1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "rcu-string.h" 33 #include "dev-replace.h" 34 #include "raid56.h" 35 #include "sysfs.h" 36 #include "qgroup.h" 37 #include "compression.h" 38 #include "tree-checker.h" 39 #include "ref-verify.h" 40 #include "block-group.h" 41 #include "discard.h" 42 #include "space-info.h" 43 #include "zoned.h" 44 #include "subpage.h" 45 #include "fs.h" 46 #include "accessors.h" 47 #include "extent-tree.h" 48 #include "root-tree.h" 49 #include "defrag.h" 50 #include "uuid-tree.h" 51 #include "relocation.h" 52 #include "scrub.h" 53 #include "super.h" 54 55 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 56 BTRFS_HEADER_FLAG_RELOC |\ 57 BTRFS_SUPER_FLAG_ERROR |\ 58 BTRFS_SUPER_FLAG_SEEDING |\ 59 BTRFS_SUPER_FLAG_METADUMP |\ 60 BTRFS_SUPER_FLAG_METADUMP_V2) 61 62 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 63 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 64 65 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 66 { 67 if (fs_info->csum_shash) 68 crypto_free_shash(fs_info->csum_shash); 69 } 70 71 /* 72 * Compute the csum of a btree block and store the result to provided buffer. 73 */ 74 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 75 { 76 struct btrfs_fs_info *fs_info = buf->fs_info; 77 int num_pages; 78 u32 first_page_part; 79 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 80 char *kaddr; 81 int i; 82 83 shash->tfm = fs_info->csum_shash; 84 crypto_shash_init(shash); 85 86 if (buf->addr) { 87 /* Pages are contiguous, handle them as a big one. */ 88 kaddr = buf->addr; 89 first_page_part = fs_info->nodesize; 90 num_pages = 1; 91 } else { 92 kaddr = folio_address(buf->folios[0]); 93 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 94 num_pages = num_extent_pages(buf); 95 } 96 97 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 98 first_page_part - BTRFS_CSUM_SIZE); 99 100 /* 101 * Multiple single-page folios case would reach here. 102 * 103 * nodesize <= PAGE_SIZE and large folio all handled by above 104 * crypto_shash_update() already. 105 */ 106 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { 107 kaddr = folio_address(buf->folios[i]); 108 crypto_shash_update(shash, kaddr, PAGE_SIZE); 109 } 110 memset(result, 0, BTRFS_CSUM_SIZE); 111 crypto_shash_final(shash, result); 112 } 113 114 /* 115 * we can't consider a given block up to date unless the transid of the 116 * block matches the transid in the parent node's pointer. This is how we 117 * detect blocks that either didn't get written at all or got written 118 * in the wrong place. 119 */ 120 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic) 121 { 122 if (!extent_buffer_uptodate(eb)) 123 return 0; 124 125 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 126 return 1; 127 128 if (atomic) 129 return -EAGAIN; 130 131 if (!extent_buffer_uptodate(eb) || 132 btrfs_header_generation(eb) != parent_transid) { 133 btrfs_err_rl(eb->fs_info, 134 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 135 eb->start, eb->read_mirror, 136 parent_transid, btrfs_header_generation(eb)); 137 clear_extent_buffer_uptodate(eb); 138 return 0; 139 } 140 return 1; 141 } 142 143 static bool btrfs_supported_super_csum(u16 csum_type) 144 { 145 switch (csum_type) { 146 case BTRFS_CSUM_TYPE_CRC32: 147 case BTRFS_CSUM_TYPE_XXHASH: 148 case BTRFS_CSUM_TYPE_SHA256: 149 case BTRFS_CSUM_TYPE_BLAKE2: 150 return true; 151 default: 152 return false; 153 } 154 } 155 156 /* 157 * Return 0 if the superblock checksum type matches the checksum value of that 158 * algorithm. Pass the raw disk superblock data. 159 */ 160 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 161 const struct btrfs_super_block *disk_sb) 162 { 163 char result[BTRFS_CSUM_SIZE]; 164 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 165 166 shash->tfm = fs_info->csum_shash; 167 168 /* 169 * The super_block structure does not span the whole 170 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 171 * filled with zeros and is included in the checksum. 172 */ 173 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 174 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 175 176 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 177 return 1; 178 179 return 0; 180 } 181 182 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 183 int mirror_num) 184 { 185 struct btrfs_fs_info *fs_info = eb->fs_info; 186 int num_folios = num_extent_folios(eb); 187 int ret = 0; 188 189 if (sb_rdonly(fs_info->sb)) 190 return -EROFS; 191 192 for (int i = 0; i < num_folios; i++) { 193 struct folio *folio = eb->folios[i]; 194 u64 start = max_t(u64, eb->start, folio_pos(folio)); 195 u64 end = min_t(u64, eb->start + eb->len, 196 folio_pos(folio) + folio_size(folio)); 197 u32 len = end - start; 198 199 ret = btrfs_repair_io_failure(fs_info, 0, start, len, 200 start, folio, offset_in_folio(folio, start), 201 mirror_num); 202 if (ret) 203 break; 204 } 205 206 return ret; 207 } 208 209 /* 210 * helper to read a given tree block, doing retries as required when 211 * the checksums don't match and we have alternate mirrors to try. 212 * 213 * @check: expected tree parentness check, see the comments of the 214 * structure for details. 215 */ 216 int btrfs_read_extent_buffer(struct extent_buffer *eb, 217 struct btrfs_tree_parent_check *check) 218 { 219 struct btrfs_fs_info *fs_info = eb->fs_info; 220 int failed = 0; 221 int ret; 222 int num_copies = 0; 223 int mirror_num = 0; 224 int failed_mirror = 0; 225 226 ASSERT(check); 227 228 while (1) { 229 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 230 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check); 231 if (!ret) 232 break; 233 234 num_copies = btrfs_num_copies(fs_info, 235 eb->start, eb->len); 236 if (num_copies == 1) 237 break; 238 239 if (!failed_mirror) { 240 failed = 1; 241 failed_mirror = eb->read_mirror; 242 } 243 244 mirror_num++; 245 if (mirror_num == failed_mirror) 246 mirror_num++; 247 248 if (mirror_num > num_copies) 249 break; 250 } 251 252 if (failed && !ret && failed_mirror) 253 btrfs_repair_eb_io_failure(eb, failed_mirror); 254 255 return ret; 256 } 257 258 /* 259 * Checksum a dirty tree block before IO. 260 */ 261 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio) 262 { 263 struct extent_buffer *eb = bbio->private; 264 struct btrfs_fs_info *fs_info = eb->fs_info; 265 u64 found_start = btrfs_header_bytenr(eb); 266 u64 last_trans; 267 u8 result[BTRFS_CSUM_SIZE]; 268 int ret; 269 270 /* Btree blocks are always contiguous on disk. */ 271 if (WARN_ON_ONCE(bbio->file_offset != eb->start)) 272 return BLK_STS_IOERR; 273 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len)) 274 return BLK_STS_IOERR; 275 276 /* 277 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't 278 * checksum it but zero-out its content. This is done to preserve 279 * ordering of I/O without unnecessarily writing out data. 280 */ 281 if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) { 282 memzero_extent_buffer(eb, 0, eb->len); 283 return BLK_STS_OK; 284 } 285 286 if (WARN_ON_ONCE(found_start != eb->start)) 287 return BLK_STS_IOERR; 288 if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0], 289 eb->start, eb->len))) 290 return BLK_STS_IOERR; 291 292 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 293 offsetof(struct btrfs_header, fsid), 294 BTRFS_FSID_SIZE) == 0); 295 csum_tree_block(eb, result); 296 297 if (btrfs_header_level(eb)) 298 ret = btrfs_check_node(eb); 299 else 300 ret = btrfs_check_leaf(eb); 301 302 if (ret < 0) 303 goto error; 304 305 /* 306 * Also check the generation, the eb reached here must be newer than 307 * last committed. Or something seriously wrong happened. 308 */ 309 last_trans = btrfs_get_last_trans_committed(fs_info); 310 if (unlikely(btrfs_header_generation(eb) <= last_trans)) { 311 ret = -EUCLEAN; 312 btrfs_err(fs_info, 313 "block=%llu bad generation, have %llu expect > %llu", 314 eb->start, btrfs_header_generation(eb), last_trans); 315 goto error; 316 } 317 write_extent_buffer(eb, result, 0, fs_info->csum_size); 318 return BLK_STS_OK; 319 320 error: 321 btrfs_print_tree(eb, 0); 322 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 323 eb->start); 324 /* 325 * Be noisy if this is an extent buffer from a log tree. We don't abort 326 * a transaction in case there's a bad log tree extent buffer, we just 327 * fallback to a transaction commit. Still we want to know when there is 328 * a bad log tree extent buffer, as that may signal a bug somewhere. 329 */ 330 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 331 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 332 return errno_to_blk_status(ret); 333 } 334 335 static bool check_tree_block_fsid(struct extent_buffer *eb) 336 { 337 struct btrfs_fs_info *fs_info = eb->fs_info; 338 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 339 u8 fsid[BTRFS_FSID_SIZE]; 340 341 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 342 BTRFS_FSID_SIZE); 343 344 /* 345 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid. 346 * This is then overwritten by metadata_uuid if it is present in the 347 * device_list_add(). The same true for a seed device as well. So use of 348 * fs_devices::metadata_uuid is appropriate here. 349 */ 350 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0) 351 return false; 352 353 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 354 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 355 return false; 356 357 return true; 358 } 359 360 /* Do basic extent buffer checks at read time */ 361 int btrfs_validate_extent_buffer(struct extent_buffer *eb, 362 struct btrfs_tree_parent_check *check) 363 { 364 struct btrfs_fs_info *fs_info = eb->fs_info; 365 u64 found_start; 366 const u32 csum_size = fs_info->csum_size; 367 u8 found_level; 368 u8 result[BTRFS_CSUM_SIZE]; 369 const u8 *header_csum; 370 int ret = 0; 371 372 ASSERT(check); 373 374 found_start = btrfs_header_bytenr(eb); 375 if (found_start != eb->start) { 376 btrfs_err_rl(fs_info, 377 "bad tree block start, mirror %u want %llu have %llu", 378 eb->read_mirror, eb->start, found_start); 379 ret = -EIO; 380 goto out; 381 } 382 if (check_tree_block_fsid(eb)) { 383 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 384 eb->start, eb->read_mirror); 385 ret = -EIO; 386 goto out; 387 } 388 found_level = btrfs_header_level(eb); 389 if (found_level >= BTRFS_MAX_LEVEL) { 390 btrfs_err(fs_info, 391 "bad tree block level, mirror %u level %d on logical %llu", 392 eb->read_mirror, btrfs_header_level(eb), eb->start); 393 ret = -EIO; 394 goto out; 395 } 396 397 csum_tree_block(eb, result); 398 header_csum = folio_address(eb->folios[0]) + 399 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum)); 400 401 if (memcmp(result, header_csum, csum_size) != 0) { 402 btrfs_warn_rl(fs_info, 403 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d", 404 eb->start, eb->read_mirror, 405 CSUM_FMT_VALUE(csum_size, header_csum), 406 CSUM_FMT_VALUE(csum_size, result), 407 btrfs_header_level(eb)); 408 ret = -EUCLEAN; 409 goto out; 410 } 411 412 if (found_level != check->level) { 413 btrfs_err(fs_info, 414 "level verify failed on logical %llu mirror %u wanted %u found %u", 415 eb->start, eb->read_mirror, check->level, found_level); 416 ret = -EIO; 417 goto out; 418 } 419 if (unlikely(check->transid && 420 btrfs_header_generation(eb) != check->transid)) { 421 btrfs_err_rl(eb->fs_info, 422 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 423 eb->start, eb->read_mirror, check->transid, 424 btrfs_header_generation(eb)); 425 ret = -EIO; 426 goto out; 427 } 428 if (check->has_first_key) { 429 struct btrfs_key *expect_key = &check->first_key; 430 struct btrfs_key found_key; 431 432 if (found_level) 433 btrfs_node_key_to_cpu(eb, &found_key, 0); 434 else 435 btrfs_item_key_to_cpu(eb, &found_key, 0); 436 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 437 btrfs_err(fs_info, 438 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 439 eb->start, check->transid, 440 expect_key->objectid, 441 expect_key->type, expect_key->offset, 442 found_key.objectid, found_key.type, 443 found_key.offset); 444 ret = -EUCLEAN; 445 goto out; 446 } 447 } 448 if (check->owner_root) { 449 ret = btrfs_check_eb_owner(eb, check->owner_root); 450 if (ret < 0) 451 goto out; 452 } 453 454 /* 455 * If this is a leaf block and it is corrupt, set the corrupt bit so 456 * that we don't try and read the other copies of this block, just 457 * return -EIO. 458 */ 459 if (found_level == 0 && btrfs_check_leaf(eb)) { 460 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 461 ret = -EIO; 462 } 463 464 if (found_level > 0 && btrfs_check_node(eb)) 465 ret = -EIO; 466 467 if (ret) 468 btrfs_err(fs_info, 469 "read time tree block corruption detected on logical %llu mirror %u", 470 eb->start, eb->read_mirror); 471 out: 472 return ret; 473 } 474 475 #ifdef CONFIG_MIGRATION 476 static int btree_migrate_folio(struct address_space *mapping, 477 struct folio *dst, struct folio *src, enum migrate_mode mode) 478 { 479 /* 480 * we can't safely write a btree page from here, 481 * we haven't done the locking hook 482 */ 483 if (folio_test_dirty(src)) 484 return -EAGAIN; 485 /* 486 * Buffers may be managed in a filesystem specific way. 487 * We must have no buffers or drop them. 488 */ 489 if (folio_get_private(src) && 490 !filemap_release_folio(src, GFP_KERNEL)) 491 return -EAGAIN; 492 return migrate_folio(mapping, dst, src, mode); 493 } 494 #else 495 #define btree_migrate_folio NULL 496 #endif 497 498 static int btree_writepages(struct address_space *mapping, 499 struct writeback_control *wbc) 500 { 501 struct btrfs_fs_info *fs_info; 502 int ret; 503 504 if (wbc->sync_mode == WB_SYNC_NONE) { 505 506 if (wbc->for_kupdate) 507 return 0; 508 509 fs_info = BTRFS_I(mapping->host)->root->fs_info; 510 /* this is a bit racy, but that's ok */ 511 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 512 BTRFS_DIRTY_METADATA_THRESH, 513 fs_info->dirty_metadata_batch); 514 if (ret < 0) 515 return 0; 516 } 517 return btree_write_cache_pages(mapping, wbc); 518 } 519 520 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 521 { 522 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 523 return false; 524 525 return try_release_extent_buffer(&folio->page); 526 } 527 528 static void btree_invalidate_folio(struct folio *folio, size_t offset, 529 size_t length) 530 { 531 struct extent_io_tree *tree; 532 tree = &BTRFS_I(folio->mapping->host)->io_tree; 533 extent_invalidate_folio(tree, folio, offset); 534 btree_release_folio(folio, GFP_NOFS); 535 if (folio_get_private(folio)) { 536 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info, 537 "folio private not zero on folio %llu", 538 (unsigned long long)folio_pos(folio)); 539 folio_detach_private(folio); 540 } 541 } 542 543 #ifdef DEBUG 544 static bool btree_dirty_folio(struct address_space *mapping, 545 struct folio *folio) 546 { 547 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 548 struct btrfs_subpage_info *spi = fs_info->subpage_info; 549 struct btrfs_subpage *subpage; 550 struct extent_buffer *eb; 551 int cur_bit = 0; 552 u64 page_start = folio_pos(folio); 553 554 if (fs_info->sectorsize == PAGE_SIZE) { 555 eb = folio_get_private(folio); 556 BUG_ON(!eb); 557 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 558 BUG_ON(!atomic_read(&eb->refs)); 559 btrfs_assert_tree_write_locked(eb); 560 return filemap_dirty_folio(mapping, folio); 561 } 562 563 ASSERT(spi); 564 subpage = folio_get_private(folio); 565 566 for (cur_bit = spi->dirty_offset; 567 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits; 568 cur_bit++) { 569 unsigned long flags; 570 u64 cur; 571 572 spin_lock_irqsave(&subpage->lock, flags); 573 if (!test_bit(cur_bit, subpage->bitmaps)) { 574 spin_unlock_irqrestore(&subpage->lock, flags); 575 continue; 576 } 577 spin_unlock_irqrestore(&subpage->lock, flags); 578 cur = page_start + cur_bit * fs_info->sectorsize; 579 580 eb = find_extent_buffer(fs_info, cur); 581 ASSERT(eb); 582 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 583 ASSERT(atomic_read(&eb->refs)); 584 btrfs_assert_tree_write_locked(eb); 585 free_extent_buffer(eb); 586 587 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1; 588 } 589 return filemap_dirty_folio(mapping, folio); 590 } 591 #else 592 #define btree_dirty_folio filemap_dirty_folio 593 #endif 594 595 static const struct address_space_operations btree_aops = { 596 .writepages = btree_writepages, 597 .release_folio = btree_release_folio, 598 .invalidate_folio = btree_invalidate_folio, 599 .migrate_folio = btree_migrate_folio, 600 .dirty_folio = btree_dirty_folio, 601 }; 602 603 struct extent_buffer *btrfs_find_create_tree_block( 604 struct btrfs_fs_info *fs_info, 605 u64 bytenr, u64 owner_root, 606 int level) 607 { 608 if (btrfs_is_testing(fs_info)) 609 return alloc_test_extent_buffer(fs_info, bytenr); 610 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 611 } 612 613 /* 614 * Read tree block at logical address @bytenr and do variant basic but critical 615 * verification. 616 * 617 * @check: expected tree parentness check, see comments of the 618 * structure for details. 