (ret)
3205 			errors++;
3206 	}
3207 	return errors < i ? 0 : -1;
3208 }
3209 
3210 /*
3211  * endio for the write_dev_flush, this will wake anyone waiting
3212  * for the barrier when it is done
3213  */
3214 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3215 {
3216 	if (err) {
3217 		if (err == -EOPNOTSUPP)
3218 			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3219 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
3220 	}
3221 	if (bio->bi_private)
3222 		complete(bio->bi_private);
3223 	bio_put(bio);
3224 }
3225 
3226 /*
3227  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3228  * sent down.  With wait == 1, it waits for the previous flush.
3229  *
3230  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3231  * capable
3232  */
3233 static int write_dev_flush(struct btrfs_device *device, int wait)
3234 {
3235 	struct bio *bio;
3236 	int ret = 0;
3237 
3238 	if (device->nobarriers)
3239 		return 0;
3240 
3241 	if (wait) {
3242 		bio = device->flush_bio;
3243 		if (!bio)
3244 			return 0;
3245 
3246 		wait_for_completion(&device->flush_wait);
3247 
3248 		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3249 			printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3250 				      rcu_str_deref(device->name));
3251 			device->nobarriers = 1;
3252 		} else if (!bio_flagged(bio, BIO_UPTODATE)) {
3253 			ret = -EIO;
3254 			btrfs_dev_stat_inc_and_print(device,
3255 				BTRFS_DEV_STAT_FLUSH_ERRS);
3256 		}
3257 
3258 		/* drop the reference from the wait == 0 run */
3259 		bio_put(bio);
3260 		device->flush_bio = NULL;
3261 
3262 		return ret;
3263 	}
3264 
3265 	/*
3266 	 * one reference for us, and we leave it for the
3267 	 * caller
3268 	 */
3269 	device->flush_bio = NULL;
3270 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3271 	if (!bio)
3272 		return -ENOMEM;
3273 
3274 	bio->bi_end_io = btrfs_end_empty_barrier;
3275 	bio->bi_bdev = device->bdev;
3276 	init_completion(&device->flush_wait);
3277 	bio->bi_private = &device->flush_wait;
3278 	device->flush_bio = bio;
3279 
3280 	bio_get(bio);
3281 	btrfsic_submit_bio(WRITE_FLUSH, bio);
3282 
3283 	return 0;
3284 }
3285 
3286 /*
3287  * send an empty flush down to each device in parallel,
3288  * then wait for them
3289  */
3290 static int barrier_all_devices(struct btrfs_fs_info *info)
3291 {
3292 	struct list_head *head;
3293 	struct btrfs_device *dev;
3294 	int errors_send = 0;
3295 	int errors_wait = 0;
3296 	int ret;
3297 
3298 	/* send down all the barriers */
3299 	head = &info->fs_devices->devices;
3300 	list_for_each_entry_rcu(dev, head, dev_list) {
3301 		if (dev->missing)
3302 			continue;
3303 		if (!dev->bdev) {
3304 			errors_send++;
3305 			continue;
3306 		}
3307 		if (!dev->in_fs_metadata || !dev->writeable)
3308 			continue;
3309 
3310 		ret = write_dev_flush(dev, 0);
3311 		if (ret)
3312 			errors_send++;
3313 	}
3314 
3315 	/* wait for all the barriers */
3316 	list_for_each_entry_rcu(dev, head, dev_list) {
3317 		if (dev->missing)
3318 			continue;
3319 		if (!dev->bdev) {
3320 			errors_wait++;
3321 			continue;
3322 		}
3323 		if (!dev->in_fs_metadata || !dev->writeable)
3324 			continue;
3325 
3326 		ret = write_dev_flush(dev, 1);
3327 		if (ret)
3328 			errors_wait++;
3329 	}
3330 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3331 	    errors_wait > info->num_tolerated_disk_barrier_failures)
3332 		return -EIO;
3333 	return 0;
3334 }
3335 
3336 int btrfs_calc_num_tolerated_disk_barrier_failures(
3337 	struct btrfs_fs_info *fs_info)
3338 {
3339 	struct btrfs_ioctl_space_info space;
3340 	struct btrfs_space_info *sinfo;
3341 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3342 		       BTRFS_BLOCK_GROUP_SYSTEM,
