xref: /linux/fs/btrfs/disk-io.c (revision 273b281fa22c293963ee3e6eec418f5dda2dbc83)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include "compat.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "volumes.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
38 #include "locking.h"
39 #include "tree-log.h"
40 #include "free-space-cache.h"
41 
42 static struct extent_io_ops btree_extent_io_ops;
43 static void end_workqueue_fn(struct btrfs_work *work);
44 static void free_fs_root(struct btrfs_root *root);
45 
46 static atomic_t btrfs_bdi_num = ATOMIC_INIT(0);
47 
48 /*
49  * end_io_wq structs are used to do processing in task context when an IO is
50  * complete.  This is used during reads to verify checksums, and it is used
51  * by writes to insert metadata for new file extents after IO is complete.
52  */
53 struct end_io_wq {
54 	struct bio *bio;
55 	bio_end_io_t *end_io;
56 	void *private;
57 	struct btrfs_fs_info *info;
58 	int error;
59 	int metadata;
60 	struct list_head list;
61 	struct btrfs_work work;
62 };
63 
64 /*
65  * async submit bios are used to offload expensive checksumming
66  * onto the worker threads.  They checksum file and metadata bios
67  * just before they are sent down the IO stack.
68  */
69 struct async_submit_bio {
70 	struct inode *inode;
71 	struct bio *bio;
72 	struct list_head list;
73 	extent_submit_bio_hook_t *submit_bio_start;
74 	extent_submit_bio_hook_t *submit_bio_done;
75 	int rw;
76 	int mirror_num;
77 	unsigned long bio_flags;
78 	struct btrfs_work work;
79 };
80 
81 /* These are used to set the lockdep class on the extent buffer locks.
82  * The class is set by the readpage_end_io_hook after the buffer has
83  * passed csum validation but before the pages are unlocked.
84  *
85  * The lockdep class is also set by btrfs_init_new_buffer on freshly
86  * allocated blocks.
87  *
88  * The class is based on the level in the tree block, which allows lockdep
89  * to know that lower nodes nest inside the locks of higher nodes.
90  *
91  * We also add a check to make sure the highest level of the tree is
92  * the same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this
93  * code needs update as well.
94  */
95 #ifdef CONFIG_DEBUG_LOCK_ALLOC
96 # if BTRFS_MAX_LEVEL != 8
97 #  error
98 # endif
99 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
100 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
101 	/* leaf */
102 	"btrfs-extent-00",
103 	"btrfs-extent-01",
104 	"btrfs-extent-02",
105 	"btrfs-extent-03",
106 	"btrfs-extent-04",
107 	"btrfs-extent-05",
108 	"btrfs-extent-06",
109 	"btrfs-extent-07",
110 	/* highest possible level */
111 	"btrfs-extent-08",
112 };
113 #endif
114 
115 /*
116  * extents on the btree inode are pretty simple, there's one extent
117  * that covers the entire device
118  */
119 static struct extent_map *btree_get_extent(struct inode *inode,
120 		struct page *page, size_t page_offset, u64 start, u64 len,
121 		int create)
122 {
123 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
124 	struct extent_map *em;
125 	int ret;
126 
127 	read_lock(&em_tree->lock);
128 	em = lookup_extent_mapping(em_tree, start, len);
129 	if (em) {
130 		em->bdev =
131 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
132 		read_unlock(&em_tree->lock);
133 		goto out;
134 	}
135 	read_unlock(&em_tree->lock);
136 
137 	em = alloc_extent_map(GFP_NOFS);
138 	if (!em) {
139 		em = ERR_PTR(-ENOMEM);
140 		goto out;
141 	}
142 	em->start = 0;
143 	em->len = (u64)-1;
144 	em->block_len = (u64)-1;
145 	em->block_start = 0;
146 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
147 
148 	write_lock(&em_tree->lock);
149 	ret = add_extent_mapping(em_tree, em);
150 	if (ret == -EEXIST) {
151 		u64 failed_start = em->start;
152 		u64 failed_len = em->len;
153 
154 		free_extent_map(em);
155 		em = lookup_extent_mapping(em_tree, start, len);
156 		if (em) {
157 			ret = 0;
158 		} else {
159 			em = lookup_extent_mapping(em_tree, failed_start,
160 						   failed_len);
161 			ret = -EIO;
162 		}
163 	} else if (ret) {
164 		free_extent_map(em);
165 		em = NULL;
166 	}
167 	write_unlock(&em_tree->lock);
168 
169 	if (ret)
170 		em = ERR_PTR(ret);
171 out:
172 	return em;
173 }
174 
175 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
176 {
177 	return crc32c(seed, data, len);
178 }
179 
180 void btrfs_csum_final(u32 crc, char *result)
181 {
182 	*(__le32 *)result = ~cpu_to_le32(crc);
183 }
184 
185 /*
186  * compute the csum for a btree block, and either verify it or write it
187  * into the csum field of the block.
188  */
189 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
190 			   int verify)
191 {
192 	u16 csum_size =
193 		btrfs_super_csum_size(&root->fs_info->super_copy);
194 	char *result = NULL;
195 	unsigned long len;
196 	unsigned long cur_len;
197 	unsigned long offset = BTRFS_CSUM_SIZE;
198 	char *map_token = NULL;
199 	char *kaddr;
200 	unsigned long map_start;
201 	unsigned long map_len;
202 	int err;
203 	u32 crc = ~(u32)0;
204 	unsigned long inline_result;
205 
206 	len = buf->len - offset;
207 	while (len > 0) {
208 		err = map_private_extent_buffer(buf, offset, 32,
209 					&map_token, &kaddr,
210 					&map_start, &map_len, KM_USER0);
211 		if (err)
212 			return 1;
213 		cur_len = min(len, map_len - (offset - map_start));
214 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
215 				      crc, cur_len);
216 		len -= cur_len;
217 		offset += cur_len;
218 		unmap_extent_buffer(buf, map_token, KM_USER0);
219 	}
220 	if (csum_size > sizeof(inline_result)) {
221 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
222 		if (!result)
223 			return 1;
224 	} else {
225 		result = (char *)&inline_result;
226 	}
227 
228 	btrfs_csum_final(crc, result);
229 
230 	if (verify) {
231 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
232 			u32 val;
233 			u32 found = 0;
234 			memcpy(&found, result, csum_size);
235 
236 			read_extent_buffer(buf, &val, 0, csum_size);
237 			if (printk_ratelimit()) {
238 				printk(KERN_INFO "btrfs: %s checksum verify "
239 				       "failed on %llu wanted %X found %X "
240 				       "level %d\n",
241 				       root->fs_info->sb->s_id,
242 				       (unsigned long long)buf->start, val, found,
243 				       btrfs_header_level(buf));
244 			}
245 			if (result != (char *)&inline_result)
246 				kfree(result);
247 			return 1;
248 		}
249 	} else {
250 		write_extent_buffer(buf, result, 0, csum_size);
251 	}
252 	if (result != (char *)&inline_result)
253 		kfree(result);
254 	return 0;
255 }
256 
257 /*
258  * we can't consider a given block up to date unless the transid of the
259  * block matches the transid in the parent node's pointer.  This is how we
260  * detect blocks that either didn't get written at all or got written
261  * in the wrong place.
262  */
263 static int verify_parent_transid(struct extent_io_tree *io_tree,
264 				 struct extent_buffer *eb, u64 parent_transid)
265 {
266 	int ret;
267 
268 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
269 		return 0;
270 
271 	lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
272 	if (extent_buffer_uptodate(io_tree, eb) &&
273 	    btrfs_header_generation(eb) == parent_transid) {
274 		ret = 0;
275 		goto out;
276 	}
277 	if (printk_ratelimit()) {
278 		printk("parent transid verify failed on %llu wanted %llu "
279 		       "found %llu\n",
280 		       (unsigned long long)eb->start,
281 		       (unsigned long long)parent_transid,
282 		       (unsigned long long)btrfs_header_generation(eb));
283 	}
284 	ret = 1;
285 	clear_extent_buffer_uptodate(io_tree, eb);
286 out:
287 	unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
288 		      GFP_NOFS);
289 	return ret;
290 }
291 
292 /*
293  * helper to read a given tree block, doing retries as required when
294  * the checksums don't match and we have alternate mirrors to try.
