1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include <linux/slab.h> 31 #include <linux/migrate.h> 32 #include <linux/ratelimit.h> 33 #include <asm/unaligned.h> 34 #include "compat.h" 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "async-thread.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 49 static struct extent_io_ops btree_extent_io_ops; 50 static void end_workqueue_fn(struct btrfs_work *work); 51 static void free_fs_root(struct btrfs_root *root); 52 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 53 int read_only); 54 static void btrfs_destroy_ordered_operations(struct btrfs_root *root); 55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 57 struct btrfs_root *root); 58 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t); 59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 60 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 61 struct extent_io_tree *dirty_pages, 62 int mark); 63 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 64 struct extent_io_tree *pinned_extents); 65 66 /* 67 * end_io_wq structs are used to do processing in task context when an IO is 68 * complete. This is used during reads to verify checksums, and it is used 69 * by writes to insert metadata for new file extents after IO is complete. 70 */ 71 struct end_io_wq { 72 struct bio *bio; 73 bio_end_io_t *end_io; 74 void *private; 75 struct btrfs_fs_info *info; 76 int error; 77 int metadata; 78 struct list_head list; 79 struct btrfs_work work; 80 }; 81 82 /* 83 * async submit bios are used to offload expensive checksumming 84 * onto the worker threads. They checksum file and metadata bios 85 * just before they are sent down the IO stack. 86 */ 87 struct async_submit_bio { 88 struct inode *inode; 89 struct bio *bio; 90 struct list_head list; 91 extent_submit_bio_hook_t *submit_bio_start; 92 extent_submit_bio_hook_t *submit_bio_done; 93 int rw; 94 int mirror_num; 95 unsigned long bio_flags; 96 /* 97 * bio_offset is optional, can be used if the pages in the bio 98 * can't tell us where in the file the bio should go 99 */ 100 u64 bio_offset; 101 struct btrfs_work work; 102 int error; 103 }; 104 105 /* 106 * Lockdep class keys for extent_buffer->lock's in this root. For a given 107 * eb, the lockdep key is determined by the btrfs_root it belongs to and 108 * the level the eb occupies in the tree. 109 * 110 * Different roots are used for different purposes and may nest inside each 111 * other and they require separate keysets. As lockdep keys should be 112 * static, assign keysets according to the purpose of the root as indicated 113 * by btrfs_root->objectid. This ensures that all special purpose roots 114 * have separate keysets. 115 * 116 * Lock-nesting across peer nodes is always done with the immediate parent 117 * node locked thus preventing deadlock. As lockdep doesn't know this, use 118 * subclass to avoid triggering lockdep warning in such cases. 119 * 120 * The key is set by the readpage_end_io_hook after the buffer has passed 121 * csum validation but before the pages are unlocked. It is also set by 122 * btrfs_init_new_buffer on freshly allocated blocks. 123 * 124 * We also add a check to make sure the highest level of the tree is the 125 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 126 * needs update as well. 127 */ 128 #ifdef CONFIG_DEBUG_LOCK_ALLOC 129 # if BTRFS_MAX_LEVEL != 8 130 # error 131 # endif 132 133 static struct btrfs_lockdep_keyset { 134 u64 id; /* root objectid */ 135 const char *name_stem; /* lock name stem */ 136 char names[BTRFS_MAX_LEVEL + 1][20]; 137 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 138 } btrfs_lockdep_keysets[] = { 139 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 140 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 141 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 142 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 143 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 144 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 145 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" }, 146 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 147 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 148 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 149 { .id = 0, .name_stem = "tree" }, 150 }; 151 152 void __init btrfs_init_lockdep(void) 153 { 154 int i, j; 155 156 /* initialize lockdep class names */ 157 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 158 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 159 160 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 161 snprintf(ks->names[j], sizeof(ks->names[j]), 162 "btrfs-%s-%02d", ks->name_stem, j); 163 } 164 } 165 166 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 167 int level) 168 { 169 struct btrfs_lockdep_keyset *ks; 170 171 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 172 173 /* find the matching keyset, id 0 is the default entry */ 174 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 175 if (ks->id == objectid) 176 break; 177 178 lockdep_set_class_and_name(&eb->lock, 179 &ks->keys[level], ks->names[level]); 180 } 181 182 #endif 183 184 /* 185 * extents on the btree inode are pretty simple, there's one extent 186 * that covers the entire device 187 */ 188 static struct extent_map *btree_get_extent(struct inode *inode, 189 struct page *page, size_t pg_offset, u64 start, u64 len, 190 int create) 191 { 192 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 193 struct extent_map *em; 194 int ret; 195 196 read_lock(&em_tree->lock); 197 em = lookup_extent_mapping(em_tree, start, len); 198 if (em) { 199 em->bdev = 200 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 201 read_unlock(&em_tree->lock); 202 goto out; 203 } 204 read_unlock(&em_tree->lock); 205 206 em = alloc_extent_map(); 207 if (!em) { 208 em = ERR_PTR(-ENOMEM); 209 goto out; 210 } 211 em->start = 0; 212 em->len = (u64)-1; 213 em->block_len = (u64)-1; 214 em->block_start = 0; 215 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 216 217 write_lock(&em_tree->lock); 218 ret = add_extent_mapping(em_tree, em); 219 if (ret == -EEXIST) { 220 u64 failed_start = em->start; 221 u64 failed_len = em->len; 222 223 free_extent_map(em); 224 em = lookup_extent_mapping(em_tree, start, len); 225 if (em) { 226 ret = 0; 227 } else { 228 em = lookup_extent_mapping(em_tree, failed_start, 229 failed_len); 230 ret = -EIO; 231 } 232 } else if (ret) { 233 free_extent_map(em); 234 em = NULL; 235 } 236 write_unlock(&em_tree->lock); 237 238 if (ret) 239 em = ERR_PTR(ret); 240 out: 241 return em; 242 } 243 244 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 245 { 246 return crc32c(seed, data, len); 247 } 248 249 void btrfs_csum_final(u32 crc, char *result) 250 { 251 put_unaligned_le32(~crc, result); 252 } 253 254 /* 255 * compute the csum for a btree block, and either verify it or write it 256 * into the csum field of the block. 257 */ 258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 259 int verify) 260 { 261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 262 char *result = NULL; 263 unsigned long len; 264 unsigned long cur_len; 265 unsigned long offset = BTRFS_CSUM_SIZE; 266 char *kaddr; 267 unsigned long map_start; 268 unsigned long map_len; 269 int err; 270 u32 crc = ~(u32)0; 271 unsigned long inline_result; 272 273 len = buf->len - offset; 274 while (len > 0) { 275 err = map_private_extent_buffer(buf, offset, 32, 276 &kaddr, &map_start, &map_len); 277 if (err) 278 return 1; 279 cur_len = min(len, map_len - (offset - map_start)); 280 crc = btrfs_csum_data(root, kaddr + offset - map_start, 281 crc, cur_len); 282 len -= cur_len; 283 offset += cur_len; 284 } 285 if (csum_size > sizeof(inline_result)) { 286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 287 if (!result) 288 return 1; 289 } else { 290 result = (char *)&inline_result; 291 } 292 293 btrfs_csum_final(crc, result); 294 295 if (verify) { 296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 297 u32 val; 298 u32 found = 0; 299 memcpy(&found, result, csum_size); 300 301 read_extent_buffer(buf, &val, 0, csum_size); 302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify " 303 "failed on %llu wanted %X found %X " 304 "level %d\n", 305 root->fs_info->sb->s_id, 306 (unsigned long long)buf->start, val, found, 307 btrfs_header_level(buf)); 308 if (result != (char *)&inline_result) 309 kfree(result); 310 return 1; 311 } 312 } else { 313 write_extent_buffer(buf, result, 0, csum_size); 314 } 315 if (result != (char *)&inline_result) 316 kfree(result); 317 return 0; 318 } 319 320 /* 321 * we can't consider a given block up to date unless the transid of the 322 * block matches the transid in the parent node's pointer. This is how we 323 * detect blocks that either didn't get written at all or got written 324 * in the wrong place. 325 */ 326 static int verify_parent_transid(struct extent_io_tree *io_tree, 327 struct extent_buffer *eb, u64 parent_transid, 328 int atomic) 329 { 330 struct extent_state *cached_state = NULL; 331 int ret; 332 333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 334 return 0; 335 336 if (atomic) 337 return -EAGAIN; 338 339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 340 0, &cached_state); 341 if (extent_buffer_uptodate(eb) && 342 btrfs_header_generation(eb) == parent_transid) { 343 ret = 0; 344 goto out; 345 } 346 printk_ratelimited("parent transid verify failed on %llu wanted %llu " 347 "found %llu\n", 348 (unsigned long long)eb->start, 349 (unsigned long long)parent_transid, 350 (unsigned long long)btrfs_header_generation(eb)); 351 ret = 1; 352 clear_extent_buffer_uptodate(eb); 353 out: 354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 355 &cached_state, GFP_NOFS); 356 return ret; 357 } 358 359 /* 360 * helper to read a given tree block, doing retries as required when 361 * the checksums don't match and we have alternate mirrors to try. 362 */ 363 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 364 struct extent_buffer *eb, 365 u64 start, u64 parent_transid) 366 { 367 struct extent_io_tree *io_tree; 368 int failed = 0; 369 int ret; 370 int num_copies = 0; 371 int mirror_num = 0; 372 int failed_mirror = 0; 373 374 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 375 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 376 while (1) { 377 ret = read_extent_buffer_pages(io_tree, eb, start, 378 WAIT_COMPLETE, 379 btree_get_extent, mirror_num); 380 if (!ret && !verify_parent_transid(io_tree, eb, 381 parent_transid, 0)) 382 break; 383 384 /* 385 * This buffer's crc is fine, but its contents are corrupted, so 386 * there is no reason to read the other copies, they won't be 387 * any less wrong. 388 */ 389 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 390 break; 391 392 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 393 eb->start, eb->len); 394 if (num_copies == 1) 395 break; 396 397 if (!failed_mirror) { 398 failed = 1; 399 failed_mirror = eb->read_mirror; 400 } 401 402 mirror_num++; 403 if (mirror_num == failed_mirror) 404 mirror_num++; 405 406 if (mirror_num > num_copies) 407 break; 408 } 409 410 if (failed && !ret && failed_mirror) 411 repair_eb_io_failure(root, eb, failed_mirror); 412 413 return ret; 414 } 415 416 /* 417 * checksum a dirty tree block before IO. This has extra checks to make sure 418 * we only fill in the checksum field in the first page of a multi-page block 419 */ 420 421 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 422 { 423 struct extent_io_tree *tree; 424 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 425 u64 found_start; 426 struct extent_buffer *eb; 427 428 tree = &BTRFS_I(page->mapping->host)->io_tree; 429 430 eb = (struct extent_buffer *)page->private; 431 if (page != eb->pages[0]) 432 return 0; 433 found_start = btrfs_header_bytenr(eb); 434 if (found_start != start) { 435 WARN_ON(1); 436 return 0; 437 } 438 if (eb->pages[0] != page) { 439 WARN_ON(1); 440 return 0; 441 } 442 if (!PageUptodate(page)) { 443 WARN_ON(1); 444 return 0; 445 } 446 csum_tree_block(root, eb, 0); 447 return 0; 448 } 449 450 static int check_tree_block_fsid(struct btrfs_root *root, 451 struct extent_buffer *eb) 452 { 453 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 454 u8 fsid[BTRFS_UUID_SIZE]; 455 int ret = 1; 456 457 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 458 BTRFS_FSID_SIZE); 459 while (fs_devices) { 460 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 461 ret = 0; 462 break; 463 } 464 fs_devices = fs_devices->seed; 465 } 466 return ret; 467 } 468 469 #define CORRUPT(reason, eb, root, slot) \ 470 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \ 471 "root=%llu, slot=%d\n", reason, \ 472 (unsigned long long)btrfs_header_bytenr(eb), \ 473 (unsigned long long)root->objectid, slot) 474 475 static noinline int check_leaf(struct btrfs_root *root, 476 struct extent_buffer *leaf) 477 { 478 struct btrfs_key key; 479 struct btrfs_key leaf_key; 480 u32 nritems = btrfs_header_nritems(leaf); 481 int slot; 482 483 if (nritems == 0) 484 return 0; 485 486 /* Check the 0 item */ 487 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 488 BTRFS_LEAF_DATA_SIZE(root)) { 489 CORRUPT("invalid item offset size pair", leaf, root, 0); 490 return -EIO; 491 } 492 493 /* 494 * Check to make sure each items keys are in the correct order and their 495 * offsets make sense. We only have to loop through nritems-1 because 496 * we check the current slot against the next slot, which verifies the 497 * next slot's offset+size makes sense and that the current's slot 498 * offset is correct. 499 */ 500 for (slot = 0; slot < nritems - 1; slot++) { 501 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 502 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 503 504 /* Make sure the keys are in the right order */ 505 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 506 CORRUPT("bad key order", leaf, root, slot); 507 return -EIO; 508 } 509 510 /* 511 * Make sure the offset and ends are right, remember that the 512 * item data starts at the end of the leaf and grows towards the 513 * front. 