3343 		       BTRFS_BLOCK_GROUP_METADATA,
3344 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3345 	int num_types = 4;
3346 	int i;
3347 	int c;
3348 	int num_tolerated_disk_barrier_failures =
3349 		(int)fs_info->fs_devices->num_devices;
3350 
3351 	for (i = 0; i < num_types; i++) {
3352 		struct btrfs_space_info *tmp;
3353 
3354 		sinfo = NULL;
3355 		rcu_read_lock();
3356 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3357 			if (tmp->flags == types[i]) {
3358 				sinfo = tmp;
3359 				break;
3360 			}
3361 		}
3362 		rcu_read_unlock();
3363 
3364 		if (!sinfo)
3365 			continue;
3366 
3367 		down_read(&sinfo->groups_sem);
3368 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3369 			if (!list_empty(&sinfo->block_groups[c])) {
3370 				u64 flags;
3371 
3372 				btrfs_get_block_group_info(
3373 					&sinfo->block_groups[c], &space);
3374 				if (space.total_bytes == 0 ||
3375 				    space.used_bytes == 0)
3376 					continue;
3377 				flags = space.flags;
3378 				/*
3379 				 * return
3380 				 * 0: if dup, single or RAID0 is configured for
3381 				 *    any of metadata, system or data, else
3382 				 * 1: if RAID5 is configured, or if RAID1 or
3383 				 *    RAID10 is configured and only two mirrors
3384 				 *    are used, else
3385 				 * 2: if RAID6 is configured, else
3386 				 * num_mirrors - 1: if RAID1 or RAID10 is
3387 				 *                  configured and more than
3388 				 *                  2 mirrors are used.
3389 				 */
3390 				if (num_tolerated_disk_barrier_failures > 0 &&
3391 				    ((flags & (BTRFS_BLOCK_GROUP_DUP |
3392 					       BTRFS_BLOCK_GROUP_RAID0)) ||
3393 				     ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3394 				      == 0)))
3395 					num_tolerated_disk_barrier_failures = 0;
3396 				else if (num_tolerated_disk_barrier_failures > 1) {
3397 					if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3398 					    BTRFS_BLOCK_GROUP_RAID5 |
3399 					    BTRFS_BLOCK_GROUP_RAID10)) {
3400 						num_tolerated_disk_barrier_failures = 1;
3401 					} else if (flags &
3402 						   BTRFS_BLOCK_GROUP_RAID6) {
3403 						num_tolerated_disk_barrier_failures = 2;
3404 					}
3405 				}
3406 			}
3407 		}
3408 		up_read(&sinfo->groups_sem);
3409 	}
3410 
3411 	return num_tolerated_disk_barrier_failures;
3412 }
3413 
3414 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3415 {
3416 	struct list_head *head;
3417 	struct btrfs_device *dev;
3418 	struct btrfs_super_block *sb;
3419 	struct btrfs_dev_item *dev_item;
3420 	int ret;
3421 	int do_barriers;
3422 	int max_errors;
3423 	int total_errors = 0;
3424 	u64 flags;
3425 
3426 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
3427 	backup_super_roots(root->fs_info);
3428 
3429 	sb = root->fs_info->super_for_commit;
3430 	dev_item = &sb->dev_item;
3431 
3432 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3433 	head = &root->fs_info->fs_devices->devices;
3434 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3435 
3436 	if (do_barriers) {
3437 		ret = barrier_all_devices(root->fs_info);
3438 		if (ret) {
3439 			mutex_unlock(
3440 				&root->fs_info->fs_devices->device_list_mutex);
3441 			btrfs_error(root->fs_info, ret,
3442 				    "errors while submitting device barriers.");
3443 			return ret;
3444 		}
3445 	}
3446 
3447 	list_for_each_entry_rcu(dev, head, dev_list) {
3448 		if (!dev->bdev) {
3449 			total_errors++;
3450 			continue;
3451 		}
3452 		if (!dev->in_fs_metadata || !dev->writeable)
3453 			continue;
3454 
3455 		btrfs_set_stack_device_generation(dev_item, 0);
3456 		btrfs_set_stack_device_type(dev_item, dev->type);
