1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include <linux/slab.h> 31 #include <linux/migrate.h> 32 #include <linux/ratelimit.h> 33 #include <asm/unaligned.h> 34 #include "compat.h" 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "async-thread.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 47 static struct extent_io_ops btree_extent_io_ops; 48 static void end_workqueue_fn(struct btrfs_work *work); 49 static void free_fs_root(struct btrfs_root *root); 50 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 51 int read_only); 52 static int btrfs_destroy_ordered_operations(struct btrfs_root *root); 53 static int btrfs_destroy_ordered_extents(struct btrfs_root *root); 54 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 55 struct btrfs_root *root); 56 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t); 57 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 58 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 59 struct extent_io_tree *dirty_pages, 60 int mark); 61 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 62 struct extent_io_tree *pinned_extents); 63 static int btrfs_cleanup_transaction(struct btrfs_root *root); 64 65 /* 66 * end_io_wq structs are used to do processing in task context when an IO is 67 * complete. This is used during reads to verify checksums, and it is used 68 * by writes to insert metadata for new file extents after IO is complete. 69 */ 70 struct end_io_wq { 71 struct bio *bio; 72 bio_end_io_t *end_io; 73 void *private; 74 struct btrfs_fs_info *info; 75 int error; 76 int metadata; 77 struct list_head list; 78 struct btrfs_work work; 79 }; 80 81 /* 82 * async submit bios are used to offload expensive checksumming 83 * onto the worker threads. They checksum file and metadata bios 84 * just before they are sent down the IO stack. 85 */ 86 struct async_submit_bio { 87 struct inode *inode; 88 struct bio *bio; 89 struct list_head list; 90 extent_submit_bio_hook_t *submit_bio_start; 91 extent_submit_bio_hook_t *submit_bio_done; 92 int rw; 93 int mirror_num; 94 unsigned long bio_flags; 95 /* 96 * bio_offset is optional, can be used if the pages in the bio 97 * can't tell us where in the file the bio should go 98 */ 99 u64 bio_offset; 100 struct btrfs_work work; 101 }; 102 103 /* These are used to set the lockdep class on the extent buffer locks. 104 * The class is set by the readpage_end_io_hook after the buffer has 105 * passed csum validation but before the pages are unlocked. 106 * 107 * The lockdep class is also set by btrfs_init_new_buffer on freshly 108 * allocated blocks. 109 * 110 * The class is based on the level in the tree block, which allows lockdep 111 * to know that lower nodes nest inside the locks of higher nodes. 112 * 113 * We also add a check to make sure the highest level of the tree is 114 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this 115 * code needs update as well. 116 */ 117 #ifdef CONFIG_DEBUG_LOCK_ALLOC 118 # if BTRFS_MAX_LEVEL != 8 119 # error 120 # endif 121 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1]; 122 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = { 123 /* leaf */ 124 "btrfs-extent-00", 125 "btrfs-extent-01", 126 "btrfs-extent-02", 127 "btrfs-extent-03", 128 "btrfs-extent-04", 129 "btrfs-extent-05", 130 "btrfs-extent-06", 131 "btrfs-extent-07", 132 /* highest possible level */ 133 "btrfs-extent-08", 134 }; 135 #endif 136 137 /* 138 * extents on the btree inode are pretty simple, there's one extent 139 * that covers the entire device 140 */ 141 static struct extent_map *btree_get_extent(struct inode *inode, 142 struct page *page, size_t pg_offset, u64 start, u64 len, 143 int create) 144 { 145 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 146 struct extent_map *em; 147 int ret; 148 149 read_lock(&em_tree->lock); 150 em = lookup_extent_mapping(em_tree, start, len); 151 if (em) { 152 em->bdev = 153 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 154 read_unlock(&em_tree->lock); 155 goto out; 156 } 157 read_unlock(&em_tree->lock); 158 159 em = alloc_extent_map(); 160 if (!em) { 161 em = ERR_PTR(-ENOMEM); 162 goto out; 163 } 164 em->start = 0; 165 em->len = (u64)-1; 166 em->block_len = (u64)-1; 167 em->block_start = 0; 168 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 169 170 write_lock(&em_tree->lock); 171 ret = add_extent_mapping(em_tree, em); 172 if (ret == -EEXIST) { 173 u64 failed_start = em->start; 174 u64 failed_len = em->len; 175 176 free_extent_map(em); 177 em = lookup_extent_mapping(em_tree, start, len); 178 if (em) { 179 ret = 0; 180 } else { 181 em = lookup_extent_mapping(em_tree, failed_start, 182 failed_len); 183 ret = -EIO; 184 } 185 } else if (ret) { 186 free_extent_map(em); 187 em = NULL; 188 } 189 write_unlock(&em_tree->lock); 190 191 if (ret) 192 em = ERR_PTR(ret); 193 out: 194 return em; 195 } 196 197 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 198 { 199 return crc32c(seed, data, len); 200 } 201 202 void btrfs_csum_final(u32 crc, char *result) 203 { 204 put_unaligned_le32(~crc, result); 205 } 206 207 /* 208 * compute the csum for a btree block, and either verify it or write it 209 * into the csum field of the block. 210 */ 211 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 212 int verify) 213 { 214 u16 csum_size = 215 btrfs_super_csum_size(&root->fs_info->super_copy); 216 char *result = NULL; 217 unsigned long len; 218 unsigned long cur_len; 219 unsigned long offset = BTRFS_CSUM_SIZE; 220 char *map_token = NULL; 221 char *kaddr; 222 unsigned long map_start; 223 unsigned long map_len; 224 int err; 225 u32 crc = ~(u32)0; 226 unsigned long inline_result; 227 228 len = buf->len - offset; 229 while (len > 0) { 230 err = map_private_extent_buffer(buf, offset, 32, 231 &map_token, &kaddr, 232 &map_start, &map_len, KM_USER0); 233 if (err) 234 return 1; 235 cur_len = min(len, map_len - (offset - map_start)); 236 crc = btrfs_csum_data(root, kaddr + offset - map_start, 237 crc, cur_len); 238 len -= cur_len; 239 offset += cur_len; 240 unmap_extent_buffer(buf, map_token, KM_USER0); 241 } 242 if (csum_size > sizeof(inline_result)) { 243 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 244 if (!result) 245 return 1; 246 } else { 247 result = (char *)&inline_result; 248 } 249 250 btrfs_csum_final(crc, result); 251 252 if (verify) { 253 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 254 u32 val; 255 u32 found = 0; 256 memcpy(&found, result, csum_size); 257 258 read_extent_buffer(buf, &val, 0, csum_size); 259 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify " 260 "failed on %llu wanted %X found %X " 261 "level %d\n", 262 root->fs_info->sb->s_id, 263 (unsigned long long)buf->start, val, found, 264 btrfs_header_level(buf)); 265 if (result != (char *)&inline_result) 266 kfree(result); 267 return 1; 268 } 269 } else { 270 write_extent_buffer(buf, result, 0, csum_size); 271 } 272 if (result != (char *)&inline_result) 273 kfree(result); 274 return 0; 275 } 276 277 /* 278 * we can't consider a given block up to date unless the transid of the 279 * block matches the transid in the parent node's pointer. This is how we 280 * detect blocks that either didn't get written at all or got written 281 * in the wrong place. 282 */ 283 static int verify_parent_transid(struct extent_io_tree *io_tree, 284 struct extent_buffer *eb, u64 parent_transid) 285 { 286 struct extent_state *cached_state = NULL; 287 int ret; 288 289 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 290 return 0; 291 292 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 293 0, &cached_state, GFP_NOFS); 294 if (extent_buffer_uptodate(io_tree, eb, cached_state) && 295 btrfs_header_generation(eb) == parent_transid) { 296 ret = 0; 297 goto out; 298 } 299 printk_ratelimited("parent transid verify failed on %llu wanted %llu " 300 "found %llu\n", 301 (unsigned long long)eb->start, 302 (unsigned long long)parent_transid, 303 (unsigned long long)btrfs_header_generation(eb)); 304 ret = 1; 305 clear_extent_buffer_uptodate(io_tree, eb, &cached_state); 306 out: 307 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 308 &cached_state, GFP_NOFS); 309 return ret; 310 } 311 312 /* 313 * helper to read a given tree block, doing retries as required when 314 * the checksums don't match and we have alternate mirrors to try. 315 */ 316 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 317 struct extent_buffer *eb, 318 u64 start, u64 parent_transid) 319 { 320 struct extent_io_tree *io_tree; 321 int ret; 322 int num_copies = 0; 323 int mirror_num = 0; 324 325 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 326 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 327 while (1) { 328 ret = read_extent_buffer_pages(io_tree, eb, start, 1, 329 btree_get_extent, mirror_num); 330 if (!ret && 331 !verify_parent_transid(io_tree, eb, parent_transid)) 332 return ret; 333 334 /* 335 * This buffer's crc is fine, but its contents are corrupted, so 336 * there is no reason to read the other copies, they won't be 337 * any less wrong. 338 */ 339 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 340 return ret; 341 342 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 343 eb->start, eb->len); 344 if (num_copies == 1) 345 return ret; 346 347 mirror_num++; 348 if (mirror_num > num_copies) 349 return ret; 350 } 351 return -EIO; 352 } 353 354 /* 355 * checksum a dirty tree block before IO. This has extra checks to make sure 356 * we only fill in the checksum field in the first page of a multi-page block 357 */ 358 359 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 360 { 361 struct extent_io_tree *tree; 362 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 363 u64 found_start; 364 unsigned long len; 365 struct extent_buffer *eb; 366 int ret; 367 368 tree = &BTRFS_I(page->mapping->host)->io_tree; 369 370 if (page->private == EXTENT_PAGE_PRIVATE) { 371 WARN_ON(1); 372 goto out; 373 } 374 if (!page->private) { 375 WARN_ON(1); 376 goto out; 377 } 378 len = page->private >> 2; 379 WARN_ON(len == 0); 380 381 eb = alloc_extent_buffer(tree, start, len, page); 382 if (eb == NULL) { 383 WARN_ON(1); 384 goto out; 385 } 386 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE, 387 btrfs_header_generation(eb)); 388 BUG_ON(ret); 389 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN)); 390 391 found_start = btrfs_header_bytenr(eb); 392 if (found_start != start) { 393 WARN_ON(1); 394 goto err; 395 } 396 if (eb->first_page != page) { 397 WARN_ON(1); 398 goto err; 399 } 400 if (!PageUptodate(page)) { 401 WARN_ON(1); 402 goto err; 403 } 404 csum_tree_block(root, eb, 0); 405 err: 406 free_extent_buffer(eb); 407 out: 408 return 0; 409 } 410 411 static int check_tree_block_fsid(struct btrfs_root *root, 412 struct extent_buffer *eb) 413 { 414 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 415 u8 fsid[BTRFS_UUID_SIZE]; 416 int ret = 1; 417 418 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 419 BTRFS_FSID_SIZE); 420 while (fs_devices) { 421 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 422 ret = 0; 423 break; 424 } 425 fs_devices = fs_devices->seed; 426 } 427 return ret; 428 } 429 430 #define CORRUPT(reason, eb, root, slot) \ 431 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \ 432 "root=%llu, slot=%d\n", reason, \ 433 (unsigned long long)btrfs_header_bytenr(eb), \ 434 (unsigned long long)root->objectid, slot) 435 436 static noinline int check_leaf(struct btrfs_root *root, 437 struct extent_buffer *leaf) 438 { 439 struct btrfs_key key; 440 struct btrfs_key leaf_key; 441 u32 nritems = btrfs_header_nritems(leaf); 442 int slot; 443 444 if (nritems == 0) 445 return 0; 446 447 /* Check the 0 item */ 448 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 449 BTRFS_LEAF_DATA_SIZE(root)) { 450 CORRUPT("invalid item offset size pair", leaf, root, 0); 451 return -EIO; 452 } 453 454 /* 455 * Check to make sure each items keys are in the correct order and their 456 * offsets make sense. We only have to loop through nritems-1 because 457 * we check the current slot against the next slot, which verifies the 458 * next slot's offset+size makes sense and that the current's slot 459 * offset is correct. 