1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 #include "block-group.h" 42 #include "discard.h" 43 #include "space-info.h" 44 #include "zoned.h" 45 #include "subpage.h" 46 #include "fs.h" 47 #include "accessors.h" 48 #include "extent-tree.h" 49 #include "root-tree.h" 50 #include "defrag.h" 51 #include "uuid-tree.h" 52 #include "relocation.h" 53 #include "scrub.h" 54 #include "super.h" 55 56 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 57 BTRFS_HEADER_FLAG_RELOC |\ 58 BTRFS_SUPER_FLAG_ERROR |\ 59 BTRFS_SUPER_FLAG_SEEDING |\ 60 BTRFS_SUPER_FLAG_METADUMP |\ 61 BTRFS_SUPER_FLAG_METADUMP_V2) 62 63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 65 66 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 67 { 68 if (fs_info->csum_shash) 69 crypto_free_shash(fs_info->csum_shash); 70 } 71 72 /* 73 * Compute the csum of a btree block and store the result to provided buffer. 74 */ 75 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 76 { 77 struct btrfs_fs_info *fs_info = buf->fs_info; 78 const int num_pages = num_extent_pages(buf); 79 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 80 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 81 char *kaddr; 82 int i; 83 84 shash->tfm = fs_info->csum_shash; 85 crypto_shash_init(shash); 86 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start); 87 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 88 first_page_part - BTRFS_CSUM_SIZE); 89 90 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { 91 kaddr = page_address(buf->pages[i]); 92 crypto_shash_update(shash, kaddr, PAGE_SIZE); 93 } 94 memset(result, 0, BTRFS_CSUM_SIZE); 95 crypto_shash_final(shash, result); 96 } 97 98 /* 99 * we can't consider a given block up to date unless the transid of the 100 * block matches the transid in the parent node's pointer. This is how we 101 * detect blocks that either didn't get written at all or got written 102 * in the wrong place. 103 */ 104 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic) 105 { 106 if (!extent_buffer_uptodate(eb)) 107 return 0; 108 109 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 110 return 1; 111 112 if (atomic) 113 return -EAGAIN; 114 115 if (!extent_buffer_uptodate(eb) || 116 btrfs_header_generation(eb) != parent_transid) { 117 btrfs_err_rl(eb->fs_info, 118 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 119 eb->start, eb->read_mirror, 120 parent_transid, btrfs_header_generation(eb)); 121 clear_extent_buffer_uptodate(eb); 122 return 0; 123 } 124 return 1; 125 } 126 127 static bool btrfs_supported_super_csum(u16 csum_type) 128 { 129 switch (csum_type) { 130 case BTRFS_CSUM_TYPE_CRC32: 131 case BTRFS_CSUM_TYPE_XXHASH: 132 case BTRFS_CSUM_TYPE_SHA256: 133 case BTRFS_CSUM_TYPE_BLAKE2: 134 return true; 135 default: 136 return false; 137 } 138 } 139 140 /* 141 * Return 0 if the superblock checksum type matches the checksum value of that 142 * algorithm. Pass the raw disk superblock data. 143 */ 144 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 145 const struct btrfs_super_block *disk_sb) 146 { 147 char result[BTRFS_CSUM_SIZE]; 148 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 149 150 shash->tfm = fs_info->csum_shash; 151 152 /* 153 * The super_block structure does not span the whole 154 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 155 * filled with zeros and is included in the checksum. 156 */ 157 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 158 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 159 160 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 161 return 1; 162 163 return 0; 164 } 165 166 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 167 int mirror_num) 168 { 169 struct btrfs_fs_info *fs_info = eb->fs_info; 170 int i, num_pages = num_extent_pages(eb); 171 int ret = 0; 172 173 if (sb_rdonly(fs_info->sb)) 174 return -EROFS; 175 176 for (i = 0; i < num_pages; i++) { 177 struct page *p = eb->pages[i]; 178 u64 start = max_t(u64, eb->start, page_offset(p)); 179 u64 end = min_t(u64, eb->start + eb->len, page_offset(p) + PAGE_SIZE); 180 u32 len = end - start; 181 182 ret = btrfs_repair_io_failure(fs_info, 0, start, len, 183 start, p, offset_in_page(start), mirror_num); 184 if (ret) 185 break; 186 } 187 188 return ret; 189 } 190 191 /* 192 * helper to read a given tree block, doing retries as required when 193 * the checksums don't match and we have alternate mirrors to try. 194 * 195 * @check: expected tree parentness check, see the comments of the 196 * structure for details. 197 */ 198 int btrfs_read_extent_buffer(struct extent_buffer *eb, 199 struct btrfs_tree_parent_check *check) 200 { 201 struct btrfs_fs_info *fs_info = eb->fs_info; 202 int failed = 0; 203 int ret; 204 int num_copies = 0; 205 int mirror_num = 0; 206 int failed_mirror = 0; 207 208 ASSERT(check); 209 210 while (1) { 211 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 212 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check); 213 if (!ret) 214 break; 215 216 num_copies = btrfs_num_copies(fs_info, 217 eb->start, eb->len); 218 if (num_copies == 1) 219 break; 220 221 if (!failed_mirror) { 222 failed = 1; 223 failed_mirror = eb->read_mirror; 224 } 225 226 mirror_num++; 227 if (mirror_num == failed_mirror) 228 mirror_num++; 229 230 if (mirror_num > num_copies) 231 break; 232 } 233 234 if (failed && !ret && failed_mirror) 235 btrfs_repair_eb_io_failure(eb, failed_mirror); 236 237 return ret; 238 } 239 240 /* 241 * Checksum a dirty tree block before IO. 242 */ 243 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio) 244 { 245 struct extent_buffer *eb = bbio->private; 246 struct btrfs_fs_info *fs_info = eb->fs_info; 247 u64 found_start = btrfs_header_bytenr(eb); 248 u8 result[BTRFS_CSUM_SIZE]; 249 int ret; 250 251 /* Btree blocks are always contiguous on disk. */ 252 if (WARN_ON_ONCE(bbio->file_offset != eb->start)) 253 return BLK_STS_IOERR; 254 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len)) 255 return BLK_STS_IOERR; 256 257 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) { 258 WARN_ON_ONCE(found_start != 0); 259 return BLK_STS_OK; 260 } 261 262 if (WARN_ON_ONCE(found_start != eb->start)) 263 return BLK_STS_IOERR; 264 if (WARN_ON(!btrfs_page_test_uptodate(fs_info, eb->pages[0], eb->start, 265 eb->len))) 266 return BLK_STS_IOERR; 267 268 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 269 offsetof(struct btrfs_header, fsid), 270 BTRFS_FSID_SIZE) == 0); 271 csum_tree_block(eb, result); 272 273 if (btrfs_header_level(eb)) 274 ret = btrfs_check_node(eb); 275 else 276 ret = btrfs_check_leaf(eb); 277 278 if (ret < 0) 279 goto error; 280 281 /* 282 * Also check the generation, the eb reached here must be newer than 283 * last committed. Or something seriously wrong happened. 284 */ 285 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) { 286 ret = -EUCLEAN; 287 btrfs_err(fs_info, 288 "block=%llu bad generation, have %llu expect > %llu", 289 eb->start, btrfs_header_generation(eb), 290 fs_info->last_trans_committed); 291 goto error; 292 } 293 write_extent_buffer(eb, result, 0, fs_info->csum_size); 294 return BLK_STS_OK; 295 296 error: 297 btrfs_print_tree(eb, 0); 298 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 299 eb->start); 300 /* 301 * Be noisy if this is an extent buffer from a log tree. We don't abort 302 * a transaction in case there's a bad log tree extent buffer, we just 303 * fallback to a transaction commit. Still we want to know when there is 304 * a bad log tree extent buffer, as that may signal a bug somewhere. 305 */ 306 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 307 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 308 return errno_to_blk_status(ret); 309 } 310 311 static bool check_tree_block_fsid(struct extent_buffer *eb) 312 { 313 struct btrfs_fs_info *fs_info = eb->fs_info; 314 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 315 u8 fsid[BTRFS_FSID_SIZE]; 316 u8 *metadata_uuid; 317 318 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 319 BTRFS_FSID_SIZE); 320 /* 321 * Checking the incompat flag is only valid for the current fs. For 322 * seed devices it's forbidden to have their uuid changed so reading 323 * ->fsid in this case is fine 324 */ 325 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 326 metadata_uuid = fs_devices->metadata_uuid; 327 else 328 metadata_uuid = fs_devices->fsid; 329 330 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) 331 return false; 332 333 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 334 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 335 return false; 336 337 return true; 338 } 339 340 /* Do basic extent buffer checks at read time */ 341 int btrfs_validate_extent_buffer(struct extent_buffer *eb, 342 struct btrfs_tree_parent_check *check) 343 { 344 struct btrfs_fs_info *fs_info = eb->fs_info; 345 u64 found_start; 346 const u32 csum_size = fs_info->csum_size; 347 u8 found_level; 348 u8 result[BTRFS_CSUM_SIZE]; 349 const u8 *header_csum; 350 int ret = 0; 351 352 ASSERT(check); 353 354 found_start = btrfs_header_bytenr(eb); 355 if (found_start != eb->start) { 356 btrfs_err_rl(fs_info, 357 "bad tree block start, mirror %u want %llu have %llu", 358 eb->read_mirror, eb->start, found_start); 359 ret = -EIO; 360 goto out; 361 } 362 if (check_tree_block_fsid(eb)) { 363 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 364 eb->start, eb->read_mirror); 365 ret = -EIO; 366 goto out; 367 } 368 found_level = btrfs_header_level(eb); 369 if (found_level >= BTRFS_MAX_LEVEL) { 370 btrfs_err(fs_info, 371 "bad tree block level, mirror %u level %d on logical %llu", 372 eb->read_mirror, btrfs_header_level(eb), eb->start); 373 ret = -EIO; 374 goto out; 375 } 376 377 csum_tree_block(eb, result); 378 header_csum = page_address(eb->pages[0]) + 379 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum)); 380 381 if (memcmp(result, header_csum, csum_size) != 0) { 382 btrfs_warn_rl(fs_info, 383 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d", 384 eb->start, eb->read_mirror, 385 CSUM_FMT_VALUE(csum_size, header_csum), 386 CSUM_FMT_VALUE(csum_size, result), 387 btrfs_header_level(eb)); 388 ret = -EUCLEAN; 389 goto out; 390 } 391 392 if (found_level != check->level) { 393 btrfs_err(fs_info, 394 "level verify failed on logical %llu mirror %u wanted %u found %u", 395 eb->start, eb->read_mirror, check->level, found_level); 396 ret = -EIO; 397 goto out; 398 } 399 if (unlikely(check->transid && 400 btrfs_header_generation(eb) != check->transid)) { 401 btrfs_err_rl(eb->fs_info, 402 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 403 eb->start, eb->read_mirror, check->transid, 404 btrfs_header_generation(eb)); 405 ret = -EIO; 406 goto out; 407 } 408 if (check->has_first_key) { 409 struct btrfs_key *expect_key = &check->first_key; 410 struct btrfs_key found_key; 411 412 if (found_level) 413 btrfs_node_key_to_cpu(eb, &found_key, 0); 414 else 415 btrfs_item_key_to_cpu(eb, &found_key, 0); 416 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 417 btrfs_err(fs_info, 418 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 419 eb->start, check->transid, 420 expect_key->objectid, 421 expect_key->type, expect_key->offset, 422 found_key.objectid, found_key.type, 423 found_key.offset); 424 ret = -EUCLEAN; 425 goto out; 426 } 427 } 428 if (check->owner_root) { 429 ret = btrfs_check_eb_owner(eb, check->owner_root); 430 if (ret < 0) 431 goto out; 432 } 433 434 /* 435 * If this is a leaf block and it is corrupt, set the corrupt bit so 436 * that we don't try and read the other copies of this block, just 437 * return -EIO. 438 */ 439 if (found_level == 0 && btrfs_check_leaf(eb)) { 440 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 441 ret = -EIO; 442 } 443 444 if (found_level > 0 && btrfs_check_node(eb)) 445 ret = -EIO; 446 447 if (ret) 448 btrfs_err(fs_info, 449 "read time tree block corruption detected on logical %llu mirror %u", 450 eb->start, eb->read_mirror); 451 out: 452 return ret; 453 } 454 455 #ifdef CONFIG_MIGRATION 456 static int btree_migrate_folio(struct address_space *mapping, 457 struct folio *dst, struct folio *src, enum migrate_mode mode) 458 { 459 /* 460 * we can't safely write a btree page from here, 461 * we haven't done the locking hook 462 */ 463 if (folio_test_dirty(src)) 464 return -EAGAIN; 465 /* 466 * Buffers may be managed in a filesystem specific way. 467 * We must have no buffers or drop them. 468 */ 469 if (folio_get_private(src) && 470 !filemap_release_folio(src, GFP_KERNEL)) 471 return -EAGAIN; 472 return migrate_folio(mapping, dst, src, mode); 473 } 474 #else 475 #define btree_migrate_folio NULL 476 #endif 477 478 static int btree_writepages(struct address_space *mapping, 479 struct writeback_control *wbc) 480 { 481 struct btrfs_fs_info *fs_info; 482 int ret; 483 484 if (wbc->sync_mode == WB_SYNC_NONE) { 485 486 if (wbc->for_kupdate) 487 return 0; 488 489 fs_info = BTRFS_I(mapping->host)->root->fs_info; 490 /* this is a bit racy, but that's ok */ 491 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 492 BTRFS_DIRTY_METADATA_THRESH, 493 fs_info->dirty_metadata_batch); 494 if (ret < 0) 495 return 0; 496 } 497 return btree_write_cache_pages(mapping, wbc); 498 } 499 500 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 501 { 502 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 503 return false; 504 505 return try_release_extent_buffer(&folio->page); 506 } 507 508 static void btree_invalidate_folio(struct folio *folio, size_t offset, 509 size_t length) 510 { 511 struct extent_io_tree *tree; 512 tree = &BTRFS_I(folio->mapping->host)->io_tree; 513 extent_invalidate_folio(tree, folio, offset); 514 btree_release_folio(folio, GFP_NOFS); 515 if (folio_get_private(folio)) { 516 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info, 517 "folio private not zero on folio %llu", 518 (unsigned long long)folio_pos(folio)); 519 folio_detach_private(folio); 520 } 521 } 522 523 #ifdef DEBUG 524 static bool btree_dirty_folio(struct address_space *mapping, 525 struct folio *folio) 526 { 527 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 528 struct btrfs_subpage *subpage; 529 struct extent_buffer *eb; 530 int cur_bit = 0; 531 u64 page_start = folio_pos(folio); 532 533 if (fs_info->sectorsize == PAGE_SIZE) { 534 eb = folio_get_private(folio); 535 BUG_ON(!eb); 536 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 537 BUG_ON(!atomic_read(&eb->refs)); 538 btrfs_assert_tree_write_locked(eb); 539 return filemap_dirty_folio(mapping, folio); 540 } 541 subpage = folio_get_private(folio); 542 543 ASSERT(subpage->dirty_bitmap); 544 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) { 545 unsigned long flags; 546 u64 cur; 547 u16 tmp = (1 << cur_bit); 548 549 spin_lock_irqsave(&subpage->lock, flags); 550 if (!(tmp & subpage->dirty_bitmap)) { 551 spin_unlock_irqrestore(&subpage->lock, flags); 552 cur_bit++; 553 continue; 554 } 555 spin_unlock_irqrestore(&subpage->lock, flags); 556 cur = page_start + cur_bit * fs_info->sectorsize; 557 558 eb = find_extent_buffer(fs_info, cur); 559 ASSERT(eb); 560 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 561 ASSERT(atomic_read(&eb->refs)); 562 btrfs_assert_tree_write_locked(eb); 563 free_extent_buffer(eb); 564 565 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits); 566 } 567 return filemap_dirty_folio(mapping, folio); 568 } 569 #else 570 #define btree_dirty_folio filemap_dirty_folio 571 #endif 572 573 static const struct address_space_operations btree_aops = { 574 .writepages = btree_writepages, 575 .release_folio = btree_release_folio, 576 .invalidate_folio = btree_invalidate_folio, 577 .migrate_folio = btree_migrate_folio, 578 .dirty_folio = btree_dirty_folio, 579 }; 580 581 struct extent_buffer *btrfs_find_create_tree_block( 582 struct btrfs_fs_info *fs_info, 583 u64 bytenr, u64 owner_root, 584 int level) 585 { 586 if (btrfs_is_testing(fs_info)) 587 return alloc_test_extent_buffer(fs_info, bytenr); 588 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 589 } 590 591 /* 592 * Read tree block at logical address @bytenr and do variant basic but critical 593 * verification. 594 * 595 * @check: expected tree parentness check, see comments of the 596 * structure for details. 597 */ 598 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 599 struct btrfs_tree_parent_check *check) 600 { 601 struct extent_buffer *buf = NULL; 602 int ret; 603 604 ASSERT(check); 605 606 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 607 check->level); 608 if (IS_ERR(buf)) 609 return buf; 610 611 ret = btrfs_read_extent_buffer(buf, check); 612 if (ret) { 613 free_extent_buffer_stale(buf); 614 return ERR_PTR(ret); 615 } 616 if (btrfs_check_eb_owner(buf, check->owner_root)) { 617 free_extent_buffer_stale(buf); 618 return ERR_PTR(-EUCLEAN); 619 } 620 return buf; 621 622 } 623 624 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 625 u64 objectid) 626 { 627 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 628 629 memset(&root->root_key, 0, sizeof(root->root_key)); 630 memset(&root->root_item, 0, sizeof(root->root_item)); 631 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 632 root->fs_info = fs_info; 633 root->root_key.objectid = objectid; 634 root->node = NULL; 635 root->commit_root = NULL; 636 root->state = 0; 637 RB_CLEAR_NODE(&root->rb_node); 638 639 root->last_trans = 0; 640 root->free_objectid = 0; 641 root->nr_delalloc_inodes = 0; 642 root->nr_ordered_extents = 0; 643 root->inode_tree = RB_ROOT; 644 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 645 646 btrfs_init_root_block_rsv(root); 647 648 INIT_LIST_HEAD(&root->dirty_list); 649 INIT_LIST_HEAD(&root->root_list); 650 INIT_LIST_HEAD(&root->delalloc_inodes); 651 INIT_LIST_HEAD(&root->delalloc_root); 652 INIT_LIST_HEAD(&root->ordered_extents); 653 INIT_LIST_HEAD(&root->ordered_root); 654 INIT_LIST_HEAD(&root->reloc_dirty_list); 655 INIT_LIST_HEAD(&root->logged_list[0]); 656 INIT_LIST_HEAD(&root->logged_list[1]); 657 spin_lock_init(&root->inode_lock); 658 spin_lock_init(&root->delalloc_lock); 659 spin_lock_init(&root->ordered_extent_lock); 660 spin_lock_init(&root->accounting_lock); 661 spin_lock_init(&root->log_extents_lock[0]); 662 spin_lock_init(&root->log_extents_lock[1]); 663 spin_lock_init(&root->qgroup_meta_rsv_lock); 664 mutex_init(&root->objectid_mutex); 665 mutex_init(&root->log_mutex); 666 mutex_init(&root->ordered_extent_mutex); 667 mutex_init(&root->delalloc_mutex); 668 init_waitqueue_head(&root->qgroup_flush_wait); 669 init_waitqueue_head(&root->log_writer_wait); 670 init_waitqueue_head(&root->log_commit_wait[0]); 671 init_waitqueue_head(&root->log_commit_wait[1]); 672 INIT_LIST_HEAD(&root->log_ctxs[0]); 673 INIT_LIST_HEAD(&root->log_ctxs[1]); 674 atomic_set(&root->log_commit[0], 0); 675 atomic_set(&root->log_commit[1], 0); 676 atomic_set(&root->log_writers, 0); 677 atomic_set(&root->log_batch, 0); 678 refcount_set(&root->refs, 1); 679 atomic_set(&root->snapshot_force_cow, 0); 680 atomic_set(&root->nr_swapfiles, 0); 681 root->log_transid = 0; 682 root->log_transid_committed = -1; 683 root->last_log_commit = 0; 684 root->anon_dev = 0; 