295  */
296 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
297 					  struct extent_buffer *eb,
298 					  u64 start, u64 parent_transid)
299 {
300 	struct extent_io_tree *io_tree;
301 	int ret;
302 	int num_copies = 0;
303 	int mirror_num = 0;
304 
305 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
306 	while (1) {
307 		ret = read_extent_buffer_pages(io_tree, eb, start, 1,
308 					       btree_get_extent, mirror_num);
309 		if (!ret &&
310 		    !verify_parent_transid(io_tree, eb, parent_transid))
311 			return ret;
312 
313 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
314 					      eb->start, eb->len);
315 		if (num_copies == 1)
316 			return ret;
317 
318 		mirror_num++;
319 		if (mirror_num > num_copies)
320 			return ret;
321 	}
322 	return -EIO;
323 }
324 
325 /*
326  * checksum a dirty tree block before IO.  This has extra checks to make sure
327  * we only fill in the checksum field in the first page of a multi-page block
328  */
329 
330 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
331 {
332 	struct extent_io_tree *tree;
333 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
334 	u64 found_start;
335 	int found_level;
336 	unsigned long len;
337 	struct extent_buffer *eb;
338 	int ret;
339 
340 	tree = &BTRFS_I(page->mapping->host)->io_tree;
341 
342 	if (page->private == EXTENT_PAGE_PRIVATE)
343 		goto out;
344 	if (!page->private)
345 		goto out;
346 	len = page->private >> 2;
347 	WARN_ON(len == 0);
348 
349 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
350 	ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
351 					     btrfs_header_generation(eb));
352 	BUG_ON(ret);
353 	found_start = btrfs_header_bytenr(eb);
354 	if (found_start != start) {
355 		WARN_ON(1);
356 		goto err;
357 	}
358 	if (eb->first_page != page) {
359 		WARN_ON(1);
360 		goto err;
361 	}
362 	if (!PageUptodate(page)) {
363 		WARN_ON(1);
364 		goto err;
365 	}
366 	found_level = btrfs_header_level(eb);
367 
368 	csum_tree_block(root, eb, 0);
369 err:
370 	free_extent_buffer(eb);
371 out:
372 	return 0;
373 }
374 
375 static int check_tree_block_fsid(struct btrfs_root *root,
376 				 struct extent_buffer *eb)
377 {
378 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
379 	u8 fsid[BTRFS_UUID_SIZE];
380 	int ret = 1;
381 
382 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
383 			   BTRFS_FSID_SIZE);
384 	while (fs_devices) {
385 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
386 			ret = 0;
387 			break;
388 		}
389 		fs_devices = fs_devices->seed;
390 	}
391 	return ret;
392 }
393 
394 #ifdef CONFIG_DEBUG_LOCK_ALLOC
395 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
396 {
397 	lockdep_set_class_and_name(&eb->lock,
398 			   &btrfs_eb_class[level],
399 			   btrfs_eb_name[level]);
400 }
401 #endif
402 
403 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
404 			       struct extent_state *state)
405 {
406 	struct extent_io_tree *tree;
407 	u64 found_start;
408 	int found_level;
409 	unsigned long len;
410 	struct extent_buffer *eb;
411 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
412 	int ret = 0;
413 
414 	tree = &BTRFS_I(page->mapping->host)->io_tree;
415 	if (page->private == EXTENT_PAGE_PRIVATE)
416 		goto out;
417 	if (!page->private)
418 		goto out;
419 
420 	len = page->private >> 2;
421 	WARN_ON(len == 0);
422 
423 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
424 
425 	found_start = btrfs_header_bytenr(eb);
426 	if (found_start != start) {
427 		if (printk_ratelimit()) {
428 			printk(KERN_INFO "btrfs bad tree block start "
429 			       "%llu %llu\n",
430 			       (unsigned long long)found_start,
431 			       (unsigned long long)eb->start);
432 		}
433 		ret = -EIO;
434 		goto err;
435 	}
436 	if (eb->first_page != page) {
437 		printk(KERN_INFO "btrfs bad first page %lu %lu\n",
438 		       eb->first_page->index, page->index);
439 		WARN_ON(1);
440 		ret = -EIO;
441 		goto err;
442 	}
443 	if (check_tree_block_fsid(root, eb)) {
444 		if (printk_ratelimit()) {
445 			printk(KERN_INFO "btrfs bad fsid on block %llu\n",
446 			       (unsigned long long)eb->start);
447 		}
448 		ret = -EIO;
449 		goto err;
450 	}
451 	found_level = btrfs_header_level(eb);
452 
453 	btrfs_set_buffer_lockdep_class(eb, found_level);
454 
455 	ret = csum_tree_block(root, eb, 1);
456 	if (ret)
457 		ret = -EIO;
458 
459 	end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
460 	end = eb->start + end - 1;
461 err:
462 	free_extent_buffer(eb);
463 out:
464 	return ret;
465 }
466 
467 static void end_workqueue_bio(struct bio *bio, int err)
468 {
469 	struct end_io_wq *end_io_wq = bio->bi_private;
470 	struct btrfs_fs_info *fs_info;
471 
472 	fs_info = end_io_wq->info;
473 	end_io_wq->error = err;
474 	end_io_wq->work.func = end_workqueue_fn;
475 	end_io_wq->work.flags = 0;
476 
477 	if (bio->bi_rw & (1 << BIO_RW)) {
478 		if (end_io_wq->metadata)
479 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
480 					   &end_io_wq->work);
481 		else
482 			btrfs_queue_worker(&fs_info->endio_write_workers,
483 					   &end_io_wq->work);
484 	} else {
485 		if (end_io_wq->metadata)
486 			btrfs_queue_worker(&fs_info->endio_meta_workers,
487 					   &end_io_wq->work);
488 		else
489 			btrfs_queue_worker(&fs_info->endio_workers,
490 					   &end_io_wq->work);
491 	}
492 }
493 
494 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
495 			int metadata)
496 {
497 	struct end_io_wq *end_io_wq;
498 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
499 	if (!end_io_wq)
500 		return -ENOMEM;
501 
502 	end_io_wq->private = bio->bi_private;
503 	end_io_wq->end_io = bio->bi_end_io;
504 	end_io_wq->info = info;
505 	end_io_wq->error = 0;
506 	end_io_wq->bio = bio;
507 	end_io_wq->metadata = metadata;
508 
509 	bio->bi_private = end_io_wq;
510 	bio->bi_end_io = end_workqueue_bio;
511 	return 0;
512 }
513 
514 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
515 {
516 	unsigned long limit = min_t(unsigned long,
517 				    info->workers.max_workers,
518 				    info->fs_devices->open_devices);
519 	return 256 * limit;
520 }
521 
522 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
523 {
524 	return atomic_read(&info->nr_async_bios) >
525 		btrfs_async_submit_limit(info);
526 }
527 
528 static void run_one_async_start(struct btrfs_work *work)
529 {
530 	struct btrfs_fs_info *fs_info;
531 	struct async_submit_bio *async;
532 
533 	async = container_of(work, struct  async_submit_bio, work);
534 	fs_info = BTRFS_I(async->inode)->root->fs_info;
535 	async->submit_bio_start(async->inode, async->rw, async->bio,
536 			       async->mirror_num, async->bio_flags);
537 }
538 
539 static void run_one_async_done(struct btrfs_work *work)
540 {
541 	struct btrfs_fs_info *fs_info;
542 	struct async_submit_bio *async;
543 	int limit;
544 
545 	async = container_of(work, struct  async_submit_bio, work);
546 	fs_info = BTRFS_I(async->inode)->root->fs_info;
547 
548 	limit = btrfs_async_submit_limit(fs_info);
549 	limit = limit * 2 / 3;
550 
551 	atomic_dec(&fs_info->nr_async_submits);
552 
553 	if (atomic_read(&fs_info->nr_async_submits) < limit &&
554 	    waitqueue_active(&fs_info->async_submit_wait))
555 		wake_up(&fs_info->async_submit_wait);
556 
557 	async->submit_bio_done(async->inode, async->rw, async->bio,
558 			       async->mirror_num, async->bio_flags);
559 }
560 
561 static void run_one_async_free(struct btrfs_work *work)
562 {
563 	struct async_submit_bio *async;
564 
565 	async = container_of(work, struct  async_submit_bio, work);
566 	kfree(async);
567 }
568 
569 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
570 			int rw, struct bio *bio, int mirror_num,
571 			unsigned long bio_flags,
572 			extent_submit_bio_hook_t *submit_bio_start,
573 			extent_submit_bio_hook_t *submit_bio_done)
574 {
575 	struct async_submit_bio *async;
576 
577 	async = kmalloc(sizeof(*async), GFP_NOFS);
578 	if (!async)
579 		return -ENOMEM;
580 
581 	async->inode = inode;
582 	async->rw = rw;
583 	async->bio = bio;
584 	async->mirror_num = mirror_num;
585 	async->submit_bio_start = submit_bio_start;
586 	async->submit_bio_done = submit_bio_done;
587 
588 	async->work.func = run_one_async_start;
589 	async->work.ordered_func = run_one_async_done;
590 	async->work.ordered_free = run_one_async_free;
591 
592 	async->work.flags = 0;
593 	async->bio_flags = bio_flags;
594 
595 	atomic_inc(&fs_info->nr_async_submits);
596 
597 	if (rw & (1 << BIO_RW_SYNCIO))
598 		btrfs_set_work_high_prio(&async->work);
599 
600 	btrfs_queue_worker(&fs_info->workers, &async->work);
601 
602 	while (atomic_read(&fs_info->async_submit_draining) &&
603 	      atomic_read(&fs_info->nr_async_submits)) {
604 		wait_event(fs_info->async_submit_wait,
605 			   (atomic_read(&fs_info->nr_async_submits) == 0));
606 	}
607 
608 	return 0;
609 }
610 
611 static int btree_csum_one_bio(struct bio *bio)
612 {
613 	struct bio_vec *bvec = bio->bi_io_vec;
614 	int bio_index = 0;
615 	struct btrfs_root *root;
616 
617 	WARN_ON(bio->bi_vcnt <= 0);
618 	while (bio_index < bio->bi_vcnt) {
619 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
620 		csum_dirty_buffer(root, bvec->bv_page);
621 		bio_index++;
622 		bvec++;
623 	}
624 	return 0;
625 }
626 
627 static int __btree_submit_bio_start(struct inode *inode, int rw,
628 				    struct bio *bio, int mirror_num,
629 				    unsigned long bio_flags)
630 {
631 	/*
632 	 * when we're called for a write, we're already in the async
633 	 * submission context.  Just jump into btrfs_map_bio
634 	 */
635 	btree_csum_one_bio(bio);
636 	return 0;
637 }
638 
639 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
640 				 int mirror_num, unsigned long bio_flags)
641 {
642 	/*
643 	 * when we're called for a write, we're already in the async
644 	 * submission context.  Just jump into btrfs_map_bio
645 	 */
646 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
647 }
648 
649 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
650 				 int mirror_num, unsigned long bio_flags)
651 {
652 	int ret;
653 
654 	ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
655 					  bio, 1);
656 	BUG_ON(ret);
657 
658 	if (!(rw & (1 << BIO_RW))) {
659 		/*
660 		 * called for a read, do the setup so that checksum validation
661 		 * can happen in the async kernel threads
662 		 */
663 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
664 				     mirror_num, 0);
665 	}
666 
667 	/*
668 	 * kthread helpers are used to submit writes so that checksumming
669 	 * can happen in parallel across all CPUs
670 	 */
671 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
672 				   inode, rw, bio, mirror_num, 0,
673 				   __btree_submit_bio_start,
674 				   __btree_submit_bio_done);
675 }
676 
677 static int btree_writepage(struct page *page, struct writeback_control *wbc)
678 {
679 	struct extent_io_tree *tree;
680 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