460 */ 461 for (slot = 0; slot < nritems - 1; slot++) { 462 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 463 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 464 465 /* Make sure the keys are in the right order */ 466 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 467 CORRUPT("bad key order", leaf, root, slot); 468 return -EIO; 469 } 470 471 /* 472 * Make sure the offset and ends are right, remember that the 473 * item data starts at the end of the leaf and grows towards the 474 * front. 475 */ 476 if (btrfs_item_offset_nr(leaf, slot) != 477 btrfs_item_end_nr(leaf, slot + 1)) { 478 CORRUPT("slot offset bad", leaf, root, slot); 479 return -EIO; 480 } 481 482 /* 483 * Check to make sure that we don't point outside of the leaf, 484 * just incase all the items are consistent to eachother, but 485 * all point outside of the leaf. 486 */ 487 if (btrfs_item_end_nr(leaf, slot) > 488 BTRFS_LEAF_DATA_SIZE(root)) { 489 CORRUPT("slot end outside of leaf", leaf, root, slot); 490 return -EIO; 491 } 492 } 493 494 return 0; 495 } 496 497 #ifdef CONFIG_DEBUG_LOCK_ALLOC 498 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level) 499 { 500 lockdep_set_class_and_name(&eb->lock, 501 &btrfs_eb_class[level], 502 btrfs_eb_name[level]); 503 } 504 #endif 505 506 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 507 struct extent_state *state) 508 { 509 struct extent_io_tree *tree; 510 u64 found_start; 511 int found_level; 512 unsigned long len; 513 struct extent_buffer *eb; 514 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 515 int ret = 0; 516 517 tree = &BTRFS_I(page->mapping->host)->io_tree; 518 if (page->private == EXTENT_PAGE_PRIVATE) 519 goto out; 520 if (!page->private) 521 goto out; 522 523 len = page->private >> 2; 524 WARN_ON(len == 0); 525 526 eb = alloc_extent_buffer(tree, start, len, page); 527 if (eb == NULL) { 528 ret = -EIO; 529 goto out; 530 } 531 532 found_start = btrfs_header_bytenr(eb); 533 if (found_start != start) { 534 printk_ratelimited(KERN_INFO "btrfs bad tree block start " 535 "%llu %llu\n", 536 (unsigned long long)found_start, 537 (unsigned long long)eb->start); 538 ret = -EIO; 539 goto err; 540 } 541 if (eb->first_page != page) { 542 printk(KERN_INFO "btrfs bad first page %lu %lu\n", 543 eb->first_page->index, page->index); 544 WARN_ON(1); 545 ret = -EIO; 546 goto err; 547 } 548 if (check_tree_block_fsid(root, eb)) { 549 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n", 550 (unsigned long long)eb->start); 551 ret = -EIO; 552 goto err; 553 } 554 found_level = btrfs_header_level(eb); 555 556 btrfs_set_buffer_lockdep_class(eb, found_level); 557 558 ret = csum_tree_block(root, eb, 1); 559 if (ret) { 560 ret = -EIO; 561 goto err; 562 } 563 564 /* 565 * If this is a leaf block and it is corrupt, set the corrupt bit so 566 * that we don't try and read the other copies of this block, just 567 * return -EIO. 568 */ 569 if (found_level == 0 && check_leaf(root, eb)) { 570 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 571 ret = -EIO; 572 } 573 574 end = min_t(u64, eb->len, PAGE_CACHE_SIZE); 575 end = eb->start + end - 1; 576 err: 577 free_extent_buffer(eb); 578 out: 579 return ret; 580 } 581 582 static void end_workqueue_bio(struct bio *bio, int err) 583 { 584 struct end_io_wq *end_io_wq = bio->bi_private; 585 struct btrfs_fs_info *fs_info; 586 587 fs_info = end_io_wq->info; 588 end_io_wq->error = err; 589 end_io_wq->work.func = end_workqueue_fn; 590 end_io_wq->work.flags = 0; 591 592 if (bio->bi_rw & REQ_WRITE) { 593 if (end_io_wq->metadata == 1) 594 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 595 &end_io_wq->work); 596 else if (end_io_wq->metadata == 2) 597 btrfs_queue_worker(&fs_info->endio_freespace_worker, 598 &end_io_wq->work); 599 else 600 btrfs_queue_worker(&fs_info->endio_write_workers, 601 &end_io_wq->work); 602 } else { 603 if (end_io_wq->metadata) 604 btrfs_queue_worker(&fs_info->endio_meta_workers, 605 &end_io_wq->work); 606 else 607 btrfs_queue_worker(&fs_info->endio_workers, 608 &end_io_wq->work); 609 } 610 } 611 612 /* 613 * For the metadata arg you want 614 * 615 * 0 - if data 616 * 1 - if normal metadta 617 * 2 - if writing to the free space cache area 618 */ 619 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 620 int metadata) 621 { 622 struct end_io_wq *end_io_wq; 623 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 624 if (!end_io_wq) 625 return -ENOMEM; 626 627 end_io_wq->private = bio->bi_private; 628 end_io_wq->end_io = bio->bi_end_io; 629 end_io_wq->info = info; 630 end_io_wq->error = 0; 631 end_io_wq->bio = bio; 632 end_io_wq->metadata = metadata; 633 634 bio->bi_private = end_io_wq; 635 bio->bi_end_io = end_workqueue_bio; 636 return 0; 637 } 638 639 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 640 { 641 unsigned long limit = min_t(unsigned long, 642 info->workers.max_workers, 643 info->fs_devices->open_devices); 644 return 256 * limit; 645 } 646 647 static void run_one_async_start(struct btrfs_work *work) 648 { 649 struct async_submit_bio *async; 650 651 async = container_of(work, struct async_submit_bio, work); 652 async->submit_bio_start(async->inode, async->rw, async->bio, 653 async->mirror_num, async->bio_flags, 654 async->bio_offset); 655 } 656 657 static void run_one_async_done(struct btrfs_work *work) 658 { 659 struct btrfs_fs_info *fs_info; 660 struct async_submit_bio *async; 661 int limit; 662 663 async = container_of(work, struct async_submit_bio, work); 664 fs_info = BTRFS_I(async->inode)->root->fs_info; 665 666 limit = btrfs_async_submit_limit(fs_info); 667 limit = limit * 2 / 3; 668 669 atomic_dec(&fs_info->nr_async_submits); 670 671 if (atomic_read(&fs_info->nr_async_submits) < limit && 672 waitqueue_active(&fs_info->async_submit_wait)) 673 wake_up(&fs_info->async_submit_wait); 674 675 async->submit_bio_done(async->inode, async->rw, async->bio, 676 async->mirror_num, async->bio_flags, 677 async->bio_offset); 678 } 679 680 static void run_one_async_free(struct btrfs_work *work) 681 { 682 struct async_submit_bio *async; 683 684 async = container_of(work, struct async_submit_bio, work); 685 kfree(async); 686 } 687 688 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 689 int rw, struct bio *bio, int mirror_num, 690 unsigned long bio_flags, 691 u64 bio_offset, 692 extent_submit_bio_hook_t *submit_bio_start, 693 extent_submit_bio_hook_t *submit_bio_done) 694 { 695 struct async_submit_bio *async; 696 697 async = kmalloc(sizeof(*async), GFP_NOFS); 698 if (!async) 699 return -ENOMEM; 700 701 async->inode = inode; 702 async->rw = rw; 703 async->bio = bio; 704 async->mirror_num = mirror_num; 705 async->submit_bio_start = submit_bio_start; 706 async->submit_bio_done = submit_bio_done; 707 708 async->work.func = run_one_async_start; 709 async->work.ordered_func = run_one_async_done; 710 async->work.ordered_free = run_one_async_free; 711 712 async->work.flags = 0; 713 async->bio_flags = bio_flags; 714 async->bio_offset = bio_offset; 715 716 atomic_inc(&fs_info->nr_async_submits); 717 718 if (rw & REQ_SYNC) 719 btrfs_set_work_high_prio(&async->work); 720 721 btrfs_queue_worker(&fs_info->workers, &async->work); 722 723 while (atomic_read(&fs_info->async_submit_draining) && 724 atomic_read(&fs_info->nr_async_submits)) { 725 wait_event(fs_info->async_submit_wait, 726 (atomic_read(&fs_info->nr_async_submits) == 0)); 727 } 728 729 return 0; 730 } 731 732 static int btree_csum_one_bio(struct bio *bio) 733 { 734 struct bio_vec *bvec = bio->bi_io_vec; 735 int bio_index = 0; 736 struct btrfs_root *root; 737 738 WARN_ON(bio->bi_vcnt <= 0); 739 while (bio_index < bio->bi_vcnt) { 740 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 741 csum_dirty_buffer(root, bvec->bv_page); 742 bio_index++; 743 bvec++; 744 } 745 return 0; 746 } 747 748 static int __btree_submit_bio_start(struct inode *inode, int rw, 749 struct bio *bio, int mirror_num, 750 unsigned long bio_flags, 751 u64 bio_offset) 752 { 753 /* 754 * when we're called for a write, we're already in the async 755 * submission context. Just jump into btrfs_map_bio 756 */ 757 btree_csum_one_bio(bio); 758 return 0; 759 } 760 761 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 762 int mirror_num, unsigned long bio_flags, 763 u64 bio_offset) 764 { 765 /* 766 * when we're called for a write, we're already in the async 767 * submission context. Just jump into btrfs_map_bio 768 */ 769 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 770 } 771 772 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 773 int mirror_num, unsigned long bio_flags, 774 u64 bio_offset) 775 { 776 int ret; 777 778 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 779 bio, 1); 780 BUG_ON(ret); 781 782 if (!(rw & REQ_WRITE)) { 783 /* 784 * called for a read, do the setup so that checksum validation 785 * can happen in the async kernel threads 786 */ 787 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 788 mirror_num, 0); 789 } 790 791 /* 792 * kthread helpers are used to submit writes so that checksumming 793 * can happen in parallel across all CPUs 794 */ 795 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 796 inode, rw, bio, mirror_num, 0, 797 bio_offset, 798 __btree_submit_bio_start, 799 __btree_submit_bio_done); 800 } 801 802 #ifdef CONFIG_MIGRATION 803 static int btree_migratepage(struct address_space *mapping, 804 struct page *newpage, struct page *page) 805 { 806 /* 807 * we can't safely write a btree page from here, 808 * we haven't done the locking hook 809 */ 810 if (PageDirty(page)) 811 return -EAGAIN; 812 /* 813 * Buffers may be managed in a filesystem specific way. 814 * We must have no buffers or drop them. 815 */ 816 if (page_has_private(page) && 817 !try_to_release_page(page, GFP_KERNEL)) 818 return -EAGAIN; 819 return migrate_page(mapping, newpage, page); 820 } 821 #endif 822 823 static int btree_writepage(struct page *page, struct writeback_control *wbc) 824 { 825 struct extent_io_tree *tree; 826 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 827 struct extent_buffer *eb; 828 int was_dirty; 829 830 tree = &BTRFS_I(page->mapping->host)->io_tree; 831 if (!