1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <linux/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "dev-replace.h" 33 #include "raid56.h" 34 #include "sysfs.h" 35 #include "qgroup.h" 36 #include "compression.h" 37 #include "tree-checker.h" 38 #include "ref-verify.h" 39 #include "block-group.h" 40 #include "discard.h" 41 #include "space-info.h" 42 #include "zoned.h" 43 #include "subpage.h" 44 #include "fs.h" 45 #include "accessors.h" 46 #include "extent-tree.h" 47 #include "root-tree.h" 48 #include "defrag.h" 49 #include "uuid-tree.h" 50 #include "relocation.h" 51 #include "scrub.h" 52 #include "super.h" 53 54 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 55 BTRFS_HEADER_FLAG_RELOC |\ 56 BTRFS_SUPER_FLAG_ERROR |\ 57 BTRFS_SUPER_FLAG_SEEDING |\ 58 BTRFS_SUPER_FLAG_METADUMP |\ 59 BTRFS_SUPER_FLAG_METADUMP_V2) 60 61 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 62 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 63 64 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 65 { 66 if (fs_info->csum_shash) 67 crypto_free_shash(fs_info->csum_shash); 68 } 69 70 /* 71 * Compute the csum of a btree block and store the result to provided buffer. 72 */ 73 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 74 { 75 struct btrfs_fs_info *fs_info = buf->fs_info; 76 int num_pages; 77 u32 first_page_part; 78 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 79 char *kaddr; 80 int i; 81 82 shash->tfm = fs_info->csum_shash; 83 crypto_shash_init(shash); 84 85 if (buf->addr) { 86 /* Pages are contiguous, handle them as a big one. */ 87 kaddr = buf->addr; 88 first_page_part = fs_info->nodesize; 89 num_pages = 1; 90 } else { 91 kaddr = folio_address(buf->folios[0]); 92 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 93 num_pages = num_extent_pages(buf); 94 } 95 96 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 97 first_page_part - BTRFS_CSUM_SIZE); 98 99 /* 100 * Multiple single-page folios case would reach here. 101 * 102 * nodesize <= PAGE_SIZE and large folio all handled by above 103 * crypto_shash_update() already. 104 */ 105 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { 106 kaddr = folio_address(buf->folios[i]); 107 crypto_shash_update(shash, kaddr, PAGE_SIZE); 108 } 109 memset(result, 0, BTRFS_CSUM_SIZE); 110 crypto_shash_final(shash, result); 111 } 112 113 /* 114 * we can't consider a given block up to date unless the transid of the 115 * block matches the transid in the parent node's pointer. This is how we 116 * detect blocks that either didn't get written at all or got written 117 * in the wrong place. 118 */ 119 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic) 120 { 121 if (!extent_buffer_uptodate(eb)) 122 return 0; 123 124 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 125 return 1; 126 127 if (atomic) 128 return -EAGAIN; 129 130 if (!extent_buffer_uptodate(eb) || 131 btrfs_header_generation(eb) != parent_transid) { 132 btrfs_err_rl(eb->fs_info, 133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 134 eb->start, eb->read_mirror, 135 parent_transid, btrfs_header_generation(eb)); 136 clear_extent_buffer_uptodate(eb); 137 return 0; 138 } 139 return 1; 140 } 141 142 static bool btrfs_supported_super_csum(u16 csum_type) 143 { 144 switch (csum_type) { 145 case BTRFS_CSUM_TYPE_CRC32: 146 case BTRFS_CSUM_TYPE_XXHASH: 147 case BTRFS_CSUM_TYPE_SHA256: 148 case BTRFS_CSUM_TYPE_BLAKE2: 149 return true; 150 default: 151 return false; 152 } 153 } 154 155 /* 156 * Return 0 if the superblock checksum type matches the checksum value of that 157 * algorithm. Pass the raw disk superblock data. 158 */ 159 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 160 const struct btrfs_super_block *disk_sb) 161 { 162 char result[BTRFS_CSUM_SIZE]; 163 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 164 165 shash->tfm = fs_info->csum_shash; 166 167 /* 168 * The super_block structure does not span the whole 169 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 170 * filled with zeros and is included in the checksum. 171 */ 172 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 173 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 174 175 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 176 return 1; 177 178 return 0; 179 } 180 181 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 182 int mirror_num) 183 { 184 struct btrfs_fs_info *fs_info = eb->fs_info; 185 int ret = 0; 186 187 if (sb_rdonly(fs_info->sb)) 188 return -EROFS; 189 190 for (int i = 0; i < num_extent_folios(eb); i++) { 191 struct folio *folio = eb->folios[i]; 192 u64 start = max_t(u64, eb->start, folio_pos(folio)); 193 u64 end = min_t(u64, eb->start + eb->len, 194 folio_pos(folio) + eb->folio_size); 195 u32 len = end - start; 196 phys_addr_t paddr = PFN_PHYS(folio_pfn(folio)) + 197 offset_in_folio(folio, start); 198 199 ret = btrfs_repair_io_failure(fs_info, 0, start, len, start, 200 paddr, mirror_num); 201 if (ret) 202 break; 203 } 204 205 return ret; 206 } 207 208 /* 209 * helper to read a given tree block, doing retries as required when 210 * the checksums don't match and we have alternate mirrors to try. 211 * 212 * @check: expected tree parentness check, see the comments of the 213 * structure for details. 214 */ 215 int btrfs_read_extent_buffer(struct extent_buffer *eb, 216 const struct btrfs_tree_parent_check *check) 217 { 218 struct btrfs_fs_info *fs_info = eb->fs_info; 219 int failed = 0; 220 int ret; 221 int num_copies = 0; 222 int mirror_num = 0; 223 int failed_mirror = 0; 224 225 ASSERT(check); 226 227 while (1) { 228 ret = read_extent_buffer_pages(eb, mirror_num, check); 229 if (!ret) 230 break; 231 232 num_copies = btrfs_num_copies(fs_info, 233 eb->start, eb->len); 234 if (num_copies == 1) 235 break; 236 237 if (!failed_mirror) { 238 failed = 1; 239 failed_mirror = eb->read_mirror; 240 } 241 242 mirror_num++; 243 if (mirror_num == failed_mirror) 244 mirror_num++; 245 246 if (mirror_num > num_copies) 247 break; 248 } 249 250 if (failed && !ret && failed_mirror) 251 btrfs_repair_eb_io_failure(eb, failed_mirror); 252 253 return ret; 254 } 255 256 /* 257 * Checksum a dirty tree block before IO. 258 */ 259 int btree_csum_one_bio(struct btrfs_bio *bbio) 260 { 261 struct extent_buffer *eb = bbio->private; 262 struct btrfs_fs_info *fs_info = eb->fs_info; 263 u64 found_start = btrfs_header_bytenr(eb); 264 u64 last_trans; 265 u8 result[BTRFS_CSUM_SIZE]; 266 int ret; 267 268 /* Btree blocks are always contiguous on disk. */ 269 if (WARN_ON_ONCE(bbio->file_offset != eb->start)) 270 return -EIO; 271 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len)) 272 return -EIO; 273 274 /* 275 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't 276 * checksum it but zero-out its content. This is done to preserve 277 * ordering of I/O without unnecessarily writing out data. 278 */ 279 if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) { 280 memzero_extent_buffer(eb, 0, eb->len); 281 return 0; 282 } 283 284 if (WARN_ON_ONCE(found_start != eb->start)) 285 return -EIO; 286 if (WARN_ON(!btrfs_meta_folio_test_uptodate(eb->folios[0], eb))) 287 return -EIO; 288 289 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 290 offsetof(struct btrfs_header, fsid), 291 BTRFS_FSID_SIZE) == 0); 292 csum_tree_block(eb, result); 293 294 if (btrfs_header_level(eb)) 295 ret = btrfs_check_node(eb); 296 else 297 ret = btrfs_check_leaf(eb); 298 299 if (ret < 0) 300 goto error; 301 302 /* 303 * Also check the generation, the eb reached here must be newer than 304 * last committed. Or something seriously wrong happened. 305 */ 306 last_trans = btrfs_get_last_trans_committed(fs_info); 307 if (unlikely(btrfs_header_generation(eb) <= last_trans)) { 308 ret = -EUCLEAN; 309 btrfs_err(fs_info, 310 "block=%llu bad generation, have %llu expect > %llu", 311 eb->start, btrfs_header_generation(eb), last_trans); 312 goto error; 313 } 314 write_extent_buffer(eb, result, 0, fs_info->csum_size); 315 return 0; 316 317 error: 318 btrfs_print_tree(eb, 0); 319 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 320 eb->start); 321 /* 322 * Be noisy if this is an extent buffer from a log tree. We don't abort 323 * a transaction in case there's a bad log tree extent buffer, we just 324 * fallback to a transaction commit. Still we want to know when there is 325 * a bad log tree extent buffer, as that may signal a bug somewhere. 326 */ 327 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 328 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 329 return ret; 330 } 331 332 static bool check_tree_block_fsid(struct extent_buffer *eb) 333 { 334 struct btrfs_fs_info *fs_info = eb->fs_info; 335 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 336 u8 fsid[BTRFS_FSID_SIZE]; 337 338 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 339 BTRFS_FSID_SIZE); 340 341 /* 342 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid. 343 * This is then overwritten by metadata_uuid if it is present in the 344 * device_list_add(). The same true for a seed device as well. So use of 345 * fs_devices::metadata_uuid is appropriate here. 346 */ 347 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0) 348 return false; 349 350 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 351 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 352 return false; 353 354 return true; 355 } 356 357 /* Do basic extent buffer checks at read time */ 358 int btrfs_validate_extent_buffer(struct extent_buffer *eb, 359 const struct btrfs_tree_parent_check *check) 360 { 361 struct btrfs_fs_info *fs_info = eb->fs_info; 362 u64 found_start; 363 const u32 csum_size = fs_info->csum_size; 364 u8 found_level; 365 u8 result[BTRFS_CSUM_SIZE]; 366 const u8 *header_csum; 367 int ret = 0; 368 const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS); 369 370 ASSERT(check); 371 372 found_start = btrfs_header_bytenr(eb); 373 if (found_start != eb->start) { 374 btrfs_err_rl(fs_info, 375 "bad tree block start, mirror %u want %llu have %llu", 376 eb->read_mirror, eb->start, found_start); 377 ret = -EIO; 378 goto out; 379 } 380 if (check_tree_block_fsid(eb)) { 381 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 382 eb->start, eb->read_mirror); 383 ret = -EIO; 384 goto out; 385 } 386 found_level = btrfs_header_level(eb); 387 if (found_level >= BTRFS_MAX_LEVEL) { 388 btrfs_err(fs_info, 389 "bad tree block level, mirror %u level %d on logical %llu", 390 eb->read_mirror, btrfs_header_level(eb), eb->start); 391 ret = -EIO; 392 goto out; 393 } 394 395 csum_tree_block(eb, result); 396 header_csum = folio_address(eb->folios[0]) + 397 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum)); 398 399 if (memcmp(result, header_csum, csum_size) != 0) { 400 btrfs_warn_rl(fs_info, 401 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d%s", 402 eb->start, eb->read_mirror, 403 CSUM_FMT_VALUE(csum_size, header_csum), 404 CSUM_FMT_VALUE(csum_size, result), 405 btrfs_header_level(eb), 406 ignore_csum ? ", ignored" : ""); 407 if (!ignore_csum) { 408 ret = -EUCLEAN; 409 goto out; 410 } 411 } 412 413 if (found_level != check->level) { 414 btrfs_err(fs_info, 415 "level verify failed on logical %llu mirror %u wanted %u found %u", 416 eb->start, eb->read_mirror, check->level, found_level); 417 ret = -EIO; 418 goto out; 419 } 420 if (unlikely(check->transid && 421 btrfs_header_generation(eb) != check->transid)) { 422 btrfs_err_rl(eb->fs_info, 423 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 424 eb->start, eb->read_mirror, check->transid, 425 btrfs_header_generation(eb)); 426 ret = -EIO; 427 goto out; 428 } 429 if (check->has_first_key) { 430 const struct btrfs_key *expect_key = &check->first_key; 431 struct btrfs_key found_key; 432 433 if (found_level) 434 btrfs_node_key_to_cpu(eb, &found_key, 0); 435 else 436 btrfs_item_key_to_cpu(eb, &found_key, 0); 437 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 438 btrfs_err(fs_info, 439 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 440 eb->start, check->transid, 441 expect_key->objectid, 442 expect_key->type, expect_key->offset, 443 found_key.objectid, found_key.type, 444 found_key.offset); 445 ret = -EUCLEAN; 446 goto out; 447 } 448 } 449 if (check->owner_root) { 450 ret = btrfs_check_eb_owner(eb, check->owner_root); 451 if (ret < 0) 452 goto out; 453 } 454 455 /* If this is a leaf block and it is corrupt, just return -EIO. */ 456 if (found_level == 0 && btrfs_check_leaf(eb)) 457 ret = -EIO; 458 459 if (found_level > 0 && btrfs_check_node(eb)) 460 ret = -EIO; 461 462 if (ret) 463 btrfs_err(fs_info, 464 "read time tree block corruption detected on logical %llu mirror %u", 465 eb->start, eb->read_mirror); 466 out: 467 return ret; 468 } 469 470 #ifdef CONFIG_MIGRATION 471 static int btree_migrate_folio(struct address_space *mapping, 472 struct folio *dst, struct folio *src, enum migrate_mode mode) 473 { 474 /* 475 * we can't safely write a btree page from here, 476 * we haven't done the locking hook 477 */ 478 if (folio_test_dirty(src)) 479 return -EAGAIN; 480 /* 481 * Buffers may be managed in a filesystem specific way. 482 * We must have no buffers or drop them. 483 */ 484 if (folio_get_private(src) && 485 !filemap_release_folio(src, GFP_KERNEL)) 486 return -EAGAIN; 487 return migrate_folio(mapping, dst, src, mode); 488 } 489 #else 490 #define btree_migrate_folio NULL 491 #endif 492 493 static int btree_writepages(struct address_space *mapping, 494 struct writeback_control *wbc) 495 { 496 int ret; 497 498 if (wbc->sync_mode == WB_SYNC_NONE) { 499 struct btrfs_fs_info *fs_info; 500 501 if (wbc->for_kupdate) 502 return 0; 503 504 fs_info = inode_to_fs_info(mapping->host); 505 /* this is a bit racy, but that's ok */ 506 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 507 BTRFS_DIRTY_METADATA_THRESH, 508 fs_info->dirty_metadata_batch); 509 if (ret < 0) 510 return 0; 511 } 512 return btree_write_cache_pages(mapping, wbc); 513 } 514 515 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 516 { 517 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 518 return false; 519 520 return try_release_extent_buffer(folio); 521 } 522 523 static void btree_invalidate_folio(struct folio *folio, size_t offset, 524 size_t length) 525 { 526 struct extent_io_tree *tree; 527 528 tree = &folio_to_inode(folio)->io_tree; 529 extent_invalidate_folio(tree, folio, offset); 530 btree_release_folio(folio, GFP_NOFS); 531 if (folio_get_private(folio)) { 532 btrfs_warn(folio_to_fs_info(folio), 533 "folio private not zero on folio %llu", 534 (unsigned long long)folio_pos(folio)); 535 folio_detach_private(folio); 536 } 537 } 538 539 #ifdef DEBUG 540 static bool btree_dirty_folio(struct address_space *mapping, 541 struct folio *folio) 542 { 543 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 544 struct btrfs_subpage_info *spi = fs_info->subpage_info; 545 struct btrfs_subpage *subpage; 546 struct extent_buffer *eb; 547 int cur_bit = 0; 548 u64 page_start = folio_pos(folio); 549 550 if (fs_info->sectorsize == PAGE_SIZE) { 551 eb = folio_get_private(folio); 552 BUG_ON(!eb); 553 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 554 BUG_ON(!atomic_read(&eb->refs)); 555 btrfs_assert_tree_write_locked(eb); 556 return filemap_dirty_folio(mapping, folio); 557 } 558 559 ASSERT(spi); 560 subpage = folio_get_private(folio); 561 562 for (cur_bit = spi->dirty_offset; 563 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits; 564 cur_bit++) { 565 unsigned long flags; 566 u64 cur; 567 568 spin_lock_irqsave(&subpage->lock, flags); 569 if (!test_bit(cur_bit, subpage->bitmaps)) { 570 spin_unlock_irqrestore(&subpage->lock, flags); 571 continue; 572 } 573 spin_unlock_irqrestore(&subpage->lock, flags); 574 cur = page_start + cur_bit * fs_info->sectorsize; 575 576 eb = find_extent_buffer(fs_info, cur); 577 ASSERT(eb); 578 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 579 ASSERT(atomic_read(&eb->refs)); 580 btrfs_assert_tree_write_locked(eb); 581 free_extent_buffer(eb); 582 583 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1; 584 } 585 return filemap_dirty_folio(mapping, folio); 586 } 587 #else 588 #define btree_dirty_folio filemap_dirty_folio 589 #endif 590 591 static const struct address_space_operations btree_aops = { 592 .writepages = btree_writepages, 593 .release_folio = btree_release_folio, 594 .invalidate_folio = btree_invalidate_folio, 595 .migrate_folio = btree_migrate_folio, 596 .dirty_folio = btree_dirty_folio, 597 }; 598 599 struct extent_buffer *btrfs_find_create_tree_block( 600 struct btrfs_fs_info *fs_info, 601 u64 bytenr, u64 owner_root, 602 int level) 603 { 604 if (btrfs_is_testing(fs_info)) 605 return alloc_test_extent_buffer(fs_info, bytenr); 606 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 607 } 608 609 /* 610 * Read tree block at logical address @bytenr and do variant basic but critical 611 * verification. 612 * 613 * @check: expected tree parentness check, see comments of the 614 * structure for details. 