619 */ 620 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 621 struct btrfs_tree_parent_check *check) 622 { 623 struct extent_buffer *buf = NULL; 624 int ret; 625 626 ASSERT(check); 627 628 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 629 check->level); 630 if (IS_ERR(buf)) 631 return buf; 632 633 ret = btrfs_read_extent_buffer(buf, check); 634 if (ret) { 635 free_extent_buffer_stale(buf); 636 return ERR_PTR(ret); 637 } 638 if (btrfs_check_eb_owner(buf, check->owner_root)) { 639 free_extent_buffer_stale(buf); 640 return ERR_PTR(-EUCLEAN); 641 } 642 return buf; 643 644 } 645 646 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 647 u64 objectid) 648 { 649 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 650 651 memset(&root->root_key, 0, sizeof(root->root_key)); 652 memset(&root->root_item, 0, sizeof(root->root_item)); 653 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 654 root->fs_info = fs_info; 655 root->root_key.objectid = objectid; 656 root->node = NULL; 657 root->commit_root = NULL; 658 root->state = 0; 659 RB_CLEAR_NODE(&root->rb_node); 660 661 root->last_trans = 0; 662 root->free_objectid = 0; 663 root->nr_delalloc_inodes = 0; 664 root->nr_ordered_extents = 0; 665 root->inode_tree = RB_ROOT; 666 /* GFP flags are compatible with XA_FLAGS_*. */ 667 xa_init_flags(&root->delayed_nodes, GFP_ATOMIC); 668 669 btrfs_init_root_block_rsv(root); 670 671 INIT_LIST_HEAD(&root->dirty_list); 672 INIT_LIST_HEAD(&root->root_list); 673 INIT_LIST_HEAD(&root->delalloc_inodes); 674 INIT_LIST_HEAD(&root->delalloc_root); 675 INIT_LIST_HEAD(&root->ordered_extents); 676 INIT_LIST_HEAD(&root->ordered_root); 677 INIT_LIST_HEAD(&root->reloc_dirty_list); 678 spin_lock_init(&root->inode_lock); 679 spin_lock_init(&root->delalloc_lock); 680 spin_lock_init(&root->ordered_extent_lock); 681 spin_lock_init(&root->accounting_lock); 682 spin_lock_init(&root->qgroup_meta_rsv_lock); 683 mutex_init(&root->objectid_mutex); 684 mutex_init(&root->log_mutex); 685 mutex_init(&root->ordered_extent_mutex); 686 mutex_init(&root->delalloc_mutex); 687 init_waitqueue_head(&root->qgroup_flush_wait); 688 init_waitqueue_head(&root->log_writer_wait); 689 init_waitqueue_head(&root->log_commit_wait[0]); 690 init_waitqueue_head(&root->log_commit_wait[1]); 691 INIT_LIST_HEAD(&root->log_ctxs[0]); 692 INIT_LIST_HEAD(&root->log_ctxs[1]); 693 atomic_set(&root->log_commit[0], 0); 694 atomic_set(&root->log_commit[1], 0); 695 atomic_set(&root->log_writers, 0); 696 atomic_set(&root->log_batch, 0); 697 refcount_set(&root->refs, 1); 698 atomic_set(&root->snapshot_force_cow, 0); 699 atomic_set(&root->nr_swapfiles, 0); 700 btrfs_set_root_log_transid(root, 0); 701 root->log_transid_committed = -1; 702 btrfs_set_root_last_log_commit(root, 0); 703 root->anon_dev = 0; 704 if (!dummy) { 705 extent_io_tree_init(fs_info, &root->dirty_log_pages, 706 IO_TREE_ROOT_DIRTY_LOG_PAGES); 707 extent_io_tree_init(fs_info, &root->log_csum_range, 708 IO_TREE_LOG_CSUM_RANGE); 709 } 710 711 spin_lock_init(&root->root_item_lock); 712 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 713 #ifdef CONFIG_BTRFS_DEBUG 714 INIT_LIST_HEAD(&root->leak_list); 715 spin_lock(&fs_info->fs_roots_radix_lock); 716 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 717 spin_unlock(&fs_info->fs_roots_radix_lock); 718 #endif 719 } 720 721 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 722 u64 objectid, gfp_t flags) 723 { 724 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 725 if (root) 726 __setup_root(root, fs_info, objectid); 727 return root; 728 } 729 730 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 731 /* Should only be used by the testing infrastructure */ 732 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 733 { 734 struct btrfs_root *root; 735 736 if (!fs_info) 737 return ERR_PTR(-EINVAL); 738 739 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 740 if (!root) 741 return ERR_PTR(-ENOMEM); 742 743 /* We don't use the stripesize in selftest, set it as sectorsize */ 744 root->alloc_bytenr = 0; 745 746 return root; 747 } 748 #endif 749 750 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 751 { 752 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 753 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 754 755 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 756 } 757 758 static int global_root_key_cmp(const void *k, const struct rb_node *node) 759 { 760 const struct btrfs_key *key = k; 761 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 762 763 return btrfs_comp_cpu_keys(key, &root->root_key); 764 } 765 766 int btrfs_global_root_insert(struct btrfs_root *root) 767 { 768 struct btrfs_fs_info *fs_info = root->fs_info; 769 struct rb_node *tmp; 770 int ret = 0; 771 772 write_lock(&fs_info->global_root_lock); 773 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 774 write_unlock(&fs_info->global_root_lock); 775 776 if (tmp) { 777 ret = -EEXIST; 778 btrfs_warn(fs_info, "global root %llu %llu already exists", 779 root->root_key.objectid, root->root_key.offset); 780 } 781 return ret; 782 } 783 784 void btrfs_global_root_delete(struct btrfs_root *root) 785 { 786 struct btrfs_fs_info *fs_info = root->fs_info; 787 788 write_lock(&fs_info->global_root_lock); 789 rb_erase(&root->rb_node, &fs_info->global_root_tree); 790 write_unlock(&fs_info->global_root_lock); 791 } 792 793 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 794 struct btrfs_key *key) 795 { 796 struct rb_node *node; 797 struct btrfs_root *root = NULL; 798 799 read_lock(&fs_info->global_root_lock); 800 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 801 if (node) 802 root = container_of(node, struct btrfs_root, rb_node); 803 read_unlock(&fs_info->global_root_lock); 804 805 return root; 806 } 807 808 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 809 { 810 struct btrfs_block_group *block_group; 811 u64 ret; 812 813 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 814 return 0; 815 816 if (bytenr) 817 block_group = btrfs_lookup_block_group(fs_info, bytenr); 818 else 819 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 820 ASSERT(block_group); 821 if (!block_group) 822 return 0; 823 ret = block_group->global_root_id; 824 btrfs_put_block_group(block_group); 825 826 return ret; 827 } 828 829 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 830 { 831 struct btrfs_key key = { 832 .objectid = BTRFS_CSUM_TREE_OBJECTID, 833 .type = BTRFS_ROOT_ITEM_KEY, 834 .offset = btrfs_global_root_id(fs_info, bytenr), 835 }; 836 837 return btrfs_global_root(fs_info, &key); 838 } 839 840 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 841 { 842 struct btrfs_key key = { 843 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 844 .type = BTRFS_ROOT_ITEM_KEY, 845 .offset = btrfs_global_root_id(fs_info, bytenr), 846 }; 847 848 return btrfs_global_root(fs_info, &key); 849 } 850 851 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) 852 { 853 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) 854 return fs_info->block_group_root; 855 return btrfs_extent_root(fs_info, 0); 856 } 857 858 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 859 u64 objectid) 860 { 861 struct btrfs_fs_info *fs_info = trans->fs_info; 862 struct extent_buffer *leaf; 863 struct btrfs_root *tree_root = fs_info->tree_root; 864 struct btrfs_root *root; 865 struct btrfs_key key; 866 unsigned int nofs_flag; 867 int ret = 0; 868 869 /* 870 * We're holding a transaction handle, so use a NOFS memory allocation 871 * context to avoid deadlock if reclaim happens. 872 */ 873 nofs_flag = memalloc_nofs_save(); 874 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 875 memalloc_nofs_restore(nofs_flag); 876 if (!root) 877 return ERR_PTR(-ENOMEM); 878 879 root->root_key.objectid = objectid; 880 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 881 root->root_key.offset = 0; 882 883 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 884 0, BTRFS_NESTING_NORMAL); 885 if (IS_ERR(leaf)) { 886 ret = PTR_ERR(leaf); 887 leaf = NULL; 888 goto fail; 889 } 890 891 root->node = leaf; 892 btrfs_mark_buffer_dirty(trans, leaf); 893 894 root->commit_root = btrfs_root_node(root); 895 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 896 897 btrfs_set_root_flags(&root->root_item, 0); 898 btrfs_set_root_limit(&root->root_item, 0); 899 btrfs_set_root_bytenr(&root->root_item, leaf->start); 900 btrfs_set_root_generation(&root->root_item, trans->transid); 901 btrfs_set_root_level(&root->root_item, 0); 902 btrfs_set_root_refs(&root->root_item, 1); 903 btrfs_set_root_used(&root->root_item, leaf->len); 904 btrfs_set_root_last_snapshot(&root->root_item, 0); 905 btrfs_set_root_dirid(&root->root_item, 0); 906 if (is_fstree(objectid)) 907 generate_random_guid(root->root_item.uuid); 908 else 909 export_guid(root->root_item.uuid, &guid_null); 910 btrfs_set_root_drop_level(&root->root_item, 0); 911 912 btrfs_tree_unlock(leaf); 913 914 key.objectid = objectid; 915 key.type = BTRFS_ROOT_ITEM_KEY; 916 key.offset = 0; 917 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 918 if (ret) 919 goto fail; 920 921 return root; 922 923 fail: 924 btrfs_put_root(root); 925 926 return ERR_PTR(ret); 927 } 928 929 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 930 struct btrfs_fs_info *fs_info) 931 { 932 struct btrfs_root *root; 933 934 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 935 if (!root) 936 return ERR_PTR(-ENOMEM); 937 938 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 939 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 940 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 941 942 return root; 943 } 944 945 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 946 struct btrfs_root *root) 947 { 948 struct extent_buffer *leaf; 949 950 /* 951 * DON'T set SHAREABLE bit for log trees. 952 * 953 * Log trees are not exposed to user space thus can't be snapshotted, 954 * and they go away before a real commit is actually done. 955 * 956 * They do store pointers to file data extents, and those reference 957 * counts still get updated (along with back refs to the log tree). 958 */ 959 960 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 961 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL); 962 if (IS_ERR(leaf)) 963 return PTR_ERR(leaf); 964 965 root->node = leaf; 966 967 btrfs_mark_buffer_dirty(trans, root->node); 968 btrfs_tree_unlock(root->node); 969 970 return 0; 971 } 972 973 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 974 struct btrfs_fs_info *fs_info) 975 { 976 struct btrfs_root *log_root; 977 978 log_root = alloc_log_tree(trans, fs_info); 979 if (IS_ERR(log_root)) 980 return PTR_ERR(log_root); 981 982 if (!btrfs_is_zoned(fs_info)) { 983 int ret = btrfs_alloc_log_tree_node(trans, log_root); 984 985 if (ret) { 986 btrfs_put_root(log_root); 987 return ret; 988 } 989 } 990 991 WARN_ON(fs_info->log_root_tree); 992 fs_info->log_root_tree = log_root; 993 return 0; 994 } 995 996 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 997 struct btrfs_root *root) 998 { 999 struct btrfs_fs_info *fs_info = root->fs_info; 1000 struct btrfs_root *log_root; 1001 struct btrfs_inode_item *inode_item; 1002 int ret; 1003 1004 log_root = alloc_log_tree(trans, fs_info); 1005 if (IS_ERR(log_root)) 1006 return PTR_ERR(log_root); 1007 1008 ret = btrfs_alloc_log_tree_node(trans, log_root); 1009 if (ret) { 1010 btrfs_put_root(log_root); 1011 return ret; 1012 } 1013 1014 log_root->last_trans = trans->transid; 1015 log_root->root_key.offset = root->root_key.objectid; 1016 1017 inode_item = &log_root->root_item.inode; 1018 btrfs_set_stack_inode_generation(inode_item, 1); 1019 btrfs_set_stack_inode_size(inode_item, 3); 1020 btrfs_set_stack_inode_nlink(inode_item, 1); 1021 btrfs_set_stack_inode_nbytes(inode_item, 1022 fs_info->nodesize); 1023 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1024 1025 btrfs_set_root_node(&log_root->root_item, log_root->node); 1026 1027 WARN_ON(root->log_root); 1028 root->log_root = log_root; 1029 btrfs_set_root_log_transid(root, 0); 1030 root->log_transid_committed = -1; 1031 btrfs_set_root_last_log_commit(root, 0); 1032 return 0; 1033 } 1034 1035 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1036 struct btrfs_path *path, 1037 struct btrfs_key *key) 1038 { 1039 struct btrfs_root *root; 1040 struct btrfs_tree_parent_check check = { 0 }; 1041 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1042 u64 generation; 1043 int ret; 1044 int level; 1045 1046 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1047 if (!root) 1048 return ERR_PTR(-ENOMEM); 1049 1050 ret = btrfs_find_root(tree_root, key, path, 1051 &root->root_item, &root->root_key); 1052 if (ret) { 1053 if (ret > 0) 1054 ret = -ENOENT; 1055 goto fail; 1056 } 1057 1058 generation = btrfs_root_generation(&root->root_item); 1059 level = btrfs_root_level(&root->root_item); 1060 check.level = level; 1061 check.transid = generation; 1062 check.owner_root = key->objectid; 1063 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1064 &check); 1065 if (IS_ERR(root->node)) { 1066 ret = PTR_ERR(root->node); 1067 root->node = NULL; 1068 goto fail; 1069 } 1070 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1071 ret = -EIO; 1072 goto fail; 1073 } 1074 1075 /* 1076 * For real fs, and not log/reloc trees, root owner must 1077 * match its root node owner 1078 */ 1079 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) && 1080 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1081 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1082 root->root_key.objectid != btrfs_header_owner(root->node)) { 1083 btrfs_crit(fs_info, 1084 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1085 root->root_key.objectid, root->node->start, 1086 btrfs_header_owner(root->node), 1087 root->root_key.objectid); 1088 ret = -EUCLEAN; 1089 goto fail; 1090 } 1091 root->commit_root = btrfs_root_node(root); 1092 return root; 1093 fail: 1094 btrfs_put_root(root); 1095 return ERR_PTR(ret); 1096 } 1097 1098 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1099 struct btrfs_key *key) 1100 { 1101 struct btrfs_root *root; 1102 struct btrfs_path *path; 1103 1104 path = btrfs_alloc_path(); 1105 if (!path) 1106 return ERR_PTR(-ENOMEM); 1107 root = read_tree_root_path(tree_root, path, key); 1108 btrfs_free_path(path); 1109 1110 return root; 1111 } 1112 1113 /* 1114 * Initialize subvolume root in-memory structure 1115 * 1116 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1117 */ 1118 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1119 { 1120 int ret; 1121 1122 btrfs_drew_lock_init(&root->snapshot_lock); 1123 1124 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1125 !btrfs_is_data_reloc_root(root) && 1126 is_fstree(root->root_key.objectid)) { 1127 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1128 btrfs_check_and_init_root_item(&root->root_item); 1129 } 1130 1131 /* 1132 * Don't assign anonymous block device to roots that are not exposed to 1133 * userspace, the id pool is limited to 1M 1134 */ 1135 if (is_fstree(root->root_key.objectid) && 1136 btrfs_root_refs(&root->root_item) > 0) { 1137 if (!anon_dev) { 1138 ret = get_anon_bdev(&root->anon_dev); 1139 if (ret) 1140 goto fail; 1141 } else { 1142 root->anon_dev = anon_dev; 1143 } 1144 } 1145 1146 mutex_lock(&root->objectid_mutex); 1147 ret = btrfs_init_root_free_objectid(root); 1148 if (ret) { 1149 mutex_unlock(&root->objectid_mutex); 1150 goto fail; 1151 } 1152 1153 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1154 1155 mutex_unlock(&root->objectid_mutex); 1156 1157 return 0; 1158 fail: 1159 /* The caller is responsible to call btrfs_free_fs_root */ 1160 return ret; 1161 } 1162 1163 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1164 u64 root_id) 1165 { 1166 struct btrfs_root *root; 1167 1168 spin_lock(&fs_info->fs_roots_radix_lock); 1169 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1170 (unsigned long)root_id); 1171 root = btrfs_grab_root(root); 1172 spin_unlock(&fs_info->fs_roots_radix_lock); 1173 return root; 1174 } 1175 1176 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1177 u64 objectid) 1178 { 1179 struct btrfs_key key = { 1180 .objectid = objectid, 1181 .type = BTRFS_ROOT_ITEM_KEY, 1182 .offset = 0, 1183 }; 1184 1185 switch (objectid) { 1186 case BTRFS_ROOT_TREE_OBJECTID: 1187 return btrfs_grab_root(fs_info->tree_root); 1188 case BTRFS_EXTENT_TREE_OBJECTID: 1189 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1190 case BTRFS_CHUNK_TREE_OBJECTID: 1191 return btrfs_grab_root(fs_info->chunk_root); 1192 case BTRFS_DEV_TREE_OBJECTID: 1193 return btrfs_grab_root(fs_info->dev_root); 1194 case BTRFS_CSUM_TREE_OBJECTID: 1195 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1196 case BTRFS_QUOTA_TREE_OBJECTID: 1197 return btrfs_grab_root(fs_info->quota_root); 1198 case BTRFS_UUID_TREE_OBJECTID: 1199 return btrfs_grab_root(fs_info->uuid_root); 1200 case BTRFS_BLOCK_GROUP_TREE_OBJECTID: 1201 return btrfs_grab_root(fs_info->block_group_root); 1202 case BTRFS_FREE_SPACE_TREE_OBJECTID: 1203 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1204 case BTRFS_RAID_STRIPE_TREE_OBJECTID: 1205 return btrfs_grab_root(fs_info->stripe_root); 1206 default: 1207 return NULL; 1208 } 1209 } 1210 1211 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1212 struct btrfs_root *root) 1213 { 1214 int ret; 1215 1216 ret = radix_tree_preload(GFP_NOFS); 1217 if (ret) 1218 return ret; 1219 1220 spin_lock(&fs_info->fs_roots_radix_lock); 1221 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1222 (unsigned long)root->root_key.objectid, 1223 root); 1224 if (ret == 0) { 1225 btrfs_grab_root(root); 1226 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1227 } 1228 spin_unlock(&fs_info->fs_roots_radix_lock); 1229 radix_tree_preload_end(); 1230 1231 return ret; 1232 } 1233 1234 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1235 { 1236 #ifdef CONFIG_BTRFS_DEBUG 1237 struct btrfs_root *root; 1238 1239 while (!list_empty(&fs_info->allocated_roots)) { 1240 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1241 1242 root = list_first_entry(&fs_info->allocated_roots, 1243 struct btrfs_root, leak_list); 1244 btrfs_err(fs_info, "leaked root %s refcount %d", 1245 btrfs_root_name(&root->root_key, buf), 1246 refcount_read(&root->refs)); 1247 while (refcount_read(&root->refs) > 1) 1248 btrfs_put_root(root); 1249 btrfs_put_root(root); 1250 } 1251 #endif 1252 } 1253 1254 static void free_global_roots(struct btrfs_fs_info *fs_info) 1255 { 1256 struct btrfs_root *root; 1257 struct rb_node *node; 1258 1259 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1260 root = rb_entry(node, struct btrfs_root, rb_node); 1261 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1262 btrfs_put_root(root); 1263 } 1264 } 1265 1266 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1267 { 1268 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1269 percpu_counter_destroy(&fs_info->delalloc_bytes); 1270 percpu_counter_destroy(&fs_info->ordered_bytes); 1271 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1272 btrfs_free_csum_hash(fs_info); 1273 btrfs_free_stripe_hash_table(fs_info); 1274 btrfs_free_ref_cache(fs_info); 1275 kfree(fs_info->balance_ctl); 1276 kfree(fs_info->delayed_root); 1277 free_global_roots(fs_info); 1278 btrfs_put_root(fs_info->tree_root); 1279 btrfs_put_root(fs_info->chunk_root); 1280 btrfs_put_root(fs_info->dev_root); 1281 btrfs_put_root(fs_info->quota_root); 1282 btrfs_put_root(fs_info->uuid_root); 1283 btrfs_put_root(fs_info->fs_root); 1284 btrfs_put_root(fs_info->data_reloc_root); 1285 btrfs_put_root(fs_info->block_group_root); 1286 btrfs_put_root(fs_info->stripe_root); 1287 btrfs_check_leaked_roots(fs_info); 1288 btrfs_extent_buffer_leak_debug_check(fs_info); 1289 kfree(fs_info->super_copy); 1290 kfree(fs_info->super_for_commit); 1291 kfree(fs_info->subpage_info); 1292 kvfree(fs_info); 1293 } 1294 1295 1296 /* 1297 * Get an in-memory reference of a root structure. 1298 * 1299 * For essential trees like root/extent tree, we grab it from fs_info directly. 1300 * For subvolume trees, we check the cached filesystem roots first. If not 1301 * found, then read it from disk and add it to cached fs roots. 1302 * 1303 * Caller should release the root by calling btrfs_put_root() after the usage. 1304 * 1305 * NOTE: Reloc and log trees can't be read by this function as they share the 1306 * same root objectid. 1307 * 1308 * @objectid: root id 1309 * @anon_dev: preallocated anonymous block device number for new roots, 1310 * pass 0 for new allocation. 