1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include "compat.h" 30 #include "crc32c.h" 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "btrfs_inode.h" 35 #include "volumes.h" 36 #include "print-tree.h" 37 #include "async-thread.h" 38 #include "locking.h" 39 #include "ref-cache.h" 40 #include "tree-log.h" 41 42 static struct extent_io_ops btree_extent_io_ops; 43 static void end_workqueue_fn(struct btrfs_work *work); 44 45 /* 46 * end_io_wq structs are used to do processing in task context when an IO is 47 * complete. This is used during reads to verify checksums, and it is used 48 * by writes to insert metadata for new file extents after IO is complete. 49 */ 50 struct end_io_wq { 51 struct bio *bio; 52 bio_end_io_t *end_io; 53 void *private; 54 struct btrfs_fs_info *info; 55 int error; 56 int metadata; 57 struct list_head list; 58 struct btrfs_work work; 59 }; 60 61 /* 62 * async submit bios are used to offload expensive checksumming 63 * onto the worker threads. They checksum file and metadata bios 64 * just before they are sent down the IO stack. 65 */ 66 struct async_submit_bio { 67 struct inode *inode; 68 struct bio *bio; 69 struct list_head list; 70 extent_submit_bio_hook_t *submit_bio_start; 71 extent_submit_bio_hook_t *submit_bio_done; 72 int rw; 73 int mirror_num; 74 unsigned long bio_flags; 75 struct btrfs_work work; 76 }; 77 78 /* These are used to set the lockdep class on the extent buffer locks. 79 * The class is set by the readpage_end_io_hook after the buffer has 80 * passed csum validation but before the pages are unlocked. 81 * 82 * The lockdep class is also set by btrfs_init_new_buffer on freshly 83 * allocated blocks. 84 * 85 * The class is based on the level in the tree block, which allows lockdep 86 * to know that lower nodes nest inside the locks of higher nodes. 87 * 88 * We also add a check to make sure the highest level of the tree is 89 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this 90 * code needs update as well. 91 */ 92 #ifdef CONFIG_DEBUG_LOCK_ALLOC 93 # if BTRFS_MAX_LEVEL != 8 94 # error 95 # endif 96 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1]; 97 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = { 98 /* leaf */ 99 "btrfs-extent-00", 100 "btrfs-extent-01", 101 "btrfs-extent-02", 102 "btrfs-extent-03", 103 "btrfs-extent-04", 104 "btrfs-extent-05", 105 "btrfs-extent-06", 106 "btrfs-extent-07", 107 /* highest possible level */ 108 "btrfs-extent-08", 109 }; 110 #endif 111 112 /* 113 * extents on the btree inode are pretty simple, there's one extent 114 * that covers the entire device 115 */ 116 static struct extent_map *btree_get_extent(struct inode *inode, 117 struct page *page, size_t page_offset, u64 start, u64 len, 118 int create) 119 { 120 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 121 struct extent_map *em; 122 int ret; 123 124 spin_lock(&em_tree->lock); 125 em = lookup_extent_mapping(em_tree, start, len); 126 if (em) { 127 em->bdev = 128 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 129 spin_unlock(&em_tree->lock); 130 goto out; 131 } 132 spin_unlock(&em_tree->lock); 133 134 em = alloc_extent_map(GFP_NOFS); 135 if (!em) { 136 em = ERR_PTR(-ENOMEM); 137 goto out; 138 } 139 em->start = 0; 140 em->len = (u64)-1; 141 em->block_len = (u64)-1; 142 em->block_start = 0; 143 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 144 145 spin_lock(&em_tree->lock); 146 ret = add_extent_mapping(em_tree, em); 147 if (ret == -EEXIST) { 148 u64 failed_start = em->start; 149 u64 failed_len = em->len; 150 151 free_extent_map(em); 152 em = lookup_extent_mapping(em_tree, start, len); 153 if (em) { 154 ret = 0; 155 } else { 156 em = lookup_extent_mapping(em_tree, failed_start, 157 failed_len); 158 ret = -EIO; 159 } 160 } else if (ret) { 161 free_extent_map(em); 162 em = NULL; 163 } 164 spin_unlock(&em_tree->lock); 165 166 if (ret) 167 em = ERR_PTR(ret); 168 out: 169 return em; 170 } 171 172 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 173 { 174 return btrfs_crc32c(seed, data, len); 175 } 176 177 void btrfs_csum_final(u32 crc, char *result) 178 { 179 *(__le32 *)result = ~cpu_to_le32(crc); 180 } 181 182 /* 183 * compute the csum for a btree block, and either verify it or write it 184 * into the csum field of the block. 185 */ 186 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 187 int verify) 188 { 189 u16 csum_size = 190 btrfs_super_csum_size(&root->fs_info->super_copy); 191 char *result = NULL; 192 unsigned long len; 193 unsigned long cur_len; 194 unsigned long offset = BTRFS_CSUM_SIZE; 195 char *map_token = NULL; 196 char *kaddr; 197 unsigned long map_start; 198 unsigned long map_len; 199 int err; 200 u32 crc = ~(u32)0; 201 unsigned long inline_result; 202 203 len = buf->len - offset; 204 while (len > 0) { 205 err = map_private_extent_buffer(buf, offset, 32, 206 &map_token, &kaddr, 207 &map_start, &map_len, KM_USER0); 208 if (err) 209 return 1; 210 cur_len = min(len, map_len - (offset - map_start)); 211 crc = btrfs_csum_data(root, kaddr + offset - map_start, 212 crc, cur_len); 213 len -= cur_len; 214 offset += cur_len; 215 unmap_extent_buffer(buf, map_token, KM_USER0); 216 } 217 if (csum_size > sizeof(inline_result)) { 218 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 219 if (!result) 220 return 1; 221 } else { 222 result = (char *)&inline_result; 223 } 224 225 btrfs_csum_final(crc, result); 226 227 if (verify) { 228 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 229 u32 val; 230 u32 found = 0; 231 memcpy(&found, result, csum_size); 232 233 read_extent_buffer(buf, &val, 0, csum_size); 234 printk(KERN_INFO "btrfs: %s checksum verify failed " 235 "on %llu wanted %X found %X level %d\n", 236 root->fs_info->sb->s_id, 237 buf->start, val, found, btrfs_header_level(buf)); 238 if (result != (char *)&inline_result) 239 kfree(result); 240 return 1; 241 } 242 } else { 243 write_extent_buffer(buf, result, 0, csum_size); 244 } 245 if (result != (char *)&inline_result) 246 kfree(result); 247 return 0; 248 } 249 250 /* 251 * we can't consider a given block up to date unless the transid of the 252 * block matches the transid in the parent node's pointer. This is how we 253 * detect blocks that either didn't get written at all or got written 254 * in the wrong place. 255 */ 256 static int verify_parent_transid(struct extent_io_tree *io_tree, 257 struct extent_buffer *eb, u64 parent_transid) 258 { 259 int ret; 260 261 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 262 return 0; 263 264 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS); 265 if (extent_buffer_uptodate(io_tree, eb) && 266 btrfs_header_generation(eb) == parent_transid) { 267 ret = 0; 268 goto out; 269 } 270 printk("parent transid verify failed on %llu wanted %llu found %llu\n", 271 (unsigned long long)eb->start, 272 (unsigned long long)parent_transid, 273 (unsigned long long)btrfs_header_generation(eb)); 274 ret = 1; 275 clear_extent_buffer_uptodate(io_tree, eb); 276 out: 277 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 278 GFP_NOFS); 279 return ret; 280 } 281 282 /* 283 * helper to read a given tree block, doing retries as required when 284 * the checksums don't match and we have alternate mirrors to try. 285 */ 286 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 287 struct extent_buffer *eb, 288 u64 start, u64 parent_transid) 289 { 290 struct extent_io_tree *io_tree; 291 int ret; 292 int num_copies = 0; 293 int mirror_num = 0; 294 295 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 296 while (1) { 297 ret = read_extent_buffer_pages(io_tree, eb, start, 1, 298 btree_get_extent, mirror_num); 299 if (!ret && 300 !verify_parent_transid(io_tree, eb, parent_transid)) 301 return ret; 302 303 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 304 eb->start, eb->len); 305 if (num_copies == 1) 306 return ret; 307 308 mirror_num++; 309 if (mirror_num > num_copies) 310 return ret; 311 } 312 return -EIO; 313 } 314 315 /* 316 * checksum a dirty tree block before IO. This has extra checks to make sure 317 * we only fill in the checksum field in the first page of a multi-page block 318 */ 319 320 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 321 { 322 struct extent_io_tree *tree; 323 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 324 u64 found_start; 325 int found_level; 326 unsigned long len; 327 struct extent_buffer *eb; 328 int ret; 329 330 tree = &BTRFS_I(page->mapping->host)->io_tree; 331 332 if (page->private == EXTENT_PAGE_PRIVATE) 333 goto out; 334 if (!page->private) 335 goto out; 336 len = page->private >> 2; 337 WARN_ON(len == 0); 338 339 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 340 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE, 341 btrfs_header_generation(eb)); 342 BUG_ON(ret); 343 found_start = btrfs_header_bytenr(eb); 344 if (found_start != start) { 345 WARN_ON(1); 346 goto err; 347 } 348 if (eb->first_page != page) { 349 WARN_ON(1); 350 goto err; 351 } 352 if (!PageUptodate(page)) { 353 WARN_ON(1); 354 goto err; 355 } 356 found_level = btrfs_header_level(eb); 357 358 csum_tree_block(root, eb, 0); 359 err: 360 free_extent_buffer(eb); 361 out: 362 return 0; 363 } 364 365 static int check_tree_block_fsid(struct btrfs_root *root, 366 struct extent_buffer *eb) 367 { 368 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 369 u8 fsid[BTRFS_UUID_SIZE]; 370 int ret = 1; 371 372 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 373 BTRFS_FSID_SIZE); 374 while (fs_devices) { 375 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 376 ret = 0; 377 break; 378 } 379 fs_devices = fs_devices->seed; 380 } 381 return ret; 382 } 383 384 #ifdef CONFIG_DEBUG_LOCK_ALLOC 385 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level) 386 { 387 lockdep_set_class_and_name(&eb->lock, 388 &btrfs_eb_class[level], 389 btrfs_eb_name[level]); 390 } 391 #endif 392 393 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 394 struct extent_state *state) 395 { 396 struct extent_io_tree *tree; 397 u64 found_start; 398 int found_level; 399 unsigned long len; 400 struct extent_buffer *eb; 401 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 402 int ret = 0; 403 404 tree = &BTRFS_I(page->mapping->host)->io_tree; 405 if (page->private == EXTENT_PAGE_PRIVATE) 406 goto out; 407 if (!page->private) 408 goto out; 409 410 len = page->private >> 2; 411 WARN_ON(len == 0); 412 413 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 414 415 found_start = btrfs_header_bytenr(eb); 416 if (found_start != start) { 417 printk(KERN_INFO "btrfs bad tree block start %llu %llu\n", 418 (unsigned long long)found_start, 419 (unsigned long long)eb->start); 420 ret = -EIO; 421 goto err; 422 } 423 if (eb->first_page != page) { 424 printk(KERN_INFO "btrfs bad first page %lu %lu\n", 425 eb->first_page->index, page->index); 426 WARN_ON(1); 427 ret = -EIO; 428 goto err; 429 } 430 if (check_tree_block_fsid(root, eb)) { 431 printk(KERN_INFO "btrfs bad fsid on block %llu\n", 432 (unsigned long long)eb->start); 433 ret = -EIO; 434 goto err; 435 } 436 found_level = btrfs_header_level(eb); 437 438 btrfs_set_buffer_lockdep_class(eb, found_level); 439 440 ret = csum_tree_block(root, eb, 1); 441 if (ret) 442 ret = -EIO; 443 444 end = min_t(u64, eb->len, PAGE_CACHE_SIZE); 445 end = eb->start + end - 1; 446 err: 447 free_extent_buffer(eb); 448 out: 449 return ret; 450 } 451 452 static void end_workqueue_bio(struct bio *bio, int err) 453 { 454 struct end_io_wq *end_io_wq = bio->bi_private; 455 struct btrfs_fs_info *fs_info; 456 457 fs_info = end_io_wq->info; 458 end_io_wq->error = err; 459 end_io_wq->work.func = end_workqueue_fn; 460 end_io_wq->work.flags = 0; 461 462 if (bio->bi_rw & (1 << BIO_RW)) { 463 if (end_io_wq->metadata) 464 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 465 &end_io_wq->work); 466 else 467 btrfs_queue_worker(&fs_info->endio_write_workers, 468 &end_io_wq->work); 469 } else { 470 if (end_io_wq->metadata) 471 btrfs_queue_worker(&fs_info->endio_meta_workers, 472 &end_io_wq->work); 473 else 474 btrfs_queue_worker(&fs_info->endio_workers, 475 &end_io_wq->work); 476 } 477 } 478 479 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 480 int metadata) 481 { 482 struct end_io_wq *end_io_wq; 483 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 484 if (!end_io_wq) 485 return -ENOMEM; 486 487 end_io_wq->private = bio->bi_private; 488 end_io_wq->end_io = bio->bi_end_io; 489 end_io_wq->info = info; 490 end_io_wq->error = 0; 491 end_io_wq->bio = bio; 492 end_io_wq->metadata = metadata; 493 494 bio->bi_private = end_io_wq; 495 bio->bi_end_io = end_workqueue_bio; 496 return 0; 497 } 498 499 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 500 { 501 unsigned long limit = min_t(unsigned long, 502 info->workers.max_workers, 503 info->fs_devices->open_devices); 504 return 256 * limit; 505 } 506 507 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone) 508 { 509 return atomic_read(&info->nr_async_bios) > 510 btrfs_async_submit_limit(info); 511 } 512 513 static void run_one_async_start(struct btrfs_work *work) 514 { 515 struct btrfs_fs_info *fs_info; 516 struct async_submit_bio *async; 517 518 async = container_of(work, struct async_submit_bio, work); 519 fs_info = BTRFS_I(async->inode)->root->fs_info; 520 async->submit_bio_start(async->inode, async->rw, async->bio, 521 async->mirror_num, async->bio_flags); 522 } 523 524 static void run_one_async_done(struct btrfs_work *work) 525 { 526 struct btrfs_fs_info *fs_info; 527 struct async_submit_bio *async; 528 int limit; 529 530 async = container_of(work, struct async_submit_bio, work); 531 fs_info = BTRFS_I(async->inode)->root->fs_info; 532 533 limit = btrfs_async_submit_limit(fs_info); 534 limit = limit * 2 / 3; 535 536 atomic_dec(&fs_info->nr_async_submits); 537 538 if (atomic_read(&fs_info->nr_async_submits) < limit && 539 waitqueue_active(&fs_info->async_submit_wait)) 540 wake_up(&fs_info->async_submit_wait); 541 542 async->submit_bio_done(async->inode, async->rw, async->bio, 543 async->mirror_num, async->bio_flags); 544 } 545 546 static void run_one_async_free(struct btrfs_work *work) 547 { 548 struct async_submit_bio *async; 549 550 async = container_of(work, struct async_submit_bio, work); 551 kfree(async); 552 } 553 554 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 555 int rw, struct bio *bio, int mirror_num, 556 unsigned long bio_flags, 557 extent_submit_bio_hook_t *submit_bio_start, 558 extent_submit_bio_hook_t *submit_bio_done) 559 { 560 struct async_submit_bio *async; 561 562 async = kmalloc(sizeof(*async), GFP_NOFS); 563 if (!async) 564 return -ENOMEM; 565 566 async->inode = inode; 567 async->rw = rw; 568 async->bio = bio; 569 async->mirror_num = mirror_num; 570 async->submit_bio_start = submit_bio_start; 571 async->submit_bio_done = submit_bio_done; 572 573 async->work.func = run_one_async_start; 574 async->work.ordered_func = run_one_async_done; 575 async->work.ordered_free = run_one_async_free; 576 577 async->work.flags = 0; 578 async->bio_flags = bio_flags; 579 580 atomic_inc(&fs_info->nr_async_submits); 581 btrfs_queue_worker(&fs_info->workers, &async->work); 582 #if 0 583 int limit = btrfs_async_submit_limit(fs_info); 584 if (atomic_read(&fs_info->nr_async_submits) > limit) { 585 wait_event_timeout(fs_info->async_submit_wait, 586 (atomic_read(&fs_info->nr_async_submits) < limit), 587 HZ/10); 588 589 wait_event_timeout(fs_info->async_submit_wait, 590 (atomic_read(&fs_info->nr_async_bios) < limit), 591 HZ/10); 592 } 593 #endif 594 while (atomic_read(&fs_info->async_submit_draining) && 595 atomic_read(&fs_info->nr_async_submits)) { 596 wait_event(fs_info->async_submit_wait, 597 (atomic_read(&fs_info->nr_async_submits) == 0)); 598 } 599 600 return 0; 601 } 602 603 static int btree_csum_one_bio(struct bio *bio) 604 { 605 struct bio_vec *bvec = bio->bi_io_vec; 606 int bio_index = 0; 607 struct btrfs_root *root; 608 609 WARN_ON(bio->bi_vcnt <= 0); 610 while (bio_index < bio->bi_vcnt) { 611 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 612 csum_dirty_buffer(root, bvec->bv_page); 613 bio_index++; 614 bvec++; 615 } 616 return 0; 617 } 618 619 static int __btree_submit_bio_start(struct inode *inode, int rw, 620 struct bio *bio, int mirror_num, 621 unsigned long bio_flags) 622 { 623 /* 624 * when we're called for a write, we're already in the async 625 * submission context. Just jump into btrfs_map_bio 626 */ 627 btree_csum_one_bio(bio); 628 return 0; 629 } 630 631 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 632 int mirror_num, unsigned long bio_flags) 633 { 634 /* 635 * when we're called for a write, we're already in the async 636 * submission context. Just jump into btrfs_map_bio 637 */ 638 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 639 } 640 641 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 642 int mirror_num, unsigned long bio_flags) 643 { 644 int ret; 645 646 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 647 bio, 1); 648 BUG_ON(ret); 649 650 if (!