3457 		btrfs_set_stack_device_id(dev_item, dev->devid);
3458 		btrfs_set_stack_device_total_bytes(dev_item,
3459 						   dev->disk_total_bytes);
3460 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3461 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3462 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3463 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3464 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3465 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3466 
3467 		flags = btrfs_super_flags(sb);
3468 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3469 
3470 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3471 		if (ret)
3472 			total_errors++;
3473 	}
3474 	if (total_errors > max_errors) {
3475 		btrfs_err(root->fs_info, "%d errors while writing supers",
3476 		       total_errors);
3477 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3478 
3479 		/* FUA is masked off if unsupported and can't be the reason */
3480 		btrfs_error(root->fs_info, -EIO,
3481 			    "%d errors while writing supers", total_errors);
3482 		return -EIO;
3483 	}
3484 
3485 	total_errors = 0;
3486 	list_for_each_entry_rcu(dev, head, dev_list) {
3487 		if (!dev->bdev)
3488 			continue;
3489 		if (!dev->in_fs_metadata || !dev->writeable)
3490 			continue;
3491 
3492 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3493 		if (ret)
3494 			total_errors++;
3495 	}
3496 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3497 	if (total_errors > max_errors) {
3498 		btrfs_error(root->fs_info, -EIO,
3499 			    "%d errors while writing supers", total_errors);
3500 		return -EIO;
3501 	}
3502 	return 0;
3503 }
3504 
3505 int write_ctree_super(struct btrfs_trans_handle *trans,
3506 		      struct btrfs_root *root, int max_mirrors)
3507 {
3508 	return write_all_supers(root, max_mirrors);
3509 }
3510 
3511 /* Drop a fs root from the radix tree and free it. */
3512 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3513 				  struct btrfs_root *root)
3514 {
3515 	spin_lock(&fs_info->fs_roots_radix_lock);
3516 	radix_tree_delete(&fs_info->fs_roots_radix,
3517 			  (unsigned long)root->root_key.objectid);
3518 	spin_unlock(&fs_info->fs_roots_radix_lock);
3519 
3520 	if (btrfs_root_refs(&root->root_item) == 0)
3521 		synchronize_srcu(&fs_info->subvol_srcu);
3522 
3523 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3524 		btrfs_free_log(NULL, root);
3525 
3526 	if (root->free_ino_pinned)
3527 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3528 	if (root->free_ino_ctl)
3529 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3530 	free_fs_root(root);
3531 }
3532 
3533 static void free_fs_root(struct btrfs_root *root)
3534 {
3535 	iput(root->cache_inode);
3536 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3537 	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3538 	root->orphan_block_rsv = NULL;
3539 	if (root->anon_dev)
3540 		free_anon_bdev(root->anon_dev);
3541 	if (root->subv_writers)
3542 		btrfs_free_subvolume_writers(root->subv_writers);
3543 	free_extent_buffer(root->node);
3544 	free_extent_buffer(root->commit_root);
3545 	kfree(root->free_ino_ctl);
3546 	kfree(root->free_ino_pinned);
3547 	kfree(root->name);
3548 	btrfs_put_fs_root(root);
3549 }
3550 
3551 void btrfs_free_fs_root(struct btrfs_root *root)
3552 {
3553 	free_fs_root(root);
3554 }
3555 
3556 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3557 {
3558 	u64 root_objectid = 0;
3559 	struct btrfs_root *gang[8];
3560 	int i = 0;
3561 	int err = 0;
3562 	unsigned int ret = 0;
3563 	int index;
3564 
3565 	while (1) {
3566 		index = srcu_read_lock(&fs_info->subvol_srcu);