(current->flags & PF_MEMALLOC)) { 832 return extent_write_full_page(tree, page, 833 btree_get_extent, wbc); 834 } 835 836 redirty_page_for_writepage(wbc, page); 837 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE); 838 WARN_ON(!eb); 839 840 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 841 if (!was_dirty) { 842 spin_lock(&root->fs_info->delalloc_lock); 843 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE; 844 spin_unlock(&root->fs_info->delalloc_lock); 845 } 846 free_extent_buffer(eb); 847 848 unlock_page(page); 849 return 0; 850 } 851 852 static int btree_writepages(struct address_space *mapping, 853 struct writeback_control *wbc) 854 { 855 struct extent_io_tree *tree; 856 tree = &BTRFS_I(mapping->host)->io_tree; 857 if (wbc->sync_mode == WB_SYNC_NONE) { 858 struct btrfs_root *root = BTRFS_I(mapping->host)->root; 859 u64 num_dirty; 860 unsigned long thresh = 32 * 1024 * 1024; 861 862 if (wbc->for_kupdate) 863 return 0; 864 865 /* this is a bit racy, but that's ok */ 866 num_dirty = root->fs_info->dirty_metadata_bytes; 867 if (num_dirty < thresh) 868 return 0; 869 } 870 return extent_writepages(tree, mapping, btree_get_extent, wbc); 871 } 872 873 static int btree_readpage(struct file *file, struct page *page) 874 { 875 struct extent_io_tree *tree; 876 tree = &BTRFS_I(page->mapping->host)->io_tree; 877 return extent_read_full_page(tree, page, btree_get_extent); 878 } 879 880 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 881 { 882 struct extent_io_tree *tree; 883 struct extent_map_tree *map; 884 int ret; 885 886 if (PageWriteback(page) || PageDirty(page)) 887 return 0; 888 889 tree = &BTRFS_I(page->mapping->host)->io_tree; 890 map = &BTRFS_I(page->mapping->host)->extent_tree; 891 892 ret = try_release_extent_state(map, tree, page, gfp_flags); 893 if (!ret) 894 return 0; 895 896 ret = try_release_extent_buffer(tree, page); 897 if (ret == 1) { 898 ClearPagePrivate(page); 899 set_page_private(page, 0); 900 page_cache_release(page); 901 } 902 903 return ret; 904 } 905 906 static void btree_invalidatepage(struct page *page, unsigned long offset) 907 { 908 struct extent_io_tree *tree; 909 tree = &BTRFS_I(page->mapping->host)->io_tree; 910 extent_invalidatepage(tree, page, offset); 911 btree_releasepage(page, GFP_NOFS); 912 if (PagePrivate(page)) { 913 printk(KERN_WARNING "btrfs warning page private not zero " 914 "on page %llu\n", (unsigned long long)page_offset(page)); 915 ClearPagePrivate(page); 916 set_page_private(page, 0); 917 page_cache_release(page); 918 } 919 } 920 921 static const struct address_space_operations btree_aops = { 922 .readpage = btree_readpage, 923 .writepage = btree_writepage, 924 .writepages = btree_writepages, 925 .releasepage = btree_releasepage, 926 .invalidatepage = btree_invalidatepage, 927 #ifdef CONFIG_MIGRATION 928 .migratepage = btree_migratepage, 929 #endif 930 }; 931 932 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 933 u64 parent_transid) 934 { 935 struct extent_buffer *buf = NULL; 936 struct inode *btree_inode = root->fs_info->btree_inode; 937 int ret = 0; 938 939 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 940 if (!buf) 941 return 0; 942 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 943 buf, 0, 0, btree_get_extent, 0); 944 free_extent_buffer(buf); 945 return ret; 946 } 947 948 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 949 u64 bytenr, u32 blocksize) 950 { 951 struct inode *btree_inode = root->fs_info->btree_inode; 952 struct extent_buffer *eb; 953 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 954 bytenr, blocksize); 955 return eb; 956 } 957 958 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 959 u64 bytenr, u32 blocksize) 960 { 961 struct inode *btree_inode = root->fs_info->btree_inode; 962 struct extent_buffer *eb; 963 964 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 965 bytenr, blocksize, NULL); 966 return eb; 967 } 968 969 970 int btrfs_write_tree_block(struct extent_buffer *buf) 971 { 972 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start, 973 buf->start + buf->len - 1); 974 } 975 976 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 977 { 978 return filemap_fdatawait_range(buf->first_page->mapping, 979 buf->start, buf->start + buf->len - 1); 980 } 981 982 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 983 u32 blocksize, u64 parent_transid) 984 { 985 struct extent_buffer *buf = NULL; 986 int ret; 987 988 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 989 if (!buf) 990 return NULL; 991 992 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 993 994 if (ret == 0) 995 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 996 return buf; 997 998 } 999 1000 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1001 struct extent_buffer *buf) 1002 { 1003 struct inode *btree_inode = root->fs_info->btree_inode; 1004 if (btrfs_header_generation(buf) == 1005 root->fs_info->running_transaction->transid) { 1006 btrfs_assert_tree_locked(buf); 1007 1008 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1009 spin_lock(&root->fs_info->delalloc_lock); 1010 if (root->fs_info->dirty_metadata_bytes >= buf->len) 1011 root->fs_info->dirty_metadata_bytes -= buf->len; 1012 else 1013 WARN_ON(1); 1014 spin_unlock(&root->fs_info->delalloc_lock); 1015 } 1016 1017 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1018 btrfs_set_lock_blocking(buf); 1019 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 1020 buf); 1021 } 1022 return 0; 1023 } 1024 1025 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 1026 u32 stripesize, struct btrfs_root *root, 1027 struct btrfs_fs_info *fs_info, 1028 u64 objectid) 1029 { 1030 root->node = NULL; 1031 root->commit_root = NULL; 1032 root->sectorsize = sectorsize; 1033 root->nodesize = nodesize; 1034 root->leafsize = leafsize; 1035 root->stripesize = stripesize; 1036 root->ref_cows = 0; 1037 root->track_dirty = 0; 1038 root->in_radix = 0; 1039 root->orphan_item_inserted = 0; 1040 root->orphan_cleanup_state = 0; 1041 1042 root->fs_info = fs_info; 1043 root->objectid = objectid; 1044 root->last_trans = 0; 1045 root->highest_objectid = 0; 1046 root->name = NULL; 1047 root->in_sysfs = 0; 1048 root->inode_tree = RB_ROOT; 1049 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1050 root->block_rsv = NULL; 1051 root->orphan_block_rsv = NULL; 1052 1053 INIT_LIST_HEAD(&root->dirty_list); 1054 INIT_LIST_HEAD(&root->orphan_list); 1055 INIT_LIST_HEAD(&root->root_list); 1056 spin_lock_init(&root->orphan_lock); 1057 spin_lock_init(&root->inode_lock); 1058 spin_lock_init(&root->accounting_lock); 1059 mutex_init(&root->objectid_mutex); 1060 mutex_init(&root->log_mutex); 1061 init_waitqueue_head(&root->log_writer_wait); 1062 init_waitqueue_head(&root->log_commit_wait[0]); 1063 init_waitqueue_head(&root->log_commit_wait[1]); 1064 atomic_set(&root->log_commit[0], 0); 1065 atomic_set(&root->log_commit[1], 0); 1066 atomic_set(&root->log_writers, 0); 1067 root->log_batch = 0; 1068 root->log_transid = 0; 1069 root->last_log_commit = 0; 1070 extent_io_tree_init(&root->dirty_log_pages, 1071 fs_info->btree_inode->i_mapping); 1072 1073 memset(&root->root_key, 0, sizeof(root->root_key)); 1074 memset(&root->root_item, 0, sizeof(root->root_item)); 1075 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1076 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1077 root->defrag_trans_start = fs_info->generation; 1078 init_completion(&root->kobj_unregister); 1079 root->defrag_running = 0; 1080 root->root_key.objectid = objectid; 1081 root->anon_super.s_root = NULL; 1082 root->anon_super.s_dev = 0; 1083 INIT_LIST_HEAD(&root->anon_super.s_list); 1084 INIT_LIST_HEAD(&root->anon_super.s_instances); 1085 init_rwsem(&root->anon_super.s_umount); 1086 1087 return 0; 1088 } 1089 1090 static int find_and_setup_root(struct btrfs_root *tree_root, 1091 struct btrfs_fs_info *fs_info, 1092 u64 objectid, 1093 struct btrfs_root *root) 1094 { 1095 int ret; 1096 u32 blocksize; 1097 u64 generation; 1098 1099 __setup_root(tree_root->nodesize, tree_root->leafsize, 1100 tree_root->sectorsize, tree_root->stripesize, 1101 root, fs_info, objectid); 1102 ret = btrfs_find_last_root(tree_root, objectid, 1103 &root->root_item, &root->root_key); 1104 if (ret > 0) 1105 return -ENOENT; 1106 BUG_ON(ret); 1107 1108 generation = btrfs_root_generation(&root->root_item); 1109 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1110 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1111 blocksize, generation); 1112 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) { 1113 free_extent_buffer(root->node); 1114 return -EIO; 1115 } 1116 root->commit_root = btrfs_root_node(root); 1117 return 0; 1118 } 1119 1120 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1121 struct btrfs_fs_info *fs_info) 1122 { 1123 struct btrfs_root *root; 1124 struct btrfs_root *tree_root = fs_info->tree_root; 1125 struct extent_buffer *leaf; 1126 1127 root = kzalloc(sizeof(*root), GFP_NOFS); 1128 if (!root) 1129 return ERR_PTR(-ENOMEM); 1130 1131 __setup_root(tree_root->nodesize, tree_root->leafsize, 1132 tree_root->sectorsize, tree_root->stripesize, 1133 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1134 1135 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1136 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1137 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1138 /* 1139 * log trees do not get reference counted because they go away 1140 * before a real commit is actually done. They do store pointers 1141 * to file data extents, and those reference counts still get 1142 * updated (along with back refs to the log tree). 1143 */ 1144 root->ref_cows = 0; 1145 1146 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1147 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0); 1148 if (IS_ERR(leaf)) { 1149 kfree(root); 1150 return ERR_CAST(leaf); 1151 } 1152 1153 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1154 btrfs_set_header_bytenr(leaf, leaf->start); 1155 btrfs_set_header_generation(leaf, trans->transid); 1156 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1157 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1158 root->node = leaf; 1159 1160 write_extent_buffer(root->node, root->fs_info->fsid, 1161 (unsigned long)btrfs_header_fsid(root->node), 1162 BTRFS_FSID_SIZE); 1163 btrfs_mark_buffer_dirty(root->node); 1164 btrfs_tree_unlock(root->node); 1165 return root; 1166 } 1167 1168 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1169 struct btrfs_fs_info *fs_info) 1170 { 1171 struct btrfs_root *log_root; 1172 1173 log_root = alloc_log_tree(trans, fs_info); 1174 if (IS_ERR(log_root)) 1175 return PTR_ERR(log_root); 1176 WARN_ON(fs_info->log_root_tree); 1177 fs_info->log_root_tree = log_root; 1178 return 0; 1179 } 1180 1181 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1182 struct btrfs_root *root) 1183 { 1184 struct btrfs_root *log_root; 1185 struct btrfs_inode_item *inode_item; 1186 1187 log_root = alloc_log_tree(trans, root->fs_info); 1188 if (IS_ERR(log_root)) 1189 return PTR_ERR(log_root); 1190 1191 log_root->last_trans = trans->transid; 1192 log_root->root_key.offset = root->root_key.objectid; 1193 1194 inode_item = &log_root->root_item.inode; 1195 inode_item->generation = cpu_to_le64(1); 1196 inode_item->size = cpu_to_le64(3); 1197 inode_item->nlink = cpu_to_le32(1); 1198 inode_item->nbytes = cpu_to_le64(root->leafsize); 1199 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1200 1201 btrfs_set_root_node(&log_root->root_item, log_root->node); 1202 1203 WARN_ON(root->log_root); 1204 root->log_root = log_root; 1205 root->log_transid = 0; 1206 root->last_log_commit = 0; 1207 return 0; 1208 } 1209 1210 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1211 struct btrfs_key *location) 1212 { 