1311 * @check_ref: whether to check root item references, If true, return -ENOENT 1312 * for orphan roots 1313 */ 1314 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1315 u64 objectid, dev_t anon_dev, 1316 bool check_ref) 1317 { 1318 struct btrfs_root *root; 1319 struct btrfs_path *path; 1320 struct btrfs_key key; 1321 int ret; 1322 1323 root = btrfs_get_global_root(fs_info, objectid); 1324 if (root) 1325 return root; 1326 1327 /* 1328 * If we're called for non-subvolume trees, and above function didn't 1329 * find one, do not try to read it from disk. 1330 * 1331 * This is namely for free-space-tree and quota tree, which can change 1332 * at runtime and should only be grabbed from fs_info. 1333 */ 1334 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) 1335 return ERR_PTR(-ENOENT); 1336 again: 1337 root = btrfs_lookup_fs_root(fs_info, objectid); 1338 if (root) { 1339 /* Shouldn't get preallocated anon_dev for cached roots */ 1340 ASSERT(!anon_dev); 1341 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1342 btrfs_put_root(root); 1343 return ERR_PTR(-ENOENT); 1344 } 1345 return root; 1346 } 1347 1348 key.objectid = objectid; 1349 key.type = BTRFS_ROOT_ITEM_KEY; 1350 key.offset = (u64)-1; 1351 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1352 if (IS_ERR(root)) 1353 return root; 1354 1355 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1356 ret = -ENOENT; 1357 goto fail; 1358 } 1359 1360 ret = btrfs_init_fs_root(root, anon_dev); 1361 if (ret) 1362 goto fail; 1363 1364 path = btrfs_alloc_path(); 1365 if (!path) { 1366 ret = -ENOMEM; 1367 goto fail; 1368 } 1369 key.objectid = BTRFS_ORPHAN_OBJECTID; 1370 key.type = BTRFS_ORPHAN_ITEM_KEY; 1371 key.offset = objectid; 1372 1373 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1374 btrfs_free_path(path); 1375 if (ret < 0) 1376 goto fail; 1377 if (ret == 0) 1378 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1379 1380 ret = btrfs_insert_fs_root(fs_info, root); 1381 if (ret) { 1382 if (ret == -EEXIST) { 1383 btrfs_put_root(root); 1384 goto again; 1385 } 1386 goto fail; 1387 } 1388 return root; 1389 fail: 1390 /* 1391 * If our caller provided us an anonymous device, then it's his 1392 * responsibility to free it in case we fail. So we have to set our 1393 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1394 * and once again by our caller. 1395 */ 1396 if (anon_dev) 1397 root->anon_dev = 0; 1398 btrfs_put_root(root); 1399 return ERR_PTR(ret); 1400 } 1401 1402 /* 1403 * Get in-memory reference of a root structure 1404 * 1405 * @objectid: tree objectid 1406 * @check_ref: if set, verify that the tree exists and the item has at least 1407 * one reference 1408 */ 1409 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1410 u64 objectid, bool check_ref) 1411 { 1412 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1413 } 1414 1415 /* 1416 * Get in-memory reference of a root structure, created as new, optionally pass 1417 * the anonymous block device id 1418 * 1419 * @objectid: tree objectid 1420 * @anon_dev: if zero, allocate a new anonymous block device or use the 1421 * parameter value 1422 */ 1423 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1424 u64 objectid, dev_t anon_dev) 1425 { 1426 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1427 } 1428 1429 /* 1430 * Return a root for the given objectid. 1431 * 1432 * @fs_info: the fs_info 1433 * @objectid: the objectid we need to lookup 1434 * 1435 * This is exclusively used for backref walking, and exists specifically because 1436 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1437 * creation time, which means we may have to read the tree_root in order to look 1438 * up a fs root that is not in memory. If the root is not in memory we will 1439 * read the tree root commit root and look up the fs root from there. This is a 1440 * temporary root, it will not be inserted into the radix tree as it doesn't 1441 * have the most uptodate information, it'll simply be discarded once the 1442 * backref code is finished using the root. 1443 */ 1444 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1445 struct btrfs_path *path, 1446 u64 objectid) 1447 { 1448 struct btrfs_root *root; 1449 struct btrfs_key key; 1450 1451 ASSERT(path->search_commit_root && path->skip_locking); 1452 1453 /* 1454 * This can return -ENOENT if we ask for a root that doesn't exist, but 1455 * since this is called via the backref walking code we won't be looking 1456 * up a root that doesn't exist, unless there's corruption. So if root 1457 * != NULL just return it. 1458 */ 1459 root = btrfs_get_global_root(fs_info, objectid); 1460 if (root) 1461 return root; 1462 1463 root = btrfs_lookup_fs_root(fs_info, objectid); 1464 if (root) 1465 return root; 1466 1467 key.objectid = objectid; 1468 key.type = BTRFS_ROOT_ITEM_KEY; 1469 key.offset = (u64)-1; 1470 root = read_tree_root_path(fs_info->tree_root, path, &key); 1471 btrfs_release_path(path); 1472 1473 return root; 1474 } 1475 1476 static int cleaner_kthread(void *arg) 1477 { 1478 struct btrfs_fs_info *fs_info = arg; 1479 int again; 1480 1481 while (1) { 1482 again = 0; 1483 1484 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1485 1486 /* Make the cleaner go to sleep early. */ 1487 if (btrfs_need_cleaner_sleep(fs_info)) 1488 goto sleep; 1489 1490 /* 1491 * Do not do anything if we might cause open_ctree() to block 1492 * before we have finished mounting the filesystem. 1493 */ 1494 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1495 goto sleep; 1496 1497 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1498 goto sleep; 1499 1500 /* 1501 * Avoid the problem that we change the status of the fs 1502 * during the above check and trylock. 1503 */ 1504 if (btrfs_need_cleaner_sleep(fs_info)) { 1505 mutex_unlock(&fs_info->cleaner_mutex); 1506 goto sleep; 1507 } 1508 1509 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) 1510 btrfs_sysfs_feature_update(fs_info); 1511 1512 btrfs_run_delayed_iputs(fs_info); 1513 1514 again = btrfs_clean_one_deleted_snapshot(fs_info); 1515 mutex_unlock(&fs_info->cleaner_mutex); 1516 1517 /* 1518 * The defragger has dealt with the R/O remount and umount, 1519 * needn't do anything special here. 1520 */ 1521 btrfs_run_defrag_inodes(fs_info); 1522 1523 /* 1524 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1525 * with relocation (btrfs_relocate_chunk) and relocation 1526 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1527 * after acquiring fs_info->reclaim_bgs_lock. So we 1528 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1529 * unused block groups. 1530 */ 1531 btrfs_delete_unused_bgs(fs_info); 1532 1533 /* 1534 * Reclaim block groups in the reclaim_bgs list after we deleted 1535 * all unused block_groups. This possibly gives us some more free 1536 * space. 1537 */ 1538 btrfs_reclaim_bgs(fs_info); 1539 sleep: 1540 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1541 if (kthread_should_park()) 1542 kthread_parkme(); 1543 if (kthread_should_stop()) 1544 return 0; 1545 if (!again) { 1546 set_current_state(TASK_INTERRUPTIBLE); 1547 schedule(); 1548 __set_current_state(TASK_RUNNING); 1549 } 1550 } 1551 } 1552 1553 static int transaction_kthread(void *arg) 1554 { 1555 struct btrfs_root *root = arg; 1556 struct btrfs_fs_info *fs_info = root->fs_info; 1557 struct btrfs_trans_handle *trans; 1558 struct btrfs_transaction *cur; 1559 u64 transid; 1560 time64_t delta; 1561 unsigned long delay; 1562 bool cannot_commit; 1563 1564 do { 1565 cannot_commit = false; 1566 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1567 mutex_lock(&fs_info->transaction_kthread_mutex); 1568 1569 spin_lock(&fs_info->trans_lock); 1570 cur = fs_info->running_transaction; 1571 if (!cur) { 1572 spin_unlock(&fs_info->trans_lock); 1573 goto sleep; 1574 } 1575 1576 delta = ktime_get_seconds() - cur->start_time; 1577 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1578 cur->state < TRANS_STATE_COMMIT_PREP && 1579 delta < fs_info->commit_interval) { 1580 spin_unlock(&fs_info->trans_lock); 1581 delay -= msecs_to_jiffies((delta - 1) * 1000); 1582 delay = min(delay, 1583 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1584 goto sleep; 1585 } 1586 transid = cur->transid; 1587 spin_unlock(&fs_info->trans_lock); 1588 1589 /* If the file system is aborted, this will always fail. */ 1590 trans = btrfs_attach_transaction(root); 1591 if (IS_ERR(trans)) { 1592 if (PTR_ERR(trans) != -ENOENT) 1593 cannot_commit = true; 1594 goto sleep; 1595 } 1596 if (transid == trans->transid) { 1597 btrfs_commit_transaction(trans); 1598 } else { 1599 btrfs_end_transaction(trans); 1600 } 1601 sleep: 1602 wake_up_process(fs_info->cleaner_kthread); 1603 mutex_unlock(&fs_info->transaction_kthread_mutex); 1604 1605 if (BTRFS_FS_ERROR(fs_info)) 1606 btrfs_cleanup_transaction(fs_info); 1607 if (!kthread_should_stop() && 1608 (!btrfs_transaction_blocked(fs_info) || 1609 cannot_commit)) 1610 schedule_timeout_interruptible(delay); 1611 } while (!kthread_should_stop()); 1612 return 0; 1613 } 1614 1615 /* 1616 * This will find the highest generation in the array of root backups. The 1617 * index of the highest array is returned, or -EINVAL if we can't find 1618 * anything. 1619 * 1620 * We check to make sure the array is valid by comparing the 1621 * generation of the latest root in the array with the generation 1622 * in the super block. If they don't match we pitch it. 1623 */ 1624 static int find_newest_super_backup(struct btrfs_fs_info *info) 1625 { 1626 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1627 u64 cur; 1628 struct btrfs_root_backup *root_backup; 1629 int i; 1630 1631 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1632 root_backup = info->super_copy->super_roots + i; 1633 cur = btrfs_backup_tree_root_gen(root_backup); 1634 if (cur == newest_gen) 1635 return i; 1636 } 1637 1638 return -EINVAL; 1639 } 1640 1641 /* 1642 * copy all the root pointers into the super backup array. 1643 * this will bump the backup pointer by one when it is 1644 * done 1645 */ 1646 static void backup_super_roots(struct btrfs_fs_info *info) 1647 { 1648 const int next_backup = info->backup_root_index; 1649 struct btrfs_root_backup *root_backup; 1650 1651 root_backup = info->super_for_commit->super_roots + next_backup; 1652 1653 /* 1654 * make sure all of our padding and empty slots get zero filled 1655 * regardless of which ones we use today 1656 */ 1657 memset(root_backup, 0, sizeof(*root_backup)); 1658 1659 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1660 1661 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1662 btrfs_set_backup_tree_root_gen(root_backup, 1663 btrfs_header_generation(info->tree_root->node)); 1664 1665 btrfs_set_backup_tree_root_level(root_backup, 1666 btrfs_header_level(info->tree_root->node)); 1667 1668 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1669 btrfs_set_backup_chunk_root_gen(root_backup, 1670 btrfs_header_generation(info->chunk_root->node)); 1671 btrfs_set_backup_chunk_root_level(root_backup, 1672 btrfs_header_level(info->chunk_root->node)); 1673 1674 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1675 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1676 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1677 1678 btrfs_set_backup_extent_root(root_backup, 1679 extent_root->node->start); 1680 btrfs_set_backup_extent_root_gen(root_backup, 1681 btrfs_header_generation(extent_root->node)); 1682 btrfs_set_backup_extent_root_level(root_backup, 1683 btrfs_header_level(extent_root->node)); 1684 1685 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1686 btrfs_set_backup_csum_root_gen(root_backup, 1687 btrfs_header_generation(csum_root->node)); 1688 btrfs_set_backup_csum_root_level(root_backup, 1689 btrfs_header_level(csum_root->node)); 1690 } 1691 1692 /* 1693 * we might commit during log recovery, which happens before we set 1694 * the fs_root. Make sure it is valid before we fill it in. 1695 */ 1696 if (info->fs_root && info->fs_root->node) { 1697 btrfs_set_backup_fs_root(root_backup, 1698 info->fs_root->node->start); 1699 btrfs_set_backup_fs_root_gen(root_backup, 1700 btrfs_header_generation(info->fs_root->node)); 1701 btrfs_set_backup_fs_root_level(root_backup, 1702 btrfs_header_level(info->fs_root->node)); 1703 } 1704 1705 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1706 btrfs_set_backup_dev_root_gen(root_backup, 1707 btrfs_header_generation(info->dev_root->node)); 1708 btrfs_set_backup_dev_root_level(root_backup, 1709 btrfs_header_level(info->dev_root->node)); 1710 1711 btrfs_set_backup_total_bytes(root_backup, 1712 btrfs_super_total_bytes(info->super_copy)); 1713 btrfs_set_backup_bytes_used(root_backup, 1714 btrfs_super_bytes_used(info->super_copy)); 1715 btrfs_set_backup_num_devices(root_backup, 1716 btrfs_super_num_devices(info->super_copy)); 1717 1718 /* 1719 * if we don't copy this out to the super_copy, it won't get remembered 1720 * for the next commit 1721 */ 1722 memcpy(&info->super_copy->super_roots, 1723 &info->super_for_commit->super_roots, 1724 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1725 } 1726 1727 /* 1728 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio 1729 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1730 * 1731 * @fs_info: filesystem whose backup roots need to be read 1732 * @priority: priority of backup root required 1733 * 1734 * Returns backup root index on success and -EINVAL otherwise. 1735 */ 1736 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1737 { 1738 int backup_index = find_newest_super_backup(fs_info); 1739 struct btrfs_super_block *super = fs_info->super_copy; 1740 struct btrfs_root_backup *root_backup; 1741 1742 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1743 if (priority == 0) 1744 return backup_index; 1745 1746 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1747 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1748 } else { 1749 return -EINVAL; 1750 } 1751 1752 root_backup = super->super_roots + backup_index; 1753 1754 btrfs_set_super_generation(super, 1755 btrfs_backup_tree_root_gen(root_backup)); 1756 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1757 btrfs_set_super_root_level(super, 1758 btrfs_backup_tree_root_level(root_backup)); 1759 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1760 1761 /* 1762 * Fixme: the total bytes and num_devices need to match or we should 1763 * need a fsck 1764 */ 1765 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1766 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1767 1768 return backup_index; 1769 } 1770 1771 /* helper to cleanup workers */ 1772 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1773 { 1774 btrfs_destroy_workqueue(fs_info->fixup_workers); 1775 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1776 btrfs_destroy_workqueue(fs_info->workers); 1777 if (fs_info->endio_workers) 1778 destroy_workqueue(fs_info->endio_workers); 1779 if (fs_info->rmw_workers) 1780 destroy_workqueue(fs_info->rmw_workers); 1781 if (fs_info->compressed_write_workers) 1782 destroy_workqueue(fs_info->compressed_write_workers); 1783 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1784 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1785 btrfs_destroy_workqueue(fs_info->delayed_workers); 1786 btrfs_destroy_workqueue(fs_info->caching_workers); 1787 btrfs_destroy_workqueue(fs_info->flush_workers); 1788 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1789 if (fs_info->discard_ctl.discard_workers) 1790 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1791 /* 1792 * Now that all other work queues are destroyed, we can safely destroy 1793 * the queues used for metadata I/O, since tasks from those other work 1794 * queues can do metadata I/O operations. 1795 */ 1796 if (fs_info->endio_meta_workers) 1797 destroy_workqueue(fs_info->endio_meta_workers); 1798 } 1799 1800 static void free_root_extent_buffers(struct btrfs_root *root) 1801 { 1802 if (root) { 1803 free_extent_buffer(root->node); 1804 free_extent_buffer(root->commit_root); 1805 root->node = NULL; 1806 root->commit_root = NULL; 1807 } 1808 } 1809 1810 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 1811 { 1812 struct btrfs_root *root, *tmp; 1813 1814 rbtree_postorder_for_each_entry_safe(root, tmp, 1815 &fs_info->global_root_tree, 1816 rb_node) 1817 free_root_extent_buffers(root); 1818 } 1819 1820 /* helper to cleanup tree roots */ 1821 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1822 { 1823 free_root_extent_buffers(info->tree_root); 1824 1825 free_global_root_pointers(info); 1826 free_root_extent_buffers(info->dev_root); 1827 free_root_extent_buffers(info->quota_root); 1828 free_root_extent_buffers(info->uuid_root); 1829 free_root_extent_buffers(info->fs_root); 1830 free_root_extent_buffers(info->data_reloc_root); 1831 free_root_extent_buffers(info->block_group_root); 1832 free_root_extent_buffers(info->stripe_root); 1833 if (free_chunk_root) 1834 free_root_extent_buffers(info->chunk_root); 1835 } 1836 1837 void btrfs_put_root(struct btrfs_root *root) 1838 { 1839 if (!root) 1840 return; 1841 1842 if (refcount_dec_and_test(&root->refs)) { 1843 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 1844 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 1845 if (root->anon_dev) 1846 free_anon_bdev(root->anon_dev); 1847 free_root_extent_buffers(root); 1848 #ifdef CONFIG_BTRFS_DEBUG 1849 spin_lock(&root->fs_info->fs_roots_radix_lock); 1850 list_del_init(&root->leak_list); 1851 spin_unlock(&root->fs_info->fs_roots_radix_lock); 1852 #endif 1853 kfree(root); 1854 } 1855 } 1856 1857 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 1858 { 1859 int ret; 1860 struct btrfs_root *gang[8]; 1861 int i; 1862 1863 while (!list_empty(&fs_info->dead_roots)) { 1864 gang[0] = list_entry(fs_info->dead_roots.next, 1865 struct btrfs_root, root_list); 1866 list_del(&gang[0]->root_list); 1867 1868 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 1869 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 1870 btrfs_put_root(gang[0]); 1871 } 1872 1873 while (1) { 1874 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 1875 (void **)gang, 0, 1876 ARRAY_SIZE(gang)); 1877 if (!ret) 1878 break; 1879 for (i = 0; i < ret; i++) 1880 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 1881 } 1882 } 1883 1884 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 1885 { 1886 mutex_init(&fs_info->scrub_lock); 1887 atomic_set(&fs_info->scrubs_running, 0); 1888 atomic_set(&fs_info->scrub_pause_req, 0); 1889 atomic_set(&fs_info->scrubs_paused, 0); 1890 atomic_set(&fs_info->scrub_cancel_req, 0); 1891 init_waitqueue_head(&fs_info->scrub_pause_wait); 1892 refcount_set(&fs_info->scrub_workers_refcnt, 0); 1893 } 1894 1895 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 1896 { 1897 spin_lock_init(&fs_info->balance_lock); 1898 mutex_init(&fs_info->balance_mutex); 1899 atomic_set(&fs_info->balance_pause_req, 0); 1900 atomic_set(&fs_info->balance_cancel_req, 0); 1901 fs_info->balance_ctl = NULL; 1902 init_waitqueue_head(&fs_info->balance_wait_q); 1903 atomic_set(&fs_info->reloc_cancel_req, 0); 1904 } 1905 1906 static int btrfs_init_btree_inode(struct super_block *sb) 1907 { 1908 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1909 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 1910 fs_info->tree_root); 1911 struct inode *inode; 1912 1913 inode = new_inode(sb); 1914 if (!inode) 1915 return -ENOMEM; 1916 1917 