681 	struct extent_buffer *eb;
682 	int was_dirty;
683 
684 	tree = &BTRFS_I(page->mapping->host)->io_tree;
685 	if (!(current->flags & PF_MEMALLOC)) {
686 		return extent_write_full_page(tree, page,
687 					      btree_get_extent, wbc);
688 	}
689 
690 	redirty_page_for_writepage(wbc, page);
691 	eb = btrfs_find_tree_block(root, page_offset(page),
692 				      PAGE_CACHE_SIZE);
693 	WARN_ON(!eb);
694 
695 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
696 	if (!was_dirty) {
697 		spin_lock(&root->fs_info->delalloc_lock);
698 		root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
699 		spin_unlock(&root->fs_info->delalloc_lock);
700 	}
701 	free_extent_buffer(eb);
702 
703 	unlock_page(page);
704 	return 0;
705 }
706 
707 static int btree_writepages(struct address_space *mapping,
708 			    struct writeback_control *wbc)
709 {
710 	struct extent_io_tree *tree;
711 	tree = &BTRFS_I(mapping->host)->io_tree;
712 	if (wbc->sync_mode == WB_SYNC_NONE) {
713 		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
714 		u64 num_dirty;
715 		unsigned long thresh = 32 * 1024 * 1024;
716 
717 		if (wbc->for_kupdate)
718 			return 0;
719 
720 		/* this is a bit racy, but that's ok */
721 		num_dirty = root->fs_info->dirty_metadata_bytes;
722 		if (num_dirty < thresh)
723 			return 0;
724 	}
725 	return extent_writepages(tree, mapping, btree_get_extent, wbc);
726 }
727 
728 static int btree_readpage(struct file *file, struct page *page)
729 {
730 	struct extent_io_tree *tree;
731 	tree = &BTRFS_I(page->mapping->host)->io_tree;
732 	return extent_read_full_page(tree, page, btree_get_extent);
733 }
734 
735 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
736 {
737 	struct extent_io_tree *tree;
738 	struct extent_map_tree *map;
739 	int ret;
740 
741 	if (PageWriteback(page) || PageDirty(page))
742 		return 0;
743 
744 	tree = &BTRFS_I(page->mapping->host)->io_tree;
745 	map = &BTRFS_I(page->mapping->host)->extent_tree;
746 
747 	ret = try_release_extent_state(map, tree, page, gfp_flags);
748 	if (!ret)
749 		return 0;
750 
751 	ret = try_release_extent_buffer(tree, page);
752 	if (ret == 1) {
753 		ClearPagePrivate(page);
754 		set_page_private(page, 0);
755 		page_cache_release(page);
756 	}
757 
758 	return ret;
759 }
760 
761 static void btree_invalidatepage(struct page *page, unsigned long offset)
762 {
763 	struct extent_io_tree *tree;
764 	tree = &BTRFS_I(page->mapping->host)->io_tree;
765 	extent_invalidatepage(tree, page, offset);
766 	btree_releasepage(page, GFP_NOFS);
767 	if (PagePrivate(page)) {
768 		printk(KERN_WARNING "btrfs warning page private not zero "
769 		       "on page %llu\n", (unsigned long long)page_offset(page));
770 		ClearPagePrivate(page);
771 		set_page_private(page, 0);
772 		page_cache_release(page);
773 	}
774 }
775 
776 static const struct address_space_operations btree_aops = {
777 	.readpage	= btree_readpage,
778 	.writepage	= btree_writepage,
779 	.writepages	= btree_writepages,
780 	.releasepage	= btree_releasepage,
781 	.invalidatepage = btree_invalidatepage,
782 	.sync_page	= block_sync_page,
783 };
784 
785 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
786 			 u64 parent_transid)
787 {
788 	struct extent_buffer *buf = NULL;
789 	struct inode *btree_inode = root->fs_info->btree_inode;
790 	int ret = 0;
791 
792 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
793 	if (!buf)
794 		return 0;
795 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
796 				 buf, 0, 0, btree_get_extent, 0);
797 	free_extent_buffer(buf);
798 	return ret;
799 }
800 
801 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
802 					    u64 bytenr, u32 blocksize)
803 {
804 	struct inode *btree_inode = root->fs_info->btree_inode;
805 	struct extent_buffer *eb;
806 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
807 				bytenr, blocksize, GFP_NOFS);
808 	return eb;
809 }
810 
811 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
812 						 u64 bytenr, u32 blocksize)
813 {
814 	struct inode *btree_inode = root->fs_info->btree_inode;
815 	struct extent_buffer *eb;
816 
817 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
818 				 bytenr, blocksize, NULL, GFP_NOFS);
819 	return eb;
820 }
821 
822 
823 int btrfs_write_tree_block(struct extent_buffer *buf)
824 {
825 	return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
826 					buf->start + buf->len - 1);
827 }
828 
829 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
830 {
831 	return filemap_fdatawait_range(buf->first_page->mapping,
832 				       buf->start, buf->start + buf->len - 1);
833 }
834 
835 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
836 				      u32 blocksize, u64 parent_transid)
837 {
838 	struct extent_buffer *buf = NULL;
839 	struct inode *btree_inode = root->fs_info->btree_inode;
840 	struct extent_io_tree *io_tree;
841 	int ret;
842 
843 	io_tree = &BTRFS_I(btree_inode)->io_tree;
844 
845 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
846 	if (!buf)
847 		return NULL;
848 
849 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
850 
851 	if (ret == 0)
852 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
853 	return buf;
854 
855 }
856 
857 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
858 		     struct extent_buffer *buf)
859 {
860 	struct inode *btree_inode = root->fs_info->btree_inode;
861 	if (btrfs_header_generation(buf) ==
862 	    root->fs_info->running_transaction->transid) {
863 		btrfs_assert_tree_locked(buf);
864 
865 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
866 			spin_lock(&root->fs_info->delalloc_lock);
867 			if (root->fs_info->dirty_metadata_bytes >= buf->len)
868 				root->fs_info->dirty_metadata_bytes -= buf->len;
869 			else
870 				WARN_ON(1);
871 			spin_unlock(&root->fs_info->delalloc_lock);
872 		}
873 
874 		/* ugh, clear_extent_buffer_dirty needs to lock the page */
875 		btrfs_set_lock_blocking(buf);
876 		clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
877 					  buf);
878 	}
879 	return 0;
880 }
881 
882 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
883 			u32 stripesize, struct btrfs_root *root,
884 			struct btrfs_fs_info *fs_info,
885 			u64 objectid)
886 {
887 	root->node = NULL;
888 	root->commit_root = NULL;
889 	root->sectorsize = sectorsize;
890 	root->nodesize = nodesize;
891 	root->leafsize = leafsize;
892 	root->stripesize = stripesize;
893 	root->ref_cows = 0;
894 	root->track_dirty = 0;
895 
896 	root->fs_info = fs_info;
897 	root->objectid = objectid;
898 	root->last_trans = 0;
899 	root->highest_objectid = 0;
900 	root->name = NULL;
901 	root->in_sysfs = 0;
902 	root->inode_tree.rb_node = NULL;
903 
904 	INIT_LIST_HEAD(&root->dirty_list);
905 	INIT_LIST_HEAD(&root->orphan_list);
906 	INIT_LIST_HEAD(&root->root_list);
907 	spin_lock_init(&root->node_lock);
908 	spin_lock_init(&root->list_lock);
909 	spin_lock_init(&root->inode_lock);
910 	mutex_init(&root->objectid_mutex);
911 	mutex_init(&root->log_mutex);
912 	init_waitqueue_head(&root->log_writer_wait);
913 	init_waitqueue_head(&root->log_commit_wait[0]);
914 	init_waitqueue_head(&root->log_commit_wait[1]);
915 	atomic_set(&root->log_commit[0], 0);
916 	atomic_set(&root->log_commit[1], 0);
917 	atomic_set(&root->log_writers, 0);
918 	root->log_batch = 0;
919 	root->log_transid = 0;
920 	root->last_log_commit = 0;
921 	extent_io_tree_init(&root->dirty_log_pages,
922 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
923 
924 	memset(&root->root_key, 0, sizeof(root->root_key));
925 	memset(&root->root_item, 0, sizeof(root->root_item));
926 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
927 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
928 	root->defrag_trans_start = fs_info->generation;
929 	init_completion(&root->kobj_unregister);
930 	root->defrag_running = 0;
931 	root->defrag_level = 0;
932 	root->root_key.objectid = objectid;
933 	root->anon_super.s_root = NULL;
934 	root->anon_super.s_dev = 0;
935 	INIT_LIST_HEAD(&root->anon_super.s_list);
936 	INIT_LIST_HEAD(&root->anon_super.s_instances);
937 	init_rwsem(&root->anon_super.s_umount);
938 
939 	return 0;
940 }
941 
942 static int find_and_setup_root(struct btrfs_root *tree_root,
943 			       struct btrfs_fs_info *fs_info,
944 			       u64 objectid,
945 			       struct btrfs_root *root)
946 {
947 	int ret;
948 	u32 blocksize;
949 	u64 generation;
950 
951 	__setup_root(tree_root->nodesize, tree_root->leafsize,
952 		     tree_root->sectorsize, tree_root->stripesize,
953 		     root, fs_info, objectid);
954 	ret = btrfs_find_last_root(tree_root, objectid,
955 				   &root->root_item, &root->root_key);
956 	if (ret > 0)
957 		return -ENOENT;
958 	BUG_ON(ret);
959 
960 	generation = btrfs_root_generation(&root->root_item);
961 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
962 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
963 				     blocksize, generation);
964 	BUG_ON(!root->node);
965 	root->commit_root = btrfs_root_node(root);
966 	return 0;
967 }
968 
969 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
970 			     struct btrfs_fs_info *fs_info)
971 {
972 	struct extent_buffer *eb;
973 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
974 	u64 start = 0;
975 	u64 end = 0;
976 	int ret;
977 
978 	if (!log_root_tree)
979 		return 0;
980 
981 	while (1) {
982 		ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
983 				    0, &start, &end, EXTENT_DIRTY);
984 		if (ret)
985 			break;
986 
987 		clear_extent_dirty(&log_root_tree->dirty_log_pages,
988 				   start, end, GFP_NOFS);
989 	}
990 	eb = fs_info->log_root_tree->node;
991 
992 	WARN_ON(btrfs_header_level(eb) != 0);
993 	WARN_ON(btrfs_header_nritems(eb) != 0);
994 
995 	ret = btrfs_free_reserved_extent(fs_info->tree_root,
996 				eb->start, eb->len);
997 	BUG_ON(ret);
998 
999 	free_extent_buffer(eb);
1000 	kfree(fs_info->log_root_tree);
1001 	fs_info->log_root_tree = NULL;
1002 	return 0;
1003 }
1004 
1005 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1006 					 struct btrfs_fs_info *fs_info)
1007 {
1008 	struct btrfs_root *root;
1009 	struct btrfs_root *tree_root = fs_info->tree_root;
1010 	struct extent_buffer *leaf;
1011 
1012 	root = kzalloc(sizeof(*root), GFP_NOFS);
1013 	if (!root)
1014 		return ERR_PTR(-ENOMEM);
1015 
1016 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1017 		     tree_root->sectorsize, tree_root->stripesize,
1018 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1019 
1020 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1021 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1022 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1023 	/*
1024 	 * log trees do not get reference counted because they go away
1025 	 * before a real commit is actually done.  They do store pointers
1026 	 * to file data extents, and those reference counts still get
1027 	 * updated (along with back refs to the log tree).