1213 struct btrfs_root *root; 1214 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1215 struct btrfs_path *path; 1216 struct extent_buffer *l; 1217 u64 generation; 1218 u32 blocksize; 1219 int ret = 0; 1220 1221 root = kzalloc(sizeof(*root), GFP_NOFS); 1222 if (!root) 1223 return ERR_PTR(-ENOMEM); 1224 if (location->offset == (u64)-1) { 1225 ret = find_and_setup_root(tree_root, fs_info, 1226 location->objectid, root); 1227 if (ret) { 1228 kfree(root); 1229 return ERR_PTR(ret); 1230 } 1231 goto out; 1232 } 1233 1234 __setup_root(tree_root->nodesize, tree_root->leafsize, 1235 tree_root->sectorsize, tree_root->stripesize, 1236 root, fs_info, location->objectid); 1237 1238 path = btrfs_alloc_path(); 1239 if (!path) { 1240 kfree(root); 1241 return ERR_PTR(-ENOMEM); 1242 } 1243 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1244 if (ret == 0) { 1245 l = path->nodes[0]; 1246 read_extent_buffer(l, &root->root_item, 1247 btrfs_item_ptr_offset(l, path->slots[0]), 1248 sizeof(root->root_item)); 1249 memcpy(&root->root_key, location, sizeof(*location)); 1250 } 1251 btrfs_free_path(path); 1252 if (ret) { 1253 kfree(root); 1254 if (ret > 0) 1255 ret = -ENOENT; 1256 return ERR_PTR(ret); 1257 } 1258 1259 generation = btrfs_root_generation(&root->root_item); 1260 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1261 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1262 blocksize, generation); 1263 root->commit_root = btrfs_root_node(root); 1264 BUG_ON(!root->node); 1265 out: 1266 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { 1267 root->ref_cows = 1; 1268 btrfs_check_and_init_root_item(&root->root_item); 1269 } 1270 1271 return root; 1272 } 1273 1274 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1275 struct btrfs_key *location) 1276 { 1277 struct btrfs_root *root; 1278 int ret; 1279 1280 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1281 return fs_info->tree_root; 1282 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1283 return fs_info->extent_root; 1284 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1285 return fs_info->chunk_root; 1286 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1287 return fs_info->dev_root; 1288 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1289 return fs_info->csum_root; 1290 again: 1291 spin_lock(&fs_info->fs_roots_radix_lock); 1292 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1293 (unsigned long)location->objectid); 1294 spin_unlock(&fs_info->fs_roots_radix_lock); 1295 if (root) 1296 return root; 1297 1298 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1299 if (IS_ERR(root)) 1300 return root; 1301 1302 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1303 if (!root->free_ino_ctl) 1304 goto fail; 1305 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1306 GFP_NOFS); 1307 if (!root->free_ino_pinned) 1308 goto fail; 1309 1310 btrfs_init_free_ino_ctl(root); 1311 mutex_init(&root->fs_commit_mutex); 1312 spin_lock_init(&root->cache_lock); 1313 init_waitqueue_head(&root->cache_wait); 1314 1315 set_anon_super(&root->anon_super, NULL); 1316 1317 if (btrfs_root_refs(&root->root_item) == 0) { 1318 ret = -ENOENT; 1319 goto fail; 1320 } 1321 1322 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); 1323 if (ret < 0) 1324 goto fail; 1325 if (ret == 0) 1326 root->orphan_item_inserted = 1; 1327 1328 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1329 if (ret) 1330 goto fail; 1331 1332 spin_lock(&fs_info->fs_roots_radix_lock); 1333 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1334 (unsigned long)root->root_key.objectid, 1335 root); 1336 if (ret == 0) 1337 root->in_radix = 1; 1338 1339 spin_unlock(&fs_info->fs_roots_radix_lock); 1340 radix_tree_preload_end(); 1341 if (ret) { 1342 if (ret == -EEXIST) { 1343 free_fs_root(root); 1344 goto again; 1345 } 1346 goto fail; 1347 } 1348 1349 ret = btrfs_find_dead_roots(fs_info->tree_root, 1350 root->root_key.objectid); 1351 WARN_ON(ret); 1352 return root; 1353 fail: 1354 free_fs_root(root); 1355 return ERR_PTR(ret); 1356 } 1357 1358 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1359 { 1360 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1361 int ret = 0; 1362 struct btrfs_device *device; 1363 struct backing_dev_info *bdi; 1364 1365 rcu_read_lock(); 1366 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1367 if (!device->bdev) 1368 continue; 1369 bdi = blk_get_backing_dev_info(device->bdev); 1370 if (bdi && bdi_congested(bdi, bdi_bits)) { 1371 ret = 1; 1372 break; 1373 } 1374 } 1375 rcu_read_unlock(); 1376 return ret; 1377 } 1378 1379 /* 1380 * If this fails, caller must call bdi_destroy() to get rid of the 1381 * bdi again. 1382 */ 1383 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1384 { 1385 int err; 1386 1387 bdi->capabilities = BDI_CAP_MAP_COPY; 1388 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1389 if (err) 1390 return err; 1391 1392 bdi->ra_pages = default_backing_dev_info.ra_pages; 1393 bdi->congested_fn = btrfs_congested_fn; 1394 bdi->congested_data = info; 1395 return 0; 1396 } 1397 1398 static int bio_ready_for_csum(struct bio *bio) 1399 { 1400 u64 length = 0; 1401 u64 buf_len = 0; 1402 u64 start = 0; 1403 struct page *page; 1404 struct extent_io_tree *io_tree = NULL; 1405 struct bio_vec *bvec; 1406 int i; 1407 int ret; 1408 1409 bio_for_each_segment(bvec, bio, i) { 1410 page = bvec->bv_page; 1411 if (page->private == EXTENT_PAGE_PRIVATE) { 1412 length += bvec->bv_len; 1413 continue; 1414 } 1415 if (!page->private) { 1416 length += bvec->bv_len; 1417 continue; 1418 } 1419 length = bvec->bv_len; 1420 buf_len = page->private >> 2; 1421 start = page_offset(page) + bvec->bv_offset; 1422 io_tree = &BTRFS_I(page->mapping->host)->io_tree; 1423 } 1424 /* are we fully contained in this bio? */ 1425 if (buf_len <= length) 1426 return 1; 1427 1428 ret = extent_range_uptodate(io_tree, start + length, 1429 start + buf_len - 1); 1430 return ret; 1431 } 1432 1433 /* 1434 * called by the kthread helper functions to finally call the bio end_io 1435 * functions. This is where read checksum verification actually happens 1436 */ 1437 static void end_workqueue_fn(struct btrfs_work *work) 1438 { 1439 struct bio *bio; 1440 struct end_io_wq *end_io_wq; 1441 struct btrfs_fs_info *fs_info; 1442 int error; 1443 1444 end_io_wq = container_of(work, struct end_io_wq, work); 1445 bio = end_io_wq->bio; 1446 fs_info = end_io_wq->info; 1447 1448 /* metadata bio reads are special because the whole tree block must 1449 * be checksummed at once. This makes sure the entire block is in 1450 * ram and up to date before trying to verify things. For 1451 * blocksize <= pagesize, it is basically a noop 1452 */ 1453 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata && 1454 !bio_ready_for_csum(bio)) { 1455 btrfs_queue_worker(&fs_info->endio_meta_workers, 1456 &end_io_wq->work); 1457 return; 1458 } 1459 error = end_io_wq->error; 1460 bio->bi_private = end_io_wq->private; 1461 bio->bi_end_io = end_io_wq->end_io; 1462 kfree(end_io_wq); 1463 bio_endio(bio, error); 1464 } 1465 1466 static int cleaner_kthread(void *arg) 1467 { 1468 struct btrfs_root *root = arg; 1469 1470 do { 1471 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1472 1473 if (!(root->fs_info->sb->s_flags & MS_RDONLY) && 1474 mutex_trylock(&root->fs_info->cleaner_mutex)) { 1475 btrfs_run_delayed_iputs(root); 1476 btrfs_clean_old_snapshots(root); 1477 mutex_unlock(&root->fs_info->cleaner_mutex); 1478 btrfs_run_defrag_inodes(root->fs_info); 1479 } 1480 1481 if (freezing(current)) { 1482 refrigerator(); 1483 } else { 1484 set_current_state(TASK_INTERRUPTIBLE); 1485 if (!kthread_should_stop()) 1486 schedule(); 1487 __set_current_state(TASK_RUNNING); 1488 } 1489 } while (!kthread_should_stop()); 1490 return 0; 1491 } 1492 1493 static int transaction_kthread(void *arg) 1494 { 1495 struct btrfs_root *root = arg; 1496 struct btrfs_trans_handle *trans; 1497 struct btrfs_transaction *cur; 1498 u64 transid; 1499 unsigned long now; 1500 unsigned long delay; 1501 int ret; 1502 1503 do { 1504 delay = HZ * 30; 1505 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1506 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1507 1508 spin_lock(&root->fs_info->trans_lock); 1509 cur = root->fs_info->running_transaction; 1510 if (!cur) { 1511 spin_unlock(&root->fs_info->trans_lock); 1512 goto sleep; 1513 } 1514 1515 now = get_seconds(); 1516 if (!cur->blocked && 1517 (now < cur->start_time || now - cur->start_time < 30)) { 1518 spin_unlock(&root->fs_info->trans_lock); 1519 delay = HZ * 5; 1520 goto sleep; 1521 } 1522 transid = cur->transid; 1523 spin_unlock(&root->fs_info->trans_lock); 1524 1525 trans = btrfs_join_transaction(root); 1526 BUG_ON(IS_ERR(trans)); 1527 if (transid == trans->transid) { 1528 ret = btrfs_commit_transaction(trans, root); 1529 BUG_ON(ret); 1530 } else { 1531 btrfs_end_transaction(trans, root); 1532 } 1533 sleep: 1534 wake_up_process(root->fs_info->cleaner_kthread); 1535 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1536 1537 if (freezing(current)) { 1538 refrigerator(); 1539 } else { 1540 set_current_state(TASK_INTERRUPTIBLE); 1541 if (!kthread_should_stop() && 1542 !btrfs_transaction_blocked(root->fs_info)) 1543 schedule_timeout(delay); 1544 __set_current_state(TASK_RUNNING); 1545 } 1546 } while (!kthread_should_stop()); 1547 return 0; 1548 } 1549 1550 struct btrfs_root *open_ctree(struct super_block *sb, 1551 struct btrfs_fs_devices *fs_devices, 1552 char *options) 1553 { 1554 u32 sectorsize; 1555 u32 nodesize; 1556 u32 leafsize; 1557 u32 blocksize; 1558 u32 stripesize; 1559 u64 generation; 1560 u64 features; 1561 struct btrfs_key location; 1562 struct buffer_head *bh; 1563 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root), 1564 GFP_NOFS); 1565 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root), 1566 GFP_NOFS); 1567 struct btrfs_root *tree_root = btrfs_sb(sb); 1568 struct btrfs_fs_info *fs_info = NULL; 1569 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root), 1570 GFP_NOFS); 1571 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root), 1572 GFP_NOFS); 1573 struct btrfs_root *log_tree_root; 1574 1575 int ret; 1576 int err = -EINVAL; 1577 1578 struct btrfs_super_block *disk_super; 1579 1580 if (!extent_root || !tree_root || !tree_root->fs_info || 1581 !chunk_root || !dev_root || !csum_root) { 1582 err = -ENOMEM; 1583 goto fail; 1584 } 1585 fs_info = tree_root->fs_info; 1586 1587 ret = init_srcu_struct(&fs_info->subvol_srcu); 1588 if (ret) { 1589 err = ret; 1590 goto fail; 1591 } 1592 1593 ret = setup_bdi(fs_info, &fs_info->bdi); 1594 if (ret) { 1595 err = ret; 1596 goto fail_srcu; 1597 } 1598 1599 fs_info->btree_inode = new_inode(sb); 1600 if (!fs_info->btree_inode) { 1601 err = -ENOMEM; 1602 goto fail_bdi; 1603 } 1604 1605 fs_info->btree_inode->i_mapping->flags &= ~__GFP_FS; 1606 1607 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 1608 INIT_LIST_HEAD(&fs_info->trans_list); 1609 INIT_LIST_HEAD(&fs_info->dead_roots); 1610 INIT_LIST_HEAD(&fs_info->delayed_iputs); 1611 INIT_LIST_HEAD(&fs_info->hashers); 1612 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 1613 INIT_LIST_HEAD(&fs_info->ordered_operations); 1614 INIT_LIST_HEAD(&fs_info->caching_block_groups); 1615 spin_lock_init(&fs_info->delalloc_lock); 1616 spin_lock_init(&fs_info->trans_lock); 1617 spin_lock_init(&fs_info->ref_cache_lock); 