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 1918 set_nlink(inode, 1); 1919 /* 1920 * we set the i_size on the btree inode to the max possible int. 1921 * the real end of the address space is determined by all of 1922 * the devices in the system 1923 */ 1924 inode->i_size = OFFSET_MAX; 1925 inode->i_mapping->a_ops = &btree_aops; 1926 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); 1927 1928 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 1929 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 1930 IO_TREE_BTREE_INODE_IO); 1931 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 1932 1933 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 1934 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID; 1935 BTRFS_I(inode)->location.type = 0; 1936 BTRFS_I(inode)->location.offset = 0; 1937 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 1938 __insert_inode_hash(inode, hash); 1939 fs_info->btree_inode = inode; 1940 1941 return 0; 1942 } 1943 1944 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 1945 { 1946 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 1947 init_rwsem(&fs_info->dev_replace.rwsem); 1948 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 1949 } 1950 1951 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 1952 { 1953 spin_lock_init(&fs_info->qgroup_lock); 1954 mutex_init(&fs_info->qgroup_ioctl_lock); 1955 fs_info->qgroup_tree = RB_ROOT; 1956 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 1957 fs_info->qgroup_seq = 1; 1958 fs_info->qgroup_ulist = NULL; 1959 fs_info->qgroup_rescan_running = false; 1960 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL; 1961 mutex_init(&fs_info->qgroup_rescan_lock); 1962 } 1963 1964 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 1965 { 1966 u32 max_active = fs_info->thread_pool_size; 1967 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 1968 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE; 1969 1970 fs_info->workers = 1971 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 1972 1973 fs_info->delalloc_workers = 1974 btrfs_alloc_workqueue(fs_info, "delalloc", 1975 flags, max_active, 2); 1976 1977 fs_info->flush_workers = 1978 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 1979 flags, max_active, 0); 1980 1981 fs_info->caching_workers = 1982 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 1983 1984 fs_info->fixup_workers = 1985 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags); 1986 1987 fs_info->endio_workers = 1988 alloc_workqueue("btrfs-endio", flags, max_active); 1989 fs_info->endio_meta_workers = 1990 alloc_workqueue("btrfs-endio-meta", flags, max_active); 1991 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 1992 fs_info->endio_write_workers = 1993 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 1994 max_active, 2); 1995 fs_info->compressed_write_workers = 1996 alloc_workqueue("btrfs-compressed-write", flags, max_active); 1997 fs_info->endio_freespace_worker = 1998 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 1999 max_active, 0); 2000 fs_info->delayed_workers = 2001 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2002 max_active, 0); 2003 fs_info->qgroup_rescan_workers = 2004 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan", 2005 ordered_flags); 2006 fs_info->discard_ctl.discard_workers = 2007 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE); 2008 2009 if (!(fs_info->workers && 2010 fs_info->delalloc_workers && fs_info->flush_workers && 2011 fs_info->endio_workers && fs_info->endio_meta_workers && 2012 fs_info->compressed_write_workers && 2013 fs_info->endio_write_workers && 2014 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2015 fs_info->caching_workers && fs_info->fixup_workers && 2016 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2017 fs_info->discard_ctl.discard_workers)) { 2018 return -ENOMEM; 2019 } 2020 2021 return 0; 2022 } 2023 2024 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2025 { 2026 struct crypto_shash *csum_shash; 2027 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2028 2029 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2030 2031 if (IS_ERR(csum_shash)) { 2032 btrfs_err(fs_info, "error allocating %s hash for checksum", 2033 csum_driver); 2034 return PTR_ERR(csum_shash); 2035 } 2036 2037 fs_info->csum_shash = csum_shash; 2038 2039 /* 2040 * Check if the checksum implementation is a fast accelerated one. 2041 * As-is this is a bit of a hack and should be replaced once the csum 2042 * implementations provide that information themselves. 2043 */ 2044 switch (csum_type) { 2045 case BTRFS_CSUM_TYPE_CRC32: 2046 if (!strstr(crypto_shash_driver_name(csum_shash), "generic")) 2047 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2048 break; 2049 case BTRFS_CSUM_TYPE_XXHASH: 2050 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2051 break; 2052 default: 2053 break; 2054 } 2055 2056 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2057 btrfs_super_csum_name(csum_type), 2058 crypto_shash_driver_name(csum_shash)); 2059 return 0; 2060 } 2061 2062 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2063 struct btrfs_fs_devices *fs_devices) 2064 { 2065 int ret; 2066 struct btrfs_tree_parent_check check = { 0 }; 2067 struct btrfs_root *log_tree_root; 2068 struct btrfs_super_block *disk_super = fs_info->super_copy; 2069 u64 bytenr = btrfs_super_log_root(disk_super); 2070 int level = btrfs_super_log_root_level(disk_super); 2071 2072 if (fs_devices->rw_devices == 0) { 2073 btrfs_warn(fs_info, "log replay required on RO media"); 2074 return -EIO; 2075 } 2076 2077 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2078 GFP_KERNEL); 2079 if (!log_tree_root) 2080 return -ENOMEM; 2081 2082 check.level = level; 2083 check.transid = fs_info->generation + 1; 2084 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2085 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2086 if (IS_ERR(log_tree_root->node)) { 2087 btrfs_warn(fs_info, "failed to read log tree"); 2088 ret = PTR_ERR(log_tree_root->node); 2089 log_tree_root->node = NULL; 2090 btrfs_put_root(log_tree_root); 2091 return ret; 2092 } 2093 if (!extent_buffer_uptodate(log_tree_root->node)) { 2094 btrfs_err(fs_info, "failed to read log tree"); 2095 btrfs_put_root(log_tree_root); 2096 return -EIO; 2097 } 2098 2099 /* returns with log_tree_root freed on success */ 2100 ret = btrfs_recover_log_trees(log_tree_root); 2101 if (ret) { 2102 btrfs_handle_fs_error(fs_info, ret, 2103 "Failed to recover log tree"); 2104 btrfs_put_root(log_tree_root); 2105 return ret; 2106 } 2107 2108 if (sb_rdonly(fs_info->sb)) { 2109 ret = btrfs_commit_super(fs_info); 2110 if (ret) 2111 return ret; 2112 } 2113 2114 return 0; 2115 } 2116 2117 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2118 struct btrfs_path *path, u64 objectid, 2119 const char *name) 2120 { 2121 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2122 struct btrfs_root *root; 2123 u64 max_global_id = 0; 2124 int ret; 2125 struct btrfs_key key = { 2126 .objectid = objectid, 2127 .type = BTRFS_ROOT_ITEM_KEY, 2128 .offset = 0, 2129 }; 2130 bool found = false; 2131 2132 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2133 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2134 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2135 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2136 return 0; 2137 } 2138 2139 while (1) { 2140 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2141 if (ret < 0) 2142 break; 2143 2144 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2145 ret = btrfs_next_leaf(tree_root, path); 2146 if (ret) { 2147 if (ret > 0) 2148 ret = 0; 2149 break; 2150 } 2151 } 2152 ret = 0; 2153 2154 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2155 if (key.objectid != objectid) 2156 break; 2157 btrfs_release_path(path); 2158 2159 /* 2160 * Just worry about this for extent tree, it'll be the same for 2161 * everybody. 2162 */ 2163 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2164 max_global_id = max(max_global_id, key.offset); 2165 2166 found = true; 2167 root = read_tree_root_path(tree_root, path, &key); 2168 if (IS_ERR(root)) { 2169 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2170 ret = PTR_ERR(root); 2171 break; 2172 } 2173 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2174 ret = btrfs_global_root_insert(root); 2175 if (ret) { 2176 btrfs_put_root(root); 2177 break; 2178 } 2179 key.offset++; 2180 } 2181 btrfs_release_path(path); 2182 2183 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2184 fs_info->nr_global_roots = max_global_id + 1; 2185 2186 if (!found || ret) { 2187 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2188 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2189 2190 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2191 ret = ret ? ret : -ENOENT; 2192 else 2193 ret = 0; 2194 btrfs_err(fs_info, "failed to load root %s", name); 2195 } 2196 return ret; 2197 } 2198 2199 static int load_global_roots(struct btrfs_root *tree_root) 2200 { 2201 struct btrfs_path *path; 2202 int ret = 0; 2203 2204 path = btrfs_alloc_path(); 2205 if (!path) 2206 return -ENOMEM; 2207 2208 ret = load_global_roots_objectid(tree_root, path, 2209 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2210 if (ret) 2211 goto out; 2212 ret = load_global_roots_objectid(tree_root, path, 2213 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2214 if (ret) 2215 goto out; 2216 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2217 goto out; 2218 ret = load_global_roots_objectid(tree_root, path, 2219 BTRFS_FREE_SPACE_TREE_OBJECTID, 2220 "free space"); 2221 out: 2222 btrfs_free_path(path); 2223 return ret; 2224 } 2225 2226 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2227 { 2228 struct btrfs_root *tree_root = fs_info->tree_root; 2229 struct btrfs_root *root; 2230 struct btrfs_key location; 2231 int ret; 2232 2233 BUG_ON(!fs_info->tree_root); 2234 2235 ret = load_global_roots(tree_root); 2236 if (ret) 2237 return ret; 2238 2239 location.type = BTRFS_ROOT_ITEM_KEY; 2240 location.offset = 0; 2241 2242 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2243 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2244 root = btrfs_read_tree_root(tree_root, &location); 2245 if (IS_ERR(root)) { 2246 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2247 ret = PTR_ERR(root); 2248 goto out; 2249 } 2250 } else { 2251 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2252 fs_info->block_group_root = root; 2253 } 2254 } 2255 2256 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2257 root = btrfs_read_tree_root(tree_root, &location); 2258 if (IS_ERR(root)) { 2259 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2260 ret = PTR_ERR(root); 2261 goto out; 2262 } 2263 } else { 2264 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2265 fs_info->dev_root = root; 2266 } 2267 /* Initialize fs_info for all devices in any case */ 2268 ret = btrfs_init_devices_late(fs_info); 2269 if (ret) 2270 goto out; 2271 2272 /* 2273 * This tree can share blocks with some other fs tree during relocation 2274 * and we need a proper setup by btrfs_get_fs_root 2275 */ 2276 root = btrfs_get_fs_root(tree_root->fs_info, 2277 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2278 if (IS_ERR(root)) { 2279 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2280 ret = PTR_ERR(root); 2281 goto out; 2282 } 2283 } else { 2284 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2285 fs_info->data_reloc_root = root; 2286 } 2287 2288 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2289 root = btrfs_read_tree_root(tree_root, &location); 2290 if (!IS_ERR(root)) { 2291 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2292 fs_info->quota_root = root; 2293 } 2294 2295 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2296 root = btrfs_read_tree_root(tree_root, &location); 2297 if (IS_ERR(root)) { 2298 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2299 ret = PTR_ERR(root); 2300 if (ret != -ENOENT) 2301 goto out; 2302 } 2303 } else { 2304 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2305 fs_info->uuid_root = root; 2306 } 2307 2308 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) { 2309 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID; 2310 root = btrfs_read_tree_root(tree_root, &location); 2311 if (IS_ERR(root)) { 2312 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2313 ret = PTR_ERR(root); 2314 goto out; 2315 } 2316 } else { 2317 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2318 fs_info->stripe_root = root; 2319 } 2320 } 2321 2322 return 0; 2323 out: 2324 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2325 location.objectid, ret); 2326 return ret; 2327 } 2328 2329 /* 2330 * Real super block validation 2331 * NOTE: super csum type and incompat features will not be checked here. 2332 * 2333 * @sb: super block to check 2334 * @mirror_num: the super block number to check its bytenr: 2335 * 0 the primary (1st) sb 2336 * 1, 2 2nd and 3rd backup copy 2337 * -1 skip bytenr check 2338 */ 2339 int btrfs_validate_super(struct btrfs_fs_info *fs_info, 2340 struct btrfs_super_block *sb, int mirror_num) 2341 { 2342 u64 nodesize = btrfs_super_nodesize(sb); 2343 u64 sectorsize = btrfs_super_sectorsize(sb); 2344 int ret = 0; 2345 2346 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2347 btrfs_err(fs_info, "no valid FS found"); 2348 ret = -EINVAL; 2349 } 2350 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2351 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2352 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2353 ret = -EINVAL; 2354 } 2355 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2356 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2357 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2358 ret = -EINVAL; 2359 } 2360 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2361 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2362 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2363 ret = -EINVAL; 2364 } 2365 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2366 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2367 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2368 ret = -EINVAL; 2369 } 2370 2371 /* 2372 * Check sectorsize and nodesize first, other check will need it. 2373 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2374 */ 2375 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2376 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2377 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2378 ret = -EINVAL; 2379 } 2380 2381 /* 2382 * We only support at most two sectorsizes: 4K and PAGE_SIZE. 2383 * 2384 * We can support 16K sectorsize with 64K page size without problem, 2385 * but such sectorsize/pagesize combination doesn't make much sense. 2386 * 4K will be our future standard, PAGE_SIZE is supported from the very 2387 * beginning. 2388 */ 2389 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) { 2390 btrfs_err(fs_info, 2391 "sectorsize %llu not yet supported for page size %lu", 2392 sectorsize, PAGE_SIZE); 2393 ret = -EINVAL; 2394 } 2395 2396 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2397 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2398 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2399 ret = -EINVAL; 2400 } 2401 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2402 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2403 le32_to_cpu(sb->__unused_leafsize), nodesize); 2404 ret = -EINVAL; 2405 } 2406 2407 /* Root alignment check */ 2408 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2409 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2410 btrfs_super_root(sb)); 2411 ret = -EINVAL; 2412 } 2413 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2414 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2415 btrfs_super_chunk_root(sb)); 2416 ret = -EINVAL; 2417 } 2418 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2419 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2420 btrfs_super_log_root(sb)); 2421 ret = -EINVAL; 2422 } 2423 2424 if (!fs_info->fs_devices->temp_fsid && 2425 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) { 2426 btrfs_err(fs_info, 2427 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2428 sb->fsid, fs_info->fs_devices->fsid); 2429 ret = -EINVAL; 2430 } 2431 2432 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb), 2433 BTRFS_FSID_SIZE) != 0) { 2434 btrfs_err(fs_info, 2435 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2436 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid); 2437 ret = -EINVAL; 2438 } 2439 2440 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2441 BTRFS_FSID_SIZE) != 0) { 2442 btrfs_err(fs_info, 2443 "dev_item UUID does not match metadata fsid: %pU != %pU", 2444 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2445 ret = -EINVAL; 2446 } 2447 2448 /* 2449 * Artificial requirement for block-group-tree to force newer features 2450 * (free-space-tree, no-holes) so the test matrix is smaller. 2451 */ 2452 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2453 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2454 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2455 btrfs_err(fs_info, 2456 "block-group-tree feature requires fres-space-tree and no-holes"); 2457 ret = -EINVAL; 2458 } 2459 2460 /* 2461 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2462 * done later 2463 */ 2464 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2465 btrfs_err(fs_info, "bytes_used is too small %llu", 2466 btrfs_super_bytes_used(sb)); 2467 ret = -EINVAL; 2468 } 2469 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2470 btrfs_err(fs_info, "invalid stripesize %u", 2471 btrfs_super_stripesize(sb)); 2472 ret = -EINVAL; 2473 } 2474 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2475 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2476 btrfs_super_num_devices(sb)); 2477 if (btrfs_super_num_devices(sb) == 0) { 2478 btrfs_err(fs_info, "number of devices is 0"); 2479 ret = -EINVAL; 2480 } 2481 2482 if (mirror_num >= 0 && 2483 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2484 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2485 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2486 ret = -EINVAL; 2487 } 2488 2489 /* 2490 * Obvious sys_chunk_array corruptions, it must hold at least one key 2491 * and one chunk 2492 */ 2493 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2494 btrfs_err(fs_info, "system chunk array too big %u > %u", 2495 btrfs_super_sys_array_size(sb), 2496 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2497 ret = -EINVAL; 2498 } 2499 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2500 + sizeof(struct btrfs_chunk)) { 2501 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2502 btrfs_super_sys_array_size(sb), 2503 sizeof(struct btrfs_disk_key) 2504 + sizeof(struct btrfs_chunk)); 2505 ret = -EINVAL; 2506 } 2507 2508 /* 2509 * The generation is a global counter, we'll trust it more than the others 2510 * but it's still possible that it's the one that's wrong. 