(rw & (1 << BIO_RW))) { 651 /* 652 * called for a read, do the setup so that checksum validation 653 * can happen in the async kernel threads 654 */ 655 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 656 mirror_num, 0); 657 } 658 /* 659 * kthread helpers are used to submit writes so that checksumming 660 * can happen in parallel across all CPUs 661 */ 662 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 663 inode, rw, bio, mirror_num, 0, 664 __btree_submit_bio_start, 665 __btree_submit_bio_done); 666 } 667 668 static int btree_writepage(struct page *page, struct writeback_control *wbc) 669 { 670 struct extent_io_tree *tree; 671 tree = &BTRFS_I(page->mapping->host)->io_tree; 672 673 if (current->flags & PF_MEMALLOC) { 674 redirty_page_for_writepage(wbc, page); 675 unlock_page(page); 676 return 0; 677 } 678 return extent_write_full_page(tree, page, btree_get_extent, wbc); 679 } 680 681 static int btree_writepages(struct address_space *mapping, 682 struct writeback_control *wbc) 683 { 684 struct extent_io_tree *tree; 685 tree = &BTRFS_I(mapping->host)->io_tree; 686 if (wbc->sync_mode == WB_SYNC_NONE) { 687 u64 num_dirty; 688 u64 start = 0; 689 unsigned long thresh = 32 * 1024 * 1024; 690 691 if (wbc->for_kupdate) 692 return 0; 693 694 num_dirty = count_range_bits(tree, &start, (u64)-1, 695 thresh, EXTENT_DIRTY); 696 if (num_dirty < thresh) 697 return 0; 698 } 699 return extent_writepages(tree, mapping, btree_get_extent, wbc); 700 } 701 702 static int btree_readpage(struct file *file, struct page *page) 703 { 704 struct extent_io_tree *tree; 705 tree = &BTRFS_I(page->mapping->host)->io_tree; 706 return extent_read_full_page(tree, page, btree_get_extent); 707 } 708 709 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 710 { 711 struct extent_io_tree *tree; 712 struct extent_map_tree *map; 713 int ret; 714 715 if (PageWriteback(page) || PageDirty(page)) 716 return 0; 717 718 tree = &BTRFS_I(page->mapping->host)->io_tree; 719 map = &BTRFS_I(page->mapping->host)->extent_tree; 720 721 ret = try_release_extent_state(map, tree, page, gfp_flags); 722 if (!ret) 723 return 0; 724 725 ret = try_release_extent_buffer(tree, page); 726 if (ret == 1) { 727 ClearPagePrivate(page); 728 set_page_private(page, 0); 729 page_cache_release(page); 730 } 731 732 return ret; 733 } 734 735 static void btree_invalidatepage(struct page *page, unsigned long offset) 736 { 737 struct extent_io_tree *tree; 738 tree = &BTRFS_I(page->mapping->host)->io_tree; 739 extent_invalidatepage(tree, page, offset); 740 btree_releasepage(page, GFP_NOFS); 741 if (PagePrivate(page)) { 742 printk(KERN_WARNING "btrfs warning page private not zero " 743 "on page %llu\n", (unsigned long long)page_offset(page)); 744 ClearPagePrivate(page); 745 set_page_private(page, 0); 746 page_cache_release(page); 747 } 748 } 749 750 #if 0 751 static int btree_writepage(struct page *page, struct writeback_control *wbc) 752 { 753 struct buffer_head *bh; 754 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 755 struct buffer_head *head; 756 if (!page_has_buffers(page)) { 757 create_empty_buffers(page, root->fs_info->sb->s_blocksize, 758 (1 << BH_Dirty)|(1 << BH_Uptodate)); 759 } 760 head = page_buffers(page); 761 bh = head; 762 do { 763 if (buffer_dirty(bh)) 764 csum_tree_block(root, bh, 0); 765 bh = bh->b_this_page; 766 } while (bh != head); 767 return block_write_full_page(page, btree_get_block, wbc); 768 } 769 #endif 770 771 static struct address_space_operations btree_aops = { 772 .readpage = btree_readpage, 773 .writepage = btree_writepage, 774 .writepages = btree_writepages, 775 .releasepage = btree_releasepage, 776 .invalidatepage = btree_invalidatepage, 777 .sync_page = block_sync_page, 778 }; 779 780 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 781 u64 parent_transid) 782 { 783 struct extent_buffer *buf = NULL; 784 struct inode *btree_inode = root->fs_info->btree_inode; 785 int ret = 0; 786 787 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 788 if (!buf) 789 return 0; 790 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 791 buf, 0, 0, btree_get_extent, 0); 792 free_extent_buffer(buf); 793 return ret; 794 } 795 796 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 797 u64 bytenr, u32 blocksize) 798 { 799 struct inode *btree_inode = root->fs_info->btree_inode; 800 struct extent_buffer *eb; 801 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 802 bytenr, blocksize, GFP_NOFS); 803 return eb; 804 } 805 806 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 807 u64 bytenr, u32 blocksize) 808 { 809 struct inode *btree_inode = root->fs_info->btree_inode; 810 struct extent_buffer *eb; 811 812 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 813 bytenr, blocksize, NULL, GFP_NOFS); 814 return eb; 815 } 816 817 818 int btrfs_write_tree_block(struct extent_buffer *buf) 819 { 820 return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start, 821 buf->start + buf->len - 1, WB_SYNC_ALL); 822 } 823 824 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 825 { 826 return btrfs_wait_on_page_writeback_range(buf->first_page->mapping, 827 buf->start, buf->start + buf->len - 1); 828 } 829 830 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 831 u32 blocksize, u64 parent_transid) 832 { 833 struct extent_buffer *buf = NULL; 834 struct inode *btree_inode = root->fs_info->btree_inode; 835 struct extent_io_tree *io_tree; 836 int ret; 837 838 io_tree = &BTRFS_I(btree_inode)->io_tree; 839 840 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 841 if (!buf) 842 return NULL; 843 844 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 845 846 if (ret == 0) 847 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 848 else 849 WARN_ON(1); 850 return buf; 851 852 } 853 854 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 855 struct extent_buffer *buf) 856 { 857 struct inode *btree_inode = root->fs_info->btree_inode; 858 if (btrfs_header_generation(buf) == 859 root->fs_info->running_transaction->transid) { 860 btrfs_assert_tree_locked(buf); 861 862 /* ugh, clear_extent_buffer_dirty can be expensive */ 863 btrfs_set_lock_blocking(buf); 864 865 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 866 buf); 867 } 868 return 0; 869 } 870 871 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 872 u32 stripesize, struct btrfs_root *root, 873 struct btrfs_fs_info *fs_info, 874 u64 objectid) 875 { 876 root->node = NULL; 877 root->commit_root = NULL; 878 root->ref_tree = NULL; 879 root->sectorsize = sectorsize; 880 root->nodesize = nodesize; 881 root->leafsize = leafsize; 882 root->stripesize = stripesize; 883 root->ref_cows = 0; 884 root->track_dirty = 0; 885 886 root->fs_info = fs_info; 887 root->objectid = objectid; 888 root->last_trans = 0; 889 root->highest_inode = 0; 890 root->last_inode_alloc = 0; 891 root->name = NULL; 892 root->in_sysfs = 0; 893 894 INIT_LIST_HEAD(&root->dirty_list); 895 INIT_LIST_HEAD(&root->orphan_list); 896 INIT_LIST_HEAD(&root->dead_list); 897 spin_lock_init(&root->node_lock); 898 spin_lock_init(&root->list_lock); 899 mutex_init(&root->objectid_mutex); 900 mutex_init(&root->log_mutex); 901 init_waitqueue_head(&root->log_writer_wait); 902 init_waitqueue_head(&root->log_commit_wait[0]); 903 init_waitqueue_head(&root->log_commit_wait[1]); 904 atomic_set(&root->log_commit[0], 0); 905 atomic_set(&root->log_commit[1], 0); 906 atomic_set(&root->log_writers, 0); 907 root->log_batch = 0; 908 root->log_transid = 0; 909 extent_io_tree_init(&root->dirty_log_pages, 910 fs_info->btree_inode->i_mapping, GFP_NOFS); 911 912 btrfs_leaf_ref_tree_init(&root->ref_tree_struct); 913 root->ref_tree = &root->ref_tree_struct; 914 915 memset(&root->root_key, 0, sizeof(root->root_key)); 916 memset(&root->root_item, 0, sizeof(root->root_item)); 917 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 918 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 919 root->defrag_trans_start = fs_info->generation; 920 init_completion(&root->kobj_unregister); 921 root->defrag_running = 0; 922 root->defrag_level = 0; 923 root->root_key.objectid = objectid; 924 root->anon_super.s_root = NULL; 925 root->anon_super.s_dev = 0; 926 INIT_LIST_HEAD(&root->anon_super.s_list); 927 INIT_LIST_HEAD(&root->anon_super.s_instances); 928 init_rwsem(&root->anon_super.s_umount); 929 930 return 0; 931 } 932 933 static int find_and_setup_root(struct btrfs_root *tree_root, 934 struct btrfs_fs_info *fs_info, 935 u64 objectid, 936 struct btrfs_root *root) 937 { 938 int ret; 939 u32 blocksize; 940 u64 generation; 941 942 __setup_root(tree_root->nodesize, tree_root->leafsize, 943 tree_root->sectorsize, tree_root->stripesize, 944 root, fs_info, objectid); 945 ret = btrfs_find_last_root(tree_root, objectid, 946 &root->root_item, &root->root_key); 947 BUG_ON(ret); 948 949 generation = btrfs_root_generation(&root->root_item); 950 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 951 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 952 blocksize, generation); 953 BUG_ON(!root->node); 954 return 0; 955 } 956 957 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 958 struct btrfs_fs_info *fs_info) 959 { 960 struct extent_buffer *eb; 961 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 962 u64 start = 0; 963 u64 end = 0; 964 int ret; 965 966 if (!log_root_tree) 967 return 0; 968 969 while (1) { 970 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages, 971 