514 */ 515 if (btrfs_item_offset_nr(leaf, slot) != 516 btrfs_item_end_nr(leaf, slot + 1)) { 517 CORRUPT("slot offset bad", leaf, root, slot); 518 return -EIO; 519 } 520 521 /* 522 * Check to make sure that we don't point outside of the leaf, 523 * just incase all the items are consistent to eachother, but 524 * all point outside of the leaf. 525 */ 526 if (btrfs_item_end_nr(leaf, slot) > 527 BTRFS_LEAF_DATA_SIZE(root)) { 528 CORRUPT("slot end outside of leaf", leaf, root, slot); 529 return -EIO; 530 } 531 } 532 533 return 0; 534 } 535 536 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree, 537 struct page *page, int max_walk) 538 { 539 struct extent_buffer *eb; 540 u64 start = page_offset(page); 541 u64 target = start; 542 u64 min_start; 543 544 if (start < max_walk) 545 min_start = 0; 546 else 547 min_start = start - max_walk; 548 549 while (start >= min_start) { 550 eb = find_extent_buffer(tree, start, 0); 551 if (eb) { 552 /* 553 * we found an extent buffer and it contains our page 554 * horray! 555 */ 556 if (eb->start <= target && 557 eb->start + eb->len > target) 558 return eb; 559 560 /* we found an extent buffer that wasn't for us */ 561 free_extent_buffer(eb); 562 return NULL; 563 } 564 if (start == 0) 565 break; 566 start -= PAGE_CACHE_SIZE; 567 } 568 return NULL; 569 } 570 571 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 572 struct extent_state *state, int mirror) 573 { 574 struct extent_io_tree *tree; 575 u64 found_start; 576 int found_level; 577 struct extent_buffer *eb; 578 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 579 int ret = 0; 580 int reads_done; 581 582 if (!page->private) 583 goto out; 584 585 tree = &BTRFS_I(page->mapping->host)->io_tree; 586 eb = (struct extent_buffer *)page->private; 587 588 /* the pending IO might have been the only thing that kept this buffer 589 * in memory. Make sure we have a ref for all this other checks 590 */ 591 extent_buffer_get(eb); 592 593 reads_done = atomic_dec_and_test(&eb->io_pages); 594 if (!reads_done) 595 goto err; 596 597 eb->read_mirror = mirror; 598 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 599 ret = -EIO; 600 goto err; 601 } 602 603 found_start = btrfs_header_bytenr(eb); 604 if (found_start != eb->start) { 605 printk_ratelimited(KERN_INFO "btrfs bad tree block start " 606 "%llu %llu\n", 607 (unsigned long long)found_start, 608 (unsigned long long)eb->start); 609 ret = -EIO; 610 goto err; 611 } 612 if (check_tree_block_fsid(root, eb)) { 613 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n", 614 (unsigned long long)eb->start); 615 ret = -EIO; 616 goto err; 617 } 618 found_level = btrfs_header_level(eb); 619 620 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 621 eb, found_level); 622 623 ret = csum_tree_block(root, eb, 1); 624 if (ret) { 625 ret = -EIO; 626 goto err; 627 } 628 629 /* 630 * If this is a leaf block and it is corrupt, set the corrupt bit so 631 * that we don't try and read the other copies of this block, just 632 * return -EIO. 633 */ 634 if (found_level == 0 && check_leaf(root, eb)) { 635 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 636 ret = -EIO; 637 } 638 639 if (!ret) 640 set_extent_buffer_uptodate(eb); 641 err: 642 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) { 643 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags); 644 btree_readahead_hook(root, eb, eb->start, ret); 645 } 646 647 if (ret) 648 clear_extent_buffer_uptodate(eb); 649 free_extent_buffer(eb); 650 out: 651 return ret; 652 } 653 654 static int btree_io_failed_hook(struct page *page, int failed_mirror) 655 { 656 struct extent_buffer *eb; 657 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 658 659 eb = (struct extent_buffer *)page->private; 660 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 661 eb->read_mirror = failed_mirror; 662 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 663 btree_readahead_hook(root, eb, eb->start, -EIO); 664 return -EIO; /* we fixed nothing */ 665 } 666 667 static void end_workqueue_bio(struct bio *bio, int err) 668 { 669 struct end_io_wq *end_io_wq = bio->bi_private; 670 struct btrfs_fs_info *fs_info; 671 672 fs_info = end_io_wq->info; 673 end_io_wq->error = err; 674 end_io_wq->work.func = end_workqueue_fn; 675 end_io_wq->work.flags = 0; 676 677 if (bio->bi_rw & REQ_WRITE) { 678 if (end_io_wq->metadata == 1) 679 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 680 &end_io_wq->work); 681 else if (end_io_wq->metadata == 2) 682 btrfs_queue_worker(&fs_info->endio_freespace_worker, 683 &end_io_wq->work); 684 else 685 btrfs_queue_worker(&fs_info->endio_write_workers, 686 &end_io_wq->work); 687 } else { 688 if (end_io_wq->metadata) 689 btrfs_queue_worker(&fs_info->endio_meta_workers, 690 &end_io_wq->work); 691 else 692 btrfs_queue_worker(&fs_info->endio_workers, 693 &end_io_wq->work); 694 } 695 } 696 697 /* 698 * For the metadata arg you want 699 * 700 * 0 - if data 701 * 1 - if normal metadta 702 * 2 - if writing to the free space cache area 703 */ 704 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 705 int metadata) 706 { 707 struct end_io_wq *end_io_wq; 708 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 709 if (!end_io_wq) 710 return -ENOMEM; 711 712 end_io_wq->private = bio->bi_private; 713 end_io_wq->end_io = bio->bi_end_io; 714 end_io_wq->info = info; 715 end_io_wq->error = 0; 716 end_io_wq->bio = bio; 717 end_io_wq->metadata = metadata; 718 719 bio->bi_private = end_io_wq; 720 bio->bi_end_io = end_workqueue_bio; 721 return 0; 722 } 723 724 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 725 { 726 unsigned long limit = min_t(unsigned long, 727 info->workers.max_workers, 728 info->fs_devices->open_devices); 729 return 256 * limit; 730 } 731 732 static void run_one_async_start(struct btrfs_work *work) 733 { 734 struct async_submit_bio *async; 735 int ret; 736 737 async = container_of(work, struct async_submit_bio, work); 738 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 739 async->mirror_num, async->bio_flags, 740 async->bio_offset); 741 if (ret) 742 async->error = ret; 743 } 744 745 static void run_one_async_done(struct btrfs_work *work) 746 { 747 struct btrfs_fs_info *fs_info; 748 struct async_submit_bio *async; 749 int limit; 750 751 async = container_of(work, struct async_submit_bio, work); 752 fs_info = BTRFS_I(async->inode)->root->fs_info; 753 754 limit = btrfs_async_submit_limit(fs_info); 755 limit = limit * 2 / 3; 756 757 atomic_dec(&fs_info->nr_async_submits); 758 759 if (atomic_read(&fs_info->nr_async_submits) < limit && 760 waitqueue_active(&fs_info->async_submit_wait)) 761 wake_up(&fs_info->async_submit_wait); 762 763 /* If an error occured we just want to clean up the bio and move on */ 764 if (async->error) { 765 bio_endio(async->bio, async->error); 766 return; 767 } 768 769 async->submit_bio_done(async->inode, async->rw, async->bio, 770 async->mirror_num, async->bio_flags, 771 async->bio_offset); 772 } 773 774 static void run_one_async_free(struct btrfs_work *work) 775 { 776 struct async_submit_bio *async; 777 778 async = container_of(work, struct async_submit_bio, work); 779 kfree(async); 780 } 781 782 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 783 int rw, struct bio *bio, int mirror_num, 784 unsigned long bio_flags, 785 u64 bio_offset, 786 extent_submit_bio_hook_t *submit_bio_start, 787 extent_submit_bio_hook_t *submit_bio_done) 788 { 789 struct async_submit_bio *async; 790 791 async = kmalloc(sizeof(*async), GFP_NOFS); 792 if (!async) 793 return -ENOMEM; 794 795 async->inode = inode; 796 async->rw = rw; 797 async->bio = bio; 798 async->mirror_num = mirror_num; 799 async->submit_bio_start = submit_bio_start; 800 async->submit_bio_done = submit_bio_done; 801 802 async->work.func = run_one_async_start; 803 async->work.ordered_func = run_one_async_done; 804 async->work.ordered_free = run_one_async_free; 805 806 async->work.flags = 0; 807 async->bio_flags = bio_flags; 808 async->bio_offset = bio_offset; 809 810 async->error = 0; 811 812 atomic_inc(&fs_info->nr_async_submits); 813 814 if (rw & REQ_SYNC) 815 btrfs_set_work_high_prio(&async->work); 816 817 btrfs_queue_worker(&fs_info->workers, &async->work); 818 819 while (atomic_read(&fs_info->async_submit_draining) && 820 atomic_read(&fs_info->nr_async_submits)) { 821 wait_event(fs_info->async_submit_wait, 822 (atomic_read(&fs_info->nr_async_submits) == 0)); 823 } 824 825 return 0; 826 } 827 828 static int btree_csum_one_bio(struct bio *bio) 829 { 830 struct bio_vec *bvec = bio->bi_io_vec; 831 int bio_index = 0; 832 struct btrfs_root *root; 833 int ret = 0; 834 835 WARN_ON(bio->bi_vcnt <= 0); 836 while (bio_index < bio->bi_vcnt) { 837 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 838 ret = csum_dirty_buffer(root, bvec->bv_page); 839 if (ret) 840 break; 841 bio_index++; 842 bvec++; 843 } 844 return ret; 845 } 846 847 static int __btree_submit_bio_start(struct inode *inode, int rw, 848 struct bio *bio, int mirror_num, 849 unsigned long bio_flags, 850 u64 bio_offset) 851 { 852 /* 853 * when we're called for a write, we're already in the async 854 * submission context. Just jump into btrfs_map_bio 855 */ 856 return btree_csum_one_bio(bio); 857 } 858 859 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 860 int mirror_num, unsigned long bio_flags, 861 u64 bio_offset) 862 { 863 /* 864 * when we're called for a write, we're already in the async 865 * submission context. Just jump into btrfs_map_bio 866 */ 867 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 868 } 869 870 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 871 int mirror_num, unsigned long bio_flags, 872 u64 bio_offset) 873 { 874 int ret; 875 876 if (!(rw & REQ_WRITE)) { 877 878 /* 879 * called for a read, do the setup so that checksum validation 880 * can happen in the async kernel threads 881 */ 882 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 883 bio, 1); 884 if (ret) 885 return ret; 886 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 887 mirror_num, 0); 888 } 889 890 /* 891 * kthread helpers are used to submit writes so that checksumming 892 * can happen in parallel across all CPUs 893 */ 894 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 895 inode, rw, bio, mirror_num, 0, 896 bio_offset, 897 __btree_submit_bio_start, 898 __btree_submit_bio_done); 899 } 900 901 #ifdef CONFIG_MIGRATION 902 static int btree_migratepage(struct address_space *mapping, 903 struct page *newpage, struct page *page, 904 enum migrate_mode mode) 905 { 906 /* 907 * we can't safely write a btree page from here, 908 * we haven't done the locking hook 909 */ 910 if (PageDirty(page)) 911 return -EAGAIN; 912 /* 913 * Buffers may be managed in a filesystem specific way. 914 * We must have no buffers or drop them. 915 */ 916 if (page_has_private(page) && 917 !try_to_release_page(page, GFP_KERNEL)) 918 return -EAGAIN; 919 return migrate_page(mapping, newpage, page, mode); 920 } 921 #endif 922 923 924 static int btree_writepages(struct address_space *mapping, 925 struct writeback_control *wbc) 926 { 927 struct extent_io_tree *tree; 928 tree = &BTRFS_I(mapping->host)->io_tree; 929 if (wbc->sync_mode == WB_SYNC_NONE) { 930 struct btrfs_root *root = BTRFS_I(mapping->host)->root; 931 u64 num_dirty; 932 unsigned long thresh = 32 * 1024 * 1024; 933 934 if (wbc->for_kupdate) 935 return 0; 936 937 /* this is a bit racy, but that's ok */ 938 num_dirty = root->fs_info->dirty_metadata_bytes; 939 if (num_dirty < thresh) 940 return 0; 941 } 942 return btree_write_cache_pages(mapping, wbc); 943 } 944 945 static int btree_readpage(struct file *file, struct page *page) 946 { 947 struct extent_io_tree *tree; 948 tree = &BTRFS_I(page->mapping->host)->io_tree; 949 return extent_read_full_page(tree, page, btree_get_extent, 0); 950 } 951 952 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 953 { 954 if (PageWriteback(page) || PageDirty(page)) 955 return 0; 956 /* 957 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing 958 * slab allocation from alloc_extent_state down the callchain where 959 * it'd hit a BUG_ON as those flags are not allowed. 960 */ 961 gfp_flags &= ~GFP_SLAB_BUG_MASK; 962 963 return try_release_extent_buffer(page, gfp_flags); 964 } 965 966 static void btree_invalidatepage(struct page *page, unsigned long offset) 967 { 968 struct extent_io_tree *tree; 969 tree = &BTRFS_I(page->mapping->host)->io_tree; 970 extent_invalidatepage(tree, page, offset); 971 btree_releasepage(page, GFP_NOFS); 972 if (PagePrivate(page)) { 973 printk(KERN_WARNING "btrfs warning page private not zero " 974 "on page %llu\n", (unsigned long long)page_offset(page)); 975 ClearPagePrivate(page); 976 set_page_private(page, 0); 977 page_cache_release(page); 978 } 979 } 980 981 static int btree_set_page_dirty(struct page *page) 982 { 983 struct extent_buffer *eb; 984 985 BUG_ON(!PagePrivate(page)); 986 eb = (struct extent_buffer *)page->private; 987 BUG_ON(!eb); 988 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 989 BUG_ON(!atomic_read(&eb->refs)); 990 btrfs_assert_tree_locked(eb); 991 return __set_page_dirty_nobuffers(page); 992 } 993 994 static const struct address_space_operations btree_aops = { 995 .readpage = btree_readpage, 996 .writepages = btree_writepages, 997 .releasepage = btree_releasepage, 998 .invalidatepage = btree_invalidatepage, 999 #ifdef CONFIG_MIGRATION 1000 .migratepage = btree_migratepage, 1001 #endif 1002 .set_page_dirty = btree_set_page_dirty, 1003 }; 1004 1005 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1006 u64 parent_transid) 1007 { 1008 struct extent_buffer *buf = NULL; 1009 struct inode *btree_inode = root->fs_info->btree_inode; 1010 int ret = 0; 1011 1012 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1013 if (!buf) 1014 return 0; 1015 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1016 buf, 0, WAIT_NONE, btree_get_extent, 0); 1017 free_extent_buffer(buf); 1018 return ret; 1019 } 1020 1021 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1022 int mirror_num, struct extent_buffer **eb) 1023 { 1024 struct extent_buffer *buf = NULL; 1025 struct inode *btree_inode = root->fs_info->btree_inode; 1026 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1027 int ret; 1028 1029 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1030 if (!buf) 1031 return 0; 1032 1033 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1034 1035 