1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/slab.h> 30 #include <linux/migrate.h> 31 #include <linux/ratelimit.h> 32 #include <linux/uuid.h> 33 #include <linux/semaphore.h> 34 #include <asm/unaligned.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "hash.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "volumes.h" 41 #include "print-tree.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 #include "dev-replace.h" 49 #include "raid56.h" 50 #include "sysfs.h" 51 #include "qgroup.h" 52 53 #ifdef CONFIG_X86 54 #include <asm/cpufeature.h> 55 #endif 56 57 static struct extent_io_ops btree_extent_io_ops; 58 static void end_workqueue_fn(struct btrfs_work *work); 59 static void free_fs_root(struct btrfs_root *root); 60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 61 int read_only); 62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 64 struct btrfs_root *root); 65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 66 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 67 struct extent_io_tree *dirty_pages, 68 int mark); 69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 70 struct extent_io_tree *pinned_extents); 71 static int btrfs_cleanup_transaction(struct btrfs_root *root); 72 static void btrfs_error_commit_super(struct btrfs_root *root); 73 74 /* 75 * end_io_wq structs are used to do processing in task context when an IO is 76 * complete. This is used during reads to verify checksums, and it is used 77 * by writes to insert metadata for new file extents after IO is complete. 78 */ 79 struct end_io_wq { 80 struct bio *bio; 81 bio_end_io_t *end_io; 82 void *private; 83 struct btrfs_fs_info *info; 84 int error; 85 int metadata; 86 struct list_head list; 87 struct btrfs_work work; 88 }; 89 90 /* 91 * async submit bios are used to offload expensive checksumming 92 * onto the worker threads. They checksum file and metadata bios 93 * just before they are sent down the IO stack. 94 */ 95 struct async_submit_bio { 96 struct inode *inode; 97 struct bio *bio; 98 struct list_head list; 99 extent_submit_bio_hook_t *submit_bio_start; 100 extent_submit_bio_hook_t *submit_bio_done; 101 int rw; 102 int mirror_num; 103 unsigned long bio_flags; 104 /* 105 * bio_offset is optional, can be used if the pages in the bio 106 * can't tell us where in the file the bio should go 107 */ 108 u64 bio_offset; 109 struct btrfs_work work; 110 int error; 111 }; 112 113 /* 114 * Lockdep class keys for extent_buffer->lock's in this root. For a given 115 * eb, the lockdep key is determined by the btrfs_root it belongs to and 116 * the level the eb occupies in the tree. 117 * 118 * Different roots are used for different purposes and may nest inside each 119 * other and they require separate keysets. As lockdep keys should be 120 * static, assign keysets according to the purpose of the root as indicated 121 * by btrfs_root->objectid. This ensures that all special purpose roots 122 * have separate keysets. 123 * 124 * Lock-nesting across peer nodes is always done with the immediate parent 125 * node locked thus preventing deadlock. As lockdep doesn't know this, use 126 * subclass to avoid triggering lockdep warning in such cases. 127 * 128 * The key is set by the readpage_end_io_hook after the buffer has passed 129 * csum validation but before the pages are unlocked. It is also set by 130 * btrfs_init_new_buffer on freshly allocated blocks. 131 * 132 * We also add a check to make sure the highest level of the tree is the 133 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 134 * needs update as well. 135 */ 136 #ifdef CONFIG_DEBUG_LOCK_ALLOC 137 # if BTRFS_MAX_LEVEL != 8 138 # error 139 # endif 140 141 static struct btrfs_lockdep_keyset { 142 u64 id; /* root objectid */ 143 const char *name_stem; /* lock name stem */ 144 char names[BTRFS_MAX_LEVEL + 1][20]; 145 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 146 } btrfs_lockdep_keysets[] = { 147 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 148 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 149 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 150 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 151 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 152 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 153 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 154 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 155 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 156 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 157 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 158 { .id = 0, .name_stem = "tree" }, 159 }; 160 161 void __init btrfs_init_lockdep(void) 162 { 163 int i, j; 164 165 /* initialize lockdep class names */ 166 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 167 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 168 169 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 170 snprintf(ks->names[j], sizeof(ks->names[j]), 171 "btrfs-%s-%02d", ks->name_stem, j); 172 } 173 } 174 175 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 176 int level) 177 { 178 struct btrfs_lockdep_keyset *ks; 179 180 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 181 182 /* find the matching keyset, id 0 is the default entry */ 183 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 184 if (ks->id == objectid) 185 break; 186 187 lockdep_set_class_and_name(&eb->lock, 188 &ks->keys[level], ks->names[level]); 189 } 190 191 #endif 192 193 /* 194 * extents on the btree inode are pretty simple, there's one extent 195 * that covers the entire device 196 */ 197 static struct extent_map *btree_get_extent(struct inode *inode, 198 struct page *page, size_t pg_offset, u64 start, u64 len, 199 int create) 200 { 201 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 202 struct extent_map *em; 203 int ret; 204 205 read_lock(&em_tree->lock); 206 em = lookup_extent_mapping(em_tree, start, len); 207 if (em) { 208 em->bdev = 209 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 210 read_unlock(&em_tree->lock); 211 goto out; 212 } 213 read_unlock(&em_tree->lock); 214 215 em = alloc_extent_map(); 216 if (!em) { 217 em = ERR_PTR(-ENOMEM); 218 goto out; 219 } 220 em->start = 0; 221 em->len = (u64)-1; 222 em->block_len = (u64)-1; 223 em->block_start = 0; 224 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 225 226 write_lock(&em_tree->lock); 227 ret = add_extent_mapping(em_tree, em, 0); 228 if (ret == -EEXIST) { 229 free_extent_map(em); 230 em = lookup_extent_mapping(em_tree, start, len); 231 if (!em) 232 em = ERR_PTR(-EIO); 233 } else if (ret) { 234 free_extent_map(em); 235 em = ERR_PTR(ret); 236 } 237 write_unlock(&em_tree->lock); 238 239 out: 240 return em; 241 } 242 243 u32 btrfs_csum_data(char *data, u32 seed, size_t len) 244 { 245 return btrfs_crc32c(seed, data, len); 246 } 247 248 void btrfs_csum_final(u32 crc, char *result) 249 { 250 put_unaligned_le32(~crc, result); 251 } 252 253 /* 254 * compute the csum for a btree block, and either verify it or write it 255 * into the csum field of the block. 256 */ 257 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 258 int verify) 259 { 260 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 261 char *result = NULL; 262 unsigned long len; 263 unsigned long cur_len; 264 unsigned long offset = BTRFS_CSUM_SIZE; 265 char *kaddr; 266 unsigned long map_start; 267 unsigned long map_len; 268 int err; 269 u32 crc = ~(u32)0; 270 unsigned long inline_result; 271 272 len = buf->len - offset; 273 while (len > 0) { 274 err = map_private_extent_buffer(buf, offset, 32, 275 &kaddr, &map_start, &map_len); 276 if (err) 277 return 1; 278 cur_len = min(len, map_len - (offset - map_start)); 279 crc = btrfs_csum_data(kaddr + offset - map_start, 280 crc, cur_len); 281 len -= cur_len; 282 offset += cur_len; 283 } 284 if (csum_size > sizeof(inline_result)) { 285 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 286 if (!result) 287 return 1; 288 } else { 289 result = (char *)&inline_result; 290 } 291 292 btrfs_csum_final(crc, result); 293 294 if (verify) { 295 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 296 u32 val; 297 u32 found = 0; 298 memcpy(&found, result, csum_size); 299 300 read_extent_buffer(buf, &val, 0, csum_size); 301 printk_ratelimited(KERN_INFO 302 "BTRFS: %s checksum verify failed on %llu wanted %X found %X " 303 "level %d\n", 304 root->fs_info->sb->s_id, buf->start, 305 val, found, btrfs_header_level(buf)); 306 if (result != (char *)&inline_result) 307 kfree(result); 308 return 1; 309 } 310 } else { 311 write_extent_buffer(buf, result, 0, csum_size); 312 } 313 if (result != (char *)&inline_result) 314 kfree(result); 315 return 0; 316 } 317 318 /* 319 * we can't consider a given block up to date unless the transid of the 320 * block matches the transid in the parent node's pointer. This is how we 321 * detect blocks that either didn't get written at all or got written 322 * in the wrong place. 323 */ 324 static int verify_parent_transid(struct extent_io_tree *io_tree, 325 struct extent_buffer *eb, u64 parent_transid, 326 int atomic) 327 { 328 struct extent_state *cached_state = NULL; 329 int ret; 330 bool need_lock = (current->journal_info == 331 (void *)BTRFS_SEND_TRANS_STUB); 332 333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 334 return 0; 335 336 if (atomic) 337 return -EAGAIN; 338 339 if (need_lock) { 340 btrfs_tree_read_lock(eb); 341 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 342 } 343 344 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 345 0, &cached_state); 346 if (extent_buffer_uptodate(eb) && 347 btrfs_header_generation(eb) == parent_transid) { 348 ret = 0; 349 goto out; 350 } 351 printk_ratelimited("parent transid verify failed on %llu wanted %llu " 352 "found %llu\n", 353 eb->start, parent_transid, btrfs_header_generation(eb)); 354 ret = 1; 355 356 /* 357 * Things reading via commit roots that don't have normal protection, 358 * like send, can have a really old block in cache that may point at a 359 * block that has been free'd and re-allocated. So don't clear uptodate 360 * if we find an eb that is under IO (dirty/writeback) because we could 361 * end up reading in the stale data and then writing it back out and 362 * making everybody very sad. 363 */ 364 if (!extent_buffer_under_io(eb)) 365 clear_extent_buffer_uptodate(eb); 366 out: 367 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 368 &cached_state, GFP_NOFS); 369 if (need_lock) 370 btrfs_tree_read_unlock_blocking(eb); 371 return ret; 372 } 373 374 /* 375 * Return 0 if the superblock checksum type matches the checksum value of that 376 * algorithm. Pass the raw disk superblock data. 377 */ 378 static int btrfs_check_super_csum(char *raw_disk_sb) 379 { 380 struct btrfs_super_block *disk_sb = 381 (struct btrfs_super_block *)raw_disk_sb; 382 u16 csum_type = btrfs_super_csum_type(disk_sb); 383 int ret = 0; 384 385 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 386 u32 crc = ~(u32)0; 387 const int csum_size = sizeof(crc); 388 char result[csum_size]; 389 390 /* 391 * The super_block structure does not span the whole 392 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 393 * is filled with zeros and is included in the checkum. 394 */ 395 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 396 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 397 btrfs_csum_final(crc, result); 398 399 if (memcmp(raw_disk_sb, result, csum_size)) 400 ret = 1; 401 402 if (ret && btrfs_super_generation(disk_sb) < 10) { 403 printk(KERN_WARNING 404 "BTRFS: super block crcs don't match, older mkfs detected\n"); 405 ret = 0; 406 } 407 } 408 409 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 410 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n", 411 csum_type); 412 ret = 1; 413 } 414 415 return ret; 416 } 417 418 /* 419 * helper to read a given tree block, doing retries as required when 420 * the checksums don't match and we have alternate mirrors to try. 421 */ 422 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 423 struct extent_buffer *eb, 424 u64 start, u64 parent_transid) 425 { 426 struct extent_io_tree *io_tree; 427 int failed = 0; 428 int ret; 429 int num_copies = 0; 430 int mirror_num = 0; 431 int failed_mirror = 0; 432 433 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 434 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 435 while (1) { 436 ret = read_extent_buffer_pages(io_tree, eb, start, 437 WAIT_COMPLETE, 438 btree_get_extent, mirror_num); 439 if (!ret) { 440 if (!verify_parent_transid(io_tree, eb, 441 parent_transid, 0)) 442 break; 443 else 444 ret = -EIO; 445 } 446 447 /* 448 * This buffer's crc is fine, but its contents are corrupted, so 449 * there is no reason to read the other copies, they won't be 450 * any less wrong. 451 */ 452 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 453 break; 454 455 num_copies = btrfs_num_copies(root->fs_info, 456 eb->start, eb->len); 457 if (num_copies == 1) 458 break; 459 460 if (!failed_mirror) { 461 failed = 1; 462 failed_mirror = eb->read_mirror; 463 } 464 465 mirror_num++; 466 if (mirror_num == failed_mirror) 467 mirror_num++; 468 469 if (mirror_num > num_copies) 470 break; 471 } 472 473 if (failed && !ret && failed_mirror) 474 repair_eb_io_failure(root, eb, failed_mirror); 475 476 return ret; 477 } 478 479 /* 480 * checksum a dirty tree block before IO. This has extra checks to make sure 481 * we only fill in the checksum field in the first page of a multi-page block 482 */ 483 484 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 485 { 486 u64 start = page_offset(page); 487 u64 found_start; 488 struct extent_buffer *eb; 489 490 eb = (struct extent_buffer *)page->private; 491 if (page != eb->pages[0]) 492 return 0; 493 found_start = btrfs_header_bytenr(eb); 494 if (WARN_ON(found_start != start || !PageUptodate(page))) 495 return 0; 496 csum_tree_block(root, eb, 0); 497 return 0; 498 } 499 500 static int check_tree_block_fsid(struct btrfs_root *root, 501 struct extent_buffer *eb) 502 { 503 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 504 u8 fsid[BTRFS_UUID_SIZE]; 505 int ret = 1; 506 507 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 508 while (fs_devices) { 509 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 510 ret = 0; 511 break; 512 } 513 fs_devices = fs_devices->seed; 514 } 515 return ret; 516 } 517 518 #define CORRUPT(reason, eb, root, slot) \ 519 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \ 520 "root=%llu, slot=%d", reason, \ 521 btrfs_header_bytenr(eb), root->objectid, slot) 522 523 static noinline int check_leaf(struct btrfs_root *root, 524 struct extent_buffer *leaf) 525 { 526 struct btrfs_key key; 527 struct btrfs_key leaf_key; 528 u32 nritems = btrfs_header_nritems(leaf); 529 int slot; 530 531 if (nritems == 0) 532 return 0; 533 534 /* Check the 0 item */ 535 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 536 BTRFS_LEAF_DATA_SIZE(root)) { 537 CORRUPT("invalid item offset size pair", leaf, root, 0); 538 return -EIO; 539 } 540 541 /* 542 * Check to make sure each items keys are in the correct order and their 543 * offsets make sense. We only have to loop through nritems-1 because 544 * we check the current slot against the next slot, which verifies the 545 * next slot's offset+size makes sense and that the current's slot 546 * offset is correct. 