1028 	 */
1029 	root->ref_cows = 0;
1030 
1031 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1032 				      BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1033 	if (IS_ERR(leaf)) {
1034 		kfree(root);
1035 		return ERR_CAST(leaf);
1036 	}
1037 
1038 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1039 	btrfs_set_header_bytenr(leaf, leaf->start);
1040 	btrfs_set_header_generation(leaf, trans->transid);
1041 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1042 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1043 	root->node = leaf;
1044 
1045 	write_extent_buffer(root->node, root->fs_info->fsid,
1046 			    (unsigned long)btrfs_header_fsid(root->node),
1047 			    BTRFS_FSID_SIZE);
1048 	btrfs_mark_buffer_dirty(root->node);
1049 	btrfs_tree_unlock(root->node);
1050 	return root;
1051 }
1052 
1053 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1054 			     struct btrfs_fs_info *fs_info)
1055 {
1056 	struct btrfs_root *log_root;
1057 
1058 	log_root = alloc_log_tree(trans, fs_info);
1059 	if (IS_ERR(log_root))
1060 		return PTR_ERR(log_root);
1061 	WARN_ON(fs_info->log_root_tree);
1062 	fs_info->log_root_tree = log_root;
1063 	return 0;
1064 }
1065 
1066 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1067 		       struct btrfs_root *root)
1068 {
1069 	struct btrfs_root *log_root;
1070 	struct btrfs_inode_item *inode_item;
1071 
1072 	log_root = alloc_log_tree(trans, root->fs_info);
1073 	if (IS_ERR(log_root))
1074 		return PTR_ERR(log_root);
1075 
1076 	log_root->last_trans = trans->transid;
1077 	log_root->root_key.offset = root->root_key.objectid;
1078 
1079 	inode_item = &log_root->root_item.inode;
1080 	inode_item->generation = cpu_to_le64(1);
1081 	inode_item->size = cpu_to_le64(3);
1082 	inode_item->nlink = cpu_to_le32(1);
1083 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1084 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1085 
1086 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1087 
1088 	WARN_ON(root->log_root);
1089 	root->log_root = log_root;
1090 	root->log_transid = 0;
1091 	root->last_log_commit = 0;
1092 	return 0;
1093 }
1094 
1095 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1096 					       struct btrfs_key *location)
1097 {
1098 	struct btrfs_root *root;
1099 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1100 	struct btrfs_path *path;
1101 	struct extent_buffer *l;
1102 	u64 generation;
1103 	u32 blocksize;
1104 	int ret = 0;
1105 
1106 	root = kzalloc(sizeof(*root), GFP_NOFS);
1107 	if (!root)
1108 		return ERR_PTR(-ENOMEM);
1109 	if (location->offset == (u64)-1) {
1110 		ret = find_and_setup_root(tree_root, fs_info,
1111 					  location->objectid, root);
1112 		if (ret) {
1113 			kfree(root);
1114 			return ERR_PTR(ret);
1115 		}
1116 		goto out;
1117 	}
1118 
1119 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1120 		     tree_root->sectorsize, tree_root->stripesize,
1121 		     root, fs_info, location->objectid);
1122 
1123 	path = btrfs_alloc_path();
1124 	BUG_ON(!path);
1125 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1126 	if (ret == 0) {
1127 		l = path->nodes[0];
1128 		read_extent_buffer(l, &root->root_item,
1129 				btrfs_item_ptr_offset(l, path->slots[0]),
1130 				sizeof(root->root_item));
1131 		memcpy(&root->root_key, location, sizeof(*location));
1132 	}
1133 	btrfs_free_path(path);
1134 	if (ret) {
1135 		if (ret > 0)
1136 			ret = -ENOENT;
1137 		return ERR_PTR(ret);
1138 	}
1139 
1140 	generation = btrfs_root_generation(&root->root_item);
1141 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1142 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1143 				     blocksize, generation);
1144 	root->commit_root = btrfs_root_node(root);
1145 	BUG_ON(!root->node);
1146 out:
1147 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID)
1148 		root->ref_cows = 1;
1149 
1150 	return root;
1151 }
1152 
1153 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1154 					u64 root_objectid)
1155 {
1156 	struct btrfs_root *root;
1157 
1158 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1159 		return fs_info->tree_root;
1160 	if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1161 		return fs_info->extent_root;
1162 
1163 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1164 				 (unsigned long)root_objectid);
1165 	return root;
1166 }
1167 
1168 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1169 					      struct btrfs_key *location)
1170 {
1171 	struct btrfs_root *root;
1172 	int ret;
1173 
1174 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1175 		return fs_info->tree_root;
1176 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1177 		return fs_info->extent_root;
1178 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1179 		return fs_info->chunk_root;
1180 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1181 		return fs_info->dev_root;
1182 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1183 		return fs_info->csum_root;
1184 again:
1185 	spin_lock(&fs_info->fs_roots_radix_lock);
1186 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1187 				 (unsigned long)location->objectid);
1188 	spin_unlock(&fs_info->fs_roots_radix_lock);
1189 	if (root)
1190 		return root;
1191 
1192 	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1193 	if (ret == 0)
1194 		ret = -ENOENT;
1195 	if (ret < 0)
1196 		return ERR_PTR(ret);
1197 
1198 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1199 	if (IS_ERR(root))
1200 		return root;
1201 
1202 	WARN_ON(btrfs_root_refs(&root->root_item) == 0);
1203 	set_anon_super(&root->anon_super, NULL);
1204 
1205 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1206 	if (ret)
1207 		goto fail;
1208 
1209 	spin_lock(&fs_info->fs_roots_radix_lock);
1210 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1211 				(unsigned long)root->root_key.objectid,
1212 				root);
1213 	if (ret == 0)
1214 		root->in_radix = 1;
1215 	spin_unlock(&fs_info->fs_roots_radix_lock);
1216 	radix_tree_preload_end();
1217 	if (ret) {
1218 		if (ret == -EEXIST) {
1219 			free_fs_root(root);
1220 			goto again;
1221 		}
1222 		goto fail;
1223 	}
1224 
1225 	ret = btrfs_find_dead_roots(fs_info->tree_root,
1226 				    root->root_key.objectid);
1227 	WARN_ON(ret);
1228 
1229 	if (!(fs_info->sb->s_flags & MS_RDONLY))
1230 		btrfs_orphan_cleanup(root);
1231 
1232 	return root;
1233 fail:
1234 	free_fs_root(root);
1235 	return ERR_PTR(ret);
1236 }
1237 
1238 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1239 				      struct btrfs_key *location,
1240 				      const char *name, int namelen)
1241 {
1242 	return btrfs_read_fs_root_no_name(fs_info, location);
1243 #if 0
1244 	struct btrfs_root *root;
1245 	int ret;
1246 
1247 	root = btrfs_read_fs_root_no_name(fs_info, location);
1248 	if (!root)
1249 		return NULL;
1250 
1251 	if (root->in_sysfs)
1252 		return root;
1253 
1254 	ret = btrfs_set_root_name(root, name, namelen);
1255 	if (ret) {
1256 		free_extent_buffer(root->node);
1257 		kfree(root);
1258 		return ERR_PTR(ret);
1259 	}
1260 
1261 	ret = btrfs_sysfs_add_root(root);
1262 	if (ret) {
1263 		free_extent_buffer(root->node);
1264 		kfree(root->name);
1265 		kfree(root);
1266 		return ERR_PTR(ret);
1267 	}
1268 	root->in_sysfs = 1;
1269 	return root;
1270 #endif
1271 }
1272 
1273 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1274 {
1275 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1276 	int ret = 0;
1277 	struct btrfs_device *device;
1278 	struct backing_dev_info *bdi;
1279 
1280 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1281 		if (!device->bdev)
1282 			continue;
1283 		bdi = blk_get_backing_dev_info(device->bdev);
1284 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1285 			ret = 1;
1286 			break;
1287 		}
1288 	}
1289 	return ret;
1290 }
1291 
1292 /*
1293  * this unplugs every device on the box, and it is only used when page
1294  * is null
1295  */
1296 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1297 {
1298 	struct btrfs_device *device;
1299 	struct btrfs_fs_info *info;
1300 
1301 	info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1302 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1303 		if (!device->bdev)
1304 			continue;
1305 
1306 		bdi = blk_get_backing_dev_info(device->bdev);
1307 		if (bdi->unplug_io_fn)
1308 			bdi->unplug_io_fn(bdi, page);
1309 	}
1310 }
1311 
1312 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1313 {
1314 	struct inode *inode;
1315 	struct extent_map_tree *em_tree;
1316 	struct extent_map *em;
1317 	struct address_space *mapping;
1318 	u64 offset;
1319 
1320 	/* the generic O_DIRECT read code does this */
1321 	if (1 || !page) {
1322 		__unplug_io_fn(bdi, page);
1323 		return;
1324 	}
1325 
1326 	/*
1327 	 * page->mapping may change at any time.  Get a consistent copy
1328 	 * and use that for everything below
1329 	 */
1330 	smp_mb();
1331 	mapping = page->mapping;
1332 	if (!mapping)
1333 		return;
1334 
1335 	inode = mapping->host;
1336 
1337 	/*
1338 	 * don't do the expensive searching for a small number of
1339 	 * devices
1340 	 */
1341 	if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1342 		__unplug_io_fn(bdi, page);
1343 		return;
1344 	}
1345 
1346 	offset = page_offset(page);
1347 
1348 	em_tree = &BTRFS_I(inode)->extent_tree;
1349 	read_lock(&em_tree->lock);
1350 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1351 	read_unlock(&em_tree->lock);
1352 	if (!em) {
1353 		__unplug_io_fn(bdi, page);
1354 		return;
1355 	}
1356 
1357 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1358 		free_extent_map(em);
1359 		__unplug_io_fn(bdi, page);
1360 		return;
1361 	}
1362 	offset = offset - em->start;
1363 	btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1364 			  em->block_start + offset, page);
1365 	free_extent_map(em);
1366 }
1367 
1368 /*
1369  * If this fails, caller must call bdi_destroy() to get rid of the
1370  * bdi again.
