1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "rcu-string.h" 33 #include "dev-replace.h" 34 #include "raid56.h" 35 #include "sysfs.h" 36 #include "qgroup.h" 37 #include "compression.h" 38 #include "tree-checker.h" 39 #include "ref-verify.h" 40 #include "block-group.h" 41 #include "discard.h" 42 #include "space-info.h" 43 #include "zoned.h" 44 #include "subpage.h" 45 #include "fs.h" 46 #include "accessors.h" 47 #include "extent-tree.h" 48 #include "root-tree.h" 49 #include "defrag.h" 50 #include "uuid-tree.h" 51 #include "relocation.h" 52 #include "scrub.h" 53 #include "super.h" 54 55 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 56 BTRFS_HEADER_FLAG_RELOC |\ 57 BTRFS_SUPER_FLAG_ERROR |\ 58 BTRFS_SUPER_FLAG_SEEDING |\ 59 BTRFS_SUPER_FLAG_METADUMP |\ 60 BTRFS_SUPER_FLAG_METADUMP_V2) 61 62 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 63 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 64 65 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 66 { 67 if (fs_info->csum_shash) 68 crypto_free_shash(fs_info->csum_shash); 69 } 70 71 /* 72 * Compute the csum of a btree block and store the result to provided buffer. 73 */ 74 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 75 { 76 struct btrfs_fs_info *fs_info = buf->fs_info; 77 const int num_pages = num_extent_pages(buf); 78 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 79 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 80 char *kaddr; 81 int i; 82 83 shash->tfm = fs_info->csum_shash; 84 crypto_shash_init(shash); 85 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start); 86 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 87 first_page_part - BTRFS_CSUM_SIZE); 88 89 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { 90 kaddr = page_address(buf->pages[i]); 91 crypto_shash_update(shash, kaddr, PAGE_SIZE); 92 } 93 memset(result, 0, BTRFS_CSUM_SIZE); 94 crypto_shash_final(shash, result); 95 } 96 97 /* 98 * we can't consider a given block up to date unless the transid of the 99 * block matches the transid in the parent node's pointer. This is how we 100 * detect blocks that either didn't get written at all or got written 101 * in the wrong place. 102 */ 103 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic) 104 { 105 if (!extent_buffer_uptodate(eb)) 106 return 0; 107 108 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 109 return 1; 110 111 if (atomic) 112 return -EAGAIN; 113 114 if (!extent_buffer_uptodate(eb) || 115 btrfs_header_generation(eb) != parent_transid) { 116 btrfs_err_rl(eb->fs_info, 117 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 118 eb->start, eb->read_mirror, 119 parent_transid, btrfs_header_generation(eb)); 120 clear_extent_buffer_uptodate(eb); 121 return 0; 122 } 123 return 1; 124 } 125 126 static bool btrfs_supported_super_csum(u16 csum_type) 127 { 128 switch (csum_type) { 129 case BTRFS_CSUM_TYPE_CRC32: 130 case BTRFS_CSUM_TYPE_XXHASH: 131 case BTRFS_CSUM_TYPE_SHA256: 132 case BTRFS_CSUM_TYPE_BLAKE2: 133 return true; 134 default: 135 return false; 136 } 137 } 138 139 /* 140 * Return 0 if the superblock checksum type matches the checksum value of that 141 * algorithm. Pass the raw disk superblock data. 142 */ 143 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 144 const struct btrfs_super_block *disk_sb) 145 { 146 char result[BTRFS_CSUM_SIZE]; 147 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 148 149 shash->tfm = fs_info->csum_shash; 150 151 /* 152 * The super_block structure does not span the whole 153 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 154 * filled with zeros and is included in the checksum. 155 */ 156 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 157 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 158 159 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 160 return 1; 161 162 return 0; 163 } 164 165 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 166 int mirror_num) 167 { 168 struct btrfs_fs_info *fs_info = eb->fs_info; 169 int i, num_pages = num_extent_pages(eb); 170 int ret = 0; 171 172 if (sb_rdonly(fs_info->sb)) 173 return -EROFS; 174 175 for (i = 0; i < num_pages; i++) { 176 struct page *p = eb->pages[i]; 177 u64 start = max_t(u64, eb->start, page_offset(p)); 178 u64 end = min_t(u64, eb->start + eb->len, page_offset(p) + PAGE_SIZE); 179 u32 len = end - start; 180 181 ret = btrfs_repair_io_failure(fs_info, 0, start, len, 182 start, p, offset_in_page(start), mirror_num); 183 if (ret) 184 break; 185 } 186 187 return ret; 188 } 189 190 /* 191 * helper to read a given tree block, doing retries as required when 192 * the checksums don't match and we have alternate mirrors to try. 193 * 194 * @check: expected tree parentness check, see the comments of the 195 * structure for details. 196 */ 197 int btrfs_read_extent_buffer(struct extent_buffer *eb, 198 struct btrfs_tree_parent_check *check) 199 { 200 struct btrfs_fs_info *fs_info = eb->fs_info; 201 int failed = 0; 202 int ret; 203 int num_copies = 0; 204 int mirror_num = 0; 205 int failed_mirror = 0; 206 207 ASSERT(check); 208 209 while (1) { 210 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 211 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check); 212 if (!ret) 213 break; 214 215 num_copies = btrfs_num_copies(fs_info, 216 eb->start, eb->len); 217 if (num_copies == 1) 218 break; 219 220 if (!failed_mirror) { 221 failed = 1; 222 failed_mirror = eb->read_mirror; 223 } 224 225 mirror_num++; 226 if (mirror_num == failed_mirror) 227 mirror_num++; 228 229 if (mirror_num > num_copies) 230 break; 231 } 232 233 if (failed && !ret && failed_mirror) 234 btrfs_repair_eb_io_failure(eb, failed_mirror); 235 236 return ret; 237 } 238 239 /* 240 * Checksum a dirty tree block before IO. 241 */ 242 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio) 243 { 244 struct extent_buffer *eb = bbio->private; 245 struct btrfs_fs_info *fs_info = eb->fs_info; 246 u64 found_start = btrfs_header_bytenr(eb); 247 u64 last_trans; 248 u8 result[BTRFS_CSUM_SIZE]; 249 int ret; 250 251 /* Btree blocks are always contiguous on disk. */ 252 if (WARN_ON_ONCE(bbio->file_offset != eb->start)) 253 return BLK_STS_IOERR; 254 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len)) 255 return BLK_STS_IOERR; 256 257 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) { 258 WARN_ON_ONCE(found_start != 0); 259 return BLK_STS_OK; 260 } 261 262 if (WARN_ON_ONCE(found_start != eb->start)) 263 return BLK_STS_IOERR; 264 if (WARN_ON(!btrfs_page_test_uptodate(fs_info, eb->pages[0], eb->start, 265 eb->len))) 266 return BLK_STS_IOERR; 267 268 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 269 offsetof(struct btrfs_header, fsid), 270 BTRFS_FSID_SIZE) == 0); 271 csum_tree_block(eb, result); 272 273 if (btrfs_header_level(eb)) 274 ret = btrfs_check_node(eb); 275 else 276 ret = btrfs_check_leaf(eb); 277 278 if (ret < 0) 279 goto error; 280 281 /* 282 * Also check the generation, the eb reached here must be newer than 283 * last committed. Or something seriously wrong happened. 284 */ 285 last_trans = btrfs_get_last_trans_committed(fs_info); 286 if (unlikely(btrfs_header_generation(eb) <= last_trans)) { 287 ret = -EUCLEAN; 288 btrfs_err(fs_info, 289 "block=%llu bad generation, have %llu expect > %llu", 290 eb->start, btrfs_header_generation(eb), last_trans); 291 goto error; 292 } 293 write_extent_buffer(eb, result, 0, fs_info->csum_size); 294 return BLK_STS_OK; 295 296 error: 297 btrfs_print_tree(eb, 0); 298 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 299 eb->start); 300 /* 301 * Be noisy if this is an extent buffer from a log tree. We don't abort 302 * a transaction in case there's a bad log tree extent buffer, we just 303 * fallback to a transaction commit. Still we want to know when there is 304 * a bad log tree extent buffer, as that may signal a bug somewhere. 305 */ 306 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 307 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 308 return errno_to_blk_status(ret); 309 } 310 311 static bool check_tree_block_fsid(struct extent_buffer *eb) 312 { 313 struct btrfs_fs_info *fs_info = eb->fs_info; 314 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 315 u8 fsid[BTRFS_FSID_SIZE]; 316 317 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 318 BTRFS_FSID_SIZE); 319 320 /* 321 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid. 322 * This is then overwritten by metadata_uuid if it is present in the 323 * device_list_add(). The same true for a seed device as well. So use of 324 * fs_devices::metadata_uuid is appropriate here. 325 */ 326 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0) 327 return false; 328 329 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 330 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 331 return false; 332 333 return true; 334 } 335 336 /* Do basic extent buffer checks at read time */ 337 int btrfs_validate_extent_buffer(struct extent_buffer *eb, 338 struct btrfs_tree_parent_check *check) 339 { 340 struct btrfs_fs_info *fs_info = eb->fs_info; 341 u64 found_start; 342 const u32 csum_size = fs_info->csum_size; 343 u8 found_level; 344 u8 result[BTRFS_CSUM_SIZE]; 345 const u8 *header_csum; 346 int ret = 0; 347 348 ASSERT(check); 349 350 found_start = btrfs_header_bytenr(eb); 351 if (found_start != eb->start) { 352 btrfs_err_rl(fs_info, 353 "bad tree block start, mirror %u want %llu have %llu", 354 eb->read_mirror, eb->start, found_start); 355 ret = -EIO; 356 goto out; 357 } 358 if (check_tree_block_fsid(eb)) { 359 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 360 eb->start, eb->read_mirror); 361 ret = -EIO; 362 goto out; 363 } 364 found_level = btrfs_header_level(eb); 365 if (found_level >= BTRFS_MAX_LEVEL) { 366 btrfs_err(fs_info, 367 "bad tree block level, mirror %u level %d on logical %llu", 368 eb->read_mirror, btrfs_header_level(eb), eb->start); 369 ret = -EIO; 370 goto out; 371 } 372 373 csum_tree_block(eb, result); 374 header_csum = page_address(eb->pages[0]) + 375 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum)); 376 377 if (memcmp(result, header_csum, csum_size) != 0) { 378 btrfs_warn_rl(fs_info, 379 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d", 380 eb->start, eb->read_mirror, 381 CSUM_FMT_VALUE(csum_size, header_csum), 382 CSUM_FMT_VALUE(csum_size, result), 383 btrfs_header_level(eb)); 384 ret = -EUCLEAN; 385 goto out; 386 } 387 388 if (found_level != check->level) { 389 btrfs_err(fs_info, 390 "level verify failed on logical %llu mirror %u wanted %u found %u", 391 eb->start, eb->read_mirror, check->level, found_level); 392 ret = -EIO; 393 goto out; 394 } 395 if (unlikely(check->transid && 396 btrfs_header_generation(eb) != check->transid)) { 397 btrfs_err_rl(eb->fs_info, 398 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 399 eb->start, eb->read_mirror, check->transid, 400 btrfs_header_generation(eb)); 401 ret = -EIO; 402 goto out; 403 } 404 if (check->has_first_key) { 405 struct btrfs_key *expect_key = &check->first_key; 406 struct btrfs_key found_key; 407 408 if (found_level) 409 btrfs_node_key_to_cpu(eb, &found_key, 0); 410 else 411 btrfs_item_key_to_cpu(eb, &found_key, 0); 412 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 413 btrfs_err(fs_info, 414 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 415 eb->start, check->transid, 416 expect_key->objectid, 417 expect_key->type, expect_key->offset, 418 found_key.objectid, found_key.type, 419 found_key.offset); 420 ret = -EUCLEAN; 421 goto out; 422 } 423 } 424 if (check->owner_root) { 425 ret = btrfs_check_eb_owner(eb, check->owner_root); 426 if (ret < 0) 427 goto out; 428 } 429 430 /* 431 * If this is a leaf block and it is corrupt, set the corrupt bit so 432 * that we don't try and read the other copies of this block, just 433 * return -EIO. 434 */ 435 if (found_level == 0 && btrfs_check_leaf(eb)) { 436 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 437 ret = -EIO; 438 } 439 440 if (found_level > 0 && btrfs_check_node(eb)) 441 ret = -EIO; 442 443 if (ret) 444 btrfs_err(fs_info, 445 "read time tree block corruption detected on logical %llu mirror %u", 446 eb->start, eb->read_mirror); 447 out: 448 return ret; 449 } 450 451 #ifdef CONFIG_MIGRATION 452 static int btree_migrate_folio(struct address_space *mapping, 453 struct folio *dst, struct folio *src, enum migrate_mode mode) 454 { 455 /* 456 * we can't safely write a btree page from here, 457 * we haven't done the locking hook 458 */ 459 if (folio_test_dirty(src)) 460 return -EAGAIN; 461 /* 462 * Buffers may be managed in a filesystem specific way. 463 * We must have no buffers or drop them. 464 */ 465 if (folio_get_private(src) && 466 !filemap_release_folio(src, GFP_KERNEL)) 467 return -EAGAIN; 468 return migrate_folio(mapping, dst, src, mode); 469 } 470 #else 471 #define btree_migrate_folio NULL 472 #endif 473 474 static int btree_writepages(struct address_space *mapping, 475 struct writeback_control *wbc) 476 { 477 struct btrfs_fs_info *fs_info; 478 int ret; 479 480 if (wbc->sync_mode == WB_SYNC_NONE) { 481 482 if (wbc->for_kupdate) 483 return 0; 484 485 fs_info = BTRFS_I(mapping->host)->root->fs_info; 486 /* this is a bit racy, but that's ok */ 487 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 488 BTRFS_DIRTY_METADATA_THRESH, 489 fs_info->dirty_metadata_batch); 490 if (ret < 0) 491 return 0; 492 } 493 return btree_write_cache_pages(mapping, wbc); 494 } 495 496 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 497 { 498 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 499 return false; 500 501 return try_release_extent_buffer(&folio->page); 502 } 503 504 static void btree_invalidate_folio(struct folio *folio, size_t offset, 505 size_t length) 506 { 507 struct extent_io_tree *tree; 508 tree = &BTRFS_I(folio->mapping->host)->io_tree; 509 extent_invalidate_folio(tree, folio, offset); 510 btree_release_folio(folio, GFP_NOFS); 511 if (folio_get_private(folio)) { 512 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info, 513 "folio private not zero on folio %llu", 514 (unsigned long long)folio_pos(folio)); 515 folio_detach_private(folio); 516 } 517 } 518 519 #ifdef DEBUG 520 static bool btree_dirty_folio(struct address_space *mapping, 521 struct folio *folio) 522 { 523 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 524 struct btrfs_subpage_info *spi = fs_info->subpage_info; 525 struct btrfs_subpage *subpage; 526 struct extent_buffer *eb; 527 int cur_bit = 0; 528 u64 page_start = folio_pos(folio); 529 530 if (fs_info->sectorsize == PAGE_SIZE) { 531 eb = folio_get_private(folio); 532 BUG_ON(!eb); 533 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 534 BUG_ON(!atomic_read(&eb->refs)); 535 btrfs_assert_tree_write_locked(eb); 536 return filemap_dirty_folio(mapping, folio); 537 } 538 539 ASSERT(spi); 540 subpage = folio_get_private(folio); 541 542 for (cur_bit = spi->dirty_offset; 543 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits; 544 cur_bit++) { 545 unsigned long flags; 546 u64 cur; 547 548 spin_lock_irqsave(&subpage->lock, flags); 549 if (!test_bit(cur_bit, subpage->bitmaps)) { 550 spin_unlock_irqrestore(&subpage->lock, flags); 551 continue; 552 } 553 spin_unlock_irqrestore(&subpage->lock, flags); 554 cur = page_start + cur_bit * fs_info->sectorsize; 555 556 eb = find_extent_buffer(fs_info, cur); 557 ASSERT(eb); 558 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 559 ASSERT(atomic_read(&eb->refs)); 560 btrfs_assert_tree_write_locked(eb); 561 free_extent_buffer(eb); 562 563 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1; 564 } 565 return filemap_dirty_folio(mapping, folio); 566 } 567 #else 568 #define btree_dirty_folio filemap_dirty_folio 569 #endif 570 571 static const struct address_space_operations btree_aops = { 572 .writepages = btree_writepages, 573 .release_folio = btree_release_folio, 574 .invalidate_folio = btree_invalidate_folio, 575 .migrate_folio = btree_migrate_folio, 576 .dirty_folio = btree_dirty_folio, 577 }; 578 579 struct extent_buffer *btrfs_find_create_tree_block( 580 struct btrfs_fs_info *fs_info, 581 u64 bytenr, u64 owner_root, 582 int level) 583 { 584 if (btrfs_is_testing(fs_info)) 585 return alloc_test_extent_buffer(fs_info, bytenr); 586 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 587 } 588 589 /* 590 * Read tree block at logical address @bytenr and do variant basic but critical 591 * verification. 592 * 593 * @check: expected tree parentness check, see comments of the 594 * structure for details. 