615 */ 616 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 617 struct btrfs_tree_parent_check *check) 618 { 619 struct extent_buffer *buf = NULL; 620 int ret; 621 622 ASSERT(check); 623 624 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 625 check->level); 626 if (IS_ERR(buf)) 627 return buf; 628 629 ret = btrfs_read_extent_buffer(buf, check); 630 if (ret) { 631 free_extent_buffer_stale(buf); 632 return ERR_PTR(ret); 633 } 634 return buf; 635 636 } 637 638 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 639 u64 objectid, gfp_t flags) 640 { 641 struct btrfs_root *root; 642 bool dummy = btrfs_is_testing(fs_info); 643 644 root = kzalloc(sizeof(*root), flags); 645 if (!root) 646 return NULL; 647 648 memset(&root->root_key, 0, sizeof(root->root_key)); 649 memset(&root->root_item, 0, sizeof(root->root_item)); 650 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 651 root->fs_info = fs_info; 652 root->root_key.objectid = objectid; 653 root->node = NULL; 654 root->commit_root = NULL; 655 root->state = 0; 656 RB_CLEAR_NODE(&root->rb_node); 657 658 btrfs_set_root_last_trans(root, 0); 659 root->free_objectid = 0; 660 root->nr_delalloc_inodes = 0; 661 root->nr_ordered_extents = 0; 662 xa_init(&root->inodes); 663 xa_init(&root->delayed_nodes); 664 665 btrfs_init_root_block_rsv(root); 666 667 INIT_LIST_HEAD(&root->dirty_list); 668 INIT_LIST_HEAD(&root->root_list); 669 INIT_LIST_HEAD(&root->delalloc_inodes); 670 INIT_LIST_HEAD(&root->delalloc_root); 671 INIT_LIST_HEAD(&root->ordered_extents); 672 INIT_LIST_HEAD(&root->ordered_root); 673 INIT_LIST_HEAD(&root->reloc_dirty_list); 674 spin_lock_init(&root->delalloc_lock); 675 spin_lock_init(&root->ordered_extent_lock); 676 spin_lock_init(&root->accounting_lock); 677 spin_lock_init(&root->qgroup_meta_rsv_lock); 678 mutex_init(&root->objectid_mutex); 679 mutex_init(&root->log_mutex); 680 mutex_init(&root->ordered_extent_mutex); 681 mutex_init(&root->delalloc_mutex); 682 init_waitqueue_head(&root->qgroup_flush_wait); 683 init_waitqueue_head(&root->log_writer_wait); 684 init_waitqueue_head(&root->log_commit_wait[0]); 685 init_waitqueue_head(&root->log_commit_wait[1]); 686 INIT_LIST_HEAD(&root->log_ctxs[0]); 687 INIT_LIST_HEAD(&root->log_ctxs[1]); 688 atomic_set(&root->log_commit[0], 0); 689 atomic_set(&root->log_commit[1], 0); 690 atomic_set(&root->log_writers, 0); 691 atomic_set(&root->log_batch, 0); 692 refcount_set(&root->refs, 1); 693 atomic_set(&root->snapshot_force_cow, 0); 694 atomic_set(&root->nr_swapfiles, 0); 695 btrfs_set_root_log_transid(root, 0); 696 root->log_transid_committed = -1; 697 btrfs_set_root_last_log_commit(root, 0); 698 root->anon_dev = 0; 699 if (!dummy) { 700 btrfs_extent_io_tree_init(fs_info, &root->dirty_log_pages, 701 IO_TREE_ROOT_DIRTY_LOG_PAGES); 702 btrfs_extent_io_tree_init(fs_info, &root->log_csum_range, 703 IO_TREE_LOG_CSUM_RANGE); 704 } 705 706 spin_lock_init(&root->root_item_lock); 707 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 708 #ifdef CONFIG_BTRFS_DEBUG 709 INIT_LIST_HEAD(&root->leak_list); 710 spin_lock(&fs_info->fs_roots_radix_lock); 711 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 712 spin_unlock(&fs_info->fs_roots_radix_lock); 713 #endif 714 715 return root; 716 } 717 718 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 719 /* Should only be used by the testing infrastructure */ 720 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 721 { 722 struct btrfs_root *root; 723 724 if (!fs_info) 725 return ERR_PTR(-EINVAL); 726 727 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 728 if (!root) 729 return ERR_PTR(-ENOMEM); 730 731 /* We don't use the stripesize in selftest, set it as sectorsize */ 732 root->alloc_bytenr = 0; 733 734 return root; 735 } 736 #endif 737 738 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 739 { 740 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 741 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 742 743 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 744 } 745 746 static int global_root_key_cmp(const void *k, const struct rb_node *node) 747 { 748 const struct btrfs_key *key = k; 749 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 750 751 return btrfs_comp_cpu_keys(key, &root->root_key); 752 } 753 754 int btrfs_global_root_insert(struct btrfs_root *root) 755 { 756 struct btrfs_fs_info *fs_info = root->fs_info; 757 struct rb_node *tmp; 758 int ret = 0; 759 760 write_lock(&fs_info->global_root_lock); 761 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 762 write_unlock(&fs_info->global_root_lock); 763 764 if (tmp) { 765 ret = -EEXIST; 766 btrfs_warn(fs_info, "global root %llu %llu already exists", 767 btrfs_root_id(root), root->root_key.offset); 768 } 769 return ret; 770 } 771 772 void btrfs_global_root_delete(struct btrfs_root *root) 773 { 774 struct btrfs_fs_info *fs_info = root->fs_info; 775 776 write_lock(&fs_info->global_root_lock); 777 rb_erase(&root->rb_node, &fs_info->global_root_tree); 778 write_unlock(&fs_info->global_root_lock); 779 } 780 781 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 782 struct btrfs_key *key) 783 { 784 struct rb_node *node; 785 struct btrfs_root *root = NULL; 786 787 read_lock(&fs_info->global_root_lock); 788 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 789 if (node) 790 root = container_of(node, struct btrfs_root, rb_node); 791 read_unlock(&fs_info->global_root_lock); 792 793 return root; 794 } 795 796 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 797 { 798 struct btrfs_block_group *block_group; 799 u64 ret; 800 801 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 802 return 0; 803 804 if (bytenr) 805 block_group = btrfs_lookup_block_group(fs_info, bytenr); 806 else 807 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 808 ASSERT(block_group); 809 if (!block_group) 810 return 0; 811 ret = block_group->global_root_id; 812 btrfs_put_block_group(block_group); 813 814 return ret; 815 } 816 817 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 818 { 819 struct btrfs_key key = { 820 .objectid = BTRFS_CSUM_TREE_OBJECTID, 821 .type = BTRFS_ROOT_ITEM_KEY, 822 .offset = btrfs_global_root_id(fs_info, bytenr), 823 }; 824 825 return btrfs_global_root(fs_info, &key); 826 } 827 828 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 829 { 830 struct btrfs_key key = { 831 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 832 .type = BTRFS_ROOT_ITEM_KEY, 833 .offset = btrfs_global_root_id(fs_info, bytenr), 834 }; 835 836 return btrfs_global_root(fs_info, &key); 837 } 838 839 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 840 u64 objectid) 841 { 842 struct btrfs_fs_info *fs_info = trans->fs_info; 843 struct extent_buffer *leaf; 844 struct btrfs_root *tree_root = fs_info->tree_root; 845 struct btrfs_root *root; 846 struct btrfs_key key; 847 unsigned int nofs_flag; 848 int ret = 0; 849 850 /* 851 * We're holding a transaction handle, so use a NOFS memory allocation 852 * context to avoid deadlock if reclaim happens. 853 */ 854 nofs_flag = memalloc_nofs_save(); 855 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 856 memalloc_nofs_restore(nofs_flag); 857 if (!root) 858 return ERR_PTR(-ENOMEM); 859 860 root->root_key.objectid = objectid; 861 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 862 root->root_key.offset = 0; 863 864 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 865 0, BTRFS_NESTING_NORMAL); 866 if (IS_ERR(leaf)) { 867 ret = PTR_ERR(leaf); 868 leaf = NULL; 869 goto fail; 870 } 871 872 root->node = leaf; 873 btrfs_mark_buffer_dirty(trans, leaf); 874 875 root->commit_root = btrfs_root_node(root); 876 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 877 878 btrfs_set_root_flags(&root->root_item, 0); 879 btrfs_set_root_limit(&root->root_item, 0); 880 btrfs_set_root_bytenr(&root->root_item, leaf->start); 881 btrfs_set_root_generation(&root->root_item, trans->transid); 882 btrfs_set_root_level(&root->root_item, 0); 883 btrfs_set_root_refs(&root->root_item, 1); 884 btrfs_set_root_used(&root->root_item, leaf->len); 885 btrfs_set_root_last_snapshot(&root->root_item, 0); 886 btrfs_set_root_dirid(&root->root_item, 0); 887 if (btrfs_is_fstree(objectid)) 888 generate_random_guid(root->root_item.uuid); 889 else 890 export_guid(root->root_item.uuid, &guid_null); 891 btrfs_set_root_drop_level(&root->root_item, 0); 892 893 btrfs_tree_unlock(leaf); 894 895 key.objectid = objectid; 896 key.type = BTRFS_ROOT_ITEM_KEY; 897 key.offset = 0; 898 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 899 if (ret) 900 goto fail; 901 902 return root; 903 904 fail: 905 btrfs_put_root(root); 906 907 return ERR_PTR(ret); 908 } 909 910 static struct btrfs_root *alloc_log_tree(struct btrfs_fs_info *fs_info) 911 { 912 struct btrfs_root *root; 913 914 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 915 if (!root) 916 return ERR_PTR(-ENOMEM); 917 918 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 919 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 920 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 921 922 return root; 923 } 924 925 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 926 struct btrfs_root *root) 927 { 928 struct extent_buffer *leaf; 929 930 /* 931 * DON'T set SHAREABLE bit for log trees. 932 * 933 * Log trees are not exposed to user space thus can't be snapshotted, 934 * and they go away before a real commit is actually done. 935 * 936 * They do store pointers to file data extents, and those reference 937 * counts still get updated (along with back refs to the log tree). 938 */ 939 940 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 941 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL); 942 if (IS_ERR(leaf)) 943 return PTR_ERR(leaf); 944 945 root->node = leaf; 946 947 btrfs_mark_buffer_dirty(trans, root->node); 948 btrfs_tree_unlock(root->node); 949 950 return 0; 951 } 952 953 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 954 struct btrfs_fs_info *fs_info) 955 { 956 struct btrfs_root *log_root; 957 958 log_root = alloc_log_tree(fs_info); 959 if (IS_ERR(log_root)) 960 return PTR_ERR(log_root); 961 962 if (!btrfs_is_zoned(fs_info)) { 963 int ret = btrfs_alloc_log_tree_node(trans, log_root); 964 965 if (ret) { 966 btrfs_put_root(log_root); 967 return ret; 968 } 969 } 970 971 WARN_ON(fs_info->log_root_tree); 972 fs_info->log_root_tree = log_root; 973 return 0; 974 } 975 976 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 977 struct btrfs_root *root) 978 { 979 struct btrfs_fs_info *fs_info = root->fs_info; 980 struct btrfs_root *log_root; 981 struct btrfs_inode_item *inode_item; 982 int ret; 983 984 log_root = alloc_log_tree(fs_info); 985 if (IS_ERR(log_root)) 986 return PTR_ERR(log_root); 987 988 ret = btrfs_alloc_log_tree_node(trans, log_root); 989 if (ret) { 990 btrfs_put_root(log_root); 991 return ret; 992 } 993 994 btrfs_set_root_last_trans(log_root, trans->transid); 995 log_root->root_key.offset = btrfs_root_id(root); 996 997 inode_item = &log_root->root_item.inode; 998 btrfs_set_stack_inode_generation(inode_item, 1); 999 btrfs_set_stack_inode_size(inode_item, 3); 1000 btrfs_set_stack_inode_nlink(inode_item, 1); 1001 btrfs_set_stack_inode_nbytes(inode_item, 1002 fs_info->nodesize); 1003 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1004 1005 btrfs_set_root_node(&log_root->root_item, log_root->node); 1006 1007 WARN_ON(root->log_root); 1008 root->log_root = log_root; 1009 btrfs_set_root_log_transid(root, 0); 1010 root->log_transid_committed = -1; 1011 btrfs_set_root_last_log_commit(root, 0); 1012 return 0; 1013 } 1014 1015 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1016 struct btrfs_path *path, 1017 const struct btrfs_key *key) 1018 { 1019 struct btrfs_root *root; 1020 struct btrfs_tree_parent_check check = { 0 }; 1021 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1022 u64 generation; 1023 int ret; 1024 int level; 1025 1026 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1027 if (!root) 1028 return ERR_PTR(-ENOMEM); 1029 1030 ret = btrfs_find_root(tree_root, key, path, 1031 &root->root_item, &root->root_key); 1032 if (ret) { 1033 if (ret > 0) 1034 ret = -ENOENT; 1035 goto fail; 1036 } 1037 1038 generation = btrfs_root_generation(&root->root_item); 1039 level = btrfs_root_level(&root->root_item); 1040 check.level = level; 1041 check.transid = generation; 1042 check.owner_root = key->objectid; 1043 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1044 &check); 1045 if (IS_ERR(root->node)) { 1046 ret = PTR_ERR(root->node); 1047 root->node = NULL; 1048 goto fail; 1049 } 1050 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1051 ret = -EIO; 1052 goto fail; 1053 } 1054 1055 /* 1056 * For real fs, and not log/reloc trees, root owner must 1057 * match its root node owner 1058 */ 1059 if (!btrfs_is_testing(fs_info) && 1060 btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && 1061 btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID && 1062 btrfs_root_id(root) != btrfs_header_owner(root->node)) { 1063 btrfs_crit(fs_info, 1064 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1065 btrfs_root_id(root), root->node->start, 1066 btrfs_header_owner(root->node), 1067 btrfs_root_id(root)); 1068 ret = -EUCLEAN; 1069 goto fail; 1070 } 1071 root->commit_root = btrfs_root_node(root); 1072 return root; 1073 fail: 1074 btrfs_put_root(root); 1075 return ERR_PTR(ret); 1076 } 1077 1078 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1079 const struct btrfs_key *key) 1080 { 1081 struct btrfs_root *root; 1082 BTRFS_PATH_AUTO_FREE(path); 1083 1084 path = btrfs_alloc_path(); 1085 if (!path) 1086 return ERR_PTR(-ENOMEM); 1087 root = read_tree_root_path(tree_root, path, key); 1088 1089 return root; 1090 } 1091 1092 /* 1093 * Initialize subvolume root in-memory structure. 1094 * 1095 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1096 * 1097 * In case of failure the caller is responsible to call btrfs_free_fs_root() 1098 */ 1099 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1100 { 1101 int ret; 1102 1103 btrfs_drew_lock_init(&root->snapshot_lock); 1104 1105 if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && 1106 !btrfs_is_data_reloc_root(root) && 1107 btrfs_is_fstree(btrfs_root_id(root))) { 1108 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1109 btrfs_check_and_init_root_item(&root->root_item); 1110 } 1111 1112 /* 1113 * Don't assign anonymous block device to roots that are not exposed to 1114 * userspace, the id pool is limited to 1M 1115 */ 1116 if (btrfs_is_fstree(btrfs_root_id(root)) && 1117 btrfs_root_refs(&root->root_item) > 0) { 1118 if (!anon_dev) { 1119 ret = get_anon_bdev(&root->anon_dev); 1120 if (ret) 1121 return ret; 1122 } else { 1123 root->anon_dev = anon_dev; 1124 } 1125 } 1126 1127 mutex_lock(&root->objectid_mutex); 1128 ret = btrfs_init_root_free_objectid(root); 1129 if (ret) { 1130 mutex_unlock(&root->objectid_mutex); 1131 return ret; 1132 } 1133 1134 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1135 1136 mutex_unlock(&root->objectid_mutex); 1137 1138 return 0; 1139 } 1140 1141 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1142 u64 root_id) 1143 { 1144 struct btrfs_root *root; 1145 1146 spin_lock(&fs_info->fs_roots_radix_lock); 1147 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1148 (unsigned long)root_id); 1149 root = btrfs_grab_root(root); 1150 spin_unlock(&fs_info->fs_roots_radix_lock); 1151 return root; 1152 } 1153 1154 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1155 u64 objectid) 1156 { 1157 struct btrfs_key key = { 1158 .objectid = objectid, 1159 .type = BTRFS_ROOT_ITEM_KEY, 1160 .offset = 0, 1161 }; 1162 1163 switch (objectid) { 1164 case BTRFS_ROOT_TREE_OBJECTID: 1165 return btrfs_grab_root(fs_info->tree_root); 1166 case BTRFS_EXTENT_TREE_OBJECTID: 1167 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1168 case BTRFS_CHUNK_TREE_OBJECTID: 1169 return btrfs_grab_root(fs_info->chunk_root); 1170 case BTRFS_DEV_TREE_OBJECTID: 1171 return btrfs_grab_root(fs_info->dev_root); 1172 case BTRFS_CSUM_TREE_OBJECTID: 1173 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1174 case BTRFS_QUOTA_TREE_OBJECTID: 1175 return btrfs_grab_root(fs_info->quota_root); 1176 case BTRFS_UUID_TREE_OBJECTID: 1177 return btrfs_grab_root(fs_info->uuid_root); 1178 case BTRFS_BLOCK_GROUP_TREE_OBJECTID: 1179 return btrfs_grab_root(fs_info->block_group_root); 1180 case BTRFS_FREE_SPACE_TREE_OBJECTID: 1181 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1182 case BTRFS_RAID_STRIPE_TREE_OBJECTID: 1183 return btrfs_grab_root(fs_info->stripe_root); 1184 default: 1185 return NULL; 1186 } 1187 } 1188 1189 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1190 struct btrfs_root *root) 1191 { 1192 int ret; 1193 1194 ret = radix_tree_preload(GFP_NOFS); 1195 if (ret) 1196 return ret; 1197 1198 spin_lock(&fs_info->fs_roots_radix_lock); 1199 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1200 (unsigned long)btrfs_root_id(root), 1201 root); 1202 if (ret == 0) { 1203 btrfs_grab_root(root); 1204 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1205 } 1206 spin_unlock(&fs_info->fs_roots_radix_lock); 1207 radix_tree_preload_end(); 1208 1209 return ret; 1210 } 1211 1212 void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info) 1213 { 1214 #ifdef CONFIG_BTRFS_DEBUG 1215 struct btrfs_root *root; 1216 1217 while (!list_empty(&fs_info->allocated_roots)) { 1218 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1219 1220 root = list_first_entry(&fs_info->allocated_roots, 1221 struct btrfs_root, leak_list); 1222 btrfs_err(fs_info, "leaked root %s refcount %d", 1223 btrfs_root_name(&root->root_key, buf), 1224 refcount_read(&root->refs)); 1225 WARN_ON_ONCE(1); 1226 while (refcount_read(&root->refs) > 1) 1227 btrfs_put_root(root); 1228 btrfs_put_root(root); 1229 } 1230 #endif 1231 } 1232 1233 static void free_global_roots(struct btrfs_fs_info *fs_info) 1234 { 1235 struct btrfs_root *root; 1236 struct rb_node *node; 1237 1238 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1239 root = rb_entry(node, struct btrfs_root, rb_node); 1240 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1241 btrfs_put_root(root); 1242 } 1243 } 1244 1245 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1246 { 1247 struct percpu_counter *em_counter = &fs_info->evictable_extent_maps; 1248 1249 if (fs_info->fs_devices) 1250 btrfs_close_devices(fs_info->fs_devices); 1251 percpu_counter_destroy(&fs_info->stats_read_blocks); 1252 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1253 percpu_counter_destroy(&fs_info->delalloc_bytes); 1254 percpu_counter_destroy(&fs_info->ordered_bytes); 1255 if (percpu_counter_initialized(em_counter)) 1256 ASSERT(percpu_counter_sum_positive(em_counter) == 0); 1257 percpu_counter_destroy(em_counter); 1258 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1259 btrfs_free_csum_hash(fs_info); 1260 btrfs_free_stripe_hash_table(fs_info); 1261 btrfs_free_ref_cache(fs_info); 1262 kfree(fs_info->balance_ctl); 1263 kfree(fs_info->delayed_root); 1264 free_global_roots(fs_info); 1265 btrfs_put_root(fs_info->tree_root); 1266 btrfs_put_root(fs_info->chunk_root); 1267 btrfs_put_root(fs_info->dev_root); 1268 btrfs_put_root(fs_info->quota_root); 1269 btrfs_put_root(fs_info->uuid_root); 1270 btrfs_put_root(fs_info->fs_root); 1271 btrfs_put_root(fs_info->data_reloc_root); 1272 btrfs_put_root(fs_info->block_group_root); 1273 btrfs_put_root(fs_info->stripe_root); 1274 btrfs_check_leaked_roots(fs_info); 1275 btrfs_extent_buffer_leak_debug_check(fs_info); 1276 kfree(fs_info->super_copy); 1277 kfree(fs_info->super_for_commit); 1278 kvfree(fs_info); 1279 } 1280 1281 1282 /* 1283 * Get an in-memory reference of a root structure. 1284 * 1285 * For essential trees like root/extent tree, we grab it from fs_info directly. 1286 * For subvolume trees, we check the cached filesystem roots first. If not 1287 * found, then read it from disk and add it to cached fs roots. 1288 * 1289 * Caller should release the root by calling btrfs_put_root() after the usage. 1290 * 1291 * NOTE: Reloc and log trees can't be read by this function as they share the 1292 * same root objectid. 1293 * 1294 * @objectid: root id 1295 * @anon_dev: preallocated anonymous block device number for new roots, 1296 * pass NULL for a new allocation. 