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1036 btree_get_extent, mirror_num); 1037 if (ret) { 1038 free_extent_buffer(buf); 1039 return ret; 1040 } 1041 1042 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1043 free_extent_buffer(buf); 1044 return -EIO; 1045 } else if (extent_buffer_uptodate(buf)) { 1046 *eb = buf; 1047 } else { 1048 free_extent_buffer(buf); 1049 } 1050 return 0; 1051 } 1052 1053 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 1054 u64 bytenr, u32 blocksize) 1055 { 1056 struct inode *btree_inode = root->fs_info->btree_inode; 1057 struct extent_buffer *eb; 1058 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1059 bytenr, blocksize); 1060 return eb; 1061 } 1062 1063 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1064 u64 bytenr, u32 blocksize) 1065 { 1066 struct inode *btree_inode = root->fs_info->btree_inode; 1067 struct extent_buffer *eb; 1068 1069 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1070 bytenr, blocksize); 1071 return eb; 1072 } 1073 1074 1075 int btrfs_write_tree_block(struct extent_buffer *buf) 1076 { 1077 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1078 buf->start + buf->len - 1); 1079 } 1080 1081 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1082 { 1083 return filemap_fdatawait_range(buf->pages[0]->mapping, 1084 buf->start, buf->start + buf->len - 1); 1085 } 1086 1087 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1088 u32 blocksize, u64 parent_transid) 1089 { 1090 struct extent_buffer *buf = NULL; 1091 int ret; 1092 1093 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1094 if (!buf) 1095 return NULL; 1096 1097 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1098 return buf; 1099 1100 } 1101 1102 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1103 struct extent_buffer *buf) 1104 { 1105 if (btrfs_header_generation(buf) == 1106 root->fs_info->running_transaction->transid) { 1107 btrfs_assert_tree_locked(buf); 1108 1109 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1110 spin_lock(&root->fs_info->delalloc_lock); 1111 if (root->fs_info->dirty_metadata_bytes >= buf->len) 1112 root->fs_info->dirty_metadata_bytes -= buf->len; 1113 else { 1114 spin_unlock(&root->fs_info->delalloc_lock); 1115 btrfs_panic(root->fs_info, -EOVERFLOW, 1116 "Can't clear %lu bytes from " 1117 " dirty_mdatadata_bytes (%llu)", 1118 buf->len, 1119 root->fs_info->dirty_metadata_bytes); 1120 } 1121 spin_unlock(&root->fs_info->delalloc_lock); 1122 } 1123 1124 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1125 btrfs_set_lock_blocking(buf); 1126 clear_extent_buffer_dirty(buf); 1127 } 1128 } 1129 1130 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 1131 u32 stripesize, struct btrfs_root *root, 1132 struct btrfs_fs_info *fs_info, 1133 u64 objectid) 1134 { 1135 root->node = NULL; 1136 root->commit_root = NULL; 1137 root->sectorsize = sectorsize; 1138 root->nodesize = nodesize; 1139 root->leafsize = leafsize; 1140 root->stripesize = stripesize; 1141 root->ref_cows = 0; 1142 root->track_dirty = 0; 1143 root->in_radix = 0; 1144 root->orphan_item_inserted = 0; 1145 root->orphan_cleanup_state = 0; 1146 1147 root->objectid = objectid; 1148 root->last_trans = 0; 1149 root->highest_objectid = 0; 1150 root->name = NULL; 1151 root->inode_tree = RB_ROOT; 1152 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1153 root->block_rsv = NULL; 1154 root->orphan_block_rsv = NULL; 1155 1156 INIT_LIST_HEAD(&root->dirty_list); 1157 INIT_LIST_HEAD(&root->root_list); 1158 spin_lock_init(&root->orphan_lock); 1159 spin_lock_init(&root->inode_lock); 1160 spin_lock_init(&root->accounting_lock); 1161 mutex_init(&root->objectid_mutex); 1162 mutex_init(&root->log_mutex); 1163 init_waitqueue_head(&root->log_writer_wait); 1164 init_waitqueue_head(&root->log_commit_wait[0]); 1165 init_waitqueue_head(&root->log_commit_wait[1]); 1166 atomic_set(&root->log_commit[0], 0); 1167 atomic_set(&root->log_commit[1], 0); 1168 atomic_set(&root->log_writers, 0); 1169 atomic_set(&root->orphan_inodes, 0); 1170 root->log_batch = 0; 1171 root->log_transid = 0; 1172 root->last_log_commit = 0; 1173 extent_io_tree_init(&root->dirty_log_pages, 1174 fs_info->btree_inode->i_mapping); 1175 1176 memset(&root->root_key, 0, sizeof(root->root_key)); 1177 memset(&root->root_item, 0, sizeof(root->root_item)); 1178 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1179 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1180 root->defrag_trans_start = fs_info->generation; 1181 init_completion(&root->kobj_unregister); 1182 root->defrag_running = 0; 1183 root->root_key.objectid = objectid; 1184 root->anon_dev = 0; 1185 1186 spin_lock_init(&root->root_times_lock); 1187 } 1188 1189 static int __must_check find_and_setup_root(struct btrfs_root *tree_root, 1190 struct btrfs_fs_info *fs_info, 1191 u64 objectid, 1192 struct btrfs_root *root) 1193 { 1194 int ret; 1195 u32 blocksize; 1196 u64 generation; 1197 1198 __setup_root(tree_root->nodesize, tree_root->leafsize, 1199 tree_root->sectorsize, tree_root->stripesize, 1200 root, fs_info, objectid); 1201 ret = btrfs_find_last_root(tree_root, objectid, 1202 &root->root_item, &root->root_key); 1203 if (ret > 0) 1204 return -ENOENT; 1205 else if (ret < 0) 1206 return ret; 1207 1208 generation = btrfs_root_generation(&root->root_item); 1209 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1210 root->commit_root = NULL; 1211 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1212 blocksize, generation); 1213 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) { 1214 free_extent_buffer(root->node); 1215 root->node = NULL; 1216 return -EIO; 1217 } 1218 root->commit_root = btrfs_root_node(root); 1219 return 0; 1220 } 1221 1222 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1223 { 1224 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1225 if (root) 1226 root->fs_info = fs_info; 1227 return root; 1228 } 1229 1230 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1231 struct btrfs_fs_info *fs_info, 1232 u64 objectid) 1233 { 1234 struct extent_buffer *leaf; 1235 struct btrfs_root *tree_root = fs_info->tree_root; 1236 struct btrfs_root *root; 1237 struct btrfs_key key; 1238 int ret = 0; 1239 u64 bytenr; 1240 1241 root = btrfs_alloc_root(fs_info); 1242 if (!root) 1243 return ERR_PTR(-ENOMEM); 1244 1245 __setup_root(tree_root->nodesize, tree_root->leafsize, 1246 tree_root->sectorsize, tree_root->stripesize, 1247 root, fs_info, objectid); 1248 root->root_key.objectid = objectid; 1249 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1250 root->root_key.offset = 0; 1251 1252 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 1253 0, objectid, NULL, 0, 0, 0); 1254 if (IS_ERR(leaf)) { 1255 ret = PTR_ERR(leaf); 1256 goto fail; 1257 } 1258 1259 bytenr = leaf->start; 1260 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1261 btrfs_set_header_bytenr(leaf, leaf->start); 1262 btrfs_set_header_generation(leaf, trans->transid); 1263 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1264 btrfs_set_header_owner(leaf, objectid); 1265 root->node = leaf; 1266 1267 write_extent_buffer(leaf, fs_info->fsid, 1268 (unsigned long)btrfs_header_fsid(leaf), 1269 BTRFS_FSID_SIZE); 1270 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1271 (unsigned long)btrfs_header_chunk_tree_uuid(leaf), 1272 BTRFS_UUID_SIZE); 1273 btrfs_mark_buffer_dirty(leaf); 1274 1275 root->commit_root = btrfs_root_node(root); 1276 root->track_dirty = 1; 1277 1278 1279 root->root_item.flags = 0; 1280 root->root_item.byte_limit = 0; 1281 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1282 btrfs_set_root_generation(&root->root_item, trans->transid); 1283 btrfs_set_root_level(&root->root_item, 0); 1284 btrfs_set_root_refs(&root->root_item, 1); 1285 btrfs_set_root_used(&root->root_item, leaf->len); 1286 btrfs_set_root_last_snapshot(&root->root_item, 0); 1287 btrfs_set_root_dirid(&root->root_item, 0); 1288 root->root_item.drop_level = 0; 1289 1290 key.objectid = objectid; 1291 key.type = BTRFS_ROOT_ITEM_KEY; 1292 key.offset = 0; 1293 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1294 if (ret) 1295 goto fail; 1296 1297 btrfs_tree_unlock(leaf); 1298 1299 fail: 1300 if (ret) 1301 return ERR_PTR(ret); 1302 1303 return root; 1304 } 1305 1306 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1307 struct btrfs_fs_info *fs_info) 1308 { 1309 struct btrfs_root *root; 1310 struct btrfs_root *tree_root = fs_info->tree_root; 1311 struct extent_buffer *leaf; 1312 1313 root = btrfs_alloc_root(fs_info); 1314 if (!root) 1315 return ERR_PTR(-ENOMEM); 1316 1317 __setup_root(tree_root->nodesize, tree_root->leafsize, 1318 tree_root->sectorsize, tree_root->stripesize, 1319 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1320 1321 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1322 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1323 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1324 /* 1325 * log trees do not get reference counted because they go away 1326 * before a real commit is actually done. They do store pointers 1327 * to file data extents, and those reference counts still get 1328 * updated (along with back refs to the log tree). 1329 */ 1330 root->ref_cows = 0; 1331 1332 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1333 BTRFS_TREE_LOG_OBJECTID, NULL, 1334 0, 0, 0); 1335 if (IS_ERR(leaf)) { 1336 kfree(root); 1337 return ERR_CAST(leaf); 1338 } 1339 1340 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1341 btrfs_set_header_bytenr(leaf, leaf->start); 1342 btrfs_set_header_generation(leaf, trans->transid); 1343 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1344 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1345 root->node = leaf; 1346 1347 write_extent_buffer(root->node, root->fs_info->fsid, 1348 (unsigned long)btrfs_header_fsid(root->node), 1349 BTRFS_FSID_SIZE); 1350 btrfs_mark_buffer_dirty(root->node); 1351 btrfs_tree_unlock(root->node); 1352 return root; 1353 } 1354 1355 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1356 struct btrfs_fs_info *fs_info) 1357 { 1358 struct btrfs_root *log_root; 1359 1360 log_root = alloc_log_tree(trans, fs_info); 1361 if (IS_ERR(log_root)) 1362 return PTR_ERR(log_root); 1363 WARN_ON(fs_info->log_root_tree); 1364 fs_info->log_root_tree = log_root; 1365 return 0; 1366 } 1367 1368 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1369 struct btrfs_root *root) 1370 { 1371 struct btrfs_root *log_root; 1372 struct btrfs_inode_item *inode_item; 1373 1374 log_root = alloc_log_tree(trans, root->fs_info); 1375 if (IS_ERR(log_root)) 1376 return PTR_ERR(log_root); 1377 1378 log_root->last_trans = trans->transid; 1379 log_root->root_key.offset = root->root_key.objectid; 1380 1381 inode_item = &log_root->root_item.inode; 1382 inode_item->generation = cpu_to_le64(1); 1383 inode_item->size = cpu_to_le64(3); 1384 inode_item->nlink = cpu_to_le32(1); 1385 inode_item->nbytes = cpu_to_le64(root->leafsize); 1386 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1387 1388 btrfs_set_root_node(&log_root->root_item, log_root->node); 1389 1390 WARN_ON(root->log_root); 1391 root->log_root = log_root; 1392 root->log_transid = 0; 1393 root->last_log_commit = 0; 1394 return 0; 1395 } 1396 1397 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1398 struct btrfs_key *location) 1399 { 1400 struct btrfs_root *root; 1401 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1402 struct btrfs_path *path; 1403 struct extent_buffer *l; 1404 u64 generation; 1405 u32 blocksize; 1406 int ret = 0; 1407 int slot; 1408 1409 root = btrfs_alloc_root(fs_info); 1410 if (!root) 1411 return ERR_PTR(-ENOMEM); 1412 if (location->offset == (u64)-1) { 1413 ret = find_and_setup_root(tree_root, fs_info, 1414 location->objectid, root); 1415 if (ret) { 1416 kfree(root); 1417 return ERR_PTR(ret); 1418 } 1419 goto out; 1420 } 1421 1422 __setup_root(tree_root->nodesize, tree_root->leafsize, 1423 tree_root->sectorsize, tree_root->stripesize, 1424 root, fs_info, location->objectid); 1425 1426 path = btrfs_alloc_path(); 1427 if (!path) { 1428 kfree(root); 1429 return ERR_PTR(-ENOMEM); 1430 } 1431 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1432 if (ret == 0) { 1433 l = path->nodes[0]; 1434 slot = path->slots[0]; 1435 btrfs_read_root_item(tree_root, l, slot, &root->root_item); 1436 memcpy(&root->root_key, location, sizeof(*location)); 1437 } 1438 btrfs_free_path(path); 1439 if (ret) { 1440 kfree(root); 1441 if (ret > 0) 1442 ret = -ENOENT; 1443 return ERR_PTR(ret); 1444 } 1445 1446 generation = btrfs_root_generation(&root->root_item); 1447 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1448 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1449 blocksize, generation); 1450 root->commit_root = btrfs_root_node(root); 1451 BUG_ON(!root->node); /* -ENOMEM */ 1452 out: 1453 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { 1454 root->ref_cows = 1; 1455 btrfs_check_and_init_root_item(&root->root_item); 1456 } 1457 1458 return root; 1459 } 1460 1461 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1462 struct btrfs_key *location) 1463 { 1464 struct btrfs_root *root; 1465 int ret; 1466 1467 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1468 return fs_info->tree_root; 1469 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1470 return fs_info->extent_root; 1471 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1472 return fs_info->chunk_root; 1473 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1474 return fs_info->dev_root; 1475 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1476 return fs_info->csum_root; 1477 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1478 return fs_info->quota_root ? fs_info->quota_root : 1479 ERR_PTR(-ENOENT); 1480 again: 1481 spin_lock(&fs_info->fs_roots_radix_lock); 1482 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1483 (unsigned long)location->objectid); 1484 spin_unlock(&fs_info->fs_roots_radix_lock); 1485 if (root) 1486 return root; 1487 1488 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1489 if (IS_ERR(root)) 1490 return root; 1491 1492 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1493 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1494 GFP_NOFS); 1495 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1496 ret = -ENOMEM; 1497 goto fail; 1498 } 1499 1500 btrfs_init_free_ino_ctl(root); 1501 mutex_init(&root->fs_commit_mutex); 1502 spin_lock_init(&root->cache_lock); 1503 init_waitqueue_head(&root->cache_wait); 1504 1505 ret = get_anon_bdev(&root->anon_dev); 1506 if (ret) 1507 goto fail; 1508 1509 if (btrfs_root_refs(&root->root_item) == 0) { 1510 ret = -ENOENT; 1511 goto fail; 1512 } 1513 1514 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); 1515 if (ret < 0) 1516 goto fail; 1517 if (ret == 0) 1518 root->orphan_item_inserted = 1; 1519 1520 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1521 if (ret) 1522 goto fail; 1523 1524 spin_lock(&fs_info->fs_roots_radix_lock); 1525 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1526 (unsigned long)root->root_key.objectid, 1527 root); 1528 if (ret == 0) 1529 root->in_radix = 1; 1530 1531 spin_unlock(&fs_info->fs_roots_radix_lock); 1532 radix_tree_preload_end(); 1533 if (ret) { 1534 if (ret == -EEXIST) { 1535 free_fs_root(root); 1536 goto again; 1537 } 1538 goto fail; 1539 } 1540 1541 ret = btrfs_find_dead_roots(fs_info->tree_root, 1542 root->root_key.objectid); 1543 WARN_ON(ret); 1544 return root; 1545 fail: 1546 free_fs_root(root); 1547 return ERR_PTR(ret); 1548 } 1549 1550 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1551 { 1552 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1553 int ret = 0; 1554 struct btrfs_device *device; 1555 struct backing_dev_info *bdi; 1556 1557 rcu_read_lock(); 1558 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1559 if (!device->bdev) 1560 continue; 1561 bdi = blk_get_backing_dev_info(device->bdev); 1562 if (bdi && bdi_congested(bdi, bdi_bits)) { 1563 ret = 1; 1564 break; 1565 } 1566 } 1567 rcu_read_unlock(); 1568 return ret; 1569 } 1570 1571 /* 1572 * If this fails, caller must call bdi_destroy() to get rid of the 1573 * bdi again. 