595 */ 596 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 597 struct btrfs_tree_parent_check *check) 598 { 599 struct extent_buffer *buf = NULL; 600 int ret; 601 602 ASSERT(check); 603 604 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 605 check->level); 606 if (IS_ERR(buf)) 607 return buf; 608 609 ret = btrfs_read_extent_buffer(buf, check); 610 if (ret) { 611 free_extent_buffer_stale(buf); 612 return ERR_PTR(ret); 613 } 614 if (btrfs_check_eb_owner(buf, check->owner_root)) { 615 free_extent_buffer_stale(buf); 616 return ERR_PTR(-EUCLEAN); 617 } 618 return buf; 619 620 } 621 622 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 623 u64 objectid) 624 { 625 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 626 627 memset(&root->root_key, 0, sizeof(root->root_key)); 628 memset(&root->root_item, 0, sizeof(root->root_item)); 629 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 630 root->fs_info = fs_info; 631 root->root_key.objectid = objectid; 632 root->node = NULL; 633 root->commit_root = NULL; 634 root->state = 0; 635 RB_CLEAR_NODE(&root->rb_node); 636 637 root->last_trans = 0; 638 root->free_objectid = 0; 639 root->nr_delalloc_inodes = 0; 640 root->nr_ordered_extents = 0; 641 root->inode_tree = RB_ROOT; 642 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 643 644 btrfs_init_root_block_rsv(root); 645 646 INIT_LIST_HEAD(&root->dirty_list); 647 INIT_LIST_HEAD(&root->root_list); 648 INIT_LIST_HEAD(&root->delalloc_inodes); 649 INIT_LIST_HEAD(&root->delalloc_root); 650 INIT_LIST_HEAD(&root->ordered_extents); 651 INIT_LIST_HEAD(&root->ordered_root); 652 INIT_LIST_HEAD(&root->reloc_dirty_list); 653 INIT_LIST_HEAD(&root->logged_list[0]); 654 INIT_LIST_HEAD(&root->logged_list[1]); 655 spin_lock_init(&root->inode_lock); 656 spin_lock_init(&root->delalloc_lock); 657 spin_lock_init(&root->ordered_extent_lock); 658 spin_lock_init(&root->accounting_lock); 659 spin_lock_init(&root->log_extents_lock[0]); 660 spin_lock_init(&root->log_extents_lock[1]); 661 spin_lock_init(&root->qgroup_meta_rsv_lock); 662 mutex_init(&root->objectid_mutex); 663 mutex_init(&root->log_mutex); 664 mutex_init(&root->ordered_extent_mutex); 665 mutex_init(&root->delalloc_mutex); 666 init_waitqueue_head(&root->qgroup_flush_wait); 667 init_waitqueue_head(&root->log_writer_wait); 668 init_waitqueue_head(&root->log_commit_wait[0]); 669 init_waitqueue_head(&root->log_commit_wait[1]); 670 INIT_LIST_HEAD(&root->log_ctxs[0]); 671 INIT_LIST_HEAD(&root->log_ctxs[1]); 672 atomic_set(&root->log_commit[0], 0); 673 atomic_set(&root->log_commit[1], 0); 674 atomic_set(&root->log_writers, 0); 675 atomic_set(&root->log_batch, 0); 676 refcount_set(&root->refs, 1); 677 atomic_set(&root->snapshot_force_cow, 0); 678 atomic_set(&root->nr_swapfiles, 0); 679 btrfs_set_root_log_transid(root, 0); 680 root->log_transid_committed = -1; 681 btrfs_set_root_last_log_commit(root, 0); 682 root->anon_dev = 0; 683 if (!dummy) { 684 extent_io_tree_init(fs_info, &root->dirty_log_pages, 685 IO_TREE_ROOT_DIRTY_LOG_PAGES); 686 extent_io_tree_init(fs_info, &root->log_csum_range, 687 IO_TREE_LOG_CSUM_RANGE); 688 } 689 690 spin_lock_init(&root->root_item_lock); 691 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 692 #ifdef CONFIG_BTRFS_DEBUG 693 INIT_LIST_HEAD(&root->leak_list); 694 spin_lock(&fs_info->fs_roots_radix_lock); 695 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 696 spin_unlock(&fs_info->fs_roots_radix_lock); 697 #endif 698 } 699 700 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 701 u64 objectid, gfp_t flags) 702 { 703 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 704 if (root) 705 __setup_root(root, fs_info, objectid); 706 return root; 707 } 708 709 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 710 /* Should only be used by the testing infrastructure */ 711 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 712 { 713 struct btrfs_root *root; 714 715 if (!fs_info) 716 return ERR_PTR(-EINVAL); 717 718 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 719 if (!root) 720 return ERR_PTR(-ENOMEM); 721 722 /* We don't use the stripesize in selftest, set it as sectorsize */ 723 root->alloc_bytenr = 0; 724 725 return root; 726 } 727 #endif 728 729 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 730 { 731 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 732 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 733 734 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 735 } 736 737 static int global_root_key_cmp(const void *k, const struct rb_node *node) 738 { 739 const struct btrfs_key *key = k; 740 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 741 742 return btrfs_comp_cpu_keys(key, &root->root_key); 743 } 744 745 int btrfs_global_root_insert(struct btrfs_root *root) 746 { 747 struct btrfs_fs_info *fs_info = root->fs_info; 748 struct rb_node *tmp; 749 int ret = 0; 750 751 write_lock(&fs_info->global_root_lock); 752 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 753 write_unlock(&fs_info->global_root_lock); 754 755 if (tmp) { 756 ret = -EEXIST; 757 btrfs_warn(fs_info, "global root %llu %llu already exists", 758 root->root_key.objectid, root->root_key.offset); 759 } 760 return ret; 761 } 762 763 void btrfs_global_root_delete(struct btrfs_root *root) 764 { 765 struct btrfs_fs_info *fs_info = root->fs_info; 766 767 write_lock(&fs_info->global_root_lock); 768 rb_erase(&root->rb_node, &fs_info->global_root_tree); 769 write_unlock(&fs_info->global_root_lock); 770 } 771 772 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 773 struct btrfs_key *key) 774 { 775 struct rb_node *node; 776 struct btrfs_root *root = NULL; 777 778 read_lock(&fs_info->global_root_lock); 779 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 780 if (node) 781 root = container_of(node, struct btrfs_root, rb_node); 782 read_unlock(&fs_info->global_root_lock); 783 784 return root; 785 } 786 787 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 788 { 789 struct btrfs_block_group *block_group; 790 u64 ret; 791 792 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 793 return 0; 794 795 if (bytenr) 796 block_group = btrfs_lookup_block_group(fs_info, bytenr); 797 else 798 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 799 ASSERT(block_group); 800 if (!block_group) 801 return 0; 802 ret = block_group->global_root_id; 803 btrfs_put_block_group(block_group); 804 805 return ret; 806 } 807 808 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 809 { 810 struct btrfs_key key = { 811 .objectid = BTRFS_CSUM_TREE_OBJECTID, 812 .type = BTRFS_ROOT_ITEM_KEY, 813 .offset = btrfs_global_root_id(fs_info, bytenr), 814 }; 815 816 return btrfs_global_root(fs_info, &key); 817 } 818 819 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 820 { 821 struct btrfs_key key = { 822 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 823 .type = BTRFS_ROOT_ITEM_KEY, 824 .offset = btrfs_global_root_id(fs_info, bytenr), 825 }; 826 827 return btrfs_global_root(fs_info, &key); 828 } 829 830 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) 831 { 832 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) 833 return fs_info->block_group_root; 834 return btrfs_extent_root(fs_info, 0); 835 } 836 837 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 838 u64 objectid) 839 { 840 struct btrfs_fs_info *fs_info = trans->fs_info; 841 struct extent_buffer *leaf; 842 struct btrfs_root *tree_root = fs_info->tree_root; 843 struct btrfs_root *root; 844 struct btrfs_key key; 845 unsigned int nofs_flag; 846 int ret = 0; 847 848 /* 849 * We're holding a transaction handle, so use a NOFS memory allocation 850 * context to avoid deadlock if reclaim happens. 851 */ 852 nofs_flag = memalloc_nofs_save(); 853 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 854 memalloc_nofs_restore(nofs_flag); 855 if (!root) 856 return ERR_PTR(-ENOMEM); 857 858 root->root_key.objectid = objectid; 859 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 860 root->root_key.offset = 0; 861 862 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 863 0, BTRFS_NESTING_NORMAL); 864 if (IS_ERR(leaf)) { 865 ret = PTR_ERR(leaf); 866 leaf = NULL; 867 goto fail; 868 } 869 870 root->node = leaf; 871 btrfs_mark_buffer_dirty(trans, leaf); 872 873 root->commit_root = btrfs_root_node(root); 874 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 875 876 btrfs_set_root_flags(&root->root_item, 0); 877 btrfs_set_root_limit(&root->root_item, 0); 878 btrfs_set_root_bytenr(&root->root_item, leaf->start); 879 btrfs_set_root_generation(&root->root_item, trans->transid); 880 btrfs_set_root_level(&root->root_item, 0); 881 btrfs_set_root_refs(&root->root_item, 1); 882 btrfs_set_root_used(&root->root_item, leaf->len); 883 btrfs_set_root_last_snapshot(&root->root_item, 0); 884 btrfs_set_root_dirid(&root->root_item, 0); 885 if (is_fstree(objectid)) 886 generate_random_guid(root->root_item.uuid); 887 else 888 export_guid(root->root_item.uuid, &guid_null); 889 btrfs_set_root_drop_level(&root->root_item, 0); 890 891 btrfs_tree_unlock(leaf); 892 893 key.objectid = objectid; 894 key.type = BTRFS_ROOT_ITEM_KEY; 895 key.offset = 0; 896 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 897 if (ret) 898 goto fail; 899 900 return root; 901 902 fail: 903 btrfs_put_root(root); 904 905 return ERR_PTR(ret); 906 } 907 908 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 909 struct btrfs_fs_info *fs_info) 910 { 911 struct btrfs_root *root; 912 913 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 914 if (!root) 915 return ERR_PTR(-ENOMEM); 916 917 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 918 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 919 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 920 921 return root; 922 } 923 924 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 925 struct btrfs_root *root) 926 { 927 struct extent_buffer *leaf; 928 929 /* 930 * DON'T set SHAREABLE bit for log trees. 931 * 932 * Log trees are not exposed to user space thus can't be snapshotted, 933 * and they go away before a real commit is actually done. 934 * 935 * They do store pointers to file data extents, and those reference 936 * counts still get updated (along with back refs to the log tree). 937 */ 938 939 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 940 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL); 941 if (IS_ERR(leaf)) 942 return PTR_ERR(leaf); 943 944 root->node = leaf; 945 946 btrfs_mark_buffer_dirty(trans, root->node); 947 btrfs_tree_unlock(root->node); 948 949 return 0; 950 } 951 952 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 953 struct btrfs_fs_info *fs_info) 954 { 955 struct btrfs_root *log_root; 956 957 log_root = alloc_log_tree(trans, fs_info); 958 if (IS_ERR(log_root)) 959 return PTR_ERR(log_root); 960 961 if (!btrfs_is_zoned(fs_info)) { 962 int ret = btrfs_alloc_log_tree_node(trans, log_root); 963 964 if (ret) { 965 btrfs_put_root(log_root); 966 return ret; 967 } 968 } 969 970 WARN_ON(fs_info->log_root_tree); 971 fs_info->log_root_tree = log_root; 972 return 0; 973 } 974 975 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 976 struct btrfs_root *root) 977 { 978 struct btrfs_fs_info *fs_info = root->fs_info; 979 struct btrfs_root *log_root; 980 struct btrfs_inode_item *inode_item; 981 int ret; 982 983 log_root = alloc_log_tree(trans, fs_info); 984 if (IS_ERR(log_root)) 985 return PTR_ERR(log_root); 986 987 ret = btrfs_alloc_log_tree_node(trans, log_root); 988 if (ret) { 989 btrfs_put_root(log_root); 990 return ret; 991 } 992 993 log_root->last_trans = trans->transid; 994 log_root->root_key.offset = root->root_key.objectid; 995 996 inode_item = &log_root->root_item.inode; 997 btrfs_set_stack_inode_generation(inode_item, 1); 998 btrfs_set_stack_inode_size(inode_item, 3); 999 btrfs_set_stack_inode_nlink(inode_item, 1); 1000 btrfs_set_stack_inode_nbytes(inode_item, 1001 fs_info->nodesize); 1002 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1003 1004 btrfs_set_root_node(&log_root->root_item, log_root->node); 1005 1006 WARN_ON(root->log_root); 1007 root->log_root = log_root; 1008 btrfs_set_root_log_transid(root, 0); 1009 root->log_transid_committed = -1; 1010 btrfs_set_root_last_log_commit(root, 0); 1011 return 0; 1012 } 1013 1014 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1015 struct btrfs_path *path, 1016 struct btrfs_key *key) 1017 { 1018 struct btrfs_root *root; 1019 struct btrfs_tree_parent_check check = { 0 }; 1020 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1021 u64 generation; 1022 int ret; 1023 int level; 1024 1025 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1026 if (!root) 1027 return ERR_PTR(-ENOMEM); 1028 1029 ret = btrfs_find_root(tree_root, key, path, 1030 &root->root_item, &root->root_key); 1031 if (ret) { 1032 if (ret > 0) 1033 ret = -ENOENT; 1034 goto fail; 1035 } 1036 1037 generation = btrfs_root_generation(&root->root_item); 1038 level = btrfs_root_level(&root->root_item); 1039 check.level = level; 1040 check.transid = generation; 1041 check.owner_root = key->objectid; 1042 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1043 &check); 1044 if (IS_ERR(root->node)) { 1045 ret = PTR_ERR(root->node); 1046 root->node = NULL; 1047 goto fail; 1048 } 1049 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1050 ret = -EIO; 1051 goto fail; 1052 } 1053 1054 /* 1055 * For real fs, and not log/reloc trees, root owner must 1056 * match its root node owner 1057 */ 1058 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) && 1059 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1060 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1061 root->root_key.objectid != btrfs_header_owner(root->node)) { 1062 btrfs_crit(fs_info, 1063 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1064 root->root_key.objectid, root->node->start, 1065 btrfs_header_owner(root->node), 1066 root->root_key.objectid); 1067 ret = -EUCLEAN; 1068 goto fail; 1069 } 1070 root->commit_root = btrfs_root_node(root); 1071 return root; 1072 fail: 1073 btrfs_put_root(root); 1074 return ERR_PTR(ret); 1075 } 1076 1077 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1078 struct btrfs_key *key) 1079 { 1080 struct btrfs_root *root; 1081 struct btrfs_path *path; 1082 1083 path = btrfs_alloc_path(); 1084 if (!path) 1085 return ERR_PTR(-ENOMEM); 1086 root = read_tree_root_path(tree_root, path, key); 1087 btrfs_free_path(path); 1088 1089 return root; 1090 } 1091 1092 /* 1093 * Initialize subvolume root in-memory structure 1094 * 1095 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1096 */ 1097 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1098 { 1099 int ret; 1100 1101 btrfs_drew_lock_init(&root->snapshot_lock); 1102 1103 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1104 !btrfs_is_data_reloc_root(root) && 1105 is_fstree(root->root_key.objectid)) { 1106 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1107 btrfs_check_and_init_root_item(&root->root_item); 1108 } 1109 1110 /* 1111 * Don't assign anonymous block device to roots that are not exposed to 1112 * userspace, the id pool is limited to 1M 1113 */ 1114 if (is_fstree(root->root_key.objectid) && 1115 btrfs_root_refs(&root->root_item) > 0) { 1116 if (!anon_dev) { 1117 ret = get_anon_bdev(&root->anon_dev); 1118 if (ret) 1119 goto fail; 1120 } else { 1121 root->anon_dev = anon_dev; 1122 } 1123 } 1124 1125 mutex_lock(&root->objectid_mutex); 1126 ret = btrfs_init_root_free_objectid(root); 1127 if (ret) { 1128 mutex_unlock(&root->objectid_mutex); 1129 goto fail; 1130 } 1131 1132 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1133 1134 mutex_unlock(&root->objectid_mutex); 1135 1136 return 0; 1137 fail: 1138 /* The caller is responsible to call btrfs_free_fs_root */ 1139 return ret; 1140 } 1141 1142 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1143 u64 root_id) 1144 { 1145 struct btrfs_root *root; 1146 1147 spin_lock(&fs_info->fs_roots_radix_lock); 1148 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1149 (unsigned long)root_id); 1150 root = btrfs_grab_root(root); 1151 spin_unlock(&fs_info->fs_roots_radix_lock); 1152 return root; 1153 } 1154 1155 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1156 u64 objectid) 1157 { 1158 struct btrfs_key key = { 1159 .objectid = objectid, 1160 .type = BTRFS_ROOT_ITEM_KEY, 1161 .offset = 0, 1162 }; 1163 1164 switch (objectid) { 1165 case BTRFS_ROOT_TREE_OBJECTID: 1166 return btrfs_grab_root(fs_info->tree_root); 1167 case BTRFS_EXTENT_TREE_OBJECTID: 1168 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1169 case BTRFS_CHUNK_TREE_OBJECTID: 1170 return btrfs_grab_root(fs_info->chunk_root); 1171 case BTRFS_DEV_TREE_OBJECTID: 1172 return btrfs_grab_root(fs_info->dev_root); 1173 case BTRFS_CSUM_TREE_OBJECTID: 1174 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1175 case BTRFS_QUOTA_TREE_OBJECTID: 1176 return btrfs_grab_root(fs_info->quota_root); 1177 case BTRFS_UUID_TREE_OBJECTID: 1178 return btrfs_grab_root(fs_info->uuid_root); 1179 case BTRFS_BLOCK_GROUP_TREE_OBJECTID: 1180 return btrfs_grab_root(fs_info->block_group_root); 1181 case BTRFS_FREE_SPACE_TREE_OBJECTID: 1182 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1183 case BTRFS_RAID_STRIPE_TREE_OBJECTID: 1184 return btrfs_grab_root(fs_info->stripe_root); 1185 default: 1186 return NULL; 1187 } 1188 } 1189 1190 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1191 struct btrfs_root *root) 1192 { 1193 int ret; 1194 1195 ret = radix_tree_preload(GFP_NOFS); 1196 if (ret) 1197 return ret; 1198 1199 spin_lock(&fs_info->fs_roots_radix_lock); 1200 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1201 (unsigned long)root->root_key.objectid, 1202 root); 1203 if (ret == 0) { 1204 btrfs_grab_root(root); 1205 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1206 } 1207 spin_unlock(&fs_info->fs_roots_radix_lock); 1208 radix_tree_preload_end(); 1209 1210 return ret; 1211 } 1212 1213 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1214 { 1215 #ifdef CONFIG_BTRFS_DEBUG 1216 struct btrfs_root *root; 1217 1218 while (!list_empty(&fs_info->allocated_roots)) { 1219 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1220 1221 root = list_first_entry(&fs_info->allocated_roots, 1222 struct btrfs_root, leak_list); 1223 btrfs_err(fs_info, "leaked root %s refcount %d", 1224 btrfs_root_name(&root->root_key, buf), 1225 refcount_read(&root->refs)); 1226 while (refcount_read(&root->refs) > 1) 1227 btrfs_put_root(root); 1228 btrfs_put_root(root); 1229 } 1230 #endif 1231 } 1232 1233 static void free_global_roots(struct btrfs_fs_info *fs_info) 1234 { 1235 struct btrfs_root *root; 1236 struct rb_node *node; 1237 1238 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1239 root = rb_entry(node, struct btrfs_root, rb_node); 1240 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1241 btrfs_put_root(root); 1242 } 1243 } 1244 1245 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1246 { 1247 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1248 percpu_counter_destroy(&fs_info->delalloc_bytes); 1249 percpu_counter_destroy(&fs_info->ordered_bytes); 1250 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1251 btrfs_free_csum_hash(fs_info); 1252 btrfs_free_stripe_hash_table(fs_info); 1253 btrfs_free_ref_cache(fs_info); 1254 kfree(fs_info->balance_ctl); 1255 kfree(fs_info->delayed_root); 1256 free_global_roots(fs_info); 1257 btrfs_put_root(fs_info->tree_root); 1258 btrfs_put_root(fs_info->chunk_root); 1259 btrfs_put_root(fs_info->dev_root); 1260 btrfs_put_root(fs_info->quota_root); 1261 btrfs_put_root(fs_info->uuid_root); 1262 btrfs_put_root(fs_info->fs_root); 1263 btrfs_put_root(fs_info->data_reloc_root); 1264 btrfs_put_root(fs_info->block_group_root); 1265 btrfs_put_root(fs_info->stripe_root); 1266 btrfs_check_leaked_roots(fs_info); 1267 btrfs_extent_buffer_leak_debug_check(fs_info); 1268 kfree(fs_info->super_copy); 1269 kfree(fs_info->super_for_commit); 1270 kfree(fs_info->subpage_info); 1271 kvfree(fs_info); 1272 } 1273 1274 1275 /* 1276 * Get an in-memory reference of a root structure. 1277 * 1278 * For essential trees like root/extent tree, we grab it from fs_info directly. 1279 * For subvolume trees, we check the cached filesystem roots first. If not 1280 * found, then read it from disk and add it to cached fs roots. 1281 * 1282 * Caller should release the root by calling btrfs_put_root() after the usage. 1283 * 1284 * NOTE: Reloc and log trees can't be read by this function as they share the 1285 * same root objectid. 1286 * 1287 * @objectid: root id 1288 * @anon_dev: preallocated anonymous block device number for new roots, 1289 * pass 0 for new allocation. 