1297 * @check_ref: whether to check root item references, If true, return -ENOENT 1298 * for orphan roots 1299 */ 1300 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1301 u64 objectid, dev_t *anon_dev, 1302 bool check_ref) 1303 { 1304 struct btrfs_root *root; 1305 struct btrfs_path *path; 1306 struct btrfs_key key; 1307 int ret; 1308 1309 root = btrfs_get_global_root(fs_info, objectid); 1310 if (root) 1311 return root; 1312 1313 /* 1314 * If we're called for non-subvolume trees, and above function didn't 1315 * find one, do not try to read it from disk. 1316 * 1317 * This is namely for free-space-tree and quota tree, which can change 1318 * at runtime and should only be grabbed from fs_info. 1319 */ 1320 if (!btrfs_is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) 1321 return ERR_PTR(-ENOENT); 1322 again: 1323 root = btrfs_lookup_fs_root(fs_info, objectid); 1324 if (root) { 1325 /* 1326 * Some other caller may have read out the newly inserted 1327 * subvolume already (for things like backref walk etc). Not 1328 * that common but still possible. In that case, we just need 1329 * to free the anon_dev. 1330 */ 1331 if (unlikely(anon_dev && *anon_dev)) { 1332 free_anon_bdev(*anon_dev); 1333 *anon_dev = 0; 1334 } 1335 1336 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1337 btrfs_put_root(root); 1338 return ERR_PTR(-ENOENT); 1339 } 1340 return root; 1341 } 1342 1343 key.objectid = objectid; 1344 key.type = BTRFS_ROOT_ITEM_KEY; 1345 key.offset = (u64)-1; 1346 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1347 if (IS_ERR(root)) 1348 return root; 1349 1350 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1351 ret = -ENOENT; 1352 goto fail; 1353 } 1354 1355 ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0); 1356 if (ret) 1357 goto fail; 1358 1359 path = btrfs_alloc_path(); 1360 if (!path) { 1361 ret = -ENOMEM; 1362 goto fail; 1363 } 1364 key.objectid = BTRFS_ORPHAN_OBJECTID; 1365 key.type = BTRFS_ORPHAN_ITEM_KEY; 1366 key.offset = objectid; 1367 1368 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1369 btrfs_free_path(path); 1370 if (ret < 0) 1371 goto fail; 1372 if (ret == 0) 1373 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1374 1375 ret = btrfs_insert_fs_root(fs_info, root); 1376 if (ret) { 1377 if (ret == -EEXIST) { 1378 btrfs_put_root(root); 1379 goto again; 1380 } 1381 goto fail; 1382 } 1383 return root; 1384 fail: 1385 /* 1386 * If our caller provided us an anonymous device, then it's his 1387 * responsibility to free it in case we fail. So we have to set our 1388 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1389 * and once again by our caller. 1390 */ 1391 if (anon_dev && *anon_dev) 1392 root->anon_dev = 0; 1393 btrfs_put_root(root); 1394 return ERR_PTR(ret); 1395 } 1396 1397 /* 1398 * Get in-memory reference of a root structure 1399 * 1400 * @objectid: tree objectid 1401 * @check_ref: if set, verify that the tree exists and the item has at least 1402 * one reference 1403 */ 1404 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1405 u64 objectid, bool check_ref) 1406 { 1407 return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref); 1408 } 1409 1410 /* 1411 * Get in-memory reference of a root structure, created as new, optionally pass 1412 * the anonymous block device id 1413 * 1414 * @objectid: tree objectid 1415 * @anon_dev: if NULL, allocate a new anonymous block device or use the 1416 * parameter value if not NULL 1417 */ 1418 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1419 u64 objectid, dev_t *anon_dev) 1420 { 1421 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1422 } 1423 1424 /* 1425 * Return a root for the given objectid. 1426 * 1427 * @fs_info: the fs_info 1428 * @objectid: the objectid we need to lookup 1429 * 1430 * This is exclusively used for backref walking, and exists specifically because 1431 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1432 * creation time, which means we may have to read the tree_root in order to look 1433 * up a fs root that is not in memory. If the root is not in memory we will 1434 * read the tree root commit root and look up the fs root from there. This is a 1435 * temporary root, it will not be inserted into the radix tree as it doesn't 1436 * have the most uptodate information, it'll simply be discarded once the 1437 * backref code is finished using the root. 1438 */ 1439 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1440 struct btrfs_path *path, 1441 u64 objectid) 1442 { 1443 struct btrfs_root *root; 1444 struct btrfs_key key; 1445 1446 ASSERT(path->search_commit_root && path->skip_locking); 1447 1448 /* 1449 * This can return -ENOENT if we ask for a root that doesn't exist, but 1450 * since this is called via the backref walking code we won't be looking 1451 * up a root that doesn't exist, unless there's corruption. So if root 1452 * != NULL just return it. 1453 */ 1454 root = btrfs_get_global_root(fs_info, objectid); 1455 if (root) 1456 return root; 1457 1458 root = btrfs_lookup_fs_root(fs_info, objectid); 1459 if (root) 1460 return root; 1461 1462 key.objectid = objectid; 1463 key.type = BTRFS_ROOT_ITEM_KEY; 1464 key.offset = (u64)-1; 1465 root = read_tree_root_path(fs_info->tree_root, path, &key); 1466 btrfs_release_path(path); 1467 1468 return root; 1469 } 1470 1471 static int cleaner_kthread(void *arg) 1472 { 1473 struct btrfs_fs_info *fs_info = arg; 1474 int again; 1475 1476 while (1) { 1477 again = 0; 1478 1479 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1480 1481 /* Make the cleaner go to sleep early. */ 1482 if (btrfs_need_cleaner_sleep(fs_info)) 1483 goto sleep; 1484 1485 /* 1486 * Do not do anything if we might cause open_ctree() to block 1487 * before we have finished mounting the filesystem. 1488 */ 1489 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1490 goto sleep; 1491 1492 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1493 goto sleep; 1494 1495 /* 1496 * Avoid the problem that we change the status of the fs 1497 * during the above check and trylock. 1498 */ 1499 if (btrfs_need_cleaner_sleep(fs_info)) { 1500 mutex_unlock(&fs_info->cleaner_mutex); 1501 goto sleep; 1502 } 1503 1504 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) 1505 btrfs_sysfs_feature_update(fs_info); 1506 1507 btrfs_run_delayed_iputs(fs_info); 1508 1509 again = btrfs_clean_one_deleted_snapshot(fs_info); 1510 mutex_unlock(&fs_info->cleaner_mutex); 1511 1512 /* 1513 * The defragger has dealt with the R/O remount and umount, 1514 * needn't do anything special here. 1515 */ 1516 btrfs_run_defrag_inodes(fs_info); 1517 1518 /* 1519 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1520 * with relocation (btrfs_relocate_chunk) and relocation 1521 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1522 * after acquiring fs_info->reclaim_bgs_lock. So we 1523 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1524 * unused block groups. 1525 */ 1526 btrfs_delete_unused_bgs(fs_info); 1527 1528 /* 1529 * Reclaim block groups in the reclaim_bgs list after we deleted 1530 * all unused block_groups. This possibly gives us some more free 1531 * space. 1532 */ 1533 btrfs_reclaim_bgs(fs_info); 1534 sleep: 1535 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1536 if (kthread_should_park()) 1537 kthread_parkme(); 1538 if (kthread_should_stop()) 1539 return 0; 1540 if (!again) { 1541 set_current_state(TASK_INTERRUPTIBLE); 1542 schedule(); 1543 __set_current_state(TASK_RUNNING); 1544 } 1545 } 1546 } 1547 1548 static int transaction_kthread(void *arg) 1549 { 1550 struct btrfs_root *root = arg; 1551 struct btrfs_fs_info *fs_info = root->fs_info; 1552 struct btrfs_trans_handle *trans; 1553 struct btrfs_transaction *cur; 1554 u64 transid; 1555 time64_t delta; 1556 unsigned long delay; 1557 bool cannot_commit; 1558 1559 do { 1560 cannot_commit = false; 1561 delay = secs_to_jiffies(fs_info->commit_interval); 1562 mutex_lock(&fs_info->transaction_kthread_mutex); 1563 1564 spin_lock(&fs_info->trans_lock); 1565 cur = fs_info->running_transaction; 1566 if (!cur) { 1567 spin_unlock(&fs_info->trans_lock); 1568 goto sleep; 1569 } 1570 1571 delta = ktime_get_seconds() - cur->start_time; 1572 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1573 cur->state < TRANS_STATE_COMMIT_PREP && 1574 delta < fs_info->commit_interval) { 1575 spin_unlock(&fs_info->trans_lock); 1576 delay -= secs_to_jiffies(delta - 1); 1577 delay = min(delay, 1578 secs_to_jiffies(fs_info->commit_interval)); 1579 goto sleep; 1580 } 1581 transid = cur->transid; 1582 spin_unlock(&fs_info->trans_lock); 1583 1584 /* If the file system is aborted, this will always fail. */ 1585 trans = btrfs_attach_transaction(root); 1586 if (IS_ERR(trans)) { 1587 if (PTR_ERR(trans) != -ENOENT) 1588 cannot_commit = true; 1589 goto sleep; 1590 } 1591 if (transid == trans->transid) { 1592 btrfs_commit_transaction(trans); 1593 } else { 1594 btrfs_end_transaction(trans); 1595 } 1596 sleep: 1597 wake_up_process(fs_info->cleaner_kthread); 1598 mutex_unlock(&fs_info->transaction_kthread_mutex); 1599 1600 if (BTRFS_FS_ERROR(fs_info)) 1601 btrfs_cleanup_transaction(fs_info); 1602 if (!kthread_should_stop() && 1603 (!btrfs_transaction_blocked(fs_info) || 1604 cannot_commit)) 1605 schedule_timeout_interruptible(delay); 1606 } while (!kthread_should_stop()); 1607 return 0; 1608 } 1609 1610 /* 1611 * This will find the highest generation in the array of root backups. The 1612 * index of the highest array is returned, or -EINVAL if we can't find 1613 * anything. 1614 * 1615 * We check to make sure the array is valid by comparing the 1616 * generation of the latest root in the array with the generation 1617 * in the super block. If they don't match we pitch it. 1618 */ 1619 static int find_newest_super_backup(struct btrfs_fs_info *info) 1620 { 1621 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1622 u64 cur; 1623 struct btrfs_root_backup *root_backup; 1624 int i; 1625 1626 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1627 root_backup = info->super_copy->super_roots + i; 1628 cur = btrfs_backup_tree_root_gen(root_backup); 1629 if (cur == newest_gen) 1630 return i; 1631 } 1632 1633 return -EINVAL; 1634 } 1635 1636 /* 1637 * copy all the root pointers into the super backup array. 1638 * this will bump the backup pointer by one when it is 1639 * done 1640 */ 1641 static void backup_super_roots(struct btrfs_fs_info *info) 1642 { 1643 const int next_backup = info->backup_root_index; 1644 struct btrfs_root_backup *root_backup; 1645 1646 root_backup = info->super_for_commit->super_roots + next_backup; 1647 1648 /* 1649 * make sure all of our padding and empty slots get zero filled 1650 * regardless of which ones we use today 1651 */ 1652 memset(root_backup, 0, sizeof(*root_backup)); 1653 1654 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1655 1656 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1657 btrfs_set_backup_tree_root_gen(root_backup, 1658 btrfs_header_generation(info->tree_root->node)); 1659 1660 btrfs_set_backup_tree_root_level(root_backup, 1661 btrfs_header_level(info->tree_root->node)); 1662 1663 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1664 btrfs_set_backup_chunk_root_gen(root_backup, 1665 btrfs_header_generation(info->chunk_root->node)); 1666 btrfs_set_backup_chunk_root_level(root_backup, 1667 btrfs_header_level(info->chunk_root->node)); 1668 1669 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1670 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1671 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1672 1673 btrfs_set_backup_extent_root(root_backup, 1674 extent_root->node->start); 1675 btrfs_set_backup_extent_root_gen(root_backup, 1676 btrfs_header_generation(extent_root->node)); 1677 btrfs_set_backup_extent_root_level(root_backup, 1678 btrfs_header_level(extent_root->node)); 1679 1680 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1681 btrfs_set_backup_csum_root_gen(root_backup, 1682 btrfs_header_generation(csum_root->node)); 1683 btrfs_set_backup_csum_root_level(root_backup, 1684 btrfs_header_level(csum_root->node)); 1685 } 1686 1687 /* 1688 * we might commit during log recovery, which happens before we set 1689 * the fs_root. Make sure it is valid before we fill it in. 1690 */ 1691 if (info->fs_root && info->fs_root->node) { 1692 btrfs_set_backup_fs_root(root_backup, 1693 info->fs_root->node->start); 1694 btrfs_set_backup_fs_root_gen(root_backup, 1695 btrfs_header_generation(info->fs_root->node)); 1696 btrfs_set_backup_fs_root_level(root_backup, 1697 btrfs_header_level(info->fs_root->node)); 1698 } 1699 1700 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1701 btrfs_set_backup_dev_root_gen(root_backup, 1702 btrfs_header_generation(info->dev_root->node)); 1703 btrfs_set_backup_dev_root_level(root_backup, 1704 btrfs_header_level(info->dev_root->node)); 1705 1706 btrfs_set_backup_total_bytes(root_backup, 1707 btrfs_super_total_bytes(info->super_copy)); 1708 btrfs_set_backup_bytes_used(root_backup, 1709 btrfs_super_bytes_used(info->super_copy)); 1710 btrfs_set_backup_num_devices(root_backup, 1711 btrfs_super_num_devices(info->super_copy)); 1712 1713 /* 1714 * if we don't copy this out to the super_copy, it won't get remembered 1715 * for the next commit 1716 */ 1717 memcpy(&info->super_copy->super_roots, 1718 &info->super_for_commit->super_roots, 1719 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1720 } 1721 1722 /* 1723 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio 1724 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1725 * 1726 * @fs_info: filesystem whose backup roots need to be read 1727 * @priority: priority of backup root required 1728 * 1729 * Returns backup root index on success and -EINVAL otherwise. 1730 */ 1731 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1732 { 1733 int backup_index = find_newest_super_backup(fs_info); 1734 struct btrfs_super_block *super = fs_info->super_copy; 1735 struct btrfs_root_backup *root_backup; 1736 1737 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1738 if (priority == 0) 1739 return backup_index; 1740 1741 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1742 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1743 } else { 1744 return -EINVAL; 1745 } 1746 1747 root_backup = super->super_roots + backup_index; 1748 1749 btrfs_set_super_generation(super, 1750 btrfs_backup_tree_root_gen(root_backup)); 1751 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1752 btrfs_set_super_root_level(super, 1753 btrfs_backup_tree_root_level(root_backup)); 1754 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1755 1756 /* 1757 * Fixme: the total bytes and num_devices need to match or we should 1758 * need a fsck 1759 */ 1760 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1761 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1762 1763 return backup_index; 1764 } 1765 1766 /* helper to cleanup workers */ 1767 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1768 { 1769 btrfs_destroy_workqueue(fs_info->fixup_workers); 1770 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1771 btrfs_destroy_workqueue(fs_info->workers); 1772 if (fs_info->endio_workers) 1773 destroy_workqueue(fs_info->endio_workers); 1774 if (fs_info->rmw_workers) 1775 destroy_workqueue(fs_info->rmw_workers); 1776 if (fs_info->compressed_write_workers) 1777 destroy_workqueue(fs_info->compressed_write_workers); 1778 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1779 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1780 btrfs_destroy_workqueue(fs_info->delayed_workers); 1781 btrfs_destroy_workqueue(fs_info->caching_workers); 1782 btrfs_destroy_workqueue(fs_info->flush_workers); 1783 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1784 if (fs_info->discard_ctl.discard_workers) 1785 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1786 /* 1787 * Now that all other work queues are destroyed, we can safely destroy 1788 * the queues used for metadata I/O, since tasks from those other work 1789 * queues can do metadata I/O operations. 1790 */ 1791 if (fs_info->endio_meta_workers) 1792 destroy_workqueue(fs_info->endio_meta_workers); 1793 } 1794 1795 static void free_root_extent_buffers(struct btrfs_root *root) 1796 { 1797 if (root) { 1798 free_extent_buffer(root->node); 1799 free_extent_buffer(root->commit_root); 1800 root->node = NULL; 1801 root->commit_root = NULL; 1802 } 1803 } 1804 1805 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 1806 { 1807 struct btrfs_root *root, *tmp; 1808 1809 rbtree_postorder_for_each_entry_safe(root, tmp, 1810 &fs_info->global_root_tree, 1811 rb_node) 1812 free_root_extent_buffers(root); 1813 } 1814 1815 /* helper to cleanup tree roots */ 1816 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1817 { 1818 free_root_extent_buffers(info->tree_root); 1819 1820 free_global_root_pointers(info); 1821 free_root_extent_buffers(info->dev_root); 1822 free_root_extent_buffers(info->quota_root); 1823 free_root_extent_buffers(info->uuid_root); 1824 free_root_extent_buffers(info->fs_root); 1825 free_root_extent_buffers(info->data_reloc_root); 1826 free_root_extent_buffers(info->block_group_root); 1827 free_root_extent_buffers(info->stripe_root); 1828 if (free_chunk_root) 1829 free_root_extent_buffers(info->chunk_root); 1830 } 1831 1832 void btrfs_put_root(struct btrfs_root *root) 1833 { 1834 if (!root) 1835 return; 1836 1837 if (refcount_dec_and_test(&root->refs)) { 1838 if (WARN_ON(!xa_empty(&root->inodes))) 1839 xa_destroy(&root->inodes); 1840 if (WARN_ON(!xa_empty(&root->delayed_nodes))) 1841 xa_destroy(&root->delayed_nodes); 1842 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 1843 if (root->anon_dev) 1844 free_anon_bdev(root->anon_dev); 1845 free_root_extent_buffers(root); 1846 #ifdef CONFIG_BTRFS_DEBUG 1847 spin_lock(&root->fs_info->fs_roots_radix_lock); 1848 list_del_init(&root->leak_list); 1849 spin_unlock(&root->fs_info->fs_roots_radix_lock); 1850 #endif 1851 kfree(root); 1852 } 1853 } 1854 1855 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 1856 { 1857 int ret; 1858 struct btrfs_root *gang[8]; 1859 int i; 1860 1861 while (!list_empty(&fs_info->dead_roots)) { 1862 gang[0] = list_first_entry(&fs_info->dead_roots, 1863 struct btrfs_root, root_list); 1864 list_del(&gang[0]->root_list); 1865 1866 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 1867 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 1868 btrfs_put_root(gang[0]); 1869 } 1870 1871 while (1) { 1872 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 1873 (void **)gang, 0, 1874 ARRAY_SIZE(gang)); 1875 if (!ret) 1876 break; 1877 for (i = 0; i < ret; i++) 1878 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 1879 } 1880 } 1881 1882 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 1883 { 1884 mutex_init(&fs_info->scrub_lock); 1885 atomic_set(&fs_info->scrubs_running, 0); 1886 atomic_set(&fs_info->scrub_pause_req, 0); 1887 atomic_set(&fs_info->scrubs_paused, 0); 1888 atomic_set(&fs_info->scrub_cancel_req, 0); 1889 init_waitqueue_head(&fs_info->scrub_pause_wait); 1890 refcount_set(&fs_info->scrub_workers_refcnt, 0); 1891 } 1892 1893 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 1894 { 1895 spin_lock_init(&fs_info->balance_lock); 1896 mutex_init(&fs_info->balance_mutex); 1897 atomic_set(&fs_info->balance_pause_req, 0); 1898 atomic_set(&fs_info->balance_cancel_req, 0); 1899 fs_info->balance_ctl = NULL; 1900 init_waitqueue_head(&fs_info->balance_wait_q); 1901 atomic_set(&fs_info->reloc_cancel_req, 0); 1902 } 1903 1904 static int btrfs_init_btree_inode(struct super_block *sb) 1905 { 1906 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1907 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 1908 fs_info->tree_root); 1909 struct inode *inode; 1910 1911 inode = new_inode(sb); 1912 if (!inode) 1913 return -ENOMEM; 1914 1915 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID); 1916 set_nlink(inode, 1); 1917 /* 1918 * we set the i_size on the btree inode to the max possible int. 1919 * the real end of the address space is determined by all of 1920 * the devices in the system 1921 */ 1922 inode->i_size = OFFSET_MAX; 1923 inode->i_mapping->a_ops = &btree_aops; 1924 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); 1925 1926 btrfs_extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 1927 IO_TREE_BTREE_INODE_IO); 1928 btrfs_extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 1929 1930 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 1931 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 1932 __insert_inode_hash(inode, hash); 1933 fs_info->btree_inode = inode; 1934 1935 return 0; 1936 } 1937 1938 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 1939 { 1940 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 1941 init_rwsem(&fs_info->dev_replace.rwsem); 1942 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 1943 } 1944 1945 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 1946 { 1947 spin_lock_init(&fs_info->qgroup_lock); 1948 mutex_init(&fs_info->qgroup_ioctl_lock); 1949 fs_info->qgroup_tree = RB_ROOT; 1950 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 1951 fs_info->qgroup_seq = 1; 1952 fs_info->qgroup_rescan_running = false; 1953 fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT; 1954 mutex_init(&fs_info->qgroup_rescan_lock); 1955 } 1956 1957 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 1958 { 1959 u32 max_active = fs_info->thread_pool_size; 1960 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 1961 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE; 1962 1963 fs_info->workers = 1964 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 1965 1966 fs_info->delalloc_workers = 1967 btrfs_alloc_workqueue(fs_info, "delalloc", 1968 flags, max_active, 2); 1969 1970 fs_info->flush_workers = 1971 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 1972 flags, max_active, 0); 1973 1974 fs_info->caching_workers = 1975 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 1976 1977 fs_info->fixup_workers = 1978 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags); 1979 1980 fs_info->endio_workers = 1981 alloc_workqueue("btrfs-endio", flags, max_active); 1982 fs_info->endio_meta_workers = 1983 alloc_workqueue("btrfs-endio-meta", flags, max_active); 1984 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 1985 fs_info->endio_write_workers = 1986 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 1987 max_active, 2); 1988 fs_info->compressed_write_workers = 1989 alloc_workqueue("btrfs-compressed-write", flags, max_active); 1990 fs_info->endio_freespace_worker = 1991 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 1992 max_active, 0); 1993 fs_info->delayed_workers = 1994 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 1995 max_active, 0); 1996 fs_info->qgroup_rescan_workers = 1997 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan", 1998 ordered_flags); 1999 fs_info->discard_ctl.discard_workers = 2000 alloc_ordered_workqueue("btrfs-discard", WQ_FREEZABLE); 2001 2002 if (!