3567 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3568 					     (void **)gang, root_objectid,
3569 					     ARRAY_SIZE(gang));
3570 		if (!ret) {
3571 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3572 			break;
3573 		}
3574 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3575 
3576 		for (i = 0; i < ret; i++) {
3577 			/* Avoid to grab roots in dead_roots */
3578 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3579 				gang[i] = NULL;
3580 				continue;
3581 			}
3582 			/* grab all the search result for later use */
3583 			gang[i] = btrfs_grab_fs_root(gang[i]);
3584 		}
3585 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3586 
3587 		for (i = 0; i < ret; i++) {
3588 			if (!gang[i])
3589 				continue;
3590 			root_objectid = gang[i]->root_key.objectid;
3591 			err = btrfs_orphan_cleanup(gang[i]);
3592 			if (err)
3593 				break;
3594 			btrfs_put_fs_root(gang[i]);
3595 		}
3596 		root_objectid++;
3597 	}
3598 
3599 	/* release the uncleaned roots due to error */
3600 	for (; i < ret; i++) {
3601 		if (gang[i])
3602 			btrfs_put_fs_root(gang[i]);
3603 	}
3604 	return err;
3605 }
3606 
3607 int btrfs_commit_super(struct btrfs_root *root)
3608 {
3609 	struct btrfs_trans_handle *trans;
3610 
3611 	mutex_lock(&root->fs_info->cleaner_mutex);
3612 	btrfs_run_delayed_iputs(root);
3613 	mutex_unlock(&root->fs_info->cleaner_mutex);
3614 	wake_up_process(root->fs_info->cleaner_kthread);
3615 
3616 	/* wait until ongoing cleanup work done */
3617 	down_write(&root->fs_info->cleanup_work_sem);
3618 	up_write(&root->fs_info->cleanup_work_sem);
3619 
3620 	trans = btrfs_join_transaction(root);
3621 	if (IS_ERR(trans))
3622 		return PTR_ERR(trans);
3623 	return btrfs_commit_transaction(trans, root);
3624 }
3625 
3626 int close_ctree(struct btrfs_root *root)
3627 {
3628 	struct btrfs_fs_info *fs_info = root->fs_info;
3629 	int ret;
3630 
3631 	fs_info->closing = 1;
3632 	smp_mb();
3633 
3634 	/* wait for the uuid_scan task to finish */
3635 	down(&fs_info->uuid_tree_rescan_sem);
3636 	/* avoid complains from lockdep et al., set sem back to initial state */
3637 	up(&fs_info->uuid_tree_rescan_sem);
3638 
3639 	/* pause restriper - we want to resume on mount */
3640 	btrfs_pause_balance(fs_info);
3641 
3642 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3643 
3644 	btrfs_scrub_cancel(fs_info);
3645 
3646 	/* wait for any defraggers to finish */
3647 	wait_event(fs_info->transaction_wait,
3648 		   (atomic_read(&fs_info->defrag_running) == 0));
3649 
3650 	/* clear out the rbtree of defraggable inodes */
3651 	btrfs_cleanup_defrag_inodes(fs_info);
3652 
3653 	cancel_work_sync(&fs_info->async_reclaim_work);
3654 
3655 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3656 		ret = btrfs_commit_super(root);
3657 		if (ret)
3658 			btrfs_err(root->fs_info, "commit super ret %d", ret);
3659 	}
3660 
3661 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3662 		btrfs_error_commit_super(root);
3663 
3664 	kthread_stop(fs_info->transaction_kthread);
3665 	kthread_stop(fs_info->cleaner_kthread);
3666 
3667 	fs_info->closing = 2;
3668 	smp_mb();
3669 
3670 	btrfs_free_qgroup_config(root->fs_info);
3671 
3672 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3673 		btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3674 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3675 	}
3676 
3677 	btrfs_sysfs_remove_one(fs_info);
3678 
3679 	btrfs_free_fs_roots(fs_info);
3680 
3681 	btrfs_put_block_group_cache(fs_info);
3682 
3683 	btrfs_free_block_groups(fs_info);
3684 
3685 	/*
3686 	 * we must make sure there is not any read request to
3687 	 * submit after we stopping all workers.
