xref: /linux/fs/btrfs/disk-io.c (revision 25aee3debe0464f6c680173041fa3de30ec9ff54)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 
49 static struct extent_io_ops btree_extent_io_ops;
50 static void end_workqueue_fn(struct btrfs_work *work);
51 static void free_fs_root(struct btrfs_root *root);
52 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
53 				    int read_only);
54 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 				      struct btrfs_root *root);
58 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
60 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
61 					struct extent_io_tree *dirty_pages,
62 					int mark);
63 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
64 				       struct extent_io_tree *pinned_extents);
65 
66 /*
67  * end_io_wq structs are used to do processing in task context when an IO is
68  * complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct end_io_wq {
72 	struct bio *bio;
73 	bio_end_io_t *end_io;
74 	void *private;
75 	struct btrfs_fs_info *info;
76 	int error;
77 	int metadata;
78 	struct list_head list;
79 	struct btrfs_work work;
80 };
81 
82 /*
83  * async submit bios are used to offload expensive checksumming
84  * onto the worker threads.  They checksum file and metadata bios
85  * just before they are sent down the IO stack.
86  */
87 struct async_submit_bio {
88 	struct inode *inode;
89 	struct bio *bio;
90 	struct list_head list;
91 	extent_submit_bio_hook_t *submit_bio_start;
92 	extent_submit_bio_hook_t *submit_bio_done;
93 	int rw;
94 	int mirror_num;
95 	unsigned long bio_flags;
96 	/*
97 	 * bio_offset is optional, can be used if the pages in the bio
98 	 * can't tell us where in the file the bio should go
99 	 */
100 	u64 bio_offset;
101 	struct btrfs_work work;
102 	int error;
103 };
104 
105 /*
106  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
107  * eb, the lockdep key is determined by the btrfs_root it belongs to and
108  * the level the eb occupies in the tree.
109  *
110  * Different roots are used for different purposes and may nest inside each
111  * other and they require separate keysets.  As lockdep keys should be
112  * static, assign keysets according to the purpose of the root as indicated
113  * by btrfs_root->objectid.  This ensures that all special purpose roots
114  * have separate keysets.
115  *
116  * Lock-nesting across peer nodes is always done with the immediate parent
117  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
118  * subclass to avoid triggering lockdep warning in such cases.
119  *
120  * The key is set by the readpage_end_io_hook after the buffer has passed
121  * csum validation but before the pages are unlocked.  It is also set by
122  * btrfs_init_new_buffer on freshly allocated blocks.
123  *
124  * We also add a check to make sure the highest level of the tree is the
125  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
126  * needs update as well.
127  */
128 #ifdef CONFIG_DEBUG_LOCK_ALLOC
129 # if BTRFS_MAX_LEVEL != 8
130 #  error
131 # endif
132 
133 static struct btrfs_lockdep_keyset {
134 	u64			id;		/* root objectid */
135 	const char		*name_stem;	/* lock name stem */
136 	char			names[BTRFS_MAX_LEVEL + 1][20];
137 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
138 } btrfs_lockdep_keysets[] = {
139 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
140 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
141 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
142 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
143 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
144 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
145 	{ .id = BTRFS_ORPHAN_OBJECTID,		.name_stem = "orphan"	},
146 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
147 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
148 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
149 	{ .id = 0,				.name_stem = "tree"	},
150 };
151 
152 void __init btrfs_init_lockdep(void)
153 {
154 	int i, j;
155 
156 	/* initialize lockdep class names */
157 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
158 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
159 
160 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
161 			snprintf(ks->names[j], sizeof(ks->names[j]),
162 				 "btrfs-%s-%02d", ks->name_stem, j);
163 	}
164 }
165 
166 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
167 				    int level)
168 {
169 	struct btrfs_lockdep_keyset *ks;
170 
171 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
172 
173 	/* find the matching keyset, id 0 is the default entry */
174 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
175 		if (ks->id == objectid)
176 			break;
177 
178 	lockdep_set_class_and_name(&eb->lock,
179 				   &ks->keys[level], ks->names[level]);
180 }
181 
182 #endif
183 
184 /*
185  * extents on the btree inode are pretty simple, there's one extent
186  * that covers the entire device
187  */
188 static struct extent_map *btree_get_extent(struct inode *inode,
189 		struct page *page, size_t pg_offset, u64 start, u64 len,
190 		int create)
191 {
192 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
193 	struct extent_map *em;
194 	int ret;
195 
196 	read_lock(&em_tree->lock);
197 	em = lookup_extent_mapping(em_tree, start, len);
198 	if (em) {
199 		em->bdev =
200 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
201 		read_unlock(&em_tree->lock);
202 		goto out;
203 	}
204 	read_unlock(&em_tree->lock);
205 
206 	em = alloc_extent_map();
207 	if (!em) {
208 		em = ERR_PTR(-ENOMEM);
209 		goto out;
210 	}
211 	em->start = 0;
212 	em->len = (u64)-1;
213 	em->block_len = (u64)-1;
214 	em->block_start = 0;
215 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
216 
217 	write_lock(&em_tree->lock);
218 	ret = add_extent_mapping(em_tree, em);
219 	if (ret == -EEXIST) {
220 		u64 failed_start = em->start;
221 		u64 failed_len = em->len;
222 
223 		free_extent_map(em);
224 		em = lookup_extent_mapping(em_tree, start, len);
225 		if (em) {
226 			ret = 0;
227 		} else {
228 			em = lookup_extent_mapping(em_tree, failed_start,
229 						   failed_len);
230 			ret = -EIO;
231 		}
232 	} else if (ret) {
233 		free_extent_map(em);
234 		em = NULL;
235 	}
236 	write_unlock(&em_tree->lock);
237 
238 	if (ret)
239 		em = ERR_PTR(ret);
240 out:
241 	return em;
242 }
243 
244 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
245 {
246 	return crc32c(seed, data, len);
247 }
248 
249 void btrfs_csum_final(u32 crc, char *result)
250 {
251 	put_unaligned_le32(~crc, result);
252 }
253 
254 /*
255  * compute the csum for a btree block, and either verify it or write it
256  * into the csum field of the block.
257  */
258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 			   int verify)
260 {
261 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262 	char *result = NULL;
263 	unsigned long len;
264 	unsigned long cur_len;
265 	unsigned long offset = BTRFS_CSUM_SIZE;
266 	char *kaddr;
267 	unsigned long map_start;
268 	unsigned long map_len;
269 	int err;
270 	u32 crc = ~(u32)0;
271 	unsigned long inline_result;
272 
273 	len = buf->len - offset;
274 	while (len > 0) {
275 		err = map_private_extent_buffer(buf, offset, 32,
276 					&kaddr, &map_start, &map_len);
277 		if (err)
278 			return 1;
279 		cur_len = min(len, map_len - (offset - map_start));
280 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
281 				      crc, cur_len);
282 		len -= cur_len;
283 		offset += cur_len;
284 	}
285 	if (csum_size > sizeof(inline_result)) {
286 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 		if (!result)
288 			return 1;
289 	} else {
290 		result = (char *)&inline_result;
291 	}
292 
293 	btrfs_csum_final(crc, result);
294 
295 	if (verify) {
296 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297 			u32 val;
298 			u32 found = 0;
299 			memcpy(&found, result, csum_size);
300 
301 			read_extent_buffer(buf, &val, 0, csum_size);
302 			printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303 				       "failed on %llu wanted %X found %X "
304 				       "level %d\n",
305 				       root->fs_info->sb->s_id,
306 				       (unsigned long long)buf->start, val, found,
307 				       btrfs_header_level(buf));
308 			if (result != (char *)&inline_result)
309 				kfree(result);
310 			return 1;
311 		}
312 	} else {
313 		write_extent_buffer(buf, result, 0, csum_size);
314 	}
315 	if (result != (char *)&inline_result)
316 		kfree(result);
317 	return 0;
318 }
319 
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327 				 struct extent_buffer *eb, u64 parent_transid,
328 				 int atomic)
329 {
330 	struct extent_state *cached_state = NULL;
331 	int ret;
332 
333 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 		return 0;
335 
336 	if (atomic)
337 		return -EAGAIN;
338 
339 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340 			 0, &cached_state);
341 	if (extent_buffer_uptodate(eb) &&
342 	    btrfs_header_generation(eb) == parent_transid) {
343 		ret = 0;
344 		goto out;
345 	}
346 	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347 		       "found %llu\n",
348 		       (unsigned long long)eb->start,
349 		       (unsigned long long)parent_transid,
350 		       (unsigned long long)btrfs_header_generation(eb));
351 	ret = 1;
352 	clear_extent_buffer_uptodate(eb);
353 out:
354 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 			     &cached_state, GFP_NOFS);
356 	return ret;
357 }
358 
359 /*
360  * helper to read a given tree block, doing retries as required when
361  * the checksums don't match and we have alternate mirrors to try.
362  */
363 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
364 					  struct extent_buffer *eb,
365 					  u64 start, u64 parent_transid)
366 {
367 	struct extent_io_tree *io_tree;
368 	int failed = 0;
369 	int ret;
370 	int num_copies = 0;
371 	int mirror_num = 0;
372 	int failed_mirror = 0;
373 
374 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
375 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
376 	while (1) {
377 		ret = read_extent_buffer_pages(io_tree, eb, start,
378 					       WAIT_COMPLETE,
379 					       btree_get_extent, mirror_num);
380 		if (!ret && !verify_parent_transid(io_tree, eb,
381 						   parent_transid, 0))
382 			break;
383 
384 		/*
385 		 * This buffer's crc is fine, but its contents are corrupted, so
386 		 * there is no reason to read the other copies, they won't be
387 		 * any less wrong.
388 		 */
389 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
390 			break;
391 
392 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
393 					      eb->start, eb->len);
394 		if (num_copies == 1)
395 			break;
396 
397 		if (!failed_mirror) {
398 			failed = 1;
399 			failed_mirror = eb->read_mirror;
400 		}
401 
402 		mirror_num++;
403 		if (mirror_num == failed_mirror)
404 			mirror_num++;
405 
406 		if (mirror_num > num_copies)
407 			break;
408 	}
409 
410 	if (failed && !ret && failed_mirror)
411 		repair_eb_io_failure(root, eb, failed_mirror);
412 
413 	return ret;
414 }
415 
416 /*
417  * checksum a dirty tree block before IO.  This has extra checks to make sure
418  * we only fill in the checksum field in the first page of a multi-page block
419  */
420 
421 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
422 {
423 	struct extent_io_tree *tree;
424 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
425 	u64 found_start;
426 	struct extent_buffer *eb;
427 
428 	tree = &BTRFS_I(page->mapping->host)->io_tree;
429 
430 	eb = (struct extent_buffer *)page->private;
431 	if (page != eb->pages[0])
432 		return 0;
433 	found_start = btrfs_header_bytenr(eb);
434 	if (found_start != start) {
435 		WARN_ON(1);
436 		return 0;
437 	}
438 	if (eb->pages[0] != page) {
439 		WARN_ON(1);
440 		return 0;
441 	}
442 	if (!PageUptodate(page)) {
443 		WARN_ON(1);
444 		return 0;
445 	}
446 	csum_tree_block(root, eb, 0);
447 	return 0;
448 }
449 
450 static int check_tree_block_fsid(struct btrfs_root *root,
451 				 struct extent_buffer *eb)
452 {
453 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
454 	u8 fsid[BTRFS_UUID_SIZE];
455 	int ret = 1;
456 
457 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
458 			   BTRFS_FSID_SIZE);
459 	while (fs_devices) {
460 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
461 			ret = 0;
462 			break;
463 		}
464 		fs_devices = fs_devices->seed;
465 	}
466 	return ret;
467 }
468 
469 #define CORRUPT(reason, eb, root, slot)				\
470 	printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu,"	\
471 	       "root=%llu, slot=%d\n", reason,			\
472 	       (unsigned long long)btrfs_header_bytenr(eb),	\
473 	       (unsigned long long)root->objectid, slot)
474 
475 static noinline int check_leaf(struct btrfs_root *root,
476 			       struct extent_buffer *leaf)
477 {
478 	struct btrfs_key key;
479 	struct btrfs_key leaf_key;
480 	u32 nritems = btrfs_header_nritems(leaf);
481 	int slot;
482 
483 	if (nritems == 0)
484 		return 0;
485 
486 	/* Check the 0 item */
487 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
488 	    BTRFS_LEAF_DATA_SIZE(root)) {
489 		CORRUPT("invalid item offset size pair", leaf, root, 0);
490 		return -EIO;
491 	}
492 
493 	/*
494 	 * Check to make sure each items keys are in the correct order and their
495 	 * offsets make sense.  We only have to loop through nritems-1 because
496 	 * we check the current slot against the next slot, which verifies the
497 	 * next slot's offset+size makes sense and that the current's slot
498 	 * offset is correct.
499 	 */
500 	for (slot = 0; slot < nritems - 1; slot++) {
501 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
502 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
503 
504 		/* Make sure the keys are in the right order */
505 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
506 			CORRUPT("bad key order", leaf, root, slot);
507 			return -EIO;
508 		}
509 
510 		/*
511 		 * Make sure the offset and ends are right, remember that the
512 		 * item data starts at the end of the leaf and grows towards the
513 		 * front.
514 		 */
515 		if (btrfs_item_offset_nr(leaf, slot) !=
516 			btrfs_item_end_nr(leaf, slot + 1)) {
517 			CORRUPT("slot offset bad", leaf, root, slot);
518 			return -EIO;
519 		}
520 
521 		/*
522 		 * Check to make sure that we don't point outside of the leaf,
523 		 * just incase all the items are consistent to eachother, but
524 		 * all point outside of the leaf.
525 		 */
526 		if (btrfs_item_end_nr(leaf, slot) >
527 		    BTRFS_LEAF_DATA_SIZE(root)) {
528 			CORRUPT("slot end outside of leaf", leaf, root, slot);
529 			return -EIO;
530 		}
531 	}
532 
533 	return 0;
534 }
535 
536 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
537 				       struct page *page, int max_walk)
538 {
539 	struct extent_buffer *eb;
540 	u64 start = page_offset(page);
541 	u64 target = start;
542 	u64 min_start;
543 
544 	if (start < max_walk)
545 		min_start = 0;
546 	else
547 		min_start = start - max_walk;
548 
549 	while (start >= min_start) {
550 		eb = find_extent_buffer(tree, start, 0);
551 		if (eb) {
552 			/*
553 			 * we found an extent buffer and it contains our page
554 			 * horray!