1290 * @check_ref: whether to check root item references, If true, return -ENOENT 1291 * for orphan roots 1292 */ 1293 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1294 u64 objectid, dev_t anon_dev, 1295 bool check_ref) 1296 { 1297 struct btrfs_root *root; 1298 struct btrfs_path *path; 1299 struct btrfs_key key; 1300 int ret; 1301 1302 root = btrfs_get_global_root(fs_info, objectid); 1303 if (root) 1304 return root; 1305 1306 /* 1307 * If we're called for non-subvolume trees, and above function didn't 1308 * find one, do not try to read it from disk. 1309 * 1310 * This is namely for free-space-tree and quota tree, which can change 1311 * at runtime and should only be grabbed from fs_info. 1312 */ 1313 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) 1314 return ERR_PTR(-ENOENT); 1315 again: 1316 root = btrfs_lookup_fs_root(fs_info, objectid); 1317 if (root) { 1318 /* Shouldn't get preallocated anon_dev for cached roots */ 1319 ASSERT(!anon_dev); 1320 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1321 btrfs_put_root(root); 1322 return ERR_PTR(-ENOENT); 1323 } 1324 return root; 1325 } 1326 1327 key.objectid = objectid; 1328 key.type = BTRFS_ROOT_ITEM_KEY; 1329 key.offset = (u64)-1; 1330 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1331 if (IS_ERR(root)) 1332 return root; 1333 1334 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1335 ret = -ENOENT; 1336 goto fail; 1337 } 1338 1339 ret = btrfs_init_fs_root(root, anon_dev); 1340 if (ret) 1341 goto fail; 1342 1343 path = btrfs_alloc_path(); 1344 if (!path) { 1345 ret = -ENOMEM; 1346 goto fail; 1347 } 1348 key.objectid = BTRFS_ORPHAN_OBJECTID; 1349 key.type = BTRFS_ORPHAN_ITEM_KEY; 1350 key.offset = objectid; 1351 1352 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1353 btrfs_free_path(path); 1354 if (ret < 0) 1355 goto fail; 1356 if (ret == 0) 1357 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1358 1359 ret = btrfs_insert_fs_root(fs_info, root); 1360 if (ret) { 1361 if (ret == -EEXIST) { 1362 btrfs_put_root(root); 1363 goto again; 1364 } 1365 goto fail; 1366 } 1367 return root; 1368 fail: 1369 /* 1370 * If our caller provided us an anonymous device, then it's his 1371 * responsibility to free it in case we fail. So we have to set our 1372 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1373 * and once again by our caller. 1374 */ 1375 if (anon_dev) 1376 root->anon_dev = 0; 1377 btrfs_put_root(root); 1378 return ERR_PTR(ret); 1379 } 1380 1381 /* 1382 * Get in-memory reference of a root structure 1383 * 1384 * @objectid: tree objectid 1385 * @check_ref: if set, verify that the tree exists and the item has at least 1386 * one reference 1387 */ 1388 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1389 u64 objectid, bool check_ref) 1390 { 1391 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1392 } 1393 1394 /* 1395 * Get in-memory reference of a root structure, created as new, optionally pass 1396 * the anonymous block device id 1397 * 1398 * @objectid: tree objectid 1399 * @anon_dev: if zero, allocate a new anonymous block device or use the 1400 * parameter value 1401 */ 1402 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1403 u64 objectid, dev_t anon_dev) 1404 { 1405 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1406 } 1407 1408 /* 1409 * Return a root for the given objectid. 1410 * 1411 * @fs_info: the fs_info 1412 * @objectid: the objectid we need to lookup 1413 * 1414 * This is exclusively used for backref walking, and exists specifically because 1415 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1416 * creation time, which means we may have to read the tree_root in order to look 1417 * up a fs root that is not in memory. If the root is not in memory we will 1418 * read the tree root commit root and look up the fs root from there. This is a 1419 * temporary root, it will not be inserted into the radix tree as it doesn't 1420 * have the most uptodate information, it'll simply be discarded once the 1421 * backref code is finished using the root. 1422 */ 1423 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1424 struct btrfs_path *path, 1425 u64 objectid) 1426 { 1427 struct btrfs_root *root; 1428 struct btrfs_key key; 1429 1430 ASSERT(path->search_commit_root && path->skip_locking); 1431 1432 /* 1433 * This can return -ENOENT if we ask for a root that doesn't exist, but 1434 * since this is called via the backref walking code we won't be looking 1435 * up a root that doesn't exist, unless there's corruption. So if root 1436 * != NULL just return it. 1437 */ 1438 root = btrfs_get_global_root(fs_info, objectid); 1439 if (root) 1440 return root; 1441 1442 root = btrfs_lookup_fs_root(fs_info, objectid); 1443 if (root) 1444 return root; 1445 1446 key.objectid = objectid; 1447 key.type = BTRFS_ROOT_ITEM_KEY; 1448 key.offset = (u64)-1; 1449 root = read_tree_root_path(fs_info->tree_root, path, &key); 1450 btrfs_release_path(path); 1451 1452 return root; 1453 } 1454 1455 static int cleaner_kthread(void *arg) 1456 { 1457 struct btrfs_fs_info *fs_info = arg; 1458 int again; 1459 1460 while (1) { 1461 again = 0; 1462 1463 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1464 1465 /* Make the cleaner go to sleep early. */ 1466 if (btrfs_need_cleaner_sleep(fs_info)) 1467 goto sleep; 1468 1469 /* 1470 * Do not do anything if we might cause open_ctree() to block 1471 * before we have finished mounting the filesystem. 1472 */ 1473 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1474 goto sleep; 1475 1476 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1477 goto sleep; 1478 1479 /* 1480 * Avoid the problem that we change the status of the fs 1481 * during the above check and trylock. 1482 */ 1483 if (btrfs_need_cleaner_sleep(fs_info)) { 1484 mutex_unlock(&fs_info->cleaner_mutex); 1485 goto sleep; 1486 } 1487 1488 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) 1489 btrfs_sysfs_feature_update(fs_info); 1490 1491 btrfs_run_delayed_iputs(fs_info); 1492 1493 again = btrfs_clean_one_deleted_snapshot(fs_info); 1494 mutex_unlock(&fs_info->cleaner_mutex); 1495 1496 /* 1497 * The defragger has dealt with the R/O remount and umount, 1498 * needn't do anything special here. 1499 */ 1500 btrfs_run_defrag_inodes(fs_info); 1501 1502 /* 1503 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1504 * with relocation (btrfs_relocate_chunk) and relocation 1505 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1506 * after acquiring fs_info->reclaim_bgs_lock. So we 1507 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1508 * unused block groups. 1509 */ 1510 btrfs_delete_unused_bgs(fs_info); 1511 1512 /* 1513 * Reclaim block groups in the reclaim_bgs list after we deleted 1514 * all unused block_groups. This possibly gives us some more free 1515 * space. 1516 */ 1517 btrfs_reclaim_bgs(fs_info); 1518 sleep: 1519 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1520 if (kthread_should_park()) 1521 kthread_parkme(); 1522 if (kthread_should_stop()) 1523 return 0; 1524 if (!again) { 1525 set_current_state(TASK_INTERRUPTIBLE); 1526 schedule(); 1527 __set_current_state(TASK_RUNNING); 1528 } 1529 } 1530 } 1531 1532 static int transaction_kthread(void *arg) 1533 { 1534 struct btrfs_root *root = arg; 1535 struct btrfs_fs_info *fs_info = root->fs_info; 1536 struct btrfs_trans_handle *trans; 1537 struct btrfs_transaction *cur; 1538 u64 transid; 1539 time64_t delta; 1540 unsigned long delay; 1541 bool cannot_commit; 1542 1543 do { 1544 cannot_commit = false; 1545 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1546 mutex_lock(&fs_info->transaction_kthread_mutex); 1547 1548 spin_lock(&fs_info->trans_lock); 1549 cur = fs_info->running_transaction; 1550 if (!cur) { 1551 spin_unlock(&fs_info->trans_lock); 1552 goto sleep; 1553 } 1554 1555 delta = ktime_get_seconds() - cur->start_time; 1556 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1557 cur->state < TRANS_STATE_COMMIT_PREP && 1558 delta < fs_info->commit_interval) { 1559 spin_unlock(&fs_info->trans_lock); 1560 delay -= msecs_to_jiffies((delta - 1) * 1000); 1561 delay = min(delay, 1562 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1563 goto sleep; 1564 } 1565 transid = cur->transid; 1566 spin_unlock(&fs_info->trans_lock); 1567 1568 /* If the file system is aborted, this will always fail. */ 1569 trans = btrfs_attach_transaction(root); 1570 if (IS_ERR(trans)) { 1571 if (PTR_ERR(trans) != -ENOENT) 1572 cannot_commit = true; 1573 goto sleep; 1574 } 1575 if (transid == trans->transid) { 1576 btrfs_commit_transaction(trans); 1577 } else { 1578 btrfs_end_transaction(trans); 1579 } 1580 sleep: 1581 wake_up_process(fs_info->cleaner_kthread); 1582 mutex_unlock(&fs_info->transaction_kthread_mutex); 1583 1584 if (BTRFS_FS_ERROR(fs_info)) 1585 btrfs_cleanup_transaction(fs_info); 1586 if (!kthread_should_stop() && 1587 (!btrfs_transaction_blocked(fs_info) || 1588 cannot_commit)) 1589 schedule_timeout_interruptible(delay); 1590 } while (!kthread_should_stop()); 1591 return 0; 1592 } 1593 1594 /* 1595 * This will find the highest generation in the array of root backups. The 1596 * index of the highest array is returned, or -EINVAL if we can't find 1597 * anything. 1598 * 1599 * We check to make sure the array is valid by comparing the 1600 * generation of the latest root in the array with the generation 1601 * in the super block. If they don't match we pitch it. 1602 */ 1603 static int find_newest_super_backup(struct btrfs_fs_info *info) 1604 { 1605 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1606 u64 cur; 1607 struct btrfs_root_backup *root_backup; 1608 int i; 1609 1610 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1611 root_backup = info->super_copy->super_roots + i; 1612 cur = btrfs_backup_tree_root_gen(root_backup); 1613 if (cur == newest_gen) 1614 return i; 1615 } 1616 1617 return -EINVAL; 1618 } 1619 1620 /* 1621 * copy all the root pointers into the super backup array. 1622 * this will bump the backup pointer by one when it is 1623 * done 1624 */ 1625 static void backup_super_roots(struct btrfs_fs_info *info) 1626 { 1627 const int next_backup = info->backup_root_index; 1628 struct btrfs_root_backup *root_backup; 1629 1630 root_backup = info->super_for_commit->super_roots + next_backup; 1631 1632 /* 1633 * make sure all of our padding and empty slots get zero filled 1634 * regardless of which ones we use today 1635 */ 1636 memset(root_backup, 0, sizeof(*root_backup)); 1637 1638 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1639 1640 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1641 btrfs_set_backup_tree_root_gen(root_backup, 1642 btrfs_header_generation(info->tree_root->node)); 1643 1644 btrfs_set_backup_tree_root_level(root_backup, 1645 btrfs_header_level(info->tree_root->node)); 1646 1647 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1648 btrfs_set_backup_chunk_root_gen(root_backup, 1649 btrfs_header_generation(info->chunk_root->node)); 1650 btrfs_set_backup_chunk_root_level(root_backup, 1651 btrfs_header_level(info->chunk_root->node)); 1652 1653 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1654 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1655 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1656 1657 btrfs_set_backup_extent_root(root_backup, 1658 extent_root->node->start); 1659 btrfs_set_backup_extent_root_gen(root_backup, 1660 btrfs_header_generation(extent_root->node)); 1661 btrfs_set_backup_extent_root_level(root_backup, 1662 btrfs_header_level(extent_root->node)); 1663 1664 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1665 btrfs_set_backup_csum_root_gen(root_backup, 1666 btrfs_header_generation(csum_root->node)); 1667 btrfs_set_backup_csum_root_level(root_backup, 1668 btrfs_header_level(csum_root->node)); 1669 } 1670 1671 /* 1672 * we might commit during log recovery, which happens before we set 1673 * the fs_root. Make sure it is valid before we fill it in. 1674 */ 1675 if (info->fs_root && info->fs_root->node) { 1676 btrfs_set_backup_fs_root(root_backup, 1677 info->fs_root->node->start); 1678 btrfs_set_backup_fs_root_gen(root_backup, 1679 btrfs_header_generation(info->fs_root->node)); 1680 btrfs_set_backup_fs_root_level(root_backup, 1681 btrfs_header_level(info->fs_root->node)); 1682 } 1683 1684 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1685 btrfs_set_backup_dev_root_gen(root_backup, 1686 btrfs_header_generation(info->dev_root->node)); 1687 btrfs_set_backup_dev_root_level(root_backup, 1688 btrfs_header_level(info->dev_root->node)); 1689 1690 btrfs_set_backup_total_bytes(root_backup, 1691 btrfs_super_total_bytes(info->super_copy)); 1692 btrfs_set_backup_bytes_used(root_backup, 1693 btrfs_super_bytes_used(info->super_copy)); 1694 btrfs_set_backup_num_devices(root_backup, 1695 btrfs_super_num_devices(info->super_copy)); 1696 1697 /* 1698 * if we don't copy this out to the super_copy, it won't get remembered 1699 * for the next commit 1700 */ 1701 memcpy(&info->super_copy->super_roots, 1702 &info->super_for_commit->super_roots, 1703 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1704 } 1705 1706 /* 1707 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio 1708 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1709 * 1710 * @fs_info: filesystem whose backup roots need to be read 1711 * @priority: priority of backup root required 1712 * 1713 * Returns backup root index on success and -EINVAL otherwise. 1714 */ 1715 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1716 { 1717 int backup_index = find_newest_super_backup(fs_info); 1718 struct btrfs_super_block *super = fs_info->super_copy; 1719 struct btrfs_root_backup *root_backup; 1720 1721 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1722 if (priority == 0) 1723 return backup_index; 1724 1725 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1726 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1727 } else { 1728 return -EINVAL; 1729 } 1730 1731 root_backup = super->super_roots + backup_index; 1732 1733 btrfs_set_super_generation(super, 1734 btrfs_backup_tree_root_gen(root_backup)); 1735 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1736 btrfs_set_super_root_level(super, 1737 btrfs_backup_tree_root_level(root_backup)); 1738 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1739 1740 /* 1741 * Fixme: the total bytes and num_devices need to match or we should 1742 * need a fsck 1743 */ 1744 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1745 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1746 1747 return backup_index; 1748 } 1749 1750 /* helper to cleanup workers */ 1751 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1752 { 1753 btrfs_destroy_workqueue(fs_info->fixup_workers); 1754 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1755 btrfs_destroy_workqueue(fs_info->workers); 1756 if (fs_info->endio_workers) 1757 destroy_workqueue(fs_info->endio_workers); 1758 if (fs_info->rmw_workers) 1759 destroy_workqueue(fs_info->rmw_workers); 1760 if (fs_info->compressed_write_workers) 1761 destroy_workqueue(fs_info->compressed_write_workers); 1762 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1763 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1764 btrfs_destroy_workqueue(fs_info->delayed_workers); 1765 btrfs_destroy_workqueue(fs_info->caching_workers); 1766 btrfs_destroy_workqueue(fs_info->flush_workers); 1767 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1768 if (fs_info->discard_ctl.discard_workers) 1769 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1770 /* 1771 * Now that all other work queues are destroyed, we can safely destroy 1772 * the queues used for metadata I/O, since tasks from those other work 1773 * queues can do metadata I/O operations. 1774 */ 1775 if (fs_info->endio_meta_workers) 1776 destroy_workqueue(fs_info->endio_meta_workers); 1777 } 1778 1779 static void free_root_extent_buffers(struct btrfs_root *root) 1780 { 1781 if (root) { 1782 free_extent_buffer(root->node); 1783 free_extent_buffer(root->commit_root); 1784 root->node = NULL; 1785 root->commit_root = NULL; 1786 } 1787 } 1788 1789 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 1790 { 1791 struct btrfs_root *root, *tmp; 1792 1793 rbtree_postorder_for_each_entry_safe(root, tmp, 1794 &fs_info->global_root_tree, 1795 rb_node) 1796 free_root_extent_buffers(root); 1797 } 1798 1799 /* helper to cleanup tree roots */ 1800 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1801 { 1802 free_root_extent_buffers(info->tree_root); 1803 1804 free_global_root_pointers(info); 1805 free_root_extent_buffers(info->dev_root); 1806 free_root_extent_buffers(info->quota_root); 1807 free_root_extent_buffers(info->uuid_root); 1808 free_root_extent_buffers(info->fs_root); 1809 free_root_extent_buffers(info->data_reloc_root); 1810 free_root_extent_buffers(info->block_group_root); 1811 free_root_extent_buffers(info->stripe_root); 1812 if (free_chunk_root) 1813 free_root_extent_buffers(info->chunk_root); 1814 } 1815 1816 void btrfs_put_root(struct btrfs_root *root) 1817 { 1818 if (!root) 1819 return; 1820 1821 if (refcount_dec_and_test(&root->refs)) { 1822 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 1823 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 1824 if (root->anon_dev) 1825 free_anon_bdev(root->anon_dev); 1826 free_root_extent_buffers(root); 1827 #ifdef CONFIG_BTRFS_DEBUG 1828 spin_lock(&root->fs_info->fs_roots_radix_lock); 1829 list_del_init(&root->leak_list); 1830 spin_unlock(&root->fs_info->fs_roots_radix_lock); 1831 #endif 1832 kfree(root); 1833 } 1834 } 1835 1836 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 1837 { 1838 int ret; 1839 struct btrfs_root *gang[8]; 1840 int i; 1841 1842 while (!list_empty(&fs_info->dead_roots)) { 1843 gang[0] = list_entry(fs_info->dead_roots.next, 1844 struct btrfs_root, root_list); 1845 list_del(&gang[0]->root_list); 1846 1847 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 1848 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 1849 btrfs_put_root(gang[0]); 1850 } 1851 1852 while (1) { 1853 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 1854 (void **)gang, 0, 1855 ARRAY_SIZE(gang)); 1856 if (!ret) 1857 break; 1858 for (i = 0; i < ret; i++) 1859 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 1860 } 1861 } 1862 1863 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 1864 { 1865 mutex_init(&fs_info->scrub_lock); 1866 atomic_set(&fs_info->scrubs_running, 0); 1867 atomic_set(&fs_info->scrub_pause_req, 0); 1868 atomic_set(&fs_info->scrubs_paused, 0); 1869 atomic_set(&fs_info->scrub_cancel_req, 0); 1870 init_waitqueue_head(&fs_info->scrub_pause_wait); 1871 refcount_set(&fs_info->scrub_workers_refcnt, 0); 1872 } 1873 1874 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 1875 { 1876 spin_lock_init(&fs_info->balance_lock); 1877 mutex_init(&fs_info->balance_mutex); 1878 atomic_set(&fs_info->balance_pause_req, 0); 1879 atomic_set(&fs_info->balance_cancel_req, 0); 1880 fs_info->balance_ctl = NULL; 1881 init_waitqueue_head(&fs_info->balance_wait_q); 1882 atomic_set(&fs_info->reloc_cancel_req, 0); 1883 } 1884 1885 static int btrfs_init_btree_inode(struct super_block *sb) 1886 { 1887 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1888 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 1889 fs_info->tree_root); 1890 struct inode *inode; 1891 1892 inode = new_inode(sb); 1893 if (!inode) 1894 return -ENOMEM; 1895 1896 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 1897 set_nlink(inode, 1); 1898 /* 1899 * we set the i_size on the btree inode to the max possible int. 1900 * the real end of the address space is determined by all of 1901 * the devices in the system 1902 */ 1903 inode->i_size = OFFSET_MAX; 1904 inode->i_mapping->a_ops = &btree_aops; 1905 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); 1906 1907 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 1908 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 1909 IO_TREE_BTREE_INODE_IO); 1910 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 1911 1912 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 1913 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID; 1914 BTRFS_I(inode)->location.type = 0; 1915 BTRFS_I(inode)->location.offset = 0; 1916 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 1917 __insert_inode_hash(inode, hash); 1918 fs_info->btree_inode = inode; 1919 1920 return 0; 1921 } 1922 1923 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 1924 { 1925 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 1926 init_rwsem(&fs_info->dev_replace.rwsem); 1927 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 1928 } 1929 1930 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 1931 { 1932 spin_lock_init(&fs_info->qgroup_lock); 1933 mutex_init(&fs_info->qgroup_ioctl_lock); 1934 fs_info->qgroup_tree = RB_ROOT; 1935 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 1936 fs_info->qgroup_seq = 1; 1937 fs_info->qgroup_ulist = NULL; 1938 fs_info->qgroup_rescan_running = false; 1939 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL; 1940 mutex_init(&fs_info->qgroup_rescan_lock); 1941 } 1942 1943 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 1944 { 1945 u32 max_active = fs_info->thread_pool_size; 1946 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 1947 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE; 1948 1949 fs_info->workers = 1950 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 1951 1952 fs_info->delalloc_workers = 1953 btrfs_alloc_workqueue(fs_info, "delalloc", 1954 flags, max_active, 2); 1955 1956 fs_info->flush_workers = 1957 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 1958 flags, max_active, 0); 1959 1960 fs_info->caching_workers = 1961 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 1962 1963 fs_info->fixup_workers = 1964 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags); 1965 1966 fs_info->endio_workers = 1967 alloc_workqueue("btrfs-endio", flags, max_active); 1968 fs_info->endio_meta_workers = 1969 alloc_workqueue("btrfs-endio-meta", flags, max_active); 1970 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 1971 fs_info->endio_write_workers = 1972 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 1973 max_active, 2); 1974 fs_info->compressed_write_workers = 1975 alloc_workqueue("btrfs-compressed-write", flags, max_active); 1976 fs_info->endio_freespace_worker = 1977 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 1978 max_active, 0); 1979 fs_info->delayed_workers = 1980 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 1981 max_active, 0); 1982 fs_info->qgroup_rescan_workers = 1983 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan", 1984 ordered_flags); 1985 fs_info->discard_ctl.discard_workers = 1986 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE); 1987 1988 if (!