xref: /linux/fs/btrfs/disk-io.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53 
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57 
58 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
59 				 BTRFS_HEADER_FLAG_RELOC |\
60 				 BTRFS_SUPER_FLAG_ERROR |\
61 				 BTRFS_SUPER_FLAG_SEEDING |\
62 				 BTRFS_SUPER_FLAG_METADUMP)
63 
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68 				    int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 				      struct btrfs_root *root);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74 					struct extent_io_tree *dirty_pages,
75 					int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77 				       struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_root *root);
79 static void btrfs_error_commit_super(struct btrfs_root *root);
80 
81 /*
82  * btrfs_end_io_wq structs are used to do processing in task context when an IO
83  * is complete.  This is used during reads to verify checksums, and it is used
84  * by writes to insert metadata for new file extents after IO is complete.
85  */
86 struct btrfs_end_io_wq {
87 	struct bio *bio;
88 	bio_end_io_t *end_io;
89 	void *private;
90 	struct btrfs_fs_info *info;
91 	int error;
92 	enum btrfs_wq_endio_type metadata;
93 	struct list_head list;
94 	struct btrfs_work work;
95 };
96 
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98 
99 int __init btrfs_end_io_wq_init(void)
100 {
101 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 					sizeof(struct btrfs_end_io_wq),
103 					0,
104 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
105 					NULL);
106 	if (!btrfs_end_io_wq_cache)
107 		return -ENOMEM;
108 	return 0;
109 }
110 
111 void btrfs_end_io_wq_exit(void)
112 {
113 	kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115 
116 /*
117  * async submit bios are used to offload expensive checksumming
118  * onto the worker threads.  They checksum file and metadata bios
119  * just before they are sent down the IO stack.
120  */
121 struct async_submit_bio {
122 	struct inode *inode;
123 	struct bio *bio;
124 	struct list_head list;
125 	extent_submit_bio_hook_t *submit_bio_start;
126 	extent_submit_bio_hook_t *submit_bio_done;
127 	int rw;
128 	int mirror_num;
129 	unsigned long bio_flags;
130 	/*
131 	 * bio_offset is optional, can be used if the pages in the bio
132 	 * can't tell us where in the file the bio should go
133 	 */
134 	u64 bio_offset;
135 	struct btrfs_work work;
136 	int error;
137 };
138 
139 /*
140  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
141  * eb, the lockdep key is determined by the btrfs_root it belongs to and
142  * the level the eb occupies in the tree.
143  *
144  * Different roots are used for different purposes and may nest inside each
145  * other and they require separate keysets.  As lockdep keys should be
146  * static, assign keysets according to the purpose of the root as indicated
147  * by btrfs_root->objectid.  This ensures that all special purpose roots
148  * have separate keysets.
149  *
150  * Lock-nesting across peer nodes is always done with the immediate parent
151  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
152  * subclass to avoid triggering lockdep warning in such cases.
153  *
154  * The key is set by the readpage_end_io_hook after the buffer has passed
155  * csum validation but before the pages are unlocked.  It is also set by
156  * btrfs_init_new_buffer on freshly allocated blocks.
157  *
158  * We also add a check to make sure the highest level of the tree is the
159  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
160  * needs update as well.
161  */
162 #ifdef CONFIG_DEBUG_LOCK_ALLOC
163 # if BTRFS_MAX_LEVEL != 8
164 #  error
165 # endif
166 
167 static struct btrfs_lockdep_keyset {
168 	u64			id;		/* root objectid */
169 	const char		*name_stem;	/* lock name stem */
170 	char			names[BTRFS_MAX_LEVEL + 1][20];
171 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
172 } btrfs_lockdep_keysets[] = {
173 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
174 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
175 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
176 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
177 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
178 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
179 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
180 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
181 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
182 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
183 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
184 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
185 	{ .id = 0,				.name_stem = "tree"	},
186 };
187 
188 void __init btrfs_init_lockdep(void)
189 {
190 	int i, j;
191 
192 	/* initialize lockdep class names */
193 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
194 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
195 
196 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
197 			snprintf(ks->names[j], sizeof(ks->names[j]),
198 				 "btrfs-%s-%02d", ks->name_stem, j);
199 	}
200 }
201 
202 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
203 				    int level)
204 {
205 	struct btrfs_lockdep_keyset *ks;
206 
207 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
208 
209 	/* find the matching keyset, id 0 is the default entry */
210 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
211 		if (ks->id == objectid)
212 			break;
213 
214 	lockdep_set_class_and_name(&eb->lock,
215 				   &ks->keys[level], ks->names[level]);
216 }
217 
218 #endif
219 
220 /*
221  * extents on the btree inode are pretty simple, there's one extent
222  * that covers the entire device
223  */
224 static struct extent_map *btree_get_extent(struct inode *inode,
225 		struct page *page, size_t pg_offset, u64 start, u64 len,
226 		int create)
227 {
228 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
229 	struct extent_map *em;
230 	int ret;
231 
232 	read_lock(&em_tree->lock);
233 	em = lookup_extent_mapping(em_tree, start, len);
234 	if (em) {
235 		em->bdev =
236 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
237 		read_unlock(&em_tree->lock);
238 		goto out;
239 	}
240 	read_unlock(&em_tree->lock);
241 
242 	em = alloc_extent_map();
243 	if (!em) {
244 		em = ERR_PTR(-ENOMEM);
245 		goto out;
246 	}
247 	em->start = 0;
248 	em->len = (u64)-1;
249 	em->block_len = (u64)-1;
250 	em->block_start = 0;
251 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
252 
253 	write_lock(&em_tree->lock);
254 	ret = add_extent_mapping(em_tree, em, 0);
255 	if (ret == -EEXIST) {
256 		free_extent_map(em);
257 		em = lookup_extent_mapping(em_tree, start, len);
258 		if (!em)
259 			em = ERR_PTR(-EIO);
260 	} else if (ret) {
261 		free_extent_map(em);
262 		em = ERR_PTR(ret);
263 	}
264 	write_unlock(&em_tree->lock);
265 
266 out:
267 	return em;
268 }
269 
270 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
271 {
272 	return btrfs_crc32c(seed, data, len);
273 }
274 
275 void btrfs_csum_final(u32 crc, char *result)
276 {
277 	put_unaligned_le32(~crc, result);
278 }
279 
280 /*
281  * compute the csum for a btree block, and either verify it or write it
282  * into the csum field of the block.
283  */
284 static int csum_tree_block(struct btrfs_fs_info *fs_info,
285 			   struct extent_buffer *buf,
286 			   int verify)
287 {
288 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
289 	char *result = NULL;
290 	unsigned long len;
291 	unsigned long cur_len;
292 	unsigned long offset = BTRFS_CSUM_SIZE;
293 	char *kaddr;
294 	unsigned long map_start;
295 	unsigned long map_len;
296 	int err;
297 	u32 crc = ~(u32)0;
298 	unsigned long inline_result;
299 
300 	len = buf->len - offset;
301 	while (len > 0) {
302 		err = map_private_extent_buffer(buf, offset, 32,
303 					&kaddr, &map_start, &map_len);
304 		if (err)
305 			return err;
306 		cur_len = min(len, map_len - (offset - map_start));
307 		crc = btrfs_csum_data(kaddr + offset - map_start,
308 				      crc, cur_len);
309 		len -= cur_len;
310 		offset += cur_len;
311 	}
312 	if (csum_size > sizeof(inline_result)) {
313 		result = kzalloc(csum_size, GFP_NOFS);
314 		if (!result)
315 			return -ENOMEM;
316 	} else {
317 		result = (char *)&inline_result;
318 	}
319 
320 	btrfs_csum_final(crc, result);
321 
322 	if (verify) {
323 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
324 			u32 val;
325 			u32 found = 0;
326 			memcpy(&found, result, csum_size);
327 
328 			read_extent_buffer(buf, &val, 0, csum_size);
329 			btrfs_warn_rl(fs_info,
330 				"%s checksum verify failed on %llu wanted %X found %X "
331 				"level %d",
332 				fs_info->sb->s_id, buf->start,
333 				val, found, btrfs_header_level(buf));
334 			if (result != (char *)&inline_result)
335 				kfree(result);
336 			return -EUCLEAN;
337 		}
338 	} else {
339 		write_extent_buffer(buf, result, 0, csum_size);
340 	}
341 	if (result != (char *)&inline_result)
342 		kfree(result);
343 	return 0;
344 }
345 
346 /*
347  * we can't consider a given block up to date unless the transid of the
348  * block matches the transid in the parent node's pointer.  This is how we
349  * detect blocks that either didn't get written at all or got written
350  * in the wrong place.
351  */
352 static int verify_parent_transid(struct extent_io_tree *io_tree,
353 				 struct extent_buffer *eb, u64 parent_transid,
354 				 int atomic)
355 {
356 	struct extent_state *cached_state = NULL;
357 	int ret;
358 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
359 
360 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
361 		return 0;
362 
363 	if (atomic)
364 		return -EAGAIN;
365 
366 	if (need_lock) {
367 		btrfs_tree_read_lock(eb);
368 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
369 	}
370 
371 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
372 			 &cached_state);
373 	if (extent_buffer_uptodate(eb) &&
374 	    btrfs_header_generation(eb) == parent_transid) {
375 		ret = 0;
376 		goto out;
377 	}
378 	btrfs_err_rl(eb->fs_info,
379 		"parent transid verify failed on %llu wanted %llu found %llu",
380 			eb->start,
381 			parent_transid, btrfs_header_generation(eb));
382 	ret = 1;
383 
384 	/*
385 	 * Things reading via commit roots that don't have normal protection,
386 	 * like send, can have a really old block in cache that may point at a
387 	 * block that has been freed and re-allocated.  So don't clear uptodate
388 	 * if we find an eb that is under IO (dirty/writeback) because we could
389 	 * end up reading in the stale data and then writing it back out and
390 	 * making everybody very sad.
391 	 */
392 	if (!extent_buffer_under_io(eb))
393 		clear_extent_buffer_uptodate(eb);
394 out:
395 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
396 			     &cached_state, GFP_NOFS);
397 	if (need_lock)
398 		btrfs_tree_read_unlock_blocking(eb);
399 	return ret;
400 }
401 
402 /*
403  * Return 0 if the superblock checksum type matches the checksum value of that
404  * algorithm. Pass the raw disk superblock data.
405  */
406 static int btrfs_check_super_csum(char *raw_disk_sb)
407 {
408 	struct btrfs_super_block *disk_sb =
409 		(struct btrfs_super_block *)raw_disk_sb;
410 	u16 csum_type = btrfs_super_csum_type(disk_sb);
411 	int ret = 0;
412 
413 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
414 		u32 crc = ~(u32)0;
415 		const int csum_size = sizeof(crc);
416 		char result[csum_size];
417 
418 		/*
419 		 * The super_block structure does not span the whole
420 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
421 		 * is filled with zeros and is included in the checksum.
422 		 */
423 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
424 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
425 		btrfs_csum_final(crc, result);
426 
427 		if (memcmp(raw_disk_sb, result, csum_size))
428 			ret = 1;
429 	}
430 
431 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
432 		printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
433 				csum_type);
434 		ret = 1;
435 	}
436 
437 	return ret;
438 }
439 
440 /*
441  * helper to read a given tree block, doing retries as required when
442  * the checksums don't match and we have alternate mirrors to try.
443  */
444 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
445 					  struct extent_buffer *eb,
446 					  u64 start, u64 parent_transid)
447 {
448 	struct extent_io_tree *io_tree;
449 	int failed = 0;
450 	int ret;
451 	int num_copies = 0;
452 	int mirror_num = 0;
453 	int failed_mirror = 0;
454 
455 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
456 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
457 	while (1) {
458 		ret = read_extent_buffer_pages(io_tree, eb, start,
459 					       WAIT_COMPLETE,
460 					       btree_get_extent, mirror_num);
461 		if (!ret) {
462 			if (!verify_parent_transid(io_tree, eb,
463 						   parent_transid, 0))
464 				break;
465 			else
466 				ret = -EIO;
467 		}
468 
469 		/*
470 		 * This buffer's crc is fine, but its contents are corrupted, so
471 		 * there is no reason to read the other copies, they won't be
472 		 * any less wrong.
473 		 */
474 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
475 			break;
476 
477 		num_copies = btrfs_num_copies(root->fs_info,
478 					      eb->start, eb->len);
479 		if (num_copies == 1)
480 			break;
481 
482 		if (!failed_mirror) {
483 			failed = 1;
484 			failed_mirror = eb->read_mirror;
485 		}
486 
487 		mirror_num++;
488 		if (mirror_num == failed_mirror)
489 			mirror_num++;
490 
491 		if (mirror_num > num_copies)
492 			break;
493 	}
494 
495 	if (failed && !ret && failed_mirror)
496 		repair_eb_io_failure(root, eb, failed_mirror);
497 
498 	return ret;
499 }
500 
501 /*
502  * checksum a dirty tree block before IO.  This has extra checks to make sure
503  * we only fill in the checksum field in the first page of a multi-page block
504  */
505 
506 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
507 {
508 	u64 start = page_offset(page);
509 	u64 found_start;
510 	struct extent_buffer *eb;
511 
512 	eb = (struct extent_buffer *)page->private;
513 	if (page != eb->pages[0])
514 		return 0;
515 
516 	found_start = btrfs_header_bytenr(eb);
517 	/*
518 	 * Please do not consolidate these warnings into a single if.
519 	 * It is useful to know what went wrong.
520 	 */
521 	if (WARN_ON(found_start != start))
522 		return -EUCLEAN;
523 	if (WARN_ON(!PageUptodate(page)))
524 		return -EUCLEAN;
525 
526 	ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
527 			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
528 
529 	return csum_tree_block(fs_info, eb, 0);
530 }
531 
532 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
533 				 struct extent_buffer *eb)
534 {
535 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
536 	u8 fsid[BTRFS_UUID_SIZE];
537 	int ret = 1;
538 
539 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
540 	while (fs_devices) {
541 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
542 			ret = 0;
543 			break;
544 		}
545 		fs_devices = fs_devices->seed;
546 	}
547 	return ret;
548 }
549 
550 #define CORRUPT(reason, eb, root, slot)				\
551 	btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"	\
552 		   "root=%llu, slot=%d", reason,			\
553 	       btrfs_header_bytenr(eb),	root->objectid, slot)
554 
555 static noinline int check_leaf(struct btrfs_root *root,
556 			       struct extent_buffer *leaf)
557 {
558 	struct btrfs_key key;
559 	struct btrfs_key leaf_key;
560 	u32 nritems = btrfs_header_nritems(leaf);
561 	int slot;
562 
563 	if (nritems == 0)
564 		return 0;
565 
566 	/* Check the 0 item */
567 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
568 	    BTRFS_LEAF_DATA_SIZE(root)) {
569 		CORRUPT("invalid item offset size pair", leaf, root, 0);
570 		return -EIO;
571 	}
572 
573 	/*
574 	 * Check to make sure each items keys are in the correct order and their
575 	 * offsets make sense.  We only have to loop through nritems-1 because
576 	 * we check the current slot against the next slot, which verifies the
577 	 * next slot's offset+size makes sense and that the current's slot
578 	 * offset is correct.