547 */ 548 for (slot = 0; slot < nritems - 1; slot++) { 549 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 550 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 551 552 /* Make sure the keys are in the right order */ 553 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 554 CORRUPT("bad key order", leaf, root, slot); 555 return -EIO; 556 } 557 558 /* 559 * Make sure the offset and ends are right, remember that the 560 * item data starts at the end of the leaf and grows towards the 561 * front. 562 */ 563 if (btrfs_item_offset_nr(leaf, slot) != 564 btrfs_item_end_nr(leaf, slot + 1)) { 565 CORRUPT("slot offset bad", leaf, root, slot); 566 return -EIO; 567 } 568 569 /* 570 * Check to make sure that we don't point outside of the leaf, 571 * just incase all the items are consistent to eachother, but 572 * all point outside of the leaf. 573 */ 574 if (btrfs_item_end_nr(leaf, slot) > 575 BTRFS_LEAF_DATA_SIZE(root)) { 576 CORRUPT("slot end outside of leaf", leaf, root, slot); 577 return -EIO; 578 } 579 } 580 581 return 0; 582 } 583 584 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 585 u64 phy_offset, struct page *page, 586 u64 start, u64 end, int mirror) 587 { 588 u64 found_start; 589 int found_level; 590 struct extent_buffer *eb; 591 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 592 int ret = 0; 593 int reads_done; 594 595 if (!page->private) 596 goto out; 597 598 eb = (struct extent_buffer *)page->private; 599 600 /* the pending IO might have been the only thing that kept this buffer 601 * in memory. Make sure we have a ref for all this other checks 602 */ 603 extent_buffer_get(eb); 604 605 reads_done = atomic_dec_and_test(&eb->io_pages); 606 if (!reads_done) 607 goto err; 608 609 eb->read_mirror = mirror; 610 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 611 ret = -EIO; 612 goto err; 613 } 614 615 found_start = btrfs_header_bytenr(eb); 616 if (found_start != eb->start) { 617 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start " 618 "%llu %llu\n", 619 found_start, eb->start); 620 ret = -EIO; 621 goto err; 622 } 623 if (check_tree_block_fsid(root, eb)) { 624 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n", 625 eb->start); 626 ret = -EIO; 627 goto err; 628 } 629 found_level = btrfs_header_level(eb); 630 if (found_level >= BTRFS_MAX_LEVEL) { 631 btrfs_info(root->fs_info, "bad tree block level %d", 632 (int)btrfs_header_level(eb)); 633 ret = -EIO; 634 goto err; 635 } 636 637 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 638 eb, found_level); 639 640 ret = csum_tree_block(root, eb, 1); 641 if (ret) { 642 ret = -EIO; 643 goto err; 644 } 645 646 /* 647 * If this is a leaf block and it is corrupt, set the corrupt bit so 648 * that we don't try and read the other copies of this block, just 649 * return -EIO. 650 */ 651 if (found_level == 0 && check_leaf(root, eb)) { 652 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 653 ret = -EIO; 654 } 655 656 if (!ret) 657 set_extent_buffer_uptodate(eb); 658 err: 659 if (reads_done && 660 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 661 btree_readahead_hook(root, eb, eb->start, ret); 662 663 if (ret) { 664 /* 665 * our io error hook is going to dec the io pages 666 * again, we have to make sure it has something 667 * to decrement 668 */ 669 atomic_inc(&eb->io_pages); 670 clear_extent_buffer_uptodate(eb); 671 } 672 free_extent_buffer(eb); 673 out: 674 return ret; 675 } 676 677 static int btree_io_failed_hook(struct page *page, int failed_mirror) 678 { 679 struct extent_buffer *eb; 680 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 681 682 eb = (struct extent_buffer *)page->private; 683 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 684 eb->read_mirror = failed_mirror; 685 atomic_dec(&eb->io_pages); 686 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 687 btree_readahead_hook(root, eb, eb->start, -EIO); 688 return -EIO; /* we fixed nothing */ 689 } 690 691 static void end_workqueue_bio(struct bio *bio, int err) 692 { 693 struct end_io_wq *end_io_wq = bio->bi_private; 694 struct btrfs_fs_info *fs_info; 695 struct btrfs_workqueue *wq; 696 btrfs_work_func_t func; 697 698 fs_info = end_io_wq->info; 699 end_io_wq->error = err; 700 701 if (bio->bi_rw & REQ_WRITE) { 702 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 703 wq = fs_info->endio_meta_write_workers; 704 func = btrfs_endio_meta_write_helper; 705 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 706 wq = fs_info->endio_freespace_worker; 707 func = btrfs_freespace_write_helper; 708 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 709 wq = fs_info->endio_raid56_workers; 710 func = btrfs_endio_raid56_helper; 711 } else { 712 wq = fs_info->endio_write_workers; 713 func = btrfs_endio_write_helper; 714 } 715 } else { 716 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 717 wq = fs_info->endio_raid56_workers; 718 func = btrfs_endio_raid56_helper; 719 } else if (end_io_wq->metadata) { 720 wq = fs_info->endio_meta_workers; 721 func = btrfs_endio_meta_helper; 722 } else { 723 wq = fs_info->endio_workers; 724 func = btrfs_endio_helper; 725 } 726 } 727 728 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 729 btrfs_queue_work(wq, &end_io_wq->work); 730 } 731 732 /* 733 * For the metadata arg you want 734 * 735 * 0 - if data 736 * 1 - if normal metadta 737 * 2 - if writing to the free space cache area 738 * 3 - raid parity work 739 */ 740 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 741 int metadata) 742 { 743 struct end_io_wq *end_io_wq; 744 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 745 if (!end_io_wq) 746 return -ENOMEM; 747 748 end_io_wq->private = bio->bi_private; 749 end_io_wq->end_io = bio->bi_end_io; 750 end_io_wq->info = info; 751 end_io_wq->error = 0; 752 end_io_wq->bio = bio; 753 end_io_wq->metadata = metadata; 754 755 bio->bi_private = end_io_wq; 756 bio->bi_end_io = end_workqueue_bio; 757 return 0; 758 } 759 760 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 761 { 762 unsigned long limit = min_t(unsigned long, 763 info->thread_pool_size, 764 info->fs_devices->open_devices); 765 return 256 * limit; 766 } 767 768 static void run_one_async_start(struct btrfs_work *work) 769 { 770 struct async_submit_bio *async; 771 int ret; 772 773 async = container_of(work, struct async_submit_bio, work); 774 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 775 async->mirror_num, async->bio_flags, 776 async->bio_offset); 777 if (ret) 778 async->error = ret; 779 } 780 781 static void run_one_async_done(struct btrfs_work *work) 782 { 783 struct btrfs_fs_info *fs_info; 784 struct async_submit_bio *async; 785 int limit; 786 787 async = container_of(work, struct async_submit_bio, work); 788 fs_info = BTRFS_I(async->inode)->root->fs_info; 789 790 limit = btrfs_async_submit_limit(fs_info); 791 limit = limit * 2 / 3; 792 793 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 794 waitqueue_active(&fs_info->async_submit_wait)) 795 wake_up(&fs_info->async_submit_wait); 796 797 /* If an error occured we just want to clean up the bio and move on */ 798 if (async->error) { 799 bio_endio(async->bio, async->error); 800 return; 801 } 802 803 async->submit_bio_done(async->inode, async->rw, async->bio, 804 async->mirror_num, async->bio_flags, 805 async->bio_offset); 806 } 807 808 static void run_one_async_free(struct btrfs_work *work) 809 { 810 struct async_submit_bio *async; 811 812 async = container_of(work, struct async_submit_bio, work); 813 kfree(async); 814 } 815 816 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 817 int rw, struct bio *bio, int mirror_num, 818 unsigned long bio_flags, 819 u64 bio_offset, 820 extent_submit_bio_hook_t *submit_bio_start, 821 extent_submit_bio_hook_t *submit_bio_done) 822 { 823 struct async_submit_bio *async; 824 825 async = kmalloc(sizeof(*async), GFP_NOFS); 826 if (!async) 827 return -ENOMEM; 828 829 async->inode = inode; 830 async->rw = rw; 831 async->bio = bio; 832 async->mirror_num = mirror_num; 833 async->submit_bio_start = submit_bio_start; 834 async->submit_bio_done = submit_bio_done; 835 836 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 837 run_one_async_done, run_one_async_free); 838 839 async->bio_flags = bio_flags; 840 async->bio_offset = bio_offset; 841 842 async->error = 0; 843 844 atomic_inc(&fs_info->nr_async_submits); 845 846 if (rw & REQ_SYNC) 847 btrfs_set_work_high_priority(&async->work); 848 849 btrfs_queue_work(fs_info->workers, &async->work); 850 851 while (atomic_read(&fs_info->async_submit_draining) && 852 atomic_read(&fs_info->nr_async_submits)) { 853 wait_event(fs_info->async_submit_wait, 854 (atomic_read(&fs_info->nr_async_submits) == 0)); 855 } 856 857 return 0; 858 } 859 860 static int btree_csum_one_bio(struct bio *bio) 861 { 862 struct bio_vec *bvec; 863 struct btrfs_root *root; 864 int i, ret = 0; 865 866 bio_for_each_segment_all(bvec, bio, i) { 867 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 868 ret = csum_dirty_buffer(root, bvec->bv_page); 869 if (ret) 870 break; 871 } 872 873 return ret; 874 } 875 876 static int __btree_submit_bio_start(struct inode *inode, int rw, 877 struct bio *bio, int mirror_num, 878 unsigned long bio_flags, 879 u64 bio_offset) 880 { 881 /* 882 * when we're called for a write, we're already in the async 883 * submission context. Just jump into btrfs_map_bio 884 */ 885 return btree_csum_one_bio(bio); 886 } 887 888 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 889 int mirror_num, unsigned long bio_flags, 890 u64 bio_offset) 891 { 892 int ret; 893 894 /* 895 * when we're called for a write, we're already in the async 896 * submission context. Just jump into btrfs_map_bio 897 */ 898 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 899 if (ret) 900 bio_endio(bio, ret); 901 return ret; 902 } 903 904 static int check_async_write(struct inode *inode, unsigned long bio_flags) 905 { 906 if (bio_flags & EXTENT_BIO_TREE_LOG) 907 return 0; 908 #ifdef CONFIG_X86 909 if (cpu_has_xmm4_2) 910 return 0; 911 #endif 912 return 1; 913 } 914 915 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 916 int mirror_num, unsigned long bio_flags, 917 u64 bio_offset) 918 { 919 int async = check_async_write(inode, bio_flags); 920 int ret; 921 922 if (!(rw & REQ_WRITE)) { 923 /* 924 * called for a read, do the setup so that checksum validation 925 * can happen in the async kernel threads 926 */ 927 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 928 bio, 1); 929 if (ret) 930 goto out_w_error; 931 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 932 mirror_num, 0); 933 } else if (!async) { 934 ret = btree_csum_one_bio(bio); 935 if (ret) 936 goto out_w_error; 937 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 938 mirror_num, 0); 939 } else { 940 /* 941 * kthread helpers are used to submit writes so that 942 * checksumming can happen in parallel across all CPUs 943 */ 944 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 945 inode, rw, bio, mirror_num, 0, 946 bio_offset, 947 __btree_submit_bio_start, 948 __btree_submit_bio_done); 949 } 950 951 if (ret) { 952 out_w_error: 953 bio_endio(bio, ret); 954 } 955 return ret; 956 } 957 958 #ifdef CONFIG_MIGRATION 959 static int btree_migratepage(struct address_space *mapping, 960 struct page *newpage, struct page *page, 961 enum migrate_mode mode) 962 { 963 /* 964 * we can't safely write a btree page from here, 965 * we haven't done the locking hook 966 */ 967 if (PageDirty(page)) 968 return -EAGAIN; 969 /* 970 * Buffers may be managed in a filesystem specific way. 971 * We must have no buffers or drop them. 972 */ 973 if (page_has_private(page) && 974 !try_to_release_page(page, GFP_KERNEL)) 975 return -EAGAIN; 976 return migrate_page(mapping, newpage, page, mode); 977 } 978 #endif 979 980 981 static int btree_writepages(struct address_space *mapping, 982 struct writeback_control *wbc) 983 { 984 struct btrfs_fs_info *fs_info; 985 int ret; 986 987 if (wbc->sync_mode == WB_SYNC_NONE) { 988 989 if (wbc->for_kupdate) 990 return 0; 991 992 fs_info = BTRFS_I(mapping->host)->root->fs_info; 993 /* this is a bit racy, but that's ok */ 994 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 995 BTRFS_DIRTY_METADATA_THRESH); 996 if (ret < 0) 997 return 0; 998 } 999 return btree_write_cache_pages(mapping, wbc); 1000 } 1001 1002 static int btree_readpage(struct file *file, struct page *page) 1003 { 1004 struct extent_io_tree *tree; 1005 tree = &BTRFS_I(page->mapping->host)->io_tree; 1006 return extent_read_full_page(tree, page, btree_get_extent, 0); 1007 } 1008 1009 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1010 { 1011 if (PageWriteback(page) || PageDirty(page)) 1012 return 0; 1013 1014 return try_release_extent_buffer(page); 1015 } 1016 1017 static void btree_invalidatepage(struct page *page, unsigned int offset, 1018 unsigned int length) 1019 { 1020 struct extent_io_tree *tree; 1021 tree = &BTRFS_I(page->mapping->host)->io_tree; 1022 extent_invalidatepage(tree, page, offset); 1023 btree_releasepage(page, GFP_NOFS); 1024 if (PagePrivate(page)) { 1025 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1026 "page private not zero on page %llu", 1027 (unsigned long long)page_offset(page)); 1028 ClearPagePrivate(page); 1029 set_page_private(page, 0); 1030 page_cache_release(page); 1031 } 1032 } 1033 1034 static int btree_set_page_dirty(struct page *page) 1035 { 1036 #ifdef DEBUG 1037 struct extent_buffer *eb; 1038 1039 BUG_ON(!PagePrivate(page)); 1040 eb = (struct extent_buffer *)page->private; 1041 BUG_ON(!eb); 1042 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1043 BUG_ON(!atomic_read(&eb->refs)); 1044 btrfs_assert_tree_locked(eb); 1045 #endif 1046 return __set_page_dirty_nobuffers(page); 1047 } 1048 1049 static const struct address_space_operations btree_aops = { 1050 .readpage = btree_readpage, 1051 .writepages = btree_writepages, 1052 .releasepage = btree_releasepage, 1053 .invalidatepage = btree_invalidatepage, 1054 #ifdef CONFIG_MIGRATION 1055 .migratepage = btree_migratepage, 1056 #endif 1057 .set_page_dirty = btree_set_page_dirty, 1058 }; 1059 1060 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1061 u64 parent_transid) 1062 { 1063 struct extent_buffer *buf = NULL; 1064 struct inode *btree_inode = root->fs_info->btree_inode; 1065 int ret = 0; 1066 1067 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1068 if (!buf) 1069 return 0; 1070 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1071 buf, 0, WAIT_NONE, btree_get_extent, 0); 1072 free_extent_buffer(buf); 1073 return ret; 1074 } 1075 1076 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1077 int mirror_num, struct extent_buffer **eb) 1078 { 1079 struct extent_buffer *buf = NULL; 1080 struct inode *btree_inode = root->fs_info->btree_inode; 1081 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1082 int ret; 1083 1084 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1085 if (!buf) 1086 return 0; 1087 1088 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1089 1090 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1091 btree_get_extent, mirror_num); 1092 if (ret) { 1093 free_extent_buffer(buf); 1094 return ret; 1095 } 1096 1097 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1098 free_extent_buffer(buf); 1099 return -EIO; 1100 } else if (extent_buffer_uptodate(buf)) { 1101 *eb = buf; 1102 } else { 1103 free_extent_buffer(buf); 1104 } 1105 return 0; 1106 } 1107 1108 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 1109 u64 bytenr, u32 blocksize) 1110 { 1111 return find_extent_buffer(root->fs_info, bytenr); 1112 } 1113 1114 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1115 u64 bytenr, u32 blocksize) 1116 { 1117 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1118 