1371  */
1372 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1373 {
1374 	int err;
1375 
1376 	bdi->name = "btrfs";
1377 	bdi->capabilities = BDI_CAP_MAP_COPY;
1378 	err = bdi_init(bdi);
1379 	if (err)
1380 		return err;
1381 
1382 	err = bdi_register(bdi, NULL, "btrfs-%d",
1383 				atomic_inc_return(&btrfs_bdi_num));
1384 	if (err) {
1385 		bdi_destroy(bdi);
1386 		return err;
1387 	}
1388 
1389 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1390 	bdi->unplug_io_fn	= btrfs_unplug_io_fn;
1391 	bdi->unplug_io_data	= info;
1392 	bdi->congested_fn	= btrfs_congested_fn;
1393 	bdi->congested_data	= info;
1394 	return 0;
1395 }
1396 
1397 static int bio_ready_for_csum(struct bio *bio)
1398 {
1399 	u64 length = 0;
1400 	u64 buf_len = 0;
1401 	u64 start = 0;
1402 	struct page *page;
1403 	struct extent_io_tree *io_tree = NULL;
1404 	struct btrfs_fs_info *info = NULL;
1405 	struct bio_vec *bvec;
1406 	int i;
1407 	int ret;
1408 
1409 	bio_for_each_segment(bvec, bio, i) {
1410 		page = bvec->bv_page;
1411 		if (page->private == EXTENT_PAGE_PRIVATE) {
1412 			length += bvec->bv_len;
1413 			continue;
1414 		}
1415 		if (!page->private) {
1416 			length += bvec->bv_len;
1417 			continue;
1418 		}
1419 		length = bvec->bv_len;
1420 		buf_len = page->private >> 2;
1421 		start = page_offset(page) + bvec->bv_offset;
1422 		io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1423 		info = BTRFS_I(page->mapping->host)->root->fs_info;
1424 	}
1425 	/* are we fully contained in this bio? */
1426 	if (buf_len <= length)
1427 		return 1;
1428 
1429 	ret = extent_range_uptodate(io_tree, start + length,
1430 				    start + buf_len - 1);
1431 	return ret;
1432 }
1433 
1434 /*
1435  * called by the kthread helper functions to finally call the bio end_io
1436  * functions.  This is where read checksum verification actually happens
1437  */
1438 static void end_workqueue_fn(struct btrfs_work *work)
1439 {
1440 	struct bio *bio;
1441 	struct end_io_wq *end_io_wq;
1442 	struct btrfs_fs_info *fs_info;
1443 	int error;
1444 
1445 	end_io_wq = container_of(work, struct end_io_wq, work);
1446 	bio = end_io_wq->bio;
1447 	fs_info = end_io_wq->info;
1448 
1449 	/* metadata bio reads are special because the whole tree block must
1450 	 * be checksummed at once.  This makes sure the entire block is in
1451 	 * ram and up to date before trying to verify things.  For
1452 	 * blocksize <= pagesize, it is basically a noop
1453 	 */
1454 	if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1455 	    !bio_ready_for_csum(bio)) {
1456 		btrfs_queue_worker(&fs_info->endio_meta_workers,
1457 				   &end_io_wq->work);
1458 		return;
1459 	}
1460 	error = end_io_wq->error;
1461 	bio->bi_private = end_io_wq->private;
1462 	bio->bi_end_io = end_io_wq->end_io;
1463 	kfree(end_io_wq);
1464 	bio_endio(bio, error);
1465 }
1466 
1467 static int cleaner_kthread(void *arg)
1468 {
1469 	struct btrfs_root *root = arg;
1470 
1471 	do {
1472 		smp_mb();
1473 		if (root->fs_info->closing)
1474 			break;
1475 
1476 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1477 
1478 		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1479 		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
1480 			btrfs_clean_old_snapshots(root);
1481 			mutex_unlock(&root->fs_info->cleaner_mutex);
1482 		}
1483 
1484 		if (freezing(current)) {
1485 			refrigerator();
1486 		} else {
1487 			smp_mb();
1488 			if (root->fs_info->closing)
1489 				break;
1490 			set_current_state(TASK_INTERRUPTIBLE);
1491 			schedule();
1492 			__set_current_state(TASK_RUNNING);
1493 		}
1494 	} while (!kthread_should_stop());
1495 	return 0;
1496 }
1497 
1498 static int transaction_kthread(void *arg)
1499 {
1500 	struct btrfs_root *root = arg;
1501 	struct btrfs_trans_handle *trans;
1502 	struct btrfs_transaction *cur;
1503 	unsigned long now;
1504 	unsigned long delay;
1505 	int ret;
1506 
1507 	do {
1508 		smp_mb();
1509 		if (root->fs_info->closing)
1510 			break;
1511 
1512 		delay = HZ * 30;
1513 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1514 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1515 
1516 		mutex_lock(&root->fs_info->trans_mutex);
1517 		cur = root->fs_info->running_transaction;
1518 		if (!cur) {
1519 			mutex_unlock(&root->fs_info->trans_mutex);
1520 			goto sleep;
1521 		}
1522 
1523 		now = get_seconds();
1524 		if (now < cur->start_time || now - cur->start_time < 30) {
1525 			mutex_unlock(&root->fs_info->trans_mutex);
1526 			delay = HZ * 5;
1527 			goto sleep;
1528 		}
1529 		mutex_unlock(&root->fs_info->trans_mutex);
1530 		trans = btrfs_start_transaction(root, 1);
1531 		ret = btrfs_commit_transaction(trans, root);
1532 
1533 sleep:
1534 		wake_up_process(root->fs_info->cleaner_kthread);
1535 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1536 
1537 		if (freezing(current)) {
1538 			refrigerator();
1539 		} else {
1540 			if (root->fs_info->closing)
1541 				break;
1542 			set_current_state(TASK_INTERRUPTIBLE);
1543 			schedule_timeout(delay);
1544 			__set_current_state(TASK_RUNNING);
1545 		}
1546 	} while (!kthread_should_stop());
1547 	return 0;
1548 }
1549 
1550 struct btrfs_root *open_ctree(struct super_block *sb,
1551 			      struct btrfs_fs_devices *fs_devices,
1552 			      char *options)
1553 {
1554 	u32 sectorsize;
1555 	u32 nodesize;
1556 	u32 leafsize;
1557 	u32 blocksize;
1558 	u32 stripesize;
1559 	u64 generation;
1560 	u64 features;
1561 	struct btrfs_key location;
1562 	struct buffer_head *bh;
1563 	struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1564 						 GFP_NOFS);
1565 	struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1566 						 GFP_NOFS);
1567 	struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1568 					       GFP_NOFS);
1569 	struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1570 						GFP_NOFS);
1571 	struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1572 						GFP_NOFS);
1573 	struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1574 					      GFP_NOFS);
1575 	struct btrfs_root *log_tree_root;
1576 
1577 	int ret;
1578 	int err = -EINVAL;
1579 
1580 	struct btrfs_super_block *disk_super;
1581 
1582 	if (!extent_root || !tree_root || !fs_info ||
1583 	    !chunk_root || !dev_root || !csum_root) {
1584 		err = -ENOMEM;
1585 		goto fail;
1586 	}
1587 
1588 	ret = init_srcu_struct(&fs_info->subvol_srcu);
1589 	if (ret) {
1590 		err = ret;
1591 		goto fail;
1592 	}
1593 
1594 	ret = setup_bdi(fs_info, &fs_info->bdi);
1595 	if (ret) {
1596 		err = ret;
1597 		goto fail_srcu;
1598 	}
1599 
1600 	fs_info->btree_inode = new_inode(sb);
1601 	if (!fs_info->btree_inode) {
1602 		err = -ENOMEM;
1603 		goto fail_bdi;
1604 	}
1605 
1606 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1607 	INIT_LIST_HEAD(&fs_info->trans_list);
1608 	INIT_LIST_HEAD(&fs_info->dead_roots);
1609 	INIT_LIST_HEAD(&fs_info->hashers);
1610 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1611 	INIT_LIST_HEAD(&fs_info->ordered_operations);
1612 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
1613 	spin_lock_init(&fs_info->delalloc_lock);
1614 	spin_lock_init(&fs_info->new_trans_lock);
1615 	spin_lock_init(&fs_info->ref_cache_lock);
1616 	spin_lock_init(&fs_info->fs_roots_radix_lock);
1617 
1618 	init_completion(&fs_info->kobj_unregister);
1619 	fs_info->tree_root = tree_root;
1620 	fs_info->extent_root = extent_root;
1621 	fs_info->csum_root = csum_root;
1622 	fs_info->chunk_root = chunk_root;
1623 	fs_info->dev_root = dev_root;
1624 	fs_info->fs_devices = fs_devices;
1625 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1626 	INIT_LIST_HEAD(&fs_info->space_info);
1627 	btrfs_mapping_init(&fs_info->mapping_tree);
1628 	atomic_set(&fs_info->nr_async_submits, 0);
1629 	atomic_set(&fs_info->async_delalloc_pages, 0);
1630 	atomic_set(&fs_info->async_submit_draining, 0);
1631 	atomic_set(&fs_info->nr_async_bios, 0);
1632 	fs_info->sb = sb;
1633 	fs_info->max_extent = (u64)-1;
1634 	fs_info->max_inline = 8192 * 1024;
1635 	fs_info->metadata_ratio = 0;
1636 
1637 	fs_info->thread_pool_size = min_t(unsigned long,
1638 					  num_online_cpus() + 2, 8);
1639 
1640 	INIT_LIST_HEAD(&fs_info->ordered_extents);
1641 	spin_lock_init(&fs_info->ordered_extent_lock);
1642 
1643 	sb->s_blocksize = 4096;
1644 	sb->s_blocksize_bits = blksize_bits(4096);
1645 	sb->s_bdi = &fs_info->bdi;
1646 
1647 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1648 	fs_info->btree_inode->i_nlink = 1;
1649 	/*
1650 	 * we set the i_size on the btree inode to the max possible int.