579 	 */
580 	for (slot = 0; slot < nritems - 1; slot++) {
581 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
582 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
583 
584 		/* Make sure the keys are in the right order */
585 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
586 			CORRUPT("bad key order", leaf, root, slot);
587 			return -EIO;
588 		}
589 
590 		/*
591 		 * Make sure the offset and ends are right, remember that the
592 		 * item data starts at the end of the leaf and grows towards the
593 		 * front.
594 		 */
595 		if (btrfs_item_offset_nr(leaf, slot) !=
596 			btrfs_item_end_nr(leaf, slot + 1)) {
597 			CORRUPT("slot offset bad", leaf, root, slot);
598 			return -EIO;
599 		}
600 
601 		/*
602 		 * Check to make sure that we don't point outside of the leaf,
603 		 * just in case all the items are consistent to each other, but
604 		 * all point outside of the leaf.
605 		 */
606 		if (btrfs_item_end_nr(leaf, slot) >
607 		    BTRFS_LEAF_DATA_SIZE(root)) {
608 			CORRUPT("slot end outside of leaf", leaf, root, slot);
609 			return -EIO;
610 		}
611 	}
612 
613 	return 0;
614 }
615 
616 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
617 				      u64 phy_offset, struct page *page,
618 				      u64 start, u64 end, int mirror)
619 {
620 	u64 found_start;
621 	int found_level;
622 	struct extent_buffer *eb;
623 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
624 	struct btrfs_fs_info *fs_info = root->fs_info;
625 	int ret = 0;
626 	int reads_done;
627 
628 	if (!page->private)
629 		goto out;
630 
631 	eb = (struct extent_buffer *)page->private;
632 
633 	/* the pending IO might have been the only thing that kept this buffer
634 	 * in memory.  Make sure we have a ref for all this other checks
635 	 */
636 	extent_buffer_get(eb);
637 
638 	reads_done = atomic_dec_and_test(&eb->io_pages);
639 	if (!reads_done)
640 		goto err;
641 
642 	eb->read_mirror = mirror;
643 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
644 		ret = -EIO;
645 		goto err;
646 	}
647 
648 	found_start = btrfs_header_bytenr(eb);
649 	if (found_start != eb->start) {
650 		btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
651 			     found_start, eb->start);
652 		ret = -EIO;
653 		goto err;
654 	}
655 	if (check_tree_block_fsid(fs_info, eb)) {
656 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
657 			     eb->start);
658 		ret = -EIO;
659 		goto err;
660 	}
661 	found_level = btrfs_header_level(eb);
662 	if (found_level >= BTRFS_MAX_LEVEL) {
663 		btrfs_err(fs_info, "bad tree block level %d",
664 			  (int)btrfs_header_level(eb));
665 		ret = -EIO;
666 		goto err;
667 	}
668 
669 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
670 				       eb, found_level);
671 
672 	ret = csum_tree_block(fs_info, eb, 1);
673 	if (ret)
674 		goto err;
675 
676 	/*
677 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
678 	 * that we don't try and read the other copies of this block, just
679 	 * return -EIO.
680 	 */
681 	if (found_level == 0 && check_leaf(root, eb)) {
682 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
683 		ret = -EIO;
684 	}
685 
686 	if (!ret)
687 		set_extent_buffer_uptodate(eb);
688 err:
689 	if (reads_done &&
690 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
691 		btree_readahead_hook(fs_info, eb, eb->start, ret);
692 
693 	if (ret) {
694 		/*
695 		 * our io error hook is going to dec the io pages
696 		 * again, we have to make sure it has something
697 		 * to decrement
698 		 */
699 		atomic_inc(&eb->io_pages);
700 		clear_extent_buffer_uptodate(eb);
701 	}
702 	free_extent_buffer(eb);
703 out:
704 	return ret;
705 }
706 
707 static int btree_io_failed_hook(struct page *page, int failed_mirror)
708 {
709 	struct extent_buffer *eb;
710 
711 	eb = (struct extent_buffer *)page->private;
712 	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
713 	eb->read_mirror = failed_mirror;
714 	atomic_dec(&eb->io_pages);
715 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
716 		btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
717 	return -EIO;	/* we fixed nothing */
718 }
719 
720 static void end_workqueue_bio(struct bio *bio)
721 {
722 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
723 	struct btrfs_fs_info *fs_info;
724 	struct btrfs_workqueue *wq;
725 	btrfs_work_func_t func;
726 
727 	fs_info = end_io_wq->info;
728 	end_io_wq->error = bio->bi_error;
729 
730 	if (bio->bi_rw & REQ_WRITE) {
731 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
732 			wq = fs_info->endio_meta_write_workers;
733 			func = btrfs_endio_meta_write_helper;
734 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
735 			wq = fs_info->endio_freespace_worker;
736 			func = btrfs_freespace_write_helper;
737 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
738 			wq = fs_info->endio_raid56_workers;
739 			func = btrfs_endio_raid56_helper;
740 		} else {
741 			wq = fs_info->endio_write_workers;
742 			func = btrfs_endio_write_helper;
743 		}
744 	} else {
745 		if (unlikely(end_io_wq->metadata ==
746 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
747 			wq = fs_info->endio_repair_workers;
748 			func = btrfs_endio_repair_helper;
749 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
750 			wq = fs_info->endio_raid56_workers;
751 			func = btrfs_endio_raid56_helper;
752 		} else if (end_io_wq->metadata) {
753 			wq = fs_info->endio_meta_workers;
754 			func = btrfs_endio_meta_helper;
755 		} else {
756 			wq = fs_info->endio_workers;
757 			func = btrfs_endio_helper;
758 		}
759 	}
760 
761 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
762 	btrfs_queue_work(wq, &end_io_wq->work);
763 }
764 
765 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
766 			enum btrfs_wq_endio_type metadata)
767 {
768 	struct btrfs_end_io_wq *end_io_wq;
769 
770 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
771 	if (!end_io_wq)
772 		return -ENOMEM;
773 
774 	end_io_wq->private = bio->bi_private;
775 	end_io_wq->end_io = bio->bi_end_io;
776 	end_io_wq->info = info;
777 	end_io_wq->error = 0;
778 	end_io_wq->bio = bio;
779 	end_io_wq->metadata = metadata;
780 
781 	bio->bi_private = end_io_wq;
782 	bio->bi_end_io = end_workqueue_bio;
783 	return 0;
784 }
785 
786 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
787 {
788 	unsigned long limit = min_t(unsigned long,
789 				    info->thread_pool_size,
790 				    info->fs_devices->open_devices);
791 	return 256 * limit;
792 }
793 
794 static void run_one_async_start(struct btrfs_work *work)
795 {
796 	struct async_submit_bio *async;
797 	int ret;
798 
799 	async = container_of(work, struct  async_submit_bio, work);
800 	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
801 				      async->mirror_num, async->bio_flags,
802 				      async->bio_offset);
803 	if (ret)
804 		async->error = ret;
805 }
806 
807 static void run_one_async_done(struct btrfs_work *work)
808 {
809 	struct btrfs_fs_info *fs_info;
810 	struct async_submit_bio *async;
811 	int limit;
812 
813 	async = container_of(work, struct  async_submit_bio, work);
814 	fs_info = BTRFS_I(async->inode)->root->fs_info;
815 
816 	limit = btrfs_async_submit_limit(fs_info);
817 	limit = limit * 2 / 3;
818 
819 	/*
820 	 * atomic_dec_return implies a barrier for waitqueue_active
821 	 */
822 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
823 	    waitqueue_active(&fs_info->async_submit_wait))
824 		wake_up(&fs_info->async_submit_wait);
825 
826 	/* If an error occurred we just want to clean up the bio and move on */
827 	if (async->error) {
828 		async->bio->bi_error = async->error;
829 		bio_endio(async->bio);
830 		return;
831 	}
832 
833 	async->submit_bio_done(async->inode, async->rw, async->bio,
834 			       async->mirror_num, async->bio_flags,
835 			       async->bio_offset);
836 }
837 
838 static void run_one_async_free(struct btrfs_work *work)
839 {
840 	struct async_submit_bio *async;
841 
842 	async = container_of(work, struct  async_submit_bio, work);
843 	kfree(async);
844 }
845 
846 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
847 			int rw, struct bio *bio, int mirror_num,
848 			unsigned long bio_flags,
849 			u64 bio_offset,
850 			extent_submit_bio_hook_t *submit_bio_start,
851 			extent_submit_bio_hook_t *submit_bio_done)
852 {
853 	struct async_submit_bio *async;
854 
855 	async = kmalloc(sizeof(*async), GFP_NOFS);
856 	if (!async)
857 		return -ENOMEM;
858 
859 	async->inode = inode;
860 	async->rw = rw;
861 	async->bio = bio;
862 	async->mirror_num = mirror_num;
863 	async->submit_bio_start = submit_bio_start;
864 	async->submit_bio_done = submit_bio_done;
865 
866 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
867 			run_one_async_done, run_one_async_free);
868 
869 	async->bio_flags = bio_flags;
870 	async->bio_offset = bio_offset;
871 
872 	async->error = 0;
873 
874 	atomic_inc(&fs_info->nr_async_submits);
875 
876 	if (rw & REQ_SYNC)
877 		btrfs_set_work_high_priority(&async->work);
878 
879 	btrfs_queue_work(fs_info->workers, &async->work);
880 
881 	while (atomic_read(&fs_info->async_submit_draining) &&
882 	      atomic_read(&fs_info->nr_async_submits)) {
883 		wait_event(fs_info->async_submit_wait,
884 			   (atomic_read(&fs_info->nr_async_submits) == 0));
885 	}
886 
887 	return 0;
888 }
889 
890 static int btree_csum_one_bio(struct bio *bio)
891 {
892 	struct bio_vec *bvec;
893 	struct btrfs_root *root;
894 	int i, ret = 0;
895 
896 	bio_for_each_segment_all(bvec, bio, i) {
897 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
898 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
899 		if (ret)
900 			break;
901 	}
902 
903 	return ret;
904 }
905 
906 static int __btree_submit_bio_start(struct inode *inode, int rw,
907 				    struct bio *bio, int mirror_num,
908 				    unsigned long bio_flags,
909 				    u64 bio_offset)
910 {
911 	/*
912 	 * when we're called for a write, we're already in the async
913 	 * submission context.  Just jump into btrfs_map_bio
914 	 */
915 	return btree_csum_one_bio(bio);
916 }
917 
918 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
919 				 int mirror_num, unsigned long bio_flags,
920 				 u64 bio_offset)
921 {
922 	int ret;
923 
924 	/*
925 	 * when we're called for a write, we're already in the async
926 	 * submission context.  Just jump into btrfs_map_bio
927 	 */
928 	ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
929 	if (ret) {
930 		bio->bi_error = ret;
931 		bio_endio(bio);
932 	}
933 	return ret;
934 }
935 
936 static int check_async_write(struct inode *inode, unsigned long bio_flags)
937 {
938 	if (bio_flags & EXTENT_BIO_TREE_LOG)
939 		return 0;
940 #ifdef CONFIG_X86
941 	if (static_cpu_has(X86_FEATURE_XMM4_2))
942 		return 0;
943 #endif
944 	return 1;
945 }
946 
947 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
948 				 int mirror_num, unsigned long bio_flags,
949 				 u64 bio_offset)
950 {
951 	int async = check_async_write(inode, bio_flags);
952 	int ret;
953 
954 	if (!(rw & REQ_WRITE)) {
955 		/*
956 		 * called for a read, do the setup so that checksum validation
957 		 * can happen in the async kernel threads
958 		 */
959 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
960 					  bio, BTRFS_WQ_ENDIO_METADATA);
961 		if (ret)
962 			goto out_w_error;
963 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
964 				    mirror_num, 0);
965 	} else if (!async) {
966 		ret = btree_csum_one_bio(bio);
967 		if (ret)
968 			goto out_w_error;
969 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
970 				    mirror_num, 0);
971 	} else {
972 		/*
973 		 * kthread helpers are used to submit writes so that
974 		 * checksumming can happen in parallel across all CPUs
975 		 */
976 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
977 					  inode, rw, bio, mirror_num, 0,
978 					  bio_offset,
979 					  __btree_submit_bio_start,
980 					  __btree_submit_bio_done);
981 	}
982 
983 	if (ret)
984 		goto out_w_error;
985 	return 0;
986 
987 out_w_error:
988 	bio->bi_error = ret;
989 	bio_endio(bio);
990 	return ret;
991 }
992 
993 #ifdef CONFIG_MIGRATION
994 static int btree_migratepage(struct address_space *mapping,
995 			struct page *newpage, struct page *page,
996 			enum migrate_mode mode)
997 {
998 	/*
999 	 * we can't safely write a btree page from here,
1000 	 * we haven't done the locking hook
1001 	 */
1002 	if (PageDirty(page))
1003 		return -EAGAIN;
1004 	/*
1005 	 * Buffers may be managed in a filesystem specific way.
1006 	 * We must have no buffers or drop them.