1618 spin_lock_init(&fs_info->fs_roots_radix_lock); 1619 spin_lock_init(&fs_info->delayed_iput_lock); 1620 spin_lock_init(&fs_info->defrag_inodes_lock); 1621 1622 init_completion(&fs_info->kobj_unregister); 1623 fs_info->tree_root = tree_root; 1624 fs_info->extent_root = extent_root; 1625 fs_info->csum_root = csum_root; 1626 fs_info->chunk_root = chunk_root; 1627 fs_info->dev_root = dev_root; 1628 fs_info->fs_devices = fs_devices; 1629 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 1630 INIT_LIST_HEAD(&fs_info->space_info); 1631 btrfs_mapping_init(&fs_info->mapping_tree); 1632 btrfs_init_block_rsv(&fs_info->global_block_rsv); 1633 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv); 1634 btrfs_init_block_rsv(&fs_info->trans_block_rsv); 1635 btrfs_init_block_rsv(&fs_info->chunk_block_rsv); 1636 btrfs_init_block_rsv(&fs_info->empty_block_rsv); 1637 INIT_LIST_HEAD(&fs_info->durable_block_rsv_list); 1638 mutex_init(&fs_info->durable_block_rsv_mutex); 1639 atomic_set(&fs_info->nr_async_submits, 0); 1640 atomic_set(&fs_info->async_delalloc_pages, 0); 1641 atomic_set(&fs_info->async_submit_draining, 0); 1642 atomic_set(&fs_info->nr_async_bios, 0); 1643 atomic_set(&fs_info->defrag_running, 0); 1644 fs_info->sb = sb; 1645 fs_info->max_inline = 8192 * 1024; 1646 fs_info->metadata_ratio = 0; 1647 fs_info->defrag_inodes = RB_ROOT; 1648 fs_info->trans_no_join = 0; 1649 1650 fs_info->thread_pool_size = min_t(unsigned long, 1651 num_online_cpus() + 2, 8); 1652 1653 INIT_LIST_HEAD(&fs_info->ordered_extents); 1654 spin_lock_init(&fs_info->ordered_extent_lock); 1655 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 1656 GFP_NOFS); 1657 if (!fs_info->delayed_root) { 1658 err = -ENOMEM; 1659 goto fail_iput; 1660 } 1661 btrfs_init_delayed_root(fs_info->delayed_root); 1662 1663 mutex_init(&fs_info->scrub_lock); 1664 atomic_set(&fs_info->scrubs_running, 0); 1665 atomic_set(&fs_info->scrub_pause_req, 0); 1666 atomic_set(&fs_info->scrubs_paused, 0); 1667 atomic_set(&fs_info->scrub_cancel_req, 0); 1668 init_waitqueue_head(&fs_info->scrub_pause_wait); 1669 init_rwsem(&fs_info->scrub_super_lock); 1670 fs_info->scrub_workers_refcnt = 0; 1671 btrfs_init_workers(&fs_info->scrub_workers, "scrub", 1672 fs_info->thread_pool_size, &fs_info->generic_worker); 1673 1674 sb->s_blocksize = 4096; 1675 sb->s_blocksize_bits = blksize_bits(4096); 1676 sb->s_bdi = &fs_info->bdi; 1677 1678 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 1679 fs_info->btree_inode->i_nlink = 1; 1680 /* 1681 * we set the i_size on the btree inode to the max possible int. 1682 * the real end of the address space is determined by all of 1683 * the devices in the system 1684 */ 1685 fs_info->btree_inode->i_size = OFFSET_MAX; 1686 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 1687 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 1688 1689 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 1690 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 1691 fs_info->btree_inode->i_mapping); 1692 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 1693 1694 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 1695 1696 BTRFS_I(fs_info->btree_inode)->root = tree_root; 1697 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 1698 sizeof(struct btrfs_key)); 1699 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1; 1700 insert_inode_hash(fs_info->btree_inode); 1701 1702 spin_lock_init(&fs_info->block_group_cache_lock); 1703 fs_info->block_group_cache_tree = RB_ROOT; 1704 1705 extent_io_tree_init(&fs_info->freed_extents[0], 1706 fs_info->btree_inode->i_mapping); 1707 extent_io_tree_init(&fs_info->freed_extents[1], 1708 fs_info->btree_inode->i_mapping); 1709 fs_info->pinned_extents = &fs_info->freed_extents[0]; 1710 fs_info->do_barriers = 1; 1711 1712 1713 mutex_init(&fs_info->ordered_operations_mutex); 1714 mutex_init(&fs_info->tree_log_mutex); 1715 mutex_init(&fs_info->chunk_mutex); 1716 mutex_init(&fs_info->transaction_kthread_mutex); 1717 mutex_init(&fs_info->cleaner_mutex); 1718 mutex_init(&fs_info->volume_mutex); 1719 init_rwsem(&fs_info->extent_commit_sem); 1720 init_rwsem(&fs_info->cleanup_work_sem); 1721 init_rwsem(&fs_info->subvol_sem); 1722 1723 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 1724 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 1725 1726 init_waitqueue_head(&fs_info->transaction_throttle); 1727 init_waitqueue_head(&fs_info->transaction_wait); 1728 init_waitqueue_head(&fs_info->transaction_blocked_wait); 1729 init_waitqueue_head(&fs_info->async_submit_wait); 1730 1731 __setup_root(4096, 4096, 4096, 4096, tree_root, 1732 fs_info, BTRFS_ROOT_TREE_OBJECTID); 1733 1734 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 1735 if (!bh) { 1736 err = -EINVAL; 1737 goto fail_alloc; 1738 } 1739 1740 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy)); 1741 memcpy(&fs_info->super_for_commit, &fs_info->super_copy, 1742 sizeof(fs_info->super_for_commit)); 1743 brelse(bh); 1744 1745 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE); 1746 1747 disk_super = &fs_info->super_copy; 1748 if (!btrfs_super_root(disk_super)) 1749 goto fail_alloc; 1750 1751 /* check FS state, whether FS is broken. */ 1752 fs_info->fs_state |= btrfs_super_flags(disk_super); 1753 1754 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 1755 1756 /* 1757 * In the long term, we'll store the compression type in the super 1758 * block, and it'll be used for per file compression control. 1759 */ 1760 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 1761 1762 ret = btrfs_parse_options(tree_root, options); 1763 if (ret) { 1764 err = ret; 1765 goto fail_alloc; 1766 } 1767 1768 features = btrfs_super_incompat_flags(disk_super) & 1769 ~BTRFS_FEATURE_INCOMPAT_SUPP; 1770 if (features) { 1771 printk(KERN_ERR "BTRFS: couldn't mount because of " 1772 "unsupported optional features (%Lx).\n", 1773 (unsigned long long)features); 1774 err = -EINVAL; 1775 goto fail_alloc; 1776 } 1777 1778 features = btrfs_super_incompat_flags(disk_super); 1779 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 1780 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO) 1781 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 1782 btrfs_set_super_incompat_flags(disk_super, features); 1783 1784 features = btrfs_super_compat_ro_flags(disk_super) & 1785 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 1786 if (!(sb->s_flags & MS_RDONLY) && features) { 1787 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 1788 "unsupported option features (%Lx).\n", 1789 (unsigned long long)features); 1790 err = -EINVAL; 1791 goto fail_alloc; 1792 } 1793 1794 btrfs_init_workers(&fs_info->generic_worker, 1795 "genwork", 1, NULL); 1796 1797 btrfs_init_workers(&fs_info->workers, "worker", 1798 fs_info->thread_pool_size, 1799 &fs_info->generic_worker); 1800 1801 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 1802 fs_info->thread_pool_size, 1803 &fs_info->generic_worker); 1804 1805 btrfs_init_workers(&fs_info->submit_workers, "submit", 1806 min_t(u64, fs_devices->num_devices, 1807 fs_info->thread_pool_size), 1808 &fs_info->generic_worker); 1809 1810 /* a higher idle thresh on the submit workers makes it much more 1811 * likely that bios will be send down in a sane order to the 1812 * devices 1813 */ 1814 fs_info->submit_workers.idle_thresh = 64; 1815 1816 fs_info->workers.idle_thresh = 16; 1817 fs_info->workers.ordered = 1; 1818 1819 fs_info->delalloc_workers.idle_thresh = 2; 1820 fs_info->delalloc_workers.ordered = 1; 1821 1822 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, 1823 &fs_info->generic_worker); 1824 btrfs_init_workers(&fs_info->endio_workers, "endio", 1825 fs_info->thread_pool_size, 1826 &fs_info->generic_worker); 1827 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 1828 fs_info->thread_pool_size, 1829 &fs_info->generic_worker); 1830 btrfs_init_workers(&fs_info->endio_meta_write_workers, 1831 "endio-meta-write", fs_info->thread_pool_size, 1832 &fs_info->generic_worker); 1833 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 1834 fs_info->thread_pool_size, 1835 &fs_info->generic_worker); 1836 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", 1837 1, &fs_info->generic_worker); 1838 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta", 1839 fs_info->thread_pool_size, 1840 &fs_info->generic_worker); 1841 1842 /* 1843 * endios are largely parallel and should have a very 1844 * low idle thresh 1845 */ 1846 fs_info->endio_workers.idle_thresh = 4; 1847 fs_info->endio_meta_workers.idle_thresh = 4; 1848 1849 fs_info->endio_write_workers.idle_thresh = 2; 1850 fs_info->endio_meta_write_workers.idle_thresh = 2; 1851 1852 btrfs_start_workers(&fs_info->workers, 1); 1853 btrfs_start_workers(&fs_info->generic_worker, 1); 1854 btrfs_start_workers(&fs_info->submit_workers, 1); 1855 btrfs_start_workers(&fs_info->delalloc_workers, 1); 1856 btrfs_start_workers(&fs_info->fixup_workers, 1); 1857 btrfs_start_workers(&fs_info->endio_workers, 1); 1858 btrfs_start_workers(&fs_info->endio_meta_workers, 1); 1859 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1); 1860 btrfs_start_workers(&fs_info->endio_write_workers, 1); 1861 btrfs_start_workers(&fs_info->endio_freespace_worker, 1); 1862 btrfs_start_workers(&fs_info->delayed_workers, 1); 1863 1864 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 1865 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 1866 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 1867 1868 nodesize = btrfs_super_nodesize(disk_super); 1869 leafsize = btrfs_super_leafsize(disk_super); 1870 sectorsize = btrfs_super_sectorsize(disk_super); 1871 stripesize = btrfs_super_stripesize(disk_super); 1872 tree_root->nodesize = nodesize; 1873 tree_root->leafsize = leafsize; 1874 tree_root->sectorsize = sectorsize; 1875 tree_root->stripesize = stripesize; 1876 1877 sb->s_blocksize = sectorsize; 1878 sb->s_blocksize_bits = blksize_bits(sectorsize); 1879 1880 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 1881 sizeof(disk_super->magic))) { 1882 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 1883 goto fail_sb_buffer; 1884 } 1885 1886 mutex_lock(&fs_info->chunk_mutex); 1887 ret = btrfs_read_sys_array(tree_root); 1888 mutex_unlock(&fs_info->chunk_mutex); 1889 if (ret) { 1890 printk(KERN_WARNING "btrfs: failed to read the system " 1891 "array on %s\n", sb->s_id); 1892 goto fail_sb_buffer; 1893 } 1894 1895 blocksize = btrfs_level_size(tree_root, 1896 btrfs_super_chunk_root_level(disk_super)); 1897 generation = btrfs_super_chunk_root_generation(disk_super); 1898 1899 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1900 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 1901 1902 chunk_root->node = read_tree_block(chunk_root, 1903 btrfs_super_chunk_root(disk_super), 1904 blocksize, generation); 1905 BUG_ON(!chunk_root->node); 1906 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 1907 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 1908 sb->s_id); 1909 goto fail_chunk_root; 1910 } 1911 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 1912 chunk_root->commit_root = btrfs_root_node(chunk_root); 1913 1914 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 1915 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 1916 BTRFS_UUID_SIZE); 1917 1918 mutex_lock(&fs_info->chunk_mutex); 1919 ret = btrfs_read_chunk_tree(chunk_root); 1920 mutex_unlock(&fs_info->chunk_mutex); 1921 if (ret) { 1922 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 1923 sb->s_id); 1924 goto fail_chunk_root; 1925 } 1926 1927 btrfs_close_extra_devices(fs_devices); 1928 1929 blocksize = btrfs_level_size(tree_root, 1930 btrfs_super_root_level(disk_super)); 1931 generation = btrfs_super_generation(disk_super); 1932 1933 tree_root->node = read_tree_block(tree_root, 1934 btrfs_super_root(disk_super), 1935 blocksize, generation); 1936 if (!tree_root->node) 1937 goto fail_chunk_root; 1938 if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 1939 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 1940 sb->s_id); 1941 goto fail_tree_root; 1942 } 1943 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 1944 tree_root->commit_root = btrfs_root_node(tree_root); 1945 1946 ret = find_and_setup_root(tree_root, fs_info, 1947 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 1948 if (ret) 1949 goto fail_tree_root; 1950 extent_root->track_dirty = 1; 1951 1952 ret = find_and_setup_root(tree_root, fs_info, 1953 BTRFS_DEV_TREE_OBJECTID, dev_root); 1954 if (ret) 1955 goto fail_extent_root; 1956 dev_root->track_dirty = 1; 1957 1958 ret = find_and_setup_root(tree_root, fs_info, 1959 BTRFS_CSUM_TREE_OBJECTID, csum_root); 1960 if (ret) 1961 goto fail_dev_root; 1962 1963 csum_root->track_dirty = 1; 1964 1965 fs_info->generation = generation; 1966 fs_info->last_trans_committed = generation; 1967 fs_info->data_alloc_profile = (u64)-1; 1968 fs_info->metadata_alloc_profile = (u64)-1; 1969 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile; 1970 1971 ret = btrfs_init_space_info(fs_info); 1972 if (ret) { 1973 printk(KERN_ERR "Failed to initial space info: %d\n", ret); 1974 goto fail_block_groups; 1975 } 1976 1977 ret = btrfs_read_block_groups(extent_root); 1978 if (ret) { 1979 printk(KERN_ERR "Failed to read block groups: %d\n", ret); 1980 goto fail_block_groups; 1981 } 1982 1983 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 1984 "btrfs-cleaner"); 1985 if (IS_ERR(fs_info->cleaner_kthread)) 1986 goto fail_block_groups; 1987 1988 fs_info->transaction_kthread = kthread_run(transaction_kthread, 1989 tree_root, 1990 "btrfs-transaction"); 1991 if (IS_ERR(fs_info->transaction_kthread)) 1992 goto fail_cleaner; 1993 1994 if (!btrfs_test_opt(tree_root, SSD) && 1995 !btrfs_test_opt(tree_root, NOSSD) && 1996 !fs_info->fs_devices->rotating) { 1997 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 1998 "mode\n"); 1999 btrfs_set_opt(fs_info->mount_opt, SSD); 2000 } 2001 2002 /* do not make disk changes in broken FS */ 2003 if (btrfs_super_log_root(disk_super) != 0 && 2004 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) { 2005 u64 bytenr = btrfs_super_log_root(disk_super); 2006 2007 if (fs_devices->rw_devices == 0) { 2008 printk(KERN_WARNING "Btrfs log replay required " 2009 "on RO media\n"); 2010 err = -EIO; 2011 goto fail_trans_kthread; 2012 } 2013 blocksize = 2014 btrfs_level_size(tree_root, 2015 btrfs_super_log_root_level(disk_super)); 2016 2017 log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS); 2018 if (!log_tree_root) { 2019 err = -ENOMEM; 2020 goto fail_trans_kthread; 2021 } 2022 2023 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2024 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2025 2026 log_tree_root->node = read_tree_block(tree_root, bytenr, 2027 blocksize, 2028 generation + 1); 2029 ret = btrfs_recover_log_trees(log_tree_root); 2030 BUG_ON(ret); 2031 2032 if (sb->s_flags & MS_RDONLY) { 2033 ret = btrfs_commit_super(tree_root); 2034 BUG_ON(ret); 2035 } 2036 } 2037 2038 ret = btrfs_find_orphan_roots(tree_root); 2039 BUG_ON(ret); 2040 2041 if (!(sb->s_flags & MS_RDONLY)) { 2042 ret = btrfs_cleanup_fs_roots(fs_info); 2043 BUG_ON(ret); 2044 2045 ret = btrfs_recover_relocation(tree_root); 2046 if (ret < 0) { 2047 printk(KERN_WARNING 2048 "btrfs: failed to recover relocation\n"); 2049 err = -EINVAL; 2050 goto fail_trans_kthread; 2051 } 2052 } 2053 2054 location.objectid = BTRFS_FS_TREE_OBJECTID; 2055 location.type = BTRFS_ROOT_ITEM_KEY; 2056 location.offset = (u64)-1; 2057 2058 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2059 if (!fs_info->fs_root) 2060 goto fail_trans_kthread; 2061 if (IS_ERR(fs_info->fs_root)) { 2062 err = PTR_ERR(fs_info->fs_root); 2063 goto fail_trans_kthread; 2064 } 2065 2066 if (!(sb->s_flags & MS_RDONLY)) { 2067 down_read(&fs_info->cleanup_work_sem); 2068 err = btrfs_orphan_cleanup(fs_info->fs_root); 2069 if (!err) 2070 err = btrfs_orphan_cleanup(fs_info->tree_root); 2071 up_read(&fs_info->cleanup_work_sem); 2072 if (err) { 2073 close_ctree(tree_root); 2074 return ERR_PTR(err); 2075 } 2076 } 2077 2078 return tree_root; 2079 2080 fail_trans_kthread: 2081 kthread_stop(fs_info->transaction_kthread); 2082 fail_cleaner: 2083 kthread_stop(fs_info->cleaner_kthread); 2084 2085 /* 2086 * make sure we're done with the btree inode before we stop our 2087 * kthreads 2088 */ 2089 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2090 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2091 2092 fail_block_groups: 2093 btrfs_free_block_groups(fs_info); 2094 free_extent_buffer(csum_root->node); 2095 free_extent_buffer(csum_root->commit_root); 2096 fail_dev_root: 2097 free_extent_buffer(dev_root->node); 2098 free_extent_buffer(dev_root->commit_root); 2099 fail_extent_root: 2100 free_extent_buffer(extent_root->node); 2101 free_extent_buffer(extent_root->commit_root); 2102 fail_tree_root: 2103 free_extent_buffer(tree_root->node); 2104 free_extent_buffer(tree_root->commit_root); 2105 fail_chunk_root: 2106 free_extent_buffer(chunk_root->node); 2107 free_extent_buffer(chunk_root->commit_root); 2108 fail_sb_buffer: 2109 btrfs_stop_workers(&fs_info->generic_worker); 2110 btrfs_stop_workers(&fs_info->fixup_workers); 2111 btrfs_stop_workers(&fs_info->delalloc_workers); 2112 btrfs_stop_workers(&fs_info->workers); 2113 btrfs_stop_workers(&fs_info->endio_workers); 2114 btrfs_stop_workers(&fs_info->endio_meta_workers); 2115 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2116 btrfs_stop_workers(&fs_info->endio_write_workers); 2117 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2118 btrfs_stop_workers(&fs_info->submit_workers); 2119 btrfs_stop_workers(&fs_info->delayed_workers); 2120 fail_alloc: 2121 kfree(fs_info->delayed_root); 2122 fail_iput: 2123 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2124 iput(fs_info->btree_inode); 2125 2126 btrfs_close_devices(fs_info->fs_devices); 2127 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2128 fail_bdi: 2129 bdi_destroy(&fs_info->bdi); 2130 fail_srcu: 2131 cleanup_srcu_struct(&fs_info->subvol_srcu); 2132 fail: 2133 kfree(extent_root); 2134 kfree(tree_root); 2135 kfree(fs_info); 2136 kfree(chunk_root); 2137 kfree(dev_root); 2138 kfree(csum_root); 2139 return ERR_PTR(err); 2140 } 2141 2142 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 2143 { 2144 char b[BDEVNAME_SIZE]; 2145 2146 if (uptodate) { 2147 set_buffer_uptodate(bh); 2148 } else { 2149 printk_ratelimited(KERN_WARNING "lost page write due to " 2150 "I/O error on %s\n", 2151 bdevname(bh->b_bdev, b)); 2152 /* note, we dont' set_buffer_write_io_error because we have 2153 * our own ways of dealing with the IO errors 2154 */ 2155 clear_buffer_uptodate(bh); 2156 } 2157 unlock_buffer(bh); 2158 put_bh(bh); 2159 } 2160 2161 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 2162 { 2163 struct buffer_head *bh; 2164 struct buffer_head *latest = NULL; 2165 struct btrfs_super_block *super; 2166 int i; 2167 u64 transid = 0; 2168 u64 bytenr; 2169 2170 /* we would like to check all the supers, but that would make 2171 * a btrfs mount succeed after a mkfs from a different FS. 2172 * So, we need to add a special mount option to scan for 2173 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 2174 */ 2175 for (i = 0; i < 1; i++) { 2176 bytenr = btrfs_sb_offset(i); 2177 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 2178 break; 2179 bh = __bread(bdev, bytenr / 4096, 4096); 2180 if (!bh) 2181 continue; 2182 2183 super = (struct btrfs_super_block *)bh->b_data; 2184 if (btrfs_super_bytenr(super) != bytenr || 2185 strncmp((char *)(&super->magic), BTRFS_MAGIC, 2186 sizeof(super->magic))) { 2187 brelse(bh); 2188 continue; 2189 } 2190 2191 if (!latest || btrfs_super_generation(super) > transid) { 2192 brelse(latest); 2193 latest = bh; 2194 transid = btrfs_super_generation(super); 2195 } else { 2196 brelse(bh); 2197 } 2198 } 2199 return latest; 2200 } 2201 2202 /* 2203 * this should be called twice, once with wait == 0 and 2204 * once with wait == 1. When wait == 0 is done, all the buffer heads 2205 * we write are pinned. 2206 * 2207 * They are released when wait == 1 is done. 2208 * max_mirrors must be the same for both runs, and it indicates how 2209 * many supers on this one device should be written. 2210 * 2211 * max_mirrors == 0 means to write them all. 2212 */ 2213 static int write_dev_supers(struct btrfs_device *device, 2214 struct btrfs_super_block *sb, 2215 int do_barriers, int wait, int max_mirrors) 2216 { 2217 struct buffer_head *bh; 2218 int i; 2219 int ret; 2220 int errors = 0; 2221 u32 crc; 2222 u64 bytenr; 2223 int last_barrier = 0; 2224 2225 if (max_mirrors == 0) 2226 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2227 2228 /* make sure only the last submit_bh does a barrier */ 2229 if (do_barriers) { 2230 for (i = 0; i < max_mirrors; i++) { 2231 bytenr = btrfs_sb_offset(i); 2232 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 2233 device->total_bytes) 2234 break; 2235 last_barrier = i; 2236 } 2237 } 2238 2239 for (i = 0; i < max_mirrors; i++) { 2240 bytenr = btrfs_sb_offset(i); 2241 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2242 break; 2243 2244 if (wait) { 2245 bh = __find_get_block(device->bdev, bytenr / 4096, 2246 BTRFS_SUPER_INFO_SIZE); 2247 BUG_ON(!bh); 2248 wait_on_buffer(bh); 2249 if (!buffer_uptodate(bh)) 2250 errors++; 2251 2252 /* drop our reference */ 2253 brelse(bh); 2254 2255 /* drop the reference from the wait == 0 run */ 2256 brelse(bh); 2257 continue; 2258 } else { 2259 btrfs_set_super_bytenr(sb, bytenr); 2260 2261 crc = ~(u32)0; 2262 crc = btrfs_csum_data(NULL, (char *)sb + 2263 BTRFS_CSUM_SIZE, crc, 2264 BTRFS_SUPER_INFO_SIZE - 2265 BTRFS_CSUM_SIZE); 2266 btrfs_csum_final(crc, sb->csum); 2267 2268 /* 2269 * one reference for us, and we leave it for the 2270 * caller 2271 */ 2272 bh = __getblk(device->bdev, bytenr / 4096, 2273 BTRFS_SUPER_INFO_SIZE); 2274 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2275 2276 /* one reference for submit_bh */ 2277 get_bh(bh); 2278 2279 set_buffer_uptodate(bh); 2280 lock_buffer(bh); 2281 bh->b_end_io = btrfs_end_buffer_write_sync; 2282 } 2283 2284 if (i == last_barrier && do_barriers) 2285 ret = submit_bh(WRITE_FLUSH_FUA, bh); 2286 else 2287 ret = submit_bh(WRITE_SYNC, bh); 2288 2289 if (ret) 2290 errors++; 2291 } 2292 return errors < i ? 