(fs_info->workers && 1989 fs_info->delalloc_workers && fs_info->flush_workers && 1990 fs_info->endio_workers && fs_info->endio_meta_workers && 1991 fs_info->compressed_write_workers && 1992 fs_info->endio_write_workers && 1993 fs_info->endio_freespace_worker && fs_info->rmw_workers && 1994 fs_info->caching_workers && fs_info->fixup_workers && 1995 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 1996 fs_info->discard_ctl.discard_workers)) { 1997 return -ENOMEM; 1998 } 1999 2000 return 0; 2001 } 2002 2003 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2004 { 2005 struct crypto_shash *csum_shash; 2006 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2007 2008 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2009 2010 if (IS_ERR(csum_shash)) { 2011 btrfs_err(fs_info, "error allocating %s hash for checksum", 2012 csum_driver); 2013 return PTR_ERR(csum_shash); 2014 } 2015 2016 fs_info->csum_shash = csum_shash; 2017 2018 /* 2019 * Check if the checksum implementation is a fast accelerated one. 2020 * As-is this is a bit of a hack and should be replaced once the csum 2021 * implementations provide that information themselves. 2022 */ 2023 switch (csum_type) { 2024 case BTRFS_CSUM_TYPE_CRC32: 2025 if (!strstr(crypto_shash_driver_name(csum_shash), "generic")) 2026 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2027 break; 2028 case BTRFS_CSUM_TYPE_XXHASH: 2029 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2030 break; 2031 default: 2032 break; 2033 } 2034 2035 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2036 btrfs_super_csum_name(csum_type), 2037 crypto_shash_driver_name(csum_shash)); 2038 return 0; 2039 } 2040 2041 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2042 struct btrfs_fs_devices *fs_devices) 2043 { 2044 int ret; 2045 struct btrfs_tree_parent_check check = { 0 }; 2046 struct btrfs_root *log_tree_root; 2047 struct btrfs_super_block *disk_super = fs_info->super_copy; 2048 u64 bytenr = btrfs_super_log_root(disk_super); 2049 int level = btrfs_super_log_root_level(disk_super); 2050 2051 if (fs_devices->rw_devices == 0) { 2052 btrfs_warn(fs_info, "log replay required on RO media"); 2053 return -EIO; 2054 } 2055 2056 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2057 GFP_KERNEL); 2058 if (!log_tree_root) 2059 return -ENOMEM; 2060 2061 check.level = level; 2062 check.transid = fs_info->generation + 1; 2063 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2064 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2065 if (IS_ERR(log_tree_root->node)) { 2066 btrfs_warn(fs_info, "failed to read log tree"); 2067 ret = PTR_ERR(log_tree_root->node); 2068 log_tree_root->node = NULL; 2069 btrfs_put_root(log_tree_root); 2070 return ret; 2071 } 2072 if (!extent_buffer_uptodate(log_tree_root->node)) { 2073 btrfs_err(fs_info, "failed to read log tree"); 2074 btrfs_put_root(log_tree_root); 2075 return -EIO; 2076 } 2077 2078 /* returns with log_tree_root freed on success */ 2079 ret = btrfs_recover_log_trees(log_tree_root); 2080 if (ret) { 2081 btrfs_handle_fs_error(fs_info, ret, 2082 "Failed to recover log tree"); 2083 btrfs_put_root(log_tree_root); 2084 return ret; 2085 } 2086 2087 if (sb_rdonly(fs_info->sb)) { 2088 ret = btrfs_commit_super(fs_info); 2089 if (ret) 2090 return ret; 2091 } 2092 2093 return 0; 2094 } 2095 2096 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2097 struct btrfs_path *path, u64 objectid, 2098 const char *name) 2099 { 2100 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2101 struct btrfs_root *root; 2102 u64 max_global_id = 0; 2103 int ret; 2104 struct btrfs_key key = { 2105 .objectid = objectid, 2106 .type = BTRFS_ROOT_ITEM_KEY, 2107 .offset = 0, 2108 }; 2109 bool found = false; 2110 2111 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2112 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2113 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2114 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2115 return 0; 2116 } 2117 2118 while (1) { 2119 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2120 if (ret < 0) 2121 break; 2122 2123 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2124 ret = btrfs_next_leaf(tree_root, path); 2125 if (ret) { 2126 if (ret > 0) 2127 ret = 0; 2128 break; 2129 } 2130 } 2131 ret = 0; 2132 2133 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2134 if (key.objectid != objectid) 2135 break; 2136 btrfs_release_path(path); 2137 2138 /* 2139 * Just worry about this for extent tree, it'll be the same for 2140 * everybody. 2141 */ 2142 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2143 max_global_id = max(max_global_id, key.offset); 2144 2145 found = true; 2146 root = read_tree_root_path(tree_root, path, &key); 2147 if (IS_ERR(root)) { 2148 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2149 ret = PTR_ERR(root); 2150 break; 2151 } 2152 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2153 ret = btrfs_global_root_insert(root); 2154 if (ret) { 2155 btrfs_put_root(root); 2156 break; 2157 } 2158 key.offset++; 2159 } 2160 btrfs_release_path(path); 2161 2162 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2163 fs_info->nr_global_roots = max_global_id + 1; 2164 2165 if (!found || ret) { 2166 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2167 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2168 2169 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2170 ret = ret ? ret : -ENOENT; 2171 else 2172 ret = 0; 2173 btrfs_err(fs_info, "failed to load root %s", name); 2174 } 2175 return ret; 2176 } 2177 2178 static int load_global_roots(struct btrfs_root *tree_root) 2179 { 2180 struct btrfs_path *path; 2181 int ret = 0; 2182 2183 path = btrfs_alloc_path(); 2184 if (!path) 2185 return -ENOMEM; 2186 2187 ret = load_global_roots_objectid(tree_root, path, 2188 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2189 if (ret) 2190 goto out; 2191 ret = load_global_roots_objectid(tree_root, path, 2192 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2193 if (ret) 2194 goto out; 2195 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2196 goto out; 2197 ret = load_global_roots_objectid(tree_root, path, 2198 BTRFS_FREE_SPACE_TREE_OBJECTID, 2199 "free space"); 2200 out: 2201 btrfs_free_path(path); 2202 return ret; 2203 } 2204 2205 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2206 { 2207 struct btrfs_root *tree_root = fs_info->tree_root; 2208 struct btrfs_root *root; 2209 struct btrfs_key location; 2210 int ret; 2211 2212 BUG_ON(!fs_info->tree_root); 2213 2214 ret = load_global_roots(tree_root); 2215 if (ret) 2216 return ret; 2217 2218 location.type = BTRFS_ROOT_ITEM_KEY; 2219 location.offset = 0; 2220 2221 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2222 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2223 root = btrfs_read_tree_root(tree_root, &location); 2224 if (IS_ERR(root)) { 2225 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2226 ret = PTR_ERR(root); 2227 goto out; 2228 } 2229 } else { 2230 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2231 fs_info->block_group_root = root; 2232 } 2233 } 2234 2235 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2236 root = btrfs_read_tree_root(tree_root, &location); 2237 if (IS_ERR(root)) { 2238 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2239 ret = PTR_ERR(root); 2240 goto out; 2241 } 2242 } else { 2243 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2244 fs_info->dev_root = root; 2245 } 2246 /* Initialize fs_info for all devices in any case */ 2247 ret = btrfs_init_devices_late(fs_info); 2248 if (ret) 2249 goto out; 2250 2251 /* 2252 * This tree can share blocks with some other fs tree during relocation 2253 * and we need a proper setup by btrfs_get_fs_root 2254 */ 2255 root = btrfs_get_fs_root(tree_root->fs_info, 2256 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2257 if (IS_ERR(root)) { 2258 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2259 ret = PTR_ERR(root); 2260 goto out; 2261 } 2262 } else { 2263 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2264 fs_info->data_reloc_root = root; 2265 } 2266 2267 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2268 root = btrfs_read_tree_root(tree_root, &location); 2269 if (!IS_ERR(root)) { 2270 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2271 fs_info->quota_root = root; 2272 } 2273 2274 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2275 root = btrfs_read_tree_root(tree_root, &location); 2276 if (IS_ERR(root)) { 2277 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2278 ret = PTR_ERR(root); 2279 if (ret != -ENOENT) 2280 goto out; 2281 } 2282 } else { 2283 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2284 fs_info->uuid_root = root; 2285 } 2286 2287 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) { 2288 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID; 2289 root = btrfs_read_tree_root(tree_root, &location); 2290 if (IS_ERR(root)) { 2291 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2292 ret = PTR_ERR(root); 2293 goto out; 2294 } 2295 } else { 2296 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2297 fs_info->stripe_root = root; 2298 } 2299 } 2300 2301 return 0; 2302 out: 2303 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2304 location.objectid, ret); 2305 return ret; 2306 } 2307 2308 /* 2309 * Real super block validation 2310 * NOTE: super csum type and incompat features will not be checked here. 2311 * 2312 * @sb: super block to check 2313 * @mirror_num: the super block number to check its bytenr: 2314 * 0 the primary (1st) sb 2315 * 1, 2 2nd and 3rd backup copy 2316 * -1 skip bytenr check 2317 */ 2318 int btrfs_validate_super(struct btrfs_fs_info *fs_info, 2319 struct btrfs_super_block *sb, int mirror_num) 2320 { 2321 u64 nodesize = btrfs_super_nodesize(sb); 2322 u64 sectorsize = btrfs_super_sectorsize(sb); 2323 int ret = 0; 2324 2325 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2326 btrfs_err(fs_info, "no valid FS found"); 2327 ret = -EINVAL; 2328 } 2329 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2330 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2331 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2332 ret = -EINVAL; 2333 } 2334 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2335 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2336 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2337 ret = -EINVAL; 2338 } 2339 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2340 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2341 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2342 ret = -EINVAL; 2343 } 2344 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2345 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2346 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2347 ret = -EINVAL; 2348 } 2349 2350 /* 2351 * Check sectorsize and nodesize first, other check will need it. 2352 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2353 */ 2354 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2355 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2356 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2357 ret = -EINVAL; 2358 } 2359 2360 /* 2361 * We only support at most two sectorsizes: 4K and PAGE_SIZE. 2362 * 2363 * We can support 16K sectorsize with 64K page size without problem, 2364 * but such sectorsize/pagesize combination doesn't make much sense. 2365 * 4K will be our future standard, PAGE_SIZE is supported from the very 2366 * beginning. 2367 */ 2368 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) { 2369 btrfs_err(fs_info, 2370 "sectorsize %llu not yet supported for page size %lu", 2371 sectorsize, PAGE_SIZE); 2372 ret = -EINVAL; 2373 } 2374 2375 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2376 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2377 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2378 ret = -EINVAL; 2379 } 2380 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2381 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2382 le32_to_cpu(sb->__unused_leafsize), nodesize); 2383 ret = -EINVAL; 2384 } 2385 2386 /* Root alignment check */ 2387 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2388 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2389 btrfs_super_root(sb)); 2390 ret = -EINVAL; 2391 } 2392 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2393 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2394 btrfs_super_chunk_root(sb)); 2395 ret = -EINVAL; 2396 } 2397 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2398 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2399 btrfs_super_log_root(sb)); 2400 ret = -EINVAL; 2401 } 2402 2403 if (!fs_info->fs_devices->temp_fsid && 2404 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) { 2405 btrfs_err(fs_info, 2406 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2407 sb->fsid, fs_info->fs_devices->fsid); 2408 ret = -EINVAL; 2409 } 2410 2411 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb), 2412 BTRFS_FSID_SIZE) != 0) { 2413 btrfs_err(fs_info, 2414 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2415 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid); 2416 ret = -EINVAL; 2417 } 2418 2419 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2420 BTRFS_FSID_SIZE) != 0) { 2421 btrfs_err(fs_info, 2422 "dev_item UUID does not match metadata fsid: %pU != %pU", 2423 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2424 ret = -EINVAL; 2425 } 2426 2427 /* 2428 * Artificial requirement for block-group-tree to force newer features 2429 * (free-space-tree, no-holes) so the test matrix is smaller. 2430 */ 2431 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2432 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2433 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2434 btrfs_err(fs_info, 2435 "block-group-tree feature requires fres-space-tree and no-holes"); 2436 ret = -EINVAL; 2437 } 2438 2439 /* 2440 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2441 * done later 2442 */ 2443 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2444 btrfs_err(fs_info, "bytes_used is too small %llu", 2445 btrfs_super_bytes_used(sb)); 2446 ret = -EINVAL; 2447 } 2448 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2449 btrfs_err(fs_info, "invalid stripesize %u", 2450 btrfs_super_stripesize(sb)); 2451 ret = -EINVAL; 2452 } 2453 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2454 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2455 btrfs_super_num_devices(sb)); 2456 if (btrfs_super_num_devices(sb) == 0) { 2457 btrfs_err(fs_info, "number of devices is 0"); 2458 ret = -EINVAL; 2459 } 2460 2461 if (mirror_num >= 0 && 2462 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2463 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2464 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2465 ret = -EINVAL; 2466 } 2467 2468 /* 2469 * Obvious sys_chunk_array corruptions, it must hold at least one key 2470 * and one chunk 2471 */ 2472 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2473 btrfs_err(fs_info, "system chunk array too big %u > %u", 2474 btrfs_super_sys_array_size(sb), 2475 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2476 ret = -EINVAL; 2477 } 2478 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2479 + sizeof(struct btrfs_chunk)) { 2480 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2481 btrfs_super_sys_array_size(sb), 2482 sizeof(struct btrfs_disk_key) 2483 + sizeof(struct btrfs_chunk)); 2484 ret = -EINVAL; 2485 } 2486 2487 /* 2488 * The generation is a global counter, we'll trust it more than the others 2489 * but it's still possible that it's the one that's wrong. 2490 */ 2491 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2492 btrfs_warn(fs_info, 2493 "suspicious: generation < chunk_root_generation: %llu < %llu", 2494 btrfs_super_generation(sb), 2495 btrfs_super_chunk_root_generation(sb)); 2496 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2497 && btrfs_super_cache_generation(sb) != (u64)-1) 2498 btrfs_warn(fs_info, 2499 "suspicious: generation < cache_generation: %llu < %llu", 2500 btrfs_super_generation(sb), 2501 btrfs_super_cache_generation(sb)); 2502 2503 return ret; 2504 } 2505 2506 /* 2507 * Validation of super block at mount time. 2508 * Some checks already done early at mount time, like csum type and incompat 2509 * flags will be skipped. 