1574 */ 1575 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1576 { 1577 int err; 1578 1579 bdi->capabilities = BDI_CAP_MAP_COPY; 1580 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1581 if (err) 1582 return err; 1583 1584 bdi->ra_pages = default_backing_dev_info.ra_pages; 1585 bdi->congested_fn = btrfs_congested_fn; 1586 bdi->congested_data = info; 1587 return 0; 1588 } 1589 1590 /* 1591 * called by the kthread helper functions to finally call the bio end_io 1592 * functions. This is where read checksum verification actually happens 1593 */ 1594 static void end_workqueue_fn(struct btrfs_work *work) 1595 { 1596 struct bio *bio; 1597 struct end_io_wq *end_io_wq; 1598 struct btrfs_fs_info *fs_info; 1599 int error; 1600 1601 end_io_wq = container_of(work, struct end_io_wq, work); 1602 bio = end_io_wq->bio; 1603 fs_info = end_io_wq->info; 1604 1605 error = end_io_wq->error; 1606 bio->bi_private = end_io_wq->private; 1607 bio->bi_end_io = end_io_wq->end_io; 1608 kfree(end_io_wq); 1609 bio_endio(bio, error); 1610 } 1611 1612 static int cleaner_kthread(void *arg) 1613 { 1614 struct btrfs_root *root = arg; 1615 1616 do { 1617 if (!(root->fs_info->sb->s_flags & MS_RDONLY) && 1618 mutex_trylock(&root->fs_info->cleaner_mutex)) { 1619 btrfs_run_delayed_iputs(root); 1620 btrfs_clean_old_snapshots(root); 1621 mutex_unlock(&root->fs_info->cleaner_mutex); 1622 btrfs_run_defrag_inodes(root->fs_info); 1623 } 1624 1625 if (!try_to_freeze()) { 1626 set_current_state(TASK_INTERRUPTIBLE); 1627 if (!kthread_should_stop()) 1628 schedule(); 1629 __set_current_state(TASK_RUNNING); 1630 } 1631 } while (!kthread_should_stop()); 1632 return 0; 1633 } 1634 1635 static int transaction_kthread(void *arg) 1636 { 1637 struct btrfs_root *root = arg; 1638 struct btrfs_trans_handle *trans; 1639 struct btrfs_transaction *cur; 1640 u64 transid; 1641 unsigned long now; 1642 unsigned long delay; 1643 bool cannot_commit; 1644 1645 do { 1646 cannot_commit = false; 1647 delay = HZ * 30; 1648 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1649 1650 spin_lock(&root->fs_info->trans_lock); 1651 cur = root->fs_info->running_transaction; 1652 if (!cur) { 1653 spin_unlock(&root->fs_info->trans_lock); 1654 goto sleep; 1655 } 1656 1657 now = get_seconds(); 1658 if (!cur->blocked && 1659 (now < cur->start_time || now - cur->start_time < 30)) { 1660 spin_unlock(&root->fs_info->trans_lock); 1661 delay = HZ * 5; 1662 goto sleep; 1663 } 1664 transid = cur->transid; 1665 spin_unlock(&root->fs_info->trans_lock); 1666 1667 /* If the file system is aborted, this will always fail. */ 1668 trans = btrfs_join_transaction(root); 1669 if (IS_ERR(trans)) { 1670 cannot_commit = true; 1671 goto sleep; 1672 } 1673 if (transid == trans->transid) { 1674 btrfs_commit_transaction(trans, root); 1675 } else { 1676 btrfs_end_transaction(trans, root); 1677 } 1678 sleep: 1679 wake_up_process(root->fs_info->cleaner_kthread); 1680 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1681 1682 if (!try_to_freeze()) { 1683 set_current_state(TASK_INTERRUPTIBLE); 1684 if (!kthread_should_stop() && 1685 (!btrfs_transaction_blocked(root->fs_info) || 1686 cannot_commit)) 1687 schedule_timeout(delay); 1688 __set_current_state(TASK_RUNNING); 1689 } 1690 } while (!kthread_should_stop()); 1691 return 0; 1692 } 1693 1694 /* 1695 * this will find the highest generation in the array of 1696 * root backups. The index of the highest array is returned, 1697 * or -1 if we can't find anything. 1698 * 1699 * We check to make sure the array is valid by comparing the 1700 * generation of the latest root in the array with the generation 1701 * in the super block. If they don't match we pitch it. 1702 */ 1703 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1704 { 1705 u64 cur; 1706 int newest_index = -1; 1707 struct btrfs_root_backup *root_backup; 1708 int i; 1709 1710 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1711 root_backup = info->super_copy->super_roots + i; 1712 cur = btrfs_backup_tree_root_gen(root_backup); 1713 if (cur == newest_gen) 1714 newest_index = i; 1715 } 1716 1717 /* check to see if we actually wrapped around */ 1718 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1719 root_backup = info->super_copy->super_roots; 1720 cur = btrfs_backup_tree_root_gen(root_backup); 1721 if (cur == newest_gen) 1722 newest_index = 0; 1723 } 1724 return newest_index; 1725 } 1726 1727 1728 /* 1729 * find the oldest backup so we know where to store new entries 1730 * in the backup array. This will set the backup_root_index 1731 * field in the fs_info struct 1732 */ 1733 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1734 u64 newest_gen) 1735 { 1736 int newest_index = -1; 1737 1738 newest_index = find_newest_super_backup(info, newest_gen); 1739 /* if there was garbage in there, just move along */ 1740 if (newest_index == -1) { 1741 info->backup_root_index = 0; 1742 } else { 1743 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1744 } 1745 } 1746 1747 /* 1748 * copy all the root pointers into the super backup array. 1749 * this will bump the backup pointer by one when it is 1750 * done 1751 */ 1752 static void backup_super_roots(struct btrfs_fs_info *info) 1753 { 1754 int next_backup; 1755 struct btrfs_root_backup *root_backup; 1756 int last_backup; 1757 1758 next_backup = info->backup_root_index; 1759 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1760 BTRFS_NUM_BACKUP_ROOTS; 1761 1762 /* 1763 * just overwrite the last backup if we're at the same generation 1764 * this happens only at umount 1765 */ 1766 root_backup = info->super_for_commit->super_roots + last_backup; 1767 if (btrfs_backup_tree_root_gen(root_backup) == 1768 btrfs_header_generation(info->tree_root->node)) 1769 next_backup = last_backup; 1770 1771 root_backup = info->super_for_commit->super_roots + next_backup; 1772 1773 /* 1774 * make sure all of our padding and empty slots get zero filled 1775 * regardless of which ones we use today 1776 */ 1777 memset(root_backup, 0, sizeof(*root_backup)); 1778 1779 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1780 1781 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1782 btrfs_set_backup_tree_root_gen(root_backup, 1783 btrfs_header_generation(info->tree_root->node)); 1784 1785 btrfs_set_backup_tree_root_level(root_backup, 1786 btrfs_header_level(info->tree_root->node)); 1787 1788 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1789 btrfs_set_backup_chunk_root_gen(root_backup, 1790 btrfs_header_generation(info->chunk_root->node)); 1791 btrfs_set_backup_chunk_root_level(root_backup, 1792 btrfs_header_level(info->chunk_root->node)); 1793 1794 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1795 btrfs_set_backup_extent_root_gen(root_backup, 1796 btrfs_header_generation(info->extent_root->node)); 1797 btrfs_set_backup_extent_root_level(root_backup, 1798 btrfs_header_level(info->extent_root->node)); 1799 1800 /* 1801 * we might commit during log recovery, which happens before we set 1802 * the fs_root. Make sure it is valid before we fill it in. 1803 */ 1804 if (info->fs_root && info->fs_root->node) { 1805 btrfs_set_backup_fs_root(root_backup, 1806 info->fs_root->node->start); 1807 btrfs_set_backup_fs_root_gen(root_backup, 1808 btrfs_header_generation(info->fs_root->node)); 1809 btrfs_set_backup_fs_root_level(root_backup, 1810 btrfs_header_level(info->fs_root->node)); 1811 } 1812 1813 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1814 btrfs_set_backup_dev_root_gen(root_backup, 1815 btrfs_header_generation(info->dev_root->node)); 1816 btrfs_set_backup_dev_root_level(root_backup, 1817 btrfs_header_level(info->dev_root->node)); 1818 1819 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1820 btrfs_set_backup_csum_root_gen(root_backup, 1821 btrfs_header_generation(info->csum_root->node)); 1822 btrfs_set_backup_csum_root_level(root_backup, 1823 btrfs_header_level(info->csum_root->node)); 1824 1825 btrfs_set_backup_total_bytes(root_backup, 1826 btrfs_super_total_bytes(info->super_copy)); 1827 btrfs_set_backup_bytes_used(root_backup, 1828 btrfs_super_bytes_used(info->super_copy)); 1829 btrfs_set_backup_num_devices(root_backup, 1830 btrfs_super_num_devices(info->super_copy)); 1831 1832 /* 1833 * if we don't copy this out to the super_copy, it won't get remembered 1834 * for the next commit 1835 */ 1836 memcpy(&info->super_copy->super_roots, 1837 &info->super_for_commit->super_roots, 1838 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1839 } 1840 1841 /* 1842 * this copies info out of the root backup array and back into 1843 * the in-memory super block. It is meant to help iterate through 1844 * the array, so you send it the number of backups you've already 1845 * tried and the last backup index you used. 1846 * 1847 * this returns -1 when it has tried all the backups 1848 */ 1849 static noinline int next_root_backup(struct btrfs_fs_info *info, 1850 struct btrfs_super_block *super, 1851 int *num_backups_tried, int *backup_index) 1852 { 1853 struct btrfs_root_backup *root_backup; 1854 int newest = *backup_index; 1855 1856 if (*num_backups_tried == 0) { 1857 u64 gen = btrfs_super_generation(super); 1858 1859 newest = find_newest_super_backup(info, gen); 1860 if (newest == -1) 1861 return -1; 1862 1863 *backup_index = newest; 1864 *num_backups_tried = 1; 1865 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1866 /* we've tried all the backups, all done */ 1867 return -1; 1868 } else { 1869 /* jump to the next oldest backup */ 1870 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1871 BTRFS_NUM_BACKUP_ROOTS; 1872 *backup_index = newest; 1873 *num_backups_tried += 1; 1874 } 1875 root_backup = super->super_roots + newest; 1876 1877 btrfs_set_super_generation(super, 1878 btrfs_backup_tree_root_gen(root_backup)); 1879 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1880 btrfs_set_super_root_level(super, 1881 btrfs_backup_tree_root_level(root_backup)); 1882 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1883 1884 /* 1885 * fixme: the total bytes and num_devices need to match or we should 1886 * need a fsck 1887 */ 1888 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1889 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1890 return 0; 1891 } 1892 1893 /* helper to cleanup tree roots */ 1894 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 1895 { 1896 free_extent_buffer(info->tree_root->node); 1897 free_extent_buffer(info->tree_root->commit_root); 1898 free_extent_buffer(info->dev_root->node); 1899 free_extent_buffer(info->dev_root->commit_root); 1900 free_extent_buffer(info->extent_root->node); 1901 free_extent_buffer(info->extent_root->commit_root); 1902 free_extent_buffer(info->csum_root->node); 1903 free_extent_buffer(info->csum_root->commit_root); 1904 if (info->quota_root) { 1905 free_extent_buffer(info->quota_root->node); 1906 free_extent_buffer(info->quota_root->commit_root); 1907 } 1908 1909 info->tree_root->node = NULL; 1910 info->tree_root->commit_root = NULL; 1911 info->dev_root->node = NULL; 1912 info->dev_root->commit_root = NULL; 1913 info->extent_root->node = NULL; 1914 info->extent_root->commit_root = NULL; 1915 info->csum_root->node = NULL; 1916 info->csum_root->commit_root = NULL; 1917 if (info->quota_root) { 1918 info->quota_root->node = NULL; 1919 info->quota_root->commit_root = NULL; 1920 } 1921 1922 if (chunk_root) { 1923 free_extent_buffer(info->chunk_root->node); 1924 free_extent_buffer(info->chunk_root->commit_root); 1925 info->chunk_root->node = NULL; 1926 info->chunk_root->commit_root = NULL; 1927 } 1928 } 1929 1930 1931 int open_ctree(struct super_block *sb, 1932 struct btrfs_fs_devices *fs_devices, 1933 char *options) 1934 { 1935 u32 sectorsize; 1936 u32 nodesize; 1937 u32 leafsize; 1938 u32 blocksize; 1939 u32 stripesize; 1940 u64 generation; 1941 u64 features; 1942 struct btrfs_key location; 1943 struct buffer_head *bh; 1944 struct btrfs_super_block *disk_super; 1945 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1946 struct btrfs_root *tree_root; 1947 struct btrfs_root *extent_root; 1948 struct btrfs_root *csum_root; 1949 struct btrfs_root *chunk_root; 1950 struct btrfs_root *dev_root; 1951 struct btrfs_root *quota_root; 1952 struct btrfs_root *log_tree_root; 1953 int ret; 1954 int err = -EINVAL; 1955 int num_backups_tried = 0; 1956 int backup_index = 0; 