0 : -1; 2293 } 2294 2295 int write_all_supers(struct btrfs_root *root, int max_mirrors) 2296 { 2297 struct list_head *head; 2298 struct btrfs_device *dev; 2299 struct btrfs_super_block *sb; 2300 struct btrfs_dev_item *dev_item; 2301 int ret; 2302 int do_barriers; 2303 int max_errors; 2304 int total_errors = 0; 2305 u64 flags; 2306 2307 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1; 2308 do_barriers = !btrfs_test_opt(root, NOBARRIER); 2309 2310 sb = &root->fs_info->super_for_commit; 2311 dev_item = &sb->dev_item; 2312 2313 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2314 head = &root->fs_info->fs_devices->devices; 2315 list_for_each_entry_rcu(dev, head, dev_list) { 2316 if (!dev->bdev) { 2317 total_errors++; 2318 continue; 2319 } 2320 if (!dev->in_fs_metadata || !dev->writeable) 2321 continue; 2322 2323 btrfs_set_stack_device_generation(dev_item, 0); 2324 btrfs_set_stack_device_type(dev_item, dev->type); 2325 btrfs_set_stack_device_id(dev_item, dev->devid); 2326 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 2327 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 2328 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 2329 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 2330 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 2331 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 2332 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2333 2334 flags = btrfs_super_flags(sb); 2335 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 2336 2337 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 2338 if (ret) 2339 total_errors++; 2340 } 2341 if (total_errors > max_errors) { 2342 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2343 total_errors); 2344 BUG(); 2345 } 2346 2347 total_errors = 0; 2348 list_for_each_entry_rcu(dev, head, dev_list) { 2349 if (!dev->bdev) 2350 continue; 2351 if (!dev->in_fs_metadata || !dev->writeable) 2352 continue; 2353 2354 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 2355 if (ret) 2356 total_errors++; 2357 } 2358 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2359 if (total_errors > max_errors) { 2360 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2361 total_errors); 2362 BUG(); 2363 } 2364 return 0; 2365 } 2366 2367 int write_ctree_super(struct btrfs_trans_handle *trans, 2368 struct btrfs_root *root, int max_mirrors) 2369 { 2370 int ret; 2371 2372 ret = write_all_supers(root, max_mirrors); 2373 return ret; 2374 } 2375 2376 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2377 { 2378 spin_lock(&fs_info->fs_roots_radix_lock); 2379 radix_tree_delete(&fs_info->fs_roots_radix, 2380 (unsigned long)root->root_key.objectid); 2381 spin_unlock(&fs_info->fs_roots_radix_lock); 2382 2383 if (btrfs_root_refs(&root->root_item) == 0) 2384 synchronize_srcu(&fs_info->subvol_srcu); 2385 2386 __btrfs_remove_free_space_cache(root->free_ino_pinned); 2387 __btrfs_remove_free_space_cache(root->free_ino_ctl); 2388 free_fs_root(root); 2389 return 0; 2390 } 2391 2392 static void free_fs_root(struct btrfs_root *root) 2393 { 2394 iput(root->cache_inode); 2395 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2396 if (root->anon_super.s_dev) { 2397 down_write(&root->anon_super.s_umount); 2398 kill_anon_super(&root->anon_super); 2399 } 2400 free_extent_buffer(root->node); 2401 free_extent_buffer(root->commit_root); 2402 kfree(root->free_ino_ctl); 2403 kfree(root->free_ino_pinned); 2404 kfree(root->name); 2405 kfree(root); 2406 } 2407 2408 static int del_fs_roots(struct btrfs_fs_info *fs_info) 2409 { 2410 int ret; 2411 struct btrfs_root *gang[8]; 2412 int i; 2413 2414 while (!list_empty(&fs_info->dead_roots)) { 2415 gang[0] = list_entry(fs_info->dead_roots.next, 2416 struct btrfs_root, root_list); 2417 list_del(&gang[0]->root_list); 2418 2419 if (gang[0]->in_radix) { 2420 btrfs_free_fs_root(fs_info, gang[0]); 2421 } else { 2422 free_extent_buffer(gang[0]->node); 2423 free_extent_buffer(gang[0]->commit_root); 2424 kfree(gang[0]); 2425 } 2426 } 2427 2428 while (1) { 2429 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2430 (void **)gang, 0, 2431 ARRAY_SIZE(gang)); 2432 if (!ret) 2433 break; 2434 for (i = 0; i < ret; i++) 2435 btrfs_free_fs_root(fs_info, gang[i]); 2436 } 2437 return 0; 2438 } 2439 2440 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2441 { 2442 u64 root_objectid = 0; 2443 struct btrfs_root *gang[8]; 2444 int i; 2445 int ret; 2446 2447 while (1) { 2448 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2449 (void **)gang, root_objectid, 2450 ARRAY_SIZE(gang)); 2451 if (!ret) 2452 break; 2453 2454 root_objectid = gang[ret - 1]->root_key.objectid + 1; 2455 for (i = 0; i < ret; i++) { 2456 int err; 2457 2458 root_objectid = gang[i]->root_key.objectid; 2459 err = btrfs_orphan_cleanup(gang[i]); 2460 if (err) 2461 return err; 2462 } 2463 root_objectid++; 2464 } 2465 return 0; 2466 } 2467 2468 int btrfs_commit_super(struct btrfs_root *root) 2469 { 2470 struct btrfs_trans_handle *trans; 2471 int ret; 2472 2473 mutex_lock(&root->fs_info->cleaner_mutex); 2474 btrfs_run_delayed_iputs(root); 2475 btrfs_clean_old_snapshots(root); 2476 mutex_unlock(&root->fs_info->cleaner_mutex); 2477 2478 /* wait until ongoing cleanup work done */ 2479 down_write(&root->fs_info->cleanup_work_sem); 2480 up_write(&root->fs_info->cleanup_work_sem); 2481 2482 trans = btrfs_join_transaction(root); 2483 if (IS_ERR(trans)) 2484 return PTR_ERR(trans); 2485 ret = btrfs_commit_transaction(trans, root); 2486 BUG_ON(ret); 2487 /* run commit again to drop the original snapshot */ 2488 trans = btrfs_join_transaction(root); 2489 if (IS_ERR(trans)) 2490 return PTR_ERR(trans); 2491 btrfs_commit_transaction(trans, root); 2492 ret = btrfs_write_and_wait_transaction(NULL, root); 2493 BUG_ON(ret); 2494 2495 ret = write_ctree_super(NULL, root, 0); 2496 return ret; 2497 } 2498 2499 int close_ctree(struct btrfs_root *root) 2500 { 2501 struct btrfs_fs_info *fs_info = root->fs_info; 2502 int ret; 2503 2504 fs_info->closing = 1; 2505 smp_mb(); 2506 2507 btrfs_scrub_cancel(root); 2508 2509 /* wait for any defraggers to finish */ 2510 wait_event(fs_info->transaction_wait, 2511 (atomic_read(&fs_info->defrag_running) == 0)); 2512 2513 /* clear out the rbtree of defraggable inodes */ 2514 btrfs_run_defrag_inodes(root->fs_info); 2515 2516 btrfs_put_block_group_cache(fs_info); 2517 2518 /* 2519 * Here come 2 situations when btrfs is broken to flip readonly: 2520 * 2521 * 1. when btrfs flips readonly somewhere else before 2522 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag, 2523 * and btrfs will skip to write sb directly to keep 2524 * ERROR state on disk. 2525 * 2526 * 2. when btrfs flips readonly just in btrfs_commit_super, 2527 * and in such case, btrfs cannot write sb via btrfs_commit_super, 2528 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag, 2529 * btrfs will cleanup all FS resources first and write sb then. 2530 */ 2531 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 2532 ret = btrfs_commit_super(root); 2533 if (ret) 2534 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 2535 } 2536 2537 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 2538 ret = btrfs_error_commit_super(root); 2539 if (ret) 2540 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 2541 } 2542 2543 kthread_stop(root->fs_info->transaction_kthread); 2544 kthread_stop(root->fs_info->cleaner_kthread); 2545 2546 fs_info->closing = 2; 2547 smp_mb(); 2548 2549 if (fs_info->delalloc_bytes) { 2550 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 2551 (unsigned long long)fs_info->delalloc_bytes); 2552 } 2553 if (fs_info->total_ref_cache_size) { 2554 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", 2555 (unsigned long long)fs_info->total_ref_cache_size); 2556 } 2557 2558 free_extent_buffer(fs_info->extent_root->node); 2559 free_extent_buffer(fs_info->extent_root->commit_root); 2560 free_extent_buffer(fs_info->tree_root->node); 2561 free_extent_buffer(fs_info->tree_root->commit_root); 2562 free_extent_buffer(root->fs_info->chunk_root->node); 2563 free_extent_buffer(root->fs_info->chunk_root->commit_root); 2564 free_extent_buffer(root->fs_info->dev_root->node); 2565 free_extent_buffer(root->fs_info->dev_root->commit_root); 2566 free_extent_buffer(root->fs_info->csum_root->node); 2567 free_extent_buffer(root->fs_info->csum_root->commit_root); 2568 2569 btrfs_free_block_groups(root->fs_info); 2570 2571 del_fs_roots(fs_info); 2572 2573 iput(fs_info->btree_inode); 2574 kfree(fs_info->delayed_root); 2575 2576 btrfs_stop_workers(&fs_info->generic_worker); 2577 btrfs_stop_workers(&fs_info->fixup_workers); 2578 btrfs_stop_workers(&fs_info->delalloc_workers); 2579 btrfs_stop_workers(&fs_info->workers); 2580 btrfs_stop_workers(&fs_info->endio_workers); 2581 btrfs_stop_workers(&fs_info->endio_meta_workers); 2582 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2583 btrfs_stop_workers(&fs_info->endio_write_workers); 2584 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2585 btrfs_stop_workers(&fs_info->submit_workers); 2586 btrfs_stop_workers(&fs_info->delayed_workers); 2587 2588 btrfs_close_devices(fs_info->fs_devices); 2589 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2590 2591 bdi_destroy(&fs_info->bdi); 2592 cleanup_srcu_struct(&fs_info->subvol_srcu); 2593 2594 kfree(fs_info->extent_root); 2595 kfree(fs_info->tree_root); 2596 kfree(fs_info->chunk_root); 2597 kfree(fs_info->dev_root); 2598 kfree(fs_info->csum_root); 2599 kfree(fs_info); 2600 2601 return 0; 2602 } 2603 2604 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) 2605 { 2606 int ret; 2607 struct inode *btree_inode = buf->first_page->mapping->host; 2608 2609 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf, 2610 NULL); 2611 if (!ret) 2612 return ret; 2613 2614 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 2615 parent_transid); 2616 return !ret; 2617 } 2618 2619 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 2620 { 2621 struct inode *btree_inode = buf->first_page->mapping->host; 2622 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, 2623 buf); 2624 } 2625 2626 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 2627 { 2628 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2629 u64 transid = btrfs_header_generation(buf); 2630 struct inode *btree_inode = root->fs_info->btree_inode; 2631 int was_dirty; 2632 2633 btrfs_assert_tree_locked(buf); 2634 if (transid != root->fs_info->generation) { 2635 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 2636 "found %llu running %llu\n", 2637 (unsigned long long)buf->start, 2638 (unsigned long long)transid, 2639 (unsigned long long)root->fs_info->generation); 2640 WARN_ON(1); 2641 } 2642 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 2643 buf); 2644 if (!was_dirty) { 2645 spin_lock(&root->fs_info->delalloc_lock); 2646 root->fs_info->dirty_metadata_bytes += buf->len; 2647 spin_unlock(&root->fs_info->delalloc_lock); 2648 } 2649 } 2650 2651 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 2652 { 2653 /* 2654 * looks as though older kernels can get into trouble with 2655 * this code, they end up stuck in balance_dirty_pages forever 2656 */ 2657 u64 num_dirty; 2658 unsigned long thresh = 32 * 1024 * 1024; 2659 2660 if (current->flags & PF_MEMALLOC) 2661 return; 2662 2663 btrfs_balance_delayed_items(root); 2664 2665 num_dirty = root->fs_info->dirty_metadata_bytes; 2666 2667 if (num_dirty > thresh) { 2668 balance_dirty_pages_ratelimited_nr( 2669 root->fs_info->btree_inode->i_mapping, 1); 2670 } 2671 return; 2672 } 2673 2674 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 2675 { 2676 /* 2677 * looks as though older kernels can get into trouble with 2678 * this code, they end up stuck in balance_dirty_pages