555 			 */
556 			if (eb->start <= target &&
557 			    eb->start + eb->len > target)
558 				return eb;
559 
560 			/* we found an extent buffer that wasn't for us */
561 			free_extent_buffer(eb);
562 			return NULL;
563 		}
564 		if (start == 0)
565 			break;
566 		start -= PAGE_CACHE_SIZE;
567 	}
568 	return NULL;
569 }
570 
571 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
572 			       struct extent_state *state, int mirror)
573 {
574 	struct extent_io_tree *tree;
575 	u64 found_start;
576 	int found_level;
577 	struct extent_buffer *eb;
578 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
579 	int ret = 0;
580 	int reads_done;
581 
582 	if (!page->private)
583 		goto out;
584 
585 	tree = &BTRFS_I(page->mapping->host)->io_tree;
586 	eb = (struct extent_buffer *)page->private;
587 
588 	/* the pending IO might have been the only thing that kept this buffer
589 	 * in memory.  Make sure we have a ref for all this other checks
590 	 */
591 	extent_buffer_get(eb);
592 
593 	reads_done = atomic_dec_and_test(&eb->io_pages);
594 	if (!reads_done)
595 		goto err;
596 
597 	eb->read_mirror = mirror;
598 	if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
599 		ret = -EIO;
600 		goto err;
601 	}
602 
603 	found_start = btrfs_header_bytenr(eb);
604 	if (found_start != eb->start) {
605 		printk_ratelimited(KERN_INFO "btrfs bad tree block start "
606 			       "%llu %llu\n",
607 			       (unsigned long long)found_start,
608 			       (unsigned long long)eb->start);
609 		ret = -EIO;
610 		goto err;
611 	}
612 	if (check_tree_block_fsid(root, eb)) {
613 		printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
614 			       (unsigned long long)eb->start);
615 		ret = -EIO;
616 		goto err;
617 	}
618 	found_level = btrfs_header_level(eb);
619 
620 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621 				       eb, found_level);
622 
623 	ret = csum_tree_block(root, eb, 1);
624 	if (ret) {
625 		ret = -EIO;
626 		goto err;
627 	}
628 
629 	/*
630 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
631 	 * that we don't try and read the other copies of this block, just
632 	 * return -EIO.
633 	 */
634 	if (found_level == 0 && check_leaf(root, eb)) {
635 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636 		ret = -EIO;
637 	}
638 
639 	if (!ret)
640 		set_extent_buffer_uptodate(eb);
641 err:
642 	if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
643 		clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
644 		btree_readahead_hook(root, eb, eb->start, ret);
645 	}
646 
647 	if (ret)
648 		clear_extent_buffer_uptodate(eb);
649 	free_extent_buffer(eb);
650 out:
651 	return ret;
652 }
653 
654 static int btree_io_failed_hook(struct page *page, int failed_mirror)
655 {
656 	struct extent_buffer *eb;
657 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
658 
659 	eb = (struct extent_buffer *)page->private;
660 	set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
661 	eb->read_mirror = failed_mirror;
662 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
663 		btree_readahead_hook(root, eb, eb->start, -EIO);
664 	return -EIO;	/* we fixed nothing */
665 }
666 
667 static void end_workqueue_bio(struct bio *bio, int err)
668 {
669 	struct end_io_wq *end_io_wq = bio->bi_private;
670 	struct btrfs_fs_info *fs_info;
671 
672 	fs_info = end_io_wq->info;
673 	end_io_wq->error = err;
674 	end_io_wq->work.func = end_workqueue_fn;
675 	end_io_wq->work.flags = 0;
676 
677 	if (bio->bi_rw & REQ_WRITE) {
678 		if (end_io_wq->metadata == 1)
679 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
680 					   &end_io_wq->work);
681 		else if (end_io_wq->metadata == 2)
682 			btrfs_queue_worker(&fs_info->endio_freespace_worker,
683 					   &end_io_wq->work);
684 		else
685 			btrfs_queue_worker(&fs_info->endio_write_workers,
686 					   &end_io_wq->work);
687 	} else {
688 		if (end_io_wq->metadata)
689 			btrfs_queue_worker(&fs_info->endio_meta_workers,
690 					   &end_io_wq->work);
691 		else
692 			btrfs_queue_worker(&fs_info->endio_workers,
693 					   &end_io_wq->work);
694 	}
695 }
696 
697 /*
698  * For the metadata arg you want
699  *
700  * 0 - if data
701  * 1 - if normal metadta
702  * 2 - if writing to the free space cache area
703  */
704 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
705 			int metadata)
706 {
707 	struct end_io_wq *end_io_wq;
708 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
709 	if (!end_io_wq)
710 		return -ENOMEM;
711 
712 	end_io_wq->private = bio->bi_private;
713 	end_io_wq->end_io = bio->bi_end_io;
714 	end_io_wq->info = info;
715 	end_io_wq->error = 0;
716 	end_io_wq->bio = bio;
717 	end_io_wq->metadata = metadata;
718 
719 	bio->bi_private = end_io_wq;
720 	bio->bi_end_io = end_workqueue_bio;
721 	return 0;
722 }
723 
724 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
725 {
726 	unsigned long limit = min_t(unsigned long,
727 				    info->workers.max_workers,
728 				    info->fs_devices->open_devices);
729 	return 256 * limit;
730 }
731 
732 static void run_one_async_start(struct btrfs_work *work)
733 {
734 	struct async_submit_bio *async;
735 	int ret;
736 
737 	async = container_of(work, struct  async_submit_bio, work);
738 	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
739 				      async->mirror_num, async->bio_flags,
740 				      async->bio_offset);
741 	if (ret)
742 		async->error = ret;
743 }
744 
745 static void run_one_async_done(struct btrfs_work *work)
746 {
747 	struct btrfs_fs_info *fs_info;
748 	struct async_submit_bio *async;
749 	int limit;
750 
751 	async = container_of(work, struct  async_submit_bio, work);
752 	fs_info = BTRFS_I(async->inode)->root->fs_info;
753 
754 	limit = btrfs_async_submit_limit(fs_info);
755 	limit = limit * 2 / 3;
756 
757 	atomic_dec(&fs_info->nr_async_submits);
758 
759 	if (atomic_read(&fs_info->nr_async_submits) < limit &&
760 	    waitqueue_active(&fs_info->async_submit_wait))
761 		wake_up(&fs_info->async_submit_wait);
762 
763 	/* If an error occured we just want to clean up the bio and move on */
764 	if (async->error) {
765 		bio_endio(async->bio, async->error);
766 		return;
767 	}
768 
769 	async->submit_bio_done(async->inode, async->rw, async->bio,
770 			       async->mirror_num, async->bio_flags,
771 			       async->bio_offset);
772 }
773 
774 static void run_one_async_free(struct btrfs_work *work)
775 {
776 	struct async_submit_bio *async;
777 
778 	async = container_of(work, struct  async_submit_bio, work);
779 	kfree(async);
780 }
781 
782 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
783 			int rw, struct bio *bio, int mirror_num,
784 			unsigned long bio_flags,
785 			u64 bio_offset,
786 			extent_submit_bio_hook_t *submit_bio_start,
787 			extent_submit_bio_hook_t *submit_bio_done)
788 {
789 	struct async_submit_bio *async;
790 
791 	async = kmalloc(sizeof(*async), GFP_NOFS);
792 	if (!async)
793 		return -ENOMEM;
794 
795 	async->inode = inode;
796 	async->rw = rw;
797 	async->bio = bio;
798 	async->mirror_num = mirror_num;
799 	async->submit_bio_start = submit_bio_start;
800 	async->submit_bio_done = submit_bio_done;
801 
802 	async->work.func = run_one_async_start;
803 	async->work.ordered_func = run_one_async_done;
804 	async->work.ordered_free = run_one_async_free;
805 
806 	async->work.flags = 0;
807 	async->bio_flags = bio_flags;
808 	async->bio_offset = bio_offset;
809 
810 	async->error = 0;
811 
812 	atomic_inc(&fs_info->nr_async_submits);
813 
814 	if (rw & REQ_SYNC)
815 		btrfs_set_work_high_prio(&async->work);
816 
817 	btrfs_queue_worker(&fs_info->workers, &async->work);
818 
819 	while (atomic_read(&fs_info->async_submit_draining) &&
820 	      atomic_read(&fs_info->nr_async_submits)) {
821 		wait_event(fs_info->async_submit_wait,
822 			   (atomic_read(&fs_info->nr_async_submits) == 0));
823 	}
824 
825 	return 0;
826 }
827 
828 static int btree_csum_one_bio(struct bio *bio)
829 {
830 	struct bio_vec *bvec = bio->bi_io_vec;
831 	int bio_index = 0;
832 	struct btrfs_root *root;
833 	int ret = 0;
834 
835 	WARN_ON(bio->bi_vcnt <= 0);
836 	while (bio_index < bio->bi_vcnt) {
837 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
838 		ret = csum_dirty_buffer(root, bvec->bv_page);
839 		if (ret)
840 			break;
841 		bio_index++;
842 		bvec++;
843 	}
844 	return ret;
845 }
846 
847 static int __btree_submit_bio_start(struct inode *inode, int rw,
848 				    struct bio *bio, int mirror_num,
849 				    unsigned long bio_flags,
850 				    u64 bio_offset)
851 {
852 	/*
853 	 * when we're called for a write, we're already in the async
854 	 * submission context.  Just jump into btrfs_map_bio
855 	 */
856 	return btree_csum_one_bio(bio);
857 }
858 
859 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
860 				 int mirror_num, unsigned long bio_flags,
861 				 u64 bio_offset)
862 {
863 	/*
864 	 * when we're called for a write, we're already in the async
865 	 * submission context.  Just jump into btrfs_map_bio
866 	 */
867 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
868 }
869 
870 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
871 				 int mirror_num, unsigned long bio_flags,
872 				 u64 bio_offset)
873 {
874 	int ret;
875 
876 	if (!(rw & REQ_WRITE)) {
877 
878 		/*
879 		 * called for a read, do the setup so that checksum validation
880 		 * can happen in the async kernel threads
881 		 */
882 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
883 					  bio, 1);
884 		if (ret)
885 			return ret;
886 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
887 				     mirror_num, 0);
888 	}
889 
890 	/*
891 	 * kthread helpers are used to submit writes so that checksumming
892 	 * can happen in parallel across all CPUs
893 	 */
894 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
895 				   inode, rw, bio, mirror_num, 0,
896 				   bio_offset,
897 				   __btree_submit_bio_start,
898 				   __btree_submit_bio_done);
899 }
900 
901 #ifdef CONFIG_MIGRATION
902 static int btree_migratepage(struct address_space *mapping,
903 			struct page *newpage, struct page *page,
904 			enum migrate_mode mode)
905 {
906 	/*
907 	 * we can't safely write a btree page from here,
908 	 * we haven't done the locking hook
909 	 */
910 	if (PageDirty(page))
911 		return -EAGAIN;
912 	/*
913 	 * Buffers may be managed in a filesystem specific way.
914 	 * We must have no buffers or drop them.
915 	 */
916 	if (page_has_private(page) &&
917 	    !try_to_release_page(page, GFP_KERNEL))
918 		return -EAGAIN;
919 	return migrate_page(mapping, newpage, page, mode);
920 }
921 #endif
922 
923 
924 static int btree_writepages(struct address_space *mapping,
925 			    struct writeback_control *wbc)
926 {
927 	struct extent_io_tree *tree;
928 	tree = &BTRFS_I(mapping->host)->io_tree;
929 	if (wbc->sync_mode == WB_SYNC_NONE) {
930 		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
931 		u64 num_dirty;
932 		unsigned long thresh = 32 * 1024 * 1024;
933 
934 		if (wbc->for_kupdate)
935 			return 0;
936 
937 		/* this is a bit racy, but that's ok */
938 		num_dirty = root->fs_info->dirty_metadata_bytes;
939 		if (num_dirty < thresh)
940 			return 0;
941 	}
942 	return btree_write_cache_pages(mapping, wbc);
943 }
944 
945 static int btree_readpage(struct file *file, struct page *page)
946 {
947 	struct extent_io_tree *tree;
948 	tree = &BTRFS_I(page->mapping->host)->io_tree;
949 	return extent_read_full_page(tree, page, btree_get_extent, 0);
950 }
951 
952 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
953 {
954 	if (PageWriteback(page) || PageDirty(page))
955 		return 0;
956 	/*
957 	 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
958 	 * slab allocation from alloc_extent_state down the callchain where
959 	 * it'd hit a BUG_ON as those flags are not allowed.