2510 */ 2511 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2512 { 2513 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2514 } 2515 2516 /* 2517 * Validation of super block at write time. 2518 * Some checks like bytenr check will be skipped as their values will be 2519 * overwritten soon. 2520 * Extra checks like csum type and incompat flags will be done here. 2521 */ 2522 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2523 struct btrfs_super_block *sb) 2524 { 2525 int ret; 2526 2527 ret = btrfs_validate_super(fs_info, sb, -1); 2528 if (ret < 0) 2529 goto out; 2530 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2531 ret = -EUCLEAN; 2532 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2533 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2534 goto out; 2535 } 2536 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2537 ret = -EUCLEAN; 2538 btrfs_err(fs_info, 2539 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2540 btrfs_super_incompat_flags(sb), 2541 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2542 goto out; 2543 } 2544 out: 2545 if (ret < 0) 2546 btrfs_err(fs_info, 2547 "super block corruption detected before writing it to disk"); 2548 return ret; 2549 } 2550 2551 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2552 { 2553 struct btrfs_tree_parent_check check = { 2554 .level = level, 2555 .transid = gen, 2556 .owner_root = root->root_key.objectid 2557 }; 2558 int ret = 0; 2559 2560 root->node = read_tree_block(root->fs_info, bytenr, &check); 2561 if (IS_ERR(root->node)) { 2562 ret = PTR_ERR(root->node); 2563 root->node = NULL; 2564 return ret; 2565 } 2566 if (!extent_buffer_uptodate(root->node)) { 2567 free_extent_buffer(root->node); 2568 root->node = NULL; 2569 return -EIO; 2570 } 2571 2572 btrfs_set_root_node(&root->root_item, root->node); 2573 root->commit_root = btrfs_root_node(root); 2574 btrfs_set_root_refs(&root->root_item, 1); 2575 return ret; 2576 } 2577 2578 static int load_important_roots(struct btrfs_fs_info *fs_info) 2579 { 2580 struct btrfs_super_block *sb = fs_info->super_copy; 2581 u64 gen, bytenr; 2582 int level, ret; 2583 2584 bytenr = btrfs_super_root(sb); 2585 gen = btrfs_super_generation(sb); 2586 level = btrfs_super_root_level(sb); 2587 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2588 if (ret) { 2589 btrfs_warn(fs_info, "couldn't read tree root"); 2590 return ret; 2591 } 2592 return 0; 2593 } 2594 2595 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2596 { 2597 int backup_index = find_newest_super_backup(fs_info); 2598 struct btrfs_super_block *sb = fs_info->super_copy; 2599 struct btrfs_root *tree_root = fs_info->tree_root; 2600 bool handle_error = false; 2601 int ret = 0; 2602 int i; 2603 2604 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2605 if (handle_error) { 2606 if (!IS_ERR(tree_root->node)) 2607 free_extent_buffer(tree_root->node); 2608 tree_root->node = NULL; 2609 2610 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2611 break; 2612 2613 free_root_pointers(fs_info, 0); 2614 2615 /* 2616 * Don't use the log in recovery mode, it won't be 2617 * valid 2618 */ 2619 btrfs_set_super_log_root(sb, 0); 2620 2621 /* We can't trust the free space cache either */ 2622 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2623 2624 btrfs_warn(fs_info, "try to load backup roots slot %d", i); 2625 ret = read_backup_root(fs_info, i); 2626 backup_index = ret; 2627 if (ret < 0) 2628 return ret; 2629 } 2630 2631 ret = load_important_roots(fs_info); 2632 if (ret) { 2633 handle_error = true; 2634 continue; 2635 } 2636 2637 /* 2638 * No need to hold btrfs_root::objectid_mutex since the fs 2639 * hasn't been fully initialised and we are the only user 2640 */ 2641 ret = btrfs_init_root_free_objectid(tree_root); 2642 if (ret < 0) { 2643 handle_error = true; 2644 continue; 2645 } 2646 2647 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2648 2649 ret = btrfs_read_roots(fs_info); 2650 if (ret < 0) { 2651 handle_error = true; 2652 continue; 2653 } 2654 2655 /* All successful */ 2656 fs_info->generation = btrfs_header_generation(tree_root->node); 2657 btrfs_set_last_trans_committed(fs_info, fs_info->generation); 2658 fs_info->last_reloc_trans = 0; 2659 2660 /* Always begin writing backup roots after the one being used */ 2661 if (backup_index < 0) { 2662 fs_info->backup_root_index = 0; 2663 } else { 2664 fs_info->backup_root_index = backup_index + 1; 2665 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2666 } 2667 break; 2668 } 2669 2670 return ret; 2671 } 2672 2673 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2674 { 2675 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2676 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2677 INIT_LIST_HEAD(&fs_info->trans_list); 2678 INIT_LIST_HEAD(&fs_info->dead_roots); 2679 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2680 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2681 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2682 spin_lock_init(&fs_info->delalloc_root_lock); 2683 spin_lock_init(&fs_info->trans_lock); 2684 spin_lock_init(&fs_info->fs_roots_radix_lock); 2685 spin_lock_init(&fs_info->delayed_iput_lock); 2686 spin_lock_init(&fs_info->defrag_inodes_lock); 2687 spin_lock_init(&fs_info->super_lock); 2688 spin_lock_init(&fs_info->buffer_lock); 2689 spin_lock_init(&fs_info->unused_bgs_lock); 2690 spin_lock_init(&fs_info->treelog_bg_lock); 2691 spin_lock_init(&fs_info->zone_active_bgs_lock); 2692 spin_lock_init(&fs_info->relocation_bg_lock); 2693 rwlock_init(&fs_info->tree_mod_log_lock); 2694 rwlock_init(&fs_info->global_root_lock); 2695 mutex_init(&fs_info->unused_bg_unpin_mutex); 2696 mutex_init(&fs_info->reclaim_bgs_lock); 2697 mutex_init(&fs_info->reloc_mutex); 2698 mutex_init(&fs_info->delalloc_root_mutex); 2699 mutex_init(&fs_info->zoned_meta_io_lock); 2700 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2701 seqlock_init(&fs_info->profiles_lock); 2702 2703 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2704 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2705 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2706 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2707 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep, 2708 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2709 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2710 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2711 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 2712 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2713 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 2714 BTRFS_LOCKDEP_TRANS_COMPLETED); 2715 2716 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2717 INIT_LIST_HEAD(&fs_info->space_info); 2718 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2719 INIT_LIST_HEAD(&fs_info->unused_bgs); 2720 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2721 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2722 #ifdef CONFIG_BTRFS_DEBUG 2723 INIT_LIST_HEAD(&fs_info->allocated_roots); 2724 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2725 spin_lock_init(&fs_info->eb_leak_lock); 2726 #endif 2727 extent_map_tree_init(&fs_info->mapping_tree); 2728 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2729 BTRFS_BLOCK_RSV_GLOBAL); 2730 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2731 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2732 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2733 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2734 BTRFS_BLOCK_RSV_DELOPS); 2735 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2736 BTRFS_BLOCK_RSV_DELREFS); 2737 2738 atomic_set(&fs_info->async_delalloc_pages, 0); 2739 atomic_set(&fs_info->defrag_running, 0); 2740 atomic_set(&fs_info->nr_delayed_iputs, 0); 2741 atomic64_set(&fs_info->tree_mod_seq, 0); 2742 fs_info->global_root_tree = RB_ROOT; 2743 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2744 fs_info->metadata_ratio = 0; 2745 fs_info->defrag_inodes = RB_ROOT; 2746 atomic64_set(&fs_info->free_chunk_space, 0); 2747 fs_info->tree_mod_log = RB_ROOT; 2748 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2749 btrfs_init_ref_verify(fs_info); 2750 2751 fs_info->thread_pool_size = min_t(unsigned long, 2752 num_online_cpus() + 2, 8); 2753 2754 INIT_LIST_HEAD(&fs_info->ordered_roots); 2755 spin_lock_init(&fs_info->ordered_root_lock); 2756 2757 btrfs_init_scrub(fs_info); 2758 btrfs_init_balance(fs_info); 2759 btrfs_init_async_reclaim_work(fs_info); 2760 2761 rwlock_init(&fs_info->block_group_cache_lock); 2762 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 2763 2764 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2765 IO_TREE_FS_EXCLUDED_EXTENTS); 2766 2767 mutex_init(&fs_info->ordered_operations_mutex); 2768 mutex_init(&fs_info->tree_log_mutex); 2769 mutex_init(&fs_info->chunk_mutex); 2770 mutex_init(&fs_info->transaction_kthread_mutex); 2771 mutex_init(&fs_info->cleaner_mutex); 2772 mutex_init(&fs_info->ro_block_group_mutex); 2773 init_rwsem(&fs_info->commit_root_sem); 2774 init_rwsem(&fs_info->cleanup_work_sem); 2775 init_rwsem(&fs_info->subvol_sem); 2776 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2777 2778 btrfs_init_dev_replace_locks(fs_info); 2779 btrfs_init_qgroup(fs_info); 2780 btrfs_discard_init(fs_info); 2781 2782 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2783 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2784 2785 init_waitqueue_head(&fs_info->transaction_throttle); 2786 init_waitqueue_head(&fs_info->transaction_wait); 2787 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2788 init_waitqueue_head(&fs_info->async_submit_wait); 2789 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2790 2791 /* Usable values until the real ones are cached from the superblock */ 2792 fs_info->nodesize = 4096; 2793 fs_info->sectorsize = 4096; 2794 fs_info->sectorsize_bits = ilog2(4096); 2795 fs_info->stripesize = 4096; 2796 2797 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 2798 2799 spin_lock_init(&fs_info->swapfile_pins_lock); 2800 fs_info->swapfile_pins = RB_ROOT; 2801 2802 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 2803 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 2804 } 2805 2806 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2807 { 2808 int ret; 2809 2810 fs_info->sb = sb; 2811 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2812 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2813 2814 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 2815 if (ret) 2816 return ret; 2817 2818 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2819 if (ret) 2820 return ret; 2821 2822 fs_info->dirty_metadata_batch = PAGE_SIZE * 2823 (1 + ilog2(nr_cpu_ids)); 2824 2825 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2826 if (ret) 2827 return ret; 2828 2829 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2830 GFP_KERNEL); 2831 if (ret) 2832 return ret; 2833 2834 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2835 GFP_KERNEL); 2836 if (!fs_info->delayed_root) 2837 return -ENOMEM; 2838 btrfs_init_delayed_root(fs_info->delayed_root); 2839 2840 if (sb_rdonly(sb)) 2841 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2842 2843 return btrfs_alloc_stripe_hash_table(fs_info); 2844 } 2845 2846 static int btrfs_uuid_rescan_kthread(void *data) 2847 { 2848 struct btrfs_fs_info *fs_info = data; 2849 int ret; 2850 2851 /* 2852 * 1st step is to iterate through the existing UUID tree and 2853 * to delete all entries that contain outdated data. 2854 * 2nd step is to add all missing entries to the UUID tree. 2855 */ 2856 ret = btrfs_uuid_tree_iterate(fs_info); 2857 if (ret < 0) { 2858 if (ret != -EINTR) 2859 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2860 ret); 2861 up(&fs_info->uuid_tree_rescan_sem); 2862 return ret; 2863 } 2864 return btrfs_uuid_scan_kthread(data); 2865 } 2866 2867 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2868 { 2869 struct task_struct *task; 2870 2871 down(&fs_info->uuid_tree_rescan_sem); 2872 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2873 if (IS_ERR(task)) { 2874 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2875 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2876 up(&fs_info->uuid_tree_rescan_sem); 2877 return PTR_ERR(task); 2878 } 2879 2880 return 0; 2881 } 2882 2883 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2884 { 2885 u64 root_objectid = 0; 2886 struct btrfs_root *gang[8]; 2887 int i = 0; 2888 int err = 0; 2889 unsigned int ret = 0; 2890 2891 while (1) { 2892 spin_lock(&fs_info->fs_roots_radix_lock); 2893 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2894 (void **)gang, root_objectid, 2895 ARRAY_SIZE(gang)); 2896 if (!ret) { 2897 spin_unlock(&fs_info->fs_roots_radix_lock); 2898 break; 2899 } 2900 root_objectid = gang[ret - 1]->root_key.objectid + 1; 2901 2902 for (i = 0; i < ret; i++) { 2903 /* Avoid to grab roots in dead_roots. */ 2904 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 2905 gang[i] = NULL; 2906 continue; 2907 } 2908 /* Grab all the search result for later use. */ 2909 gang[i] = btrfs_grab_root(gang[i]); 2910 } 2911 spin_unlock(&fs_info->fs_roots_radix_lock); 2912 2913 for (i = 0; i < ret; i++) { 2914 if (!gang[i]) 2915 continue; 2916 root_objectid = gang[i]->root_key.objectid; 2917 err = btrfs_orphan_cleanup(gang[i]); 2918 if (err) 2919 goto out; 2920 btrfs_put_root(gang[i]); 2921 } 2922 root_objectid++; 2923 } 2924 out: 2925 /* Release the uncleaned roots due to error. */ 2926 for (; i < ret; i++) { 2927 if (gang[i]) 2928 btrfs_put_root(gang[i]); 2929 } 2930 return err; 2931 } 2932 2933 /* 2934 * Some options only have meaning at mount time and shouldn't persist across 2935 * remounts, or be displayed. Clear these at the end of mount and remount 2936 * code paths. 2937 */ 2938 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 2939 { 2940 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 2941 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 2942 } 2943 2944 /* 2945 * Mounting logic specific to read-write file systems. Shared by open_ctree 2946 * and btrfs_remount when remounting from read-only to read-write. 2947 */ 2948 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 2949 { 2950 int ret; 2951 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 2952 bool rebuild_free_space_tree = false; 2953 2954 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 2955 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2956 rebuild_free_space_tree = true; 2957 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 2958 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 2959 btrfs_warn(fs_info, "free space tree is invalid"); 2960 rebuild_free_space_tree = true; 2961 } 2962 2963 if (rebuild_free_space_tree) { 2964 btrfs_info(fs_info, "rebuilding free space tree"); 2965 ret = btrfs_rebuild_free_space_tree(fs_info); 2966 if (ret) { 2967 btrfs_warn(fs_info, 2968 "failed to rebuild free space tree: %d", ret); 2969 goto out; 2970 } 2971 } 2972 2973 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 2974 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 2975 btrfs_info(fs_info, "disabling free space tree"); 2976 ret = btrfs_delete_free_space_tree(fs_info); 2977 if (ret) { 2978 btrfs_warn(fs_info, 2979 "failed to disable free space tree: %d", ret); 2980 goto out; 2981 } 2982 } 2983 2984 /* 2985 * btrfs_find_orphan_roots() is responsible for finding all the dead 2986 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 2987 * them into the fs_info->fs_roots_radix tree. This must be done before 2988 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 2989 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 2990 * item before the root's tree is deleted - this means that if we unmount 2991 * or crash before the deletion completes, on the next mount we will not 2992 * delete what remains of the tree because the orphan item does not 2993 * exists anymore, which is what tells us we have a pending deletion. 2994 */ 2995 ret = btrfs_find_orphan_roots(fs_info); 2996 if (ret) 2997 goto out; 2998 2999 ret = btrfs_cleanup_fs_roots(fs_info); 3000 if (ret) 3001 goto out; 3002 3003 down_read(&fs_info->cleanup_work_sem); 3004 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3005 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3006 up_read(&fs_info->cleanup_work_sem); 3007 goto out; 3008 } 3009 up_read(&fs_info->cleanup_work_sem); 3010 3011 mutex_lock(&fs_info->cleaner_mutex); 3012 ret = btrfs_recover_relocation(fs_info); 3013 mutex_unlock(&fs_info->cleaner_mutex); 3014 if (ret < 0) { 3015 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3016 goto out; 3017 } 3018 3019 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3020 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3021 btrfs_info(fs_info, "creating free space tree"); 3022 ret = btrfs_create_free_space_tree(fs_info); 3023 if (ret) { 3024 btrfs_warn(fs_info, 3025 "failed to create free space tree: %d", ret); 3026 goto out; 3027 } 3028 } 3029 3030 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3031 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3032 if (ret) 3033 goto out; 3034 } 3035 3036 ret = btrfs_resume_balance_async(fs_info); 3037 if (ret) 3038 goto out; 3039 3040 ret = btrfs_resume_dev_replace_async(fs_info); 3041 if (ret) { 3042 btrfs_warn(fs_info, "failed to resume dev_replace"); 3043 goto out; 3044 } 3045 3046 btrfs_qgroup_rescan_resume(fs_info); 3047 3048 if (!fs_info->uuid_root) { 3049 btrfs_info(fs_info, "creating UUID tree"); 3050 ret = btrfs_create_uuid_tree(fs_info); 3051 if (ret) { 3052 btrfs_warn(fs_info, 3053 "failed to create the UUID tree %d", ret); 3054 goto out; 3055 } 3056 } 3057 3058 out: 3059 return ret; 3060 } 3061 3062 /* 3063 * Do various sanity and dependency checks of different features. 3064 * 3065 * @is_rw_mount: If the mount is read-write. 3066 * 3067 * This is the place for less strict checks (like for subpage or artificial 3068 * feature dependencies). 3069 * 3070 * For strict checks or possible corruption detection, see 3071 * btrfs_validate_super(). 3072 * 3073 * This should be called after btrfs_parse_options(), as some mount options 3074 * (space cache related) can modify on-disk format like free space tree and 3075 * screw up certain feature dependencies. 