1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <linux/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "dev-replace.h" 33 #include "raid56.h" 34 #include "sysfs.h" 35 #include "qgroup.h" 36 #include "compression.h" 37 #include "tree-checker.h" 38 #include "ref-verify.h" 39 #include "block-group.h" 40 #include "discard.h" 41 #include "space-info.h" 42 #include "zoned.h" 43 #include "subpage.h" 44 #include "fs.h" 45 #include "accessors.h" 46 #include "extent-tree.h" 47 #include "root-tree.h" 48 #include "defrag.h" 49 #include "uuid-tree.h" 50 #include "relocation.h" 51 #include "scrub.h" 52 #include "super.h" 53 54 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 55 BTRFS_HEADER_FLAG_RELOC |\ 56 BTRFS_SUPER_FLAG_ERROR |\ 57 BTRFS_SUPER_FLAG_SEEDING |\ 58 BTRFS_SUPER_FLAG_METADUMP |\ 59 BTRFS_SUPER_FLAG_METADUMP_V2) 60 61 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 62 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 63 64 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 65 { 66 if (fs_info->csum_shash) 67 crypto_free_shash(fs_info->csum_shash); 68 } 69 70 /* 71 * Compute the csum of a btree block and store the result to provided buffer. 72 */ 73 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 74 { 75 struct btrfs_fs_info *fs_info = buf->fs_info; 76 int num_pages; 77 u32 first_page_part; 78 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 79 char *kaddr; 80 int i; 81 82 shash->tfm = fs_info->csum_shash; 83 crypto_shash_init(shash); 84 85 if (buf->addr) { 86 /* Pages are contiguous, handle them as a big one. */ 87 kaddr = buf->addr; 88 first_page_part = fs_info->nodesize; 89 num_pages = 1; 90 } else { 91 kaddr = folio_address(buf->folios[0]); 92 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 93 num_pages = num_extent_pages(buf); 94 } 95 96 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 97 first_page_part - BTRFS_CSUM_SIZE); 98 99 /* 100 * Multiple single-page folios case would reach here. 101 * 102 * nodesize <= PAGE_SIZE and large folio all handled by above 103 * crypto_shash_update() already. 104 */ 105 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { 106 kaddr = folio_address(buf->folios[i]); 107 crypto_shash_update(shash, kaddr, PAGE_SIZE); 108 } 109 memset(result, 0, BTRFS_CSUM_SIZE); 110 crypto_shash_final(shash, result); 111 } 112 113 /* 114 * we can't consider a given block up to date unless the transid of the 115 * block matches the transid in the parent node's pointer. This is how we 116 * detect blocks that either didn't get written at all or got written 117 * in the wrong place. 118 */ 119 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic) 120 { 121 if (!extent_buffer_uptodate(eb)) 122 return 0; 123 124 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 125 return 1; 126 127 if (atomic) 128 return -EAGAIN; 129 130 if (!extent_buffer_uptodate(eb) || 131 btrfs_header_generation(eb) != parent_transid) { 132 btrfs_err_rl(eb->fs_info, 133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 134 eb->start, eb->read_mirror, 135 parent_transid, btrfs_header_generation(eb)); 136 clear_extent_buffer_uptodate(eb); 137 return 0; 138 } 139 return 1; 140 } 141 142 static bool btrfs_supported_super_csum(u16 csum_type) 143 { 144 switch (csum_type) { 145 case BTRFS_CSUM_TYPE_CRC32: 146 case BTRFS_CSUM_TYPE_XXHASH: 147 case BTRFS_CSUM_TYPE_SHA256: 148 case BTRFS_CSUM_TYPE_BLAKE2: 149 return true; 150 default: 151 return false; 152 } 153 } 154 155 /* 156 * Return 0 if the superblock checksum type matches the checksum value of that 157 * algorithm. Pass the raw disk superblock data. 158 */ 159 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 160 const struct btrfs_super_block *disk_sb) 161 { 162 char result[BTRFS_CSUM_SIZE]; 163 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 164 165 shash->tfm = fs_info->csum_shash; 166 167 /* 168 * The super_block structure does not span the whole 169 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 170 * filled with zeros and is included in the checksum. 171 */ 172 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 173 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 174 175 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 176 return 1; 177 178 return 0; 179 } 180 181 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 182 int mirror_num) 183 { 184 struct btrfs_fs_info *fs_info = eb->fs_info; 185 int ret = 0; 186 187 if (sb_rdonly(fs_info->sb)) 188 return -EROFS; 189 190 for (int i = 0; i < num_extent_folios(eb); i++) { 191 struct folio *folio = eb->folios[i]; 192 u64 start = max_t(u64, eb->start, folio_pos(folio)); 193 u64 end = min_t(u64, eb->start + eb->len, 194 folio_pos(folio) + eb->folio_size); 195 u32 len = end - start; 196 phys_addr_t paddr = PFN_PHYS(folio_pfn(folio)) + 197 offset_in_folio(folio, start); 198 199 ret = btrfs_repair_io_failure(fs_info, 0, start, len, start, 200 paddr, mirror_num); 201 if (ret) 202 break; 203 } 204 205 return ret; 206 } 207 208 /* 209 * helper to read a given tree block, doing retries as required when 210 * the checksums don't match and we have alternate mirrors to try. 211 * 212 * @check: expected tree parentness check, see the comments of the 213 * structure for details. 214 */ 215 int btrfs_read_extent_buffer(struct extent_buffer *eb, 216 const struct btrfs_tree_parent_check *check) 217 { 218 struct btrfs_fs_info *fs_info = eb->fs_info; 219 int failed = 0; 220 int ret; 221 int num_copies = 0; 222 int mirror_num = 0; 223 int failed_mirror = 0; 224 225 ASSERT(check); 226 227 while (1) { 228 ret = read_extent_buffer_pages(eb, mirror_num, check); 229 if (!ret) 230 break; 231 232 num_copies = btrfs_num_copies(fs_info, 233 eb->start, eb->len); 234 if (num_copies == 1) 235 break; 236 237 if (!failed_mirror) { 238 failed = 1; 239 failed_mirror = eb->read_mirror; 240 } 241 242 mirror_num++; 243 if (mirror_num == failed_mirror) 244 mirror_num++; 245 246 if (mirror_num > num_copies) 247 break; 248 } 249 250 if (failed && !ret && failed_mirror) 251 btrfs_repair_eb_io_failure(eb, failed_mirror); 252 253 return ret; 254 } 255 256 /* 257 * Checksum a dirty tree block before IO. 258 */ 259 int btree_csum_one_bio(struct btrfs_bio *bbio) 260 { 261 struct extent_buffer *eb = bbio->private; 262 struct btrfs_fs_info *fs_info = eb->fs_info; 263 u64 found_start = btrfs_header_bytenr(eb); 264 u64 last_trans; 265 u8 result[BTRFS_CSUM_SIZE]; 266 int ret; 267 268 /* Btree blocks are always contiguous on disk. */ 269 if (WARN_ON_ONCE(bbio->file_offset != eb->start)) 270 return -EIO; 271 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len)) 272 return -EIO; 273 274 /* 275 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't 276 * checksum it but zero-out its content. This is done to preserve 277 * ordering of I/O without unnecessarily writing out data. 278 */ 279 if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) { 280 memzero_extent_buffer(eb, 0, eb->len); 281 return 0; 282 } 283 284 if (WARN_ON_ONCE(found_start != eb->start)) 285 return -EIO; 286 if (WARN_ON(!btrfs_meta_folio_test_uptodate(eb->folios[0], eb))) 287 return -EIO; 288 289 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 290 offsetof(struct btrfs_header, fsid), 291 BTRFS_FSID_SIZE) == 0); 292 csum_tree_block(eb, result); 293 294 if (btrfs_header_level(eb)) 295 ret = btrfs_check_node(eb); 296 else 297 ret = btrfs_check_leaf(eb); 298 299 if (ret < 0) 300 goto error; 301 302 /* 303 * Also check the generation, the eb reached here must be newer than 304 * last committed. Or something seriously wrong happened. 305 */ 306 last_trans = btrfs_get_last_trans_committed(fs_info); 307 if (unlikely(btrfs_header_generation(eb) <= last_trans)) { 308 ret = -EUCLEAN; 309 btrfs_err(fs_info, 310 "block=%llu bad generation, have %llu expect > %llu", 311 eb->start, btrfs_header_generation(eb), last_trans); 312 goto error; 313 } 314 write_extent_buffer(eb, result, 0, fs_info->csum_size); 315 return 0; 316 317 error: 318 btrfs_print_tree(eb, 0); 319 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 320 eb->start); 321 /* 322 * Be noisy if this is an extent buffer from a log tree. We don't abort 323 * a transaction in case there's a bad log tree extent buffer, we just 324 * fallback to a transaction commit. Still we want to know when there is 325 * a bad log tree extent buffer, as that may signal a bug somewhere. 326 */ 327 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 328 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 329 return ret; 330 } 331 332 static bool check_tree_block_fsid(struct extent_buffer *eb) 333 { 334 struct btrfs_fs_info *fs_info = eb->fs_info; 335 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 336 u8 fsid[BTRFS_FSID_SIZE]; 337 338 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 339 BTRFS_FSID_SIZE); 340 341 /* 342 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid. 343 * This is then overwritten by metadata_uuid if it is present in the 344 * device_list_add(). The same true for a seed device as well. So use of 345 * fs_devices::metadata_uuid is appropriate here. 346 */ 347 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0) 348 return false; 349 350 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 351 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 352 return false; 353 354 return true; 355 } 356 357 /* Do basic extent buffer checks at read time */ 358 int btrfs_validate_extent_buffer(struct extent_buffer *eb, 359 const struct btrfs_tree_parent_check *check) 360 { 361 struct btrfs_fs_info *fs_info = eb->fs_info; 362 u64 found_start; 363 const u32 csum_size = fs_info->csum_size; 364 u8 found_level; 365 u8 result[BTRFS_CSUM_SIZE]; 366 const u8 *header_csum; 367 int ret = 0; 368 const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS); 369 370 ASSERT(check); 371 372 found_start = btrfs_header_bytenr(eb); 373 if (found_start != eb->start) { 374 btrfs_err_rl(fs_info, 375 "bad tree block start, mirror %u want %llu have %llu", 376 eb->read_mirror, eb->start, found_start); 377 ret = -EIO; 378 goto out; 379 } 380 if (check_tree_block_fsid(eb)) { 381 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 382 eb->start, eb->read_mirror); 383 ret = -EIO; 384 goto out; 385 } 386 found_level = btrfs_header_level(eb); 387 if (found_level >= BTRFS_MAX_LEVEL) { 388 btrfs_err(fs_info, 389 "bad tree block level, mirror %u level %d on logical %llu", 390 eb->read_mirror, btrfs_header_level(eb), eb->start); 391 ret = -EIO; 392 goto out; 393 } 394 395 csum_tree_block(eb, result); 396 header_csum = folio_address(eb->folios[0]) + 397 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum)); 398 399 if (memcmp(result, header_csum, csum_size) != 0) { 400 btrfs_warn_rl(fs_info, 401 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d%s", 402 eb->start, eb->read_mirror, 403 CSUM_FMT_VALUE(csum_size, header_csum), 404 CSUM_FMT_VALUE(csum_size, result), 405 btrfs_header_level(eb), 406 ignore_csum ? ", ignored" : ""); 407 if (!ignore_csum) { 408 ret = -EUCLEAN; 409 goto out; 410 } 411 } 412 413 if (found_level != check->level) { 414 btrfs_err(fs_info, 415 "level verify failed on logical %llu mirror %u wanted %u found %u", 416 eb->start, eb->read_mirror, check->level, found_level); 417 ret = -EIO; 418 goto out; 419 } 420 if (unlikely(check->transid && 421 btrfs_header_generation(eb) != check->transid)) { 422 btrfs_err_rl(eb->fs_info, 423 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 424 eb->start, eb->read_mirror, check->transid, 425 btrfs_header_generation(eb)); 426 ret = -EIO; 427 goto out; 428 } 429 if (check->has_first_key) { 430 const struct btrfs_key *expect_key = &check->first_key; 431 struct btrfs_key found_key; 432 433 if (found_level) 434 btrfs_node_key_to_cpu(eb, &found_key, 0); 435 else 436 btrfs_item_key_to_cpu(eb, &found_key, 0); 437 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 438 btrfs_err(fs_info, 439 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 440 eb->start, check->transid, 441 expect_key->objectid, 442 expect_key->type, expect_key->offset, 443 found_key.objectid, found_key.type, 444 found_key.offset); 445 ret = -EUCLEAN; 446 goto out; 447 } 448 } 449 if (check->owner_root) { 450 ret = btrfs_check_eb_owner(eb, check->owner_root); 451 if (ret < 0) 452 goto out; 453 } 454 455 /* If this is a leaf block and it is corrupt, just return -EIO. */ 456 if (found_level == 0 && btrfs_check_leaf(eb)) 457 ret = -EIO; 458 459 if (found_level > 0 && btrfs_check_node(eb)) 460 ret = -EIO; 461 462 if (ret) 463 btrfs_err(fs_info, 464 "read time tree block corruption detected on logical %llu mirror %u", 465 eb->start, eb->read_mirror); 466 out: 467 return ret; 468 } 469 470 #ifdef CONFIG_MIGRATION 471 static int btree_migrate_folio(struct address_space *mapping, 472 struct folio *dst, struct folio *src, enum migrate_mode mode) 473 { 474 /* 475 * we can't safely write a btree page from here, 476 * we haven't done the locking hook 477 */ 478 if (folio_test_dirty(src)) 479 return -EAGAIN; 480 /* 481 * Buffers may be managed in a filesystem specific way. 482 * We must have no buffers or drop them. 483 */ 484 if (folio_get_private(src) && 485 !filemap_release_folio(src, GFP_KERNEL)) 486 return -EAGAIN; 487 return migrate_folio(mapping, dst, src, mode); 488 } 489 #else 490 #define btree_migrate_folio NULL 491 #endif 492 493 static int btree_writepages(struct address_space *mapping, 494 struct writeback_control *wbc) 495 { 496 int ret; 497 498 if (wbc->sync_mode == WB_SYNC_NONE) { 499 struct btrfs_fs_info *fs_info; 500 501 if (wbc->for_kupdate) 502 return 0; 503 504 fs_info = inode_to_fs_info(mapping->host); 505 /* this is a bit racy, but that's ok */ 506 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 507 BTRFS_DIRTY_METADATA_THRESH, 508 fs_info->dirty_metadata_batch); 509 if (ret < 0) 510 return 0; 511 } 512 return btree_write_cache_pages(mapping, wbc); 513 } 514 515 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 516 { 517 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 518 return false; 519 520 return try_release_extent_buffer(folio); 521 } 522 523 static void btree_invalidate_folio(struct folio *folio, size_t offset, 524 size_t length) 525 { 526 struct extent_io_tree *tree; 527 528 tree = &folio_to_inode(folio)->io_tree; 529 extent_invalidate_folio(tree, folio, offset); 530 btree_release_folio(folio, GFP_NOFS); 531 if (folio_get_private(folio)) { 532 btrfs_warn(folio_to_fs_info(folio), 533 "folio private not zero on folio %llu", 534 (unsigned long long)folio_pos(folio)); 535 folio_detach_private(folio); 536 } 537 } 538 539 #ifdef DEBUG 540 static bool btree_dirty_folio(struct address_space *mapping, 541 struct folio *folio) 542 { 543 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 544 struct btrfs_subpage_info *spi = fs_info->subpage_info; 545 struct btrfs_subpage *subpage; 546 struct extent_buffer *eb; 547 int cur_bit = 0; 548 u64 page_start = folio_pos(folio); 549 550 if (fs_info->sectorsize == PAGE_SIZE) { 551 eb = folio_get_private(folio); 552 BUG_ON(!eb); 553 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 554 BUG_ON(!atomic_read(&eb->refs)); 555 btrfs_assert_tree_write_locked(eb); 556 return filemap_dirty_folio(mapping, folio); 557 } 558 559 ASSERT(spi); 560 subpage = folio_get_private(folio); 561 562 for (cur_bit = spi->dirty_offset; 563 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits; 564 cur_bit++) { 565 unsigned long flags; 566 u64 cur; 567 568 spin_lock_irqsave(&subpage->lock, flags); 569 if (!test_bit(cur_bit, subpage->bitmaps)) { 570 spin_unlock_irqrestore(&subpage->lock, flags); 571 continue; 572 } 573 spin_unlock_irqrestore(&subpage->lock, flags); 574 cur = page_start + cur_bit * fs_info->sectorsize; 575 576 eb = find_extent_buffer(fs_info, cur); 577 ASSERT(eb); 578 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 579 ASSERT(atomic_read(&eb->refs)); 580 btrfs_assert_tree_write_locked(eb); 581 free_extent_buffer(eb); 582 583 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1; 584 } 585 return filemap_dirty_folio(mapping, folio); 586 } 587 #else 588 #define btree_dirty_folio filemap_dirty_folio 589 #endif 590 591 static const struct address_space_operations btree_aops = { 592 .writepages = btree_writepages, 593 .release_folio = btree_release_folio, 594 .invalidate_folio = btree_invalidate_folio, 595 .migrate_folio = btree_migrate_folio, 596 .dirty_folio = btree_dirty_folio, 597 }; 598 599 struct extent_buffer *btrfs_find_create_tree_block( 600 struct btrfs_fs_info *fs_info, 601 u64 bytenr, u64 owner_root, 602 int level) 603 { 604 if (btrfs_is_testing(fs_info)) 605 return alloc_test_extent_buffer(fs_info, bytenr); 606 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 607 } 608 609 /* 610 * Read tree block at logical address @bytenr and do variant basic but critical 611 * verification. 612 * 613 * @check: expected tree parentness check, see comments of the 614 * structure for details. 