960 	 */
961 	gfp_flags &= ~GFP_SLAB_BUG_MASK;
962 
963 	return try_release_extent_buffer(page, gfp_flags);
964 }
965 
966 static void btree_invalidatepage(struct page *page, unsigned long offset)
967 {
968 	struct extent_io_tree *tree;
969 	tree = &BTRFS_I(page->mapping->host)->io_tree;
970 	extent_invalidatepage(tree, page, offset);
971 	btree_releasepage(page, GFP_NOFS);
972 	if (PagePrivate(page)) {
973 		printk(KERN_WARNING "btrfs warning page private not zero "
974 		       "on page %llu\n", (unsigned long long)page_offset(page));
975 		ClearPagePrivate(page);
976 		set_page_private(page, 0);
977 		page_cache_release(page);
978 	}
979 }
980 
981 static int btree_set_page_dirty(struct page *page)
982 {
983 	struct extent_buffer *eb;
984 
985 	BUG_ON(!PagePrivate(page));
986 	eb = (struct extent_buffer *)page->private;
987 	BUG_ON(!eb);
988 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
989 	BUG_ON(!atomic_read(&eb->refs));
990 	btrfs_assert_tree_locked(eb);
991 	return __set_page_dirty_nobuffers(page);
992 }
993 
994 static const struct address_space_operations btree_aops = {
995 	.readpage	= btree_readpage,
996 	.writepages	= btree_writepages,
997 	.releasepage	= btree_releasepage,
998 	.invalidatepage = btree_invalidatepage,
999 #ifdef CONFIG_MIGRATION
1000 	.migratepage	= btree_migratepage,
1001 #endif
1002 	.set_page_dirty = btree_set_page_dirty,
1003 };
1004 
1005 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1006 			 u64 parent_transid)
1007 {
1008 	struct extent_buffer *buf = NULL;
1009 	struct inode *btree_inode = root->fs_info->btree_inode;
1010 	int ret = 0;
1011 
1012 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1013 	if (!buf)
1014 		return 0;
1015 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1016 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1017 	free_extent_buffer(buf);
1018 	return ret;
1019 }
1020 
1021 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1022 			 int mirror_num, struct extent_buffer **eb)
1023 {
1024 	struct extent_buffer *buf = NULL;
1025 	struct inode *btree_inode = root->fs_info->btree_inode;
1026 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1027 	int ret;
1028 
1029 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1030 	if (!buf)
1031 		return 0;
1032 
1033 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1034 
1035 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1036 				       btree_get_extent, mirror_num);
1037 	if (ret) {
1038 		free_extent_buffer(buf);
1039 		return ret;
1040 	}
1041 
1042 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1043 		free_extent_buffer(buf);
1044 		return -EIO;
1045 	} else if (extent_buffer_uptodate(buf)) {
1046 		*eb = buf;
1047 	} else {
1048 		free_extent_buffer(buf);
1049 	}
1050 	return 0;
1051 }
1052 
1053 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1054 					    u64 bytenr, u32 blocksize)
1055 {
1056 	struct inode *btree_inode = root->fs_info->btree_inode;
1057 	struct extent_buffer *eb;
1058 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1059 				bytenr, blocksize);
1060 	return eb;
1061 }
1062 
1063 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1064 						 u64 bytenr, u32 blocksize)
1065 {
1066 	struct inode *btree_inode = root->fs_info->btree_inode;
1067 	struct extent_buffer *eb;
1068 
1069 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1070 				 bytenr, blocksize);
1071 	return eb;
1072 }
1073 
1074 
1075 int btrfs_write_tree_block(struct extent_buffer *buf)
1076 {
1077 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1078 					buf->start + buf->len - 1);
1079 }
1080 
1081 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1082 {
1083 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1084 				       buf->start, buf->start + buf->len - 1);
1085 }
1086 
1087 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1088 				      u32 blocksize, u64 parent_transid)
1089 {
1090 	struct extent_buffer *buf = NULL;
1091 	int ret;
1092 
1093 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1094 	if (!buf)
1095 		return NULL;
1096 
1097 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1098 	return buf;
1099 
1100 }
1101 
1102 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1103 		      struct extent_buffer *buf)
1104 {
1105 	if (btrfs_header_generation(buf) ==
1106 	    root->fs_info->running_transaction->transid) {
1107 		btrfs_assert_tree_locked(buf);
1108 
1109 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1110 			spin_lock(&root->fs_info->delalloc_lock);
1111 			if (root->fs_info->dirty_metadata_bytes >= buf->len)
1112 				root->fs_info->dirty_metadata_bytes -= buf->len;
1113 			else {
1114 				spin_unlock(&root->fs_info->delalloc_lock);
1115 				btrfs_panic(root->fs_info, -EOVERFLOW,
1116 					  "Can't clear %lu bytes from "
1117 					  " dirty_mdatadata_bytes (%llu)",
1118 					  buf->len,
1119 					  root->fs_info->dirty_metadata_bytes);
1120 			}
1121 			spin_unlock(&root->fs_info->delalloc_lock);
1122 		}
1123 
1124 		/* ugh, clear_extent_buffer_dirty needs to lock the page */
1125 		btrfs_set_lock_blocking(buf);
1126 		clear_extent_buffer_dirty(buf);
1127 	}
1128 }
1129 
1130 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1131 			 u32 stripesize, struct btrfs_root *root,
1132 			 struct btrfs_fs_info *fs_info,
1133 			 u64 objectid)
1134 {
1135 	root->node = NULL;
1136 	root->commit_root = NULL;
1137 	root->sectorsize = sectorsize;
1138 	root->nodesize = nodesize;
1139 	root->leafsize = leafsize;
1140 	root->stripesize = stripesize;
1141 	root->ref_cows = 0;
1142 	root->track_dirty = 0;
1143 	root->in_radix = 0;
1144 	root->orphan_item_inserted = 0;
1145 	root->orphan_cleanup_state = 0;
1146 
1147 	root->objectid = objectid;
1148 	root->last_trans = 0;
1149 	root->highest_objectid = 0;
1150 	root->name = NULL;
1151 	root->inode_tree = RB_ROOT;
1152 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1153 	root->block_rsv = NULL;
1154 	root->orphan_block_rsv = NULL;
1155 
1156 	INIT_LIST_HEAD(&root->dirty_list);
1157 	INIT_LIST_HEAD(&root->root_list);
1158 	spin_lock_init(&root->orphan_lock);
1159 	spin_lock_init(&root->inode_lock);
1160 	spin_lock_init(&root->accounting_lock);
1161 	mutex_init(&root->objectid_mutex);
1162 	mutex_init(&root->log_mutex);
1163 	init_waitqueue_head(&root->log_writer_wait);
1164 	init_waitqueue_head(&root->log_commit_wait[0]);
1165 	init_waitqueue_head(&root->log_commit_wait[1]);
1166 	atomic_set(&root->log_commit[0], 0);
1167 	atomic_set(&root->log_commit[1], 0);
1168 	atomic_set(&root->log_writers, 0);
1169 	atomic_set(&root->orphan_inodes, 0);
1170 	root->log_batch = 0;
1171 	root->log_transid = 0;
1172 	root->last_log_commit = 0;
1173 	extent_io_tree_init(&root->dirty_log_pages,
1174 			     fs_info->btree_inode->i_mapping);
1175 
1176 	memset(&root->root_key, 0, sizeof(root->root_key));
1177 	memset(&root->root_item, 0, sizeof(root->root_item));
1178 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1179 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1180 	root->defrag_trans_start = fs_info->generation;
1181 	init_completion(&root->kobj_unregister);
1182 	root->defrag_running = 0;
1183 	root->root_key.objectid = objectid;
1184 	root->anon_dev = 0;
1185 
1186 	spin_lock_init(&root->root_times_lock);
1187 }
1188 
1189 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1190 					    struct btrfs_fs_info *fs_info,
1191 					    u64 objectid,
1192 					    struct btrfs_root *root)
1193 {
1194 	int ret;
1195 	u32 blocksize;
1196 	u64 generation;
1197 
1198 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1199 		     tree_root->sectorsize, tree_root->stripesize,
1200 		     root, fs_info, objectid);
1201 	ret = btrfs_find_last_root(tree_root, objectid,
1202 				   &root->root_item, &root->root_key);
1203 	if (ret > 0)
1204 		return -ENOENT;
1205 	else if (ret < 0)
1206 		return ret;
1207 
1208 	generation = btrfs_root_generation(&root->root_item);
1209 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1210 	root->commit_root = NULL;
1211 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1212 				     blocksize, generation);
1213 	if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1214 		free_extent_buffer(root->node);
1215 		root->node = NULL;
1216 		return -EIO;
1217 	}
1218 	root->commit_root = btrfs_root_node(root);
1219 	return 0;
1220 }
1221 
1222 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1223 {
1224 	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1225 	if (root)
1226 		root->fs_info = fs_info;
1227 	return root;
1228 }
1229 
1230 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1231 				     struct btrfs_fs_info *fs_info,
1232 				     u64 objectid)
1233 {
1234 	struct extent_buffer *leaf;
1235 	struct btrfs_root *tree_root = fs_info->tree_root;
1236 	struct btrfs_root *root;
1237 	struct btrfs_key key;
1238 	int ret = 0;
1239 	u64 bytenr;
1240 
1241 	root = btrfs_alloc_root(fs_info);
1242 	if (!root)
1243 		return ERR_PTR(-ENOMEM);
1244 
1245 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1246 		     tree_root->sectorsize, tree_root->stripesize,
1247 		     root, fs_info, objectid);
1248 	root->root_key.objectid = objectid;
1249 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1250 	root->root_key.offset = 0;
1251 
1252 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1253 				      0, objectid, NULL, 0, 0, 0);
1254 	if (IS_ERR(leaf)) {
1255 		ret = PTR_ERR(leaf);
1256 		goto fail;
1257 	}
1258 
1259 	bytenr = leaf->start;
1260 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1261 	btrfs_set_header_bytenr(leaf, leaf->start);
1262 	btrfs_set_header_generation(leaf, trans->transid);
1263 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1264 	btrfs_set_header_owner(leaf, objectid);
1265 	root->node = leaf;
1266 
1267 	write_extent_buffer(leaf, fs_info->fsid,
1268 			    (unsigned long)btrfs_header_fsid(leaf),
1269 			    BTRFS_FSID_SIZE);
1270 	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1271 			    (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1272 			    BTRFS_UUID_SIZE);
1273 	btrfs_mark_buffer_dirty(leaf);
1274 
1275 	root->commit_root = btrfs_root_node(root);
1276 	root->track_dirty = 1;
1277 
1278 
1279 	root->root_item.flags = 0;
1280 	root->root_item.byte_limit = 0;
1281 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1282 	btrfs_set_root_generation(&root->root_item, trans->transid);
1283 	btrfs_set_root_level(&root->root_item, 0);
1284 	btrfs_set_root_refs(&root->root_item, 1);
1285 	btrfs_set_root_used(&root->root_item, leaf->len);
1286 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1287 	btrfs_set_root_dirid(&root->root_item, 0);
1288 	root->root_item.drop_level = 0;
1289 
1290 	key.objectid = objectid;
1291 	key.type = BTRFS_ROOT_ITEM_KEY;
1292 	key.offset = 0;
1293 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1294 	if (ret)
1295 		goto fail;
1296 
1297 	btrfs_tree_unlock(leaf);
1298 
1299 fail:
1300 	if (ret)
1301 		return ERR_PTR(ret);
1302 
1303 	return root;
1304 }
1305 
1306 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1307 					 struct btrfs_fs_info *fs_info)
1308 {
1309 	struct btrfs_root *root;
1310 	struct btrfs_root *tree_root = fs_info->tree_root;
1311 	struct extent_buffer *leaf;
1312 
1313 	root = btrfs_alloc_root(fs_info);
1314 	if (!root)
1315 		return ERR_PTR(-ENOMEM);
1316 
1317 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1318 		     tree_root->sectorsize, tree_root->stripesize,
1319 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1320 
1321 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1322 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1323 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1324 	/*
1325 	 * log trees do not get reference counted because they go away
1326 	 * before a real commit is actually done.  They do store pointers
1327 	 * to file data extents, and those reference counts still get
1328 	 * updated (along with back refs to the log tree).
1329 	 */
1330 	root->ref_cows = 0;
1331 
1332 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1333 				      BTRFS_TREE_LOG_OBJECTID, NULL,
1334 				      0, 0, 0);
1335 	if (IS_ERR(leaf)) {
1336 		kfree(root);
1337 		return ERR_CAST(leaf);
1338 	}
1339 
1340 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1341 	btrfs_set_header_bytenr(leaf, leaf->start);
1342 	btrfs_set_header_generation(leaf, trans->transid);
1343 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1344 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1345 	root->node = leaf;
1346 
1347 	write_extent_buffer(root->node, root->fs_info->fsid,
1348 			    (unsigned long)btrfs_header_fsid(root->node),
1349 			    BTRFS_FSID_SIZE);
1350 	btrfs_mark_buffer_dirty(root->node);
1351 	btrfs_tree_unlock(root->node);
1352 	return root;
1353 }
1354 
1355 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1356 			     struct btrfs_fs_info *fs_info)
1357 {
1358 	struct btrfs_root *log_root;
1359 
1360 	log_root = alloc_log_tree(trans, fs_info);
1361 	if (IS_ERR(log_root))
1362 		return PTR_ERR(log_root);
1363 	WARN_ON(fs_info->log_root_tree);
1364 	fs_info->log_root_tree = log_root;
1365 	return 0;
1366 }
1367 
1368 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1369 		       struct btrfs_root *root)
1370 {
1371 	struct btrfs_root *log_root;
1372 	struct btrfs_inode_item *inode_item;
1373 
1374 	log_root = alloc_log_tree(trans, root->fs_info);
1375 	if (IS_ERR(log_root))
1376 		return PTR_ERR(log_root);
1377 
1378 	log_root->last_trans = trans->transid;
1379 	log_root->root_key.offset = root->root_key.objectid;
1380 
1381 	inode_item = &log_root->root_item.inode;
1382 	inode_item->generation = cpu_to_le64(1);
1383 	inode_item->size = cpu_to_le64(3);
1384 	inode_item->nlink = cpu_to_le32(1);
1385 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1386 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1387 
1388 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1389 
1390 	WARN_ON(root->log_root);
1391 	root->log_root = log_root;
1392 	root->log_transid = 0;
1393 	root->last_log_commit = 0;
1394 	return 0;
1395 }
1396 
1397 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1398 					       struct btrfs_key *location)
1399 {
1400 	struct btrfs_root *root;
1401 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1402 	struct btrfs_path *path;
1403 	struct extent_buffer *l;
1404 	u64 generation;
1405 	u32 blocksize;
1406 	int ret = 0;
1407 	int slot;
1408 
1409 	root = btrfs_alloc_root(fs_info);
1410 	if (!root)
1411 		return ERR_PTR(-ENOMEM);
1412 	if (location->offset == (u64)-1) {
1413 		ret = find_and_setup_root(tree_root, fs_info,
1414 					  location->objectid, root);
1415 		if (ret) {
1416 			kfree(root);
1417 			return ERR_PTR(ret);
1418 		}
1419 		goto out;
1420 	}
1421 
1422 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1423 		     tree_root->sectorsize, tree_root->stripesize,
1424 		     root, fs_info, location->objectid);
1425 
1426 	path = btrfs_alloc_path();
1427 	if (!path) {
1428 		kfree(root);
1429 		return ERR_PTR(-ENOMEM);
1430 	}
1431 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1432 	if (ret == 0) {
1433 		l = path->nodes[0];
1434 		slot = path->slots[0];
1435 		btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1436 		memcpy(&root->root_key, location, sizeof(*location));
1437 	}
1438 	btrfs_free_path(path);
1439 	if (ret) {
1440 		kfree(root);
1441 		if (ret > 0)
1442 			ret = -ENOENT;
1443 		return ERR_PTR(ret);
1444 	}
1445 
1446 	generation = btrfs_root_generation(&root->root_item);
1447 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1448 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1449 				     blocksize, generation);
1450 	root->commit_root = btrfs_root_node(root);
1451 	BUG_ON(!root->node); /* -ENOMEM */
1452 out:
1453 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1454 		root->ref_cows = 1;
1455 		btrfs_check_and_init_root_item(&root->root_item);
1456 	}
1457 
1458 	return root;
1459 }
1460 
1461 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1462 					      struct btrfs_key *location)
1463 {
1464 	struct btrfs_root *root;
1465 	int ret;
1466 
1467 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1468 		return fs_info->tree_root;
1469 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1470 		return fs_info->extent_root;
1471 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1472 		return fs_info->chunk_root;
1473 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1474 		return fs_info->dev_root;
1475 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1476 		return fs_info->csum_root;
1477 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1478 		return fs_info->quota_root ? fs_info->quota_root :
1479 					     ERR_PTR(-ENOENT);
1480 again:
1481 	spin_lock(&fs_info->fs_roots_radix_lock);
1482 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1483 				 (unsigned long)location->objectid);
1484 	spin_unlock(&fs_info->fs_roots_radix_lock);
1485 	if (root)
1486 		return root;
1487 
1488 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1489 	if (IS_ERR(root))
1490 		return root;
1491 
1492 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1493 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1494 					GFP_NOFS);
1495 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1496 		ret = -ENOMEM;
1497 		goto fail;
1498 	}
1499 
1500 	btrfs_init_free_ino_ctl(root);
1501 	mutex_init(&root->fs_commit_mutex);
1502 	spin_lock_init(&root->cache_lock);
1503 	init_waitqueue_head(&root->cache_wait);
1504 
1505 	ret = get_anon_bdev(&root->anon_dev);
1506 	if (ret)
1507 		goto fail;
1508 
1509 	if (btrfs_root_refs(&root->root_item) == 0) {
1510 		ret = -ENOENT;
1511 		goto fail;
1512 	}
1513 
1514 	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1515 	if (ret < 0)
1516 		goto fail;
1517 	if (ret == 0)
1518 		root->orphan_item_inserted = 1;
1519 
1520 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1521 	if (ret)
1522 		goto fail;
1523 
1524 	spin_lock(&fs_info->fs_roots_radix_lock);
1525 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1526 				(unsigned long)root->root_key.objectid,
1527 				root);
1528 	if (ret == 0)
1529 		root->in_radix = 1;
1530 
1531 	spin_unlock(&fs_info->fs_roots_radix_lock);
1532 	radix_tree_preload_end();
1533 	if (ret) {
1534 		if (ret == -EEXIST) {
1535 			free_fs_root(root);
1536 			goto again;
1537 		}
1538 		goto fail;
1539 	}
1540 
1541 	ret = btrfs_find_dead_roots(fs_info->tree_root,
1542 				    root->root_key.objectid);
1543 	WARN_ON(ret);
1544 	return root;
1545 fail:
1546 	free_fs_root(root);
1547 	return ERR_PTR(ret);
1548 }
1549 
1550 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1551 {
1552 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1553 	int ret = 0;
1554 	struct btrfs_device *device;
1555 	struct backing_dev_info *bdi;
1556 
1557 	rcu_read_lock();
1558 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1559 		if (!device->bdev)
1560 			continue;
1561 		bdi = blk_get_backing_dev_info(device->bdev);
1562 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1563 			ret = 1;
1564 			break;
1565 		}
1566 	}
1567 	rcu_read_unlock();
1568 	return ret;
1569 }
1570 
1571 /*
1572  * If this fails, caller must call bdi_destroy() to get rid of the
1573  * bdi again.