forever 2679 */ 2680 u64 num_dirty; 2681 unsigned long thresh = 32 * 1024 * 1024; 2682 2683 if (current->flags & PF_MEMALLOC) 2684 return; 2685 2686 num_dirty = root->fs_info->dirty_metadata_bytes; 2687 2688 if (num_dirty > thresh) { 2689 balance_dirty_pages_ratelimited_nr( 2690 root->fs_info->btree_inode->i_mapping, 1); 2691 } 2692 return; 2693 } 2694 2695 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 2696 { 2697 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2698 int ret; 2699 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 2700 if (ret == 0) 2701 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 2702 return ret; 2703 } 2704 2705 int btree_lock_page_hook(struct page *page) 2706 { 2707 struct inode *inode = page->mapping->host; 2708 struct btrfs_root *root = BTRFS_I(inode)->root; 2709 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2710 struct extent_buffer *eb; 2711 unsigned long len; 2712 u64 bytenr = page_offset(page); 2713 2714 if (page->private == EXTENT_PAGE_PRIVATE) 2715 goto out; 2716 2717 len = page->private >> 2; 2718 eb = find_extent_buffer(io_tree, bytenr, len); 2719 if (!eb) 2720 goto out; 2721 2722 btrfs_tree_lock(eb); 2723 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 2724 2725 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 2726 spin_lock(&root->fs_info->delalloc_lock); 2727 if (root->fs_info->dirty_metadata_bytes >= eb->len) 2728 root->fs_info->dirty_metadata_bytes -= eb->len; 2729 else 2730 WARN_ON(1); 2731 spin_unlock(&root->fs_info->delalloc_lock); 2732 } 2733 2734 btrfs_tree_unlock(eb); 2735 free_extent_buffer(eb); 2736 out: 2737 lock_page(page); 2738 return 0; 2739 } 2740 2741 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 2742 int read_only) 2743 { 2744 if (read_only) 2745 return; 2746 2747 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) 2748 printk(KERN_WARNING "warning: mount fs with errors, " 2749 "running btrfsck is recommended\n"); 2750 } 2751 2752 int btrfs_error_commit_super(struct btrfs_root *root) 2753 { 2754 int ret; 2755 2756 mutex_lock(&root->fs_info->cleaner_mutex); 2757 btrfs_run_delayed_iputs(root); 2758 mutex_unlock(&root->fs_info->cleaner_mutex); 2759 2760 down_write(&root->fs_info->cleanup_work_sem); 2761 up_write(&root->fs_info->cleanup_work_sem); 2762 2763 /* cleanup FS via transaction */ 2764 btrfs_cleanup_transaction(root); 2765 2766 ret = write_ctree_super(NULL, root, 0); 2767 2768 return ret; 2769 } 2770 2771 static int btrfs_destroy_ordered_operations(struct btrfs_root *root) 2772 { 2773 struct btrfs_inode *btrfs_inode; 2774 struct list_head splice; 2775 2776 INIT_LIST_HEAD(&splice); 2777 2778 mutex_lock(&root->fs_info->ordered_operations_mutex); 2779 spin_lock(&root->fs_info->ordered_extent_lock); 2780 2781 list_splice_init(&root->fs_info->ordered_operations, &splice); 2782 while (!list_empty(&splice)) { 2783 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 2784 ordered_operations); 2785 2786 list_del_init(&btrfs_inode->ordered_operations); 2787 2788 btrfs_invalidate_inodes(btrfs_inode->root); 2789 } 2790 2791 spin_unlock(&root->fs_info->ordered_extent_lock); 2792 mutex_unlock(&root->fs_info->ordered_operations_mutex); 2793 2794 return 0; 2795 } 2796 2797 static int btrfs_destroy_ordered_extents(struct btrfs_root *root) 2798 { 2799 struct list_head splice; 2800 struct btrfs_ordered_extent *ordered; 2801 struct inode *inode; 2802 2803 INIT_LIST_HEAD(&splice); 2804 2805 spin_lock(&root->fs_info->ordered_extent_lock); 2806 2807 list_splice_init(&root->fs_info->ordered_extents, &splice); 2808 while (!list_empty(&splice)) { 2809 ordered = list_entry(splice.next, struct btrfs_ordered_extent, 2810 root_extent_list); 2811 2812 list_del_init(&ordered->root_extent_list); 2813 atomic_inc(&ordered->refs); 2814 2815 /* the inode may be getting freed (in sys_unlink path). */ 2816 inode = igrab(ordered->inode); 2817 2818 spin_unlock(&root->fs_info->ordered_extent_lock); 2819 if (inode) 2820 iput(inode); 2821 2822 atomic_set(&ordered->refs, 1); 2823 btrfs_put_ordered_extent(ordered); 2824 2825 spin_lock(&root->fs_info->ordered_extent_lock); 2826 } 2827 2828 spin_unlock(&root->fs_info->ordered_extent_lock); 2829 2830 return 0; 2831 } 2832 2833 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 2834 struct btrfs_root *root) 2835 { 2836 struct rb_node *node; 2837 struct btrfs_delayed_ref_root *delayed_refs; 2838 struct btrfs_delayed_ref_node *ref; 2839 int ret = 0; 2840 2841 delayed_refs = &trans->delayed_refs; 2842 2843 spin_lock(&delayed_refs->lock); 2844 if (delayed_refs->num_entries == 0) { 2845 spin_unlock(&delayed_refs->lock); 2846 printk(KERN_INFO "delayed_refs has NO entry\n"); 2847 return ret; 2848 } 2849 2850 node = rb_first(&delayed_refs->root); 2851 while (node) { 2852 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2853 node = rb_next(node); 2854 2855 ref->in_tree = 0; 2856 rb_erase(&ref->rb_node, &delayed_refs->root); 2857 delayed_refs->num_entries--; 2858 2859 atomic_set(&ref->refs, 1); 2860 if (btrfs_delayed_ref_is_head(ref)) { 2861 struct btrfs_delayed_ref_head *head; 2862 2863 head = btrfs_delayed_node_to_head(ref); 2864 mutex_lock(&head->mutex); 2865 kfree(head->extent_op); 2866 delayed_refs->num_heads--; 2867 if (list_empty(&head->cluster)) 2868 delayed_refs->num_heads_ready--; 2869 list_del_init(&head->cluster); 2870 mutex_unlock(&head->mutex); 2871 } 2872 2873 spin_unlock(&delayed_refs->lock); 2874 btrfs_put_delayed_ref(ref); 2875 2876 cond_resched(); 2877 spin_lock(&delayed_refs->lock); 2878 } 2879 2880 spin_unlock(&delayed_refs->lock); 2881 2882 return ret; 2883 } 2884 2885 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t) 2886 { 2887 struct btrfs_pending_snapshot *snapshot; 2888 struct list_head splice; 2889 2890 INIT_LIST_HEAD(&splice); 2891 2892 list_splice_init(&t->pending_snapshots, &splice); 2893 2894 while (!list_empty(&splice)) { 2895 snapshot = list_entry(splice.next, 2896 struct btrfs_pending_snapshot, 2897 list); 2898 2899 list_del_init(&snapshot->list); 2900 2901 kfree(snapshot); 2902 } 2903 2904 return 0; 2905 } 2906 2907 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 2908 { 2909 struct btrfs_inode *btrfs_inode; 2910 struct list_head splice; 2911 2912 INIT_LIST_HEAD(&splice); 2913 2914 list_splice_init(&root->fs_info->delalloc_inodes, &splice); 2915 2916 spin_lock(&root->fs_info->delalloc_lock); 2917 2918 while (!list_empty(&splice)) { 2919 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 2920 delalloc_inodes); 2921 2922 list_del_init(&btrfs_inode->delalloc_inodes); 2923 2924 btrfs_invalidate_inodes(btrfs_inode->root); 2925 } 2926 2927 spin_unlock(&root->fs_info->delalloc_lock); 2928 2929 return 0; 2930 } 2931 2932 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 2933 struct extent_io_tree *dirty_pages, 2934 int mark) 2935 { 2936 int ret; 2937 struct page *page; 2938 struct inode *btree_inode = root->fs_info->btree_inode; 2939 struct extent_buffer *eb; 2940 u64 start = 0; 2941 u64 end; 2942 u64 offset; 2943 unsigned long index; 2944 2945 while (1) { 2946 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 2947 mark); 2948 if (ret) 2949 break; 2950 2951 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 2952 while (start <= end) { 2953 index = start >> PAGE_CACHE_SHIFT; 2954 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 2955 page = find_get_page(btree_inode->i_mapping, index); 2956 if (!page) 2957 continue; 2958 offset = page_offset(page); 2959 2960 spin_lock(&dirty_pages->buffer_lock); 2961 eb = radix_tree_lookup( 2962 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer, 2963 offset >> PAGE_CACHE_SHIFT); 2964 spin_unlock(&dirty_pages->buffer_lock); 2965 if (eb) { 2966 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY, 2967 &eb->bflags); 2968 atomic_set(&eb->refs, 1); 2969 } 2970 if (PageWriteback(page)) 2971 end_page_writeback(page); 2972 2973 lock_page(page); 2974 if (PageDirty(page)) { 2975 clear_page_dirty_for_io(page); 2976 spin_lock_irq(&page->mapping->tree_lock); 2977 radix_tree_tag_clear(&page->mapping->page_tree, 2978 page_index(page), 2979 PAGECACHE_TAG_DIRTY); 2980 spin_unlock_irq(&page->mapping->tree_lock); 2981 } 2982 2983 page->mapping->a_ops->invalidatepage(page, 0); 2984 unlock_page(page); 2985 } 2986 } 2987 2988 return ret; 2989 } 2990 2991 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 2992 struct extent_io_tree *pinned_extents) 2993 { 2994 struct extent_io_tree *unpin; 2995 u64 start; 2996 u64 end; 2997 int ret; 2998 2999 unpin = pinned_extents; 3000 while (1) { 3001 ret = find_first_extent_bit(unpin, 0, &start, &end, 3002 EXTENT_DIRTY); 3003 if (ret) 3004 break; 3005 3006 /* opt_discard */ 3007 if (btrfs_test_opt(root, DISCARD)) 3008 ret = btrfs_error_discard_extent(root, start, 3009 end + 1 - start, 3010 NULL); 3011 3012 clear_extent_dirty(unpin, start, end, GFP_NOFS); 3013 btrfs_error_unpin_extent_range(root, start, end); 3014 cond_resched(); 3015 } 3016 3017 return 0; 3018 } 3019 3020 static int btrfs_cleanup_transaction(struct btrfs_root *root) 3021 { 3022 struct btrfs_transaction *t; 3023 LIST_HEAD(list); 3024 3025 WARN_ON(1); 3026 3027 mutex_lock(&root->fs_info->transaction_kthread_mutex); 3028 3029 spin_lock(&root->fs_info->trans_lock); 3030 list_splice_init(&root->fs_info->trans_list, &list); 3031 root->fs_info->trans_no_join = 1; 3032 spin_unlock(&root->fs_info->trans_lock); 3033 3034 while (!list_empty(&list)) { 3035 t = list_entry(list.next, struct btrfs_transaction, list); 3036 if (!t) 3037 break; 3038 3039 btrfs_destroy_ordered_operations(root); 3040 3041 btrfs_destroy_ordered_extents(root); 3042 3043 btrfs_destroy_delayed_refs(t, root); 3044 3045 btrfs_block_rsv_release(root, 3046 &root->fs_info->trans_block_rsv, 3047 t->dirty_pages.dirty_bytes); 3048 3049 /* FIXME: cleanup wait for commit */ 3050 t->in_commit = 1; 3051 t->blocked = 1; 3052 if (waitqueue_active(&root->fs_info->transaction_blocked_wait)) 3053 wake_up(&root->fs_info->transaction_blocked_wait); 3054 3055 t->blocked = 0; 3056 if (waitqueue_active(&root->fs_info->transaction_wait)) 3057 wake_up(&root->fs_info->transaction_wait); 3058 3059 t->commit_done = 1; 3060 if (waitqueue_active(&t->commit_wait)) 3061 wake_up(&t->commit_wait); 3062 3063 btrfs_destroy_pending_snapshots(t); 3064 3065 btrfs_destroy_delalloc_inodes(root); 3066 3067 spin_lock(&root->fs_info->trans_lock); 3068 root->fs_info->running_transaction = NULL; 3069 spin_unlock(&root->fs_info->trans_lock); 3070 3071 btrfs_destroy_marked_extents(root, &t->dirty_pages, 3072 EXTENT_DIRTY); 3073 3074 btrfs_destroy_pinned_extent(root, 3075 root->fs_info->pinned_extents); 3076 3077 atomic_set(&t->use_count, 0); 3078 list_del_init(&t->list); 3079 memset(t, 0, sizeof(*t)); 3080 kmem_cache_free(btrfs_transaction_cachep, t); 3081 } 3082 3083 spin_lock(&root->fs_info->trans_lock); 3084 root->fs_info->trans_no_join = 0; 3085 spin_unlock(&root->fs_info->trans_lock); 3086 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 3087 3088 return 0; 3089 } 3090 3091 static struct extent_io_ops btree_extent_io_ops = { 3092 .write_cache_pages_lock_hook = btree_lock_page_hook, 3093 .readpage_end_io_hook = btree_readpage_end_io_hook, 3094 .submit_bio_hook = btree_submit_bio_hook, 3095 /* note we're sharing with inode.c for the merge bio hook */ 3096 .merge_bio_hook = btrfs_merge_bio_hook, 3097 }; 3098