1651 	 * the real end of the address space is determined by all of
1652 	 * the devices in the system
1653 	 */
1654 	fs_info->btree_inode->i_size = OFFSET_MAX;
1655 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1656 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1657 
1658 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1659 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1660 			     fs_info->btree_inode->i_mapping,
1661 			     GFP_NOFS);
1662 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1663 			     GFP_NOFS);
1664 
1665 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1666 
1667 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
1668 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1669 	       sizeof(struct btrfs_key));
1670 	BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1671 	insert_inode_hash(fs_info->btree_inode);
1672 
1673 	spin_lock_init(&fs_info->block_group_cache_lock);
1674 	fs_info->block_group_cache_tree.rb_node = NULL;
1675 
1676 	extent_io_tree_init(&fs_info->freed_extents[0],
1677 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1678 	extent_io_tree_init(&fs_info->freed_extents[1],
1679 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1680 	fs_info->pinned_extents = &fs_info->freed_extents[0];
1681 	fs_info->do_barriers = 1;
1682 
1683 
1684 	mutex_init(&fs_info->trans_mutex);
1685 	mutex_init(&fs_info->ordered_operations_mutex);
1686 	mutex_init(&fs_info->tree_log_mutex);
1687 	mutex_init(&fs_info->chunk_mutex);
1688 	mutex_init(&fs_info->transaction_kthread_mutex);
1689 	mutex_init(&fs_info->cleaner_mutex);
1690 	mutex_init(&fs_info->volume_mutex);
1691 	init_rwsem(&fs_info->extent_commit_sem);
1692 	init_rwsem(&fs_info->subvol_sem);
1693 
1694 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1695 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1696 
1697 	init_waitqueue_head(&fs_info->transaction_throttle);
1698 	init_waitqueue_head(&fs_info->transaction_wait);
1699 	init_waitqueue_head(&fs_info->async_submit_wait);
1700 
1701 	__setup_root(4096, 4096, 4096, 4096, tree_root,
1702 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
1703 
1704 
1705 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1706 	if (!bh)
1707 		goto fail_iput;
1708 
1709 	memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1710 	memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1711 	       sizeof(fs_info->super_for_commit));
1712 	brelse(bh);
1713 
1714 	memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1715 
1716 	disk_super = &fs_info->super_copy;
1717 	if (!btrfs_super_root(disk_super))
1718 		goto fail_iput;
1719 
1720 	ret = btrfs_parse_options(tree_root, options);
1721 	if (ret) {
1722 		err = ret;
1723 		goto fail_iput;
1724 	}
1725 
1726 	features = btrfs_super_incompat_flags(disk_super) &
1727 		~BTRFS_FEATURE_INCOMPAT_SUPP;
1728 	if (features) {
1729 		printk(KERN_ERR "BTRFS: couldn't mount because of "
1730 		       "unsupported optional features (%Lx).\n",
1731 		       (unsigned long long)features);
1732 		err = -EINVAL;
1733 		goto fail_iput;
1734 	}
1735 
1736 	features = btrfs_super_incompat_flags(disk_super);
1737 	if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
1738 		features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1739 		btrfs_set_super_incompat_flags(disk_super, features);
1740 	}
1741 
1742 	features = btrfs_super_compat_ro_flags(disk_super) &
1743 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
1744 	if (!(sb->s_flags & MS_RDONLY) && features) {
1745 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1746 		       "unsupported option features (%Lx).\n",
1747 		       (unsigned long long)features);
1748 		err = -EINVAL;
1749 		goto fail_iput;
1750 	}
1751 
1752 	btrfs_init_workers(&fs_info->generic_worker,
1753 			   "genwork", 1, NULL);
1754 
1755 	btrfs_init_workers(&fs_info->workers, "worker",
1756 			   fs_info->thread_pool_size,
1757 			   &fs_info->generic_worker);
1758 
1759 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1760 			   fs_info->thread_pool_size,
1761 			   &fs_info->generic_worker);
1762 
1763 	btrfs_init_workers(&fs_info->submit_workers, "submit",
1764 			   min_t(u64, fs_devices->num_devices,
1765 			   fs_info->thread_pool_size),
1766 			   &fs_info->generic_worker);
1767 	btrfs_init_workers(&fs_info->enospc_workers, "enospc",
1768 			   fs_info->thread_pool_size,
1769 			   &fs_info->generic_worker);
1770 
1771 	/* a higher idle thresh on the submit workers makes it much more
1772 	 * likely that bios will be send down in a sane order to the
1773 	 * devices
1774 	 */
1775 	fs_info->submit_workers.idle_thresh = 64;
1776 
1777 	fs_info->workers.idle_thresh = 16;
1778 	fs_info->workers.ordered = 1;
1779 
1780 	fs_info->delalloc_workers.idle_thresh = 2;
1781 	fs_info->delalloc_workers.ordered = 1;
1782 
1783 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
1784 			   &fs_info->generic_worker);
1785 	btrfs_init_workers(&fs_info->endio_workers, "endio",
1786 			   fs_info->thread_pool_size,
1787 			   &fs_info->generic_worker);
1788 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1789 			   fs_info->thread_pool_size,
1790 			   &fs_info->generic_worker);
1791 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
1792 			   "endio-meta-write", fs_info->thread_pool_size,
1793 			   &fs_info->generic_worker);
1794 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1795 			   fs_info->thread_pool_size,
1796 			   &fs_info->generic_worker);
1797 
1798 	/*
1799 	 * endios are largely parallel and should have a very
1800 	 * low idle thresh
1801 	 */
1802 	fs_info->endio_workers.idle_thresh = 4;
1803 	fs_info->endio_meta_workers.idle_thresh = 4;
1804 
1805 	fs_info->endio_write_workers.idle_thresh = 2;
1806 	fs_info->endio_meta_write_workers.idle_thresh = 2;
1807 
1808 	btrfs_start_workers(&fs_info->workers, 1);
1809 	btrfs_start_workers(&fs_info->generic_worker, 1);
1810 	btrfs_start_workers(&fs_info->submit_workers, 1);
1811 	btrfs_start_workers(&fs_info->delalloc_workers, 1);
1812 	btrfs_start_workers(&fs_info->fixup_workers, 1);
1813 	btrfs_start_workers(&fs_info->endio_workers, 1);
1814 	btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1815 	btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1816 	btrfs_start_workers(&fs_info->endio_write_workers, 1);
1817 	btrfs_start_workers(&fs_info->enospc_workers, 1);
1818 
1819 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1820 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1821 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1822 
1823 	nodesize = btrfs_super_nodesize(disk_super);
1824 	leafsize = btrfs_super_leafsize(disk_super);
1825 	sectorsize = btrfs_super_sectorsize(disk_super);
1826 	stripesize = btrfs_super_stripesize(disk_super);
1827 	tree_root->nodesize = nodesize;
1828 	tree_root->leafsize = leafsize;
1829 	tree_root->sectorsize = sectorsize;
1830 	tree_root->stripesize = stripesize;
1831 
1832 	sb->s_blocksize = sectorsize;
1833 	sb->s_blocksize_bits = blksize_bits(sectorsize);
1834 
1835 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1836 		    sizeof(disk_super->magic))) {
1837 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1838 		goto fail_sb_buffer;
1839 	}
1840 
1841 	mutex_lock(&fs_info->chunk_mutex);
1842 	ret = btrfs_read_sys_array(tree_root);
1843 	mutex_unlock(&fs_info->chunk_mutex);
1844 	if (ret) {
1845 		printk(KERN_WARNING "btrfs: failed to read the system "
1846 		       "array on %s\n", sb->s_id);
1847 		goto fail_sb_buffer;
1848 	}
1849 
1850 	blocksize = btrfs_level_size(tree_root,
1851 				     btrfs_super_chunk_root_level(disk_super));
1852 	generation = btrfs_super_chunk_root_generation(disk_super);
1853 
1854 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
1855 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1856 
1857 	chunk_root->node = read_tree_block(chunk_root,
1858 					   btrfs_super_chunk_root(disk_super),
1859 					   blocksize, generation);
1860 	BUG_ON(!chunk_root->node);
1861 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1862 		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1863 		       sb->s_id);
1864 		goto fail_chunk_root;
1865 	}
1866 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1867 	chunk_root->commit_root = btrfs_root_node(chunk_root);
1868 
1869 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1870 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1871 	   BTRFS_UUID_SIZE);
1872 
1873 	mutex_lock(&fs_info->chunk_mutex);
1874 	ret = btrfs_read_chunk_tree(chunk_root);
1875 	mutex_unlock(&fs_info->chunk_mutex);
1876 	if (ret) {
1877 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1878 		       sb->s_id);
1879 		goto fail_chunk_root;
1880 	}
1881 
1882 	btrfs_close_extra_devices(fs_devices);
1883 
1884 	blocksize = btrfs_level_size(tree_root,
1885 				     btrfs_super_root_level(disk_super));
1886 	generation = btrfs_super_generation(disk_super);
1887 
1888 	tree_root->node = read_tree_block(tree_root,
1889 					  btrfs_super_root(disk_super),
1890 					  blocksize, generation);
1891 	if (!tree_root->node)
1892 		goto fail_chunk_root;
1893 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1894 		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1895 		       sb->s_id);
1896 		goto fail_tree_root;
1897 	}
1898 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1899 	tree_root->commit_root = btrfs_root_node(tree_root);
1900 
1901 	ret = find_and_setup_root(tree_root, fs_info,
1902 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1903 	if (ret)
1904 		goto fail_tree_root;
1905 	extent_root->track_dirty = 1;
1906 
1907 	ret = find_and_setup_root(tree_root, fs_info,
1908 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
1909 	if (ret)
1910 		goto fail_extent_root;
1911 	dev_root->track_dirty = 1;
1912 
1913 	ret = find_and_setup_root(tree_root, fs_info,
1914 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
1915 	if (ret)
1916 		goto fail_dev_root;
1917 
1918 	csum_root->track_dirty = 1;
1919 
1920 	btrfs_read_block_groups(extent_root);
1921 
1922 	fs_info->generation = generation;
1923 	fs_info->last_trans_committed = generation;
1924 	fs_info->data_alloc_profile = (u64)-1;
1925 	fs_info->metadata_alloc_profile = (u64)-1;
1926 	fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1927 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1928 					       "btrfs-cleaner");
