1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 #include "block-group.h" 42 #include "discard.h" 43 #include "space-info.h" 44 #include "zoned.h" 45 #include "subpage.h" 46 #include "fs.h" 47 #include "accessors.h" 48 #include "extent-tree.h" 49 #include "root-tree.h" 50 #include "defrag.h" 51 #include "uuid-tree.h" 52 #include "relocation.h" 53 #include "scrub.h" 54 #include "super.h" 55 56 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 57 BTRFS_HEADER_FLAG_RELOC |\ 58 BTRFS_SUPER_FLAG_ERROR |\ 59 BTRFS_SUPER_FLAG_SEEDING |\ 60 BTRFS_SUPER_FLAG_METADUMP |\ 61 BTRFS_SUPER_FLAG_METADUMP_V2) 62 63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 65 struct btrfs_fs_info *fs_info); 66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 67 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 68 struct extent_io_tree *dirty_pages, 69 int mark); 70 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 71 struct extent_io_tree *pinned_extents); 72 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 73 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 74 75 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 76 { 77 if (fs_info->csum_shash) 78 crypto_free_shash(fs_info->csum_shash); 79 } 80 81 /* 82 * Compute the csum of a btree block and store the result to provided buffer. 83 */ 84 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 85 { 86 struct btrfs_fs_info *fs_info = buf->fs_info; 87 const int num_pages = num_extent_pages(buf); 88 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 89 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 90 char *kaddr; 91 int i; 92 93 shash->tfm = fs_info->csum_shash; 94 crypto_shash_init(shash); 95 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start); 96 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 97 first_page_part - BTRFS_CSUM_SIZE); 98 99 for (i = 1; i < num_pages; i++) { 100 kaddr = page_address(buf->pages[i]); 101 crypto_shash_update(shash, kaddr, PAGE_SIZE); 102 } 103 memset(result, 0, BTRFS_CSUM_SIZE); 104 crypto_shash_final(shash, result); 105 } 106 107 /* 108 * we can't consider a given block up to date unless the transid of the 109 * block matches the transid in the parent node's pointer. This is how we 110 * detect blocks that either didn't get written at all or got written 111 * in the wrong place. 112 */ 113 static int verify_parent_transid(struct extent_io_tree *io_tree, 114 struct extent_buffer *eb, u64 parent_transid, 115 int atomic) 116 { 117 struct extent_state *cached_state = NULL; 118 int ret; 119 120 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 121 return 0; 122 123 if (atomic) 124 return -EAGAIN; 125 126 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state); 127 if (extent_buffer_uptodate(eb) && 128 btrfs_header_generation(eb) == parent_transid) { 129 ret = 0; 130 goto out; 131 } 132 btrfs_err_rl(eb->fs_info, 133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 134 eb->start, eb->read_mirror, 135 parent_transid, btrfs_header_generation(eb)); 136 ret = 1; 137 clear_extent_buffer_uptodate(eb); 138 out: 139 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 140 &cached_state); 141 return ret; 142 } 143 144 static bool btrfs_supported_super_csum(u16 csum_type) 145 { 146 switch (csum_type) { 147 case BTRFS_CSUM_TYPE_CRC32: 148 case BTRFS_CSUM_TYPE_XXHASH: 149 case BTRFS_CSUM_TYPE_SHA256: 150 case BTRFS_CSUM_TYPE_BLAKE2: 151 return true; 152 default: 153 return false; 154 } 155 } 156 157 /* 158 * Return 0 if the superblock checksum type matches the checksum value of that 159 * algorithm. Pass the raw disk superblock data. 160 */ 161 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 162 const struct btrfs_super_block *disk_sb) 163 { 164 char result[BTRFS_CSUM_SIZE]; 165 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 166 167 shash->tfm = fs_info->csum_shash; 168 169 /* 170 * The super_block structure does not span the whole 171 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 172 * filled with zeros and is included in the checksum. 173 */ 174 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 175 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 176 177 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 178 return 1; 179 180 return 0; 181 } 182 183 int btrfs_verify_level_key(struct extent_buffer *eb, int level, 184 struct btrfs_key *first_key, u64 parent_transid) 185 { 186 struct btrfs_fs_info *fs_info = eb->fs_info; 187 int found_level; 188 struct btrfs_key found_key; 189 int ret; 190 191 found_level = btrfs_header_level(eb); 192 if (found_level != level) { 193 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 194 KERN_ERR "BTRFS: tree level check failed\n"); 195 btrfs_err(fs_info, 196 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 197 eb->start, level, found_level); 198 return -EIO; 199 } 200 201 if (!first_key) 202 return 0; 203 204 /* 205 * For live tree block (new tree blocks in current transaction), 206 * we need proper lock context to avoid race, which is impossible here. 207 * So we only checks tree blocks which is read from disk, whose 208 * generation <= fs_info->last_trans_committed. 209 */ 210 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 211 return 0; 212 213 /* We have @first_key, so this @eb must have at least one item */ 214 if (btrfs_header_nritems(eb) == 0) { 215 btrfs_err(fs_info, 216 "invalid tree nritems, bytenr=%llu nritems=0 expect >0", 217 eb->start); 218 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 219 return -EUCLEAN; 220 } 221 222 if (found_level) 223 btrfs_node_key_to_cpu(eb, &found_key, 0); 224 else 225 btrfs_item_key_to_cpu(eb, &found_key, 0); 226 ret = btrfs_comp_cpu_keys(first_key, &found_key); 227 228 if (ret) { 229 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 230 KERN_ERR "BTRFS: tree first key check failed\n"); 231 btrfs_err(fs_info, 232 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 233 eb->start, parent_transid, first_key->objectid, 234 first_key->type, first_key->offset, 235 found_key.objectid, found_key.type, 236 found_key.offset); 237 } 238 return ret; 239 } 240 241 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 242 int mirror_num) 243 { 244 struct btrfs_fs_info *fs_info = eb->fs_info; 245 u64 start = eb->start; 246 int i, num_pages = num_extent_pages(eb); 247 int ret = 0; 248 249 if (sb_rdonly(fs_info->sb)) 250 return -EROFS; 251 252 for (i = 0; i < num_pages; i++) { 253 struct page *p = eb->pages[i]; 254 255 ret = btrfs_repair_io_failure(fs_info, 0, start, PAGE_SIZE, 256 start, p, start - page_offset(p), mirror_num); 257 if (ret) 258 break; 259 start += PAGE_SIZE; 260 } 261 262 return ret; 263 } 264 265 /* 266 * helper to read a given tree block, doing retries as required when 267 * the checksums don't match and we have alternate mirrors to try. 268 * 269 * @check: expected tree parentness check, see the comments of the 270 * structure for details. 271 */ 272 int btrfs_read_extent_buffer(struct extent_buffer *eb, 273 struct btrfs_tree_parent_check *check) 274 { 275 struct btrfs_fs_info *fs_info = eb->fs_info; 276 int failed = 0; 277 int ret; 278 int num_copies = 0; 279 int mirror_num = 0; 280 int failed_mirror = 0; 281 282 ASSERT(check); 283 284 while (1) { 285 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 286 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check); 287 if (!ret) 288 break; 289 290 num_copies = btrfs_num_copies(fs_info, 291 eb->start, eb->len); 292 if (num_copies == 1) 293 break; 294 295 if (!failed_mirror) { 296 failed = 1; 297 failed_mirror = eb->read_mirror; 298 } 299 300 mirror_num++; 301 if (mirror_num == failed_mirror) 302 mirror_num++; 303 304 if (mirror_num > num_copies) 305 break; 306 } 307 308 if (failed && !ret && failed_mirror) 309 btrfs_repair_eb_io_failure(eb, failed_mirror); 310 311 return ret; 312 } 313 314 static int csum_one_extent_buffer(struct extent_buffer *eb) 315 { 316 struct btrfs_fs_info *fs_info = eb->fs_info; 317 u8 result[BTRFS_CSUM_SIZE]; 318 int ret; 319 320 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 321 offsetof(struct btrfs_header, fsid), 322 BTRFS_FSID_SIZE) == 0); 323 csum_tree_block(eb, result); 324 325 if (btrfs_header_level(eb)) 326 ret = btrfs_check_node(eb); 327 else 328 ret = btrfs_check_leaf_full(eb); 329 330 if (ret < 0) 331 goto error; 332 333 /* 334 * Also check the generation, the eb reached here must be newer than 335 * last committed. Or something seriously wrong happened. 336 */ 337 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) { 338 ret = -EUCLEAN; 339 btrfs_err(fs_info, 340 "block=%llu bad generation, have %llu expect > %llu", 341 eb->start, btrfs_header_generation(eb), 342 fs_info->last_trans_committed); 343 goto error; 344 } 345 write_extent_buffer(eb, result, 0, fs_info->csum_size); 346 347 return 0; 348 349 error: 350 btrfs_print_tree(eb, 0); 351 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 352 eb->start); 353 /* 354 * Be noisy if this is an extent buffer from a log tree. We don't abort 355 * a transaction in case there's a bad log tree extent buffer, we just 356 * fallback to a transaction commit. Still we want to know when there is 357 * a bad log tree extent buffer, as that may signal a bug somewhere. 358 */ 359 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 360 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 361 return ret; 362 } 363 364 /* Checksum all dirty extent buffers in one bio_vec */ 365 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info, 366 struct bio_vec *bvec) 367 { 368 struct page *page = bvec->bv_page; 369 u64 bvec_start = page_offset(page) + bvec->bv_offset; 370 u64 cur; 371 int ret = 0; 372 373 for (cur = bvec_start; cur < bvec_start + bvec->bv_len; 374 cur += fs_info->nodesize) { 375 struct extent_buffer *eb; 376 bool uptodate; 377 378 eb = find_extent_buffer(fs_info, cur); 379 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur, 380 fs_info->nodesize); 381 382 /* A dirty eb shouldn't disappear from buffer_radix */ 383 if (WARN_ON(!eb)) 384 return -EUCLEAN; 385 386 if (WARN_ON(cur != btrfs_header_bytenr(eb))) { 387 free_extent_buffer(eb); 388 return -EUCLEAN; 389 } 390 if (WARN_ON(!uptodate)) { 391 free_extent_buffer(eb); 392 return -EUCLEAN; 393 } 394 395 ret = csum_one_extent_buffer(eb); 396 free_extent_buffer(eb); 397 if (ret < 0) 398 return ret; 399 } 400 return ret; 401 } 402 403 /* 404 * Checksum a dirty tree block before IO. This has extra checks to make sure 405 * we only fill in the checksum field in the first page of a multi-page block. 406 * For subpage extent buffers we need bvec to also read the offset in the page. 407 */ 408 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec) 409 { 410 struct page *page = bvec->bv_page; 411 u64 start = page_offset(page); 412 u64 found_start; 413 struct extent_buffer *eb; 414 415 if (fs_info->nodesize < PAGE_SIZE) 416 return csum_dirty_subpage_buffers(fs_info, bvec); 417 418 eb = (struct extent_buffer *)page->private; 419 if (page != eb->pages[0]) 420 return 0; 421 422 found_start = btrfs_header_bytenr(eb); 423 424 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) { 425 WARN_ON(found_start != 0); 426 return 0; 427 } 428 429 /* 430 * Please do not consolidate these warnings into a single if. 431 * It is useful to know what went wrong. 432 */ 433 if (WARN_ON(found_start != start)) 434 return -EUCLEAN; 435 if (WARN_ON(!PageUptodate(page))) 436 return -EUCLEAN; 437 438 return csum_one_extent_buffer(eb); 439 } 440 441 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio) 442 { 443 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info; 444 struct bvec_iter iter; 445 struct bio_vec bv; 446 int ret = 0; 447 448 bio_for_each_segment(bv, &bbio->bio, iter) { 449 ret = csum_dirty_buffer(fs_info, &bv); 450 if (ret) 451 break; 452 } 453 454 return errno_to_blk_status(ret); 455 } 456 457 static int check_tree_block_fsid(struct extent_buffer *eb) 458 { 459 struct btrfs_fs_info *fs_info = eb->fs_info; 460 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 461 u8 fsid[BTRFS_FSID_SIZE]; 462 u8 *metadata_uuid; 463 464 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 465 BTRFS_FSID_SIZE); 466 /* 467 * Checking the incompat flag is only valid for the current fs. For 468 * seed devices it's forbidden to have their uuid changed so reading 469 * ->fsid in this case is fine 470 */ 471 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 472 metadata_uuid = fs_devices->metadata_uuid; 473 else 474 metadata_uuid = fs_devices->fsid; 475 476 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) 477 return 0; 478 479 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 480 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 481 return 0; 482 483 return 1; 484 } 485 486 /* Do basic extent buffer checks at read time */ 487 static int validate_extent_buffer(struct extent_buffer *eb, 488 struct btrfs_tree_parent_check *check) 489 { 490 struct btrfs_fs_info *fs_info = eb->fs_info; 491 u64 found_start; 492 const u32 csum_size = fs_info->csum_size; 493 u8 found_level; 494 u8 result[BTRFS_CSUM_SIZE]; 495 const u8 *header_csum; 496 int ret = 0; 497 498 ASSERT(check); 499 500 found_start = btrfs_header_bytenr(eb); 501 if (found_start != eb->start) { 502 btrfs_err_rl(fs_info, 503 "bad tree block start, mirror %u want %llu have %llu", 504 eb->read_mirror, eb->start, found_start); 505 ret = -EIO; 506 goto out; 507 } 508 if (check_tree_block_fsid(eb)) { 509 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 510 eb->start, eb->read_mirror); 511 ret = -EIO; 512 goto out; 513 } 514 found_level = btrfs_header_level(eb); 515 if (found_level >= BTRFS_MAX_LEVEL) { 516 btrfs_err(fs_info, 517 "bad tree block level, mirror %u level %d on logical %llu", 518 eb->read_mirror, btrfs_header_level(eb), eb->start); 519 ret = -EIO; 520 goto out; 521 } 522 523 csum_tree_block(eb, result); 524 header_csum = page_address(eb->pages[0]) + 525 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum)); 526 527 if (memcmp(result, header_csum, csum_size) != 0) { 528 btrfs_warn_rl(fs_info, 529 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d", 530 eb->start, eb->read_mirror, 531 CSUM_FMT_VALUE(csum_size, header_csum), 532 CSUM_FMT_VALUE(csum_size, result), 533 btrfs_header_level(eb)); 534 ret = -EUCLEAN; 535 goto out; 536 } 537 538 if (found_level != check->level) { 539 btrfs_err(fs_info, 540 "level verify failed on logical %llu mirror %u wanted %u found %u", 541 eb->start, eb->read_mirror, check->level, found_level); 542 ret = -EIO; 543 goto out; 544 } 545 if (unlikely(check->transid && 546 btrfs_header_generation(eb) != check->transid)) { 547 btrfs_err_rl(eb->fs_info, 548 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 549 eb->start, eb->read_mirror, check->transid, 550 btrfs_header_generation(eb)); 551 ret = -EIO; 552 goto out; 553 } 554 if (check->has_first_key) { 555 struct btrfs_key *expect_key = &check->first_key; 556 struct btrfs_key found_key; 557 558 if (found_level) 559 btrfs_node_key_to_cpu(eb, &found_key, 0); 560 else 561 btrfs_item_key_to_cpu(eb, &found_key, 0); 562 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 563 btrfs_err(fs_info, 564 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 565 eb->start, check->transid, 566 expect_key->objectid, 567 expect_key->type, expect_key->offset, 568 found_key.objectid, found_key.type, 569 found_key.offset); 570 ret = -EUCLEAN; 571 goto out; 572 } 573 } 574 if (check->owner_root) { 575 ret = btrfs_check_eb_owner(eb, check->owner_root); 576 if (ret < 0) 577 goto out; 578 } 579 580 /* 581 * If this is a leaf block and it is corrupt, set the corrupt bit so 582 * that we don't try and read the other copies of this block, just 583 * return -EIO. 584 */ 585 if (found_level == 0 && btrfs_check_leaf_full(eb)) { 586 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 587 ret = -EIO; 588 } 589 590 if (found_level > 0 && btrfs_check_node(eb)) 591 ret = -EIO; 592 593 if (!ret) 594 set_extent_buffer_uptodate(eb); 595 else 596 btrfs_err(fs_info, 597 "read time tree block corruption detected on logical %llu mirror %u", 598 eb->start, eb->read_mirror); 599 out: 600 return ret; 601 } 602 603 static int validate_subpage_buffer(struct page *page, u64 start, u64 end, 604 int mirror, struct btrfs_tree_parent_check *check) 605 { 606 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 607 struct extent_buffer *eb; 608 bool reads_done; 609 int ret = 0; 610 611 ASSERT(check); 612 613 /* 614 * We don't allow bio merge for subpage metadata read, so we should 615 * only get one eb for each endio hook. 616 */ 617 ASSERT(end == start + fs_info->nodesize - 1); 618 ASSERT(PagePrivate(page)); 619 620 eb = find_extent_buffer(fs_info, start); 621 /* 622 * When we are reading one tree block, eb must have been inserted into 623 * the radix tree. If not, something is wrong. 624 */ 625 ASSERT(eb); 626 627 reads_done = atomic_dec_and_test(&eb->io_pages); 628 /* Subpage read must finish in page read */ 629 ASSERT(reads_done); 630 631 eb->read_mirror = mirror; 632 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 633 ret = -EIO; 634 goto err; 635 } 636 ret = validate_extent_buffer(eb, check); 637 if (ret < 0) 638 goto err; 639 640 set_extent_buffer_uptodate(eb); 641 642 free_extent_buffer(eb); 643 return ret; 644 err: 645 /* 646 * end_bio_extent_readpage decrements io_pages in case of error, 647 * make sure it has something to decrement. 648 */ 649 atomic_inc(&eb->io_pages); 650 clear_extent_buffer_uptodate(eb); 651 free_extent_buffer(eb); 652 return ret; 653 } 654 655 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio, 656 struct page *page, u64 start, u64 end, 657 int mirror) 658 { 659 struct extent_buffer *eb; 660 int ret = 0; 661 int reads_done; 662 663 ASSERT(page->private); 664 665 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE) 666 return validate_subpage_buffer(page, start, end, mirror, 667 &bbio->parent_check); 668 669 eb = (struct extent_buffer *)page->private; 670 671 /* 672 * The pending IO might have been the only thing that kept this buffer 673 * in memory. Make sure we have a ref for all this other checks 674 */ 675 atomic_inc(&eb->refs); 676 677 reads_done = atomic_dec_and_test(&eb->io_pages); 678 if (!reads_done) 679 goto err; 680 681 eb->read_mirror = mirror; 682 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 683 ret = -EIO; 684 goto err; 685 } 686 ret = validate_extent_buffer(eb, &bbio->parent_check); 687 err: 688 if (ret) { 689 /* 690 * our io error hook is going to dec the io pages 691 * again, we have to make sure it has something 692 * to decrement 693 */ 694 atomic_inc(&eb->io_pages); 695 clear_extent_buffer_uptodate(eb); 696 } 697 free_extent_buffer(eb); 698 699 return ret; 700 } 701 702 #ifdef CONFIG_MIGRATION 703 static int btree_migrate_folio(struct address_space *mapping, 704 struct folio *dst, struct folio *src, enum migrate_mode mode) 705 { 706 /* 707 * we can't safely write a btree page from here, 708 * we haven't done the locking hook 709 */ 710 if (folio_test_dirty(src)) 711 return -EAGAIN; 712 /* 713 * Buffers may be managed in a filesystem specific way. 714 * We must have no buffers or drop them. 715 */ 716 if (folio_get_private(src) && 717 !filemap_release_folio(src, GFP_KERNEL)) 718 return -EAGAIN; 719 return migrate_folio(mapping, dst, src, mode); 720 } 721 #else 722 #define btree_migrate_folio NULL 723 #endif 724 725 static int btree_writepages(struct address_space *mapping, 726 struct writeback_control *wbc) 727 { 728 struct btrfs_fs_info *fs_info; 729 int ret; 730 731 if (wbc->sync_mode == WB_SYNC_NONE) { 732 733 if (wbc->for_kupdate) 734 return 0; 735 736 fs_info = BTRFS_I(mapping->host)->root->fs_info; 737 /* this is a bit racy, but that's ok */ 738 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 739 BTRFS_DIRTY_METADATA_THRESH, 740 fs_info->dirty_metadata_batch); 741 if (ret < 0) 742 return 0; 743 } 744 return btree_write_cache_pages(mapping, wbc); 745 } 746 747 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 748 { 749 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 750 return false; 751 752 return try_release_extent_buffer(&folio->page); 753 } 754 755 static void btree_invalidate_folio(struct folio *folio, size_t offset, 756 size_t length) 757 { 758 struct extent_io_tree *tree; 759 tree = &BTRFS_I(folio->mapping->host)->io_tree; 760 extent_invalidate_folio(tree, folio, offset); 761 btree_release_folio(folio, GFP_NOFS); 762 if (folio_get_private(folio)) { 763 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info, 764 "folio private not zero on folio %llu", 765 (unsigned long long)folio_pos(folio)); 766 folio_detach_private(folio); 767 } 768 } 769 770 #ifdef DEBUG 771 static bool btree_dirty_folio(struct address_space *mapping, 772 struct folio *folio) 773 { 774 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 775 struct btrfs_subpage *subpage; 776 struct extent_buffer *eb; 777 int cur_bit = 0; 778 u64 page_start = folio_pos(folio); 779 780 if (fs_info->sectorsize == PAGE_SIZE) { 781 eb = folio_get_private(folio); 782 BUG_ON(!eb); 783 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 784 BUG_ON(!atomic_read(&eb->refs)); 785 btrfs_assert_tree_write_locked(eb); 786 return filemap_dirty_folio(mapping, folio); 787 } 788 subpage = folio_get_private(folio); 789 790 ASSERT(subpage->dirty_bitmap); 791 while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) { 792 unsigned long flags; 793 u64 cur; 794 u16 tmp = (1 << cur_bit); 795 796 spin_lock_irqsave(&subpage->lock, flags); 797 if (!