3688 	 */
3689 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3690 	btrfs_stop_all_workers(fs_info);
3691 
3692 	free_root_pointers(fs_info, 1);
3693 
3694 	iput(fs_info->btree_inode);
3695 
3696 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3697 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3698 		btrfsic_unmount(root, fs_info->fs_devices);
3699 #endif
3700 
3701 	btrfs_close_devices(fs_info->fs_devices);
3702 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3703 
3704 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3705 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3706 	percpu_counter_destroy(&fs_info->bio_counter);
3707 	bdi_destroy(&fs_info->bdi);
3708 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3709 
3710 	btrfs_free_stripe_hash_table(fs_info);
3711 
3712 	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3713 	root->orphan_block_rsv = NULL;
3714 
3715 	return 0;
3716 }
3717 
3718 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3719 			  int atomic)
3720 {
3721 	int ret;
3722 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3723 
3724 	ret = extent_buffer_uptodate(buf);
3725 	if (!ret)
3726 		return ret;
3727 
3728 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3729 				    parent_transid, atomic);
3730 	if (ret == -EAGAIN)
3731 		return ret;
3732 	return !ret;
3733 }
3734 
3735 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3736 {
3737 	return set_extent_buffer_uptodate(buf);
3738 }
3739 
3740 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3741 {
3742 	struct btrfs_root *root;
3743 	u64 transid = btrfs_header_generation(buf);
3744 	int was_dirty;
3745 
3746 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3747 	/*
3748 	 * This is a fast path so only do this check if we have sanity tests
3749 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3750 	 * outside of the sanity tests.
3751 	 */
3752 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3753 		return;
3754 #endif
3755 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3756 	btrfs_assert_tree_locked(buf);
3757 	if (transid != root->fs_info->generation)
3758 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3759 		       "found %llu running %llu\n",
3760 			buf->start, transid, root->fs_info->generation);
3761 	was_dirty = set_extent_buffer_dirty(buf);
3762 	if (!was_dirty)
3763 		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3764 				     buf->len,
3765 				     root->fs_info->dirty_metadata_batch);
3766 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3767 	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3768 		btrfs_print_leaf(root, buf);
3769 		ASSERT(0);
3770 	}
3771 #endif
3772 }
3773 
3774 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3775 					int flush_delayed)
3776 {
3777 	/*
3778 	 * looks as though older kernels can get into trouble with
3779 	 * this code, they end up stuck in balance_dirty_pages forever
3780 	 */
3781 	int ret;
3782 
3783 	if (current->flags & PF_MEMALLOC)
3784 		return;
3785 
3786 	if (flush_delayed)
3787 		btrfs_balance_delayed_items(root);
3788 
3789 	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3790 				     BTRFS_DIRTY_METADATA_THRESH);
3791 	if (ret > 0) {
3792 		balance_dirty_pages_ratelimited(
3793 				   root->fs_info->btree_inode->i_mapping);
3794 	}
3795 	return;
3796 }
3797 
3798 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3799 {
3800 	__btrfs_btree_balance_dirty(root, 1);
3801 }
3802 
3803 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3804 {
3805 	__btrfs_btree_balance_dirty(root, 0);
3806 }
3807 
3808 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3809 {
3810 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3811 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3812 }
3813 
3814 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3815 			      int read_only)
3816 {
3817 	/*
3818 	 * Placeholder for checks
3819 	 */
3820 	return 0;
3821 }
3822 
3823 static void btrfs_error_commit_super(struct btrfs_root *root)
3824 {
3825 	mutex_lock(&root->fs_info->cleaner_mutex);
3826 	btrfs_run_delayed_iputs(root);
3827 	mutex_unlock(&root->fs_info->cleaner_mutex);
3828 
3829 	down_write(&root->fs_info->cleanup_work_sem);
3830 	up_write(&root->fs_info->cleanup_work_sem);
3831 
3832 	/* cleanup FS via transaction */
3833 	btrfs_cleanup_transaction(root);
3834 }
3835 
3836 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3837 {
3838 	struct btrfs_ordered_extent *ordered;
3839 
3840 	spin_lock(&root->ordered_extent_lock);
3841 	/*
3842 	 * This will just short circuit the ordered completion stuff which will
3843 	 * make sure the ordered extent gets properly cleaned up.