0, &start, &end, EXTENT_DIRTY); 972 if (ret) 973 break; 974 975 clear_extent_dirty(&log_root_tree->dirty_log_pages, 976 start, end, GFP_NOFS); 977 } 978 eb = fs_info->log_root_tree->node; 979 980 WARN_ON(btrfs_header_level(eb) != 0); 981 WARN_ON(btrfs_header_nritems(eb) != 0); 982 983 ret = btrfs_free_reserved_extent(fs_info->tree_root, 984 eb->start, eb->len); 985 BUG_ON(ret); 986 987 free_extent_buffer(eb); 988 kfree(fs_info->log_root_tree); 989 fs_info->log_root_tree = NULL; 990 return 0; 991 } 992 993 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 994 struct btrfs_fs_info *fs_info) 995 { 996 struct btrfs_root *root; 997 struct btrfs_root *tree_root = fs_info->tree_root; 998 struct extent_buffer *leaf; 999 1000 root = kzalloc(sizeof(*root), GFP_NOFS); 1001 if (!root) 1002 return ERR_PTR(-ENOMEM); 1003 1004 __setup_root(tree_root->nodesize, tree_root->leafsize, 1005 tree_root->sectorsize, tree_root->stripesize, 1006 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1007 1008 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1009 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1010 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1011 /* 1012 * log trees do not get reference counted because they go away 1013 * before a real commit is actually done. They do store pointers 1014 * to file data extents, and those reference counts still get 1015 * updated (along with back refs to the log tree). 1016 */ 1017 root->ref_cows = 0; 1018 1019 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 1020 0, BTRFS_TREE_LOG_OBJECTID, 1021 trans->transid, 0, 0, 0); 1022 if (IS_ERR(leaf)) { 1023 kfree(root); 1024 return ERR_CAST(leaf); 1025 } 1026 1027 root->node = leaf; 1028 btrfs_set_header_nritems(root->node, 0); 1029 btrfs_set_header_level(root->node, 0); 1030 btrfs_set_header_bytenr(root->node, root->node->start); 1031 btrfs_set_header_generation(root->node, trans->transid); 1032 btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID); 1033 1034 write_extent_buffer(root->node, root->fs_info->fsid, 1035 (unsigned long)btrfs_header_fsid(root->node), 1036 BTRFS_FSID_SIZE); 1037 btrfs_mark_buffer_dirty(root->node); 1038 btrfs_tree_unlock(root->node); 1039 return root; 1040 } 1041 1042 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1043 struct btrfs_fs_info *fs_info) 1044 { 1045 struct btrfs_root *log_root; 1046 1047 log_root = alloc_log_tree(trans, fs_info); 1048 if (IS_ERR(log_root)) 1049 return PTR_ERR(log_root); 1050 WARN_ON(fs_info->log_root_tree); 1051 fs_info->log_root_tree = log_root; 1052 return 0; 1053 } 1054 1055 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1056 struct btrfs_root *root) 1057 { 1058 struct btrfs_root *log_root; 1059 struct btrfs_inode_item *inode_item; 1060 1061 log_root = alloc_log_tree(trans, root->fs_info); 1062 if (IS_ERR(log_root)) 1063 return PTR_ERR(log_root); 1064 1065 log_root->last_trans = trans->transid; 1066 log_root->root_key.offset = root->root_key.objectid; 1067 1068 inode_item = &log_root->root_item.inode; 1069 inode_item->generation = cpu_to_le64(1); 1070 inode_item->size = cpu_to_le64(3); 1071 inode_item->nlink = cpu_to_le32(1); 1072 inode_item->nbytes = cpu_to_le64(root->leafsize); 1073 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1074 1075 btrfs_set_root_bytenr(&log_root->root_item, log_root->node->start); 1076 btrfs_set_root_generation(&log_root->root_item, trans->transid); 1077 1078 WARN_ON(root->log_root); 1079 root->log_root = log_root; 1080 root->log_transid = 0; 1081 return 0; 1082 } 1083 1084 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1085 struct btrfs_key *location) 1086 { 1087 struct btrfs_root *root; 1088 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1089 struct btrfs_path *path; 1090 struct extent_buffer *l; 1091 u64 highest_inode; 1092 u64 generation; 1093 u32 blocksize; 1094 int ret = 0; 1095 1096 root = kzalloc(sizeof(*root), GFP_NOFS); 1097 if (!root) 1098 return ERR_PTR(-ENOMEM); 1099 if (location->offset == (u64)-1) { 1100 ret = find_and_setup_root(tree_root, fs_info, 1101 location->objectid, root); 1102 if (ret) { 1103 kfree(root); 1104 return ERR_PTR(ret); 1105 } 1106 goto insert; 1107 } 1108 1109 __setup_root(tree_root->nodesize, tree_root->leafsize, 1110 tree_root->sectorsize, tree_root->stripesize, 1111 root, fs_info, location->objectid); 1112 1113 path = btrfs_alloc_path(); 1114 BUG_ON(!path); 1115 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1116 if (ret != 0) { 1117 if (ret > 0) 1118 ret = -ENOENT; 1119 goto out; 1120 } 1121 l = path->nodes[0]; 1122 read_extent_buffer(l, &root->root_item, 1123 btrfs_item_ptr_offset(l, path->slots[0]), 1124 sizeof(root->root_item)); 1125 memcpy(&root->root_key, location, sizeof(*location)); 1126 ret = 0; 1127 out: 1128 btrfs_release_path(root, path); 1129 btrfs_free_path(path); 1130 if (ret) { 1131 kfree(root); 1132 return ERR_PTR(ret); 1133 } 1134 generation = btrfs_root_generation(&root->root_item); 1135 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1136 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1137 blocksize, generation); 1138 BUG_ON(!root->node); 1139 insert: 1140 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { 1141 root->ref_cows = 1; 1142 ret = btrfs_find_highest_inode(root, &highest_inode); 1143 if (ret == 0) { 1144 root->highest_inode = highest_inode; 1145 root->last_inode_alloc = highest_inode; 1146 } 1147 } 1148 return root; 1149 } 1150 1151 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1152 u64 root_objectid) 1153 { 1154 struct btrfs_root *root; 1155 1156 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID) 1157 return fs_info->tree_root; 1158 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID) 1159 return fs_info->extent_root; 1160 1161 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1162 (unsigned long)root_objectid); 1163 return root; 1164 } 1165 1166 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1167 struct btrfs_key *location) 1168 { 1169 struct btrfs_root *root; 1170 int ret; 1171 1172 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1173 return fs_info->tree_root; 1174 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1175 return fs_info->extent_root; 1176 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1177 return fs_info->chunk_root; 1178 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1179 return fs_info->dev_root; 1180 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1181 return fs_info->csum_root; 1182 1183 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1184 (unsigned long)location->objectid); 1185 if (root) 1186 return root; 1187 1188 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1189 if (IS_ERR(root)) 1190 return root; 1191 1192 set_anon_super(&root->anon_super, NULL); 1193 1194 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1195 (unsigned long)root->root_key.objectid, 1196 root); 1197 if (ret) { 1198 free_extent_buffer(root->node); 1199 kfree(root); 1200 return ERR_PTR(ret); 1201 } 1202 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 1203 ret = btrfs_find_dead_roots(fs_info->tree_root, 1204 root->root_key.objectid, root); 1205 BUG_ON(ret); 1206 btrfs_orphan_cleanup(root); 1207 } 1208 return root; 1209 } 1210 1211 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info, 1212 struct btrfs_key *location, 1213 const char *name, int namelen) 1214 { 1215 struct btrfs_root *root; 1216 int ret; 1217 1218 root = btrfs_read_fs_root_no_name(fs_info, location); 1219 if (!root) 1220 return NULL; 1221 1222 if (root->in_sysfs) 1223 return root; 1224 1225 ret = btrfs_set_root_name(root, name, namelen); 1226 if (ret) { 1227 free_extent_buffer(root->node); 1228 kfree(root); 1229 return ERR_PTR(ret); 1230 } 1231 #if 0 1232 ret = btrfs_sysfs_add_root(root); 1233 if (ret) { 1234 free_extent_buffer(root->node); 1235 kfree(root->name); 1236 kfree(root); 1237 return ERR_PTR(ret); 1238 } 1239 #endif 1240 root->in_sysfs = 1; 1241 return root; 1242 } 1243 1244 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1245 { 1246 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1247 int ret = 0; 1248 struct btrfs_device *device; 1249 struct backing_dev_info *bdi; 1250 #if 0 1251 if ((bdi_bits & (1 << BDI_write_congested)) && 1252 btrfs_congested_async(info, 0)) 1253 return 1; 1254 #endif 1255 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1256 if (!device->bdev) 1257 continue; 1258 bdi = blk_get_backing_dev_info(device->bdev); 1259 if (bdi && bdi_congested(bdi, bdi_bits)) { 1260 ret = 1; 1261 break; 1262 } 1263 } 1264 return ret; 1265 } 1266 1267 /* 1268 * this unplugs every device on the box, and it is only used when page 1269 * is null 1270 */ 1271 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1272 { 1273 struct btrfs_device *device; 1274 struct btrfs_fs_info *info; 1275 