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state))) 1119 return alloc_test_extent_buffer(root->fs_info, bytenr, 1120 blocksize); 1121 #endif 1122 return alloc_extent_buffer(root->fs_info, bytenr, blocksize); 1123 } 1124 1125 1126 int btrfs_write_tree_block(struct extent_buffer *buf) 1127 { 1128 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1129 buf->start + buf->len - 1); 1130 } 1131 1132 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1133 { 1134 return filemap_fdatawait_range(buf->pages[0]->mapping, 1135 buf->start, buf->start + buf->len - 1); 1136 } 1137 1138 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1139 u32 blocksize, u64 parent_transid) 1140 { 1141 struct extent_buffer *buf = NULL; 1142 int ret; 1143 1144 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1145 if (!buf) 1146 return NULL; 1147 1148 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1149 if (ret) { 1150 free_extent_buffer(buf); 1151 return NULL; 1152 } 1153 return buf; 1154 1155 } 1156 1157 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1158 struct extent_buffer *buf) 1159 { 1160 struct btrfs_fs_info *fs_info = root->fs_info; 1161 1162 if (btrfs_header_generation(buf) == 1163 fs_info->running_transaction->transid) { 1164 btrfs_assert_tree_locked(buf); 1165 1166 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1167 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1168 -buf->len, 1169 fs_info->dirty_metadata_batch); 1170 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1171 btrfs_set_lock_blocking(buf); 1172 clear_extent_buffer_dirty(buf); 1173 } 1174 } 1175 } 1176 1177 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1178 { 1179 struct btrfs_subvolume_writers *writers; 1180 int ret; 1181 1182 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1183 if (!writers) 1184 return ERR_PTR(-ENOMEM); 1185 1186 ret = percpu_counter_init(&writers->counter, 0); 1187 if (ret < 0) { 1188 kfree(writers); 1189 return ERR_PTR(ret); 1190 } 1191 1192 init_waitqueue_head(&writers->wait); 1193 return writers; 1194 } 1195 1196 static void 1197 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1198 { 1199 percpu_counter_destroy(&writers->counter); 1200 kfree(writers); 1201 } 1202 1203 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 1204 u32 stripesize, struct btrfs_root *root, 1205 struct btrfs_fs_info *fs_info, 1206 u64 objectid) 1207 { 1208 root->node = NULL; 1209 root->commit_root = NULL; 1210 root->sectorsize = sectorsize; 1211 root->nodesize = nodesize; 1212 root->leafsize = leafsize; 1213 root->stripesize = stripesize; 1214 root->state = 0; 1215 root->orphan_cleanup_state = 0; 1216 1217 root->objectid = objectid; 1218 root->last_trans = 0; 1219 root->highest_objectid = 0; 1220 root->nr_delalloc_inodes = 0; 1221 root->nr_ordered_extents = 0; 1222 root->name = NULL; 1223 root->inode_tree = RB_ROOT; 1224 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1225 root->block_rsv = NULL; 1226 root->orphan_block_rsv = NULL; 1227 1228 INIT_LIST_HEAD(&root->dirty_list); 1229 INIT_LIST_HEAD(&root->root_list); 1230 INIT_LIST_HEAD(&root->delalloc_inodes); 1231 INIT_LIST_HEAD(&root->delalloc_root); 1232 INIT_LIST_HEAD(&root->ordered_extents); 1233 INIT_LIST_HEAD(&root->ordered_root); 1234 INIT_LIST_HEAD(&root->logged_list[0]); 1235 INIT_LIST_HEAD(&root->logged_list[1]); 1236 spin_lock_init(&root->orphan_lock); 1237 spin_lock_init(&root->inode_lock); 1238 spin_lock_init(&root->delalloc_lock); 1239 spin_lock_init(&root->ordered_extent_lock); 1240 spin_lock_init(&root->accounting_lock); 1241 spin_lock_init(&root->log_extents_lock[0]); 1242 spin_lock_init(&root->log_extents_lock[1]); 1243 mutex_init(&root->objectid_mutex); 1244 mutex_init(&root->log_mutex); 1245 mutex_init(&root->ordered_extent_mutex); 1246 mutex_init(&root->delalloc_mutex); 1247 init_waitqueue_head(&root->log_writer_wait); 1248 init_waitqueue_head(&root->log_commit_wait[0]); 1249 init_waitqueue_head(&root->log_commit_wait[1]); 1250 INIT_LIST_HEAD(&root->log_ctxs[0]); 1251 INIT_LIST_HEAD(&root->log_ctxs[1]); 1252 atomic_set(&root->log_commit[0], 0); 1253 atomic_set(&root->log_commit[1], 0); 1254 atomic_set(&root->log_writers, 0); 1255 atomic_set(&root->log_batch, 0); 1256 atomic_set(&root->orphan_inodes, 0); 1257 atomic_set(&root->refs, 1); 1258 atomic_set(&root->will_be_snapshoted, 0); 1259 root->log_transid = 0; 1260 root->log_transid_committed = -1; 1261 root->last_log_commit = 0; 1262 if (fs_info) 1263 extent_io_tree_init(&root->dirty_log_pages, 1264 fs_info->btree_inode->i_mapping); 1265 1266 memset(&root->root_key, 0, sizeof(root->root_key)); 1267 memset(&root->root_item, 0, sizeof(root->root_item)); 1268 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1269 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1270 if (fs_info) 1271 root->defrag_trans_start = fs_info->generation; 1272 else 1273 root->defrag_trans_start = 0; 1274 init_completion(&root->kobj_unregister); 1275 root->root_key.objectid = objectid; 1276 root->anon_dev = 0; 1277 1278 spin_lock_init(&root->root_item_lock); 1279 } 1280 1281 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1282 { 1283 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1284 if (root) 1285 root->fs_info = fs_info; 1286 return root; 1287 } 1288 1289 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1290 /* Should only be used by the testing infrastructure */ 1291 struct btrfs_root *btrfs_alloc_dummy_root(void) 1292 { 1293 struct btrfs_root *root; 1294 1295 root = btrfs_alloc_root(NULL); 1296 if (!root) 1297 return ERR_PTR(-ENOMEM); 1298 __setup_root(4096, 4096, 4096, 4096, root, NULL, 1); 1299 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state); 1300 root->alloc_bytenr = 0; 1301 1302 return root; 1303 } 1304 #endif 1305 1306 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1307 struct btrfs_fs_info *fs_info, 1308 u64 objectid) 1309 { 1310 struct extent_buffer *leaf; 1311 struct btrfs_root *tree_root = fs_info->tree_root; 1312 struct btrfs_root *root; 1313 struct btrfs_key key; 1314 int ret = 0; 1315 uuid_le uuid; 1316 1317 root = btrfs_alloc_root(fs_info); 1318 if (!root) 1319 return ERR_PTR(-ENOMEM); 1320 1321 __setup_root(tree_root->nodesize, tree_root->leafsize, 1322 tree_root->sectorsize, tree_root->stripesize, 1323 root, fs_info, objectid); 1324 root->root_key.objectid = objectid; 1325 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1326 root->root_key.offset = 0; 1327 1328 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 1329 0, objectid, NULL, 0, 0, 0); 1330 if (IS_ERR(leaf)) { 1331 ret = PTR_ERR(leaf); 1332 leaf = NULL; 1333 goto fail; 1334 } 1335 1336 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1337 btrfs_set_header_bytenr(leaf, leaf->start); 1338 btrfs_set_header_generation(leaf, trans->transid); 1339 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1340 btrfs_set_header_owner(leaf, objectid); 1341 root->node = leaf; 1342 1343 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(), 1344 BTRFS_FSID_SIZE); 1345 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1346 btrfs_header_chunk_tree_uuid(leaf), 1347 BTRFS_UUID_SIZE); 1348 btrfs_mark_buffer_dirty(leaf); 1349 1350 root->commit_root = btrfs_root_node(root); 1351 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1352 1353 root->root_item.flags = 0; 1354 root->root_item.byte_limit = 0; 1355 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1356 btrfs_set_root_generation(&root->root_item, trans->transid); 1357 btrfs_set_root_level(&root->root_item, 0); 1358 btrfs_set_root_refs(&root->root_item, 1); 1359 btrfs_set_root_used(&root->root_item, leaf->len); 1360 btrfs_set_root_last_snapshot(&root->root_item, 0); 1361 btrfs_set_root_dirid(&root->root_item, 0); 1362 uuid_le_gen(&uuid); 1363 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1364 root->root_item.drop_level = 0; 1365 1366 key.objectid = objectid; 1367 key.type = BTRFS_ROOT_ITEM_KEY; 1368 key.offset = 0; 1369 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1370 if (ret) 1371 goto fail; 1372 1373 btrfs_tree_unlock(leaf); 1374 1375 return root; 1376 1377 fail: 1378 if (leaf) { 1379 btrfs_tree_unlock(leaf); 1380 free_extent_buffer(root->commit_root); 1381 free_extent_buffer(leaf); 1382 } 1383 kfree(root); 1384 1385 return ERR_PTR(ret); 1386 } 1387 1388 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1389 struct btrfs_fs_info *fs_info) 1390 { 1391 struct btrfs_root *root; 1392 struct btrfs_root *tree_root = fs_info->tree_root; 1393 struct extent_buffer *leaf; 1394 1395 root = btrfs_alloc_root(fs_info); 1396 if (!root) 1397 return ERR_PTR(-ENOMEM); 1398 1399 __setup_root(tree_root->nodesize, tree_root->leafsize, 1400 tree_root->sectorsize, tree_root->stripesize, 1401 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1402 1403 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1404 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1405 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1406 1407 /* 1408 * DON'T set REF_COWS for log trees 1409 * 1410 * log trees do not get reference counted because they go away 1411 * before a real commit is actually done. They do store pointers 1412 * to file data extents, and those reference counts still get 1413 * updated (along with back refs to the log tree). 1414 */ 1415 1416 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1417 BTRFS_TREE_LOG_OBJECTID, NULL, 1418 0, 0, 0); 1419 if (IS_ERR(leaf)) { 1420 kfree(root); 1421 return ERR_CAST(leaf); 1422 } 1423 1424 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1425 btrfs_set_header_bytenr(leaf, leaf->start); 1426 btrfs_set_header_generation(leaf, trans->transid); 1427 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1428 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1429 root->node = leaf; 1430 1431 write_extent_buffer(root->node, root->fs_info->fsid, 1432 btrfs_header_fsid(), BTRFS_FSID_SIZE); 1433 btrfs_mark_buffer_dirty(root->node); 1434 btrfs_tree_unlock(root->node); 1435 return root; 1436 } 1437 1438 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1439 struct btrfs_fs_info *fs_info) 1440 { 1441 struct btrfs_root *log_root; 1442 1443 log_root = alloc_log_tree(trans, fs_info); 1444 if (IS_ERR(log_root)) 1445 return PTR_ERR(log_root); 1446 WARN_ON(fs_info->log_root_tree); 1447 fs_info->log_root_tree = log_root; 1448 return 0; 1449 } 1450 1451 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1452 struct btrfs_root *root) 1453 { 1454 struct btrfs_root *log_root; 1455 struct btrfs_inode_item *inode_item; 1456 1457 log_root = alloc_log_tree(trans, root->fs_info); 1458 if (IS_ERR(log_root)) 1459 return PTR_ERR(log_root); 1460 1461 log_root->last_trans = trans->transid; 1462 log_root->root_key.offset = root->root_key.objectid; 1463 1464 inode_item = &log_root->root_item.inode; 1465 btrfs_set_stack_inode_generation(inode_item, 1); 1466 btrfs_set_stack_inode_size(inode_item, 3); 1467 btrfs_set_stack_inode_nlink(inode_item, 1); 1468 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize); 1469 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1470 1471 btrfs_set_root_node(&log_root->root_item, log_root->node); 1472 1473 WARN_ON(root->log_root); 1474 root->log_root = log_root; 1475 root->log_transid = 0; 1476 root->log_transid_committed = -1; 1477 root->last_log_commit = 0; 1478 return 0; 1479 } 1480 1481 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1482 struct btrfs_key *key) 1483 { 1484 struct btrfs_root *root; 1485 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1486 struct btrfs_path *path; 1487 u64 generation; 1488 u32 blocksize; 1489 int ret; 1490 1491 path = btrfs_alloc_path(); 1492 if (!path) 1493 return ERR_PTR(-ENOMEM); 1494 1495 root = btrfs_alloc_root(fs_info); 1496 if (!root) { 1497 ret = -ENOMEM; 1498 goto alloc_fail; 1499 } 1500 1501 __setup_root(tree_root->nodesize, tree_root->leafsize, 1502 tree_root->sectorsize, tree_root->stripesize, 1503 root, fs_info, key->objectid); 1504 1505 ret = btrfs_find_root(tree_root, key, path, 1506 &root->root_item, &root->root_key); 1507 if (ret) { 1508 if (ret > 0) 1509 ret = -ENOENT; 1510 goto find_fail; 1511 } 1512 1513 generation = btrfs_root_generation(&root->root_item); 1514 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1515 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1516 blocksize, generation); 1517 if (!root->node) { 1518 ret = -ENOMEM; 1519 goto find_fail; 1520 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1521 ret = -EIO; 1522 goto read_fail; 1523 } 1524 root->commit_root = btrfs_root_node(root); 1525 out: 1526 btrfs_free_path(path); 1527 return root; 1528 1529 read_fail: 1530 free_extent_buffer(root->node); 1531 find_fail: 1532 kfree(root); 1533 alloc_fail: 1534 root = ERR_PTR(ret); 1535 goto out; 1536 } 1537 1538 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1539 struct btrfs_key *location) 1540 { 1541 struct btrfs_root *root; 1542 1543 root = btrfs_read_tree_root(tree_root, location); 1544 if (IS_ERR(root)) 1545 return root; 1546 1547 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1548 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1549 btrfs_check_and_init_root_item(&root->root_item); 1550 } 1551 1552 return root; 1553 } 1554 1555 int btrfs_init_fs_root(struct btrfs_root *root) 1556 { 1557 int ret; 1558 struct btrfs_subvolume_writers *writers; 1559 1560 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1561 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1562 GFP_NOFS); 1563 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1564 ret = -ENOMEM; 1565 goto fail; 1566 } 1567 1568 writers = btrfs_alloc_subvolume_writers(); 1569 if (IS_ERR(writers)) { 1570 ret = PTR_ERR(writers); 1571 goto fail; 1572 } 1573 root->subv_writers = writers; 1574 1575 btrfs_init_free_ino_ctl(root); 1576 spin_lock_init(&root->cache_lock); 1577 init_waitqueue_head(&root->cache_wait); 1578 1579 ret = get_anon_bdev(&root->anon_dev); 1580 if (ret) 1581 goto free_writers; 1582 return 0; 1583 1584 free_writers: 1585 btrfs_free_subvolume_writers(root->subv_writers); 1586 fail: 1587 kfree(root->free_ino_ctl); 1588 kfree(root->free_ino_pinned); 1589 return ret; 1590 } 1591 1592 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1593 u64 root_id) 1594 { 1595 struct btrfs_root *root; 1596 1597 spin_lock(&fs_info->fs_roots_radix_lock); 1598 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1599 (unsigned long)root_id); 1600 spin_unlock(&fs_info->fs_roots_radix_lock); 1601 return root; 1602 } 1603 1604 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1605 struct btrfs_root *root) 1606 { 1607 int ret; 1608 1609 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1610 if (ret) 1611 return ret; 1612 1613 spin_lock(&fs_info->fs_roots_radix_lock); 1614 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1615 (unsigned long)root->root_key.objectid, 1616 root); 1617 if (ret == 0) 1618 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1619 spin_unlock(&fs_info->fs_roots_radix_lock); 1620 radix_tree_preload_end(); 1621 1622 return ret; 1623 } 1624 1625 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1626 struct btrfs_key *location, 1627 bool check_ref) 1628 { 1629 struct btrfs_root *root; 1630 int ret; 1631 1632 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1633 return fs_info->tree_root; 1634 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1635 return fs_info->extent_root; 1636 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1637 return fs_info->chunk_root; 1638 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1639 return fs_info->dev_root; 1640 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1641 return fs_info->csum_root; 1642 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1643 return fs_info->quota_root ? fs_info->quota_root : 1644 ERR_PTR(-ENOENT); 1645 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1646 return fs_info->uuid_root ? fs_info->uuid_root : 1647 ERR_PTR(-ENOENT); 1648 again: 1649 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1650 if (root) { 1651 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1652 return ERR_PTR(-ENOENT); 1653 return root; 1654 } 1655 1656 root = btrfs_read_fs_root(fs_info->tree_root, location); 1657 if (IS_ERR(root)) 1658 return root; 1659 1660 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1661 ret = -ENOENT; 1662 goto fail; 1663 } 1664 1665 ret = btrfs_init_fs_root(root); 1666 if (ret) 1667 goto fail; 1668 1669 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID, 1670 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL); 1671 if (ret < 0) 1672 goto fail; 1673 if (ret == 0) 1674 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1675 1676 ret = btrfs_insert_fs_root(fs_info, root); 1677 if (ret) { 1678 if (ret == -EEXIST) { 1679 free_fs_root(root); 1680 goto again; 1681 } 1682 goto fail; 1683 } 1684 return root; 1685 fail: 1686 free_fs_root(root); 1687 return ERR_PTR(ret); 1688 } 1689 1690 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1691 { 1692 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1693 int ret = 0; 1694 struct btrfs_device *device; 1695 struct backing_dev_info *bdi; 1696 1697 rcu_read_lock(); 1698 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1699 if (!device->bdev) 1700 continue; 1701 bdi = blk_get_backing_dev_info(device->bdev); 1702 if (bdi && bdi_congested(bdi, bdi_bits)) { 1703 ret = 1; 1704 break; 1705 } 1706 } 1707 rcu_read_unlock(); 1708 return ret; 1709 } 1710 1711 /* 1712 * If this fails, caller must call bdi_destroy() to get rid of the 1713 * bdi again. 