1574  */
1575 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1576 {
1577 	int err;
1578 
1579 	bdi->capabilities = BDI_CAP_MAP_COPY;
1580 	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1581 	if (err)
1582 		return err;
1583 
1584 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1585 	bdi->congested_fn	= btrfs_congested_fn;
1586 	bdi->congested_data	= info;
1587 	return 0;
1588 }
1589 
1590 /*
1591  * called by the kthread helper functions to finally call the bio end_io
1592  * functions.  This is where read checksum verification actually happens
1593  */
1594 static void end_workqueue_fn(struct btrfs_work *work)
1595 {
1596 	struct bio *bio;
1597 	struct end_io_wq *end_io_wq;
1598 	struct btrfs_fs_info *fs_info;
1599 	int error;
1600 
1601 	end_io_wq = container_of(work, struct end_io_wq, work);
1602 	bio = end_io_wq->bio;
1603 	fs_info = end_io_wq->info;
1604 
1605 	error = end_io_wq->error;
1606 	bio->bi_private = end_io_wq->private;
1607 	bio->bi_end_io = end_io_wq->end_io;
1608 	kfree(end_io_wq);
1609 	bio_endio(bio, error);
1610 }
1611 
1612 static int cleaner_kthread(void *arg)
1613 {
1614 	struct btrfs_root *root = arg;
1615 
1616 	do {
1617 		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1618 		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
1619 			btrfs_run_delayed_iputs(root);
1620 			btrfs_clean_old_snapshots(root);
1621 			mutex_unlock(&root->fs_info->cleaner_mutex);
1622 			btrfs_run_defrag_inodes(root->fs_info);
1623 		}
1624 
1625 		if (!try_to_freeze()) {
1626 			set_current_state(TASK_INTERRUPTIBLE);
1627 			if (!kthread_should_stop())
1628 				schedule();
1629 			__set_current_state(TASK_RUNNING);
1630 		}
1631 	} while (!kthread_should_stop());
1632 	return 0;
1633 }
1634 
1635 static int transaction_kthread(void *arg)
1636 {
1637 	struct btrfs_root *root = arg;
1638 	struct btrfs_trans_handle *trans;
1639 	struct btrfs_transaction *cur;
1640 	u64 transid;
1641 	unsigned long now;
1642 	unsigned long delay;
1643 	bool cannot_commit;
1644 
1645 	do {
1646 		cannot_commit = false;
1647 		delay = HZ * 30;
1648 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1649 
1650 		spin_lock(&root->fs_info->trans_lock);
1651 		cur = root->fs_info->running_transaction;
1652 		if (!cur) {
1653 			spin_unlock(&root->fs_info->trans_lock);
1654 			goto sleep;
1655 		}
1656 
1657 		now = get_seconds();
1658 		if (!cur->blocked &&
1659 		    (now < cur->start_time || now - cur->start_time < 30)) {
1660 			spin_unlock(&root->fs_info->trans_lock);
1661 			delay = HZ * 5;
1662 			goto sleep;
1663 		}
1664 		transid = cur->transid;
1665 		spin_unlock(&root->fs_info->trans_lock);
1666 
1667 		/* If the file system is aborted, this will always fail. */
1668 		trans = btrfs_join_transaction(root);
1669 		if (IS_ERR(trans)) {
1670 			cannot_commit = true;
1671 			goto sleep;
1672 		}
1673 		if (transid == trans->transid) {
1674 			btrfs_commit_transaction(trans, root);
1675 		} else {
1676 			btrfs_end_transaction(trans, root);
1677 		}
1678 sleep:
1679 		wake_up_process(root->fs_info->cleaner_kthread);
1680 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1681 
1682 		if (!try_to_freeze()) {
1683 			set_current_state(TASK_INTERRUPTIBLE);
1684 			if (!kthread_should_stop() &&
1685 			    (!btrfs_transaction_blocked(root->fs_info) ||
1686 			     cannot_commit))
1687 				schedule_timeout(delay);
1688 			__set_current_state(TASK_RUNNING);
1689 		}
1690 	} while (!kthread_should_stop());
1691 	return 0;
1692 }
1693 
1694 /*
1695  * this will find the highest generation in the array of
1696  * root backups.  The index of the highest array is returned,
1697  * or -1 if we can't find anything.
1698  *
1699  * We check to make sure the array is valid by comparing the
1700  * generation of the latest  root in the array with the generation
1701  * in the super block.  If they don't match we pitch it.
1702  */
1703 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1704 {
1705 	u64 cur;
1706 	int newest_index = -1;
1707 	struct btrfs_root_backup *root_backup;
1708 	int i;
1709 
1710 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1711 		root_backup = info->super_copy->super_roots + i;
1712 		cur = btrfs_backup_tree_root_gen(root_backup);
1713 		if (cur == newest_gen)
1714 			newest_index = i;
1715 	}
1716 
1717 	/* check to see if we actually wrapped around */
1718 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1719 		root_backup = info->super_copy->super_roots;
1720 		cur = btrfs_backup_tree_root_gen(root_backup);
1721 		if (cur == newest_gen)
1722 			newest_index = 0;
1723 	}
1724 	return newest_index;
1725 }
1726 
1727 
1728 /*
1729  * find the oldest backup so we know where to store new entries
1730  * in the backup array.  This will set the backup_root_index
1731  * field in the fs_info struct
1732  */
1733 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1734 				     u64 newest_gen)
1735 {
1736 	int newest_index = -1;
1737 
1738 	newest_index = find_newest_super_backup(info, newest_gen);
1739 	/* if there was garbage in there, just move along */
1740 	if (newest_index == -1) {
1741 		info->backup_root_index = 0;
1742 	} else {
1743 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1744 	}
1745 }
1746 
1747 /*
1748  * copy all the root pointers into the super backup array.
1749  * this will bump the backup pointer by one when it is
1750  * done
1751  */
1752 static void backup_super_roots(struct btrfs_fs_info *info)
1753 {
1754 	int next_backup;
1755 	struct btrfs_root_backup *root_backup;
1756 	int last_backup;
1757 
1758 	next_backup = info->backup_root_index;
1759 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1760 		BTRFS_NUM_BACKUP_ROOTS;
1761 
1762 	/*
1763 	 * just overwrite the last backup if we're at the same generation
1764 	 * this happens only at umount
1765 	 */
1766 	root_backup = info->super_for_commit->super_roots + last_backup;
1767 	if (btrfs_backup_tree_root_gen(root_backup) ==
1768 	    btrfs_header_generation(info->tree_root->node))
1769 		next_backup = last_backup;
1770 
1771 	root_backup = info->super_for_commit->super_roots + next_backup;
1772 
1773 	/*
1774 	 * make sure all of our padding and empty slots get zero filled
1775 	 * regardless of which ones we use today
1776 	 */
1777 	memset(root_backup, 0, sizeof(*root_backup));
1778 
1779 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1780 
1781 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1782 	btrfs_set_backup_tree_root_gen(root_backup,
1783 			       btrfs_header_generation(info->tree_root->node));
1784 
1785 	btrfs_set_backup_tree_root_level(root_backup,
1786 			       btrfs_header_level(info->tree_root->node));
1787 
1788 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1789 	btrfs_set_backup_chunk_root_gen(root_backup,
1790 			       btrfs_header_generation(info->chunk_root->node));
1791 	btrfs_set_backup_chunk_root_level(root_backup,
1792 			       btrfs_header_level(info->chunk_root->node));
1793 
1794 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1795 	btrfs_set_backup_extent_root_gen(root_backup,
1796 			       btrfs_header_generation(info->extent_root->node));
1797 	btrfs_set_backup_extent_root_level(root_backup,
1798 			       btrfs_header_level(info->extent_root->node));
1799 
1800 	/*
1801 	 * we might commit during log recovery, which happens before we set
1802 	 * the fs_root.  Make sure it is valid before we fill it in.
1803 	 */
1804 	if (info->fs_root && info->fs_root->node) {
1805 		btrfs_set_backup_fs_root(root_backup,
1806 					 info->fs_root->node->start);
1807 		btrfs_set_backup_fs_root_gen(root_backup,
1808 			       btrfs_header_generation(info->fs_root->node));
1809 		btrfs_set_backup_fs_root_level(root_backup,
1810 			       btrfs_header_level(info->fs_root->node));
1811 	}
1812 
1813 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1814 	btrfs_set_backup_dev_root_gen(root_backup,
1815 			       btrfs_header_generation(info->dev_root->node));
1816 	btrfs_set_backup_dev_root_level(root_backup,
1817 				       btrfs_header_level(info->dev_root->node));
1818 
1819 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1820 	btrfs_set_backup_csum_root_gen(root_backup,
1821 			       btrfs_header_generation(info->csum_root->node));
1822 	btrfs_set_backup_csum_root_level(root_backup,
1823 			       btrfs_header_level(info->csum_root->node));
1824 
1825 	btrfs_set_backup_total_bytes(root_backup,
1826 			     btrfs_super_total_bytes(info->super_copy));
1827 	btrfs_set_backup_bytes_used(root_backup,
1828 			     btrfs_super_bytes_used(info->super_copy));
1829 	btrfs_set_backup_num_devices(root_backup,
1830 			     btrfs_super_num_devices(info->super_copy));
1831 
1832 	/*
1833 	 * if we don't copy this out to the super_copy, it won't get remembered
1834 	 * for the next commit
1835 	 */
1836 	memcpy(&info->super_copy->super_roots,
1837 	       &info->super_for_commit->super_roots,
1838 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1839 }
1840 
1841 /*
1842  * this copies info out of the root backup array and back into
1843  * the in-memory super block.  It is meant to help iterate through
1844  * the array, so you send it the number of backups you've already
1845  * tried and the last backup index you used.
1846  *
1847  * this returns -1 when it has tried all the backups
1848  */
1849 static noinline int next_root_backup(struct btrfs_fs_info *info,
1850 				     struct btrfs_super_block *super,
1851 				     int *num_backups_tried, int *backup_index)
1852 {
1853 	struct btrfs_root_backup *root_backup;
1854 	int newest = *backup_index;
1855 
1856 	if (*num_backups_tried == 0) {
1857 		u64 gen = btrfs_super_generation(super);
1858 
1859 		newest = find_newest_super_backup(info, gen);
1860 		if (newest == -1)
1861 			return -1;
1862 
1863 		*backup_index = newest;
1864 		*num_backups_tried = 1;
1865 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1866 		/* we've tried all the backups, all done */
1867 		return -1;
1868 	} else {
1869 		/* jump to the next oldest backup */
1870 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1871 			BTRFS_NUM_BACKUP_ROOTS;
1872 		*backup_index = newest;
1873 		*num_backups_tried += 1;
1874 	}
1875 	root_backup = super->super_roots + newest;
1876 
1877 	btrfs_set_super_generation(super,
1878 				   btrfs_backup_tree_root_gen(root_backup));
1879 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1880 	btrfs_set_super_root_level(super,
1881 				   btrfs_backup_tree_root_level(root_backup));
1882 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1883 
1884 	/*
1885 	 * fixme: the total bytes and num_devices need to match or we should
1886 	 * need a fsck
1887 	 */
1888 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1889 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1890 	return 0;
1891 }
1892 
1893 /* helper to cleanup tree roots */
1894 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1895 {
1896 	free_extent_buffer(info->tree_root->node);
1897 	free_extent_buffer(info->tree_root->commit_root);
1898 	free_extent_buffer(info->dev_root->node);
1899 	free_extent_buffer(info->dev_root->commit_root);
1900 	free_extent_buffer(info->extent_root->node);
1901 	free_extent_buffer(info->extent_root->commit_root);
1902 	free_extent_buffer(info->csum_root->node);
1903 	free_extent_buffer(info->csum_root->commit_root);
1904 	if (info->quota_root) {
1905 		free_extent_buffer(info->quota_root->node);
1906 		free_extent_buffer(info->quota_root->commit_root);
1907 	}
1908 
1909 	info->tree_root->node = NULL;
1910 	info->tree_root->commit_root = NULL;
1911 	info->dev_root->node = NULL;
1912 	info->dev_root->commit_root = NULL;
1913 	info->extent_root->node = NULL;
1914 	info->extent_root->commit_root = NULL;
1915 	info->csum_root->node = NULL;
1916 	info->csum_root->commit_root = NULL;
1917 	if (info->quota_root) {
1918 		info->quota_root->node = NULL;
1919 		info->quota_root->commit_root = NULL;
1920 	}
1921 
1922 	if (chunk_root) {
1923 		free_extent_buffer(info->chunk_root->node);
1924 		free_extent_buffer(info->chunk_root->commit_root);
1925 		info->chunk_root->node = NULL;
1926 		info->chunk_root->commit_root = NULL;
1927 	}
1928 }
1929 
1930 
1931 int open_ctree(struct super_block *sb,
1932 	       struct btrfs_fs_devices *fs_devices,
1933 	       char *options)
1934 {
1935 	u32 sectorsize;
1936 	u32 nodesize;
1937 	u32 leafsize;
1938 	u32 blocksize;
1939 	u32 stripesize;
1940 	u64 generation;
1941 	u64 features;
1942 	struct btrfs_key location;
1943 	struct buffer_head *bh;
1944 	struct btrfs_super_block *disk_super;
1945 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1946 	struct btrfs_root *tree_root;
1947 	struct btrfs_root *extent_root;
1948 	struct btrfs_root *csum_root;
1949 	struct btrfs_root *chunk_root;
1950 	struct btrfs_root *dev_root;
1951 	struct btrfs_root *quota_root;
1952 	struct btrfs_root *log_tree_root;
1953 	int ret;
1954 	int err = -EINVAL;
1955 	int num_backups_tried = 0;
1956 	int backup_index = 0;
1957 
1958 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1959 	extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1960 	csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1961 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1962 	dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1963 	quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
1964 
1965 	if (!tree_root || !extent_root || !csum_root ||
1966 	    !chunk_root || !dev_root || !quota_root) {
1967 		err = -ENOMEM;
1968 		goto fail;
1969 	}
1970 
1971 	ret = init_srcu_struct(&fs_info->subvol_srcu);
1972 	if (ret) {
1973 		err = ret;
1974 		goto fail;
1975 	}
1976 
1977 	ret = setup_bdi(fs_info, &fs_info->bdi);
1978 	if (ret) {
1979 		err = ret;
1980 		goto fail_srcu;
1981 	}
1982 
1983 	fs_info->btree_inode = new_inode(sb);
1984 	if (!fs_info->btree_inode) {
1985 		err = -ENOMEM;
1986 		goto fail_bdi;
1987 	}
1988 
1989 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1990 
1991 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1992 	INIT_LIST_HEAD(&fs_info->trans_list);
1993 	INIT_LIST_HEAD(&fs_info->dead_roots);
1994 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
1995 	INIT_LIST_HEAD(&fs_info->hashers);
1996 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1997 	INIT_LIST_HEAD(&fs_info->ordered_operations);
1998 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
1999 	spin_lock_init(&fs_info->delalloc_lock);
2000 	spin_lock_init(&fs_info->trans_lock);
2001 	spin_lock_init(&fs_info->ref_cache_lock);
2002 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2003 	spin_lock_init(&fs_info->delayed_iput_lock);
2004 	spin_lock_init(&fs_info->defrag_inodes_lock);
2005 	spin_lock_init(&fs_info->free_chunk_lock);
2006 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2007 	rwlock_init(&fs_info->tree_mod_log_lock);
2008 	mutex_init(&fs_info->reloc_mutex);
2009 
2010 	init_completion(&fs_info->kobj_unregister);
2011 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2012 	INIT_LIST_HEAD(&fs_info->space_info);
2013 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2014 	btrfs_mapping_init(&fs_info->mapping_tree);
2015 	btrfs_init_block_rsv(&fs_info->global_block_rsv);
2016 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
2017 	btrfs_init_block_rsv(&fs_info->trans_block_rsv);
2018 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
2019 	btrfs_init_block_rsv(&fs_info->empty_block_rsv);
2020 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
2021 	atomic_set(&fs_info->nr_async_submits, 0);
2022 	atomic_set(&fs_info->async_delalloc_pages, 0);
2023 	atomic_set(&fs_info->async_submit_draining, 0);
2024 	atomic_set(&fs_info->nr_async_bios, 0);
2025 	atomic_set(&fs_info->defrag_running, 0);
2026 	atomic_set(&fs_info->tree_mod_seq, 0);
2027 	fs_info->sb = sb;
2028 	fs_info->max_inline = 8192 * 1024;
2029 	fs_info->metadata_ratio = 0;
2030 	fs_info->defrag_inodes = RB_ROOT;
2031 	fs_info->trans_no_join = 0;
2032 	fs_info->free_chunk_space = 0;
2033 	fs_info->tree_mod_log = RB_ROOT;
2034 
2035 	init_waitqueue_head(&fs_info->tree_mod_seq_wait);
2036 
2037 	/* readahead state */
2038 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2039 	spin_lock_init(&fs_info->reada_lock);
2040 
2041 	fs_info->thread_pool_size = min_t(unsigned long,
2042 					  num_online_cpus() + 2, 8);
2043 
2044 	INIT_LIST_HEAD(&fs_info->ordered_extents);
2045 	spin_lock_init(&fs_info->ordered_extent_lock);
2046 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2047 					GFP_NOFS);
2048 	if (!fs_info->delayed_root) {
2049 		err = -ENOMEM;
2050 		goto fail_iput;
2051 	}
2052 	btrfs_init_delayed_root(fs_info->delayed_root);
2053 
2054 	mutex_init(&fs_info->scrub_lock);
2055 	atomic_set(&fs_info->scrubs_running, 0);
2056 	atomic_set(&fs_info->scrub_pause_req, 0);
2057 	atomic_set(&fs_info->scrubs_paused, 0);
2058 	atomic_set(&fs_info->scrub_cancel_req, 0);
2059 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2060 	init_rwsem(&fs_info->scrub_super_lock);
2061 	fs_info->scrub_workers_refcnt = 0;
2062 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2063 	fs_info->check_integrity_print_mask = 0;
2064 #endif
2065 
2066 	spin_lock_init(&fs_info->balance_lock);
2067 	mutex_init(&fs_info->balance_mutex);
2068 	atomic_set(&fs_info->balance_running, 0);
2069 	atomic_set(&fs_info->balance_pause_req, 0);
2070 	atomic_set(&fs_info->balance_cancel_req, 0);
2071 	fs_info->balance_ctl = NULL;
2072 	init_waitqueue_head(&fs_info->balance_wait_q);
2073 
2074 	sb->s_blocksize = 4096;
2075 	sb->s_blocksize_bits = blksize_bits(4096);
2076 	sb->s_bdi = &fs_info->bdi;
2077 
2078 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2079 	set_nlink(fs_info->btree_inode, 1);
2080 	/*
2081 	 * we set the i_size on the btree inode to the max possible int.