1276 info = (struct btrfs_fs_info *)bdi->unplug_io_data; 1277 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1278 if (!device->bdev) 1279 continue; 1280 1281 bdi = blk_get_backing_dev_info(device->bdev); 1282 if (bdi->unplug_io_fn) 1283 bdi->unplug_io_fn(bdi, page); 1284 } 1285 } 1286 1287 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1288 { 1289 struct inode *inode; 1290 struct extent_map_tree *em_tree; 1291 struct extent_map *em; 1292 struct address_space *mapping; 1293 u64 offset; 1294 1295 /* the generic O_DIRECT read code does this */ 1296 if (1 || !page) { 1297 __unplug_io_fn(bdi, page); 1298 return; 1299 } 1300 1301 /* 1302 * page->mapping may change at any time. Get a consistent copy 1303 * and use that for everything below 1304 */ 1305 smp_mb(); 1306 mapping = page->mapping; 1307 if (!mapping) 1308 return; 1309 1310 inode = mapping->host; 1311 1312 /* 1313 * don't do the expensive searching for a small number of 1314 * devices 1315 */ 1316 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) { 1317 __unplug_io_fn(bdi, page); 1318 return; 1319 } 1320 1321 offset = page_offset(page); 1322 1323 em_tree = &BTRFS_I(inode)->extent_tree; 1324 spin_lock(&em_tree->lock); 1325 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 1326 spin_unlock(&em_tree->lock); 1327 if (!em) { 1328 __unplug_io_fn(bdi, page); 1329 return; 1330 } 1331 1332 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1333 free_extent_map(em); 1334 __unplug_io_fn(bdi, page); 1335 return; 1336 } 1337 offset = offset - em->start; 1338 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree, 1339 em->block_start + offset, page); 1340 free_extent_map(em); 1341 } 1342 1343 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1344 { 1345 bdi_init(bdi); 1346 bdi->ra_pages = default_backing_dev_info.ra_pages; 1347 bdi->state = 0; 1348 bdi->capabilities = default_backing_dev_info.capabilities; 1349 bdi->unplug_io_fn = btrfs_unplug_io_fn; 1350 bdi->unplug_io_data = info; 1351 bdi->congested_fn = btrfs_congested_fn; 1352 bdi->congested_data = info; 1353 return 0; 1354 } 1355 1356 static int bio_ready_for_csum(struct bio *bio) 1357 { 1358 u64 length = 0; 1359 u64 buf_len = 0; 1360 u64 start = 0; 1361 struct page *page; 1362 struct extent_io_tree *io_tree = NULL; 1363 struct btrfs_fs_info *info = NULL; 1364 struct bio_vec *bvec; 1365 int i; 1366 int ret; 1367 1368 bio_for_each_segment(bvec, bio, i) { 1369 page = bvec->bv_page; 1370 if (page->private == EXTENT_PAGE_PRIVATE) { 1371 length += bvec->bv_len; 1372 continue; 1373 } 1374 if (!page->private) { 1375 length += bvec->bv_len; 1376 continue; 1377 } 1378 length = bvec->bv_len; 1379 buf_len = page->private >> 2; 1380 start = page_offset(page) + bvec->bv_offset; 1381 io_tree = &BTRFS_I(page->mapping->host)->io_tree; 1382 info = BTRFS_I(page->mapping->host)->root->fs_info; 1383 } 1384 /* are we fully contained in this bio? */ 1385 if (buf_len <= length) 1386 return 1; 1387 1388 ret = extent_range_uptodate(io_tree, start + length, 1389 start + buf_len - 1); 1390 if (ret == 1) 1391 return ret; 1392 return ret; 1393 } 1394 1395 /* 1396 * called by the kthread helper functions to finally call the bio end_io 1397 * functions. This is where read checksum verification actually happens 1398 */ 1399 static void end_workqueue_fn(struct btrfs_work *work) 1400 { 1401 struct bio *bio; 1402 struct end_io_wq *end_io_wq; 1403 struct btrfs_fs_info *fs_info; 1404 int error; 1405 1406 end_io_wq = container_of(work, struct end_io_wq, work); 1407 bio = end_io_wq->bio; 1408 fs_info = end_io_wq->info; 1409 1410 /* metadata bio reads are special because the whole tree block must 1411 * be checksummed at once. This makes sure the entire block is in 1412 * ram and up to date before trying to verify things. For 1413 * blocksize <= pagesize, it is basically a noop 1414 */ 1415 if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata && 1416 !bio_ready_for_csum(bio)) { 1417 btrfs_queue_worker(&fs_info->endio_meta_workers, 1418 &end_io_wq->work); 1419 return; 1420 } 1421 error = end_io_wq->error; 1422 bio->bi_private = end_io_wq->private; 1423 bio->bi_end_io = end_io_wq->end_io; 1424 kfree(end_io_wq); 1425 bio_endio(bio, error); 1426 } 1427 1428 static int cleaner_kthread(void *arg) 1429 { 1430 struct btrfs_root *root = arg; 1431 1432 do { 1433 smp_mb(); 1434 if (root->fs_info->closing) 1435 break; 1436 1437 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1438 mutex_lock(&root->fs_info->cleaner_mutex); 1439 btrfs_clean_old_snapshots(root); 1440 mutex_unlock(&root->fs_info->cleaner_mutex); 1441 1442 if (freezing(current)) { 1443 refrigerator(); 1444 } else { 1445 smp_mb(); 1446 if (root->fs_info->closing) 1447 break; 1448 set_current_state(TASK_INTERRUPTIBLE); 1449 schedule(); 1450 __set_current_state(TASK_RUNNING); 1451 } 1452 } while (!kthread_should_stop()); 1453 return 0; 1454 } 1455 1456 static int transaction_kthread(void *arg) 1457 { 1458 struct btrfs_root *root = arg; 1459 struct btrfs_trans_handle *trans; 1460 struct btrfs_transaction *cur; 1461 unsigned long now; 1462 unsigned long delay; 1463 int ret; 1464 1465 do { 1466 smp_mb(); 1467 if (root->fs_info->closing) 1468 break; 1469 1470 delay = HZ * 30; 1471 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1472 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1473 1474 if (root->fs_info->total_ref_cache_size > 20 * 1024 * 1024) { 1475 printk(KERN_INFO "btrfs: total reference cache " 1476 "size %llu\n", 1477 root->fs_info->total_ref_cache_size); 1478 } 1479 1480 mutex_lock(&root->fs_info->trans_mutex); 1481 cur = root->fs_info->running_transaction; 1482 if (!cur) { 1483 mutex_unlock(&root->fs_info->trans_mutex); 1484 goto sleep; 1485 } 1486 1487 now = get_seconds(); 1488 if (now < cur->start_time || now - cur->start_time < 30) { 1489 mutex_unlock(&root->fs_info->trans_mutex); 1490 delay = HZ * 5; 1491 goto sleep; 1492 } 1493 mutex_unlock(&root->fs_info->trans_mutex); 1494 trans = btrfs_start_transaction(root, 1); 1495 ret = btrfs_commit_transaction(trans, root); 1496 sleep: 1497 wake_up_process(root->fs_info->cleaner_kthread); 1498 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1499 1500 if (freezing(current)) { 1501 refrigerator(); 1502 } else { 1503 if (root->fs_info->closing) 1504 break; 1505 set_current_state(TASK_INTERRUPTIBLE); 1506 schedule_timeout(delay); 1507 __set_current_state(TASK_RUNNING); 1508 } 1509 } while (!kthread_should_stop()); 1510 return 0; 1511 } 1512 1513 struct btrfs_root *open_ctree(struct super_block *sb, 1514 struct btrfs_fs_devices *fs_devices, 1515 char *options) 1516 { 1517 u32 sectorsize; 1518 u32 nodesize; 1519 u32 leafsize; 1520 u32 blocksize; 1521 u32 stripesize; 1522 u64 generation; 1523 u64 features; 1524 struct btrfs_key location; 1525 struct buffer_head *bh; 1526 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root), 1527 GFP_NOFS); 1528 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root), 1529 GFP_NOFS); 1530 struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root), 1531 GFP_NOFS); 1532 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info), 1533 GFP_NOFS); 1534 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root), 1535 GFP_NOFS); 1536 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root), 1537 GFP_NOFS); 1538 struct btrfs_root *log_tree_root; 1539 1540 int ret; 1541 int err = -EINVAL; 1542 1543 struct btrfs_super_block *disk_super; 1544 1545 if (!extent_root || !tree_root || !fs_info || 1546 !chunk_root || !dev_root || !csum_root) { 1547 err = -ENOMEM; 1548 goto fail; 1549 } 1550 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS); 1551 INIT_LIST_HEAD(&fs_info->trans_list); 1552 INIT_LIST_HEAD(&fs_info->dead_roots); 1553 INIT_LIST_HEAD(&fs_info->hashers); 1554 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 1555 spin_lock_init(&fs_info->delalloc_lock); 1556 spin_lock_init(&fs_info->new_trans_lock); 1557 spin_lock_init(&fs_info->ref_cache_lock); 1558 1559 init_completion(&fs_info->kobj_unregister); 1560 fs_info->tree_root = tree_root; 1561 fs_info->extent_root = extent_root; 1562 fs_info->csum_root = csum_root; 1563 fs_info->chunk_root = chunk_root; 1564 fs_info->dev_root = dev_root; 1565 fs_info->fs_devices = fs_devices; 1566 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 1567 INIT_LIST_HEAD(&fs_info->space_info); 1568 btrfs_mapping_init(&fs_info->mapping_tree); 1569 atomic_set(&fs_info->nr_async_submits, 0); 1570 atomic_set(&fs_info->async_delalloc_pages, 0); 1571 atomic_set(&fs_info->async_submit_draining, 0); 1572 atomic_set(&fs_info->nr_async_bios, 0); 1573 atomic_set(&fs_info->throttles, 0); 1574 atomic_set(&fs_info->throttle_gen, 0); 1575 fs_info->sb = sb; 1576 fs_info->max_extent = (u64)-1; 1577 fs_info->max_inline = 8192 * 1024; 1578 setup_bdi(fs_info, &fs_info->bdi); 