1714 */ 1715 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1716 { 1717 int err; 1718 1719 bdi->capabilities = BDI_CAP_MAP_COPY; 1720 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1721 if (err) 1722 return err; 1723 1724 bdi->ra_pages = default_backing_dev_info.ra_pages; 1725 bdi->congested_fn = btrfs_congested_fn; 1726 bdi->congested_data = info; 1727 return 0; 1728 } 1729 1730 /* 1731 * called by the kthread helper functions to finally call the bio end_io 1732 * functions. This is where read checksum verification actually happens 1733 */ 1734 static void end_workqueue_fn(struct btrfs_work *work) 1735 { 1736 struct bio *bio; 1737 struct end_io_wq *end_io_wq; 1738 int error; 1739 1740 end_io_wq = container_of(work, struct end_io_wq, work); 1741 bio = end_io_wq->bio; 1742 1743 error = end_io_wq->error; 1744 bio->bi_private = end_io_wq->private; 1745 bio->bi_end_io = end_io_wq->end_io; 1746 kfree(end_io_wq); 1747 bio_endio_nodec(bio, error); 1748 } 1749 1750 static int cleaner_kthread(void *arg) 1751 { 1752 struct btrfs_root *root = arg; 1753 int again; 1754 1755 do { 1756 again = 0; 1757 1758 /* Make the cleaner go to sleep early. */ 1759 if (btrfs_need_cleaner_sleep(root)) 1760 goto sleep; 1761 1762 if (!mutex_trylock(&root->fs_info->cleaner_mutex)) 1763 goto sleep; 1764 1765 /* 1766 * Avoid the problem that we change the status of the fs 1767 * during the above check and trylock. 1768 */ 1769 if (btrfs_need_cleaner_sleep(root)) { 1770 mutex_unlock(&root->fs_info->cleaner_mutex); 1771 goto sleep; 1772 } 1773 1774 btrfs_run_delayed_iputs(root); 1775 again = btrfs_clean_one_deleted_snapshot(root); 1776 mutex_unlock(&root->fs_info->cleaner_mutex); 1777 1778 /* 1779 * The defragger has dealt with the R/O remount and umount, 1780 * needn't do anything special here. 1781 */ 1782 btrfs_run_defrag_inodes(root->fs_info); 1783 sleep: 1784 if (!try_to_freeze() && !again) { 1785 set_current_state(TASK_INTERRUPTIBLE); 1786 if (!kthread_should_stop()) 1787 schedule(); 1788 __set_current_state(TASK_RUNNING); 1789 } 1790 } while (!kthread_should_stop()); 1791 return 0; 1792 } 1793 1794 static int transaction_kthread(void *arg) 1795 { 1796 struct btrfs_root *root = arg; 1797 struct btrfs_trans_handle *trans; 1798 struct btrfs_transaction *cur; 1799 u64 transid; 1800 unsigned long now; 1801 unsigned long delay; 1802 bool cannot_commit; 1803 1804 do { 1805 cannot_commit = false; 1806 delay = HZ * root->fs_info->commit_interval; 1807 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1808 1809 spin_lock(&root->fs_info->trans_lock); 1810 cur = root->fs_info->running_transaction; 1811 if (!cur) { 1812 spin_unlock(&root->fs_info->trans_lock); 1813 goto sleep; 1814 } 1815 1816 now = get_seconds(); 1817 if (cur->state < TRANS_STATE_BLOCKED && 1818 (now < cur->start_time || 1819 now - cur->start_time < root->fs_info->commit_interval)) { 1820 spin_unlock(&root->fs_info->trans_lock); 1821 delay = HZ * 5; 1822 goto sleep; 1823 } 1824 transid = cur->transid; 1825 spin_unlock(&root->fs_info->trans_lock); 1826 1827 /* If the file system is aborted, this will always fail. */ 1828 trans = btrfs_attach_transaction(root); 1829 if (IS_ERR(trans)) { 1830 if (PTR_ERR(trans) != -ENOENT) 1831 cannot_commit = true; 1832 goto sleep; 1833 } 1834 if (transid == trans->transid) { 1835 btrfs_commit_transaction(trans, root); 1836 } else { 1837 btrfs_end_transaction(trans, root); 1838 } 1839 sleep: 1840 wake_up_process(root->fs_info->cleaner_kthread); 1841 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1842 1843 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1844 &root->fs_info->fs_state))) 1845 btrfs_cleanup_transaction(root); 1846 if (!try_to_freeze()) { 1847 set_current_state(TASK_INTERRUPTIBLE); 1848 if (!kthread_should_stop() && 1849 (!btrfs_transaction_blocked(root->fs_info) || 1850 cannot_commit)) 1851 schedule_timeout(delay); 1852 __set_current_state(TASK_RUNNING); 1853 } 1854 } while (!kthread_should_stop()); 1855 return 0; 1856 } 1857 1858 /* 1859 * this will find the highest generation in the array of 1860 * root backups. The index of the highest array is returned, 1861 * or -1 if we can't find anything. 1862 * 1863 * We check to make sure the array is valid by comparing the 1864 * generation of the latest root in the array with the generation 1865 * in the super block. If they don't match we pitch it. 1866 */ 1867 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1868 { 1869 u64 cur; 1870 int newest_index = -1; 1871 struct btrfs_root_backup *root_backup; 1872 int i; 1873 1874 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1875 root_backup = info->super_copy->super_roots + i; 1876 cur = btrfs_backup_tree_root_gen(root_backup); 1877 if (cur == newest_gen) 1878 newest_index = i; 1879 } 1880 1881 /* check to see if we actually wrapped around */ 1882 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1883 root_backup = info->super_copy->super_roots; 1884 cur = btrfs_backup_tree_root_gen(root_backup); 1885 if (cur == newest_gen) 1886 newest_index = 0; 1887 } 1888 return newest_index; 1889 } 1890 1891 1892 /* 1893 * find the oldest backup so we know where to store new entries 1894 * in the backup array. This will set the backup_root_index 1895 * field in the fs_info struct 1896 */ 1897 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1898 u64 newest_gen) 1899 { 1900 int newest_index = -1; 1901 1902 newest_index = find_newest_super_backup(info, newest_gen); 1903 /* if there was garbage in there, just move along */ 1904 if (newest_index == -1) { 1905 info->backup_root_index = 0; 1906 } else { 1907 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1908 } 1909 } 1910 1911 /* 1912 * copy all the root pointers into the super backup array. 1913 * this will bump the backup pointer by one when it is 1914 * done 1915 */ 1916 static void backup_super_roots(struct btrfs_fs_info *info) 1917 { 1918 int next_backup; 1919 struct btrfs_root_backup *root_backup; 1920 int last_backup; 1921 1922 next_backup = info->backup_root_index; 1923 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1924 BTRFS_NUM_BACKUP_ROOTS; 1925 1926 /* 1927 * just overwrite the last backup if we're at the same generation 1928 * this happens only at umount 1929 */ 1930 root_backup = info->super_for_commit->super_roots + last_backup; 1931 if (btrfs_backup_tree_root_gen(root_backup) == 1932 btrfs_header_generation(info->tree_root->node)) 1933 next_backup = last_backup; 1934 1935 root_backup = info->super_for_commit->super_roots + next_backup; 1936 1937 /* 1938 * make sure all of our padding and empty slots get zero filled 1939 * regardless of which ones we use today 1940 */ 1941 memset(root_backup, 0, sizeof(*root_backup)); 1942 1943 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1944 1945 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1946 btrfs_set_backup_tree_root_gen(root_backup, 1947 btrfs_header_generation(info->tree_root->node)); 1948 1949 btrfs_set_backup_tree_root_level(root_backup, 1950 btrfs_header_level(info->tree_root->node)); 1951 1952 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1953 btrfs_set_backup_chunk_root_gen(root_backup, 1954 btrfs_header_generation(info->chunk_root->node)); 1955 btrfs_set_backup_chunk_root_level(root_backup, 1956 btrfs_header_level(info->chunk_root->node)); 1957 1958 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1959 btrfs_set_backup_extent_root_gen(root_backup, 1960 btrfs_header_generation(info->extent_root->node)); 1961 btrfs_set_backup_extent_root_level(root_backup, 1962 btrfs_header_level(info->extent_root->node)); 1963 1964 /* 1965 * we might commit during log recovery, which happens before we set 1966 * the fs_root. Make sure it is valid before we fill it in. 1967 */ 1968 if (info->fs_root && info->fs_root->node) { 1969 btrfs_set_backup_fs_root(root_backup, 1970 info->fs_root->node->start); 1971 btrfs_set_backup_fs_root_gen(root_backup, 1972 btrfs_header_generation(info->fs_root->node)); 1973 btrfs_set_backup_fs_root_level(root_backup, 1974 btrfs_header_level(info->fs_root->node)); 1975 } 1976 1977 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1978 btrfs_set_backup_dev_root_gen(root_backup, 1979 btrfs_header_generation(info->dev_root->node)); 1980 btrfs_set_backup_dev_root_level(root_backup, 1981 btrfs_header_level(info->dev_root->node)); 1982 1983 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1984 btrfs_set_backup_csum_root_gen(root_backup, 1985 btrfs_header_generation(info->csum_root->node)); 1986 btrfs_set_backup_csum_root_level(root_backup, 1987 btrfs_header_level(info->csum_root->node)); 1988 1989 btrfs_set_backup_total_bytes(root_backup, 1990 btrfs_super_total_bytes(info->super_copy)); 1991 btrfs_set_backup_bytes_used(root_backup, 1992 btrfs_super_bytes_used(info->super_copy)); 1993 btrfs_set_backup_num_devices(root_backup, 1994 btrfs_super_num_devices(info->super_copy)); 1995 1996 /* 1997 * if we don't copy this out to the super_copy, it won't get remembered 1998 * for the next commit 1999 */ 2000 memcpy(&info->super_copy->super_roots, 2001 &info->super_for_commit->super_roots, 2002 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2003 } 2004 2005 /* 2006 * this copies info out of the root backup array and back into 2007 * the in-memory super block. It is meant to help iterate through 2008 * the array, so you send it the number of backups you've already 2009 * tried and the last backup index you used. 2010 * 2011 * this returns -1 when it has tried all the backups 2012 */ 2013 static noinline int next_root_backup(struct btrfs_fs_info *info, 2014 struct btrfs_super_block *super, 2015 int *num_backups_tried, int *backup_index) 2016 { 2017 struct btrfs_root_backup *root_backup; 2018 int newest = *backup_index; 2019 2020 if (*num_backups_tried == 0) { 2021 u64 gen = btrfs_super_generation(super); 2022 2023 newest = find_newest_super_backup(info, gen); 2024 if (newest == -1) 2025 return -1; 2026 2027 *backup_index = newest; 2028 *num_backups_tried = 1; 2029 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2030 /* we've tried all the backups, all done */ 2031 return -1; 2032 } else { 2033 /* jump to the next oldest backup */ 2034 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2035 BTRFS_NUM_BACKUP_ROOTS; 2036 *backup_index = newest; 2037 *num_backups_tried += 1; 2038 } 2039 root_backup = super->super_roots + newest; 2040 2041 btrfs_set_super_generation(super, 2042 btrfs_backup_tree_root_gen(root_backup)); 2043 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2044 btrfs_set_super_root_level(super, 2045 btrfs_backup_tree_root_level(root_backup)); 2046 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2047 2048 /* 2049 * fixme: the total bytes and num_devices need to match or we should 2050 * need a fsck 2051 */ 2052 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2053 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2054 return 0; 2055 } 2056 2057 /* helper to cleanup workers */ 2058 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2059 { 2060 btrfs_destroy_workqueue(fs_info->fixup_workers); 2061 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2062 btrfs_destroy_workqueue(fs_info->workers); 2063 btrfs_destroy_workqueue(fs_info->endio_workers); 2064 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2065 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2066 btrfs_destroy_workqueue(fs_info->rmw_workers); 2067 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2068 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2069 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2070 btrfs_destroy_workqueue(fs_info->submit_workers); 2071 btrfs_destroy_workqueue(fs_info->delayed_workers); 2072 btrfs_destroy_workqueue(fs_info->caching_workers); 2073 btrfs_destroy_workqueue(fs_info->readahead_workers); 2074 btrfs_destroy_workqueue(fs_info->flush_workers); 2075 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2076 btrfs_destroy_workqueue(fs_info->extent_workers); 2077 } 2078 2079 static void free_root_extent_buffers(struct btrfs_root *root) 2080 { 2081 if (root) { 2082 free_extent_buffer(root->node); 2083 free_extent_buffer(root->commit_root); 2084 root->node = NULL; 2085 root->commit_root = NULL; 2086 } 2087 } 2088 2089 /* helper to cleanup tree roots */ 2090 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2091 { 2092 free_root_extent_buffers(info->tree_root); 2093 2094 free_root_extent_buffers(info->dev_root); 2095 free_root_extent_buffers(info->extent_root); 2096 free_root_extent_buffers(info->csum_root); 2097 free_root_extent_buffers(info->quota_root); 2098 free_root_extent_buffers(info->uuid_root); 2099 if (chunk_root) 2100 free_root_extent_buffers(info->chunk_root); 2101 } 2102 2103 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2104 { 2105 int ret; 2106 struct btrfs_root *gang[8]; 2107 int i; 2108 2109 while (!list_empty(&fs_info->dead_roots)) { 2110 gang[0] = list_entry(fs_info->dead_roots.next, 2111 struct btrfs_root, root_list); 2112 list_del(&gang[0]->root_list); 2113 2114 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2115 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2116 } else { 2117 free_extent_buffer(gang[0]->node); 2118 free_extent_buffer(gang[0]->commit_root); 2119 btrfs_put_fs_root(gang[0]); 2120 } 2121 } 2122 2123 while (1) { 2124 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2125 (void **)gang, 0, 2126 ARRAY_SIZE(gang)); 2127 if (!ret) 2128 break; 2129 for (i = 0; i < ret; i++) 2130 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2131 } 2132 2133 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2134 btrfs_free_log_root_tree(NULL, fs_info); 2135 btrfs_destroy_pinned_extent(fs_info->tree_root, 2136 fs_info->pinned_extents); 2137 } 2138 } 2139 2140 int open_ctree(struct super_block *sb, 2141 struct btrfs_fs_devices *fs_devices, 2142 char *options) 2143 { 2144 u32 sectorsize; 2145 u32 nodesize; 2146 u32 leafsize; 2147 u32 blocksize; 2148 u32 stripesize; 2149 u64 generation; 2150 u64 features; 2151 struct btrfs_key location; 2152 struct buffer_head *bh; 2153 struct btrfs_super_block *disk_super; 2154 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2155 struct btrfs_root *tree_root; 2156 struct btrfs_root *extent_root; 2157 struct btrfs_root *csum_root; 2158 struct btrfs_root *chunk_root; 2159 struct btrfs_root *dev_root; 2160 struct btrfs_root *quota_root; 2161 struct btrfs_root *uuid_root; 2162 struct btrfs_root *log_tree_root; 2163 int ret; 2164 int err = -EINVAL; 2165 int num_backups_tried = 0; 2166 int backup_index = 0; 2167 int max_active; 2168 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2169 bool create_uuid_tree; 2170 bool check_uuid_tree; 2171 2172 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 2173 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 2174 if (!tree_root || !chunk_root) { 2175 err = -ENOMEM; 2176 goto fail; 2177 } 2178 2179 ret = init_srcu_struct(&fs_info->subvol_srcu); 2180 if (ret) { 2181 err = ret; 2182 goto fail; 2183 } 2184 2185 ret = setup_bdi(fs_info, &fs_info->bdi); 2186 if (ret) { 2187 err = ret; 2188 goto fail_srcu; 2189 } 2190 2191 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0); 2192 if (ret) { 2193 err = ret; 2194 goto fail_bdi; 2195 } 2196 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE * 2197 (1 + ilog2(nr_cpu_ids)); 2198 2199 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0); 2200 if (ret) { 2201 err = ret; 2202 goto fail_dirty_metadata_bytes; 2203 } 2204 2205 ret = percpu_counter_init(&fs_info->bio_counter, 0); 2206 if (ret) { 2207 err = ret; 2208 goto fail_delalloc_bytes; 2209 } 2210 2211 fs_info->btree_inode = new_inode(sb); 2212 if (!fs_info->btree_inode) { 2213 err = -ENOMEM; 2214 goto fail_bio_counter; 2215 } 2216 2217 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2218 2219 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2220 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2221 INIT_LIST_HEAD(&fs_info->trans_list); 2222 INIT_LIST_HEAD(&fs_info->dead_roots); 2223 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2224 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2225 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2226 spin_lock_init(&fs_info->delalloc_root_lock); 2227 spin_lock_init(&fs_info->trans_lock); 2228 spin_lock_init(&fs_info->fs_roots_radix_lock); 2229 spin_lock_init(&fs_info->delayed_iput_lock); 2230 spin_lock_init(&fs_info->defrag_inodes_lock); 2231 spin_lock_init(&fs_info->free_chunk_lock); 2232 spin_lock_init(&fs_info->tree_mod_seq_lock); 2233 spin_lock_init(&fs_info->super_lock); 2234 spin_lock_init(&fs_info->qgroup_op_lock); 2235 spin_lock_init(&fs_info->buffer_lock); 2236 rwlock_init(&fs_info->tree_mod_log_lock); 2237 mutex_init(&fs_info->reloc_mutex); 2238 mutex_init(&fs_info->delalloc_root_mutex); 2239 seqlock_init(&fs_info->profiles_lock); 2240 2241 init_completion(&fs_info->kobj_unregister); 2242 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2243 INIT_LIST_HEAD(&fs_info->space_info); 2244 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2245 btrfs_mapping_init(&fs_info->mapping_tree); 2246 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2247 BTRFS_BLOCK_RSV_GLOBAL); 2248 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2249 BTRFS_BLOCK_RSV_DELALLOC); 2250 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2251 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2252 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2253 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2254 BTRFS_BLOCK_RSV_DELOPS); 2255 atomic_set(&fs_info->nr_async_submits, 0); 2256 atomic_set(&fs_info->async_delalloc_pages, 0); 2257 atomic_set(&fs_info->async_submit_draining, 0); 2258 atomic_set(&fs_info->nr_async_bios, 0); 2259 atomic_set(&fs_info->defrag_running, 0); 2260 atomic_set(&fs_info->qgroup_op_seq, 0); 2261 atomic64_set(&fs_info->tree_mod_seq, 0); 2262 fs_info->sb = sb; 2263 fs_info->max_inline = 8192 * 1024; 2264 fs_info->metadata_ratio = 0; 2265 fs_info->defrag_inodes = RB_ROOT; 2266 fs_info->free_chunk_space = 0; 2267 fs_info->tree_mod_log = RB_ROOT; 2268 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2269 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64); 2270 /* readahead state */ 2271 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 2272 spin_lock_init(&fs_info->reada_lock); 2273 2274 fs_info->thread_pool_size = min_t(unsigned long, 2275 num_online_cpus() + 2, 8); 2276 2277 INIT_LIST_HEAD(&fs_info->ordered_roots); 2278 spin_lock_init(&fs_info->ordered_root_lock); 2279 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2280 GFP_NOFS); 2281 if (!fs_info->delayed_root) { 2282 err = -ENOMEM; 2283 goto fail_iput; 2284 } 2285 btrfs_init_delayed_root(fs_info->delayed_root); 2286 2287 mutex_init(&fs_info->scrub_lock); 2288 atomic_set(&fs_info->scrubs_running, 0); 2289 atomic_set(&fs_info->scrub_pause_req, 0); 2290 atomic_set(&fs_info->scrubs_paused, 0); 2291 atomic_set(&fs_info->scrub_cancel_req, 0); 2292 init_waitqueue_head(&fs_info->replace_wait); 2293 init_waitqueue_head(&fs_info->scrub_pause_wait); 2294 fs_info->scrub_workers_refcnt = 0; 2295 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2296 fs_info->check_integrity_print_mask = 0; 2297 #endif 2298 2299 spin_lock_init(&fs_info->balance_lock); 2300 mutex_init(&fs_info->balance_mutex); 2301 atomic_set(&fs_info->balance_running, 0); 2302 atomic_set(&fs_info->balance_pause_req, 0); 2303 atomic_set(&fs_info->balance_cancel_req, 0); 2304 fs_info->balance_ctl = NULL; 2305 init_waitqueue_head(&fs_info->balance_wait_q); 2306 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2307 2308 sb->s_blocksize = 4096; 2309 sb->s_blocksize_bits = blksize_bits(4096); 2310 sb->s_bdi = &fs_info->bdi; 2311 2312 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2313 set_nlink(fs_info->btree_inode, 1); 2314 /* 2315 * we set the i_size on the btree inode to the max possible int. 2316 * the real end of the address space is determined by all of 2317 * the devices in the system 2318 */ 2319 fs_info->btree_inode->i_size = OFFSET_MAX; 2320 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2321 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 2322 2323 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2324 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2325 fs_info->btree_inode->i_mapping); 2326 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2327 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2328 2329 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2330 2331 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2332 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2333 sizeof(struct btrfs_key)); 2334 set_bit(BTRFS_INODE_DUMMY, 2335 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2336 btrfs_insert_inode_hash(fs_info->btree_inode); 2337 2338 spin_lock_init(&fs_info->block_group_cache_lock); 2339 fs_info->block_group_cache_tree = RB_ROOT; 2340 fs_info->first_logical_byte = (u64)-1; 2341 2342 extent_io_tree_init(&fs_info->freed_extents[0], 2343 fs_info->btree_inode->i_mapping); 2344 extent_io_tree_init(&fs_info->freed_extents[1], 2345 fs_info->btree_inode->i_mapping); 2346 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2347 fs_info->do_barriers = 1; 2348 2349 2350 mutex_init(&fs_info->ordered_operations_mutex); 2351 mutex_init(&fs_info->ordered_extent_flush_mutex); 2352 mutex_init(&fs_info->tree_log_mutex); 2353 mutex_init(&fs_info->chunk_mutex); 2354 mutex_init(&fs_info->transaction_kthread_mutex); 2355 mutex_init(&fs_info->cleaner_mutex); 2356 mutex_init(&fs_info->volume_mutex); 2357 init_rwsem(&fs_info->commit_root_sem); 2358 init_rwsem(&fs_info->cleanup_work_sem); 2359 init_rwsem(&fs_info->subvol_sem); 2360 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2361 fs_info->dev_replace.lock_owner = 0; 2362 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2363 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2364 mutex_init(&fs_info->dev_replace.lock_management_lock); 2365 mutex_init(&fs_info->dev_replace.lock); 2366 2367 spin_lock_init(&fs_info->qgroup_lock); 2368 mutex_init(&fs_info->qgroup_ioctl_lock); 2369 fs_info->qgroup_tree = RB_ROOT; 2370 fs_info->qgroup_op_tree = RB_ROOT; 2371 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2372 fs_info->qgroup_seq = 1; 2373 fs_info->quota_enabled = 0; 2374 fs_info->pending_quota_state = 0; 2375 fs_info->qgroup_ulist = NULL; 2376 mutex_init(&fs_info->qgroup_rescan_lock); 2377 2378 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2379 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2380 2381 init_waitqueue_head(&fs_info->transaction_throttle); 2382 init_waitqueue_head(&fs_info->transaction_wait); 2383 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2384 init_waitqueue_head(&fs_info->async_submit_wait); 2385 2386 ret = btrfs_alloc_stripe_hash_table(fs_info); 2387 if (ret) { 2388 err = ret; 2389 goto fail_alloc; 2390 } 2391 2392 __setup_root(4096, 4096, 4096, 4096, tree_root, 2393 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2394 2395 invalidate_bdev(fs_devices->latest_bdev); 2396 2397 /* 2398 * Read super block and check the signature bytes only 2399 */ 2400 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2401 if (!bh) { 2402 err = -EINVAL; 2403 goto fail_alloc; 2404 } 2405 2406 /* 2407 * We want to check superblock checksum, the type is stored inside. 2408 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2409 */ 2410 if (btrfs_check_super_csum(bh->b_data)) { 2411 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n"); 2412 err = -EINVAL; 2413 goto fail_alloc; 2414 } 2415 2416 /* 2417 * super_copy is zeroed at allocation time and we never touch the 2418 * following bytes up to INFO_SIZE, the checksum is calculated from 2419 * the whole block of INFO_SIZE 2420 */ 2421 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2422 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2423 sizeof(*fs_info->super_for_commit)); 2424 brelse(bh); 2425 2426 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2427 2428 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2429 if (ret) { 2430 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n"); 2431 err = -EINVAL; 2432 goto fail_alloc; 2433 } 2434 2435 disk_super = fs_info->super_copy; 2436 if (!btrfs_super_root(disk_super)) 2437 goto fail_alloc; 2438 2439 /* check FS state, whether FS is broken. */ 2440 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2441 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2442 2443 /* 2444 * run through our array of backup supers and setup 2445 * our ring pointer to the oldest one 2446 */ 2447 generation = btrfs_super_generation(disk_super); 2448 find_oldest_super_backup(fs_info, generation); 2449 2450 /* 2451 * In the long term, we'll store the compression type in the super 2452 * block, and it'll be used for per file compression control. 2453 */ 2454 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2455 2456 ret = btrfs_parse_options(tree_root, options); 2457 if (ret) { 2458 err = ret; 2459 goto fail_alloc; 2460 } 2461 2462 features = btrfs_super_incompat_flags(disk_super) & 2463 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2464 if (features) { 2465 printk(KERN_ERR "BTRFS: couldn't mount because of " 2466 "unsupported optional features (%Lx).\n", 2467 features); 2468 err = -EINVAL; 2469 goto fail_alloc; 2470 } 2471 2472 if (btrfs_super_leafsize(disk_super) != 2473 btrfs_super_nodesize(disk_super)) { 2474 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2475 "blocksizes don't match. node %d leaf %d\n", 2476 btrfs_super_nodesize(disk_super), 2477 btrfs_super_leafsize(disk_super)); 2478 err = -EINVAL; 2479 goto fail_alloc; 2480 } 2481 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2482 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2483 "blocksize (%d) was too large\n", 2484 btrfs_super_leafsize(disk_super)); 2485 err = -EINVAL; 2486 goto fail_alloc; 2487 } 2488 2489 features = btrfs_super_incompat_flags(disk_super); 2490 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2491 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2492 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2493 2494 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2495 printk(KERN_ERR "BTRFS: has skinny extents\n"); 2496 2497 /* 2498 * flag our filesystem as having big metadata blocks if 2499 * they are bigger than the page size 2500 */ 2501 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) { 2502 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2503 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n"); 2504 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2505 } 2506 2507 nodesize = btrfs_super_nodesize(disk_super); 2508 leafsize = btrfs_super_leafsize(disk_super); 2509 sectorsize = btrfs_super_sectorsize(disk_super); 2510 stripesize = btrfs_super_stripesize(disk_super); 2511 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids)); 2512 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2513 2514 /* 2515 * mixed block groups end up with duplicate but slightly offset 2516 * extent buffers for the same range. It leads to corruptions 2517 */ 2518 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2519 (sectorsize != leafsize)) { 2520 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes " 2521 "are not allowed for mixed block groups on %s\n", 2522 sb->s_id); 2523 goto fail_alloc; 2524 } 2525 2526 /* 2527 * Needn't use the lock because there is no other task which will 2528 * update the flag. 2529 */ 2530 btrfs_set_super_incompat_flags(disk_super, features); 2531 2532 features = btrfs_super_compat_ro_flags(disk_super) & 2533 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2534 if (!(sb->s_flags & MS_RDONLY) && features) { 2535 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2536 "unsupported option features (%Lx).\n", 2537 features); 2538 err = -EINVAL; 2539 goto fail_alloc; 2540 } 2541 2542 max_active = fs_info->thread_pool_size; 2543 2544 fs_info->workers = 2545 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI, 2546 max_active, 16); 2547 2548 fs_info->delalloc_workers = 2549 btrfs_alloc_workqueue("delalloc", flags, max_active, 2); 2550 2551 fs_info->flush_workers = 2552 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0); 2553 2554 fs_info->caching_workers = 2555 btrfs_alloc_workqueue("cache", flags, max_active, 0); 2556 2557 /* 2558 * a higher idle thresh on the submit workers makes it much more 2559 * likely that bios will be send down in a sane order to the 2560 * devices 2561 */ 2562 fs_info->submit_workers = 2563 btrfs_alloc_workqueue("submit", flags, 2564 min_t(u64, fs_devices->num_devices, 2565 max_active), 64); 2566 2567 fs_info->fixup_workers = 2568 btrfs_alloc_workqueue("fixup", flags, 1, 0); 2569 2570 /* 2571 * endios are largely parallel and should have a very 2572 * low idle thresh 2573 */ 2574 fs_info->endio_workers = 2575 btrfs_alloc_workqueue("endio", flags, max_active, 4); 2576 fs_info->endio_meta_workers = 2577 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4); 2578 fs_info->endio_meta_write_workers = 2579 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2); 2580 fs_info->endio_raid56_workers = 2581 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4); 2582 fs_info->rmw_workers = 2583 btrfs_alloc_workqueue("rmw", flags, max_active, 2); 2584 fs_info->endio_write_workers = 2585 btrfs_alloc_workqueue("endio-write", flags, max_active, 2); 2586 fs_info->endio_freespace_worker = 2587 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0); 2588 fs_info->delayed_workers = 2589 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0); 2590 fs_info->readahead_workers = 2591 btrfs_alloc_workqueue("readahead", flags, max_active, 2); 2592 fs_info->qgroup_rescan_workers = 2593 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0); 2594 fs_info->extent_workers = 2595 btrfs_alloc_workqueue("extent-refs", flags, 2596 min_t(u64, fs_devices->num_devices, 2597 max_active), 8); 2598 2599 if (!