(tmp & subpage->dirty_bitmap)) { 798 spin_unlock_irqrestore(&subpage->lock, flags); 799 cur_bit++; 800 continue; 801 } 802 spin_unlock_irqrestore(&subpage->lock, flags); 803 cur = page_start + cur_bit * fs_info->sectorsize; 804 805 eb = find_extent_buffer(fs_info, cur); 806 ASSERT(eb); 807 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 808 ASSERT(atomic_read(&eb->refs)); 809 btrfs_assert_tree_write_locked(eb); 810 free_extent_buffer(eb); 811 812 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits); 813 } 814 return filemap_dirty_folio(mapping, folio); 815 } 816 #else 817 #define btree_dirty_folio filemap_dirty_folio 818 #endif 819 820 static const struct address_space_operations btree_aops = { 821 .writepages = btree_writepages, 822 .release_folio = btree_release_folio, 823 .invalidate_folio = btree_invalidate_folio, 824 .migrate_folio = btree_migrate_folio, 825 .dirty_folio = btree_dirty_folio, 826 }; 827 828 struct extent_buffer *btrfs_find_create_tree_block( 829 struct btrfs_fs_info *fs_info, 830 u64 bytenr, u64 owner_root, 831 int level) 832 { 833 if (btrfs_is_testing(fs_info)) 834 return alloc_test_extent_buffer(fs_info, bytenr); 835 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 836 } 837 838 /* 839 * Read tree block at logical address @bytenr and do variant basic but critical 840 * verification. 841 * 842 * @check: expected tree parentness check, see comments of the 843 * structure for details. 844 */ 845 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 846 struct btrfs_tree_parent_check *check) 847 { 848 struct extent_buffer *buf = NULL; 849 int ret; 850 851 ASSERT(check); 852 853 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 854 check->level); 855 if (IS_ERR(buf)) 856 return buf; 857 858 ret = btrfs_read_extent_buffer(buf, check); 859 if (ret) { 860 free_extent_buffer_stale(buf); 861 return ERR_PTR(ret); 862 } 863 if (btrfs_check_eb_owner(buf, check->owner_root)) { 864 free_extent_buffer_stale(buf); 865 return ERR_PTR(-EUCLEAN); 866 } 867 return buf; 868 869 } 870 871 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 872 u64 objectid) 873 { 874 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 875 876 memset(&root->root_key, 0, sizeof(root->root_key)); 877 memset(&root->root_item, 0, sizeof(root->root_item)); 878 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 879 root->fs_info = fs_info; 880 root->root_key.objectid = objectid; 881 root->node = NULL; 882 root->commit_root = NULL; 883 root->state = 0; 884 RB_CLEAR_NODE(&root->rb_node); 885 886 root->last_trans = 0; 887 root->free_objectid = 0; 888 root->nr_delalloc_inodes = 0; 889 root->nr_ordered_extents = 0; 890 root->inode_tree = RB_ROOT; 891 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 892 893 btrfs_init_root_block_rsv(root); 894 895 INIT_LIST_HEAD(&root->dirty_list); 896 INIT_LIST_HEAD(&root->root_list); 897 INIT_LIST_HEAD(&root->delalloc_inodes); 898 INIT_LIST_HEAD(&root->delalloc_root); 899 INIT_LIST_HEAD(&root->ordered_extents); 900 INIT_LIST_HEAD(&root->ordered_root); 901 INIT_LIST_HEAD(&root->reloc_dirty_list); 902 INIT_LIST_HEAD(&root->logged_list[0]); 903 INIT_LIST_HEAD(&root->logged_list[1]); 904 spin_lock_init(&root->inode_lock); 905 spin_lock_init(&root->delalloc_lock); 906 spin_lock_init(&root->ordered_extent_lock); 907 spin_lock_init(&root->accounting_lock); 908 spin_lock_init(&root->log_extents_lock[0]); 909 spin_lock_init(&root->log_extents_lock[1]); 910 spin_lock_init(&root->qgroup_meta_rsv_lock); 911 mutex_init(&root->objectid_mutex); 912 mutex_init(&root->log_mutex); 913 mutex_init(&root->ordered_extent_mutex); 914 mutex_init(&root->delalloc_mutex); 915 init_waitqueue_head(&root->qgroup_flush_wait); 916 init_waitqueue_head(&root->log_writer_wait); 917 init_waitqueue_head(&root->log_commit_wait[0]); 918 init_waitqueue_head(&root->log_commit_wait[1]); 919 INIT_LIST_HEAD(&root->log_ctxs[0]); 920 INIT_LIST_HEAD(&root->log_ctxs[1]); 921 atomic_set(&root->log_commit[0], 0); 922 atomic_set(&root->log_commit[1], 0); 923 atomic_set(&root->log_writers, 0); 924 atomic_set(&root->log_batch, 0); 925 refcount_set(&root->refs, 1); 926 atomic_set(&root->snapshot_force_cow, 0); 927 atomic_set(&root->nr_swapfiles, 0); 928 root->log_transid = 0; 929 root->log_transid_committed = -1; 930 root->last_log_commit = 0; 931 root->anon_dev = 0; 932 if (!dummy) { 933 extent_io_tree_init(fs_info, &root->dirty_log_pages, 934 IO_TREE_ROOT_DIRTY_LOG_PAGES); 935 extent_io_tree_init(fs_info, &root->log_csum_range, 936 IO_TREE_LOG_CSUM_RANGE); 937 } 938 939 spin_lock_init(&root->root_item_lock); 940 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 941 #ifdef CONFIG_BTRFS_DEBUG 942 INIT_LIST_HEAD(&root->leak_list); 943 spin_lock(&fs_info->fs_roots_radix_lock); 944 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 945 spin_unlock(&fs_info->fs_roots_radix_lock); 946 #endif 947 } 948 949 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 950 u64 objectid, gfp_t flags) 951 { 952 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 953 if (root) 954 __setup_root(root, fs_info, objectid); 955 return root; 956 } 957 958 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 959 /* Should only be used by the testing infrastructure */ 960 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 961 { 962 struct btrfs_root *root; 963 964 if (!fs_info) 965 return ERR_PTR(-EINVAL); 966 967 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 968 if (!root) 969 return ERR_PTR(-ENOMEM); 970 971 /* We don't use the stripesize in selftest, set it as sectorsize */ 972 root->alloc_bytenr = 0; 973 974 return root; 975 } 976 #endif 977 978 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 979 { 980 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 981 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 982 983 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 984 } 985 986 static int global_root_key_cmp(const void *k, const struct rb_node *node) 987 { 988 const struct btrfs_key *key = k; 989 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 990 991 return btrfs_comp_cpu_keys(key, &root->root_key); 992 } 993 994 int btrfs_global_root_insert(struct btrfs_root *root) 995 { 996 struct btrfs_fs_info *fs_info = root->fs_info; 997 struct rb_node *tmp; 998 999 write_lock(&fs_info->global_root_lock); 1000 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 1001 write_unlock(&fs_info->global_root_lock); 1002 ASSERT(!tmp); 1003 1004 return tmp ? -EEXIST : 0; 1005 } 1006 1007 void btrfs_global_root_delete(struct btrfs_root *root) 1008 { 1009 struct btrfs_fs_info *fs_info = root->fs_info; 1010 1011 write_lock(&fs_info->global_root_lock); 1012 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1013 write_unlock(&fs_info->global_root_lock); 1014 } 1015 1016 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 1017 struct btrfs_key *key) 1018 { 1019 struct rb_node *node; 1020 struct btrfs_root *root = NULL; 1021 1022 read_lock(&fs_info->global_root_lock); 1023 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 1024 if (node) 1025 root = container_of(node, struct btrfs_root, rb_node); 1026 read_unlock(&fs_info->global_root_lock); 1027 1028 return root; 1029 } 1030 1031 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 1032 { 1033 struct btrfs_block_group *block_group; 1034 u64 ret; 1035 1036 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 1037 return 0; 1038 1039 if (bytenr) 1040 block_group = btrfs_lookup_block_group(fs_info, bytenr); 1041 else 1042 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 1043 ASSERT(block_group); 1044 if (!block_group) 1045 return 0; 1046 ret = block_group->global_root_id; 1047 btrfs_put_block_group(block_group); 1048 1049 return ret; 1050 } 1051 1052 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1053 { 1054 struct btrfs_key key = { 1055 .objectid = BTRFS_CSUM_TREE_OBJECTID, 1056 .type = BTRFS_ROOT_ITEM_KEY, 1057 .offset = btrfs_global_root_id(fs_info, bytenr), 1058 }; 1059 1060 return btrfs_global_root(fs_info, &key); 1061 } 1062 1063 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 1064 { 1065 struct btrfs_key key = { 1066 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 1067 .type = BTRFS_ROOT_ITEM_KEY, 1068 .offset = btrfs_global_root_id(fs_info, bytenr), 1069 }; 1070 1071 return btrfs_global_root(fs_info, &key); 1072 } 1073 1074 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) 1075 { 1076 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) 1077 return fs_info->block_group_root; 1078 return btrfs_extent_root(fs_info, 0); 1079 } 1080 1081 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1082 u64 objectid) 1083 { 1084 struct btrfs_fs_info *fs_info = trans->fs_info; 1085 struct extent_buffer *leaf; 1086 struct btrfs_root *tree_root = fs_info->tree_root; 1087 struct btrfs_root *root; 1088 struct btrfs_key key; 1089 unsigned int nofs_flag; 1090 int ret = 0; 1091 1092 /* 1093 * We're holding a transaction handle, so use a NOFS memory allocation 1094 * context to avoid deadlock if reclaim happens. 1095 */ 1096 nofs_flag = memalloc_nofs_save(); 1097 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 1098 memalloc_nofs_restore(nofs_flag); 1099 if (!root) 1100 return ERR_PTR(-ENOMEM); 1101 1102 root->root_key.objectid = objectid; 1103 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1104 root->root_key.offset = 0; 1105 1106 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 1107 BTRFS_NESTING_NORMAL); 1108 if (IS_ERR(leaf)) { 1109 ret = PTR_ERR(leaf); 1110 leaf = NULL; 1111 goto fail; 1112 } 1113 1114 root->node = leaf; 1115 btrfs_mark_buffer_dirty(leaf); 1116 1117 root->commit_root = btrfs_root_node(root); 1118 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1119 1120 btrfs_set_root_flags(&root->root_item, 0); 1121 btrfs_set_root_limit(&root->root_item, 0); 1122 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1123 btrfs_set_root_generation(&root->root_item, trans->transid); 1124 btrfs_set_root_level(&root->root_item, 0); 1125 btrfs_set_root_refs(&root->root_item, 1); 1126 btrfs_set_root_used(&root->root_item, leaf->len); 1127 btrfs_set_root_last_snapshot(&root->root_item, 0); 1128 btrfs_set_root_dirid(&root->root_item, 0); 1129 if (is_fstree(objectid)) 1130 generate_random_guid(root->root_item.uuid); 1131 else 1132 export_guid(root->root_item.uuid, &guid_null); 1133 btrfs_set_root_drop_level(&root->root_item, 0); 1134 1135 btrfs_tree_unlock(leaf); 1136 1137 key.objectid = objectid; 1138 key.type = BTRFS_ROOT_ITEM_KEY; 1139 key.offset = 0; 1140 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1141 if (ret) 1142 goto fail; 1143 1144 return root; 1145 1146 fail: 1147 btrfs_put_root(root); 1148 1149 return ERR_PTR(ret); 1150 } 1151 1152 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1153 struct btrfs_fs_info *fs_info) 1154 { 1155 struct btrfs_root *root; 1156 1157 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 1158 if (!root) 1159 return ERR_PTR(-ENOMEM); 1160 1161 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1162 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1163 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1164 1165 return root; 1166 } 1167 1168 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 1169 struct btrfs_root *root) 1170 { 1171 struct extent_buffer *leaf; 1172 1173 /* 1174 * DON'T set SHAREABLE bit for log trees. 1175 * 1176 * Log trees are not exposed to user space thus can't be snapshotted, 1177 * and they go away before a real commit is actually done. 1178 * 1179 * They do store pointers to file data extents, and those reference 1180 * counts still get updated (along with back refs to the log tree). 1181 */ 1182 1183 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1184 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); 1185 if (IS_ERR(leaf)) 1186 return PTR_ERR(leaf); 1187 1188 root->node = leaf; 1189 1190 btrfs_mark_buffer_dirty(root->node); 1191 btrfs_tree_unlock(root->node); 1192 1193 return 0; 1194 } 1195 1196 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1197 struct btrfs_fs_info *fs_info) 1198 { 1199 struct btrfs_root *log_root; 1200 1201 log_root = alloc_log_tree(trans, fs_info); 1202 if (IS_ERR(log_root)) 1203 return PTR_ERR(log_root); 1204 1205 if (!btrfs_is_zoned(fs_info)) { 1206 int ret = btrfs_alloc_log_tree_node(trans, log_root); 1207 1208 if (ret) { 1209 btrfs_put_root(log_root); 1210 return ret; 1211 } 1212 } 1213 1214 WARN_ON(fs_info->log_root_tree); 1215 fs_info->log_root_tree = log_root; 1216 return 0; 1217 } 1218 1219 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1220 struct btrfs_root *root) 1221 { 1222 struct btrfs_fs_info *fs_info = root->fs_info; 1223 struct btrfs_root *log_root; 1224 struct btrfs_inode_item *inode_item; 1225 int ret; 1226 1227 log_root = alloc_log_tree(trans, fs_info); 1228 if (IS_ERR(log_root)) 1229 return PTR_ERR(log_root); 1230 1231 ret = btrfs_alloc_log_tree_node(trans, log_root); 1232 if (ret) { 1233 btrfs_put_root(log_root); 1234 return ret; 1235 } 1236 1237 log_root->last_trans = trans->transid; 1238 log_root->root_key.offset = root->root_key.objectid; 1239 1240 inode_item = &log_root->root_item.inode; 1241 btrfs_set_stack_inode_generation(inode_item, 1); 1242 btrfs_set_stack_inode_size(inode_item, 3); 1243 btrfs_set_stack_inode_nlink(inode_item, 1); 1244 btrfs_set_stack_inode_nbytes(inode_item, 1245 fs_info->nodesize); 1246 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1247 1248 btrfs_set_root_node(&log_root->root_item, log_root->node); 1249 1250 WARN_ON(root->log_root); 1251 root->log_root = log_root; 1252 root->log_transid = 0; 1253 root->log_transid_committed = -1; 1254 root->last_log_commit = 0; 1255 return 0; 1256 } 1257 1258 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1259 struct btrfs_path *path, 1260 struct btrfs_key *key) 1261 { 1262 struct btrfs_root *root; 1263 struct btrfs_tree_parent_check check = { 0 }; 1264 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1265 u64 generation; 1266 int ret; 1267 int level; 1268 1269 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1270 if (!root) 1271 return ERR_PTR(-ENOMEM); 1272 1273 ret = btrfs_find_root(tree_root, key, path, 1274 &root->root_item, &root->root_key); 1275 if (ret) { 1276 if (ret > 0) 1277 ret = -ENOENT; 1278 goto fail; 1279 } 1280 1281 generation = btrfs_root_generation(&root->root_item); 1282 level = btrfs_root_level(&root->root_item); 1283 check.level = level; 1284 check.transid = generation; 1285 check.owner_root = key->objectid; 1286 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1287 &check); 1288 if (IS_ERR(root->node)) { 1289 ret = PTR_ERR(root->node); 1290 root->node = NULL; 1291 goto fail; 1292 } 1293 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1294 ret = -EIO; 1295 goto fail; 1296 } 1297 1298 /* 1299 * For real fs, and not log/reloc trees, root owner must 1300 * match its root node owner 1301 */ 1302 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) && 1303 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1304 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1305 root->root_key.objectid != btrfs_header_owner(root->node)) { 1306 btrfs_crit(fs_info, 1307 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1308 root->root_key.objectid, root->node->start, 1309 btrfs_header_owner(root->node), 1310 root->root_key.objectid); 1311 ret = -EUCLEAN; 1312 goto fail; 1313 } 1314 root->commit_root = btrfs_root_node(root); 1315 return root; 1316 fail: 1317 btrfs_put_root(root); 1318 return ERR_PTR(ret); 1319 } 1320 1321 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1322 struct btrfs_key *key) 1323 { 1324 struct btrfs_root *root; 1325 struct btrfs_path *path; 1326 1327 path = btrfs_alloc_path(); 1328 if (!path) 1329 return ERR_PTR(-ENOMEM); 1330 root = read_tree_root_path(tree_root, path, key); 1331 btrfs_free_path(path); 1332 1333 return root; 1334 } 1335 1336 /* 1337 * Initialize subvolume root in-memory structure 1338 * 1339 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1340 */ 1341 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1342 { 1343 int ret; 1344 1345 btrfs_drew_lock_init(&root->snapshot_lock); 1346 1347 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1348 !btrfs_is_data_reloc_root(root)) { 1349 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1350 btrfs_check_and_init_root_item(&root->root_item); 1351 } 1352 1353 /* 1354 * Don't assign anonymous block device to roots that are not exposed to 1355 * userspace, the id pool is limited to 1M 1356 */ 1357 if (is_fstree(root->root_key.objectid) && 1358 btrfs_root_refs(&root->root_item) > 0) { 1359 if (!anon_dev) { 1360 ret = get_anon_bdev(&root->anon_dev); 1361 if (ret) 1362 goto fail; 1363 } else { 1364 root->anon_dev = anon_dev; 1365 } 1366 } 1367 1368 mutex_lock(&root->objectid_mutex); 1369 ret = btrfs_init_root_free_objectid(root); 1370 if (ret) { 1371 mutex_unlock(&root->objectid_mutex); 1372 goto fail; 1373 } 1374 1375 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1376 1377 mutex_unlock(&root->objectid_mutex); 1378 1379 return 0; 1380 fail: 1381 /* The caller is responsible to call btrfs_free_fs_root */ 1382 return ret; 1383 } 1384 1385 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1386 u64 root_id) 1387 { 1388 struct btrfs_root *root; 1389 1390 spin_lock(&fs_info->fs_roots_radix_lock); 1391 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1392 (unsigned long)root_id); 1393 if (root) 1394 root = btrfs_grab_root(root); 1395 spin_unlock(&fs_info->fs_roots_radix_lock); 1396 return root; 1397 } 1398 1399 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1400 u64 objectid) 1401 { 1402 struct btrfs_key key = { 1403 .objectid = objectid, 1404 .type = BTRFS_ROOT_ITEM_KEY, 1405 .offset = 0, 1406 }; 1407 1408 if (objectid == BTRFS_ROOT_TREE_OBJECTID) 1409 return btrfs_grab_root(fs_info->tree_root); 1410 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 1411 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1412 if (objectid == BTRFS_CHUNK_TREE_OBJECTID) 1413 return btrfs_grab_root(fs_info->chunk_root); 1414 if (objectid == BTRFS_DEV_TREE_OBJECTID) 1415 return btrfs_grab_root(fs_info->dev_root); 1416 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 1417 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1418 if (objectid == BTRFS_QUOTA_TREE_OBJECTID) 1419 return btrfs_grab_root(fs_info->quota_root) ? 1420 fs_info->quota_root : ERR_PTR(-ENOENT); 1421 if (objectid == BTRFS_UUID_TREE_OBJECTID) 1422 return btrfs_grab_root(fs_info->uuid_root) ? 