2082 	 * the real end of the address space is determined by all of
2083 	 * the devices in the system
2084 	 */
2085 	fs_info->btree_inode->i_size = OFFSET_MAX;
2086 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2087 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2088 
2089 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2090 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2091 			     fs_info->btree_inode->i_mapping);
2092 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2093 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2094 
2095 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2096 
2097 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2098 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2099 	       sizeof(struct btrfs_key));
2100 	set_bit(BTRFS_INODE_DUMMY,
2101 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2102 	insert_inode_hash(fs_info->btree_inode);
2103 
2104 	spin_lock_init(&fs_info->block_group_cache_lock);
2105 	fs_info->block_group_cache_tree = RB_ROOT;
2106 
2107 	extent_io_tree_init(&fs_info->freed_extents[0],
2108 			     fs_info->btree_inode->i_mapping);
2109 	extent_io_tree_init(&fs_info->freed_extents[1],
2110 			     fs_info->btree_inode->i_mapping);
2111 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2112 	fs_info->do_barriers = 1;
2113 
2114 
2115 	mutex_init(&fs_info->ordered_operations_mutex);
2116 	mutex_init(&fs_info->tree_log_mutex);
2117 	mutex_init(&fs_info->chunk_mutex);
2118 	mutex_init(&fs_info->transaction_kthread_mutex);
2119 	mutex_init(&fs_info->cleaner_mutex);
2120 	mutex_init(&fs_info->volume_mutex);
2121 	init_rwsem(&fs_info->extent_commit_sem);
2122 	init_rwsem(&fs_info->cleanup_work_sem);
2123 	init_rwsem(&fs_info->subvol_sem);
2124 
2125 	spin_lock_init(&fs_info->qgroup_lock);
2126 	fs_info->qgroup_tree = RB_ROOT;
2127 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2128 	fs_info->qgroup_seq = 1;
2129 	fs_info->quota_enabled = 0;
2130 	fs_info->pending_quota_state = 0;
2131 
2132 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2133 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2134 
2135 	init_waitqueue_head(&fs_info->transaction_throttle);
2136 	init_waitqueue_head(&fs_info->transaction_wait);
2137 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2138 	init_waitqueue_head(&fs_info->async_submit_wait);
2139 
2140 	__setup_root(4096, 4096, 4096, 4096, tree_root,
2141 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2142 
2143 	invalidate_bdev(fs_devices->latest_bdev);
2144 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2145 	if (!bh) {
2146 		err = -EINVAL;
2147 		goto fail_alloc;
2148 	}
2149 
2150 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2151 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2152 	       sizeof(*fs_info->super_for_commit));
2153 	brelse(bh);
2154 
2155 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2156 
2157 	disk_super = fs_info->super_copy;
2158 	if (!btrfs_super_root(disk_super))
2159 		goto fail_alloc;
2160 
2161 	/* check FS state, whether FS is broken. */
2162 	fs_info->fs_state |= btrfs_super_flags(disk_super);
2163 
2164 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2165 	if (ret) {
2166 		printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2167 		err = ret;
2168 		goto fail_alloc;
2169 	}
2170 
2171 	/*
2172 	 * run through our array of backup supers and setup
2173 	 * our ring pointer to the oldest one
2174 	 */
2175 	generation = btrfs_super_generation(disk_super);
2176 	find_oldest_super_backup(fs_info, generation);
2177 
2178 	/*
2179 	 * In the long term, we'll store the compression type in the super
2180 	 * block, and it'll be used for per file compression control.
2181 	 */
2182 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2183 
2184 	ret = btrfs_parse_options(tree_root, options);
2185 	if (ret) {
2186 		err = ret;
2187 		goto fail_alloc;
2188 	}
2189 
2190 	features = btrfs_super_incompat_flags(disk_super) &
2191 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2192 	if (features) {
2193 		printk(KERN_ERR "BTRFS: couldn't mount because of "
2194 		       "unsupported optional features (%Lx).\n",
2195 		       (unsigned long long)features);
2196 		err = -EINVAL;
2197 		goto fail_alloc;
2198 	}
2199 
2200 	if (btrfs_super_leafsize(disk_super) !=
2201 	    btrfs_super_nodesize(disk_super)) {
2202 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2203 		       "blocksizes don't match.  node %d leaf %d\n",
2204 		       btrfs_super_nodesize(disk_super),
2205 		       btrfs_super_leafsize(disk_super));
2206 		err = -EINVAL;
2207 		goto fail_alloc;
2208 	}
2209 	if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2210 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2211 		       "blocksize (%d) was too large\n",
2212 		       btrfs_super_leafsize(disk_super));
2213 		err = -EINVAL;
2214 		goto fail_alloc;
2215 	}
2216 
2217 	features = btrfs_super_incompat_flags(disk_super);
2218 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2219 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2220 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2221 
2222 	/*
2223 	 * flag our filesystem as having big metadata blocks if
2224 	 * they are bigger than the page size
2225 	 */
2226 	if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2227 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2228 			printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2229 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2230 	}
2231 
2232 	nodesize = btrfs_super_nodesize(disk_super);
2233 	leafsize = btrfs_super_leafsize(disk_super);
2234 	sectorsize = btrfs_super_sectorsize(disk_super);
2235 	stripesize = btrfs_super_stripesize(disk_super);
2236 
2237 	/*
2238 	 * mixed block groups end up with duplicate but slightly offset
2239 	 * extent buffers for the same range.  It leads to corruptions
2240 	 */
2241 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2242 	    (sectorsize != leafsize)) {
2243 		printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2244 				"are not allowed for mixed block groups on %s\n",
2245 				sb->s_id);
2246 		goto fail_alloc;
2247 	}
2248 
2249 	btrfs_set_super_incompat_flags(disk_super, features);
2250 
2251 	features = btrfs_super_compat_ro_flags(disk_super) &
2252 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2253 	if (!(sb->s_flags & MS_RDONLY) && features) {
2254 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2255 		       "unsupported option features (%Lx).\n",
2256 		       (unsigned long long)features);
2257 		err = -EINVAL;
2258 		goto fail_alloc;
2259 	}
2260 
2261 	btrfs_init_workers(&fs_info->generic_worker,
2262 			   "genwork", 1, NULL);
2263 
2264 	btrfs_init_workers(&fs_info->workers, "worker",
2265 			   fs_info->thread_pool_size,
2266 			   &fs_info->generic_worker);
2267 
2268 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2269 			   fs_info->thread_pool_size,
2270 			   &fs_info->generic_worker);
2271 
2272 	btrfs_init_workers(&fs_info->submit_workers, "submit",
2273 			   min_t(u64, fs_devices->num_devices,
2274 			   fs_info->thread_pool_size),
2275 			   &fs_info->generic_worker);
2276 
2277 	btrfs_init_workers(&fs_info->caching_workers, "cache",
2278 			   2, &fs_info->generic_worker);
2279 
2280 	/* a higher idle thresh on the submit workers makes it much more
2281 	 * likely that bios will be send down in a sane order to the
2282 	 * devices
2283 	 */
2284 	fs_info->submit_workers.idle_thresh = 64;
2285 
2286 	fs_info->workers.idle_thresh = 16;
2287 	fs_info->workers.ordered = 1;
2288 
2289 	fs_info->delalloc_workers.idle_thresh = 2;
2290 	fs_info->delalloc_workers.ordered = 1;
2291 
2292 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2293 			   &fs_info->generic_worker);
2294 	btrfs_init_workers(&fs_info->endio_workers, "endio",
2295 			   fs_info->thread_pool_size,
2296 			   &fs_info->generic_worker);
2297 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2298 			   fs_info->thread_pool_size,
2299 			   &fs_info->generic_worker);
2300 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
2301 			   "endio-meta-write", fs_info->thread_pool_size,
2302 			   &fs_info->generic_worker);
2303 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2304 			   fs_info->thread_pool_size,
2305 			   &fs_info->generic_worker);
2306 	btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2307 			   1, &fs_info->generic_worker);
2308 	btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2309 			   fs_info->thread_pool_size,
2310 			   &fs_info->generic_worker);
2311 	btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2312 			   fs_info->thread_pool_size,
2313 			   &fs_info->generic_worker);
2314 
2315 	/*
2316 	 * endios are largely parallel and should have a very
2317 	 * low idle thresh
2318 	 */
2319 	fs_info->endio_workers.idle_thresh = 4;
2320 	fs_info->endio_meta_workers.idle_thresh = 4;
2321 
2322 	fs_info->endio_write_workers.idle_thresh = 2;
2323 	fs_info->endio_meta_write_workers.idle_thresh = 2;
2324 	fs_info->readahead_workers.idle_thresh = 2;
2325 
2326 	/*
2327 	 * btrfs_start_workers can really only fail because of ENOMEM so just
2328 	 * return -ENOMEM if any of these fail.