3076 */ 3077 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3078 { 3079 struct btrfs_super_block *disk_super = fs_info->super_copy; 3080 u64 incompat = btrfs_super_incompat_flags(disk_super); 3081 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3082 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3083 3084 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3085 btrfs_err(fs_info, 3086 "cannot mount because of unknown incompat features (0x%llx)", 3087 incompat); 3088 return -EINVAL; 3089 } 3090 3091 /* Runtime limitation for mixed block groups. */ 3092 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3093 (fs_info->sectorsize != fs_info->nodesize)) { 3094 btrfs_err(fs_info, 3095 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3096 fs_info->nodesize, fs_info->sectorsize); 3097 return -EINVAL; 3098 } 3099 3100 /* Mixed backref is an always-enabled feature. */ 3101 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3102 3103 /* Set compression related flags just in case. */ 3104 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3105 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3106 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3107 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3108 3109 /* 3110 * An ancient flag, which should really be marked deprecated. 3111 * Such runtime limitation doesn't really need a incompat flag. 3112 */ 3113 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3114 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3115 3116 if (compat_ro_unsupp && is_rw_mount) { 3117 btrfs_err(fs_info, 3118 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3119 compat_ro); 3120 return -EINVAL; 3121 } 3122 3123 /* 3124 * We have unsupported RO compat features, although RO mounted, we 3125 * should not cause any metadata writes, including log replay. 3126 * Or we could screw up whatever the new feature requires. 3127 */ 3128 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3129 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3130 btrfs_err(fs_info, 3131 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3132 compat_ro); 3133 return -EINVAL; 3134 } 3135 3136 /* 3137 * Artificial limitations for block group tree, to force 3138 * block-group-tree to rely on no-holes and free-space-tree. 3139 */ 3140 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3141 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3142 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3143 btrfs_err(fs_info, 3144 "block-group-tree feature requires no-holes and free-space-tree features"); 3145 return -EINVAL; 3146 } 3147 3148 /* 3149 * Subpage runtime limitation on v1 cache. 3150 * 3151 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3152 * we're already defaulting to v2 cache, no need to bother v1 as it's 3153 * going to be deprecated anyway. 3154 */ 3155 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3156 btrfs_warn(fs_info, 3157 "v1 space cache is not supported for page size %lu with sectorsize %u", 3158 PAGE_SIZE, fs_info->sectorsize); 3159 return -EINVAL; 3160 } 3161 3162 /* This can be called by remount, we need to protect the super block. */ 3163 spin_lock(&fs_info->super_lock); 3164 btrfs_set_super_incompat_flags(disk_super, incompat); 3165 spin_unlock(&fs_info->super_lock); 3166 3167 return 0; 3168 } 3169 3170 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3171 char *options) 3172 { 3173 u32 sectorsize; 3174 u32 nodesize; 3175 u32 stripesize; 3176 u64 generation; 3177 u16 csum_type; 3178 struct btrfs_super_block *disk_super; 3179 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3180 struct btrfs_root *tree_root; 3181 struct btrfs_root *chunk_root; 3182 int ret; 3183 int level; 3184 3185 ret = init_mount_fs_info(fs_info, sb); 3186 if (ret) 3187 goto fail; 3188 3189 /* These need to be init'ed before we start creating inodes and such. */ 3190 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3191 GFP_KERNEL); 3192 fs_info->tree_root = tree_root; 3193 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3194 GFP_KERNEL); 3195 fs_info->chunk_root = chunk_root; 3196 if (!tree_root || !chunk_root) { 3197 ret = -ENOMEM; 3198 goto fail; 3199 } 3200 3201 ret = btrfs_init_btree_inode(sb); 3202 if (ret) 3203 goto fail; 3204 3205 invalidate_bdev(fs_devices->latest_dev->bdev); 3206 3207 /* 3208 * Read super block and check the signature bytes only 3209 */ 3210 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3211 if (IS_ERR(disk_super)) { 3212 ret = PTR_ERR(disk_super); 3213 goto fail_alloc; 3214 } 3215 3216 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid); 3217 /* 3218 * Verify the type first, if that or the checksum value are 3219 * corrupted, we'll find out 3220 */ 3221 csum_type = btrfs_super_csum_type(disk_super); 3222 if (!btrfs_supported_super_csum(csum_type)) { 3223 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3224 csum_type); 3225 ret = -EINVAL; 3226 btrfs_release_disk_super(disk_super); 3227 goto fail_alloc; 3228 } 3229 3230 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3231 3232 ret = btrfs_init_csum_hash(fs_info, csum_type); 3233 if (ret) { 3234 btrfs_release_disk_super(disk_super); 3235 goto fail_alloc; 3236 } 3237 3238 /* 3239 * We want to check superblock checksum, the type is stored inside. 3240 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3241 */ 3242 if (btrfs_check_super_csum(fs_info, disk_super)) { 3243 btrfs_err(fs_info, "superblock checksum mismatch"); 3244 ret = -EINVAL; 3245 btrfs_release_disk_super(disk_super); 3246 goto fail_alloc; 3247 } 3248 3249 /* 3250 * super_copy is zeroed at allocation time and we never touch the 3251 * following bytes up to INFO_SIZE, the checksum is calculated from 3252 * the whole block of INFO_SIZE 3253 */ 3254 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3255 btrfs_release_disk_super(disk_super); 3256 3257 disk_super = fs_info->super_copy; 3258 3259 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3260 sizeof(*fs_info->super_for_commit)); 3261 3262 ret = btrfs_validate_mount_super(fs_info); 3263 if (ret) { 3264 btrfs_err(fs_info, "superblock contains fatal errors"); 3265 ret = -EINVAL; 3266 goto fail_alloc; 3267 } 3268 3269 if (!btrfs_super_root(disk_super)) { 3270 btrfs_err(fs_info, "invalid superblock tree root bytenr"); 3271 ret = -EINVAL; 3272 goto fail_alloc; 3273 } 3274 3275 /* check FS state, whether FS is broken. */ 3276 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3277 WRITE_ONCE(fs_info->fs_error, -EUCLEAN); 3278 3279 /* 3280 * In the long term, we'll store the compression type in the super 3281 * block, and it'll be used for per file compression control. 3282 */ 3283 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 3284 3285 3286 /* Set up fs_info before parsing mount options */ 3287 nodesize = btrfs_super_nodesize(disk_super); 3288 sectorsize = btrfs_super_sectorsize(disk_super); 3289 stripesize = sectorsize; 3290 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3291 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3292 3293 fs_info->nodesize = nodesize; 3294 fs_info->sectorsize = sectorsize; 3295 fs_info->sectorsize_bits = ilog2(sectorsize); 3296 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3297 fs_info->stripesize = stripesize; 3298 3299 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 3300 if (ret) 3301 goto fail_alloc; 3302 3303 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3304 if (ret < 0) 3305 goto fail_alloc; 3306 3307 if (sectorsize < PAGE_SIZE) { 3308 struct btrfs_subpage_info *subpage_info; 3309 3310 /* 3311 * V1 space cache has some hardcoded PAGE_SIZE usage, and is 3312 * going to be deprecated. 3313 * 3314 * Force to use v2 cache for subpage case. 3315 */ 3316 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 3317 btrfs_set_and_info(fs_info, FREE_SPACE_TREE, 3318 "forcing free space tree for sector size %u with page size %lu", 3319 sectorsize, PAGE_SIZE); 3320 3321 btrfs_warn(fs_info, 3322 "read-write for sector size %u with page size %lu is experimental", 3323 sectorsize, PAGE_SIZE); 3324 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL); 3325 if (!subpage_info) { 3326 ret = -ENOMEM; 3327 goto fail_alloc; 3328 } 3329 btrfs_init_subpage_info(subpage_info, sectorsize); 3330 fs_info->subpage_info = subpage_info; 3331 } 3332 3333 ret = btrfs_init_workqueues(fs_info); 3334 if (ret) 3335 goto fail_sb_buffer; 3336 3337 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3338 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3339 3340 sb->s_blocksize = sectorsize; 3341 sb->s_blocksize_bits = blksize_bits(sectorsize); 3342 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3343 3344 mutex_lock(&fs_info->chunk_mutex); 3345 ret = btrfs_read_sys_array(fs_info); 3346 mutex_unlock(&fs_info->chunk_mutex); 3347 if (ret) { 3348 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3349 goto fail_sb_buffer; 3350 } 3351 3352 generation = btrfs_super_chunk_root_generation(disk_super); 3353 level = btrfs_super_chunk_root_level(disk_super); 3354 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3355 generation, level); 3356 if (ret) { 3357 btrfs_err(fs_info, "failed to read chunk root"); 3358 goto fail_tree_roots; 3359 } 3360 3361 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3362 offsetof(struct btrfs_header, chunk_tree_uuid), 3363 BTRFS_UUID_SIZE); 3364 3365 ret = btrfs_read_chunk_tree(fs_info); 3366 if (ret) { 3367 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3368 goto fail_tree_roots; 3369 } 3370 3371 /* 3372 * At this point we know all the devices that make this filesystem, 3373 * including the seed devices but we don't know yet if the replace 3374 * target is required. So free devices that are not part of this 3375 * filesystem but skip the replace target device which is checked 3376 * below in btrfs_init_dev_replace(). 3377 */ 3378 btrfs_free_extra_devids(fs_devices); 3379 if (!fs_devices->latest_dev->bdev) { 3380 btrfs_err(fs_info, "failed to read devices"); 3381 ret = -EIO; 3382 goto fail_tree_roots; 3383 } 3384 3385 ret = init_tree_roots(fs_info); 3386 if (ret) 3387 goto fail_tree_roots; 3388 3389 /* 3390 * Get zone type information of zoned block devices. This will also 3391 * handle emulation of a zoned filesystem if a regular device has the 3392 * zoned incompat feature flag set. 3393 */ 3394 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3395 if (ret) { 3396 btrfs_err(fs_info, 3397 "zoned: failed to read device zone info: %d", ret); 3398 goto fail_block_groups; 3399 } 3400 3401 /* 3402 * If we have a uuid root and we're not being told to rescan we need to 3403 * check the generation here so we can set the 3404 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3405 * transaction during a balance or the log replay without updating the 3406 * uuid generation, and then if we crash we would rescan the uuid tree, 3407 * even though it was perfectly fine. 3408 */ 3409 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3410 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3411 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3412 3413 ret = btrfs_verify_dev_extents(fs_info); 3414 if (ret) { 3415 btrfs_err(fs_info, 3416 "failed to verify dev extents against chunks: %d", 3417 ret); 3418 goto fail_block_groups; 3419 } 3420 ret = btrfs_recover_balance(fs_info); 3421 if (ret) { 3422 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3423 goto fail_block_groups; 3424 } 3425 3426 ret = btrfs_init_dev_stats(fs_info); 3427 if (ret) { 3428 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3429 goto fail_block_groups; 3430 } 3431 3432 ret = btrfs_init_dev_replace(fs_info); 3433 if (ret) { 3434 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3435 goto fail_block_groups; 3436 } 3437 3438 ret = btrfs_check_zoned_mode(fs_info); 3439 if (ret) { 3440 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3441 ret); 3442 goto fail_block_groups; 3443 } 3444 3445 ret = btrfs_sysfs_add_fsid(fs_devices); 3446 if (ret) { 3447 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3448 ret); 3449 goto fail_block_groups; 3450 } 3451 3452 ret = btrfs_sysfs_add_mounted(fs_info); 3453 if (ret) { 3454 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3455 goto fail_fsdev_sysfs; 3456 } 3457 3458 ret = btrfs_init_space_info(fs_info); 3459 if (ret) { 3460 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3461 goto fail_sysfs; 3462 } 3463 3464 ret = btrfs_read_block_groups(fs_info); 3465 if (ret) { 3466 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3467 goto fail_sysfs; 3468 } 3469 3470 btrfs_free_zone_cache(fs_info); 3471 3472 btrfs_check_active_zone_reservation(fs_info); 3473 3474 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3475 !btrfs_check_rw_degradable(fs_info, NULL)) { 3476 btrfs_warn(fs_info, 3477 "writable mount is not allowed due to too many missing devices"); 3478 ret = -EINVAL; 3479 goto fail_sysfs; 3480 } 3481 3482 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3483 "btrfs-cleaner"); 3484 if (IS_ERR(fs_info->cleaner_kthread)) { 3485 ret = PTR_ERR(fs_info->cleaner_kthread); 3486 goto fail_sysfs; 3487 } 3488 3489 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3490 tree_root, 3491 "btrfs-transaction"); 3492 if (IS_ERR(fs_info->transaction_kthread)) { 3493 ret = PTR_ERR(fs_info->transaction_kthread); 3494 goto fail_cleaner; 3495 } 3496 3497 if (!btrfs_test_opt(fs_info, NOSSD) && 3498 !fs_info->fs_devices->rotating) { 3499 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3500 } 3501 3502 /* 3503 * For devices supporting discard turn on discard=async automatically, 3504 * unless it's already set or disabled. This could be turned off by 3505 * nodiscard for the same mount. 3506 * 3507 * The zoned mode piggy backs on the discard functionality for 3508 * resetting a zone. There is no reason to delay the zone reset as it is 3509 * fast enough. So, do not enable async discard for zoned mode. 3510 */ 3511 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) || 3512 btrfs_test_opt(fs_info, DISCARD_ASYNC) || 3513 btrfs_test_opt(fs_info, NODISCARD)) && 3514 fs_info->fs_devices->discardable && 3515 !btrfs_is_zoned(fs_info)) { 3516 btrfs_set_and_info(fs_info, DISCARD_ASYNC, 3517 "auto enabling async discard"); 3518 } 3519 3520 ret = btrfs_read_qgroup_config(fs_info); 3521 if (ret) 3522 goto fail_trans_kthread; 3523 3524 if (btrfs_build_ref_tree(fs_info)) 3525 btrfs_err(fs_info, "couldn't build ref tree"); 3526 3527 /* do not make disk changes in broken FS or nologreplay is given */ 3528 if (btrfs_super_log_root(disk_super) != 0 && 3529 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3530 btrfs_info(fs_info, "start tree-log replay"); 3531 ret = btrfs_replay_log(fs_info, fs_devices); 3532 if (ret) 3533 goto fail_qgroup; 3534 } 3535 3536 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3537 if (IS_ERR(fs_info->fs_root)) { 3538 ret = PTR_ERR(fs_info->fs_root); 3539 btrfs_warn(fs_info, "failed to read fs tree: %d", ret); 3540 fs_info->fs_root = NULL; 3541 goto fail_qgroup; 3542 } 3543 3544 if (sb_rdonly(sb)) 3545 goto clear_oneshot; 3546 3547 ret = btrfs_start_pre_rw_mount(fs_info); 3548 if (ret) { 3549 close_ctree(fs_info); 3550 return ret; 3551 } 3552 btrfs_discard_resume(fs_info); 3553 3554 if (fs_info->uuid_root && 3555 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3556 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3557 btrfs_info(fs_info, "checking UUID tree"); 3558 ret = btrfs_check_uuid_tree(fs_info); 3559 if (ret) { 3560 btrfs_warn(fs_info, 3561 "failed to check the UUID tree: %d", ret); 3562 close_ctree(fs_info); 3563 return ret; 3564 } 3565 } 3566 3567 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3568 3569 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3570 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3571 wake_up_process(fs_info->cleaner_kthread); 3572 3573 clear_oneshot: 3574 btrfs_clear_oneshot_options(fs_info); 3575 return 0; 3576 3577 fail_qgroup: 3578 btrfs_free_qgroup_config(fs_info); 3579 fail_trans_kthread: 3580 kthread_stop(fs_info->transaction_kthread); 3581 btrfs_cleanup_transaction(fs_info); 3582 btrfs_free_fs_roots(fs_info); 3583 fail_cleaner: 3584 kthread_stop(fs_info->cleaner_kthread); 3585 3586 /* 3587 * make sure we're done with the btree inode before we stop our 3588 * kthreads 3589 */ 3590 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3591 3592 fail_sysfs: 3593 btrfs_sysfs_remove_mounted(fs_info); 3594 3595 fail_fsdev_sysfs: 3596 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3597 3598 fail_block_groups: 3599 btrfs_put_block_group_cache(fs_info); 3600 3601 fail_tree_roots: 3602 if (fs_info->data_reloc_root) 3603 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3604 free_root_pointers(fs_info, true); 3605 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3606 3607 fail_sb_buffer: 3608 btrfs_stop_all_workers(fs_info); 3609 btrfs_free_block_groups(fs_info); 3610 fail_alloc: 3611 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3612 3613 iput(fs_info->btree_inode); 3614 fail: 3615 btrfs_close_devices(fs_info->fs_devices); 3616 ASSERT(ret < 0); 3617 return ret; 3618 } 3619 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3620 3621 static void btrfs_end_super_write(struct bio *bio) 3622 { 3623 struct btrfs_device *device = bio->bi_private; 3624 struct bio_vec *bvec; 3625 struct bvec_iter_all iter_all; 3626 struct page *page; 3627 3628 bio_for_each_segment_all(bvec, bio, iter_all) { 3629 page = bvec->bv_page; 3630 3631 if (bio->bi_status) { 3632 btrfs_warn_rl_in_rcu(device->fs_info, 3633 "lost page write due to IO error on %s (%d)", 3634 btrfs_dev_name(device), 3635 blk_status_to_errno(bio->bi_status)); 3636 ClearPageUptodate(page); 3637 SetPageError(page); 3638 btrfs_dev_stat_inc_and_print(device, 3639 BTRFS_DEV_STAT_WRITE_ERRS); 3640 } else { 3641 SetPageUptodate(page); 3642 } 3643 3644 put_page(page); 3645 unlock_page(page); 3646 } 3647 3648 bio_put(bio); 3649 } 3650 3651 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3652 int copy_num, bool drop_cache) 3653 { 3654 struct btrfs_super_block *super; 3655 struct page *page; 3656 u64 bytenr, bytenr_orig; 3657 struct address_space *mapping = bdev->bd_inode->i_mapping; 3658 int ret; 3659 3660 bytenr_orig = btrfs_sb_offset(copy_num); 3661 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3662 if (ret == -ENOENT) 3663 return ERR_PTR(-EINVAL); 3664 else if (ret) 3665 return ERR_PTR(ret); 3666 3667 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 3668 return ERR_PTR(-EINVAL); 3669 3670 if (drop_cache) { 3671 /* This should only be called with the primary sb. */ 3672 ASSERT(copy_num == 0); 3673 3674 /* 3675 * Drop the page of the primary superblock, so later read will 3676 * always read from the device. 3677 */ 3678 invalidate_inode_pages2_range(mapping, 3679 bytenr >> PAGE_SHIFT, 3680 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 3681 } 3682 3683 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3684 if (IS_ERR(page)) 3685 return ERR_CAST(page); 3686 3687 super = page_address(page); 3688 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3689 btrfs_release_disk_super(super); 3690 return ERR_PTR(-ENODATA); 3691 } 3692 3693 if (btrfs_super_bytenr(super) != bytenr_orig) { 3694 btrfs_release_disk_super(super); 3695 return ERR_PTR(-EINVAL); 3696 } 3697 3698 return super; 3699 } 3700 3701 3702 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3703 { 3704 struct btrfs_super_block *super, *latest = NULL; 3705 int i; 3706 u64 transid = 0; 3707 3708 /* we would like to check all the supers, but that would make 3709 * a btrfs mount succeed after a mkfs from a different FS. 3710 * So, we need to add a special mount option to scan for 3711 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3712 */ 3713 for (i = 0; i < 1; i++) { 3714 super = btrfs_read_dev_one_super(bdev, i, false); 3715 if (IS_ERR(super)) 3716 continue; 3717 3718 if (!latest || btrfs_super_generation(super) > transid) { 3719 if (latest) 3720 btrfs_release_disk_super(super); 3721 3722 latest = super; 3723 transid = btrfs_super_generation(super); 3724 } 3725 } 3726 3727 return super; 3728 } 3729 3730 /* 3731 * Write superblock @sb to the @device. Do not wait for completion, all the 3732 * pages we use for writing are locked. 