1423 fs_info->uuid_root : ERR_PTR(-ENOENT); 1424 if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID) 1425 return btrfs_grab_root(fs_info->block_group_root) ? 1426 fs_info->block_group_root : ERR_PTR(-ENOENT); 1427 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) { 1428 struct btrfs_root *root = btrfs_global_root(fs_info, &key); 1429 1430 return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT); 1431 } 1432 return NULL; 1433 } 1434 1435 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1436 struct btrfs_root *root) 1437 { 1438 int ret; 1439 1440 ret = radix_tree_preload(GFP_NOFS); 1441 if (ret) 1442 return ret; 1443 1444 spin_lock(&fs_info->fs_roots_radix_lock); 1445 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1446 (unsigned long)root->root_key.objectid, 1447 root); 1448 if (ret == 0) { 1449 btrfs_grab_root(root); 1450 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1451 } 1452 spin_unlock(&fs_info->fs_roots_radix_lock); 1453 radix_tree_preload_end(); 1454 1455 return ret; 1456 } 1457 1458 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1459 { 1460 #ifdef CONFIG_BTRFS_DEBUG 1461 struct btrfs_root *root; 1462 1463 while (!list_empty(&fs_info->allocated_roots)) { 1464 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1465 1466 root = list_first_entry(&fs_info->allocated_roots, 1467 struct btrfs_root, leak_list); 1468 btrfs_err(fs_info, "leaked root %s refcount %d", 1469 btrfs_root_name(&root->root_key, buf), 1470 refcount_read(&root->refs)); 1471 while (refcount_read(&root->refs) > 1) 1472 btrfs_put_root(root); 1473 btrfs_put_root(root); 1474 } 1475 #endif 1476 } 1477 1478 static void free_global_roots(struct btrfs_fs_info *fs_info) 1479 { 1480 struct btrfs_root *root; 1481 struct rb_node *node; 1482 1483 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1484 root = rb_entry(node, struct btrfs_root, rb_node); 1485 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1486 btrfs_put_root(root); 1487 } 1488 } 1489 1490 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1491 { 1492 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1493 percpu_counter_destroy(&fs_info->delalloc_bytes); 1494 percpu_counter_destroy(&fs_info->ordered_bytes); 1495 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1496 btrfs_free_csum_hash(fs_info); 1497 btrfs_free_stripe_hash_table(fs_info); 1498 btrfs_free_ref_cache(fs_info); 1499 kfree(fs_info->balance_ctl); 1500 kfree(fs_info->delayed_root); 1501 free_global_roots(fs_info); 1502 btrfs_put_root(fs_info->tree_root); 1503 btrfs_put_root(fs_info->chunk_root); 1504 btrfs_put_root(fs_info->dev_root); 1505 btrfs_put_root(fs_info->quota_root); 1506 btrfs_put_root(fs_info->uuid_root); 1507 btrfs_put_root(fs_info->fs_root); 1508 btrfs_put_root(fs_info->data_reloc_root); 1509 btrfs_put_root(fs_info->block_group_root); 1510 btrfs_check_leaked_roots(fs_info); 1511 btrfs_extent_buffer_leak_debug_check(fs_info); 1512 kfree(fs_info->super_copy); 1513 kfree(fs_info->super_for_commit); 1514 kfree(fs_info->subpage_info); 1515 kvfree(fs_info); 1516 } 1517 1518 1519 /* 1520 * Get an in-memory reference of a root structure. 1521 * 1522 * For essential trees like root/extent tree, we grab it from fs_info directly. 1523 * For subvolume trees, we check the cached filesystem roots first. If not 1524 * found, then read it from disk and add it to cached fs roots. 1525 * 1526 * Caller should release the root by calling btrfs_put_root() after the usage. 1527 * 1528 * NOTE: Reloc and log trees can't be read by this function as they share the 1529 * same root objectid. 1530 * 1531 * @objectid: root id 1532 * @anon_dev: preallocated anonymous block device number for new roots, 1533 * pass 0 for new allocation. 1534 * @check_ref: whether to check root item references, If true, return -ENOENT 1535 * for orphan roots 1536 */ 1537 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1538 u64 objectid, dev_t anon_dev, 1539 bool check_ref) 1540 { 1541 struct btrfs_root *root; 1542 struct btrfs_path *path; 1543 struct btrfs_key key; 1544 int ret; 1545 1546 root = btrfs_get_global_root(fs_info, objectid); 1547 if (root) 1548 return root; 1549 again: 1550 root = btrfs_lookup_fs_root(fs_info, objectid); 1551 if (root) { 1552 /* Shouldn't get preallocated anon_dev for cached roots */ 1553 ASSERT(!anon_dev); 1554 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1555 btrfs_put_root(root); 1556 return ERR_PTR(-ENOENT); 1557 } 1558 return root; 1559 } 1560 1561 key.objectid = objectid; 1562 key.type = BTRFS_ROOT_ITEM_KEY; 1563 key.offset = (u64)-1; 1564 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1565 if (IS_ERR(root)) 1566 return root; 1567 1568 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1569 ret = -ENOENT; 1570 goto fail; 1571 } 1572 1573 ret = btrfs_init_fs_root(root, anon_dev); 1574 if (ret) 1575 goto fail; 1576 1577 path = btrfs_alloc_path(); 1578 if (!path) { 1579 ret = -ENOMEM; 1580 goto fail; 1581 } 1582 key.objectid = BTRFS_ORPHAN_OBJECTID; 1583 key.type = BTRFS_ORPHAN_ITEM_KEY; 1584 key.offset = objectid; 1585 1586 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1587 btrfs_free_path(path); 1588 if (ret < 0) 1589 goto fail; 1590 if (ret == 0) 1591 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1592 1593 ret = btrfs_insert_fs_root(fs_info, root); 1594 if (ret) { 1595 if (ret == -EEXIST) { 1596 btrfs_put_root(root); 1597 goto again; 1598 } 1599 goto fail; 1600 } 1601 return root; 1602 fail: 1603 /* 1604 * If our caller provided us an anonymous device, then it's his 1605 * responsibility to free it in case we fail. So we have to set our 1606 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1607 * and once again by our caller. 1608 */ 1609 if (anon_dev) 1610 root->anon_dev = 0; 1611 btrfs_put_root(root); 1612 return ERR_PTR(ret); 1613 } 1614 1615 /* 1616 * Get in-memory reference of a root structure 1617 * 1618 * @objectid: tree objectid 1619 * @check_ref: if set, verify that the tree exists and the item has at least 1620 * one reference 1621 */ 1622 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1623 u64 objectid, bool check_ref) 1624 { 1625 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1626 } 1627 1628 /* 1629 * Get in-memory reference of a root structure, created as new, optionally pass 1630 * the anonymous block device id 1631 * 1632 * @objectid: tree objectid 1633 * @anon_dev: if zero, allocate a new anonymous block device or use the 1634 * parameter value 1635 */ 1636 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1637 u64 objectid, dev_t anon_dev) 1638 { 1639 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1640 } 1641 1642 /* 1643 * btrfs_get_fs_root_commit_root - return a root for the given objectid 1644 * @fs_info: the fs_info 1645 * @objectid: the objectid we need to lookup 1646 * 1647 * This is exclusively used for backref walking, and exists specifically because 1648 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1649 * creation time, which means we may have to read the tree_root in order to look 1650 * up a fs root that is not in memory. If the root is not in memory we will 1651 * read the tree root commit root and look up the fs root from there. This is a 1652 * temporary root, it will not be inserted into the radix tree as it doesn't 1653 * have the most uptodate information, it'll simply be discarded once the 1654 * backref code is finished using the root. 1655 */ 1656 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1657 struct btrfs_path *path, 1658 u64 objectid) 1659 { 1660 struct btrfs_root *root; 1661 struct btrfs_key key; 1662 1663 ASSERT(path->search_commit_root && path->skip_locking); 1664 1665 /* 1666 * This can return -ENOENT if we ask for a root that doesn't exist, but 1667 * since this is called via the backref walking code we won't be looking 1668 * up a root that doesn't exist, unless there's corruption. So if root 1669 * != NULL just return it. 1670 */ 1671 root = btrfs_get_global_root(fs_info, objectid); 1672 if (root) 1673 return root; 1674 1675 root = btrfs_lookup_fs_root(fs_info, objectid); 1676 if (root) 1677 return root; 1678 1679 key.objectid = objectid; 1680 key.type = BTRFS_ROOT_ITEM_KEY; 1681 key.offset = (u64)-1; 1682 root = read_tree_root_path(fs_info->tree_root, path, &key); 1683 btrfs_release_path(path); 1684 1685 return root; 1686 } 1687 1688 static int cleaner_kthread(void *arg) 1689 { 1690 struct btrfs_fs_info *fs_info = arg; 1691 int again; 1692 1693 while (1) { 1694 again = 0; 1695 1696 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1697 1698 /* Make the cleaner go to sleep early. */ 1699 if (btrfs_need_cleaner_sleep(fs_info)) 1700 goto sleep; 1701 1702 /* 1703 * Do not do anything if we might cause open_ctree() to block 1704 * before we have finished mounting the filesystem. 1705 */ 1706 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1707 goto sleep; 1708 1709 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1710 goto sleep; 1711 1712 /* 1713 * Avoid the problem that we change the status of the fs 1714 * during the above check and trylock. 1715 */ 1716 if (btrfs_need_cleaner_sleep(fs_info)) { 1717 mutex_unlock(&fs_info->cleaner_mutex); 1718 goto sleep; 1719 } 1720 1721 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) 1722 btrfs_sysfs_feature_update(fs_info); 1723 1724 btrfs_run_delayed_iputs(fs_info); 1725 1726 again = btrfs_clean_one_deleted_snapshot(fs_info); 1727 mutex_unlock(&fs_info->cleaner_mutex); 1728 1729 /* 1730 * The defragger has dealt with the R/O remount and umount, 1731 * needn't do anything special here. 1732 */ 1733 btrfs_run_defrag_inodes(fs_info); 1734 1735 /* 1736 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1737 * with relocation (btrfs_relocate_chunk) and relocation 1738 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1739 * after acquiring fs_info->reclaim_bgs_lock. So we 1740 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1741 * unused block groups. 1742 */ 1743 btrfs_delete_unused_bgs(fs_info); 1744 1745 /* 1746 * Reclaim block groups in the reclaim_bgs list after we deleted 1747 * all unused block_groups. This possibly gives us some more free 1748 * space. 1749 */ 1750 btrfs_reclaim_bgs(fs_info); 1751 sleep: 1752 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1753 if (kthread_should_park()) 1754 kthread_parkme(); 1755 if (kthread_should_stop()) 1756 return 0; 1757 if (!again) { 1758 set_current_state(TASK_INTERRUPTIBLE); 1759 schedule(); 1760 __set_current_state(TASK_RUNNING); 1761 } 1762 } 1763 } 1764 1765 static int transaction_kthread(void *arg) 1766 { 1767 struct btrfs_root *root = arg; 1768 struct btrfs_fs_info *fs_info = root->fs_info; 1769 struct btrfs_trans_handle *trans; 1770 struct btrfs_transaction *cur; 1771 u64 transid; 1772 time64_t delta; 1773 unsigned long delay; 1774 bool cannot_commit; 1775 1776 do { 1777 cannot_commit = false; 1778 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1779 mutex_lock(&fs_info->transaction_kthread_mutex); 1780 1781 spin_lock(&fs_info->trans_lock); 1782 cur = fs_info->running_transaction; 1783 if (!cur) { 1784 spin_unlock(&fs_info->trans_lock); 1785 goto sleep; 1786 } 1787 1788 delta = ktime_get_seconds() - cur->start_time; 1789 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1790 cur->state < TRANS_STATE_COMMIT_START && 1791 delta < fs_info->commit_interval) { 1792 spin_unlock(&fs_info->trans_lock); 1793 delay -= msecs_to_jiffies((delta - 1) * 1000); 1794 delay = min(delay, 1795 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1796 goto sleep; 1797 } 1798 transid = cur->transid; 1799 spin_unlock(&fs_info->trans_lock); 1800 1801 /* If the file system is aborted, this will always fail. */ 1802 trans = btrfs_attach_transaction(root); 1803 if (IS_ERR(trans)) { 1804 if (PTR_ERR(trans) != -ENOENT) 1805 cannot_commit = true; 1806 goto sleep; 1807 } 1808 if (transid == trans->transid) { 1809 btrfs_commit_transaction(trans); 1810 } else { 1811 btrfs_end_transaction(trans); 1812 } 1813 sleep: 1814 wake_up_process(fs_info->cleaner_kthread); 1815 mutex_unlock(&fs_info->transaction_kthread_mutex); 1816 1817 if (BTRFS_FS_ERROR(fs_info)) 1818 btrfs_cleanup_transaction(fs_info); 1819 if (!kthread_should_stop() && 1820 (!btrfs_transaction_blocked(fs_info) || 1821 cannot_commit)) 1822 schedule_timeout_interruptible(delay); 1823 } while (!kthread_should_stop()); 1824 return 0; 1825 } 1826 1827 /* 1828 * This will find the highest generation in the array of root backups. The 1829 * index of the highest array is returned, or -EINVAL if we can't find 1830 * anything. 1831 * 1832 * We check to make sure the array is valid by comparing the 1833 * generation of the latest root in the array with the generation 1834 * in the super block. If they don't match we pitch it. 1835 */ 1836 static int find_newest_super_backup(struct btrfs_fs_info *info) 1837 { 1838 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1839 u64 cur; 1840 struct btrfs_root_backup *root_backup; 1841 int i; 1842 1843 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1844 root_backup = info->super_copy->super_roots + i; 1845 cur = btrfs_backup_tree_root_gen(root_backup); 1846 if (cur == newest_gen) 1847 return i; 1848 } 1849 1850 return -EINVAL; 1851 } 1852 1853 /* 1854 * copy all the root pointers into the super backup array. 1855 * this will bump the backup pointer by one when it is 1856 * done 1857 */ 1858 static void backup_super_roots(struct btrfs_fs_info *info) 1859 { 1860 const int next_backup = info->backup_root_index; 1861 struct btrfs_root_backup *root_backup; 1862 1863 root_backup = info->super_for_commit->super_roots + next_backup; 1864 1865 /* 1866 * make sure all of our padding and empty slots get zero filled 1867 * regardless of which ones we use today 1868 */ 1869 memset(root_backup, 0, sizeof(*root_backup)); 1870 1871 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1872 1873 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1874 btrfs_set_backup_tree_root_gen(root_backup, 1875 btrfs_header_generation(info->tree_root->node)); 1876 1877 btrfs_set_backup_tree_root_level(root_backup, 1878 btrfs_header_level(info->tree_root->node)); 1879 1880 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1881 btrfs_set_backup_chunk_root_gen(root_backup, 1882 btrfs_header_generation(info->chunk_root->node)); 1883 btrfs_set_backup_chunk_root_level(root_backup, 1884 btrfs_header_level(info->chunk_root->node)); 1885 1886 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1887 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1888 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1889 1890 btrfs_set_backup_extent_root(root_backup, 1891 extent_root->node->start); 1892 btrfs_set_backup_extent_root_gen(root_backup, 1893 btrfs_header_generation(extent_root->node)); 1894 btrfs_set_backup_extent_root_level(root_backup, 1895 btrfs_header_level(extent_root->node)); 1896 1897 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1898 btrfs_set_backup_csum_root_gen(root_backup, 1899 btrfs_header_generation(csum_root->node)); 1900 btrfs_set_backup_csum_root_level(root_backup, 1901 btrfs_header_level(csum_root->node)); 1902 } 1903 1904 /* 1905 * we might commit during log recovery, which happens before we set 1906 * the fs_root. Make sure it is valid before we fill it in. 1907 */ 1908 if (info->fs_root && info->fs_root->node) { 1909 btrfs_set_backup_fs_root(root_backup, 1910 info->fs_root->node->start); 1911 btrfs_set_backup_fs_root_gen(root_backup, 1912 btrfs_header_generation(info->fs_root->node)); 1913 btrfs_set_backup_fs_root_level(root_backup, 1914 btrfs_header_level(info->fs_root->node)); 1915 } 1916 1917 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1918 btrfs_set_backup_dev_root_gen(root_backup, 1919 btrfs_header_generation(info->dev_root->node)); 1920 btrfs_set_backup_dev_root_level(root_backup, 1921 btrfs_header_level(info->dev_root->node)); 1922 1923 btrfs_set_backup_total_bytes(root_backup, 1924 btrfs_super_total_bytes(info->super_copy)); 1925 btrfs_set_backup_bytes_used(root_backup, 1926 btrfs_super_bytes_used(info->super_copy)); 1927 btrfs_set_backup_num_devices(root_backup, 1928 btrfs_super_num_devices(info->super_copy)); 1929 1930 /* 1931 * if we don't copy this out to the super_copy, it won't get remembered 1932 * for the next commit 1933 */ 1934 memcpy(&info->super_copy->super_roots, 1935 &info->super_for_commit->super_roots, 1936 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1937 } 1938 1939 /* 1940 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 1941 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1942 * 1943 * fs_info - filesystem whose backup roots need to be read 1944 * priority - priority of backup root required 1945 * 1946 * Returns backup root index on success and -EINVAL otherwise. 1947 */ 1948 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1949 { 1950 int backup_index = find_newest_super_backup(fs_info); 1951 struct btrfs_super_block *super = fs_info->super_copy; 1952 struct btrfs_root_backup *root_backup; 1953 1954 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1955 if (priority == 0) 1956 return backup_index; 1957 1958 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1959 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1960 } else { 1961 return -EINVAL; 1962 } 1963 1964 root_backup = super->super_roots + backup_index; 1965 1966 btrfs_set_super_generation(super, 1967 btrfs_backup_tree_root_gen(root_backup)); 1968 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1969 btrfs_set_super_root_level(super, 1970 btrfs_backup_tree_root_level(root_backup)); 1971 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1972 1973 /* 1974 * Fixme: the total bytes and num_devices need to match or we should 1975 * need a fsck 1976 */ 1977 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1978 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1979 1980 return backup_index; 1981 } 1982 1983 /* helper to cleanup workers */ 1984 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1985 { 1986 btrfs_destroy_workqueue(fs_info->fixup_workers); 1987 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1988 btrfs_destroy_workqueue(fs_info->hipri_workers); 1989 btrfs_destroy_workqueue(fs_info->workers); 1990 if (fs_info->endio_workers) 1991 destroy_workqueue(fs_info->endio_workers); 1992 if (fs_info->rmw_workers) 1993 destroy_workqueue(fs_info->rmw_workers); 1994 if (fs_info->compressed_write_workers) 1995 destroy_workqueue(fs_info->compressed_write_workers); 1996 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1997 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1998 btrfs_destroy_workqueue(fs_info->delayed_workers); 1999 btrfs_destroy_workqueue(fs_info->caching_workers); 2000 btrfs_destroy_workqueue(fs_info->flush_workers); 2001 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2002 if (fs_info->discard_ctl.discard_workers) 2003 destroy_workqueue(fs_info->discard_ctl.discard_workers); 2004 /* 2005 * Now that all other work queues are destroyed, we can safely destroy 2006 * the queues used for metadata I/O, since tasks from those other work 2007 * queues can do metadata I/O operations. 