1007 	 */
1008 	if (page_has_private(page) &&
1009 	    !try_to_release_page(page, GFP_KERNEL))
1010 		return -EAGAIN;
1011 	return migrate_page(mapping, newpage, page, mode);
1012 }
1013 #endif
1014 
1015 
1016 static int btree_writepages(struct address_space *mapping,
1017 			    struct writeback_control *wbc)
1018 {
1019 	struct btrfs_fs_info *fs_info;
1020 	int ret;
1021 
1022 	if (wbc->sync_mode == WB_SYNC_NONE) {
1023 
1024 		if (wbc->for_kupdate)
1025 			return 0;
1026 
1027 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
1028 		/* this is a bit racy, but that's ok */
1029 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1030 					     BTRFS_DIRTY_METADATA_THRESH);
1031 		if (ret < 0)
1032 			return 0;
1033 	}
1034 	return btree_write_cache_pages(mapping, wbc);
1035 }
1036 
1037 static int btree_readpage(struct file *file, struct page *page)
1038 {
1039 	struct extent_io_tree *tree;
1040 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1041 	return extent_read_full_page(tree, page, btree_get_extent, 0);
1042 }
1043 
1044 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1045 {
1046 	if (PageWriteback(page) || PageDirty(page))
1047 		return 0;
1048 
1049 	return try_release_extent_buffer(page);
1050 }
1051 
1052 static void btree_invalidatepage(struct page *page, unsigned int offset,
1053 				 unsigned int length)
1054 {
1055 	struct extent_io_tree *tree;
1056 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1057 	extent_invalidatepage(tree, page, offset);
1058 	btree_releasepage(page, GFP_NOFS);
1059 	if (PagePrivate(page)) {
1060 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1061 			   "page private not zero on page %llu",
1062 			   (unsigned long long)page_offset(page));
1063 		ClearPagePrivate(page);
1064 		set_page_private(page, 0);
1065 		put_page(page);
1066 	}
1067 }
1068 
1069 static int btree_set_page_dirty(struct page *page)
1070 {
1071 #ifdef DEBUG
1072 	struct extent_buffer *eb;
1073 
1074 	BUG_ON(!PagePrivate(page));
1075 	eb = (struct extent_buffer *)page->private;
1076 	BUG_ON(!eb);
1077 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1078 	BUG_ON(!atomic_read(&eb->refs));
1079 	btrfs_assert_tree_locked(eb);
1080 #endif
1081 	return __set_page_dirty_nobuffers(page);
1082 }
1083 
1084 static const struct address_space_operations btree_aops = {
1085 	.readpage	= btree_readpage,
1086 	.writepages	= btree_writepages,
1087 	.releasepage	= btree_releasepage,
1088 	.invalidatepage = btree_invalidatepage,
1089 #ifdef CONFIG_MIGRATION
1090 	.migratepage	= btree_migratepage,
1091 #endif
1092 	.set_page_dirty = btree_set_page_dirty,
1093 };
1094 
1095 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1096 {
1097 	struct extent_buffer *buf = NULL;
1098 	struct inode *btree_inode = root->fs_info->btree_inode;
1099 
1100 	buf = btrfs_find_create_tree_block(root, bytenr);
1101 	if (!buf)
1102 		return;
1103 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1104 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1105 	free_extent_buffer(buf);
1106 }
1107 
1108 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1109 			 int mirror_num, struct extent_buffer **eb)
1110 {
1111 	struct extent_buffer *buf = NULL;
1112 	struct inode *btree_inode = root->fs_info->btree_inode;
1113 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1114 	int ret;
1115 
1116 	buf = btrfs_find_create_tree_block(root, bytenr);
1117 	if (!buf)
1118 		return 0;
1119 
1120 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1121 
1122 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1123 				       btree_get_extent, mirror_num);
1124 	if (ret) {
1125 		free_extent_buffer(buf);
1126 		return ret;
1127 	}
1128 
1129 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1130 		free_extent_buffer(buf);
1131 		return -EIO;
1132 	} else if (extent_buffer_uptodate(buf)) {
1133 		*eb = buf;
1134 	} else {
1135 		free_extent_buffer(buf);
1136 	}
1137 	return 0;
1138 }
1139 
1140 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1141 					    u64 bytenr)
1142 {
1143 	return find_extent_buffer(fs_info, bytenr);
1144 }
1145 
1146 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1147 						 u64 bytenr)
1148 {
1149 	if (btrfs_test_is_dummy_root(root))
1150 		return alloc_test_extent_buffer(root->fs_info, bytenr,
1151 				root->nodesize);
1152 	return alloc_extent_buffer(root->fs_info, bytenr);
1153 }
1154 
1155 
1156 int btrfs_write_tree_block(struct extent_buffer *buf)
1157 {
1158 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1159 					buf->start + buf->len - 1);
1160 }
1161 
1162 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1163 {
1164 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1165 				       buf->start, buf->start + buf->len - 1);
1166 }
1167 
1168 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1169 				      u64 parent_transid)
1170 {
1171 	struct extent_buffer *buf = NULL;
1172 	int ret;
1173 
1174 	buf = btrfs_find_create_tree_block(root, bytenr);
1175 	if (!buf)
1176 		return ERR_PTR(-ENOMEM);
1177 
1178 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1179 	if (ret) {
1180 		free_extent_buffer(buf);
1181 		return ERR_PTR(ret);
1182 	}
1183 	return buf;
1184 
1185 }
1186 
1187 void clean_tree_block(struct btrfs_trans_handle *trans,
1188 		      struct btrfs_fs_info *fs_info,
1189 		      struct extent_buffer *buf)
1190 {
1191 	if (btrfs_header_generation(buf) ==
1192 	    fs_info->running_transaction->transid) {
1193 		btrfs_assert_tree_locked(buf);
1194 
1195 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1196 			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1197 					     -buf->len,
1198 					     fs_info->dirty_metadata_batch);
1199 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1200 			btrfs_set_lock_blocking(buf);
1201 			clear_extent_buffer_dirty(buf);
1202 		}
1203 	}
1204 }
1205 
1206 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1207 {
1208 	struct btrfs_subvolume_writers *writers;
1209 	int ret;
1210 
1211 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1212 	if (!writers)
1213 		return ERR_PTR(-ENOMEM);
1214 
1215 	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1216 	if (ret < 0) {
1217 		kfree(writers);
1218 		return ERR_PTR(ret);
1219 	}
1220 
1221 	init_waitqueue_head(&writers->wait);
1222 	return writers;
1223 }
1224 
1225 static void
1226 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1227 {
1228 	percpu_counter_destroy(&writers->counter);
1229 	kfree(writers);
1230 }
1231 
1232 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1233 			 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1234 			 u64 objectid)
1235 {
1236 	root->node = NULL;
1237 	root->commit_root = NULL;
1238 	root->sectorsize = sectorsize;
1239 	root->nodesize = nodesize;
1240 	root->stripesize = stripesize;
1241 	root->state = 0;
1242 	root->orphan_cleanup_state = 0;
1243 
1244 	root->objectid = objectid;
1245 	root->last_trans = 0;
1246 	root->highest_objectid = 0;
1247 	root->nr_delalloc_inodes = 0;
1248 	root->nr_ordered_extents = 0;
1249 	root->name = NULL;
1250 	root->inode_tree = RB_ROOT;
1251 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1252 	root->block_rsv = NULL;
1253 	root->orphan_block_rsv = NULL;
1254 
1255 	INIT_LIST_HEAD(&root->dirty_list);
1256 	INIT_LIST_HEAD(&root->root_list);
1257 	INIT_LIST_HEAD(&root->delalloc_inodes);
1258 	INIT_LIST_HEAD(&root->delalloc_root);
1259 	INIT_LIST_HEAD(&root->ordered_extents);
1260 	INIT_LIST_HEAD(&root->ordered_root);
1261 	INIT_LIST_HEAD(&root->logged_list[0]);
1262 	INIT_LIST_HEAD(&root->logged_list[1]);
1263 	spin_lock_init(&root->orphan_lock);
1264 	spin_lock_init(&root->inode_lock);
1265 	spin_lock_init(&root->delalloc_lock);
1266 	spin_lock_init(&root->ordered_extent_lock);
1267 	spin_lock_init(&root->accounting_lock);
1268 	spin_lock_init(&root->log_extents_lock[0]);
1269 	spin_lock_init(&root->log_extents_lock[1]);
1270 	mutex_init(&root->objectid_mutex);
1271 	mutex_init(&root->log_mutex);
1272 	mutex_init(&root->ordered_extent_mutex);
1273 	mutex_init(&root->delalloc_mutex);
1274 	init_waitqueue_head(&root->log_writer_wait);
1275 	init_waitqueue_head(&root->log_commit_wait[0]);
1276 	init_waitqueue_head(&root->log_commit_wait[1]);
1277 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1278 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1279 	atomic_set(&root->log_commit[0], 0);
1280 	atomic_set(&root->log_commit[1], 0);
1281 	atomic_set(&root->log_writers, 0);
1282 	atomic_set(&root->log_batch, 0);
1283 	atomic_set(&root->orphan_inodes, 0);
1284 	atomic_set(&root->refs, 1);
1285 	atomic_set(&root->will_be_snapshoted, 0);
1286 	atomic_set(&root->qgroup_meta_rsv, 0);
1287 	root->log_transid = 0;
1288 	root->log_transid_committed = -1;
1289 	root->last_log_commit = 0;
1290 	if (fs_info)
1291 		extent_io_tree_init(&root->dirty_log_pages,
1292 				     fs_info->btree_inode->i_mapping);
1293 
1294 	memset(&root->root_key, 0, sizeof(root->root_key));
1295 	memset(&root->root_item, 0, sizeof(root->root_item));
1296 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1297 	if (fs_info)
1298 		root->defrag_trans_start = fs_info->generation;
1299 	else
1300 		root->defrag_trans_start = 0;
1301 	root->root_key.objectid = objectid;
1302 	root->anon_dev = 0;
1303 
1304 	spin_lock_init(&root->root_item_lock);
1305 }
1306 
1307 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1308 		gfp_t flags)
1309 {
1310 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1311 	if (root)
1312 		root->fs_info = fs_info;
1313 	return root;
1314 }
1315 
1316 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1317 /* Should only be used by the testing infrastructure */
1318 struct btrfs_root *btrfs_alloc_dummy_root(u32 sectorsize, u32 nodesize)
1319 {
1320 	struct btrfs_root *root;
1321 
1322 	root = btrfs_alloc_root(NULL, GFP_KERNEL);
1323 	if (!root)
1324 		return ERR_PTR(-ENOMEM);
1325 	/* We don't use the stripesize in selftest, set it as sectorsize */
1326 	__setup_root(nodesize, sectorsize, sectorsize, root, NULL,
1327 			BTRFS_ROOT_TREE_OBJECTID);
1328 	set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1329 	root->alloc_bytenr = 0;
1330 
1331 	return root;
1332 }
1333 #endif
1334 
1335 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1336 				     struct btrfs_fs_info *fs_info,
1337 				     u64 objectid)
1338 {
1339 	struct extent_buffer *leaf;
1340 	struct btrfs_root *tree_root = fs_info->tree_root;
1341 	struct btrfs_root *root;
1342 	struct btrfs_key key;
1343 	int ret = 0;
1344 	uuid_le uuid;
1345 
1346 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1347 	if (!root)
1348 		return ERR_PTR(-ENOMEM);
1349 
1350 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1351 		tree_root->stripesize, root, fs_info, objectid);
1352 	root->root_key.objectid = objectid;
1353 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1354 	root->root_key.offset = 0;
1355 
1356 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1357 	if (IS_ERR(leaf)) {
1358 		ret = PTR_ERR(leaf);
1359 		leaf = NULL;
1360 		goto fail;
1361 	}
1362 
1363 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1364 	btrfs_set_header_bytenr(leaf, leaf->start);
1365 	btrfs_set_header_generation(leaf, trans->transid);
1366 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1367 	btrfs_set_header_owner(leaf, objectid);
1368 	root->node = leaf;
1369 
1370 	write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1371 			    BTRFS_FSID_SIZE);
1372 	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1373 			    btrfs_header_chunk_tree_uuid(leaf),
1374 			    BTRFS_UUID_SIZE);
1375 	btrfs_mark_buffer_dirty(leaf);
1376 
1377 	root->commit_root = btrfs_root_node(root);
1378 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1379 
1380 	root->root_item.flags = 0;
1381 	root->root_item.byte_limit = 0;
1382 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1383 	btrfs_set_root_generation(&root->root_item, trans->transid);
1384 	btrfs_set_root_level(&root->root_item, 0);
1385 	btrfs_set_root_refs(&root->root_item, 1);
1386 	btrfs_set_root_used(&root->root_item, leaf->len);
1387 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1388 	btrfs_set_root_dirid(&root->root_item, 0);
1389 	uuid_le_gen(&uuid);
1390 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1391 	root->root_item.drop_level = 0;
1392 
1393 	key.objectid = objectid;
1394 	key.type = BTRFS_ROOT_ITEM_KEY;
1395 	key.offset = 0;
1396 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1397 	if (ret)
1398 		goto fail;
1399 
1400 	btrfs_tree_unlock(leaf);
1401 
1402 	return root;
1403 
1404 fail:
1405 	if (leaf) {
1406 		btrfs_tree_unlock(leaf);
1407 		free_extent_buffer(root->commit_root);
1408 		free_extent_buffer(leaf);
1409 	}
1410 	kfree(root);
1411 
1412 	return ERR_PTR(ret);
1413 }
1414 
1415 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1416 					 struct btrfs_fs_info *fs_info)
1417 {
1418 	struct btrfs_root *root;
1419 	struct btrfs_root *tree_root = fs_info->tree_root;
1420 	struct extent_buffer *leaf;
1421 
1422 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1423 	if (!root)
1424 		return ERR_PTR(-ENOMEM);
1425 
1426 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1427 		     tree_root->stripesize, root, fs_info,
1428 		     BTRFS_TREE_LOG_OBJECTID);
1429 
1430 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1431 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1432 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1433 
1434 	/*
1435 	 * DON'T set REF_COWS for log trees
1436 	 *
1437 	 * log trees do not get reference counted because they go away
1438 	 * before a real commit is actually done.  They do store pointers
1439 	 * to file data extents, and those reference counts still get
1440 	 * updated (along with back refs to the log tree).