3733 * 3734 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3735 * the expected device size at commit time. Note that max_mirrors must be 3736 * same for write and wait phases. 3737 * 3738 * Return number of errors when page is not found or submission fails. 3739 */ 3740 static int write_dev_supers(struct btrfs_device *device, 3741 struct btrfs_super_block *sb, int max_mirrors) 3742 { 3743 struct btrfs_fs_info *fs_info = device->fs_info; 3744 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3745 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3746 int i; 3747 int errors = 0; 3748 int ret; 3749 u64 bytenr, bytenr_orig; 3750 3751 if (max_mirrors == 0) 3752 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3753 3754 shash->tfm = fs_info->csum_shash; 3755 3756 for (i = 0; i < max_mirrors; i++) { 3757 struct page *page; 3758 struct bio *bio; 3759 struct btrfs_super_block *disk_super; 3760 3761 bytenr_orig = btrfs_sb_offset(i); 3762 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3763 if (ret == -ENOENT) { 3764 continue; 3765 } else if (ret < 0) { 3766 btrfs_err(device->fs_info, 3767 "couldn't get super block location for mirror %d", 3768 i); 3769 errors++; 3770 continue; 3771 } 3772 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3773 device->commit_total_bytes) 3774 break; 3775 3776 btrfs_set_super_bytenr(sb, bytenr_orig); 3777 3778 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3779 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3780 sb->csum); 3781 3782 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 3783 GFP_NOFS); 3784 if (!page) { 3785 btrfs_err(device->fs_info, 3786 "couldn't get super block page for bytenr %llu", 3787 bytenr); 3788 errors++; 3789 continue; 3790 } 3791 3792 /* Bump the refcount for wait_dev_supers() */ 3793 get_page(page); 3794 3795 disk_super = page_address(page); 3796 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3797 3798 /* 3799 * Directly use bios here instead of relying on the page cache 3800 * to do I/O, so we don't lose the ability to do integrity 3801 * checking. 3802 */ 3803 bio = bio_alloc(device->bdev, 1, 3804 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 3805 GFP_NOFS); 3806 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3807 bio->bi_private = device; 3808 bio->bi_end_io = btrfs_end_super_write; 3809 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 3810 offset_in_page(bytenr)); 3811 3812 /* 3813 * We FUA only the first super block. The others we allow to 3814 * go down lazy and there's a short window where the on-disk 3815 * copies might still contain the older version. 3816 */ 3817 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3818 bio->bi_opf |= REQ_FUA; 3819 submit_bio(bio); 3820 3821 if (btrfs_advance_sb_log(device, i)) 3822 errors++; 3823 } 3824 return errors < i ? 0 : -1; 3825 } 3826 3827 /* 3828 * Wait for write completion of superblocks done by write_dev_supers, 3829 * @max_mirrors same for write and wait phases. 3830 * 3831 * Return number of errors when page is not found or not marked up to 3832 * date. 3833 */ 3834 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3835 { 3836 int i; 3837 int errors = 0; 3838 bool primary_failed = false; 3839 int ret; 3840 u64 bytenr; 3841 3842 if (max_mirrors == 0) 3843 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3844 3845 for (i = 0; i < max_mirrors; i++) { 3846 struct page *page; 3847 3848 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 3849 if (ret == -ENOENT) { 3850 break; 3851 } else if (ret < 0) { 3852 errors++; 3853 if (i == 0) 3854 primary_failed = true; 3855 continue; 3856 } 3857 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3858 device->commit_total_bytes) 3859 break; 3860 3861 page = find_get_page(device->bdev->bd_inode->i_mapping, 3862 bytenr >> PAGE_SHIFT); 3863 if (!page) { 3864 errors++; 3865 if (i == 0) 3866 primary_failed = true; 3867 continue; 3868 } 3869 /* Page is submitted locked and unlocked once the IO completes */ 3870 wait_on_page_locked(page); 3871 if (PageError(page)) { 3872 errors++; 3873 if (i == 0) 3874 primary_failed = true; 3875 } 3876 3877 /* Drop our reference */ 3878 put_page(page); 3879 3880 /* Drop the reference from the writing run */ 3881 put_page(page); 3882 } 3883 3884 /* log error, force error return */ 3885 if (primary_failed) { 3886 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3887 device->devid); 3888 return -1; 3889 } 3890 3891 return errors < i ? 0 : -1; 3892 } 3893 3894 /* 3895 * endio for the write_dev_flush, this will wake anyone waiting 3896 * for the barrier when it is done 3897 */ 3898 static void btrfs_end_empty_barrier(struct bio *bio) 3899 { 3900 bio_uninit(bio); 3901 complete(bio->bi_private); 3902 } 3903 3904 /* 3905 * Submit a flush request to the device if it supports it. Error handling is 3906 * done in the waiting counterpart. 3907 */ 3908 static void write_dev_flush(struct btrfs_device *device) 3909 { 3910 struct bio *bio = &device->flush_bio; 3911 3912 device->last_flush_error = BLK_STS_OK; 3913 3914 bio_init(bio, device->bdev, NULL, 0, 3915 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 3916 bio->bi_end_io = btrfs_end_empty_barrier; 3917 init_completion(&device->flush_wait); 3918 bio->bi_private = &device->flush_wait; 3919 submit_bio(bio); 3920 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3921 } 3922 3923 /* 3924 * If the flush bio has been submitted by write_dev_flush, wait for it. 3925 * Return true for any error, and false otherwise. 3926 */ 3927 static bool wait_dev_flush(struct btrfs_device *device) 3928 { 3929 struct bio *bio = &device->flush_bio; 3930 3931 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3932 return false; 3933 3934 wait_for_completion_io(&device->flush_wait); 3935 3936 if (bio->bi_status) { 3937 device->last_flush_error = bio->bi_status; 3938 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); 3939 return true; 3940 } 3941 3942 return false; 3943 } 3944 3945 /* 3946 * send an empty flush down to each device in parallel, 3947 * then wait for them 3948 */ 3949 static int barrier_all_devices(struct btrfs_fs_info *info) 3950 { 3951 struct list_head *head; 3952 struct btrfs_device *dev; 3953 int errors_wait = 0; 3954 3955 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3956 /* send down all the barriers */ 3957 head = &info->fs_devices->devices; 3958 list_for_each_entry(dev, head, dev_list) { 3959 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3960 continue; 3961 if (!dev->bdev) 3962 continue; 3963 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3964 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3965 continue; 3966 3967 write_dev_flush(dev); 3968 } 3969 3970 /* wait for all the barriers */ 3971 list_for_each_entry(dev, head, dev_list) { 3972 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3973 continue; 3974 if (!dev->bdev) { 3975 errors_wait++; 3976 continue; 3977 } 3978 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3979 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3980 continue; 3981 3982 if (wait_dev_flush(dev)) 3983 errors_wait++; 3984 } 3985 3986 /* 3987 * Checks last_flush_error of disks in order to determine the device 3988 * state. 3989 */ 3990 if (errors_wait && !btrfs_check_rw_degradable(info, NULL)) 3991 return -EIO; 3992 3993 return 0; 3994 } 3995 3996 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3997 { 3998 int raid_type; 3999 int min_tolerated = INT_MAX; 4000 4001 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 4002 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 4003 min_tolerated = min_t(int, min_tolerated, 4004 btrfs_raid_array[BTRFS_RAID_SINGLE]. 4005 tolerated_failures); 4006 4007 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4008 if (raid_type == BTRFS_RAID_SINGLE) 4009 continue; 4010 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 4011 continue; 4012 min_tolerated = min_t(int, min_tolerated, 4013 btrfs_raid_array[raid_type]. 4014 tolerated_failures); 4015 } 4016 4017 if (min_tolerated == INT_MAX) { 4018 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4019 min_tolerated = 0; 4020 } 4021 4022 return min_tolerated; 4023 } 4024 4025 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4026 { 4027 struct list_head *head; 4028 struct btrfs_device *dev; 4029 struct btrfs_super_block *sb; 4030 struct btrfs_dev_item *dev_item; 4031 int ret; 4032 int do_barriers; 4033 int max_errors; 4034 int total_errors = 0; 4035 u64 flags; 4036 4037 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4038 4039 /* 4040 * max_mirrors == 0 indicates we're from commit_transaction, 4041 * not from fsync where the tree roots in fs_info have not 4042 * been consistent on disk. 4043 */ 4044 if (max_mirrors == 0) 4045 backup_super_roots(fs_info); 4046 4047 sb = fs_info->super_for_commit; 4048 dev_item = &sb->dev_item; 4049 4050 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4051 head = &fs_info->fs_devices->devices; 4052 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4053 4054 if (do_barriers) { 4055 ret = barrier_all_devices(fs_info); 4056 if (ret) { 4057 mutex_unlock( 4058 &fs_info->fs_devices->device_list_mutex); 4059 btrfs_handle_fs_error(fs_info, ret, 4060 "errors while submitting device barriers."); 4061 return ret; 4062 } 4063 } 4064 4065 list_for_each_entry(dev, head, dev_list) { 4066 if (!dev->bdev) { 4067 total_errors++; 4068 continue; 4069 } 4070 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4071 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4072 continue; 4073 4074 btrfs_set_stack_device_generation(dev_item, 0); 4075 btrfs_set_stack_device_type(dev_item, dev->type); 4076 btrfs_set_stack_device_id(dev_item, dev->devid); 4077 btrfs_set_stack_device_total_bytes(dev_item, 4078 dev->commit_total_bytes); 4079 btrfs_set_stack_device_bytes_used(dev_item, 4080 dev->commit_bytes_used); 4081 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4082 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4083 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4084 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4085 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4086 BTRFS_FSID_SIZE); 4087 4088 flags = btrfs_super_flags(sb); 4089 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4090 4091 ret = btrfs_validate_write_super(fs_info, sb); 4092 if (ret < 0) { 4093 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4094 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4095 "unexpected superblock corruption detected"); 4096 return -EUCLEAN; 4097 } 4098 4099 ret = write_dev_supers(dev, sb, max_mirrors); 4100 if (ret) 4101 total_errors++; 4102 } 4103 if (total_errors > max_errors) { 4104 btrfs_err(fs_info, "%d errors while writing supers", 4105 total_errors); 4106 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4107 4108 /* FUA is masked off if unsupported and can't be the reason */ 4109 btrfs_handle_fs_error(fs_info, -EIO, 4110 "%d errors while writing supers", 4111 total_errors); 4112 return -EIO; 4113 } 4114 4115 total_errors = 0; 4116 list_for_each_entry(dev, head, dev_list) { 4117 if (!dev->bdev) 4118 continue; 4119 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4120 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4121 continue; 4122 4123 ret = wait_dev_supers(dev, max_mirrors); 4124 if (ret) 4125 total_errors++; 4126 } 4127 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4128 if (total_errors > max_errors) { 4129 btrfs_handle_fs_error(fs_info, -EIO, 4130 "%d errors while writing supers", 4131 total_errors); 4132 return -EIO; 4133 } 4134 return 0; 4135 } 4136 4137 /* Drop a fs root from the radix tree and free it. */ 4138 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4139 struct btrfs_root *root) 4140 { 4141 bool drop_ref = false; 4142 4143 spin_lock(&fs_info->fs_roots_radix_lock); 4144 radix_tree_delete(&fs_info->fs_roots_radix, 4145 (unsigned long)root->root_key.objectid); 4146 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4147 drop_ref = true; 4148 spin_unlock(&fs_info->fs_roots_radix_lock); 4149 4150 if (BTRFS_FS_ERROR(fs_info)) { 4151 ASSERT(root->log_root == NULL); 4152 if (root->reloc_root) { 4153 btrfs_put_root(root->reloc_root); 4154 root->reloc_root = NULL; 4155 } 4156 } 4157 4158 if (drop_ref) 4159 btrfs_put_root(root); 4160 } 4161 4162 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4163 { 4164 struct btrfs_root *root = fs_info->tree_root; 4165 struct btrfs_trans_handle *trans; 4166 4167 mutex_lock(&fs_info->cleaner_mutex); 4168 btrfs_run_delayed_iputs(fs_info); 4169 mutex_unlock(&fs_info->cleaner_mutex); 4170 wake_up_process(fs_info->cleaner_kthread); 4171 4172 /* wait until ongoing cleanup work done */ 4173 down_write(&fs_info->cleanup_work_sem); 4174 up_write(&fs_info->cleanup_work_sem); 4175 4176 trans = btrfs_join_transaction(root); 4177 if (IS_ERR(trans)) 4178 return PTR_ERR(trans); 4179 return btrfs_commit_transaction(trans); 4180 } 4181 4182 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4183 { 4184 struct btrfs_transaction *trans; 4185 struct btrfs_transaction *tmp; 4186 bool found = false; 4187 4188 if (list_empty(&fs_info->trans_list)) 4189 return; 4190 4191 /* 4192 * This function is only called at the very end of close_ctree(), 4193 * thus no other running transaction, no need to take trans_lock. 4194 */ 4195 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4196 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4197 struct extent_state *cached = NULL; 4198 u64 dirty_bytes = 0; 4199 u64 cur = 0; 4200 u64 found_start; 4201 u64 found_end; 4202 4203 found = true; 4204 while (find_first_extent_bit(&trans->dirty_pages, cur, 4205 &found_start, &found_end, EXTENT_DIRTY, &cached)) { 4206 dirty_bytes += found_end + 1 - found_start; 4207 cur = found_end + 1; 4208 } 4209 btrfs_warn(fs_info, 4210 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4211 trans->transid, dirty_bytes); 4212 btrfs_cleanup_one_transaction(trans, fs_info); 4213 4214 if (trans == fs_info->running_transaction) 4215 fs_info->running_transaction = NULL; 4216 list_del_init(&trans->list); 4217 4218 btrfs_put_transaction(trans); 4219 trace_btrfs_transaction_commit(fs_info); 4220 } 4221 ASSERT(!found); 4222 } 4223 4224 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4225 { 4226 int ret; 4227 4228 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4229 4230 /* 4231 * If we had UNFINISHED_DROPS we could still be processing them, so 4232 * clear that bit and wake up relocation so it can stop. 4233 * We must do this before stopping the block group reclaim task, because 4234 * at btrfs_relocate_block_group() we wait for this bit, and after the 4235 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4236 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4237 * return 1. 4238 */ 4239 btrfs_wake_unfinished_drop(fs_info); 4240 4241 /* 4242 * We may have the reclaim task running and relocating a data block group, 4243 * in which case it may create delayed iputs. So stop it before we park 4244 * the cleaner kthread otherwise we can get new delayed iputs after 4245 * parking the cleaner, and that can make the async reclaim task to hang 4246 * if it's waiting for delayed iputs to complete, since the cleaner is 4247 * parked and can not run delayed iputs - this will make us hang when 4248 * trying to stop the async reclaim task. 4249 */ 4250 cancel_work_sync(&fs_info->reclaim_bgs_work); 4251 /* 4252 * We don't want the cleaner to start new transactions, add more delayed 4253 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4254 * because that frees the task_struct, and the transaction kthread might 4255 * still try to wake up the cleaner. 4256 */ 4257 kthread_park(fs_info->cleaner_kthread); 4258 4259 /* wait for the qgroup rescan worker to stop */ 4260 btrfs_qgroup_wait_for_completion(fs_info, false); 4261 4262 /* wait for the uuid_scan task to finish */ 4263 down(&fs_info->uuid_tree_rescan_sem); 4264 /* avoid complains from lockdep et al., set sem back to initial state */ 4265 up(&fs_info->uuid_tree_rescan_sem); 4266 4267 /* pause restriper - we want to resume on mount */ 4268 btrfs_pause_balance(fs_info); 4269 4270 btrfs_dev_replace_suspend_for_unmount(fs_info); 4271 4272 btrfs_scrub_cancel(fs_info); 4273 4274 /* wait for any defraggers to finish */ 4275 wait_event(fs_info->transaction_wait, 4276 (atomic_read(&fs_info->defrag_running) == 0)); 4277 4278 /* clear out the rbtree of defraggable inodes */ 4279 btrfs_cleanup_defrag_inodes(fs_info); 4280 4281 /* 4282 * After we parked the cleaner kthread, ordered extents may have 4283 * completed and created new delayed iputs. If one of the async reclaim 4284 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4285 * can hang forever trying to stop it, because if a delayed iput is 4286 * added after it ran btrfs_run_delayed_iputs() and before it called 4287 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4288 * no one else to run iputs. 4289 * 4290 * So wait for all ongoing ordered extents to complete and then run 4291 * delayed iputs. This works because once we reach this point no one 4292 * can either create new ordered extents nor create delayed iputs 4293 * through some other means. 4294 * 4295 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4296 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4297 * but the delayed iput for the respective inode is made only when doing 4298 * the final btrfs_put_ordered_extent() (which must happen at 4299 * btrfs_finish_ordered_io() when we are unmounting). 4300 */ 4301 btrfs_flush_workqueue(fs_info->endio_write_workers); 4302 /* Ordered extents for free space inodes. */ 4303 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4304 btrfs_run_delayed_iputs(fs_info); 4305 4306 cancel_work_sync(&fs_info->async_reclaim_work); 4307 cancel_work_sync(&fs_info->async_data_reclaim_work); 4308 cancel_work_sync(&fs_info->preempt_reclaim_work); 4309 4310 /* Cancel or finish ongoing discard work */ 4311 btrfs_discard_cleanup(fs_info); 4312 4313 if (!sb_rdonly(fs_info->sb)) { 4314 /* 4315 * The cleaner kthread is stopped, so do one final pass over 4316 * unused block groups. 4317 */ 4318 btrfs_delete_unused_bgs(fs_info); 4319 4320 /* 4321 * There might be existing delayed inode workers still running 4322 * and holding an empty delayed inode item. We must wait for 4323 * them to complete first because they can create a transaction. 