1579 fs_info->btree_inode = new_inode(sb); 1580 fs_info->btree_inode->i_ino = 1; 1581 fs_info->btree_inode->i_nlink = 1; 1582 1583 fs_info->thread_pool_size = min_t(unsigned long, 1584 num_online_cpus() + 2, 8); 1585 1586 INIT_LIST_HEAD(&fs_info->ordered_extents); 1587 spin_lock_init(&fs_info->ordered_extent_lock); 1588 1589 sb->s_blocksize = 4096; 1590 sb->s_blocksize_bits = blksize_bits(4096); 1591 1592 /* 1593 * we set the i_size on the btree inode to the max possible int. 1594 * the real end of the address space is determined by all of 1595 * the devices in the system 1596 */ 1597 fs_info->btree_inode->i_size = OFFSET_MAX; 1598 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 1599 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 1600 1601 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 1602 fs_info->btree_inode->i_mapping, 1603 GFP_NOFS); 1604 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree, 1605 GFP_NOFS); 1606 1607 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 1608 1609 spin_lock_init(&fs_info->block_group_cache_lock); 1610 fs_info->block_group_cache_tree.rb_node = NULL; 1611 1612 extent_io_tree_init(&fs_info->pinned_extents, 1613 fs_info->btree_inode->i_mapping, GFP_NOFS); 1614 extent_io_tree_init(&fs_info->pending_del, 1615 fs_info->btree_inode->i_mapping, GFP_NOFS); 1616 extent_io_tree_init(&fs_info->extent_ins, 1617 fs_info->btree_inode->i_mapping, GFP_NOFS); 1618 fs_info->do_barriers = 1; 1619 1620 INIT_LIST_HEAD(&fs_info->dead_reloc_roots); 1621 btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree); 1622 btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree); 1623 1624 BTRFS_I(fs_info->btree_inode)->root = tree_root; 1625 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 1626 sizeof(struct btrfs_key)); 1627 insert_inode_hash(fs_info->btree_inode); 1628 1629 mutex_init(&fs_info->trans_mutex); 1630 mutex_init(&fs_info->tree_log_mutex); 1631 mutex_init(&fs_info->drop_mutex); 1632 mutex_init(&fs_info->extent_ins_mutex); 1633 mutex_init(&fs_info->pinned_mutex); 1634 mutex_init(&fs_info->chunk_mutex); 1635 mutex_init(&fs_info->transaction_kthread_mutex); 1636 mutex_init(&fs_info->cleaner_mutex); 1637 mutex_init(&fs_info->volume_mutex); 1638 mutex_init(&fs_info->tree_reloc_mutex); 1639 init_waitqueue_head(&fs_info->transaction_throttle); 1640 init_waitqueue_head(&fs_info->transaction_wait); 1641 init_waitqueue_head(&fs_info->async_submit_wait); 1642 1643 __setup_root(4096, 4096, 4096, 4096, tree_root, 1644 fs_info, BTRFS_ROOT_TREE_OBJECTID); 1645 1646 1647 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 1648 if (!bh) 1649 goto fail_iput; 1650 1651 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy)); 1652 memcpy(&fs_info->super_for_commit, &fs_info->super_copy, 1653 sizeof(fs_info->super_for_commit)); 1654 brelse(bh); 1655 1656 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE); 1657 1658 disk_super = &fs_info->super_copy; 1659 if (!btrfs_super_root(disk_super)) 1660 goto fail_iput; 1661 1662 ret = btrfs_parse_options(tree_root, options); 1663 if (ret) { 1664 err = ret; 1665 goto fail_iput; 1666 } 1667 1668 features = btrfs_super_incompat_flags(disk_super) & 1669 ~BTRFS_FEATURE_INCOMPAT_SUPP; 1670 if (features) { 1671 printk(KERN_ERR "BTRFS: couldn't mount because of " 1672 "unsupported optional features (%Lx).\n", 1673 features); 1674 err = -EINVAL; 1675 goto fail_iput; 1676 } 1677 1678 features = btrfs_super_compat_ro_flags(disk_super) & 1679 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 1680 if (!(sb->s_flags & MS_RDONLY) && features) { 1681 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 1682 "unsupported option features (%Lx).\n", 1683 features); 1684 err = -EINVAL; 1685 goto fail_iput; 1686 } 1687 1688 /* 1689 * we need to start all the end_io workers up front because the 1690 * queue work function gets called at interrupt time, and so it 1691 * cannot dynamically grow. 1692 */ 1693 btrfs_init_workers(&fs_info->workers, "worker", 1694 fs_info->thread_pool_size); 1695 1696 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 1697 fs_info->thread_pool_size); 1698 1699 btrfs_init_workers(&fs_info->submit_workers, "submit", 1700 min_t(u64, fs_devices->num_devices, 1701 fs_info->thread_pool_size)); 1702 1703 /* a higher idle thresh on the submit workers makes it much more 1704 * likely that bios will be send down in a sane order to the 1705 * devices 1706 */ 1707 fs_info->submit_workers.idle_thresh = 64; 1708 1709 fs_info->workers.idle_thresh = 16; 1710 fs_info->workers.ordered = 1; 1711 1712 fs_info->delalloc_workers.idle_thresh = 2; 1713 fs_info->delalloc_workers.ordered = 1; 1714 1715 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1); 1716 btrfs_init_workers(&fs_info->endio_workers, "endio", 1717 fs_info->thread_pool_size); 1718 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 1719 fs_info->thread_pool_size); 1720 btrfs_init_workers(&fs_info->endio_meta_write_workers, 1721 "endio-meta-write", fs_info->thread_pool_size); 1722 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 1723 fs_info->thread_pool_size); 1724 1725 /* 1726 * endios are largely parallel and should have a very 1727 * low idle thresh 1728 */ 1729 fs_info->endio_workers.idle_thresh = 4; 1730 fs_info->endio_meta_workers.idle_thresh = 4; 1731 1732 fs_info->endio_write_workers.idle_thresh = 64; 1733 fs_info->endio_meta_write_workers.idle_thresh = 64; 1734 1735 btrfs_start_workers(&fs_info->workers, 1); 1736 btrfs_start_workers(&fs_info->submit_workers, 1); 1737 btrfs_start_workers(&fs_info->delalloc_workers, 1); 1738 btrfs_start_workers(&fs_info->fixup_workers, 1); 1739 btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size); 1740 btrfs_start_workers(&fs_info->endio_meta_workers, 1741 fs_info->thread_pool_size); 1742 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1743 fs_info->thread_pool_size); 1744 btrfs_start_workers(&fs_info->endio_write_workers, 1745 fs_info->thread_pool_size); 1746 1747 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 1748 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 1749 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 1750 1751 nodesize = btrfs_super_nodesize(disk_super); 1752 leafsize = btrfs_super_leafsize(disk_super); 1753 sectorsize = btrfs_super_sectorsize(disk_super); 1754 stripesize = btrfs_super_stripesize(disk_super); 1755 tree_root->nodesize = nodesize; 1756 tree_root->leafsize = leafsize; 1757 tree_root->sectorsize = sectorsize; 1758 tree_root->stripesize = stripesize; 1759 1760 sb->s_blocksize = sectorsize; 1761 sb->s_blocksize_bits = blksize_bits(sectorsize); 1762 1763 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 1764 sizeof(disk_super->magic))) { 1765 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 1766 goto fail_sb_buffer; 1767 } 1768 1769 mutex_lock(&fs_info->chunk_mutex); 1770 ret = btrfs_read_sys_array(tree_root); 1771 mutex_unlock(&fs_info->chunk_mutex); 1772 if (ret) { 1773 printk(KERN_WARNING "btrfs: failed to read the system " 1774 "array on %s\n", sb->s_id); 1775 goto fail_sys_array; 1776 } 1777 1778 blocksize = btrfs_level_size(tree_root, 1779 btrfs_super_chunk_root_level(disk_super)); 1780 generation = btrfs_super_chunk_root_generation(disk_super); 1781 1782 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1783 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 1784 1785 chunk_root->node = read_tree_block(chunk_root, 1786 btrfs_super_chunk_root(disk_super), 1787 blocksize, generation); 1788 BUG_ON(!chunk_root->node); 1789 1790 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 1791 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 1792 BTRFS_UUID_SIZE); 1793 1794 mutex_lock(&fs_info->chunk_mutex); 1795 ret = btrfs_read_chunk_tree(chunk_root); 1796 mutex_unlock(&fs_info->chunk_mutex); 1797 if (ret) { 1798 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 1799 sb->s_id); 1800 goto fail_chunk_root; 1801 } 1802 1803 btrfs_close_extra_devices(fs_devices); 1804 1805 blocksize = btrfs_level_size(tree_root, 1806 btrfs_super_root_level(disk_super)); 1807 generation = btrfs_super_generation(disk_super); 1808 1809 tree_root->node = read_tree_block(tree_root, 1810 btrfs_super_root(disk_super), 1811 blocksize, generation); 1812 if (!tree_root->node) 1813 goto fail_chunk_root; 1814 1815 1816 ret = find_and_setup_root(tree_root, fs_info, 1817 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 1818 if (ret) 1819 goto fail_tree_root; 1820 extent_root->track_dirty = 1; 1821 1822 ret = find_and_setup_root(tree_root, fs_info, 1823 BTRFS_DEV_TREE_OBJECTID, dev_root); 1824 dev_root->track_dirty = 1; 1825 if (ret) 1826 goto fail_extent_root; 1827 1828 ret = find_and_setup_root(tree_root, fs_info, 1829 BTRFS_CSUM_TREE_OBJECTID, csum_root); 1830 if (ret) 1831 