615 */ 616 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 617 struct btrfs_tree_parent_check *check) 618 { 619 struct extent_buffer *buf = NULL; 620 int ret; 621 622 ASSERT(check); 623 624 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 625 check->level); 626 if (IS_ERR(buf)) 627 return buf; 628 629 ret = btrfs_read_extent_buffer(buf, check); 630 if (ret) { 631 free_extent_buffer_stale(buf); 632 return ERR_PTR(ret); 633 } 634 return buf; 635 636 } 637 638 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 639 u64 objectid, gfp_t flags) 640 { 641 struct btrfs_root *root; 642 bool dummy = btrfs_is_testing(fs_info); 643 644 root = kzalloc(sizeof(*root), flags); 645 if (!root) 646 return NULL; 647 648 memset(&root->root_key, 0, sizeof(root->root_key)); 649 memset(&root->root_item, 0, sizeof(root->root_item)); 650 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 651 root->fs_info = fs_info; 652 root->root_key.objectid = objectid; 653 root->node = NULL; 654 root->commit_root = NULL; 655 root->state = 0; 656 RB_CLEAR_NODE(&root->rb_node); 657 658 btrfs_set_root_last_trans(root, 0); 659 root->free_objectid = 0; 660 root->nr_delalloc_inodes = 0; 661 root->nr_ordered_extents = 0; 662 xa_init(&root->inodes); 663 xa_init(&root->delayed_nodes); 664 665 btrfs_init_root_block_rsv(root); 666 667 INIT_LIST_HEAD(&root->dirty_list); 668 INIT_LIST_HEAD(&root->root_list); 669 INIT_LIST_HEAD(&root->delalloc_inodes); 670 INIT_LIST_HEAD(&root->delalloc_root); 671 INIT_LIST_HEAD(&root->ordered_extents); 672 INIT_LIST_HEAD(&root->ordered_root); 673 INIT_LIST_HEAD(&root->reloc_dirty_list); 674 spin_lock_init(&root->delalloc_lock); 675 spin_lock_init(&root->ordered_extent_lock); 676 spin_lock_init(&root->accounting_lock); 677 spin_lock_init(&root->qgroup_meta_rsv_lock); 678 mutex_init(&root->objectid_mutex); 679 mutex_init(&root->log_mutex); 680 mutex_init(&root->ordered_extent_mutex); 681 mutex_init(&root->delalloc_mutex); 682 init_waitqueue_head(&root->qgroup_flush_wait); 683 init_waitqueue_head(&root->log_writer_wait); 684 init_waitqueue_head(&root->log_commit_wait[0]); 685 init_waitqueue_head(&root->log_commit_wait[1]); 686 INIT_LIST_HEAD(&root->log_ctxs[0]); 687 INIT_LIST_HEAD(&root->log_ctxs[1]); 688 atomic_set(&root->log_commit[0], 0); 689 atomic_set(&root->log_commit[1], 0); 690 atomic_set(&root->log_writers, 0); 691 atomic_set(&root->log_batch, 0); 692 refcount_set(&root->refs, 1); 693 atomic_set(&root->snapshot_force_cow, 0); 694 atomic_set(&root->nr_swapfiles, 0); 695 btrfs_set_root_log_transid(root, 0); 696 root->log_transid_committed = -1; 697 btrfs_set_root_last_log_commit(root, 0); 698 root->anon_dev = 0; 699 if (!dummy) { 700 btrfs_extent_io_tree_init(fs_info, &root->dirty_log_pages, 701 IO_TREE_ROOT_DIRTY_LOG_PAGES); 702 btrfs_extent_io_tree_init(fs_info, &root->log_csum_range, 703 IO_TREE_LOG_CSUM_RANGE); 704 } 705 706 spin_lock_init(&root->root_item_lock); 707 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 708 #ifdef CONFIG_BTRFS_DEBUG 709 INIT_LIST_HEAD(&root->leak_list); 710 spin_lock(&fs_info->fs_roots_radix_lock); 711 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 712 spin_unlock(&fs_info->fs_roots_radix_lock); 713 #endif 714 715 return root; 716 } 717 718 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 719 /* Should only be used by the testing infrastructure */ 720 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 721 { 722 struct btrfs_root *root; 723 724 if (!fs_info) 725 return ERR_PTR(-EINVAL); 726 727 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 728 if (!root) 729 return ERR_PTR(-ENOMEM); 730 731 /* We don't use the stripesize in selftest, set it as sectorsize */ 732 root->alloc_bytenr = 0; 733 734 return root; 735 } 736 #endif 737 738 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 739 { 740 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 741 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 742 743 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 744 } 745 746 static int global_root_key_cmp(const void *k, const struct rb_node *node) 747 { 748 const struct btrfs_key *key = k; 749 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 750 751 return btrfs_comp_cpu_keys(key, &root->root_key); 752 } 753 754 int btrfs_global_root_insert(struct btrfs_root *root) 755 { 756 struct btrfs_fs_info *fs_info = root->fs_info; 757 struct rb_node *tmp; 758 int ret = 0; 759 760 write_lock(&fs_info->global_root_lock); 761 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 762 write_unlock(&fs_info->global_root_lock); 763 764 if (tmp) { 765 ret = -EEXIST; 766 btrfs_warn(fs_info, "global root %llu %llu already exists", 767 btrfs_root_id(root), root->root_key.offset); 768 } 769 return ret; 770 } 771 772 void btrfs_global_root_delete(struct btrfs_root *root) 773 { 774 struct btrfs_fs_info *fs_info = root->fs_info; 775 776 write_lock(&fs_info->global_root_lock); 777 rb_erase(&root->rb_node, &fs_info->global_root_tree); 778 write_unlock(&fs_info->global_root_lock); 779 } 780 781 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 782 struct btrfs_key *key) 783 { 784 struct rb_node *node; 785 struct btrfs_root *root = NULL; 786 787 read_lock(&fs_info->global_root_lock); 788 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 789 if (node) 790 root = container_of(node, struct btrfs_root, rb_node); 791 read_unlock(&fs_info->global_root_lock); 792 793 return root; 794 } 795 796 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 797 { 798 struct btrfs_block_group *block_group; 799 u64 ret; 800 801 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 802 return 0; 803 804 if (bytenr) 805 block_group = btrfs_lookup_block_group(fs_info, bytenr); 806 else 807 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 808 ASSERT(block_group); 809 if (!block_group) 810 return 0; 811 ret = block_group->global_root_id; 812 btrfs_put_block_group(block_group); 813 814 return ret; 815 } 816 817 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 818 { 819 struct btrfs_key key = { 820 .objectid = BTRFS_CSUM_TREE_OBJECTID, 821 .type = BTRFS_ROOT_ITEM_KEY, 822 .offset = btrfs_global_root_id(fs_info, bytenr), 823 }; 824 825 return btrfs_global_root(fs_info, &key); 826 } 827 828 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 829 { 830 struct btrfs_key key = { 831 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 832 .type = BTRFS_ROOT_ITEM_KEY, 833 .offset = btrfs_global_root_id(fs_info, bytenr), 834 }; 835 836 return btrfs_global_root(fs_info, &key); 837 } 838 839 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 840 u64 objectid) 841 { 842 struct btrfs_fs_info *fs_info = trans->fs_info; 843 struct extent_buffer *leaf; 844 struct btrfs_root *tree_root = fs_info->tree_root; 845 struct btrfs_root *root; 846 struct btrfs_key key; 847 unsigned int nofs_flag; 848 int ret = 0; 849 850 /* 851 * We're holding a transaction handle, so use a NOFS memory allocation 852 * context to avoid deadlock if reclaim happens. 853 */ 854 nofs_flag = memalloc_nofs_save(); 855 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 856 memalloc_nofs_restore(nofs_flag); 857 if (!root) 858 return ERR_PTR(-ENOMEM); 859 860 root->root_key.objectid = objectid; 861 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 862 root->root_key.offset = 0; 863 864 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 865 0, BTRFS_NESTING_NORMAL); 866 if (IS_ERR(leaf)) { 867 ret = PTR_ERR(leaf); 868 leaf = NULL; 869 goto fail; 870 } 871 872 root->node = leaf; 873 btrfs_mark_buffer_dirty(trans, leaf); 874 875 root->commit_root = btrfs_root_node(root); 876 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 877 878 btrfs_set_root_flags(&root->root_item, 0); 879 btrfs_set_root_limit(&root->root_item, 0); 880 btrfs_set_root_bytenr(&root->root_item, leaf->start); 881 btrfs_set_root_generation(&root->root_item, trans->transid); 882 btrfs_set_root_level(&root->root_item, 0); 883 btrfs_set_root_refs(&root->root_item, 1); 884 btrfs_set_root_used(&root->root_item, leaf->len); 885 btrfs_set_root_last_snapshot(&root->root_item, 0); 886 btrfs_set_root_dirid(&root->root_item, 0); 887 if (btrfs_is_fstree(objectid)) 888 generate_random_guid(root->root_item.uuid); 889 else 890 export_guid(root->root_item.uuid, &guid_null); 891 btrfs_set_root_drop_level(&root->root_item, 0); 892 893 btrfs_tree_unlock(leaf); 894 895 key.objectid = objectid; 896 key.type = BTRFS_ROOT_ITEM_KEY; 897 key.offset = 0; 898 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 899 if (ret) 900 goto fail; 901 902 return root; 903 904 fail: 905 btrfs_put_root(root); 906 907 return ERR_PTR(ret); 908 } 909 910 static struct btrfs_root *alloc_log_tree(struct btrfs_fs_info *fs_info) 911 { 912 struct btrfs_root *root; 913 914 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 915 if (!root) 916 return ERR_PTR(-ENOMEM); 917 918 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 919 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 920 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 921 922 return root; 923 } 924 925 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 926 struct btrfs_root *root) 927 { 928 struct extent_buffer *leaf; 929 930 /* 931 * DON'T set SHAREABLE bit for log trees. 932 * 933 * Log trees are not exposed to user space thus can't be snapshotted, 934 * and they go away before a real commit is actually done. 935 * 936 * They do store pointers to file data extents, and those reference 937 * counts still get updated (along with back refs to the log tree). 938 */ 939 940 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 941 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL); 942 if (IS_ERR(leaf)) 943 return PTR_ERR(leaf); 944 945 root->node = leaf; 946 947 btrfs_mark_buffer_dirty(trans, root->node); 948 btrfs_tree_unlock(root->node); 949 950 return 0; 951 } 952 953 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 954 struct btrfs_fs_info *fs_info) 955 { 956 struct btrfs_root *log_root; 957 958 log_root = alloc_log_tree(fs_info); 959 if (IS_ERR(log_root)) 960 return PTR_ERR(log_root); 961 962 if (!btrfs_is_zoned(fs_info)) { 963 int ret = btrfs_alloc_log_tree_node(trans, log_root); 964 965 if (ret) { 966 btrfs_put_root(log_root); 967 return ret; 968 } 969 } 970 971 WARN_ON(fs_info->log_root_tree); 972 fs_info->log_root_tree = log_root; 973 return 0; 974 } 975 976 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 977 struct btrfs_root *root) 978 { 979 struct btrfs_fs_info *fs_info = root->fs_info; 980 struct btrfs_root *log_root; 981 struct btrfs_inode_item *inode_item; 982 int ret; 983 984 log_root = alloc_log_tree(fs_info); 985 if (IS_ERR(log_root)) 986 return PTR_ERR(log_root); 987 988 ret = btrfs_alloc_log_tree_node(trans, log_root); 989 if (ret) { 990 btrfs_put_root(log_root); 991 return ret; 992 } 993 994 btrfs_set_root_last_trans(log_root, trans->transid); 995 log_root->root_key.offset = btrfs_root_id(root); 996 997 inode_item = &log_root->root_item.inode; 998 btrfs_set_stack_inode_generation(inode_item, 1); 999 btrfs_set_stack_inode_size(inode_item, 3); 1000 btrfs_set_stack_inode_nlink(inode_item, 1); 1001 btrfs_set_stack_inode_nbytes(inode_item, 1002 fs_info->nodesize); 1003 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1004 1005 btrfs_set_root_node(&log_root->root_item, log_root->node); 1006 1007 WARN_ON(root->log_root); 1008 root->log_root = log_root; 1009 btrfs_set_root_log_transid(root, 0); 1010 root->log_transid_committed = -1; 1011 btrfs_set_root_last_log_commit(root, 0); 1012 return 0; 1013 } 1014 1015 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1016 struct btrfs_path *path, 1017 const struct btrfs_key *key) 1018 { 1019 struct btrfs_root *root; 1020 struct btrfs_tree_parent_check check = { 0 }; 1021 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1022 u64 generation; 1023 int ret; 1024 int level; 1025 1026 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1027 if (!root) 1028 return ERR_PTR(-ENOMEM); 1029 1030 ret = btrfs_find_root(tree_root, key, path, 1031 &root->root_item, &root->root_key); 1032 if (ret) { 1033 if (ret > 0) 1034 ret = -ENOENT; 1035 goto fail; 1036 } 1037 1038 generation = btrfs_root_generation(&root->root_item); 1039 level = btrfs_root_level(&root->root_item); 1040 check.level = level; 1041 check.transid = generation; 1042 check.owner_root = key->objectid; 1043 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1044 &check); 1045 if (IS_ERR(root->node)) { 1046 ret = PTR_ERR(root->node); 1047 root->node = NULL; 1048 goto fail; 1049 } 1050 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1051 ret = -EIO; 1052 goto fail; 1053 } 1054 1055 /* 1056 * For real fs, and not log/reloc trees, root owner must 1057 * match its root node owner 1058 */ 1059 if (!btrfs_is_testing(fs_info) && 1060 btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && 1061 btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID && 1062 btrfs_root_id(root) != btrfs_header_owner(root->node)) { 1063 btrfs_crit(fs_info, 1064 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1065 btrfs_root_id(root), root->node->start, 1066 btrfs_header_owner(root->node), 1067 btrfs_root_id(root)); 1068 ret = -EUCLEAN; 1069 goto fail; 1070 } 1071 root->commit_root = btrfs_root_node(root); 1072 return root; 1073 fail: 1074 btrfs_put_root(root); 1075 return ERR_PTR(ret); 1076 } 1077 1078 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1079 const struct btrfs_key *key) 1080 { 1081 struct btrfs_root *root; 1082 BTRFS_PATH_AUTO_FREE(path); 1083 1084 path = btrfs_alloc_path(); 1085 if (!path) 1086 return ERR_PTR(-ENOMEM); 1087 root = read_tree_root_path(tree_root, path, key); 1088 1089 return root; 1090 } 1091 1092 /* 1093 * Initialize subvolume root in-memory structure. 1094 * 1095 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1096 * 1097 * In case of failure the caller is responsible to call btrfs_free_fs_root() 1098 */ 1099 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1100 { 1101 int ret; 1102 1103 btrfs_drew_lock_init(&root->snapshot_lock); 1104 1105 if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && 1106 !btrfs_is_data_reloc_root(root) && 1107 btrfs_is_fstree(btrfs_root_id(root))) { 1108 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1109 btrfs_check_and_init_root_item(&root->root_item); 1110 } 1111 1112 /* 1113 * Don't assign anonymous block device to roots that are not exposed to 1114 * userspace, the id pool is limited to 1M 1115 */ 1116 if (btrfs_is_fstree(btrfs_root_id(root)) && 1117 btrfs_root_refs(&root->root_item) > 0) { 1118 if (!anon_dev) { 1119 ret = get_anon_bdev(&root->anon_dev); 1120 if (ret) 1121 return ret; 1122 } else { 1123 root->anon_dev = anon_dev; 1124 } 1125 } 1126 1127 mutex_lock(&root->objectid_mutex); 1128 ret = btrfs_init_root_free_objectid(root); 1129 if (ret) { 1130 mutex_unlock(&root->objectid_mutex); 1131 return ret; 1132 } 1133 1134 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1135 1136 mutex_unlock(&root->objectid_mutex); 1137 1138 return 0; 1139 } 1140 1141 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1142 u64 root_id) 1143 { 1144 struct btrfs_root *root; 1145 1146 spin_lock(&fs_info->fs_roots_radix_lock); 1147 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1148 (unsigned long)root_id); 1149 root = btrfs_grab_root(root); 1150 spin_unlock(&fs_info->fs_roots_radix_lock); 1151 return root; 1152 } 1153 1154 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1155 u64 objectid) 1156 { 1157 struct btrfs_key key = { 1158 .objectid = objectid, 1159 .type = BTRFS_ROOT_ITEM_KEY, 1160 .offset = 0, 1161 }; 1162 1163 switch (objectid) { 1164 case BTRFS_ROOT_TREE_OBJECTID: 1165 return btrfs_grab_root(fs_info->tree_root); 1166 case BTRFS_EXTENT_TREE_OBJECTID: 1167 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1168 case BTRFS_CHUNK_TREE_OBJECTID: 1169 return btrfs_grab_root(fs_info->chunk_root); 1170 case BTRFS_DEV_TREE_OBJECTID: 1171 return btrfs_grab_root(fs_info->dev_root); 1172 case BTRFS_CSUM_TREE_OBJECTID: 1173 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1174 case BTRFS_QUOTA_TREE_OBJECTID: 1175 return btrfs_grab_root(fs_info->quota_root); 1176 case BTRFS_UUID_TREE_OBJECTID: 1177 return btrfs_grab_root(fs_info->uuid_root); 1178 case BTRFS_BLOCK_GROUP_TREE_OBJECTID: 1179 return btrfs_grab_root(fs_info->block_group_root); 1180 case BTRFS_FREE_SPACE_TREE_OBJECTID: 1181 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1182 case BTRFS_RAID_STRIPE_TREE_OBJECTID: 1183 return btrfs_grab_root(fs_info->stripe_root); 1184 default: 1185 return NULL; 1186 } 1187 } 1188 1189 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1190 struct btrfs_root *root) 1191 { 1192 int ret; 1193 1194 ret = radix_tree_preload(GFP_NOFS); 1195 if (ret) 1196 return ret; 1197 1198 spin_lock(&fs_info->fs_roots_radix_lock); 1199 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1200 (unsigned long)btrfs_root_id(root), 1201 root); 1202 if (ret == 0) { 1203 btrfs_grab_root(root); 1204 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1205 } 1206 spin_unlock(&fs_info->fs_roots_radix_lock); 1207 radix_tree_preload_end(); 1208 1209 return ret; 1210 } 1211 1212 void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info) 1213 { 1214 #ifdef CONFIG_BTRFS_DEBUG 1215 struct btrfs_root *root; 1216 1217 while (!list_empty(&fs_info->allocated_roots)) { 1218 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1219 1220 root = list_first_entry(&fs_info->allocated_roots, 1221 struct btrfs_root, leak_list); 1222 btrfs_err(fs_info, "leaked root %s refcount %d", 1223 btrfs_root_name(&root->root_key, buf), 1224 refcount_read(&root->refs)); 1225 WARN_ON_ONCE(1); 1226 while (refcount_read(&root->refs) > 1) 1227 btrfs_put_root(root); 1228 btrfs_put_root(root); 1229 } 1230 #endif 1231 } 1232 1233 static void free_global_roots(struct btrfs_fs_info *fs_info) 1234 { 1235 struct btrfs_root *root; 1236 struct rb_node *node; 1237 1238 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1239 root = rb_entry(node, struct btrfs_root, rb_node); 1240 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1241 btrfs_put_root(root); 1242 } 1243 } 1244 1245 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1246 { 1247 struct percpu_counter *em_counter = &fs_info->evictable_extent_maps; 1248 1249 if (fs_info->fs_devices) 1250 btrfs_close_devices(fs_info->fs_devices); 1251 percpu_counter_destroy(&fs_info->stats_read_blocks); 1252 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1253 percpu_counter_destroy(&fs_info->delalloc_bytes); 1254 percpu_counter_destroy(&fs_info->ordered_bytes); 1255 if (percpu_counter_initialized(em_counter)) 1256 ASSERT(percpu_counter_sum_positive(em_counter) == 0); 1257 percpu_counter_destroy(em_counter); 1258 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1259 btrfs_free_csum_hash(fs_info); 1260 btrfs_free_stripe_hash_table(fs_info); 1261 btrfs_free_ref_cache(fs_info); 1262 kfree(fs_info->balance_ctl); 1263 kfree(fs_info->delayed_root); 1264 free_global_roots(fs_info); 1265 btrfs_put_root(fs_info->tree_root); 1266 btrfs_put_root(fs_info->chunk_root); 1267 btrfs_put_root(fs_info->dev_root); 1268 btrfs_put_root(fs_info->quota_root); 1269 btrfs_put_root(fs_info->uuid_root); 1270 btrfs_put_root(fs_info->fs_root); 1271 btrfs_put_root(fs_info->data_reloc_root); 1272 btrfs_put_root(fs_info->block_group_root); 1273 btrfs_put_root(fs_info->stripe_root); 1274 btrfs_check_leaked_roots(fs_info); 1275 btrfs_extent_buffer_leak_debug_check(fs_info); 1276 kfree(fs_info->super_copy); 1277 kfree(fs_info->super_for_commit); 1278 kvfree(fs_info); 1279 } 1280 1281 1282 /* 1283 * Get an in-memory reference of a root structure. 1284 * 1285 * For essential trees like root/extent tree, we grab it from fs_info directly. 1286 * For subvolume trees, we check the cached filesystem roots first. If not 1287 * found, then read it from disk and add it to cached fs roots. 1288 * 1289 * Caller should release the root by calling btrfs_put_root() after the usage. 1290 * 1291 * NOTE: Reloc and log trees can't be read by this function as they share the 1292 * same root objectid. 1293 * 1294 * @objectid: root id 1295 * @anon_dev: preallocated anonymous block device number for new roots, 1296 * pass NULL for a new allocation. 