685 if (!dummy) { 686 extent_io_tree_init(fs_info, &root->dirty_log_pages, 687 IO_TREE_ROOT_DIRTY_LOG_PAGES); 688 extent_io_tree_init(fs_info, &root->log_csum_range, 689 IO_TREE_LOG_CSUM_RANGE); 690 } 691 692 spin_lock_init(&root->root_item_lock); 693 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 694 #ifdef CONFIG_BTRFS_DEBUG 695 INIT_LIST_HEAD(&root->leak_list); 696 spin_lock(&fs_info->fs_roots_radix_lock); 697 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 698 spin_unlock(&fs_info->fs_roots_radix_lock); 699 #endif 700 } 701 702 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 703 u64 objectid, gfp_t flags) 704 { 705 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 706 if (root) 707 __setup_root(root, fs_info, objectid); 708 return root; 709 } 710 711 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 712 /* Should only be used by the testing infrastructure */ 713 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 714 { 715 struct btrfs_root *root; 716 717 if (!fs_info) 718 return ERR_PTR(-EINVAL); 719 720 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 721 if (!root) 722 return ERR_PTR(-ENOMEM); 723 724 /* We don't use the stripesize in selftest, set it as sectorsize */ 725 root->alloc_bytenr = 0; 726 727 return root; 728 } 729 #endif 730 731 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 732 { 733 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 734 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 735 736 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 737 } 738 739 static int global_root_key_cmp(const void *k, const struct rb_node *node) 740 { 741 const struct btrfs_key *key = k; 742 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 743 744 return btrfs_comp_cpu_keys(key, &root->root_key); 745 } 746 747 int btrfs_global_root_insert(struct btrfs_root *root) 748 { 749 struct btrfs_fs_info *fs_info = root->fs_info; 750 struct rb_node *tmp; 751 int ret = 0; 752 753 write_lock(&fs_info->global_root_lock); 754 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 755 write_unlock(&fs_info->global_root_lock); 756 757 if (tmp) { 758 ret = -EEXIST; 759 btrfs_warn(fs_info, "global root %llu %llu already exists", 760 root->root_key.objectid, root->root_key.offset); 761 } 762 return ret; 763 } 764 765 void btrfs_global_root_delete(struct btrfs_root *root) 766 { 767 struct btrfs_fs_info *fs_info = root->fs_info; 768 769 write_lock(&fs_info->global_root_lock); 770 rb_erase(&root->rb_node, &fs_info->global_root_tree); 771 write_unlock(&fs_info->global_root_lock); 772 } 773 774 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 775 struct btrfs_key *key) 776 { 777 struct rb_node *node; 778 struct btrfs_root *root = NULL; 779 780 read_lock(&fs_info->global_root_lock); 781 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 782 if (node) 783 root = container_of(node, struct btrfs_root, rb_node); 784 read_unlock(&fs_info->global_root_lock); 785 786 return root; 787 } 788 789 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 790 { 791 struct btrfs_block_group *block_group; 792 u64 ret; 793 794 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 795 return 0; 796 797 if (bytenr) 798 block_group = btrfs_lookup_block_group(fs_info, bytenr); 799 else 800 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 801 ASSERT(block_group); 802 if (!block_group) 803 return 0; 804 ret = block_group->global_root_id; 805 btrfs_put_block_group(block_group); 806 807 return ret; 808 } 809 810 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 811 { 812 struct btrfs_key key = { 813 .objectid = BTRFS_CSUM_TREE_OBJECTID, 814 .type = BTRFS_ROOT_ITEM_KEY, 815 .offset = btrfs_global_root_id(fs_info, bytenr), 816 }; 817 818 return btrfs_global_root(fs_info, &key); 819 } 820 821 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 822 { 823 struct btrfs_key key = { 824 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 825 .type = BTRFS_ROOT_ITEM_KEY, 826 .offset = btrfs_global_root_id(fs_info, bytenr), 827 }; 828 829 return btrfs_global_root(fs_info, &key); 830 } 831 832 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) 833 { 834 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) 835 return fs_info->block_group_root; 836 return btrfs_extent_root(fs_info, 0); 837 } 838 839 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 840 u64 objectid) 841 { 842 struct btrfs_fs_info *fs_info = trans->fs_info; 843 struct extent_buffer *leaf; 844 struct btrfs_root *tree_root = fs_info->tree_root; 845 struct btrfs_root *root; 846 struct btrfs_key key; 847 unsigned int nofs_flag; 848 int ret = 0; 849 850 /* 851 * We're holding a transaction handle, so use a NOFS memory allocation 852 * context to avoid deadlock if reclaim happens. 853 */ 854 nofs_flag = memalloc_nofs_save(); 855 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 856 memalloc_nofs_restore(nofs_flag); 857 if (!root) 858 return ERR_PTR(-ENOMEM); 859 860 root->root_key.objectid = objectid; 861 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 862 root->root_key.offset = 0; 863 864 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 865 BTRFS_NESTING_NORMAL); 866 if (IS_ERR(leaf)) { 867 ret = PTR_ERR(leaf); 868 leaf = NULL; 869 goto fail; 870 } 871 872 root->node = leaf; 873 btrfs_mark_buffer_dirty(leaf); 874 875 root->commit_root = btrfs_root_node(root); 876 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 877 878 btrfs_set_root_flags(&root->root_item, 0); 879 btrfs_set_root_limit(&root->root_item, 0); 880 btrfs_set_root_bytenr(&root->root_item, leaf->start); 881 btrfs_set_root_generation(&root->root_item, trans->transid); 882 btrfs_set_root_level(&root->root_item, 0); 883 btrfs_set_root_refs(&root->root_item, 1); 884 btrfs_set_root_used(&root->root_item, leaf->len); 885 btrfs_set_root_last_snapshot(&root->root_item, 0); 886 btrfs_set_root_dirid(&root->root_item, 0); 887 if (is_fstree(objectid)) 888 generate_random_guid(root->root_item.uuid); 889 else 890 export_guid(root->root_item.uuid, &guid_null); 891 btrfs_set_root_drop_level(&root->root_item, 0); 892 893 btrfs_tree_unlock(leaf); 894 895 key.objectid = objectid; 896 key.type = BTRFS_ROOT_ITEM_KEY; 897 key.offset = 0; 898 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 899 if (ret) 900 goto fail; 901 902 return root; 903 904 fail: 905 btrfs_put_root(root); 906 907 return ERR_PTR(ret); 908 } 909 910 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 911 struct btrfs_fs_info *fs_info) 912 { 913 struct btrfs_root *root; 914 915 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 916 if (!root) 917 return ERR_PTR(-ENOMEM); 918 919 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 920 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 921 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 922 923 return root; 924 } 925 926 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 927 struct btrfs_root *root) 928 { 929 struct extent_buffer *leaf; 930 931 /* 932 * DON'T set SHAREABLE bit for log trees. 933 * 934 * Log trees are not exposed to user space thus can't be snapshotted, 935 * and they go away before a real commit is actually done. 936 * 937 * They do store pointers to file data extents, and those reference 938 * counts still get updated (along with back refs to the log tree). 939 */ 940 941 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 942 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); 943 if (IS_ERR(leaf)) 944 return PTR_ERR(leaf); 945 946 root->node = leaf; 947 948 btrfs_mark_buffer_dirty(root->node); 949 btrfs_tree_unlock(root->node); 950 951 return 0; 952 } 953 954 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 955 struct btrfs_fs_info *fs_info) 956 { 957 struct btrfs_root *log_root; 958 959 log_root = alloc_log_tree(trans, fs_info); 960 if (IS_ERR(log_root)) 961 return PTR_ERR(log_root); 962 963 if (!btrfs_is_zoned(fs_info)) { 964 int ret = btrfs_alloc_log_tree_node(trans, log_root); 965 966 if (ret) { 967 btrfs_put_root(log_root); 968 return ret; 969 } 970 } 971 972 WARN_ON(fs_info->log_root_tree); 973 fs_info->log_root_tree = log_root; 974 return 0; 975 } 976 977 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 978 struct btrfs_root *root) 979 { 980 struct btrfs_fs_info *fs_info = root->fs_info; 981 struct btrfs_root *log_root; 982 struct btrfs_inode_item *inode_item; 983 int ret; 984 985 log_root = alloc_log_tree(trans, fs_info); 986 if (IS_ERR(log_root)) 987 return PTR_ERR(log_root); 988 989 ret = btrfs_alloc_log_tree_node(trans, log_root); 990 if (ret) { 991 btrfs_put_root(log_root); 992 return ret; 993 } 994 995 log_root->last_trans = trans->transid; 996 log_root->root_key.offset = root->root_key.objectid; 997 998 inode_item = &log_root->root_item.inode; 999 btrfs_set_stack_inode_generation(inode_item, 1); 1000 btrfs_set_stack_inode_size(inode_item, 3); 1001 btrfs_set_stack_inode_nlink(inode_item, 1); 1002 btrfs_set_stack_inode_nbytes(inode_item, 1003 fs_info->nodesize); 1004 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1005 1006 btrfs_set_root_node(&log_root->root_item, log_root->node); 1007 1008 WARN_ON(root->log_root); 1009 root->log_root = log_root; 1010 root->log_transid = 0; 1011 root->log_transid_committed = -1; 1012 root->last_log_commit = 0; 1013 return 0; 1014 } 1015 1016 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1017 struct btrfs_path *path, 1018 struct btrfs_key *key) 1019 { 1020 struct btrfs_root *root; 1021 struct btrfs_tree_parent_check check = { 0 }; 1022 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1023 u64 generation; 1024 int ret; 1025 int level; 1026 1027 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1028 if (!root) 1029 return ERR_PTR(-ENOMEM); 1030 1031 ret = btrfs_find_root(tree_root, key, path, 1032 &root->root_item, &root->root_key); 1033 if (ret) { 1034 if (ret > 0) 1035 ret = -ENOENT; 1036 goto fail; 1037 } 1038 1039 generation = btrfs_root_generation(&root->root_item); 1040 level = btrfs_root_level(&root->root_item); 1041 check.level = level; 1042 check.transid = generation; 1043 check.owner_root = key->objectid; 1044 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1045 &check); 1046 if (IS_ERR(root->node)) { 1047 ret = PTR_ERR(root->node); 1048 root->node = NULL; 1049 goto fail; 1050 } 1051 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1052 ret = -EIO; 1053 goto fail; 1054 } 1055 1056 /* 1057 * For real fs, and not log/reloc trees, root owner must 1058 * match its root node owner 1059 */ 1060 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) && 1061 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1062 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1063 root->root_key.objectid != btrfs_header_owner(root->node)) { 1064 btrfs_crit(fs_info, 1065 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1066 root->root_key.objectid, root->node->start, 1067 btrfs_header_owner(root->node), 1068 root->root_key.objectid); 1069 ret = -EUCLEAN; 1070 goto fail; 1071 } 1072 root->commit_root = btrfs_root_node(root); 1073 return root; 1074 fail: 1075 btrfs_put_root(root); 1076 return ERR_PTR(ret); 1077 } 1078 1079 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1080 struct btrfs_key *key) 1081 { 1082 struct btrfs_root *root; 1083 struct btrfs_path *path; 1084 1085 path = btrfs_alloc_path(); 1086 if (!path) 1087 return ERR_PTR(-ENOMEM); 1088 root = read_tree_root_path(tree_root, path, key); 1089 btrfs_free_path(path); 1090 1091 return root; 1092 } 1093 1094 /* 1095 * Initialize subvolume root in-memory structure 1096 * 1097 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1098 */ 1099 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1100 { 1101 int ret; 1102 1103 btrfs_drew_lock_init(&root->snapshot_lock); 1104 1105 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1106 !btrfs_is_data_reloc_root(root)) { 1107 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1108 btrfs_check_and_init_root_item(&root->root_item); 1109 } 1110 1111 /* 1112 * Don't assign anonymous block device to roots that are not exposed to 1113 * userspace, the id pool is limited to 1M 1114 */ 1115 if (is_fstree(root->root_key.objectid) && 1116 btrfs_root_refs(&root->root_item) > 0) { 1117 if (!anon_dev) { 1118 ret = get_anon_bdev(&root->anon_dev); 1119 if (ret) 1120 goto fail; 1121 } else { 1122 root->anon_dev = anon_dev; 1123 } 1124 } 1125 1126 mutex_lock(&root->objectid_mutex); 1127 ret = btrfs_init_root_free_objectid(root); 1128 if (ret) { 1129 mutex_unlock(&root->objectid_mutex); 1130 goto fail; 1131 } 1132 1133 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1134 1135 mutex_unlock(&root->objectid_mutex); 1136 1137 return 0; 1138 fail: 1139 /* The caller is responsible to call btrfs_free_fs_root */ 1140 return ret; 1141 } 1142 1143 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1144 u64 root_id) 1145 { 1146 struct btrfs_root *root; 1147 1148 spin_lock(&fs_info->fs_roots_radix_lock); 1149 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1150 (unsigned long)root_id); 1151 root = btrfs_grab_root(root); 1152 spin_unlock(&fs_info->fs_roots_radix_lock); 1153 return root; 1154 } 1155 1156 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1157 u64 objectid) 1158 { 1159 struct btrfs_key key = { 1160 .objectid = objectid, 1161 .type = BTRFS_ROOT_ITEM_KEY, 1162 .offset = 0, 1163 }; 1164 1165 switch (objectid) { 1166 case BTRFS_ROOT_TREE_OBJECTID: 1167 return btrfs_grab_root(fs_info->tree_root); 1168 case BTRFS_EXTENT_TREE_OBJECTID: 1169 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1170 case BTRFS_CHUNK_TREE_OBJECTID: 1171 return btrfs_grab_root(fs_info->chunk_root); 1172 case BTRFS_DEV_TREE_OBJECTID: 1173 return btrfs_grab_root(fs_info->dev_root); 1174 case BTRFS_CSUM_TREE_OBJECTID: 1175 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1176 case BTRFS_QUOTA_TREE_OBJECTID: 1177 return btrfs_grab_root(fs_info->quota_root); 1178 case BTRFS_UUID_TREE_OBJECTID: 1179 return btrfs_grab_root(fs_info->uuid_root); 1180 case BTRFS_BLOCK_GROUP_TREE_OBJECTID: 1181 return btrfs_grab_root(fs_info->block_group_root); 1182 case BTRFS_FREE_SPACE_TREE_OBJECTID: 1183 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1184 default: 1185 return NULL; 1186 } 1187 } 1188 1189 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1190 struct btrfs_root *root) 1191 { 1192 int ret; 1193 1194 ret = radix_tree_preload(GFP_NOFS); 1195 if (ret) 1196 return ret; 1197 1198 spin_lock(&fs_info->fs_roots_radix_lock); 1199 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1200 (unsigned long)root->root_key.objectid, 1201 root); 1202 if (ret == 0) { 1203 btrfs_grab_root(root); 1204 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1205 } 1206 spin_unlock(&fs_info->fs_roots_radix_lock); 1207 radix_tree_preload_end(); 1208 1209 return ret; 1210 } 1211 1212 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1213 { 1214 #ifdef CONFIG_BTRFS_DEBUG 1215 struct btrfs_root *root; 1216 1217 while (!list_empty(&fs_info->allocated_roots)) { 1218 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1219 1220 root = list_first_entry(&fs_info->allocated_roots, 1221 struct btrfs_root, leak_list); 1222 btrfs_err(fs_info, "leaked root %s refcount %d", 1223 btrfs_root_name(&root->root_key, buf), 1224 refcount_read(&root->refs)); 1225 while (refcount_read(&root->refs) > 1) 1226 btrfs_put_root(root); 1227 btrfs_put_root(root); 1228 } 1229 #endif 1230 } 1231 1232 static void free_global_roots(struct btrfs_fs_info *fs_info) 1233 { 1234 struct btrfs_root *root; 1235 struct rb_node *node; 1236 1237 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1238 root = rb_entry(node, struct btrfs_root, rb_node); 1239 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1240 btrfs_put_root(root); 1241 } 1242 } 1243 1244 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1245 { 1246 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1247 percpu_counter_destroy(&fs_info->delalloc_bytes); 1248 percpu_counter_destroy(&fs_info->ordered_bytes); 1249 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1250 btrfs_free_csum_hash(fs_info); 1251 btrfs_free_stripe_hash_table(fs_info); 1252 btrfs_free_ref_cache(fs_info); 1253 kfree(fs_info->balance_ctl); 1254 kfree(fs_info->delayed_root); 1255 free_global_roots(fs_info); 1256 btrfs_put_root(fs_info->tree_root); 1257 btrfs_put_root(fs_info->chunk_root); 1258 btrfs_put_root(fs_info->dev_root); 1259 btrfs_put_root(fs_info->quota_root); 1260 btrfs_put_root(fs_info->uuid_root); 1261 btrfs_put_root(fs_info->fs_root); 1262 btrfs_put_root(fs_info->data_reloc_root); 1263 btrfs_put_root(fs_info->block_group_root); 1264 btrfs_check_leaked_roots(fs_info); 1265 btrfs_extent_buffer_leak_debug_check(fs_info); 1266 kfree(fs_info->super_copy); 1267 kfree(fs_info->super_for_commit); 1268 kfree(fs_info->subpage_info); 1269 kvfree(fs_info); 1270 } 1271 1272 1273 /* 1274 * Get an in-memory reference of a root structure. 1275 * 1276 * For essential trees like root/extent tree, we grab it from fs_info directly. 1277 * For subvolume trees, we check the cached filesystem roots first. If not 1278 * found, then read it from disk and add it to cached fs roots. 1279 * 1280 * Caller should release the root by calling btrfs_put_root() after the usage. 1281 * 1282 * NOTE: Reloc and log trees can't be read by this function as they share the 1283 * same root objectid. 1284 * 1285 * @objectid: root id 1286 * @anon_dev: preallocated anonymous block device number for new roots, 1287 * pass 0 for new allocation. 1288 * @check_ref: whether to check root item references, If true, return -ENOENT 1289 * for orphan roots 1290 */ 1291 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1292 u64 objectid, dev_t anon_dev, 1293 bool check_ref) 1294 { 1295 struct btrfs_root *root; 1296 struct btrfs_path *path; 1297 struct btrfs_key key; 1298 int ret; 1299 1300 root = btrfs_get_global_root(fs_info, objectid); 1301 if (root) 1302 return root; 1303 again: 1304 root = btrfs_lookup_fs_root(fs_info, objectid); 1305 if (root) { 1306 /* Shouldn't get preallocated anon_dev for cached roots */ 1307 ASSERT(!anon_dev); 1308 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1309 btrfs_put_root(root); 1310 return ERR_PTR(-ENOENT); 1311 } 1312 return root; 1313 } 1314 1315 key.objectid = objectid; 1316 key.type = BTRFS_ROOT_ITEM_KEY; 1317 key.offset = (u64)-1; 1318 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1319 if (IS_ERR(root)) 1320 return root; 1321 1322 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1323 ret = -ENOENT; 1324 goto fail; 1325 } 1326 1327 ret = btrfs_init_fs_root(root, anon_dev); 1328 if (ret) 1329 goto fail; 1330 1331 path = btrfs_alloc_path(); 1332 if (!path) { 1333 ret = -ENOMEM; 1334 goto fail; 1335 } 1336 key.objectid = BTRFS_ORPHAN_OBJECTID; 1337 key.type = BTRFS_ORPHAN_ITEM_KEY; 1338 key.offset = objectid; 1339 1340 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1341 btrfs_free_path(path); 1342 if (ret < 0) 1343 goto fail; 1344 if (ret == 0) 1345 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1346 1347 ret = btrfs_insert_fs_root(fs_info, root); 1348 if (ret) { 1349 if (ret == -EEXIST) { 1350 btrfs_put_root(root); 1351 goto again; 1352 } 1353 goto fail; 1354 } 1355 return root; 1356 fail: 1357 /* 1358 * If our caller provided us an anonymous device, then it's his 1359 * responsibility to free it in case we fail. So we have to set our 1360 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1361 * and once again by our caller. 