1929 	if (IS_ERR(fs_info->cleaner_kthread))
1930 		goto fail_csum_root;
1931 
1932 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
1933 						   tree_root,
1934 						   "btrfs-transaction");
1935 	if (IS_ERR(fs_info->transaction_kthread))
1936 		goto fail_cleaner;
1937 
1938 	if (!btrfs_test_opt(tree_root, SSD) &&
1939 	    !btrfs_test_opt(tree_root, NOSSD) &&
1940 	    !fs_info->fs_devices->rotating) {
1941 		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1942 		       "mode\n");
1943 		btrfs_set_opt(fs_info->mount_opt, SSD);
1944 	}
1945 
1946 	if (btrfs_super_log_root(disk_super) != 0) {
1947 		u64 bytenr = btrfs_super_log_root(disk_super);
1948 
1949 		if (fs_devices->rw_devices == 0) {
1950 			printk(KERN_WARNING "Btrfs log replay required "
1951 			       "on RO media\n");
1952 			err = -EIO;
1953 			goto fail_trans_kthread;
1954 		}
1955 		blocksize =
1956 		     btrfs_level_size(tree_root,
1957 				      btrfs_super_log_root_level(disk_super));
1958 
1959 		log_tree_root = kzalloc(sizeof(struct btrfs_root),
1960 						      GFP_NOFS);
1961 
1962 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
1963 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1964 
1965 		log_tree_root->node = read_tree_block(tree_root, bytenr,
1966 						      blocksize,
1967 						      generation + 1);
1968 		ret = btrfs_recover_log_trees(log_tree_root);
1969 		BUG_ON(ret);
1970 
1971 		if (sb->s_flags & MS_RDONLY) {
1972 			ret =  btrfs_commit_super(tree_root);
1973 			BUG_ON(ret);
1974 		}
1975 	}
1976 
1977 	ret = btrfs_find_orphan_roots(tree_root);
1978 	BUG_ON(ret);
1979 
1980 	if (!(sb->s_flags & MS_RDONLY)) {
1981 		ret = btrfs_recover_relocation(tree_root);
1982 		BUG_ON(ret);
1983 	}
1984 
1985 	location.objectid = BTRFS_FS_TREE_OBJECTID;
1986 	location.type = BTRFS_ROOT_ITEM_KEY;
1987 	location.offset = (u64)-1;
1988 
1989 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1990 	if (!fs_info->fs_root)
1991 		goto fail_trans_kthread;
1992 
1993 	return tree_root;
1994 
1995 fail_trans_kthread:
1996 	kthread_stop(fs_info->transaction_kthread);
1997 fail_cleaner:
1998 	kthread_stop(fs_info->cleaner_kthread);
1999 
2000 	/*
2001 	 * make sure we're done with the btree inode before we stop our
2002 	 * kthreads
2003 	 */
2004 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2005 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2006 
2007 fail_csum_root:
2008 	free_extent_buffer(csum_root->node);
2009 	free_extent_buffer(csum_root->commit_root);
2010 fail_dev_root:
2011 	free_extent_buffer(dev_root->node);
2012 	free_extent_buffer(dev_root->commit_root);
2013 fail_extent_root:
2014 	free_extent_buffer(extent_root->node);
2015 	free_extent_buffer(extent_root->commit_root);
2016 fail_tree_root:
2017 	free_extent_buffer(tree_root->node);
2018 	free_extent_buffer(tree_root->commit_root);
2019 fail_chunk_root:
2020 	free_extent_buffer(chunk_root->node);
2021 	free_extent_buffer(chunk_root->commit_root);
2022 fail_sb_buffer:
2023 	btrfs_stop_workers(&fs_info->generic_worker);
2024 	btrfs_stop_workers(&fs_info->fixup_workers);
2025 	btrfs_stop_workers(&fs_info->delalloc_workers);
2026 	btrfs_stop_workers(&fs_info->workers);
2027 	btrfs_stop_workers(&fs_info->endio_workers);
2028 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2029 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2030 	btrfs_stop_workers(&fs_info->endio_write_workers);
2031 	btrfs_stop_workers(&fs_info->submit_workers);
2032 	btrfs_stop_workers(&fs_info->enospc_workers);
2033 fail_iput:
2034 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2035 	iput(fs_info->btree_inode);
2036 
2037 	btrfs_close_devices(fs_info->fs_devices);
2038 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2039 fail_bdi:
2040 	bdi_destroy(&fs_info->bdi);
2041 fail_srcu:
2042 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2043 fail:
2044 	kfree(extent_root);
2045 	kfree(tree_root);
2046 	kfree(fs_info);
2047 	kfree(chunk_root);
2048 	kfree(dev_root);
2049 	kfree(csum_root);
2050 	return ERR_PTR(err);
2051 }
2052 
2053 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2054 {
2055 	char b[BDEVNAME_SIZE];
2056 
2057 	if (uptodate) {
2058 		set_buffer_uptodate(bh);
2059 	} else {
2060 		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
2061 			printk(KERN_WARNING "lost page write due to "
2062 					"I/O error on %s\n",
2063 				       bdevname(bh->b_bdev, b));
2064 		}
2065 		/* note, we dont' set_buffer_write_io_error because we have
2066 		 * our own ways of dealing with the IO errors
2067 		 */
2068 		clear_buffer_uptodate(bh);
2069 	}
2070 	unlock_buffer(bh);
2071 	put_bh(bh);
2072 }
2073 
2074 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2075 {
2076 	struct buffer_head *bh;
2077 	struct buffer_head *latest = NULL;
2078 	struct btrfs_super_block *super;
2079 	int i;
2080 	u64 transid = 0;
2081 	u64 bytenr;
2082 
2083 	/* we would like to check all the supers, but that would make
2084 	 * a btrfs mount succeed after a mkfs from a different FS.
2085 	 * So, we need to add a special mount option to scan for
2086 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2087 	 */
2088 	for (i = 0; i < 1; i++) {
2089 		bytenr = btrfs_sb_offset(i);
2090 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2091 			break;
2092 		bh = __bread(bdev, bytenr / 4096, 4096);
2093 		if (!bh)
2094 			continue;
2095 
2096 		super = (struct btrfs_super_block *)bh->b_data;
2097 		if (btrfs_super_bytenr(super) != bytenr ||
2098 		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2099 			    sizeof(super->magic))) {
2100 			brelse(bh);
2101 			continue;
2102 		}
2103 
2104 		if (!latest || btrfs_super_generation(super) > transid) {
2105 			brelse(latest);
2106 			latest = bh;
2107 			transid = btrfs_super_generation(super);
2108 		} else {
2109 			brelse(bh);
2110 		}
2111 	}
2112 	return latest;
2113 }
2114 
2115 /*
2116  * this should be called twice, once with wait == 0 and
2117  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2118  * we write are pinned.
2119  *
2120  * They are released when wait == 1 is done.
2121  * max_mirrors must be the same for both runs, and it indicates how
2122  * many supers on this one device should be written.
2123  *
2124  * max_mirrors == 0 means to write them all.
2125  */
2126 static int write_dev_supers(struct btrfs_device *device,
2127 			    struct btrfs_super_block *sb,
2128 			    int do_barriers, int wait, int max_mirrors)
2129 {
2130 	struct buffer_head *bh;
2131 	int i;
2132 	int ret;
2133 	int errors = 0;
2134 	u32 crc;
2135 	u64 bytenr;
2136 	int last_barrier = 0;
2137 
2138 	if (max_mirrors == 0)
2139 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2140 
2141 	/* make sure only the last submit_bh does a barrier */
2142 	if (do_barriers) {
2143 		for (i = 0; i < max_mirrors; i++) {
2144 			bytenr = btrfs_sb_offset(i);
2145 			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2146 			    device->total_bytes)
2147 				break;
2148 			last_barrier = i;
2149 		}
2150 	}
2151 
2152 	for (i = 0; i < max_mirrors; i++) {
2153 		bytenr = btrfs_sb_offset(i);
2154 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2155 			break;
2156 
2157 		if (wait) {
2158 			bh = __find_get_block(device->bdev, bytenr / 4096,
2159 					      BTRFS_SUPER_INFO_SIZE);
2160 			BUG_ON(!bh);
2161 			wait_on_buffer(bh);
2162 			if (!buffer_uptodate(bh))
2163 				errors++;
2164 
2165 			/* drop our reference */
2166 			brelse(bh);
2167 
2168 			/* drop the reference from the wait == 0 run */
2169 			brelse(bh);
2170 			continue;
2171 		} else {
2172 			btrfs_set_super_bytenr(sb, bytenr);
2173 
2174 			crc = ~(u32)0;
2175 			crc = btrfs_csum_data(NULL, (char *)sb +
2176 					      BTRFS_CSUM_SIZE, crc,
2177 					      BTRFS_SUPER_INFO_SIZE -
2178 					      BTRFS_CSUM_SIZE);
2179 			btrfs_csum_final(crc, sb->csum);
2180 
2181 			/*
2182 			 * one reference for us, and we leave it for the
2183 			 * caller
2184 			 */
2185 			bh = __getblk(device->bdev, bytenr / 4096,
2186 				      BTRFS_SUPER_INFO_SIZE);
2187 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2188 
2189 			/* one reference for submit_bh */
2190 			get_bh(bh);
2191 
2192 			set_buffer_uptodate(bh);
2193 			lock_buffer(bh);
2194 			bh->b_end_io = btrfs_end_buffer_write_sync;
2195 		}
2196 
2197 		if (i == last_barrier && do_barriers && device->barriers) {
2198 			ret = submit_bh(WRITE_BARRIER, bh);
2199 			if (ret == -EOPNOTSUPP) {
2200 				printk("btrfs: disabling barriers on dev %s\n",
2201 				       device->name);
2202 				set_buffer_uptodate(bh);
2203 				device->barriers = 0;
2204 				/* one reference for submit_bh */
2205 				get_bh(bh);
2206 				lock_buffer(bh);
2207 				ret = submit_bh(WRITE_SYNC, bh);
2208 			}
2209 		} else {
2210 			ret = submit_bh(WRITE_SYNC, bh);
2211 		}
2212 
2213 		if (ret)
2214 			errors++;
2215 	}
2216 	return errors < i ? 0 : -1;
2217 }
2218 
2219 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2220 {
2221 	struct list_head *head;
2222 	struct btrfs_device *dev;
2223 	struct btrfs_super_block *sb;
2224 	struct btrfs_dev_item *dev_item;
2225 	int ret;
2226 	int do_barriers;
2227 	int max_errors;
2228 	int total_errors = 0;
2229 	u64 flags;
2230 
2231 	max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2232 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2233 
2234 	sb = &root->fs_info->super_for_commit;
2235 	dev_item = &sb->dev_item;
2236 
2237 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2238 	head = &root->fs_info->fs_devices->devices;
2239 	list_for_each_entry(dev, head, dev_list) {
2240 		if (!dev->bdev) {
2241 			total_errors++;
2242 			continue;
2243 		}
2244 		if (!dev->in_fs_metadata || !dev->writeable)
2245 			continue;
2246 
2247 		btrfs_set_stack_device_generation(dev_item, 0);
2248 		btrfs_set_stack_device_type(dev_item, dev->type);
2249 		btrfs_set_stack_device_id(dev_item, dev->devid);
2250 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2251 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2252 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2253 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2254 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2255 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2256 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2257 
2258 		flags = btrfs_super_flags(sb);