2008 */ 2009 if (fs_info->endio_meta_workers) 2010 destroy_workqueue(fs_info->endio_meta_workers); 2011 } 2012 2013 static void free_root_extent_buffers(struct btrfs_root *root) 2014 { 2015 if (root) { 2016 free_extent_buffer(root->node); 2017 free_extent_buffer(root->commit_root); 2018 root->node = NULL; 2019 root->commit_root = NULL; 2020 } 2021 } 2022 2023 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 2024 { 2025 struct btrfs_root *root, *tmp; 2026 2027 rbtree_postorder_for_each_entry_safe(root, tmp, 2028 &fs_info->global_root_tree, 2029 rb_node) 2030 free_root_extent_buffers(root); 2031 } 2032 2033 /* helper to cleanup tree roots */ 2034 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 2035 { 2036 free_root_extent_buffers(info->tree_root); 2037 2038 free_global_root_pointers(info); 2039 free_root_extent_buffers(info->dev_root); 2040 free_root_extent_buffers(info->quota_root); 2041 free_root_extent_buffers(info->uuid_root); 2042 free_root_extent_buffers(info->fs_root); 2043 free_root_extent_buffers(info->data_reloc_root); 2044 free_root_extent_buffers(info->block_group_root); 2045 if (free_chunk_root) 2046 free_root_extent_buffers(info->chunk_root); 2047 } 2048 2049 void btrfs_put_root(struct btrfs_root *root) 2050 { 2051 if (!root) 2052 return; 2053 2054 if (refcount_dec_and_test(&root->refs)) { 2055 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2056 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 2057 if (root->anon_dev) 2058 free_anon_bdev(root->anon_dev); 2059 free_root_extent_buffers(root); 2060 #ifdef CONFIG_BTRFS_DEBUG 2061 spin_lock(&root->fs_info->fs_roots_radix_lock); 2062 list_del_init(&root->leak_list); 2063 spin_unlock(&root->fs_info->fs_roots_radix_lock); 2064 #endif 2065 kfree(root); 2066 } 2067 } 2068 2069 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2070 { 2071 int ret; 2072 struct btrfs_root *gang[8]; 2073 int i; 2074 2075 while (!list_empty(&fs_info->dead_roots)) { 2076 gang[0] = list_entry(fs_info->dead_roots.next, 2077 struct btrfs_root, root_list); 2078 list_del(&gang[0]->root_list); 2079 2080 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 2081 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2082 btrfs_put_root(gang[0]); 2083 } 2084 2085 while (1) { 2086 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2087 (void **)gang, 0, 2088 ARRAY_SIZE(gang)); 2089 if (!ret) 2090 break; 2091 for (i = 0; i < ret; i++) 2092 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2093 } 2094 } 2095 2096 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2097 { 2098 mutex_init(&fs_info->scrub_lock); 2099 atomic_set(&fs_info->scrubs_running, 0); 2100 atomic_set(&fs_info->scrub_pause_req, 0); 2101 atomic_set(&fs_info->scrubs_paused, 0); 2102 atomic_set(&fs_info->scrub_cancel_req, 0); 2103 init_waitqueue_head(&fs_info->scrub_pause_wait); 2104 refcount_set(&fs_info->scrub_workers_refcnt, 0); 2105 } 2106 2107 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2108 { 2109 spin_lock_init(&fs_info->balance_lock); 2110 mutex_init(&fs_info->balance_mutex); 2111 atomic_set(&fs_info->balance_pause_req, 0); 2112 atomic_set(&fs_info->balance_cancel_req, 0); 2113 fs_info->balance_ctl = NULL; 2114 init_waitqueue_head(&fs_info->balance_wait_q); 2115 atomic_set(&fs_info->reloc_cancel_req, 0); 2116 } 2117 2118 static int btrfs_init_btree_inode(struct super_block *sb) 2119 { 2120 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2121 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 2122 fs_info->tree_root); 2123 struct inode *inode; 2124 2125 inode = new_inode(sb); 2126 if (!inode) 2127 return -ENOMEM; 2128 2129 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2130 set_nlink(inode, 1); 2131 /* 2132 * we set the i_size on the btree inode to the max possible int. 2133 * the real end of the address space is determined by all of 2134 * the devices in the system 2135 */ 2136 inode->i_size = OFFSET_MAX; 2137 inode->i_mapping->a_ops = &btree_aops; 2138 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); 2139 2140 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2141 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 2142 IO_TREE_BTREE_INODE_IO); 2143 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2144 2145 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 2146 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID; 2147 BTRFS_I(inode)->location.type = 0; 2148 BTRFS_I(inode)->location.offset = 0; 2149 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2150 __insert_inode_hash(inode, hash); 2151 fs_info->btree_inode = inode; 2152 2153 return 0; 2154 } 2155 2156 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2157 { 2158 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2159 init_rwsem(&fs_info->dev_replace.rwsem); 2160 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 2161 } 2162 2163 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2164 { 2165 spin_lock_init(&fs_info->qgroup_lock); 2166 mutex_init(&fs_info->qgroup_ioctl_lock); 2167 fs_info->qgroup_tree = RB_ROOT; 2168 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2169 fs_info->qgroup_seq = 1; 2170 fs_info->qgroup_ulist = NULL; 2171 fs_info->qgroup_rescan_running = false; 2172 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL; 2173 mutex_init(&fs_info->qgroup_rescan_lock); 2174 } 2175 2176 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 2177 { 2178 u32 max_active = fs_info->thread_pool_size; 2179 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2180 2181 fs_info->workers = 2182 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 2183 fs_info->hipri_workers = 2184 btrfs_alloc_workqueue(fs_info, "worker-high", 2185 flags | WQ_HIGHPRI, max_active, 16); 2186 2187 fs_info->delalloc_workers = 2188 btrfs_alloc_workqueue(fs_info, "delalloc", 2189 flags, max_active, 2); 2190 2191 fs_info->flush_workers = 2192 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2193 flags, max_active, 0); 2194 2195 fs_info->caching_workers = 2196 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2197 2198 fs_info->fixup_workers = 2199 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2200 2201 fs_info->endio_workers = 2202 alloc_workqueue("btrfs-endio", flags, max_active); 2203 fs_info->endio_meta_workers = 2204 alloc_workqueue("btrfs-endio-meta", flags, max_active); 2205 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 2206 fs_info->endio_write_workers = 2207 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2208 max_active, 2); 2209 fs_info->compressed_write_workers = 2210 alloc_workqueue("btrfs-compressed-write", flags, max_active); 2211 fs_info->endio_freespace_worker = 2212 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2213 max_active, 0); 2214 fs_info->delayed_workers = 2215 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2216 max_active, 0); 2217 fs_info->qgroup_rescan_workers = 2218 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2219 fs_info->discard_ctl.discard_workers = 2220 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1); 2221 2222 if (!(fs_info->workers && fs_info->hipri_workers && 2223 fs_info->delalloc_workers && fs_info->flush_workers && 2224 fs_info->endio_workers && fs_info->endio_meta_workers && 2225 fs_info->compressed_write_workers && 2226 fs_info->endio_write_workers && 2227 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2228 fs_info->caching_workers && fs_info->fixup_workers && 2229 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2230 fs_info->discard_ctl.discard_workers)) { 2231 return -ENOMEM; 2232 } 2233 2234 return 0; 2235 } 2236 2237 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2238 { 2239 struct crypto_shash *csum_shash; 2240 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2241 2242 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2243 2244 if (IS_ERR(csum_shash)) { 2245 btrfs_err(fs_info, "error allocating %s hash for checksum", 2246 csum_driver); 2247 return PTR_ERR(csum_shash); 2248 } 2249 2250 fs_info->csum_shash = csum_shash; 2251 2252 /* 2253 * Check if the checksum implementation is a fast accelerated one. 2254 * As-is this is a bit of a hack and should be replaced once the csum 2255 * implementations provide that information themselves. 2256 */ 2257 switch (csum_type) { 2258 case BTRFS_CSUM_TYPE_CRC32: 2259 if (!strstr(crypto_shash_driver_name(csum_shash), "generic")) 2260 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2261 break; 2262 default: 2263 break; 2264 } 2265 2266 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2267 btrfs_super_csum_name(csum_type), 2268 crypto_shash_driver_name(csum_shash)); 2269 return 0; 2270 } 2271 2272 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2273 struct btrfs_fs_devices *fs_devices) 2274 { 2275 int ret; 2276 struct btrfs_tree_parent_check check = { 0 }; 2277 struct btrfs_root *log_tree_root; 2278 struct btrfs_super_block *disk_super = fs_info->super_copy; 2279 u64 bytenr = btrfs_super_log_root(disk_super); 2280 int level = btrfs_super_log_root_level(disk_super); 2281 2282 if (fs_devices->rw_devices == 0) { 2283 btrfs_warn(fs_info, "log replay required on RO media"); 2284 return -EIO; 2285 } 2286 2287 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2288 GFP_KERNEL); 2289 if (!log_tree_root) 2290 return -ENOMEM; 2291 2292 check.level = level; 2293 check.transid = fs_info->generation + 1; 2294 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2295 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2296 if (IS_ERR(log_tree_root->node)) { 2297 btrfs_warn(fs_info, "failed to read log tree"); 2298 ret = PTR_ERR(log_tree_root->node); 2299 log_tree_root->node = NULL; 2300 btrfs_put_root(log_tree_root); 2301 return ret; 2302 } 2303 if (!extent_buffer_uptodate(log_tree_root->node)) { 2304 btrfs_err(fs_info, "failed to read log tree"); 2305 btrfs_put_root(log_tree_root); 2306 return -EIO; 2307 } 2308 2309 /* returns with log_tree_root freed on success */ 2310 ret = btrfs_recover_log_trees(log_tree_root); 2311 if (ret) { 2312 btrfs_handle_fs_error(fs_info, ret, 2313 "Failed to recover log tree"); 2314 btrfs_put_root(log_tree_root); 2315 return ret; 2316 } 2317 2318 if (sb_rdonly(fs_info->sb)) { 2319 ret = btrfs_commit_super(fs_info); 2320 if (ret) 2321 return ret; 2322 } 2323 2324 return 0; 2325 } 2326 2327 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2328 struct btrfs_path *path, u64 objectid, 2329 const char *name) 2330 { 2331 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2332 struct btrfs_root *root; 2333 u64 max_global_id = 0; 2334 int ret; 2335 struct btrfs_key key = { 2336 .objectid = objectid, 2337 .type = BTRFS_ROOT_ITEM_KEY, 2338 .offset = 0, 2339 }; 2340 bool found = false; 2341 2342 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2343 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2344 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2345 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2346 return 0; 2347 } 2348 2349 while (1) { 2350 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2351 if (ret < 0) 2352 break; 2353 2354 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2355 ret = btrfs_next_leaf(tree_root, path); 2356 if (ret) { 2357 if (ret > 0) 2358 ret = 0; 2359 break; 2360 } 2361 } 2362 ret = 0; 2363 2364 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2365 if (key.objectid != objectid) 2366 break; 2367 btrfs_release_path(path); 2368 2369 /* 2370 * Just worry about this for extent tree, it'll be the same for 2371 * everybody. 2372 */ 2373 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2374 max_global_id = max(max_global_id, key.offset); 2375 2376 found = true; 2377 root = read_tree_root_path(tree_root, path, &key); 2378 if (IS_ERR(root)) { 2379 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2380 ret = PTR_ERR(root); 2381 break; 2382 } 2383 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2384 ret = btrfs_global_root_insert(root); 2385 if (ret) { 2386 btrfs_put_root(root); 2387 break; 2388 } 2389 key.offset++; 2390 } 2391 btrfs_release_path(path); 2392 2393 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2394 fs_info->nr_global_roots = max_global_id + 1; 2395 2396 if (!found || ret) { 2397 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2398 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2399 2400 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2401 ret = ret ? ret : -ENOENT; 2402 else 2403 ret = 0; 2404 btrfs_err(fs_info, "failed to load root %s", name); 2405 } 2406 return ret; 2407 } 2408 2409 static int load_global_roots(struct btrfs_root *tree_root) 2410 { 2411 struct btrfs_path *path; 2412 int ret = 0; 2413 2414 path = btrfs_alloc_path(); 2415 if (!path) 2416 return -ENOMEM; 2417 2418 ret = load_global_roots_objectid(tree_root, path, 2419 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2420 if (ret) 2421 goto out; 2422 ret = load_global_roots_objectid(tree_root, path, 2423 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2424 if (ret) 2425 goto out; 2426 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2427 goto out; 2428 ret = load_global_roots_objectid(tree_root, path, 2429 BTRFS_FREE_SPACE_TREE_OBJECTID, 2430 "free space"); 2431 out: 2432 btrfs_free_path(path); 2433 return ret; 2434 } 2435 2436 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2437 { 2438 struct btrfs_root *tree_root = fs_info->tree_root; 2439 struct btrfs_root *root; 2440 struct btrfs_key location; 2441 int ret; 2442 2443 BUG_ON(!fs_info->tree_root); 2444 2445 ret = load_global_roots(tree_root); 2446 if (ret) 2447 return ret; 2448 2449 location.type = BTRFS_ROOT_ITEM_KEY; 2450 location.offset = 0; 2451 2452 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2453 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2454 root = btrfs_read_tree_root(tree_root, &location); 2455 if (IS_ERR(root)) { 2456 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2457 ret = PTR_ERR(root); 2458 goto out; 2459 } 2460 } else { 2461 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2462 fs_info->block_group_root = root; 2463 } 2464 } 2465 2466 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2467 root = btrfs_read_tree_root(tree_root, &location); 2468 if (IS_ERR(root)) { 2469 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2470 ret = PTR_ERR(root); 2471 goto out; 2472 } 2473 } else { 2474 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2475 fs_info->dev_root = root; 2476 } 2477 /* Initialize fs_info for all devices in any case */ 2478 ret = btrfs_init_devices_late(fs_info); 2479 if (ret) 2480 goto out; 2481 2482 /* 2483 * This tree can share blocks with some other fs tree during relocation 2484 * and we need a proper setup by btrfs_get_fs_root 2485 */ 2486 root = btrfs_get_fs_root(tree_root->fs_info, 2487 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2488 if (IS_ERR(root)) { 2489 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2490 ret = PTR_ERR(root); 2491 goto out; 2492 } 2493 } else { 2494 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2495 fs_info->data_reloc_root = root; 2496 } 2497 2498 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2499 root = btrfs_read_tree_root(tree_root, &location); 2500 if (!IS_ERR(root)) { 2501 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2502 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2503 fs_info->quota_root = root; 2504 } 2505 2506 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2507 root = btrfs_read_tree_root(tree_root, &location); 2508 if (IS_ERR(root)) { 2509 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2510 ret = PTR_ERR(root); 2511 if (ret != -ENOENT) 2512 goto out; 2513 } 2514 } else { 2515 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2516 fs_info->uuid_root = root; 2517 } 2518 2519 return 0; 2520 out: 2521 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2522 location.objectid, ret); 2523 return ret; 2524 } 2525 2526 /* 2527 * Real super block validation 2528 * NOTE: super csum type and incompat features will not be checked here. 2529 * 2530 * @sb: super block to check 2531 * @mirror_num: the super block number to check its bytenr: 2532 * 0 the primary (1st) sb 2533 * 1, 2 2nd and 3rd backup copy 2534 * -1 skip bytenr check 2535 */ 2536 int btrfs_validate_super(struct btrfs_fs_info *fs_info, 2537 struct btrfs_super_block *sb, int mirror_num) 2538 { 2539 u64 nodesize = btrfs_super_nodesize(sb); 2540 u64 sectorsize = btrfs_super_sectorsize(sb); 2541 int ret = 0; 2542 2543 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2544 btrfs_err(fs_info, "no valid FS found"); 2545 ret = -EINVAL; 2546 } 2547 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2548 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2549 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2550 ret = -EINVAL; 2551 } 2552 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2553 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2554 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2555 ret = -EINVAL; 2556 } 2557 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2558 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2559 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2560 ret = -EINVAL; 2561 } 2562 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2563 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2564 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2565 ret = -EINVAL; 2566 } 2567 2568 /* 2569 * Check sectorsize and nodesize first, other check will need it. 2570 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2571 */ 2572 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2573 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2574 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2575 ret = -EINVAL; 2576 } 2577 2578 /* 2579 * We only support at most two sectorsizes: 4K and PAGE_SIZE. 2580 * 2581 * We can support 16K sectorsize with 64K page size without problem, 2582 * but such sectorsize/pagesize combination doesn't make much sense. 2583 * 4K will be our future standard, PAGE_SIZE is supported from the very 2584 * beginning. 2585 */ 2586 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) { 2587 btrfs_err(fs_info, 2588 "sectorsize %llu not yet supported for page size %lu", 2589 sectorsize, PAGE_SIZE); 2590 ret = -EINVAL; 2591 } 2592 2593 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2594 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2595 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2596 ret = -EINVAL; 2597 } 2598 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2599 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2600 le32_to_cpu(sb->__unused_leafsize), nodesize); 2601 ret = -EINVAL; 2602 } 2603 2604 /* Root alignment check */ 2605 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2606 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2607 btrfs_super_root(sb)); 2608 ret = -EINVAL; 2609 } 2610 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2611 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2612 btrfs_super_chunk_root(sb)); 2613 ret = -EINVAL; 2614 } 2615 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2616 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2617 btrfs_super_log_root(sb)); 2618 ret = -EINVAL; 2619 } 2620 2621 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid, 2622 BTRFS_FSID_SIZE)) { 2623 btrfs_err(fs_info, 2624 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2625 fs_info->super_copy->fsid, fs_info->fs_devices->fsid); 2626 ret = -EINVAL; 2627 } 2628 2629 if (btrfs_fs_incompat(fs_info, METADATA_UUID) && 2630 memcmp(fs_info->fs_devices->metadata_uuid, 2631 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) { 2632 btrfs_err(fs_info, 2633 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2634 fs_info->super_copy->metadata_uuid, 2635 fs_info->fs_devices->metadata_uuid); 2636 ret = -EINVAL; 2637 } 2638 2639 /* 2640 * Artificial requirement for block-group-tree to force newer features 2641 * (free-space-tree, no-holes) so the test matrix is smaller. 