2511 */ 2512 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2513 btrfs_warn(fs_info, 2514 "suspicious: generation < chunk_root_generation: %llu < %llu", 2515 btrfs_super_generation(sb), 2516 btrfs_super_chunk_root_generation(sb)); 2517 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2518 && btrfs_super_cache_generation(sb) != (u64)-1) 2519 btrfs_warn(fs_info, 2520 "suspicious: generation < cache_generation: %llu < %llu", 2521 btrfs_super_generation(sb), 2522 btrfs_super_cache_generation(sb)); 2523 2524 return ret; 2525 } 2526 2527 /* 2528 * Validation of super block at mount time. 2529 * Some checks already done early at mount time, like csum type and incompat 2530 * flags will be skipped. 2531 */ 2532 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2533 { 2534 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2535 } 2536 2537 /* 2538 * Validation of super block at write time. 2539 * Some checks like bytenr check will be skipped as their values will be 2540 * overwritten soon. 2541 * Extra checks like csum type and incompat flags will be done here. 2542 */ 2543 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2544 struct btrfs_super_block *sb) 2545 { 2546 int ret; 2547 2548 ret = btrfs_validate_super(fs_info, sb, -1); 2549 if (ret < 0) 2550 goto out; 2551 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2552 ret = -EUCLEAN; 2553 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2554 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2555 goto out; 2556 } 2557 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2558 ret = -EUCLEAN; 2559 btrfs_err(fs_info, 2560 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2561 btrfs_super_incompat_flags(sb), 2562 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2563 goto out; 2564 } 2565 out: 2566 if (ret < 0) 2567 btrfs_err(fs_info, 2568 "super block corruption detected before writing it to disk"); 2569 return ret; 2570 } 2571 2572 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2573 { 2574 struct btrfs_tree_parent_check check = { 2575 .level = level, 2576 .transid = gen, 2577 .owner_root = root->root_key.objectid 2578 }; 2579 int ret = 0; 2580 2581 root->node = read_tree_block(root->fs_info, bytenr, &check); 2582 if (IS_ERR(root->node)) { 2583 ret = PTR_ERR(root->node); 2584 root->node = NULL; 2585 return ret; 2586 } 2587 if (!extent_buffer_uptodate(root->node)) { 2588 free_extent_buffer(root->node); 2589 root->node = NULL; 2590 return -EIO; 2591 } 2592 2593 btrfs_set_root_node(&root->root_item, root->node); 2594 root->commit_root = btrfs_root_node(root); 2595 btrfs_set_root_refs(&root->root_item, 1); 2596 return ret; 2597 } 2598 2599 static int load_important_roots(struct btrfs_fs_info *fs_info) 2600 { 2601 struct btrfs_super_block *sb = fs_info->super_copy; 2602 u64 gen, bytenr; 2603 int level, ret; 2604 2605 bytenr = btrfs_super_root(sb); 2606 gen = btrfs_super_generation(sb); 2607 level = btrfs_super_root_level(sb); 2608 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2609 if (ret) { 2610 btrfs_warn(fs_info, "couldn't read tree root"); 2611 return ret; 2612 } 2613 return 0; 2614 } 2615 2616 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2617 { 2618 int backup_index = find_newest_super_backup(fs_info); 2619 struct btrfs_super_block *sb = fs_info->super_copy; 2620 struct btrfs_root *tree_root = fs_info->tree_root; 2621 bool handle_error = false; 2622 int ret = 0; 2623 int i; 2624 2625 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2626 if (handle_error) { 2627 if (!IS_ERR(tree_root->node)) 2628 free_extent_buffer(tree_root->node); 2629 tree_root->node = NULL; 2630 2631 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2632 break; 2633 2634 free_root_pointers(fs_info, 0); 2635 2636 /* 2637 * Don't use the log in recovery mode, it won't be 2638 * valid 2639 */ 2640 btrfs_set_super_log_root(sb, 0); 2641 2642 btrfs_warn(fs_info, "try to load backup roots slot %d", i); 2643 ret = read_backup_root(fs_info, i); 2644 backup_index = ret; 2645 if (ret < 0) 2646 return ret; 2647 } 2648 2649 ret = load_important_roots(fs_info); 2650 if (ret) { 2651 handle_error = true; 2652 continue; 2653 } 2654 2655 /* 2656 * No need to hold btrfs_root::objectid_mutex since the fs 2657 * hasn't been fully initialised and we are the only user 2658 */ 2659 ret = btrfs_init_root_free_objectid(tree_root); 2660 if (ret < 0) { 2661 handle_error = true; 2662 continue; 2663 } 2664 2665 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2666 2667 ret = btrfs_read_roots(fs_info); 2668 if (ret < 0) { 2669 handle_error = true; 2670 continue; 2671 } 2672 2673 /* All successful */ 2674 fs_info->generation = btrfs_header_generation(tree_root->node); 2675 btrfs_set_last_trans_committed(fs_info, fs_info->generation); 2676 fs_info->last_reloc_trans = 0; 2677 2678 /* Always begin writing backup roots after the one being used */ 2679 if (backup_index < 0) { 2680 fs_info->backup_root_index = 0; 2681 } else { 2682 fs_info->backup_root_index = backup_index + 1; 2683 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2684 } 2685 break; 2686 } 2687 2688 return ret; 2689 } 2690 2691 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2692 { 2693 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2694 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2695 INIT_LIST_HEAD(&fs_info->trans_list); 2696 INIT_LIST_HEAD(&fs_info->dead_roots); 2697 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2698 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2699 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2700 spin_lock_init(&fs_info->delalloc_root_lock); 2701 spin_lock_init(&fs_info->trans_lock); 2702 spin_lock_init(&fs_info->fs_roots_radix_lock); 2703 spin_lock_init(&fs_info->delayed_iput_lock); 2704 spin_lock_init(&fs_info->defrag_inodes_lock); 2705 spin_lock_init(&fs_info->super_lock); 2706 spin_lock_init(&fs_info->buffer_lock); 2707 spin_lock_init(&fs_info->unused_bgs_lock); 2708 spin_lock_init(&fs_info->treelog_bg_lock); 2709 spin_lock_init(&fs_info->zone_active_bgs_lock); 2710 spin_lock_init(&fs_info->relocation_bg_lock); 2711 rwlock_init(&fs_info->tree_mod_log_lock); 2712 rwlock_init(&fs_info->global_root_lock); 2713 mutex_init(&fs_info->unused_bg_unpin_mutex); 2714 mutex_init(&fs_info->reclaim_bgs_lock); 2715 mutex_init(&fs_info->reloc_mutex); 2716 mutex_init(&fs_info->delalloc_root_mutex); 2717 mutex_init(&fs_info->zoned_meta_io_lock); 2718 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2719 seqlock_init(&fs_info->profiles_lock); 2720 2721 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2722 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2723 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2724 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2725 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep, 2726 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2727 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2728 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2729 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 2730 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2731 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 2732 BTRFS_LOCKDEP_TRANS_COMPLETED); 2733 2734 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2735 INIT_LIST_HEAD(&fs_info->space_info); 2736 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2737 INIT_LIST_HEAD(&fs_info->unused_bgs); 2738 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2739 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2740 #ifdef CONFIG_BTRFS_DEBUG 2741 INIT_LIST_HEAD(&fs_info->allocated_roots); 2742 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2743 spin_lock_init(&fs_info->eb_leak_lock); 2744 #endif 2745 fs_info->mapping_tree = RB_ROOT_CACHED; 2746 rwlock_init(&fs_info->mapping_tree_lock); 2747 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2748 BTRFS_BLOCK_RSV_GLOBAL); 2749 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2750 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2751 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2752 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2753 BTRFS_BLOCK_RSV_DELOPS); 2754 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2755 BTRFS_BLOCK_RSV_DELREFS); 2756 2757 atomic_set(&fs_info->async_delalloc_pages, 0); 2758 atomic_set(&fs_info->defrag_running, 0); 2759 atomic_set(&fs_info->nr_delayed_iputs, 0); 2760 atomic64_set(&fs_info->tree_mod_seq, 0); 2761 fs_info->global_root_tree = RB_ROOT; 2762 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2763 fs_info->metadata_ratio = 0; 2764 fs_info->defrag_inodes = RB_ROOT; 2765 atomic64_set(&fs_info->free_chunk_space, 0); 2766 fs_info->tree_mod_log = RB_ROOT; 2767 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2768 btrfs_init_ref_verify(fs_info); 2769 2770 fs_info->thread_pool_size = min_t(unsigned long, 2771 num_online_cpus() + 2, 8); 2772 2773 INIT_LIST_HEAD(&fs_info->ordered_roots); 2774 spin_lock_init(&fs_info->ordered_root_lock); 2775 2776 btrfs_init_scrub(fs_info); 2777 btrfs_init_balance(fs_info); 2778 btrfs_init_async_reclaim_work(fs_info); 2779 2780 rwlock_init(&fs_info->block_group_cache_lock); 2781 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 2782 2783 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2784 IO_TREE_FS_EXCLUDED_EXTENTS); 2785 2786 mutex_init(&fs_info->ordered_operations_mutex); 2787 mutex_init(&fs_info->tree_log_mutex); 2788 mutex_init(&fs_info->chunk_mutex); 2789 mutex_init(&fs_info->transaction_kthread_mutex); 2790 mutex_init(&fs_info->cleaner_mutex); 2791 mutex_init(&fs_info->ro_block_group_mutex); 2792 init_rwsem(&fs_info->commit_root_sem); 2793 init_rwsem(&fs_info->cleanup_work_sem); 2794 init_rwsem(&fs_info->subvol_sem); 2795 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2796 2797 btrfs_init_dev_replace_locks(fs_info); 2798 btrfs_init_qgroup(fs_info); 2799 btrfs_discard_init(fs_info); 2800 2801 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2802 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2803 2804 init_waitqueue_head(&fs_info->transaction_throttle); 2805 init_waitqueue_head(&fs_info->transaction_wait); 2806 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2807 init_waitqueue_head(&fs_info->async_submit_wait); 2808 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2809 2810 /* Usable values until the real ones are cached from the superblock */ 2811 fs_info->nodesize = 4096; 2812 fs_info->sectorsize = 4096; 2813 fs_info->sectorsize_bits = ilog2(4096); 2814 fs_info->stripesize = 4096; 2815 2816 /* Default compress algorithm when user does -o compress */ 2817 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2818 2819 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 2820 2821 spin_lock_init(&fs_info->swapfile_pins_lock); 2822 fs_info->swapfile_pins = RB_ROOT; 2823 2824 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 2825 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 2826 } 2827 2828 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2829 { 2830 int ret; 2831 2832 fs_info->sb = sb; 2833 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2834 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2835 2836 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 2837 if (ret) 2838 return ret; 2839 2840 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2841 if (ret) 2842 return ret; 2843 2844 fs_info->dirty_metadata_batch = PAGE_SIZE * 2845 (1 + ilog2(nr_cpu_ids)); 2846 2847 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2848 if (ret) 2849 return ret; 2850 2851 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2852 GFP_KERNEL); 2853 if (ret) 2854 return ret; 2855 2856 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2857 GFP_KERNEL); 2858 if (!fs_info->delayed_root) 2859 return -ENOMEM; 2860 btrfs_init_delayed_root(fs_info->delayed_root); 2861 2862 if (sb_rdonly(sb)) 2863 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2864 2865 return btrfs_alloc_stripe_hash_table(fs_info); 2866 } 2867 2868 static int btrfs_uuid_rescan_kthread(void *data) 2869 { 2870 struct btrfs_fs_info *fs_info = data; 2871 int ret; 2872 2873 /* 2874 * 1st step is to iterate through the existing UUID tree and 2875 * to delete all entries that contain outdated data. 2876 * 2nd step is to add all missing entries to the UUID tree. 2877 */ 2878 ret = btrfs_uuid_tree_iterate(fs_info); 2879 if (ret < 0) { 2880 if (ret != -EINTR) 2881 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2882 ret); 2883 up(&fs_info->uuid_tree_rescan_sem); 2884 return ret; 2885 } 2886 return btrfs_uuid_scan_kthread(data); 2887 } 2888 2889 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2890 { 2891 struct task_struct *task; 2892 2893 down(&fs_info->uuid_tree_rescan_sem); 2894 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2895 if (IS_ERR(task)) { 2896 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2897 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2898 up(&fs_info->uuid_tree_rescan_sem); 2899 return PTR_ERR(task); 2900 } 2901 2902 return 0; 2903 } 2904 2905 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2906 { 2907 u64 root_objectid = 0; 2908 struct btrfs_root *gang[8]; 2909 int i = 0; 2910 int err = 0; 2911 unsigned int ret = 0; 2912 2913 while (1) { 2914 spin_lock(&fs_info->fs_roots_radix_lock); 2915 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2916 (void **)gang, root_objectid, 2917 ARRAY_SIZE(gang)); 2918 if (!ret) { 2919 spin_unlock(&fs_info->fs_roots_radix_lock); 2920 break; 2921 } 2922 root_objectid = gang[ret - 1]->root_key.objectid + 1; 2923 2924 for (i = 0; i < ret; i++) { 2925 /* Avoid to grab roots in dead_roots. */ 2926 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 2927 gang[i] = NULL; 2928 continue; 2929 } 2930 /* Grab all the search result for later use. */ 2931 gang[i] = btrfs_grab_root(gang[i]); 2932 } 2933 spin_unlock(&fs_info->fs_roots_radix_lock); 2934 2935 for (i = 0; i < ret; i++) { 2936 if (!gang[i]) 2937 continue; 2938 root_objectid = gang[i]->root_key.objectid; 2939 err = btrfs_orphan_cleanup(gang[i]); 2940 if (err) 2941 goto out; 2942 btrfs_put_root(gang[i]); 2943 } 2944 root_objectid++; 2945 } 2946 out: 2947 /* Release the uncleaned roots due to error. */ 2948 for (; i < ret; i++) { 2949 if (gang[i]) 2950 btrfs_put_root(gang[i]); 2951 } 2952 return err; 2953 } 2954 2955 /* 2956 * Mounting logic specific to read-write file systems. Shared by open_ctree 2957 * and btrfs_remount when remounting from read-only to read-write. 2958 */ 2959 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 2960 { 2961 int ret; 2962 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 2963 bool rebuild_free_space_tree = false; 2964 2965 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 2966 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2967 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2968 btrfs_warn(fs_info, 2969 "'clear_cache' option is ignored with extent tree v2"); 2970 else 2971 rebuild_free_space_tree = true; 2972 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 2973 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 2974 btrfs_warn(fs_info, "free space tree is invalid"); 2975 rebuild_free_space_tree = true; 2976 } 2977 2978 if (rebuild_free_space_tree) { 2979 btrfs_info(fs_info, "rebuilding free space tree"); 2980 ret = btrfs_rebuild_free_space_tree(fs_info); 2981 if (ret) { 2982 btrfs_warn(fs_info, 2983 "failed to rebuild free space tree: %d", ret); 2984 goto out; 2985 } 2986 } 2987 2988 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 2989 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 2990 btrfs_info(fs_info, "disabling free space tree"); 2991 ret = btrfs_delete_free_space_tree(fs_info); 2992 if (ret) { 2993 btrfs_warn(fs_info, 2994 "failed to disable free space tree: %d", ret); 2995 goto out; 2996 } 2997 } 2998 2999 /* 3000 * btrfs_find_orphan_roots() is responsible for finding all the dead 3001 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3002 * them into the fs_info->fs_roots_radix tree. This must be done before 3003 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3004 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3005 * item before the root's tree is deleted - this means that if we unmount 3006 * or crash before the deletion completes, on the next mount we will not 3007 * delete what remains of the tree because the orphan item does not 3008 * exists anymore, which is what tells us we have a pending deletion. 3009 */ 3010 ret = btrfs_find_orphan_roots(fs_info); 3011 if (ret) 3012 goto out; 3013 3014 ret = btrfs_cleanup_fs_roots(fs_info); 3015 if (ret) 3016 goto out; 3017 3018 down_read(&fs_info->cleanup_work_sem); 3019 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3020 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3021 up_read(&fs_info->cleanup_work_sem); 3022 goto out; 3023 } 3024 up_read(&fs_info->cleanup_work_sem); 3025 3026 mutex_lock(&fs_info->cleaner_mutex); 3027 ret = btrfs_recover_relocation(fs_info); 3028 mutex_unlock(&fs_info->cleaner_mutex); 3029 if (ret < 0) { 3030 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3031 goto out; 3032 } 3033 3034 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3035 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3036 btrfs_info(fs_info, "creating free space tree"); 3037 ret = btrfs_create_free_space_tree(fs_info); 3038 if (ret) { 3039 btrfs_warn(fs_info, 3040 "failed to create free space tree: %d", ret); 3041 goto out; 3042 } 3043 } 3044 3045 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3046 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3047 if (ret) 3048 goto out; 3049 } 3050 3051 ret = btrfs_resume_balance_async(fs_info); 3052 if (ret) 3053 goto out; 3054 3055 ret = btrfs_resume_dev_replace_async(fs_info); 3056 if (ret) { 3057 btrfs_warn(fs_info, "failed to resume dev_replace"); 3058 goto out; 3059 } 3060 3061 btrfs_qgroup_rescan_resume(fs_info); 3062 3063 if (!fs_info->uuid_root) { 3064 btrfs_info(fs_info, "creating UUID tree"); 3065 ret = btrfs_create_uuid_tree(fs_info); 3066 if (ret) { 3067 btrfs_warn(fs_info, 3068 "failed to create the UUID tree %d", ret); 3069 goto out; 3070 } 3071 } 3072 3073 out: 3074 return ret; 3075 } 3076 3077 /* 3078 * Do various sanity and dependency checks of different features. 3079 * 3080 * @is_rw_mount: If the mount is read-write. 3081 * 3082 * This is the place for less strict checks (like for subpage or artificial 3083 * feature dependencies). 3084 * 3085 * For strict checks or possible corruption detection, see 3086 * btrfs_validate_super(). 3087 * 3088 * This should be called after btrfs_parse_options(), as some mount options 3089 * (space cache related) can modify on-disk format like free space tree and 3090 * screw up certain feature dependencies. 