1441 	 */
1442 
1443 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1444 			NULL, 0, 0, 0);
1445 	if (IS_ERR(leaf)) {
1446 		kfree(root);
1447 		return ERR_CAST(leaf);
1448 	}
1449 
1450 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1451 	btrfs_set_header_bytenr(leaf, leaf->start);
1452 	btrfs_set_header_generation(leaf, trans->transid);
1453 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1454 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1455 	root->node = leaf;
1456 
1457 	write_extent_buffer(root->node, root->fs_info->fsid,
1458 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
1459 	btrfs_mark_buffer_dirty(root->node);
1460 	btrfs_tree_unlock(root->node);
1461 	return root;
1462 }
1463 
1464 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1465 			     struct btrfs_fs_info *fs_info)
1466 {
1467 	struct btrfs_root *log_root;
1468 
1469 	log_root = alloc_log_tree(trans, fs_info);
1470 	if (IS_ERR(log_root))
1471 		return PTR_ERR(log_root);
1472 	WARN_ON(fs_info->log_root_tree);
1473 	fs_info->log_root_tree = log_root;
1474 	return 0;
1475 }
1476 
1477 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1478 		       struct btrfs_root *root)
1479 {
1480 	struct btrfs_root *log_root;
1481 	struct btrfs_inode_item *inode_item;
1482 
1483 	log_root = alloc_log_tree(trans, root->fs_info);
1484 	if (IS_ERR(log_root))
1485 		return PTR_ERR(log_root);
1486 
1487 	log_root->last_trans = trans->transid;
1488 	log_root->root_key.offset = root->root_key.objectid;
1489 
1490 	inode_item = &log_root->root_item.inode;
1491 	btrfs_set_stack_inode_generation(inode_item, 1);
1492 	btrfs_set_stack_inode_size(inode_item, 3);
1493 	btrfs_set_stack_inode_nlink(inode_item, 1);
1494 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1495 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1496 
1497 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1498 
1499 	WARN_ON(root->log_root);
1500 	root->log_root = log_root;
1501 	root->log_transid = 0;
1502 	root->log_transid_committed = -1;
1503 	root->last_log_commit = 0;
1504 	return 0;
1505 }
1506 
1507 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1508 					       struct btrfs_key *key)
1509 {
1510 	struct btrfs_root *root;
1511 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1512 	struct btrfs_path *path;
1513 	u64 generation;
1514 	int ret;
1515 
1516 	path = btrfs_alloc_path();
1517 	if (!path)
1518 		return ERR_PTR(-ENOMEM);
1519 
1520 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1521 	if (!root) {
1522 		ret = -ENOMEM;
1523 		goto alloc_fail;
1524 	}
1525 
1526 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1527 		tree_root->stripesize, root, fs_info, key->objectid);
1528 
1529 	ret = btrfs_find_root(tree_root, key, path,
1530 			      &root->root_item, &root->root_key);
1531 	if (ret) {
1532 		if (ret > 0)
1533 			ret = -ENOENT;
1534 		goto find_fail;
1535 	}
1536 
1537 	generation = btrfs_root_generation(&root->root_item);
1538 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1539 				     generation);
1540 	if (IS_ERR(root->node)) {
1541 		ret = PTR_ERR(root->node);
1542 		goto find_fail;
1543 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1544 		ret = -EIO;
1545 		free_extent_buffer(root->node);
1546 		goto find_fail;
1547 	}
1548 	root->commit_root = btrfs_root_node(root);
1549 out:
1550 	btrfs_free_path(path);
1551 	return root;
1552 
1553 find_fail:
1554 	kfree(root);
1555 alloc_fail:
1556 	root = ERR_PTR(ret);
1557 	goto out;
1558 }
1559 
1560 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1561 				      struct btrfs_key *location)
1562 {
1563 	struct btrfs_root *root;
1564 
1565 	root = btrfs_read_tree_root(tree_root, location);
1566 	if (IS_ERR(root))
1567 		return root;
1568 
1569 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1570 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1571 		btrfs_check_and_init_root_item(&root->root_item);
1572 	}
1573 
1574 	return root;
1575 }
1576 
1577 int btrfs_init_fs_root(struct btrfs_root *root)
1578 {
1579 	int ret;
1580 	struct btrfs_subvolume_writers *writers;
1581 
1582 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1583 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1584 					GFP_NOFS);
1585 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1586 		ret = -ENOMEM;
1587 		goto fail;
1588 	}
1589 
1590 	writers = btrfs_alloc_subvolume_writers();
1591 	if (IS_ERR(writers)) {
1592 		ret = PTR_ERR(writers);
1593 		goto fail;
1594 	}
1595 	root->subv_writers = writers;
1596 
1597 	btrfs_init_free_ino_ctl(root);
1598 	spin_lock_init(&root->ino_cache_lock);
1599 	init_waitqueue_head(&root->ino_cache_wait);
1600 
1601 	ret = get_anon_bdev(&root->anon_dev);
1602 	if (ret)
1603 		goto free_writers;
1604 
1605 	mutex_lock(&root->objectid_mutex);
1606 	ret = btrfs_find_highest_objectid(root,
1607 					&root->highest_objectid);
1608 	if (ret) {
1609 		mutex_unlock(&root->objectid_mutex);
1610 		goto free_root_dev;
1611 	}
1612 
1613 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1614 
1615 	mutex_unlock(&root->objectid_mutex);
1616 
1617 	return 0;
1618 
1619 free_root_dev:
1620 	free_anon_bdev(root->anon_dev);
1621 free_writers:
1622 	btrfs_free_subvolume_writers(root->subv_writers);
1623 fail:
1624 	kfree(root->free_ino_ctl);
1625 	kfree(root->free_ino_pinned);
1626 	return ret;
1627 }
1628 
1629 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1630 					       u64 root_id)
1631 {
1632 	struct btrfs_root *root;
1633 
1634 	spin_lock(&fs_info->fs_roots_radix_lock);
1635 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1636 				 (unsigned long)root_id);
1637 	spin_unlock(&fs_info->fs_roots_radix_lock);
1638 	return root;
1639 }
1640 
1641 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1642 			 struct btrfs_root *root)
1643 {
1644 	int ret;
1645 
1646 	ret = radix_tree_preload(GFP_NOFS);
1647 	if (ret)
1648 		return ret;
1649 
1650 	spin_lock(&fs_info->fs_roots_radix_lock);
1651 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1652 				(unsigned long)root->root_key.objectid,
1653 				root);
1654 	if (ret == 0)
1655 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1656 	spin_unlock(&fs_info->fs_roots_radix_lock);
1657 	radix_tree_preload_end();
1658 
1659 	return ret;
1660 }
1661 
1662 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1663 				     struct btrfs_key *location,
1664 				     bool check_ref)
1665 {
1666 	struct btrfs_root *root;
1667 	struct btrfs_path *path;
1668 	struct btrfs_key key;
1669 	int ret;
1670 
1671 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1672 		return fs_info->tree_root;
1673 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1674 		return fs_info->extent_root;
1675 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1676 		return fs_info->chunk_root;
1677 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1678 		return fs_info->dev_root;
1679 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1680 		return fs_info->csum_root;
1681 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1682 		return fs_info->quota_root ? fs_info->quota_root :
1683 					     ERR_PTR(-ENOENT);
1684 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1685 		return fs_info->uuid_root ? fs_info->uuid_root :
1686 					    ERR_PTR(-ENOENT);
1687 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1688 		return fs_info->free_space_root ? fs_info->free_space_root :
1689 						  ERR_PTR(-ENOENT);
1690 again:
1691 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1692 	if (root) {
1693 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1694 			return ERR_PTR(-ENOENT);
1695 		return root;
1696 	}
1697 
1698 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1699 	if (IS_ERR(root))
1700 		return root;
1701 
1702 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1703 		ret = -ENOENT;
1704 		goto fail;
1705 	}
1706 
1707 	ret = btrfs_init_fs_root(root);
1708 	if (ret)
1709 		goto fail;
1710 
1711 	path = btrfs_alloc_path();
1712 	if (!path) {
1713 		ret = -ENOMEM;
1714 		goto fail;
1715 	}
1716 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1717 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1718 	key.offset = location->objectid;
1719 
1720 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1721 	btrfs_free_path(path);
1722 	if (ret < 0)
1723 		goto fail;
1724 	if (ret == 0)
1725 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1726 
1727 	ret = btrfs_insert_fs_root(fs_info, root);
1728 	if (ret) {
1729 		if (ret == -EEXIST) {
1730 			free_fs_root(root);
1731 			goto again;
1732 		}
1733 		goto fail;
1734 	}
1735 	return root;
1736 fail:
1737 	free_fs_root(root);
1738 	return ERR_PTR(ret);
1739 }
1740 
1741 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1742 {
1743 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1744 	int ret = 0;
1745 	struct btrfs_device *device;
1746 	struct backing_dev_info *bdi;
1747 
1748 	rcu_read_lock();
1749 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1750 		if (!device->bdev)
1751 			continue;
1752 		bdi = blk_get_backing_dev_info(device->bdev);
1753 		if (bdi_congested(bdi, bdi_bits)) {
1754 			ret = 1;
1755 			break;
1756 		}
1757 	}
1758 	rcu_read_unlock();
1759 	return ret;
1760 }
1761 
1762 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1763 {
1764 	int err;
1765 
1766 	err = bdi_setup_and_register(bdi, "btrfs");
1767 	if (err)
1768 		return err;
1769 
1770 	bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1771 	bdi->congested_fn	= btrfs_congested_fn;
1772 	bdi->congested_data	= info;
1773 	bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1774 	return 0;
1775 }
1776 
1777 /*
1778  * called by the kthread helper functions to finally call the bio end_io
1779  * functions.  This is where read checksum verification actually happens
1780  */
1781 static void end_workqueue_fn(struct btrfs_work *work)
1782 {
1783 	struct bio *bio;
1784 	struct btrfs_end_io_wq *end_io_wq;
1785 
1786 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1787 	bio = end_io_wq->bio;
1788 
1789 	bio->bi_error = end_io_wq->error;
1790 	bio->bi_private = end_io_wq->private;
1791 	bio->bi_end_io = end_io_wq->end_io;
1792 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1793 	bio_endio(bio);
1794 }
1795 
1796 static int cleaner_kthread(void *arg)
1797 {
1798 	struct btrfs_root *root = arg;
1799 	int again;
1800 	struct btrfs_trans_handle *trans;
1801 
1802 	do {
1803 		again = 0;
1804 
1805 		/* Make the cleaner go to sleep early. */
1806 		if (btrfs_need_cleaner_sleep(root))
1807 			goto sleep;
1808 
1809 		if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1810 			goto sleep;
1811 
1812 		/*
1813 		 * Avoid the problem that we change the status of the fs
1814 		 * during the above check and trylock.
1815 		 */
1816 		if (btrfs_need_cleaner_sleep(root)) {
1817 			mutex_unlock(&root->fs_info->cleaner_mutex);
1818 			goto sleep;
1819 		}
1820 
1821 		mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1822 		btrfs_run_delayed_iputs(root);
1823 		mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1824 
1825 		again = btrfs_clean_one_deleted_snapshot(root);
1826 		mutex_unlock(&root->fs_info->cleaner_mutex);
1827 
1828 		/*
1829 		 * The defragger has dealt with the R/O remount and umount,
1830 		 * needn't do anything special here.
1831 		 */
1832 		btrfs_run_defrag_inodes(root->fs_info);
1833 
1834 		/*
1835 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1836 		 * with relocation (btrfs_relocate_chunk) and relocation
1837 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1838 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1839 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1840 		 * unused block groups.
1841 		 */
1842 		btrfs_delete_unused_bgs(root->fs_info);
1843 sleep:
1844 		if (!again) {
1845 			set_current_state(TASK_INTERRUPTIBLE);
1846 			if (!kthread_should_stop())
1847 				schedule();
1848 			__set_current_state(TASK_RUNNING);
1849 		}
1850 	} while (!kthread_should_stop());
1851 
1852 	/*
1853 	 * Transaction kthread is stopped before us and wakes us up.
1854 	 * However we might have started a new transaction and COWed some
1855 	 * tree blocks when deleting unused block groups for example. So
1856 	 * make sure we commit the transaction we started to have a clean
1857 	 * shutdown when evicting the btree inode - if it has dirty pages
1858 	 * when we do the final iput() on it, eviction will trigger a
1859 	 * writeback for it which will fail with null pointer dereferences
1860 	 * since work queues and other resources were already released and
1861 	 * destroyed by the time the iput/eviction/writeback is made.
1862 	 */
1863 	trans = btrfs_attach_transaction(root);
1864 	if (IS_ERR(trans)) {
1865 		if (PTR_ERR(trans) != -ENOENT)
1866 			btrfs_err(root->fs_info,
1867 				  "cleaner transaction attach returned %ld",
1868 				  PTR_ERR(trans));
1869 	} else {
1870 		int ret;
1871 
1872 		ret = btrfs_commit_transaction(trans, root);
1873 		if (ret)
1874 			btrfs_err(root->fs_info,
1875 				  "cleaner open transaction commit returned %d",
1876 				  ret);
1877 	}
1878 
1879 	return 0;
1880 }
1881 
1882 static int transaction_kthread(void *arg)
1883 {
1884 	struct btrfs_root *root = arg;
1885 	struct btrfs_trans_handle *trans;
1886 	struct btrfs_transaction *cur;
1887 	u64 transid;
1888 	unsigned long now;
1889 	unsigned long delay;
1890 	bool cannot_commit;
1891 
1892 	do {
1893 		cannot_commit = false;
1894 		delay = HZ * root->fs_info->commit_interval;
1895 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1896 
1897 		spin_lock(&root->fs_info->trans_lock);
1898 		cur = root->fs_info->running_transaction;
1899 		if (!cur) {
1900 			spin_unlock(&root->fs_info->trans_lock);
1901 			goto sleep;
1902 		}
1903 
1904 		now = get_seconds();
1905 		if (cur->state < TRANS_STATE_BLOCKED &&
1906 		    (now < cur->start_time ||
1907 		     now - cur->start_time < root->fs_info->commit_interval)) {
1908 			spin_unlock(&root->fs_info->trans_lock);
1909 			delay = HZ * 5;
1910 			goto sleep;
1911 		}
1912 		transid = cur->transid;
1913 		spin_unlock(&root->fs_info->trans_lock);
1914 
1915 		/* If the file system is aborted, this will always fail. */
1916 		trans = btrfs_attach_transaction(root);
1917 		if (IS_ERR(trans)) {
1918 			if (PTR_ERR(trans) != -ENOENT)
1919 				cannot_commit = true;
1920 			goto sleep;
1921 		}
1922 		if (transid == trans->transid) {
1923 			btrfs_commit_transaction(trans, root);
1924 		} else {
1925 			btrfs_end_transaction(trans, root);
1926 		}
1927 sleep:
1928 		wake_up_process(root->fs_info->cleaner_kthread);
1929 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1930 
1931 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1932 				      &root->fs_info->fs_state)))
1933 			btrfs_cleanup_transaction(root);
1934 		set_current_state(TASK_INTERRUPTIBLE);
1935 		if (!kthread_should_stop() &&
1936 				(!btrfs_transaction_blocked(root->fs_info) ||
1937 				 cannot_commit))
1938 			schedule_timeout(delay);
1939 		__set_current_state(TASK_RUNNING);
1940 	} while (!kthread_should_stop());
1941 	return 0;
1942 }
1943 
1944 /*
1945  * this will find the highest generation in the array of
1946  * root backups.  The index of the highest array is returned,
1947  * or -1 if we can't find anything.
1948  *
1949  * We check to make sure the array is valid by comparing the
1950  * generation of the latest  root in the array with the generation
1951  * in the super block.  If they don't match we pitch it.
1952  */
1953 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1954 {
1955 	u64 cur;
1956 	int newest_index = -1;
1957 	struct btrfs_root_backup *root_backup;
1958 	int i;
1959 
1960 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1961 		root_backup = info->super_copy->super_roots + i;
1962 		cur = btrfs_backup_tree_root_gen(root_backup);
1963 		if (cur == newest_gen)
1964 			newest_index = i;
1965 	}
1966 
1967 	/* check to see if we actually wrapped around */
1968 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1969 		root_backup = info->super_copy->super_roots;
1970 		cur = btrfs_backup_tree_root_gen(root_backup);
1971 		if (cur == newest_gen)
1972 			newest_index = 0;
1973 	}
1974 	return newest_index;
1975 }
1976 
1977 
1978 /*
1979  * find the oldest backup so we know where to store new entries
1980  * in the backup array.  This will set the backup_root_index
1981  * field in the fs_info struct
1982  */
1983 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1984 				     u64 newest_gen)
1985 {
1986 	int newest_index = -1;
1987 
1988 	newest_index = find_newest_super_backup(info, newest_gen);
1989 	/* if there was garbage in there, just move along */
1990 	if (newest_index == -1) {
1991 		info->backup_root_index = 0;
1992 	} else {
1993 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1994 	}
1995 }
1996 
1997 /*
1998  * copy all the root pointers into the super backup array.
1999  * this will bump the backup pointer by one when it is
2000  * done
2001  */
2002 static void backup_super_roots(struct btrfs_fs_info *info)
2003 {
2004 	int next_backup;
2005 	struct btrfs_root_backup *root_backup;
2006 	int last_backup;
2007 
2008 	next_backup = info->backup_root_index;
2009 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2010 		BTRFS_NUM_BACKUP_ROOTS;
2011 
2012 	/*
2013 	 * just overwrite the last backup if we're at the same generation
2014 	 * this happens only at umount
2015 	 */
2016 	root_backup = info->super_for_commit->super_roots + last_backup;
2017 	if (btrfs_backup_tree_root_gen(root_backup) ==
2018 	    btrfs_header_generation(info->tree_root->node))
2019 		next_backup = last_backup;
2020 
2021 	root_backup = info->super_for_commit->super_roots + next_backup;
2022 
2023 	/*
2024 	 * make sure all of our padding and empty slots get zero filled
2025 	 * regardless of which ones we use today
2026 	 */
2027 	memset(root_backup, 0, sizeof(*root_backup));
2028 
2029 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2030 
2031 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2032 	btrfs_set_backup_tree_root_gen(root_backup,
2033 			       btrfs_header_generation(info->tree_root->node));
2034 
2035 	btrfs_set_backup_tree_root_level(root_backup,
2036 			       btrfs_header_level(info->tree_root->node));
2037 
2038 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2039 	btrfs_set_backup_chunk_root_gen(root_backup,
2040 			       btrfs_header_generation(info->chunk_root->node));
2041 	btrfs_set_backup_chunk_root_level(root_backup,
2042 			       btrfs_header_level(info->chunk_root->node));
2043 
2044 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2045 	btrfs_set_backup_extent_root_gen(root_backup,
2046 			       btrfs_header_generation(info->extent_root->node));
2047 	btrfs_set_backup_extent_root_level(root_backup,
2048 			       btrfs_header_level(info->extent_root->node));
2049 
2050 	/*
2051 	 * we might commit during log recovery, which happens before we set
2052 	 * the fs_root.  Make sure it is valid before we fill it in.