2642 */ 2643 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2644 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2645 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2646 btrfs_err(fs_info, 2647 "block-group-tree feature requires fres-space-tree and no-holes"); 2648 ret = -EINVAL; 2649 } 2650 2651 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2652 BTRFS_FSID_SIZE) != 0) { 2653 btrfs_err(fs_info, 2654 "dev_item UUID does not match metadata fsid: %pU != %pU", 2655 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2656 ret = -EINVAL; 2657 } 2658 2659 /* 2660 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2661 * done later 2662 */ 2663 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2664 btrfs_err(fs_info, "bytes_used is too small %llu", 2665 btrfs_super_bytes_used(sb)); 2666 ret = -EINVAL; 2667 } 2668 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2669 btrfs_err(fs_info, "invalid stripesize %u", 2670 btrfs_super_stripesize(sb)); 2671 ret = -EINVAL; 2672 } 2673 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2674 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2675 btrfs_super_num_devices(sb)); 2676 if (btrfs_super_num_devices(sb) == 0) { 2677 btrfs_err(fs_info, "number of devices is 0"); 2678 ret = -EINVAL; 2679 } 2680 2681 if (mirror_num >= 0 && 2682 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2683 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2684 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2685 ret = -EINVAL; 2686 } 2687 2688 /* 2689 * Obvious sys_chunk_array corruptions, it must hold at least one key 2690 * and one chunk 2691 */ 2692 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2693 btrfs_err(fs_info, "system chunk array too big %u > %u", 2694 btrfs_super_sys_array_size(sb), 2695 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2696 ret = -EINVAL; 2697 } 2698 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2699 + sizeof(struct btrfs_chunk)) { 2700 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2701 btrfs_super_sys_array_size(sb), 2702 sizeof(struct btrfs_disk_key) 2703 + sizeof(struct btrfs_chunk)); 2704 ret = -EINVAL; 2705 } 2706 2707 /* 2708 * The generation is a global counter, we'll trust it more than the others 2709 * but it's still possible that it's the one that's wrong. 2710 */ 2711 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2712 btrfs_warn(fs_info, 2713 "suspicious: generation < chunk_root_generation: %llu < %llu", 2714 btrfs_super_generation(sb), 2715 btrfs_super_chunk_root_generation(sb)); 2716 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2717 && btrfs_super_cache_generation(sb) != (u64)-1) 2718 btrfs_warn(fs_info, 2719 "suspicious: generation < cache_generation: %llu < %llu", 2720 btrfs_super_generation(sb), 2721 btrfs_super_cache_generation(sb)); 2722 2723 return ret; 2724 } 2725 2726 /* 2727 * Validation of super block at mount time. 2728 * Some checks already done early at mount time, like csum type and incompat 2729 * flags will be skipped. 2730 */ 2731 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2732 { 2733 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2734 } 2735 2736 /* 2737 * Validation of super block at write time. 2738 * Some checks like bytenr check will be skipped as their values will be 2739 * overwritten soon. 2740 * Extra checks like csum type and incompat flags will be done here. 2741 */ 2742 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2743 struct btrfs_super_block *sb) 2744 { 2745 int ret; 2746 2747 ret = btrfs_validate_super(fs_info, sb, -1); 2748 if (ret < 0) 2749 goto out; 2750 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2751 ret = -EUCLEAN; 2752 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2753 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2754 goto out; 2755 } 2756 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2757 ret = -EUCLEAN; 2758 btrfs_err(fs_info, 2759 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2760 btrfs_super_incompat_flags(sb), 2761 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2762 goto out; 2763 } 2764 out: 2765 if (ret < 0) 2766 btrfs_err(fs_info, 2767 "super block corruption detected before writing it to disk"); 2768 return ret; 2769 } 2770 2771 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2772 { 2773 struct btrfs_tree_parent_check check = { 2774 .level = level, 2775 .transid = gen, 2776 .owner_root = root->root_key.objectid 2777 }; 2778 int ret = 0; 2779 2780 root->node = read_tree_block(root->fs_info, bytenr, &check); 2781 if (IS_ERR(root->node)) { 2782 ret = PTR_ERR(root->node); 2783 root->node = NULL; 2784 return ret; 2785 } 2786 if (!extent_buffer_uptodate(root->node)) { 2787 free_extent_buffer(root->node); 2788 root->node = NULL; 2789 return -EIO; 2790 } 2791 2792 btrfs_set_root_node(&root->root_item, root->node); 2793 root->commit_root = btrfs_root_node(root); 2794 btrfs_set_root_refs(&root->root_item, 1); 2795 return ret; 2796 } 2797 2798 static int load_important_roots(struct btrfs_fs_info *fs_info) 2799 { 2800 struct btrfs_super_block *sb = fs_info->super_copy; 2801 u64 gen, bytenr; 2802 int level, ret; 2803 2804 bytenr = btrfs_super_root(sb); 2805 gen = btrfs_super_generation(sb); 2806 level = btrfs_super_root_level(sb); 2807 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2808 if (ret) { 2809 btrfs_warn(fs_info, "couldn't read tree root"); 2810 return ret; 2811 } 2812 return 0; 2813 } 2814 2815 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2816 { 2817 int backup_index = find_newest_super_backup(fs_info); 2818 struct btrfs_super_block *sb = fs_info->super_copy; 2819 struct btrfs_root *tree_root = fs_info->tree_root; 2820 bool handle_error = false; 2821 int ret = 0; 2822 int i; 2823 2824 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2825 if (handle_error) { 2826 if (!IS_ERR(tree_root->node)) 2827 free_extent_buffer(tree_root->node); 2828 tree_root->node = NULL; 2829 2830 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2831 break; 2832 2833 free_root_pointers(fs_info, 0); 2834 2835 /* 2836 * Don't use the log in recovery mode, it won't be 2837 * valid 2838 */ 2839 btrfs_set_super_log_root(sb, 0); 2840 2841 /* We can't trust the free space cache either */ 2842 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2843 2844 ret = read_backup_root(fs_info, i); 2845 backup_index = ret; 2846 if (ret < 0) 2847 return ret; 2848 } 2849 2850 ret = load_important_roots(fs_info); 2851 if (ret) { 2852 handle_error = true; 2853 continue; 2854 } 2855 2856 /* 2857 * No need to hold btrfs_root::objectid_mutex since the fs 2858 * hasn't been fully initialised and we are the only user 2859 */ 2860 ret = btrfs_init_root_free_objectid(tree_root); 2861 if (ret < 0) { 2862 handle_error = true; 2863 continue; 2864 } 2865 2866 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2867 2868 ret = btrfs_read_roots(fs_info); 2869 if (ret < 0) { 2870 handle_error = true; 2871 continue; 2872 } 2873 2874 /* All successful */ 2875 fs_info->generation = btrfs_header_generation(tree_root->node); 2876 fs_info->last_trans_committed = fs_info->generation; 2877 fs_info->last_reloc_trans = 0; 2878 2879 /* Always begin writing backup roots after the one being used */ 2880 if (backup_index < 0) { 2881 fs_info->backup_root_index = 0; 2882 } else { 2883 fs_info->backup_root_index = backup_index + 1; 2884 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2885 } 2886 break; 2887 } 2888 2889 return ret; 2890 } 2891 2892 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2893 { 2894 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2895 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2896 INIT_LIST_HEAD(&fs_info->trans_list); 2897 INIT_LIST_HEAD(&fs_info->dead_roots); 2898 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2899 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2900 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2901 spin_lock_init(&fs_info->delalloc_root_lock); 2902 spin_lock_init(&fs_info->trans_lock); 2903 spin_lock_init(&fs_info->fs_roots_radix_lock); 2904 spin_lock_init(&fs_info->delayed_iput_lock); 2905 spin_lock_init(&fs_info->defrag_inodes_lock); 2906 spin_lock_init(&fs_info->super_lock); 2907 spin_lock_init(&fs_info->buffer_lock); 2908 spin_lock_init(&fs_info->unused_bgs_lock); 2909 spin_lock_init(&fs_info->treelog_bg_lock); 2910 spin_lock_init(&fs_info->zone_active_bgs_lock); 2911 spin_lock_init(&fs_info->relocation_bg_lock); 2912 rwlock_init(&fs_info->tree_mod_log_lock); 2913 rwlock_init(&fs_info->global_root_lock); 2914 mutex_init(&fs_info->unused_bg_unpin_mutex); 2915 mutex_init(&fs_info->reclaim_bgs_lock); 2916 mutex_init(&fs_info->reloc_mutex); 2917 mutex_init(&fs_info->delalloc_root_mutex); 2918 mutex_init(&fs_info->zoned_meta_io_lock); 2919 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2920 seqlock_init(&fs_info->profiles_lock); 2921 2922 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2923 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2924 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2925 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2926 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start, 2927 BTRFS_LOCKDEP_TRANS_COMMIT_START); 2928 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2929 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2930 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 2931 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2932 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 2933 BTRFS_LOCKDEP_TRANS_COMPLETED); 2934 2935 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2936 INIT_LIST_HEAD(&fs_info->space_info); 2937 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2938 INIT_LIST_HEAD(&fs_info->unused_bgs); 2939 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2940 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2941 #ifdef CONFIG_BTRFS_DEBUG 2942 INIT_LIST_HEAD(&fs_info->allocated_roots); 2943 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2944 spin_lock_init(&fs_info->eb_leak_lock); 2945 #endif 2946 extent_map_tree_init(&fs_info->mapping_tree); 2947 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2948 BTRFS_BLOCK_RSV_GLOBAL); 2949 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2950 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2951 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2952 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2953 BTRFS_BLOCK_RSV_DELOPS); 2954 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2955 BTRFS_BLOCK_RSV_DELREFS); 2956 2957 atomic_set(&fs_info->async_delalloc_pages, 0); 2958 atomic_set(&fs_info->defrag_running, 0); 2959 atomic_set(&fs_info->nr_delayed_iputs, 0); 2960 atomic64_set(&fs_info->tree_mod_seq, 0); 2961 fs_info->global_root_tree = RB_ROOT; 2962 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2963 fs_info->metadata_ratio = 0; 2964 fs_info->defrag_inodes = RB_ROOT; 2965 atomic64_set(&fs_info->free_chunk_space, 0); 2966 fs_info->tree_mod_log = RB_ROOT; 2967 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2968 btrfs_init_ref_verify(fs_info); 2969 2970 fs_info->thread_pool_size = min_t(unsigned long, 2971 num_online_cpus() + 2, 8); 2972 2973 INIT_LIST_HEAD(&fs_info->ordered_roots); 2974 spin_lock_init(&fs_info->ordered_root_lock); 2975 2976 btrfs_init_scrub(fs_info); 2977 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2978 fs_info->check_integrity_print_mask = 0; 2979 #endif 2980 btrfs_init_balance(fs_info); 2981 btrfs_init_async_reclaim_work(fs_info); 2982 2983 rwlock_init(&fs_info->block_group_cache_lock); 2984 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 2985 2986 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2987 IO_TREE_FS_EXCLUDED_EXTENTS); 2988 2989 mutex_init(&fs_info->ordered_operations_mutex); 2990 mutex_init(&fs_info->tree_log_mutex); 2991 mutex_init(&fs_info->chunk_mutex); 2992 mutex_init(&fs_info->transaction_kthread_mutex); 2993 mutex_init(&fs_info->cleaner_mutex); 2994 mutex_init(&fs_info->ro_block_group_mutex); 2995 init_rwsem(&fs_info->commit_root_sem); 2996 init_rwsem(&fs_info->cleanup_work_sem); 2997 init_rwsem(&fs_info->subvol_sem); 2998 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2999 3000 btrfs_init_dev_replace_locks(fs_info); 3001 btrfs_init_qgroup(fs_info); 3002 btrfs_discard_init(fs_info); 3003 3004 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 3005 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 3006 3007 init_waitqueue_head(&fs_info->transaction_throttle); 3008 init_waitqueue_head(&fs_info->transaction_wait); 3009 init_waitqueue_head(&fs_info->transaction_blocked_wait); 3010 init_waitqueue_head(&fs_info->async_submit_wait); 3011 init_waitqueue_head(&fs_info->delayed_iputs_wait); 3012 3013 /* Usable values until the real ones are cached from the superblock */ 3014 fs_info->nodesize = 4096; 3015 fs_info->sectorsize = 4096; 3016 fs_info->sectorsize_bits = ilog2(4096); 3017 fs_info->stripesize = 4096; 3018 3019 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 3020 3021 spin_lock_init(&fs_info->swapfile_pins_lock); 3022 fs_info->swapfile_pins = RB_ROOT; 3023 3024 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 3025 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 3026 } 3027 3028 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 3029 { 3030 int ret; 3031 3032 fs_info->sb = sb; 3033 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 3034 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 3035 3036 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 3037 if (ret) 3038 return ret; 3039 3040 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 3041 if (ret) 3042 return ret; 3043 3044 fs_info->dirty_metadata_batch = PAGE_SIZE * 3045 (1 + ilog2(nr_cpu_ids)); 3046 3047 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 3048 if (ret) 3049 return ret; 3050 3051 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 3052 GFP_KERNEL); 3053 if (ret) 3054 return ret; 3055 3056 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 3057 GFP_KERNEL); 3058 if (!fs_info->delayed_root) 3059 return -ENOMEM; 3060 btrfs_init_delayed_root(fs_info->delayed_root); 3061 3062 if (sb_rdonly(sb)) 3063 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 3064 3065 return btrfs_alloc_stripe_hash_table(fs_info); 3066 } 3067 3068 static int btrfs_uuid_rescan_kthread(void *data) 3069 { 3070 struct btrfs_fs_info *fs_info = data; 3071 int ret; 3072 3073 /* 3074 * 1st step is to iterate through the existing UUID tree and 3075 * to delete all entries that contain outdated data. 3076 * 2nd step is to add all missing entries to the UUID tree. 3077 */ 3078 ret = btrfs_uuid_tree_iterate(fs_info); 3079 if (ret < 0) { 3080 if (ret != -EINTR) 3081 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 3082 ret); 3083 up(&fs_info->uuid_tree_rescan_sem); 3084 return ret; 3085 } 3086 return btrfs_uuid_scan_kthread(data); 3087 } 3088 3089 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 3090 { 3091 struct task_struct *task; 3092 3093 down(&fs_info->uuid_tree_rescan_sem); 3094 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 3095 if (IS_ERR(task)) { 3096 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3097 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 3098 up(&fs_info->uuid_tree_rescan_sem); 3099 return PTR_ERR(task); 3100 } 3101 3102 return 0; 3103 } 3104 3105 /* 3106 * Some options only have meaning at mount time and shouldn't persist across 3107 * remounts, or be displayed. Clear these at the end of mount and remount 3108 * code paths. 3109 */ 3110 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 3111 { 3112 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3113 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 3114 } 3115 3116 /* 3117 * Mounting logic specific to read-write file systems. Shared by open_ctree 3118 * and btrfs_remount when remounting from read-only to read-write. 3119 */ 3120 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 3121 { 3122 int ret; 3123 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 3124 bool rebuild_free_space_tree = false; 3125 3126 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3127 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3128 rebuild_free_space_tree = true; 3129 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3130 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3131 btrfs_warn(fs_info, "free space tree is invalid"); 3132 rebuild_free_space_tree = true; 3133 } 3134 3135 if (rebuild_free_space_tree) { 3136 btrfs_info(fs_info, "rebuilding free space tree"); 3137 ret = btrfs_rebuild_free_space_tree(fs_info); 3138 if (ret) { 3139 btrfs_warn(fs_info, 3140 "failed to rebuild free space tree: %d", ret); 3141 goto out; 3142 } 3143 } 3144 3145 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3146 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 3147 btrfs_info(fs_info, "disabling free space tree"); 3148 ret = btrfs_delete_free_space_tree(fs_info); 3149 if (ret) { 3150 btrfs_warn(fs_info, 3151 "failed to disable free space tree: %d", ret); 3152 goto out; 3153 } 3154 } 3155 3156 /* 3157 * btrfs_find_orphan_roots() is responsible for finding all the dead 3158 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3159 * them into the fs_info->fs_roots_radix tree. This must be done before 3160 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3161 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3162 * item before the root's tree is deleted - this means that if we unmount 3163 * or crash before the deletion completes, on the next mount we will not 3164 * delete what remains of the tree because the orphan item does not 3165 * exists anymore, which is what tells us we have a pending deletion. 3166 */ 3167 ret = btrfs_find_orphan_roots(fs_info); 3168 if (ret) 3169 goto out; 3170 3171 ret = btrfs_cleanup_fs_roots(fs_info); 3172 if (ret) 3173 goto out; 3174 3175 down_read(&fs_info->cleanup_work_sem); 3176 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3177 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3178 up_read(&fs_info->cleanup_work_sem); 3179 goto out; 3180 } 3181 up_read(&fs_info->cleanup_work_sem); 3182 3183 mutex_lock(&fs_info->cleaner_mutex); 3184 ret = btrfs_recover_relocation(fs_info); 3185 mutex_unlock(&fs_info->cleaner_mutex); 3186 if (ret < 0) { 3187 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3188 goto out; 3189 } 3190 3191 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3192 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3193 btrfs_info(fs_info, "creating free space tree"); 3194 ret = btrfs_create_free_space_tree(fs_info); 3195 if (ret) { 3196 btrfs_warn(fs_info, 3197 "failed to create free space tree: %d", ret); 3198 goto out; 3199 } 3200 } 3201 3202 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3203 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3204 if (ret) 3205 goto out; 3206 } 3207 3208 ret = btrfs_resume_balance_async(fs_info); 3209 if (ret) 3210 goto out; 3211 3212 ret = btrfs_resume_dev_replace_async(fs_info); 3213 if (ret) { 3214 btrfs_warn(fs_info, "failed to resume dev_replace"); 3215 goto out; 3216 } 3217 3218 btrfs_qgroup_rescan_resume(fs_info); 3219 3220 if (!fs_info->uuid_root) { 3221 btrfs_info(fs_info, "creating UUID tree"); 3222 ret = btrfs_create_uuid_tree(fs_info); 3223 if (ret) { 3224 btrfs_warn(fs_info, 3225 "failed to create the UUID tree %d", ret); 3226 goto out; 3227 } 3228 } 3229 3230 out: 3231 return ret; 3232 } 3233 3234 /* 3235 * Do various sanity and dependency checks of different features. 3236 * 3237 * @is_rw_mount: If the mount is read-write. 3238 * 3239 * This is the place for less strict checks (like for subpage or artificial 3240 * feature dependencies). 3241 * 3242 * For strict checks or possible corruption detection, see 3243 * btrfs_validate_super(). 3244 * 3245 * This should be called after btrfs_parse_options(), as some mount options 3246 * (space cache related) can modify on-disk format like free space tree and 3247 * screw up certain feature dependencies. 3248 */ 3249 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3250 { 3251 struct btrfs_super_block *disk_super = fs_info->super_copy; 3252 u64 incompat = btrfs_super_incompat_flags(disk_super); 3253 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3254 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3255 3256 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3257 btrfs_err(fs_info, 3258 "cannot mount because of unknown incompat features (0x%llx)", 3259 incompat); 3260 return -EINVAL; 3261 } 3262 3263 /* Runtime limitation for mixed block groups. */ 3264 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3265 (fs_info->sectorsize != fs_info->nodesize)) { 3266 btrfs_err(fs_info, 3267 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3268 fs_info->nodesize, fs_info->sectorsize); 3269 return -EINVAL; 3270 } 3271 3272 /* Mixed backref is an always-enabled feature. */ 3273 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3274 3275 /* Set compression related flags just in case. */ 3276 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3277 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3278 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3279 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3280 3281 /* 3282 * An ancient flag, which should really be marked deprecated. 