3844 	 */
3845 	list_for_each_entry(ordered, &root->ordered_extents,
3846 			    root_extent_list)
3847 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3848 	spin_unlock(&root->ordered_extent_lock);
3849 }
3850 
3851 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3852 {
3853 	struct btrfs_root *root;
3854 	struct list_head splice;
3855 
3856 	INIT_LIST_HEAD(&splice);
3857 
3858 	spin_lock(&fs_info->ordered_root_lock);
3859 	list_splice_init(&fs_info->ordered_roots, &splice);
3860 	while (!list_empty(&splice)) {
3861 		root = list_first_entry(&splice, struct btrfs_root,
3862 					ordered_root);
3863 		list_move_tail(&root->ordered_root,
3864 			       &fs_info->ordered_roots);
3865 
3866 		spin_unlock(&fs_info->ordered_root_lock);
3867 		btrfs_destroy_ordered_extents(root);
3868 
3869 		cond_resched();
3870 		spin_lock(&fs_info->ordered_root_lock);
3871 	}
3872 	spin_unlock(&fs_info->ordered_root_lock);
3873 }
3874 
3875 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3876 				      struct btrfs_root *root)
3877 {
3878 	struct rb_node *node;
3879 	struct btrfs_delayed_ref_root *delayed_refs;
3880 	struct btrfs_delayed_ref_node *ref;
3881 	int ret = 0;
3882 
3883 	delayed_refs = &trans->delayed_refs;
3884 
3885 	spin_lock(&delayed_refs->lock);
3886 	if (atomic_read(&delayed_refs->num_entries) == 0) {
3887 		spin_unlock(&delayed_refs->lock);
3888 		btrfs_info(root->fs_info, "delayed_refs has NO entry");
3889 		return ret;
3890 	}
3891 
3892 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3893 		struct btrfs_delayed_ref_head *head;
3894 		bool pin_bytes = false;
3895 
3896 		head = rb_entry(node, struct btrfs_delayed_ref_head,
3897 				href_node);
3898 		if (!mutex_trylock(&head->mutex)) {
3899 			atomic_inc(&head->node.refs);
3900 			spin_unlock(&delayed_refs->lock);
3901 
3902 			mutex_lock(&head->mutex);
3903 			mutex_unlock(&head->mutex);
3904 			btrfs_put_delayed_ref(&head->node);
3905 			spin_lock(&delayed_refs->lock);
3906 			continue;
3907 		}
3908 		spin_lock(&head->lock);
3909 		while ((node = rb_first(&head->ref_root)) != NULL) {
3910 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
3911 				       rb_node);
3912 			ref->in_tree = 0;
3913 			rb_erase(&ref->rb_node, &head->ref_root);
3914 			atomic_dec(&delayed_refs->num_entries);
3915 			btrfs_put_delayed_ref(ref);
3916 		}
3917 		if (head->must_insert_reserved)
3918 			pin_bytes = true;
3919 		btrfs_free_delayed_extent_op(head->extent_op);
3920 		delayed_refs->num_heads--;
3921 		if (head->processing == 0)
3922 			delayed_refs->num_heads_ready--;
3923 		atomic_dec(&delayed_refs->num_entries);
3924 		head->node.in_tree = 0;
3925 		rb_erase(&head->href_node, &delayed_refs->href_root);
3926 		spin_unlock(&head->lock);
3927 		spin_unlock(&delayed_refs->lock);
3928 		mutex_unlock(&head->mutex);
3929 
3930 		if (pin_bytes)
3931 			btrfs_pin_extent(root, head->node.bytenr,
3932 					 head->node.num_bytes, 1);
3933 		btrfs_put_delayed_ref(&head->node);
3934 		cond_resched();
3935 		spin_lock(&delayed_refs->lock);
3936 	}
3937 
3938 	spin_unlock(&delayed_refs->lock);
3939 
3940 	return ret;
3941 }
3942 
3943 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3944 {
3945 	struct btrfs_inode *btrfs_inode;