3091 */ 3092 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3093 { 3094 struct btrfs_super_block *disk_super = fs_info->super_copy; 3095 u64 incompat = btrfs_super_incompat_flags(disk_super); 3096 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3097 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3098 3099 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3100 btrfs_err(fs_info, 3101 "cannot mount because of unknown incompat features (0x%llx)", 3102 incompat); 3103 return -EINVAL; 3104 } 3105 3106 /* Runtime limitation for mixed block groups. */ 3107 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3108 (fs_info->sectorsize != fs_info->nodesize)) { 3109 btrfs_err(fs_info, 3110 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3111 fs_info->nodesize, fs_info->sectorsize); 3112 return -EINVAL; 3113 } 3114 3115 /* Mixed backref is an always-enabled feature. */ 3116 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3117 3118 /* Set compression related flags just in case. */ 3119 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3120 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3121 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3122 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3123 3124 /* 3125 * An ancient flag, which should really be marked deprecated. 3126 * Such runtime limitation doesn't really need a incompat flag. 3127 */ 3128 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3129 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3130 3131 if (compat_ro_unsupp && is_rw_mount) { 3132 btrfs_err(fs_info, 3133 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3134 compat_ro); 3135 return -EINVAL; 3136 } 3137 3138 /* 3139 * We have unsupported RO compat features, although RO mounted, we 3140 * should not cause any metadata writes, including log replay. 3141 * Or we could screw up whatever the new feature requires. 3142 */ 3143 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3144 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3145 btrfs_err(fs_info, 3146 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3147 compat_ro); 3148 return -EINVAL; 3149 } 3150 3151 /* 3152 * Artificial limitations for block group tree, to force 3153 * block-group-tree to rely on no-holes and free-space-tree. 3154 */ 3155 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3156 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3157 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3158 btrfs_err(fs_info, 3159 "block-group-tree feature requires no-holes and free-space-tree features"); 3160 return -EINVAL; 3161 } 3162 3163 /* 3164 * Subpage runtime limitation on v1 cache. 3165 * 3166 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3167 * we're already defaulting to v2 cache, no need to bother v1 as it's 3168 * going to be deprecated anyway. 3169 */ 3170 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3171 btrfs_warn(fs_info, 3172 "v1 space cache is not supported for page size %lu with sectorsize %u", 3173 PAGE_SIZE, fs_info->sectorsize); 3174 return -EINVAL; 3175 } 3176 3177 /* This can be called by remount, we need to protect the super block. */ 3178 spin_lock(&fs_info->super_lock); 3179 btrfs_set_super_incompat_flags(disk_super, incompat); 3180 spin_unlock(&fs_info->super_lock); 3181 3182 return 0; 3183 } 3184 3185 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3186 char *options) 3187 { 3188 u32 sectorsize; 3189 u32 nodesize; 3190 u32 stripesize; 3191 u64 generation; 3192 u16 csum_type; 3193 struct btrfs_super_block *disk_super; 3194 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3195 struct btrfs_root *tree_root; 3196 struct btrfs_root *chunk_root; 3197 int ret; 3198 int level; 3199 3200 ret = init_mount_fs_info(fs_info, sb); 3201 if (ret) 3202 goto fail; 3203 3204 /* These need to be init'ed before we start creating inodes and such. */ 3205 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3206 GFP_KERNEL); 3207 fs_info->tree_root = tree_root; 3208 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3209 GFP_KERNEL); 3210 fs_info->chunk_root = chunk_root; 3211 if (!tree_root || !chunk_root) { 3212 ret = -ENOMEM; 3213 goto fail; 3214 } 3215 3216 ret = btrfs_init_btree_inode(sb); 3217 if (ret) 3218 goto fail; 3219 3220 invalidate_bdev(fs_devices->latest_dev->bdev); 3221 3222 /* 3223 * Read super block and check the signature bytes only 3224 */ 3225 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3226 if (IS_ERR(disk_super)) { 3227 ret = PTR_ERR(disk_super); 3228 goto fail_alloc; 3229 } 3230 3231 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid); 3232 /* 3233 * Verify the type first, if that or the checksum value are 3234 * corrupted, we'll find out 3235 */ 3236 csum_type = btrfs_super_csum_type(disk_super); 3237 if (!btrfs_supported_super_csum(csum_type)) { 3238 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3239 csum_type); 3240 ret = -EINVAL; 3241 btrfs_release_disk_super(disk_super); 3242 goto fail_alloc; 3243 } 3244 3245 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3246 3247 ret = btrfs_init_csum_hash(fs_info, csum_type); 3248 if (ret) { 3249 btrfs_release_disk_super(disk_super); 3250 goto fail_alloc; 3251 } 3252 3253 /* 3254 * We want to check superblock checksum, the type is stored inside. 3255 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3256 */ 3257 if (btrfs_check_super_csum(fs_info, disk_super)) { 3258 btrfs_err(fs_info, "superblock checksum mismatch"); 3259 ret = -EINVAL; 3260 btrfs_release_disk_super(disk_super); 3261 goto fail_alloc; 3262 } 3263 3264 /* 3265 * super_copy is zeroed at allocation time and we never touch the 3266 * following bytes up to INFO_SIZE, the checksum is calculated from 3267 * the whole block of INFO_SIZE 3268 */ 3269 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3270 btrfs_release_disk_super(disk_super); 3271 3272 disk_super = fs_info->super_copy; 3273 3274 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3275 sizeof(*fs_info->super_for_commit)); 3276 3277 ret = btrfs_validate_mount_super(fs_info); 3278 if (ret) { 3279 btrfs_err(fs_info, "superblock contains fatal errors"); 3280 ret = -EINVAL; 3281 goto fail_alloc; 3282 } 3283 3284 if (!btrfs_super_root(disk_super)) { 3285 btrfs_err(fs_info, "invalid superblock tree root bytenr"); 3286 ret = -EINVAL; 3287 goto fail_alloc; 3288 } 3289 3290 /* check FS state, whether FS is broken. */ 3291 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3292 WRITE_ONCE(fs_info->fs_error, -EUCLEAN); 3293 3294 /* Set up fs_info before parsing mount options */ 3295 nodesize = btrfs_super_nodesize(disk_super); 3296 sectorsize = btrfs_super_sectorsize(disk_super); 3297 stripesize = sectorsize; 3298 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3299 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3300 3301 fs_info->nodesize = nodesize; 3302 fs_info->sectorsize = sectorsize; 3303 fs_info->sectorsize_bits = ilog2(sectorsize); 3304 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3305 fs_info->stripesize = stripesize; 3306 3307 /* 3308 * Handle the space caching options appropriately now that we have the 3309 * super block loaded and validated. 3310 */ 3311 btrfs_set_free_space_cache_settings(fs_info); 3312 3313 if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) { 3314 ret = -EINVAL; 3315 goto fail_alloc; 3316 } 3317 3318 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3319 if (ret < 0) 3320 goto fail_alloc; 3321 3322 /* 3323 * At this point our mount options are validated, if we set ->max_inline 3324 * to something non-standard make sure we truncate it to sectorsize. 3325 */ 3326 fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize); 3327 3328 if (sectorsize < PAGE_SIZE) { 3329 struct btrfs_subpage_info *subpage_info; 3330 3331 btrfs_warn(fs_info, 3332 "read-write for sector size %u with page size %lu is experimental", 3333 sectorsize, PAGE_SIZE); 3334 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL); 3335 if (!subpage_info) { 3336 ret = -ENOMEM; 3337 goto fail_alloc; 3338 } 3339 btrfs_init_subpage_info(subpage_info, sectorsize); 3340 fs_info->subpage_info = subpage_info; 3341 } 3342 3343 ret = btrfs_init_workqueues(fs_info); 3344 if (ret) 3345 goto fail_sb_buffer; 3346 3347 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3348 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3349 3350 sb->s_blocksize = sectorsize; 3351 sb->s_blocksize_bits = blksize_bits(sectorsize); 3352 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3353 3354 mutex_lock(&fs_info->chunk_mutex); 3355 ret = btrfs_read_sys_array(fs_info); 3356 mutex_unlock(&fs_info->chunk_mutex); 3357 if (ret) { 3358 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3359 goto fail_sb_buffer; 3360 } 3361 3362 generation = btrfs_super_chunk_root_generation(disk_super); 3363 level = btrfs_super_chunk_root_level(disk_super); 3364 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3365 generation, level); 3366 if (ret) { 3367 btrfs_err(fs_info, "failed to read chunk root"); 3368 goto fail_tree_roots; 3369 } 3370 3371 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3372 offsetof(struct btrfs_header, chunk_tree_uuid), 3373 BTRFS_UUID_SIZE); 3374 3375 ret = btrfs_read_chunk_tree(fs_info); 3376 if (ret) { 3377 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3378 goto fail_tree_roots; 3379 } 3380 3381 /* 3382 * At this point we know all the devices that make this filesystem, 3383 * including the seed devices but we don't know yet if the replace 3384 * target is required. So free devices that are not part of this 3385 * filesystem but skip the replace target device which is checked 3386 * below in btrfs_init_dev_replace(). 3387 */ 3388 btrfs_free_extra_devids(fs_devices); 3389 if (!fs_devices->latest_dev->bdev) { 3390 btrfs_err(fs_info, "failed to read devices"); 3391 ret = -EIO; 3392 goto fail_tree_roots; 3393 } 3394 3395 ret = init_tree_roots(fs_info); 3396 if (ret) 3397 goto fail_tree_roots; 3398 3399 /* 3400 * Get zone type information of zoned block devices. This will also 3401 * handle emulation of a zoned filesystem if a regular device has the 3402 * zoned incompat feature flag set. 3403 */ 3404 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3405 if (ret) { 3406 btrfs_err(fs_info, 3407 "zoned: failed to read device zone info: %d", ret); 3408 goto fail_block_groups; 3409 } 3410 3411 /* 3412 * If we have a uuid root and we're not being told to rescan we need to 3413 * check the generation here so we can set the 3414 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3415 * transaction during a balance or the log replay without updating the 3416 * uuid generation, and then if we crash we would rescan the uuid tree, 3417 * even though it was perfectly fine. 3418 */ 3419 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3420 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3421 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3422 3423 ret = btrfs_verify_dev_extents(fs_info); 3424 if (ret) { 3425 btrfs_err(fs_info, 3426 "failed to verify dev extents against chunks: %d", 3427 ret); 3428 goto fail_block_groups; 3429 } 3430 ret = btrfs_recover_balance(fs_info); 3431 if (ret) { 3432 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3433 goto fail_block_groups; 3434 } 3435 3436 ret = btrfs_init_dev_stats(fs_info); 3437 if (ret) { 3438 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3439 goto fail_block_groups; 3440 } 3441 3442 ret = btrfs_init_dev_replace(fs_info); 3443 if (ret) { 3444 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3445 goto fail_block_groups; 3446 } 3447 3448 ret = btrfs_check_zoned_mode(fs_info); 3449 if (ret) { 3450 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3451 ret); 3452 goto fail_block_groups; 3453 } 3454 3455 ret = btrfs_sysfs_add_fsid(fs_devices); 3456 if (ret) { 3457 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3458 ret); 3459 goto fail_block_groups; 3460 } 3461 3462 ret = btrfs_sysfs_add_mounted(fs_info); 3463 if (ret) { 3464 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3465 goto fail_fsdev_sysfs; 3466 } 3467 3468 ret = btrfs_init_space_info(fs_info); 3469 if (ret) { 3470 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3471 goto fail_sysfs; 3472 } 3473 3474 ret = btrfs_read_block_groups(fs_info); 3475 if (ret) { 3476 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3477 goto fail_sysfs; 3478 } 3479 3480 btrfs_free_zone_cache(fs_info); 3481 3482 btrfs_check_active_zone_reservation(fs_info); 3483 3484 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3485 !btrfs_check_rw_degradable(fs_info, NULL)) { 3486 btrfs_warn(fs_info, 3487 "writable mount is not allowed due to too many missing devices"); 3488 ret = -EINVAL; 3489 goto fail_sysfs; 3490 } 3491 3492 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3493 "btrfs-cleaner"); 3494 if (IS_ERR(fs_info->cleaner_kthread)) { 3495 ret = PTR_ERR(fs_info->cleaner_kthread); 3496 goto fail_sysfs; 3497 } 3498 3499 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3500 tree_root, 3501 "btrfs-transaction"); 3502 if (IS_ERR(fs_info->transaction_kthread)) { 3503 ret = PTR_ERR(fs_info->transaction_kthread); 3504 goto fail_cleaner; 3505 } 3506 3507 ret = btrfs_read_qgroup_config(fs_info); 3508 if (ret) 3509 goto fail_trans_kthread; 3510 3511 if (btrfs_build_ref_tree(fs_info)) 3512 btrfs_err(fs_info, "couldn't build ref tree"); 3513 3514 /* do not make disk changes in broken FS or nologreplay is given */ 3515 if (btrfs_super_log_root(disk_super) != 0 && 3516 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3517 btrfs_info(fs_info, "start tree-log replay"); 3518 ret = btrfs_replay_log(fs_info, fs_devices); 3519 if (ret) 3520 goto fail_qgroup; 3521 } 3522 3523 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3524 if (IS_ERR(fs_info->fs_root)) { 3525 ret = PTR_ERR(fs_info->fs_root); 3526 btrfs_warn(fs_info, "failed to read fs tree: %d", ret); 3527 fs_info->fs_root = NULL; 3528 goto fail_qgroup; 3529 } 3530 3531 if (sb_rdonly(sb)) 3532 return 0; 3533 3534 ret = btrfs_start_pre_rw_mount(fs_info); 3535 if (ret) { 3536 close_ctree(fs_info); 3537 return ret; 3538 } 3539 btrfs_discard_resume(fs_info); 3540 3541 if (fs_info->uuid_root && 3542 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3543 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3544 btrfs_info(fs_info, "checking UUID tree"); 3545 ret = btrfs_check_uuid_tree(fs_info); 3546 if (ret) { 3547 btrfs_warn(fs_info, 3548 "failed to check the UUID tree: %d", ret); 3549 close_ctree(fs_info); 3550 return ret; 3551 } 3552 } 3553 3554 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3555 3556 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3557 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3558 wake_up_process(fs_info->cleaner_kthread); 3559 3560 return 0; 3561 3562 fail_qgroup: 3563 btrfs_free_qgroup_config(fs_info); 3564 fail_trans_kthread: 3565 kthread_stop(fs_info->transaction_kthread); 3566 btrfs_cleanup_transaction(fs_info); 3567 btrfs_free_fs_roots(fs_info); 3568 fail_cleaner: 3569 kthread_stop(fs_info->cleaner_kthread); 3570 3571 /* 3572 * make sure we're done with the btree inode before we stop our 3573 * kthreads 3574 */ 3575 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3576 3577 fail_sysfs: 3578 btrfs_sysfs_remove_mounted(fs_info); 3579 3580 fail_fsdev_sysfs: 3581 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3582 3583 fail_block_groups: 3584 btrfs_put_block_group_cache(fs_info); 3585 3586 fail_tree_roots: 3587 if (fs_info->data_reloc_root) 3588 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3589 free_root_pointers(fs_info, true); 3590 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3591 3592 fail_sb_buffer: 3593 btrfs_stop_all_workers(fs_info); 3594 btrfs_free_block_groups(fs_info); 3595 fail_alloc: 3596 btrfs_mapping_tree_free(fs_info); 3597 3598 iput(fs_info->btree_inode); 3599 fail: 3600 btrfs_close_devices(fs_info->fs_devices); 3601 ASSERT(ret < 0); 3602 return ret; 3603 } 3604 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3605 3606 static void btrfs_end_super_write(struct bio *bio) 3607 { 3608 struct btrfs_device *device = bio->bi_private; 3609 struct bio_vec *bvec; 3610 struct bvec_iter_all iter_all; 3611 struct page *page; 3612 3613 bio_for_each_segment_all(bvec, bio, iter_all) { 3614 page = bvec->bv_page; 3615 3616 if (bio->bi_status) { 3617 btrfs_warn_rl_in_rcu(device->fs_info, 3618 "lost page write due to IO error on %s (%d)", 3619 btrfs_dev_name(device), 3620 blk_status_to_errno(bio->bi_status)); 3621 ClearPageUptodate(page); 3622 SetPageError(page); 3623 btrfs_dev_stat_inc_and_print(device, 3624 BTRFS_DEV_STAT_WRITE_ERRS); 3625 } else { 3626 SetPageUptodate(page); 3627 } 3628 3629 put_page(page); 3630 unlock_page(page); 3631 } 3632 3633 bio_put(bio); 3634 } 3635 3636 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3637 int copy_num, bool drop_cache) 3638 { 3639 struct btrfs_super_block *super; 3640 struct page *page; 3641 u64 bytenr, bytenr_orig; 3642 struct address_space *mapping = bdev->bd_inode->i_mapping; 3643 int ret; 3644 3645 bytenr_orig = btrfs_sb_offset(copy_num); 3646 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3647 if (ret == -ENOENT) 3648 return ERR_PTR(-EINVAL); 3649 else if (ret) 3650 return ERR_PTR(ret); 3651 3652 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 3653 return ERR_PTR(-EINVAL); 3654 3655 if (drop_cache) { 3656 /* This should only be called with the primary sb. */ 3657 ASSERT(copy_num == 0); 3658 3659 /* 3660 * Drop the page of the primary superblock, so later read will 3661 * always read from the device. 3662 */ 3663 invalidate_inode_pages2_range(mapping, 3664 bytenr >> PAGE_SHIFT, 3665 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 3666 } 3667 3668 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3669 if (IS_ERR(page)) 3670 return ERR_CAST(page); 3671 3672 super = page_address(page); 3673 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3674 btrfs_release_disk_super(super); 3675 return ERR_PTR(-ENODATA); 3676 } 3677 3678 if (btrfs_super_bytenr(super) != bytenr_orig) { 3679 btrfs_release_disk_super(super); 3680 return ERR_PTR(-EINVAL); 3681 } 3682 3683 return super; 3684 } 3685 3686 3687 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3688 { 3689 struct btrfs_super_block *super, *latest = NULL; 3690 int i; 3691 u64 transid = 0; 3692 3693 /* we would like to check all the supers, but that would make 3694 * a btrfs mount succeed after a mkfs from a different FS. 3695 * So, we need to add a special mount option to scan for 3696 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3697 */ 3698 for (i = 0; i < 1; i++) { 3699 super = btrfs_read_dev_one_super(bdev, i, false); 3700 if (IS_ERR(super)) 3701 continue; 3702 3703 if (!latest || btrfs_super_generation(super) > transid) { 3704 if (latest) 3705 btrfs_release_disk_super(super); 3706 3707 latest = super; 3708 transid = btrfs_super_generation(super); 3709 } 3710 } 3711 3712 return super; 3713 } 3714 3715 /* 3716 * Write superblock @sb to the @device. Do not wait for completion, all the 3717 * pages we use for writing are locked. 