1362 */ 1363 if (anon_dev) 1364 root->anon_dev = 0; 1365 btrfs_put_root(root); 1366 return ERR_PTR(ret); 1367 } 1368 1369 /* 1370 * Get in-memory reference of a root structure 1371 * 1372 * @objectid: tree objectid 1373 * @check_ref: if set, verify that the tree exists and the item has at least 1374 * one reference 1375 */ 1376 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1377 u64 objectid, bool check_ref) 1378 { 1379 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1380 } 1381 1382 /* 1383 * Get in-memory reference of a root structure, created as new, optionally pass 1384 * the anonymous block device id 1385 * 1386 * @objectid: tree objectid 1387 * @anon_dev: if zero, allocate a new anonymous block device or use the 1388 * parameter value 1389 */ 1390 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1391 u64 objectid, dev_t anon_dev) 1392 { 1393 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1394 } 1395 1396 /* 1397 * btrfs_get_fs_root_commit_root - return a root for the given objectid 1398 * @fs_info: the fs_info 1399 * @objectid: the objectid we need to lookup 1400 * 1401 * This is exclusively used for backref walking, and exists specifically because 1402 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1403 * creation time, which means we may have to read the tree_root in order to look 1404 * up a fs root that is not in memory. If the root is not in memory we will 1405 * read the tree root commit root and look up the fs root from there. This is a 1406 * temporary root, it will not be inserted into the radix tree as it doesn't 1407 * have the most uptodate information, it'll simply be discarded once the 1408 * backref code is finished using the root. 1409 */ 1410 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1411 struct btrfs_path *path, 1412 u64 objectid) 1413 { 1414 struct btrfs_root *root; 1415 struct btrfs_key key; 1416 1417 ASSERT(path->search_commit_root && path->skip_locking); 1418 1419 /* 1420 * This can return -ENOENT if we ask for a root that doesn't exist, but 1421 * since this is called via the backref walking code we won't be looking 1422 * up a root that doesn't exist, unless there's corruption. So if root 1423 * != NULL just return it. 1424 */ 1425 root = btrfs_get_global_root(fs_info, objectid); 1426 if (root) 1427 return root; 1428 1429 root = btrfs_lookup_fs_root(fs_info, objectid); 1430 if (root) 1431 return root; 1432 1433 key.objectid = objectid; 1434 key.type = BTRFS_ROOT_ITEM_KEY; 1435 key.offset = (u64)-1; 1436 root = read_tree_root_path(fs_info->tree_root, path, &key); 1437 btrfs_release_path(path); 1438 1439 return root; 1440 } 1441 1442 static int cleaner_kthread(void *arg) 1443 { 1444 struct btrfs_fs_info *fs_info = arg; 1445 int again; 1446 1447 while (1) { 1448 again = 0; 1449 1450 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1451 1452 /* Make the cleaner go to sleep early. */ 1453 if (btrfs_need_cleaner_sleep(fs_info)) 1454 goto sleep; 1455 1456 /* 1457 * Do not do anything if we might cause open_ctree() to block 1458 * before we have finished mounting the filesystem. 1459 */ 1460 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1461 goto sleep; 1462 1463 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1464 goto sleep; 1465 1466 /* 1467 * Avoid the problem that we change the status of the fs 1468 * during the above check and trylock. 1469 */ 1470 if (btrfs_need_cleaner_sleep(fs_info)) { 1471 mutex_unlock(&fs_info->cleaner_mutex); 1472 goto sleep; 1473 } 1474 1475 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) 1476 btrfs_sysfs_feature_update(fs_info); 1477 1478 btrfs_run_delayed_iputs(fs_info); 1479 1480 again = btrfs_clean_one_deleted_snapshot(fs_info); 1481 mutex_unlock(&fs_info->cleaner_mutex); 1482 1483 /* 1484 * The defragger has dealt with the R/O remount and umount, 1485 * needn't do anything special here. 1486 */ 1487 btrfs_run_defrag_inodes(fs_info); 1488 1489 /* 1490 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1491 * with relocation (btrfs_relocate_chunk) and relocation 1492 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1493 * after acquiring fs_info->reclaim_bgs_lock. So we 1494 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1495 * unused block groups. 1496 */ 1497 btrfs_delete_unused_bgs(fs_info); 1498 1499 /* 1500 * Reclaim block groups in the reclaim_bgs list after we deleted 1501 * all unused block_groups. This possibly gives us some more free 1502 * space. 1503 */ 1504 btrfs_reclaim_bgs(fs_info); 1505 sleep: 1506 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1507 if (kthread_should_park()) 1508 kthread_parkme(); 1509 if (kthread_should_stop()) 1510 return 0; 1511 if (!again) { 1512 set_current_state(TASK_INTERRUPTIBLE); 1513 schedule(); 1514 __set_current_state(TASK_RUNNING); 1515 } 1516 } 1517 } 1518 1519 static int transaction_kthread(void *arg) 1520 { 1521 struct btrfs_root *root = arg; 1522 struct btrfs_fs_info *fs_info = root->fs_info; 1523 struct btrfs_trans_handle *trans; 1524 struct btrfs_transaction *cur; 1525 u64 transid; 1526 time64_t delta; 1527 unsigned long delay; 1528 bool cannot_commit; 1529 1530 do { 1531 cannot_commit = false; 1532 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1533 mutex_lock(&fs_info->transaction_kthread_mutex); 1534 1535 spin_lock(&fs_info->trans_lock); 1536 cur = fs_info->running_transaction; 1537 if (!cur) { 1538 spin_unlock(&fs_info->trans_lock); 1539 goto sleep; 1540 } 1541 1542 delta = ktime_get_seconds() - cur->start_time; 1543 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1544 cur->state < TRANS_STATE_COMMIT_START && 1545 delta < fs_info->commit_interval) { 1546 spin_unlock(&fs_info->trans_lock); 1547 delay -= msecs_to_jiffies((delta - 1) * 1000); 1548 delay = min(delay, 1549 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1550 goto sleep; 1551 } 1552 transid = cur->transid; 1553 spin_unlock(&fs_info->trans_lock); 1554 1555 /* If the file system is aborted, this will always fail. */ 1556 trans = btrfs_attach_transaction(root); 1557 if (IS_ERR(trans)) { 1558 if (PTR_ERR(trans) != -ENOENT) 1559 cannot_commit = true; 1560 goto sleep; 1561 } 1562 if (transid == trans->transid) { 1563 btrfs_commit_transaction(trans); 1564 } else { 1565 btrfs_end_transaction(trans); 1566 } 1567 sleep: 1568 wake_up_process(fs_info->cleaner_kthread); 1569 mutex_unlock(&fs_info->transaction_kthread_mutex); 1570 1571 if (BTRFS_FS_ERROR(fs_info)) 1572 btrfs_cleanup_transaction(fs_info); 1573 if (!kthread_should_stop() && 1574 (!btrfs_transaction_blocked(fs_info) || 1575 cannot_commit)) 1576 schedule_timeout_interruptible(delay); 1577 } while (!kthread_should_stop()); 1578 return 0; 1579 } 1580 1581 /* 1582 * This will find the highest generation in the array of root backups. The 1583 * index of the highest array is returned, or -EINVAL if we can't find 1584 * anything. 1585 * 1586 * We check to make sure the array is valid by comparing the 1587 * generation of the latest root in the array with the generation 1588 * in the super block. If they don't match we pitch it. 1589 */ 1590 static int find_newest_super_backup(struct btrfs_fs_info *info) 1591 { 1592 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1593 u64 cur; 1594 struct btrfs_root_backup *root_backup; 1595 int i; 1596 1597 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1598 root_backup = info->super_copy->super_roots + i; 1599 cur = btrfs_backup_tree_root_gen(root_backup); 1600 if (cur == newest_gen) 1601 return i; 1602 } 1603 1604 return -EINVAL; 1605 } 1606 1607 /* 1608 * copy all the root pointers into the super backup array. 1609 * this will bump the backup pointer by one when it is 1610 * done 1611 */ 1612 static void backup_super_roots(struct btrfs_fs_info *info) 1613 { 1614 const int next_backup = info->backup_root_index; 1615 struct btrfs_root_backup *root_backup; 1616 1617 root_backup = info->super_for_commit->super_roots + next_backup; 1618 1619 /* 1620 * make sure all of our padding and empty slots get zero filled 1621 * regardless of which ones we use today 1622 */ 1623 memset(root_backup, 0, sizeof(*root_backup)); 1624 1625 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1626 1627 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1628 btrfs_set_backup_tree_root_gen(root_backup, 1629 btrfs_header_generation(info->tree_root->node)); 1630 1631 btrfs_set_backup_tree_root_level(root_backup, 1632 btrfs_header_level(info->tree_root->node)); 1633 1634 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1635 btrfs_set_backup_chunk_root_gen(root_backup, 1636 btrfs_header_generation(info->chunk_root->node)); 1637 btrfs_set_backup_chunk_root_level(root_backup, 1638 btrfs_header_level(info->chunk_root->node)); 1639 1640 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1641 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1642 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1643 1644 btrfs_set_backup_extent_root(root_backup, 1645 extent_root->node->start); 1646 btrfs_set_backup_extent_root_gen(root_backup, 1647 btrfs_header_generation(extent_root->node)); 1648 btrfs_set_backup_extent_root_level(root_backup, 1649 btrfs_header_level(extent_root->node)); 1650 1651 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1652 btrfs_set_backup_csum_root_gen(root_backup, 1653 btrfs_header_generation(csum_root->node)); 1654 btrfs_set_backup_csum_root_level(root_backup, 1655 btrfs_header_level(csum_root->node)); 1656 } 1657 1658 /* 1659 * we might commit during log recovery, which happens before we set 1660 * the fs_root. Make sure it is valid before we fill it in. 1661 */ 1662 if (info->fs_root && info->fs_root->node) { 1663 btrfs_set_backup_fs_root(root_backup, 1664 info->fs_root->node->start); 1665 btrfs_set_backup_fs_root_gen(root_backup, 1666 btrfs_header_generation(info->fs_root->node)); 1667 btrfs_set_backup_fs_root_level(root_backup, 1668 btrfs_header_level(info->fs_root->node)); 1669 } 1670 1671 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1672 btrfs_set_backup_dev_root_gen(root_backup, 1673 btrfs_header_generation(info->dev_root->node)); 1674 btrfs_set_backup_dev_root_level(root_backup, 1675 btrfs_header_level(info->dev_root->node)); 1676 1677 btrfs_set_backup_total_bytes(root_backup, 1678 btrfs_super_total_bytes(info->super_copy)); 1679 btrfs_set_backup_bytes_used(root_backup, 1680 btrfs_super_bytes_used(info->super_copy)); 1681 btrfs_set_backup_num_devices(root_backup, 1682 btrfs_super_num_devices(info->super_copy)); 1683 1684 /* 1685 * if we don't copy this out to the super_copy, it won't get remembered 1686 * for the next commit 1687 */ 1688 memcpy(&info->super_copy->super_roots, 1689 &info->super_for_commit->super_roots, 1690 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1691 } 1692 1693 /* 1694 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 1695 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1696 * 1697 * fs_info - filesystem whose backup roots need to be read 1698 * priority - priority of backup root required 1699 * 1700 * Returns backup root index on success and -EINVAL otherwise. 1701 */ 1702 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1703 { 1704 int backup_index = find_newest_super_backup(fs_info); 1705 struct btrfs_super_block *super = fs_info->super_copy; 1706 struct btrfs_root_backup *root_backup; 1707 1708 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1709 if (priority == 0) 1710 return backup_index; 1711 1712 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1713 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1714 } else { 1715 return -EINVAL; 1716 } 1717 1718 root_backup = super->super_roots + backup_index; 1719 1720 btrfs_set_super_generation(super, 1721 btrfs_backup_tree_root_gen(root_backup)); 1722 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1723 btrfs_set_super_root_level(super, 1724 btrfs_backup_tree_root_level(root_backup)); 1725 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1726 1727 /* 1728 * Fixme: the total bytes and num_devices need to match or we should 1729 * need a fsck 1730 */ 1731 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1732 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1733 1734 return backup_index; 1735 } 1736 1737 /* helper to cleanup workers */ 1738 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1739 { 1740 btrfs_destroy_workqueue(fs_info->fixup_workers); 1741 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1742 btrfs_destroy_workqueue(fs_info->workers); 1743 if (fs_info->endio_workers) 1744 destroy_workqueue(fs_info->endio_workers); 1745 if (fs_info->rmw_workers) 1746 destroy_workqueue(fs_info->rmw_workers); 1747 if (fs_info->compressed_write_workers) 1748 destroy_workqueue(fs_info->compressed_write_workers); 1749 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1750 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1751 btrfs_destroy_workqueue(fs_info->delayed_workers); 1752 btrfs_destroy_workqueue(fs_info->caching_workers); 1753 btrfs_destroy_workqueue(fs_info->flush_workers); 1754 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1755 if (fs_info->discard_ctl.discard_workers) 1756 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1757 /* 1758 * Now that all other work queues are destroyed, we can safely destroy 1759 * the queues used for metadata I/O, since tasks from those other work 1760 * queues can do metadata I/O operations. 1761 */ 1762 if (fs_info->endio_meta_workers) 1763 destroy_workqueue(fs_info->endio_meta_workers); 1764 } 1765 1766 static void free_root_extent_buffers(struct btrfs_root *root) 1767 { 1768 if (root) { 1769 free_extent_buffer(root->node); 1770 free_extent_buffer(root->commit_root); 1771 root->node = NULL; 1772 root->commit_root = NULL; 1773 } 1774 } 1775 1776 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 1777 { 1778 struct btrfs_root *root, *tmp; 1779 1780 rbtree_postorder_for_each_entry_safe(root, tmp, 1781 &fs_info->global_root_tree, 1782 rb_node) 1783 free_root_extent_buffers(root); 1784 } 1785 1786 /* helper to cleanup tree roots */ 1787 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1788 { 1789 free_root_extent_buffers(info->tree_root); 1790 1791 free_global_root_pointers(info); 1792 free_root_extent_buffers(info->dev_root); 1793 free_root_extent_buffers(info->quota_root); 1794 free_root_extent_buffers(info->uuid_root); 1795 free_root_extent_buffers(info->fs_root); 1796 free_root_extent_buffers(info->data_reloc_root); 1797 free_root_extent_buffers(info->block_group_root); 1798 if (free_chunk_root) 1799 free_root_extent_buffers(info->chunk_root); 1800 } 1801 1802 void btrfs_put_root(struct btrfs_root *root) 1803 { 1804 if (!root) 1805 return; 1806 1807 if (refcount_dec_and_test(&root->refs)) { 1808 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 1809 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 1810 if (root->anon_dev) 1811 free_anon_bdev(root->anon_dev); 1812 free_root_extent_buffers(root); 1813 #ifdef CONFIG_BTRFS_DEBUG 1814 spin_lock(&root->fs_info->fs_roots_radix_lock); 1815 list_del_init(&root->leak_list); 1816 spin_unlock(&root->fs_info->fs_roots_radix_lock); 1817 #endif 1818 kfree(root); 1819 } 1820 } 1821 1822 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 1823 { 1824 int ret; 1825 struct btrfs_root *gang[8]; 1826 int i; 1827 1828 while (!list_empty(&fs_info->dead_roots)) { 1829 gang[0] = list_entry(fs_info->dead_roots.next, 1830 struct btrfs_root, root_list); 1831 list_del(&gang[0]->root_list); 1832 1833 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 1834 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 1835 btrfs_put_root(gang[0]); 1836 } 1837 1838 while (1) { 1839 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 1840 (void **)gang, 0, 1841 ARRAY_SIZE(gang)); 1842 if (!ret) 1843 break; 1844 for (i = 0; i < ret; i++) 1845 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 1846 } 1847 } 1848 1849 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 1850 { 1851 mutex_init(&fs_info->scrub_lock); 1852 atomic_set(&fs_info->scrubs_running, 0); 1853 atomic_set(&fs_info->scrub_pause_req, 0); 1854 atomic_set(&fs_info->scrubs_paused, 0); 1855 atomic_set(&fs_info->scrub_cancel_req, 0); 1856 init_waitqueue_head(&fs_info->scrub_pause_wait); 1857 refcount_set(&fs_info->scrub_workers_refcnt, 0); 1858 } 1859 1860 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 1861 { 1862 spin_lock_init(&fs_info->balance_lock); 1863 mutex_init(&fs_info->balance_mutex); 1864 atomic_set(&fs_info->balance_pause_req, 0); 1865 atomic_set(&fs_info->balance_cancel_req, 0); 1866 fs_info->balance_ctl = NULL; 1867 init_waitqueue_head(&fs_info->balance_wait_q); 1868 atomic_set(&fs_info->reloc_cancel_req, 0); 1869 } 1870 1871 static int btrfs_init_btree_inode(struct super_block *sb) 1872 { 1873 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1874 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 1875 fs_info->tree_root); 1876 struct inode *inode; 1877 1878 inode = new_inode(sb); 1879 if (!inode) 1880 return -ENOMEM; 1881 1882 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 1883 set_nlink(inode, 1); 1884 /* 1885 * we set the i_size on the btree inode to the max possible int. 1886 * the real end of the address space is determined by all of 1887 * the devices in the system 1888 */ 1889 inode->i_size = OFFSET_MAX; 1890 inode->i_mapping->a_ops = &btree_aops; 1891 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); 1892 1893 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 1894 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 1895 IO_TREE_BTREE_INODE_IO); 1896 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 1897 1898 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 1899 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID; 1900 BTRFS_I(inode)->location.type = 0; 1901 BTRFS_I(inode)->location.offset = 0; 1902 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 1903 __insert_inode_hash(inode, hash); 1904 fs_info->btree_inode = inode; 1905 1906 return 0; 1907 } 1908 1909 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 1910 { 1911 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 1912 init_rwsem(&fs_info->dev_replace.rwsem); 1913 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 1914 } 1915 1916 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 1917 { 1918 spin_lock_init(&fs_info->qgroup_lock); 1919 mutex_init(&fs_info->qgroup_ioctl_lock); 1920 fs_info->qgroup_tree = RB_ROOT; 1921 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 1922 fs_info->qgroup_seq = 1; 1923 fs_info->qgroup_ulist = NULL; 1924 fs_info->qgroup_rescan_running = false; 1925 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL; 1926 mutex_init(&fs_info->qgroup_rescan_lock); 1927 } 1928 1929 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 1930 { 1931 u32 max_active = fs_info->thread_pool_size; 1932 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 1933 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE; 1934 1935 fs_info->workers = 1936 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 1937 1938 fs_info->delalloc_workers = 1939 btrfs_alloc_workqueue(fs_info, "delalloc", 1940 flags, max_active, 2); 1941 1942 fs_info->flush_workers = 1943 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 1944 flags, max_active, 0); 1945 1946 fs_info->caching_workers = 1947 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 1948 1949 fs_info->fixup_workers = 1950 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags); 1951 1952 fs_info->endio_workers = 1953 alloc_workqueue("btrfs-endio", flags, max_active); 1954 fs_info->endio_meta_workers = 1955 alloc_workqueue("btrfs-endio-meta", flags, max_active); 1956 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 1957 fs_info->endio_write_workers = 1958 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 1959 max_active, 2); 1960 fs_info->compressed_write_workers = 1961 alloc_workqueue("btrfs-compressed-write", flags, max_active); 1962 fs_info->endio_freespace_worker = 1963 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 1964 max_active, 0); 1965 fs_info->delayed_workers = 1966 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 1967 max_active, 0); 1968 fs_info->qgroup_rescan_workers = 1969 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan", 1970 ordered_flags); 1971 fs_info->discard_ctl.discard_workers = 1972 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE); 1973 1974 if (!