1297 * @check_ref: whether to check root item references, If true, return -ENOENT 1298 * for orphan roots 1299 */ 1300 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1301 u64 objectid, dev_t *anon_dev, 1302 bool check_ref) 1303 { 1304 struct btrfs_root *root; 1305 struct btrfs_path *path; 1306 struct btrfs_key key; 1307 int ret; 1308 1309 root = btrfs_get_global_root(fs_info, objectid); 1310 if (root) 1311 return root; 1312 1313 /* 1314 * If we're called for non-subvolume trees, and above function didn't 1315 * find one, do not try to read it from disk. 1316 * 1317 * This is namely for free-space-tree and quota tree, which can change 1318 * at runtime and should only be grabbed from fs_info. 1319 */ 1320 if (!btrfs_is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) 1321 return ERR_PTR(-ENOENT); 1322 again: 1323 root = btrfs_lookup_fs_root(fs_info, objectid); 1324 if (root) { 1325 /* 1326 * Some other caller may have read out the newly inserted 1327 * subvolume already (for things like backref walk etc). Not 1328 * that common but still possible. In that case, we just need 1329 * to free the anon_dev. 1330 */ 1331 if (unlikely(anon_dev && *anon_dev)) { 1332 free_anon_bdev(*anon_dev); 1333 *anon_dev = 0; 1334 } 1335 1336 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1337 btrfs_put_root(root); 1338 return ERR_PTR(-ENOENT); 1339 } 1340 return root; 1341 } 1342 1343 key.objectid = objectid; 1344 key.type = BTRFS_ROOT_ITEM_KEY; 1345 key.offset = (u64)-1; 1346 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1347 if (IS_ERR(root)) 1348 return root; 1349 1350 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1351 ret = -ENOENT; 1352 goto fail; 1353 } 1354 1355 ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0); 1356 if (ret) 1357 goto fail; 1358 1359 path = btrfs_alloc_path(); 1360 if (!path) { 1361 ret = -ENOMEM; 1362 goto fail; 1363 } 1364 key.objectid = BTRFS_ORPHAN_OBJECTID; 1365 key.type = BTRFS_ORPHAN_ITEM_KEY; 1366 key.offset = objectid; 1367 1368 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1369 btrfs_free_path(path); 1370 if (ret < 0) 1371 goto fail; 1372 if (ret == 0) 1373 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1374 1375 ret = btrfs_insert_fs_root(fs_info, root); 1376 if (ret) { 1377 if (ret == -EEXIST) { 1378 btrfs_put_root(root); 1379 goto again; 1380 } 1381 goto fail; 1382 } 1383 return root; 1384 fail: 1385 /* 1386 * If our caller provided us an anonymous device, then it's his 1387 * responsibility to free it in case we fail. So we have to set our 1388 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1389 * and once again by our caller. 1390 */ 1391 if (anon_dev && *anon_dev) 1392 root->anon_dev = 0; 1393 btrfs_put_root(root); 1394 return ERR_PTR(ret); 1395 } 1396 1397 /* 1398 * Get in-memory reference of a root structure 1399 * 1400 * @objectid: tree objectid 1401 * @check_ref: if set, verify that the tree exists and the item has at least 1402 * one reference 1403 */ 1404 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1405 u64 objectid, bool check_ref) 1406 { 1407 return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref); 1408 } 1409 1410 /* 1411 * Get in-memory reference of a root structure, created as new, optionally pass 1412 * the anonymous block device id 1413 * 1414 * @objectid: tree objectid 1415 * @anon_dev: if NULL, allocate a new anonymous block device or use the 1416 * parameter value if not NULL 1417 */ 1418 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1419 u64 objectid, dev_t *anon_dev) 1420 { 1421 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1422 } 1423 1424 /* 1425 * Return a root for the given objectid. 1426 * 1427 * @fs_info: the fs_info 1428 * @objectid: the objectid we need to lookup 1429 * 1430 * This is exclusively used for backref walking, and exists specifically because 1431 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1432 * creation time, which means we may have to read the tree_root in order to look 1433 * up a fs root that is not in memory. If the root is not in memory we will 1434 * read the tree root commit root and look up the fs root from there. This is a 1435 * temporary root, it will not be inserted into the radix tree as it doesn't 1436 * have the most uptodate information, it'll simply be discarded once the 1437 * backref code is finished using the root. 1438 */ 1439 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1440 struct btrfs_path *path, 1441 u64 objectid) 1442 { 1443 struct btrfs_root *root; 1444 struct btrfs_key key; 1445 1446 ASSERT(path->search_commit_root && path->skip_locking); 1447 1448 /* 1449 * This can return -ENOENT if we ask for a root that doesn't exist, but 1450 * since this is called via the backref walking code we won't be looking 1451 * up a root that doesn't exist, unless there's corruption. So if root 1452 * != NULL just return it. 1453 */ 1454 root = btrfs_get_global_root(fs_info, objectid); 1455 if (root) 1456 return root; 1457 1458 root = btrfs_lookup_fs_root(fs_info, objectid); 1459 if (root) 1460 return root; 1461 1462 key.objectid = objectid; 1463 key.type = BTRFS_ROOT_ITEM_KEY; 1464 key.offset = (u64)-1; 1465 root = read_tree_root_path(fs_info->tree_root, path, &key); 1466 btrfs_release_path(path); 1467 1468 return root; 1469 } 1470 1471 static int cleaner_kthread(void *arg) 1472 { 1473 struct btrfs_fs_info *fs_info = arg; 1474 int again; 1475 1476 while (1) { 1477 again = 0; 1478 1479 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1480 1481 /* Make the cleaner go to sleep early. */ 1482 if (btrfs_need_cleaner_sleep(fs_info)) 1483 goto sleep; 1484 1485 /* 1486 * Do not do anything if we might cause open_ctree() to block 1487 * before we have finished mounting the filesystem. 1488 */ 1489 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1490 goto sleep; 1491 1492 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1493 goto sleep; 1494 1495 /* 1496 * Avoid the problem that we change the status of the fs 1497 * during the above check and trylock. 1498 */ 1499 if (btrfs_need_cleaner_sleep(fs_info)) { 1500 mutex_unlock(&fs_info->cleaner_mutex); 1501 goto sleep; 1502 } 1503 1504 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) 1505 btrfs_sysfs_feature_update(fs_info); 1506 1507 btrfs_run_delayed_iputs(fs_info); 1508 1509 again = btrfs_clean_one_deleted_snapshot(fs_info); 1510 mutex_unlock(&fs_info->cleaner_mutex); 1511 1512 /* 1513 * The defragger has dealt with the R/O remount and umount, 1514 * needn't do anything special here. 1515 */ 1516 btrfs_run_defrag_inodes(fs_info); 1517 1518 /* 1519 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1520 * with relocation (btrfs_relocate_chunk) and relocation 1521 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1522 * after acquiring fs_info->reclaim_bgs_lock. So we 1523 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1524 * unused block groups. 1525 */ 1526 btrfs_delete_unused_bgs(fs_info); 1527 1528 /* 1529 * Reclaim block groups in the reclaim_bgs list after we deleted 1530 * all unused block_groups. This possibly gives us some more free 1531 * space. 1532 */ 1533 btrfs_reclaim_bgs(fs_info); 1534 sleep: 1535 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1536 if (kthread_should_park()) 1537 kthread_parkme(); 1538 if (kthread_should_stop()) 1539 return 0; 1540 if (!again) { 1541 set_current_state(TASK_INTERRUPTIBLE); 1542 schedule(); 1543 __set_current_state(TASK_RUNNING); 1544 } 1545 } 1546 } 1547 1548 static int transaction_kthread(void *arg) 1549 { 1550 struct btrfs_root *root = arg; 1551 struct btrfs_fs_info *fs_info = root->fs_info; 1552 struct btrfs_trans_handle *trans; 1553 struct btrfs_transaction *cur; 1554 u64 transid; 1555 time64_t delta; 1556 unsigned long delay; 1557 bool cannot_commit; 1558 1559 do { 1560 cannot_commit = false; 1561 delay = secs_to_jiffies(fs_info->commit_interval); 1562 mutex_lock(&fs_info->transaction_kthread_mutex); 1563 1564 spin_lock(&fs_info->trans_lock); 1565 cur = fs_info->running_transaction; 1566 if (!cur) { 1567 spin_unlock(&fs_info->trans_lock); 1568 goto sleep; 1569 } 1570 1571 delta = ktime_get_seconds() - cur->start_time; 1572 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1573 cur->state < TRANS_STATE_COMMIT_PREP && 1574 delta < fs_info->commit_interval) { 1575 spin_unlock(&fs_info->trans_lock); 1576 delay -= secs_to_jiffies(delta - 1); 1577 delay = min(delay, 1578 secs_to_jiffies(fs_info->commit_interval)); 1579 goto sleep; 1580 } 1581 transid = cur->transid; 1582 spin_unlock(&fs_info->trans_lock); 1583 1584 /* If the file system is aborted, this will always fail. */ 1585 trans = btrfs_attach_transaction(root); 1586 if (IS_ERR(trans)) { 1587 if (PTR_ERR(trans) != -ENOENT) 1588 cannot_commit = true; 1589 goto sleep; 1590 } 1591 if (transid == trans->transid) { 1592 btrfs_commit_transaction(trans); 1593 } else { 1594 btrfs_end_transaction(trans); 1595 } 1596 sleep: 1597 wake_up_process(fs_info->cleaner_kthread); 1598 mutex_unlock(&fs_info->transaction_kthread_mutex); 1599 1600 if (BTRFS_FS_ERROR(fs_info)) 1601 btrfs_cleanup_transaction(fs_info); 1602 if (!kthread_should_stop() && 1603 (!btrfs_transaction_blocked(fs_info) || 1604 cannot_commit)) 1605 schedule_timeout_interruptible(delay); 1606 } while (!kthread_should_stop()); 1607 return 0; 1608 } 1609 1610 /* 1611 * This will find the highest generation in the array of root backups. The 1612 * index of the highest array is returned, or -EINVAL if we can't find 1613 * anything. 1614 * 1615 * We check to make sure the array is valid by comparing the 1616 * generation of the latest root in the array with the generation 1617 * in the super block. If they don't match we pitch it. 1618 */ 1619 static int find_newest_super_backup(struct btrfs_fs_info *info) 1620 { 1621 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1622 u64 cur; 1623 struct btrfs_root_backup *root_backup; 1624 int i; 1625 1626 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1627 root_backup = info->super_copy->super_roots + i; 1628 cur = btrfs_backup_tree_root_gen(root_backup); 1629 if (cur == newest_gen) 1630 return i; 1631 } 1632 1633 return -EINVAL; 1634 } 1635 1636 /* 1637 * copy all the root pointers into the super backup array. 1638 * this will bump the backup pointer by one when it is 1639 * done 1640 */ 1641 static void backup_super_roots(struct btrfs_fs_info *info) 1642 { 1643 const int next_backup = info->backup_root_index; 1644 struct btrfs_root_backup *root_backup; 1645 1646 root_backup = info->super_for_commit->super_roots + next_backup; 1647 1648 /* 1649 * make sure all of our padding and empty slots get zero filled 1650 * regardless of which ones we use today 1651 */ 1652 memset(root_backup, 0, sizeof(*root_backup)); 1653 1654 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1655 1656 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1657 btrfs_set_backup_tree_root_gen(root_backup, 1658 btrfs_header_generation(info->tree_root->node)); 1659 1660 btrfs_set_backup_tree_root_level(root_backup, 1661 btrfs_header_level(info->tree_root->node)); 1662 1663 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1664 btrfs_set_backup_chunk_root_gen(root_backup, 1665 btrfs_header_generation(info->chunk_root->node)); 1666 btrfs_set_backup_chunk_root_level(root_backup, 1667 btrfs_header_level(info->chunk_root->node)); 1668 1669 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1670 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1671 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1672 1673 btrfs_set_backup_extent_root(root_backup, 1674 extent_root->node->start); 1675 btrfs_set_backup_extent_root_gen(root_backup, 1676 btrfs_header_generation(extent_root->node)); 1677 btrfs_set_backup_extent_root_level(root_backup, 1678 btrfs_header_level(extent_root->node)); 1679 1680 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1681 btrfs_set_backup_csum_root_gen(root_backup, 1682 btrfs_header_generation(csum_root->node)); 1683 btrfs_set_backup_csum_root_level(root_backup, 1684 btrfs_header_level(csum_root->node)); 1685 } 1686 1687 /* 1688 * we might commit during log recovery, which happens before we set 1689 * the fs_root. Make sure it is valid before we fill it in. 1690 */ 1691 if (info->fs_root && info->fs_root->node) { 1692 btrfs_set_backup_fs_root(root_backup, 1693 info->fs_root->node->start); 1694 btrfs_set_backup_fs_root_gen(root_backup, 1695 btrfs_header_generation(info->fs_root->node)); 1696 btrfs_set_backup_fs_root_level(root_backup, 1697 btrfs_header_level(info->fs_root->node)); 1698 } 1699 1700 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1701 btrfs_set_backup_dev_root_gen(root_backup, 1702 btrfs_header_generation(info->dev_root->node)); 1703 btrfs_set_backup_dev_root_level(root_backup, 1704 btrfs_header_level(info->dev_root->node)); 1705 1706 btrfs_set_backup_total_bytes(root_backup, 1707 btrfs_super_total_bytes(info->super_copy)); 1708 btrfs_set_backup_bytes_used(root_backup, 1709 btrfs_super_bytes_used(info->super_copy)); 1710 btrfs_set_backup_num_devices(root_backup, 1711 btrfs_super_num_devices(info->super_copy)); 1712 1713 /* 1714 * if we don't copy this out to the super_copy, it won't get remembered 1715 * for the next commit 1716 */ 1717 memcpy(&info->super_copy->super_roots, 1718 &info->super_for_commit->super_roots, 1719 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1720 } 1721 1722 /* 1723 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio 1724 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1725 * 1726 * @fs_info: filesystem whose backup roots need to be read 1727 * @priority: priority of backup root required 1728 * 1729 * Returns backup root index on success and -EINVAL otherwise. 1730 */ 1731 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1732 { 1733 int backup_index = find_newest_super_backup(fs_info); 1734 struct btrfs_super_block *super = fs_info->super_copy; 1735 struct btrfs_root_backup *root_backup; 1736 1737 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1738 if (priority == 0) 1739 return backup_index; 1740 1741 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1742 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1743 } else { 1744 return -EINVAL; 1745 } 1746 1747 root_backup = super->super_roots + backup_index; 1748 1749 btrfs_set_super_generation(super, 1750 btrfs_backup_tree_root_gen(root_backup)); 1751 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1752 btrfs_set_super_root_level(super, 1753 btrfs_backup_tree_root_level(root_backup)); 1754 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1755 1756 /* 1757 * Fixme: the total bytes and num_devices need to match or we should 1758 * need a fsck 1759 */ 1760 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1761 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1762 1763 return backup_index; 1764 } 1765 1766 /* helper to cleanup workers */ 1767 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1768 { 1769 btrfs_destroy_workqueue(fs_info->fixup_workers); 1770 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1771 btrfs_destroy_workqueue(fs_info->workers); 1772 if (fs_info->endio_workers) 1773 destroy_workqueue(fs_info->endio_workers); 1774 if (fs_info->rmw_workers) 1775 destroy_workqueue(fs_info->rmw_workers); 1776 if (fs_info->compressed_write_workers) 1777 destroy_workqueue(fs_info->compressed_write_workers); 1778 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1779 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1780 btrfs_destroy_workqueue(fs_info->delayed_workers); 1781 btrfs_destroy_workqueue(fs_info->caching_workers); 1782 btrfs_destroy_workqueue(fs_info->flush_workers); 1783 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1784 if (fs_info->discard_ctl.discard_workers) 1785 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1786 /* 1787 * Now that all other work queues are destroyed, we can safely destroy 1788 * the queues used for metadata I/O, since tasks from those other work 1789 * queues can do metadata I/O operations. 1790 */ 1791 if (fs_info->endio_meta_workers) 1792 destroy_workqueue(fs_info->endio_meta_workers); 1793 } 1794 1795 static void free_root_extent_buffers(struct btrfs_root *root) 1796 { 1797 if (root) { 1798 free_extent_buffer(root->node); 1799 free_extent_buffer(root->commit_root); 1800 root->node = NULL; 1801 root->commit_root = NULL; 1802 } 1803 } 1804 1805 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 1806 { 1807 struct btrfs_root *root, *tmp; 1808 1809 rbtree_postorder_for_each_entry_safe(root, tmp, 1810 &fs_info->global_root_tree, 1811 rb_node) 1812 free_root_extent_buffers(root); 1813 } 1814 1815 /* helper to cleanup tree roots */ 1816 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1817 { 1818 free_root_extent_buffers(info->tree_root); 1819 1820 free_global_root_pointers(info); 1821 free_root_extent_buffers(info->dev_root); 1822 free_root_extent_buffers(info->quota_root); 1823 free_root_extent_buffers(info->uuid_root); 1824 free_root_extent_buffers(info->fs_root); 1825 free_root_extent_buffers(info->data_reloc_root); 1826 free_root_extent_buffers(info->block_group_root); 1827 free_root_extent_buffers(info->stripe_root); 1828 if (free_chunk_root) 1829 free_root_extent_buffers(info->chunk_root); 1830 } 1831 1832 void btrfs_put_root(struct btrfs_root *root) 1833 { 1834 if (!root) 1835 return; 1836 1837 if (refcount_dec_and_test(&root->refs)) { 1838 if (WARN_ON(!xa_empty(&root->inodes))) 1839 xa_destroy(&root->inodes); 1840 if (WARN_ON(!xa_empty(&root->delayed_nodes))) 1841 xa_destroy(&root->delayed_nodes); 1842 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 1843 if (root->anon_dev) 1844 free_anon_bdev(root->anon_dev); 1845 free_root_extent_buffers(root); 1846 #ifdef CONFIG_BTRFS_DEBUG 1847 spin_lock(&root->fs_info->fs_roots_radix_lock); 1848 list_del_init(&root->leak_list); 1849 spin_unlock(&root->fs_info->fs_roots_radix_lock); 1850 #endif 1851 kfree(root); 1852 } 1853 } 1854 1855 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 1856 { 1857 int ret; 1858 struct btrfs_root *gang[8]; 1859 int i; 1860 1861 while (!list_empty(&fs_info->dead_roots)) { 1862 gang[0] = list_first_entry(&fs_info->dead_roots, 1863 struct btrfs_root, root_list); 1864 list_del(&gang[0]->root_list); 1865 1866 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 1867 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 1868 btrfs_put_root(gang[0]); 1869 } 1870 1871 while (1) { 1872 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 1873 (void **)gang, 0, 1874 ARRAY_SIZE(gang)); 1875 if (!ret) 1876 break; 1877 for (i = 0; i < ret; i++) 1878 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 1879 } 1880 } 1881 1882 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 1883 { 1884 mutex_init(&fs_info->scrub_lock); 1885 atomic_set(&fs_info->scrubs_running, 0); 1886 atomic_set(&fs_info->scrub_pause_req, 0); 1887 atomic_set(&fs_info->scrubs_paused, 0); 1888 atomic_set(&fs_info->scrub_cancel_req, 0); 1889 init_waitqueue_head(&fs_info->scrub_pause_wait); 1890 refcount_set(&fs_info->scrub_workers_refcnt, 0); 1891 } 1892 1893 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 1894 { 1895 spin_lock_init(&fs_info->balance_lock); 1896 mutex_init(&fs_info->balance_mutex); 1897 atomic_set(&fs_info->balance_pause_req, 0); 1898 atomic_set(&fs_info->balance_cancel_req, 0); 1899 fs_info->balance_ctl = NULL; 1900 init_waitqueue_head(&fs_info->balance_wait_q); 1901 atomic_set(&fs_info->reloc_cancel_req, 0); 1902 } 1903 1904 static int btrfs_init_btree_inode(struct super_block *sb) 1905 { 1906 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1907 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 1908 fs_info->tree_root); 1909 struct inode *inode; 1910 1911 inode = new_inode(sb); 1912 if (!inode) 1913 return -ENOMEM; 1914 1915 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID); 1916 set_nlink(inode, 1); 1917 /* 1918 * we set the i_size on the btree inode to the max possible int. 1919 * the real end of the address space is determined by all of 1920 * the devices in the system 1921 */ 1922 inode->i_size = OFFSET_MAX; 1923 inode->i_mapping->a_ops = &btree_aops; 1924 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); 1925 1926 btrfs_extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 1927 IO_TREE_BTREE_INODE_IO); 1928 btrfs_extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 1929 1930 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 1931 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 1932 __insert_inode_hash(inode, hash); 1933 set_bit(AS_KERNEL_FILE, &inode->i_mapping->flags); 1934 fs_info->btree_inode = inode; 1935 1936 return 0; 1937 } 1938 1939 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 1940 { 1941 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 1942 init_rwsem(&fs_info->dev_replace.rwsem); 1943 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 1944 } 1945 1946 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 1947 { 1948 spin_lock_init(&fs_info->qgroup_lock); 1949 mutex_init(&fs_info->qgroup_ioctl_lock); 1950 fs_info->qgroup_tree = RB_ROOT; 1951 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 1952 fs_info->qgroup_seq = 1; 1953 fs_info->qgroup_rescan_running = false; 1954 fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT; 1955 mutex_init(&fs_info->qgroup_rescan_lock); 1956 } 1957 1958 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 1959 { 1960 u32 max_active = fs_info->thread_pool_size; 1961 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 1962 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE; 1963 1964 fs_info->workers = 1965 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 1966 1967 fs_info->delalloc_workers = 1968 btrfs_alloc_workqueue(fs_info, "delalloc", 1969 flags, max_active, 2); 1970 1971 fs_info->flush_workers = 1972 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 1973 flags, max_active, 0); 1974 1975 fs_info->caching_workers = 1976 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 1977 1978 fs_info->fixup_workers = 1979 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags); 1980 1981 fs_info->endio_workers = 1982 alloc_workqueue("btrfs-endio", flags, max_active); 1983 fs_info->endio_meta_workers = 1984 alloc_workqueue("btrfs-endio-meta", flags, max_active); 1985 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 1986 fs_info->endio_write_workers = 1987 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 1988 max_active, 2); 1989 fs_info->compressed_write_workers = 1990 alloc_workqueue("btrfs-compressed-write", flags, max_active); 1991 fs_info->endio_freespace_worker = 1992 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 1993 max_active, 0); 1994 fs_info->delayed_workers = 1995 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 1996 max_active, 0); 1997 fs_info->qgroup_rescan_workers = 1998 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan", 1999 ordered_flags); 2000 fs_info->discard_ctl.discard_workers = 2001 alloc_ordered_workqueue("btrfs-discard", WQ_FREEZABLE); 2002 2003 if (!