2329 	 */
2330 	ret = btrfs_start_workers(&fs_info->workers);
2331 	ret |= btrfs_start_workers(&fs_info->generic_worker);
2332 	ret |= btrfs_start_workers(&fs_info->submit_workers);
2333 	ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2334 	ret |= btrfs_start_workers(&fs_info->fixup_workers);
2335 	ret |= btrfs_start_workers(&fs_info->endio_workers);
2336 	ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2337 	ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2338 	ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2339 	ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2340 	ret |= btrfs_start_workers(&fs_info->delayed_workers);
2341 	ret |= btrfs_start_workers(&fs_info->caching_workers);
2342 	ret |= btrfs_start_workers(&fs_info->readahead_workers);
2343 	if (ret) {
2344 		err = -ENOMEM;
2345 		goto fail_sb_buffer;
2346 	}
2347 
2348 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2349 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2350 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2351 
2352 	tree_root->nodesize = nodesize;
2353 	tree_root->leafsize = leafsize;
2354 	tree_root->sectorsize = sectorsize;
2355 	tree_root->stripesize = stripesize;
2356 
2357 	sb->s_blocksize = sectorsize;
2358 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2359 
2360 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2361 		    sizeof(disk_super->magic))) {
2362 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2363 		goto fail_sb_buffer;
2364 	}
2365 
2366 	if (sectorsize != PAGE_SIZE) {
2367 		printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2368 		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2369 		goto fail_sb_buffer;
2370 	}
2371 
2372 	mutex_lock(&fs_info->chunk_mutex);
2373 	ret = btrfs_read_sys_array(tree_root);
2374 	mutex_unlock(&fs_info->chunk_mutex);
2375 	if (ret) {
2376 		printk(KERN_WARNING "btrfs: failed to read the system "
2377 		       "array on %s\n", sb->s_id);
2378 		goto fail_sb_buffer;
2379 	}
2380 
2381 	blocksize = btrfs_level_size(tree_root,
2382 				     btrfs_super_chunk_root_level(disk_super));
2383 	generation = btrfs_super_chunk_root_generation(disk_super);
2384 
2385 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
2386 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2387 
2388 	chunk_root->node = read_tree_block(chunk_root,
2389 					   btrfs_super_chunk_root(disk_super),
2390 					   blocksize, generation);
2391 	BUG_ON(!chunk_root->node); /* -ENOMEM */
2392 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2393 		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2394 		       sb->s_id);
2395 		goto fail_tree_roots;
2396 	}
2397 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2398 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2399 
2400 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2401 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2402 	   BTRFS_UUID_SIZE);
2403 
2404 	ret = btrfs_read_chunk_tree(chunk_root);
2405 	if (ret) {
2406 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2407 		       sb->s_id);
2408 		goto fail_tree_roots;
2409 	}
2410 
2411 	btrfs_close_extra_devices(fs_devices);
2412 
2413 	if (!fs_devices->latest_bdev) {
2414 		printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2415 		       sb->s_id);
2416 		goto fail_tree_roots;
2417 	}
2418 
2419 retry_root_backup:
2420 	blocksize = btrfs_level_size(tree_root,
2421 				     btrfs_super_root_level(disk_super));
2422 	generation = btrfs_super_generation(disk_super);
2423 
2424 	tree_root->node = read_tree_block(tree_root,
2425 					  btrfs_super_root(disk_super),
2426 					  blocksize, generation);
2427 	if (!tree_root->node ||
2428 	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2429 		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2430 		       sb->s_id);
2431 
2432 		goto recovery_tree_root;
2433 	}
2434 
2435 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2436 	tree_root->commit_root = btrfs_root_node(tree_root);
2437 
2438 	ret = find_and_setup_root(tree_root, fs_info,
2439 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2440 	if (ret)
2441 		goto recovery_tree_root;
2442 	extent_root->track_dirty = 1;
2443 
2444 	ret = find_and_setup_root(tree_root, fs_info,
2445 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
2446 	if (ret)
2447 		goto recovery_tree_root;
2448 	dev_root->track_dirty = 1;
2449 
2450 	ret = find_and_setup_root(tree_root, fs_info,
2451 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
2452 	if (ret)
2453 		goto recovery_tree_root;
2454 	csum_root->track_dirty = 1;
2455 
2456 	ret = find_and_setup_root(tree_root, fs_info,
2457 				  BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2458 	if (ret) {
2459 		kfree(quota_root);
2460 		quota_root = fs_info->quota_root = NULL;
2461 	} else {
2462 		quota_root->track_dirty = 1;
2463 		fs_info->quota_enabled = 1;
2464 		fs_info->pending_quota_state = 1;
2465 	}
2466 
2467 	fs_info->generation = generation;
2468 	fs_info->last_trans_committed = generation;
2469 
2470 	ret = btrfs_recover_balance(fs_info);
2471 	if (ret) {
2472 		printk(KERN_WARNING "btrfs: failed to recover balance\n");
2473 		goto fail_block_groups;
2474 	}
2475 
2476 	ret = btrfs_init_dev_stats(fs_info);
2477 	if (ret) {
2478 		printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2479 		       ret);
2480 		goto fail_block_groups;
2481 	}
2482 
2483 	ret = btrfs_init_space_info(fs_info);
2484 	if (ret) {
2485 		printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2486 		goto fail_block_groups;
2487 	}
2488 
2489 	ret = btrfs_read_block_groups(extent_root);
2490 	if (ret) {
2491 		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2492 		goto fail_block_groups;
2493 	}
2494 
2495 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2496 					       "btrfs-cleaner");
2497 	if (IS_ERR(fs_info->cleaner_kthread))
2498 		goto fail_block_groups;
2499 
2500 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2501 						   tree_root,
2502 						   "btrfs-transaction");
2503 	if (IS_ERR(fs_info->transaction_kthread))
2504 		goto fail_cleaner;
2505 
2506 	if (!btrfs_test_opt(tree_root, SSD) &&
2507 	    !btrfs_test_opt(tree_root, NOSSD) &&
2508 	    !fs_info->fs_devices->rotating) {
2509 		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2510 		       "mode\n");
2511 		btrfs_set_opt(fs_info->mount_opt, SSD);
2512 	}
2513 
2514 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2515 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2516 		ret = btrfsic_mount(tree_root, fs_devices,
2517 				    btrfs_test_opt(tree_root,
2518 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2519 				    1 : 0,
2520 				    fs_info->check_integrity_print_mask);
2521 		if (ret)
2522 			printk(KERN_WARNING "btrfs: failed to initialize"
2523 			       " integrity check module %s\n", sb->s_id);
2524 	}
2525 #endif
2526 	ret = btrfs_read_qgroup_config(fs_info);
2527 	if (ret)
2528 		goto fail_trans_kthread;
2529 
2530 	/* do not make disk changes in broken FS */
2531 	if (btrfs_super_log_root(disk_super) != 0 &&
2532 	    !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2533 		u64 bytenr = btrfs_super_log_root(disk_super);
2534 
2535 		if (fs_devices->rw_devices == 0) {
2536 			printk(KERN_WARNING "Btrfs log replay required "
2537 			       "on RO media\n");
2538 			err = -EIO;
2539 			goto fail_qgroup;
2540 		}
2541 		blocksize =
2542 		     btrfs_level_size(tree_root,
2543 				      btrfs_super_log_root_level(disk_super));
2544 
2545 		log_tree_root = btrfs_alloc_root(fs_info);
2546 		if (!log_tree_root) {
2547 			err = -ENOMEM;
2548 			goto fail_qgroup;
2549 		}
2550 
2551 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2552 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2553 
2554 		log_tree_root->node = read_tree_block(tree_root, bytenr,
2555 						      blocksize,
2556 						      generation + 1);
2557 		/* returns with log_tree_root freed on success */
2558 		ret = btrfs_recover_log_trees(log_tree_root);
2559 		if (ret) {
2560 			btrfs_error(tree_root->fs_info, ret,
2561 				    "Failed to recover log tree");
2562 			free_extent_buffer(log_tree_root->node);
2563 			kfree(log_tree_root);
2564 			goto fail_trans_kthread;
2565 		}
2566 
2567 		if (sb->s_flags & MS_RDONLY) {
2568 			ret = btrfs_commit_super(tree_root);
2569 			if (ret)
2570 				goto fail_trans_kthread;
2571 		}
2572 	}
2573 
2574 	ret = btrfs_find_orphan_roots(tree_root);
2575 	if (ret)
2576 		goto fail_trans_kthread;
2577 
2578 	if (!(sb->s_flags & MS_RDONLY)) {
2579 		ret = btrfs_cleanup_fs_roots(fs_info);
2580 		if (ret)
2581 			goto fail_trans_kthread;
2582 
2583 		ret = btrfs_recover_relocation(tree_root);
2584 		if (ret < 0) {
2585 			printk(KERN_WARNING
2586 			       "btrfs: failed to recover relocation\n");
2587 			err = -EINVAL;
2588 			goto fail_qgroup;
2589 		}
2590 	}
2591 
2592 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2593 	location.type = BTRFS_ROOT_ITEM_KEY;
2594 	location.offset = (u64)-1;
2595 
2596 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2597 	if (!fs_info->fs_root)
2598 		goto fail_qgroup;
2599 	if (IS_ERR(fs_info->fs_root)) {
2600 		err = PTR_ERR(fs_info->fs_root);
2601 		goto fail_qgroup;
2602 	}
2603 
2604 	if (sb->s_flags & MS_RDONLY)
2605 		return 0;
2606 
2607 	down_read(&fs_info->cleanup_work_sem);
2608 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2609 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2610 		up_read(&fs_info->cleanup_work_sem);
2611 		close_ctree(tree_root);
2612 		return ret;
2613 	}
2614 	up_read(&fs_info->cleanup_work_sem);
2615 
2616 	ret = btrfs_resume_balance_async(fs_info);
2617 	if (ret) {
2618 		printk(KERN_WARNING "btrfs: failed to resume balance\n");
2619 		close_ctree(tree_root);
2620 		return ret;
2621 	}
2622 
2623 	return 0;
2624 
2625 fail_qgroup:
2626 	btrfs_free_qgroup_config(fs_info);
2627 fail_trans_kthread:
2628 	kthread_stop(fs_info->transaction_kthread);
2629 fail_cleaner:
2630 	kthread_stop(fs_info->cleaner_kthread);
2631 
2632 	/*
2633 	 * make sure we're done with the btree inode before we stop our
2634 	 * kthreads
2635 	 */
2636 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2637 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2638 
2639 fail_block_groups:
2640 	btrfs_free_block_groups(fs_info);
2641 
2642 fail_tree_roots:
2643 	free_root_pointers(fs_info, 1);
2644 
2645 fail_sb_buffer:
2646 	btrfs_stop_workers(&fs_info->generic_worker);
2647 	btrfs_stop_workers(&fs_info->readahead_workers);
2648 	btrfs_stop_workers(&fs_info->fixup_workers);
2649 	btrfs_stop_workers(&fs_info->delalloc_workers);
2650 	btrfs_stop_workers(&fs_info->workers);
2651 	btrfs_stop_workers(&fs_info->endio_workers);
2652 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2653 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2654 	btrfs_stop_workers(&fs_info->endio_write_workers);
2655 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2656 	btrfs_stop_workers(&fs_info->submit_workers);
2657 	btrfs_stop_workers(&fs_info->delayed_workers);
2658 	btrfs_stop_workers(&fs_info->caching_workers);
2659 fail_alloc:
2660 fail_iput:
2661 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2662 
2663 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2664 	iput(fs_info->btree_inode);
2665 fail_bdi:
2666 	bdi_destroy(&fs_info->bdi);
2667 fail_srcu:
2668 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2669 fail:
2670 	btrfs_close_devices(fs_info->fs_devices);
2671 	return err;
2672 
2673 recovery_tree_root:
2674 	if (!btrfs_test_opt(tree_root, RECOVERY))
2675 		goto fail_tree_roots;
2676 
2677 	free_root_pointers(fs_info, 0);
2678 
2679 	/* don't use the log in recovery mode, it won't be valid */
2680 	btrfs_set_super_log_root(disk_super, 0);
2681 
2682 	/* we can't trust the free space cache either */
2683 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2684 
2685 	ret = next_root_backup(fs_info, fs_info->super_copy,
2686 			       &num_backups_tried, &backup_index);
2687 	if (ret == -1)
2688 		goto fail_block_groups;
2689 	goto retry_root_backup;
2690 }
2691 
2692 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2693 {
2694 	if (uptodate) {
2695 		set_buffer_uptodate(bh);
2696 	} else {
2697 		struct btrfs_device *device = (struct btrfs_device *)
2698 			bh->b_private;
2699 
2700 		printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2701 					  "I/O error on %s\n",
2702 					  rcu_str_deref(device->name));
2703 		/* note, we dont' set_buffer_write_io_error because we have
2704 		 * our own ways of dealing with the IO errors
2705 		 */
2706 		clear_buffer_uptodate(bh);
2707 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2708 	}
2709 	unlock_buffer(bh);
2710 	put_bh(bh);
2711 }
2712 
2713 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2714 {
2715 	struct buffer_head *bh;
2716 	struct buffer_head *latest = NULL;
2717 	struct btrfs_super_block *super;
2718 	int i;
2719 	u64 transid = 0;
2720 	u64 bytenr;
2721 
2722 	/* we would like to check all the supers, but that would make
2723 	 * a btrfs mount succeed after a mkfs from a different FS.
2724 	 * So, we need to add a special mount option to scan for
2725 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2726 	 */
2727 	for (i = 0; i < 1; i++) {
2728 		bytenr = btrfs_sb_offset(i);
2729 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2730 			break;
2731 		bh = __bread(bdev, bytenr / 4096, 4096);
2732 		if (!bh)
2733 			continue;
2734 
2735 		super = (struct btrfs_super_block *)bh->b_data;
2736 		if (btrfs_super_bytenr(super) != bytenr ||
2737 		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2738 			    sizeof(super->magic))) {
2739 			brelse(bh);
2740 			continue;
2741 		}
2742 
2743 		if (!latest || btrfs_super_generation(super) > transid) {
2744 			brelse(latest);
2745 			latest = bh;
2746 			transid = btrfs_super_generation(super);
2747 		} else {
2748 			brelse(bh);
2749 		}
2750 	}
2751 	return latest;
2752 }
2753 
2754 /*
2755  * this should be called twice, once with wait == 0 and
2756  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2757  * we write are pinned.
2758  *
2759  * They are released when wait == 1 is done.
2760  * max_mirrors must be the same for both runs, and it indicates how
2761  * many supers on this one device should be written.
2762  *
2763  * max_mirrors == 0 means to write them all.
2764  */
2765 static int write_dev_supers(struct btrfs_device *device,
2766 			    struct btrfs_super_block *sb,
2767 			    int do_barriers, int wait, int max_mirrors)
2768 {
2769 	struct buffer_head *bh;
2770 	int i;
2771 	int ret;
2772 	int errors = 0;
2773 	u32 crc;
2774 	u64 bytenr;
2775 
2776 	if (max_mirrors == 0)
2777 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2778 
2779 	for (i = 0; i < max_mirrors; i++) {
2780 		bytenr = btrfs_sb_offset(i);
2781 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2782 			break;
2783 
2784 		if (wait) {
2785 			bh = __find_get_block(device->bdev, bytenr / 4096,
2786 					      BTRFS_SUPER_INFO_SIZE);
2787 			BUG_ON(!bh);
2788 			wait_on_buffer(bh);
2789 			if (!buffer_uptodate(bh))
2790 				errors++;
2791 
2792 			/* drop our reference */
2793 			brelse(bh);
2794 
2795 			/* drop the reference from the wait == 0 run */
2796 			brelse(bh);
2797 			continue;
2798 		} else {
2799 			btrfs_set_super_bytenr(sb, bytenr);
2800 
2801 			crc = ~(u32)0;
2802 			crc = btrfs_csum_data(NULL, (char *)sb +
2803 					      BTRFS_CSUM_SIZE, crc,
2804 					      BTRFS_SUPER_INFO_SIZE -
2805 					      BTRFS_CSUM_SIZE);
2806 			btrfs_csum_final(crc, sb->csum);
2807 
2808 			/*
2809 			 * one reference for us, and we leave it for the
2810 			 * caller
2811 			 */
2812 			bh = __getblk(device->bdev, bytenr / 4096,
2813 				      BTRFS_SUPER_INFO_SIZE);
2814 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2815 
2816 			/* one reference for submit_bh */
2817 			get_bh(bh);
2818 
2819 			set_buffer_uptodate(bh);
2820 			lock_buffer(bh);
2821 			bh->b_end_io = btrfs_end_buffer_write_sync;
2822 			bh->b_private = device;
2823 		}
2824 
2825 		/*
2826 		 * we fua the first super.  The others we allow
2827 		 * to go down lazy.
2828 		 */
2829 		ret = btrfsic_submit_bh(WRITE_FUA, bh);
2830 		if (ret)
2831 			errors++;
2832 	}
2833 	return errors < i ? 0 : -1;
2834 }
2835 
2836 /*
2837  * endio for the write_dev_flush, this will wake anyone waiting
2838  * for the barrier when it is done
2839  */
2840 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2841 {
2842 	if (err) {
2843 		if (err == -EOPNOTSUPP)
2844 			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2845 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
2846 	}
2847 	if (bio->bi_private)
2848 		complete(bio->bi_private);
2849 	bio_put(bio);
2850 }
2851 
2852 /*
2853  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2854  * sent down.  With wait == 1, it waits for the previous flush.