(fs_info->workers && 1975 fs_info->delalloc_workers && fs_info->flush_workers && 1976 fs_info->endio_workers && fs_info->endio_meta_workers && 1977 fs_info->compressed_write_workers && 1978 fs_info->endio_write_workers && 1979 fs_info->endio_freespace_worker && fs_info->rmw_workers && 1980 fs_info->caching_workers && fs_info->fixup_workers && 1981 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 1982 fs_info->discard_ctl.discard_workers)) { 1983 return -ENOMEM; 1984 } 1985 1986 return 0; 1987 } 1988 1989 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 1990 { 1991 struct crypto_shash *csum_shash; 1992 const char *csum_driver = btrfs_super_csum_driver(csum_type); 1993 1994 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 1995 1996 if (IS_ERR(csum_shash)) { 1997 btrfs_err(fs_info, "error allocating %s hash for checksum", 1998 csum_driver); 1999 return PTR_ERR(csum_shash); 2000 } 2001 2002 fs_info->csum_shash = csum_shash; 2003 2004 /* 2005 * Check if the checksum implementation is a fast accelerated one. 2006 * As-is this is a bit of a hack and should be replaced once the csum 2007 * implementations provide that information themselves. 2008 */ 2009 switch (csum_type) { 2010 case BTRFS_CSUM_TYPE_CRC32: 2011 if (!strstr(crypto_shash_driver_name(csum_shash), "generic")) 2012 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2013 break; 2014 case BTRFS_CSUM_TYPE_XXHASH: 2015 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2016 break; 2017 default: 2018 break; 2019 } 2020 2021 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2022 btrfs_super_csum_name(csum_type), 2023 crypto_shash_driver_name(csum_shash)); 2024 return 0; 2025 } 2026 2027 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2028 struct btrfs_fs_devices *fs_devices) 2029 { 2030 int ret; 2031 struct btrfs_tree_parent_check check = { 0 }; 2032 struct btrfs_root *log_tree_root; 2033 struct btrfs_super_block *disk_super = fs_info->super_copy; 2034 u64 bytenr = btrfs_super_log_root(disk_super); 2035 int level = btrfs_super_log_root_level(disk_super); 2036 2037 if (fs_devices->rw_devices == 0) { 2038 btrfs_warn(fs_info, "log replay required on RO media"); 2039 return -EIO; 2040 } 2041 2042 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2043 GFP_KERNEL); 2044 if (!log_tree_root) 2045 return -ENOMEM; 2046 2047 check.level = level; 2048 check.transid = fs_info->generation + 1; 2049 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2050 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2051 if (IS_ERR(log_tree_root->node)) { 2052 btrfs_warn(fs_info, "failed to read log tree"); 2053 ret = PTR_ERR(log_tree_root->node); 2054 log_tree_root->node = NULL; 2055 btrfs_put_root(log_tree_root); 2056 return ret; 2057 } 2058 if (!extent_buffer_uptodate(log_tree_root->node)) { 2059 btrfs_err(fs_info, "failed to read log tree"); 2060 btrfs_put_root(log_tree_root); 2061 return -EIO; 2062 } 2063 2064 /* returns with log_tree_root freed on success */ 2065 ret = btrfs_recover_log_trees(log_tree_root); 2066 if (ret) { 2067 btrfs_handle_fs_error(fs_info, ret, 2068 "Failed to recover log tree"); 2069 btrfs_put_root(log_tree_root); 2070 return ret; 2071 } 2072 2073 if (sb_rdonly(fs_info->sb)) { 2074 ret = btrfs_commit_super(fs_info); 2075 if (ret) 2076 return ret; 2077 } 2078 2079 return 0; 2080 } 2081 2082 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2083 struct btrfs_path *path, u64 objectid, 2084 const char *name) 2085 { 2086 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2087 struct btrfs_root *root; 2088 u64 max_global_id = 0; 2089 int ret; 2090 struct btrfs_key key = { 2091 .objectid = objectid, 2092 .type = BTRFS_ROOT_ITEM_KEY, 2093 .offset = 0, 2094 }; 2095 bool found = false; 2096 2097 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2098 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2099 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2100 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2101 return 0; 2102 } 2103 2104 while (1) { 2105 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2106 if (ret < 0) 2107 break; 2108 2109 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2110 ret = btrfs_next_leaf(tree_root, path); 2111 if (ret) { 2112 if (ret > 0) 2113 ret = 0; 2114 break; 2115 } 2116 } 2117 ret = 0; 2118 2119 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2120 if (key.objectid != objectid) 2121 break; 2122 btrfs_release_path(path); 2123 2124 /* 2125 * Just worry about this for extent tree, it'll be the same for 2126 * everybody. 2127 */ 2128 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2129 max_global_id = max(max_global_id, key.offset); 2130 2131 found = true; 2132 root = read_tree_root_path(tree_root, path, &key); 2133 if (IS_ERR(root)) { 2134 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2135 ret = PTR_ERR(root); 2136 break; 2137 } 2138 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2139 ret = btrfs_global_root_insert(root); 2140 if (ret) { 2141 btrfs_put_root(root); 2142 break; 2143 } 2144 key.offset++; 2145 } 2146 btrfs_release_path(path); 2147 2148 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2149 fs_info->nr_global_roots = max_global_id + 1; 2150 2151 if (!found || ret) { 2152 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2153 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2154 2155 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2156 ret = ret ? ret : -ENOENT; 2157 else 2158 ret = 0; 2159 btrfs_err(fs_info, "failed to load root %s", name); 2160 } 2161 return ret; 2162 } 2163 2164 static int load_global_roots(struct btrfs_root *tree_root) 2165 { 2166 struct btrfs_path *path; 2167 int ret = 0; 2168 2169 path = btrfs_alloc_path(); 2170 if (!path) 2171 return -ENOMEM; 2172 2173 ret = load_global_roots_objectid(tree_root, path, 2174 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2175 if (ret) 2176 goto out; 2177 ret = load_global_roots_objectid(tree_root, path, 2178 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2179 if (ret) 2180 goto out; 2181 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2182 goto out; 2183 ret = load_global_roots_objectid(tree_root, path, 2184 BTRFS_FREE_SPACE_TREE_OBJECTID, 2185 "free space"); 2186 out: 2187 btrfs_free_path(path); 2188 return ret; 2189 } 2190 2191 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2192 { 2193 struct btrfs_root *tree_root = fs_info->tree_root; 2194 struct btrfs_root *root; 2195 struct btrfs_key location; 2196 int ret; 2197 2198 BUG_ON(!fs_info->tree_root); 2199 2200 ret = load_global_roots(tree_root); 2201 if (ret) 2202 return ret; 2203 2204 location.type = BTRFS_ROOT_ITEM_KEY; 2205 location.offset = 0; 2206 2207 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2208 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2209 root = btrfs_read_tree_root(tree_root, &location); 2210 if (IS_ERR(root)) { 2211 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2212 ret = PTR_ERR(root); 2213 goto out; 2214 } 2215 } else { 2216 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2217 fs_info->block_group_root = root; 2218 } 2219 } 2220 2221 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2222 root = btrfs_read_tree_root(tree_root, &location); 2223 if (IS_ERR(root)) { 2224 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2225 ret = PTR_ERR(root); 2226 goto out; 2227 } 2228 } else { 2229 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2230 fs_info->dev_root = root; 2231 } 2232 /* Initialize fs_info for all devices in any case */ 2233 ret = btrfs_init_devices_late(fs_info); 2234 if (ret) 2235 goto out; 2236 2237 /* 2238 * This tree can share blocks with some other fs tree during relocation 2239 * and we need a proper setup by btrfs_get_fs_root 2240 */ 2241 root = btrfs_get_fs_root(tree_root->fs_info, 2242 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2243 if (IS_ERR(root)) { 2244 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2245 ret = PTR_ERR(root); 2246 goto out; 2247 } 2248 } else { 2249 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2250 fs_info->data_reloc_root = root; 2251 } 2252 2253 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2254 root = btrfs_read_tree_root(tree_root, &location); 2255 if (!IS_ERR(root)) { 2256 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2257 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2258 fs_info->quota_root = root; 2259 } 2260 2261 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2262 root = btrfs_read_tree_root(tree_root, &location); 2263 if (IS_ERR(root)) { 2264 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2265 ret = PTR_ERR(root); 2266 if (ret != -ENOENT) 2267 goto out; 2268 } 2269 } else { 2270 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2271 fs_info->uuid_root = root; 2272 } 2273 2274 return 0; 2275 out: 2276 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2277 location.objectid, ret); 2278 return ret; 2279 } 2280 2281 /* 2282 * Real super block validation 2283 * NOTE: super csum type and incompat features will not be checked here. 2284 * 2285 * @sb: super block to check 2286 * @mirror_num: the super block number to check its bytenr: 2287 * 0 the primary (1st) sb 2288 * 1, 2 2nd and 3rd backup copy 2289 * -1 skip bytenr check 2290 */ 2291 int btrfs_validate_super(struct btrfs_fs_info *fs_info, 2292 struct btrfs_super_block *sb, int mirror_num) 2293 { 2294 u64 nodesize = btrfs_super_nodesize(sb); 2295 u64 sectorsize = btrfs_super_sectorsize(sb); 2296 int ret = 0; 2297 2298 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2299 btrfs_err(fs_info, "no valid FS found"); 2300 ret = -EINVAL; 2301 } 2302 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2303 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2304 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2305 ret = -EINVAL; 2306 } 2307 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2308 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2309 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2310 ret = -EINVAL; 2311 } 2312 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2313 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2314 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2315 ret = -EINVAL; 2316 } 2317 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2318 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2319 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2320 ret = -EINVAL; 2321 } 2322 2323 /* 2324 * Check sectorsize and nodesize first, other check will need it. 2325 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2326 */ 2327 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2328 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2329 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2330 ret = -EINVAL; 2331 } 2332 2333 /* 2334 * We only support at most two sectorsizes: 4K and PAGE_SIZE. 2335 * 2336 * We can support 16K sectorsize with 64K page size without problem, 2337 * but such sectorsize/pagesize combination doesn't make much sense. 2338 * 4K will be our future standard, PAGE_SIZE is supported from the very 2339 * beginning. 2340 */ 2341 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) { 2342 btrfs_err(fs_info, 2343 "sectorsize %llu not yet supported for page size %lu", 2344 sectorsize, PAGE_SIZE); 2345 ret = -EINVAL; 2346 } 2347 2348 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2349 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2350 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2351 ret = -EINVAL; 2352 } 2353 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2354 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2355 le32_to_cpu(sb->__unused_leafsize), nodesize); 2356 ret = -EINVAL; 2357 } 2358 2359 /* Root alignment check */ 2360 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2361 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2362 btrfs_super_root(sb)); 2363 ret = -EINVAL; 2364 } 2365 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2366 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2367 btrfs_super_chunk_root(sb)); 2368 ret = -EINVAL; 2369 } 2370 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2371 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2372 btrfs_super_log_root(sb)); 2373 ret = -EINVAL; 2374 } 2375 2376 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2377 BTRFS_FSID_SIZE)) { 2378 btrfs_err(fs_info, 2379 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2380 fs_info->super_copy->fsid, fs_info->fs_devices->fsid); 2381 ret = -EINVAL; 2382 } 2383 2384 if (btrfs_fs_incompat(fs_info, METADATA_UUID) && 2385 memcmp(fs_info->fs_devices->metadata_uuid, 2386 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) { 2387 btrfs_err(fs_info, 2388 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2389 fs_info->super_copy->metadata_uuid, 2390 fs_info->fs_devices->metadata_uuid); 2391 ret = -EINVAL; 2392 } 2393 2394 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2395 BTRFS_FSID_SIZE) != 0) { 2396 btrfs_err(fs_info, 2397 "dev_item UUID does not match metadata fsid: %pU != %pU", 2398 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2399 ret = -EINVAL; 2400 } 2401 2402 /* 2403 * Artificial requirement for block-group-tree to force newer features 2404 * (free-space-tree, no-holes) so the test matrix is smaller. 2405 */ 2406 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2407 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2408 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2409 btrfs_err(fs_info, 2410 "block-group-tree feature requires fres-space-tree and no-holes"); 2411 ret = -EINVAL; 2412 } 2413 2414 /* 2415 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2416 * done later 2417 */ 2418 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2419 btrfs_err(fs_info, "bytes_used is too small %llu", 2420 btrfs_super_bytes_used(sb)); 2421 ret = -EINVAL; 2422 } 2423 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2424 btrfs_err(fs_info, "invalid stripesize %u", 2425 btrfs_super_stripesize(sb)); 2426 ret = -EINVAL; 2427 } 2428 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2429 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2430 btrfs_super_num_devices(sb)); 2431 if (btrfs_super_num_devices(sb) == 0) { 2432 btrfs_err(fs_info, "number of devices is 0"); 2433 ret = -EINVAL; 2434 } 2435 2436 if (mirror_num >= 0 && 2437 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2438 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2439 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2440 ret = -EINVAL; 2441 } 2442 2443 /* 2444 * Obvious sys_chunk_array corruptions, it must hold at least one key 2445 * and one chunk 2446 */ 2447 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2448 btrfs_err(fs_info, "system chunk array too big %u > %u", 2449 btrfs_super_sys_array_size(sb), 2450 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2451 ret = -EINVAL; 2452 } 2453 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2454 + sizeof(struct btrfs_chunk)) { 2455 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2456 btrfs_super_sys_array_size(sb), 2457 sizeof(struct btrfs_disk_key) 2458 + sizeof(struct btrfs_chunk)); 2459 ret = -EINVAL; 2460 } 2461 2462 /* 2463 * The generation is a global counter, we'll trust it more than the others 2464 * but it's still possible that it's the one that's wrong. 2465 */ 2466 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2467 btrfs_warn(fs_info, 2468 "suspicious: generation < chunk_root_generation: %llu < %llu", 2469 btrfs_super_generation(sb), 2470 btrfs_super_chunk_root_generation(sb)); 2471 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2472 && btrfs_super_cache_generation(sb) != (u64)-1) 2473 btrfs_warn(fs_info, 2474 "suspicious: generation < cache_generation: %llu < %llu", 2475 btrfs_super_generation(sb), 2476 btrfs_super_cache_generation(sb)); 2477 2478 return ret; 2479 } 2480 2481 /* 2482 * Validation of super block at mount time. 2483 * Some checks already done early at mount time, like csum type and incompat 2484 * flags will be skipped. 