(fs_info->workers && 2004 fs_info->delalloc_workers && fs_info->flush_workers && 2005 fs_info->endio_workers && fs_info->endio_meta_workers && 2006 fs_info->compressed_write_workers && 2007 fs_info->endio_write_workers && 2008 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2009 fs_info->caching_workers && fs_info->fixup_workers && 2010 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2011 fs_info->discard_ctl.discard_workers)) { 2012 return -ENOMEM; 2013 } 2014 2015 return 0; 2016 } 2017 2018 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2019 { 2020 struct crypto_shash *csum_shash; 2021 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2022 2023 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2024 2025 if (IS_ERR(csum_shash)) { 2026 btrfs_err(fs_info, "error allocating %s hash for checksum", 2027 csum_driver); 2028 return PTR_ERR(csum_shash); 2029 } 2030 2031 fs_info->csum_shash = csum_shash; 2032 2033 /* Check if the checksum implementation is a fast accelerated one. */ 2034 switch (csum_type) { 2035 case BTRFS_CSUM_TYPE_CRC32: 2036 if (crc32_optimizations() & CRC32C_OPTIMIZATION) 2037 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2038 break; 2039 case BTRFS_CSUM_TYPE_XXHASH: 2040 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2041 break; 2042 default: 2043 break; 2044 } 2045 2046 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2047 btrfs_super_csum_name(csum_type), 2048 crypto_shash_driver_name(csum_shash)); 2049 return 0; 2050 } 2051 2052 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2053 struct btrfs_fs_devices *fs_devices) 2054 { 2055 int ret; 2056 struct btrfs_tree_parent_check check = { 0 }; 2057 struct btrfs_root *log_tree_root; 2058 struct btrfs_super_block *disk_super = fs_info->super_copy; 2059 u64 bytenr = btrfs_super_log_root(disk_super); 2060 int level = btrfs_super_log_root_level(disk_super); 2061 2062 if (fs_devices->rw_devices == 0) { 2063 btrfs_warn(fs_info, "log replay required on RO media"); 2064 return -EIO; 2065 } 2066 2067 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2068 GFP_KERNEL); 2069 if (!log_tree_root) 2070 return -ENOMEM; 2071 2072 check.level = level; 2073 check.transid = fs_info->generation + 1; 2074 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2075 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2076 if (IS_ERR(log_tree_root->node)) { 2077 btrfs_warn(fs_info, "failed to read log tree"); 2078 ret = PTR_ERR(log_tree_root->node); 2079 log_tree_root->node = NULL; 2080 btrfs_put_root(log_tree_root); 2081 return ret; 2082 } 2083 if (!extent_buffer_uptodate(log_tree_root->node)) { 2084 btrfs_err(fs_info, "failed to read log tree"); 2085 btrfs_put_root(log_tree_root); 2086 return -EIO; 2087 } 2088 2089 /* returns with log_tree_root freed on success */ 2090 ret = btrfs_recover_log_trees(log_tree_root); 2091 if (ret) { 2092 btrfs_handle_fs_error(fs_info, ret, 2093 "Failed to recover log tree"); 2094 btrfs_put_root(log_tree_root); 2095 return ret; 2096 } 2097 2098 if (sb_rdonly(fs_info->sb)) { 2099 ret = btrfs_commit_super(fs_info); 2100 if (ret) 2101 return ret; 2102 } 2103 2104 return 0; 2105 } 2106 2107 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2108 struct btrfs_path *path, u64 objectid, 2109 const char *name) 2110 { 2111 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2112 struct btrfs_root *root; 2113 u64 max_global_id = 0; 2114 int ret; 2115 struct btrfs_key key = { 2116 .objectid = objectid, 2117 .type = BTRFS_ROOT_ITEM_KEY, 2118 .offset = 0, 2119 }; 2120 bool found = false; 2121 2122 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2123 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2124 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2125 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); 2126 return 0; 2127 } 2128 2129 while (1) { 2130 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2131 if (ret < 0) 2132 break; 2133 2134 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2135 ret = btrfs_next_leaf(tree_root, path); 2136 if (ret) { 2137 if (ret > 0) 2138 ret = 0; 2139 break; 2140 } 2141 } 2142 ret = 0; 2143 2144 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2145 if (key.objectid != objectid) 2146 break; 2147 btrfs_release_path(path); 2148 2149 /* 2150 * Just worry about this for extent tree, it'll be the same for 2151 * everybody. 2152 */ 2153 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2154 max_global_id = max(max_global_id, key.offset); 2155 2156 found = true; 2157 root = read_tree_root_path(tree_root, path, &key); 2158 if (IS_ERR(root)) { 2159 ret = PTR_ERR(root); 2160 break; 2161 } 2162 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2163 ret = btrfs_global_root_insert(root); 2164 if (ret) { 2165 btrfs_put_root(root); 2166 break; 2167 } 2168 key.offset++; 2169 } 2170 btrfs_release_path(path); 2171 2172 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2173 fs_info->nr_global_roots = max_global_id + 1; 2174 2175 if (!found || ret) { 2176 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2177 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); 2178 2179 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2180 ret = ret ? ret : -ENOENT; 2181 else 2182 ret = 0; 2183 btrfs_err(fs_info, "failed to load root %s", name); 2184 } 2185 return ret; 2186 } 2187 2188 static int load_global_roots(struct btrfs_root *tree_root) 2189 { 2190 BTRFS_PATH_AUTO_FREE(path); 2191 int ret; 2192 2193 path = btrfs_alloc_path(); 2194 if (!path) 2195 return -ENOMEM; 2196 2197 ret = load_global_roots_objectid(tree_root, path, 2198 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2199 if (ret) 2200 return ret; 2201 ret = load_global_roots_objectid(tree_root, path, 2202 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2203 if (ret) 2204 return ret; 2205 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2206 return ret; 2207 ret = load_global_roots_objectid(tree_root, path, 2208 BTRFS_FREE_SPACE_TREE_OBJECTID, 2209 "free space"); 2210 2211 return ret; 2212 } 2213 2214 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2215 { 2216 struct btrfs_root *tree_root = fs_info->tree_root; 2217 struct btrfs_root *root; 2218 struct btrfs_key location; 2219 int ret; 2220 2221 ASSERT(fs_info->tree_root); 2222 2223 ret = load_global_roots(tree_root); 2224 if (ret) 2225 return ret; 2226 2227 location.type = BTRFS_ROOT_ITEM_KEY; 2228 location.offset = 0; 2229 2230 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2231 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2232 root = btrfs_read_tree_root(tree_root, &location); 2233 if (IS_ERR(root)) { 2234 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2235 ret = PTR_ERR(root); 2236 goto out; 2237 } 2238 } else { 2239 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2240 fs_info->block_group_root = root; 2241 } 2242 } 2243 2244 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2245 root = btrfs_read_tree_root(tree_root, &location); 2246 if (IS_ERR(root)) { 2247 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2248 ret = PTR_ERR(root); 2249 goto out; 2250 } 2251 } else { 2252 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2253 fs_info->dev_root = root; 2254 } 2255 /* Initialize fs_info for all devices in any case */ 2256 ret = btrfs_init_devices_late(fs_info); 2257 if (ret) 2258 goto out; 2259 2260 /* 2261 * This tree can share blocks with some other fs tree during relocation 2262 * and we need a proper setup by btrfs_get_fs_root 2263 */ 2264 root = btrfs_get_fs_root(tree_root->fs_info, 2265 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2266 if (IS_ERR(root)) { 2267 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2268 ret = PTR_ERR(root); 2269 goto out; 2270 } 2271 } else { 2272 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2273 fs_info->data_reloc_root = root; 2274 } 2275 2276 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2277 root = btrfs_read_tree_root(tree_root, &location); 2278 if (!IS_ERR(root)) { 2279 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2280 fs_info->quota_root = root; 2281 } 2282 2283 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2284 root = btrfs_read_tree_root(tree_root, &location); 2285 if (IS_ERR(root)) { 2286 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2287 ret = PTR_ERR(root); 2288 if (ret != -ENOENT) 2289 goto out; 2290 } 2291 } else { 2292 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2293 fs_info->uuid_root = root; 2294 } 2295 2296 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) { 2297 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID; 2298 root = btrfs_read_tree_root(tree_root, &location); 2299 if (IS_ERR(root)) { 2300 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2301 ret = PTR_ERR(root); 2302 goto out; 2303 } 2304 } else { 2305 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2306 fs_info->stripe_root = root; 2307 } 2308 } 2309 2310 return 0; 2311 out: 2312 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2313 location.objectid, ret); 2314 return ret; 2315 } 2316 2317 static int validate_sys_chunk_array(const struct btrfs_fs_info *fs_info, 2318 const struct btrfs_super_block *sb) 2319 { 2320 unsigned int cur = 0; /* Offset inside the sys chunk array */ 2321 /* 2322 * At sb read time, fs_info is not fully initialized. Thus we have 2323 * to use super block sectorsize, which should have been validated. 2324 */ 2325 const u32 sectorsize = btrfs_super_sectorsize(sb); 2326 u32 sys_array_size = btrfs_super_sys_array_size(sb); 2327 2328 if (sys_array_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2329 btrfs_err(fs_info, "system chunk array too big %u > %u", 2330 sys_array_size, BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2331 return -EUCLEAN; 2332 } 2333 2334 while (cur < sys_array_size) { 2335 struct btrfs_disk_key *disk_key; 2336 struct btrfs_chunk *chunk; 2337 struct btrfs_key key; 2338 u64 type; 2339 u16 num_stripes; 2340 u32 len; 2341 int ret; 2342 2343 disk_key = (struct btrfs_disk_key *)(sb->sys_chunk_array + cur); 2344 len = sizeof(*disk_key); 2345 2346 if (cur + len > sys_array_size) 2347 goto short_read; 2348 cur += len; 2349 2350 btrfs_disk_key_to_cpu(&key, disk_key); 2351 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 2352 btrfs_err(fs_info, 2353 "unexpected item type %u in sys_array at offset %u", 2354 key.type, cur); 2355 return -EUCLEAN; 2356 } 2357 chunk = (struct btrfs_chunk *)(sb->sys_chunk_array + cur); 2358 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2359 if (cur + btrfs_chunk_item_size(num_stripes) > sys_array_size) 2360 goto short_read; 2361 type = btrfs_stack_chunk_type(chunk); 2362 if (!(type & BTRFS_BLOCK_GROUP_SYSTEM)) { 2363 btrfs_err(fs_info, 2364 "invalid chunk type %llu in sys_array at offset %u", 2365 type, cur); 2366 return -EUCLEAN; 2367 } 2368 ret = btrfs_check_chunk_valid(fs_info, NULL, chunk, key.offset, 2369 sectorsize); 2370 if (ret < 0) 2371 return ret; 2372 cur += btrfs_chunk_item_size(num_stripes); 2373 } 2374 return 0; 2375 short_read: 2376 btrfs_err(fs_info, 2377 "super block sys chunk array short read, cur=%u sys_array_size=%u", 2378 cur, sys_array_size); 2379 return -EUCLEAN; 2380 } 2381 2382 /* 2383 * Real super block validation 2384 * NOTE: super csum type and incompat features will not be checked here. 2385 * 2386 * @sb: super block to check 2387 * @mirror_num: the super block number to check its bytenr: 2388 * 0 the primary (1st) sb 2389 * 1, 2 2nd and 3rd backup copy 2390 * -1 skip bytenr check 2391 */ 2392 int btrfs_validate_super(const struct btrfs_fs_info *fs_info, 2393 const struct btrfs_super_block *sb, int mirror_num) 2394 { 2395 u64 nodesize = btrfs_super_nodesize(sb); 2396 u64 sectorsize = btrfs_super_sectorsize(sb); 2397 int ret = 0; 2398 const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS); 2399 2400 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2401 btrfs_err(fs_info, "no valid FS found"); 2402 ret = -EINVAL; 2403 } 2404 if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) { 2405 if (!ignore_flags) { 2406 btrfs_err(fs_info, 2407 "unrecognized or unsupported super flag 0x%llx", 2408 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2409 ret = -EINVAL; 2410 } else { 2411 btrfs_info(fs_info, 2412 "unrecognized or unsupported super flags: 0x%llx, ignored", 2413 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2414 } 2415 } 2416 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2417 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2418 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2419 ret = -EINVAL; 2420 } 2421 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2422 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2423 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2424 ret = -EINVAL; 2425 } 2426 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2427 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2428 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2429 ret = -EINVAL; 2430 } 2431 2432 /* 2433 * Check sectorsize and nodesize first, other check will need it. 2434 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2435 */ 2436 if (!is_power_of_2(sectorsize) || sectorsize < BTRFS_MIN_BLOCKSIZE || 2437 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2438 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2439 ret = -EINVAL; 2440 } 2441 2442 /* 2443 * We only support at most 3 sectorsizes: 4K, PAGE_SIZE, MIN_BLOCKSIZE. 2444 * 2445 * For 4K page sized systems with non-debug builds, all 3 matches (4K). 2446 * For 4K page sized systems with debug builds, there are two block sizes 2447 * supported. (4K and 2K) 2448 * 2449 * We can support 16K sectorsize with 64K page size without problem, 2450 * but such sectorsize/pagesize combination doesn't make much sense. 2451 * 4K will be our future standard, PAGE_SIZE is supported from the very 2452 * beginning. 2453 */ 2454 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && 2455 sectorsize != PAGE_SIZE && 2456 sectorsize != BTRFS_MIN_BLOCKSIZE)) { 2457 btrfs_err(fs_info, 2458 "sectorsize %llu not yet supported for page size %lu", 2459 sectorsize, PAGE_SIZE); 2460 ret = -EINVAL; 2461 } 2462 2463 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2464 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2465 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2466 ret = -EINVAL; 2467 } 2468 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2469 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2470 le32_to_cpu(sb->__unused_leafsize), nodesize); 2471 ret = -EINVAL; 2472 } 2473 2474 /* Root alignment check */ 2475 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2476 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2477 btrfs_super_root(sb)); 2478 ret = -EINVAL; 2479 } 2480 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2481 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2482 btrfs_super_chunk_root(sb)); 2483 ret = -EINVAL; 2484 } 2485 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2486 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2487 btrfs_super_log_root(sb)); 2488 ret = -EINVAL; 2489 } 2490 2491 if (!fs_info->fs_devices->temp_fsid && 2492 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) { 2493 btrfs_err(fs_info, 2494 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2495 sb->fsid, fs_info->fs_devices->fsid); 2496 ret = -EINVAL; 2497 } 2498 2499 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb), 2500 BTRFS_FSID_SIZE) != 0) { 2501 btrfs_err(fs_info, 2502 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2503 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid); 2504 ret = -EINVAL; 2505 } 2506 2507 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2508 BTRFS_FSID_SIZE) != 0) { 2509 btrfs_err(fs_info, 2510 "dev_item UUID does not match metadata fsid: %pU != %pU", 2511 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2512 ret = -EINVAL; 2513 } 2514 2515 /* 2516 * Artificial requirement for block-group-tree to force newer features 2517 * (free-space-tree, no-holes) so the test matrix is smaller. 