(fs_info->workers && 2003 fs_info->delalloc_workers && fs_info->flush_workers && 2004 fs_info->endio_workers && fs_info->endio_meta_workers && 2005 fs_info->compressed_write_workers && 2006 fs_info->endio_write_workers && 2007 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2008 fs_info->caching_workers && fs_info->fixup_workers && 2009 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2010 fs_info->discard_ctl.discard_workers)) { 2011 return -ENOMEM; 2012 } 2013 2014 return 0; 2015 } 2016 2017 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2018 { 2019 struct crypto_shash *csum_shash; 2020 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2021 2022 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2023 2024 if (IS_ERR(csum_shash)) { 2025 btrfs_err(fs_info, "error allocating %s hash for checksum", 2026 csum_driver); 2027 return PTR_ERR(csum_shash); 2028 } 2029 2030 fs_info->csum_shash = csum_shash; 2031 2032 /* Check if the checksum implementation is a fast accelerated one. */ 2033 switch (csum_type) { 2034 case BTRFS_CSUM_TYPE_CRC32: 2035 if (crc32_optimizations() & CRC32C_OPTIMIZATION) 2036 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2037 break; 2038 case BTRFS_CSUM_TYPE_XXHASH: 2039 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2040 break; 2041 default: 2042 break; 2043 } 2044 2045 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2046 btrfs_super_csum_name(csum_type), 2047 crypto_shash_driver_name(csum_shash)); 2048 return 0; 2049 } 2050 2051 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2052 struct btrfs_fs_devices *fs_devices) 2053 { 2054 int ret; 2055 struct btrfs_tree_parent_check check = { 0 }; 2056 struct btrfs_root *log_tree_root; 2057 struct btrfs_super_block *disk_super = fs_info->super_copy; 2058 u64 bytenr = btrfs_super_log_root(disk_super); 2059 int level = btrfs_super_log_root_level(disk_super); 2060 2061 if (fs_devices->rw_devices == 0) { 2062 btrfs_warn(fs_info, "log replay required on RO media"); 2063 return -EIO; 2064 } 2065 2066 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2067 GFP_KERNEL); 2068 if (!log_tree_root) 2069 return -ENOMEM; 2070 2071 check.level = level; 2072 check.transid = fs_info->generation + 1; 2073 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2074 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2075 if (IS_ERR(log_tree_root->node)) { 2076 btrfs_warn(fs_info, "failed to read log tree"); 2077 ret = PTR_ERR(log_tree_root->node); 2078 log_tree_root->node = NULL; 2079 btrfs_put_root(log_tree_root); 2080 return ret; 2081 } 2082 if (!extent_buffer_uptodate(log_tree_root->node)) { 2083 btrfs_err(fs_info, "failed to read log tree"); 2084 btrfs_put_root(log_tree_root); 2085 return -EIO; 2086 } 2087 2088 /* returns with log_tree_root freed on success */ 2089 ret = btrfs_recover_log_trees(log_tree_root); 2090 if (ret) { 2091 btrfs_handle_fs_error(fs_info, ret, 2092 "Failed to recover log tree"); 2093 btrfs_put_root(log_tree_root); 2094 return ret; 2095 } 2096 2097 if (sb_rdonly(fs_info->sb)) { 2098 ret = btrfs_commit_super(fs_info); 2099 if (ret) 2100 return ret; 2101 } 2102 2103 return 0; 2104 } 2105 2106 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2107 struct btrfs_path *path, u64 objectid, 2108 const char *name) 2109 { 2110 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2111 struct btrfs_root *root; 2112 u64 max_global_id = 0; 2113 int ret; 2114 struct btrfs_key key = { 2115 .objectid = objectid, 2116 .type = BTRFS_ROOT_ITEM_KEY, 2117 .offset = 0, 2118 }; 2119 bool found = false; 2120 2121 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2122 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2123 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2124 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); 2125 return 0; 2126 } 2127 2128 while (1) { 2129 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2130 if (ret < 0) 2131 break; 2132 2133 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2134 ret = btrfs_next_leaf(tree_root, path); 2135 if (ret) { 2136 if (ret > 0) 2137 ret = 0; 2138 break; 2139 } 2140 } 2141 ret = 0; 2142 2143 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2144 if (key.objectid != objectid) 2145 break; 2146 btrfs_release_path(path); 2147 2148 /* 2149 * Just worry about this for extent tree, it'll be the same for 2150 * everybody. 2151 */ 2152 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2153 max_global_id = max(max_global_id, key.offset); 2154 2155 found = true; 2156 root = read_tree_root_path(tree_root, path, &key); 2157 if (IS_ERR(root)) { 2158 ret = PTR_ERR(root); 2159 break; 2160 } 2161 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2162 ret = btrfs_global_root_insert(root); 2163 if (ret) { 2164 btrfs_put_root(root); 2165 break; 2166 } 2167 key.offset++; 2168 } 2169 btrfs_release_path(path); 2170 2171 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2172 fs_info->nr_global_roots = max_global_id + 1; 2173 2174 if (!found || ret) { 2175 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2176 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); 2177 2178 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2179 ret = ret ? ret : -ENOENT; 2180 else 2181 ret = 0; 2182 btrfs_err(fs_info, "failed to load root %s", name); 2183 } 2184 return ret; 2185 } 2186 2187 static int load_global_roots(struct btrfs_root *tree_root) 2188 { 2189 BTRFS_PATH_AUTO_FREE(path); 2190 int ret; 2191 2192 path = btrfs_alloc_path(); 2193 if (!path) 2194 return -ENOMEM; 2195 2196 ret = load_global_roots_objectid(tree_root, path, 2197 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2198 if (ret) 2199 return ret; 2200 ret = load_global_roots_objectid(tree_root, path, 2201 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2202 if (ret) 2203 return ret; 2204 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2205 return ret; 2206 ret = load_global_roots_objectid(tree_root, path, 2207 BTRFS_FREE_SPACE_TREE_OBJECTID, 2208 "free space"); 2209 2210 return ret; 2211 } 2212 2213 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2214 { 2215 struct btrfs_root *tree_root = fs_info->tree_root; 2216 struct btrfs_root *root; 2217 struct btrfs_key location; 2218 int ret; 2219 2220 ASSERT(fs_info->tree_root); 2221 2222 ret = load_global_roots(tree_root); 2223 if (ret) 2224 return ret; 2225 2226 location.type = BTRFS_ROOT_ITEM_KEY; 2227 location.offset = 0; 2228 2229 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2230 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2231 root = btrfs_read_tree_root(tree_root, &location); 2232 if (IS_ERR(root)) { 2233 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2234 ret = PTR_ERR(root); 2235 goto out; 2236 } 2237 } else { 2238 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2239 fs_info->block_group_root = root; 2240 } 2241 } 2242 2243 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2244 root = btrfs_read_tree_root(tree_root, &location); 2245 if (IS_ERR(root)) { 2246 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2247 ret = PTR_ERR(root); 2248 goto out; 2249 } 2250 } else { 2251 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2252 fs_info->dev_root = root; 2253 } 2254 /* Initialize fs_info for all devices in any case */ 2255 ret = btrfs_init_devices_late(fs_info); 2256 if (ret) 2257 goto out; 2258 2259 /* 2260 * This tree can share blocks with some other fs tree during relocation 2261 * and we need a proper setup by btrfs_get_fs_root 2262 */ 2263 root = btrfs_get_fs_root(tree_root->fs_info, 2264 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2265 if (IS_ERR(root)) { 2266 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2267 ret = PTR_ERR(root); 2268 goto out; 2269 } 2270 } else { 2271 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2272 fs_info->data_reloc_root = root; 2273 } 2274 2275 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2276 root = btrfs_read_tree_root(tree_root, &location); 2277 if (!IS_ERR(root)) { 2278 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2279 fs_info->quota_root = root; 2280 } 2281 2282 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2283 root = btrfs_read_tree_root(tree_root, &location); 2284 if (IS_ERR(root)) { 2285 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2286 ret = PTR_ERR(root); 2287 if (ret != -ENOENT) 2288 goto out; 2289 } 2290 } else { 2291 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2292 fs_info->uuid_root = root; 2293 } 2294 2295 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) { 2296 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID; 2297 root = btrfs_read_tree_root(tree_root, &location); 2298 if (IS_ERR(root)) { 2299 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2300 ret = PTR_ERR(root); 2301 goto out; 2302 } 2303 } else { 2304 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2305 fs_info->stripe_root = root; 2306 } 2307 } 2308 2309 return 0; 2310 out: 2311 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2312 location.objectid, ret); 2313 return ret; 2314 } 2315 2316 static int validate_sys_chunk_array(const struct btrfs_fs_info *fs_info, 2317 const struct btrfs_super_block *sb) 2318 { 2319 unsigned int cur = 0; /* Offset inside the sys chunk array */ 2320 /* 2321 * At sb read time, fs_info is not fully initialized. Thus we have 2322 * to use super block sectorsize, which should have been validated. 2323 */ 2324 const u32 sectorsize = btrfs_super_sectorsize(sb); 2325 u32 sys_array_size = btrfs_super_sys_array_size(sb); 2326 2327 if (sys_array_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2328 btrfs_err(fs_info, "system chunk array too big %u > %u", 2329 sys_array_size, BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2330 return -EUCLEAN; 2331 } 2332 2333 while (cur < sys_array_size) { 2334 struct btrfs_disk_key *disk_key; 2335 struct btrfs_chunk *chunk; 2336 struct btrfs_key key; 2337 u64 type; 2338 u16 num_stripes; 2339 u32 len; 2340 int ret; 2341 2342 disk_key = (struct btrfs_disk_key *)(sb->sys_chunk_array + cur); 2343 len = sizeof(*disk_key); 2344 2345 if (cur + len > sys_array_size) 2346 goto short_read; 2347 cur += len; 2348 2349 btrfs_disk_key_to_cpu(&key, disk_key); 2350 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 2351 btrfs_err(fs_info, 2352 "unexpected item type %u in sys_array at offset %u", 2353 key.type, cur); 2354 return -EUCLEAN; 2355 } 2356 chunk = (struct btrfs_chunk *)(sb->sys_chunk_array + cur); 2357 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2358 if (cur + btrfs_chunk_item_size(num_stripes) > sys_array_size) 2359 goto short_read; 2360 type = btrfs_stack_chunk_type(chunk); 2361 if (!(type & BTRFS_BLOCK_GROUP_SYSTEM)) { 2362 btrfs_err(fs_info, 2363 "invalid chunk type %llu in sys_array at offset %u", 2364 type, cur); 2365 return -EUCLEAN; 2366 } 2367 ret = btrfs_check_chunk_valid(fs_info, NULL, chunk, key.offset, 2368 sectorsize); 2369 if (ret < 0) 2370 return ret; 2371 cur += btrfs_chunk_item_size(num_stripes); 2372 } 2373 return 0; 2374 short_read: 2375 btrfs_err(fs_info, 2376 "super block sys chunk array short read, cur=%u sys_array_size=%u", 2377 cur, sys_array_size); 2378 return -EUCLEAN; 2379 } 2380 2381 /* 2382 * Real super block validation 2383 * NOTE: super csum type and incompat features will not be checked here. 2384 * 2385 * @sb: super block to check 2386 * @mirror_num: the super block number to check its bytenr: 2387 * 0 the primary (1st) sb 2388 * 1, 2 2nd and 3rd backup copy 2389 * -1 skip bytenr check 2390 */ 2391 int btrfs_validate_super(const struct btrfs_fs_info *fs_info, 2392 const struct btrfs_super_block *sb, int mirror_num) 2393 { 2394 u64 nodesize = btrfs_super_nodesize(sb); 2395 u64 sectorsize = btrfs_super_sectorsize(sb); 2396 int ret = 0; 2397 const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS); 2398 2399 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2400 btrfs_err(fs_info, "no valid FS found"); 2401 ret = -EINVAL; 2402 } 2403 if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) { 2404 if (!ignore_flags) { 2405 btrfs_err(fs_info, 2406 "unrecognized or unsupported super flag 0x%llx", 2407 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2408 ret = -EINVAL; 2409 } else { 2410 btrfs_info(fs_info, 2411 "unrecognized or unsupported super flags: 0x%llx, ignored", 2412 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2413 } 2414 } 2415 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2416 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2417 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2418 ret = -EINVAL; 2419 } 2420 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2421 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2422 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2423 ret = -EINVAL; 2424 } 2425 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2426 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2427 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2428 ret = -EINVAL; 2429 } 2430 2431 /* 2432 * Check sectorsize and nodesize first, other check will need it. 2433 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2434 */ 2435 if (!is_power_of_2(sectorsize) || sectorsize < BTRFS_MIN_BLOCKSIZE || 2436 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2437 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2438 ret = -EINVAL; 2439 } 2440 2441 /* 2442 * We only support at most 3 sectorsizes: 4K, PAGE_SIZE, MIN_BLOCKSIZE. 2443 * 2444 * For 4K page sized systems with non-debug builds, all 3 matches (4K). 2445 * For 4K page sized systems with debug builds, there are two block sizes 2446 * supported. (4K and 2K) 2447 * 2448 * We can support 16K sectorsize with 64K page size without problem, 2449 * but such sectorsize/pagesize combination doesn't make much sense. 2450 * 4K will be our future standard, PAGE_SIZE is supported from the very 2451 * beginning. 2452 */ 2453 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && 2454 sectorsize != PAGE_SIZE && 2455 sectorsize != BTRFS_MIN_BLOCKSIZE)) { 2456 btrfs_err(fs_info, 2457 "sectorsize %llu not yet supported for page size %lu", 2458 sectorsize, PAGE_SIZE); 2459 ret = -EINVAL; 2460 } 2461 2462 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2463 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2464 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2465 ret = -EINVAL; 2466 } 2467 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2468 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2469 le32_to_cpu(sb->__unused_leafsize), nodesize); 2470 ret = -EINVAL; 2471 } 2472 2473 /* Root alignment check */ 2474 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2475 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2476 btrfs_super_root(sb)); 2477 ret = -EINVAL; 2478 } 2479 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2480 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2481 btrfs_super_chunk_root(sb)); 2482 ret = -EINVAL; 2483 } 2484 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2485 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2486 btrfs_super_log_root(sb)); 2487 ret = -EINVAL; 2488 } 2489 2490 if (!fs_info->fs_devices->temp_fsid && 2491 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) { 2492 btrfs_err(fs_info, 2493 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2494 sb->fsid, fs_info->fs_devices->fsid); 2495 ret = -EINVAL; 2496 } 2497 2498 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb), 2499 BTRFS_FSID_SIZE) != 0) { 2500 btrfs_err(fs_info, 2501 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2502 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid); 2503 ret = -EINVAL; 2504 } 2505 2506 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2507 BTRFS_FSID_SIZE) != 0) { 2508 btrfs_err(fs_info, 2509 "dev_item UUID does not match metadata fsid: %pU != %pU", 2510 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2511 ret = -EINVAL; 2512 } 2513 2514 /* 2515 * Artificial requirement for block-group-tree to force newer features 2516 * (free-space-tree, no-holes) so the test matrix is smaller. 