3718 * 3719 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3720 * the expected device size at commit time. Note that max_mirrors must be 3721 * same for write and wait phases. 3722 * 3723 * Return number of errors when page is not found or submission fails. 3724 */ 3725 static int write_dev_supers(struct btrfs_device *device, 3726 struct btrfs_super_block *sb, int max_mirrors) 3727 { 3728 struct btrfs_fs_info *fs_info = device->fs_info; 3729 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3730 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3731 int i; 3732 int errors = 0; 3733 int ret; 3734 u64 bytenr, bytenr_orig; 3735 3736 if (max_mirrors == 0) 3737 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3738 3739 shash->tfm = fs_info->csum_shash; 3740 3741 for (i = 0; i < max_mirrors; i++) { 3742 struct page *page; 3743 struct bio *bio; 3744 struct btrfs_super_block *disk_super; 3745 3746 bytenr_orig = btrfs_sb_offset(i); 3747 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3748 if (ret == -ENOENT) { 3749 continue; 3750 } else if (ret < 0) { 3751 btrfs_err(device->fs_info, 3752 "couldn't get super block location for mirror %d", 3753 i); 3754 errors++; 3755 continue; 3756 } 3757 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3758 device->commit_total_bytes) 3759 break; 3760 3761 btrfs_set_super_bytenr(sb, bytenr_orig); 3762 3763 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3764 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3765 sb->csum); 3766 3767 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 3768 GFP_NOFS); 3769 if (!page) { 3770 btrfs_err(device->fs_info, 3771 "couldn't get super block page for bytenr %llu", 3772 bytenr); 3773 errors++; 3774 continue; 3775 } 3776 3777 /* Bump the refcount for wait_dev_supers() */ 3778 get_page(page); 3779 3780 disk_super = page_address(page); 3781 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3782 3783 /* 3784 * Directly use bios here instead of relying on the page cache 3785 * to do I/O, so we don't lose the ability to do integrity 3786 * checking. 3787 */ 3788 bio = bio_alloc(device->bdev, 1, 3789 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 3790 GFP_NOFS); 3791 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3792 bio->bi_private = device; 3793 bio->bi_end_io = btrfs_end_super_write; 3794 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 3795 offset_in_page(bytenr)); 3796 3797 /* 3798 * We FUA only the first super block. The others we allow to 3799 * go down lazy and there's a short window where the on-disk 3800 * copies might still contain the older version. 3801 */ 3802 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3803 bio->bi_opf |= REQ_FUA; 3804 submit_bio(bio); 3805 3806 if (btrfs_advance_sb_log(device, i)) 3807 errors++; 3808 } 3809 return errors < i ? 0 : -1; 3810 } 3811 3812 /* 3813 * Wait for write completion of superblocks done by write_dev_supers, 3814 * @max_mirrors same for write and wait phases. 3815 * 3816 * Return number of errors when page is not found or not marked up to 3817 * date. 3818 */ 3819 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3820 { 3821 int i; 3822 int errors = 0; 3823 bool primary_failed = false; 3824 int ret; 3825 u64 bytenr; 3826 3827 if (max_mirrors == 0) 3828 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3829 3830 for (i = 0; i < max_mirrors; i++) { 3831 struct page *page; 3832 3833 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 3834 if (ret == -ENOENT) { 3835 break; 3836 } else if (ret < 0) { 3837 errors++; 3838 if (i == 0) 3839 primary_failed = true; 3840 continue; 3841 } 3842 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3843 device->commit_total_bytes) 3844 break; 3845 3846 page = find_get_page(device->bdev->bd_inode->i_mapping, 3847 bytenr >> PAGE_SHIFT); 3848 if (!page) { 3849 errors++; 3850 if (i == 0) 3851 primary_failed = true; 3852 continue; 3853 } 3854 /* Page is submitted locked and unlocked once the IO completes */ 3855 wait_on_page_locked(page); 3856 if (PageError(page)) { 3857 errors++; 3858 if (i == 0) 3859 primary_failed = true; 3860 } 3861 3862 /* Drop our reference */ 3863 put_page(page); 3864 3865 /* Drop the reference from the writing run */ 3866 put_page(page); 3867 } 3868 3869 /* log error, force error return */ 3870 if (primary_failed) { 3871 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3872 device->devid); 3873 return -1; 3874 } 3875 3876 return errors < i ? 0 : -1; 3877 } 3878 3879 /* 3880 * endio for the write_dev_flush, this will wake anyone waiting 3881 * for the barrier when it is done 3882 */ 3883 static void btrfs_end_empty_barrier(struct bio *bio) 3884 { 3885 bio_uninit(bio); 3886 complete(bio->bi_private); 3887 } 3888 3889 /* 3890 * Submit a flush request to the device if it supports it. Error handling is 3891 * done in the waiting counterpart. 3892 */ 3893 static void write_dev_flush(struct btrfs_device *device) 3894 { 3895 struct bio *bio = &device->flush_bio; 3896 3897 device->last_flush_error = BLK_STS_OK; 3898 3899 bio_init(bio, device->bdev, NULL, 0, 3900 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 3901 bio->bi_end_io = btrfs_end_empty_barrier; 3902 init_completion(&device->flush_wait); 3903 bio->bi_private = &device->flush_wait; 3904 submit_bio(bio); 3905 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3906 } 3907 3908 /* 3909 * If the flush bio has been submitted by write_dev_flush, wait for it. 3910 * Return true for any error, and false otherwise. 3911 */ 3912 static bool wait_dev_flush(struct btrfs_device *device) 3913 { 3914 struct bio *bio = &device->flush_bio; 3915 3916 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3917 return false; 3918 3919 wait_for_completion_io(&device->flush_wait); 3920 3921 if (bio->bi_status) { 3922 device->last_flush_error = bio->bi_status; 3923 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); 3924 return true; 3925 } 3926 3927 return false; 3928 } 3929 3930 /* 3931 * send an empty flush down to each device in parallel, 3932 * then wait for them 3933 */ 3934 static int barrier_all_devices(struct btrfs_fs_info *info) 3935 { 3936 struct list_head *head; 3937 struct btrfs_device *dev; 3938 int errors_wait = 0; 3939 3940 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3941 /* send down all the barriers */ 3942 head = &info->fs_devices->devices; 3943 list_for_each_entry(dev, head, dev_list) { 3944 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3945 continue; 3946 if (!dev->bdev) 3947 continue; 3948 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3949 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3950 continue; 3951 3952 write_dev_flush(dev); 3953 } 3954 3955 /* wait for all the barriers */ 3956 list_for_each_entry(dev, head, dev_list) { 3957 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3958 continue; 3959 if (!dev->bdev) { 3960 errors_wait++; 3961 continue; 3962 } 3963 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3964 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3965 continue; 3966 3967 if (wait_dev_flush(dev)) 3968 errors_wait++; 3969 } 3970 3971 /* 3972 * Checks last_flush_error of disks in order to determine the device 3973 * state. 3974 */ 3975 if (errors_wait && !btrfs_check_rw_degradable(info, NULL)) 3976 return -EIO; 3977 3978 return 0; 3979 } 3980 3981 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3982 { 3983 int raid_type; 3984 int min_tolerated = INT_MAX; 3985 3986 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3987 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3988 min_tolerated = min_t(int, min_tolerated, 3989 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3990 tolerated_failures); 3991 3992 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3993 if (raid_type == BTRFS_RAID_SINGLE) 3994 continue; 3995 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3996 continue; 3997 min_tolerated = min_t(int, min_tolerated, 3998 btrfs_raid_array[raid_type]. 3999 tolerated_failures); 4000 } 4001 4002 if (min_tolerated == INT_MAX) { 4003 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4004 min_tolerated = 0; 4005 } 4006 4007 return min_tolerated; 4008 } 4009 4010 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4011 { 4012 struct list_head *head; 4013 struct btrfs_device *dev; 4014 struct btrfs_super_block *sb; 4015 struct btrfs_dev_item *dev_item; 4016 int ret; 4017 int do_barriers; 4018 int max_errors; 4019 int total_errors = 0; 4020 u64 flags; 4021 4022 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4023 4024 /* 4025 * max_mirrors == 0 indicates we're from commit_transaction, 4026 * not from fsync where the tree roots in fs_info have not 4027 * been consistent on disk. 4028 */ 4029 if (max_mirrors == 0) 4030 backup_super_roots(fs_info); 4031 4032 sb = fs_info->super_for_commit; 4033 dev_item = &sb->dev_item; 4034 4035 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4036 head = &fs_info->fs_devices->devices; 4037 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4038 4039 if (do_barriers) { 4040 ret = barrier_all_devices(fs_info); 4041 if (ret) { 4042 mutex_unlock( 4043 &fs_info->fs_devices->device_list_mutex); 4044 btrfs_handle_fs_error(fs_info, ret, 4045 "errors while submitting device barriers."); 4046 return ret; 4047 } 4048 } 4049 4050 list_for_each_entry(dev, head, dev_list) { 4051 if (!dev->bdev) { 4052 total_errors++; 4053 continue; 4054 } 4055 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4056 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4057 continue; 4058 4059 btrfs_set_stack_device_generation(dev_item, 0); 4060 btrfs_set_stack_device_type(dev_item, dev->type); 4061 btrfs_set_stack_device_id(dev_item, dev->devid); 4062 btrfs_set_stack_device_total_bytes(dev_item, 4063 dev->commit_total_bytes); 4064 btrfs_set_stack_device_bytes_used(dev_item, 4065 dev->commit_bytes_used); 4066 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4067 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4068 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4069 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4070 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4071 BTRFS_FSID_SIZE); 4072 4073 flags = btrfs_super_flags(sb); 4074 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4075 4076 ret = btrfs_validate_write_super(fs_info, sb); 4077 if (ret < 0) { 4078 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4079 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4080 "unexpected superblock corruption detected"); 4081 return -EUCLEAN; 4082 } 4083 4084 ret = write_dev_supers(dev, sb, max_mirrors); 4085 if (ret) 4086 total_errors++; 4087 } 4088 if (total_errors > max_errors) { 4089 btrfs_err(fs_info, "%d errors while writing supers", 4090 total_errors); 4091 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4092 4093 /* FUA is masked off if unsupported and can't be the reason */ 4094 btrfs_handle_fs_error(fs_info, -EIO, 4095 "%d errors while writing supers", 4096 total_errors); 4097 return -EIO; 4098 } 4099 4100 total_errors = 0; 4101 list_for_each_entry(dev, head, dev_list) { 4102 if (!dev->bdev) 4103 continue; 4104 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4105 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4106 continue; 4107 4108 ret = wait_dev_supers(dev, max_mirrors); 4109 if (ret) 4110 total_errors++; 4111 } 4112 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4113 if (total_errors > max_errors) { 4114 btrfs_handle_fs_error(fs_info, -EIO, 4115 "%d errors while writing supers", 4116 total_errors); 4117 return -EIO; 4118 } 4119 return 0; 4120 } 4121 4122 /* Drop a fs root from the radix tree and free it. */ 4123 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4124 struct btrfs_root *root) 4125 { 4126 bool drop_ref = false; 4127 4128 spin_lock(&fs_info->fs_roots_radix_lock); 4129 radix_tree_delete(&fs_info->fs_roots_radix, 4130 (unsigned long)root->root_key.objectid); 4131 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4132 drop_ref = true; 4133 spin_unlock(&fs_info->fs_roots_radix_lock); 4134 4135 if (BTRFS_FS_ERROR(fs_info)) { 4136 ASSERT(root->log_root == NULL); 4137 if (root->reloc_root) { 4138 btrfs_put_root(root->reloc_root); 4139 root->reloc_root = NULL; 4140 } 4141 } 4142 4143 if (drop_ref) 4144 btrfs_put_root(root); 4145 } 4146 4147 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4148 { 4149 struct btrfs_root *root = fs_info->tree_root; 4150 struct btrfs_trans_handle *trans; 4151 4152 mutex_lock(&fs_info->cleaner_mutex); 4153 btrfs_run_delayed_iputs(fs_info); 4154 mutex_unlock(&fs_info->cleaner_mutex); 4155 wake_up_process(fs_info->cleaner_kthread); 4156 4157 /* wait until ongoing cleanup work done */ 4158 down_write(&fs_info->cleanup_work_sem); 4159 up_write(&fs_info->cleanup_work_sem); 4160 4161 trans = btrfs_join_transaction(root); 4162 if (IS_ERR(trans)) 4163 return PTR_ERR(trans); 4164 return btrfs_commit_transaction(trans); 4165 } 4166 4167 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4168 { 4169 struct btrfs_transaction *trans; 4170 struct btrfs_transaction *tmp; 4171 bool found = false; 4172 4173 if (list_empty(&fs_info->trans_list)) 4174 return; 4175 4176 /* 4177 * This function is only called at the very end of close_ctree(), 4178 * thus no other running transaction, no need to take trans_lock. 4179 */ 4180 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4181 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4182 struct extent_state *cached = NULL; 4183 u64 dirty_bytes = 0; 4184 u64 cur = 0; 4185 u64 found_start; 4186 u64 found_end; 4187 4188 found = true; 4189 while (find_first_extent_bit(&trans->dirty_pages, cur, 4190 &found_start, &found_end, EXTENT_DIRTY, &cached)) { 4191 dirty_bytes += found_end + 1 - found_start; 4192 cur = found_end + 1; 4193 } 4194 btrfs_warn(fs_info, 4195 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4196 trans->transid, dirty_bytes); 4197 btrfs_cleanup_one_transaction(trans, fs_info); 4198 4199 if (trans == fs_info->running_transaction) 4200 fs_info->running_transaction = NULL; 4201 list_del_init(&trans->list); 4202 4203 btrfs_put_transaction(trans); 4204 trace_btrfs_transaction_commit(fs_info); 4205 } 4206 ASSERT(!found); 4207 } 4208 4209 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4210 { 4211 int ret; 4212 4213 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4214 4215 /* 4216 * If we had UNFINISHED_DROPS we could still be processing them, so 4217 * clear that bit and wake up relocation so it can stop. 4218 * We must do this before stopping the block group reclaim task, because 4219 * at btrfs_relocate_block_group() we wait for this bit, and after the 4220 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4221 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4222 * return 1. 4223 */ 4224 btrfs_wake_unfinished_drop(fs_info); 4225 4226 /* 4227 * We may have the reclaim task running and relocating a data block group, 4228 * in which case it may create delayed iputs. So stop it before we park 4229 * the cleaner kthread otherwise we can get new delayed iputs after 4230 * parking the cleaner, and that can make the async reclaim task to hang 4231 * if it's waiting for delayed iputs to complete, since the cleaner is 4232 * parked and can not run delayed iputs - this will make us hang when 4233 * trying to stop the async reclaim task. 4234 */ 4235 cancel_work_sync(&fs_info->reclaim_bgs_work); 4236 /* 4237 * We don't want the cleaner to start new transactions, add more delayed 4238 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4239 * because that frees the task_struct, and the transaction kthread might 4240 * still try to wake up the cleaner. 4241 */ 4242 kthread_park(fs_info->cleaner_kthread); 4243 4244 /* wait for the qgroup rescan worker to stop */ 4245 btrfs_qgroup_wait_for_completion(fs_info, false); 4246 4247 /* wait for the uuid_scan task to finish */ 4248 down(&fs_info->uuid_tree_rescan_sem); 4249 /* avoid complains from lockdep et al., set sem back to initial state */ 4250 up(&fs_info->uuid_tree_rescan_sem); 4251 4252 /* pause restriper - we want to resume on mount */ 4253 btrfs_pause_balance(fs_info); 4254 4255 btrfs_dev_replace_suspend_for_unmount(fs_info); 4256 4257 btrfs_scrub_cancel(fs_info); 4258 4259 /* wait for any defraggers to finish */ 4260 wait_event(fs_info->transaction_wait, 4261 (atomic_read(&fs_info->defrag_running) == 0)); 4262 4263 /* clear out the rbtree of defraggable inodes */ 4264 btrfs_cleanup_defrag_inodes(fs_info); 4265 4266 /* 4267 * After we parked the cleaner kthread, ordered extents may have 4268 * completed and created new delayed iputs. If one of the async reclaim 4269 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4270 * can hang forever trying to stop it, because if a delayed iput is 4271 * added after it ran btrfs_run_delayed_iputs() and before it called 4272 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4273 * no one else to run iputs. 4274 * 4275 * So wait for all ongoing ordered extents to complete and then run 4276 * delayed iputs. This works because once we reach this point no one 4277 * can either create new ordered extents nor create delayed iputs 4278 * through some other means. 4279 * 4280 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4281 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4282 * but the delayed iput for the respective inode is made only when doing 4283 * the final btrfs_put_ordered_extent() (which must happen at 4284 * btrfs_finish_ordered_io() when we are unmounting). 4285 */ 4286 btrfs_flush_workqueue(fs_info->endio_write_workers); 4287 /* Ordered extents for free space inodes. */ 4288 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4289 btrfs_run_delayed_iputs(fs_info); 4290 4291 cancel_work_sync(&fs_info->async_reclaim_work); 4292 cancel_work_sync(&fs_info->async_data_reclaim_work); 4293 cancel_work_sync(&fs_info->preempt_reclaim_work); 4294 4295 /* Cancel or finish ongoing discard work */ 4296 btrfs_discard_cleanup(fs_info); 4297 4298 if (!sb_rdonly(fs_info->sb)) { 4299 /* 4300 * The cleaner kthread is stopped, so do one final pass over 4301 * unused block groups. 4302 */ 4303 btrfs_delete_unused_bgs(fs_info); 4304 4305 /* 4306 * There might be existing delayed inode workers still running 4307 * and holding an empty delayed inode item. We must wait for 4308 * them to complete first because they can create a transaction. 4309 * This happens when someone calls btrfs_balance_delayed_items() 4310 * and then a transaction commit runs the same delayed nodes 4311 * before any delayed worker has done something with the nodes. 4312 * We must wait for any worker here and not at transaction 4313 * commit time since that could cause a deadlock. 