2518 */ 2519 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2520 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2521 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2522 btrfs_err(fs_info, 2523 "block-group-tree feature requires free-space-tree and no-holes"); 2524 ret = -EINVAL; 2525 } 2526 2527 /* 2528 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2529 * done later 2530 */ 2531 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2532 btrfs_err(fs_info, "bytes_used is too small %llu", 2533 btrfs_super_bytes_used(sb)); 2534 ret = -EINVAL; 2535 } 2536 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2537 btrfs_err(fs_info, "invalid stripesize %u", 2538 btrfs_super_stripesize(sb)); 2539 ret = -EINVAL; 2540 } 2541 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2542 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2543 btrfs_super_num_devices(sb)); 2544 if (btrfs_super_num_devices(sb) == 0) { 2545 btrfs_err(fs_info, "number of devices is 0"); 2546 ret = -EINVAL; 2547 } 2548 2549 if (mirror_num >= 0 && 2550 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2551 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2552 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2553 ret = -EINVAL; 2554 } 2555 2556 if (ret) 2557 return ret; 2558 2559 ret = validate_sys_chunk_array(fs_info, sb); 2560 2561 /* 2562 * Obvious sys_chunk_array corruptions, it must hold at least one key 2563 * and one chunk 2564 */ 2565 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2566 btrfs_err(fs_info, "system chunk array too big %u > %u", 2567 btrfs_super_sys_array_size(sb), 2568 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2569 ret = -EINVAL; 2570 } 2571 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2572 + sizeof(struct btrfs_chunk)) { 2573 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2574 btrfs_super_sys_array_size(sb), 2575 sizeof(struct btrfs_disk_key) 2576 + sizeof(struct btrfs_chunk)); 2577 ret = -EINVAL; 2578 } 2579 2580 /* 2581 * The generation is a global counter, we'll trust it more than the others 2582 * but it's still possible that it's the one that's wrong. 2583 */ 2584 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2585 btrfs_warn(fs_info, 2586 "suspicious: generation < chunk_root_generation: %llu < %llu", 2587 btrfs_super_generation(sb), 2588 btrfs_super_chunk_root_generation(sb)); 2589 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2590 && btrfs_super_cache_generation(sb) != (u64)-1) 2591 btrfs_warn(fs_info, 2592 "suspicious: generation < cache_generation: %llu < %llu", 2593 btrfs_super_generation(sb), 2594 btrfs_super_cache_generation(sb)); 2595 2596 return ret; 2597 } 2598 2599 /* 2600 * Validation of super block at mount time. 2601 * Some checks already done early at mount time, like csum type and incompat 2602 * flags will be skipped. 2603 */ 2604 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2605 { 2606 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2607 } 2608 2609 /* 2610 * Validation of super block at write time. 2611 * Some checks like bytenr check will be skipped as their values will be 2612 * overwritten soon. 2613 * Extra checks like csum type and incompat flags will be done here. 2614 */ 2615 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2616 struct btrfs_super_block *sb) 2617 { 2618 int ret; 2619 2620 ret = btrfs_validate_super(fs_info, sb, -1); 2621 if (ret < 0) 2622 goto out; 2623 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2624 ret = -EUCLEAN; 2625 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2626 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2627 goto out; 2628 } 2629 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2630 ret = -EUCLEAN; 2631 btrfs_err(fs_info, 2632 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2633 btrfs_super_incompat_flags(sb), 2634 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2635 goto out; 2636 } 2637 out: 2638 if (ret < 0) 2639 btrfs_err(fs_info, 2640 "super block corruption detected before writing it to disk"); 2641 return ret; 2642 } 2643 2644 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2645 { 2646 struct btrfs_tree_parent_check check = { 2647 .level = level, 2648 .transid = gen, 2649 .owner_root = btrfs_root_id(root) 2650 }; 2651 int ret = 0; 2652 2653 root->node = read_tree_block(root->fs_info, bytenr, &check); 2654 if (IS_ERR(root->node)) { 2655 ret = PTR_ERR(root->node); 2656 root->node = NULL; 2657 return ret; 2658 } 2659 if (!extent_buffer_uptodate(root->node)) { 2660 free_extent_buffer(root->node); 2661 root->node = NULL; 2662 return -EIO; 2663 } 2664 2665 btrfs_set_root_node(&root->root_item, root->node); 2666 root->commit_root = btrfs_root_node(root); 2667 btrfs_set_root_refs(&root->root_item, 1); 2668 return ret; 2669 } 2670 2671 static int load_important_roots(struct btrfs_fs_info *fs_info) 2672 { 2673 struct btrfs_super_block *sb = fs_info->super_copy; 2674 u64 gen, bytenr; 2675 int level, ret; 2676 2677 bytenr = btrfs_super_root(sb); 2678 gen = btrfs_super_generation(sb); 2679 level = btrfs_super_root_level(sb); 2680 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2681 if (ret) { 2682 btrfs_warn(fs_info, "couldn't read tree root"); 2683 return ret; 2684 } 2685 return 0; 2686 } 2687 2688 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2689 { 2690 int backup_index = find_newest_super_backup(fs_info); 2691 struct btrfs_super_block *sb = fs_info->super_copy; 2692 struct btrfs_root *tree_root = fs_info->tree_root; 2693 bool handle_error = false; 2694 int ret = 0; 2695 int i; 2696 2697 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2698 if (handle_error) { 2699 if (!IS_ERR(tree_root->node)) 2700 free_extent_buffer(tree_root->node); 2701 tree_root->node = NULL; 2702 2703 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2704 break; 2705 2706 free_root_pointers(fs_info, 0); 2707 2708 /* 2709 * Don't use the log in recovery mode, it won't be 2710 * valid 2711 */ 2712 btrfs_set_super_log_root(sb, 0); 2713 2714 btrfs_warn(fs_info, "try to load backup roots slot %d", i); 2715 ret = read_backup_root(fs_info, i); 2716 backup_index = ret; 2717 if (ret < 0) 2718 return ret; 2719 } 2720 2721 ret = load_important_roots(fs_info); 2722 if (ret) { 2723 handle_error = true; 2724 continue; 2725 } 2726 2727 /* 2728 * No need to hold btrfs_root::objectid_mutex since the fs 2729 * hasn't been fully initialised and we are the only user 2730 */ 2731 ret = btrfs_init_root_free_objectid(tree_root); 2732 if (ret < 0) { 2733 handle_error = true; 2734 continue; 2735 } 2736 2737 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2738 2739 ret = btrfs_read_roots(fs_info); 2740 if (ret < 0) { 2741 handle_error = true; 2742 continue; 2743 } 2744 2745 /* All successful */ 2746 fs_info->generation = btrfs_header_generation(tree_root->node); 2747 btrfs_set_last_trans_committed(fs_info, fs_info->generation); 2748 fs_info->last_reloc_trans = 0; 2749 2750 /* Always begin writing backup roots after the one being used */ 2751 if (backup_index < 0) { 2752 fs_info->backup_root_index = 0; 2753 } else { 2754 fs_info->backup_root_index = backup_index + 1; 2755 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2756 } 2757 break; 2758 } 2759 2760 return ret; 2761 } 2762 2763 /* 2764 * Lockdep gets confused between our buffer_tree which requires IRQ locking because 2765 * we modify marks in the IRQ context, and our delayed inode xarray which doesn't 2766 * have these requirements. Use a class key so lockdep doesn't get them mixed up. 2767 */ 2768 static struct lock_class_key buffer_xa_class; 2769 2770 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2771 { 2772 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2773 2774 /* Use the same flags as mapping->i_pages. */ 2775 xa_init_flags(&fs_info->buffer_tree, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 2776 lockdep_set_class(&fs_info->buffer_tree.xa_lock, &buffer_xa_class); 2777 2778 INIT_LIST_HEAD(&fs_info->trans_list); 2779 INIT_LIST_HEAD(&fs_info->dead_roots); 2780 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2781 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2782 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2783 spin_lock_init(&fs_info->delalloc_root_lock); 2784 spin_lock_init(&fs_info->trans_lock); 2785 spin_lock_init(&fs_info->fs_roots_radix_lock); 2786 spin_lock_init(&fs_info->delayed_iput_lock); 2787 spin_lock_init(&fs_info->defrag_inodes_lock); 2788 spin_lock_init(&fs_info->super_lock); 2789 spin_lock_init(&fs_info->unused_bgs_lock); 2790 spin_lock_init(&fs_info->treelog_bg_lock); 2791 spin_lock_init(&fs_info->zone_active_bgs_lock); 2792 spin_lock_init(&fs_info->relocation_bg_lock); 2793 rwlock_init(&fs_info->tree_mod_log_lock); 2794 rwlock_init(&fs_info->global_root_lock); 2795 mutex_init(&fs_info->unused_bg_unpin_mutex); 2796 mutex_init(&fs_info->reclaim_bgs_lock); 2797 mutex_init(&fs_info->reloc_mutex); 2798 mutex_init(&fs_info->delalloc_root_mutex); 2799 mutex_init(&fs_info->zoned_meta_io_lock); 2800 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2801 seqlock_init(&fs_info->profiles_lock); 2802 2803 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2804 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2805 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2806 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2807 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep, 2808 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2809 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2810 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2811 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 2812 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2813 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 2814 BTRFS_LOCKDEP_TRANS_COMPLETED); 2815 2816 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2817 INIT_LIST_HEAD(&fs_info->space_info); 2818 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2819 INIT_LIST_HEAD(&fs_info->unused_bgs); 2820 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2821 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2822 #ifdef CONFIG_BTRFS_DEBUG 2823 INIT_LIST_HEAD(&fs_info->allocated_roots); 2824 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2825 spin_lock_init(&fs_info->eb_leak_lock); 2826 #endif 2827 fs_info->mapping_tree = RB_ROOT_CACHED; 2828 rwlock_init(&fs_info->mapping_tree_lock); 2829 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2830 BTRFS_BLOCK_RSV_GLOBAL); 2831 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2832 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2833 btrfs_init_block_rsv(&fs_info->treelog_rsv, BTRFS_BLOCK_RSV_TREELOG); 2834 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2835 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2836 BTRFS_BLOCK_RSV_DELOPS); 2837 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2838 BTRFS_BLOCK_RSV_DELREFS); 2839 2840 atomic_set(&fs_info->async_delalloc_pages, 0); 2841 atomic_set(&fs_info->defrag_running, 0); 2842 atomic_set(&fs_info->nr_delayed_iputs, 0); 2843 atomic64_set(&fs_info->tree_mod_seq, 0); 2844 fs_info->global_root_tree = RB_ROOT; 2845 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2846 fs_info->metadata_ratio = 0; 2847 fs_info->defrag_inodes = RB_ROOT; 2848 atomic64_set(&fs_info->free_chunk_space, 0); 2849 fs_info->tree_mod_log = RB_ROOT; 2850 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2851 btrfs_init_ref_verify(fs_info); 2852 2853 fs_info->thread_pool_size = min_t(unsigned long, 2854 num_online_cpus() + 2, 8); 2855 2856 INIT_LIST_HEAD(&fs_info->ordered_roots); 2857 spin_lock_init(&fs_info->ordered_root_lock); 2858 2859 btrfs_init_scrub(fs_info); 2860 btrfs_init_balance(fs_info); 2861 btrfs_init_async_reclaim_work(fs_info); 2862 btrfs_init_extent_map_shrinker_work(fs_info); 2863 2864 rwlock_init(&fs_info->block_group_cache_lock); 2865 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 2866 2867 btrfs_extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2868 IO_TREE_FS_EXCLUDED_EXTENTS); 2869 2870 mutex_init(&fs_info->ordered_operations_mutex); 2871 mutex_init(&fs_info->tree_log_mutex); 2872 mutex_init(&fs_info->chunk_mutex); 2873 mutex_init(&fs_info->transaction_kthread_mutex); 2874 mutex_init(&fs_info->cleaner_mutex); 2875 mutex_init(&fs_info->ro_block_group_mutex); 2876 init_rwsem(&fs_info->commit_root_sem); 2877 init_rwsem(&fs_info->cleanup_work_sem); 2878 init_rwsem(&fs_info->subvol_sem); 2879 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2880 2881 btrfs_init_dev_replace_locks(fs_info); 2882 btrfs_init_qgroup(fs_info); 2883 btrfs_discard_init(fs_info); 2884 2885 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2886 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2887 2888 init_waitqueue_head(&fs_info->transaction_throttle); 2889 init_waitqueue_head(&fs_info->transaction_wait); 2890 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2891 init_waitqueue_head(&fs_info->async_submit_wait); 2892 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2893 2894 /* Usable values until the real ones are cached from the superblock */ 2895 fs_info->nodesize = 4096; 2896 fs_info->sectorsize = 4096; 2897 fs_info->sectorsize_bits = ilog2(4096); 2898 fs_info->stripesize = 4096; 2899 2900 /* Default compress algorithm when user does -o compress */ 2901 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2902 2903 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 2904 2905 spin_lock_init(&fs_info->swapfile_pins_lock); 2906 fs_info->swapfile_pins = RB_ROOT; 2907 2908 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 2909 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 2910 } 2911 2912 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2913 { 2914 int ret; 2915 2916 fs_info->sb = sb; 2917 /* Temporary fixed values for block size until we read the superblock. */ 2918 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2919 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2920 2921 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 2922 if (ret) 2923 return ret; 2924 2925 ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL); 2926 if (ret) 2927 return ret; 2928 2929 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2930 if (ret) 2931 return ret; 2932 2933 ret = percpu_counter_init(&fs_info->stats_read_blocks, 0, GFP_KERNEL); 2934 if (ret) 2935 return ret; 2936 2937 fs_info->dirty_metadata_batch = PAGE_SIZE * 2938 (1 + ilog2(nr_cpu_ids)); 2939 2940 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2941 if (ret) 2942 return ret; 2943 2944 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2945 GFP_KERNEL); 2946 if (ret) 2947 return ret; 2948 2949 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2950 GFP_KERNEL); 2951 if (!fs_info->delayed_root) 2952 return -ENOMEM; 2953 btrfs_init_delayed_root(fs_info->delayed_root); 2954 2955 if (sb_rdonly(sb)) 2956 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2957 if (btrfs_test_opt(fs_info, IGNOREMETACSUMS)) 2958 set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state); 2959 2960 return btrfs_alloc_stripe_hash_table(fs_info); 2961 } 2962 2963 static int btrfs_uuid_rescan_kthread(void *data) 2964 { 2965 struct btrfs_fs_info *fs_info = data; 2966 int ret; 2967 2968 /* 2969 * 1st step is to iterate through the existing UUID tree and 2970 * to delete all entries that contain outdated data. 2971 * 2nd step is to add all missing entries to the UUID tree. 2972 */ 2973 ret = btrfs_uuid_tree_iterate(fs_info); 2974 if (ret < 0) { 2975 if (ret != -EINTR) 2976 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2977 ret); 2978 up(&fs_info->uuid_tree_rescan_sem); 2979 return ret; 2980 } 2981 return btrfs_uuid_scan_kthread(data); 2982 } 2983 2984 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2985 { 2986 struct task_struct *task; 2987 2988 down(&fs_info->uuid_tree_rescan_sem); 2989 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2990 if (IS_ERR(task)) { 2991 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2992 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2993 up(&fs_info->uuid_tree_rescan_sem); 2994 return PTR_ERR(task); 2995 } 2996 2997 return 0; 2998 } 2999 3000 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3001 { 3002 u64 root_objectid = 0; 3003 struct btrfs_root *gang[8]; 3004 int ret = 0; 3005 3006 while (1) { 3007 unsigned int found; 3008 3009 spin_lock(&fs_info->fs_roots_radix_lock); 3010 found = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3011 (void **)gang, root_objectid, 3012 ARRAY_SIZE(gang)); 3013 if (!found) { 3014 spin_unlock(&fs_info->fs_roots_radix_lock); 3015 break; 3016 } 3017 root_objectid = btrfs_root_id(gang[found - 1]) + 1; 3018 3019 for (int i = 0; i < found; i++) { 3020 /* Avoid to grab roots in dead_roots. */ 3021 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3022 gang[i] = NULL; 3023 continue; 3024 } 3025 /* Grab all the search result for later use. */ 3026 gang[i] = btrfs_grab_root(gang[i]); 3027 } 3028 spin_unlock(&fs_info->fs_roots_radix_lock); 3029 3030 for (int i = 0; i < found; i++) { 3031 if (!gang[i]) 3032 continue; 3033 root_objectid = btrfs_root_id(gang[i]); 3034 /* 3035 * Continue to release the remaining roots after the first 3036 * error without cleanup and preserve the first error 3037 * for the return. 3038 */ 3039 if (!ret) 3040 ret = btrfs_orphan_cleanup(gang[i]); 3041 btrfs_put_root(gang[i]); 3042 } 3043 if (ret) 3044 break; 3045 3046 root_objectid++; 3047 } 3048 return ret; 3049 } 3050 3051 /* 3052 * Mounting logic specific to read-write file systems. Shared by open_ctree 3053 * and btrfs_remount when remounting from read-only to read-write. 3054 */ 3055 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 3056 { 3057 int ret; 3058 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 3059 bool rebuild_free_space_tree = false; 3060 3061 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3062 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3063 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 3064 btrfs_warn(fs_info, 3065 "'clear_cache' option is ignored with extent tree v2"); 3066 else 3067 rebuild_free_space_tree = true; 3068 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3069 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3070 btrfs_warn(fs_info, "free space tree is invalid"); 3071 rebuild_free_space_tree = true; 3072 } 3073 3074 if (rebuild_free_space_tree) { 3075 btrfs_info(fs_info, "rebuilding free space tree"); 3076 ret = btrfs_rebuild_free_space_tree(fs_info); 3077 if (ret) { 3078 btrfs_warn(fs_info, 3079 "failed to rebuild free space tree: %d", ret); 3080 goto out; 3081 } 3082 } 3083 3084 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3085 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 3086 btrfs_info(fs_info, "disabling free space tree"); 3087 ret = btrfs_delete_free_space_tree(fs_info); 3088 if (ret) { 3089 btrfs_warn(fs_info, 3090 "failed to disable free space tree: %d", ret); 3091 goto out; 3092 } 3093 } 3094 3095 /* 3096 * btrfs_find_orphan_roots() is responsible for finding all the dead 3097 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3098 * them into the fs_info->fs_roots_radix tree. This must be done before 3099 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3100 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3101 * item before the root's tree is deleted - this means that if we unmount 3102 * or crash before the deletion completes, on the next mount we will not 3103 * delete what remains of the tree because the orphan item does not 3104 * exists anymore, which is what tells us we have a pending deletion. 