3946 	struct list_head splice;
3947 
3948 	INIT_LIST_HEAD(&splice);
3949 
3950 	spin_lock(&root->delalloc_lock);
3951 	list_splice_init(&root->delalloc_inodes, &splice);
3952 
3953 	while (!list_empty(&splice)) {
3954 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3955 					       delalloc_inodes);
3956 
3957 		list_del_init(&btrfs_inode->delalloc_inodes);
3958 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3959 			  &btrfs_inode->runtime_flags);
3960 		spin_unlock(&root->delalloc_lock);
3961 
3962 		btrfs_invalidate_inodes(btrfs_inode->root);
3963 
3964 		spin_lock(&root->delalloc_lock);
3965 	}
3966 
3967 	spin_unlock(&root->delalloc_lock);
3968 }
3969 
3970 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3971 {
3972 	struct btrfs_root *root;
3973 	struct list_head splice;
3974 
3975 	INIT_LIST_HEAD(&splice);
3976 
3977 	spin_lock(&fs_info->delalloc_root_lock);
3978 	list_splice_init(&fs_info->delalloc_roots, &splice);
3979 	while (!list_empty(&splice)) {
3980 		root = list_first_entry(&splice, struct btrfs_root,
3981 					 delalloc_root);
3982 		list_del_init(&root->delalloc_root);
3983 		root = btrfs_grab_fs_root(root);
3984 		BUG_ON(!root);
3985 		spin_unlock(&fs_info->delalloc_root_lock);
3986 
3987 		btrfs_destroy_delalloc_inodes(root);
3988 		btrfs_put_fs_root(root);
3989 
3990 		spin_lock(&fs_info->delalloc_root_lock);
3991 	}
3992 	spin_unlock(&fs_info->delalloc_root_lock);
3993 }
3994 
3995 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3996 					struct extent_io_tree *dirty_pages,
3997 					int mark)
3998 {
3999 	int ret;
4000 	struct extent_buffer *eb;
4001 	u64 start = 0;
4002 	u64 end;
4003 
4004 	while (1) {
4005 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4006 					    mark, NULL);
4007 		if (ret)
4008 			break;
4009 
4010 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4011 		while (start <= end) {
4012 			eb = btrfs_find_tree_block(root, start,
4013 						   root->leafsize);
4014 			start += root->leafsize;
4015 			if (!eb)
4016 				continue;
4017 			wait_on_extent_buffer_writeback(eb);
4018 
4019 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4020 					       &eb->bflags))
4021 				clear_extent_buffer_dirty(eb);
4022 			free_extent_buffer_stale(eb);
4023 		}
4024 	}
4025 
4026 	return ret;
4027 }
4028 
4029 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4030 				       struct extent_io_tree *pinned_extents)
4031 {
4032 	struct extent_io_tree *unpin;
4033 	u64 start;
4034 	u64 end;
4035 	int ret;
4036 	bool loop = true;
4037 
4038 	unpin = pinned_extents;
4039 again:
4040 	while (1) {
4041 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4042 					    EXTENT_DIRTY, NULL);
4043 		if (ret)
4044 			break;
4045 
4046 		/* opt_discard */
4047 		if (btrfs_test_opt(root, DISCARD))
4048 			ret = btrfs_error_discard_extent(root, start,
4049 							 end + 1 - start,
4050 							 NULL);
4051 
4052 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
4053 		btrfs_error_unpin_extent_range(root, start, end);
4054 		cond_resched();
4055 	}
4056 
4057 	if (loop) {
4058 		if (unpin == &root->fs_info->freed_extents[0])
4059 			unpin = &root->fs_info->freed_extents[1];
4060 		else
4061 			unpin = &root->fs_info->freed_extents[0];