2855  *
2856  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2857  * capable
2858  */
2859 static int write_dev_flush(struct btrfs_device *device, int wait)
2860 {
2861 	struct bio *bio;
2862 	int ret = 0;
2863 
2864 	if (device->nobarriers)
2865 		return 0;
2866 
2867 	if (wait) {
2868 		bio = device->flush_bio;
2869 		if (!bio)
2870 			return 0;
2871 
2872 		wait_for_completion(&device->flush_wait);
2873 
2874 		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2875 			printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2876 				      rcu_str_deref(device->name));
2877 			device->nobarriers = 1;
2878 		}
2879 		if (!bio_flagged(bio, BIO_UPTODATE)) {
2880 			ret = -EIO;
2881 			if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2882 				btrfs_dev_stat_inc_and_print(device,
2883 					BTRFS_DEV_STAT_FLUSH_ERRS);
2884 		}
2885 
2886 		/* drop the reference from the wait == 0 run */
2887 		bio_put(bio);
2888 		device->flush_bio = NULL;
2889 
2890 		return ret;
2891 	}
2892 
2893 	/*
2894 	 * one reference for us, and we leave it for the
2895 	 * caller
2896 	 */
2897 	device->flush_bio = NULL;
2898 	bio = bio_alloc(GFP_NOFS, 0);
2899 	if (!bio)
2900 		return -ENOMEM;
2901 
2902 	bio->bi_end_io = btrfs_end_empty_barrier;
2903 	bio->bi_bdev = device->bdev;
2904 	init_completion(&device->flush_wait);
2905 	bio->bi_private = &device->flush_wait;
2906 	device->flush_bio = bio;
2907 
2908 	bio_get(bio);
2909 	btrfsic_submit_bio(WRITE_FLUSH, bio);
2910 
2911 	return 0;
2912 }
2913 
2914 /*
2915  * send an empty flush down to each device in parallel,
2916  * then wait for them
2917  */
2918 static int barrier_all_devices(struct btrfs_fs_info *info)
2919 {
2920 	struct list_head *head;
2921 	struct btrfs_device *dev;
2922 	int errors = 0;
2923 	int ret;
2924 
2925 	/* send down all the barriers */
2926 	head = &info->fs_devices->devices;
2927 	list_for_each_entry_rcu(dev, head, dev_list) {
2928 		if (!dev->bdev) {
2929 			errors++;
2930 			continue;
2931 		}
2932 		if (!dev->in_fs_metadata || !dev->writeable)
2933 			continue;
2934 
2935 		ret = write_dev_flush(dev, 0);
2936 		if (ret)
2937 			errors++;
2938 	}
2939 
2940 	/* wait for all the barriers */
2941 	list_for_each_entry_rcu(dev, head, dev_list) {
2942 		if (!dev->bdev) {
2943 			errors++;
2944 			continue;
2945 		}
2946 		if (!dev->in_fs_metadata || !dev->writeable)
2947 			continue;
2948 
2949 		ret = write_dev_flush(dev, 1);
2950 		if (ret)
2951 			errors++;
2952 	}
2953 	if (errors)
2954 		return -EIO;
2955 	return 0;
2956 }
2957 
2958 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2959 {
2960 	struct list_head *head;
2961 	struct btrfs_device *dev;
2962 	struct btrfs_super_block *sb;
2963 	struct btrfs_dev_item *dev_item;
2964 	int ret;
2965 	int do_barriers;
2966 	int max_errors;
2967 	int total_errors = 0;
2968 	u64 flags;
2969 
2970 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2971 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2972 	backup_super_roots(root->fs_info);
2973 
2974 	sb = root->fs_info->super_for_commit;
2975 	dev_item = &sb->dev_item;
2976 
2977 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2978 	head = &root->fs_info->fs_devices->devices;
2979 
2980 	if (do_barriers)
2981 		barrier_all_devices(root->fs_info);
2982 
2983 	list_for_each_entry_rcu(dev, head, dev_list) {
2984 		if (!dev->bdev) {
2985 			total_errors++;
2986 			continue;
2987 		}
2988 		if (!dev->in_fs_metadata || !dev->writeable)
2989 			continue;
2990 
2991 		btrfs_set_stack_device_generation(dev_item, 0);
2992 		btrfs_set_stack_device_type(dev_item, dev->type);
2993 		btrfs_set_stack_device_id(dev_item, dev->devid);
2994 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2995 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2996 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2997 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2998 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2999 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3000 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3001 
3002 		flags = btrfs_super_flags(sb);
3003 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3004 
3005 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3006 		if (ret)
3007 			total_errors++;
3008 	}
3009 	if (total_errors > max_errors) {
3010 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3011 		       total_errors);
3012 
3013 		/* This shouldn't happen. FUA is masked off if unsupported */
3014 		BUG();
3015 	}
3016 
3017 	total_errors = 0;
3018 	list_for_each_entry_rcu(dev, head, dev_list) {
3019 		if (!dev->bdev)
3020 			continue;
3021 		if (!dev->in_fs_metadata || !dev->writeable)
3022 			continue;
3023 
3024 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3025 		if (ret)
3026 			total_errors++;
3027 	}
3028 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3029 	if (total_errors > max_errors) {
3030 		btrfs_error(root->fs_info, -EIO,
3031 			    "%d errors while writing supers", total_errors);
3032 		return -EIO;
3033 	}
3034 	return 0;
3035 }
3036 
3037 int write_ctree_super(struct btrfs_trans_handle *trans,
3038 		      struct btrfs_root *root, int max_mirrors)
3039 {
3040 	int ret;
3041 
3042 	ret = write_all_supers(root, max_mirrors);
3043 	return ret;
3044 }
3045 
3046 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3047 {
3048 	spin_lock(&fs_info->fs_roots_radix_lock);
3049 	radix_tree_delete(&fs_info->fs_roots_radix,
3050 			  (unsigned long)root->root_key.objectid);
3051 	spin_unlock(&fs_info->fs_roots_radix_lock);
3052 
3053 	if (btrfs_root_refs(&root->root_item) == 0)
3054 		synchronize_srcu(&fs_info->subvol_srcu);
3055 
3056 	__btrfs_remove_free_space_cache(root->free_ino_pinned);
3057 	__btrfs_remove_free_space_cache(root->free_ino_ctl);
3058 	free_fs_root(root);
3059 }
3060 
3061 static void free_fs_root(struct btrfs_root *root)
3062 {
3063 	iput(root->cache_inode);
3064 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3065 	if (root->anon_dev)
3066 		free_anon_bdev(root->anon_dev);
3067 	free_extent_buffer(root->node);
3068 	free_extent_buffer(root->commit_root);
3069 	kfree(root->free_ino_ctl);
3070 	kfree(root->free_ino_pinned);
3071 	kfree(root->name);
3072 	kfree(root);
3073 }
3074 
3075 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3076 {
3077 	int ret;
3078 	struct btrfs_root *gang[8];
3079 	int i;
3080 
3081 	while (!list_empty(&fs_info->dead_roots)) {
3082 		gang[0] = list_entry(fs_info->dead_roots.next,
3083 				     struct btrfs_root, root_list);
3084 		list_del(&gang[0]->root_list);
3085 
3086 		if (gang[0]->in_radix) {
3087 			btrfs_free_fs_root(fs_info, gang[0]);
3088 		} else {
3089 			free_extent_buffer(gang[0]->node);
3090 			free_extent_buffer(gang[0]->commit_root);
3091 			kfree(gang[0]);
3092 		}
3093 	}
3094 
3095 	while (1) {
3096 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3097 					     (void **)gang, 0,
3098 					     ARRAY_SIZE(gang));
3099 		if (!ret)
3100 			break;
3101 		for (i = 0; i < ret; i++)
3102 			btrfs_free_fs_root(fs_info, gang[i]);
3103 	}
3104 }
3105 
3106 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3107 {
3108 	u64 root_objectid = 0;
3109 	struct btrfs_root *gang[8];
3110 	int i;
3111 	int ret;
3112 
3113 	while (1) {
3114 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3115 					     (void **)gang, root_objectid,
3116 					     ARRAY_SIZE(gang));
3117 		if (!ret)
3118 			break;
3119 
3120 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3121 		for (i = 0; i < ret; i++) {
3122 			int err;
3123 
3124 			root_objectid = gang[i]->root_key.objectid;
3125 			err = btrfs_orphan_cleanup(gang[i]);
3126 			if (err)
3127 				return err;
3128 		}
3129 		root_objectid++;
3130 	}
3131 	return 0;
3132 }
3133 
3134 int btrfs_commit_super(struct btrfs_root *root)
3135 {
3136 	struct btrfs_trans_handle *trans;
3137 	int ret;
3138 
3139 	mutex_lock(&root->fs_info->cleaner_mutex);
3140 	btrfs_run_delayed_iputs(root);
3141 	btrfs_clean_old_snapshots(root);
3142 	mutex_unlock(&root->fs_info->cleaner_mutex);
3143 
3144 	/* wait until ongoing cleanup work done */
3145 	down_write(&root->fs_info->cleanup_work_sem);
3146 	up_write(&root->fs_info->cleanup_work_sem);
3147 
3148 	trans = btrfs_join_transaction(root);
3149 	if (IS_ERR(trans))
3150 		return PTR_ERR(trans);
3151 	ret = btrfs_commit_transaction(trans, root);
3152 	if (ret)
3153 		return ret;
3154 	/* run commit again to drop the original snapshot */
3155 	trans = btrfs_join_transaction(root);
3156 	if (IS_ERR(trans))
3157 		return PTR_ERR(trans);
3158 	ret = btrfs_commit_transaction(trans, root);
3159 	if (ret)
3160 		return ret;
3161 	ret = btrfs_write_and_wait_transaction(NULL, root);
3162 	if (ret) {
3163 		btrfs_error(root->fs_info, ret,
3164 			    "Failed to sync btree inode to disk.");
3165 		return ret;
3166 	}
3167 
3168 	ret = write_ctree_super(NULL, root, 0);
3169 	return ret;
3170 }
3171 
3172 int close_ctree(struct btrfs_root *root)
3173 {
3174 	struct btrfs_fs_info *fs_info = root->fs_info;
3175 	int ret;
3176 
3177 	fs_info->closing = 1;
3178 	smp_mb();
3179 
3180 	/* pause restriper - we want to resume on mount */
3181 	btrfs_pause_balance(root->fs_info);
3182 
3183 	btrfs_scrub_cancel(root);
3184 
3185 	/* wait for any defraggers to finish */
3186 	wait_event(fs_info->transaction_wait,
3187 		   (atomic_read(&fs_info->defrag_running) == 0));
3188 
3189 	/* clear out the rbtree of defraggable inodes */
3190 	btrfs_run_defrag_inodes(fs_info);
3191 
3192 	/*
3193 	 * Here come 2 situations when btrfs is broken to flip readonly:
3194 	 *
3195 	 * 1. when btrfs flips readonly somewhere else before
3196 	 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3197 	 * and btrfs will skip to write sb directly to keep
3198 	 * ERROR state on disk.
3199 	 *
3200 	 * 2. when btrfs flips readonly just in btrfs_commit_super,
3201 	 * and in such case, btrfs cannot write sb via btrfs_commit_super,
3202 	 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3203 	 * btrfs will cleanup all FS resources first and write sb then.
3204 	 */
3205 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3206 		ret = btrfs_commit_super(root);
3207 		if (ret)
3208 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3209 	}
3210 
3211 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3212 		ret = btrfs_error_commit_super(root);
3213 		if (ret)
3214 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3215 	}
3216 
3217 	btrfs_put_block_group_cache(fs_info);
3218 
3219 	kthread_stop(fs_info->transaction_kthread);
3220 	kthread_stop(fs_info->cleaner_kthread);
3221 
3222 	fs_info->closing = 2;
3223 	smp_mb();
3224 
3225 	btrfs_free_qgroup_config(root->fs_info);
3226 
3227 	if (fs_info->delalloc_bytes) {
3228 		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3229 		       (unsigned long long)fs_info->delalloc_bytes);
3230 	}
3231 	if (fs_info->total_ref_cache_size) {
3232 		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3233 		       (unsigned long long)fs_info->total_ref_cache_size);
3234 	}
3235 
3236 	free_extent_buffer(fs_info->extent_root->node);
3237 	free_extent_buffer(fs_info->extent_root->commit_root);
3238 	free_extent_buffer(fs_info->tree_root->node);
3239 	free_extent_buffer(fs_info->tree_root->commit_root);
3240 	free_extent_buffer(fs_info->chunk_root->node);
3241 	free_extent_buffer(fs_info->chunk_root->commit_root);
3242 	free_extent_buffer(fs_info->dev_root->node);
3243 	free_extent_buffer(fs_info->dev_root->commit_root);
3244 	free_extent_buffer(fs_info->csum_root->node);
3245 	free_extent_buffer(fs_info->csum_root->commit_root);
3246 	if (fs_info->quota_root) {
3247 		free_extent_buffer(fs_info->quota_root->node);
3248 		free_extent_buffer(fs_info->quota_root->commit_root);
3249 	}
3250 
3251 	btrfs_free_block_groups(fs_info);
3252 
3253 	del_fs_roots(fs_info);
3254 
3255 	iput(fs_info->btree_inode);
3256 
3257 	btrfs_stop_workers(&fs_info->generic_worker);
3258 	btrfs_stop_workers(&fs_info->fixup_workers);
3259 	btrfs_stop_workers(&fs_info->delalloc_workers);
3260 	btrfs_stop_workers(&fs_info->workers);
3261 	btrfs_stop_workers(&fs_info->endio_workers);
3262 	btrfs_stop_workers(&fs_info->endio_meta_workers);
3263 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3264 	btrfs_stop_workers(&fs_info->endio_write_workers);
3265 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
3266 	btrfs_stop_workers(&fs_info->submit_workers);
3267 	btrfs_stop_workers(&fs_info->delayed_workers);
3268 	btrfs_stop_workers(&fs_info->caching_workers);
3269 	btrfs_stop_workers(&fs_info->readahead_workers);
3270 
3271 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3272 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3273 		btrfsic_unmount(root, fs_info->fs_devices);
3274 #endif
3275 
3276 	btrfs_close_devices(fs_info->fs_devices);
3277 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3278 
3279 	bdi_destroy(&fs_info->bdi);
3280 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3281 
3282 	return 0;
3283 }
3284 
3285 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3286 			  int atomic)
3287 {
3288 	int ret;
3289 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3290 
3291 	ret = extent_buffer_uptodate(buf);
3292 	if (!ret)
3293 		return ret;
3294 
3295 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3296 				    parent_transid, atomic);
3297 	if (ret == -EAGAIN)
3298 		return ret;
3299 	return !ret;
3300 }
3301 
3302 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3303 {
3304 	return set_extent_buffer_uptodate(buf);
3305 }
3306 
3307 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3308 {
3309 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3310 	u64 transid = btrfs_header_generation(buf);
3311 	int was_dirty;
3312 
3313 	btrfs_assert_tree_locked(buf);
3314 	if (transid != root->fs_info->generation) {
3315 		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3316 		       "found %llu running %llu\n",
3317 			(unsigned long long)buf->start,
3318 			(unsigned long long)transid,
3319 			(unsigned long long)root->fs_info->generation);
3320 		WARN_ON(1);
3321 	}
3322 	was_dirty = set_extent_buffer_dirty(buf);
3323 	if (!was_dirty) {
3324 		spin_lock(&root->fs_info->delalloc_lock);
3325 		root->fs_info->dirty_metadata_bytes += buf->len;
3326 		spin_unlock(&root->fs_info->delalloc_lock);
3327 	}
3328 }
3329 
3330 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3331 {
3332 	/*
3333 	 * looks as though older kernels can get into trouble with
3334 	 * this code, they end up stuck in balance_dirty_pages forever
3335 	 */
3336 	u64 num_dirty;
3337 	unsigned long thresh = 32 * 1024 * 1024;
3338 
3339 	if (current->flags & PF_MEMALLOC)
3340 		return;
3341 
3342 	btrfs_balance_delayed_items(root);
3343 
3344 	num_dirty = root->fs_info->dirty_metadata_bytes;
3345 
3346 	if (num_dirty > thresh) {
3347 		balance_dirty_pages_ratelimited_nr(
3348 				   root->fs_info->btree_inode->i_mapping, 1);
3349 	}
3350 	return;
3351 }
3352 
3353 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3354 {
3355 	/*
3356 	 * looks as though older kernels can get into trouble with
3357 	 * this code, they end up stuck in balance_dirty_pages forever
3358 	 */
3359 	u64 num_dirty;
3360 	unsigned long thresh = 32 * 1024 * 1024;
3361 
3362 	if (current->flags & PF_MEMALLOC)
3363 		return;
3364 
3365 	num_dirty = root->fs_info->dirty_metadata_bytes;
3366 
3367 	if (num_dirty > thresh) {
3368 		balance_dirty_pages_ratelimited_nr(
3369 				   root->fs_info->btree_inode->i_mapping, 1);
3370 	}
3371 	return;
3372 }
3373 
3374 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3375 {
3376 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3377 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3378 }
3379 
3380 int btree_lock_page_hook(struct page *page, void *data,
3381 				void (*flush_fn)(void *))
3382 {
3383 	struct inode *inode = page->mapping->host;
3384 	struct btrfs_root *root = BTRFS_I(inode)->root;
3385 	struct extent_buffer *eb;
3386 
3387 	/*
3388 	 * We culled this eb but the page is still hanging out on the mapping,
3389 	 * carry on.