4324 * This happens when someone calls btrfs_balance_delayed_items() 4325 * and then a transaction commit runs the same delayed nodes 4326 * before any delayed worker has done something with the nodes. 4327 * We must wait for any worker here and not at transaction 4328 * commit time since that could cause a deadlock. 4329 * This is a very rare case. 4330 */ 4331 btrfs_flush_workqueue(fs_info->delayed_workers); 4332 4333 ret = btrfs_commit_super(fs_info); 4334 if (ret) 4335 btrfs_err(fs_info, "commit super ret %d", ret); 4336 } 4337 4338 if (BTRFS_FS_ERROR(fs_info)) 4339 btrfs_error_commit_super(fs_info); 4340 4341 kthread_stop(fs_info->transaction_kthread); 4342 kthread_stop(fs_info->cleaner_kthread); 4343 4344 ASSERT(list_empty(&fs_info->delayed_iputs)); 4345 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4346 4347 if (btrfs_check_quota_leak(fs_info)) { 4348 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4349 btrfs_err(fs_info, "qgroup reserved space leaked"); 4350 } 4351 4352 btrfs_free_qgroup_config(fs_info); 4353 ASSERT(list_empty(&fs_info->delalloc_roots)); 4354 4355 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4356 btrfs_info(fs_info, "at unmount delalloc count %lld", 4357 percpu_counter_sum(&fs_info->delalloc_bytes)); 4358 } 4359 4360 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4361 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4362 percpu_counter_sum(&fs_info->ordered_bytes)); 4363 4364 btrfs_sysfs_remove_mounted(fs_info); 4365 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4366 4367 btrfs_put_block_group_cache(fs_info); 4368 4369 /* 4370 * we must make sure there is not any read request to 4371 * submit after we stopping all workers. 4372 */ 4373 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4374 btrfs_stop_all_workers(fs_info); 4375 4376 /* We shouldn't have any transaction open at this point */ 4377 warn_about_uncommitted_trans(fs_info); 4378 4379 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4380 free_root_pointers(fs_info, true); 4381 btrfs_free_fs_roots(fs_info); 4382 4383 /* 4384 * We must free the block groups after dropping the fs_roots as we could 4385 * have had an IO error and have left over tree log blocks that aren't 4386 * cleaned up until the fs roots are freed. This makes the block group 4387 * accounting appear to be wrong because there's pending reserved bytes, 4388 * so make sure we do the block group cleanup afterwards. 4389 */ 4390 btrfs_free_block_groups(fs_info); 4391 4392 iput(fs_info->btree_inode); 4393 4394 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4395 btrfs_close_devices(fs_info->fs_devices); 4396 } 4397 4398 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans, 4399 struct extent_buffer *buf) 4400 { 4401 struct btrfs_fs_info *fs_info = buf->fs_info; 4402 u64 transid = btrfs_header_generation(buf); 4403 4404 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4405 /* 4406 * This is a fast path so only do this check if we have sanity tests 4407 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4408 * outside of the sanity tests. 4409 */ 4410 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4411 return; 4412 #endif 4413 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */ 4414 ASSERT(trans->transid == fs_info->generation); 4415 btrfs_assert_tree_write_locked(buf); 4416 if (unlikely(transid != fs_info->generation)) { 4417 btrfs_abort_transaction(trans, -EUCLEAN); 4418 btrfs_crit(fs_info, 4419 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu", 4420 buf->start, transid, fs_info->generation); 4421 } 4422 set_extent_buffer_dirty(buf); 4423 } 4424 4425 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4426 int flush_delayed) 4427 { 4428 /* 4429 * looks as though older kernels can get into trouble with 4430 * this code, they end up stuck in balance_dirty_pages forever 4431 */ 4432 int ret; 4433 4434 if (current->flags & PF_MEMALLOC) 4435 return; 4436 4437 if (flush_delayed) 4438 btrfs_balance_delayed_items(fs_info); 4439 4440 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4441 BTRFS_DIRTY_METADATA_THRESH, 4442 fs_info->dirty_metadata_batch); 4443 if (ret > 0) { 4444 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4445 } 4446 } 4447 4448 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4449 { 4450 __btrfs_btree_balance_dirty(fs_info, 1); 4451 } 4452 4453 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4454 { 4455 __btrfs_btree_balance_dirty(fs_info, 0); 4456 } 4457 4458 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4459 { 4460 /* cleanup FS via transaction */ 4461 btrfs_cleanup_transaction(fs_info); 4462 4463 mutex_lock(&fs_info->cleaner_mutex); 4464 btrfs_run_delayed_iputs(fs_info); 4465 mutex_unlock(&fs_info->cleaner_mutex); 4466 4467 down_write(&fs_info->cleanup_work_sem); 4468 up_write(&fs_info->cleanup_work_sem); 4469 } 4470 4471 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4472 { 4473 struct btrfs_root *gang[8]; 4474 u64 root_objectid = 0; 4475 int ret; 4476 4477 spin_lock(&fs_info->fs_roots_radix_lock); 4478 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4479 (void **)gang, root_objectid, 4480 ARRAY_SIZE(gang))) != 0) { 4481 int i; 4482 4483 for (i = 0; i < ret; i++) 4484 gang[i] = btrfs_grab_root(gang[i]); 4485 spin_unlock(&fs_info->fs_roots_radix_lock); 4486 4487 for (i = 0; i < ret; i++) { 4488 if (!gang[i]) 4489 continue; 4490 root_objectid = gang[i]->root_key.objectid; 4491 btrfs_free_log(NULL, gang[i]); 4492 btrfs_put_root(gang[i]); 4493 } 4494 root_objectid++; 4495 spin_lock(&fs_info->fs_roots_radix_lock); 4496 } 4497 spin_unlock(&fs_info->fs_roots_radix_lock); 4498 btrfs_free_log_root_tree(NULL, fs_info); 4499 } 4500 4501 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4502 { 4503 struct btrfs_ordered_extent *ordered; 4504 4505 spin_lock(&root->ordered_extent_lock); 4506 /* 4507 * This will just short circuit the ordered completion stuff which will 4508 * make sure the ordered extent gets properly cleaned up. 4509 */ 4510 list_for_each_entry(ordered, &root->ordered_extents, 4511 root_extent_list) 4512 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4513 spin_unlock(&root->ordered_extent_lock); 4514 } 4515 4516 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4517 { 4518 struct btrfs_root *root; 4519 LIST_HEAD(splice); 4520 4521 spin_lock(&fs_info->ordered_root_lock); 4522 list_splice_init(&fs_info->ordered_roots, &splice); 4523 while (!list_empty(&splice)) { 4524 root = list_first_entry(&splice, struct btrfs_root, 4525 ordered_root); 4526 list_move_tail(&root->ordered_root, 4527 &fs_info->ordered_roots); 4528 4529 spin_unlock(&fs_info->ordered_root_lock); 4530 btrfs_destroy_ordered_extents(root); 4531 4532 cond_resched(); 4533 spin_lock(&fs_info->ordered_root_lock); 4534 } 4535 spin_unlock(&fs_info->ordered_root_lock); 4536 4537 /* 4538 * We need this here because if we've been flipped read-only we won't 4539 * get sync() from the umount, so we need to make sure any ordered 4540 * extents that haven't had their dirty pages IO start writeout yet 4541 * actually get run and error out properly. 4542 */ 4543 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4544 } 4545 4546 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4547 struct btrfs_fs_info *fs_info) 4548 { 4549 struct rb_node *node; 4550 struct btrfs_delayed_ref_root *delayed_refs; 4551 struct btrfs_delayed_ref_node *ref; 4552 4553 delayed_refs = &trans->delayed_refs; 4554 4555 spin_lock(&delayed_refs->lock); 4556 if (atomic_read(&delayed_refs->num_entries) == 0) { 4557 spin_unlock(&delayed_refs->lock); 4558 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4559 return; 4560 } 4561 4562 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4563 struct btrfs_delayed_ref_head *head; 4564 struct rb_node *n; 4565 bool pin_bytes = false; 4566 4567 head = rb_entry(node, struct btrfs_delayed_ref_head, 4568 href_node); 4569 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4570 continue; 4571 4572 spin_lock(&head->lock); 4573 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4574 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4575 ref_node); 4576 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4577 RB_CLEAR_NODE(&ref->ref_node); 4578 if (!list_empty(&ref->add_list)) 4579 list_del(&ref->add_list); 4580 atomic_dec(&delayed_refs->num_entries); 4581 btrfs_put_delayed_ref(ref); 4582 btrfs_delayed_refs_rsv_release(fs_info, 1, 0); 4583 } 4584 if (head->must_insert_reserved) 4585 pin_bytes = true; 4586 btrfs_free_delayed_extent_op(head->extent_op); 4587 btrfs_delete_ref_head(delayed_refs, head); 4588 spin_unlock(&head->lock); 4589 spin_unlock(&delayed_refs->lock); 4590 mutex_unlock(&head->mutex); 4591 4592 if (pin_bytes) { 4593 struct btrfs_block_group *cache; 4594 4595 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4596 BUG_ON(!cache); 4597 4598 spin_lock(&cache->space_info->lock); 4599 spin_lock(&cache->lock); 4600 cache->pinned += head->num_bytes; 4601 btrfs_space_info_update_bytes_pinned(fs_info, 4602 cache->space_info, head->num_bytes); 4603 cache->reserved -= head->num_bytes; 4604 cache->space_info->bytes_reserved -= head->num_bytes; 4605 spin_unlock(&cache->lock); 4606 spin_unlock(&cache->space_info->lock); 4607 4608 btrfs_put_block_group(cache); 4609 4610 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4611 head->bytenr + head->num_bytes - 1); 4612 } 4613 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4614 btrfs_put_delayed_ref_head(head); 4615 cond_resched(); 4616 spin_lock(&delayed_refs->lock); 4617 } 4618 btrfs_qgroup_destroy_extent_records(trans); 4619 4620 spin_unlock(&delayed_refs->lock); 4621 } 4622 4623 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4624 { 4625 struct btrfs_inode *btrfs_inode; 4626 LIST_HEAD(splice); 4627 4628 spin_lock(&root->delalloc_lock); 4629 list_splice_init(&root->delalloc_inodes, &splice); 4630 4631 while (!list_empty(&splice)) { 4632 struct inode *inode = NULL; 4633 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4634 delalloc_inodes); 4635 __btrfs_del_delalloc_inode(root, btrfs_inode); 4636 spin_unlock(&root->delalloc_lock); 4637 4638 /* 4639 * Make sure we get a live inode and that it'll not disappear 4640 * meanwhile. 4641 */ 4642 inode = igrab(&btrfs_inode->vfs_inode); 4643 if (inode) { 4644 unsigned int nofs_flag; 4645 4646 nofs_flag = memalloc_nofs_save(); 4647 invalidate_inode_pages2(inode->i_mapping); 4648 memalloc_nofs_restore(nofs_flag); 4649 iput(inode); 4650 } 4651 spin_lock(&root->delalloc_lock); 4652 } 4653 spin_unlock(&root->delalloc_lock); 4654 } 4655 4656 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4657 { 4658 struct btrfs_root *root; 4659 LIST_HEAD(splice); 4660 4661 spin_lock(&fs_info->delalloc_root_lock); 4662 list_splice_init(&fs_info->delalloc_roots, &splice); 4663 while (!list_empty(&splice)) { 4664 root = list_first_entry(&splice, struct btrfs_root, 4665 delalloc_root); 4666 root = btrfs_grab_root(root); 4667 BUG_ON(!root); 4668 spin_unlock(&fs_info->delalloc_root_lock); 4669 4670 btrfs_destroy_delalloc_inodes(root); 4671 btrfs_put_root(root); 4672 4673 spin_lock(&fs_info->delalloc_root_lock); 4674 } 4675 spin_unlock(&fs_info->delalloc_root_lock); 4676 } 4677 4678 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4679 struct extent_io_tree *dirty_pages, 4680 int mark) 4681 { 4682 struct extent_buffer *eb; 4683 u64 start = 0; 4684 u64 end; 4685 4686 while (find_first_extent_bit(dirty_pages, start, &start, &end, 4687 mark, NULL)) { 4688 clear_extent_bits(dirty_pages, start, end, mark); 4689 while (start <= end) { 4690 eb = find_extent_buffer(fs_info, start); 4691 start += fs_info->nodesize; 4692 if (!eb) 4693 continue; 4694 4695 btrfs_tree_lock(eb); 4696 wait_on_extent_buffer_writeback(eb); 4697 btrfs_clear_buffer_dirty(NULL, eb); 4698 btrfs_tree_unlock(eb); 4699 4700 free_extent_buffer_stale(eb); 4701 } 4702 } 4703 } 4704 4705 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4706 struct extent_io_tree *unpin) 4707 { 4708 u64 start; 4709 u64 end; 4710 4711 while (1) { 4712 struct extent_state *cached_state = NULL; 4713 4714 /* 4715 * The btrfs_finish_extent_commit() may get the same range as 4716 * ours between find_first_extent_bit and clear_extent_dirty. 4717 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4718 * the same extent range. 4719 */ 4720 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4721 if (!find_first_extent_bit(unpin, 0, &start, &end, 4722 EXTENT_DIRTY, &cached_state)) { 4723 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4724 break; 4725 } 4726 4727 clear_extent_dirty(unpin, start, end, &cached_state); 4728 free_extent_state(cached_state); 4729 btrfs_error_unpin_extent_range(fs_info, start, end); 4730 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4731 cond_resched(); 4732 } 4733 } 4734 4735 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4736 { 4737 struct inode *inode; 4738 4739 inode = cache->io_ctl.inode; 4740 if (inode) { 4741 unsigned int nofs_flag; 4742 4743 nofs_flag = memalloc_nofs_save(); 4744 invalidate_inode_pages2(inode->i_mapping); 4745 memalloc_nofs_restore(nofs_flag); 4746 4747 BTRFS_I(inode)->generation = 0; 4748 cache->io_ctl.inode = NULL; 4749 iput(inode); 4750 } 4751 ASSERT(cache->io_ctl.pages == NULL); 4752 btrfs_put_block_group(cache); 4753 } 4754 4755 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4756 struct btrfs_fs_info *fs_info) 4757 { 4758 struct btrfs_block_group *cache; 4759 4760 spin_lock(&cur_trans->dirty_bgs_lock); 4761 while (!list_empty(&cur_trans->dirty_bgs)) { 4762 cache = list_first_entry(&cur_trans->dirty_bgs, 4763 struct btrfs_block_group, 4764 dirty_list); 4765 4766 if (!list_empty(&cache->io_list)) { 4767 spin_unlock(&cur_trans->dirty_bgs_lock); 4768 list_del_init(&cache->io_list); 4769 btrfs_cleanup_bg_io(cache); 4770 spin_lock(&cur_trans->dirty_bgs_lock); 4771 } 4772 4773 list_del_init(&cache->dirty_list); 4774 spin_lock(&cache->lock); 4775 cache->disk_cache_state = BTRFS_DC_ERROR; 4776 spin_unlock(&cache->lock); 4777 4778 spin_unlock(&cur_trans->dirty_bgs_lock); 4779 btrfs_put_block_group(cache); 4780 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 4781 spin_lock(&cur_trans->dirty_bgs_lock); 4782 } 4783 spin_unlock(&cur_trans->dirty_bgs_lock); 4784 4785 /* 4786 * Refer to the definition of io_bgs member for details why it's safe 4787 * to use it without any locking 4788 */ 4789 while (!list_empty(&cur_trans->io_bgs)) { 4790 cache = list_first_entry(&cur_trans->io_bgs, 4791 struct btrfs_block_group, 4792 io_list); 4793 4794 list_del_init(&cache->io_list); 4795 spin_lock(&cache->lock); 4796 cache->disk_cache_state = BTRFS_DC_ERROR; 4797 spin_unlock(&cache->lock); 4798 btrfs_cleanup_bg_io(cache); 4799 } 4800 } 4801 4802 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4803 struct btrfs_fs_info *fs_info) 4804 { 4805 struct btrfs_device *dev, *tmp; 4806 4807 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4808 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4809 ASSERT(list_empty(&cur_trans->io_bgs)); 4810 4811 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4812 post_commit_list) { 4813 list_del_init(&dev->post_commit_list); 4814 } 4815 4816 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4817 4818 cur_trans->state = TRANS_STATE_COMMIT_START; 4819 wake_up(&fs_info->transaction_blocked_wait); 4820 4821 cur_trans->state = TRANS_STATE_UNBLOCKED; 4822 wake_up(&fs_info->transaction_wait); 4823 4824 btrfs_destroy_delayed_inodes(fs_info); 4825 4826 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4827 EXTENT_DIRTY); 4828 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4829 4830 cur_trans->state =TRANS_STATE_COMPLETED; 4831 wake_up(&cur_trans->commit_wait); 4832 } 4833 4834 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4835 { 4836 struct btrfs_transaction *t; 4837 4838 mutex_lock(&fs_info->transaction_kthread_mutex); 4839 4840 spin_lock(&fs_info->trans_lock); 4841 while (!list_empty(&fs_info->trans_list)) { 4842 t = list_first_entry(&fs_info->trans_list, 4843 struct btrfs_transaction, list); 4844 if (t->state >= TRANS_STATE_COMMIT_PREP) { 4845 refcount_inc(&t->use_count); 4846 spin_unlock(&fs_info->trans_lock); 4847 btrfs_wait_for_commit(fs_info, t->transid); 4848 btrfs_put_transaction(t); 4849 spin_lock(&fs_info->trans_lock); 4850 continue; 4851 } 4852 if (t == fs_info->running_transaction) { 4853 t->state = TRANS_STATE_COMMIT_DOING; 4854 spin_unlock(&fs_info->trans_lock); 4855 /* 4856 * We wait for 0 num_writers since we don't hold a trans 4857 * handle open currently for this transaction. 4858 */ 4859 wait_event(t->writer_wait, 4860 atomic_read(&t->num_writers) == 0); 4861 } else { 4862 spin_unlock(&fs_info->trans_lock); 4863 } 4864 btrfs_cleanup_one_transaction(t, fs_info); 4865 4866 spin_lock(&fs_info->trans_lock); 4867 if (t == fs_info->running_transaction) 4868 fs_info->running_transaction = NULL; 4869 list_del_init(&t->list); 4870 spin_unlock(&fs_info->trans_lock); 4871 4872 btrfs_put_transaction(t); 4873 trace_btrfs_transaction_commit(fs_info); 4874 spin_lock(&fs_info->trans_lock); 4875 } 4876 spin_unlock(&fs_info->trans_lock); 4877 btrfs_destroy_all_ordered_extents(fs_info); 4878 btrfs_destroy_delayed_inodes(fs_info); 4879 btrfs_assert_delayed_root_empty(fs_info); 4880 btrfs_destroy_all_delalloc_inodes(fs_info); 4881 btrfs_drop_all_logs(fs_info); 4882 mutex_unlock(&fs_info->transaction_kthread_mutex); 4883 4884 return 0; 4885 } 4886 4887 int btrfs_init_root_free_objectid(struct btrfs_root *root) 4888 { 4889 struct btrfs_path *path; 4890 int ret; 4891 struct extent_buffer *l; 4892 struct btrfs_key search_key; 4893 struct btrfs_key found_key; 4894 int slot; 4895 4896 path = btrfs_alloc_path(); 4897 if (!path) 4898 return -ENOMEM; 4899 4900 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 4901 search_key.type = -1; 4902 search_key.offset = (u64)-1; 4903 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 4904 if (ret < 0) 4905 goto error; 4906 BUG_ON(ret == 0); /* Corruption */ 4907 if (path->slots[0] > 0) { 4908 slot = path->slots[0] - 1; 4909 l = path->nodes[0]; 4910 btrfs_item_key_to_cpu(l, &found_key, slot); 4911 root->free_objectid = max_t(u64, found_key.objectid + 1, 4912 BTRFS_FIRST_FREE_OBJECTID); 4913 } else { 4914 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 4915 } 4916 ret = 0; 4917 error: 4918 btrfs_free_path(path); 4919 return ret; 4920 } 4921 4922 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 4923 { 4924 int ret; 4925 mutex_lock(&root->objectid_mutex); 4926 4927 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 4928 btrfs_warn(root->fs_info, 4929 "the objectid of root %llu reaches its highest value", 4930 root->root_key.objectid); 4931 ret = -ENOSPC; 4932 goto out; 4933 } 4934 4935 *objectid = root->free_objectid++; 4936 ret = 0; 4937 out: 4938 mutex_unlock(&root->objectid_mutex); 4939 return ret; 4940 } 4941