2517 */ 2518 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2519 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2520 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2521 btrfs_err(fs_info, 2522 "block-group-tree feature requires free-space-tree and no-holes"); 2523 ret = -EINVAL; 2524 } 2525 2526 /* 2527 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2528 * done later 2529 */ 2530 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2531 btrfs_err(fs_info, "bytes_used is too small %llu", 2532 btrfs_super_bytes_used(sb)); 2533 ret = -EINVAL; 2534 } 2535 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2536 btrfs_err(fs_info, "invalid stripesize %u", 2537 btrfs_super_stripesize(sb)); 2538 ret = -EINVAL; 2539 } 2540 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2541 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2542 btrfs_super_num_devices(sb)); 2543 if (btrfs_super_num_devices(sb) == 0) { 2544 btrfs_err(fs_info, "number of devices is 0"); 2545 ret = -EINVAL; 2546 } 2547 2548 if (mirror_num >= 0 && 2549 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2550 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2551 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2552 ret = -EINVAL; 2553 } 2554 2555 if (ret) 2556 return ret; 2557 2558 ret = validate_sys_chunk_array(fs_info, sb); 2559 2560 /* 2561 * Obvious sys_chunk_array corruptions, it must hold at least one key 2562 * and one chunk 2563 */ 2564 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2565 btrfs_err(fs_info, "system chunk array too big %u > %u", 2566 btrfs_super_sys_array_size(sb), 2567 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2568 ret = -EINVAL; 2569 } 2570 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2571 + sizeof(struct btrfs_chunk)) { 2572 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2573 btrfs_super_sys_array_size(sb), 2574 sizeof(struct btrfs_disk_key) 2575 + sizeof(struct btrfs_chunk)); 2576 ret = -EINVAL; 2577 } 2578 2579 /* 2580 * The generation is a global counter, we'll trust it more than the others 2581 * but it's still possible that it's the one that's wrong. 2582 */ 2583 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2584 btrfs_warn(fs_info, 2585 "suspicious: generation < chunk_root_generation: %llu < %llu", 2586 btrfs_super_generation(sb), 2587 btrfs_super_chunk_root_generation(sb)); 2588 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2589 && btrfs_super_cache_generation(sb) != (u64)-1) 2590 btrfs_warn(fs_info, 2591 "suspicious: generation < cache_generation: %llu < %llu", 2592 btrfs_super_generation(sb), 2593 btrfs_super_cache_generation(sb)); 2594 2595 return ret; 2596 } 2597 2598 /* 2599 * Validation of super block at mount time. 2600 * Some checks already done early at mount time, like csum type and incompat 2601 * flags will be skipped. 2602 */ 2603 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2604 { 2605 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2606 } 2607 2608 /* 2609 * Validation of super block at write time. 2610 * Some checks like bytenr check will be skipped as their values will be 2611 * overwritten soon. 2612 * Extra checks like csum type and incompat flags will be done here. 2613 */ 2614 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2615 struct btrfs_super_block *sb) 2616 { 2617 int ret; 2618 2619 ret = btrfs_validate_super(fs_info, sb, -1); 2620 if (ret < 0) 2621 goto out; 2622 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2623 ret = -EUCLEAN; 2624 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2625 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2626 goto out; 2627 } 2628 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2629 ret = -EUCLEAN; 2630 btrfs_err(fs_info, 2631 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2632 btrfs_super_incompat_flags(sb), 2633 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2634 goto out; 2635 } 2636 out: 2637 if (ret < 0) 2638 btrfs_err(fs_info, 2639 "super block corruption detected before writing it to disk"); 2640 return ret; 2641 } 2642 2643 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2644 { 2645 struct btrfs_tree_parent_check check = { 2646 .level = level, 2647 .transid = gen, 2648 .owner_root = btrfs_root_id(root) 2649 }; 2650 int ret = 0; 2651 2652 root->node = read_tree_block(root->fs_info, bytenr, &check); 2653 if (IS_ERR(root->node)) { 2654 ret = PTR_ERR(root->node); 2655 root->node = NULL; 2656 return ret; 2657 } 2658 if (!extent_buffer_uptodate(root->node)) { 2659 free_extent_buffer(root->node); 2660 root->node = NULL; 2661 return -EIO; 2662 } 2663 2664 btrfs_set_root_node(&root->root_item, root->node); 2665 root->commit_root = btrfs_root_node(root); 2666 btrfs_set_root_refs(&root->root_item, 1); 2667 return ret; 2668 } 2669 2670 static int load_important_roots(struct btrfs_fs_info *fs_info) 2671 { 2672 struct btrfs_super_block *sb = fs_info->super_copy; 2673 u64 gen, bytenr; 2674 int level, ret; 2675 2676 bytenr = btrfs_super_root(sb); 2677 gen = btrfs_super_generation(sb); 2678 level = btrfs_super_root_level(sb); 2679 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2680 if (ret) { 2681 btrfs_warn(fs_info, "couldn't read tree root"); 2682 return ret; 2683 } 2684 return 0; 2685 } 2686 2687 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2688 { 2689 int backup_index = find_newest_super_backup(fs_info); 2690 struct btrfs_super_block *sb = fs_info->super_copy; 2691 struct btrfs_root *tree_root = fs_info->tree_root; 2692 bool handle_error = false; 2693 int ret = 0; 2694 int i; 2695 2696 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2697 if (handle_error) { 2698 if (!IS_ERR(tree_root->node)) 2699 free_extent_buffer(tree_root->node); 2700 tree_root->node = NULL; 2701 2702 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2703 break; 2704 2705 free_root_pointers(fs_info, 0); 2706 2707 /* 2708 * Don't use the log in recovery mode, it won't be 2709 * valid 2710 */ 2711 btrfs_set_super_log_root(sb, 0); 2712 2713 btrfs_warn(fs_info, "try to load backup roots slot %d", i); 2714 ret = read_backup_root(fs_info, i); 2715 backup_index = ret; 2716 if (ret < 0) 2717 return ret; 2718 } 2719 2720 ret = load_important_roots(fs_info); 2721 if (ret) { 2722 handle_error = true; 2723 continue; 2724 } 2725 2726 /* 2727 * No need to hold btrfs_root::objectid_mutex since the fs 2728 * hasn't been fully initialised and we are the only user 2729 */ 2730 ret = btrfs_init_root_free_objectid(tree_root); 2731 if (ret < 0) { 2732 handle_error = true; 2733 continue; 2734 } 2735 2736 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2737 2738 ret = btrfs_read_roots(fs_info); 2739 if (ret < 0) { 2740 handle_error = true; 2741 continue; 2742 } 2743 2744 /* All successful */ 2745 fs_info->generation = btrfs_header_generation(tree_root->node); 2746 btrfs_set_last_trans_committed(fs_info, fs_info->generation); 2747 fs_info->last_reloc_trans = 0; 2748 2749 /* Always begin writing backup roots after the one being used */ 2750 if (backup_index < 0) { 2751 fs_info->backup_root_index = 0; 2752 } else { 2753 fs_info->backup_root_index = backup_index + 1; 2754 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2755 } 2756 break; 2757 } 2758 2759 return ret; 2760 } 2761 2762 /* 2763 * Lockdep gets confused between our buffer_tree which requires IRQ locking because 2764 * we modify marks in the IRQ context, and our delayed inode xarray which doesn't 2765 * have these requirements. Use a class key so lockdep doesn't get them mixed up. 2766 */ 2767 static struct lock_class_key buffer_xa_class; 2768 2769 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2770 { 2771 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2772 2773 /* Use the same flags as mapping->i_pages. */ 2774 xa_init_flags(&fs_info->buffer_tree, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 2775 lockdep_set_class(&fs_info->buffer_tree.xa_lock, &buffer_xa_class); 2776 2777 INIT_LIST_HEAD(&fs_info->trans_list); 2778 INIT_LIST_HEAD(&fs_info->dead_roots); 2779 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2780 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2781 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2782 spin_lock_init(&fs_info->delalloc_root_lock); 2783 spin_lock_init(&fs_info->trans_lock); 2784 spin_lock_init(&fs_info->fs_roots_radix_lock); 2785 spin_lock_init(&fs_info->delayed_iput_lock); 2786 spin_lock_init(&fs_info->defrag_inodes_lock); 2787 spin_lock_init(&fs_info->super_lock); 2788 spin_lock_init(&fs_info->unused_bgs_lock); 2789 spin_lock_init(&fs_info->treelog_bg_lock); 2790 spin_lock_init(&fs_info->zone_active_bgs_lock); 2791 spin_lock_init(&fs_info->relocation_bg_lock); 2792 rwlock_init(&fs_info->tree_mod_log_lock); 2793 rwlock_init(&fs_info->global_root_lock); 2794 mutex_init(&fs_info->unused_bg_unpin_mutex); 2795 mutex_init(&fs_info->reclaim_bgs_lock); 2796 mutex_init(&fs_info->reloc_mutex); 2797 mutex_init(&fs_info->delalloc_root_mutex); 2798 mutex_init(&fs_info->zoned_meta_io_lock); 2799 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2800 seqlock_init(&fs_info->profiles_lock); 2801 2802 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2803 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2804 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2805 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2806 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep, 2807 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2808 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2809 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2810 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 2811 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2812 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 2813 BTRFS_LOCKDEP_TRANS_COMPLETED); 2814 2815 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2816 INIT_LIST_HEAD(&fs_info->space_info); 2817 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2818 INIT_LIST_HEAD(&fs_info->unused_bgs); 2819 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2820 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2821 #ifdef CONFIG_BTRFS_DEBUG 2822 INIT_LIST_HEAD(&fs_info->allocated_roots); 2823 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2824 spin_lock_init(&fs_info->eb_leak_lock); 2825 #endif 2826 fs_info->mapping_tree = RB_ROOT_CACHED; 2827 rwlock_init(&fs_info->mapping_tree_lock); 2828 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2829 BTRFS_BLOCK_RSV_GLOBAL); 2830 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2831 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2832 btrfs_init_block_rsv(&fs_info->treelog_rsv, BTRFS_BLOCK_RSV_TREELOG); 2833 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2834 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2835 BTRFS_BLOCK_RSV_DELOPS); 2836 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2837 BTRFS_BLOCK_RSV_DELREFS); 2838 2839 atomic_set(&fs_info->async_delalloc_pages, 0); 2840 atomic_set(&fs_info->defrag_running, 0); 2841 atomic_set(&fs_info->nr_delayed_iputs, 0); 2842 atomic64_set(&fs_info->tree_mod_seq, 0); 2843 fs_info->global_root_tree = RB_ROOT; 2844 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2845 fs_info->metadata_ratio = 0; 2846 fs_info->defrag_inodes = RB_ROOT; 2847 atomic64_set(&fs_info->free_chunk_space, 0); 2848 fs_info->tree_mod_log = RB_ROOT; 2849 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2850 btrfs_init_ref_verify(fs_info); 2851 2852 fs_info->thread_pool_size = min_t(unsigned long, 2853 num_online_cpus() + 2, 8); 2854 2855 INIT_LIST_HEAD(&fs_info->ordered_roots); 2856 spin_lock_init(&fs_info->ordered_root_lock); 2857 2858 btrfs_init_scrub(fs_info); 2859 btrfs_init_balance(fs_info); 2860 btrfs_init_async_reclaim_work(fs_info); 2861 btrfs_init_extent_map_shrinker_work(fs_info); 2862 2863 rwlock_init(&fs_info->block_group_cache_lock); 2864 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 2865 2866 btrfs_extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2867 IO_TREE_FS_EXCLUDED_EXTENTS); 2868 2869 mutex_init(&fs_info->ordered_operations_mutex); 2870 mutex_init(&fs_info->tree_log_mutex); 2871 mutex_init(&fs_info->chunk_mutex); 2872 mutex_init(&fs_info->transaction_kthread_mutex); 2873 mutex_init(&fs_info->cleaner_mutex); 2874 mutex_init(&fs_info->ro_block_group_mutex); 2875 init_rwsem(&fs_info->commit_root_sem); 2876 init_rwsem(&fs_info->cleanup_work_sem); 2877 init_rwsem(&fs_info->subvol_sem); 2878 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2879 2880 btrfs_init_dev_replace_locks(fs_info); 2881 btrfs_init_qgroup(fs_info); 2882 btrfs_discard_init(fs_info); 2883 2884 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2885 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2886 2887 init_waitqueue_head(&fs_info->transaction_throttle); 2888 init_waitqueue_head(&fs_info->transaction_wait); 2889 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2890 init_waitqueue_head(&fs_info->async_submit_wait); 2891 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2892 2893 /* Usable values until the real ones are cached from the superblock */ 2894 fs_info->nodesize = 4096; 2895 fs_info->sectorsize = 4096; 2896 fs_info->sectorsize_bits = ilog2(4096); 2897 fs_info->stripesize = 4096; 2898 2899 /* Default compress algorithm when user does -o compress */ 2900 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2901 2902 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 2903 2904 spin_lock_init(&fs_info->swapfile_pins_lock); 2905 fs_info->swapfile_pins = RB_ROOT; 2906 2907 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 2908 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 2909 } 2910 2911 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2912 { 2913 int ret; 2914 2915 fs_info->sb = sb; 2916 /* Temporary fixed values for block size until we read the superblock. */ 2917 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2918 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2919 2920 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 2921 if (ret) 2922 return ret; 2923 2924 ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL); 2925 if (ret) 2926 return ret; 2927 2928 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2929 if (ret) 2930 return ret; 2931 2932 ret = percpu_counter_init(&fs_info->stats_read_blocks, 0, GFP_KERNEL); 2933 if (ret) 2934 return ret; 2935 2936 fs_info->dirty_metadata_batch = PAGE_SIZE * 2937 (1 + ilog2(nr_cpu_ids)); 2938 2939 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2940 if (ret) 2941 return ret; 2942 2943 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2944 GFP_KERNEL); 2945 if (ret) 2946 return ret; 2947 2948 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2949 GFP_KERNEL); 2950 if (!fs_info->delayed_root) 2951 return -ENOMEM; 2952 btrfs_init_delayed_root(fs_info->delayed_root); 2953 2954 if (sb_rdonly(sb)) 2955 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2956 if (btrfs_test_opt(fs_info, IGNOREMETACSUMS)) 2957 set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state); 2958 2959 return btrfs_alloc_stripe_hash_table(fs_info); 2960 } 2961 2962 static int btrfs_uuid_rescan_kthread(void *data) 2963 { 2964 struct btrfs_fs_info *fs_info = data; 2965 int ret; 2966 2967 /* 2968 * 1st step is to iterate through the existing UUID tree and 2969 * to delete all entries that contain outdated data. 2970 * 2nd step is to add all missing entries to the UUID tree. 2971 */ 2972 ret = btrfs_uuid_tree_iterate(fs_info); 2973 if (ret < 0) { 2974 if (ret != -EINTR) 2975 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2976 ret); 2977 up(&fs_info->uuid_tree_rescan_sem); 2978 return ret; 2979 } 2980 return btrfs_uuid_scan_kthread(data); 2981 } 2982 2983 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2984 { 2985 struct task_struct *task; 2986 2987 down(&fs_info->uuid_tree_rescan_sem); 2988 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2989 if (IS_ERR(task)) { 2990 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2991 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2992 up(&fs_info->uuid_tree_rescan_sem); 2993 return PTR_ERR(task); 2994 } 2995 2996 return 0; 2997 } 2998 2999 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3000 { 3001 u64 root_objectid = 0; 3002 struct btrfs_root *gang[8]; 3003 int ret = 0; 3004 3005 while (1) { 3006 unsigned int found; 3007 3008 spin_lock(&fs_info->fs_roots_radix_lock); 3009 found = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3010 (void **)gang, root_objectid, 3011 ARRAY_SIZE(gang)); 3012 if (!found) { 3013 spin_unlock(&fs_info->fs_roots_radix_lock); 3014 break; 3015 } 3016 root_objectid = btrfs_root_id(gang[found - 1]) + 1; 3017 3018 for (int i = 0; i < found; i++) { 3019 /* Avoid to grab roots in dead_roots. */ 3020 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3021 gang[i] = NULL; 3022 continue; 3023 } 3024 /* Grab all the search result for later use. */ 3025 gang[i] = btrfs_grab_root(gang[i]); 3026 } 3027 spin_unlock(&fs_info->fs_roots_radix_lock); 3028 3029 for (int i = 0; i < found; i++) { 3030 if (!gang[i]) 3031 continue; 3032 root_objectid = btrfs_root_id(gang[i]); 3033 /* 3034 * Continue to release the remaining roots after the first 3035 * error without cleanup and preserve the first error 3036 * for the return. 3037 */ 3038 if (!ret) 3039 ret = btrfs_orphan_cleanup(gang[i]); 3040 btrfs_put_root(gang[i]); 3041 } 3042 if (ret) 3043 break; 3044 3045 root_objectid++; 3046 } 3047 return ret; 3048 } 3049 3050 /* 3051 * Mounting logic specific to read-write file systems. Shared by open_ctree 3052 * and btrfs_remount when remounting from read-only to read-write. 3053 */ 3054 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 3055 { 3056 int ret; 3057 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 3058 bool rebuild_free_space_tree = false; 3059 3060 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3061 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3062 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 3063 btrfs_warn(fs_info, 3064 "'clear_cache' option is ignored with extent tree v2"); 3065 else 3066 rebuild_free_space_tree = true; 3067 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3068 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3069 btrfs_warn(fs_info, "free space tree is invalid"); 3070 rebuild_free_space_tree = true; 3071 } 3072 3073 if (rebuild_free_space_tree) { 3074 btrfs_info(fs_info, "rebuilding free space tree"); 3075 ret = btrfs_rebuild_free_space_tree(fs_info); 3076 if (ret) { 3077 btrfs_warn(fs_info, 3078 "failed to rebuild free space tree: %d", ret); 3079 goto out; 3080 } 3081 } 3082 3083 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3084 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 3085 btrfs_info(fs_info, "disabling free space tree"); 3086 ret = btrfs_delete_free_space_tree(fs_info); 3087 if (ret) { 3088 btrfs_warn(fs_info, 3089 "failed to disable free space tree: %d", ret); 3090 goto out; 3091 } 3092 } 3093 3094 /* 3095 * btrfs_find_orphan_roots() is responsible for finding all the dead 3096 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3097 * them into the fs_info->fs_roots_radix tree. This must be done before 3098 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3099 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3100 * item before the root's tree is deleted - this means that if we unmount 3101 * or crash before the deletion completes, on the next mount we will not 3102 * delete what remains of the tree because the orphan item does not 3103 * exists anymore, which is what tells us we have a pending deletion. 