3283 * Such runtime limitation doesn't really need a incompat flag. 3284 */ 3285 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3286 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3287 3288 if (compat_ro_unsupp && is_rw_mount) { 3289 btrfs_err(fs_info, 3290 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3291 compat_ro); 3292 return -EINVAL; 3293 } 3294 3295 /* 3296 * We have unsupported RO compat features, although RO mounted, we 3297 * should not cause any metadata writes, including log replay. 3298 * Or we could screw up whatever the new feature requires. 3299 */ 3300 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3301 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3302 btrfs_err(fs_info, 3303 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3304 compat_ro); 3305 return -EINVAL; 3306 } 3307 3308 /* 3309 * Artificial limitations for block group tree, to force 3310 * block-group-tree to rely on no-holes and free-space-tree. 3311 */ 3312 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3313 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3314 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3315 btrfs_err(fs_info, 3316 "block-group-tree feature requires no-holes and free-space-tree features"); 3317 return -EINVAL; 3318 } 3319 3320 /* 3321 * Subpage runtime limitation on v1 cache. 3322 * 3323 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3324 * we're already defaulting to v2 cache, no need to bother v1 as it's 3325 * going to be deprecated anyway. 3326 */ 3327 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3328 btrfs_warn(fs_info, 3329 "v1 space cache is not supported for page size %lu with sectorsize %u", 3330 PAGE_SIZE, fs_info->sectorsize); 3331 return -EINVAL; 3332 } 3333 3334 /* This can be called by remount, we need to protect the super block. */ 3335 spin_lock(&fs_info->super_lock); 3336 btrfs_set_super_incompat_flags(disk_super, incompat); 3337 spin_unlock(&fs_info->super_lock); 3338 3339 return 0; 3340 } 3341 3342 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3343 char *options) 3344 { 3345 u32 sectorsize; 3346 u32 nodesize; 3347 u32 stripesize; 3348 u64 generation; 3349 u64 features; 3350 u16 csum_type; 3351 struct btrfs_super_block *disk_super; 3352 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3353 struct btrfs_root *tree_root; 3354 struct btrfs_root *chunk_root; 3355 int ret; 3356 int level; 3357 3358 ret = init_mount_fs_info(fs_info, sb); 3359 if (ret) 3360 goto fail; 3361 3362 /* These need to be init'ed before we start creating inodes and such. */ 3363 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3364 GFP_KERNEL); 3365 fs_info->tree_root = tree_root; 3366 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3367 GFP_KERNEL); 3368 fs_info->chunk_root = chunk_root; 3369 if (!tree_root || !chunk_root) { 3370 ret = -ENOMEM; 3371 goto fail; 3372 } 3373 3374 ret = btrfs_init_btree_inode(sb); 3375 if (ret) 3376 goto fail; 3377 3378 invalidate_bdev(fs_devices->latest_dev->bdev); 3379 3380 /* 3381 * Read super block and check the signature bytes only 3382 */ 3383 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3384 if (IS_ERR(disk_super)) { 3385 ret = PTR_ERR(disk_super); 3386 goto fail_alloc; 3387 } 3388 3389 /* 3390 * Verify the type first, if that or the checksum value are 3391 * corrupted, we'll find out 3392 */ 3393 csum_type = btrfs_super_csum_type(disk_super); 3394 if (!btrfs_supported_super_csum(csum_type)) { 3395 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3396 csum_type); 3397 ret = -EINVAL; 3398 btrfs_release_disk_super(disk_super); 3399 goto fail_alloc; 3400 } 3401 3402 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3403 3404 ret = btrfs_init_csum_hash(fs_info, csum_type); 3405 if (ret) { 3406 btrfs_release_disk_super(disk_super); 3407 goto fail_alloc; 3408 } 3409 3410 /* 3411 * We want to check superblock checksum, the type is stored inside. 3412 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3413 */ 3414 if (btrfs_check_super_csum(fs_info, disk_super)) { 3415 btrfs_err(fs_info, "superblock checksum mismatch"); 3416 ret = -EINVAL; 3417 btrfs_release_disk_super(disk_super); 3418 goto fail_alloc; 3419 } 3420 3421 /* 3422 * super_copy is zeroed at allocation time and we never touch the 3423 * following bytes up to INFO_SIZE, the checksum is calculated from 3424 * the whole block of INFO_SIZE 3425 */ 3426 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3427 btrfs_release_disk_super(disk_super); 3428 3429 disk_super = fs_info->super_copy; 3430 3431 3432 features = btrfs_super_flags(disk_super); 3433 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 3434 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 3435 btrfs_set_super_flags(disk_super, features); 3436 btrfs_info(fs_info, 3437 "found metadata UUID change in progress flag, clearing"); 3438 } 3439 3440 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3441 sizeof(*fs_info->super_for_commit)); 3442 3443 ret = btrfs_validate_mount_super(fs_info); 3444 if (ret) { 3445 btrfs_err(fs_info, "superblock contains fatal errors"); 3446 ret = -EINVAL; 3447 goto fail_alloc; 3448 } 3449 3450 if (!btrfs_super_root(disk_super)) { 3451 btrfs_err(fs_info, "invalid superblock tree root bytenr"); 3452 ret = -EINVAL; 3453 goto fail_alloc; 3454 } 3455 3456 /* check FS state, whether FS is broken. */ 3457 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3458 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 3459 3460 /* 3461 * In the long term, we'll store the compression type in the super 3462 * block, and it'll be used for per file compression control. 3463 */ 3464 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 3465 3466 3467 /* Set up fs_info before parsing mount options */ 3468 nodesize = btrfs_super_nodesize(disk_super); 3469 sectorsize = btrfs_super_sectorsize(disk_super); 3470 stripesize = sectorsize; 3471 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3472 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3473 3474 fs_info->nodesize = nodesize; 3475 fs_info->sectorsize = sectorsize; 3476 fs_info->sectorsize_bits = ilog2(sectorsize); 3477 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3478 fs_info->stripesize = stripesize; 3479 3480 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 3481 if (ret) 3482 goto fail_alloc; 3483 3484 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3485 if (ret < 0) 3486 goto fail_alloc; 3487 3488 if (sectorsize < PAGE_SIZE) { 3489 struct btrfs_subpage_info *subpage_info; 3490 3491 /* 3492 * V1 space cache has some hardcoded PAGE_SIZE usage, and is 3493 * going to be deprecated. 3494 * 3495 * Force to use v2 cache for subpage case. 3496 */ 3497 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 3498 btrfs_set_and_info(fs_info, FREE_SPACE_TREE, 3499 "forcing free space tree for sector size %u with page size %lu", 3500 sectorsize, PAGE_SIZE); 3501 3502 btrfs_warn(fs_info, 3503 "read-write for sector size %u with page size %lu is experimental", 3504 sectorsize, PAGE_SIZE); 3505 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL); 3506 if (!subpage_info) { 3507 ret = -ENOMEM; 3508 goto fail_alloc; 3509 } 3510 btrfs_init_subpage_info(subpage_info, sectorsize); 3511 fs_info->subpage_info = subpage_info; 3512 } 3513 3514 ret = btrfs_init_workqueues(fs_info); 3515 if (ret) 3516 goto fail_sb_buffer; 3517 3518 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3519 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3520 3521 sb->s_blocksize = sectorsize; 3522 sb->s_blocksize_bits = blksize_bits(sectorsize); 3523 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3524 3525 mutex_lock(&fs_info->chunk_mutex); 3526 ret = btrfs_read_sys_array(fs_info); 3527 mutex_unlock(&fs_info->chunk_mutex); 3528 if (ret) { 3529 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3530 goto fail_sb_buffer; 3531 } 3532 3533 generation = btrfs_super_chunk_root_generation(disk_super); 3534 level = btrfs_super_chunk_root_level(disk_super); 3535 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3536 generation, level); 3537 if (ret) { 3538 btrfs_err(fs_info, "failed to read chunk root"); 3539 goto fail_tree_roots; 3540 } 3541 3542 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3543 offsetof(struct btrfs_header, chunk_tree_uuid), 3544 BTRFS_UUID_SIZE); 3545 3546 ret = btrfs_read_chunk_tree(fs_info); 3547 if (ret) { 3548 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3549 goto fail_tree_roots; 3550 } 3551 3552 /* 3553 * At this point we know all the devices that make this filesystem, 3554 * including the seed devices but we don't know yet if the replace 3555 * target is required. So free devices that are not part of this 3556 * filesystem but skip the replace target device which is checked 3557 * below in btrfs_init_dev_replace(). 3558 */ 3559 btrfs_free_extra_devids(fs_devices); 3560 if (!fs_devices->latest_dev->bdev) { 3561 btrfs_err(fs_info, "failed to read devices"); 3562 ret = -EIO; 3563 goto fail_tree_roots; 3564 } 3565 3566 ret = init_tree_roots(fs_info); 3567 if (ret) 3568 goto fail_tree_roots; 3569 3570 /* 3571 * Get zone type information of zoned block devices. This will also 3572 * handle emulation of a zoned filesystem if a regular device has the 3573 * zoned incompat feature flag set. 3574 */ 3575 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3576 if (ret) { 3577 btrfs_err(fs_info, 3578 "zoned: failed to read device zone info: %d", ret); 3579 goto fail_block_groups; 3580 } 3581 3582 /* 3583 * If we have a uuid root and we're not being told to rescan we need to 3584 * check the generation here so we can set the 3585 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3586 * transaction during a balance or the log replay without updating the 3587 * uuid generation, and then if we crash we would rescan the uuid tree, 3588 * even though it was perfectly fine. 3589 */ 3590 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3591 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3592 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3593 3594 ret = btrfs_verify_dev_extents(fs_info); 3595 if (ret) { 3596 btrfs_err(fs_info, 3597 "failed to verify dev extents against chunks: %d", 3598 ret); 3599 goto fail_block_groups; 3600 } 3601 ret = btrfs_recover_balance(fs_info); 3602 if (ret) { 3603 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3604 goto fail_block_groups; 3605 } 3606 3607 ret = btrfs_init_dev_stats(fs_info); 3608 if (ret) { 3609 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3610 goto fail_block_groups; 3611 } 3612 3613 ret = btrfs_init_dev_replace(fs_info); 3614 if (ret) { 3615 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3616 goto fail_block_groups; 3617 } 3618 3619 ret = btrfs_check_zoned_mode(fs_info); 3620 if (ret) { 3621 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3622 ret); 3623 goto fail_block_groups; 3624 } 3625 3626 ret = btrfs_sysfs_add_fsid(fs_devices); 3627 if (ret) { 3628 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3629 ret); 3630 goto fail_block_groups; 3631 } 3632 3633 ret = btrfs_sysfs_add_mounted(fs_info); 3634 if (ret) { 3635 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3636 goto fail_fsdev_sysfs; 3637 } 3638 3639 ret = btrfs_init_space_info(fs_info); 3640 if (ret) { 3641 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3642 goto fail_sysfs; 3643 } 3644 3645 ret = btrfs_read_block_groups(fs_info); 3646 if (ret) { 3647 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3648 goto fail_sysfs; 3649 } 3650 3651 btrfs_free_zone_cache(fs_info); 3652 3653 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3654 !btrfs_check_rw_degradable(fs_info, NULL)) { 3655 btrfs_warn(fs_info, 3656 "writable mount is not allowed due to too many missing devices"); 3657 ret = -EINVAL; 3658 goto fail_sysfs; 3659 } 3660 3661 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3662 "btrfs-cleaner"); 3663 if (IS_ERR(fs_info->cleaner_kthread)) { 3664 ret = PTR_ERR(fs_info->cleaner_kthread); 3665 goto fail_sysfs; 3666 } 3667 3668 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3669 tree_root, 3670 "btrfs-transaction"); 3671 if (IS_ERR(fs_info->transaction_kthread)) { 3672 ret = PTR_ERR(fs_info->transaction_kthread); 3673 goto fail_cleaner; 3674 } 3675 3676 if (!btrfs_test_opt(fs_info, NOSSD) && 3677 !fs_info->fs_devices->rotating) { 3678 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3679 } 3680 3681 /* 3682 * For devices supporting discard turn on discard=async automatically, 3683 * unless it's already set or disabled. This could be turned off by 3684 * nodiscard for the same mount. 3685 */ 3686 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) || 3687 btrfs_test_opt(fs_info, DISCARD_ASYNC) || 3688 btrfs_test_opt(fs_info, NODISCARD)) && 3689 fs_info->fs_devices->discardable) { 3690 btrfs_set_and_info(fs_info, DISCARD_ASYNC, 3691 "auto enabling async discard"); 3692 } 3693 3694 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3695 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3696 ret = btrfsic_mount(fs_info, fs_devices, 3697 btrfs_test_opt(fs_info, 3698 CHECK_INTEGRITY_DATA) ? 1 : 0, 3699 fs_info->check_integrity_print_mask); 3700 if (ret) 3701 btrfs_warn(fs_info, 3702 "failed to initialize integrity check module: %d", 3703 ret); 3704 } 3705 #endif 3706 ret = btrfs_read_qgroup_config(fs_info); 3707 if (ret) 3708 goto fail_trans_kthread; 3709 3710 if (btrfs_build_ref_tree(fs_info)) 3711 btrfs_err(fs_info, "couldn't build ref tree"); 3712 3713 /* do not make disk changes in broken FS or nologreplay is given */ 3714 if (btrfs_super_log_root(disk_super) != 0 && 3715 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3716 btrfs_info(fs_info, "start tree-log replay"); 3717 ret = btrfs_replay_log(fs_info, fs_devices); 3718 if (ret) 3719 goto fail_qgroup; 3720 } 3721 3722 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3723 if (IS_ERR(fs_info->fs_root)) { 3724 ret = PTR_ERR(fs_info->fs_root); 3725 btrfs_warn(fs_info, "failed to read fs tree: %d", ret); 3726 fs_info->fs_root = NULL; 3727 goto fail_qgroup; 3728 } 3729 3730 if (sb_rdonly(sb)) 3731 goto clear_oneshot; 3732 3733 ret = btrfs_start_pre_rw_mount(fs_info); 3734 if (ret) { 3735 close_ctree(fs_info); 3736 return ret; 3737 } 3738 btrfs_discard_resume(fs_info); 3739 3740 if (fs_info->uuid_root && 3741 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3742 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3743 btrfs_info(fs_info, "checking UUID tree"); 3744 ret = btrfs_check_uuid_tree(fs_info); 3745 if (ret) { 3746 btrfs_warn(fs_info, 3747 "failed to check the UUID tree: %d", ret); 3748 close_ctree(fs_info); 3749 return ret; 3750 } 3751 } 3752 3753 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3754 3755 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3756 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3757 wake_up_process(fs_info->cleaner_kthread); 3758 3759 clear_oneshot: 3760 btrfs_clear_oneshot_options(fs_info); 3761 return 0; 3762 3763 fail_qgroup: 3764 btrfs_free_qgroup_config(fs_info); 3765 fail_trans_kthread: 3766 kthread_stop(fs_info->transaction_kthread); 3767 btrfs_cleanup_transaction(fs_info); 3768 btrfs_free_fs_roots(fs_info); 3769 fail_cleaner: 3770 kthread_stop(fs_info->cleaner_kthread); 3771 3772 /* 3773 * make sure we're done with the btree inode before we stop our 3774 * kthreads 3775 */ 3776 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3777 3778 fail_sysfs: 3779 btrfs_sysfs_remove_mounted(fs_info); 3780 3781 fail_fsdev_sysfs: 3782 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3783 3784 fail_block_groups: 3785 btrfs_put_block_group_cache(fs_info); 3786 3787 fail_tree_roots: 3788 if (fs_info->data_reloc_root) 3789 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3790 free_root_pointers(fs_info, true); 3791 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3792 3793 fail_sb_buffer: 3794 btrfs_stop_all_workers(fs_info); 3795 btrfs_free_block_groups(fs_info); 3796 fail_alloc: 3797 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3798 3799 iput(fs_info->btree_inode); 3800 fail: 3801 btrfs_close_devices(fs_info->fs_devices); 3802 ASSERT(ret < 0); 3803 return ret; 3804 } 3805 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3806 3807 static void btrfs_end_super_write(struct bio *bio) 3808 { 3809 struct btrfs_device *device = bio->bi_private; 3810 struct bio_vec *bvec; 3811 struct bvec_iter_all iter_all; 3812 struct page *page; 3813 3814 bio_for_each_segment_all(bvec, bio, iter_all) { 3815 page = bvec->bv_page; 3816 3817 if (bio->bi_status) { 3818 btrfs_warn_rl_in_rcu(device->fs_info, 3819 "lost page write due to IO error on %s (%d)", 3820 btrfs_dev_name(device), 3821 blk_status_to_errno(bio->bi_status)); 3822 ClearPageUptodate(page); 3823 SetPageError(page); 3824 btrfs_dev_stat_inc_and_print(device, 3825 BTRFS_DEV_STAT_WRITE_ERRS); 3826 } else { 3827 SetPageUptodate(page); 3828 } 3829 3830 put_page(page); 3831 unlock_page(page); 3832 } 3833 3834 bio_put(bio); 3835 } 3836 3837 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3838 int copy_num, bool drop_cache) 3839 { 3840 struct btrfs_super_block *super; 3841 struct page *page; 3842 u64 bytenr, bytenr_orig; 3843 struct address_space *mapping = bdev->bd_inode->i_mapping; 3844 int ret; 3845 3846 bytenr_orig = btrfs_sb_offset(copy_num); 3847 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3848 if (ret == -ENOENT) 3849 return ERR_PTR(-EINVAL); 3850 else if (ret) 3851 return ERR_PTR(ret); 3852 3853 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 3854 return ERR_PTR(-EINVAL); 3855 3856 if (drop_cache) { 3857 /* This should only be called with the primary sb. */ 3858 ASSERT(copy_num == 0); 3859 3860 /* 3861 * Drop the page of the primary superblock, so later read will 3862 * always read from the device. 3863 */ 3864 invalidate_inode_pages2_range(mapping, 3865 bytenr >> PAGE_SHIFT, 3866 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 3867 } 3868 3869 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3870 if (IS_ERR(page)) 3871 return ERR_CAST(page); 3872 3873 super = page_address(page); 3874 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3875 btrfs_release_disk_super(super); 3876 return ERR_PTR(-ENODATA); 3877 } 3878 3879 if (btrfs_super_bytenr(super) != bytenr_orig) { 3880 btrfs_release_disk_super(super); 3881 return ERR_PTR(-EINVAL); 3882 } 3883 3884 return super; 3885 } 3886 3887 3888 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3889 { 3890 struct btrfs_super_block *super, *latest = NULL; 3891 int i; 3892 u64 transid = 0; 3893 3894 /* we would like to check all the supers, but that would make 3895 * a btrfs mount succeed after a mkfs from a different FS. 3896 * So, we need to add a special mount option to scan for 3897 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3898 */ 3899 for (i = 0; i < 1; i++) { 3900 super = btrfs_read_dev_one_super(bdev, i, false); 3901 if (IS_ERR(super)) 3902 continue; 3903 3904 if (!latest || btrfs_super_generation(super) > transid) { 3905 if (latest) 3906 btrfs_release_disk_super(super); 3907 3908 latest = super; 3909 transid = btrfs_super_generation(super); 3910 } 3911 } 3912 3913 return super; 3914 } 3915 3916 /* 3917 * Write superblock @sb to the @device. Do not wait for completion, all the 3918 * pages we use for writing are locked. 3919 * 3920 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3921 * the expected device size at commit time. Note that max_mirrors must be 3922 * same for write and wait phases. 