2053 	 */
2054 	if (info->fs_root && info->fs_root->node) {
2055 		btrfs_set_backup_fs_root(root_backup,
2056 					 info->fs_root->node->start);
2057 		btrfs_set_backup_fs_root_gen(root_backup,
2058 			       btrfs_header_generation(info->fs_root->node));
2059 		btrfs_set_backup_fs_root_level(root_backup,
2060 			       btrfs_header_level(info->fs_root->node));
2061 	}
2062 
2063 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2064 	btrfs_set_backup_dev_root_gen(root_backup,
2065 			       btrfs_header_generation(info->dev_root->node));
2066 	btrfs_set_backup_dev_root_level(root_backup,
2067 				       btrfs_header_level(info->dev_root->node));
2068 
2069 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2070 	btrfs_set_backup_csum_root_gen(root_backup,
2071 			       btrfs_header_generation(info->csum_root->node));
2072 	btrfs_set_backup_csum_root_level(root_backup,
2073 			       btrfs_header_level(info->csum_root->node));
2074 
2075 	btrfs_set_backup_total_bytes(root_backup,
2076 			     btrfs_super_total_bytes(info->super_copy));
2077 	btrfs_set_backup_bytes_used(root_backup,
2078 			     btrfs_super_bytes_used(info->super_copy));
2079 	btrfs_set_backup_num_devices(root_backup,
2080 			     btrfs_super_num_devices(info->super_copy));
2081 
2082 	/*
2083 	 * if we don't copy this out to the super_copy, it won't get remembered
2084 	 * for the next commit
2085 	 */
2086 	memcpy(&info->super_copy->super_roots,
2087 	       &info->super_for_commit->super_roots,
2088 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2089 }
2090 
2091 /*
2092  * this copies info out of the root backup array and back into
2093  * the in-memory super block.  It is meant to help iterate through
2094  * the array, so you send it the number of backups you've already
2095  * tried and the last backup index you used.
2096  *
2097  * this returns -1 when it has tried all the backups
2098  */
2099 static noinline int next_root_backup(struct btrfs_fs_info *info,
2100 				     struct btrfs_super_block *super,
2101 				     int *num_backups_tried, int *backup_index)
2102 {
2103 	struct btrfs_root_backup *root_backup;
2104 	int newest = *backup_index;
2105 
2106 	if (*num_backups_tried == 0) {
2107 		u64 gen = btrfs_super_generation(super);
2108 
2109 		newest = find_newest_super_backup(info, gen);
2110 		if (newest == -1)
2111 			return -1;
2112 
2113 		*backup_index = newest;
2114 		*num_backups_tried = 1;
2115 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2116 		/* we've tried all the backups, all done */
2117 		return -1;
2118 	} else {
2119 		/* jump to the next oldest backup */
2120 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2121 			BTRFS_NUM_BACKUP_ROOTS;
2122 		*backup_index = newest;
2123 		*num_backups_tried += 1;
2124 	}
2125 	root_backup = super->super_roots + newest;
2126 
2127 	btrfs_set_super_generation(super,
2128 				   btrfs_backup_tree_root_gen(root_backup));
2129 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2130 	btrfs_set_super_root_level(super,
2131 				   btrfs_backup_tree_root_level(root_backup));
2132 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2133 
2134 	/*
2135 	 * fixme: the total bytes and num_devices need to match or we should
2136 	 * need a fsck
2137 	 */
2138 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2139 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2140 	return 0;
2141 }
2142 
2143 /* helper to cleanup workers */
2144 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2145 {
2146 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2147 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2148 	btrfs_destroy_workqueue(fs_info->workers);
2149 	btrfs_destroy_workqueue(fs_info->endio_workers);
2150 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2151 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2152 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2153 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2154 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2155 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2156 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2157 	btrfs_destroy_workqueue(fs_info->submit_workers);
2158 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2159 	btrfs_destroy_workqueue(fs_info->caching_workers);
2160 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2161 	btrfs_destroy_workqueue(fs_info->flush_workers);
2162 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2163 	btrfs_destroy_workqueue(fs_info->extent_workers);
2164 }
2165 
2166 static void free_root_extent_buffers(struct btrfs_root *root)
2167 {
2168 	if (root) {
2169 		free_extent_buffer(root->node);
2170 		free_extent_buffer(root->commit_root);
2171 		root->node = NULL;
2172 		root->commit_root = NULL;
2173 	}
2174 }
2175 
2176 /* helper to cleanup tree roots */
2177 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2178 {
2179 	free_root_extent_buffers(info->tree_root);
2180 
2181 	free_root_extent_buffers(info->dev_root);
2182 	free_root_extent_buffers(info->extent_root);
2183 	free_root_extent_buffers(info->csum_root);
2184 	free_root_extent_buffers(info->quota_root);
2185 	free_root_extent_buffers(info->uuid_root);
2186 	if (chunk_root)
2187 		free_root_extent_buffers(info->chunk_root);
2188 	free_root_extent_buffers(info->free_space_root);
2189 }
2190 
2191 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2192 {
2193 	int ret;
2194 	struct btrfs_root *gang[8];
2195 	int i;
2196 
2197 	while (!list_empty(&fs_info->dead_roots)) {
2198 		gang[0] = list_entry(fs_info->dead_roots.next,
2199 				     struct btrfs_root, root_list);
2200 		list_del(&gang[0]->root_list);
2201 
2202 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2203 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2204 		} else {
2205 			free_extent_buffer(gang[0]->node);
2206 			free_extent_buffer(gang[0]->commit_root);
2207 			btrfs_put_fs_root(gang[0]);
2208 		}
2209 	}
2210 
2211 	while (1) {
2212 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2213 					     (void **)gang, 0,
2214 					     ARRAY_SIZE(gang));
2215 		if (!ret)
2216 			break;
2217 		for (i = 0; i < ret; i++)
2218 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2219 	}
2220 
2221 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2222 		btrfs_free_log_root_tree(NULL, fs_info);
2223 		btrfs_destroy_pinned_extent(fs_info->tree_root,
2224 					    fs_info->pinned_extents);
2225 	}
2226 }
2227 
2228 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2229 {
2230 	mutex_init(&fs_info->scrub_lock);
2231 	atomic_set(&fs_info->scrubs_running, 0);
2232 	atomic_set(&fs_info->scrub_pause_req, 0);
2233 	atomic_set(&fs_info->scrubs_paused, 0);
2234 	atomic_set(&fs_info->scrub_cancel_req, 0);
2235 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2236 	fs_info->scrub_workers_refcnt = 0;
2237 }
2238 
2239 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2240 {
2241 	spin_lock_init(&fs_info->balance_lock);
2242 	mutex_init(&fs_info->balance_mutex);
2243 	atomic_set(&fs_info->balance_running, 0);
2244 	atomic_set(&fs_info->balance_pause_req, 0);
2245 	atomic_set(&fs_info->balance_cancel_req, 0);
2246 	fs_info->balance_ctl = NULL;
2247 	init_waitqueue_head(&fs_info->balance_wait_q);
2248 }
2249 
2250 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2251 				   struct btrfs_root *tree_root)
2252 {
2253 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2254 	set_nlink(fs_info->btree_inode, 1);
2255 	/*
2256 	 * we set the i_size on the btree inode to the max possible int.
2257 	 * the real end of the address space is determined by all of
2258 	 * the devices in the system
2259 	 */
2260 	fs_info->btree_inode->i_size = OFFSET_MAX;
2261 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2262 
2263 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2264 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2265 			     fs_info->btree_inode->i_mapping);
2266 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2267 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2268 
2269 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2270 
2271 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2272 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2273 	       sizeof(struct btrfs_key));
2274 	set_bit(BTRFS_INODE_DUMMY,
2275 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2276 	btrfs_insert_inode_hash(fs_info->btree_inode);
2277 }
2278 
2279 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2280 {
2281 	fs_info->dev_replace.lock_owner = 0;
2282 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2283 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2284 	rwlock_init(&fs_info->dev_replace.lock);
2285 	atomic_set(&fs_info->dev_replace.read_locks, 0);
2286 	atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2287 	init_waitqueue_head(&fs_info->replace_wait);
2288 	init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2289 }
2290 
2291 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2292 {
2293 	spin_lock_init(&fs_info->qgroup_lock);
2294 	mutex_init(&fs_info->qgroup_ioctl_lock);
2295 	fs_info->qgroup_tree = RB_ROOT;
2296 	fs_info->qgroup_op_tree = RB_ROOT;
2297 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2298 	fs_info->qgroup_seq = 1;
2299 	fs_info->quota_enabled = 0;
2300 	fs_info->pending_quota_state = 0;
2301 	fs_info->qgroup_ulist = NULL;
2302 	mutex_init(&fs_info->qgroup_rescan_lock);
2303 }
2304 
2305 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2306 		struct btrfs_fs_devices *fs_devices)
2307 {
2308 	int max_active = fs_info->thread_pool_size;
2309 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2310 
2311 	fs_info->workers =
2312 		btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2313 				      max_active, 16);
2314 
2315 	fs_info->delalloc_workers =
2316 		btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2317 
2318 	fs_info->flush_workers =
2319 		btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2320 
2321 	fs_info->caching_workers =
2322 		btrfs_alloc_workqueue("cache", flags, max_active, 0);
2323 
2324 	/*
2325 	 * a higher idle thresh on the submit workers makes it much more
2326 	 * likely that bios will be send down in a sane order to the
2327 	 * devices
2328 	 */
2329 	fs_info->submit_workers =
2330 		btrfs_alloc_workqueue("submit", flags,
2331 				      min_t(u64, fs_devices->num_devices,
2332 					    max_active), 64);
2333 
2334 	fs_info->fixup_workers =
2335 		btrfs_alloc_workqueue("fixup", flags, 1, 0);
2336 
2337 	/*
2338 	 * endios are largely parallel and should have a very
2339 	 * low idle thresh
2340 	 */
2341 	fs_info->endio_workers =
2342 		btrfs_alloc_workqueue("endio", flags, max_active, 4);
2343 	fs_info->endio_meta_workers =
2344 		btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2345 	fs_info->endio_meta_write_workers =
2346 		btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2347 	fs_info->endio_raid56_workers =
2348 		btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2349 	fs_info->endio_repair_workers =
2350 		btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2351 	fs_info->rmw_workers =
2352 		btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2353 	fs_info->endio_write_workers =
2354 		btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2355 	fs_info->endio_freespace_worker =
2356 		btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2357 	fs_info->delayed_workers =
2358 		btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2359 	fs_info->readahead_workers =
2360 		btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2361 	fs_info->qgroup_rescan_workers =
2362 		btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2363 	fs_info->extent_workers =
2364 		btrfs_alloc_workqueue("extent-refs", flags,
2365 				      min_t(u64, fs_devices->num_devices,
2366 					    max_active), 8);
2367 
2368 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2369 	      fs_info->submit_workers && fs_info->flush_workers &&
2370 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2371 	      fs_info->endio_meta_write_workers &&
2372 	      fs_info->endio_repair_workers &&
2373 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2374 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2375 	      fs_info->caching_workers && fs_info->readahead_workers &&
2376 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2377 	      fs_info->extent_workers &&
2378 	      fs_info->qgroup_rescan_workers)) {
2379 		return -ENOMEM;
2380 	}
2381 
2382 	return 0;
2383 }
2384 
2385 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2386 			    struct btrfs_fs_devices *fs_devices)
2387 {
2388 	int ret;
2389 	struct btrfs_root *tree_root = fs_info->tree_root;
2390 	struct btrfs_root *log_tree_root;
2391 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2392 	u64 bytenr = btrfs_super_log_root(disk_super);
2393 
2394 	if (fs_devices->rw_devices == 0) {
2395 		btrfs_warn(fs_info, "log replay required on RO media");
2396 		return -EIO;
2397 	}
2398 
2399 	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2400 	if (!log_tree_root)
2401 		return -ENOMEM;
2402 
2403 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
2404 			tree_root->stripesize, log_tree_root, fs_info,
2405 			BTRFS_TREE_LOG_OBJECTID);
2406 
2407 	log_tree_root->node = read_tree_block(tree_root, bytenr,
2408 			fs_info->generation + 1);
2409 	if (IS_ERR(log_tree_root->node)) {
2410 		btrfs_warn(fs_info, "failed to read log tree");
2411 		ret = PTR_ERR(log_tree_root->node);
2412 		kfree(log_tree_root);
2413 		return ret;
2414 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2415 		btrfs_err(fs_info, "failed to read log tree");
2416 		free_extent_buffer(log_tree_root->node);
2417 		kfree(log_tree_root);
2418 		return -EIO;
2419 	}
2420 	/* returns with log_tree_root freed on success */
2421 	ret = btrfs_recover_log_trees(log_tree_root);
2422 	if (ret) {
2423 		btrfs_handle_fs_error(tree_root->fs_info, ret,
2424 			    "Failed to recover log tree");
2425 		free_extent_buffer(log_tree_root->node);
2426 		kfree(log_tree_root);
2427 		return ret;
2428 	}
2429 
2430 	if (fs_info->sb->s_flags & MS_RDONLY) {
2431 		ret = btrfs_commit_super(tree_root);
2432 		if (ret)
2433 			return ret;
2434 	}
2435 
2436 	return 0;
2437 }
2438 
2439 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2440 			    struct btrfs_root *tree_root)
2441 {
2442 	struct btrfs_root *root;
2443 	struct btrfs_key location;
2444 	int ret;
2445 
2446 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2447 	location.type = BTRFS_ROOT_ITEM_KEY;
2448 	location.offset = 0;
2449 
2450 	root = btrfs_read_tree_root(tree_root, &location);
2451 	if (IS_ERR(root))
2452 		return PTR_ERR(root);
2453 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2454 	fs_info->extent_root = root;
2455 
2456 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2457 	root = btrfs_read_tree_root(tree_root, &location);
2458 	if (IS_ERR(root))
2459 		return PTR_ERR(root);
2460 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2461 	fs_info->dev_root = root;
2462 	btrfs_init_devices_late(fs_info);
2463 
2464 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2465 	root = btrfs_read_tree_root(tree_root, &location);
2466 	if (IS_ERR(root))
2467 		return PTR_ERR(root);
2468 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2469 	fs_info->csum_root = root;
2470 
2471 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2472 	root = btrfs_read_tree_root(tree_root, &location);
2473 	if (!IS_ERR(root)) {
2474 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2475 		fs_info->quota_enabled = 1;
2476 		fs_info->pending_quota_state = 1;
2477 		fs_info->quota_root = root;
2478 	}
2479 
2480 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2481 	root = btrfs_read_tree_root(tree_root, &location);
2482 	if (IS_ERR(root)) {
2483 		ret = PTR_ERR(root);
2484 		if (ret != -ENOENT)
2485 			return ret;
2486 	} else {
2487 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2488 		fs_info->uuid_root = root;
2489 	}
2490 
2491 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2492 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2493 		root = btrfs_read_tree_root(tree_root, &location);
2494 		if (IS_ERR(root))
2495 			return PTR_ERR(root);
2496 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2497 		fs_info->free_space_root = root;
2498 	}
2499 
2500 	return 0;
2501 }
2502 
2503 int open_ctree(struct super_block *sb,
2504 	       struct btrfs_fs_devices *fs_devices,
2505 	       char *options)
2506 {
2507 	u32 sectorsize;
2508 	u32 nodesize;
2509 	u32 stripesize;
2510 	u64 generation;
2511 	u64 features;
2512 	struct btrfs_key location;
2513 	struct buffer_head *bh;
2514 	struct btrfs_super_block *disk_super;
2515 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2516 	struct btrfs_root *tree_root;