3104 */ 3105 ret = btrfs_find_orphan_roots(fs_info); 3106 if (ret) 3107 goto out; 3108 3109 ret = btrfs_cleanup_fs_roots(fs_info); 3110 if (ret) 3111 goto out; 3112 3113 down_read(&fs_info->cleanup_work_sem); 3114 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3115 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3116 up_read(&fs_info->cleanup_work_sem); 3117 goto out; 3118 } 3119 up_read(&fs_info->cleanup_work_sem); 3120 3121 mutex_lock(&fs_info->cleaner_mutex); 3122 ret = btrfs_recover_relocation(fs_info); 3123 mutex_unlock(&fs_info->cleaner_mutex); 3124 if (ret < 0) { 3125 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3126 goto out; 3127 } 3128 3129 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3130 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3131 btrfs_info(fs_info, "creating free space tree"); 3132 ret = btrfs_create_free_space_tree(fs_info); 3133 if (ret) { 3134 btrfs_warn(fs_info, 3135 "failed to create free space tree: %d", ret); 3136 goto out; 3137 } 3138 } 3139 3140 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3141 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3142 if (ret) 3143 goto out; 3144 } 3145 3146 ret = btrfs_resume_balance_async(fs_info); 3147 if (ret) 3148 goto out; 3149 3150 ret = btrfs_resume_dev_replace_async(fs_info); 3151 if (ret) { 3152 btrfs_warn(fs_info, "failed to resume dev_replace"); 3153 goto out; 3154 } 3155 3156 btrfs_qgroup_rescan_resume(fs_info); 3157 3158 if (!fs_info->uuid_root) { 3159 btrfs_info(fs_info, "creating UUID tree"); 3160 ret = btrfs_create_uuid_tree(fs_info); 3161 if (ret) { 3162 btrfs_warn(fs_info, 3163 "failed to create the UUID tree %d", ret); 3164 goto out; 3165 } 3166 } 3167 3168 out: 3169 return ret; 3170 } 3171 3172 /* 3173 * Do various sanity and dependency checks of different features. 3174 * 3175 * @is_rw_mount: If the mount is read-write. 3176 * 3177 * This is the place for less strict checks (like for subpage or artificial 3178 * feature dependencies). 3179 * 3180 * For strict checks or possible corruption detection, see 3181 * btrfs_validate_super(). 3182 * 3183 * This should be called after btrfs_parse_options(), as some mount options 3184 * (space cache related) can modify on-disk format like free space tree and 3185 * screw up certain feature dependencies. 3186 */ 3187 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3188 { 3189 struct btrfs_super_block *disk_super = fs_info->super_copy; 3190 u64 incompat = btrfs_super_incompat_flags(disk_super); 3191 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3192 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3193 3194 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3195 btrfs_err(fs_info, 3196 "cannot mount because of unknown incompat features (0x%llx)", 3197 incompat); 3198 return -EINVAL; 3199 } 3200 3201 /* Runtime limitation for mixed block groups. */ 3202 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3203 (fs_info->sectorsize != fs_info->nodesize)) { 3204 btrfs_err(fs_info, 3205 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3206 fs_info->nodesize, fs_info->sectorsize); 3207 return -EINVAL; 3208 } 3209 3210 /* Mixed backref is an always-enabled feature. */ 3211 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3212 3213 /* Set compression related flags just in case. */ 3214 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3215 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3216 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3217 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3218 3219 /* 3220 * An ancient flag, which should really be marked deprecated. 3221 * Such runtime limitation doesn't really need a incompat flag. 3222 */ 3223 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3224 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3225 3226 if (compat_ro_unsupp && is_rw_mount) { 3227 btrfs_err(fs_info, 3228 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3229 compat_ro); 3230 return -EINVAL; 3231 } 3232 3233 /* 3234 * We have unsupported RO compat features, although RO mounted, we 3235 * should not cause any metadata writes, including log replay. 3236 * Or we could screw up whatever the new feature requires. 3237 */ 3238 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3239 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3240 btrfs_err(fs_info, 3241 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3242 compat_ro); 3243 return -EINVAL; 3244 } 3245 3246 /* 3247 * Artificial limitations for block group tree, to force 3248 * block-group-tree to rely on no-holes and free-space-tree. 3249 */ 3250 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3251 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3252 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3253 btrfs_err(fs_info, 3254 "block-group-tree feature requires no-holes and free-space-tree features"); 3255 return -EINVAL; 3256 } 3257 3258 /* 3259 * Subpage runtime limitation on v1 cache. 3260 * 3261 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3262 * we're already defaulting to v2 cache, no need to bother v1 as it's 3263 * going to be deprecated anyway. 3264 */ 3265 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3266 btrfs_warn(fs_info, 3267 "v1 space cache is not supported for page size %lu with sectorsize %u", 3268 PAGE_SIZE, fs_info->sectorsize); 3269 return -EINVAL; 3270 } 3271 3272 /* This can be called by remount, we need to protect the super block. */ 3273 spin_lock(&fs_info->super_lock); 3274 btrfs_set_super_incompat_flags(disk_super, incompat); 3275 spin_unlock(&fs_info->super_lock); 3276 3277 return 0; 3278 } 3279 3280 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices) 3281 { 3282 u32 sectorsize; 3283 u32 nodesize; 3284 u32 stripesize; 3285 u64 generation; 3286 u16 csum_type; 3287 struct btrfs_super_block *disk_super; 3288 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3289 struct btrfs_root *tree_root; 3290 struct btrfs_root *chunk_root; 3291 int ret; 3292 int level; 3293 3294 ret = init_mount_fs_info(fs_info, sb); 3295 if (ret) 3296 goto fail; 3297 3298 /* These need to be init'ed before we start creating inodes and such. */ 3299 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3300 GFP_KERNEL); 3301 fs_info->tree_root = tree_root; 3302 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3303 GFP_KERNEL); 3304 fs_info->chunk_root = chunk_root; 3305 if (!tree_root || !chunk_root) { 3306 ret = -ENOMEM; 3307 goto fail; 3308 } 3309 3310 ret = btrfs_init_btree_inode(sb); 3311 if (ret) 3312 goto fail; 3313 3314 invalidate_bdev(fs_devices->latest_dev->bdev); 3315 3316 /* 3317 * Read super block and check the signature bytes only 3318 */ 3319 disk_super = btrfs_read_disk_super(fs_devices->latest_dev->bdev, 0, false); 3320 if (IS_ERR(disk_super)) { 3321 ret = PTR_ERR(disk_super); 3322 goto fail_alloc; 3323 } 3324 3325 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid); 3326 /* 3327 * Verify the type first, if that or the checksum value are 3328 * corrupted, we'll find out 3329 */ 3330 csum_type = btrfs_super_csum_type(disk_super); 3331 if (!btrfs_supported_super_csum(csum_type)) { 3332 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3333 csum_type); 3334 ret = -EINVAL; 3335 btrfs_release_disk_super(disk_super); 3336 goto fail_alloc; 3337 } 3338 3339 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3340 3341 ret = btrfs_init_csum_hash(fs_info, csum_type); 3342 if (ret) { 3343 btrfs_release_disk_super(disk_super); 3344 goto fail_alloc; 3345 } 3346 3347 /* 3348 * We want to check superblock checksum, the type is stored inside. 3349 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3350 */ 3351 if (btrfs_check_super_csum(fs_info, disk_super)) { 3352 btrfs_err(fs_info, "superblock checksum mismatch"); 3353 ret = -EINVAL; 3354 btrfs_release_disk_super(disk_super); 3355 goto fail_alloc; 3356 } 3357 3358 /* 3359 * super_copy is zeroed at allocation time and we never touch the 3360 * following bytes up to INFO_SIZE, the checksum is calculated from 3361 * the whole block of INFO_SIZE 3362 */ 3363 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3364 btrfs_release_disk_super(disk_super); 3365 3366 disk_super = fs_info->super_copy; 3367 3368 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3369 sizeof(*fs_info->super_for_commit)); 3370 3371 ret = btrfs_validate_mount_super(fs_info); 3372 if (ret) { 3373 btrfs_err(fs_info, "superblock contains fatal errors"); 3374 ret = -EINVAL; 3375 goto fail_alloc; 3376 } 3377 3378 if (!btrfs_super_root(disk_super)) { 3379 btrfs_err(fs_info, "invalid superblock tree root bytenr"); 3380 ret = -EINVAL; 3381 goto fail_alloc; 3382 } 3383 3384 /* check FS state, whether FS is broken. */ 3385 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3386 WRITE_ONCE(fs_info->fs_error, -EUCLEAN); 3387 3388 /* Set up fs_info before parsing mount options */ 3389 nodesize = btrfs_super_nodesize(disk_super); 3390 sectorsize = btrfs_super_sectorsize(disk_super); 3391 stripesize = sectorsize; 3392 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3393 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3394 3395 fs_info->nodesize = nodesize; 3396 fs_info->nodesize_bits = ilog2(nodesize); 3397 fs_info->sectorsize = sectorsize; 3398 fs_info->sectorsize_bits = ilog2(sectorsize); 3399 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3400 fs_info->stripesize = stripesize; 3401 fs_info->fs_devices->fs_info = fs_info; 3402 3403 /* 3404 * Handle the space caching options appropriately now that we have the 3405 * super block loaded and validated. 3406 */ 3407 btrfs_set_free_space_cache_settings(fs_info); 3408 3409 if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) { 3410 ret = -EINVAL; 3411 goto fail_alloc; 3412 } 3413 3414 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3415 if (ret < 0) 3416 goto fail_alloc; 3417 3418 /* 3419 * At this point our mount options are validated, if we set ->max_inline 3420 * to something non-standard make sure we truncate it to sectorsize. 3421 */ 3422 fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize); 3423 3424 ret = btrfs_init_workqueues(fs_info); 3425 if (ret) 3426 goto fail_sb_buffer; 3427 3428 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3429 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3430 3431 /* Update the values for the current filesystem. */ 3432 sb->s_blocksize = sectorsize; 3433 sb->s_blocksize_bits = blksize_bits(sectorsize); 3434 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3435 3436 mutex_lock(&fs_info->chunk_mutex); 3437 ret = btrfs_read_sys_array(fs_info); 3438 mutex_unlock(&fs_info->chunk_mutex); 3439 if (ret) { 3440 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3441 goto fail_sb_buffer; 3442 } 3443 3444 generation = btrfs_super_chunk_root_generation(disk_super); 3445 level = btrfs_super_chunk_root_level(disk_super); 3446 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3447 generation, level); 3448 if (ret) { 3449 btrfs_err(fs_info, "failed to read chunk root"); 3450 goto fail_tree_roots; 3451 } 3452 3453 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3454 offsetof(struct btrfs_header, chunk_tree_uuid), 3455 BTRFS_UUID_SIZE); 3456 3457 ret = btrfs_read_chunk_tree(fs_info); 3458 if (ret) { 3459 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3460 goto fail_tree_roots; 3461 } 3462 3463 /* 3464 * At this point we know all the devices that make this filesystem, 3465 * including the seed devices but we don't know yet if the replace 3466 * target is required. So free devices that are not part of this 3467 * filesystem but skip the replace target device which is checked 3468 * below in btrfs_init_dev_replace(). 3469 */ 3470 btrfs_free_extra_devids(fs_devices); 3471 if (!fs_devices->latest_dev->bdev) { 3472 btrfs_err(fs_info, "failed to read devices"); 3473 ret = -EIO; 3474 goto fail_tree_roots; 3475 } 3476 3477 ret = init_tree_roots(fs_info); 3478 if (ret) 3479 goto fail_tree_roots; 3480 3481 /* 3482 * Get zone type information of zoned block devices. This will also 3483 * handle emulation of a zoned filesystem if a regular device has the 3484 * zoned incompat feature flag set. 3485 */ 3486 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3487 if (ret) { 3488 btrfs_err(fs_info, 3489 "zoned: failed to read device zone info: %d", ret); 3490 goto fail_block_groups; 3491 } 3492 3493 /* 3494 * If we have a uuid root and we're not being told to rescan we need to 3495 * check the generation here so we can set the 3496 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3497 * transaction during a balance or the log replay without updating the 3498 * uuid generation, and then if we crash we would rescan the uuid tree, 3499 * even though it was perfectly fine. 3500 */ 3501 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3502 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3503 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3504 3505 ret = btrfs_verify_dev_extents(fs_info); 3506 if (ret) { 3507 btrfs_err(fs_info, 3508 "failed to verify dev extents against chunks: %d", 3509 ret); 3510 goto fail_block_groups; 3511 } 3512 ret = btrfs_recover_balance(fs_info); 3513 if (ret) { 3514 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3515 goto fail_block_groups; 3516 } 3517 3518 ret = btrfs_init_dev_stats(fs_info); 3519 if (ret) { 3520 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3521 goto fail_block_groups; 3522 } 3523 3524 ret = btrfs_init_dev_replace(fs_info); 3525 if (ret) { 3526 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3527 goto fail_block_groups; 3528 } 3529 3530 ret = btrfs_check_zoned_mode(fs_info); 3531 if (ret) { 3532 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3533 ret); 3534 goto fail_block_groups; 3535 } 3536 3537 ret = btrfs_sysfs_add_fsid(fs_devices); 3538 if (ret) { 3539 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3540 ret); 3541 goto fail_block_groups; 3542 } 3543 3544 ret = btrfs_sysfs_add_mounted(fs_info); 3545 if (ret) { 3546 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3547 goto fail_fsdev_sysfs; 3548 } 3549 3550 ret = btrfs_init_space_info(fs_info); 3551 if (ret) { 3552 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3553 goto fail_sysfs; 3554 } 3555 3556 ret = btrfs_read_block_groups(fs_info); 3557 if (ret) { 3558 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3559 goto fail_sysfs; 3560 } 3561 3562 btrfs_zoned_reserve_data_reloc_bg(fs_info); 3563 btrfs_free_zone_cache(fs_info); 3564 3565 btrfs_check_active_zone_reservation(fs_info); 3566 3567 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3568 !btrfs_check_rw_degradable(fs_info, NULL)) { 3569 btrfs_warn(fs_info, 3570 "writable mount is not allowed due to too many missing devices"); 3571 ret = -EINVAL; 3572 goto fail_sysfs; 3573 } 3574 3575 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3576 "btrfs-cleaner"); 3577 if (IS_ERR(fs_info->cleaner_kthread)) { 3578 ret = PTR_ERR(fs_info->cleaner_kthread); 3579 goto fail_sysfs; 3580 } 3581 3582 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3583 tree_root, 3584 "btrfs-transaction"); 3585 if (IS_ERR(fs_info->transaction_kthread)) { 3586 ret = PTR_ERR(fs_info->transaction_kthread); 3587 goto fail_cleaner; 3588 } 3589 3590 ret = btrfs_read_qgroup_config(fs_info); 3591 if (ret) 3592 goto fail_trans_kthread; 3593 3594 if (btrfs_build_ref_tree(fs_info)) 3595 btrfs_err(fs_info, "couldn't build ref tree"); 3596 3597 /* do not make disk changes in broken FS or nologreplay is given */ 3598 if (btrfs_super_log_root(disk_super) != 0 && 3599 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3600 btrfs_info(fs_info, "start tree-log replay"); 3601 ret = btrfs_replay_log(fs_info, fs_devices); 3602 if (ret) 3603 goto fail_qgroup; 3604 } 3605 3606 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3607 if (IS_ERR(fs_info->fs_root)) { 3608 ret = PTR_ERR(fs_info->fs_root); 3609 btrfs_warn(fs_info, "failed to read fs tree: %d", ret); 3610 fs_info->fs_root = NULL; 3611 goto fail_qgroup; 3612 } 3613 3614 if (sb_rdonly(sb)) 3615 return 0; 3616 3617 ret = btrfs_start_pre_rw_mount(fs_info); 3618 if (ret) { 3619 close_ctree(fs_info); 3620 return ret; 3621 } 3622 btrfs_discard_resume(fs_info); 3623 3624 if (fs_info->uuid_root && 3625 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3626 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3627 btrfs_info(fs_info, "checking UUID tree"); 3628 ret = btrfs_check_uuid_tree(fs_info); 3629 if (ret) { 3630 btrfs_warn(fs_info, 3631 "failed to check the UUID tree: %d", ret); 3632 close_ctree(fs_info); 3633 return ret; 3634 } 3635 } 3636 3637 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3638 3639 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3640 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3641 wake_up_process(fs_info->cleaner_kthread); 3642 3643 return 0; 3644 3645 fail_qgroup: 3646 btrfs_free_qgroup_config(fs_info); 3647 fail_trans_kthread: 3648 kthread_stop(fs_info->transaction_kthread); 3649 btrfs_cleanup_transaction(fs_info); 3650 btrfs_free_fs_roots(fs_info); 3651 fail_cleaner: 3652 kthread_stop(fs_info->cleaner_kthread); 3653 3654 /* 3655 * make sure we're done with the btree inode before we stop our 3656 * kthreads 3657 */ 3658 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3659 3660 fail_sysfs: 3661 btrfs_sysfs_remove_mounted(fs_info); 3662 3663 fail_fsdev_sysfs: 3664 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3665 3666 fail_block_groups: 3667 btrfs_put_block_group_cache(fs_info); 3668 3669 fail_tree_roots: 3670 if (fs_info->data_reloc_root) 3671 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3672 free_root_pointers(fs_info, true); 3673 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3674 3675 fail_sb_buffer: 3676 btrfs_stop_all_workers(fs_info); 3677 btrfs_free_block_groups(fs_info); 3678 fail_alloc: 3679 btrfs_mapping_tree_free(fs_info); 3680 3681 iput(fs_info->btree_inode); 3682 fail: 3683 ASSERT(ret < 0); 3684 return ret; 3685 } 3686 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3687 3688 static void btrfs_end_super_write(struct bio *bio) 3689 { 3690 struct btrfs_device *device = bio->bi_private; 3691 struct folio_iter fi; 3692 3693 bio_for_each_folio_all(fi, bio) { 3694 if (bio->bi_status) { 3695 btrfs_warn_rl(device->fs_info, 3696 "lost super block write due to IO error on %s (%d)", 3697 btrfs_dev_name(device), 3698 blk_status_to_errno(bio->bi_status)); 3699 btrfs_dev_stat_inc_and_print(device, 3700 BTRFS_DEV_STAT_WRITE_ERRS); 3701 /* Ensure failure if the primary sb fails. */ 3702 if (bio->bi_opf & REQ_FUA) 3703 atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR, 3704 &device->sb_write_errors); 3705 else 3706 atomic_inc(&device->sb_write_errors); 3707 } 3708 folio_unlock(fi.folio); 3709 folio_put(fi.folio); 3710 } 3711 3712 bio_put(bio); 3713 } 3714 3715 /* 3716 * Write superblock @sb to the @device. Do not wait for completion, all the 3717 * folios we use for writing are locked. 3718 * 3719 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3720 * the expected device size at commit time. Note that max_mirrors must be 3721 * same for write and wait phases. 3722 * 3723 * Return number of errors when folio is not found or submission fails. 