1957 1958 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 1959 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info); 1960 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info); 1961 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 1962 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info); 1963 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info); 1964 1965 if (!tree_root || !extent_root || !csum_root || 1966 !chunk_root || !dev_root || !quota_root) { 1967 err = -ENOMEM; 1968 goto fail; 1969 } 1970 1971 ret = init_srcu_struct(&fs_info->subvol_srcu); 1972 if (ret) { 1973 err = ret; 1974 goto fail; 1975 } 1976 1977 ret = setup_bdi(fs_info, &fs_info->bdi); 1978 if (ret) { 1979 err = ret; 1980 goto fail_srcu; 1981 } 1982 1983 fs_info->btree_inode = new_inode(sb); 1984 if (!fs_info->btree_inode) { 1985 err = -ENOMEM; 1986 goto fail_bdi; 1987 } 1988 1989 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 1990 1991 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 1992 INIT_LIST_HEAD(&fs_info->trans_list); 1993 INIT_LIST_HEAD(&fs_info->dead_roots); 1994 INIT_LIST_HEAD(&fs_info->delayed_iputs); 1995 INIT_LIST_HEAD(&fs_info->hashers); 1996 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 1997 INIT_LIST_HEAD(&fs_info->ordered_operations); 1998 INIT_LIST_HEAD(&fs_info->caching_block_groups); 1999 spin_lock_init(&fs_info->delalloc_lock); 2000 spin_lock_init(&fs_info->trans_lock); 2001 spin_lock_init(&fs_info->ref_cache_lock); 2002 spin_lock_init(&fs_info->fs_roots_radix_lock); 2003 spin_lock_init(&fs_info->delayed_iput_lock); 2004 spin_lock_init(&fs_info->defrag_inodes_lock); 2005 spin_lock_init(&fs_info->free_chunk_lock); 2006 spin_lock_init(&fs_info->tree_mod_seq_lock); 2007 rwlock_init(&fs_info->tree_mod_log_lock); 2008 mutex_init(&fs_info->reloc_mutex); 2009 2010 init_completion(&fs_info->kobj_unregister); 2011 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2012 INIT_LIST_HEAD(&fs_info->space_info); 2013 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2014 btrfs_mapping_init(&fs_info->mapping_tree); 2015 btrfs_init_block_rsv(&fs_info->global_block_rsv); 2016 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv); 2017 btrfs_init_block_rsv(&fs_info->trans_block_rsv); 2018 btrfs_init_block_rsv(&fs_info->chunk_block_rsv); 2019 btrfs_init_block_rsv(&fs_info->empty_block_rsv); 2020 btrfs_init_block_rsv(&fs_info->delayed_block_rsv); 2021 atomic_set(&fs_info->nr_async_submits, 0); 2022 atomic_set(&fs_info->async_delalloc_pages, 0); 2023 atomic_set(&fs_info->async_submit_draining, 0); 2024 atomic_set(&fs_info->nr_async_bios, 0); 2025 atomic_set(&fs_info->defrag_running, 0); 2026 atomic_set(&fs_info->tree_mod_seq, 0); 2027 fs_info->sb = sb; 2028 fs_info->max_inline = 8192 * 1024; 2029 fs_info->metadata_ratio = 0; 2030 fs_info->defrag_inodes = RB_ROOT; 2031 fs_info->trans_no_join = 0; 2032 fs_info->free_chunk_space = 0; 2033 fs_info->tree_mod_log = RB_ROOT; 2034 2035 init_waitqueue_head(&fs_info->tree_mod_seq_wait); 2036 2037 /* readahead state */ 2038 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 2039 spin_lock_init(&fs_info->reada_lock); 2040 2041 fs_info->thread_pool_size = min_t(unsigned long, 2042 num_online_cpus() + 2, 8); 2043 2044 INIT_LIST_HEAD(&fs_info->ordered_extents); 2045 spin_lock_init(&fs_info->ordered_extent_lock); 2046 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2047 GFP_NOFS); 2048 if (!fs_info->delayed_root) { 2049 err = -ENOMEM; 2050 goto fail_iput; 2051 } 2052 btrfs_init_delayed_root(fs_info->delayed_root); 2053 2054 mutex_init(&fs_info->scrub_lock); 2055 atomic_set(&fs_info->scrubs_running, 0); 2056 atomic_set(&fs_info->scrub_pause_req, 0); 2057 atomic_set(&fs_info->scrubs_paused, 0); 2058 atomic_set(&fs_info->scrub_cancel_req, 0); 2059 init_waitqueue_head(&fs_info->scrub_pause_wait); 2060 init_rwsem(&fs_info->scrub_super_lock); 2061 fs_info->scrub_workers_refcnt = 0; 2062 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2063 fs_info->check_integrity_print_mask = 0; 2064 #endif 2065 2066 spin_lock_init(&fs_info->balance_lock); 2067 mutex_init(&fs_info->balance_mutex); 2068 atomic_set(&fs_info->balance_running, 0); 2069 atomic_set(&fs_info->balance_pause_req, 0); 2070 atomic_set(&fs_info->balance_cancel_req, 0); 2071 fs_info->balance_ctl = NULL; 2072 init_waitqueue_head(&fs_info->balance_wait_q); 2073 2074 sb->s_blocksize = 4096; 2075 sb->s_blocksize_bits = blksize_bits(4096); 2076 sb->s_bdi = &fs_info->bdi; 2077 2078 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2079 set_nlink(fs_info->btree_inode, 1); 2080 /* 2081 * we set the i_size on the btree inode to the max possible int. 2082 * the real end of the address space is determined by all of 2083 * the devices in the system 2084 */ 2085 fs_info->btree_inode->i_size = OFFSET_MAX; 2086 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2087 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 2088 2089 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2090 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2091 fs_info->btree_inode->i_mapping); 2092 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2093 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2094 2095 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2096 2097 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2098 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2099 sizeof(struct btrfs_key)); 2100 set_bit(BTRFS_INODE_DUMMY, 2101 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2102 insert_inode_hash(fs_info->btree_inode); 2103 2104 spin_lock_init(&fs_info->block_group_cache_lock); 2105 fs_info->block_group_cache_tree = RB_ROOT; 2106 2107 extent_io_tree_init(&fs_info->freed_extents[0], 2108 fs_info->btree_inode->i_mapping); 2109 extent_io_tree_init(&fs_info->freed_extents[1], 2110 fs_info->btree_inode->i_mapping); 2111 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2112 fs_info->do_barriers = 1; 2113 2114 2115 mutex_init(&fs_info->ordered_operations_mutex); 2116 mutex_init(&fs_info->tree_log_mutex); 2117 mutex_init(&fs_info->chunk_mutex); 2118 mutex_init(&fs_info->transaction_kthread_mutex); 2119 mutex_init(&fs_info->cleaner_mutex); 2120 mutex_init(&fs_info->volume_mutex); 2121 init_rwsem(&fs_info->extent_commit_sem); 2122 init_rwsem(&fs_info->cleanup_work_sem); 2123 init_rwsem(&fs_info->subvol_sem); 2124 2125 spin_lock_init(&fs_info->qgroup_lock); 2126 fs_info->qgroup_tree = RB_ROOT; 2127 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2128 fs_info->qgroup_seq = 1; 2129 fs_info->quota_enabled = 0; 2130 fs_info->pending_quota_state = 0; 2131 2132 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2133 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2134 2135 init_waitqueue_head(&fs_info->transaction_throttle); 2136 init_waitqueue_head(&fs_info->transaction_wait); 2137 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2138 init_waitqueue_head(&fs_info->async_submit_wait); 2139 2140 __setup_root(4096, 4096, 4096, 4096, tree_root, 2141 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2142 2143 invalidate_bdev(fs_devices->latest_bdev); 2144 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2145 if (!bh) { 2146 err = -EINVAL; 2147 goto fail_alloc; 2148 } 2149 2150 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2151 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2152 sizeof(*fs_info->super_for_commit)); 2153 brelse(bh); 2154 2155 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2156 2157 disk_super = fs_info->super_copy; 2158 if (!btrfs_super_root(disk_super)) 2159 goto fail_alloc; 2160 2161 /* check FS state, whether FS is broken. */ 2162 fs_info->fs_state |= btrfs_super_flags(disk_super); 2163 2164 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2165 if (ret) { 2166 printk(KERN_ERR "btrfs: superblock contains fatal errors\n"); 2167 err = ret; 2168 goto fail_alloc; 2169 } 2170 2171 /* 2172 * run through our array of backup supers and setup 2173 * our ring pointer to the oldest one 2174 */ 2175 generation = btrfs_super_generation(disk_super); 2176 find_oldest_super_backup(fs_info, generation); 2177 2178 /* 2179 * In the long term, we'll store the compression type in the super 2180 * block, and it'll be used for per file compression control. 2181 */ 2182 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2183 2184 ret = btrfs_parse_options(tree_root, options); 2185 if (ret) { 2186 err = ret; 2187 goto fail_alloc; 2188 } 2189 2190 features = btrfs_super_incompat_flags(disk_super) & 2191 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2192 if (features) { 2193 printk(KERN_ERR "BTRFS: couldn't mount because of " 2194 "unsupported optional features (%Lx).\n", 2195 (unsigned long long)features); 2196 err = -EINVAL; 2197 goto fail_alloc; 2198 } 2199 2200 if (btrfs_super_leafsize(disk_super) != 2201 btrfs_super_nodesize(disk_super)) { 2202 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2203 "blocksizes don't match. node %d leaf %d\n", 2204 btrfs_super_nodesize(disk_super), 2205 btrfs_super_leafsize(disk_super)); 2206 err = -EINVAL; 2207 goto fail_alloc; 2208 } 2209 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2210 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2211 "blocksize (%d) was too large\n", 2212 btrfs_super_leafsize(disk_super)); 2213 err = -EINVAL; 2214 goto fail_alloc; 2215 } 2216 2217 features = btrfs_super_incompat_flags(disk_super); 2218 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2219 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2220 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2221 2222 /* 2223 * flag our filesystem as having big metadata blocks if 2224 * they are bigger than the page size 2225 */ 2226 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) { 2227 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2228 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n"); 2229 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2230 } 2231 2232 nodesize = btrfs_super_nodesize(disk_super); 2233 leafsize = btrfs_super_leafsize(disk_super); 2234 sectorsize = btrfs_super_sectorsize(disk_super); 2235 stripesize = btrfs_super_stripesize(disk_super); 2236 2237 /* 2238 * mixed block groups end up with duplicate but slightly offset 2239 * extent buffers for the same range. It leads to corruptions 2240 */ 2241 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2242 (sectorsize != leafsize)) { 2243 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes " 2244 "are not allowed for mixed block groups on %s\n", 2245 sb->s_id); 2246 goto fail_alloc; 2247 } 2248 2249 btrfs_set_super_incompat_flags(disk_super, features); 2250 2251 features = btrfs_super_compat_ro_flags(disk_super) & 2252 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2253 if (!(sb->s_flags & MS_RDONLY) && features) { 2254 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2255 "unsupported option features (%Lx).\n", 2256 (unsigned long long)features); 2257 err = -EINVAL; 2258 goto fail_alloc; 2259 } 2260 2261 btrfs_init_workers(&fs_info->generic_worker, 2262 "genwork", 1, NULL); 2263 2264 btrfs_init_workers(&fs_info->workers, "worker", 2265 fs_info->thread_pool_size, 2266 &fs_info->generic_worker); 2267 2268 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 2269 fs_info->thread_pool_size, 2270 &fs_info->generic_worker); 2271 2272 btrfs_init_workers(&fs_info->submit_workers, "submit", 2273 min_t(u64, fs_devices->num_devices, 2274 fs_info->thread_pool_size), 2275 &fs_info->generic_worker); 2276 2277 btrfs_init_workers(&fs_info->caching_workers, "cache", 2278 2, &fs_info->generic_worker); 2279 2280 /* a higher idle thresh on the submit workers makes it much more 2281 * likely that bios will be send down in a sane order to the 2282 * devices 2283 */ 2284 fs_info->submit_workers.idle_thresh = 64; 2285 2286 fs_info->workers.idle_thresh = 16; 2287 fs_info->workers.ordered = 1; 2288 2289 fs_info->delalloc_workers.idle_thresh = 2; 2290 fs_info->delalloc_workers.ordered = 1; 2291 2292 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, 2293 &fs_info->generic_worker); 2294 btrfs_init_workers(&fs_info->endio_workers, "endio", 2295 fs_info->thread_pool_size, 2296 &fs_info->generic_worker); 2297 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 2298 fs_info->thread_pool_size, 2299 &fs_info->generic_worker); 2300 btrfs_init_workers(&fs_info->endio_meta_write_workers, 2301 "endio-meta-write", fs_info->thread_pool_size, 2302 &fs_info->generic_worker); 2303 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 2304 fs_info->thread_pool_size, 2305 &fs_info->generic_worker); 2306 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", 2307 1, &fs_info->generic_worker); 2308 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta", 2309 fs_info->thread_pool_size, 2310 &fs_info->generic_worker); 2311 btrfs_init_workers(&fs_info->readahead_workers, "readahead", 2312 fs_info->thread_pool_size, 2313 &fs_info->generic_worker); 2314 2315 /* 2316 * endios are largely parallel and should have a very 2317 * low idle thresh 2318 */ 2319 fs_info->endio_workers.idle_thresh = 4; 2320 fs_info->endio_meta_workers.idle_thresh = 4; 2321 2322 fs_info->endio_write_workers.idle_thresh = 2; 2323 fs_info->endio_meta_write_workers.idle_thresh = 2; 2324 fs_info->readahead_workers.idle_thresh = 2; 2325 2326 /* 2327 * btrfs_start_workers can really only fail because of ENOMEM so just 2328 * return -ENOMEM if any of these fail. 2329 */ 2330 ret = btrfs_start_workers(&fs_info->workers); 2331 ret |= btrfs_start_workers(&fs_info->generic_worker); 2332 ret |= btrfs_start_workers(&fs_info->submit_workers); 2333 ret |= btrfs_start_workers(&fs_info->delalloc_workers); 2334 ret |= btrfs_start_workers(&fs_info->fixup_workers); 2335 ret |= btrfs_start_workers(&fs_info->endio_workers); 2336 ret |= btrfs_start_workers(&fs_info->endio_meta_workers); 2337 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers); 2338 ret |= btrfs_start_workers(&fs_info->endio_write_workers); 2339 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker); 2340 ret |= btrfs_start_workers(&fs_info->delayed_workers); 2341 ret |= btrfs_start_workers(&fs_info->caching_workers); 2342 ret |= btrfs_start_workers(&fs_info->readahead_workers); 