(fs_info->workers && fs_info->delalloc_workers && 2600 fs_info->submit_workers && fs_info->flush_workers && 2601 fs_info->endio_workers && fs_info->endio_meta_workers && 2602 fs_info->endio_meta_write_workers && 2603 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2604 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2605 fs_info->caching_workers && fs_info->readahead_workers && 2606 fs_info->fixup_workers && fs_info->delayed_workers && 2607 fs_info->fixup_workers && fs_info->extent_workers && 2608 fs_info->qgroup_rescan_workers)) { 2609 err = -ENOMEM; 2610 goto fail_sb_buffer; 2611 } 2612 2613 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2614 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2615 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2616 2617 tree_root->nodesize = nodesize; 2618 tree_root->leafsize = leafsize; 2619 tree_root->sectorsize = sectorsize; 2620 tree_root->stripesize = stripesize; 2621 2622 sb->s_blocksize = sectorsize; 2623 sb->s_blocksize_bits = blksize_bits(sectorsize); 2624 2625 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 2626 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id); 2627 goto fail_sb_buffer; 2628 } 2629 2630 if (sectorsize != PAGE_SIZE) { 2631 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) " 2632 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2633 goto fail_sb_buffer; 2634 } 2635 2636 mutex_lock(&fs_info->chunk_mutex); 2637 ret = btrfs_read_sys_array(tree_root); 2638 mutex_unlock(&fs_info->chunk_mutex); 2639 if (ret) { 2640 printk(KERN_WARNING "BTRFS: failed to read the system " 2641 "array on %s\n", sb->s_id); 2642 goto fail_sb_buffer; 2643 } 2644 2645 blocksize = btrfs_level_size(tree_root, 2646 btrfs_super_chunk_root_level(disk_super)); 2647 generation = btrfs_super_chunk_root_generation(disk_super); 2648 2649 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2650 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2651 2652 chunk_root->node = read_tree_block(chunk_root, 2653 btrfs_super_chunk_root(disk_super), 2654 blocksize, generation); 2655 if (!chunk_root->node || 2656 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 2657 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n", 2658 sb->s_id); 2659 goto fail_tree_roots; 2660 } 2661 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2662 chunk_root->commit_root = btrfs_root_node(chunk_root); 2663 2664 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2665 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2666 2667 ret = btrfs_read_chunk_tree(chunk_root); 2668 if (ret) { 2669 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n", 2670 sb->s_id); 2671 goto fail_tree_roots; 2672 } 2673 2674 /* 2675 * keep the device that is marked to be the target device for the 2676 * dev_replace procedure 2677 */ 2678 btrfs_close_extra_devices(fs_info, fs_devices, 0); 2679 2680 if (!fs_devices->latest_bdev) { 2681 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n", 2682 sb->s_id); 2683 goto fail_tree_roots; 2684 } 2685 2686 retry_root_backup: 2687 blocksize = btrfs_level_size(tree_root, 2688 btrfs_super_root_level(disk_super)); 2689 generation = btrfs_super_generation(disk_super); 2690 2691 tree_root->node = read_tree_block(tree_root, 2692 btrfs_super_root(disk_super), 2693 blocksize, generation); 2694 if (!tree_root->node || 2695 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 2696 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n", 2697 sb->s_id); 2698 2699 goto recovery_tree_root; 2700 } 2701 2702 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2703 tree_root->commit_root = btrfs_root_node(tree_root); 2704 btrfs_set_root_refs(&tree_root->root_item, 1); 2705 2706 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2707 location.type = BTRFS_ROOT_ITEM_KEY; 2708 location.offset = 0; 2709 2710 extent_root = btrfs_read_tree_root(tree_root, &location); 2711 if (IS_ERR(extent_root)) { 2712 ret = PTR_ERR(extent_root); 2713 goto recovery_tree_root; 2714 } 2715 set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state); 2716 fs_info->extent_root = extent_root; 2717 2718 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2719 dev_root = btrfs_read_tree_root(tree_root, &location); 2720 if (IS_ERR(dev_root)) { 2721 ret = PTR_ERR(dev_root); 2722 goto recovery_tree_root; 2723 } 2724 set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state); 2725 fs_info->dev_root = dev_root; 2726 btrfs_init_devices_late(fs_info); 2727 2728 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2729 csum_root = btrfs_read_tree_root(tree_root, &location); 2730 if (IS_ERR(csum_root)) { 2731 ret = PTR_ERR(csum_root); 2732 goto recovery_tree_root; 2733 } 2734 set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state); 2735 fs_info->csum_root = csum_root; 2736 2737 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2738 quota_root = btrfs_read_tree_root(tree_root, &location); 2739 if (!IS_ERR(quota_root)) { 2740 set_bit(BTRFS_ROOT_TRACK_DIRTY, "a_root->state); 2741 fs_info->quota_enabled = 1; 2742 fs_info->pending_quota_state = 1; 2743 fs_info->quota_root = quota_root; 2744 } 2745 2746 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2747 uuid_root = btrfs_read_tree_root(tree_root, &location); 2748 if (IS_ERR(uuid_root)) { 2749 ret = PTR_ERR(uuid_root); 2750 if (ret != -ENOENT) 2751 goto recovery_tree_root; 2752 create_uuid_tree = true; 2753 check_uuid_tree = false; 2754 } else { 2755 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state); 2756 fs_info->uuid_root = uuid_root; 2757 create_uuid_tree = false; 2758 check_uuid_tree = 2759 generation != btrfs_super_uuid_tree_generation(disk_super); 2760 } 2761 2762 fs_info->generation = generation; 2763 fs_info->last_trans_committed = generation; 2764 2765 ret = btrfs_recover_balance(fs_info); 2766 if (ret) { 2767 printk(KERN_WARNING "BTRFS: failed to recover balance\n"); 2768 goto fail_block_groups; 2769 } 2770 2771 ret = btrfs_init_dev_stats(fs_info); 2772 if (ret) { 2773 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n", 2774 ret); 2775 goto fail_block_groups; 2776 } 2777 2778 ret = btrfs_init_dev_replace(fs_info); 2779 if (ret) { 2780 pr_err("BTRFS: failed to init dev_replace: %d\n", ret); 2781 goto fail_block_groups; 2782 } 2783 2784 btrfs_close_extra_devices(fs_info, fs_devices, 1); 2785 2786 ret = btrfs_sysfs_add_one(fs_info); 2787 if (ret) { 2788 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret); 2789 goto fail_block_groups; 2790 } 2791 2792 ret = btrfs_init_space_info(fs_info); 2793 if (ret) { 2794 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret); 2795 goto fail_sysfs; 2796 } 2797 2798 ret = btrfs_read_block_groups(extent_root); 2799 if (ret) { 2800 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret); 2801 goto fail_sysfs; 2802 } 2803 fs_info->num_tolerated_disk_barrier_failures = 2804 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2805 if (fs_info->fs_devices->missing_devices > 2806 fs_info->num_tolerated_disk_barrier_failures && 2807 !(sb->s_flags & MS_RDONLY)) { 2808 printk(KERN_WARNING "BTRFS: " 2809 "too many missing devices, writeable mount is not allowed\n"); 2810 goto fail_sysfs; 2811 } 2812 2813 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2814 "btrfs-cleaner"); 2815 if (IS_ERR(fs_info->cleaner_kthread)) 2816 goto fail_sysfs; 2817 2818 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2819 tree_root, 2820 "btrfs-transaction"); 2821 if (IS_ERR(fs_info->transaction_kthread)) 2822 goto fail_cleaner; 2823 2824 if (!btrfs_test_opt(tree_root, SSD) && 2825 !btrfs_test_opt(tree_root, NOSSD) && 2826 !fs_info->fs_devices->rotating) { 2827 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD " 2828 "mode\n"); 2829 btrfs_set_opt(fs_info->mount_opt, SSD); 2830 } 2831 2832 /* Set the real inode map cache flag */ 2833 if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE)) 2834 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE); 2835 2836 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2837 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2838 ret = btrfsic_mount(tree_root, fs_devices, 2839 btrfs_test_opt(tree_root, 2840 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2841 1 : 0, 2842 fs_info->check_integrity_print_mask); 2843 if (ret) 2844 printk(KERN_WARNING "BTRFS: failed to initialize" 2845 " integrity check module %s\n", sb->s_id); 2846 } 2847 #endif 2848 ret = btrfs_read_qgroup_config(fs_info); 2849 if (ret) 2850 goto fail_trans_kthread; 2851 2852 /* do not make disk changes in broken FS */ 2853 if (btrfs_super_log_root(disk_super) != 0) { 2854 u64 bytenr = btrfs_super_log_root(disk_super); 2855 2856 if (fs_devices->rw_devices == 0) { 2857 printk(KERN_WARNING "BTRFS: log replay required " 2858 "on RO media\n"); 2859 err = -EIO; 2860 goto fail_qgroup; 2861 } 2862 blocksize = 2863 btrfs_level_size(tree_root, 2864 btrfs_super_log_root_level(disk_super)); 2865 2866 log_tree_root = btrfs_alloc_root(fs_info); 2867 if (!log_tree_root) { 2868 err = -ENOMEM; 2869 goto fail_qgroup; 2870 } 2871 2872 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2873 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2874 2875 log_tree_root->node = read_tree_block(tree_root, bytenr, 2876 blocksize, 2877 generation + 1); 2878 if (!log_tree_root->node || 2879 !extent_buffer_uptodate(log_tree_root->node)) { 2880 printk(KERN_ERR "BTRFS: failed to read log tree\n"); 2881 free_extent_buffer(log_tree_root->node); 2882 kfree(log_tree_root); 2883 goto fail_qgroup; 2884 } 2885 /* returns with log_tree_root freed on success */ 2886 ret = btrfs_recover_log_trees(log_tree_root); 2887 if (ret) { 2888 btrfs_error(tree_root->fs_info, ret, 2889 "Failed to recover log tree"); 2890 free_extent_buffer(log_tree_root->node); 2891 kfree(log_tree_root); 2892 goto fail_qgroup; 2893 } 2894 2895 if (sb->s_flags & MS_RDONLY) { 2896 ret = btrfs_commit_super(tree_root); 2897 if (ret) 2898 goto fail_qgroup; 2899 } 2900 } 2901 2902 ret = btrfs_find_orphan_roots(tree_root); 2903 if (ret) 2904 goto fail_qgroup; 2905 2906 if (!(sb->s_flags & MS_RDONLY)) { 2907 ret = btrfs_cleanup_fs_roots(fs_info); 2908 if (ret) 2909 goto fail_qgroup; 2910 2911 mutex_lock(&fs_info->cleaner_mutex); 2912 ret = btrfs_recover_relocation(tree_root); 2913 mutex_unlock(&fs_info->cleaner_mutex); 2914 if (ret < 0) { 2915 printk(KERN_WARNING 2916 "BTRFS: failed to recover relocation\n"); 2917 err = -EINVAL; 2918 goto fail_qgroup; 2919 } 2920 } 2921 2922 location.objectid = BTRFS_FS_TREE_OBJECTID; 2923 location.type = BTRFS_ROOT_ITEM_KEY; 2924 location.offset = 0; 2925 2926 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2927 if (IS_ERR(fs_info->fs_root)) { 2928 err = PTR_ERR(fs_info->fs_root); 2929 goto fail_qgroup; 2930 } 2931 2932 if (sb->s_flags & MS_RDONLY) 2933 return 0; 2934 2935 down_read(&fs_info->cleanup_work_sem); 2936 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 2937 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 2938 up_read(&fs_info->cleanup_work_sem); 2939 close_ctree(tree_root); 2940 return ret; 2941 } 2942 up_read(&fs_info->cleanup_work_sem); 2943 2944 ret = btrfs_resume_balance_async(fs_info); 2945 if (ret) { 2946 printk(KERN_WARNING "BTRFS: failed to resume balance\n"); 2947 close_ctree(tree_root); 2948 return ret; 2949 } 2950 2951 ret = btrfs_resume_dev_replace_async(fs_info); 2952 if (ret) { 2953 pr_warn("BTRFS: failed to resume dev_replace\n"); 2954 close_ctree(tree_root); 2955 return ret; 2956 } 2957 2958 btrfs_qgroup_rescan_resume(fs_info); 2959 2960 if (create_uuid_tree) { 2961 pr_info("BTRFS: creating UUID tree\n"); 2962 ret = btrfs_create_uuid_tree(fs_info); 2963 if (ret) { 2964 pr_warn("BTRFS: failed to create the UUID tree %d\n", 2965 ret); 2966 close_ctree(tree_root); 2967 return ret; 2968 } 2969 } else if (check_uuid_tree || 2970 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) { 2971 pr_info("BTRFS: checking UUID tree\n"); 2972 ret = btrfs_check_uuid_tree(fs_info); 2973 if (ret) { 2974 pr_warn("BTRFS: failed to check the UUID tree %d\n", 2975 ret); 2976 close_ctree(tree_root); 2977 return ret; 2978 } 2979 } else { 2980 fs_info->update_uuid_tree_gen = 1; 2981 } 2982 2983 return 0; 2984 2985 fail_qgroup: 2986 btrfs_free_qgroup_config(fs_info); 2987 fail_trans_kthread: 2988 kthread_stop(fs_info->transaction_kthread); 2989 btrfs_cleanup_transaction(fs_info->tree_root); 2990 btrfs_free_fs_roots(fs_info); 2991 fail_cleaner: 2992 kthread_stop(fs_info->cleaner_kthread); 2993 2994 /* 2995 * make sure we're done with the btree inode before we stop our 2996 * kthreads 2997 */ 2998 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2999 3000 fail_sysfs: 3001 btrfs_sysfs_remove_one(fs_info); 3002 3003 fail_block_groups: 3004 btrfs_put_block_group_cache(fs_info); 3005 btrfs_free_block_groups(fs_info); 3006 3007 fail_tree_roots: 3008 free_root_pointers(fs_info, 1); 3009 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3010 3011 fail_sb_buffer: 3012 btrfs_stop_all_workers(fs_info); 3013 fail_alloc: 3014 fail_iput: 3015 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3016 3017 iput(fs_info->btree_inode); 3018 fail_bio_counter: 3019 percpu_counter_destroy(&fs_info->bio_counter); 3020 fail_delalloc_bytes: 3021 percpu_counter_destroy(&fs_info->delalloc_bytes); 3022 fail_dirty_metadata_bytes: 3023 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3024 fail_bdi: 3025 bdi_destroy(&fs_info->bdi); 3026 fail_srcu: 3027 cleanup_srcu_struct(&fs_info->subvol_srcu); 3028 fail: 3029 btrfs_free_stripe_hash_table(fs_info); 3030 btrfs_close_devices(fs_info->fs_devices); 3031 return err; 3032 3033 recovery_tree_root: 3034 if (!btrfs_test_opt(tree_root, RECOVERY)) 3035 goto fail_tree_roots; 3036 3037 free_root_pointers(fs_info, 0); 3038 3039 /* don't use the log in recovery mode, it won't be valid */ 3040 btrfs_set_super_log_root(disk_super, 0); 3041 3042 /* we can't trust the free space cache either */ 3043 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3044 3045 ret = next_root_backup(fs_info, fs_info->super_copy, 3046 &num_backups_tried, &backup_index); 3047 if (ret == -1) 3048 goto fail_block_groups; 3049 goto retry_root_backup; 3050 } 3051 3052 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3053 { 3054 if (uptodate) { 3055 set_buffer_uptodate(bh); 3056 } else { 3057 struct btrfs_device *device = (struct btrfs_device *) 3058 bh->b_private; 3059 3060 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to " 3061 "I/O error on %s\n", 3062 rcu_str_deref(device->name)); 3063 /* note, we dont' set_buffer_write_io_error because we have 3064 * our own ways of dealing with the IO errors 3065 */ 3066 clear_buffer_uptodate(bh); 3067 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3068 } 3069 unlock_buffer(bh); 3070 put_bh(bh); 3071 } 3072 3073 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3074 { 3075 struct buffer_head *bh; 3076 struct buffer_head *latest = NULL; 3077 struct btrfs_super_block *super; 3078 int i; 3079 u64 transid = 0; 3080 u64 bytenr; 3081 3082 /* we would like to check all the supers, but that would make 3083 * a btrfs mount succeed after a mkfs from a different FS. 3084 * So, we need to add a special mount option to scan for 3085 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3086 */ 3087 for (i = 0; i < 1; i++) { 3088 bytenr = btrfs_sb_offset(i); 3089 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3090 i_size_read(bdev->bd_inode)) 3091 break; 3092 bh = __bread(bdev, bytenr / 4096, 3093 BTRFS_SUPER_INFO_SIZE); 3094 if (!bh) 3095 continue; 3096 3097 super = (struct btrfs_super_block *)bh->b_data; 3098 if (btrfs_super_bytenr(super) != bytenr || 3099 btrfs_super_magic(super) != BTRFS_MAGIC) { 3100 brelse(bh); 3101 continue; 3102 } 3103 3104 if (!latest || btrfs_super_generation(super) > transid) { 3105 brelse(latest); 3106 latest = bh; 3107 transid = btrfs_super_generation(super); 3108 } else { 3109 brelse(bh); 3110 } 3111 } 3112 return latest; 3113 } 3114 3115 /* 3116 * this should be called twice, once with wait == 0 and 3117 * once with wait == 1. When wait == 0 is done, all the buffer heads 3118 * we write are pinned. 