3105 */ 3106 ret = btrfs_find_orphan_roots(fs_info); 3107 if (ret) 3108 goto out; 3109 3110 ret = btrfs_cleanup_fs_roots(fs_info); 3111 if (ret) 3112 goto out; 3113 3114 down_read(&fs_info->cleanup_work_sem); 3115 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3116 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3117 up_read(&fs_info->cleanup_work_sem); 3118 goto out; 3119 } 3120 up_read(&fs_info->cleanup_work_sem); 3121 3122 mutex_lock(&fs_info->cleaner_mutex); 3123 ret = btrfs_recover_relocation(fs_info); 3124 mutex_unlock(&fs_info->cleaner_mutex); 3125 if (ret < 0) { 3126 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3127 goto out; 3128 } 3129 3130 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3131 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3132 btrfs_info(fs_info, "creating free space tree"); 3133 ret = btrfs_create_free_space_tree(fs_info); 3134 if (ret) { 3135 btrfs_warn(fs_info, 3136 "failed to create free space tree: %d", ret); 3137 goto out; 3138 } 3139 } 3140 3141 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3142 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3143 if (ret) 3144 goto out; 3145 } 3146 3147 ret = btrfs_resume_balance_async(fs_info); 3148 if (ret) 3149 goto out; 3150 3151 ret = btrfs_resume_dev_replace_async(fs_info); 3152 if (ret) { 3153 btrfs_warn(fs_info, "failed to resume dev_replace"); 3154 goto out; 3155 } 3156 3157 btrfs_qgroup_rescan_resume(fs_info); 3158 3159 if (!fs_info->uuid_root) { 3160 btrfs_info(fs_info, "creating UUID tree"); 3161 ret = btrfs_create_uuid_tree(fs_info); 3162 if (ret) { 3163 btrfs_warn(fs_info, 3164 "failed to create the UUID tree %d", ret); 3165 goto out; 3166 } 3167 } 3168 3169 out: 3170 return ret; 3171 } 3172 3173 /* 3174 * Do various sanity and dependency checks of different features. 3175 * 3176 * @is_rw_mount: If the mount is read-write. 3177 * 3178 * This is the place for less strict checks (like for subpage or artificial 3179 * feature dependencies). 3180 * 3181 * For strict checks or possible corruption detection, see 3182 * btrfs_validate_super(). 3183 * 3184 * This should be called after btrfs_parse_options(), as some mount options 3185 * (space cache related) can modify on-disk format like free space tree and 3186 * screw up certain feature dependencies. 3187 */ 3188 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3189 { 3190 struct btrfs_super_block *disk_super = fs_info->super_copy; 3191 u64 incompat = btrfs_super_incompat_flags(disk_super); 3192 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3193 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3194 3195 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3196 btrfs_err(fs_info, 3197 "cannot mount because of unknown incompat features (0x%llx)", 3198 incompat); 3199 return -EINVAL; 3200 } 3201 3202 /* Runtime limitation for mixed block groups. */ 3203 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3204 (fs_info->sectorsize != fs_info->nodesize)) { 3205 btrfs_err(fs_info, 3206 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3207 fs_info->nodesize, fs_info->sectorsize); 3208 return -EINVAL; 3209 } 3210 3211 /* Mixed backref is an always-enabled feature. */ 3212 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3213 3214 /* Set compression related flags just in case. */ 3215 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3216 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3217 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3218 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3219 3220 /* 3221 * An ancient flag, which should really be marked deprecated. 3222 * Such runtime limitation doesn't really need a incompat flag. 3223 */ 3224 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3225 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3226 3227 if (compat_ro_unsupp && is_rw_mount) { 3228 btrfs_err(fs_info, 3229 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3230 compat_ro); 3231 return -EINVAL; 3232 } 3233 3234 /* 3235 * We have unsupported RO compat features, although RO mounted, we 3236 * should not cause any metadata writes, including log replay. 3237 * Or we could screw up whatever the new feature requires. 3238 */ 3239 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3240 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3241 btrfs_err(fs_info, 3242 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3243 compat_ro); 3244 return -EINVAL; 3245 } 3246 3247 /* 3248 * Artificial limitations for block group tree, to force 3249 * block-group-tree to rely on no-holes and free-space-tree. 3250 */ 3251 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3252 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3253 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3254 btrfs_err(fs_info, 3255 "block-group-tree feature requires no-holes and free-space-tree features"); 3256 return -EINVAL; 3257 } 3258 3259 /* 3260 * Subpage runtime limitation on v1 cache. 3261 * 3262 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3263 * we're already defaulting to v2 cache, no need to bother v1 as it's 3264 * going to be deprecated anyway. 3265 */ 3266 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3267 btrfs_warn(fs_info, 3268 "v1 space cache is not supported for page size %lu with sectorsize %u", 3269 PAGE_SIZE, fs_info->sectorsize); 3270 return -EINVAL; 3271 } 3272 3273 /* This can be called by remount, we need to protect the super block. */ 3274 spin_lock(&fs_info->super_lock); 3275 btrfs_set_super_incompat_flags(disk_super, incompat); 3276 spin_unlock(&fs_info->super_lock); 3277 3278 return 0; 3279 } 3280 3281 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices) 3282 { 3283 u32 sectorsize; 3284 u32 nodesize; 3285 u32 stripesize; 3286 u64 generation; 3287 u16 csum_type; 3288 struct btrfs_super_block *disk_super; 3289 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3290 struct btrfs_root *tree_root; 3291 struct btrfs_root *chunk_root; 3292 int ret; 3293 int level; 3294 3295 ret = init_mount_fs_info(fs_info, sb); 3296 if (ret) 3297 goto fail; 3298 3299 /* These need to be init'ed before we start creating inodes and such. */ 3300 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3301 GFP_KERNEL); 3302 fs_info->tree_root = tree_root; 3303 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3304 GFP_KERNEL); 3305 fs_info->chunk_root = chunk_root; 3306 if (!tree_root || !chunk_root) { 3307 ret = -ENOMEM; 3308 goto fail; 3309 } 3310 3311 ret = btrfs_init_btree_inode(sb); 3312 if (ret) 3313 goto fail; 3314 3315 invalidate_bdev(fs_devices->latest_dev->bdev); 3316 3317 /* 3318 * Read super block and check the signature bytes only 3319 */ 3320 disk_super = btrfs_read_disk_super(fs_devices->latest_dev->bdev, 0, false); 3321 if (IS_ERR(disk_super)) { 3322 ret = PTR_ERR(disk_super); 3323 goto fail_alloc; 3324 } 3325 3326 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid); 3327 /* 3328 * Verify the type first, if that or the checksum value are 3329 * corrupted, we'll find out 3330 */ 3331 csum_type = btrfs_super_csum_type(disk_super); 3332 if (!btrfs_supported_super_csum(csum_type)) { 3333 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3334 csum_type); 3335 ret = -EINVAL; 3336 btrfs_release_disk_super(disk_super); 3337 goto fail_alloc; 3338 } 3339 3340 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3341 3342 ret = btrfs_init_csum_hash(fs_info, csum_type); 3343 if (ret) { 3344 btrfs_release_disk_super(disk_super); 3345 goto fail_alloc; 3346 } 3347 3348 /* 3349 * We want to check superblock checksum, the type is stored inside. 3350 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3351 */ 3352 if (btrfs_check_super_csum(fs_info, disk_super)) { 3353 btrfs_err(fs_info, "superblock checksum mismatch"); 3354 ret = -EINVAL; 3355 btrfs_release_disk_super(disk_super); 3356 goto fail_alloc; 3357 } 3358 3359 /* 3360 * super_copy is zeroed at allocation time and we never touch the 3361 * following bytes up to INFO_SIZE, the checksum is calculated from 3362 * the whole block of INFO_SIZE 3363 */ 3364 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3365 btrfs_release_disk_super(disk_super); 3366 3367 disk_super = fs_info->super_copy; 3368 3369 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3370 sizeof(*fs_info->super_for_commit)); 3371 3372 ret = btrfs_validate_mount_super(fs_info); 3373 if (ret) { 3374 btrfs_err(fs_info, "superblock contains fatal errors"); 3375 ret = -EINVAL; 3376 goto fail_alloc; 3377 } 3378 3379 if (!btrfs_super_root(disk_super)) { 3380 btrfs_err(fs_info, "invalid superblock tree root bytenr"); 3381 ret = -EINVAL; 3382 goto fail_alloc; 3383 } 3384 3385 /* check FS state, whether FS is broken. */ 3386 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3387 WRITE_ONCE(fs_info->fs_error, -EUCLEAN); 3388 3389 /* Set up fs_info before parsing mount options */ 3390 nodesize = btrfs_super_nodesize(disk_super); 3391 sectorsize = btrfs_super_sectorsize(disk_super); 3392 stripesize = sectorsize; 3393 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3394 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3395 3396 fs_info->nodesize = nodesize; 3397 fs_info->nodesize_bits = ilog2(nodesize); 3398 fs_info->sectorsize = sectorsize; 3399 fs_info->sectorsize_bits = ilog2(sectorsize); 3400 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3401 fs_info->stripesize = stripesize; 3402 fs_info->fs_devices->fs_info = fs_info; 3403 3404 /* 3405 * Handle the space caching options appropriately now that we have the 3406 * super block loaded and validated. 3407 */ 3408 btrfs_set_free_space_cache_settings(fs_info); 3409 3410 if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) { 3411 ret = -EINVAL; 3412 goto fail_alloc; 3413 } 3414 3415 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3416 if (ret < 0) 3417 goto fail_alloc; 3418 3419 /* 3420 * At this point our mount options are validated, if we set ->max_inline 3421 * to something non-standard make sure we truncate it to sectorsize. 3422 */ 3423 fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize); 3424 3425 ret = btrfs_init_workqueues(fs_info); 3426 if (ret) 3427 goto fail_sb_buffer; 3428 3429 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3430 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3431 3432 /* Update the values for the current filesystem. */ 3433 sb->s_blocksize = sectorsize; 3434 sb->s_blocksize_bits = blksize_bits(sectorsize); 3435 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3436 3437 mutex_lock(&fs_info->chunk_mutex); 3438 ret = btrfs_read_sys_array(fs_info); 3439 mutex_unlock(&fs_info->chunk_mutex); 3440 if (ret) { 3441 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3442 goto fail_sb_buffer; 3443 } 3444 3445 generation = btrfs_super_chunk_root_generation(disk_super); 3446 level = btrfs_super_chunk_root_level(disk_super); 3447 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3448 generation, level); 3449 if (ret) { 3450 btrfs_err(fs_info, "failed to read chunk root"); 3451 goto fail_tree_roots; 3452 } 3453 3454 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3455 offsetof(struct btrfs_header, chunk_tree_uuid), 3456 BTRFS_UUID_SIZE); 3457 3458 ret = btrfs_read_chunk_tree(fs_info); 3459 if (ret) { 3460 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3461 goto fail_tree_roots; 3462 } 3463 3464 /* 3465 * At this point we know all the devices that make this filesystem, 3466 * including the seed devices but we don't know yet if the replace 3467 * target is required. So free devices that are not part of this 3468 * filesystem but skip the replace target device which is checked 3469 * below in btrfs_init_dev_replace(). 3470 */ 3471 btrfs_free_extra_devids(fs_devices); 3472 if (!fs_devices->latest_dev->bdev) { 3473 btrfs_err(fs_info, "failed to read devices"); 3474 ret = -EIO; 3475 goto fail_tree_roots; 3476 } 3477 3478 ret = init_tree_roots(fs_info); 3479 if (ret) 3480 goto fail_tree_roots; 3481 3482 /* 3483 * Get zone type information of zoned block devices. This will also 3484 * handle emulation of a zoned filesystem if a regular device has the 3485 * zoned incompat feature flag set. 3486 */ 3487 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3488 if (ret) { 3489 btrfs_err(fs_info, 3490 "zoned: failed to read device zone info: %d", ret); 3491 goto fail_block_groups; 3492 } 3493 3494 /* 3495 * If we have a uuid root and we're not being told to rescan we need to 3496 * check the generation here so we can set the 3497 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3498 * transaction during a balance or the log replay without updating the 3499 * uuid generation, and then if we crash we would rescan the uuid tree, 3500 * even though it was perfectly fine. 3501 */ 3502 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3503 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3504 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3505 3506 ret = btrfs_verify_dev_extents(fs_info); 3507 if (ret) { 3508 btrfs_err(fs_info, 3509 "failed to verify dev extents against chunks: %d", 3510 ret); 3511 goto fail_block_groups; 3512 } 3513 ret = btrfs_recover_balance(fs_info); 3514 if (ret) { 3515 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3516 goto fail_block_groups; 3517 } 3518 3519 ret = btrfs_init_dev_stats(fs_info); 3520 if (ret) { 3521 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3522 goto fail_block_groups; 3523 } 3524 3525 ret = btrfs_init_dev_replace(fs_info); 3526 if (ret) { 3527 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3528 goto fail_block_groups; 3529 } 3530 3531 ret = btrfs_check_zoned_mode(fs_info); 3532 if (ret) { 3533 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3534 ret); 3535 goto fail_block_groups; 3536 } 3537 3538 ret = btrfs_sysfs_add_fsid(fs_devices); 3539 if (ret) { 3540 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3541 ret); 3542 goto fail_block_groups; 3543 } 3544 3545 ret = btrfs_sysfs_add_mounted(fs_info); 3546 if (ret) { 3547 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3548 goto fail_fsdev_sysfs; 3549 } 3550 3551 ret = btrfs_init_space_info(fs_info); 3552 if (ret) { 3553 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3554 goto fail_sysfs; 3555 } 3556 3557 ret = btrfs_read_block_groups(fs_info); 3558 if (ret) { 3559 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3560 goto fail_sysfs; 3561 } 3562 3563 btrfs_zoned_reserve_data_reloc_bg(fs_info); 3564 btrfs_free_zone_cache(fs_info); 3565 3566 btrfs_check_active_zone_reservation(fs_info); 3567 3568 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3569 !btrfs_check_rw_degradable(fs_info, NULL)) { 3570 btrfs_warn(fs_info, 3571 "writable mount is not allowed due to too many missing devices"); 3572 ret = -EINVAL; 3573 goto fail_sysfs; 3574 } 3575 3576 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3577 "btrfs-cleaner"); 3578 if (IS_ERR(fs_info->cleaner_kthread)) { 3579 ret = PTR_ERR(fs_info->cleaner_kthread); 3580 goto fail_sysfs; 3581 } 3582 3583 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3584 tree_root, 3585 "btrfs-transaction"); 3586 if (IS_ERR(fs_info->transaction_kthread)) { 3587 ret = PTR_ERR(fs_info->transaction_kthread); 3588 goto fail_cleaner; 3589 } 3590 3591 ret = btrfs_read_qgroup_config(fs_info); 3592 if (ret) 3593 goto fail_trans_kthread; 3594 3595 if (btrfs_build_ref_tree(fs_info)) 3596 btrfs_err(fs_info, "couldn't build ref tree"); 3597 3598 /* do not make disk changes in broken FS or nologreplay is given */ 3599 if (btrfs_super_log_root(disk_super) != 0 && 3600 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3601 btrfs_info(fs_info, "start tree-log replay"); 3602 ret = btrfs_replay_log(fs_info, fs_devices); 3603 if (ret) 3604 goto fail_qgroup; 3605 } 3606 3607 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3608 if (IS_ERR(fs_info->fs_root)) { 3609 ret = PTR_ERR(fs_info->fs_root); 3610 btrfs_warn(fs_info, "failed to read fs tree: %d", ret); 3611 fs_info->fs_root = NULL; 3612 goto fail_qgroup; 3613 } 3614 3615 if (sb_rdonly(sb)) 3616 return 0; 3617 3618 ret = btrfs_start_pre_rw_mount(fs_info); 3619 if (ret) { 3620 close_ctree(fs_info); 3621 return ret; 3622 } 3623 btrfs_discard_resume(fs_info); 3624 3625 if (fs_info->uuid_root && 3626 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3627 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3628 btrfs_info(fs_info, "checking UUID tree"); 3629 ret = btrfs_check_uuid_tree(fs_info); 3630 if (ret) { 3631 btrfs_warn(fs_info, 3632 "failed to check the UUID tree: %d", ret); 3633 close_ctree(fs_info); 3634 return ret; 3635 } 3636 } 3637 3638 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3639 3640 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3641 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3642 wake_up_process(fs_info->cleaner_kthread); 3643 3644 return 0; 3645 3646 fail_qgroup: 3647 btrfs_free_qgroup_config(fs_info); 3648 fail_trans_kthread: 3649 kthread_stop(fs_info->transaction_kthread); 3650 btrfs_cleanup_transaction(fs_info); 3651 btrfs_free_fs_roots(fs_info); 3652 fail_cleaner: 3653 kthread_stop(fs_info->cleaner_kthread); 3654 3655 /* 3656 * make sure we're done with the btree inode before we stop our 3657 * kthreads 3658 */ 3659 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3660 3661 fail_sysfs: 3662 btrfs_sysfs_remove_mounted(fs_info); 3663 3664 fail_fsdev_sysfs: 3665 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3666 3667 fail_block_groups: 3668 btrfs_put_block_group_cache(fs_info); 3669 3670 fail_tree_roots: 3671 if (fs_info->data_reloc_root) 3672 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3673 free_root_pointers(fs_info, true); 3674 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3675 3676 fail_sb_buffer: 3677 btrfs_stop_all_workers(fs_info); 3678 btrfs_free_block_groups(fs_info); 3679 fail_alloc: 3680 btrfs_mapping_tree_free(fs_info); 3681 3682 iput(fs_info->btree_inode); 3683 fail: 3684 ASSERT(ret < 0); 3685 return ret; 3686 } 3687 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3688 3689 static void btrfs_end_super_write(struct bio *bio) 3690 { 3691 struct btrfs_device *device = bio->bi_private; 3692 struct folio_iter fi; 3693 3694 bio_for_each_folio_all(fi, bio) { 3695 if (bio->bi_status) { 3696 btrfs_warn_rl(device->fs_info, 3697 "lost super block write due to IO error on %s (%d)", 3698 btrfs_dev_name(device), 3699 blk_status_to_errno(bio->bi_status)); 3700 btrfs_dev_stat_inc_and_print(device, 3701 BTRFS_DEV_STAT_WRITE_ERRS); 3702 /* Ensure failure if the primary sb fails. */ 3703 if (bio->bi_opf & REQ_FUA) 3704 atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR, 3705 &device->sb_write_errors); 3706 else 3707 atomic_inc(&device->sb_write_errors); 3708 } 3709 folio_unlock(fi.folio); 3710 folio_put(fi.folio); 3711 } 3712 3713 bio_put(bio); 3714 } 3715 3716 /* 3717 * Write superblock @sb to the @device. Do not wait for completion, all the 3718 * folios we use for writing are locked. 3719 * 3720 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3721 * the expected device size at commit time. Note that max_mirrors must be 3722 * same for write and wait phases. 3723 * 3724 * Return number of errors when folio is not found or submission fails. 