2259 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2260 
2261 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2262 		if (ret)
2263 			total_errors++;
2264 	}
2265 	if (total_errors > max_errors) {
2266 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2267 		       total_errors);
2268 		BUG();
2269 	}
2270 
2271 	total_errors = 0;
2272 	list_for_each_entry(dev, head, dev_list) {
2273 		if (!dev->bdev)
2274 			continue;
2275 		if (!dev->in_fs_metadata || !dev->writeable)
2276 			continue;
2277 
2278 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2279 		if (ret)
2280 			total_errors++;
2281 	}
2282 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2283 	if (total_errors > max_errors) {
2284 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2285 		       total_errors);
2286 		BUG();
2287 	}
2288 	return 0;
2289 }
2290 
2291 int write_ctree_super(struct btrfs_trans_handle *trans,
2292 		      struct btrfs_root *root, int max_mirrors)
2293 {
2294 	int ret;
2295 
2296 	ret = write_all_supers(root, max_mirrors);
2297 	return ret;
2298 }
2299 
2300 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2301 {
2302 	spin_lock(&fs_info->fs_roots_radix_lock);
2303 	radix_tree_delete(&fs_info->fs_roots_radix,
2304 			  (unsigned long)root->root_key.objectid);
2305 	spin_unlock(&fs_info->fs_roots_radix_lock);
2306 
2307 	if (btrfs_root_refs(&root->root_item) == 0)
2308 		synchronize_srcu(&fs_info->subvol_srcu);
2309 
2310 	free_fs_root(root);
2311 	return 0;
2312 }
2313 
2314 static void free_fs_root(struct btrfs_root *root)
2315 {
2316 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2317 	if (root->anon_super.s_dev) {
2318 		down_write(&root->anon_super.s_umount);
2319 		kill_anon_super(&root->anon_super);
2320 	}
2321 	free_extent_buffer(root->node);
2322 	free_extent_buffer(root->commit_root);
2323 	kfree(root->name);
2324 	kfree(root);
2325 }
2326 
2327 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2328 {
2329 	int ret;
2330 	struct btrfs_root *gang[8];
2331 	int i;
2332 
2333 	while (!list_empty(&fs_info->dead_roots)) {
2334 		gang[0] = list_entry(fs_info->dead_roots.next,
2335 				     struct btrfs_root, root_list);
2336 		list_del(&gang[0]->root_list);
2337 
2338 		if (gang[0]->in_radix) {
2339 			btrfs_free_fs_root(fs_info, gang[0]);
2340 		} else {
2341 			free_extent_buffer(gang[0]->node);
2342 			free_extent_buffer(gang[0]->commit_root);
2343 			kfree(gang[0]);
2344 		}
2345 	}
2346 
2347 	while (1) {
2348 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2349 					     (void **)gang, 0,
2350 					     ARRAY_SIZE(gang));
2351 		if (!ret)
2352 			break;
2353 		for (i = 0; i < ret; i++)
2354 			btrfs_free_fs_root(fs_info, gang[i]);
2355 	}
2356 	return 0;
2357 }
2358 
2359 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2360 {
2361 	u64 root_objectid = 0;
2362 	struct btrfs_root *gang[8];
2363 	int i;
2364 	int ret;
2365 
2366 	while (1) {
2367 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2368 					     (void **)gang, root_objectid,
2369 					     ARRAY_SIZE(gang));
2370 		if (!ret)
2371 			break;
2372 
2373 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
2374 		for (i = 0; i < ret; i++) {
2375 			root_objectid = gang[i]->root_key.objectid;
2376 			btrfs_orphan_cleanup(gang[i]);
2377 		}
2378 		root_objectid++;
2379 	}
2380 	return 0;
2381 }
2382 
2383 int btrfs_commit_super(struct btrfs_root *root)
2384 {
2385 	struct btrfs_trans_handle *trans;
2386 	int ret;
2387 
2388 	mutex_lock(&root->fs_info->cleaner_mutex);
2389 	btrfs_clean_old_snapshots(root);
2390 	mutex_unlock(&root->fs_info->cleaner_mutex);
2391 	trans = btrfs_start_transaction(root, 1);
2392 	ret = btrfs_commit_transaction(trans, root);
2393 	BUG_ON(ret);
2394 	/* run commit again to drop the original snapshot */
2395 	trans = btrfs_start_transaction(root, 1);
2396 	btrfs_commit_transaction(trans, root);
2397 	ret = btrfs_write_and_wait_transaction(NULL, root);
2398 	BUG_ON(ret);
2399 
2400 	ret = write_ctree_super(NULL, root, 0);
2401 	return ret;
2402 }
2403 
2404 int close_ctree(struct btrfs_root *root)
2405 {
2406 	struct btrfs_fs_info *fs_info = root->fs_info;
2407 	int ret;
2408 
2409 	fs_info->closing = 1;
2410 	smp_mb();
2411 
2412 	kthread_stop(root->fs_info->transaction_kthread);
2413 	kthread_stop(root->fs_info->cleaner_kthread);
2414 
2415 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2416 		ret =  btrfs_commit_super(root);
2417 		if (ret)
2418 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2419 	}
2420 
2421 	fs_info->closing = 2;
2422 	smp_mb();
2423 
2424 	if (fs_info->delalloc_bytes) {
2425 		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2426 		       (unsigned long long)fs_info->delalloc_bytes);
2427 	}
2428 	if (fs_info->total_ref_cache_size) {
2429 		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2430 		       (unsigned long long)fs_info->total_ref_cache_size);
2431 	}
2432 
2433 	free_extent_buffer(fs_info->extent_root->node);
2434 	free_extent_buffer(fs_info->extent_root->commit_root);
2435 	free_extent_buffer(fs_info->tree_root->node);
2436 	free_extent_buffer(fs_info->tree_root->commit_root);
2437 	free_extent_buffer(root->fs_info->chunk_root->node);
2438 	free_extent_buffer(root->fs_info->chunk_root->commit_root);
2439 	free_extent_buffer(root->fs_info->dev_root->node);
2440 	free_extent_buffer(root->fs_info->dev_root->commit_root);
2441 	free_extent_buffer(root->fs_info->csum_root->node);
2442 	free_extent_buffer(root->fs_info->csum_root->commit_root);
2443 
2444 	btrfs_free_block_groups(root->fs_info);
2445 
2446 	del_fs_roots(fs_info);
2447 
2448 	iput(fs_info->btree_inode);
2449 
2450 	btrfs_stop_workers(&fs_info->generic_worker);
2451 	btrfs_stop_workers(&fs_info->fixup_workers);
2452 	btrfs_stop_workers(&fs_info->delalloc_workers);
2453 	btrfs_stop_workers(&fs_info->workers);
2454 	btrfs_stop_workers(&fs_info->endio_workers);
2455 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2456 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2457 	btrfs_stop_workers(&fs_info->endio_write_workers);
2458 	btrfs_stop_workers(&fs_info->submit_workers);
2459 	btrfs_stop_workers(&fs_info->enospc_workers);
2460 
2461 	btrfs_close_devices(fs_info->fs_devices);
2462 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2463 
2464 	bdi_destroy(&fs_info->bdi);
2465 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2466 
2467 	kfree(fs_info->extent_root);
2468 	kfree(fs_info->tree_root);
2469 	kfree(fs_info->chunk_root);
2470 	kfree(fs_info->dev_root);
2471 	kfree(fs_info->csum_root);
2472 	return 0;
2473 }
2474 
2475 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2476 {
2477 	int ret;
2478 	struct inode *btree_inode = buf->first_page->mapping->host;
2479 
2480 	ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2481 	if (!ret)
2482 		return ret;
2483 
2484 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2485 				    parent_transid);
2486 	return !ret;
2487 }
2488 
2489 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2490 {
2491 	struct inode *btree_inode = buf->first_page->mapping->host;
2492 	return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2493 					  buf);
2494 }
2495 
2496 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2497 {
2498 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2499 	u64 transid = btrfs_header_generation(buf);
2500 	struct inode *btree_inode = root->fs_info->btree_inode;
2501 	int was_dirty;
2502 
2503 	btrfs_assert_tree_locked(buf);
2504 	if (transid != root->fs_info->generation) {
2505 		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2506 		       "found %llu running %llu\n",
2507 			(unsigned long long)buf->start,
2508 			(unsigned long long)transid,
2509 			(unsigned long long)root->fs_info->generation);
2510 		WARN_ON(1);
2511 	}
2512 	was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2513 					    buf);
2514 	if (!was_dirty) {
2515 		spin_lock(&root->fs_info->delalloc_lock);
2516 		root->fs_info->dirty_metadata_bytes += buf->len;
2517 		spin_unlock(&root->fs_info->delalloc_lock);
2518 	}
2519 }
2520 
2521 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2522 {
2523 	/*
2524 	 * looks as though older kernels can get into trouble with
2525 	 * this code, they end up stuck in balance_dirty_pages forever
2526 	 */
2527 	u64 num_dirty;
2528 	unsigned long thresh = 32 * 1024 * 1024;
2529 
2530 	if (current->flags & PF_MEMALLOC)
2531 		return;
2532 
2533 	num_dirty = root->fs_info->dirty_metadata_bytes;
2534 
2535 	if (num_dirty > thresh) {
2536 		balance_dirty_pages_ratelimited_nr(
2537 				   root->fs_info->btree_inode->i_mapping, 1);
2538 	}
2539 	return;
2540 }
2541 
2542 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2543 {
2544 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2545 	int ret;
2546 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2547 	if (ret == 0)
2548 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2549 	return ret;
2550 }
2551 
2552 int btree_lock_page_hook(struct page *page)
2553 {
2554 	struct inode *inode = page->mapping->host;
2555 	struct btrfs_root *root = BTRFS_I(inode)->root;
2556 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2557 	struct extent_buffer *eb;
2558 	unsigned long len;
2559 	u64 bytenr = page_offset(page);
2560 
2561 	if (page->private == EXTENT_PAGE_PRIVATE)
2562 		goto out;
2563 
2564 	len = page->private >> 2;
2565 	eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2566 	if (!eb)
2567 		goto out;
2568 
2569 	btrfs_tree_lock(eb);
2570 	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2571 
2572 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2573 		spin_lock(&root->fs_info->delalloc_lock);
2574 		if (root->fs_info->dirty_metadata_bytes >= eb->len)
2575 			root->fs_info->dirty_metadata_bytes -= eb->len;
2576 		else
2577 			WARN_ON(1);
2578 		spin_unlock(&root->fs_info->delalloc_lock);
2579 	}
2580 
2581 	btrfs_tree_unlock(eb);
2582 	free_extent_buffer(eb);
2583 out:
2584 	lock_page(page);
2585 	return 0;
2586 }
2587 
2588 static struct extent_io_ops btree_extent_io_ops = {
2589 	.write_cache_pages_lock_hook = btree_lock_page_hook,
2590 	.readpage_end_io_hook = btree_readpage_end_io_hook,
2591 	.submit_bio_hook = btree_submit_bio_hook,
2592 	/* note we're sharing with inode.c for the merge bio hook */
2593 	.merge_bio_hook = btrfs_merge_bio_hook,
2594 };
2595