2485 */ 2486 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2487 { 2488 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2489 } 2490 2491 /* 2492 * Validation of super block at write time. 2493 * Some checks like bytenr check will be skipped as their values will be 2494 * overwritten soon. 2495 * Extra checks like csum type and incompat flags will be done here. 2496 */ 2497 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2498 struct btrfs_super_block *sb) 2499 { 2500 int ret; 2501 2502 ret = btrfs_validate_super(fs_info, sb, -1); 2503 if (ret < 0) 2504 goto out; 2505 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2506 ret = -EUCLEAN; 2507 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2508 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2509 goto out; 2510 } 2511 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2512 ret = -EUCLEAN; 2513 btrfs_err(fs_info, 2514 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2515 btrfs_super_incompat_flags(sb), 2516 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2517 goto out; 2518 } 2519 out: 2520 if (ret < 0) 2521 btrfs_err(fs_info, 2522 "super block corruption detected before writing it to disk"); 2523 return ret; 2524 } 2525 2526 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2527 { 2528 struct btrfs_tree_parent_check check = { 2529 .level = level, 2530 .transid = gen, 2531 .owner_root = root->root_key.objectid 2532 }; 2533 int ret = 0; 2534 2535 root->node = read_tree_block(root->fs_info, bytenr, &check); 2536 if (IS_ERR(root->node)) { 2537 ret = PTR_ERR(root->node); 2538 root->node = NULL; 2539 return ret; 2540 } 2541 if (!extent_buffer_uptodate(root->node)) { 2542 free_extent_buffer(root->node); 2543 root->node = NULL; 2544 return -EIO; 2545 } 2546 2547 btrfs_set_root_node(&root->root_item, root->node); 2548 root->commit_root = btrfs_root_node(root); 2549 btrfs_set_root_refs(&root->root_item, 1); 2550 return ret; 2551 } 2552 2553 static int load_important_roots(struct btrfs_fs_info *fs_info) 2554 { 2555 struct btrfs_super_block *sb = fs_info->super_copy; 2556 u64 gen, bytenr; 2557 int level, ret; 2558 2559 bytenr = btrfs_super_root(sb); 2560 gen = btrfs_super_generation(sb); 2561 level = btrfs_super_root_level(sb); 2562 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2563 if (ret) { 2564 btrfs_warn(fs_info, "couldn't read tree root"); 2565 return ret; 2566 } 2567 return 0; 2568 } 2569 2570 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2571 { 2572 int backup_index = find_newest_super_backup(fs_info); 2573 struct btrfs_super_block *sb = fs_info->super_copy; 2574 struct btrfs_root *tree_root = fs_info->tree_root; 2575 bool handle_error = false; 2576 int ret = 0; 2577 int i; 2578 2579 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2580 if (handle_error) { 2581 if (!IS_ERR(tree_root->node)) 2582 free_extent_buffer(tree_root->node); 2583 tree_root->node = NULL; 2584 2585 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2586 break; 2587 2588 free_root_pointers(fs_info, 0); 2589 2590 /* 2591 * Don't use the log in recovery mode, it won't be 2592 * valid 2593 */ 2594 btrfs_set_super_log_root(sb, 0); 2595 2596 /* We can't trust the free space cache either */ 2597 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2598 2599 btrfs_warn(fs_info, "try to load backup roots slot %d", i); 2600 ret = read_backup_root(fs_info, i); 2601 backup_index = ret; 2602 if (ret < 0) 2603 return ret; 2604 } 2605 2606 ret = load_important_roots(fs_info); 2607 if (ret) { 2608 handle_error = true; 2609 continue; 2610 } 2611 2612 /* 2613 * No need to hold btrfs_root::objectid_mutex since the fs 2614 * hasn't been fully initialised and we are the only user 2615 */ 2616 ret = btrfs_init_root_free_objectid(tree_root); 2617 if (ret < 0) { 2618 handle_error = true; 2619 continue; 2620 } 2621 2622 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2623 2624 ret = btrfs_read_roots(fs_info); 2625 if (ret < 0) { 2626 handle_error = true; 2627 continue; 2628 } 2629 2630 /* All successful */ 2631 fs_info->generation = btrfs_header_generation(tree_root->node); 2632 fs_info->last_trans_committed = fs_info->generation; 2633 fs_info->last_reloc_trans = 0; 2634 2635 /* Always begin writing backup roots after the one being used */ 2636 if (backup_index < 0) { 2637 fs_info->backup_root_index = 0; 2638 } else { 2639 fs_info->backup_root_index = backup_index + 1; 2640 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2641 } 2642 break; 2643 } 2644 2645 return ret; 2646 } 2647 2648 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2649 { 2650 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2651 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2652 INIT_LIST_HEAD(&fs_info->trans_list); 2653 INIT_LIST_HEAD(&fs_info->dead_roots); 2654 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2655 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2656 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2657 spin_lock_init(&fs_info->delalloc_root_lock); 2658 spin_lock_init(&fs_info->trans_lock); 2659 spin_lock_init(&fs_info->fs_roots_radix_lock); 2660 spin_lock_init(&fs_info->delayed_iput_lock); 2661 spin_lock_init(&fs_info->defrag_inodes_lock); 2662 spin_lock_init(&fs_info->super_lock); 2663 spin_lock_init(&fs_info->buffer_lock); 2664 spin_lock_init(&fs_info->unused_bgs_lock); 2665 spin_lock_init(&fs_info->treelog_bg_lock); 2666 spin_lock_init(&fs_info->zone_active_bgs_lock); 2667 spin_lock_init(&fs_info->relocation_bg_lock); 2668 rwlock_init(&fs_info->tree_mod_log_lock); 2669 rwlock_init(&fs_info->global_root_lock); 2670 mutex_init(&fs_info->unused_bg_unpin_mutex); 2671 mutex_init(&fs_info->reclaim_bgs_lock); 2672 mutex_init(&fs_info->reloc_mutex); 2673 mutex_init(&fs_info->delalloc_root_mutex); 2674 mutex_init(&fs_info->zoned_meta_io_lock); 2675 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2676 seqlock_init(&fs_info->profiles_lock); 2677 2678 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2679 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2680 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2681 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2682 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start, 2683 BTRFS_LOCKDEP_TRANS_COMMIT_START); 2684 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2685 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2686 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 2687 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2688 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 2689 BTRFS_LOCKDEP_TRANS_COMPLETED); 2690 2691 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2692 INIT_LIST_HEAD(&fs_info->space_info); 2693 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2694 INIT_LIST_HEAD(&fs_info->unused_bgs); 2695 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2696 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2697 #ifdef CONFIG_BTRFS_DEBUG 2698 INIT_LIST_HEAD(&fs_info->allocated_roots); 2699 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2700 spin_lock_init(&fs_info->eb_leak_lock); 2701 #endif 2702 extent_map_tree_init(&fs_info->mapping_tree); 2703 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2704 BTRFS_BLOCK_RSV_GLOBAL); 2705 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2706 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2707 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2708 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2709 BTRFS_BLOCK_RSV_DELOPS); 2710 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2711 BTRFS_BLOCK_RSV_DELREFS); 2712 2713 atomic_set(&fs_info->async_delalloc_pages, 0); 2714 atomic_set(&fs_info->defrag_running, 0); 2715 atomic_set(&fs_info->nr_delayed_iputs, 0); 2716 atomic64_set(&fs_info->tree_mod_seq, 0); 2717 fs_info->global_root_tree = RB_ROOT; 2718 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2719 fs_info->metadata_ratio = 0; 2720 fs_info->defrag_inodes = RB_ROOT; 2721 atomic64_set(&fs_info->free_chunk_space, 0); 2722 fs_info->tree_mod_log = RB_ROOT; 2723 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2724 btrfs_init_ref_verify(fs_info); 2725 2726 fs_info->thread_pool_size = min_t(unsigned long, 2727 num_online_cpus() + 2, 8); 2728 2729 INIT_LIST_HEAD(&fs_info->ordered_roots); 2730 spin_lock_init(&fs_info->ordered_root_lock); 2731 2732 btrfs_init_scrub(fs_info); 2733 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2734 fs_info->check_integrity_print_mask = 0; 2735 #endif 2736 btrfs_init_balance(fs_info); 2737 btrfs_init_async_reclaim_work(fs_info); 2738 2739 rwlock_init(&fs_info->block_group_cache_lock); 2740 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 2741 2742 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2743 IO_TREE_FS_EXCLUDED_EXTENTS); 2744 2745 mutex_init(&fs_info->ordered_operations_mutex); 2746 mutex_init(&fs_info->tree_log_mutex); 2747 mutex_init(&fs_info->chunk_mutex); 2748 mutex_init(&fs_info->transaction_kthread_mutex); 2749 mutex_init(&fs_info->cleaner_mutex); 2750 mutex_init(&fs_info->ro_block_group_mutex); 2751 init_rwsem(&fs_info->commit_root_sem); 2752 init_rwsem(&fs_info->cleanup_work_sem); 2753 init_rwsem(&fs_info->subvol_sem); 2754 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2755 2756 btrfs_init_dev_replace_locks(fs_info); 2757 btrfs_init_qgroup(fs_info); 2758 btrfs_discard_init(fs_info); 2759 2760 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2761 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2762 2763 init_waitqueue_head(&fs_info->transaction_throttle); 2764 init_waitqueue_head(&fs_info->transaction_wait); 2765 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2766 init_waitqueue_head(&fs_info->async_submit_wait); 2767 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2768 2769 /* Usable values until the real ones are cached from the superblock */ 2770 fs_info->nodesize = 4096; 2771 fs_info->sectorsize = 4096; 2772 fs_info->sectorsize_bits = ilog2(4096); 2773 fs_info->stripesize = 4096; 2774 2775 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 2776 2777 spin_lock_init(&fs_info->swapfile_pins_lock); 2778 fs_info->swapfile_pins = RB_ROOT; 2779 2780 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 2781 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 2782 } 2783 2784 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2785 { 2786 int ret; 2787 2788 fs_info->sb = sb; 2789 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2790 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2791 2792 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 2793 if (ret) 2794 return ret; 2795 2796 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2797 if (ret) 2798 return ret; 2799 2800 fs_info->dirty_metadata_batch = PAGE_SIZE * 2801 (1 + ilog2(nr_cpu_ids)); 2802 2803 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2804 if (ret) 2805 return ret; 2806 2807 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2808 GFP_KERNEL); 2809 if (ret) 2810 return ret; 2811 2812 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2813 GFP_KERNEL); 2814 if (!fs_info->delayed_root) 2815 return -ENOMEM; 2816 btrfs_init_delayed_root(fs_info->delayed_root); 2817 2818 if (sb_rdonly(sb)) 2819 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2820 2821 return btrfs_alloc_stripe_hash_table(fs_info); 2822 } 2823 2824 static int btrfs_uuid_rescan_kthread(void *data) 2825 { 2826 struct btrfs_fs_info *fs_info = data; 2827 int ret; 2828 2829 /* 2830 * 1st step is to iterate through the existing UUID tree and 2831 * to delete all entries that contain outdated data. 2832 * 2nd step is to add all missing entries to the UUID tree. 2833 */ 2834 ret = btrfs_uuid_tree_iterate(fs_info); 2835 if (ret < 0) { 2836 if (ret != -EINTR) 2837 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2838 ret); 2839 up(&fs_info->uuid_tree_rescan_sem); 2840 return ret; 2841 } 2842 return btrfs_uuid_scan_kthread(data); 2843 } 2844 2845 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2846 { 2847 struct task_struct *task; 2848 2849 down(&fs_info->uuid_tree_rescan_sem); 2850 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2851 if (IS_ERR(task)) { 2852 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2853 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2854 up(&fs_info->uuid_tree_rescan_sem); 2855 return PTR_ERR(task); 2856 } 2857 2858 return 0; 2859 } 2860 2861 /* 2862 * Some options only have meaning at mount time and shouldn't persist across 2863 * remounts, or be displayed. Clear these at the end of mount and remount 2864 * code paths. 2865 */ 2866 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 2867 { 2868 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 2869 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 2870 } 2871 2872 /* 2873 * Mounting logic specific to read-write file systems. Shared by open_ctree 2874 * and btrfs_remount when remounting from read-only to read-write. 2875 */ 2876 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 2877 { 2878 int ret; 2879 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 2880 bool rebuild_free_space_tree = false; 2881 2882 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 2883 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2884 rebuild_free_space_tree = true; 2885 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 2886 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 2887 btrfs_warn(fs_info, "free space tree is invalid"); 2888 rebuild_free_space_tree = true; 2889 } 2890 2891 if (rebuild_free_space_tree) { 2892 btrfs_info(fs_info, "rebuilding free space tree"); 2893 ret = btrfs_rebuild_free_space_tree(fs_info); 2894 if (ret) { 2895 btrfs_warn(fs_info, 2896 "failed to rebuild free space tree: %d", ret); 2897 goto out; 2898 } 2899 } 2900 2901 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 2902 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 2903 btrfs_info(fs_info, "disabling free space tree"); 2904 ret = btrfs_delete_free_space_tree(fs_info); 2905 if (ret) { 2906 btrfs_warn(fs_info, 2907 "failed to disable free space tree: %d", ret); 2908 goto out; 2909 } 2910 } 2911 2912 /* 2913 * btrfs_find_orphan_roots() is responsible for finding all the dead 2914 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 2915 * them into the fs_info->fs_roots_radix tree. This must be done before 2916 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 2917 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 2918 * item before the root's tree is deleted - this means that if we unmount 2919 * or crash before the deletion completes, on the next mount we will not 2920 * delete what remains of the tree because the orphan item does not 2921 * exists anymore, which is what tells us we have a pending deletion. 2922 */ 2923 ret = btrfs_find_orphan_roots(fs_info); 2924 if (ret) 2925 goto out; 2926 2927 ret = btrfs_cleanup_fs_roots(fs_info); 2928 if (ret) 2929 goto out; 2930 2931 down_read(&fs_info->cleanup_work_sem); 2932 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 2933 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 2934 up_read(&fs_info->cleanup_work_sem); 2935 goto out; 2936 } 2937 up_read(&fs_info->cleanup_work_sem); 2938 2939 mutex_lock(&fs_info->cleaner_mutex); 2940 ret = btrfs_recover_relocation(fs_info); 2941 mutex_unlock(&fs_info->cleaner_mutex); 2942 if (ret < 0) { 2943 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 2944 goto out; 2945 } 2946 2947 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 2948 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2949 btrfs_info(fs_info, "creating free space tree"); 2950 ret = btrfs_create_free_space_tree(fs_info); 2951 if (ret) { 2952 btrfs_warn(fs_info, 2953 "failed to create free space tree: %d", ret); 2954 goto out; 2955 } 2956 } 2957 2958 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 2959 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 2960 if (ret) 2961 goto out; 2962 } 2963 2964 ret = btrfs_resume_balance_async(fs_info); 2965 if (ret) 2966 goto out; 2967 2968 ret = btrfs_resume_dev_replace_async(fs_info); 2969 if (ret) { 2970 btrfs_warn(fs_info, "failed to resume dev_replace"); 2971 goto out; 2972 } 2973 2974 btrfs_qgroup_rescan_resume(fs_info); 2975 2976 if (!fs_info->uuid_root) { 2977 btrfs_info(fs_info, "creating UUID tree"); 2978 ret = btrfs_create_uuid_tree(fs_info); 2979 if (ret) { 2980 btrfs_warn(fs_info, 2981 "failed to create the UUID tree %d", ret); 2982 goto out; 2983 } 2984 } 2985 2986 out: 2987 return ret; 2988 } 2989 2990 /* 2991 * Do various sanity and dependency checks of different features. 2992 * 2993 * @is_rw_mount: If the mount is read-write. 2994 * 2995 * This is the place for less strict checks (like for subpage or artificial 2996 * feature dependencies). 2997 * 2998 * For strict checks or possible corruption detection, see 2999 * btrfs_validate_super(). 3000 * 3001 * This should be called after btrfs_parse_options(), as some mount options 3002 * (space cache related) can modify on-disk format like free space tree and 3003 * screw up certain feature dependencies. 3004 */ 3005 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3006 { 3007 struct btrfs_super_block *disk_super = fs_info->super_copy; 3008 u64 incompat = btrfs_super_incompat_flags(disk_super); 3009 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3010 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3011 3012 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3013 btrfs_err(fs_info, 3014 "cannot mount because of unknown incompat features (0x%llx)", 3015 incompat); 3016 return -EINVAL; 3017 } 3018 3019 /* Runtime limitation for mixed block groups. */ 3020 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3021 (fs_info->sectorsize != fs_info->nodesize)) { 3022 btrfs_err(fs_info, 3023 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3024 fs_info->nodesize, fs_info->sectorsize); 3025 return -EINVAL; 3026 } 3027 3028 /* Mixed backref is an always-enabled feature. */ 3029 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3030 3031 /* Set compression related flags just in case. */ 3032 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3033 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3034 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3035 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3036 3037 /* 3038 * An ancient flag, which should really be marked deprecated. 3039 * Such runtime limitation doesn't really need a incompat flag. 3040 */ 3041 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3042 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3043 3044 if (compat_ro_unsupp && is_rw_mount) { 3045 btrfs_err(fs_info, 3046 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3047 compat_ro); 3048 return -EINVAL; 3049 } 3050 3051 /* 3052 * We have unsupported RO compat features, although RO mounted, we 3053 * should not cause any metadata writes, including log replay. 3054 * Or we could screw up whatever the new feature requires. 3055 */ 3056 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3057 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3058 btrfs_err(fs_info, 3059 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3060 compat_ro); 3061 return -EINVAL; 3062 } 3063 3064 /* 3065 * Artificial limitations for block group tree, to force 3066 * block-group-tree to rely on no-holes and free-space-tree. 3067 */ 3068 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3069 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3070 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3071 btrfs_err(fs_info, 3072 "block-group-tree feature requires no-holes and free-space-tree features"); 3073 return -EINVAL; 3074 } 3075 3076 /* 3077 * Subpage runtime limitation on v1 cache. 3078 * 3079 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3080 * we're already defaulting to v2 cache, no need to bother v1 as it's 3081 * going to be deprecated anyway. 