3725 */ 3726 static int write_dev_supers(struct btrfs_device *device, 3727 struct btrfs_super_block *sb, int max_mirrors) 3728 { 3729 struct btrfs_fs_info *fs_info = device->fs_info; 3730 struct address_space *mapping = device->bdev->bd_mapping; 3731 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3732 int i; 3733 int ret; 3734 u64 bytenr, bytenr_orig; 3735 3736 atomic_set(&device->sb_write_errors, 0); 3737 3738 if (max_mirrors == 0) 3739 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3740 3741 shash->tfm = fs_info->csum_shash; 3742 3743 for (i = 0; i < max_mirrors; i++) { 3744 struct folio *folio; 3745 struct bio *bio; 3746 struct btrfs_super_block *disk_super; 3747 size_t offset; 3748 3749 bytenr_orig = btrfs_sb_offset(i); 3750 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3751 if (ret == -ENOENT) { 3752 continue; 3753 } else if (ret < 0) { 3754 btrfs_err(device->fs_info, 3755 "couldn't get super block location for mirror %d error %d", 3756 i, ret); 3757 atomic_inc(&device->sb_write_errors); 3758 continue; 3759 } 3760 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3761 device->commit_total_bytes) 3762 break; 3763 3764 btrfs_set_super_bytenr(sb, bytenr_orig); 3765 3766 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3767 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3768 sb->csum); 3769 3770 folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT, 3771 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3772 GFP_NOFS); 3773 if (IS_ERR(folio)) { 3774 btrfs_err(device->fs_info, 3775 "couldn't get super block page for bytenr %llu error %ld", 3776 bytenr, PTR_ERR(folio)); 3777 atomic_inc(&device->sb_write_errors); 3778 continue; 3779 } 3780 3781 offset = offset_in_folio(folio, bytenr); 3782 disk_super = folio_address(folio) + offset; 3783 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3784 3785 /* 3786 * Directly use bios here instead of relying on the page cache 3787 * to do I/O, so we don't lose the ability to do integrity 3788 * checking. 3789 */ 3790 bio = bio_alloc(device->bdev, 1, 3791 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 3792 GFP_NOFS); 3793 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3794 bio->bi_private = device; 3795 bio->bi_end_io = btrfs_end_super_write; 3796 bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset); 3797 3798 /* 3799 * We FUA only the first super block. The others we allow to 3800 * go down lazy and there's a short window where the on-disk 3801 * copies might still contain the older version. 3802 */ 3803 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3804 bio->bi_opf |= REQ_FUA; 3805 submit_bio(bio); 3806 3807 if (btrfs_advance_sb_log(device, i)) 3808 atomic_inc(&device->sb_write_errors); 3809 } 3810 return atomic_read(&device->sb_write_errors) < i ? 0 : -1; 3811 } 3812 3813 /* 3814 * Wait for write completion of superblocks done by write_dev_supers, 3815 * @max_mirrors same for write and wait phases. 3816 * 3817 * Return -1 if primary super block write failed or when there were no super block 3818 * copies written. Otherwise 0. 3819 */ 3820 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3821 { 3822 int i; 3823 int errors = 0; 3824 bool primary_failed = false; 3825 int ret; 3826 u64 bytenr; 3827 3828 if (max_mirrors == 0) 3829 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3830 3831 for (i = 0; i < max_mirrors; i++) { 3832 struct folio *folio; 3833 3834 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 3835 if (ret == -ENOENT) { 3836 break; 3837 } else if (ret < 0) { 3838 errors++; 3839 if (i == 0) 3840 primary_failed = true; 3841 continue; 3842 } 3843 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3844 device->commit_total_bytes) 3845 break; 3846 3847 folio = filemap_get_folio(device->bdev->bd_mapping, 3848 bytenr >> PAGE_SHIFT); 3849 /* If the folio has been removed, then we know it completed. */ 3850 if (IS_ERR(folio)) 3851 continue; 3852 3853 /* Folio will be unlocked once the write completes. */ 3854 folio_wait_locked(folio); 3855 folio_put(folio); 3856 } 3857 3858 errors += atomic_read(&device->sb_write_errors); 3859 if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR) 3860 primary_failed = true; 3861 if (primary_failed) { 3862 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3863 device->devid); 3864 return -1; 3865 } 3866 3867 return errors < i ? 0 : -1; 3868 } 3869 3870 /* 3871 * endio for the write_dev_flush, this will wake anyone waiting 3872 * for the barrier when it is done 3873 */ 3874 static void btrfs_end_empty_barrier(struct bio *bio) 3875 { 3876 bio_uninit(bio); 3877 complete(bio->bi_private); 3878 } 3879 3880 /* 3881 * Submit a flush request to the device if it supports it. Error handling is 3882 * done in the waiting counterpart. 3883 */ 3884 static void write_dev_flush(struct btrfs_device *device) 3885 { 3886 struct bio *bio = &device->flush_bio; 3887 3888 device->last_flush_error = BLK_STS_OK; 3889 3890 bio_init(bio, device->bdev, NULL, 0, 3891 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 3892 bio->bi_end_io = btrfs_end_empty_barrier; 3893 init_completion(&device->flush_wait); 3894 bio->bi_private = &device->flush_wait; 3895 submit_bio(bio); 3896 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3897 } 3898 3899 /* 3900 * If the flush bio has been submitted by write_dev_flush, wait for it. 3901 * Return true for any error, and false otherwise. 3902 */ 3903 static bool wait_dev_flush(struct btrfs_device *device) 3904 { 3905 struct bio *bio = &device->flush_bio; 3906 3907 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3908 return false; 3909 3910 wait_for_completion_io(&device->flush_wait); 3911 3912 if (bio->bi_status) { 3913 device->last_flush_error = bio->bi_status; 3914 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); 3915 return true; 3916 } 3917 3918 return false; 3919 } 3920 3921 /* 3922 * send an empty flush down to each device in parallel, 3923 * then wait for them 3924 */ 3925 static int barrier_all_devices(struct btrfs_fs_info *info) 3926 { 3927 struct list_head *head; 3928 struct btrfs_device *dev; 3929 int errors_wait = 0; 3930 3931 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3932 /* send down all the barriers */ 3933 head = &info->fs_devices->devices; 3934 list_for_each_entry(dev, head, dev_list) { 3935 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3936 continue; 3937 if (!dev->bdev) 3938 continue; 3939 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3940 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3941 continue; 3942 3943 write_dev_flush(dev); 3944 } 3945 3946 /* wait for all the barriers */ 3947 list_for_each_entry(dev, head, dev_list) { 3948 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3949 continue; 3950 if (!dev->bdev) { 3951 errors_wait++; 3952 continue; 3953 } 3954 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3955 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3956 continue; 3957 3958 if (wait_dev_flush(dev)) 3959 errors_wait++; 3960 } 3961 3962 /* 3963 * Checks last_flush_error of disks in order to determine the device 3964 * state. 3965 */ 3966 if (errors_wait && !btrfs_check_rw_degradable(info, NULL)) 3967 return -EIO; 3968 3969 return 0; 3970 } 3971 3972 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3973 { 3974 int raid_type; 3975 int min_tolerated = INT_MAX; 3976 3977 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3978 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3979 min_tolerated = min_t(int, min_tolerated, 3980 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3981 tolerated_failures); 3982 3983 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3984 if (raid_type == BTRFS_RAID_SINGLE) 3985 continue; 3986 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3987 continue; 3988 min_tolerated = min_t(int, min_tolerated, 3989 btrfs_raid_array[raid_type]. 3990 tolerated_failures); 3991 } 3992 3993 if (min_tolerated == INT_MAX) { 3994 btrfs_warn(NULL, "unknown raid flag: %llu", flags); 3995 min_tolerated = 0; 3996 } 3997 3998 return min_tolerated; 3999 } 4000 4001 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4002 { 4003 struct list_head *head; 4004 struct btrfs_device *dev; 4005 struct btrfs_super_block *sb; 4006 struct btrfs_dev_item *dev_item; 4007 int ret; 4008 int do_barriers; 4009 int max_errors; 4010 int total_errors = 0; 4011 u64 flags; 4012 4013 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4014 4015 /* 4016 * max_mirrors == 0 indicates we're from commit_transaction, 4017 * not from fsync where the tree roots in fs_info have not 4018 * been consistent on disk. 4019 */ 4020 if (max_mirrors == 0) 4021 backup_super_roots(fs_info); 4022 4023 sb = fs_info->super_for_commit; 4024 dev_item = &sb->dev_item; 4025 4026 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4027 head = &fs_info->fs_devices->devices; 4028 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4029 4030 if (do_barriers) { 4031 ret = barrier_all_devices(fs_info); 4032 if (ret) { 4033 mutex_unlock( 4034 &fs_info->fs_devices->device_list_mutex); 4035 btrfs_handle_fs_error(fs_info, ret, 4036 "errors while submitting device barriers."); 4037 return ret; 4038 } 4039 } 4040 4041 list_for_each_entry(dev, head, dev_list) { 4042 if (!dev->bdev) { 4043 total_errors++; 4044 continue; 4045 } 4046 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4047 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4048 continue; 4049 4050 btrfs_set_stack_device_generation(dev_item, 0); 4051 btrfs_set_stack_device_type(dev_item, dev->type); 4052 btrfs_set_stack_device_id(dev_item, dev->devid); 4053 btrfs_set_stack_device_total_bytes(dev_item, 4054 dev->commit_total_bytes); 4055 btrfs_set_stack_device_bytes_used(dev_item, 4056 dev->commit_bytes_used); 4057 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4058 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4059 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4060 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4061 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4062 BTRFS_FSID_SIZE); 4063 4064 flags = btrfs_super_flags(sb); 4065 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4066 4067 ret = btrfs_validate_write_super(fs_info, sb); 4068 if (ret < 0) { 4069 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4070 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4071 "unexpected superblock corruption detected"); 4072 return -EUCLEAN; 4073 } 4074 4075 ret = write_dev_supers(dev, sb, max_mirrors); 4076 if (ret) 4077 total_errors++; 4078 } 4079 if (total_errors > max_errors) { 4080 btrfs_err(fs_info, "%d errors while writing supers", 4081 total_errors); 4082 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4083 4084 /* FUA is masked off if unsupported and can't be the reason */ 4085 btrfs_handle_fs_error(fs_info, -EIO, 4086 "%d errors while writing supers", 4087 total_errors); 4088 return -EIO; 4089 } 4090 4091 total_errors = 0; 4092 list_for_each_entry(dev, head, dev_list) { 4093 if (!dev->bdev) 4094 continue; 4095 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4096 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4097 continue; 4098 4099 ret = wait_dev_supers(dev, max_mirrors); 4100 if (ret) 4101 total_errors++; 4102 } 4103 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4104 if (total_errors > max_errors) { 4105 btrfs_handle_fs_error(fs_info, -EIO, 4106 "%d errors while writing supers", 4107 total_errors); 4108 return -EIO; 4109 } 4110 return 0; 4111 } 4112 4113 /* Drop a fs root from the radix tree and free it. */ 4114 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4115 struct btrfs_root *root) 4116 { 4117 bool drop_ref = false; 4118 4119 spin_lock(&fs_info->fs_roots_radix_lock); 4120 radix_tree_delete(&fs_info->fs_roots_radix, 4121 (unsigned long)btrfs_root_id(root)); 4122 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4123 drop_ref = true; 4124 spin_unlock(&fs_info->fs_roots_radix_lock); 4125 4126 if (BTRFS_FS_ERROR(fs_info)) { 4127 ASSERT(root->log_root == NULL); 4128 if (root->reloc_root) { 4129 btrfs_put_root(root->reloc_root); 4130 root->reloc_root = NULL; 4131 } 4132 } 4133 4134 if (drop_ref) 4135 btrfs_put_root(root); 4136 } 4137 4138 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4139 { 4140 mutex_lock(&fs_info->cleaner_mutex); 4141 btrfs_run_delayed_iputs(fs_info); 4142 mutex_unlock(&fs_info->cleaner_mutex); 4143 wake_up_process(fs_info->cleaner_kthread); 4144 4145 /* wait until ongoing cleanup work done */ 4146 down_write(&fs_info->cleanup_work_sem); 4147 up_write(&fs_info->cleanup_work_sem); 4148 4149 return btrfs_commit_current_transaction(fs_info->tree_root); 4150 } 4151 4152 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4153 { 4154 struct btrfs_transaction *trans; 4155 struct btrfs_transaction *tmp; 4156 bool found = false; 4157 4158 /* 4159 * This function is only called at the very end of close_ctree(), 4160 * thus no other running transaction, no need to take trans_lock. 4161 */ 4162 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4163 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4164 struct extent_state *cached = NULL; 4165 u64 dirty_bytes = 0; 4166 u64 cur = 0; 4167 u64 found_start; 4168 u64 found_end; 4169 4170 found = true; 4171 while (btrfs_find_first_extent_bit(&trans->dirty_pages, cur, 4172 &found_start, &found_end, 4173 EXTENT_DIRTY, &cached)) { 4174 dirty_bytes += found_end + 1 - found_start; 4175 cur = found_end + 1; 4176 } 4177 btrfs_warn(fs_info, 4178 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4179 trans->transid, dirty_bytes); 4180 btrfs_cleanup_one_transaction(trans); 4181 4182 if (trans == fs_info->running_transaction) 4183 fs_info->running_transaction = NULL; 4184 list_del_init(&trans->list); 4185 4186 btrfs_put_transaction(trans); 4187 trace_btrfs_transaction_commit(fs_info); 4188 } 4189 ASSERT(!found); 4190 } 4191 4192 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4193 { 4194 int ret; 4195 4196 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4197 4198 /* 4199 * If we had UNFINISHED_DROPS we could still be processing them, so 4200 * clear that bit and wake up relocation so it can stop. 4201 * We must do this before stopping the block group reclaim task, because 4202 * at btrfs_relocate_block_group() we wait for this bit, and after the 4203 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4204 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4205 * return 1. 4206 */ 4207 btrfs_wake_unfinished_drop(fs_info); 4208 4209 /* 4210 * We may have the reclaim task running and relocating a data block group, 4211 * in which case it may create delayed iputs. So stop it before we park 4212 * the cleaner kthread otherwise we can get new delayed iputs after 4213 * parking the cleaner, and that can make the async reclaim task to hang 4214 * if it's waiting for delayed iputs to complete, since the cleaner is 4215 * parked and can not run delayed iputs - this will make us hang when 4216 * trying to stop the async reclaim task. 4217 */ 4218 cancel_work_sync(&fs_info->reclaim_bgs_work); 4219 /* 4220 * We don't want the cleaner to start new transactions, add more delayed 4221 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4222 * because that frees the task_struct, and the transaction kthread might 4223 * still try to wake up the cleaner. 4224 */ 4225 kthread_park(fs_info->cleaner_kthread); 4226 4227 /* wait for the qgroup rescan worker to stop */ 4228 btrfs_qgroup_wait_for_completion(fs_info, false); 4229 4230 /* wait for the uuid_scan task to finish */ 4231 down(&fs_info->uuid_tree_rescan_sem); 4232 /* avoid complains from lockdep et al., set sem back to initial state */ 4233 up(&fs_info->uuid_tree_rescan_sem); 4234 4235 /* pause restriper - we want to resume on mount */ 4236 btrfs_pause_balance(fs_info); 4237 4238 btrfs_dev_replace_suspend_for_unmount(fs_info); 4239 4240 btrfs_scrub_cancel(fs_info); 4241 4242 /* wait for any defraggers to finish */ 4243 wait_event(fs_info->transaction_wait, 4244 (atomic_read(&fs_info->defrag_running) == 0)); 4245 4246 /* clear out the rbtree of defraggable inodes */ 4247 btrfs_cleanup_defrag_inodes(fs_info); 4248 4249 /* 4250 * Handle the error fs first, as it will flush and wait for all ordered 4251 * extents. This will generate delayed iputs, thus we want to handle 4252 * it first. 4253 */ 4254 if (unlikely(BTRFS_FS_ERROR(fs_info))) 4255 btrfs_error_commit_super(fs_info); 4256 4257 /* 4258 * Wait for any fixup workers to complete. 4259 * If we don't wait for them here and they are still running by the time 4260 * we call kthread_stop() against the cleaner kthread further below, we 4261 * get an use-after-free on the cleaner because the fixup worker adds an 4262 * inode to the list of delayed iputs and then attempts to wakeup the 4263 * cleaner kthread, which was already stopped and destroyed. We parked 4264 * already the cleaner, but below we run all pending delayed iputs. 4265 */ 4266 btrfs_flush_workqueue(fs_info->fixup_workers); 4267 /* 4268 * Similar case here, we have to wait for delalloc workers before we 4269 * proceed below and stop the cleaner kthread, otherwise we trigger a 4270 * use-after-tree on the cleaner kthread task_struct when a delalloc 4271 * worker running submit_compressed_extents() adds a delayed iput, which 4272 * does a wake up on the cleaner kthread, which was already freed below 4273 * when we call kthread_stop(). 4274 */ 4275 btrfs_flush_workqueue(fs_info->delalloc_workers); 4276 4277 /* 4278 * We can have ordered extents getting their last reference dropped from 4279 * the fs_info->workers queue because for async writes for data bios we 4280 * queue a work for that queue, at btrfs_wq_submit_bio(), that runs 4281 * run_one_async_done() which calls btrfs_bio_end_io() in case the bio 4282 * has an error, and that later function can do the final 4283 * btrfs_put_ordered_extent() on the ordered extent attached to the bio, 4284 * which adds a delayed iput for the inode. So we must flush the queue 4285 * so that we don't have delayed iputs after committing the current 4286 * transaction below and stopping the cleaner and transaction kthreads. 4287 */ 4288 btrfs_flush_workqueue(fs_info->workers); 4289 4290 /* 4291 * When finishing a compressed write bio we schedule a work queue item 4292 * to finish an ordered extent - btrfs_finish_compressed_write_work() 4293 * calls btrfs_finish_ordered_extent() which in turns does a call to 4294 * btrfs_queue_ordered_fn(), and that queues the ordered extent 4295 * completion either in the endio_write_workers work queue or in the 4296 * fs_info->endio_freespace_worker work queue. We flush those queues 4297 * below, so before we flush them we must flush this queue for the 4298 * workers of compressed writes. 4299 */ 4300 flush_workqueue(fs_info->compressed_write_workers); 4301 4302 /* 4303 * After we parked the cleaner kthread, ordered extents may have 4304 * completed and created new delayed iputs. If one of the async reclaim 4305 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4306 * can hang forever trying to stop it, because if a delayed iput is 4307 * added after it ran btrfs_run_delayed_iputs() and before it called 4308 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4309 * no one else to run iputs. 