3119 * 3120 * They are released when wait == 1 is done. 3121 * max_mirrors must be the same for both runs, and it indicates how 3122 * many supers on this one device should be written. 3123 * 3124 * max_mirrors == 0 means to write them all. 3125 */ 3126 static int write_dev_supers(struct btrfs_device *device, 3127 struct btrfs_super_block *sb, 3128 int do_barriers, int wait, int max_mirrors) 3129 { 3130 struct buffer_head *bh; 3131 int i; 3132 int ret; 3133 int errors = 0; 3134 u32 crc; 3135 u64 bytenr; 3136 3137 if (max_mirrors == 0) 3138 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3139 3140 for (i = 0; i < max_mirrors; i++) { 3141 bytenr = btrfs_sb_offset(i); 3142 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 3143 break; 3144 3145 if (wait) { 3146 bh = __find_get_block(device->bdev, bytenr / 4096, 3147 BTRFS_SUPER_INFO_SIZE); 3148 if (!bh) { 3149 errors++; 3150 continue; 3151 } 3152 wait_on_buffer(bh); 3153 if (!buffer_uptodate(bh)) 3154 errors++; 3155 3156 /* drop our reference */ 3157 brelse(bh); 3158 3159 /* drop the reference from the wait == 0 run */ 3160 brelse(bh); 3161 continue; 3162 } else { 3163 btrfs_set_super_bytenr(sb, bytenr); 3164 3165 crc = ~(u32)0; 3166 crc = btrfs_csum_data((char *)sb + 3167 BTRFS_CSUM_SIZE, crc, 3168 BTRFS_SUPER_INFO_SIZE - 3169 BTRFS_CSUM_SIZE); 3170 btrfs_csum_final(crc, sb->csum); 3171 3172 /* 3173 * one reference for us, and we leave it for the 3174 * caller 3175 */ 3176 bh = __getblk(device->bdev, bytenr / 4096, 3177 BTRFS_SUPER_INFO_SIZE); 3178 if (!bh) { 3179 printk(KERN_ERR "BTRFS: couldn't get super " 3180 "buffer head for bytenr %Lu\n", bytenr); 3181 errors++; 3182 continue; 3183 } 3184 3185 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3186 3187 /* one reference for submit_bh */ 3188 get_bh(bh); 3189 3190 set_buffer_uptodate(bh); 3191 lock_buffer(bh); 3192 bh->b_end_io = btrfs_end_buffer_write_sync; 3193 bh->b_private = device; 3194 } 3195 3196 /* 3197 * we fua the first super. The others we allow 3198 * to go down lazy. 3199 */ 3200 if (i == 0) 3201 ret = btrfsic_submit_bh(WRITE_FUA, bh); 3202 else 3203 ret = btrfsic_submit_bh(WRITE_SYNC, bh); 3204 if (ret) 3205 errors++; 3206 } 3207 return errors < i ? 0 : -1; 3208 } 3209 3210 /* 3211 * endio for the write_dev_flush, this will wake anyone waiting 3212 * for the barrier when it is done 3213 */ 3214 static void btrfs_end_empty_barrier(struct bio *bio, int err) 3215 { 3216 if (err) { 3217 if (err == -EOPNOTSUPP) 3218 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 3219 clear_bit(BIO_UPTODATE, &bio->bi_flags); 3220 } 3221 if (bio->bi_private) 3222 complete(bio->bi_private); 3223 bio_put(bio); 3224 } 3225 3226 /* 3227 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3228 * sent down. With wait == 1, it waits for the previous flush. 3229 * 3230 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3231 * capable 3232 */ 3233 static int write_dev_flush(struct btrfs_device *device, int wait) 3234 { 3235 struct bio *bio; 3236 int ret = 0; 3237 3238 if (device->nobarriers) 3239 return 0; 3240 3241 if (wait) { 3242 bio = device->flush_bio; 3243 if (!bio) 3244 return 0; 3245 3246 wait_for_completion(&device->flush_wait); 3247 3248 if (bio_flagged(bio, BIO_EOPNOTSUPP)) { 3249 printk_in_rcu("BTRFS: disabling barriers on dev %s\n", 3250 rcu_str_deref(device->name)); 3251 device->nobarriers = 1; 3252 } else if (!bio_flagged(bio, BIO_UPTODATE)) { 3253 ret = -EIO; 3254 btrfs_dev_stat_inc_and_print(device, 3255 BTRFS_DEV_STAT_FLUSH_ERRS); 3256 } 3257 3258 /* drop the reference from the wait == 0 run */ 3259 bio_put(bio); 3260 device->flush_bio = NULL; 3261 3262 return ret; 3263 } 3264 3265 /* 3266 * one reference for us, and we leave it for the 3267 * caller 3268 */ 3269 device->flush_bio = NULL; 3270 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3271 if (!bio) 3272 return -ENOMEM; 3273 3274 bio->bi_end_io = btrfs_end_empty_barrier; 3275 bio->bi_bdev = device->bdev; 3276 init_completion(&device->flush_wait); 3277 bio->bi_private = &device->flush_wait; 3278 device->flush_bio = bio; 3279 3280 bio_get(bio); 3281 btrfsic_submit_bio(WRITE_FLUSH, bio); 3282 3283 return 0; 3284 } 3285 3286 /* 3287 * send an empty flush down to each device in parallel, 3288 * then wait for them 3289 */ 3290 static int barrier_all_devices(struct btrfs_fs_info *info) 3291 { 3292 struct list_head *head; 3293 struct btrfs_device *dev; 3294 int errors_send = 0; 3295 int errors_wait = 0; 3296 int ret; 3297 3298 /* send down all the barriers */ 3299 head = &info->fs_devices->devices; 3300 list_for_each_entry_rcu(dev, head, dev_list) { 3301 if (dev->missing) 3302 continue; 3303 if (!dev->bdev) { 3304 errors_send++; 3305 continue; 3306 } 3307 if (!dev->in_fs_metadata || !dev->writeable) 3308 continue; 3309 3310 ret = write_dev_flush(dev, 0); 3311 if (ret) 3312 errors_send++; 3313 } 3314 3315 /* wait for all the barriers */ 3316 list_for_each_entry_rcu(dev, head, dev_list) { 3317 if (dev->missing) 3318 continue; 3319 if (!dev->bdev) { 3320 errors_wait++; 3321 continue; 3322 } 3323 if (!dev->in_fs_metadata || !dev->writeable) 3324 continue; 3325 3326 ret = write_dev_flush(dev, 1); 3327 if (ret) 3328 errors_wait++; 3329 } 3330 if (errors_send > info->num_tolerated_disk_barrier_failures || 3331 errors_wait > info->num_tolerated_disk_barrier_failures) 3332 return -EIO; 3333 return 0; 3334 } 3335 3336 int btrfs_calc_num_tolerated_disk_barrier_failures( 3337 struct btrfs_fs_info *fs_info) 3338 { 3339 struct btrfs_ioctl_space_info space; 3340 struct btrfs_space_info *sinfo; 3341 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3342 BTRFS_BLOCK_GROUP_SYSTEM, 3343 BTRFS_BLOCK_GROUP_METADATA, 3344 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3345 int num_types = 4; 3346 int i; 3347 int c; 3348 int num_tolerated_disk_barrier_failures = 3349 (int)fs_info->fs_devices->num_devices; 3350 3351 for (i = 0; i < num_types; i++) { 3352 struct btrfs_space_info *tmp; 3353 3354 sinfo = NULL; 3355 rcu_read_lock(); 3356 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3357 if (tmp->flags == types[i]) { 3358 sinfo = tmp; 3359 break; 3360 } 3361 } 3362 rcu_read_unlock(); 3363 3364 if (!sinfo) 3365 continue; 3366 3367 down_read(&sinfo->groups_sem); 3368 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3369 if (!list_empty(&sinfo->block_groups[c])) { 3370 u64 flags; 3371 3372 btrfs_get_block_group_info( 3373 &sinfo->block_groups[c], &space); 3374 if (space.total_bytes == 0 || 3375 space.used_bytes == 0) 3376 continue; 3377 flags = space.flags; 3378 /* 3379 * return 3380 * 0: if dup, single or RAID0 is configured for 3381 * any of metadata, system or data, else 3382 * 1: if RAID5 is configured, or if RAID1 or 3383 * RAID10 is configured and only two mirrors 3384 * are used, else 3385 * 2: if RAID6 is configured, else 3386 * num_mirrors - 1: if RAID1 or RAID10 is 3387 * configured and more than 3388 * 2 mirrors are used. 3389 */ 3390 if (num_tolerated_disk_barrier_failures > 0 && 3391 ((flags & (BTRFS_BLOCK_GROUP_DUP | 3392 BTRFS_BLOCK_GROUP_RAID0)) || 3393 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) 3394 == 0))) 3395 num_tolerated_disk_barrier_failures = 0; 3396 else if (num_tolerated_disk_barrier_failures > 1) { 3397 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3398 BTRFS_BLOCK_GROUP_RAID5 | 3399 BTRFS_BLOCK_GROUP_RAID10)) { 3400 num_tolerated_disk_barrier_failures = 1; 3401 } else if (flags & 3402 BTRFS_BLOCK_GROUP_RAID6) { 3403 num_tolerated_disk_barrier_failures = 2; 3404 } 3405 } 3406 } 3407 } 3408 up_read(&sinfo->groups_sem); 3409 } 3410 3411 return num_tolerated_disk_barrier_failures; 3412 } 3413 3414 static int write_all_supers(struct btrfs_root *root, int max_mirrors) 3415 { 3416 struct list_head *head; 3417 struct btrfs_device *dev; 3418 struct btrfs_super_block *sb; 3419 struct btrfs_dev_item *dev_item; 3420 int ret; 3421 int do_barriers; 3422 int max_errors; 3423 int total_errors = 0; 3424 u64 flags; 3425 3426 do_barriers = !btrfs_test_opt(root, NOBARRIER); 3427 backup_super_roots(root->fs_info); 3428 3429 sb = root->fs_info->super_for_commit; 3430 dev_item = &sb->dev_item; 3431 3432 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3433 head = &root->fs_info->fs_devices->devices; 3434 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3435 3436 if (do_barriers) { 3437 ret = barrier_all_devices(root->fs_info); 3438 if (ret) { 3439 mutex_unlock( 3440 &root->fs_info->fs_devices->device_list_mutex); 3441 btrfs_error(root->fs_info, ret, 3442 "errors while submitting device barriers."); 3443 return ret; 3444 } 3445 } 3446 3447 list_for_each_entry_rcu(dev, head, dev_list) { 3448 if (!dev->bdev) { 3449 total_errors++; 3450 continue; 3451 } 3452 if (!dev->in_fs_metadata || !dev->writeable) 3453 continue; 3454 3455 btrfs_set_stack_device_generation(dev_item, 0); 3456 btrfs_set_stack_device_type(dev_item, dev->type); 3457 btrfs_set_stack_device_id(dev_item, dev->devid); 3458 btrfs_set_stack_device_total_bytes(dev_item, 3459 dev->disk_total_bytes); 3460 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 3461 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3462 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3463 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3464 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3465 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3466 3467 flags = btrfs_super_flags(sb); 3468 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3469 3470 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3471 if (ret) 3472 total_errors++; 3473 } 3474 if (total_errors > max_errors) { 3475 btrfs_err(root->fs_info, "%d errors while writing supers", 3476 total_errors); 3477 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3478 3479 /* FUA is masked off if unsupported and can't be the reason */ 3480 btrfs_error(root->fs_info, -EIO, 3481 "%d errors while writing supers", total_errors); 3482 return -EIO; 3483 } 3484 3485 total_errors = 0; 3486 list_for_each_entry_rcu(dev, head, dev_list) { 3487 if (!dev->bdev) 3488 continue; 3489 if (!dev->in_fs_metadata || !dev->writeable) 3490 continue; 3491 3492 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3493 if (ret) 3494 total_errors++; 3495 } 3496 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3497 if (total_errors > max_errors) { 3498 btrfs_error(root->fs_info, -EIO, 3499 "%d errors while writing supers", total_errors); 3500 return -EIO; 3501 } 3502 return 0; 3503 } 3504 3505 int write_ctree_super(struct btrfs_trans_handle *trans, 3506 struct btrfs_root *root, int max_mirrors) 3507 { 3508 return write_all_supers(root, max_mirrors); 3509 } 3510 3511 /* Drop a fs root from the radix tree and free it. */ 3512 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3513 struct btrfs_root *root) 3514 { 3515 spin_lock(&fs_info->fs_roots_radix_lock); 3516 radix_tree_delete(&fs_info->fs_roots_radix, 3517 (unsigned long)root->root_key.objectid); 3518 spin_unlock(&fs_info->fs_roots_radix_lock); 3519 3520 if (btrfs_root_refs(&root->root_item) == 0) 3521 synchronize_srcu(&fs_info->subvol_srcu); 3522 3523 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3524 btrfs_free_log(NULL, root); 3525 3526 if (root->free_ino_pinned) 3527 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3528 if (root->free_ino_ctl) 3529 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3530 free_fs_root(root); 3531 } 3532 3533 static void free_fs_root(struct btrfs_root *root) 3534 { 3535 iput(root->cache_inode); 3536 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3537 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3538 root->orphan_block_rsv = NULL; 3539 if (root->anon_dev) 3540 free_anon_bdev(root->anon_dev); 3541 if (root->subv_writers) 3542 btrfs_free_subvolume_writers(root->subv_writers); 3543 free_extent_buffer(root->node); 3544 free_extent_buffer(root->commit_root); 3545 kfree(root->free_ino_ctl); 3546 kfree(root->free_ino_pinned); 3547 kfree(root->name); 3548 btrfs_put_fs_root(root); 3549 } 3550 3551 void btrfs_free_fs_root(struct btrfs_root *root) 3552 { 3553 free_fs_root(root); 3554 } 3555 3556 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3557 { 3558 u64 root_objectid = 0; 3559 struct btrfs_root *gang[8]; 3560 int i = 0; 3561 int err = 0; 3562 unsigned int ret = 0; 3563 int index; 3564 3565 while (1) { 3566 index = srcu_read_lock(&fs_info->subvol_srcu); 3567 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3568 (void **)gang, root_objectid, 3569 ARRAY_SIZE(gang)); 3570 if (!ret) { 3571 srcu_read_unlock(&fs_info->subvol_srcu, index); 3572 break; 3573 } 3574 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3575 3576 for (i = 0; i < ret; i++) { 3577 /* Avoid to grab roots in dead_roots */ 3578 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3579 gang[i] = NULL; 3580 continue; 3581 } 3582 /* grab all the search result for later use */ 3583 gang[i] = btrfs_grab_fs_root(gang[i]); 3584 } 3585 srcu_read_unlock(&fs_info->subvol_srcu, index); 3586 3587 for (i = 0; i < ret; i++) { 3588 if (!gang[i]) 3589 continue; 3590 root_objectid = gang[i]->root_key.objectid; 3591 err = btrfs_orphan_cleanup(gang[i]); 3592 if (err) 3593 break; 3594 btrfs_put_fs_root(gang[i]); 3595 } 3596 root_objectid++; 3597 } 3598 3599 /* release the uncleaned roots due to error */ 3600 for (; i < ret; i++) { 3601 if (gang[i]) 3602 btrfs_put_fs_root(gang[i]); 3603 } 3604 return err; 3605 } 3606 3607 int btrfs_commit_super(struct btrfs_root *root) 3608 { 3609 struct btrfs_trans_handle *trans; 3610 3611 mutex_lock(&root->fs_info->cleaner_mutex); 3612 btrfs_run_delayed_iputs(root); 3613 mutex_unlock(&root->fs_info->cleaner_mutex); 3614 wake_up_process(root->fs_info->cleaner_kthread); 3615 3616 /* wait until ongoing cleanup work done */ 3617 down_write(&root->fs_info->cleanup_work_sem); 3618 up_write(&root->fs_info->cleanup_work_sem); 3619 3620 trans = btrfs_join_transaction(root); 3621 if (IS_ERR(trans)) 3622 return PTR_ERR(trans); 3623 return btrfs_commit_transaction(trans, root); 3624 } 3625 3626 int close_ctree(struct btrfs_root *root) 3627 { 3628 struct btrfs_fs_info *fs_info = root->fs_info; 3629 int ret; 3630 3631 fs_info->closing = 1; 3632 smp_mb(); 3633 3634 /* wait for the uuid_scan task to finish */ 3635 down(&fs_info->uuid_tree_rescan_sem); 3636 /* avoid complains from lockdep et al., set sem back to initial state */ 3637 up(&fs_info->uuid_tree_rescan_sem); 3638 3639 /* pause restriper - we want to resume on mount */ 3640 btrfs_pause_balance(fs_info); 3641 3642 btrfs_dev_replace_suspend_for_unmount(fs_info); 3643 3644 btrfs_scrub_cancel(fs_info); 3645 3646 /* wait for any defraggers to finish */ 3647 wait_event(fs_info->transaction_wait, 3648 (atomic_read(&fs_info->defrag_running) == 0)); 3649 3650 /* clear out the rbtree of defraggable inodes */ 3651 btrfs_cleanup_defrag_inodes(fs_info); 3652 3653 cancel_work_sync(&fs_info->async_reclaim_work); 3654 3655 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3656 ret = btrfs_commit_super(root); 3657 if (ret) 3658 btrfs_err(root->fs_info, "commit super ret %d", ret); 3659 } 3660 3661 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3662 btrfs_error_commit_super(root); 3663 3664 kthread_stop(fs_info->transaction_kthread); 3665 kthread_stop(fs_info->cleaner_kthread); 3666 3667 fs_info->closing = 2; 3668 smp_mb(); 3669 3670 btrfs_free_qgroup_config(root->fs_info); 3671 3672 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3673 btrfs_info(root->fs_info, "at unmount delalloc count %lld", 3674 percpu_counter_sum(&fs_info->delalloc_bytes)); 3675 } 3676 3677 btrfs_sysfs_remove_one(fs_info); 3678 3679 btrfs_free_fs_roots(fs_info); 3680 3681 btrfs_put_block_group_cache(fs_info); 3682 3683 btrfs_free_block_groups(fs_info); 3684 3685 /* 3686 * we must make sure there is not any read request to 3687 * submit after we stopping all workers. 