2343 if (ret) { 2344 err = -ENOMEM; 2345 goto fail_sb_buffer; 2346 } 2347 2348 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2349 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2350 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2351 2352 tree_root->nodesize = nodesize; 2353 tree_root->leafsize = leafsize; 2354 tree_root->sectorsize = sectorsize; 2355 tree_root->stripesize = stripesize; 2356 2357 sb->s_blocksize = sectorsize; 2358 sb->s_blocksize_bits = blksize_bits(sectorsize); 2359 2360 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 2361 sizeof(disk_super->magic))) { 2362 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 2363 goto fail_sb_buffer; 2364 } 2365 2366 if (sectorsize != PAGE_SIZE) { 2367 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) " 2368 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2369 goto fail_sb_buffer; 2370 } 2371 2372 mutex_lock(&fs_info->chunk_mutex); 2373 ret = btrfs_read_sys_array(tree_root); 2374 mutex_unlock(&fs_info->chunk_mutex); 2375 if (ret) { 2376 printk(KERN_WARNING "btrfs: failed to read the system " 2377 "array on %s\n", sb->s_id); 2378 goto fail_sb_buffer; 2379 } 2380 2381 blocksize = btrfs_level_size(tree_root, 2382 btrfs_super_chunk_root_level(disk_super)); 2383 generation = btrfs_super_chunk_root_generation(disk_super); 2384 2385 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2386 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2387 2388 chunk_root->node = read_tree_block(chunk_root, 2389 btrfs_super_chunk_root(disk_super), 2390 blocksize, generation); 2391 BUG_ON(!chunk_root->node); /* -ENOMEM */ 2392 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 2393 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 2394 sb->s_id); 2395 goto fail_tree_roots; 2396 } 2397 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2398 chunk_root->commit_root = btrfs_root_node(chunk_root); 2399 2400 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2401 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 2402 BTRFS_UUID_SIZE); 2403 2404 ret = btrfs_read_chunk_tree(chunk_root); 2405 if (ret) { 2406 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 2407 sb->s_id); 2408 goto fail_tree_roots; 2409 } 2410 2411 btrfs_close_extra_devices(fs_devices); 2412 2413 if (!fs_devices->latest_bdev) { 2414 printk(KERN_CRIT "btrfs: failed to read devices on %s\n", 2415 sb->s_id); 2416 goto fail_tree_roots; 2417 } 2418 2419 retry_root_backup: 2420 blocksize = btrfs_level_size(tree_root, 2421 btrfs_super_root_level(disk_super)); 2422 generation = btrfs_super_generation(disk_super); 2423 2424 tree_root->node = read_tree_block(tree_root, 2425 btrfs_super_root(disk_super), 2426 blocksize, generation); 2427 if (!tree_root->node || 2428 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 2429 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 2430 sb->s_id); 2431 2432 goto recovery_tree_root; 2433 } 2434 2435 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2436 tree_root->commit_root = btrfs_root_node(tree_root); 2437 2438 ret = find_and_setup_root(tree_root, fs_info, 2439 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 2440 if (ret) 2441 goto recovery_tree_root; 2442 extent_root->track_dirty = 1; 2443 2444 ret = find_and_setup_root(tree_root, fs_info, 2445 BTRFS_DEV_TREE_OBJECTID, dev_root); 2446 if (ret) 2447 goto recovery_tree_root; 2448 dev_root->track_dirty = 1; 2449 2450 ret = find_and_setup_root(tree_root, fs_info, 2451 BTRFS_CSUM_TREE_OBJECTID, csum_root); 2452 if (ret) 2453 goto recovery_tree_root; 2454 csum_root->track_dirty = 1; 2455 2456 ret = find_and_setup_root(tree_root, fs_info, 2457 BTRFS_QUOTA_TREE_OBJECTID, quota_root); 2458 if (ret) { 2459 kfree(quota_root); 2460 quota_root = fs_info->quota_root = NULL; 2461 } else { 2462 quota_root->track_dirty = 1; 2463 fs_info->quota_enabled = 1; 2464 fs_info->pending_quota_state = 1; 2465 } 2466 2467 fs_info->generation = generation; 2468 fs_info->last_trans_committed = generation; 2469 2470 ret = btrfs_recover_balance(fs_info); 2471 if (ret) { 2472 printk(KERN_WARNING "btrfs: failed to recover balance\n"); 2473 goto fail_block_groups; 2474 } 2475 2476 ret = btrfs_init_dev_stats(fs_info); 2477 if (ret) { 2478 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n", 2479 ret); 2480 goto fail_block_groups; 2481 } 2482 2483 ret = btrfs_init_space_info(fs_info); 2484 if (ret) { 2485 printk(KERN_ERR "Failed to initial space info: %d\n", ret); 2486 goto fail_block_groups; 2487 } 2488 2489 ret = btrfs_read_block_groups(extent_root); 2490 if (ret) { 2491 printk(KERN_ERR "Failed to read block groups: %d\n", ret); 2492 goto fail_block_groups; 2493 } 2494 2495 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2496 "btrfs-cleaner"); 2497 if (IS_ERR(fs_info->cleaner_kthread)) 2498 goto fail_block_groups; 2499 2500 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2501 tree_root, 2502 "btrfs-transaction"); 2503 if (IS_ERR(fs_info->transaction_kthread)) 2504 goto fail_cleaner; 2505 2506 if (!btrfs_test_opt(tree_root, SSD) && 2507 !btrfs_test_opt(tree_root, NOSSD) && 2508 !fs_info->fs_devices->rotating) { 2509 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 2510 "mode\n"); 2511 btrfs_set_opt(fs_info->mount_opt, SSD); 2512 } 2513 2514 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2515 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2516 ret = btrfsic_mount(tree_root, fs_devices, 2517 btrfs_test_opt(tree_root, 2518 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2519 1 : 0, 2520 fs_info->check_integrity_print_mask); 2521 if (ret) 2522 printk(KERN_WARNING "btrfs: failed to initialize" 2523 " integrity check module %s\n", sb->s_id); 2524 } 2525 #endif 2526 ret = btrfs_read_qgroup_config(fs_info); 2527 if (ret) 2528 goto fail_trans_kthread; 2529 2530 /* do not make disk changes in broken FS */ 2531 if (btrfs_super_log_root(disk_super) != 0 && 2532 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) { 2533 u64 bytenr = btrfs_super_log_root(disk_super); 2534 2535 if (fs_devices->rw_devices == 0) { 2536 printk(KERN_WARNING "Btrfs log replay required " 2537 "on RO media\n"); 2538 err = -EIO; 2539 goto fail_qgroup; 2540 } 2541 blocksize = 2542 btrfs_level_size(tree_root, 2543 btrfs_super_log_root_level(disk_super)); 2544 2545 log_tree_root = btrfs_alloc_root(fs_info); 2546 if (!log_tree_root) { 2547 err = -ENOMEM; 2548 goto fail_qgroup; 2549 } 2550 2551 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2552 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2553 2554 log_tree_root->node = read_tree_block(tree_root, bytenr, 2555 blocksize, 2556 generation + 1); 2557 /* returns with log_tree_root freed on success */ 2558 ret = btrfs_recover_log_trees(log_tree_root); 2559 if (ret) { 2560 btrfs_error(tree_root->fs_info, ret, 2561 "Failed to recover log tree"); 2562 free_extent_buffer(log_tree_root->node); 2563 kfree(log_tree_root); 2564 goto fail_trans_kthread; 2565 } 2566 2567 if (sb->s_flags & MS_RDONLY) { 2568 ret = btrfs_commit_super(tree_root); 2569 if (ret) 2570 goto fail_trans_kthread; 2571 } 2572 } 2573 2574 ret = btrfs_find_orphan_roots(tree_root); 2575 if (ret) 2576 goto fail_trans_kthread; 2577 2578 if (!(sb->s_flags & MS_RDONLY)) { 2579 ret = btrfs_cleanup_fs_roots(fs_info); 2580 if (ret) 2581 goto fail_trans_kthread; 2582 2583 ret = btrfs_recover_relocation(tree_root); 2584 if (ret < 0) { 2585 printk(KERN_WARNING 2586 "btrfs: failed to recover relocation\n"); 2587 err = -EINVAL; 2588 goto fail_qgroup; 2589 } 2590 } 2591 2592 location.objectid = BTRFS_FS_TREE_OBJECTID; 2593 location.type = BTRFS_ROOT_ITEM_KEY; 2594 location.offset = (u64)-1; 2595 2596 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2597 if (!fs_info->fs_root) 2598 goto fail_qgroup; 2599 if (IS_ERR(fs_info->fs_root)) { 2600 err = PTR_ERR(fs_info->fs_root); 2601 goto fail_qgroup; 2602 } 2603 2604 if (sb->s_flags & MS_RDONLY) 2605 return 0; 2606 2607 down_read(&fs_info->cleanup_work_sem); 2608 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 2609 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 2610 up_read(&fs_info->cleanup_work_sem); 2611 close_ctree(tree_root); 2612 return ret; 2613 } 2614 up_read(&fs_info->cleanup_work_sem); 2615 2616 ret = btrfs_resume_balance_async(fs_info); 2617 if (ret) { 2618 printk(KERN_WARNING "btrfs: failed to resume balance\n"); 2619 close_ctree(tree_root); 2620 return ret; 2621 } 2622 2623 return 0; 2624 2625 fail_qgroup: 2626 btrfs_free_qgroup_config(fs_info); 2627 fail_trans_kthread: 2628 kthread_stop(fs_info->transaction_kthread); 2629 fail_cleaner: 2630 kthread_stop(fs_info->cleaner_kthread); 2631 2632 /* 2633 * make sure we're done with the btree inode before we stop our 2634 * kthreads 2635 */ 2636 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2637 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2638 2639 fail_block_groups: 2640 btrfs_free_block_groups(fs_info); 2641 2642 fail_tree_roots: 2643 free_root_pointers(fs_info, 1); 2644 2645 fail_sb_buffer: 2646 btrfs_stop_workers(&fs_info->generic_worker); 2647 btrfs_stop_workers(&fs_info->readahead_workers); 2648 btrfs_stop_workers(&fs_info->fixup_workers); 2649 btrfs_stop_workers(&fs_info->delalloc_workers); 2650 btrfs_stop_workers(&fs_info->workers); 2651 btrfs_stop_workers(&fs_info->endio_workers); 2652 btrfs_stop_workers(&fs_info->endio_meta_workers); 2653 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2654 btrfs_stop_workers(&fs_info->endio_write_workers); 2655 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2656 btrfs_stop_workers(&fs_info->submit_workers); 2657 btrfs_stop_workers(&fs_info->delayed_workers); 2658 btrfs_stop_workers(&fs_info->caching_workers); 2659 fail_alloc: 2660 fail_iput: 2661 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2662 2663 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2664 iput(fs_info->btree_inode); 2665 fail_bdi: 2666 bdi_destroy(&fs_info->bdi); 2667 fail_srcu: 2668 cleanup_srcu_struct(&fs_info->subvol_srcu); 2669 fail: 2670 btrfs_close_devices(fs_info->fs_devices); 2671 return err; 2672 2673 recovery_tree_root: 2674 if (!btrfs_test_opt(tree_root, RECOVERY)) 2675 goto fail_tree_roots; 2676 2677 free_root_pointers(fs_info, 0); 2678 2679 /* don't use the log in recovery mode, it won't be valid */ 2680 btrfs_set_super_log_root(disk_super, 0); 2681 2682 /* we can't trust the free space cache either */ 2683 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2684 2685 ret = next_root_backup(fs_info, fs_info->super_copy, 2686 &num_backups_tried, &backup_index); 2687 if (ret == -1) 2688 goto fail_block_groups; 2689 goto retry_root_backup; 2690 } 2691 2692 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 2693 { 2694 if (uptodate) { 2695 set_buffer_uptodate(bh); 2696 } else { 2697 struct btrfs_device *device = (struct btrfs_device *) 2698 bh->b_private; 2699 2700 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to " 2701 "I/O error on %s\n", 2702 rcu_str_deref(device->name)); 2703 /* note, we dont' set_buffer_write_io_error because we have 2704 * our own ways of dealing with the IO errors 2705 */ 2706 clear_buffer_uptodate(bh); 2707 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 2708 } 2709 unlock_buffer(bh); 2710 put_bh(bh); 2711 } 2712 2713 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 2714 { 2715 struct buffer_head *bh; 2716 struct buffer_head *latest = NULL; 2717 struct btrfs_super_block *super; 2718 int i; 2719 u64 transid = 0; 2720 u64 bytenr; 2721 2722 /* we would like to check all the supers, but that would make 2723 * a btrfs mount succeed after a mkfs from a different FS. 2724 * So, we need to add a special mount option to scan for 2725 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 2726 */ 2727 for (i = 0; i < 1; i++) { 2728 bytenr = btrfs_sb_offset(i); 2729 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 2730 break; 2731 bh = __bread(bdev, bytenr / 4096, 4096); 2732 if (!bh) 2733 continue; 2734 2735 super = (struct btrfs_super_block *)bh->b_data; 2736 if (btrfs_super_bytenr(super) != bytenr || 2737 strncmp((char *)(&super->magic), BTRFS_MAGIC, 2738 sizeof(super->magic))) { 2739 brelse(bh); 2740 continue; 2741 } 2742 2743 if (!latest || btrfs_super_generation(super) > transid) { 2744 brelse(latest); 2745 latest = bh; 2746 transid = btrfs_super_generation(super); 2747 } else { 2748 brelse(bh); 2749 } 2750 } 2751 return latest; 2752 } 2753 2754 /* 2755 * this should be called twice, once with wait == 0 and 2756 * once with wait == 1. When wait == 0 is done, all the buffer heads 2757 * we write are pinned. 2758 * 2759 * They are released when wait == 1 is done. 2760 * max_mirrors must be the same for both runs, and it indicates how 2761 * many supers on this one device should be written. 2762 * 2763 * max_mirrors == 0 means to write them all. 2764 */ 2765 static int write_dev_supers(struct btrfs_device *device, 2766 struct btrfs_super_block *sb, 2767 int do_barriers, int wait, int max_mirrors) 2768 { 2769 struct buffer_head *bh; 2770 int i; 2771 int ret; 2772 int errors = 0; 2773 u32 crc; 2774 u64 bytenr; 2775 2776 if (max_mirrors == 0) 2777 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2778 2779 for (i = 0; i < max_mirrors; i++) { 2780 bytenr = btrfs_sb_offset(i); 2781 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2782 break; 2783 2784 if (wait) { 2785 bh = __find_get_block(device->bdev, bytenr / 4096, 2786 BTRFS_SUPER_INFO_SIZE); 2787 BUG_ON(!bh); 2788 wait_on_buffer(bh); 2789 if (!buffer_uptodate(bh)) 2790 errors++; 2791 2792 /* drop our reference */ 2793 brelse(bh); 2794 2795 /* drop the reference from the wait == 0 run */ 2796 brelse(bh); 2797 continue; 2798 } else { 2799 btrfs_set_super_bytenr(sb, bytenr); 2800 2801 crc = ~(u32)0; 2802 crc = btrfs_csum_data(NULL, (char *)sb + 2803 BTRFS_CSUM_SIZE, crc, 2804 BTRFS_SUPER_INFO_SIZE - 2805 BTRFS_CSUM_SIZE); 2806 btrfs_csum_final(crc, sb->csum); 2807 2808 /* 2809 * one reference for us, and we leave it for the 2810 * caller 2811 */ 2812 bh = __getblk(device->bdev, bytenr / 4096, 2813 BTRFS_SUPER_INFO_SIZE); 2814 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2815 2816 /* one reference for submit_bh */ 2817 get_bh(bh); 2818 2819 set_buffer_uptodate(bh); 2820 lock_buffer(bh); 2821 bh->b_end_io = btrfs_end_buffer_write_sync; 2822 bh->b_private = device; 2823 } 2824 2825 /* 2826 * we fua the first super. The others we allow 2827 * to go down lazy. 2828 */ 2829 ret = btrfsic_submit_bh(WRITE_FUA, bh); 2830 if (ret) 2831 errors++; 2832 } 2833 return errors < i ? 