goto fail_extent_root; 1832 1833 csum_root->track_dirty = 1; 1834 1835 btrfs_read_block_groups(extent_root); 1836 1837 fs_info->generation = generation; 1838 fs_info->last_trans_committed = generation; 1839 fs_info->data_alloc_profile = (u64)-1; 1840 fs_info->metadata_alloc_profile = (u64)-1; 1841 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile; 1842 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 1843 "btrfs-cleaner"); 1844 if (IS_ERR(fs_info->cleaner_kthread)) 1845 goto fail_csum_root; 1846 1847 fs_info->transaction_kthread = kthread_run(transaction_kthread, 1848 tree_root, 1849 "btrfs-transaction"); 1850 if (IS_ERR(fs_info->transaction_kthread)) 1851 goto fail_cleaner; 1852 1853 if (btrfs_super_log_root(disk_super) != 0) { 1854 u64 bytenr = btrfs_super_log_root(disk_super); 1855 1856 if (fs_devices->rw_devices == 0) { 1857 printk(KERN_WARNING "Btrfs log replay required " 1858 "on RO media\n"); 1859 err = -EIO; 1860 goto fail_trans_kthread; 1861 } 1862 blocksize = 1863 btrfs_level_size(tree_root, 1864 btrfs_super_log_root_level(disk_super)); 1865 1866 log_tree_root = kzalloc(sizeof(struct btrfs_root), 1867 GFP_NOFS); 1868 1869 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1870 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1871 1872 log_tree_root->node = read_tree_block(tree_root, bytenr, 1873 blocksize, 1874 generation + 1); 1875 ret = btrfs_recover_log_trees(log_tree_root); 1876 BUG_ON(ret); 1877 1878 if (sb->s_flags & MS_RDONLY) { 1879 ret = btrfs_commit_super(tree_root); 1880 BUG_ON(ret); 1881 } 1882 } 1883 1884 if (!(sb->s_flags & MS_RDONLY)) { 1885 ret = btrfs_cleanup_reloc_trees(tree_root); 1886 BUG_ON(ret); 1887 } 1888 1889 location.objectid = BTRFS_FS_TREE_OBJECTID; 1890 location.type = BTRFS_ROOT_ITEM_KEY; 1891 location.offset = (u64)-1; 1892 1893 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 1894 if (!fs_info->fs_root) 1895 goto fail_trans_kthread; 1896 return tree_root; 1897 1898 fail_trans_kthread: 1899 kthread_stop(fs_info->transaction_kthread); 1900 fail_cleaner: 1901 kthread_stop(fs_info->cleaner_kthread); 1902 1903 /* 1904 * make sure we're done with the btree inode before we stop our 1905 * kthreads 1906 */ 1907 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 1908 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 1909 1910 fail_csum_root: 1911 free_extent_buffer(csum_root->node); 1912 fail_extent_root: 1913 free_extent_buffer(extent_root->node); 1914 fail_tree_root: 1915 free_extent_buffer(tree_root->node); 1916 fail_chunk_root: 1917 free_extent_buffer(chunk_root->node); 1918 fail_sys_array: 1919 free_extent_buffer(dev_root->node); 1920 fail_sb_buffer: 1921 btrfs_stop_workers(&fs_info->fixup_workers); 1922 btrfs_stop_workers(&fs_info->delalloc_workers); 1923 btrfs_stop_workers(&fs_info->workers); 1924 btrfs_stop_workers(&fs_info->endio_workers); 1925 btrfs_stop_workers(&fs_info->endio_meta_workers); 1926 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 1927 btrfs_stop_workers(&fs_info->endio_write_workers); 1928 btrfs_stop_workers(&fs_info->submit_workers); 1929 fail_iput: 1930 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 1931 iput(fs_info->btree_inode); 1932 1933 btrfs_close_devices(fs_info->fs_devices); 1934 btrfs_mapping_tree_free(&fs_info->mapping_tree); 1935 bdi_destroy(&fs_info->bdi); 1936 1937 fail: 1938 kfree(extent_root); 1939 kfree(tree_root); 1940 kfree(fs_info); 1941 kfree(chunk_root); 1942 kfree(dev_root); 1943 kfree(csum_root); 1944 return ERR_PTR(err); 1945 } 1946 1947 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 1948 { 1949 char b[BDEVNAME_SIZE]; 1950 1951 if (uptodate) { 1952 set_buffer_uptodate(bh); 1953 } else { 1954 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { 1955 printk(KERN_WARNING "lost page write due to " 1956 "I/O error on %s\n", 1957 bdevname(bh->b_bdev, b)); 1958 } 1959 /* note, we dont' set_buffer_write_io_error because we have 1960 * our own ways of dealing with the IO errors 1961 */ 1962 clear_buffer_uptodate(bh); 1963 } 1964 unlock_buffer(bh); 1965 put_bh(bh); 1966 } 1967 1968 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 1969 { 1970 struct buffer_head *bh; 1971 struct buffer_head *latest = NULL; 1972 struct btrfs_super_block *super; 1973 int i; 1974 u64 transid = 0; 1975 u64 bytenr; 1976 1977 /* we would like to check all the supers, but that would make 1978 * a btrfs mount succeed after a mkfs from a different FS. 1979 * So, we need to add a special mount option to scan for 1980 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1981 */ 1982 for (i = 0; i < 1; i++) { 1983 bytenr = btrfs_sb_offset(i); 1984 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 1985 break; 1986 bh = __bread(bdev, bytenr / 4096, 4096); 1987 if (!bh) 1988 continue; 1989 1990 super = (struct btrfs_super_block *)bh->b_data; 1991 if (btrfs_super_bytenr(super) != bytenr || 1992 strncmp((char *)(&super->magic), BTRFS_MAGIC, 1993 sizeof(super->magic))) { 1994 brelse(bh); 1995 continue; 1996 } 1997 1998 if (!latest || btrfs_super_generation(super) > transid) { 1999 brelse(latest); 2000 latest = bh; 2001 transid = btrfs_super_generation(super); 2002 } else { 2003 brelse(bh); 2004 } 2005 } 2006 return latest; 2007 } 2008 2009 static int write_dev_supers(struct btrfs_device *device, 2010 struct btrfs_super_block *sb, 2011 int do_barriers, int wait, int max_mirrors) 2012 { 2013 struct buffer_head *bh; 2014 int i; 2015 int ret; 2016 int errors = 0; 2017 u32 crc; 2018 u64 bytenr; 2019 int last_barrier = 0; 2020 2021 if (max_mirrors == 0) 2022 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2023 2024 /* make sure only the last submit_bh does a barrier */ 2025 if (do_barriers) { 2026 for (i = 0; i < max_mirrors; i++) { 2027 bytenr = btrfs_sb_offset(i); 2028 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 2029 device->total_bytes) 2030 break; 2031 last_barrier = i; 2032 } 2033 } 2034 2035 for (i = 0; i < max_mirrors; i++) { 2036 bytenr = btrfs_sb_offset(i); 2037 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2038 break; 2039 2040 if (wait) { 2041 bh = __find_get_block(device->bdev, bytenr / 4096, 2042 BTRFS_SUPER_INFO_SIZE); 2043 BUG_ON(!bh); 2044 brelse(bh); 2045 wait_on_buffer(bh); 2046 if (buffer_uptodate(bh)) { 2047 brelse(bh); 2048 continue; 2049 } 2050 } else { 2051 btrfs_set_super_bytenr(sb, bytenr); 2052 2053 crc = ~(u32)0; 2054 crc = btrfs_csum_data(NULL, (char *)sb + 2055 BTRFS_CSUM_SIZE, crc, 2056 BTRFS_SUPER_INFO_SIZE - 2057 BTRFS_CSUM_SIZE); 2058 btrfs_csum_final(crc, sb->csum); 2059 2060 bh = __getblk(device->bdev, bytenr / 4096, 2061 BTRFS_SUPER_INFO_SIZE); 2062 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2063 2064 set_buffer_uptodate(bh); 2065 get_bh(bh); 2066 lock_buffer(bh); 2067 bh->b_end_io = btrfs_end_buffer_write_sync; 2068 } 2069 2070 if (i == last_barrier && do_barriers && device->barriers) { 2071 ret = submit_bh(WRITE_BARRIER, bh); 2072 if (ret == -EOPNOTSUPP) { 2073 printk("btrfs: disabling barriers on dev %s\n", 2074 device->name); 2075 set_buffer_uptodate(bh); 2076 device->barriers = 0; 2077 get_bh(bh); 2078 lock_buffer(bh); 2079 ret = submit_bh(WRITE, bh); 2080 } 2081 } else { 2082 ret = submit_bh(WRITE, bh); 2083 } 2084 2085 if (!ret && wait) { 2086 wait_on_buffer(bh); 2087 if (!buffer_uptodate(bh)) 2088 errors++; 2089 } else if (ret) { 2090 errors++; 2091 } 2092 if (wait) 2093 brelse(bh); 2094 } 2095 return errors < i ? 0 : -1; 2096 } 2097 2098 int write_all_supers(struct btrfs_root *root, int max_mirrors) 2099 { 2100 struct list_head *head = &root->fs_info->fs_devices->devices; 2101 struct btrfs_device *dev; 2102 struct btrfs_super_block *sb; 2103 struct btrfs_dev_item *dev_item; 2104 int ret; 2105 int do_barriers; 2106 int max_errors; 2107 int total_errors = 0; 2108 u64 flags; 2109 2110 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1; 2111 do_barriers = !btrfs_test_opt(root, NOBARRIER); 2112 2113 sb = &root->fs_info->super_for_commit; 2114 dev_item = &sb->dev_item; 2115 list_for_each_entry(dev, head, dev_list) { 2116 if (!dev->bdev) { 2117 total_errors++; 2118 continue; 2119 } 2120 if (!dev->in_fs_metadata || !dev->writeable) 2121 continue; 2122 2123 btrfs_set_stack_device_generation(dev_item, 0); 2124 btrfs_set_stack_device_type(dev_item, dev->type); 2125 btrfs_set_stack_device_id(dev_item, dev->devid); 2126 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 2127 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 2128 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 2129 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 2130 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 2131 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 2132 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2133 2134 flags = btrfs_super_flags(sb); 2135 