3688 */ 3689 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3690 btrfs_stop_all_workers(fs_info); 3691 3692 free_root_pointers(fs_info, 1); 3693 3694 iput(fs_info->btree_inode); 3695 3696 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3697 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3698 btrfsic_unmount(root, fs_info->fs_devices); 3699 #endif 3700 3701 btrfs_close_devices(fs_info->fs_devices); 3702 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3703 3704 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3705 percpu_counter_destroy(&fs_info->delalloc_bytes); 3706 percpu_counter_destroy(&fs_info->bio_counter); 3707 bdi_destroy(&fs_info->bdi); 3708 cleanup_srcu_struct(&fs_info->subvol_srcu); 3709 3710 btrfs_free_stripe_hash_table(fs_info); 3711 3712 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3713 root->orphan_block_rsv = NULL; 3714 3715 return 0; 3716 } 3717 3718 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3719 int atomic) 3720 { 3721 int ret; 3722 struct inode *btree_inode = buf->pages[0]->mapping->host; 3723 3724 ret = extent_buffer_uptodate(buf); 3725 if (!ret) 3726 return ret; 3727 3728 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3729 parent_transid, atomic); 3730 if (ret == -EAGAIN) 3731 return ret; 3732 return !ret; 3733 } 3734 3735 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3736 { 3737 return set_extent_buffer_uptodate(buf); 3738 } 3739 3740 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3741 { 3742 struct btrfs_root *root; 3743 u64 transid = btrfs_header_generation(buf); 3744 int was_dirty; 3745 3746 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3747 /* 3748 * This is a fast path so only do this check if we have sanity tests 3749 * enabled. Normal people shouldn't be marking dummy buffers as dirty 3750 * outside of the sanity tests. 3751 */ 3752 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 3753 return; 3754 #endif 3755 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3756 btrfs_assert_tree_locked(buf); 3757 if (transid != root->fs_info->generation) 3758 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " 3759 "found %llu running %llu\n", 3760 buf->start, transid, root->fs_info->generation); 3761 was_dirty = set_extent_buffer_dirty(buf); 3762 if (!was_dirty) 3763 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, 3764 buf->len, 3765 root->fs_info->dirty_metadata_batch); 3766 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3767 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) { 3768 btrfs_print_leaf(root, buf); 3769 ASSERT(0); 3770 } 3771 #endif 3772 } 3773 3774 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 3775 int flush_delayed) 3776 { 3777 /* 3778 * looks as though older kernels can get into trouble with 3779 * this code, they end up stuck in balance_dirty_pages forever 3780 */ 3781 int ret; 3782 3783 if (current->flags & PF_MEMALLOC) 3784 return; 3785 3786 if (flush_delayed) 3787 btrfs_balance_delayed_items(root); 3788 3789 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, 3790 BTRFS_DIRTY_METADATA_THRESH); 3791 if (ret > 0) { 3792 balance_dirty_pages_ratelimited( 3793 root->fs_info->btree_inode->i_mapping); 3794 } 3795 return; 3796 } 3797 3798 void btrfs_btree_balance_dirty(struct btrfs_root *root) 3799 { 3800 __btrfs_btree_balance_dirty(root, 1); 3801 } 3802 3803 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 3804 { 3805 __btrfs_btree_balance_dirty(root, 0); 3806 } 3807 3808 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3809 { 3810 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3811 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3812 } 3813 3814 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3815 int read_only) 3816 { 3817 /* 3818 * Placeholder for checks 3819 */ 3820 return 0; 3821 } 3822 3823 static void btrfs_error_commit_super(struct btrfs_root *root) 3824 { 3825 mutex_lock(&root->fs_info->cleaner_mutex); 3826 btrfs_run_delayed_iputs(root); 3827 mutex_unlock(&root->fs_info->cleaner_mutex); 3828 3829 down_write(&root->fs_info->cleanup_work_sem); 3830 up_write(&root->fs_info->cleanup_work_sem); 3831 3832 /* cleanup FS via transaction */ 3833 btrfs_cleanup_transaction(root); 3834 } 3835 3836 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 3837 { 3838 struct btrfs_ordered_extent *ordered; 3839 3840 spin_lock(&root->ordered_extent_lock); 3841 /* 3842 * This will just short circuit the ordered completion stuff which will 3843 * make sure the ordered extent gets properly cleaned up. 3844 */ 3845 list_for_each_entry(ordered, &root->ordered_extents, 3846 root_extent_list) 3847 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 3848 spin_unlock(&root->ordered_extent_lock); 3849 } 3850 3851 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 3852 { 3853 struct btrfs_root *root; 3854 struct list_head splice; 3855 3856 INIT_LIST_HEAD(&splice); 3857 3858 spin_lock(&fs_info->ordered_root_lock); 3859 list_splice_init(&fs_info->ordered_roots, &splice); 3860 while (!list_empty(&splice)) { 3861 root = list_first_entry(&splice, struct btrfs_root, 3862 ordered_root); 3863 list_move_tail(&root->ordered_root, 3864 &fs_info->ordered_roots); 3865 3866 spin_unlock(&fs_info->ordered_root_lock); 3867 btrfs_destroy_ordered_extents(root); 3868 3869 cond_resched(); 3870 spin_lock(&fs_info->ordered_root_lock); 3871 } 3872 spin_unlock(&fs_info->ordered_root_lock); 3873 } 3874 3875 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 3876 struct btrfs_root *root) 3877 { 3878 struct rb_node *node; 3879 struct btrfs_delayed_ref_root *delayed_refs; 3880 struct btrfs_delayed_ref_node *ref; 3881 int ret = 0; 3882 3883 delayed_refs = &trans->delayed_refs; 3884 3885 spin_lock(&delayed_refs->lock); 3886 if (atomic_read(&delayed_refs->num_entries) == 0) { 3887 spin_unlock(&delayed_refs->lock); 3888 btrfs_info(root->fs_info, "delayed_refs has NO entry"); 3889 return ret; 3890 } 3891 3892 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 3893 struct btrfs_delayed_ref_head *head; 3894 bool pin_bytes = false; 3895 3896 head = rb_entry(node, struct btrfs_delayed_ref_head, 3897 href_node); 3898 if (!mutex_trylock(&head->mutex)) { 3899 atomic_inc(&head->node.refs); 3900 spin_unlock(&delayed_refs->lock); 3901 3902 mutex_lock(&head->mutex); 3903 mutex_unlock(&head->mutex); 3904 btrfs_put_delayed_ref(&head->node); 3905 spin_lock(&delayed_refs->lock); 3906 continue; 3907 } 3908 spin_lock(&head->lock); 3909 while ((node = rb_first(&head->ref_root)) != NULL) { 3910 ref = rb_entry(node, struct btrfs_delayed_ref_node, 3911 rb_node); 3912 ref->in_tree = 0; 3913 rb_erase(&ref->rb_node, &head->ref_root); 3914 atomic_dec(&delayed_refs->num_entries); 3915 btrfs_put_delayed_ref(ref); 3916 } 3917 if (head->must_insert_reserved) 3918 pin_bytes = true; 3919 btrfs_free_delayed_extent_op(head->extent_op); 3920 delayed_refs->num_heads--; 3921 if (head->processing == 0) 3922 delayed_refs->num_heads_ready--; 3923 atomic_dec(&delayed_refs->num_entries); 3924 head->node.in_tree = 0; 3925 rb_erase(&head->href_node, &delayed_refs->href_root); 3926 spin_unlock(&head->lock); 3927 spin_unlock(&delayed_refs->lock); 3928 mutex_unlock(&head->mutex); 3929 3930 if (pin_bytes) 3931 btrfs_pin_extent(root, head->node.bytenr, 3932 head->node.num_bytes, 1); 3933 btrfs_put_delayed_ref(&head->node); 3934 cond_resched(); 3935 spin_lock(&delayed_refs->lock); 3936 } 3937 3938 spin_unlock(&delayed_refs->lock); 3939 3940 return ret; 3941 } 3942 3943 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 3944 { 3945 struct btrfs_inode *btrfs_inode; 3946 struct list_head splice; 3947 3948 INIT_LIST_HEAD(&splice); 3949 3950 spin_lock(&root->delalloc_lock); 3951 list_splice_init(&root->delalloc_inodes, &splice); 3952 3953 while (!list_empty(&splice)) { 3954 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 3955 delalloc_inodes); 3956 3957 list_del_init(&btrfs_inode->delalloc_inodes); 3958 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 3959 &btrfs_inode->runtime_flags); 3960 spin_unlock(&root->delalloc_lock); 3961 3962 btrfs_invalidate_inodes(btrfs_inode->root); 3963 3964 spin_lock(&root->delalloc_lock); 3965 } 3966 3967 spin_unlock(&root->delalloc_lock); 3968 } 3969 3970 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 3971 { 3972 struct btrfs_root *root; 3973 struct list_head splice; 3974 3975 INIT_LIST_HEAD(&splice); 3976 3977 spin_lock(&fs_info->delalloc_root_lock); 3978 list_splice_init(&fs_info->delalloc_roots, &splice); 3979 while (!list_empty(&splice)) { 3980 root = list_first_entry(&splice, struct btrfs_root, 3981 delalloc_root); 3982 list_del_init(&root->delalloc_root); 3983 root = btrfs_grab_fs_root(root); 3984 BUG_ON(!root); 3985 spin_unlock(&fs_info->delalloc_root_lock); 3986 3987 btrfs_destroy_delalloc_inodes(root); 3988 btrfs_put_fs_root(root); 3989 3990 spin_lock(&fs_info->delalloc_root_lock); 3991 } 3992 spin_unlock(&fs_info->delalloc_root_lock); 3993 } 3994 3995 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 3996 struct extent_io_tree *dirty_pages, 3997 int mark) 3998 { 3999 int ret; 4000 struct extent_buffer *eb; 4001 u64 start = 0; 4002 u64 end; 4003 4004 while (1) { 4005 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4006 mark, NULL); 4007 if (ret) 4008 break; 4009 4010 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 4011 while (start <= end) { 4012 eb = btrfs_find_tree_block(root, start, 4013 root->leafsize); 4014 start += root->leafsize; 4015 if (!eb) 4016 continue; 4017 wait_on_extent_buffer_writeback(eb); 4018 4019 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4020 &eb->bflags)) 4021 clear_extent_buffer_dirty(eb); 4022 free_extent_buffer_stale(eb); 4023 } 4024 } 4025 4026 return ret; 4027 } 4028 4029 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 4030 struct extent_io_tree *pinned_extents) 4031 { 4032 struct extent_io_tree *unpin; 4033 u64 start; 4034 u64 end; 4035 int ret; 4036 bool loop = true; 4037 4038 unpin = pinned_extents; 4039 again: 4040 while (1) { 4041 ret = find_first_extent_bit(unpin, 0, &start, &end, 4042 EXTENT_DIRTY, NULL); 4043 if (ret) 4044 break; 4045 4046 /* opt_discard */ 4047 if (btrfs_test_opt(root, DISCARD)) 4048 ret = btrfs_error_discard_extent(root, start, 4049 end + 1 - start, 4050 NULL); 4051 4052 clear_extent_dirty(unpin, start, end, GFP_NOFS); 4053 btrfs_error_unpin_extent_range(root, start, end); 4054 cond_resched(); 4055 } 4056 4057 if (loop) { 4058 if (unpin == &root->fs_info->freed_extents[0]) 4059 unpin = &root->fs_info->freed_extents[1]; 4060 else 4061 unpin = &root->fs_info->freed_extents[0]; 4062 loop = false; 4063 goto again; 4064 } 4065 4066 return 0; 4067 } 4068 4069 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4070 struct btrfs_root *root) 4071 { 4072 btrfs_destroy_delayed_refs(cur_trans, root); 4073 4074 cur_trans->state = TRANS_STATE_COMMIT_START; 4075 wake_up(&root->fs_info->transaction_blocked_wait); 4076 4077 cur_trans->state = TRANS_STATE_UNBLOCKED; 4078 wake_up(&root->fs_info->transaction_wait); 4079 4080 btrfs_destroy_delayed_inodes(root); 4081 btrfs_assert_delayed_root_empty(root); 4082 4083 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 4084 EXTENT_DIRTY); 4085 btrfs_destroy_pinned_extent(root, 4086 root->fs_info->pinned_extents); 4087 4088 cur_trans->state =TRANS_STATE_COMPLETED; 4089 wake_up(&cur_trans->commit_wait); 4090 4091 /* 4092 memset(cur_trans, 0, sizeof(*cur_trans)); 4093 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4094 */ 4095 } 4096 4097 static int btrfs_cleanup_transaction(struct btrfs_root *root) 4098 { 4099 struct btrfs_transaction *t; 4100 4101 mutex_lock(&root->fs_info->transaction_kthread_mutex); 4102 4103 spin_lock(&root->fs_info->trans_lock); 4104 while (!list_empty(&root->fs_info->trans_list)) { 4105 t = list_first_entry(&root->fs_info->trans_list, 4106 struct btrfs_transaction, list); 4107 if (t->state >= TRANS_STATE_COMMIT_START) { 4108 atomic_inc(&t->use_count); 4109 spin_unlock(&root->fs_info->trans_lock); 4110 btrfs_wait_for_commit(root, t->transid); 4111 btrfs_put_transaction(t); 4112 spin_lock(&root->fs_info->trans_lock); 4113 continue; 4114 } 4115 if (t == root->fs_info->running_transaction) { 4116 t->state = TRANS_STATE_COMMIT_DOING; 4117 spin_unlock(&root->fs_info->trans_lock); 4118 /* 4119 * We wait for 0 num_writers since we don't hold a trans 4120 * handle open currently for this transaction. 4121 */ 4122 wait_event(t->writer_wait, 4123 atomic_read(&t->num_writers) == 0); 4124 } else { 4125 spin_unlock(&root->fs_info->trans_lock); 4126 } 4127 btrfs_cleanup_one_transaction(t, root); 4128 4129 spin_lock(&root->fs_info->trans_lock); 4130 if (t == root->fs_info->running_transaction) 4131 root->fs_info->running_transaction = NULL; 4132 list_del_init(&t->list); 4133 spin_unlock(&root->fs_info->trans_lock); 4134 4135 btrfs_put_transaction(t); 4136 trace_btrfs_transaction_commit(root); 4137 spin_lock(&root->fs_info->trans_lock); 4138 } 4139 spin_unlock(&root->fs_info->trans_lock); 4140 btrfs_destroy_all_ordered_extents(root->fs_info); 4141 btrfs_destroy_delayed_inodes(root); 4142 btrfs_assert_delayed_root_empty(root); 4143 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents); 4144 btrfs_destroy_all_delalloc_inodes(root->fs_info); 4145 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 4146 4147 return 0; 4148 } 4149 4150 static struct extent_io_ops btree_extent_io_ops = { 4151 .readpage_end_io_hook = btree_readpage_end_io_hook, 4152 .readpage_io_failed_hook = btree_io_failed_hook, 4153 .submit_bio_hook = btree_submit_bio_hook, 4154 /* note we're sharing with inode.c for the merge bio hook */ 4155 .merge_bio_hook = btrfs_merge_bio_hook, 4156 }; 4157