0 : -1; 2834 } 2835 2836 /* 2837 * endio for the write_dev_flush, this will wake anyone waiting 2838 * for the barrier when it is done 2839 */ 2840 static void btrfs_end_empty_barrier(struct bio *bio, int err) 2841 { 2842 if (err) { 2843 if (err == -EOPNOTSUPP) 2844 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2845 clear_bit(BIO_UPTODATE, &bio->bi_flags); 2846 } 2847 if (bio->bi_private) 2848 complete(bio->bi_private); 2849 bio_put(bio); 2850 } 2851 2852 /* 2853 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 2854 * sent down. With wait == 1, it waits for the previous flush. 2855 * 2856 * any device where the flush fails with eopnotsupp are flagged as not-barrier 2857 * capable 2858 */ 2859 static int write_dev_flush(struct btrfs_device *device, int wait) 2860 { 2861 struct bio *bio; 2862 int ret = 0; 2863 2864 if (device->nobarriers) 2865 return 0; 2866 2867 if (wait) { 2868 bio = device->flush_bio; 2869 if (!bio) 2870 return 0; 2871 2872 wait_for_completion(&device->flush_wait); 2873 2874 if (bio_flagged(bio, BIO_EOPNOTSUPP)) { 2875 printk_in_rcu("btrfs: disabling barriers on dev %s\n", 2876 rcu_str_deref(device->name)); 2877 device->nobarriers = 1; 2878 } 2879 if (!bio_flagged(bio, BIO_UPTODATE)) { 2880 ret = -EIO; 2881 if (!bio_flagged(bio, BIO_EOPNOTSUPP)) 2882 btrfs_dev_stat_inc_and_print(device, 2883 BTRFS_DEV_STAT_FLUSH_ERRS); 2884 } 2885 2886 /* drop the reference from the wait == 0 run */ 2887 bio_put(bio); 2888 device->flush_bio = NULL; 2889 2890 return ret; 2891 } 2892 2893 /* 2894 * one reference for us, and we leave it for the 2895 * caller 2896 */ 2897 device->flush_bio = NULL; 2898 bio = bio_alloc(GFP_NOFS, 0); 2899 if (!bio) 2900 return -ENOMEM; 2901 2902 bio->bi_end_io = btrfs_end_empty_barrier; 2903 bio->bi_bdev = device->bdev; 2904 init_completion(&device->flush_wait); 2905 bio->bi_private = &device->flush_wait; 2906 device->flush_bio = bio; 2907 2908 bio_get(bio); 2909 btrfsic_submit_bio(WRITE_FLUSH, bio); 2910 2911 return 0; 2912 } 2913 2914 /* 2915 * send an empty flush down to each device in parallel, 2916 * then wait for them 2917 */ 2918 static int barrier_all_devices(struct btrfs_fs_info *info) 2919 { 2920 struct list_head *head; 2921 struct btrfs_device *dev; 2922 int errors = 0; 2923 int ret; 2924 2925 /* send down all the barriers */ 2926 head = &info->fs_devices->devices; 2927 list_for_each_entry_rcu(dev, head, dev_list) { 2928 if (!dev->bdev) { 2929 errors++; 2930 continue; 2931 } 2932 if (!dev->in_fs_metadata || !dev->writeable) 2933 continue; 2934 2935 ret = write_dev_flush(dev, 0); 2936 if (ret) 2937 errors++; 2938 } 2939 2940 /* wait for all the barriers */ 2941 list_for_each_entry_rcu(dev, head, dev_list) { 2942 if (!dev->bdev) { 2943 errors++; 2944 continue; 2945 } 2946 if (!dev->in_fs_metadata || !dev->writeable) 2947 continue; 2948 2949 ret = write_dev_flush(dev, 1); 2950 if (ret) 2951 errors++; 2952 } 2953 if (errors) 2954 return -EIO; 2955 return 0; 2956 } 2957 2958 int write_all_supers(struct btrfs_root *root, int max_mirrors) 2959 { 2960 struct list_head *head; 2961 struct btrfs_device *dev; 2962 struct btrfs_super_block *sb; 2963 struct btrfs_dev_item *dev_item; 2964 int ret; 2965 int do_barriers; 2966 int max_errors; 2967 int total_errors = 0; 2968 u64 flags; 2969 2970 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 2971 do_barriers = !btrfs_test_opt(root, NOBARRIER); 2972 backup_super_roots(root->fs_info); 2973 2974 sb = root->fs_info->super_for_commit; 2975 dev_item = &sb->dev_item; 2976 2977 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2978 head = &root->fs_info->fs_devices->devices; 2979 2980 if (do_barriers) 2981 barrier_all_devices(root->fs_info); 2982 2983 list_for_each_entry_rcu(dev, head, dev_list) { 2984 if (!dev->bdev) { 2985 total_errors++; 2986 continue; 2987 } 2988 if (!dev->in_fs_metadata || !dev->writeable) 2989 continue; 2990 2991 btrfs_set_stack_device_generation(dev_item, 0); 2992 btrfs_set_stack_device_type(dev_item, dev->type); 2993 btrfs_set_stack_device_id(dev_item, dev->devid); 2994 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 2995 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 2996 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 2997 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 2998 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 2999 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3000 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3001 3002 flags = btrfs_super_flags(sb); 3003 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3004 3005 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3006 if (ret) 3007 total_errors++; 3008 } 3009 if (total_errors > max_errors) { 3010 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 3011 total_errors); 3012 3013 /* This shouldn't happen. FUA is masked off if unsupported */ 3014 BUG(); 3015 } 3016 3017 total_errors = 0; 3018 list_for_each_entry_rcu(dev, head, dev_list) { 3019 if (!dev->bdev) 3020 continue; 3021 if (!dev->in_fs_metadata || !dev->writeable) 3022 continue; 3023 3024 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3025 if (ret) 3026 total_errors++; 3027 } 3028 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3029 if (total_errors > max_errors) { 3030 btrfs_error(root->fs_info, -EIO, 3031 "%d errors while writing supers", total_errors); 3032 return -EIO; 3033 } 3034 return 0; 3035 } 3036 3037 int write_ctree_super(struct btrfs_trans_handle *trans, 3038 struct btrfs_root *root, int max_mirrors) 3039 { 3040 int ret; 3041 3042 ret = write_all_supers(root, max_mirrors); 3043 return ret; 3044 } 3045 3046 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 3047 { 3048 spin_lock(&fs_info->fs_roots_radix_lock); 3049 radix_tree_delete(&fs_info->fs_roots_radix, 3050 (unsigned long)root->root_key.objectid); 3051 spin_unlock(&fs_info->fs_roots_radix_lock); 3052 3053 if (btrfs_root_refs(&root->root_item) == 0) 3054 synchronize_srcu(&fs_info->subvol_srcu); 3055 3056 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3057 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3058 free_fs_root(root); 3059 } 3060 3061 static void free_fs_root(struct btrfs_root *root) 3062 { 3063 iput(root->cache_inode); 3064 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3065 if (root->anon_dev) 3066 free_anon_bdev(root->anon_dev); 3067 free_extent_buffer(root->node); 3068 free_extent_buffer(root->commit_root); 3069 kfree(root->free_ino_ctl); 3070 kfree(root->free_ino_pinned); 3071 kfree(root->name); 3072 kfree(root); 3073 } 3074 3075 static void del_fs_roots(struct btrfs_fs_info *fs_info) 3076 { 3077 int ret; 3078 struct btrfs_root *gang[8]; 3079 int i; 3080 3081 while (!list_empty(&fs_info->dead_roots)) { 3082 gang[0] = list_entry(fs_info->dead_roots.next, 3083 struct btrfs_root, root_list); 3084 list_del(&gang[0]->root_list); 3085 3086 if (gang[0]->in_radix) { 3087 btrfs_free_fs_root(fs_info, gang[0]); 3088 } else { 3089 free_extent_buffer(gang[0]->node); 3090 free_extent_buffer(gang[0]->commit_root); 3091 kfree(gang[0]); 3092 } 3093 } 3094 3095 while (1) { 3096 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3097 (void **)gang, 0, 3098 ARRAY_SIZE(gang)); 3099 if (!ret) 3100 break; 3101 for (i = 0; i < ret; i++) 3102 btrfs_free_fs_root(fs_info, gang[i]); 3103 } 3104 } 3105 3106 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3107 { 3108 u64 root_objectid = 0; 3109 struct btrfs_root *gang[8]; 3110 int i; 3111 int ret; 3112 3113 while (1) { 3114 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3115 (void **)gang, root_objectid, 3116 ARRAY_SIZE(gang)); 3117 if (!ret) 3118 break; 3119 3120 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3121 for (i = 0; i < ret; i++) { 3122 int err; 3123 3124 root_objectid = gang[i]->root_key.objectid; 3125 err = btrfs_orphan_cleanup(gang[i]); 3126 if (err) 3127 return err; 3128 } 3129 root_objectid++; 3130 } 3131 return 0; 3132 } 3133 3134 int btrfs_commit_super(struct btrfs_root *root) 3135 { 3136 struct btrfs_trans_handle *trans; 3137 int ret; 3138 3139 mutex_lock(&root->fs_info->cleaner_mutex); 3140 btrfs_run_delayed_iputs(root); 3141 btrfs_clean_old_snapshots(root); 3142 mutex_unlock(&root->fs_info->cleaner_mutex); 3143 3144 /* wait until ongoing cleanup work done */ 3145 down_write(&root->fs_info->cleanup_work_sem); 3146 up_write(&root->fs_info->cleanup_work_sem); 3147 3148 trans = btrfs_join_transaction(root); 3149 if (IS_ERR(trans)) 3150 return PTR_ERR(trans); 3151 ret = btrfs_commit_transaction(trans, root); 3152 if (ret) 3153 return ret; 3154 /* run commit again to drop the original snapshot */ 3155 trans = btrfs_join_transaction(root); 3156 if (IS_ERR(trans)) 3157 return PTR_ERR(trans); 3158 ret = btrfs_commit_transaction(trans, root); 3159 if (ret) 3160 return ret; 3161 ret = btrfs_write_and_wait_transaction(NULL, root); 3162 if (ret) { 3163 btrfs_error(root->fs_info, ret, 3164 "Failed to sync btree inode to disk."); 3165 return ret; 3166 } 3167 3168 ret = write_ctree_super(NULL, root, 0); 3169 return ret; 3170 } 3171 3172 int close_ctree(struct btrfs_root *root) 3173 { 3174 struct btrfs_fs_info *fs_info = root->fs_info; 3175 int ret; 3176 3177 fs_info->closing = 1; 3178 smp_mb(); 3179 3180 /* pause restriper - we want to resume on mount */ 3181 btrfs_pause_balance(root->fs_info); 3182 3183 btrfs_scrub_cancel(root); 3184 3185 /* wait for any defraggers to finish */ 3186 wait_event(fs_info->transaction_wait, 3187 (atomic_read(&fs_info->defrag_running) == 0)); 3188 3189 /* clear out the rbtree of defraggable inodes */ 3190 btrfs_run_defrag_inodes(fs_info); 3191 3192 /* 3193 * Here come 2 situations when btrfs is broken to flip readonly: 3194 * 3195 * 1. when btrfs flips readonly somewhere else before 3196 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag, 3197 * and btrfs will skip to write sb directly to keep 3198 * ERROR state on disk. 3199 * 3200 * 2. when btrfs flips readonly just in btrfs_commit_super, 3201 * and in such case, btrfs cannot write sb via btrfs_commit_super, 3202 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag, 3203 * btrfs will cleanup all FS resources first and write sb then. 3204 */ 3205 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3206 ret = btrfs_commit_super(root); 3207 if (ret) 3208 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 3209 } 3210 3211 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 3212 ret = btrfs_error_commit_super(root); 3213 if (ret) 3214 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 3215 } 3216 3217 btrfs_put_block_group_cache(fs_info); 3218 3219 kthread_stop(fs_info->transaction_kthread); 3220 kthread_stop(fs_info->cleaner_kthread); 3221 3222 fs_info->closing = 2; 3223 smp_mb(); 3224 3225 btrfs_free_qgroup_config(root->fs_info); 3226 3227 if (fs_info->delalloc_bytes) { 3228 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 3229 (unsigned long long)fs_info->delalloc_bytes); 3230 } 3231 if (fs_info->total_ref_cache_size) { 3232 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", 3233 (unsigned long long)fs_info->total_ref_cache_size); 3234 } 3235 3236 free_extent_buffer(fs_info->extent_root->node); 3237 free_extent_buffer(fs_info->extent_root->commit_root); 3238 free_extent_buffer(fs_info->tree_root->node); 3239 free_extent_buffer(fs_info->tree_root->commit_root); 3240 free_extent_buffer(fs_info->chunk_root->node); 3241 free_extent_buffer(fs_info->chunk_root->commit_root); 3242 free_extent_buffer(fs_info->dev_root->node); 3243 free_extent_buffer(fs_info->dev_root->commit_root); 3244 free_extent_buffer(fs_info->csum_root->node); 3245 free_extent_buffer(fs_info->csum_root->commit_root); 3246 if (fs_info->quota_root) { 3247 free_extent_buffer(fs_info->quota_root->node); 3248 free_extent_buffer(fs_info->quota_root->commit_root); 3249 } 3250 3251 btrfs_free_block_groups(fs_info); 3252 3253 del_fs_roots(fs_info); 3254 3255 iput(fs_info->btree_inode); 3256 3257 btrfs_stop_workers(&fs_info->generic_worker); 3258 btrfs_stop_workers(&fs_info->fixup_workers); 3259 btrfs_stop_workers(&fs_info->delalloc_workers); 3260 btrfs_stop_workers(&fs_info->workers); 3261 btrfs_stop_workers(&fs_info->endio_workers); 3262 btrfs_stop_workers(&fs_info->endio_meta_workers); 3263 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 3264 btrfs_stop_workers(&fs_info->endio_write_workers); 3265 btrfs_stop_workers(&fs_info->endio_freespace_worker); 3266 btrfs_stop_workers(&fs_info->submit_workers); 3267 btrfs_stop_workers(&fs_info->delayed_workers); 3268 btrfs_stop_workers(&fs_info->caching_workers); 3269 btrfs_stop_workers(&fs_info->readahead_workers); 3270 3271 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3272 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3273 btrfsic_unmount(root, fs_info->fs_devices); 3274 #endif 3275 3276 btrfs_close_devices(fs_info->fs_devices); 3277 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3278 3279 bdi_destroy(&fs_info->bdi); 3280 cleanup_srcu_struct(&fs_info->subvol_srcu); 3281 3282 return 0; 3283 } 3284 3285 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3286 int atomic) 3287 { 3288 int ret; 3289 struct inode *btree_inode = buf->pages[0]->mapping->host; 3290 3291 ret = extent_buffer_uptodate(buf); 3292 if (!ret) 3293 return ret; 3294 3295 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3296 parent_transid, atomic); 3297 if (ret == -EAGAIN) 3298 return ret; 3299 return !ret; 3300 } 3301 3302 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3303 { 3304 return set_extent_buffer_uptodate(buf); 3305 } 3306 3307 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3308 { 3309 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3310 u64 transid = btrfs_header_generation(buf); 3311 int was_dirty; 3312 3313 btrfs_assert_tree_locked(buf); 3314 if (transid != root->fs_info->generation) { 3315 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 3316 "found %llu running %llu\n", 3317 (unsigned long long)buf->start, 3318 (unsigned long long)transid, 3319 (unsigned long long)root->fs_info->generation); 3320 WARN_ON(1); 3321 } 3322 was_dirty = set_extent_buffer_dirty(buf); 3323 if (!was_dirty) { 3324 spin_lock(&root->fs_info->delalloc_lock); 3325 root->fs_info->dirty_metadata_bytes += buf->len; 3326 spin_unlock(&root->fs_info->delalloc_lock); 3327 } 3328 } 3329 3330 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 3331 { 3332 /* 3333 * looks as though older kernels can get into trouble with 3334 * this code, they end up stuck in balance_dirty_pages forever 3335 */ 3336 u64 num_dirty; 3337 unsigned long thresh = 32 * 1024 * 1024; 3338 3339 if (current->flags & PF_MEMALLOC) 3340 return; 3341 3342 btrfs_balance_delayed_items(root); 3343 3344 num_dirty = root->fs_info->dirty_metadata_bytes; 3345 3346 if (num_dirty > thresh) { 3347 balance_dirty_pages_ratelimited_nr( 3348 root->fs_info->btree_inode->i_mapping, 1); 3349 } 3350 return; 3351 } 3352 3353 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 3354 { 3355 /* 3356 * looks as though older kernels can get into trouble with 3357 * this code, they end up stuck in balance_dirty_pages forever 3358 */ 3359 u64 num_dirty; 3360 unsigned long thresh = 32 * 1024 * 1024; 3361 3362 if (current->flags & PF_MEMALLOC) 3363 return; 3364 3365 num_dirty = root->fs_info->dirty_metadata_bytes; 3366 3367 if (num_dirty > thresh) { 3368 balance_dirty_pages_ratelimited_nr( 3369 root->fs_info->btree_inode->i_mapping, 1); 3370 } 3371 return; 3372 } 3373 3374 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3375 { 3376 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3377 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3378 } 3379 3380 int btree_lock_page_hook(struct page *page, void *data, 3381 void (*flush_fn)(void *)) 3382 { 3383 struct inode *inode = page->mapping->host; 3384 struct btrfs_root *root = BTRFS_I(inode)->root; 3385 struct extent_buffer *eb; 3386 3387 /* 3388 * We culled this eb but the page is still hanging out on the mapping, 3389 * carry on. 3390 */ 3391 if (!PagePrivate(page)) 3392 goto out; 3393 3394 eb = (struct extent_buffer *)page->private; 3395 if (!eb) { 3396 WARN_ON(1); 3397 goto out; 3398 } 3399 if (page != eb->pages[0]) 3400 goto out; 3401 3402 if (!btrfs_try_tree_write_lock(eb)) { 3403 flush_fn(data); 3404 btrfs_tree_lock(eb); 3405 } 3406 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3407 3408 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3409 spin_lock(&root->fs_info->delalloc_lock); 3410 if (root->fs_info->dirty_metadata_bytes >= eb->len) 3411 root->fs_info->dirty_metadata_bytes -= eb->len; 3412 else 3413 WARN_ON(1); 3414 spin_unlock(&root->fs_info->delalloc_lock); 3415 } 3416 3417 btrfs_tree_unlock(eb); 3418 out: 3419 if (!trylock_page(page)) { 3420 flush_fn(data); 3421 lock_page(page); 3422 } 3423 return 0; 3424 } 3425 3426 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3427 int read_only) 3428 { 3429 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) { 3430 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n"); 3431 return -EINVAL; 3432 } 3433 3434 if (read_only) 3435 return 0; 3436 3437 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 3438 printk(KERN_WARNING "warning: mount fs with errors, " 3439 "running btrfsck is recommended\n"); 3440 } 3441 3442 return 0; 3443 } 3444 3445 int btrfs_error_commit_super(struct btrfs_root *root) 3446 { 3447 int ret; 3448 3449 mutex_lock(&root->fs_info->cleaner_mutex); 3450 btrfs_run_delayed_iputs(root); 3451 mutex_unlock(&root->fs_info->cleaner_mutex); 3452 3453 down_write(&root->fs_info->cleanup_work_sem); 3454 up_write(&root->fs_info->cleanup_work_sem); 3455 3456 /* cleanup FS via transaction */ 3457 btrfs_cleanup_transaction(root); 3458 3459 ret = write_ctree_super(NULL, root, 0); 3460 3461 return ret; 3462 } 3463 3464 static void btrfs_destroy_ordered_operations(struct btrfs_root *root) 3465 { 3466 struct btrfs_inode *btrfs_inode; 3467 struct list_head splice; 3468 3469 INIT_LIST_HEAD(&splice); 3470 3471 mutex_lock(&root->fs_info->ordered_operations_mutex); 3472 spin_lock(&root->fs_info->ordered_extent_lock); 3473 3474 list_splice_init(&root->fs_info->ordered_operations, &splice); 3475 while (!list_empty(&splice)) { 3476 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3477 ordered_operations); 3478 3479 list_del_init(&btrfs_inode->ordered_operations); 3480 3481 btrfs_invalidate_inodes(btrfs_inode->root); 3482 } 3483 3484 spin_unlock(&root->fs_info->ordered_extent_lock); 3485 mutex_unlock(&root->fs_info->ordered_operations_mutex); 3486 } 3487 3488 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 3489 { 3490 struct list_head splice; 3491 struct btrfs_ordered_extent *ordered; 3492 struct inode *inode; 3493 3494 INIT_LIST_HEAD(&splice); 3495 3496 spin_lock(&root->fs_info->ordered_extent_lock); 3497 3498 list_splice_init(&root->fs_info->ordered_extents, &splice); 3499 while (!list_empty(&splice)) { 3500 ordered = list_entry(splice.next, struct btrfs_ordered_extent, 3501 root_extent_list); 3502 3503 list_del_init(&ordered->root_extent_list); 3504 atomic_inc(&ordered->refs); 3505 3506 /* the inode may be getting freed (in sys_unlink path). */ 3507 inode = igrab(ordered->inode); 3508 3509 spin_unlock(&root->fs_info->ordered_extent_lock); 3510 if (inode) 3511 iput(inode); 3512 3513 atomic_set(&ordered->refs, 1); 3514 btrfs_put_ordered_extent(ordered); 3515 3516 spin_lock(&root->fs_info->ordered_extent_lock); 3517 } 3518 3519 spin_unlock(&root->fs_info->ordered_extent_lock); 3520 } 3521 3522 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 3523 struct btrfs_root *root) 3524 { 3525 struct rb_node *node; 3526 struct btrfs_delayed_ref_root *delayed_refs; 3527 struct btrfs_delayed_ref_node *ref; 3528 int ret = 0; 3529 3530 delayed_refs = &trans->delayed_refs; 3531 3532 spin_lock(&delayed_refs->lock); 3533 if (delayed_refs->num_entries == 0) { 3534 spin_unlock(&delayed_refs->lock); 3535 printk(KERN_INFO "delayed_refs has NO entry\n"); 3536 return ret; 3537 } 3538 3539 while ((node = rb_first(&delayed_refs->root)) != NULL) { 3540 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 3541 3542 atomic_set(&ref->refs, 1); 3543 if (btrfs_delayed_ref_is_head(ref)) { 3544 struct btrfs_delayed_ref_head *head; 3545 3546 head = btrfs_delayed_node_to_head(ref); 3547 if (!mutex_trylock(&head->mutex)) { 3548 atomic_inc(&ref->refs); 3549 spin_unlock(&delayed_refs->lock); 3550 3551 /* Need to wait for the delayed ref to run */ 3552 mutex_lock(&head->mutex); 3553 mutex_unlock(&head->mutex); 3554 btrfs_put_delayed_ref(ref); 3555 3556 spin_lock(&delayed_refs->lock); 3557 continue; 3558 } 3559 3560 kfree(head->extent_op); 3561 delayed_refs->num_heads--; 3562 if (list_empty(&head->cluster)) 3563 delayed_refs->num_heads_ready--; 3564 list_del_init(&head->cluster); 3565 } 3566 ref->in_tree = 0; 3567 rb_erase(&ref->rb_node, &delayed_refs->root); 3568 delayed_refs->num_entries--; 3569 3570 spin_unlock(&delayed_refs->lock); 3571 btrfs_put_delayed_ref(ref); 3572 3573 cond_resched(); 3574 spin_lock(&delayed_refs->lock); 3575 } 3576 3577 spin_unlock(&delayed_refs->lock); 3578 3579 return ret; 3580 } 3581 3582 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t) 3583 { 3584 struct btrfs_pending_snapshot *snapshot; 3585 struct list_head splice; 3586 3587 INIT_LIST_HEAD(&splice); 3588 3589 list_splice_init(&t->pending_snapshots, &splice); 3590 3591 while (!list_empty(&splice)) { 3592 snapshot = list_entry(splice.next, 3593 struct btrfs_pending_snapshot, 3594 list); 3595 3596 list_del_init(&snapshot->list); 3597 3598 kfree(snapshot); 3599 } 3600 } 3601 3602 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 3603 { 3604 struct btrfs_inode *btrfs_inode; 3605 struct list_head splice; 3606 3607 INIT_LIST_HEAD(&splice); 3608 3609 spin_lock(&root->fs_info->delalloc_lock); 3610 list_splice_init(&root->fs_info->delalloc_inodes, &splice); 3611 3612 while (!list_empty(&splice)) { 3613 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3614 delalloc_inodes); 3615 3616 list_del_init(&btrfs_inode->delalloc_inodes); 3617 3618 btrfs_invalidate_inodes(btrfs_inode->root); 3619 } 3620 3621 spin_unlock(&root->fs_info->delalloc_lock); 3622 } 3623 3624 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 3625 struct extent_io_tree *dirty_pages, 3626 int mark) 3627 { 3628 int ret; 3629 struct page *page; 3630 struct inode *btree_inode = root->fs_info->btree_inode; 3631 struct extent_buffer *eb; 3632 u64 start = 0; 3633 u64 end; 3634 u64 offset; 3635 unsigned long index; 3636 3637 while (1) { 3638 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 3639 mark); 3640 if (ret) 3641 break; 3642 3643 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 3644 while (start <= end) { 3645 index = start >> PAGE_CACHE_SHIFT; 3646 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 3647 page = find_get_page(btree_inode->i_mapping, index); 3648 if (!page) 3649 continue; 3650 offset = page_offset(page); 3651 3652 spin_lock(&dirty_pages->buffer_lock); 3653 eb = radix_tree_lookup( 3654 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer, 3655 offset >> PAGE_CACHE_SHIFT); 3656 spin_unlock(&dirty_pages->buffer_lock); 3657 if (eb) 3658 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY, 3659 &eb->bflags); 3660 if (PageWriteback(page)) 3661 end_page_writeback(page); 3662 3663 lock_page(page); 3664 if (PageDirty(page)) { 3665 clear_page_dirty_for_io(page); 3666 spin_lock_irq(&page->mapping->tree_lock); 3667 radix_tree_tag_clear(&page->mapping->page_tree, 3668 page_index(page), 3669 PAGECACHE_TAG_DIRTY); 3670 spin_unlock_irq(&page->mapping->tree_lock); 3671 } 3672 3673 unlock_page(page); 3674 page_cache_release(page); 3675 } 3676 } 3677 3678 return ret; 3679 } 3680 3681 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 3682 struct extent_io_tree *pinned_extents) 3683 { 3684 struct extent_io_tree *unpin; 3685 u64 start; 3686 u64 end; 3687 int ret; 3688 bool loop = true; 3689 3690 unpin = pinned_extents; 3691 again: 3692 while (1) { 3693 ret = find_first_extent_bit(unpin, 0, &start, &end, 3694 EXTENT_DIRTY); 3695 if (ret) 3696 break; 3697 3698 /* opt_discard */ 3699 if (btrfs_test_opt(root, DISCARD)) 3700 ret = btrfs_error_discard_extent(root, start, 3701 end + 1 - start, 3702 NULL); 3703 3704 clear_extent_dirty(unpin, start, end, GFP_NOFS); 3705 btrfs_error_unpin_extent_range(root, start, end); 3706 cond_resched(); 3707 } 3708 3709 if (loop) { 3710 if (unpin == &root->fs_info->freed_extents[0]) 3711 unpin = &root->fs_info->freed_extents[1]; 3712 else 3713 unpin = &root->fs_info->freed_extents[0]; 3714 loop = false; 3715 goto again; 3716 } 3717 3718 return 0; 3719 } 3720 3721 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 3722 struct btrfs_root *root) 3723 { 3724 btrfs_destroy_delayed_refs(cur_trans, root); 3725 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 3726 cur_trans->dirty_pages.dirty_bytes); 3727 3728 /* FIXME: cleanup wait for commit */ 3729 cur_trans->in_commit = 1; 3730 cur_trans->blocked = 1; 3731 wake_up(&root->fs_info->transaction_blocked_wait); 3732 3733 cur_trans->blocked = 0; 3734 wake_up(&root->fs_info->transaction_wait); 3735 3736 cur_trans->commit_done = 1; 3737 wake_up(&cur_trans->commit_wait); 3738 3739 btrfs_destroy_delayed_inodes(root); 3740 btrfs_assert_delayed_root_empty(root); 3741 3742 btrfs_destroy_pending_snapshots(cur_trans); 3743 3744 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 3745 EXTENT_DIRTY); 3746 btrfs_destroy_pinned_extent(root, 3747 root->fs_info->pinned_extents); 3748 3749 /* 3750 memset(cur_trans, 0, sizeof(*cur_trans)); 3751 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 3752 */ 3753 } 3754 3755 int btrfs_cleanup_transaction(struct btrfs_root *root) 3756 { 3757 struct btrfs_transaction *t; 3758 LIST_HEAD(list); 3759 3760 mutex_lock(&root->fs_info->transaction_kthread_mutex); 3761 3762 spin_lock(&root->fs_info->trans_lock); 3763 list_splice_init(&root->fs_info->trans_list, &list); 3764 root->fs_info->trans_no_join = 1; 3765 spin_unlock(&root->fs_info->trans_lock); 3766 3767 while (!list_empty(&list)) { 3768 t = list_entry(list.next, struct btrfs_transaction, list); 3769 if (!t) 3770 break; 3771 3772 btrfs_destroy_ordered_operations(root); 3773 3774 btrfs_destroy_ordered_extents(root); 3775 3776 btrfs_destroy_delayed_refs(t, root); 3777 3778 btrfs_block_rsv_release(root, 3779 &root->fs_info->trans_block_rsv, 3780 t->dirty_pages.dirty_bytes); 3781 3782 /* FIXME: cleanup wait for commit */ 3783 t->in_commit = 1; 3784 t->blocked = 1; 3785 if (waitqueue_active(&root->fs_info->transaction_blocked_wait)) 3786 wake_up(&root->fs_info->transaction_blocked_wait); 3787 3788 t->blocked = 0; 3789 if (waitqueue_active(&root->fs_info->transaction_wait)) 3790 wake_up(&root->fs_info->transaction_wait); 3791 3792 t->commit_done = 1; 3793 if (waitqueue_active(&t->commit_wait)) 3794 wake_up(&t->commit_wait); 3795 3796 btrfs_destroy_delayed_inodes(root); 3797 btrfs_assert_delayed_root_empty(root); 3798 3799 btrfs_destroy_pending_snapshots(t); 3800 3801 btrfs_destroy_delalloc_inodes(root); 3802 3803 spin_lock(&root->fs_info->trans_lock); 3804 root->fs_info->running_transaction = NULL; 3805 spin_unlock(&root->fs_info->trans_lock); 3806 3807 btrfs_destroy_marked_extents(root, &t->dirty_pages, 3808 EXTENT_DIRTY); 3809 3810 btrfs_destroy_pinned_extent(root, 3811 root->fs_info->pinned_extents); 3812 3813 atomic_set(&t->use_count, 0); 3814 list_del_init(&t->list); 3815 memset(t, 0, sizeof(*t)); 3816 kmem_cache_free(btrfs_transaction_cachep, t); 3817 } 3818 3819 spin_lock(&root->fs_info->trans_lock); 3820 root->fs_info->trans_no_join = 0; 3821 spin_unlock(&root->fs_info->trans_lock); 3822 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 3823 3824 return 0; 3825 } 3826 3827 static struct extent_io_ops btree_extent_io_ops = { 3828 .write_cache_pages_lock_hook = btree_lock_page_hook, 3829 .readpage_end_io_hook = btree_readpage_end_io_hook, 3830 .readpage_io_failed_hook = btree_io_failed_hook, 3831 .submit_bio_hook = btree_submit_bio_hook, 3832 /* note we're sharing with inode.c for the merge bio hook */ 3833 .merge_bio_hook = btrfs_merge_bio_hook, 3834 }; 3835