2517 	struct btrfs_root *chunk_root;
2518 	int ret;
2519 	int err = -EINVAL;
2520 	int num_backups_tried = 0;
2521 	int backup_index = 0;
2522 	int max_active;
2523 	bool cleaner_mutex_locked = false;
2524 
2525 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2526 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2527 	if (!tree_root || !chunk_root) {
2528 		err = -ENOMEM;
2529 		goto fail;
2530 	}
2531 
2532 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2533 	if (ret) {
2534 		err = ret;
2535 		goto fail;
2536 	}
2537 
2538 	ret = setup_bdi(fs_info, &fs_info->bdi);
2539 	if (ret) {
2540 		err = ret;
2541 		goto fail_srcu;
2542 	}
2543 
2544 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2545 	if (ret) {
2546 		err = ret;
2547 		goto fail_bdi;
2548 	}
2549 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2550 					(1 + ilog2(nr_cpu_ids));
2551 
2552 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2553 	if (ret) {
2554 		err = ret;
2555 		goto fail_dirty_metadata_bytes;
2556 	}
2557 
2558 	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2559 	if (ret) {
2560 		err = ret;
2561 		goto fail_delalloc_bytes;
2562 	}
2563 
2564 	fs_info->btree_inode = new_inode(sb);
2565 	if (!fs_info->btree_inode) {
2566 		err = -ENOMEM;
2567 		goto fail_bio_counter;
2568 	}
2569 
2570 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2571 
2572 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2573 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2574 	INIT_LIST_HEAD(&fs_info->trans_list);
2575 	INIT_LIST_HEAD(&fs_info->dead_roots);
2576 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2577 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2578 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2579 	spin_lock_init(&fs_info->delalloc_root_lock);
2580 	spin_lock_init(&fs_info->trans_lock);
2581 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2582 	spin_lock_init(&fs_info->delayed_iput_lock);
2583 	spin_lock_init(&fs_info->defrag_inodes_lock);
2584 	spin_lock_init(&fs_info->free_chunk_lock);
2585 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2586 	spin_lock_init(&fs_info->super_lock);
2587 	spin_lock_init(&fs_info->qgroup_op_lock);
2588 	spin_lock_init(&fs_info->buffer_lock);
2589 	spin_lock_init(&fs_info->unused_bgs_lock);
2590 	rwlock_init(&fs_info->tree_mod_log_lock);
2591 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2592 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2593 	mutex_init(&fs_info->reloc_mutex);
2594 	mutex_init(&fs_info->delalloc_root_mutex);
2595 	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2596 	seqlock_init(&fs_info->profiles_lock);
2597 
2598 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2599 	INIT_LIST_HEAD(&fs_info->space_info);
2600 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2601 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2602 	btrfs_mapping_init(&fs_info->mapping_tree);
2603 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2604 			     BTRFS_BLOCK_RSV_GLOBAL);
2605 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2606 			     BTRFS_BLOCK_RSV_DELALLOC);
2607 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2608 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2609 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2610 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2611 			     BTRFS_BLOCK_RSV_DELOPS);
2612 	atomic_set(&fs_info->nr_async_submits, 0);
2613 	atomic_set(&fs_info->async_delalloc_pages, 0);
2614 	atomic_set(&fs_info->async_submit_draining, 0);
2615 	atomic_set(&fs_info->nr_async_bios, 0);
2616 	atomic_set(&fs_info->defrag_running, 0);
2617 	atomic_set(&fs_info->qgroup_op_seq, 0);
2618 	atomic_set(&fs_info->reada_works_cnt, 0);
2619 	atomic64_set(&fs_info->tree_mod_seq, 0);
2620 	fs_info->sb = sb;
2621 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2622 	fs_info->metadata_ratio = 0;
2623 	fs_info->defrag_inodes = RB_ROOT;
2624 	fs_info->free_chunk_space = 0;
2625 	fs_info->tree_mod_log = RB_ROOT;
2626 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2627 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2628 	/* readahead state */
2629 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2630 	spin_lock_init(&fs_info->reada_lock);
2631 
2632 	fs_info->thread_pool_size = min_t(unsigned long,
2633 					  num_online_cpus() + 2, 8);
2634 
2635 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2636 	spin_lock_init(&fs_info->ordered_root_lock);
2637 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2638 					GFP_KERNEL);
2639 	if (!fs_info->delayed_root) {
2640 		err = -ENOMEM;
2641 		goto fail_iput;
2642 	}
2643 	btrfs_init_delayed_root(fs_info->delayed_root);
2644 
2645 	btrfs_init_scrub(fs_info);
2646 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2647 	fs_info->check_integrity_print_mask = 0;
2648 #endif
2649 	btrfs_init_balance(fs_info);
2650 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2651 
2652 	sb->s_blocksize = 4096;
2653 	sb->s_blocksize_bits = blksize_bits(4096);
2654 	sb->s_bdi = &fs_info->bdi;
2655 
2656 	btrfs_init_btree_inode(fs_info, tree_root);
2657 
2658 	spin_lock_init(&fs_info->block_group_cache_lock);
2659 	fs_info->block_group_cache_tree = RB_ROOT;
2660 	fs_info->first_logical_byte = (u64)-1;
2661 
2662 	extent_io_tree_init(&fs_info->freed_extents[0],
2663 			     fs_info->btree_inode->i_mapping);
2664 	extent_io_tree_init(&fs_info->freed_extents[1],
2665 			     fs_info->btree_inode->i_mapping);
2666 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2667 	fs_info->do_barriers = 1;
2668 
2669 
2670 	mutex_init(&fs_info->ordered_operations_mutex);
2671 	mutex_init(&fs_info->tree_log_mutex);
2672 	mutex_init(&fs_info->chunk_mutex);
2673 	mutex_init(&fs_info->transaction_kthread_mutex);
2674 	mutex_init(&fs_info->cleaner_mutex);
2675 	mutex_init(&fs_info->volume_mutex);
2676 	mutex_init(&fs_info->ro_block_group_mutex);
2677 	init_rwsem(&fs_info->commit_root_sem);
2678 	init_rwsem(&fs_info->cleanup_work_sem);
2679 	init_rwsem(&fs_info->subvol_sem);
2680 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2681 
2682 	btrfs_init_dev_replace_locks(fs_info);
2683 	btrfs_init_qgroup(fs_info);
2684 
2685 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2686 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2687 
2688 	init_waitqueue_head(&fs_info->transaction_throttle);
2689 	init_waitqueue_head(&fs_info->transaction_wait);
2690 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2691 	init_waitqueue_head(&fs_info->async_submit_wait);
2692 
2693 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2694 
2695 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2696 	if (ret) {
2697 		err = ret;
2698 		goto fail_alloc;
2699 	}
2700 
2701 	__setup_root(4096, 4096, 4096, tree_root,
2702 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2703 
2704 	invalidate_bdev(fs_devices->latest_bdev);
2705 
2706 	/*
2707 	 * Read super block and check the signature bytes only
2708 	 */
2709 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2710 	if (IS_ERR(bh)) {
2711 		err = PTR_ERR(bh);
2712 		goto fail_alloc;
2713 	}
2714 
2715 	/*
2716 	 * We want to check superblock checksum, the type is stored inside.
2717 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2718 	 */
2719 	if (btrfs_check_super_csum(bh->b_data)) {
2720 		btrfs_err(fs_info, "superblock checksum mismatch");
2721 		err = -EINVAL;
2722 		brelse(bh);
2723 		goto fail_alloc;
2724 	}
2725 
2726 	/*
2727 	 * super_copy is zeroed at allocation time and we never touch the
2728 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2729 	 * the whole block of INFO_SIZE
2730 	 */
2731 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2732 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2733 	       sizeof(*fs_info->super_for_commit));
2734 	brelse(bh);
2735 
2736 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2737 
2738 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2739 	if (ret) {
2740 		btrfs_err(fs_info, "superblock contains fatal errors");
2741 		err = -EINVAL;
2742 		goto fail_alloc;
2743 	}
2744 
2745 	disk_super = fs_info->super_copy;
2746 	if (!btrfs_super_root(disk_super))
2747 		goto fail_alloc;
2748 
2749 	/* check FS state, whether FS is broken. */
2750 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2751 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2752 
2753 	/*
2754 	 * run through our array of backup supers and setup
2755 	 * our ring pointer to the oldest one
2756 	 */
2757 	generation = btrfs_super_generation(disk_super);
2758 	find_oldest_super_backup(fs_info, generation);
2759 
2760 	/*
2761 	 * In the long term, we'll store the compression type in the super
2762 	 * block, and it'll be used for per file compression control.
2763 	 */
2764 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2765 
2766 	ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2767 	if (ret) {
2768 		err = ret;
2769 		goto fail_alloc;
2770 	}
2771 
2772 	features = btrfs_super_incompat_flags(disk_super) &
2773 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2774 	if (features) {
2775 		btrfs_err(fs_info,
2776 		    "cannot mount because of unsupported optional features (%llx)",
2777 		    features);
2778 		err = -EINVAL;
2779 		goto fail_alloc;
2780 	}
2781 
2782 	features = btrfs_super_incompat_flags(disk_super);
2783 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2784 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2785 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2786 
2787 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2788 		btrfs_info(fs_info, "has skinny extents");
2789 
2790 	/*
2791 	 * flag our filesystem as having big metadata blocks if
2792 	 * they are bigger than the page size
2793 	 */
2794 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2795 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2796 			btrfs_info(fs_info,
2797 				"flagging fs with big metadata feature");
2798 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2799 	}
2800 
2801 	nodesize = btrfs_super_nodesize(disk_super);
2802 	sectorsize = btrfs_super_sectorsize(disk_super);
2803 	stripesize = btrfs_super_stripesize(disk_super);
2804 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2805 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2806 
2807 	/*
2808 	 * mixed block groups end up with duplicate but slightly offset
2809 	 * extent buffers for the same range.  It leads to corruptions
2810 	 */
2811 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2812 	    (sectorsize != nodesize)) {
2813 		btrfs_err(fs_info,
2814 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2815 			nodesize, sectorsize);
2816 		goto fail_alloc;
2817 	}
2818 
2819 	/*
2820 	 * Needn't use the lock because there is no other task which will
2821 	 * update the flag.
2822 	 */
2823 	btrfs_set_super_incompat_flags(disk_super, features);
2824 
2825 	features = btrfs_super_compat_ro_flags(disk_super) &
2826 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2827 	if (!(sb->s_flags & MS_RDONLY) && features) {
2828 		btrfs_err(fs_info,
2829 	"cannot mount read-write because of unsupported optional features (%llx)",
2830 		       features);
2831 		err = -EINVAL;
2832 		goto fail_alloc;
2833 	}
2834 
2835 	max_active = fs_info->thread_pool_size;
2836 
2837 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2838 	if (ret) {
2839 		err = ret;
2840 		goto fail_sb_buffer;
2841 	}
2842 
2843 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2844 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2845 				    SZ_4M / PAGE_SIZE);
2846 
2847 	tree_root->nodesize = nodesize;
2848 	tree_root->sectorsize = sectorsize;
2849 	tree_root->stripesize = stripesize;
2850 
2851 	sb->s_blocksize = sectorsize;
2852 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2853 
2854 	mutex_lock(&fs_info->chunk_mutex);
2855 	ret = btrfs_read_sys_array(tree_root);
2856 	mutex_unlock(&fs_info->chunk_mutex);
2857 	if (ret) {
2858 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
2859 		goto fail_sb_buffer;
2860 	}
2861 
2862 	generation = btrfs_super_chunk_root_generation(disk_super);
2863 
2864 	__setup_root(nodesize, sectorsize, stripesize, chunk_root,
2865 		     fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2866 
2867 	chunk_root->node = read_tree_block(chunk_root,
2868 					   btrfs_super_chunk_root(disk_super),
2869 					   generation);
2870 	if (IS_ERR(chunk_root->node) ||
2871 	    !extent_buffer_uptodate(chunk_root->node)) {
2872 		btrfs_err(fs_info, "failed to read chunk root");
2873 		if (!IS_ERR(chunk_root->node))
2874 			free_extent_buffer(chunk_root->node);
2875 		chunk_root->node = NULL;
2876 		goto fail_tree_roots;
2877 	}
2878 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2879 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2880 
2881 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2882 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2883 
2884 	ret = btrfs_read_chunk_tree(chunk_root);
2885 	if (ret) {
2886 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2887 		goto fail_tree_roots;
2888 	}
2889 
2890 	/*
2891 	 * keep the device that is marked to be the target device for the
2892 	 * dev_replace procedure
2893 	 */
2894 	btrfs_close_extra_devices(fs_devices, 0);
2895 
2896 	if (!fs_devices->latest_bdev) {
2897 		btrfs_err(fs_info, "failed to read devices");
2898 		goto fail_tree_roots;
2899 	}
2900 
2901 retry_root_backup:
2902 	generation = btrfs_super_generation(disk_super);
2903 
2904 	tree_root->node = read_tree_block(tree_root,
2905 					  btrfs_super_root(disk_super),
2906 					  generation);
2907 	if (IS_ERR(tree_root->node) ||
2908 	    !extent_buffer_uptodate(tree_root->node)) {
2909 		btrfs_warn(fs_info, "failed to read tree root");
2910 		if (!IS_ERR(tree_root->node))
2911 			free_extent_buffer(tree_root->node);
2912 		tree_root->node = NULL;
2913 		goto recovery_tree_root;
2914 	}
2915 
2916 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2917 	tree_root->commit_root = btrfs_root_node(tree_root);
2918 	btrfs_set_root_refs(&tree_root->root_item, 1);
2919 
2920 	mutex_lock(&tree_root->objectid_mutex);
2921 	ret = btrfs_find_highest_objectid(tree_root,
2922 					&tree_root->highest_objectid);
2923 	if (ret) {
2924 		mutex_unlock(&tree_root->objectid_mutex);
2925 		goto recovery_tree_root;
2926 	}
2927 
2928 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2929 
2930 	mutex_unlock(&tree_root->objectid_mutex);
2931 
2932 	ret = btrfs_read_roots(fs_info, tree_root);
2933 	if (ret)
2934 		goto recovery_tree_root;
2935 
2936 	fs_info->generation = generation;
2937 	fs_info->last_trans_committed = generation;
2938 
2939 	ret = btrfs_recover_balance(fs_info);
2940 	if (ret) {
2941 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
2942 		goto fail_block_groups;
2943 	}
2944 
2945 	ret = btrfs_init_dev_stats(fs_info);
2946 	if (ret) {
2947 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2948 		goto fail_block_groups;
2949 	}
2950 
2951 	ret = btrfs_init_dev_replace(fs_info);
2952 	if (ret) {
2953 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2954 		goto fail_block_groups;
2955 	}
2956 
2957 	btrfs_close_extra_devices(fs_devices, 1);
2958 
2959 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2960 	if (ret) {
2961 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2962 				ret);
2963 		goto fail_block_groups;
2964 	}
2965 
2966 	ret = btrfs_sysfs_add_device(fs_devices);
2967 	if (ret) {
2968 		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2969 				ret);
2970 		goto fail_fsdev_sysfs;
2971 	}
2972 
2973 	ret = btrfs_sysfs_add_mounted(fs_info);
2974 	if (ret) {
2975 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2976 		goto fail_fsdev_sysfs;
2977 	}
2978 
2979 	ret = btrfs_init_space_info(fs_info);
2980 	if (ret) {
2981 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2982 		goto fail_sysfs;
2983 	}
2984 
2985 	ret = btrfs_read_block_groups(fs_info->extent_root);
2986 	if (ret) {
2987 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
2988 		goto fail_sysfs;
2989 	}
2990 	fs_info->num_tolerated_disk_barrier_failures =
2991 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2992 	if (fs_info->fs_devices->missing_devices >
2993 	     fs_info->num_tolerated_disk_barrier_failures &&
2994 	    !(sb->s_flags & MS_RDONLY)) {
2995 		btrfs_warn(fs_info,
2996 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
2997 			fs_info->fs_devices->missing_devices,
2998 			fs_info->num_tolerated_disk_barrier_failures);
2999 		goto fail_sysfs;
3000 	}
3001 
3002 	/*
3003 	 * Hold the cleaner_mutex thread here so that we don't block
3004 	 * for a long time on btrfs_recover_relocation.  cleaner_kthread
3005 	 * will wait for us to finish mounting the filesystem.