4062 		loop = false;
4063 		goto again;
4064 	}
4065 
4066 	return 0;
4067 }
4068 
4069 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4070 				   struct btrfs_root *root)
4071 {
4072 	btrfs_destroy_delayed_refs(cur_trans, root);
4073 
4074 	cur_trans->state = TRANS_STATE_COMMIT_START;
4075 	wake_up(&root->fs_info->transaction_blocked_wait);
4076 
4077 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4078 	wake_up(&root->fs_info->transaction_wait);
4079 
4080 	btrfs_destroy_delayed_inodes(root);
4081 	btrfs_assert_delayed_root_empty(root);
4082 
4083 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4084 				     EXTENT_DIRTY);
4085 	btrfs_destroy_pinned_extent(root,
4086 				    root->fs_info->pinned_extents);
4087 
4088 	cur_trans->state =TRANS_STATE_COMPLETED;
4089 	wake_up(&cur_trans->commit_wait);
4090 
4091 	/*
4092 	memset(cur_trans, 0, sizeof(*cur_trans));
4093 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4094 	*/
4095 }
4096 
4097 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4098 {
4099 	struct btrfs_transaction *t;
4100 
4101 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
4102 
4103 	spin_lock(&root->fs_info->trans_lock);
4104 	while (!list_empty(&root->fs_info->trans_list)) {
4105 		t = list_first_entry(&root->fs_info->trans_list,
4106 				     struct btrfs_transaction, list);
4107 		if (t->state >= TRANS_STATE_COMMIT_START) {
4108 			atomic_inc(&t->use_count);
4109 			spin_unlock(&root->fs_info->trans_lock);
4110 			btrfs_wait_for_commit(root, t->transid);
4111 			btrfs_put_transaction(t);
4112 			spin_lock(&root->fs_info->trans_lock);
4113 			continue;
4114 		}
4115 		if (t == root->fs_info->running_transaction) {
4116 			t->state = TRANS_STATE_COMMIT_DOING;
4117 			spin_unlock(&root->fs_info->trans_lock);
4118 			/*
4119 			 * We wait for 0 num_writers since we don't hold a trans
4120 			 * handle open currently for this transaction.
4121 			 */
4122 			wait_event(t->writer_wait,
4123 				   atomic_read(&t->num_writers) == 0);
4124 		} else {
4125 			spin_unlock(&root->fs_info->trans_lock);
4126 		}
4127 		btrfs_cleanup_one_transaction(t, root);
4128 
4129 		spin_lock(&root->fs_info->trans_lock);
4130 		if (t == root->fs_info->running_transaction)
4131 			root->fs_info->running_transaction = NULL;
4132 		list_del_init(&t->list);
4133 		spin_unlock(&root->fs_info->trans_lock);
4134 
4135 		btrfs_put_transaction(t);
4136 		trace_btrfs_transaction_commit(root);
4137 		spin_lock(&root->fs_info->trans_lock);
4138 	}
4139 	spin_unlock(&root->fs_info->trans_lock);
4140 	btrfs_destroy_all_ordered_extents(root->fs_info);
4141 	btrfs_destroy_delayed_inodes(root);
4142 	btrfs_assert_delayed_root_empty(root);
4143 	btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4144 	btrfs_destroy_all_delalloc_inodes(root->fs_info);
4145 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4146 
4147 	return 0;
4148 }
4149 
4150 static struct extent_io_ops btree_extent_io_ops = {
4151 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4152 	.readpage_io_failed_hook = btree_io_failed_hook,
4153 	.submit_bio_hook = btree_submit_bio_hook,
4154 	/* note we're sharing with inode.c for the merge bio hook */
4155 	.merge_bio_hook = btrfs_merge_bio_hook,
4156 };
4157