4314 * This is a very rare case. 4315 */ 4316 btrfs_flush_workqueue(fs_info->delayed_workers); 4317 4318 ret = btrfs_commit_super(fs_info); 4319 if (ret) 4320 btrfs_err(fs_info, "commit super ret %d", ret); 4321 } 4322 4323 if (BTRFS_FS_ERROR(fs_info)) 4324 btrfs_error_commit_super(fs_info); 4325 4326 kthread_stop(fs_info->transaction_kthread); 4327 kthread_stop(fs_info->cleaner_kthread); 4328 4329 ASSERT(list_empty(&fs_info->delayed_iputs)); 4330 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4331 4332 if (btrfs_check_quota_leak(fs_info)) { 4333 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4334 btrfs_err(fs_info, "qgroup reserved space leaked"); 4335 } 4336 4337 btrfs_free_qgroup_config(fs_info); 4338 ASSERT(list_empty(&fs_info->delalloc_roots)); 4339 4340 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4341 btrfs_info(fs_info, "at unmount delalloc count %lld", 4342 percpu_counter_sum(&fs_info->delalloc_bytes)); 4343 } 4344 4345 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4346 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4347 percpu_counter_sum(&fs_info->ordered_bytes)); 4348 4349 btrfs_sysfs_remove_mounted(fs_info); 4350 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4351 4352 btrfs_put_block_group_cache(fs_info); 4353 4354 /* 4355 * we must make sure there is not any read request to 4356 * submit after we stopping all workers. 4357 */ 4358 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4359 btrfs_stop_all_workers(fs_info); 4360 4361 /* We shouldn't have any transaction open at this point */ 4362 warn_about_uncommitted_trans(fs_info); 4363 4364 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4365 free_root_pointers(fs_info, true); 4366 btrfs_free_fs_roots(fs_info); 4367 4368 /* 4369 * We must free the block groups after dropping the fs_roots as we could 4370 * have had an IO error and have left over tree log blocks that aren't 4371 * cleaned up until the fs roots are freed. This makes the block group 4372 * accounting appear to be wrong because there's pending reserved bytes, 4373 * so make sure we do the block group cleanup afterwards. 4374 */ 4375 btrfs_free_block_groups(fs_info); 4376 4377 iput(fs_info->btree_inode); 4378 4379 btrfs_mapping_tree_free(fs_info); 4380 btrfs_close_devices(fs_info->fs_devices); 4381 } 4382 4383 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans, 4384 struct extent_buffer *buf) 4385 { 4386 struct btrfs_fs_info *fs_info = buf->fs_info; 4387 u64 transid = btrfs_header_generation(buf); 4388 4389 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4390 /* 4391 * This is a fast path so only do this check if we have sanity tests 4392 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4393 * outside of the sanity tests. 4394 */ 4395 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4396 return; 4397 #endif 4398 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */ 4399 ASSERT(trans->transid == fs_info->generation); 4400 btrfs_assert_tree_write_locked(buf); 4401 if (unlikely(transid != fs_info->generation)) { 4402 btrfs_abort_transaction(trans, -EUCLEAN); 4403 btrfs_crit(fs_info, 4404 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu", 4405 buf->start, transid, fs_info->generation); 4406 } 4407 set_extent_buffer_dirty(buf); 4408 } 4409 4410 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4411 int flush_delayed) 4412 { 4413 /* 4414 * looks as though older kernels can get into trouble with 4415 * this code, they end up stuck in balance_dirty_pages forever 4416 */ 4417 int ret; 4418 4419 if (current->flags & PF_MEMALLOC) 4420 return; 4421 4422 if (flush_delayed) 4423 btrfs_balance_delayed_items(fs_info); 4424 4425 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4426 BTRFS_DIRTY_METADATA_THRESH, 4427 fs_info->dirty_metadata_batch); 4428 if (ret > 0) { 4429 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4430 } 4431 } 4432 4433 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4434 { 4435 __btrfs_btree_balance_dirty(fs_info, 1); 4436 } 4437 4438 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4439 { 4440 __btrfs_btree_balance_dirty(fs_info, 0); 4441 } 4442 4443 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4444 { 4445 /* cleanup FS via transaction */ 4446 btrfs_cleanup_transaction(fs_info); 4447 4448 mutex_lock(&fs_info->cleaner_mutex); 4449 btrfs_run_delayed_iputs(fs_info); 4450 mutex_unlock(&fs_info->cleaner_mutex); 4451 4452 down_write(&fs_info->cleanup_work_sem); 4453 up_write(&fs_info->cleanup_work_sem); 4454 } 4455 4456 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4457 { 4458 struct btrfs_root *gang[8]; 4459 u64 root_objectid = 0; 4460 int ret; 4461 4462 spin_lock(&fs_info->fs_roots_radix_lock); 4463 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4464 (void **)gang, root_objectid, 4465 ARRAY_SIZE(gang))) != 0) { 4466 int i; 4467 4468 for (i = 0; i < ret; i++) 4469 gang[i] = btrfs_grab_root(gang[i]); 4470 spin_unlock(&fs_info->fs_roots_radix_lock); 4471 4472 for (i = 0; i < ret; i++) { 4473 if (!gang[i]) 4474 continue; 4475 root_objectid = gang[i]->root_key.objectid; 4476 btrfs_free_log(NULL, gang[i]); 4477 btrfs_put_root(gang[i]); 4478 } 4479 root_objectid++; 4480 spin_lock(&fs_info->fs_roots_radix_lock); 4481 } 4482 spin_unlock(&fs_info->fs_roots_radix_lock); 4483 btrfs_free_log_root_tree(NULL, fs_info); 4484 } 4485 4486 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4487 { 4488 struct btrfs_ordered_extent *ordered; 4489 4490 spin_lock(&root->ordered_extent_lock); 4491 /* 4492 * This will just short circuit the ordered completion stuff which will 4493 * make sure the ordered extent gets properly cleaned up. 4494 */ 4495 list_for_each_entry(ordered, &root->ordered_extents, 4496 root_extent_list) 4497 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4498 spin_unlock(&root->ordered_extent_lock); 4499 } 4500 4501 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4502 { 4503 struct btrfs_root *root; 4504 LIST_HEAD(splice); 4505 4506 spin_lock(&fs_info->ordered_root_lock); 4507 list_splice_init(&fs_info->ordered_roots, &splice); 4508 while (!list_empty(&splice)) { 4509 root = list_first_entry(&splice, struct btrfs_root, 4510 ordered_root); 4511 list_move_tail(&root->ordered_root, 4512 &fs_info->ordered_roots); 4513 4514 spin_unlock(&fs_info->ordered_root_lock); 4515 btrfs_destroy_ordered_extents(root); 4516 4517 cond_resched(); 4518 spin_lock(&fs_info->ordered_root_lock); 4519 } 4520 spin_unlock(&fs_info->ordered_root_lock); 4521 4522 /* 4523 * We need this here because if we've been flipped read-only we won't 4524 * get sync() from the umount, so we need to make sure any ordered 4525 * extents that haven't had their dirty pages IO start writeout yet 4526 * actually get run and error out properly. 4527 */ 4528 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4529 } 4530 4531 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4532 struct btrfs_fs_info *fs_info) 4533 { 4534 struct rb_node *node; 4535 struct btrfs_delayed_ref_root *delayed_refs; 4536 struct btrfs_delayed_ref_node *ref; 4537 4538 delayed_refs = &trans->delayed_refs; 4539 4540 spin_lock(&delayed_refs->lock); 4541 if (atomic_read(&delayed_refs->num_entries) == 0) { 4542 spin_unlock(&delayed_refs->lock); 4543 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4544 return; 4545 } 4546 4547 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4548 struct btrfs_delayed_ref_head *head; 4549 struct rb_node *n; 4550 bool pin_bytes = false; 4551 4552 head = rb_entry(node, struct btrfs_delayed_ref_head, 4553 href_node); 4554 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4555 continue; 4556 4557 spin_lock(&head->lock); 4558 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4559 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4560 ref_node); 4561 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4562 RB_CLEAR_NODE(&ref->ref_node); 4563 if (!list_empty(&ref->add_list)) 4564 list_del(&ref->add_list); 4565 atomic_dec(&delayed_refs->num_entries); 4566 btrfs_put_delayed_ref(ref); 4567 btrfs_delayed_refs_rsv_release(fs_info, 1, 0); 4568 } 4569 if (head->must_insert_reserved) 4570 pin_bytes = true; 4571 btrfs_free_delayed_extent_op(head->extent_op); 4572 btrfs_delete_ref_head(delayed_refs, head); 4573 spin_unlock(&head->lock); 4574 spin_unlock(&delayed_refs->lock); 4575 mutex_unlock(&head->mutex); 4576 4577 if (pin_bytes) { 4578 struct btrfs_block_group *cache; 4579 4580 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4581 BUG_ON(!cache); 4582 4583 spin_lock(&cache->space_info->lock); 4584 spin_lock(&cache->lock); 4585 cache->pinned += head->num_bytes; 4586 btrfs_space_info_update_bytes_pinned(fs_info, 4587 cache->space_info, head->num_bytes); 4588 cache->reserved -= head->num_bytes; 4589 cache->space_info->bytes_reserved -= head->num_bytes; 4590 spin_unlock(&cache->lock); 4591 spin_unlock(&cache->space_info->lock); 4592 4593 btrfs_put_block_group(cache); 4594 4595 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4596 head->bytenr + head->num_bytes - 1); 4597 } 4598 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4599 btrfs_put_delayed_ref_head(head); 4600 cond_resched(); 4601 spin_lock(&delayed_refs->lock); 4602 } 4603 btrfs_qgroup_destroy_extent_records(trans); 4604 4605 spin_unlock(&delayed_refs->lock); 4606 } 4607 4608 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4609 { 4610 struct btrfs_inode *btrfs_inode; 4611 LIST_HEAD(splice); 4612 4613 spin_lock(&root->delalloc_lock); 4614 list_splice_init(&root->delalloc_inodes, &splice); 4615 4616 while (!list_empty(&splice)) { 4617 struct inode *inode = NULL; 4618 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4619 delalloc_inodes); 4620 __btrfs_del_delalloc_inode(root, btrfs_inode); 4621 spin_unlock(&root->delalloc_lock); 4622 4623 /* 4624 * Make sure we get a live inode and that it'll not disappear 4625 * meanwhile. 4626 */ 4627 inode = igrab(&btrfs_inode->vfs_inode); 4628 if (inode) { 4629 unsigned int nofs_flag; 4630 4631 nofs_flag = memalloc_nofs_save(); 4632 invalidate_inode_pages2(inode->i_mapping); 4633 memalloc_nofs_restore(nofs_flag); 4634 iput(inode); 4635 } 4636 spin_lock(&root->delalloc_lock); 4637 } 4638 spin_unlock(&root->delalloc_lock); 4639 } 4640 4641 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4642 { 4643 struct btrfs_root *root; 4644 LIST_HEAD(splice); 4645 4646 spin_lock(&fs_info->delalloc_root_lock); 4647 list_splice_init(&fs_info->delalloc_roots, &splice); 4648 while (!list_empty(&splice)) { 4649 root = list_first_entry(&splice, struct btrfs_root, 4650 delalloc_root); 4651 root = btrfs_grab_root(root); 4652 BUG_ON(!root); 4653 spin_unlock(&fs_info->delalloc_root_lock); 4654 4655 btrfs_destroy_delalloc_inodes(root); 4656 btrfs_put_root(root); 4657 4658 spin_lock(&fs_info->delalloc_root_lock); 4659 } 4660 spin_unlock(&fs_info->delalloc_root_lock); 4661 } 4662 4663 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4664 struct extent_io_tree *dirty_pages, 4665 int mark) 4666 { 4667 struct extent_buffer *eb; 4668 u64 start = 0; 4669 u64 end; 4670 4671 while (find_first_extent_bit(dirty_pages, start, &start, &end, 4672 mark, NULL)) { 4673 clear_extent_bits(dirty_pages, start, end, mark); 4674 while (start <= end) { 4675 eb = find_extent_buffer(fs_info, start); 4676 start += fs_info->nodesize; 4677 if (!eb) 4678 continue; 4679 4680 btrfs_tree_lock(eb); 4681 wait_on_extent_buffer_writeback(eb); 4682 btrfs_clear_buffer_dirty(NULL, eb); 4683 btrfs_tree_unlock(eb); 4684 4685 free_extent_buffer_stale(eb); 4686 } 4687 } 4688 } 4689 4690 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4691 struct extent_io_tree *unpin) 4692 { 4693 u64 start; 4694 u64 end; 4695 4696 while (1) { 4697 struct extent_state *cached_state = NULL; 4698 4699 /* 4700 * The btrfs_finish_extent_commit() may get the same range as 4701 * ours between find_first_extent_bit and clear_extent_dirty. 4702 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4703 * the same extent range. 4704 */ 4705 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4706 if (!find_first_extent_bit(unpin, 0, &start, &end, 4707 EXTENT_DIRTY, &cached_state)) { 4708 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4709 break; 4710 } 4711 4712 clear_extent_dirty(unpin, start, end, &cached_state); 4713 free_extent_state(cached_state); 4714 btrfs_error_unpin_extent_range(fs_info, start, end); 4715 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4716 cond_resched(); 4717 } 4718 } 4719 4720 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4721 { 4722 struct inode *inode; 4723 4724 inode = cache->io_ctl.inode; 4725 if (inode) { 4726 unsigned int nofs_flag; 4727 4728 nofs_flag = memalloc_nofs_save(); 4729 invalidate_inode_pages2(inode->i_mapping); 4730 memalloc_nofs_restore(nofs_flag); 4731 4732 BTRFS_I(inode)->generation = 0; 4733 cache->io_ctl.inode = NULL; 4734 iput(inode); 4735 } 4736 ASSERT(cache->io_ctl.pages == NULL); 4737 btrfs_put_block_group(cache); 4738 } 4739 4740 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4741 struct btrfs_fs_info *fs_info) 4742 { 4743 struct btrfs_block_group *cache; 4744 4745 spin_lock(&cur_trans->dirty_bgs_lock); 4746 while (!list_empty(&cur_trans->dirty_bgs)) { 4747 cache = list_first_entry(&cur_trans->dirty_bgs, 4748 struct btrfs_block_group, 4749 dirty_list); 4750 4751 if (!list_empty(&cache->io_list)) { 4752 spin_unlock(&cur_trans->dirty_bgs_lock); 4753 list_del_init(&cache->io_list); 4754 btrfs_cleanup_bg_io(cache); 4755 spin_lock(&cur_trans->dirty_bgs_lock); 4756 } 4757 4758 list_del_init(&cache->dirty_list); 4759 spin_lock(&cache->lock); 4760 cache->disk_cache_state = BTRFS_DC_ERROR; 4761 spin_unlock(&cache->lock); 4762 4763 spin_unlock(&cur_trans->dirty_bgs_lock); 4764 btrfs_put_block_group(cache); 4765 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 4766 spin_lock(&cur_trans->dirty_bgs_lock); 4767 } 4768 spin_unlock(&cur_trans->dirty_bgs_lock); 4769 4770 /* 4771 * Refer to the definition of io_bgs member for details why it's safe 4772 * to use it without any locking 4773 */ 4774 while (!list_empty(&cur_trans->io_bgs)) { 4775 cache = list_first_entry(&cur_trans->io_bgs, 4776 struct btrfs_block_group, 4777 io_list); 4778 4779 list_del_init(&cache->io_list); 4780 spin_lock(&cache->lock); 4781 cache->disk_cache_state = BTRFS_DC_ERROR; 4782 spin_unlock(&cache->lock); 4783 btrfs_cleanup_bg_io(cache); 4784 } 4785 } 4786 4787 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info) 4788 { 4789 struct btrfs_root *gang[8]; 4790 int i; 4791 int ret; 4792 4793 spin_lock(&fs_info->fs_roots_radix_lock); 4794 while (1) { 4795 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 4796 (void **)gang, 0, 4797 ARRAY_SIZE(gang), 4798 BTRFS_ROOT_TRANS_TAG); 4799 if (ret == 0) 4800 break; 4801 for (i = 0; i < ret; i++) { 4802 struct btrfs_root *root = gang[i]; 4803 4804 btrfs_qgroup_free_meta_all_pertrans(root); 4805 radix_tree_tag_clear(&fs_info->fs_roots_radix, 4806 (unsigned long)root->root_key.objectid, 4807 BTRFS_ROOT_TRANS_TAG); 4808 } 4809 } 4810 spin_unlock(&fs_info->fs_roots_radix_lock); 4811 } 4812 4813 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4814 struct btrfs_fs_info *fs_info) 4815 { 4816 struct btrfs_device *dev, *tmp; 4817 4818 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4819 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4820 ASSERT(list_empty(&cur_trans->io_bgs)); 4821 4822 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4823 post_commit_list) { 4824 list_del_init(&dev->post_commit_list); 4825 } 4826 4827 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4828 4829 cur_trans->state = TRANS_STATE_COMMIT_START; 4830 wake_up(&fs_info->transaction_blocked_wait); 4831 4832 cur_trans->state = TRANS_STATE_UNBLOCKED; 4833 wake_up(&fs_info->transaction_wait); 4834 4835 btrfs_destroy_delayed_inodes(fs_info); 4836 4837 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4838 EXTENT_DIRTY); 4839 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4840 4841 btrfs_free_all_qgroup_pertrans(fs_info); 4842 4843 cur_trans->state =TRANS_STATE_COMPLETED; 4844 wake_up(&cur_trans->commit_wait); 4845 } 4846 4847 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4848 { 4849 struct btrfs_transaction *t; 4850 4851 mutex_lock(&fs_info->transaction_kthread_mutex); 4852 4853 spin_lock(&fs_info->trans_lock); 4854 while (!list_empty(&fs_info->trans_list)) { 4855 t = list_first_entry(&fs_info->trans_list, 4856 struct btrfs_transaction, list); 4857 if (t->state >= TRANS_STATE_COMMIT_PREP) { 4858 refcount_inc(&t->use_count); 4859 spin_unlock(&fs_info->trans_lock); 4860 btrfs_wait_for_commit(fs_info, t->transid); 4861 btrfs_put_transaction(t); 4862 spin_lock(&fs_info->trans_lock); 4863 continue; 4864 } 4865 if (t == fs_info->running_transaction) { 4866 t->state = TRANS_STATE_COMMIT_DOING; 4867 spin_unlock(&fs_info->trans_lock); 4868 /* 4869 * We wait for 0 num_writers since we don't hold a trans 4870 * handle open currently for this transaction. 4871 */ 4872 wait_event(t->writer_wait, 4873 atomic_read(&t->num_writers) == 0); 4874 } else { 4875 spin_unlock(&fs_info->trans_lock); 4876 } 4877 btrfs_cleanup_one_transaction(t, fs_info); 4878 4879 spin_lock(&fs_info->trans_lock); 4880 if (t == fs_info->running_transaction) 4881 fs_info->running_transaction = NULL; 4882 list_del_init(&t->list); 4883 spin_unlock(&fs_info->trans_lock); 4884 4885 btrfs_put_transaction(t); 4886 trace_btrfs_transaction_commit(fs_info); 4887 spin_lock(&fs_info->trans_lock); 4888 } 4889 spin_unlock(&fs_info->trans_lock); 4890 btrfs_destroy_all_ordered_extents(fs_info); 4891 btrfs_destroy_delayed_inodes(fs_info); 4892 btrfs_assert_delayed_root_empty(fs_info); 4893 btrfs_destroy_all_delalloc_inodes(fs_info); 4894 btrfs_drop_all_logs(fs_info); 4895 mutex_unlock(&fs_info->transaction_kthread_mutex); 4896 4897 return 0; 4898 } 4899 4900 int btrfs_init_root_free_objectid(struct btrfs_root *root) 4901 { 4902 struct btrfs_path *path; 4903 int ret; 4904 struct extent_buffer *l; 4905 struct btrfs_key search_key; 4906 struct btrfs_key found_key; 4907 int slot; 4908 4909 path = btrfs_alloc_path(); 4910 if (!path) 4911 return -ENOMEM; 4912 4913 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 4914 search_key.type = -1; 4915 search_key.offset = (u64)-1; 4916 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 4917 if (ret < 0) 4918 goto error; 4919 BUG_ON(ret == 0); /* Corruption */ 4920 if (path->slots[0] > 0) { 4921 slot = path->slots[0] - 1; 4922 l = path->nodes[0]; 4923 btrfs_item_key_to_cpu(l, &found_key, slot); 4924 root->free_objectid = max_t(u64, found_key.objectid + 1, 4925 BTRFS_FIRST_FREE_OBJECTID); 4926 } else { 4927 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 4928 } 4929 ret = 0; 4930 error: 4931 btrfs_free_path(path); 4932 return ret; 4933 } 4934 4935 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 4936 { 4937 int ret; 4938 mutex_lock(&root->objectid_mutex); 4939 4940 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 4941 btrfs_warn(root->fs_info, 4942 "the objectid of root %llu reaches its highest value", 4943 root->root_key.objectid); 4944 ret = -ENOSPC; 4945 goto out; 4946 } 4947 4948 *objectid = root->free_objectid++; 4949 ret = 0; 4950 out: 4951 mutex_unlock(&root->objectid_mutex); 4952 return ret; 4953 } 4954