3006 	 */
3007 	mutex_lock(&fs_info->cleaner_mutex);
3008 	cleaner_mutex_locked = true;
3009 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3010 					       "btrfs-cleaner");
3011 	if (IS_ERR(fs_info->cleaner_kthread))
3012 		goto fail_sysfs;
3013 
3014 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3015 						   tree_root,
3016 						   "btrfs-transaction");
3017 	if (IS_ERR(fs_info->transaction_kthread))
3018 		goto fail_cleaner;
3019 
3020 	if (!btrfs_test_opt(tree_root, SSD) &&
3021 	    !btrfs_test_opt(tree_root, NOSSD) &&
3022 	    !fs_info->fs_devices->rotating) {
3023 		btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3024 		btrfs_set_opt(fs_info->mount_opt, SSD);
3025 	}
3026 
3027 	/*
3028 	 * Mount does not set all options immediately, we can do it now and do
3029 	 * not have to wait for transaction commit
3030 	 */
3031 	btrfs_apply_pending_changes(fs_info);
3032 
3033 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3034 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3035 		ret = btrfsic_mount(tree_root, fs_devices,
3036 				    btrfs_test_opt(tree_root,
3037 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3038 				    1 : 0,
3039 				    fs_info->check_integrity_print_mask);
3040 		if (ret)
3041 			btrfs_warn(fs_info,
3042 				"failed to initialize integrity check module: %d",
3043 				ret);
3044 	}
3045 #endif
3046 	ret = btrfs_read_qgroup_config(fs_info);
3047 	if (ret)
3048 		goto fail_trans_kthread;
3049 
3050 	/* do not make disk changes in broken FS or nologreplay is given */
3051 	if (btrfs_super_log_root(disk_super) != 0 &&
3052 	    !btrfs_test_opt(tree_root, NOLOGREPLAY)) {
3053 		ret = btrfs_replay_log(fs_info, fs_devices);
3054 		if (ret) {
3055 			err = ret;
3056 			goto fail_qgroup;
3057 		}
3058 	}
3059 
3060 	ret = btrfs_find_orphan_roots(tree_root);
3061 	if (ret)
3062 		goto fail_qgroup;
3063 
3064 	if (!(sb->s_flags & MS_RDONLY)) {
3065 		ret = btrfs_cleanup_fs_roots(fs_info);
3066 		if (ret)
3067 			goto fail_qgroup;
3068 		/* We locked cleaner_mutex before creating cleaner_kthread. */
3069 		ret = btrfs_recover_relocation(tree_root);
3070 		if (ret < 0) {
3071 			btrfs_warn(fs_info, "failed to recover relocation: %d",
3072 					ret);
3073 			err = -EINVAL;
3074 			goto fail_qgroup;
3075 		}
3076 	}
3077 	mutex_unlock(&fs_info->cleaner_mutex);
3078 	cleaner_mutex_locked = false;
3079 
3080 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3081 	location.type = BTRFS_ROOT_ITEM_KEY;
3082 	location.offset = 0;
3083 
3084 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3085 	if (IS_ERR(fs_info->fs_root)) {
3086 		err = PTR_ERR(fs_info->fs_root);
3087 		goto fail_qgroup;
3088 	}
3089 
3090 	if (sb->s_flags & MS_RDONLY)
3091 		return 0;
3092 
3093 	if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
3094 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3095 		btrfs_info(fs_info, "creating free space tree");
3096 		ret = btrfs_create_free_space_tree(fs_info);
3097 		if (ret) {
3098 			btrfs_warn(fs_info,
3099 				"failed to create free space tree: %d", ret);
3100 			close_ctree(tree_root);
3101 			return ret;
3102 		}
3103 	}
3104 
3105 	down_read(&fs_info->cleanup_work_sem);
3106 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3107 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3108 		up_read(&fs_info->cleanup_work_sem);
3109 		close_ctree(tree_root);
3110 		return ret;
3111 	}
3112 	up_read(&fs_info->cleanup_work_sem);
3113 
3114 	ret = btrfs_resume_balance_async(fs_info);
3115 	if (ret) {
3116 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3117 		close_ctree(tree_root);
3118 		return ret;
3119 	}
3120 
3121 	ret = btrfs_resume_dev_replace_async(fs_info);
3122 	if (ret) {
3123 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3124 		close_ctree(tree_root);
3125 		return ret;
3126 	}
3127 
3128 	btrfs_qgroup_rescan_resume(fs_info);
3129 
3130 	if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
3131 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3132 		btrfs_info(fs_info, "clearing free space tree");
3133 		ret = btrfs_clear_free_space_tree(fs_info);
3134 		if (ret) {
3135 			btrfs_warn(fs_info,
3136 				"failed to clear free space tree: %d", ret);
3137 			close_ctree(tree_root);
3138 			return ret;
3139 		}
3140 	}
3141 
3142 	if (!fs_info->uuid_root) {
3143 		btrfs_info(fs_info, "creating UUID tree");
3144 		ret = btrfs_create_uuid_tree(fs_info);
3145 		if (ret) {
3146 			btrfs_warn(fs_info,
3147 				"failed to create the UUID tree: %d", ret);
3148 			close_ctree(tree_root);
3149 			return ret;
3150 		}
3151 	} else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3152 		   fs_info->generation !=
3153 				btrfs_super_uuid_tree_generation(disk_super)) {
3154 		btrfs_info(fs_info, "checking UUID tree");
3155 		ret = btrfs_check_uuid_tree(fs_info);
3156 		if (ret) {
3157 			btrfs_warn(fs_info,
3158 				"failed to check the UUID tree: %d", ret);
3159 			close_ctree(tree_root);
3160 			return ret;
3161 		}
3162 	} else {
3163 		fs_info->update_uuid_tree_gen = 1;
3164 	}
3165 
3166 	fs_info->open = 1;
3167 
3168 	/*
3169 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3170 	 * no need to keep the flag
3171 	 */
3172 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3173 
3174 	return 0;
3175 
3176 fail_qgroup:
3177 	btrfs_free_qgroup_config(fs_info);
3178 fail_trans_kthread:
3179 	kthread_stop(fs_info->transaction_kthread);
3180 	btrfs_cleanup_transaction(fs_info->tree_root);
3181 	btrfs_free_fs_roots(fs_info);
3182 fail_cleaner:
3183 	kthread_stop(fs_info->cleaner_kthread);
3184 
3185 	/*
3186 	 * make sure we're done with the btree inode before we stop our
3187 	 * kthreads
3188 	 */
3189 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3190 
3191 fail_sysfs:
3192 	if (cleaner_mutex_locked) {
3193 		mutex_unlock(&fs_info->cleaner_mutex);
3194 		cleaner_mutex_locked = false;
3195 	}
3196 	btrfs_sysfs_remove_mounted(fs_info);
3197 
3198 fail_fsdev_sysfs:
3199 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3200 
3201 fail_block_groups:
3202 	btrfs_put_block_group_cache(fs_info);
3203 	btrfs_free_block_groups(fs_info);
3204 
3205 fail_tree_roots:
3206 	free_root_pointers(fs_info, 1);
3207 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3208 
3209 fail_sb_buffer:
3210 	btrfs_stop_all_workers(fs_info);
3211 fail_alloc:
3212 fail_iput:
3213 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3214 
3215 	iput(fs_info->btree_inode);
3216 fail_bio_counter:
3217 	percpu_counter_destroy(&fs_info->bio_counter);
3218 fail_delalloc_bytes:
3219 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3220 fail_dirty_metadata_bytes:
3221 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3222 fail_bdi:
3223 	bdi_destroy(&fs_info->bdi);
3224 fail_srcu:
3225 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3226 fail:
3227 	btrfs_free_stripe_hash_table(fs_info);
3228 	btrfs_close_devices(fs_info->fs_devices);
3229 	return err;
3230 
3231 recovery_tree_root:
3232 	if (!btrfs_test_opt(tree_root, USEBACKUPROOT))
3233 		goto fail_tree_roots;
3234 
3235 	free_root_pointers(fs_info, 0);
3236 
3237 	/* don't use the log in recovery mode, it won't be valid */
3238 	btrfs_set_super_log_root(disk_super, 0);
3239 
3240 	/* we can't trust the free space cache either */
3241 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3242 
3243 	ret = next_root_backup(fs_info, fs_info->super_copy,
3244 			       &num_backups_tried, &backup_index);
3245 	if (ret == -1)
3246 		goto fail_block_groups;
3247 	goto retry_root_backup;
3248 }
3249 
3250 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3251 {
3252 	if (uptodate) {
3253 		set_buffer_uptodate(bh);
3254 	} else {
3255 		struct btrfs_device *device = (struct btrfs_device *)
3256 			bh->b_private;
3257 
3258 		btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3259 				"lost page write due to IO error on %s",
3260 					  rcu_str_deref(device->name));
3261 		/* note, we don't set_buffer_write_io_error because we have
3262 		 * our own ways of dealing with the IO errors
3263 		 */
3264 		clear_buffer_uptodate(bh);
3265 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3266 	}
3267 	unlock_buffer(bh);
3268 	put_bh(bh);
3269 }
3270 
3271 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3272 			struct buffer_head **bh_ret)
3273 {
3274 	struct buffer_head *bh;
3275 	struct btrfs_super_block *super;
3276 	u64 bytenr;
3277 
3278 	bytenr = btrfs_sb_offset(copy_num);
3279 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3280 		return -EINVAL;
3281 
3282 	bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3283 	/*
3284 	 * If we fail to read from the underlying devices, as of now
3285 	 * the best option we have is to mark it EIO.
3286 	 */
3287 	if (!bh)
3288 		return -EIO;
3289 
3290 	super = (struct btrfs_super_block *)bh->b_data;
3291 	if (btrfs_super_bytenr(super) != bytenr ||
3292 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3293 		brelse(bh);
3294 		return -EINVAL;
3295 	}
3296 
3297 	*bh_ret = bh;
3298 	return 0;
3299 }
3300 
3301 
3302 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3303 {
3304 	struct buffer_head *bh;
3305 	struct buffer_head *latest = NULL;
3306 	struct btrfs_super_block *super;
3307 	int i;
3308 	u64 transid = 0;
3309 	int ret = -EINVAL;
3310 
3311 	/* we would like to check all the supers, but that would make
3312 	 * a btrfs mount succeed after a mkfs from a different FS.
3313 	 * So, we need to add a special mount option to scan for
3314 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3315 	 */
3316 	for (i = 0; i < 1; i++) {
3317 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3318 		if (ret)
3319 			continue;
3320 
3321 		super = (struct btrfs_super_block *)bh->b_data;
3322 
3323 		if (!latest || btrfs_super_generation(super) > transid) {
3324 			brelse(latest);
3325 			latest = bh;
3326 			transid = btrfs_super_generation(super);
3327 		} else {
3328 			brelse(bh);
3329 		}
3330 	}
3331 
3332 	if (!latest)
3333 		return ERR_PTR(ret);
3334 
3335 	return latest;
3336 }
3337 
3338 /*
3339  * this should be called twice, once with wait == 0 and
3340  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3341  * we write are pinned.
3342  *
3343  * They are released when wait == 1 is done.
3344  * max_mirrors must be the same for both runs, and it indicates how
3345  * many supers on this one device should be written.
3346  *
3347  * max_mirrors == 0 means to write them all.
3348  */
3349 static int write_dev_supers(struct btrfs_device *device,
3350 			    struct btrfs_super_block *sb,
3351 			    int do_barriers, int wait, int max_mirrors)
3352 {
3353 	struct buffer_head *bh;
3354 	int i;
3355 	int ret;
3356 	int errors = 0;
3357 	u32 crc;
3358 	u64 bytenr;
3359 
3360 	if (max_mirrors == 0)
3361 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3362 
3363 	for (i = 0; i < max_mirrors; i++) {
3364 		bytenr = btrfs_sb_offset(i);
3365 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3366 		    device->commit_total_bytes)
3367 			break;
3368 
3369 		if (wait) {
3370 			bh = __find_get_block(device->bdev, bytenr / 4096,
3371 					      BTRFS_SUPER_INFO_SIZE);
3372 			if (!bh) {
3373 				errors++;
3374 				continue;
3375 			}
3376 			wait_on_buffer(bh);
3377 			if (!buffer_uptodate(bh))
3378 				errors++;
3379 
3380 			/* drop our reference */
3381 			brelse(bh);
3382 
3383 			/* drop the reference from the wait == 0 run */
3384 			brelse(bh);
3385 			continue;
3386 		} else {
3387 			btrfs_set_super_bytenr(sb, bytenr);
3388 
3389 			crc = ~(u32)0;
3390 			crc = btrfs_csum_data((char *)sb +
3391 					      BTRFS_CSUM_SIZE, crc,
3392 					      BTRFS_SUPER_INFO_SIZE -
3393 					      BTRFS_CSUM_SIZE);
3394 			btrfs_csum_final(crc, sb->csum);
3395 
3396 			/*
3397 			 * one reference for us, and we leave it for the
3398 			 * caller
3399 			 */
3400 			bh = __getblk(device->bdev, bytenr / 4096,
3401 				      BTRFS_SUPER_INFO_SIZE);
3402 			if (!bh) {
3403 				btrfs_err(device->dev_root->fs_info,
3404 				    "couldn't get super buffer head for bytenr %llu",
3405 				    bytenr);
3406 				errors++;
3407 				continue;
3408 			}
3409 
3410 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3411 
3412 			/* one reference for submit_bh */
3413 			get_bh(bh);
3414 
3415 			set_buffer_uptodate(bh);
3416 			lock_buffer(bh);
3417 			bh->b_end_io = btrfs_end_buffer_write_sync;
3418 			bh->b_private = device;
3419 		}
3420 
3421 		/*
3422 		 * we fua the first super.  The others we allow
3423 		 * to go down lazy.