3724 */ 3725 static int write_dev_supers(struct btrfs_device *device, 3726 struct btrfs_super_block *sb, int max_mirrors) 3727 { 3728 struct btrfs_fs_info *fs_info = device->fs_info; 3729 struct address_space *mapping = device->bdev->bd_mapping; 3730 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3731 int i; 3732 int ret; 3733 u64 bytenr, bytenr_orig; 3734 3735 atomic_set(&device->sb_write_errors, 0); 3736 3737 if (max_mirrors == 0) 3738 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3739 3740 shash->tfm = fs_info->csum_shash; 3741 3742 for (i = 0; i < max_mirrors; i++) { 3743 struct folio *folio; 3744 struct bio *bio; 3745 struct btrfs_super_block *disk_super; 3746 size_t offset; 3747 3748 bytenr_orig = btrfs_sb_offset(i); 3749 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3750 if (ret == -ENOENT) { 3751 continue; 3752 } else if (ret < 0) { 3753 btrfs_err(device->fs_info, 3754 "couldn't get super block location for mirror %d error %d", 3755 i, ret); 3756 atomic_inc(&device->sb_write_errors); 3757 continue; 3758 } 3759 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3760 device->commit_total_bytes) 3761 break; 3762 3763 btrfs_set_super_bytenr(sb, bytenr_orig); 3764 3765 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3766 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3767 sb->csum); 3768 3769 folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT, 3770 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3771 GFP_NOFS); 3772 if (IS_ERR(folio)) { 3773 btrfs_err(device->fs_info, 3774 "couldn't get super block page for bytenr %llu error %ld", 3775 bytenr, PTR_ERR(folio)); 3776 atomic_inc(&device->sb_write_errors); 3777 continue; 3778 } 3779 3780 offset = offset_in_folio(folio, bytenr); 3781 disk_super = folio_address(folio) + offset; 3782 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3783 3784 /* 3785 * Directly use bios here instead of relying on the page cache 3786 * to do I/O, so we don't lose the ability to do integrity 3787 * checking. 3788 */ 3789 bio = bio_alloc(device->bdev, 1, 3790 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 3791 GFP_NOFS); 3792 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3793 bio->bi_private = device; 3794 bio->bi_end_io = btrfs_end_super_write; 3795 bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset); 3796 3797 /* 3798 * We FUA only the first super block. The others we allow to 3799 * go down lazy and there's a short window where the on-disk 3800 * copies might still contain the older version. 3801 */ 3802 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3803 bio->bi_opf |= REQ_FUA; 3804 submit_bio(bio); 3805 3806 if (btrfs_advance_sb_log(device, i)) 3807 atomic_inc(&device->sb_write_errors); 3808 } 3809 return atomic_read(&device->sb_write_errors) < i ? 0 : -1; 3810 } 3811 3812 /* 3813 * Wait for write completion of superblocks done by write_dev_supers, 3814 * @max_mirrors same for write and wait phases. 3815 * 3816 * Return -1 if primary super block write failed or when there were no super block 3817 * copies written. Otherwise 0. 3818 */ 3819 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3820 { 3821 int i; 3822 int errors = 0; 3823 bool primary_failed = false; 3824 int ret; 3825 u64 bytenr; 3826 3827 if (max_mirrors == 0) 3828 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3829 3830 for (i = 0; i < max_mirrors; i++) { 3831 struct folio *folio; 3832 3833 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 3834 if (ret == -ENOENT) { 3835 break; 3836 } else if (ret < 0) { 3837 errors++; 3838 if (i == 0) 3839 primary_failed = true; 3840 continue; 3841 } 3842 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3843 device->commit_total_bytes) 3844 break; 3845 3846 folio = filemap_get_folio(device->bdev->bd_mapping, 3847 bytenr >> PAGE_SHIFT); 3848 /* If the folio has been removed, then we know it completed. */ 3849 if (IS_ERR(folio)) 3850 continue; 3851 3852 /* Folio will be unlocked once the write completes. */ 3853 folio_wait_locked(folio); 3854 folio_put(folio); 3855 } 3856 3857 errors += atomic_read(&device->sb_write_errors); 3858 if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR) 3859 primary_failed = true; 3860 if (primary_failed) { 3861 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3862 device->devid); 3863 return -1; 3864 } 3865 3866 return errors < i ? 0 : -1; 3867 } 3868 3869 /* 3870 * endio for the write_dev_flush, this will wake anyone waiting 3871 * for the barrier when it is done 3872 */ 3873 static void btrfs_end_empty_barrier(struct bio *bio) 3874 { 3875 bio_uninit(bio); 3876 complete(bio->bi_private); 3877 } 3878 3879 /* 3880 * Submit a flush request to the device if it supports it. Error handling is 3881 * done in the waiting counterpart. 3882 */ 3883 static void write_dev_flush(struct btrfs_device *device) 3884 { 3885 struct bio *bio = &device->flush_bio; 3886 3887 device->last_flush_error = BLK_STS_OK; 3888 3889 bio_init(bio, device->bdev, NULL, 0, 3890 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 3891 bio->bi_end_io = btrfs_end_empty_barrier; 3892 init_completion(&device->flush_wait); 3893 bio->bi_private = &device->flush_wait; 3894 submit_bio(bio); 3895 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3896 } 3897 3898 /* 3899 * If the flush bio has been submitted by write_dev_flush, wait for it. 3900 * Return true for any error, and false otherwise. 3901 */ 3902 static bool wait_dev_flush(struct btrfs_device *device) 3903 { 3904 struct bio *bio = &device->flush_bio; 3905 3906 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3907 return false; 3908 3909 wait_for_completion_io(&device->flush_wait); 3910 3911 if (bio->bi_status) { 3912 device->last_flush_error = bio->bi_status; 3913 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); 3914 return true; 3915 } 3916 3917 return false; 3918 } 3919 3920 /* 3921 * send an empty flush down to each device in parallel, 3922 * then wait for them 3923 */ 3924 static int barrier_all_devices(struct btrfs_fs_info *info) 3925 { 3926 struct list_head *head; 3927 struct btrfs_device *dev; 3928 int errors_wait = 0; 3929 3930 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3931 /* send down all the barriers */ 3932 head = &info->fs_devices->devices; 3933 list_for_each_entry(dev, head, dev_list) { 3934 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3935 continue; 3936 if (!dev->bdev) 3937 continue; 3938 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3939 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3940 continue; 3941 3942 write_dev_flush(dev); 3943 } 3944 3945 /* wait for all the barriers */ 3946 list_for_each_entry(dev, head, dev_list) { 3947 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3948 continue; 3949 if (!dev->bdev) { 3950 errors_wait++; 3951 continue; 3952 } 3953 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3954 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3955 continue; 3956 3957 if (wait_dev_flush(dev)) 3958 errors_wait++; 3959 } 3960 3961 /* 3962 * Checks last_flush_error of disks in order to determine the device 3963 * state. 3964 */ 3965 if (errors_wait && !btrfs_check_rw_degradable(info, NULL)) 3966 return -EIO; 3967 3968 return 0; 3969 } 3970 3971 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3972 { 3973 int raid_type; 3974 int min_tolerated = INT_MAX; 3975 3976 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3977 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3978 min_tolerated = min_t(int, min_tolerated, 3979 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3980 tolerated_failures); 3981 3982 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3983 if (raid_type == BTRFS_RAID_SINGLE) 3984 continue; 3985 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3986 continue; 3987 min_tolerated = min_t(int, min_tolerated, 3988 btrfs_raid_array[raid_type]. 3989 tolerated_failures); 3990 } 3991 3992 if (min_tolerated == INT_MAX) { 3993 btrfs_warn(NULL, "unknown raid flag: %llu", flags); 3994 min_tolerated = 0; 3995 } 3996 3997 return min_tolerated; 3998 } 3999 4000 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4001 { 4002 struct list_head *head; 4003 struct btrfs_device *dev; 4004 struct btrfs_super_block *sb; 4005 struct btrfs_dev_item *dev_item; 4006 int ret; 4007 int do_barriers; 4008 int max_errors; 4009 int total_errors = 0; 4010 u64 flags; 4011 4012 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4013 4014 /* 4015 * max_mirrors == 0 indicates we're from commit_transaction, 4016 * not from fsync where the tree roots in fs_info have not 4017 * been consistent on disk. 4018 */ 4019 if (max_mirrors == 0) 4020 backup_super_roots(fs_info); 4021 4022 sb = fs_info->super_for_commit; 4023 dev_item = &sb->dev_item; 4024 4025 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4026 head = &fs_info->fs_devices->devices; 4027 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4028 4029 if (do_barriers) { 4030 ret = barrier_all_devices(fs_info); 4031 if (ret) { 4032 mutex_unlock( 4033 &fs_info->fs_devices->device_list_mutex); 4034 btrfs_handle_fs_error(fs_info, ret, 4035 "errors while submitting device barriers."); 4036 return ret; 4037 } 4038 } 4039 4040 list_for_each_entry(dev, head, dev_list) { 4041 if (!dev->bdev) { 4042 total_errors++; 4043 continue; 4044 } 4045 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4046 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4047 continue; 4048 4049 btrfs_set_stack_device_generation(dev_item, 0); 4050 btrfs_set_stack_device_type(dev_item, dev->type); 4051 btrfs_set_stack_device_id(dev_item, dev->devid); 4052 btrfs_set_stack_device_total_bytes(dev_item, 4053 dev->commit_total_bytes); 4054 btrfs_set_stack_device_bytes_used(dev_item, 4055 dev->commit_bytes_used); 4056 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4057 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4058 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4059 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4060 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4061 BTRFS_FSID_SIZE); 4062 4063 flags = btrfs_super_flags(sb); 4064 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4065 4066 ret = btrfs_validate_write_super(fs_info, sb); 4067 if (ret < 0) { 4068 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4069 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4070 "unexpected superblock corruption detected"); 4071 return -EUCLEAN; 4072 } 4073 4074 ret = write_dev_supers(dev, sb, max_mirrors); 4075 if (ret) 4076 total_errors++; 4077 } 4078 if (total_errors > max_errors) { 4079 btrfs_err(fs_info, "%d errors while writing supers", 4080 total_errors); 4081 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4082 4083 /* FUA is masked off if unsupported and can't be the reason */ 4084 btrfs_handle_fs_error(fs_info, -EIO, 4085 "%d errors while writing supers", 4086 total_errors); 4087 return -EIO; 4088 } 4089 4090 total_errors = 0; 4091 list_for_each_entry(dev, head, dev_list) { 4092 if (!dev->bdev) 4093 continue; 4094 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4095 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4096 continue; 4097 4098 ret = wait_dev_supers(dev, max_mirrors); 4099 if (ret) 4100 total_errors++; 4101 } 4102 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4103 if (total_errors > max_errors) { 4104 btrfs_handle_fs_error(fs_info, -EIO, 4105 "%d errors while writing supers", 4106 total_errors); 4107 return -EIO; 4108 } 4109 return 0; 4110 } 4111 4112 /* Drop a fs root from the radix tree and free it. */ 4113 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4114 struct btrfs_root *root) 4115 { 4116 bool drop_ref = false; 4117 4118 spin_lock(&fs_info->fs_roots_radix_lock); 4119 radix_tree_delete(&fs_info->fs_roots_radix, 4120 (unsigned long)btrfs_root_id(root)); 4121 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4122 drop_ref = true; 4123 spin_unlock(&fs_info->fs_roots_radix_lock); 4124 4125 if (BTRFS_FS_ERROR(fs_info)) { 4126 ASSERT(root->log_root == NULL); 4127 if (root->reloc_root) { 4128 btrfs_put_root(root->reloc_root); 4129 root->reloc_root = NULL; 4130 } 4131 } 4132 4133 if (drop_ref) 4134 btrfs_put_root(root); 4135 } 4136 4137 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4138 { 4139 mutex_lock(&fs_info->cleaner_mutex); 4140 btrfs_run_delayed_iputs(fs_info); 4141 mutex_unlock(&fs_info->cleaner_mutex); 4142 wake_up_process(fs_info->cleaner_kthread); 4143 4144 /* wait until ongoing cleanup work done */ 4145 down_write(&fs_info->cleanup_work_sem); 4146 up_write(&fs_info->cleanup_work_sem); 4147 4148 return btrfs_commit_current_transaction(fs_info->tree_root); 4149 } 4150 4151 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4152 { 4153 struct btrfs_transaction *trans; 4154 struct btrfs_transaction *tmp; 4155 bool found = false; 4156 4157 /* 4158 * This function is only called at the very end of close_ctree(), 4159 * thus no other running transaction, no need to take trans_lock. 4160 */ 4161 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4162 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4163 struct extent_state *cached = NULL; 4164 u64 dirty_bytes = 0; 4165 u64 cur = 0; 4166 u64 found_start; 4167 u64 found_end; 4168 4169 found = true; 4170 while (btrfs_find_first_extent_bit(&trans->dirty_pages, cur, 4171 &found_start, &found_end, 4172 EXTENT_DIRTY, &cached)) { 4173 dirty_bytes += found_end + 1 - found_start; 4174 cur = found_end + 1; 4175 } 4176 btrfs_warn(fs_info, 4177 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4178 trans->transid, dirty_bytes); 4179 btrfs_cleanup_one_transaction(trans); 4180 4181 if (trans == fs_info->running_transaction) 4182 fs_info->running_transaction = NULL; 4183 list_del_init(&trans->list); 4184 4185 btrfs_put_transaction(trans); 4186 trace_btrfs_transaction_commit(fs_info); 4187 } 4188 ASSERT(!found); 4189 } 4190 4191 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4192 { 4193 int ret; 4194 4195 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4196 4197 /* 4198 * If we had UNFINISHED_DROPS we could still be processing them, so 4199 * clear that bit and wake up relocation so it can stop. 4200 * We must do this before stopping the block group reclaim task, because 4201 * at btrfs_relocate_block_group() we wait for this bit, and after the 4202 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4203 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4204 * return 1. 4205 */ 4206 btrfs_wake_unfinished_drop(fs_info); 4207 4208 /* 4209 * We may have the reclaim task running and relocating a data block group, 4210 * in which case it may create delayed iputs. So stop it before we park 4211 * the cleaner kthread otherwise we can get new delayed iputs after 4212 * parking the cleaner, and that can make the async reclaim task to hang 4213 * if it's waiting for delayed iputs to complete, since the cleaner is 4214 * parked and can not run delayed iputs - this will make us hang when 4215 * trying to stop the async reclaim task. 4216 */ 4217 cancel_work_sync(&fs_info->reclaim_bgs_work); 4218 /* 4219 * We don't want the cleaner to start new transactions, add more delayed 4220 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4221 * because that frees the task_struct, and the transaction kthread might 4222 * still try to wake up the cleaner. 4223 */ 4224 kthread_park(fs_info->cleaner_kthread); 4225 4226 /* wait for the qgroup rescan worker to stop */ 4227 btrfs_qgroup_wait_for_completion(fs_info, false); 4228 4229 /* wait for the uuid_scan task to finish */ 4230 down(&fs_info->uuid_tree_rescan_sem); 4231 /* avoid complains from lockdep et al., set sem back to initial state */ 4232 up(&fs_info->uuid_tree_rescan_sem); 4233 4234 /* pause restriper - we want to resume on mount */ 4235 btrfs_pause_balance(fs_info); 4236 4237 btrfs_dev_replace_suspend_for_unmount(fs_info); 4238 4239 btrfs_scrub_cancel(fs_info); 4240 4241 /* wait for any defraggers to finish */ 4242 wait_event(fs_info->transaction_wait, 4243 (atomic_read(&fs_info->defrag_running) == 0)); 4244 4245 /* clear out the rbtree of defraggable inodes */ 4246 btrfs_cleanup_defrag_inodes(fs_info); 4247 4248 /* 4249 * Handle the error fs first, as it will flush and wait for all ordered 4250 * extents. This will generate delayed iputs, thus we want to handle 4251 * it first. 4252 */ 4253 if (unlikely(BTRFS_FS_ERROR(fs_info))) 4254 btrfs_error_commit_super(fs_info); 4255 4256 /* 4257 * Wait for any fixup workers to complete. 4258 * If we don't wait for them here and they are still running by the time 4259 * we call kthread_stop() against the cleaner kthread further below, we 4260 * get an use-after-free on the cleaner because the fixup worker adds an 4261 * inode to the list of delayed iputs and then attempts to wakeup the 4262 * cleaner kthread, which was already stopped and destroyed. We parked 4263 * already the cleaner, but below we run all pending delayed iputs. 4264 */ 4265 btrfs_flush_workqueue(fs_info->fixup_workers); 4266 /* 4267 * Similar case here, we have to wait for delalloc workers before we 4268 * proceed below and stop the cleaner kthread, otherwise we trigger a 4269 * use-after-tree on the cleaner kthread task_struct when a delalloc 4270 * worker running submit_compressed_extents() adds a delayed iput, which 4271 * does a wake up on the cleaner kthread, which was already freed below 4272 * when we call kthread_stop(). 4273 */ 4274 btrfs_flush_workqueue(fs_info->delalloc_workers); 4275 4276 /* 4277 * We can have ordered extents getting their last reference dropped from 4278 * the fs_info->workers queue because for async writes for data bios we 4279 * queue a work for that queue, at btrfs_wq_submit_bio(), that runs 4280 * run_one_async_done() which calls btrfs_bio_end_io() in case the bio 4281 * has an error, and that later function can do the final 4282 * btrfs_put_ordered_extent() on the ordered extent attached to the bio, 4283 * which adds a delayed iput for the inode. So we must flush the queue 4284 * so that we don't have delayed iputs after committing the current 4285 * transaction below and stopping the cleaner and transaction kthreads. 4286 */ 4287 btrfs_flush_workqueue(fs_info->workers); 4288 4289 /* 4290 * When finishing a compressed write bio we schedule a work queue item 4291 * to finish an ordered extent - btrfs_finish_compressed_write_work() 4292 * calls btrfs_finish_ordered_extent() which in turns does a call to 4293 * btrfs_queue_ordered_fn(), and that queues the ordered extent 4294 * completion either in the endio_write_workers work queue or in the 4295 * fs_info->endio_freespace_worker work queue. We flush those queues 4296 * below, so before we flush them we must flush this queue for the 4297 * workers of compressed writes. 4298 */ 4299 flush_workqueue(fs_info->compressed_write_workers); 4300 4301 /* 4302 * After we parked the cleaner kthread, ordered extents may have 4303 * completed and created new delayed iputs. If one of the async reclaim 4304 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4305 * can hang forever trying to stop it, because if a delayed iput is 4306 * added after it ran btrfs_run_delayed_iputs() and before it called 4307 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4308 * no one else to run iputs. 