3923 * 3924 * Return number of errors when page is not found or submission fails. 3925 */ 3926 static int write_dev_supers(struct btrfs_device *device, 3927 struct btrfs_super_block *sb, int max_mirrors) 3928 { 3929 struct btrfs_fs_info *fs_info = device->fs_info; 3930 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3931 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3932 int i; 3933 int errors = 0; 3934 int ret; 3935 u64 bytenr, bytenr_orig; 3936 3937 if (max_mirrors == 0) 3938 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3939 3940 shash->tfm = fs_info->csum_shash; 3941 3942 for (i = 0; i < max_mirrors; i++) { 3943 struct page *page; 3944 struct bio *bio; 3945 struct btrfs_super_block *disk_super; 3946 3947 bytenr_orig = btrfs_sb_offset(i); 3948 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3949 if (ret == -ENOENT) { 3950 continue; 3951 } else if (ret < 0) { 3952 btrfs_err(device->fs_info, 3953 "couldn't get super block location for mirror %d", 3954 i); 3955 errors++; 3956 continue; 3957 } 3958 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3959 device->commit_total_bytes) 3960 break; 3961 3962 btrfs_set_super_bytenr(sb, bytenr_orig); 3963 3964 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3965 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3966 sb->csum); 3967 3968 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 3969 GFP_NOFS); 3970 if (!page) { 3971 btrfs_err(device->fs_info, 3972 "couldn't get super block page for bytenr %llu", 3973 bytenr); 3974 errors++; 3975 continue; 3976 } 3977 3978 /* Bump the refcount for wait_dev_supers() */ 3979 get_page(page); 3980 3981 disk_super = page_address(page); 3982 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3983 3984 /* 3985 * Directly use bios here instead of relying on the page cache 3986 * to do I/O, so we don't lose the ability to do integrity 3987 * checking. 3988 */ 3989 bio = bio_alloc(device->bdev, 1, 3990 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 3991 GFP_NOFS); 3992 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3993 bio->bi_private = device; 3994 bio->bi_end_io = btrfs_end_super_write; 3995 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 3996 offset_in_page(bytenr)); 3997 3998 /* 3999 * We FUA only the first super block. The others we allow to 4000 * go down lazy and there's a short window where the on-disk 4001 * copies might still contain the older version. 4002 */ 4003 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 4004 bio->bi_opf |= REQ_FUA; 4005 4006 btrfsic_check_bio(bio); 4007 submit_bio(bio); 4008 4009 if (btrfs_advance_sb_log(device, i)) 4010 errors++; 4011 } 4012 return errors < i ? 0 : -1; 4013 } 4014 4015 /* 4016 * Wait for write completion of superblocks done by write_dev_supers, 4017 * @max_mirrors same for write and wait phases. 4018 * 4019 * Return number of errors when page is not found or not marked up to 4020 * date. 4021 */ 4022 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 4023 { 4024 int i; 4025 int errors = 0; 4026 bool primary_failed = false; 4027 int ret; 4028 u64 bytenr; 4029 4030 if (max_mirrors == 0) 4031 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 4032 4033 for (i = 0; i < max_mirrors; i++) { 4034 struct page *page; 4035 4036 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 4037 if (ret == -ENOENT) { 4038 break; 4039 } else if (ret < 0) { 4040 errors++; 4041 if (i == 0) 4042 primary_failed = true; 4043 continue; 4044 } 4045 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 4046 device->commit_total_bytes) 4047 break; 4048 4049 page = find_get_page(device->bdev->bd_inode->i_mapping, 4050 bytenr >> PAGE_SHIFT); 4051 if (!page) { 4052 errors++; 4053 if (i == 0) 4054 primary_failed = true; 4055 continue; 4056 } 4057 /* Page is submitted locked and unlocked once the IO completes */ 4058 wait_on_page_locked(page); 4059 if (PageError(page)) { 4060 errors++; 4061 if (i == 0) 4062 primary_failed = true; 4063 } 4064 4065 /* Drop our reference */ 4066 put_page(page); 4067 4068 /* Drop the reference from the writing run */ 4069 put_page(page); 4070 } 4071 4072 /* log error, force error return */ 4073 if (primary_failed) { 4074 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 4075 device->devid); 4076 return -1; 4077 } 4078 4079 return errors < i ? 0 : -1; 4080 } 4081 4082 /* 4083 * endio for the write_dev_flush, this will wake anyone waiting 4084 * for the barrier when it is done 4085 */ 4086 static void btrfs_end_empty_barrier(struct bio *bio) 4087 { 4088 bio_uninit(bio); 4089 complete(bio->bi_private); 4090 } 4091 4092 /* 4093 * Submit a flush request to the device if it supports it. Error handling is 4094 * done in the waiting counterpart. 4095 */ 4096 static void write_dev_flush(struct btrfs_device *device) 4097 { 4098 struct bio *bio = &device->flush_bio; 4099 4100 device->last_flush_error = BLK_STS_OK; 4101 4102 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4103 /* 4104 * When a disk has write caching disabled, we skip submission of a bio 4105 * with flush and sync requests before writing the superblock, since 4106 * it's not needed. However when the integrity checker is enabled, this 4107 * results in reports that there are metadata blocks referred by a 4108 * superblock that were not properly flushed. So don't skip the bio 4109 * submission only when the integrity checker is enabled for the sake 4110 * of simplicity, since this is a debug tool and not meant for use in 4111 * non-debug builds. 4112 */ 4113 if (!bdev_write_cache(device->bdev)) 4114 return; 4115 #endif 4116 4117 bio_init(bio, device->bdev, NULL, 0, 4118 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 4119 bio->bi_end_io = btrfs_end_empty_barrier; 4120 init_completion(&device->flush_wait); 4121 bio->bi_private = &device->flush_wait; 4122 4123 btrfsic_check_bio(bio); 4124 submit_bio(bio); 4125 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 4126 } 4127 4128 /* 4129 * If the flush bio has been submitted by write_dev_flush, wait for it. 4130 * Return true for any error, and false otherwise. 4131 */ 4132 static bool wait_dev_flush(struct btrfs_device *device) 4133 { 4134 struct bio *bio = &device->flush_bio; 4135 4136 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 4137 return false; 4138 4139 wait_for_completion_io(&device->flush_wait); 4140 4141 if (bio->bi_status) { 4142 device->last_flush_error = bio->bi_status; 4143 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); 4144 return true; 4145 } 4146 4147 return false; 4148 } 4149 4150 /* 4151 * send an empty flush down to each device in parallel, 4152 * then wait for them 4153 */ 4154 static int barrier_all_devices(struct btrfs_fs_info *info) 4155 { 4156 struct list_head *head; 4157 struct btrfs_device *dev; 4158 int errors_wait = 0; 4159 4160 lockdep_assert_held(&info->fs_devices->device_list_mutex); 4161 /* send down all the barriers */ 4162 head = &info->fs_devices->devices; 4163 list_for_each_entry(dev, head, dev_list) { 4164 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4165 continue; 4166 if (!dev->bdev) 4167 continue; 4168 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4169 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4170 continue; 4171 4172 write_dev_flush(dev); 4173 } 4174 4175 /* wait for all the barriers */ 4176 list_for_each_entry(dev, head, dev_list) { 4177 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4178 continue; 4179 if (!dev->bdev) { 4180 errors_wait++; 4181 continue; 4182 } 4183 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4184 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4185 continue; 4186 4187 if (wait_dev_flush(dev)) 4188 errors_wait++; 4189 } 4190 4191 /* 4192 * Checks last_flush_error of disks in order to determine the device 4193 * state. 4194 */ 4195 if (errors_wait && !btrfs_check_rw_degradable(info, NULL)) 4196 return -EIO; 4197 4198 return 0; 4199 } 4200 4201 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 4202 { 4203 int raid_type; 4204 int min_tolerated = INT_MAX; 4205 4206 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 4207 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 4208 min_tolerated = min_t(int, min_tolerated, 4209 btrfs_raid_array[BTRFS_RAID_SINGLE]. 4210 tolerated_failures); 4211 4212 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4213 if (raid_type == BTRFS_RAID_SINGLE) 4214 continue; 4215 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 4216 continue; 4217 min_tolerated = min_t(int, min_tolerated, 4218 btrfs_raid_array[raid_type]. 4219 tolerated_failures); 4220 } 4221 4222 if (min_tolerated == INT_MAX) { 4223 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4224 min_tolerated = 0; 4225 } 4226 4227 return min_tolerated; 4228 } 4229 4230 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4231 { 4232 struct list_head *head; 4233 struct btrfs_device *dev; 4234 struct btrfs_super_block *sb; 4235 struct btrfs_dev_item *dev_item; 4236 int ret; 4237 int do_barriers; 4238 int max_errors; 4239 int total_errors = 0; 4240 u64 flags; 4241 4242 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4243 4244 /* 4245 * max_mirrors == 0 indicates we're from commit_transaction, 4246 * not from fsync where the tree roots in fs_info have not 4247 * been consistent on disk. 4248 */ 4249 if (max_mirrors == 0) 4250 backup_super_roots(fs_info); 4251 4252 sb = fs_info->super_for_commit; 4253 dev_item = &sb->dev_item; 4254 4255 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4256 head = &fs_info->fs_devices->devices; 4257 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4258 4259 if (do_barriers) { 4260 ret = barrier_all_devices(fs_info); 4261 if (ret) { 4262 mutex_unlock( 4263 &fs_info->fs_devices->device_list_mutex); 4264 btrfs_handle_fs_error(fs_info, ret, 4265 "errors while submitting device barriers."); 4266 return ret; 4267 } 4268 } 4269 4270 list_for_each_entry(dev, head, dev_list) { 4271 if (!dev->bdev) { 4272 total_errors++; 4273 continue; 4274 } 4275 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4276 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4277 continue; 4278 4279 btrfs_set_stack_device_generation(dev_item, 0); 4280 btrfs_set_stack_device_type(dev_item, dev->type); 4281 btrfs_set_stack_device_id(dev_item, dev->devid); 4282 btrfs_set_stack_device_total_bytes(dev_item, 4283 dev->commit_total_bytes); 4284 btrfs_set_stack_device_bytes_used(dev_item, 4285 dev->commit_bytes_used); 4286 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4287 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4288 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4289 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4290 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4291 BTRFS_FSID_SIZE); 4292 4293 flags = btrfs_super_flags(sb); 4294 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4295 4296 ret = btrfs_validate_write_super(fs_info, sb); 4297 if (ret < 0) { 4298 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4299 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4300 "unexpected superblock corruption detected"); 4301 return -EUCLEAN; 4302 } 4303 4304 ret = write_dev_supers(dev, sb, max_mirrors); 4305 if (ret) 4306 total_errors++; 4307 } 4308 if (total_errors > max_errors) { 4309 btrfs_err(fs_info, "%d errors while writing supers", 4310 total_errors); 4311 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4312 4313 /* FUA is masked off if unsupported and can't be the reason */ 4314 btrfs_handle_fs_error(fs_info, -EIO, 4315 "%d errors while writing supers", 4316 total_errors); 4317 return -EIO; 4318 } 4319 4320 total_errors = 0; 4321 list_for_each_entry(dev, head, dev_list) { 4322 if (!dev->bdev) 4323 continue; 4324 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4325 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4326 continue; 4327 4328 ret = wait_dev_supers(dev, max_mirrors); 4329 if (ret) 4330 total_errors++; 4331 } 4332 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4333 if (total_errors > max_errors) { 4334 btrfs_handle_fs_error(fs_info, -EIO, 4335 "%d errors while writing supers", 4336 total_errors); 4337 return -EIO; 4338 } 4339 return 0; 4340 } 4341 4342 /* Drop a fs root from the radix tree and free it. */ 4343 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4344 struct btrfs_root *root) 4345 { 4346 bool drop_ref = false; 4347 4348 spin_lock(&fs_info->fs_roots_radix_lock); 4349 radix_tree_delete(&fs_info->fs_roots_radix, 4350 (unsigned long)root->root_key.objectid); 4351 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4352 drop_ref = true; 4353 spin_unlock(&fs_info->fs_roots_radix_lock); 4354 4355 if (BTRFS_FS_ERROR(fs_info)) { 4356 ASSERT(root->log_root == NULL); 4357 if (root->reloc_root) { 4358 btrfs_put_root(root->reloc_root); 4359 root->reloc_root = NULL; 4360 } 4361 } 4362 4363 if (drop_ref) 4364 btrfs_put_root(root); 4365 } 4366 4367 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 4368 { 4369 u64 root_objectid = 0; 4370 struct btrfs_root *gang[8]; 4371 int i = 0; 4372 int err = 0; 4373 unsigned int ret = 0; 4374 4375 while (1) { 4376 spin_lock(&fs_info->fs_roots_radix_lock); 4377 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4378 (void **)gang, root_objectid, 4379 ARRAY_SIZE(gang)); 4380 if (!ret) { 4381 spin_unlock(&fs_info->fs_roots_radix_lock); 4382 break; 4383 } 4384 root_objectid = gang[ret - 1]->root_key.objectid + 1; 4385 4386 for (i = 0; i < ret; i++) { 4387 /* Avoid to grab roots in dead_roots */ 4388 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 4389 gang[i] = NULL; 4390 continue; 4391 } 4392 /* grab all the search result for later use */ 4393 gang[i] = btrfs_grab_root(gang[i]); 4394 } 4395 spin_unlock(&fs_info->fs_roots_radix_lock); 4396 4397 for (i = 0; i < ret; i++) { 4398 if (!gang[i]) 4399 continue; 4400 root_objectid = gang[i]->root_key.objectid; 4401 err = btrfs_orphan_cleanup(gang[i]); 4402 if (err) 4403 goto out; 4404 btrfs_put_root(gang[i]); 4405 } 4406 root_objectid++; 4407 } 4408 out: 4409 /* release the uncleaned roots due to error */ 4410 for (; i < ret; i++) { 4411 if (gang[i]) 4412 btrfs_put_root(gang[i]); 4413 } 4414 return err; 4415 } 4416 4417 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4418 { 4419 struct btrfs_root *root = fs_info->tree_root; 4420 struct btrfs_trans_handle *trans; 4421 4422 mutex_lock(&fs_info->cleaner_mutex); 4423 btrfs_run_delayed_iputs(fs_info); 4424 mutex_unlock(&fs_info->cleaner_mutex); 4425 wake_up_process(fs_info->cleaner_kthread); 4426 4427 /* wait until ongoing cleanup work done */ 4428 down_write(&fs_info->cleanup_work_sem); 4429 up_write(&fs_info->cleanup_work_sem); 4430 4431 trans = btrfs_join_transaction(root); 4432 if (IS_ERR(trans)) 4433 return PTR_ERR(trans); 4434 return btrfs_commit_transaction(trans); 4435 } 4436 4437 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4438 { 4439 struct btrfs_transaction *trans; 4440 struct btrfs_transaction *tmp; 4441 bool found = false; 4442 4443 if (list_empty(&fs_info->trans_list)) 4444 return; 4445 4446 /* 4447 * This function is only called at the very end of close_ctree(), 4448 * thus no other running transaction, no need to take trans_lock. 4449 */ 4450 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4451 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4452 struct extent_state *cached = NULL; 4453 u64 dirty_bytes = 0; 4454 u64 cur = 0; 4455 u64 found_start; 4456 u64 found_end; 4457 4458 found = true; 4459 while (!find_first_extent_bit(&trans->dirty_pages, cur, 4460 &found_start, &found_end, EXTENT_DIRTY, &cached)) { 4461 dirty_bytes += found_end + 1 - found_start; 4462 cur = found_end + 1; 4463 } 4464 btrfs_warn(fs_info, 4465 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4466 trans->transid, dirty_bytes); 4467 btrfs_cleanup_one_transaction(trans, fs_info); 4468 4469 if (trans == fs_info->running_transaction) 4470 fs_info->running_transaction = NULL; 4471 list_del_init(&trans->list); 4472 4473 btrfs_put_transaction(trans); 4474 trace_btrfs_transaction_commit(fs_info); 4475 } 4476 ASSERT(!found); 4477 } 4478 4479 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4480 { 4481 int ret; 4482 4483 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4484 4485 /* 4486 * If we had UNFINISHED_DROPS we could still be processing them, so 4487 * clear that bit and wake up relocation so it can stop. 4488 * We must do this before stopping the block group reclaim task, because 4489 * at btrfs_relocate_block_group() we wait for this bit, and after the 4490 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4491 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4492 * return 1. 4493 */ 4494 btrfs_wake_unfinished_drop(fs_info); 4495 4496 /* 4497 * We may have the reclaim task running and relocating a data block group, 4498 * in which case it may create delayed iputs. So stop it before we park 4499 * the cleaner kthread otherwise we can get new delayed iputs after 4500 * parking the cleaner, and that can make the async reclaim task to hang 4501 * if it's waiting for delayed iputs to complete, since the cleaner is 4502 * parked and can not run delayed iputs - this will make us hang when 4503 * trying to stop the async reclaim task. 4504 */ 4505 cancel_work_sync(&fs_info->reclaim_bgs_work); 4506 /* 4507 * We don't want the cleaner to start new transactions, add more delayed 4508 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4509 * because that frees the task_struct, and the transaction kthread might 4510 * still try to wake up the cleaner. 4511 */ 4512 kthread_park(fs_info->cleaner_kthread); 4513 4514 /* wait for the qgroup rescan worker to stop */ 4515 btrfs_qgroup_wait_for_completion(fs_info, false); 4516 4517 /* wait for the uuid_scan task to finish */ 4518 down(&fs_info->uuid_tree_rescan_sem); 4519 /* avoid complains from lockdep et al., set sem back to initial state */ 4520 up(&fs_info->uuid_tree_rescan_sem); 4521 4522 /* pause restriper - we want to resume on mount */ 4523 btrfs_pause_balance(fs_info); 4524 4525 btrfs_dev_replace_suspend_for_unmount(fs_info); 4526 4527 btrfs_scrub_cancel(fs_info); 4528 4529 /* wait for any defraggers to finish */ 4530 wait_event(fs_info->transaction_wait, 4531 (atomic_read(&fs_info->defrag_running) == 0)); 4532 4533 /* clear out the rbtree of defraggable inodes */ 4534 btrfs_cleanup_defrag_inodes(fs_info); 4535 4536 /* 4537 * After we parked the cleaner kthread, ordered extents may have 4538 * completed and created new delayed iputs. If one of the async reclaim 4539 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4540 * can hang forever trying to stop it, because if a delayed iput is 4541 * added after it ran btrfs_run_delayed_iputs() and before it called 4542 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4543 * no one else to run iputs. 4544 * 4545 * So wait for all ongoing ordered extents to complete and then run 4546 * delayed iputs. This works because once we reach this point no one 4547 * can either create new ordered extents nor create delayed iputs 4548 * through some other means. 4549 * 4550 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4551 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4552 * but the delayed iput for the respective inode is made only when doing 4553 * the final btrfs_put_ordered_extent() (which must happen at 4554 * btrfs_finish_ordered_io() when we are unmounting). 4555 */ 4556 btrfs_flush_workqueue(fs_info->endio_write_workers); 4557 /* Ordered extents for free space inodes. */ 4558 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4559 btrfs_run_delayed_iputs(fs_info); 4560 4561 cancel_work_sync(&fs_info->async_reclaim_work); 4562 cancel_work_sync(&fs_info->async_data_reclaim_work); 4563 cancel_work_sync(&fs_info->preempt_reclaim_work); 4564 4565 /* Cancel or finish ongoing discard work */ 4566 btrfs_discard_cleanup(fs_info); 4567 4568 if (!sb_rdonly(fs_info->sb)) { 4569 /* 4570 * The cleaner kthread is stopped, so do one final pass over 4571 * unused block groups. 