3390 	 */
3391 	if (!PagePrivate(page))
3392 		goto out;
3393 
3394 	eb = (struct extent_buffer *)page->private;
3395 	if (!eb) {
3396 		WARN_ON(1);
3397 		goto out;
3398 	}
3399 	if (page != eb->pages[0])
3400 		goto out;
3401 
3402 	if (!btrfs_try_tree_write_lock(eb)) {
3403 		flush_fn(data);
3404 		btrfs_tree_lock(eb);
3405 	}
3406 	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3407 
3408 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3409 		spin_lock(&root->fs_info->delalloc_lock);
3410 		if (root->fs_info->dirty_metadata_bytes >= eb->len)
3411 			root->fs_info->dirty_metadata_bytes -= eb->len;
3412 		else
3413 			WARN_ON(1);
3414 		spin_unlock(&root->fs_info->delalloc_lock);
3415 	}
3416 
3417 	btrfs_tree_unlock(eb);
3418 out:
3419 	if (!trylock_page(page)) {
3420 		flush_fn(data);
3421 		lock_page(page);
3422 	}
3423 	return 0;
3424 }
3425 
3426 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3427 			      int read_only)
3428 {
3429 	if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3430 		printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3431 		return -EINVAL;
3432 	}
3433 
3434 	if (read_only)
3435 		return 0;
3436 
3437 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3438 		printk(KERN_WARNING "warning: mount fs with errors, "
3439 		       "running btrfsck is recommended\n");
3440 	}
3441 
3442 	return 0;
3443 }
3444 
3445 int btrfs_error_commit_super(struct btrfs_root *root)
3446 {
3447 	int ret;
3448 
3449 	mutex_lock(&root->fs_info->cleaner_mutex);
3450 	btrfs_run_delayed_iputs(root);
3451 	mutex_unlock(&root->fs_info->cleaner_mutex);
3452 
3453 	down_write(&root->fs_info->cleanup_work_sem);
3454 	up_write(&root->fs_info->cleanup_work_sem);
3455 
3456 	/* cleanup FS via transaction */
3457 	btrfs_cleanup_transaction(root);
3458 
3459 	ret = write_ctree_super(NULL, root, 0);
3460 
3461 	return ret;
3462 }
3463 
3464 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3465 {
3466 	struct btrfs_inode *btrfs_inode;
3467 	struct list_head splice;
3468 
3469 	INIT_LIST_HEAD(&splice);
3470 
3471 	mutex_lock(&root->fs_info->ordered_operations_mutex);
3472 	spin_lock(&root->fs_info->ordered_extent_lock);
3473 
3474 	list_splice_init(&root->fs_info->ordered_operations, &splice);
3475 	while (!list_empty(&splice)) {
3476 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3477 					 ordered_operations);
3478 
3479 		list_del_init(&btrfs_inode->ordered_operations);
3480 
3481 		btrfs_invalidate_inodes(btrfs_inode->root);
3482 	}
3483 
3484 	spin_unlock(&root->fs_info->ordered_extent_lock);
3485 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
3486 }
3487 
3488 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3489 {
3490 	struct list_head splice;
3491 	struct btrfs_ordered_extent *ordered;
3492 	struct inode *inode;
3493 
3494 	INIT_LIST_HEAD(&splice);
3495 
3496 	spin_lock(&root->fs_info->ordered_extent_lock);
3497 
3498 	list_splice_init(&root->fs_info->ordered_extents, &splice);
3499 	while (!list_empty(&splice)) {
3500 		ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3501 				     root_extent_list);
3502 
3503 		list_del_init(&ordered->root_extent_list);
3504 		atomic_inc(&ordered->refs);
3505 
3506 		/* the inode may be getting freed (in sys_unlink path). */
3507 		inode = igrab(ordered->inode);
3508 
3509 		spin_unlock(&root->fs_info->ordered_extent_lock);
3510 		if (inode)
3511 			iput(inode);
3512 
3513 		atomic_set(&ordered->refs, 1);
3514 		btrfs_put_ordered_extent(ordered);
3515 
3516 		spin_lock(&root->fs_info->ordered_extent_lock);
3517 	}
3518 
3519 	spin_unlock(&root->fs_info->ordered_extent_lock);
3520 }
3521 
3522 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3523 			       struct btrfs_root *root)
3524 {
3525 	struct rb_node *node;
3526 	struct btrfs_delayed_ref_root *delayed_refs;
3527 	struct btrfs_delayed_ref_node *ref;
3528 	int ret = 0;
3529 
3530 	delayed_refs = &trans->delayed_refs;
3531 
3532 	spin_lock(&delayed_refs->lock);
3533 	if (delayed_refs->num_entries == 0) {
3534 		spin_unlock(&delayed_refs->lock);
3535 		printk(KERN_INFO "delayed_refs has NO entry\n");
3536 		return ret;
3537 	}
3538 
3539 	while ((node = rb_first(&delayed_refs->root)) != NULL) {
3540 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3541 
3542 		atomic_set(&ref->refs, 1);
3543 		if (btrfs_delayed_ref_is_head(ref)) {
3544 			struct btrfs_delayed_ref_head *head;
3545 
3546 			head = btrfs_delayed_node_to_head(ref);
3547 			if (!mutex_trylock(&head->mutex)) {
3548 				atomic_inc(&ref->refs);
3549 				spin_unlock(&delayed_refs->lock);
3550 
3551 				/* Need to wait for the delayed ref to run */
3552 				mutex_lock(&head->mutex);
3553 				mutex_unlock(&head->mutex);
3554 				btrfs_put_delayed_ref(ref);
3555 
3556 				spin_lock(&delayed_refs->lock);
3557 				continue;
3558 			}
3559 
3560 			kfree(head->extent_op);
3561 			delayed_refs->num_heads--;
3562 			if (list_empty(&head->cluster))
3563 				delayed_refs->num_heads_ready--;
3564 			list_del_init(&head->cluster);
3565 		}
3566 		ref->in_tree = 0;
3567 		rb_erase(&ref->rb_node, &delayed_refs->root);
3568 		delayed_refs->num_entries--;
3569 
3570 		spin_unlock(&delayed_refs->lock);
3571 		btrfs_put_delayed_ref(ref);
3572 
3573 		cond_resched();
3574 		spin_lock(&delayed_refs->lock);
3575 	}
3576 
3577 	spin_unlock(&delayed_refs->lock);
3578 
3579 	return ret;
3580 }
3581 
3582 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3583 {
3584 	struct btrfs_pending_snapshot *snapshot;
3585 	struct list_head splice;
3586 
3587 	INIT_LIST_HEAD(&splice);
3588 
3589 	list_splice_init(&t->pending_snapshots, &splice);
3590 
3591 	while (!list_empty(&splice)) {
3592 		snapshot = list_entry(splice.next,
3593 				      struct btrfs_pending_snapshot,
3594 				      list);
3595 
3596 		list_del_init(&snapshot->list);
3597 
3598 		kfree(snapshot);
3599 	}
3600 }
3601 
3602 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3603 {
3604 	struct btrfs_inode *btrfs_inode;
3605 	struct list_head splice;
3606 
3607 	INIT_LIST_HEAD(&splice);
3608 
3609 	spin_lock(&root->fs_info->delalloc_lock);
3610 	list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3611 
3612 	while (!list_empty(&splice)) {
3613 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3614 				    delalloc_inodes);
3615 
3616 		list_del_init(&btrfs_inode->delalloc_inodes);
3617 
3618 		btrfs_invalidate_inodes(btrfs_inode->root);
3619 	}
3620 
3621 	spin_unlock(&root->fs_info->delalloc_lock);
3622 }
3623 
3624 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3625 					struct extent_io_tree *dirty_pages,
3626 					int mark)
3627 {
3628 	int ret;
3629 	struct page *page;
3630 	struct inode *btree_inode = root->fs_info->btree_inode;
3631 	struct extent_buffer *eb;
3632 	u64 start = 0;
3633 	u64 end;
3634 	u64 offset;
3635 	unsigned long index;
3636 
3637 	while (1) {
3638 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3639 					    mark);
3640 		if (ret)
3641 			break;
3642 
3643 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3644 		while (start <= end) {
3645 			index = start >> PAGE_CACHE_SHIFT;
3646 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3647 			page = find_get_page(btree_inode->i_mapping, index);
3648 			if (!page)
3649 				continue;
3650 			offset = page_offset(page);
3651 
3652 			spin_lock(&dirty_pages->buffer_lock);
3653 			eb = radix_tree_lookup(
3654 			     &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3655 					       offset >> PAGE_CACHE_SHIFT);
3656 			spin_unlock(&dirty_pages->buffer_lock);
3657 			if (eb)
3658 				ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3659 							 &eb->bflags);
3660 			if (PageWriteback(page))
3661 				end_page_writeback(page);
3662 
3663 			lock_page(page);
3664 			if (PageDirty(page)) {
3665 				clear_page_dirty_for_io(page);
3666 				spin_lock_irq(&page->mapping->tree_lock);
3667 				radix_tree_tag_clear(&page->mapping->page_tree,
3668 							page_index(page),
3669 							PAGECACHE_TAG_DIRTY);
3670 				spin_unlock_irq(&page->mapping->tree_lock);
3671 			}
3672 
3673 			unlock_page(page);
3674 			page_cache_release(page);
3675 		}
3676 	}
3677 
3678 	return ret;
3679 }
3680 
3681 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3682 				       struct extent_io_tree *pinned_extents)
3683 {
3684 	struct extent_io_tree *unpin;
3685 	u64 start;
3686 	u64 end;
3687 	int ret;
3688 	bool loop = true;
3689 
3690 	unpin = pinned_extents;
3691 again:
3692 	while (1) {
3693 		ret = find_first_extent_bit(unpin, 0, &start, &end,
3694 					    EXTENT_DIRTY);
3695 		if (ret)
3696 			break;
3697 
3698 		/* opt_discard */
3699 		if (btrfs_test_opt(root, DISCARD))
3700 			ret = btrfs_error_discard_extent(root, start,
3701 							 end + 1 - start,
3702 							 NULL);
3703 
3704 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
3705 		btrfs_error_unpin_extent_range(root, start, end);
3706 		cond_resched();
3707 	}
3708 
3709 	if (loop) {
3710 		if (unpin == &root->fs_info->freed_extents[0])
3711 			unpin = &root->fs_info->freed_extents[1];
3712 		else
3713 			unpin = &root->fs_info->freed_extents[0];
3714 		loop = false;
3715 		goto again;
3716 	}
3717 
3718 	return 0;
3719 }
3720 
3721 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3722 				   struct btrfs_root *root)
3723 {
3724 	btrfs_destroy_delayed_refs(cur_trans, root);
3725 	btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3726 				cur_trans->dirty_pages.dirty_bytes);
3727 
3728 	/* FIXME: cleanup wait for commit */
3729 	cur_trans->in_commit = 1;
3730 	cur_trans->blocked = 1;
3731 	wake_up(&root->fs_info->transaction_blocked_wait);
3732 
3733 	cur_trans->blocked = 0;
3734 	wake_up(&root->fs_info->transaction_wait);
3735 
3736 	cur_trans->commit_done = 1;
3737 	wake_up(&cur_trans->commit_wait);
3738 
3739 	btrfs_destroy_delayed_inodes(root);
3740 	btrfs_assert_delayed_root_empty(root);
3741 
3742 	btrfs_destroy_pending_snapshots(cur_trans);
3743 
3744 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3745 				     EXTENT_DIRTY);
3746 	btrfs_destroy_pinned_extent(root,
3747 				    root->fs_info->pinned_extents);
3748 
3749 	/*
3750 	memset(cur_trans, 0, sizeof(*cur_trans));
3751 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3752 	*/
3753 }
3754 
3755 int btrfs_cleanup_transaction(struct btrfs_root *root)
3756 {
3757 	struct btrfs_transaction *t;
3758 	LIST_HEAD(list);
3759 
3760 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
3761 
3762 	spin_lock(&root->fs_info->trans_lock);
3763 	list_splice_init(&root->fs_info->trans_list, &list);
3764 	root->fs_info->trans_no_join = 1;
3765 	spin_unlock(&root->fs_info->trans_lock);
3766 
3767 	while (!list_empty(&list)) {
3768 		t = list_entry(list.next, struct btrfs_transaction, list);
3769 		if (!t)
3770 			break;
3771 
3772 		btrfs_destroy_ordered_operations(root);
3773 
3774 		btrfs_destroy_ordered_extents(root);
3775 
3776 		btrfs_destroy_delayed_refs(t, root);
3777 
3778 		btrfs_block_rsv_release(root,
3779 					&root->fs_info->trans_block_rsv,
3780 					t->dirty_pages.dirty_bytes);
3781 
3782 		/* FIXME: cleanup wait for commit */
3783 		t->in_commit = 1;
3784 		t->blocked = 1;
3785 		if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3786 			wake_up(&root->fs_info->transaction_blocked_wait);
3787 
3788 		t->blocked = 0;
3789 		if (waitqueue_active(&root->fs_info->transaction_wait))
3790 			wake_up(&root->fs_info->transaction_wait);
3791 
3792 		t->commit_done = 1;
3793 		if (waitqueue_active(&t->commit_wait))
3794 			wake_up(&t->commit_wait);
3795 
3796 		btrfs_destroy_delayed_inodes(root);
3797 		btrfs_assert_delayed_root_empty(root);
3798 
3799 		btrfs_destroy_pending_snapshots(t);
3800 
3801 		btrfs_destroy_delalloc_inodes(root);
3802 
3803 		spin_lock(&root->fs_info->trans_lock);
3804 		root->fs_info->running_transaction = NULL;
3805 		spin_unlock(&root->fs_info->trans_lock);
3806 
3807 		btrfs_destroy_marked_extents(root, &t->dirty_pages,
3808 					     EXTENT_DIRTY);
3809 
3810 		btrfs_destroy_pinned_extent(root,
3811 					    root->fs_info->pinned_extents);
3812 
3813 		atomic_set(&t->use_count, 0);
3814 		list_del_init(&t->list);
3815 		memset(t, 0, sizeof(*t));
3816 		kmem_cache_free(btrfs_transaction_cachep, t);
3817 	}
3818 
3819 	spin_lock(&root->fs_info->trans_lock);
3820 	root->fs_info->trans_no_join = 0;
3821 	spin_unlock(&root->fs_info->trans_lock);
3822 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3823 
3824 	return 0;
3825 }
3826 
3827 static struct extent_io_ops btree_extent_io_ops = {
3828 	.write_cache_pages_lock_hook = btree_lock_page_hook,
3829 	.readpage_end_io_hook = btree_readpage_end_io_hook,
3830 	.readpage_io_failed_hook = btree_io_failed_hook,
3831 	.submit_bio_hook = btree_submit_bio_hook,
3832 	/* note we're sharing with inode.c for the merge bio hook */
3833 	.merge_bio_hook = btrfs_merge_bio_hook,
3834 };
3835