3082 */ 3083 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3084 btrfs_warn(fs_info, 3085 "v1 space cache is not supported for page size %lu with sectorsize %u", 3086 PAGE_SIZE, fs_info->sectorsize); 3087 return -EINVAL; 3088 } 3089 3090 /* This can be called by remount, we need to protect the super block. */ 3091 spin_lock(&fs_info->super_lock); 3092 btrfs_set_super_incompat_flags(disk_super, incompat); 3093 spin_unlock(&fs_info->super_lock); 3094 3095 return 0; 3096 } 3097 3098 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3099 char *options) 3100 { 3101 u32 sectorsize; 3102 u32 nodesize; 3103 u32 stripesize; 3104 u64 generation; 3105 u64 features; 3106 u16 csum_type; 3107 struct btrfs_super_block *disk_super; 3108 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3109 struct btrfs_root *tree_root; 3110 struct btrfs_root *chunk_root; 3111 int ret; 3112 int level; 3113 3114 ret = init_mount_fs_info(fs_info, sb); 3115 if (ret) 3116 goto fail; 3117 3118 /* These need to be init'ed before we start creating inodes and such. */ 3119 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3120 GFP_KERNEL); 3121 fs_info->tree_root = tree_root; 3122 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3123 GFP_KERNEL); 3124 fs_info->chunk_root = chunk_root; 3125 if (!tree_root || !chunk_root) { 3126 ret = -ENOMEM; 3127 goto fail; 3128 } 3129 3130 ret = btrfs_init_btree_inode(sb); 3131 if (ret) 3132 goto fail; 3133 3134 invalidate_bdev(fs_devices->latest_dev->bdev); 3135 3136 /* 3137 * Read super block and check the signature bytes only 3138 */ 3139 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3140 if (IS_ERR(disk_super)) { 3141 ret = PTR_ERR(disk_super); 3142 goto fail_alloc; 3143 } 3144 3145 /* 3146 * Verify the type first, if that or the checksum value are 3147 * corrupted, we'll find out 3148 */ 3149 csum_type = btrfs_super_csum_type(disk_super); 3150 if (!btrfs_supported_super_csum(csum_type)) { 3151 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3152 csum_type); 3153 ret = -EINVAL; 3154 btrfs_release_disk_super(disk_super); 3155 goto fail_alloc; 3156 } 3157 3158 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3159 3160 ret = btrfs_init_csum_hash(fs_info, csum_type); 3161 if (ret) { 3162 btrfs_release_disk_super(disk_super); 3163 goto fail_alloc; 3164 } 3165 3166 /* 3167 * We want to check superblock checksum, the type is stored inside. 3168 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3169 */ 3170 if (btrfs_check_super_csum(fs_info, disk_super)) { 3171 btrfs_err(fs_info, "superblock checksum mismatch"); 3172 ret = -EINVAL; 3173 btrfs_release_disk_super(disk_super); 3174 goto fail_alloc; 3175 } 3176 3177 /* 3178 * super_copy is zeroed at allocation time and we never touch the 3179 * following bytes up to INFO_SIZE, the checksum is calculated from 3180 * the whole block of INFO_SIZE 3181 */ 3182 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3183 btrfs_release_disk_super(disk_super); 3184 3185 disk_super = fs_info->super_copy; 3186 3187 3188 features = btrfs_super_flags(disk_super); 3189 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 3190 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 3191 btrfs_set_super_flags(disk_super, features); 3192 btrfs_info(fs_info, 3193 "found metadata UUID change in progress flag, clearing"); 3194 } 3195 3196 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3197 sizeof(*fs_info->super_for_commit)); 3198 3199 ret = btrfs_validate_mount_super(fs_info); 3200 if (ret) { 3201 btrfs_err(fs_info, "superblock contains fatal errors"); 3202 ret = -EINVAL; 3203 goto fail_alloc; 3204 } 3205 3206 if (!btrfs_super_root(disk_super)) { 3207 btrfs_err(fs_info, "invalid superblock tree root bytenr"); 3208 ret = -EINVAL; 3209 goto fail_alloc; 3210 } 3211 3212 /* check FS state, whether FS is broken. */ 3213 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3214 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 3215 3216 /* 3217 * In the long term, we'll store the compression type in the super 3218 * block, and it'll be used for per file compression control. 3219 */ 3220 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 3221 3222 3223 /* Set up fs_info before parsing mount options */ 3224 nodesize = btrfs_super_nodesize(disk_super); 3225 sectorsize = btrfs_super_sectorsize(disk_super); 3226 stripesize = sectorsize; 3227 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3228 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3229 3230 fs_info->nodesize = nodesize; 3231 fs_info->sectorsize = sectorsize; 3232 fs_info->sectorsize_bits = ilog2(sectorsize); 3233 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3234 fs_info->stripesize = stripesize; 3235 3236 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 3237 if (ret) 3238 goto fail_alloc; 3239 3240 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3241 if (ret < 0) 3242 goto fail_alloc; 3243 3244 if (sectorsize < PAGE_SIZE) { 3245 struct btrfs_subpage_info *subpage_info; 3246 3247 /* 3248 * V1 space cache has some hardcoded PAGE_SIZE usage, and is 3249 * going to be deprecated. 3250 * 3251 * Force to use v2 cache for subpage case. 3252 */ 3253 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 3254 btrfs_set_and_info(fs_info, FREE_SPACE_TREE, 3255 "forcing free space tree for sector size %u with page size %lu", 3256 sectorsize, PAGE_SIZE); 3257 3258 btrfs_warn(fs_info, 3259 "read-write for sector size %u with page size %lu is experimental", 3260 sectorsize, PAGE_SIZE); 3261 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL); 3262 if (!subpage_info) { 3263 ret = -ENOMEM; 3264 goto fail_alloc; 3265 } 3266 btrfs_init_subpage_info(subpage_info, sectorsize); 3267 fs_info->subpage_info = subpage_info; 3268 } 3269 3270 ret = btrfs_init_workqueues(fs_info); 3271 if (ret) 3272 goto fail_sb_buffer; 3273 3274 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3275 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3276 3277 sb->s_blocksize = sectorsize; 3278 sb->s_blocksize_bits = blksize_bits(sectorsize); 3279 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3280 3281 mutex_lock(&fs_info->chunk_mutex); 3282 ret = btrfs_read_sys_array(fs_info); 3283 mutex_unlock(&fs_info->chunk_mutex); 3284 if (ret) { 3285 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3286 goto fail_sb_buffer; 3287 } 3288 3289 generation = btrfs_super_chunk_root_generation(disk_super); 3290 level = btrfs_super_chunk_root_level(disk_super); 3291 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3292 generation, level); 3293 if (ret) { 3294 btrfs_err(fs_info, "failed to read chunk root"); 3295 goto fail_tree_roots; 3296 } 3297 3298 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3299 offsetof(struct btrfs_header, chunk_tree_uuid), 3300 BTRFS_UUID_SIZE); 3301 3302 ret = btrfs_read_chunk_tree(fs_info); 3303 if (ret) { 3304 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3305 goto fail_tree_roots; 3306 } 3307 3308 /* 3309 * At this point we know all the devices that make this filesystem, 3310 * including the seed devices but we don't know yet if the replace 3311 * target is required. So free devices that are not part of this 3312 * filesystem but skip the replace target device which is checked 3313 * below in btrfs_init_dev_replace(). 3314 */ 3315 btrfs_free_extra_devids(fs_devices); 3316 if (!fs_devices->latest_dev->bdev) { 3317 btrfs_err(fs_info, "failed to read devices"); 3318 ret = -EIO; 3319 goto fail_tree_roots; 3320 } 3321 3322 ret = init_tree_roots(fs_info); 3323 if (ret) 3324 goto fail_tree_roots; 3325 3326 /* 3327 * Get zone type information of zoned block devices. This will also 3328 * handle emulation of a zoned filesystem if a regular device has the 3329 * zoned incompat feature flag set. 3330 */ 3331 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3332 if (ret) { 3333 btrfs_err(fs_info, 3334 "zoned: failed to read device zone info: %d", ret); 3335 goto fail_block_groups; 3336 } 3337 3338 /* 3339 * If we have a uuid root and we're not being told to rescan we need to 3340 * check the generation here so we can set the 3341 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3342 * transaction during a balance or the log replay without updating the 3343 * uuid generation, and then if we crash we would rescan the uuid tree, 3344 * even though it was perfectly fine. 3345 */ 3346 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3347 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3348 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3349 3350 ret = btrfs_verify_dev_extents(fs_info); 3351 if (ret) { 3352 btrfs_err(fs_info, 3353 "failed to verify dev extents against chunks: %d", 3354 ret); 3355 goto fail_block_groups; 3356 } 3357 ret = btrfs_recover_balance(fs_info); 3358 if (ret) { 3359 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3360 goto fail_block_groups; 3361 } 3362 3363 ret = btrfs_init_dev_stats(fs_info); 3364 if (ret) { 3365 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3366 goto fail_block_groups; 3367 } 3368 3369 ret = btrfs_init_dev_replace(fs_info); 3370 if (ret) { 3371 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3372 goto fail_block_groups; 3373 } 3374 3375 ret = btrfs_check_zoned_mode(fs_info); 3376 if (ret) { 3377 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3378 ret); 3379 goto fail_block_groups; 3380 } 3381 3382 ret = btrfs_sysfs_add_fsid(fs_devices); 3383 if (ret) { 3384 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3385 ret); 3386 goto fail_block_groups; 3387 } 3388 3389 ret = btrfs_sysfs_add_mounted(fs_info); 3390 if (ret) { 3391 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3392 goto fail_fsdev_sysfs; 3393 } 3394 3395 ret = btrfs_init_space_info(fs_info); 3396 if (ret) { 3397 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3398 goto fail_sysfs; 3399 } 3400 3401 ret = btrfs_read_block_groups(fs_info); 3402 if (ret) { 3403 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3404 goto fail_sysfs; 3405 } 3406 3407 btrfs_free_zone_cache(fs_info); 3408 3409 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3410 !btrfs_check_rw_degradable(fs_info, NULL)) { 3411 btrfs_warn(fs_info, 3412 "writable mount is not allowed due to too many missing devices"); 3413 ret = -EINVAL; 3414 goto fail_sysfs; 3415 } 3416 3417 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3418 "btrfs-cleaner"); 3419 if (IS_ERR(fs_info->cleaner_kthread)) { 3420 ret = PTR_ERR(fs_info->cleaner_kthread); 3421 goto fail_sysfs; 3422 } 3423 3424 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3425 tree_root, 3426 "btrfs-transaction"); 3427 if (IS_ERR(fs_info->transaction_kthread)) { 3428 ret = PTR_ERR(fs_info->transaction_kthread); 3429 goto fail_cleaner; 3430 } 3431 3432 if (!btrfs_test_opt(fs_info, NOSSD) && 3433 !fs_info->fs_devices->rotating) { 3434 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3435 } 3436 3437 /* 3438 * For devices supporting discard turn on discard=async automatically, 3439 * unless it's already set or disabled. This could be turned off by 3440 * nodiscard for the same mount. 3441 */ 3442 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) || 3443 btrfs_test_opt(fs_info, DISCARD_ASYNC) || 3444 btrfs_test_opt(fs_info, NODISCARD)) && 3445 fs_info->fs_devices->discardable) { 3446 btrfs_set_and_info(fs_info, DISCARD_ASYNC, 3447 "auto enabling async discard"); 3448 } 3449 3450 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3451 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3452 ret = btrfsic_mount(fs_info, fs_devices, 3453 btrfs_test_opt(fs_info, 3454 CHECK_INTEGRITY_DATA) ? 1 : 0, 3455 fs_info->check_integrity_print_mask); 3456 if (ret) 3457 btrfs_warn(fs_info, 3458 "failed to initialize integrity check module: %d", 3459 ret); 3460 } 3461 #endif 3462 ret = btrfs_read_qgroup_config(fs_info); 3463 if (ret) 3464 goto fail_trans_kthread; 3465 3466 if (btrfs_build_ref_tree(fs_info)) 3467 btrfs_err(fs_info, "couldn't build ref tree"); 3468 3469 /* do not make disk changes in broken FS or nologreplay is given */ 3470 if (btrfs_super_log_root(disk_super) != 0 && 3471 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3472 btrfs_info(fs_info, "start tree-log replay"); 3473 ret = btrfs_replay_log(fs_info, fs_devices); 3474 if (ret) 3475 goto fail_qgroup; 3476 } 3477 3478 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3479 if (IS_ERR(fs_info->fs_root)) { 3480 ret = PTR_ERR(fs_info->fs_root); 3481 btrfs_warn(fs_info, "failed to read fs tree: %d", ret); 3482 fs_info->fs_root = NULL; 3483 goto fail_qgroup; 3484 } 3485 3486 if (sb_rdonly(sb)) 3487 goto clear_oneshot; 3488 3489 ret = btrfs_start_pre_rw_mount(fs_info); 3490 if (ret) { 3491 close_ctree(fs_info); 3492 return ret; 3493 } 3494 btrfs_discard_resume(fs_info); 3495 3496 if (fs_info->uuid_root && 3497 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3498 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3499 btrfs_info(fs_info, "checking UUID tree"); 3500 ret = btrfs_check_uuid_tree(fs_info); 3501 if (ret) { 3502 btrfs_warn(fs_info, 3503 "failed to check the UUID tree: %d", ret); 3504 close_ctree(fs_info); 3505 return ret; 3506 } 3507 } 3508 3509 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3510 3511 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3512 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3513 wake_up_process(fs_info->cleaner_kthread); 3514 3515 clear_oneshot: 3516 btrfs_clear_oneshot_options(fs_info); 3517 return 0; 3518 3519 fail_qgroup: 3520 btrfs_free_qgroup_config(fs_info); 3521 fail_trans_kthread: 3522 kthread_stop(fs_info->transaction_kthread); 3523 btrfs_cleanup_transaction(fs_info); 3524 btrfs_free_fs_roots(fs_info); 3525 fail_cleaner: 3526 kthread_stop(fs_info->cleaner_kthread); 3527 3528 /* 3529 * make sure we're done with the btree inode before we stop our 3530 * kthreads 3531 */ 3532 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3533 3534 fail_sysfs: 3535 btrfs_sysfs_remove_mounted(fs_info); 3536 3537 fail_fsdev_sysfs: 3538 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3539 3540 fail_block_groups: 3541 btrfs_put_block_group_cache(fs_info); 3542 3543 fail_tree_roots: 3544 if (fs_info->data_reloc_root) 3545 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3546 free_root_pointers(fs_info, true); 3547 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3548 3549 fail_sb_buffer: 3550 btrfs_stop_all_workers(fs_info); 3551 btrfs_free_block_groups(fs_info); 3552 fail_alloc: 3553 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3554 3555 iput(fs_info->btree_inode); 3556 fail: 3557 btrfs_close_devices(fs_info->fs_devices); 3558 ASSERT(ret < 0); 3559 return ret; 3560 } 3561 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3562 3563 static void btrfs_end_super_write(struct bio *bio) 3564 { 3565 struct btrfs_device *device = bio->bi_private; 3566 struct bio_vec *bvec; 3567 struct bvec_iter_all iter_all; 3568 struct page *page; 3569 3570 bio_for_each_segment_all(bvec, bio, iter_all) { 3571 page = bvec->bv_page; 3572 3573 if (bio->bi_status) { 3574 btrfs_warn_rl_in_rcu(device->fs_info, 3575 "lost page write due to IO error on %s (%d)", 3576 btrfs_dev_name(device), 3577 blk_status_to_errno(bio->bi_status)); 3578 ClearPageUptodate(page); 3579 SetPageError(page); 3580 btrfs_dev_stat_inc_and_print(device, 3581 BTRFS_DEV_STAT_WRITE_ERRS); 3582 } else { 3583 SetPageUptodate(page); 3584 } 3585 3586 put_page(page); 3587 unlock_page(page); 3588 } 3589 3590 bio_put(bio); 3591 } 3592 3593 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3594 int copy_num, bool drop_cache) 3595 { 3596 struct btrfs_super_block *super; 3597 struct page *page; 3598 u64 bytenr, bytenr_orig; 3599 struct address_space *mapping = bdev->bd_inode->i_mapping; 3600 int ret; 3601 3602 bytenr_orig = btrfs_sb_offset(copy_num); 3603 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3604 if (ret == -ENOENT) 3605 return ERR_PTR(-EINVAL); 3606 else if (ret) 3607 return ERR_PTR(ret); 3608 3609 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 3610 return ERR_PTR(-EINVAL); 3611 3612 if (drop_cache) { 3613 /* This should only be called with the primary sb. */ 3614 ASSERT(copy_num == 0); 3615 3616 /* 3617 * Drop the page of the primary superblock, so later read will 3618 * always read from the device. 3619 */ 3620 invalidate_inode_pages2_range(mapping, 3621 bytenr >> PAGE_SHIFT, 3622 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 3623 } 3624 3625 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3626 if (IS_ERR(page)) 3627 return ERR_CAST(page); 3628 3629 super = page_address(page); 3630 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3631 btrfs_release_disk_super(super); 3632 return ERR_PTR(-ENODATA); 3633 } 3634 3635 if (btrfs_super_bytenr(super) != bytenr_orig) { 3636 btrfs_release_disk_super(super); 3637 return ERR_PTR(-EINVAL); 3638 } 3639 3640 return super; 3641 } 3642 3643 3644 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3645 { 3646 struct btrfs_super_block *super, *latest = NULL; 3647 int i; 3648 u64 transid = 0; 3649 3650 /* we would like to check all the supers, but that would make 3651 * a btrfs mount succeed after a mkfs from a different FS. 3652 * So, we need to add a special mount option to scan for 3653 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3654 */ 3655 for (i = 0; i < 1; i++) { 3656 super = btrfs_read_dev_one_super(bdev, i, false); 3657 if (IS_ERR(super)) 3658 continue; 3659 3660 if (!latest || btrfs_super_generation(super) > transid) { 3661 if (latest) 3662 btrfs_release_disk_super(super); 3663 3664 latest = super; 3665 transid = btrfs_super_generation(super); 3666 } 3667 } 3668 3669 return super; 3670 } 3671 3672 /* 3673 * Write superblock @sb to the @device. Do not wait for completion, all the 3674 * pages we use for writing are locked. 3675 * 3676 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3677 * the expected device size at commit time. Note that max_mirrors must be 3678 * same for write and wait phases. 3679 * 3680 * Return number of errors when page is not found or submission fails. 3681 */ 3682 static int write_dev_supers(struct btrfs_device *device, 3683 struct btrfs_super_block *sb, int max_mirrors) 3684 { 3685 struct btrfs_fs_info *fs_info = device->fs_info; 3686 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3687 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3688 int i; 3689 int errors = 0; 3690 int ret; 3691 u64 bytenr, bytenr_orig; 3692 3693 if (max_mirrors == 0) 3694 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3695 3696 shash->tfm = fs_info->csum_shash; 3697 3698 for (i = 0; i < max_mirrors; i++) { 3699 struct page *page; 3700 struct bio *bio; 3701 struct btrfs_super_block *disk_super; 3702 3703 bytenr_orig = btrfs_sb_offset(i); 3704 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3705 if (ret == -ENOENT) { 3706 continue; 3707 } else if (ret < 0) { 3708 btrfs_err(device->fs_info, 3709 "couldn't get super block location for mirror %d", 3710 i); 3711 errors++; 3712 continue; 3713 } 3714 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3715 device->commit_total_bytes) 3716 break; 3717 3718 btrfs_set_super_bytenr(sb, bytenr_orig); 3719 3720 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3721 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3722 sb->csum); 3723 3724 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 3725 GFP_NOFS); 3726 if (!page) { 3727 btrfs_err(device->fs_info, 3728 "couldn't get super block page for bytenr %llu", 3729 bytenr); 3730 errors++; 3731 continue; 3732 } 3733 3734 /* Bump the refcount for wait_dev_supers() */ 3735 get_page(page); 3736 3737 disk_super = page_address(page); 3738 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3739 3740 /* 3741 * Directly use bios here instead of relying on the page cache 3742 * to do I/O, so we don't lose the ability to do integrity 3743 * checking. 