4310 * 4311 * So wait for all ongoing ordered extents to complete and then run 4312 * delayed iputs. This works because once we reach this point no one 4313 * can create new ordered extents, but delayed iputs can still be added 4314 * by a reclaim worker (see comments further below). 4315 * 4316 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4317 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4318 * but the delayed iput for the respective inode is made only when doing 4319 * the final btrfs_put_ordered_extent() (which must happen at 4320 * btrfs_finish_ordered_io() when we are unmounting). 4321 */ 4322 btrfs_flush_workqueue(fs_info->endio_write_workers); 4323 /* Ordered extents for free space inodes. */ 4324 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4325 /* 4326 * Run delayed iputs in case an async reclaim worker is waiting for them 4327 * to be run as mentioned above. 4328 */ 4329 btrfs_run_delayed_iputs(fs_info); 4330 4331 cancel_work_sync(&fs_info->async_reclaim_work); 4332 cancel_work_sync(&fs_info->async_data_reclaim_work); 4333 cancel_work_sync(&fs_info->preempt_reclaim_work); 4334 cancel_work_sync(&fs_info->em_shrinker_work); 4335 4336 /* 4337 * Run delayed iputs again because an async reclaim worker may have 4338 * added new ones if it was flushing delalloc: 4339 * 4340 * shrink_delalloc() -> btrfs_start_delalloc_roots() -> 4341 * start_delalloc_inodes() -> btrfs_add_delayed_iput() 4342 */ 4343 btrfs_run_delayed_iputs(fs_info); 4344 4345 /* There should be no more workload to generate new delayed iputs. */ 4346 set_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state); 4347 4348 /* Cancel or finish ongoing discard work */ 4349 btrfs_discard_cleanup(fs_info); 4350 4351 if (!sb_rdonly(fs_info->sb)) { 4352 /* 4353 * The cleaner kthread is stopped, so do one final pass over 4354 * unused block groups. 4355 */ 4356 btrfs_delete_unused_bgs(fs_info); 4357 4358 /* 4359 * There might be existing delayed inode workers still running 4360 * and holding an empty delayed inode item. We must wait for 4361 * them to complete first because they can create a transaction. 4362 * This happens when someone calls btrfs_balance_delayed_items() 4363 * and then a transaction commit runs the same delayed nodes 4364 * before any delayed worker has done something with the nodes. 4365 * We must wait for any worker here and not at transaction 4366 * commit time since that could cause a deadlock. 4367 * This is a very rare case. 4368 */ 4369 btrfs_flush_workqueue(fs_info->delayed_workers); 4370 4371 ret = btrfs_commit_super(fs_info); 4372 if (ret) 4373 btrfs_err(fs_info, "commit super ret %d", ret); 4374 } 4375 4376 kthread_stop(fs_info->transaction_kthread); 4377 kthread_stop(fs_info->cleaner_kthread); 4378 4379 ASSERT(list_empty(&fs_info->delayed_iputs)); 4380 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4381 4382 if (btrfs_check_quota_leak(fs_info)) { 4383 DEBUG_WARN("qgroup reserved space leaked"); 4384 btrfs_err(fs_info, "qgroup reserved space leaked"); 4385 } 4386 4387 btrfs_free_qgroup_config(fs_info); 4388 ASSERT(list_empty(&fs_info->delalloc_roots)); 4389 4390 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4391 btrfs_info(fs_info, "at unmount delalloc count %lld", 4392 percpu_counter_sum(&fs_info->delalloc_bytes)); 4393 } 4394 4395 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4396 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4397 percpu_counter_sum(&fs_info->ordered_bytes)); 4398 4399 btrfs_sysfs_remove_mounted(fs_info); 4400 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4401 4402 btrfs_put_block_group_cache(fs_info); 4403 4404 /* 4405 * we must make sure there is not any read request to 4406 * submit after we stopping all workers. 4407 */ 4408 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4409 btrfs_stop_all_workers(fs_info); 4410 4411 /* We shouldn't have any transaction open at this point */ 4412 warn_about_uncommitted_trans(fs_info); 4413 4414 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4415 free_root_pointers(fs_info, true); 4416 btrfs_free_fs_roots(fs_info); 4417 4418 /* 4419 * We must free the block groups after dropping the fs_roots as we could 4420 * have had an IO error and have left over tree log blocks that aren't 4421 * cleaned up until the fs roots are freed. This makes the block group 4422 * accounting appear to be wrong because there's pending reserved bytes, 4423 * so make sure we do the block group cleanup afterwards. 4424 */ 4425 btrfs_free_block_groups(fs_info); 4426 4427 iput(fs_info->btree_inode); 4428 4429 btrfs_mapping_tree_free(fs_info); 4430 } 4431 4432 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans, 4433 struct extent_buffer *buf) 4434 { 4435 struct btrfs_fs_info *fs_info = buf->fs_info; 4436 u64 transid = btrfs_header_generation(buf); 4437 4438 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4439 /* 4440 * This is a fast path so only do this check if we have sanity tests 4441 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4442 * outside of the sanity tests. 4443 */ 4444 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4445 return; 4446 #endif 4447 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */ 4448 ASSERT(trans->transid == fs_info->generation); 4449 btrfs_assert_tree_write_locked(buf); 4450 if (unlikely(transid != fs_info->generation)) { 4451 btrfs_abort_transaction(trans, -EUCLEAN); 4452 btrfs_crit(fs_info, 4453 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu", 4454 buf->start, transid, fs_info->generation); 4455 } 4456 set_extent_buffer_dirty(buf); 4457 } 4458 4459 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4460 int flush_delayed) 4461 { 4462 /* 4463 * looks as though older kernels can get into trouble with 4464 * this code, they end up stuck in balance_dirty_pages forever 4465 */ 4466 int ret; 4467 4468 if (current->flags & PF_MEMALLOC) 4469 return; 4470 4471 if (flush_delayed) 4472 btrfs_balance_delayed_items(fs_info); 4473 4474 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4475 BTRFS_DIRTY_METADATA_THRESH, 4476 fs_info->dirty_metadata_batch); 4477 if (ret > 0) { 4478 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4479 } 4480 } 4481 4482 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4483 { 4484 __btrfs_btree_balance_dirty(fs_info, 1); 4485 } 4486 4487 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4488 { 4489 __btrfs_btree_balance_dirty(fs_info, 0); 4490 } 4491 4492 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4493 { 4494 /* cleanup FS via transaction */ 4495 btrfs_cleanup_transaction(fs_info); 4496 4497 down_write(&fs_info->cleanup_work_sem); 4498 up_write(&fs_info->cleanup_work_sem); 4499 } 4500 4501 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4502 { 4503 struct btrfs_root *gang[8]; 4504 u64 root_objectid = 0; 4505 int ret; 4506 4507 spin_lock(&fs_info->fs_roots_radix_lock); 4508 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4509 (void **)gang, root_objectid, 4510 ARRAY_SIZE(gang))) != 0) { 4511 int i; 4512 4513 for (i = 0; i < ret; i++) 4514 gang[i] = btrfs_grab_root(gang[i]); 4515 spin_unlock(&fs_info->fs_roots_radix_lock); 4516 4517 for (i = 0; i < ret; i++) { 4518 if (!gang[i]) 4519 continue; 4520 root_objectid = btrfs_root_id(gang[i]); 4521 btrfs_free_log(NULL, gang[i]); 4522 btrfs_put_root(gang[i]); 4523 } 4524 root_objectid++; 4525 spin_lock(&fs_info->fs_roots_radix_lock); 4526 } 4527 spin_unlock(&fs_info->fs_roots_radix_lock); 4528 btrfs_free_log_root_tree(NULL, fs_info); 4529 } 4530 4531 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4532 { 4533 struct btrfs_ordered_extent *ordered; 4534 4535 spin_lock(&root->ordered_extent_lock); 4536 /* 4537 * This will just short circuit the ordered completion stuff which will 4538 * make sure the ordered extent gets properly cleaned up. 4539 */ 4540 list_for_each_entry(ordered, &root->ordered_extents, 4541 root_extent_list) 4542 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4543 spin_unlock(&root->ordered_extent_lock); 4544 } 4545 4546 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4547 { 4548 struct btrfs_root *root; 4549 LIST_HEAD(splice); 4550 4551 spin_lock(&fs_info->ordered_root_lock); 4552 list_splice_init(&fs_info->ordered_roots, &splice); 4553 while (!list_empty(&splice)) { 4554 root = list_first_entry(&splice, struct btrfs_root, 4555 ordered_root); 4556 list_move_tail(&root->ordered_root, 4557 &fs_info->ordered_roots); 4558 4559 spin_unlock(&fs_info->ordered_root_lock); 4560 btrfs_destroy_ordered_extents(root); 4561 4562 cond_resched(); 4563 spin_lock(&fs_info->ordered_root_lock); 4564 } 4565 spin_unlock(&fs_info->ordered_root_lock); 4566 4567 /* 4568 * We need this here because if we've been flipped read-only we won't 4569 * get sync() from the umount, so we need to make sure any ordered 4570 * extents that haven't had their dirty pages IO start writeout yet 4571 * actually get run and error out properly. 4572 */ 4573 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL); 4574 } 4575 4576 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4577 { 4578 struct btrfs_inode *btrfs_inode; 4579 LIST_HEAD(splice); 4580 4581 spin_lock(&root->delalloc_lock); 4582 list_splice_init(&root->delalloc_inodes, &splice); 4583 4584 while (!list_empty(&splice)) { 4585 struct inode *inode = NULL; 4586 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4587 delalloc_inodes); 4588 btrfs_del_delalloc_inode(btrfs_inode); 4589 spin_unlock(&root->delalloc_lock); 4590 4591 /* 4592 * Make sure we get a live inode and that it'll not disappear 4593 * meanwhile. 4594 */ 4595 inode = igrab(&btrfs_inode->vfs_inode); 4596 if (inode) { 4597 unsigned int nofs_flag; 4598 4599 nofs_flag = memalloc_nofs_save(); 4600 invalidate_inode_pages2(inode->i_mapping); 4601 memalloc_nofs_restore(nofs_flag); 4602 iput(inode); 4603 } 4604 spin_lock(&root->delalloc_lock); 4605 } 4606 spin_unlock(&root->delalloc_lock); 4607 } 4608 4609 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4610 { 4611 struct btrfs_root *root; 4612 LIST_HEAD(splice); 4613 4614 spin_lock(&fs_info->delalloc_root_lock); 4615 list_splice_init(&fs_info->delalloc_roots, &splice); 4616 while (!list_empty(&splice)) { 4617 root = list_first_entry(&splice, struct btrfs_root, 4618 delalloc_root); 4619 root = btrfs_grab_root(root); 4620 BUG_ON(!root); 4621 spin_unlock(&fs_info->delalloc_root_lock); 4622 4623 btrfs_destroy_delalloc_inodes(root); 4624 btrfs_put_root(root); 4625 4626 spin_lock(&fs_info->delalloc_root_lock); 4627 } 4628 spin_unlock(&fs_info->delalloc_root_lock); 4629 } 4630 4631 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4632 struct extent_io_tree *dirty_pages, 4633 int mark) 4634 { 4635 struct extent_buffer *eb; 4636 u64 start = 0; 4637 u64 end; 4638 4639 while (btrfs_find_first_extent_bit(dirty_pages, start, &start, &end, 4640 mark, NULL)) { 4641 btrfs_clear_extent_bit(dirty_pages, start, end, mark, NULL); 4642 while (start <= end) { 4643 eb = find_extent_buffer(fs_info, start); 4644 start += fs_info->nodesize; 4645 if (!eb) 4646 continue; 4647 4648 btrfs_tree_lock(eb); 4649 wait_on_extent_buffer_writeback(eb); 4650 btrfs_clear_buffer_dirty(NULL, eb); 4651 btrfs_tree_unlock(eb); 4652 4653 free_extent_buffer_stale(eb); 4654 } 4655 } 4656 } 4657 4658 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4659 struct extent_io_tree *unpin) 4660 { 4661 u64 start; 4662 u64 end; 4663 4664 while (1) { 4665 struct extent_state *cached_state = NULL; 4666 4667 /* 4668 * The btrfs_finish_extent_commit() may get the same range as 4669 * ours between find_first_extent_bit and clear_extent_dirty. 4670 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4671 * the same extent range. 4672 */ 4673 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4674 if (!btrfs_find_first_extent_bit(unpin, 0, &start, &end, 4675 EXTENT_DIRTY, &cached_state)) { 4676 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4677 break; 4678 } 4679 4680 btrfs_clear_extent_dirty(unpin, start, end, &cached_state); 4681 btrfs_free_extent_state(cached_state); 4682 btrfs_error_unpin_extent_range(fs_info, start, end); 4683 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4684 cond_resched(); 4685 } 4686 } 4687 4688 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4689 { 4690 struct inode *inode; 4691 4692 inode = cache->io_ctl.inode; 4693 if (inode) { 4694 unsigned int nofs_flag; 4695 4696 nofs_flag = memalloc_nofs_save(); 4697 invalidate_inode_pages2(inode->i_mapping); 4698 memalloc_nofs_restore(nofs_flag); 4699 4700 BTRFS_I(inode)->generation = 0; 4701 cache->io_ctl.inode = NULL; 4702 iput(inode); 4703 } 4704 ASSERT(cache->io_ctl.pages == NULL); 4705 btrfs_put_block_group(cache); 4706 } 4707 4708 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4709 struct btrfs_fs_info *fs_info) 4710 { 4711 struct btrfs_block_group *cache; 4712 4713 spin_lock(&cur_trans->dirty_bgs_lock); 4714 while (!list_empty(&cur_trans->dirty_bgs)) { 4715 cache = list_first_entry(&cur_trans->dirty_bgs, 4716 struct btrfs_block_group, 4717 dirty_list); 4718 4719 if (!list_empty(&cache->io_list)) { 4720 spin_unlock(&cur_trans->dirty_bgs_lock); 4721 list_del_init(&cache->io_list); 4722 btrfs_cleanup_bg_io(cache); 4723 spin_lock(&cur_trans->dirty_bgs_lock); 4724 } 4725 4726 list_del_init(&cache->dirty_list); 4727 spin_lock(&cache->lock); 4728 cache->disk_cache_state = BTRFS_DC_ERROR; 4729 spin_unlock(&cache->lock); 4730 4731 spin_unlock(&cur_trans->dirty_bgs_lock); 4732 btrfs_put_block_group(cache); 4733 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 4734 spin_lock(&cur_trans->dirty_bgs_lock); 4735 } 4736 spin_unlock(&cur_trans->dirty_bgs_lock); 4737 4738 /* 4739 * Refer to the definition of io_bgs member for details why it's safe 4740 * to use it without any locking 4741 */ 4742 while (!list_empty(&cur_trans->io_bgs)) { 4743 cache = list_first_entry(&cur_trans->io_bgs, 4744 struct btrfs_block_group, 4745 io_list); 4746 4747 list_del_init(&cache->io_list); 4748 spin_lock(&cache->lock); 4749 cache->disk_cache_state = BTRFS_DC_ERROR; 4750 spin_unlock(&cache->lock); 4751 btrfs_cleanup_bg_io(cache); 4752 } 4753 } 4754 4755 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info) 4756 { 4757 struct btrfs_root *gang[8]; 4758 int i; 4759 int ret; 4760 4761 spin_lock(&fs_info->fs_roots_radix_lock); 4762 while (1) { 4763 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 4764 (void **)gang, 0, 4765 ARRAY_SIZE(gang), 4766 BTRFS_ROOT_TRANS_TAG); 4767 if (ret == 0) 4768 break; 4769 for (i = 0; i < ret; i++) { 4770 struct btrfs_root *root = gang[i]; 4771 4772 btrfs_qgroup_free_meta_all_pertrans(root); 4773 radix_tree_tag_clear(&fs_info->fs_roots_radix, 4774 (unsigned long)btrfs_root_id(root), 4775 BTRFS_ROOT_TRANS_TAG); 4776 } 4777 } 4778 spin_unlock(&fs_info->fs_roots_radix_lock); 4779 } 4780 4781 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans) 4782 { 4783 struct btrfs_fs_info *fs_info = cur_trans->fs_info; 4784 struct btrfs_device *dev, *tmp; 4785 4786 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4787 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4788 ASSERT(list_empty(&cur_trans->io_bgs)); 4789 4790 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4791 post_commit_list) { 4792 list_del_init(&dev->post_commit_list); 4793 } 4794 4795 btrfs_destroy_delayed_refs(cur_trans); 4796 4797 cur_trans->state = TRANS_STATE_COMMIT_START; 4798 wake_up(&fs_info->transaction_blocked_wait); 4799 4800 cur_trans->state = TRANS_STATE_UNBLOCKED; 4801 wake_up(&fs_info->transaction_wait); 4802 4803 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4804 EXTENT_DIRTY); 4805 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4806 4807 cur_trans->state =TRANS_STATE_COMPLETED; 4808 wake_up(&cur_trans->commit_wait); 4809 } 4810 4811 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4812 { 4813 struct btrfs_transaction *t; 4814 4815 mutex_lock(&fs_info->transaction_kthread_mutex); 4816 4817 spin_lock(&fs_info->trans_lock); 4818 while (!list_empty(&fs_info->trans_list)) { 4819 t = list_first_entry(&fs_info->trans_list, 4820 struct btrfs_transaction, list); 4821 if (t->state >= TRANS_STATE_COMMIT_PREP) { 4822 refcount_inc(&t->use_count); 4823 spin_unlock(&fs_info->trans_lock); 4824 btrfs_wait_for_commit(fs_info, t->transid); 4825 btrfs_put_transaction(t); 4826 spin_lock(&fs_info->trans_lock); 4827 continue; 4828 } 4829 if (t == fs_info->running_transaction) { 4830 t->state = TRANS_STATE_COMMIT_DOING; 4831 spin_unlock(&fs_info->trans_lock); 4832 /* 4833 * We wait for 0 num_writers since we don't hold a trans 4834 * handle open currently for this transaction. 4835 */ 4836 wait_event(t->writer_wait, 4837 atomic_read(&t->num_writers) == 0); 4838 } else { 4839 spin_unlock(&fs_info->trans_lock); 4840 } 4841 btrfs_cleanup_one_transaction(t); 4842 4843 spin_lock(&fs_info->trans_lock); 4844 if (t == fs_info->running_transaction) 4845 fs_info->running_transaction = NULL; 4846 list_del_init(&t->list); 4847 spin_unlock(&fs_info->trans_lock); 4848 4849 btrfs_put_transaction(t); 4850 trace_btrfs_transaction_commit(fs_info); 4851 spin_lock(&fs_info->trans_lock); 4852 } 4853 spin_unlock(&fs_info->trans_lock); 4854 btrfs_destroy_all_ordered_extents(fs_info); 4855 btrfs_destroy_delayed_inodes(fs_info); 4856 btrfs_assert_delayed_root_empty(fs_info); 4857 btrfs_destroy_all_delalloc_inodes(fs_info); 4858 btrfs_drop_all_logs(fs_info); 4859 btrfs_free_all_qgroup_pertrans(fs_info); 4860 mutex_unlock(&fs_info->transaction_kthread_mutex); 4861 4862 return 0; 4863 } 4864 4865 int btrfs_init_root_free_objectid(struct btrfs_root *root) 4866 { 4867 BTRFS_PATH_AUTO_FREE(path); 4868 int ret; 4869 struct extent_buffer *l; 4870 struct btrfs_key search_key; 4871 struct btrfs_key found_key; 4872 int slot; 4873 4874 path = btrfs_alloc_path(); 4875 if (!path) 4876 return -ENOMEM; 4877 4878 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 4879 search_key.type = -1; 4880 search_key.offset = (u64)-1; 4881 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 4882 if (ret < 0) 4883 return ret; 4884 if (ret == 0) { 4885 /* 4886 * Key with offset -1 found, there would have to exist a root 4887 * with such id, but this is out of valid range. 4888 */ 4889 return -EUCLEAN; 4890 } 4891 if (path->slots[0] > 0) { 4892 slot = path->slots[0] - 1; 4893 l = path->nodes[0]; 4894 btrfs_item_key_to_cpu(l, &found_key, slot); 4895 root->free_objectid = max_t(u64, found_key.objectid + 1, 4896 BTRFS_FIRST_FREE_OBJECTID); 4897 } else { 4898 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 4899 } 4900 4901 return 0; 4902 } 4903 4904 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 4905 { 4906 int ret; 4907 mutex_lock(&root->objectid_mutex); 4908 4909 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 4910 btrfs_warn(root->fs_info, 4911 "the objectid of root %llu reaches its highest value", 4912 btrfs_root_id(root)); 4913 ret = -ENOSPC; 4914 goto out; 4915 } 4916 4917 *objectid = root->free_objectid++; 4918 ret = 0; 4919 out: 4920 mutex_unlock(&root->objectid_mutex); 4921 return ret; 4922 } 4923