4309 * 4310 * So wait for all ongoing ordered extents to complete and then run 4311 * delayed iputs. This works because once we reach this point no one 4312 * can create new ordered extents, but delayed iputs can still be added 4313 * by a reclaim worker (see comments further below). 4314 * 4315 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4316 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4317 * but the delayed iput for the respective inode is made only when doing 4318 * the final btrfs_put_ordered_extent() (which must happen at 4319 * btrfs_finish_ordered_io() when we are unmounting). 4320 */ 4321 btrfs_flush_workqueue(fs_info->endio_write_workers); 4322 /* Ordered extents for free space inodes. */ 4323 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4324 /* 4325 * Run delayed iputs in case an async reclaim worker is waiting for them 4326 * to be run as mentioned above. 4327 */ 4328 btrfs_run_delayed_iputs(fs_info); 4329 4330 cancel_work_sync(&fs_info->async_reclaim_work); 4331 cancel_work_sync(&fs_info->async_data_reclaim_work); 4332 cancel_work_sync(&fs_info->preempt_reclaim_work); 4333 cancel_work_sync(&fs_info->em_shrinker_work); 4334 4335 /* 4336 * Run delayed iputs again because an async reclaim worker may have 4337 * added new ones if it was flushing delalloc: 4338 * 4339 * shrink_delalloc() -> btrfs_start_delalloc_roots() -> 4340 * start_delalloc_inodes() -> btrfs_add_delayed_iput() 4341 */ 4342 btrfs_run_delayed_iputs(fs_info); 4343 4344 /* There should be no more workload to generate new delayed iputs. */ 4345 set_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state); 4346 4347 /* Cancel or finish ongoing discard work */ 4348 btrfs_discard_cleanup(fs_info); 4349 4350 if (!sb_rdonly(fs_info->sb)) { 4351 /* 4352 * The cleaner kthread is stopped, so do one final pass over 4353 * unused block groups. 4354 */ 4355 btrfs_delete_unused_bgs(fs_info); 4356 4357 /* 4358 * There might be existing delayed inode workers still running 4359 * and holding an empty delayed inode item. We must wait for 4360 * them to complete first because they can create a transaction. 4361 * This happens when someone calls btrfs_balance_delayed_items() 4362 * and then a transaction commit runs the same delayed nodes 4363 * before any delayed worker has done something with the nodes. 4364 * We must wait for any worker here and not at transaction 4365 * commit time since that could cause a deadlock. 4366 * This is a very rare case. 4367 */ 4368 btrfs_flush_workqueue(fs_info->delayed_workers); 4369 4370 ret = btrfs_commit_super(fs_info); 4371 if (ret) 4372 btrfs_err(fs_info, "commit super ret %d", ret); 4373 } 4374 4375 kthread_stop(fs_info->transaction_kthread); 4376 kthread_stop(fs_info->cleaner_kthread); 4377 4378 ASSERT(list_empty(&fs_info->delayed_iputs)); 4379 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4380 4381 if (btrfs_check_quota_leak(fs_info)) { 4382 DEBUG_WARN("qgroup reserved space leaked"); 4383 btrfs_err(fs_info, "qgroup reserved space leaked"); 4384 } 4385 4386 btrfs_free_qgroup_config(fs_info); 4387 ASSERT(list_empty(&fs_info->delalloc_roots)); 4388 4389 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4390 btrfs_info(fs_info, "at unmount delalloc count %lld", 4391 percpu_counter_sum(&fs_info->delalloc_bytes)); 4392 } 4393 4394 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4395 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4396 percpu_counter_sum(&fs_info->ordered_bytes)); 4397 4398 btrfs_sysfs_remove_mounted(fs_info); 4399 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4400 4401 btrfs_put_block_group_cache(fs_info); 4402 4403 /* 4404 * we must make sure there is not any read request to 4405 * submit after we stopping all workers. 4406 */ 4407 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4408 btrfs_stop_all_workers(fs_info); 4409 4410 /* We shouldn't have any transaction open at this point */ 4411 warn_about_uncommitted_trans(fs_info); 4412 4413 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4414 free_root_pointers(fs_info, true); 4415 btrfs_free_fs_roots(fs_info); 4416 4417 /* 4418 * We must free the block groups after dropping the fs_roots as we could 4419 * have had an IO error and have left over tree log blocks that aren't 4420 * cleaned up until the fs roots are freed. This makes the block group 4421 * accounting appear to be wrong because there's pending reserved bytes, 4422 * so make sure we do the block group cleanup afterwards. 4423 */ 4424 btrfs_free_block_groups(fs_info); 4425 4426 iput(fs_info->btree_inode); 4427 4428 btrfs_mapping_tree_free(fs_info); 4429 } 4430 4431 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans, 4432 struct extent_buffer *buf) 4433 { 4434 struct btrfs_fs_info *fs_info = buf->fs_info; 4435 u64 transid = btrfs_header_generation(buf); 4436 4437 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4438 /* 4439 * This is a fast path so only do this check if we have sanity tests 4440 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4441 * outside of the sanity tests. 4442 */ 4443 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4444 return; 4445 #endif 4446 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */ 4447 ASSERT(trans->transid == fs_info->generation); 4448 btrfs_assert_tree_write_locked(buf); 4449 if (unlikely(transid != fs_info->generation)) { 4450 btrfs_abort_transaction(trans, -EUCLEAN); 4451 btrfs_crit(fs_info, 4452 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu", 4453 buf->start, transid, fs_info->generation); 4454 } 4455 set_extent_buffer_dirty(buf); 4456 } 4457 4458 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4459 int flush_delayed) 4460 { 4461 /* 4462 * looks as though older kernels can get into trouble with 4463 * this code, they end up stuck in balance_dirty_pages forever 4464 */ 4465 int ret; 4466 4467 if (current->flags & PF_MEMALLOC) 4468 return; 4469 4470 if (flush_delayed) 4471 btrfs_balance_delayed_items(fs_info); 4472 4473 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4474 BTRFS_DIRTY_METADATA_THRESH, 4475 fs_info->dirty_metadata_batch); 4476 if (ret > 0) { 4477 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4478 } 4479 } 4480 4481 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4482 { 4483 __btrfs_btree_balance_dirty(fs_info, 1); 4484 } 4485 4486 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4487 { 4488 __btrfs_btree_balance_dirty(fs_info, 0); 4489 } 4490 4491 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4492 { 4493 /* cleanup FS via transaction */ 4494 btrfs_cleanup_transaction(fs_info); 4495 4496 down_write(&fs_info->cleanup_work_sem); 4497 up_write(&fs_info->cleanup_work_sem); 4498 } 4499 4500 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4501 { 4502 struct btrfs_root *gang[8]; 4503 u64 root_objectid = 0; 4504 int ret; 4505 4506 spin_lock(&fs_info->fs_roots_radix_lock); 4507 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4508 (void **)gang, root_objectid, 4509 ARRAY_SIZE(gang))) != 0) { 4510 int i; 4511 4512 for (i = 0; i < ret; i++) 4513 gang[i] = btrfs_grab_root(gang[i]); 4514 spin_unlock(&fs_info->fs_roots_radix_lock); 4515 4516 for (i = 0; i < ret; i++) { 4517 if (!gang[i]) 4518 continue; 4519 root_objectid = btrfs_root_id(gang[i]); 4520 btrfs_free_log(NULL, gang[i]); 4521 btrfs_put_root(gang[i]); 4522 } 4523 root_objectid++; 4524 spin_lock(&fs_info->fs_roots_radix_lock); 4525 } 4526 spin_unlock(&fs_info->fs_roots_radix_lock); 4527 btrfs_free_log_root_tree(NULL, fs_info); 4528 } 4529 4530 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4531 { 4532 struct btrfs_ordered_extent *ordered; 4533 4534 spin_lock(&root->ordered_extent_lock); 4535 /* 4536 * This will just short circuit the ordered completion stuff which will 4537 * make sure the ordered extent gets properly cleaned up. 4538 */ 4539 list_for_each_entry(ordered, &root->ordered_extents, 4540 root_extent_list) 4541 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4542 spin_unlock(&root->ordered_extent_lock); 4543 } 4544 4545 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4546 { 4547 struct btrfs_root *root; 4548 LIST_HEAD(splice); 4549 4550 spin_lock(&fs_info->ordered_root_lock); 4551 list_splice_init(&fs_info->ordered_roots, &splice); 4552 while (!list_empty(&splice)) { 4553 root = list_first_entry(&splice, struct btrfs_root, 4554 ordered_root); 4555 list_move_tail(&root->ordered_root, 4556 &fs_info->ordered_roots); 4557 4558 spin_unlock(&fs_info->ordered_root_lock); 4559 btrfs_destroy_ordered_extents(root); 4560 4561 cond_resched(); 4562 spin_lock(&fs_info->ordered_root_lock); 4563 } 4564 spin_unlock(&fs_info->ordered_root_lock); 4565 4566 /* 4567 * We need this here because if we've been flipped read-only we won't 4568 * get sync() from the umount, so we need to make sure any ordered 4569 * extents that haven't had their dirty pages IO start writeout yet 4570 * actually get run and error out properly. 4571 */ 4572 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL); 4573 } 4574 4575 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4576 { 4577 struct btrfs_inode *btrfs_inode; 4578 LIST_HEAD(splice); 4579 4580 spin_lock(&root->delalloc_lock); 4581 list_splice_init(&root->delalloc_inodes, &splice); 4582 4583 while (!list_empty(&splice)) { 4584 struct inode *inode = NULL; 4585 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4586 delalloc_inodes); 4587 btrfs_del_delalloc_inode(btrfs_inode); 4588 spin_unlock(&root->delalloc_lock); 4589 4590 /* 4591 * Make sure we get a live inode and that it'll not disappear 4592 * meanwhile. 4593 */ 4594 inode = igrab(&btrfs_inode->vfs_inode); 4595 if (inode) { 4596 unsigned int nofs_flag; 4597 4598 nofs_flag = memalloc_nofs_save(); 4599 invalidate_inode_pages2(inode->i_mapping); 4600 memalloc_nofs_restore(nofs_flag); 4601 iput(inode); 4602 } 4603 spin_lock(&root->delalloc_lock); 4604 } 4605 spin_unlock(&root->delalloc_lock); 4606 } 4607 4608 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4609 { 4610 struct btrfs_root *root; 4611 LIST_HEAD(splice); 4612 4613 spin_lock(&fs_info->delalloc_root_lock); 4614 list_splice_init(&fs_info->delalloc_roots, &splice); 4615 while (!list_empty(&splice)) { 4616 root = list_first_entry(&splice, struct btrfs_root, 4617 delalloc_root); 4618 root = btrfs_grab_root(root); 4619 BUG_ON(!root); 4620 spin_unlock(&fs_info->delalloc_root_lock); 4621 4622 btrfs_destroy_delalloc_inodes(root); 4623 btrfs_put_root(root); 4624 4625 spin_lock(&fs_info->delalloc_root_lock); 4626 } 4627 spin_unlock(&fs_info->delalloc_root_lock); 4628 } 4629 4630 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4631 struct extent_io_tree *dirty_pages, 4632 int mark) 4633 { 4634 struct extent_buffer *eb; 4635 u64 start = 0; 4636 u64 end; 4637 4638 while (btrfs_find_first_extent_bit(dirty_pages, start, &start, &end, 4639 mark, NULL)) { 4640 btrfs_clear_extent_bit(dirty_pages, start, end, mark, NULL); 4641 while (start <= end) { 4642 eb = find_extent_buffer(fs_info, start); 4643 start += fs_info->nodesize; 4644 if (!eb) 4645 continue; 4646 4647 btrfs_tree_lock(eb); 4648 wait_on_extent_buffer_writeback(eb); 4649 btrfs_clear_buffer_dirty(NULL, eb); 4650 btrfs_tree_unlock(eb); 4651 4652 free_extent_buffer_stale(eb); 4653 } 4654 } 4655 } 4656 4657 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4658 struct extent_io_tree *unpin) 4659 { 4660 u64 start; 4661 u64 end; 4662 4663 while (1) { 4664 struct extent_state *cached_state = NULL; 4665 4666 /* 4667 * The btrfs_finish_extent_commit() may get the same range as 4668 * ours between find_first_extent_bit and clear_extent_dirty. 4669 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4670 * the same extent range. 4671 */ 4672 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4673 if (!btrfs_find_first_extent_bit(unpin, 0, &start, &end, 4674 EXTENT_DIRTY, &cached_state)) { 4675 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4676 break; 4677 } 4678 4679 btrfs_clear_extent_dirty(unpin, start, end, &cached_state); 4680 btrfs_free_extent_state(cached_state); 4681 btrfs_error_unpin_extent_range(fs_info, start, end); 4682 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4683 cond_resched(); 4684 } 4685 } 4686 4687 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4688 { 4689 struct inode *inode; 4690 4691 inode = cache->io_ctl.inode; 4692 if (inode) { 4693 unsigned int nofs_flag; 4694 4695 nofs_flag = memalloc_nofs_save(); 4696 invalidate_inode_pages2(inode->i_mapping); 4697 memalloc_nofs_restore(nofs_flag); 4698 4699 BTRFS_I(inode)->generation = 0; 4700 cache->io_ctl.inode = NULL; 4701 iput(inode); 4702 } 4703 ASSERT(cache->io_ctl.pages == NULL); 4704 btrfs_put_block_group(cache); 4705 } 4706 4707 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4708 struct btrfs_fs_info *fs_info) 4709 { 4710 struct btrfs_block_group *cache; 4711 4712 spin_lock(&cur_trans->dirty_bgs_lock); 4713 while (!list_empty(&cur_trans->dirty_bgs)) { 4714 cache = list_first_entry(&cur_trans->dirty_bgs, 4715 struct btrfs_block_group, 4716 dirty_list); 4717 4718 if (!list_empty(&cache->io_list)) { 4719 spin_unlock(&cur_trans->dirty_bgs_lock); 4720 list_del_init(&cache->io_list); 4721 btrfs_cleanup_bg_io(cache); 4722 spin_lock(&cur_trans->dirty_bgs_lock); 4723 } 4724 4725 list_del_init(&cache->dirty_list); 4726 spin_lock(&cache->lock); 4727 cache->disk_cache_state = BTRFS_DC_ERROR; 4728 spin_unlock(&cache->lock); 4729 4730 spin_unlock(&cur_trans->dirty_bgs_lock); 4731 btrfs_put_block_group(cache); 4732 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 4733 spin_lock(&cur_trans->dirty_bgs_lock); 4734 } 4735 spin_unlock(&cur_trans->dirty_bgs_lock); 4736 4737 /* 4738 * Refer to the definition of io_bgs member for details why it's safe 4739 * to use it without any locking 4740 */ 4741 while (!list_empty(&cur_trans->io_bgs)) { 4742 cache = list_first_entry(&cur_trans->io_bgs, 4743 struct btrfs_block_group, 4744 io_list); 4745 4746 list_del_init(&cache->io_list); 4747 spin_lock(&cache->lock); 4748 cache->disk_cache_state = BTRFS_DC_ERROR; 4749 spin_unlock(&cache->lock); 4750 btrfs_cleanup_bg_io(cache); 4751 } 4752 } 4753 4754 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info) 4755 { 4756 struct btrfs_root *gang[8]; 4757 int i; 4758 int ret; 4759 4760 spin_lock(&fs_info->fs_roots_radix_lock); 4761 while (1) { 4762 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 4763 (void **)gang, 0, 4764 ARRAY_SIZE(gang), 4765 BTRFS_ROOT_TRANS_TAG); 4766 if (ret == 0) 4767 break; 4768 for (i = 0; i < ret; i++) { 4769 struct btrfs_root *root = gang[i]; 4770 4771 btrfs_qgroup_free_meta_all_pertrans(root); 4772 radix_tree_tag_clear(&fs_info->fs_roots_radix, 4773 (unsigned long)btrfs_root_id(root), 4774 BTRFS_ROOT_TRANS_TAG); 4775 } 4776 } 4777 spin_unlock(&fs_info->fs_roots_radix_lock); 4778 } 4779 4780 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans) 4781 { 4782 struct btrfs_fs_info *fs_info = cur_trans->fs_info; 4783 struct btrfs_device *dev, *tmp; 4784 4785 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4786 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4787 ASSERT(list_empty(&cur_trans->io_bgs)); 4788 4789 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4790 post_commit_list) { 4791 list_del_init(&dev->post_commit_list); 4792 } 4793 4794 btrfs_destroy_delayed_refs(cur_trans); 4795 4796 cur_trans->state = TRANS_STATE_COMMIT_START; 4797 wake_up(&fs_info->transaction_blocked_wait); 4798 4799 cur_trans->state = TRANS_STATE_UNBLOCKED; 4800 wake_up(&fs_info->transaction_wait); 4801 4802 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4803 EXTENT_DIRTY); 4804 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4805 4806 cur_trans->state =TRANS_STATE_COMPLETED; 4807 wake_up(&cur_trans->commit_wait); 4808 } 4809 4810 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4811 { 4812 struct btrfs_transaction *t; 4813 4814 mutex_lock(&fs_info->transaction_kthread_mutex); 4815 4816 spin_lock(&fs_info->trans_lock); 4817 while (!list_empty(&fs_info->trans_list)) { 4818 t = list_first_entry(&fs_info->trans_list, 4819 struct btrfs_transaction, list); 4820 if (t->state >= TRANS_STATE_COMMIT_PREP) { 4821 refcount_inc(&t->use_count); 4822 spin_unlock(&fs_info->trans_lock); 4823 btrfs_wait_for_commit(fs_info, t->transid); 4824 btrfs_put_transaction(t); 4825 spin_lock(&fs_info->trans_lock); 4826 continue; 4827 } 4828 if (t == fs_info->running_transaction) { 4829 t->state = TRANS_STATE_COMMIT_DOING; 4830 spin_unlock(&fs_info->trans_lock); 4831 /* 4832 * We wait for 0 num_writers since we don't hold a trans 4833 * handle open currently for this transaction. 4834 */ 4835 wait_event(t->writer_wait, 4836 atomic_read(&t->num_writers) == 0); 4837 } else { 4838 spin_unlock(&fs_info->trans_lock); 4839 } 4840 btrfs_cleanup_one_transaction(t); 4841 4842 spin_lock(&fs_info->trans_lock); 4843 if (t == fs_info->running_transaction) 4844 fs_info->running_transaction = NULL; 4845 list_del_init(&t->list); 4846 spin_unlock(&fs_info->trans_lock); 4847 4848 btrfs_put_transaction(t); 4849 trace_btrfs_transaction_commit(fs_info); 4850 spin_lock(&fs_info->trans_lock); 4851 } 4852 spin_unlock(&fs_info->trans_lock); 4853 btrfs_destroy_all_ordered_extents(fs_info); 4854 btrfs_destroy_delayed_inodes(fs_info); 4855 btrfs_assert_delayed_root_empty(fs_info); 4856 btrfs_destroy_all_delalloc_inodes(fs_info); 4857 btrfs_drop_all_logs(fs_info); 4858 btrfs_free_all_qgroup_pertrans(fs_info); 4859 mutex_unlock(&fs_info->transaction_kthread_mutex); 4860 4861 return 0; 4862 } 4863 4864 int btrfs_init_root_free_objectid(struct btrfs_root *root) 4865 { 4866 BTRFS_PATH_AUTO_FREE(path); 4867 int ret; 4868 struct extent_buffer *l; 4869 struct btrfs_key search_key; 4870 struct btrfs_key found_key; 4871 int slot; 4872 4873 path = btrfs_alloc_path(); 4874 if (!path) 4875 return -ENOMEM; 4876 4877 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 4878 search_key.type = -1; 4879 search_key.offset = (u64)-1; 4880 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 4881 if (ret < 0) 4882 return ret; 4883 if (ret == 0) { 4884 /* 4885 * Key with offset -1 found, there would have to exist a root 4886 * with such id, but this is out of valid range. 4887 */ 4888 return -EUCLEAN; 4889 } 4890 if (path->slots[0] > 0) { 4891 slot = path->slots[0] - 1; 4892 l = path->nodes[0]; 4893 btrfs_item_key_to_cpu(l, &found_key, slot); 4894 root->free_objectid = max_t(u64, found_key.objectid + 1, 4895 BTRFS_FIRST_FREE_OBJECTID); 4896 } else { 4897 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 4898 } 4899 4900 return 0; 4901 } 4902 4903 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 4904 { 4905 int ret; 4906 mutex_lock(&root->objectid_mutex); 4907 4908 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 4909 btrfs_warn(root->fs_info, 4910 "the objectid of root %llu reaches its highest value", 4911 btrfs_root_id(root)); 4912 ret = -ENOSPC; 4913 goto out; 4914 } 4915 4916 *objectid = root->free_objectid++; 4917 ret = 0; 4918 out: 4919 mutex_unlock(&root->objectid_mutex); 4920 return ret; 4921 } 4922