4572 */ 4573 btrfs_delete_unused_bgs(fs_info); 4574 4575 /* 4576 * There might be existing delayed inode workers still running 4577 * and holding an empty delayed inode item. We must wait for 4578 * them to complete first because they can create a transaction. 4579 * This happens when someone calls btrfs_balance_delayed_items() 4580 * and then a transaction commit runs the same delayed nodes 4581 * before any delayed worker has done something with the nodes. 4582 * We must wait for any worker here and not at transaction 4583 * commit time since that could cause a deadlock. 4584 * This is a very rare case. 4585 */ 4586 btrfs_flush_workqueue(fs_info->delayed_workers); 4587 4588 ret = btrfs_commit_super(fs_info); 4589 if (ret) 4590 btrfs_err(fs_info, "commit super ret %d", ret); 4591 } 4592 4593 if (BTRFS_FS_ERROR(fs_info)) 4594 btrfs_error_commit_super(fs_info); 4595 4596 kthread_stop(fs_info->transaction_kthread); 4597 kthread_stop(fs_info->cleaner_kthread); 4598 4599 ASSERT(list_empty(&fs_info->delayed_iputs)); 4600 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4601 4602 if (btrfs_check_quota_leak(fs_info)) { 4603 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4604 btrfs_err(fs_info, "qgroup reserved space leaked"); 4605 } 4606 4607 btrfs_free_qgroup_config(fs_info); 4608 ASSERT(list_empty(&fs_info->delalloc_roots)); 4609 4610 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4611 btrfs_info(fs_info, "at unmount delalloc count %lld", 4612 percpu_counter_sum(&fs_info->delalloc_bytes)); 4613 } 4614 4615 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4616 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4617 percpu_counter_sum(&fs_info->ordered_bytes)); 4618 4619 btrfs_sysfs_remove_mounted(fs_info); 4620 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4621 4622 btrfs_put_block_group_cache(fs_info); 4623 4624 /* 4625 * we must make sure there is not any read request to 4626 * submit after we stopping all workers. 4627 */ 4628 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4629 btrfs_stop_all_workers(fs_info); 4630 4631 /* We shouldn't have any transaction open at this point */ 4632 warn_about_uncommitted_trans(fs_info); 4633 4634 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4635 free_root_pointers(fs_info, true); 4636 btrfs_free_fs_roots(fs_info); 4637 4638 /* 4639 * We must free the block groups after dropping the fs_roots as we could 4640 * have had an IO error and have left over tree log blocks that aren't 4641 * cleaned up until the fs roots are freed. This makes the block group 4642 * accounting appear to be wrong because there's pending reserved bytes, 4643 * so make sure we do the block group cleanup afterwards. 4644 */ 4645 btrfs_free_block_groups(fs_info); 4646 4647 iput(fs_info->btree_inode); 4648 4649 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4650 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4651 btrfsic_unmount(fs_info->fs_devices); 4652 #endif 4653 4654 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4655 btrfs_close_devices(fs_info->fs_devices); 4656 } 4657 4658 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4659 int atomic) 4660 { 4661 int ret; 4662 struct inode *btree_inode = buf->pages[0]->mapping->host; 4663 4664 ret = extent_buffer_uptodate(buf); 4665 if (!ret) 4666 return ret; 4667 4668 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4669 parent_transid, atomic); 4670 if (ret == -EAGAIN) 4671 return ret; 4672 return !ret; 4673 } 4674 4675 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4676 { 4677 struct btrfs_fs_info *fs_info = buf->fs_info; 4678 u64 transid = btrfs_header_generation(buf); 4679 int was_dirty; 4680 4681 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4682 /* 4683 * This is a fast path so only do this check if we have sanity tests 4684 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4685 * outside of the sanity tests. 4686 */ 4687 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4688 return; 4689 #endif 4690 btrfs_assert_tree_write_locked(buf); 4691 if (transid != fs_info->generation) 4692 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4693 buf->start, transid, fs_info->generation); 4694 was_dirty = set_extent_buffer_dirty(buf); 4695 if (!was_dirty) 4696 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4697 buf->len, 4698 fs_info->dirty_metadata_batch); 4699 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4700 /* 4701 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4702 * but item data not updated. 4703 * So here we should only check item pointers, not item data. 4704 */ 4705 if (btrfs_header_level(buf) == 0 && 4706 btrfs_check_leaf_relaxed(buf)) { 4707 btrfs_print_leaf(buf); 4708 ASSERT(0); 4709 } 4710 #endif 4711 } 4712 4713 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4714 int flush_delayed) 4715 { 4716 /* 4717 * looks as though older kernels can get into trouble with 4718 * this code, they end up stuck in balance_dirty_pages forever 4719 */ 4720 int ret; 4721 4722 if (current->flags & PF_MEMALLOC) 4723 return; 4724 4725 if (flush_delayed) 4726 btrfs_balance_delayed_items(fs_info); 4727 4728 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4729 BTRFS_DIRTY_METADATA_THRESH, 4730 fs_info->dirty_metadata_batch); 4731 if (ret > 0) { 4732 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4733 } 4734 } 4735 4736 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4737 { 4738 __btrfs_btree_balance_dirty(fs_info, 1); 4739 } 4740 4741 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4742 { 4743 __btrfs_btree_balance_dirty(fs_info, 0); 4744 } 4745 4746 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4747 { 4748 /* cleanup FS via transaction */ 4749 btrfs_cleanup_transaction(fs_info); 4750 4751 mutex_lock(&fs_info->cleaner_mutex); 4752 btrfs_run_delayed_iputs(fs_info); 4753 mutex_unlock(&fs_info->cleaner_mutex); 4754 4755 down_write(&fs_info->cleanup_work_sem); 4756 up_write(&fs_info->cleanup_work_sem); 4757 } 4758 4759 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4760 { 4761 struct btrfs_root *gang[8]; 4762 u64 root_objectid = 0; 4763 int ret; 4764 4765 spin_lock(&fs_info->fs_roots_radix_lock); 4766 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4767 (void **)gang, root_objectid, 4768 ARRAY_SIZE(gang))) != 0) { 4769 int i; 4770 4771 for (i = 0; i < ret; i++) 4772 gang[i] = btrfs_grab_root(gang[i]); 4773 spin_unlock(&fs_info->fs_roots_radix_lock); 4774 4775 for (i = 0; i < ret; i++) { 4776 if (!gang[i]) 4777 continue; 4778 root_objectid = gang[i]->root_key.objectid; 4779 btrfs_free_log(NULL, gang[i]); 4780 btrfs_put_root(gang[i]); 4781 } 4782 root_objectid++; 4783 spin_lock(&fs_info->fs_roots_radix_lock); 4784 } 4785 spin_unlock(&fs_info->fs_roots_radix_lock); 4786 btrfs_free_log_root_tree(NULL, fs_info); 4787 } 4788 4789 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4790 { 4791 struct btrfs_ordered_extent *ordered; 4792 4793 spin_lock(&root->ordered_extent_lock); 4794 /* 4795 * This will just short circuit the ordered completion stuff which will 4796 * make sure the ordered extent gets properly cleaned up. 4797 */ 4798 list_for_each_entry(ordered, &root->ordered_extents, 4799 root_extent_list) 4800 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4801 spin_unlock(&root->ordered_extent_lock); 4802 } 4803 4804 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4805 { 4806 struct btrfs_root *root; 4807 struct list_head splice; 4808 4809 INIT_LIST_HEAD(&splice); 4810 4811 spin_lock(&fs_info->ordered_root_lock); 4812 list_splice_init(&fs_info->ordered_roots, &splice); 4813 while (!list_empty(&splice)) { 4814 root = list_first_entry(&splice, struct btrfs_root, 4815 ordered_root); 4816 list_move_tail(&root->ordered_root, 4817 &fs_info->ordered_roots); 4818 4819 spin_unlock(&fs_info->ordered_root_lock); 4820 btrfs_destroy_ordered_extents(root); 4821 4822 cond_resched(); 4823 spin_lock(&fs_info->ordered_root_lock); 4824 } 4825 spin_unlock(&fs_info->ordered_root_lock); 4826 4827 /* 4828 * We need this here because if we've been flipped read-only we won't 4829 * get sync() from the umount, so we need to make sure any ordered 4830 * extents that haven't had their dirty pages IO start writeout yet 4831 * actually get run and error out properly. 4832 */ 4833 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4834 } 4835 4836 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4837 struct btrfs_fs_info *fs_info) 4838 { 4839 struct rb_node *node; 4840 struct btrfs_delayed_ref_root *delayed_refs; 4841 struct btrfs_delayed_ref_node *ref; 4842 int ret = 0; 4843 4844 delayed_refs = &trans->delayed_refs; 4845 4846 spin_lock(&delayed_refs->lock); 4847 if (atomic_read(&delayed_refs->num_entries) == 0) { 4848 spin_unlock(&delayed_refs->lock); 4849 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4850 return ret; 4851 } 4852 4853 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4854 struct btrfs_delayed_ref_head *head; 4855 struct rb_node *n; 4856 bool pin_bytes = false; 4857 4858 head = rb_entry(node, struct btrfs_delayed_ref_head, 4859 href_node); 4860 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4861 continue; 4862 4863 spin_lock(&head->lock); 4864 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4865 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4866 ref_node); 4867 ref->in_tree = 0; 4868 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4869 RB_CLEAR_NODE(&ref->ref_node); 4870 if (!list_empty(&ref->add_list)) 4871 list_del(&ref->add_list); 4872 atomic_dec(&delayed_refs->num_entries); 4873 btrfs_put_delayed_ref(ref); 4874 } 4875 if (head->must_insert_reserved) 4876 pin_bytes = true; 4877 btrfs_free_delayed_extent_op(head->extent_op); 4878 btrfs_delete_ref_head(delayed_refs, head); 4879 spin_unlock(&head->lock); 4880 spin_unlock(&delayed_refs->lock); 4881 mutex_unlock(&head->mutex); 4882 4883 if (pin_bytes) { 4884 struct btrfs_block_group *cache; 4885 4886 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4887 BUG_ON(!cache); 4888 4889 spin_lock(&cache->space_info->lock); 4890 spin_lock(&cache->lock); 4891 cache->pinned += head->num_bytes; 4892 btrfs_space_info_update_bytes_pinned(fs_info, 4893 cache->space_info, head->num_bytes); 4894 cache->reserved -= head->num_bytes; 4895 cache->space_info->bytes_reserved -= head->num_bytes; 4896 spin_unlock(&cache->lock); 4897 spin_unlock(&cache->space_info->lock); 4898 4899 btrfs_put_block_group(cache); 4900 4901 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4902 head->bytenr + head->num_bytes - 1); 4903 } 4904 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4905 btrfs_put_delayed_ref_head(head); 4906 cond_resched(); 4907 spin_lock(&delayed_refs->lock); 4908 } 4909 btrfs_qgroup_destroy_extent_records(trans); 4910 4911 spin_unlock(&delayed_refs->lock); 4912 4913 return ret; 4914 } 4915 4916 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4917 { 4918 struct btrfs_inode *btrfs_inode; 4919 struct list_head splice; 4920 4921 INIT_LIST_HEAD(&splice); 4922 4923 spin_lock(&root->delalloc_lock); 4924 list_splice_init(&root->delalloc_inodes, &splice); 4925 4926 while (!list_empty(&splice)) { 4927 struct inode *inode = NULL; 4928 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4929 delalloc_inodes); 4930 __btrfs_del_delalloc_inode(root, btrfs_inode); 4931 spin_unlock(&root->delalloc_lock); 4932 4933 /* 4934 * Make sure we get a live inode and that it'll not disappear 4935 * meanwhile. 4936 */ 4937 inode = igrab(&btrfs_inode->vfs_inode); 4938 if (inode) { 4939 invalidate_inode_pages2(inode->i_mapping); 4940 iput(inode); 4941 } 4942 spin_lock(&root->delalloc_lock); 4943 } 4944 spin_unlock(&root->delalloc_lock); 4945 } 4946 4947 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4948 { 4949 struct btrfs_root *root; 4950 struct list_head splice; 4951 4952 INIT_LIST_HEAD(&splice); 4953 4954 spin_lock(&fs_info->delalloc_root_lock); 4955 list_splice_init(&fs_info->delalloc_roots, &splice); 4956 while (!list_empty(&splice)) { 4957 root = list_first_entry(&splice, struct btrfs_root, 4958 delalloc_root); 4959 root = btrfs_grab_root(root); 4960 BUG_ON(!root); 4961 spin_unlock(&fs_info->delalloc_root_lock); 4962 4963 btrfs_destroy_delalloc_inodes(root); 4964 btrfs_put_root(root); 4965 4966 spin_lock(&fs_info->delalloc_root_lock); 4967 } 4968 spin_unlock(&fs_info->delalloc_root_lock); 4969 } 4970 4971 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4972 struct extent_io_tree *dirty_pages, 4973 int mark) 4974 { 4975 int ret; 4976 struct extent_buffer *eb; 4977 u64 start = 0; 4978 u64 end; 4979 4980 while (1) { 4981 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4982 mark, NULL); 4983 if (ret) 4984 break; 4985 4986 clear_extent_bits(dirty_pages, start, end, mark); 4987 while (start <= end) { 4988 eb = find_extent_buffer(fs_info, start); 4989 start += fs_info->nodesize; 4990 if (!eb) 4991 continue; 4992 4993 btrfs_tree_lock(eb); 4994 wait_on_extent_buffer_writeback(eb); 4995 btrfs_clear_buffer_dirty(NULL, eb); 4996 btrfs_tree_unlock(eb); 4997 4998 free_extent_buffer_stale(eb); 4999 } 5000 } 5001 5002 return ret; 5003 } 5004 5005 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 5006 struct extent_io_tree *unpin) 5007 { 5008 u64 start; 5009 u64 end; 5010 int ret; 5011 5012 while (1) { 5013 struct extent_state *cached_state = NULL; 5014 5015 /* 5016 * The btrfs_finish_extent_commit() may get the same range as 5017 * ours between find_first_extent_bit and clear_extent_dirty. 5018 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 5019 * the same extent range. 5020 */ 5021 mutex_lock(&fs_info->unused_bg_unpin_mutex); 5022 ret = find_first_extent_bit(unpin, 0, &start, &end, 5023 EXTENT_DIRTY, &cached_state); 5024 if (ret) { 5025 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5026 break; 5027 } 5028 5029 clear_extent_dirty(unpin, start, end, &cached_state); 5030 free_extent_state(cached_state); 5031 btrfs_error_unpin_extent_range(fs_info, start, end); 5032 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 5033 cond_resched(); 5034 } 5035 5036 return 0; 5037 } 5038 5039 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 5040 { 5041 struct inode *inode; 5042 5043 inode = cache->io_ctl.inode; 5044 if (inode) { 5045 invalidate_inode_pages2(inode->i_mapping); 5046 BTRFS_I(inode)->generation = 0; 5047 cache->io_ctl.inode = NULL; 5048 iput(inode); 5049 } 5050 ASSERT(cache->io_ctl.pages == NULL); 5051 btrfs_put_block_group(cache); 5052 } 5053 5054 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 5055 struct btrfs_fs_info *fs_info) 5056 { 5057 struct btrfs_block_group *cache; 5058 5059 spin_lock(&cur_trans->dirty_bgs_lock); 5060 while (!list_empty(&cur_trans->dirty_bgs)) { 5061 cache = list_first_entry(&cur_trans->dirty_bgs, 5062 struct btrfs_block_group, 5063 dirty_list); 5064 5065 if (!list_empty(&cache->io_list)) { 5066 spin_unlock(&cur_trans->dirty_bgs_lock); 5067 list_del_init(&cache->io_list); 5068 btrfs_cleanup_bg_io(cache); 5069 spin_lock(&cur_trans->dirty_bgs_lock); 5070 } 5071 5072 list_del_init(&cache->dirty_list); 5073 spin_lock(&cache->lock); 5074 cache->disk_cache_state = BTRFS_DC_ERROR; 5075 spin_unlock(&cache->lock); 5076 5077 spin_unlock(&cur_trans->dirty_bgs_lock); 5078 btrfs_put_block_group(cache); 5079 btrfs_delayed_refs_rsv_release(fs_info, 1); 5080 spin_lock(&cur_trans->dirty_bgs_lock); 5081 } 5082 spin_unlock(&cur_trans->dirty_bgs_lock); 5083 5084 /* 5085 * Refer to the definition of io_bgs member for details why it's safe 5086 * to use it without any locking 5087 */ 5088 while (!list_empty(&cur_trans->io_bgs)) { 5089 cache = list_first_entry(&cur_trans->io_bgs, 5090 struct btrfs_block_group, 5091 io_list); 5092 5093 list_del_init(&cache->io_list); 5094 spin_lock(&cache->lock); 5095 cache->disk_cache_state = BTRFS_DC_ERROR; 5096 spin_unlock(&cache->lock); 5097 btrfs_cleanup_bg_io(cache); 5098 } 5099 } 5100 5101 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 5102 struct btrfs_fs_info *fs_info) 5103 { 5104 struct btrfs_device *dev, *tmp; 5105 5106 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 5107 ASSERT(list_empty(&cur_trans->dirty_bgs)); 5108 ASSERT(list_empty(&cur_trans->io_bgs)); 5109 5110 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 5111 post_commit_list) { 5112 list_del_init(&dev->post_commit_list); 5113 } 5114 5115 btrfs_destroy_delayed_refs(cur_trans, fs_info); 5116 5117 cur_trans->state = TRANS_STATE_COMMIT_START; 5118 wake_up(&fs_info->transaction_blocked_wait); 5119 5120 cur_trans->state = TRANS_STATE_UNBLOCKED; 5121 wake_up(&fs_info->transaction_wait); 5122 5123 btrfs_destroy_delayed_inodes(fs_info); 5124 5125 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 5126 EXTENT_DIRTY); 5127 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 5128 5129 btrfs_free_redirty_list(cur_trans); 5130 5131 cur_trans->state =TRANS_STATE_COMPLETED; 5132 wake_up(&cur_trans->commit_wait); 5133 } 5134 5135 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 5136 { 5137 struct btrfs_transaction *t; 5138 5139 mutex_lock(&fs_info->transaction_kthread_mutex); 5140 5141 spin_lock(&fs_info->trans_lock); 5142 while (!list_empty(&fs_info->trans_list)) { 5143 t = list_first_entry(&fs_info->trans_list, 5144 struct btrfs_transaction, list); 5145 if (t->state >= TRANS_STATE_COMMIT_START) { 5146 refcount_inc(&t->use_count); 5147 spin_unlock(&fs_info->trans_lock); 5148 btrfs_wait_for_commit(fs_info, t->transid); 5149 btrfs_put_transaction(t); 5150 spin_lock(&fs_info->trans_lock); 5151 continue; 5152 } 5153 if (t == fs_info->running_transaction) { 5154 t->state = TRANS_STATE_COMMIT_DOING; 5155 spin_unlock(&fs_info->trans_lock); 5156 /* 5157 * We wait for 0 num_writers since we don't hold a trans 5158 * handle open currently for this transaction. 5159 */ 5160 wait_event(t->writer_wait, 5161 atomic_read(&t->num_writers) == 0); 5162 } else { 5163 spin_unlock(&fs_info->trans_lock); 5164 } 5165 btrfs_cleanup_one_transaction(t, fs_info); 5166 5167 spin_lock(&fs_info->trans_lock); 5168 if (t == fs_info->running_transaction) 5169 fs_info->running_transaction = NULL; 5170 list_del_init(&t->list); 5171 spin_unlock(&fs_info->trans_lock); 5172 5173 btrfs_put_transaction(t); 5174 trace_btrfs_transaction_commit(fs_info); 5175 spin_lock(&fs_info->trans_lock); 5176 } 5177 spin_unlock(&fs_info->trans_lock); 5178 btrfs_destroy_all_ordered_extents(fs_info); 5179 btrfs_destroy_delayed_inodes(fs_info); 5180 btrfs_assert_delayed_root_empty(fs_info); 5181 btrfs_destroy_all_delalloc_inodes(fs_info); 5182 btrfs_drop_all_logs(fs_info); 5183 mutex_unlock(&fs_info->transaction_kthread_mutex); 5184 5185 return 0; 5186 } 5187 5188 int btrfs_init_root_free_objectid(struct btrfs_root *root) 5189 { 5190 struct btrfs_path *path; 5191 int ret; 5192 struct extent_buffer *l; 5193 struct btrfs_key search_key; 5194 struct btrfs_key found_key; 5195 int slot; 5196 5197 path = btrfs_alloc_path(); 5198 if (!path) 5199 return -ENOMEM; 5200 5201 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 5202 search_key.type = -1; 5203 search_key.offset = (u64)-1; 5204 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 5205 if (ret < 0) 5206 goto error; 5207 BUG_ON(ret == 0); /* Corruption */ 5208 if (path->slots[0] > 0) { 5209 slot = path->slots[0] - 1; 5210 l = path->nodes[0]; 5211 btrfs_item_key_to_cpu(l, &found_key, slot); 5212 root->free_objectid = max_t(u64, found_key.objectid + 1, 5213 BTRFS_FIRST_FREE_OBJECTID); 5214 } else { 5215 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 5216 } 5217 ret = 0; 5218 error: 5219 btrfs_free_path(path); 5220 return ret; 5221 } 5222 5223 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 5224 { 5225 int ret; 5226 mutex_lock(&root->objectid_mutex); 5227 5228 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 5229 btrfs_warn(root->fs_info, 5230 "the objectid of root %llu reaches its highest value", 5231 root->root_key.objectid); 5232 ret = -ENOSPC; 5233 goto out; 5234 } 5235 5236 *objectid = root->free_objectid++; 5237 ret = 0; 5238 out: 5239 mutex_unlock(&root->objectid_mutex); 5240 return ret; 5241 } 5242