3744 */ 3745 bio = bio_alloc(device->bdev, 1, 3746 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 3747 GFP_NOFS); 3748 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3749 bio->bi_private = device; 3750 bio->bi_end_io = btrfs_end_super_write; 3751 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 3752 offset_in_page(bytenr)); 3753 3754 /* 3755 * We FUA only the first super block. The others we allow to 3756 * go down lazy and there's a short window where the on-disk 3757 * copies might still contain the older version. 3758 */ 3759 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3760 bio->bi_opf |= REQ_FUA; 3761 3762 btrfsic_check_bio(bio); 3763 submit_bio(bio); 3764 3765 if (btrfs_advance_sb_log(device, i)) 3766 errors++; 3767 } 3768 return errors < i ? 0 : -1; 3769 } 3770 3771 /* 3772 * Wait for write completion of superblocks done by write_dev_supers, 3773 * @max_mirrors same for write and wait phases. 3774 * 3775 * Return number of errors when page is not found or not marked up to 3776 * date. 3777 */ 3778 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3779 { 3780 int i; 3781 int errors = 0; 3782 bool primary_failed = false; 3783 int ret; 3784 u64 bytenr; 3785 3786 if (max_mirrors == 0) 3787 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3788 3789 for (i = 0; i < max_mirrors; i++) { 3790 struct page *page; 3791 3792 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 3793 if (ret == -ENOENT) { 3794 break; 3795 } else if (ret < 0) { 3796 errors++; 3797 if (i == 0) 3798 primary_failed = true; 3799 continue; 3800 } 3801 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3802 device->commit_total_bytes) 3803 break; 3804 3805 page = find_get_page(device->bdev->bd_inode->i_mapping, 3806 bytenr >> PAGE_SHIFT); 3807 if (!page) { 3808 errors++; 3809 if (i == 0) 3810 primary_failed = true; 3811 continue; 3812 } 3813 /* Page is submitted locked and unlocked once the IO completes */ 3814 wait_on_page_locked(page); 3815 if (PageError(page)) { 3816 errors++; 3817 if (i == 0) 3818 primary_failed = true; 3819 } 3820 3821 /* Drop our reference */ 3822 put_page(page); 3823 3824 /* Drop the reference from the writing run */ 3825 put_page(page); 3826 } 3827 3828 /* log error, force error return */ 3829 if (primary_failed) { 3830 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3831 device->devid); 3832 return -1; 3833 } 3834 3835 return errors < i ? 0 : -1; 3836 } 3837 3838 /* 3839 * endio for the write_dev_flush, this will wake anyone waiting 3840 * for the barrier when it is done 3841 */ 3842 static void btrfs_end_empty_barrier(struct bio *bio) 3843 { 3844 bio_uninit(bio); 3845 complete(bio->bi_private); 3846 } 3847 3848 /* 3849 * Submit a flush request to the device if it supports it. Error handling is 3850 * done in the waiting counterpart. 3851 */ 3852 static void write_dev_flush(struct btrfs_device *device) 3853 { 3854 struct bio *bio = &device->flush_bio; 3855 3856 device->last_flush_error = BLK_STS_OK; 3857 3858 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3859 /* 3860 * When a disk has write caching disabled, we skip submission of a bio 3861 * with flush and sync requests before writing the superblock, since 3862 * it's not needed. However when the integrity checker is enabled, this 3863 * results in reports that there are metadata blocks referred by a 3864 * superblock that were not properly flushed. So don't skip the bio 3865 * submission only when the integrity checker is enabled for the sake 3866 * of simplicity, since this is a debug tool and not meant for use in 3867 * non-debug builds. 3868 */ 3869 if (!bdev_write_cache(device->bdev)) 3870 return; 3871 #endif 3872 3873 bio_init(bio, device->bdev, NULL, 0, 3874 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 3875 bio->bi_end_io = btrfs_end_empty_barrier; 3876 init_completion(&device->flush_wait); 3877 bio->bi_private = &device->flush_wait; 3878 3879 btrfsic_check_bio(bio); 3880 submit_bio(bio); 3881 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3882 } 3883 3884 /* 3885 * If the flush bio has been submitted by write_dev_flush, wait for it. 3886 * Return true for any error, and false otherwise. 3887 */ 3888 static bool wait_dev_flush(struct btrfs_device *device) 3889 { 3890 struct bio *bio = &device->flush_bio; 3891 3892 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3893 return false; 3894 3895 wait_for_completion_io(&device->flush_wait); 3896 3897 if (bio->bi_status) { 3898 device->last_flush_error = bio->bi_status; 3899 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); 3900 return true; 3901 } 3902 3903 return false; 3904 } 3905 3906 /* 3907 * send an empty flush down to each device in parallel, 3908 * then wait for them 3909 */ 3910 static int barrier_all_devices(struct btrfs_fs_info *info) 3911 { 3912 struct list_head *head; 3913 struct btrfs_device *dev; 3914 int errors_wait = 0; 3915 3916 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3917 /* send down all the barriers */ 3918 head = &info->fs_devices->devices; 3919 list_for_each_entry(dev, head, dev_list) { 3920 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3921 continue; 3922 if (!dev->bdev) 3923 continue; 3924 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3925 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3926 continue; 3927 3928 write_dev_flush(dev); 3929 } 3930 3931 /* wait for all the barriers */ 3932 list_for_each_entry(dev, head, dev_list) { 3933 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3934 continue; 3935 if (!dev->bdev) { 3936 errors_wait++; 3937 continue; 3938 } 3939 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3940 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3941 continue; 3942 3943 if (wait_dev_flush(dev)) 3944 errors_wait++; 3945 } 3946 3947 /* 3948 * Checks last_flush_error of disks in order to determine the device 3949 * state. 3950 */ 3951 if (errors_wait && !btrfs_check_rw_degradable(info, NULL)) 3952 return -EIO; 3953 3954 return 0; 3955 } 3956 3957 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3958 { 3959 int raid_type; 3960 int min_tolerated = INT_MAX; 3961 3962 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3963 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3964 min_tolerated = min_t(int, min_tolerated, 3965 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3966 tolerated_failures); 3967 3968 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3969 if (raid_type == BTRFS_RAID_SINGLE) 3970 continue; 3971 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3972 continue; 3973 min_tolerated = min_t(int, min_tolerated, 3974 btrfs_raid_array[raid_type]. 3975 tolerated_failures); 3976 } 3977 3978 if (min_tolerated == INT_MAX) { 3979 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3980 min_tolerated = 0; 3981 } 3982 3983 return min_tolerated; 3984 } 3985 3986 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3987 { 3988 struct list_head *head; 3989 struct btrfs_device *dev; 3990 struct btrfs_super_block *sb; 3991 struct btrfs_dev_item *dev_item; 3992 int ret; 3993 int do_barriers; 3994 int max_errors; 3995 int total_errors = 0; 3996 u64 flags; 3997 3998 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3999 4000 /* 4001 * max_mirrors == 0 indicates we're from commit_transaction, 4002 * not from fsync where the tree roots in fs_info have not 4003 * been consistent on disk. 4004 */ 4005 if (max_mirrors == 0) 4006 backup_super_roots(fs_info); 4007 4008 sb = fs_info->super_for_commit; 4009 dev_item = &sb->dev_item; 4010 4011 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4012 head = &fs_info->fs_devices->devices; 4013 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4014 4015 if (do_barriers) { 4016 ret = barrier_all_devices(fs_info); 4017 if (ret) { 4018 mutex_unlock( 4019 &fs_info->fs_devices->device_list_mutex); 4020 btrfs_handle_fs_error(fs_info, ret, 4021 "errors while submitting device barriers."); 4022 return ret; 4023 } 4024 } 4025 4026 list_for_each_entry(dev, head, dev_list) { 4027 if (!dev->bdev) { 4028 total_errors++; 4029 continue; 4030 } 4031 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4032 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4033 continue; 4034 4035 btrfs_set_stack_device_generation(dev_item, 0); 4036 btrfs_set_stack_device_type(dev_item, dev->type); 4037 btrfs_set_stack_device_id(dev_item, dev->devid); 4038 btrfs_set_stack_device_total_bytes(dev_item, 4039 dev->commit_total_bytes); 4040 btrfs_set_stack_device_bytes_used(dev_item, 4041 dev->commit_bytes_used); 4042 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4043 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4044 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4045 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4046 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4047 BTRFS_FSID_SIZE); 4048 4049 flags = btrfs_super_flags(sb); 4050 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4051 4052 ret = btrfs_validate_write_super(fs_info, sb); 4053 if (ret < 0) { 4054 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4055 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4056 "unexpected superblock corruption detected"); 4057 return -EUCLEAN; 4058 } 4059 4060 ret = write_dev_supers(dev, sb, max_mirrors); 4061 if (ret) 4062 total_errors++; 4063 } 4064 if (total_errors > max_errors) { 4065 btrfs_err(fs_info, "%d errors while writing supers", 4066 total_errors); 4067 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4068 4069 /* FUA is masked off if unsupported and can't be the reason */ 4070 btrfs_handle_fs_error(fs_info, -EIO, 4071 "%d errors while writing supers", 4072 total_errors); 4073 return -EIO; 4074 } 4075 4076 total_errors = 0; 4077 list_for_each_entry(dev, head, dev_list) { 4078 if (!dev->bdev) 4079 continue; 4080 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4081 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4082 continue; 4083 4084 ret = wait_dev_supers(dev, max_mirrors); 4085 if (ret) 4086 total_errors++; 4087 } 4088 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4089 if (total_errors > max_errors) { 4090 btrfs_handle_fs_error(fs_info, -EIO, 4091 "%d errors while writing supers", 4092 total_errors); 4093 return -EIO; 4094 } 4095 return 0; 4096 } 4097 4098 /* Drop a fs root from the radix tree and free it. */ 4099 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4100 struct btrfs_root *root) 4101 { 4102 bool drop_ref = false; 4103 4104 spin_lock(&fs_info->fs_roots_radix_lock); 4105 radix_tree_delete(&fs_info->fs_roots_radix, 4106 (unsigned long)root->root_key.objectid); 4107 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4108 drop_ref = true; 4109 spin_unlock(&fs_info->fs_roots_radix_lock); 4110 4111 if (BTRFS_FS_ERROR(fs_info)) { 4112 ASSERT(root->log_root == NULL); 4113 if (root->reloc_root) { 4114 btrfs_put_root(root->reloc_root); 4115 root->reloc_root = NULL; 4116 } 4117 } 4118 4119 if (drop_ref) 4120 btrfs_put_root(root); 4121 } 4122 4123 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 4124 { 4125 u64 root_objectid = 0; 4126 struct btrfs_root *gang[8]; 4127 int i = 0; 4128 int err = 0; 4129 unsigned int ret = 0; 4130 4131 while (1) { 4132 spin_lock(&fs_info->fs_roots_radix_lock); 4133 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4134 (void **)gang, root_objectid, 4135 ARRAY_SIZE(gang)); 4136 if (!ret) { 4137 spin_unlock(&fs_info->fs_roots_radix_lock); 4138 break; 4139 } 4140 root_objectid = gang[ret - 1]->root_key.objectid + 1; 4141 4142 for (i = 0; i < ret; i++) { 4143 /* Avoid to grab roots in dead_roots */ 4144 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 4145 gang[i] = NULL; 4146 continue; 4147 } 4148 /* grab all the search result for later use */ 4149 gang[i] = btrfs_grab_root(gang[i]); 4150 } 4151 spin_unlock(&fs_info->fs_roots_radix_lock); 4152 4153 for (i = 0; i < ret; i++) { 4154 if (!gang[i]) 4155 continue; 4156 root_objectid = gang[i]->root_key.objectid; 4157 err = btrfs_orphan_cleanup(gang[i]); 4158 if (err) 4159 goto out; 4160 btrfs_put_root(gang[i]); 4161 } 4162 root_objectid++; 4163 } 4164 out: 4165 /* release the uncleaned roots due to error */ 4166 for (; i < ret; i++) { 4167 if (gang[i]) 4168 btrfs_put_root(gang[i]); 4169 } 4170 return err; 4171 } 4172 4173 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4174 { 4175 struct btrfs_root *root = fs_info->tree_root; 4176 struct btrfs_trans_handle *trans; 4177 4178 mutex_lock(&fs_info->cleaner_mutex); 4179 btrfs_run_delayed_iputs(fs_info); 4180 mutex_unlock(&fs_info->cleaner_mutex); 4181 wake_up_process(fs_info->cleaner_kthread); 4182 4183 /* wait until ongoing cleanup work done */ 4184 down_write(&fs_info->cleanup_work_sem); 4185 up_write(&fs_info->cleanup_work_sem); 4186 4187 trans = btrfs_join_transaction(root); 4188 if (IS_ERR(trans)) 4189 return PTR_ERR(trans); 4190 return btrfs_commit_transaction(trans); 4191 } 4192 4193 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4194 { 4195 struct btrfs_transaction *trans; 4196 struct btrfs_transaction *tmp; 4197 bool found = false; 4198 4199 if (list_empty(&fs_info->trans_list)) 4200 return; 4201 4202 /* 4203 * This function is only called at the very end of close_ctree(), 4204 * thus no other running transaction, no need to take trans_lock. 4205 */ 4206 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4207 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4208 struct extent_state *cached = NULL; 4209 u64 dirty_bytes = 0; 4210 u64 cur = 0; 4211 u64 found_start; 4212 u64 found_end; 4213 4214 found = true; 4215 while (!find_first_extent_bit(&trans->dirty_pages, cur, 4216 &found_start, &found_end, EXTENT_DIRTY, &cached)) { 4217 dirty_bytes += found_end + 1 - found_start; 4218 cur = found_end + 1; 4219 } 4220 btrfs_warn(fs_info, 4221 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4222 trans->transid, dirty_bytes); 4223 btrfs_cleanup_one_transaction(trans, fs_info); 4224 4225 if (trans == fs_info->running_transaction) 4226 fs_info->running_transaction = NULL; 4227 list_del_init(&trans->list); 4228 4229 btrfs_put_transaction(trans); 4230 trace_btrfs_transaction_commit(fs_info); 4231 } 4232 ASSERT(!found); 4233 } 4234 4235 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4236 { 4237 int ret; 4238 4239 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4240 4241 /* 4242 * If we had UNFINISHED_DROPS we could still be processing them, so 4243 * clear that bit and wake up relocation so it can stop. 4244 * We must do this before stopping the block group reclaim task, because 4245 * at btrfs_relocate_block_group() we wait for this bit, and after the 4246 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4247 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4248 * return 1. 4249 */ 4250 btrfs_wake_unfinished_drop(fs_info); 4251 4252 /* 4253 * We may have the reclaim task running and relocating a data block group, 4254 * in which case it may create delayed iputs. So stop it before we park 4255 * the cleaner kthread otherwise we can get new delayed iputs after 4256 * parking the cleaner, and that can make the async reclaim task to hang 4257 * if it's waiting for delayed iputs to complete, since the cleaner is 4258 * parked and can not run delayed iputs - this will make us hang when 4259 * trying to stop the async reclaim task. 4260 */ 4261 cancel_work_sync(&fs_info->reclaim_bgs_work); 4262 /* 4263 * We don't want the cleaner to start new transactions, add more delayed 4264 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4265 * because that frees the task_struct, and the transaction kthread might 4266 * still try to wake up the cleaner. 4267 */ 4268 kthread_park(fs_info->cleaner_kthread); 4269 4270 /* wait for the qgroup rescan worker to stop */ 4271 btrfs_qgroup_wait_for_completion(fs_info, false); 4272 4273 /* wait for the uuid_scan task to finish */ 4274 down(&fs_info->uuid_tree_rescan_sem); 4275 /* avoid complains from lockdep et al., set sem back to initial state */ 4276 up(&fs_info->uuid_tree_rescan_sem); 4277 4278 /* pause restriper - we want to resume on mount */ 4279 btrfs_pause_balance(fs_info); 4280 4281 btrfs_dev_replace_suspend_for_unmount(fs_info); 4282 4283 btrfs_scrub_cancel(fs_info); 4284 4285 /* wait for any defraggers to finish */ 4286 wait_event(fs_info->transaction_wait, 4287 (atomic_read(&fs_info->defrag_running) == 0)); 4288 4289 /* clear out the rbtree of defraggable inodes */ 4290 btrfs_cleanup_defrag_inodes(fs_info); 4291 4292 /* 4293 * After we parked the cleaner kthread, ordered extents may have 4294 * completed and created new delayed iputs. If one of the async reclaim 4295 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4296 * can hang forever trying to stop it, because if a delayed iput is 4297 * added after it ran btrfs_run_delayed_iputs() and before it called 4298 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4299 * no one else to run iputs. 4300 * 4301 * So wait for all ongoing ordered extents to complete and then run 4302 * delayed iputs. This works because once we reach this point no one 4303 * can either create new ordered extents nor create delayed iputs 4304 * through some other means. 4305 * 4306 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4307 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4308 * but the delayed iput for the respective inode is made only when doing 4309 * the final btrfs_put_ordered_extent() (which must happen at 4310 * btrfs_finish_ordered_io() when we are unmounting). 4311 */ 4312 btrfs_flush_workqueue(fs_info->endio_write_workers); 4313 /* Ordered extents for free space inodes. */ 4314 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4315 btrfs_run_delayed_iputs(fs_info); 4316 4317 cancel_work_sync(&fs_info->async_reclaim_work); 4318 cancel_work_sync(&fs_info->async_data_reclaim_work); 4319 cancel_work_sync(&fs_info->preempt_reclaim_work); 4320 4321 /* Cancel or finish ongoing discard work */ 4322 btrfs_discard_cleanup(fs_info); 4323 4324 if (!sb_rdonly(fs_info->sb)) { 4325 /* 4326 * The cleaner kthread is stopped, so do one final pass over 4327 * unused block groups. 4328 */ 4329 btrfs_delete_unused_bgs(fs_info); 4330 4331 /* 4332 * There might be existing delayed inode workers still running 4333 * and holding an empty delayed inode item. We must wait for 4334 * them to complete first because they can create a transaction. 4335 * This happens when someone calls btrfs_balance_delayed_items() 4336 * and then a transaction commit runs the same delayed nodes 4337 * before any delayed worker has done something with the nodes. 4338 * We must wait for any worker here and not at transaction 4339 * commit time since that could cause a deadlock. 