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 2136 2137 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 2138 if (ret) 2139 total_errors++; 2140 } 2141 if (total_errors > max_errors) { 2142 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2143 total_errors); 2144 BUG(); 2145 } 2146 2147 total_errors = 0; 2148 list_for_each_entry(dev, head, dev_list) { 2149 if (!dev->bdev) 2150 continue; 2151 if (!dev->in_fs_metadata || !dev->writeable) 2152 continue; 2153 2154 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 2155 if (ret) 2156 total_errors++; 2157 } 2158 if (total_errors > max_errors) { 2159 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2160 total_errors); 2161 BUG(); 2162 } 2163 return 0; 2164 } 2165 2166 int write_ctree_super(struct btrfs_trans_handle *trans, 2167 struct btrfs_root *root, int max_mirrors) 2168 { 2169 int ret; 2170 2171 ret = write_all_supers(root, max_mirrors); 2172 return ret; 2173 } 2174 2175 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2176 { 2177 radix_tree_delete(&fs_info->fs_roots_radix, 2178 (unsigned long)root->root_key.objectid); 2179 if (root->anon_super.s_dev) { 2180 down_write(&root->anon_super.s_umount); 2181 kill_anon_super(&root->anon_super); 2182 } 2183 if (root->node) 2184 free_extent_buffer(root->node); 2185 if (root->commit_root) 2186 free_extent_buffer(root->commit_root); 2187 kfree(root->name); 2188 kfree(root); 2189 return 0; 2190 } 2191 2192 static int del_fs_roots(struct btrfs_fs_info *fs_info) 2193 { 2194 int ret; 2195 struct btrfs_root *gang[8]; 2196 int i; 2197 2198 while (1) { 2199 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2200 (void **)gang, 0, 2201 ARRAY_SIZE(gang)); 2202 if (!ret) 2203 break; 2204 for (i = 0; i < ret; i++) 2205 btrfs_free_fs_root(fs_info, gang[i]); 2206 } 2207 return 0; 2208 } 2209 2210 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2211 { 2212 u64 root_objectid = 0; 2213 struct btrfs_root *gang[8]; 2214 int i; 2215 int ret; 2216 2217 while (1) { 2218 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2219 (void **)gang, root_objectid, 2220 ARRAY_SIZE(gang)); 2221 if (!ret) 2222 break; 2223 for (i = 0; i < ret; i++) { 2224 root_objectid = gang[i]->root_key.objectid; 2225 ret = btrfs_find_dead_roots(fs_info->tree_root, 2226 root_objectid, gang[i]); 2227 BUG_ON(ret); 2228 btrfs_orphan_cleanup(gang[i]); 2229 } 2230 root_objectid++; 2231 } 2232 return 0; 2233 } 2234 2235 int btrfs_commit_super(struct btrfs_root *root) 2236 { 2237 struct btrfs_trans_handle *trans; 2238 int ret; 2239 2240 mutex_lock(&root->fs_info->cleaner_mutex); 2241 btrfs_clean_old_snapshots(root); 2242 mutex_unlock(&root->fs_info->cleaner_mutex); 2243 trans = btrfs_start_transaction(root, 1); 2244 ret = btrfs_commit_transaction(trans, root); 2245 BUG_ON(ret); 2246 /* run commit again to drop the original snapshot */ 2247 trans = btrfs_start_transaction(root, 1); 2248 btrfs_commit_transaction(trans, root); 2249 ret = btrfs_write_and_wait_transaction(NULL, root); 2250 BUG_ON(ret); 2251 2252 ret = write_ctree_super(NULL, root, 0); 2253 return ret; 2254 } 2255 2256 int close_ctree(struct btrfs_root *root) 2257 { 2258 struct btrfs_fs_info *fs_info = root->fs_info; 2259 int ret; 2260 2261 fs_info->closing = 1; 2262 smp_mb(); 2263 2264 kthread_stop(root->fs_info->transaction_kthread); 2265 kthread_stop(root->fs_info->cleaner_kthread); 2266 2267 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 2268 ret = btrfs_commit_super(root); 2269 if (ret) 2270 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 2271 } 2272 2273 if (fs_info->delalloc_bytes) { 2274 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 2275 fs_info->delalloc_bytes); 2276 } 2277 if (fs_info->total_ref_cache_size) { 2278 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", 2279 (unsigned long long)fs_info->total_ref_cache_size); 2280 } 2281 2282 if (fs_info->extent_root->node) 2283 free_extent_buffer(fs_info->extent_root->node); 2284 2285 if (fs_info->tree_root->node) 2286 free_extent_buffer(fs_info->tree_root->node); 2287 2288 if (root->fs_info->chunk_root->node) 2289 free_extent_buffer(root->fs_info->chunk_root->node); 2290 2291 if (root->fs_info->dev_root->node) 2292 free_extent_buffer(root->fs_info->dev_root->node); 2293 2294 if (root->fs_info->csum_root->node) 2295 free_extent_buffer(root->fs_info->csum_root->node); 2296 2297 btrfs_free_block_groups(root->fs_info); 2298 2299 del_fs_roots(fs_info); 2300 2301 iput(fs_info->btree_inode); 2302 2303 btrfs_stop_workers(&fs_info->fixup_workers); 2304 btrfs_stop_workers(&fs_info->delalloc_workers); 2305 btrfs_stop_workers(&fs_info->workers); 2306 btrfs_stop_workers(&fs_info->endio_workers); 2307 btrfs_stop_workers(&fs_info->endio_meta_workers); 2308 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2309 btrfs_stop_workers(&fs_info->endio_write_workers); 2310 btrfs_stop_workers(&fs_info->submit_workers); 2311 2312 #if 0 2313 while (!list_empty(&fs_info->hashers)) { 2314 struct btrfs_hasher *hasher; 2315 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher, 2316 hashers); 2317 list_del(&hasher->hashers); 2318 crypto_free_hash(&fs_info->hash_tfm); 2319 kfree(hasher); 2320 } 2321 #endif 2322 btrfs_close_devices(fs_info->fs_devices); 2323 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2324 2325 bdi_destroy(&fs_info->bdi); 2326 2327 kfree(fs_info->extent_root); 2328 kfree(fs_info->tree_root); 2329 kfree(fs_info->chunk_root); 2330 kfree(fs_info->dev_root); 2331 kfree(fs_info->csum_root); 2332 return 0; 2333 } 2334 2335 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) 2336 { 2337 int ret; 2338 struct inode *btree_inode = buf->first_page->mapping->host; 2339 2340 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf); 2341 if (!ret) 2342 return ret; 2343 2344 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 2345 parent_transid); 2346 return !ret; 2347 } 2348 2349 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 2350 { 2351 struct inode *btree_inode = buf->first_page->mapping->host; 2352 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, 2353 buf); 2354 } 2355 2356 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 2357 { 2358 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2359 u64 transid = btrfs_header_generation(buf); 2360 struct inode *btree_inode = root->fs_info->btree_inode; 2361 2362 btrfs_set_lock_blocking(buf); 2363 2364 btrfs_assert_tree_locked(buf); 2365 if (transid != root->fs_info->generation) { 2366 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 2367 "found %llu running %llu\n", 2368 (unsigned long long)buf->start, 2369 (unsigned long long)transid, 2370 (unsigned long long)root->fs_info->generation); 2371 WARN_ON(1); 2372 } 2373 set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf); 2374 } 2375 2376 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 2377 { 2378 /* 2379 * looks as though older kernels can get into trouble with 2380 * this code, they end up stuck in balance_dirty_pages forever 2381 */ 2382 struct extent_io_tree *tree; 2383 u64 num_dirty; 2384 u64 start = 0; 2385 unsigned long thresh = 32 * 1024 * 1024; 2386 tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 2387 2388 if (current_is_pdflush() || current->flags & PF_MEMALLOC) 2389 return; 2390 2391 num_dirty = count_range_bits(tree, &start, (u64)-1, 2392 thresh, EXTENT_DIRTY); 2393 if (num_dirty > thresh) { 2394 balance_dirty_pages_ratelimited_nr( 2395 root->fs_info->btree_inode->i_mapping, 1); 2396 } 2397 return; 2398 } 2399 2400 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 2401 { 2402 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2403 int ret; 2404 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 2405 if (ret == 0) 2406 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 2407 return ret; 2408 } 2409 2410 int btree_lock_page_hook(struct page *page) 2411 { 2412 struct inode *inode = page->mapping->host; 2413 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2414 struct extent_buffer *eb; 2415 unsigned long len; 2416 u64 bytenr = page_offset(page); 2417 2418 if (page->private == EXTENT_PAGE_PRIVATE) 2419 goto out; 2420 2421 len = page->private >> 2; 2422 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS); 2423 if (!eb) 2424 goto out; 2425 2426 btrfs_tree_lock(eb); 2427 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 2428 btrfs_tree_unlock(eb); 2429 free_extent_buffer(eb); 2430 out: 2431 lock_page(page); 2432 return 0; 2433 } 2434 2435 static struct extent_io_ops btree_extent_io_ops = { 2436 .write_cache_pages_lock_hook = btree_lock_page_hook, 2437 .readpage_end_io_hook = btree_readpage_end_io_hook, 2438 .submit_bio_hook = btree_submit_bio_hook, 2439 /* note we're sharing with inode.c for the merge bio hook */ 2440 .merge_bio_hook = btrfs_merge_bio_hook, 2441 }; 2442