4340 * This is a very rare case. 4341 */ 4342 btrfs_flush_workqueue(fs_info->delayed_workers); 4343 4344 ret = btrfs_commit_super(fs_info); 4345 if (ret) 4346 btrfs_err(fs_info, "commit super ret %d", ret); 4347 } 4348 4349 if (BTRFS_FS_ERROR(fs_info)) 4350 btrfs_error_commit_super(fs_info); 4351 4352 kthread_stop(fs_info->transaction_kthread); 4353 kthread_stop(fs_info->cleaner_kthread); 4354 4355 ASSERT(list_empty(&fs_info->delayed_iputs)); 4356 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4357 4358 if (btrfs_check_quota_leak(fs_info)) { 4359 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4360 btrfs_err(fs_info, "qgroup reserved space leaked"); 4361 } 4362 4363 btrfs_free_qgroup_config(fs_info); 4364 ASSERT(list_empty(&fs_info->delalloc_roots)); 4365 4366 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4367 btrfs_info(fs_info, "at unmount delalloc count %lld", 4368 percpu_counter_sum(&fs_info->delalloc_bytes)); 4369 } 4370 4371 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4372 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4373 percpu_counter_sum(&fs_info->ordered_bytes)); 4374 4375 btrfs_sysfs_remove_mounted(fs_info); 4376 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4377 4378 btrfs_put_block_group_cache(fs_info); 4379 4380 /* 4381 * we must make sure there is not any read request to 4382 * submit after we stopping all workers. 4383 */ 4384 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4385 btrfs_stop_all_workers(fs_info); 4386 4387 /* We shouldn't have any transaction open at this point */ 4388 warn_about_uncommitted_trans(fs_info); 4389 4390 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4391 free_root_pointers(fs_info, true); 4392 btrfs_free_fs_roots(fs_info); 4393 4394 /* 4395 * We must free the block groups after dropping the fs_roots as we could 4396 * have had an IO error and have left over tree log blocks that aren't 4397 * cleaned up until the fs roots are freed. This makes the block group 4398 * accounting appear to be wrong because there's pending reserved bytes, 4399 * so make sure we do the block group cleanup afterwards. 4400 */ 4401 btrfs_free_block_groups(fs_info); 4402 4403 iput(fs_info->btree_inode); 4404 4405 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4406 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4407 btrfsic_unmount(fs_info->fs_devices); 4408 #endif 4409 4410 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4411 btrfs_close_devices(fs_info->fs_devices); 4412 } 4413 4414 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4415 { 4416 struct btrfs_fs_info *fs_info = buf->fs_info; 4417 u64 transid = btrfs_header_generation(buf); 4418 4419 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4420 /* 4421 * This is a fast path so only do this check if we have sanity tests 4422 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4423 * outside of the sanity tests. 4424 */ 4425 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4426 return; 4427 #endif 4428 btrfs_assert_tree_write_locked(buf); 4429 if (transid != fs_info->generation) 4430 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4431 buf->start, transid, fs_info->generation); 4432 set_extent_buffer_dirty(buf); 4433 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4434 /* 4435 * btrfs_check_leaf() won't check item data if we don't have WRITTEN 4436 * set, so this will only validate the basic structure of the items. 4437 */ 4438 if (btrfs_header_level(buf) == 0 && btrfs_check_leaf(buf)) { 4439 btrfs_print_leaf(buf); 4440 ASSERT(0); 4441 } 4442 #endif 4443 } 4444 4445 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4446 int flush_delayed) 4447 { 4448 /* 4449 * looks as though older kernels can get into trouble with 4450 * this code, they end up stuck in balance_dirty_pages forever 4451 */ 4452 int ret; 4453 4454 if (current->flags & PF_MEMALLOC) 4455 return; 4456 4457 if (flush_delayed) 4458 btrfs_balance_delayed_items(fs_info); 4459 4460 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4461 BTRFS_DIRTY_METADATA_THRESH, 4462 fs_info->dirty_metadata_batch); 4463 if (ret > 0) { 4464 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4465 } 4466 } 4467 4468 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4469 { 4470 __btrfs_btree_balance_dirty(fs_info, 1); 4471 } 4472 4473 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4474 { 4475 __btrfs_btree_balance_dirty(fs_info, 0); 4476 } 4477 4478 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4479 { 4480 /* cleanup FS via transaction */ 4481 btrfs_cleanup_transaction(fs_info); 4482 4483 mutex_lock(&fs_info->cleaner_mutex); 4484 btrfs_run_delayed_iputs(fs_info); 4485 mutex_unlock(&fs_info->cleaner_mutex); 4486 4487 down_write(&fs_info->cleanup_work_sem); 4488 up_write(&fs_info->cleanup_work_sem); 4489 } 4490 4491 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4492 { 4493 struct btrfs_root *gang[8]; 4494 u64 root_objectid = 0; 4495 int ret; 4496 4497 spin_lock(&fs_info->fs_roots_radix_lock); 4498 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4499 (void **)gang, root_objectid, 4500 ARRAY_SIZE(gang))) != 0) { 4501 int i; 4502 4503 for (i = 0; i < ret; i++) 4504 gang[i] = btrfs_grab_root(gang[i]); 4505 spin_unlock(&fs_info->fs_roots_radix_lock); 4506 4507 for (i = 0; i < ret; i++) { 4508 if (!gang[i]) 4509 continue; 4510 root_objectid = gang[i]->root_key.objectid; 4511 btrfs_free_log(NULL, gang[i]); 4512 btrfs_put_root(gang[i]); 4513 } 4514 root_objectid++; 4515 spin_lock(&fs_info->fs_roots_radix_lock); 4516 } 4517 spin_unlock(&fs_info->fs_roots_radix_lock); 4518 btrfs_free_log_root_tree(NULL, fs_info); 4519 } 4520 4521 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4522 { 4523 struct btrfs_ordered_extent *ordered; 4524 4525 spin_lock(&root->ordered_extent_lock); 4526 /* 4527 * This will just short circuit the ordered completion stuff which will 4528 * make sure the ordered extent gets properly cleaned up. 4529 */ 4530 list_for_each_entry(ordered, &root->ordered_extents, 4531 root_extent_list) 4532 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4533 spin_unlock(&root->ordered_extent_lock); 4534 } 4535 4536 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4537 { 4538 struct btrfs_root *root; 4539 struct list_head splice; 4540 4541 INIT_LIST_HEAD(&splice); 4542 4543 spin_lock(&fs_info->ordered_root_lock); 4544 list_splice_init(&fs_info->ordered_roots, &splice); 4545 while (!list_empty(&splice)) { 4546 root = list_first_entry(&splice, struct btrfs_root, 4547 ordered_root); 4548 list_move_tail(&root->ordered_root, 4549 &fs_info->ordered_roots); 4550 4551 spin_unlock(&fs_info->ordered_root_lock); 4552 btrfs_destroy_ordered_extents(root); 4553 4554 cond_resched(); 4555 spin_lock(&fs_info->ordered_root_lock); 4556 } 4557 spin_unlock(&fs_info->ordered_root_lock); 4558 4559 /* 4560 * We need this here because if we've been flipped read-only we won't 4561 * get sync() from the umount, so we need to make sure any ordered 4562 * extents that haven't had their dirty pages IO start writeout yet 4563 * actually get run and error out properly. 4564 */ 4565 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4566 } 4567 4568 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4569 struct btrfs_fs_info *fs_info) 4570 { 4571 struct rb_node *node; 4572 struct btrfs_delayed_ref_root *delayed_refs; 4573 struct btrfs_delayed_ref_node *ref; 4574 4575 delayed_refs = &trans->delayed_refs; 4576 4577 spin_lock(&delayed_refs->lock); 4578 if (atomic_read(&delayed_refs->num_entries) == 0) { 4579 spin_unlock(&delayed_refs->lock); 4580 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4581 return; 4582 } 4583 4584 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4585 struct btrfs_delayed_ref_head *head; 4586 struct rb_node *n; 4587 bool pin_bytes = false; 4588 4589 head = rb_entry(node, struct btrfs_delayed_ref_head, 4590 href_node); 4591 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4592 continue; 4593 4594 spin_lock(&head->lock); 4595 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4596 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4597 ref_node); 4598 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4599 RB_CLEAR_NODE(&ref->ref_node); 4600 if (!list_empty(&ref->add_list)) 4601 list_del(&ref->add_list); 4602 atomic_dec(&delayed_refs->num_entries); 4603 btrfs_put_delayed_ref(ref); 4604 } 4605 if (head->must_insert_reserved) 4606 pin_bytes = true; 4607 btrfs_free_delayed_extent_op(head->extent_op); 4608 btrfs_delete_ref_head(delayed_refs, head); 4609 spin_unlock(&head->lock); 4610 spin_unlock(&delayed_refs->lock); 4611 mutex_unlock(&head->mutex); 4612 4613 if (pin_bytes) { 4614 struct btrfs_block_group *cache; 4615 4616 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4617 BUG_ON(!cache); 4618 4619 spin_lock(&cache->space_info->lock); 4620 spin_lock(&cache->lock); 4621 cache->pinned += head->num_bytes; 4622 btrfs_space_info_update_bytes_pinned(fs_info, 4623 cache->space_info, head->num_bytes); 4624 cache->reserved -= head->num_bytes; 4625 cache->space_info->bytes_reserved -= head->num_bytes; 4626 spin_unlock(&cache->lock); 4627 spin_unlock(&cache->space_info->lock); 4628 4629 btrfs_put_block_group(cache); 4630 4631 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4632 head->bytenr + head->num_bytes - 1); 4633 } 4634 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4635 btrfs_put_delayed_ref_head(head); 4636 cond_resched(); 4637 spin_lock(&delayed_refs->lock); 4638 } 4639 btrfs_qgroup_destroy_extent_records(trans); 4640 4641 spin_unlock(&delayed_refs->lock); 4642 } 4643 4644 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4645 { 4646 struct btrfs_inode *btrfs_inode; 4647 struct list_head splice; 4648 4649 INIT_LIST_HEAD(&splice); 4650 4651 spin_lock(&root->delalloc_lock); 4652 list_splice_init(&root->delalloc_inodes, &splice); 4653 4654 while (!list_empty(&splice)) { 4655 struct inode *inode = NULL; 4656 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4657 delalloc_inodes); 4658 __btrfs_del_delalloc_inode(root, btrfs_inode); 4659 spin_unlock(&root->delalloc_lock); 4660 4661 /* 4662 * Make sure we get a live inode and that it'll not disappear 4663 * meanwhile. 4664 */ 4665 inode = igrab(&btrfs_inode->vfs_inode); 4666 if (inode) { 4667 unsigned int nofs_flag; 4668 4669 nofs_flag = memalloc_nofs_save(); 4670 invalidate_inode_pages2(inode->i_mapping); 4671 memalloc_nofs_restore(nofs_flag); 4672 iput(inode); 4673 } 4674 spin_lock(&root->delalloc_lock); 4675 } 4676 spin_unlock(&root->delalloc_lock); 4677 } 4678 4679 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4680 { 4681 struct btrfs_root *root; 4682 struct list_head splice; 4683 4684 INIT_LIST_HEAD(&splice); 4685 4686 spin_lock(&fs_info->delalloc_root_lock); 4687 list_splice_init(&fs_info->delalloc_roots, &splice); 4688 while (!list_empty(&splice)) { 4689 root = list_first_entry(&splice, struct btrfs_root, 4690 delalloc_root); 4691 root = btrfs_grab_root(root); 4692 BUG_ON(!root); 4693 spin_unlock(&fs_info->delalloc_root_lock); 4694 4695 btrfs_destroy_delalloc_inodes(root); 4696 btrfs_put_root(root); 4697 4698 spin_lock(&fs_info->delalloc_root_lock); 4699 } 4700 spin_unlock(&fs_info->delalloc_root_lock); 4701 } 4702 4703 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4704 struct extent_io_tree *dirty_pages, 4705 int mark) 4706 { 4707 int ret; 4708 struct extent_buffer *eb; 4709 u64 start = 0; 4710 u64 end; 4711 4712 while (1) { 4713 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4714 mark, NULL); 4715 if (ret) 4716 break; 4717 4718 clear_extent_bits(dirty_pages, start, end, mark); 4719 while (start <= end) { 4720 eb = find_extent_buffer(fs_info, start); 4721 start += fs_info->nodesize; 4722 if (!eb) 4723 continue; 4724 4725 btrfs_tree_lock(eb); 4726 wait_on_extent_buffer_writeback(eb); 4727 btrfs_clear_buffer_dirty(NULL, eb); 4728 btrfs_tree_unlock(eb); 4729 4730 free_extent_buffer_stale(eb); 4731 } 4732 } 4733 4734 return ret; 4735 } 4736 4737 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4738 struct extent_io_tree *unpin) 4739 { 4740 u64 start; 4741 u64 end; 4742 int ret; 4743 4744 while (1) { 4745 struct extent_state *cached_state = NULL; 4746 4747 /* 4748 * The btrfs_finish_extent_commit() may get the same range as 4749 * ours between find_first_extent_bit and clear_extent_dirty. 4750 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4751 * the same extent range. 4752 */ 4753 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4754 ret = find_first_extent_bit(unpin, 0, &start, &end, 4755 EXTENT_DIRTY, &cached_state); 4756 if (ret) { 4757 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4758 break; 4759 } 4760 4761 clear_extent_dirty(unpin, start, end, &cached_state); 4762 free_extent_state(cached_state); 4763 btrfs_error_unpin_extent_range(fs_info, start, end); 4764 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4765 cond_resched(); 4766 } 4767 4768 return 0; 4769 } 4770 4771 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4772 { 4773 struct inode *inode; 4774 4775 inode = cache->io_ctl.inode; 4776 if (inode) { 4777 unsigned int nofs_flag; 4778 4779 nofs_flag = memalloc_nofs_save(); 4780 invalidate_inode_pages2(inode->i_mapping); 4781 memalloc_nofs_restore(nofs_flag); 4782 4783 BTRFS_I(inode)->generation = 0; 4784 cache->io_ctl.inode = NULL; 4785 iput(inode); 4786 } 4787 ASSERT(cache->io_ctl.pages == NULL); 4788 btrfs_put_block_group(cache); 4789 } 4790 4791 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4792 struct btrfs_fs_info *fs_info) 4793 { 4794 struct btrfs_block_group *cache; 4795 4796 spin_lock(&cur_trans->dirty_bgs_lock); 4797 while (!list_empty(&cur_trans->dirty_bgs)) { 4798 cache = list_first_entry(&cur_trans->dirty_bgs, 4799 struct btrfs_block_group, 4800 dirty_list); 4801 4802 if (!list_empty(&cache->io_list)) { 4803 spin_unlock(&cur_trans->dirty_bgs_lock); 4804 list_del_init(&cache->io_list); 4805 btrfs_cleanup_bg_io(cache); 4806 spin_lock(&cur_trans->dirty_bgs_lock); 4807 } 4808 4809 list_del_init(&cache->dirty_list); 4810 spin_lock(&cache->lock); 4811 cache->disk_cache_state = BTRFS_DC_ERROR; 4812 spin_unlock(&cache->lock); 4813 4814 spin_unlock(&cur_trans->dirty_bgs_lock); 4815 btrfs_put_block_group(cache); 4816 btrfs_delayed_refs_rsv_release(fs_info, 1); 4817 spin_lock(&cur_trans->dirty_bgs_lock); 4818 } 4819 spin_unlock(&cur_trans->dirty_bgs_lock); 4820 4821 /* 4822 * Refer to the definition of io_bgs member for details why it's safe 4823 * to use it without any locking 4824 */ 4825 while (!list_empty(&cur_trans->io_bgs)) { 4826 cache = list_first_entry(&cur_trans->io_bgs, 4827 struct btrfs_block_group, 4828 io_list); 4829 4830 list_del_init(&cache->io_list); 4831 spin_lock(&cache->lock); 4832 cache->disk_cache_state = BTRFS_DC_ERROR; 4833 spin_unlock(&cache->lock); 4834 btrfs_cleanup_bg_io(cache); 4835 } 4836 } 4837 4838 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4839 struct btrfs_fs_info *fs_info) 4840 { 4841 struct btrfs_device *dev, *tmp; 4842 4843 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4844 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4845 ASSERT(list_empty(&cur_trans->io_bgs)); 4846 4847 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4848 post_commit_list) { 4849 list_del_init(&dev->post_commit_list); 4850 } 4851 4852 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4853 4854 cur_trans->state = TRANS_STATE_COMMIT_START; 4855 wake_up(&fs_info->transaction_blocked_wait); 4856 4857 cur_trans->state = TRANS_STATE_UNBLOCKED; 4858 wake_up(&fs_info->transaction_wait); 4859 4860 btrfs_destroy_delayed_inodes(fs_info); 4861 4862 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4863 EXTENT_DIRTY); 4864 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4865 4866 cur_trans->state =TRANS_STATE_COMPLETED; 4867 wake_up(&cur_trans->commit_wait); 4868 } 4869 4870 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4871 { 4872 struct btrfs_transaction *t; 4873 4874 mutex_lock(&fs_info->transaction_kthread_mutex); 4875 4876 spin_lock(&fs_info->trans_lock); 4877 while (!list_empty(&fs_info->trans_list)) { 4878 t = list_first_entry(&fs_info->trans_list, 4879 struct btrfs_transaction, list); 4880 if (t->state >= TRANS_STATE_COMMIT_START) { 4881 refcount_inc(&t->use_count); 4882 spin_unlock(&fs_info->trans_lock); 4883 btrfs_wait_for_commit(fs_info, t->transid); 4884 btrfs_put_transaction(t); 4885 spin_lock(&fs_info->trans_lock); 4886 continue; 4887 } 4888 if (t == fs_info->running_transaction) { 4889 t->state = TRANS_STATE_COMMIT_DOING; 4890 spin_unlock(&fs_info->trans_lock); 4891 /* 4892 * We wait for 0 num_writers since we don't hold a trans 4893 * handle open currently for this transaction. 4894 */ 4895 wait_event(t->writer_wait, 4896 atomic_read(&t->num_writers) == 0); 4897 } else { 4898 spin_unlock(&fs_info->trans_lock); 4899 } 4900 btrfs_cleanup_one_transaction(t, fs_info); 4901 4902 spin_lock(&fs_info->trans_lock); 4903 if (t == fs_info->running_transaction) 4904 fs_info->running_transaction = NULL; 4905 list_del_init(&t->list); 4906 spin_unlock(&fs_info->trans_lock); 4907 4908 btrfs_put_transaction(t); 4909 trace_btrfs_transaction_commit(fs_info); 4910 spin_lock(&fs_info->trans_lock); 4911 } 4912 spin_unlock(&fs_info->trans_lock); 4913 btrfs_destroy_all_ordered_extents(fs_info); 4914 btrfs_destroy_delayed_inodes(fs_info); 4915 btrfs_assert_delayed_root_empty(fs_info); 4916 btrfs_destroy_all_delalloc_inodes(fs_info); 4917 btrfs_drop_all_logs(fs_info); 4918 mutex_unlock(&fs_info->transaction_kthread_mutex); 4919 4920 return 0; 4921 } 4922 4923 int btrfs_init_root_free_objectid(struct btrfs_root *root) 4924 { 4925 struct btrfs_path *path; 4926 int ret; 4927 struct extent_buffer *l; 4928 struct btrfs_key search_key; 4929 struct btrfs_key found_key; 4930 int slot; 4931 4932 path = btrfs_alloc_path(); 4933 if (!path) 4934 return -ENOMEM; 4935 4936 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 4937 search_key.type = -1; 4938 search_key.offset = (u64)-1; 4939 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 4940 if (ret < 0) 4941 goto error; 4942 BUG_ON(ret == 0); /* Corruption */ 4943 if (path->slots[0] > 0) { 4944 slot = path->slots[0] - 1; 4945 l = path->nodes[0]; 4946 btrfs_item_key_to_cpu(l, &found_key, slot); 4947 root->free_objectid = max_t(u64, found_key.objectid + 1, 4948 BTRFS_FIRST_FREE_OBJECTID); 4949 } else { 4950 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 4951 } 4952 ret = 0; 4953 error: 4954 btrfs_free_path(path); 4955 return ret; 4956 } 4957 4958 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 4959 { 4960 int ret; 4961 mutex_lock(&root->objectid_mutex); 4962 4963 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 4964 btrfs_warn(root->fs_info, 4965 "the objectid of root %llu reaches its highest value", 4966 root->root_key.objectid); 4967 ret = -ENOSPC; 4968 goto out; 4969 } 4970 4971 *objectid = root->free_objectid++; 4972 ret = 0; 4973 out: 4974 mutex_unlock(&root->objectid_mutex); 4975 return ret; 4976 } 4977