3424 		 */
3425 		if (i == 0)
3426 			ret = btrfsic_submit_bh(WRITE_FUA, bh);
3427 		else
3428 			ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3429 		if (ret)
3430 			errors++;
3431 	}
3432 	return errors < i ? 0 : -1;
3433 }
3434 
3435 /*
3436  * endio for the write_dev_flush, this will wake anyone waiting
3437  * for the barrier when it is done
3438  */
3439 static void btrfs_end_empty_barrier(struct bio *bio)
3440 {
3441 	if (bio->bi_private)
3442 		complete(bio->bi_private);
3443 	bio_put(bio);
3444 }
3445 
3446 /*
3447  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3448  * sent down.  With wait == 1, it waits for the previous flush.
3449  *
3450  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3451  * capable
3452  */
3453 static int write_dev_flush(struct btrfs_device *device, int wait)
3454 {
3455 	struct bio *bio;
3456 	int ret = 0;
3457 
3458 	if (device->nobarriers)
3459 		return 0;
3460 
3461 	if (wait) {
3462 		bio = device->flush_bio;
3463 		if (!bio)
3464 			return 0;
3465 
3466 		wait_for_completion(&device->flush_wait);
3467 
3468 		if (bio->bi_error) {
3469 			ret = bio->bi_error;
3470 			btrfs_dev_stat_inc_and_print(device,
3471 				BTRFS_DEV_STAT_FLUSH_ERRS);
3472 		}
3473 
3474 		/* drop the reference from the wait == 0 run */
3475 		bio_put(bio);
3476 		device->flush_bio = NULL;
3477 
3478 		return ret;
3479 	}
3480 
3481 	/*
3482 	 * one reference for us, and we leave it for the
3483 	 * caller
3484 	 */
3485 	device->flush_bio = NULL;
3486 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3487 	if (!bio)
3488 		return -ENOMEM;
3489 
3490 	bio->bi_end_io = btrfs_end_empty_barrier;
3491 	bio->bi_bdev = device->bdev;
3492 	init_completion(&device->flush_wait);
3493 	bio->bi_private = &device->flush_wait;
3494 	device->flush_bio = bio;
3495 
3496 	bio_get(bio);
3497 	btrfsic_submit_bio(WRITE_FLUSH, bio);
3498 
3499 	return 0;
3500 }
3501 
3502 /*
3503  * send an empty flush down to each device in parallel,
3504  * then wait for them
3505  */
3506 static int barrier_all_devices(struct btrfs_fs_info *info)
3507 {
3508 	struct list_head *head;
3509 	struct btrfs_device *dev;
3510 	int errors_send = 0;
3511 	int errors_wait = 0;
3512 	int ret;
3513 
3514 	/* send down all the barriers */
3515 	head = &info->fs_devices->devices;
3516 	list_for_each_entry_rcu(dev, head, dev_list) {
3517 		if (dev->missing)
3518 			continue;
3519 		if (!dev->bdev) {
3520 			errors_send++;
3521 			continue;
3522 		}
3523 		if (!dev->in_fs_metadata || !dev->writeable)
3524 			continue;
3525 
3526 		ret = write_dev_flush(dev, 0);
3527 		if (ret)
3528 			errors_send++;
3529 	}
3530 
3531 	/* wait for all the barriers */
3532 	list_for_each_entry_rcu(dev, head, dev_list) {
3533 		if (dev->missing)
3534 			continue;
3535 		if (!dev->bdev) {
3536 			errors_wait++;
3537 			continue;
3538 		}
3539 		if (!dev->in_fs_metadata || !dev->writeable)
3540 			continue;
3541 
3542 		ret = write_dev_flush(dev, 1);
3543 		if (ret)
3544 			errors_wait++;
3545 	}
3546 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3547 	    errors_wait > info->num_tolerated_disk_barrier_failures)
3548 		return -EIO;
3549 	return 0;
3550 }
3551 
3552 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3553 {
3554 	int raid_type;
3555 	int min_tolerated = INT_MAX;
3556 
3557 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3558 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3559 		min_tolerated = min(min_tolerated,
3560 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3561 				    tolerated_failures);
3562 
3563 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3564 		if (raid_type == BTRFS_RAID_SINGLE)
3565 			continue;
3566 		if (!(flags & btrfs_raid_group[raid_type]))
3567 			continue;
3568 		min_tolerated = min(min_tolerated,
3569 				    btrfs_raid_array[raid_type].
3570 				    tolerated_failures);
3571 	}
3572 
3573 	if (min_tolerated == INT_MAX) {
3574 		pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3575 		min_tolerated = 0;
3576 	}
3577 
3578 	return min_tolerated;
3579 }
3580 
3581 int btrfs_calc_num_tolerated_disk_barrier_failures(
3582 	struct btrfs_fs_info *fs_info)
3583 {
3584 	struct btrfs_ioctl_space_info space;
3585 	struct btrfs_space_info *sinfo;
3586 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3587 		       BTRFS_BLOCK_GROUP_SYSTEM,
3588 		       BTRFS_BLOCK_GROUP_METADATA,
3589 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3590 	int i;
3591 	int c;
3592 	int num_tolerated_disk_barrier_failures =
3593 		(int)fs_info->fs_devices->num_devices;
3594 
3595 	for (i = 0; i < ARRAY_SIZE(types); i++) {
3596 		struct btrfs_space_info *tmp;
3597 
3598 		sinfo = NULL;
3599 		rcu_read_lock();
3600 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3601 			if (tmp->flags == types[i]) {
3602 				sinfo = tmp;
3603 				break;
3604 			}
3605 		}
3606 		rcu_read_unlock();
3607 
3608 		if (!sinfo)
3609 			continue;
3610 
3611 		down_read(&sinfo->groups_sem);
3612 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3613 			u64 flags;
3614 
3615 			if (list_empty(&sinfo->block_groups[c]))
3616 				continue;
3617 
3618 			btrfs_get_block_group_info(&sinfo->block_groups[c],
3619 						   &space);
3620 			if (space.total_bytes == 0 || space.used_bytes == 0)
3621 				continue;
3622 			flags = space.flags;
3623 
3624 			num_tolerated_disk_barrier_failures = min(
3625 				num_tolerated_disk_barrier_failures,
3626 				btrfs_get_num_tolerated_disk_barrier_failures(
3627 					flags));
3628 		}
3629 		up_read(&sinfo->groups_sem);
3630 	}
3631 
3632 	return num_tolerated_disk_barrier_failures;
3633 }
3634 
3635 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3636 {
3637 	struct list_head *head;
3638 	struct btrfs_device *dev;
3639 	struct btrfs_super_block *sb;
3640 	struct btrfs_dev_item *dev_item;
3641 	int ret;
3642 	int do_barriers;
3643 	int max_errors;
3644 	int total_errors = 0;
3645 	u64 flags;
3646 
3647 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
3648 	backup_super_roots(root->fs_info);
3649 
3650 	sb = root->fs_info->super_for_commit;
3651 	dev_item = &sb->dev_item;
3652 
3653 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3654 	head = &root->fs_info->fs_devices->devices;
3655 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3656 
3657 	if (do_barriers) {
3658 		ret = barrier_all_devices(root->fs_info);
3659 		if (ret) {
3660 			mutex_unlock(
3661 				&root->fs_info->fs_devices->device_list_mutex);
3662 			btrfs_handle_fs_error(root->fs_info, ret,
3663 				    "errors while submitting device barriers.");
3664 			return ret;
3665 		}
3666 	}
3667 
3668 	list_for_each_entry_rcu(dev, head, dev_list) {
3669 		if (!dev->bdev) {
3670 			total_errors++;
3671 			continue;
3672 		}
3673 		if (!dev->in_fs_metadata || !dev->writeable)
3674 			continue;
3675 
3676 		btrfs_set_stack_device_generation(dev_item, 0);
3677 		btrfs_set_stack_device_type(dev_item, dev->type);
3678 		btrfs_set_stack_device_id(dev_item, dev->devid);
3679 		btrfs_set_stack_device_total_bytes(dev_item,
3680 						   dev->commit_total_bytes);
3681 		btrfs_set_stack_device_bytes_used(dev_item,
3682 						  dev->commit_bytes_used);
3683 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3684 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3685 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3686 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3687 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3688 
3689 		flags = btrfs_super_flags(sb);
3690 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3691 
3692 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3693 		if (ret)
3694 			total_errors++;
3695 	}
3696 	if (total_errors > max_errors) {
3697 		btrfs_err(root->fs_info, "%d errors while writing supers",
3698 		       total_errors);
3699 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3700 
3701 		/* FUA is masked off if unsupported and can't be the reason */
3702 		btrfs_handle_fs_error(root->fs_info, -EIO,
3703 			    "%d errors while writing supers", total_errors);
3704 		return -EIO;
3705 	}
3706 
3707 	total_errors = 0;
3708 	list_for_each_entry_rcu(dev, head, dev_list) {
3709 		if (!dev->bdev)
3710 			continue;
3711 		if (!dev->in_fs_metadata || !dev->writeable)
3712 			continue;
3713 
3714 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3715 		if (ret)
3716 			total_errors++;
3717 	}
3718 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3719 	if (total_errors > max_errors) {
3720 		btrfs_handle_fs_error(root->fs_info, -EIO,
3721 			    "%d errors while writing supers", total_errors);
3722 		return -EIO;
3723 	}
3724 	return 0;
3725 }
3726 
3727 int write_ctree_super(struct btrfs_trans_handle *trans,
3728 		      struct btrfs_root *root, int max_mirrors)
3729 {
3730 	return write_all_supers(root, max_mirrors);
3731 }
3732 
3733 /* Drop a fs root from the radix tree and free it. */
3734 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3735 				  struct btrfs_root *root)
3736 {
3737 	spin_lock(&fs_info->fs_roots_radix_lock);
3738 	radix_tree_delete(&fs_info->fs_roots_radix,
3739 			  (unsigned long)root->root_key.objectid);
3740 	spin_unlock(&fs_info->fs_roots_radix_lock);
3741 
3742 	if (btrfs_root_refs(&root->root_item) == 0)
3743 		synchronize_srcu(&fs_info->subvol_srcu);
3744 
3745 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3746 		btrfs_free_log(NULL, root);
3747 
3748 	if (root->free_ino_pinned)
3749 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3750 	if (root->free_ino_ctl)
3751 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3752 	free_fs_root(root);
3753 }
3754 
3755 static void free_fs_root(struct btrfs_root *root)
3756 {
3757 	iput(root->ino_cache_inode);
3758 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3759 	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3760 	root->orphan_block_rsv = NULL;
3761 	if (root->anon_dev)
3762 		free_anon_bdev(root->anon_dev);
3763 	if (root->subv_writers)
3764 		btrfs_free_subvolume_writers(root->subv_writers);
3765 	free_extent_buffer(root->node);
3766 	free_extent_buffer(root->commit_root);
3767 	kfree(root->free_ino_ctl);
3768 	kfree(root->free_ino_pinned);
3769 	kfree(root->name);
3770 	btrfs_put_fs_root(root);
3771 }
3772 
3773 void btrfs_free_fs_root(struct btrfs_root *root)
3774 {
3775 	free_fs_root(root);
3776 }
3777 
3778 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3779 {
3780 	u64 root_objectid = 0;
3781 	struct btrfs_root *gang[8];
3782 	int i = 0;
3783 	int err = 0;
3784 	unsigned int ret = 0;
3785 	int index;
3786 
3787 	while (1) {
3788 		index = srcu_read_lock(&fs_info->subvol_srcu);
3789 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3790 					     (void **)gang, root_objectid,
3791 					     ARRAY_SIZE(gang));
3792 		if (!ret) {
3793 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3794 			break;
3795 		}
3796 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3797 
3798 		for (i = 0; i < ret; i++) {
3799 			/* Avoid to grab roots in dead_roots */
3800 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3801 				gang[i] = NULL;
3802 				continue;
3803 			}
3804 			/* grab all the search result for later use */
3805 			gang[i] = btrfs_grab_fs_root(gang[i]);
3806 		}
3807 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3808 
3809 		for (i = 0; i < ret; i++) {
3810 			if (!gang[i])
3811 				continue;
3812 			root_objectid = gang[i]->root_key.objectid;
3813 			err = btrfs_orphan_cleanup(gang[i]);
3814 			if (err)
3815 				break;
3816 			btrfs_put_fs_root(gang[i]);
3817 		}
3818 		root_objectid++;
3819 	}
3820 
3821 	/* release the uncleaned roots due to error */
3822 	for (; i < ret; i++) {
3823 		if (gang[i])
3824 			btrfs_put_fs_root(gang[i]);
3825 	}
3826 	return err;
3827 }
3828 
3829 int btrfs_commit_super(struct btrfs_root *root)
3830 {
3831 	struct btrfs_trans_handle *trans;
3832 
3833 	mutex_lock(&root->fs_info->cleaner_mutex);
3834 	btrfs_run_delayed_iputs(root);
3835 	mutex_unlock(&root->fs_info->cleaner_mutex);
3836 	wake_up_process(root->fs_info->cleaner_kthread);
3837 
3838 	/* wait until ongoing cleanup work done */
3839 	down_write(&root->fs_info->cleanup_work_sem);
3840 	up_write(&root->fs_info->cleanup_work_sem);
3841 
3842 	trans = btrfs_join_transaction(root);
3843 	if (IS_ERR(trans))
3844 		return PTR_ERR(trans);
3845 	return btrfs_commit_transaction(trans, root);
3846 }
3847 
3848 void close_ctree(struct btrfs_root *root)
3849 {
3850 	struct btrfs_fs_info *fs_info = root->fs_info;
3851 	int ret;
3852 
3853 	fs_info->closing = 1;
3854 	smp_mb();
3855 
3856 	/* wait for the qgroup rescan worker to stop */
3857 	btrfs_qgroup_wait_for_completion(fs_info);
3858 
3859 	/* wait for the uuid_scan task to finish */
3860 	down(&fs_info->uuid_tree_rescan_sem);
3861 	/* avoid complains from lockdep et al., set sem back to initial state */
3862 	up(&fs_info->uuid_tree_rescan_sem);
3863 
3864 	/* pause restriper - we want to resume on mount */
3865 	btrfs_pause_balance(fs_info);
3866 
3867 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3868 
3869 	btrfs_scrub_cancel(fs_info);
3870 
3871 	/* wait for any defraggers to finish */
3872 	wait_event(fs_info->transaction_wait,
3873 		   (atomic_read(&fs_info->defrag_running) == 0));
3874 
3875 	/* clear out the rbtree of defraggable inodes */
3876 	btrfs_cleanup_defrag_inodes(fs_info);
3877 
3878 	cancel_work_sync(&fs_info->async_reclaim_work);
3879 
3880 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3881 		/*
3882 		 * If the cleaner thread is stopped and there are
3883 		 * block groups queued for removal, the deletion will be
3884 		 * skipped when we quit the cleaner thread.
3885 		 */
3886 		btrfs_delete_unused_bgs(root->fs_info);
3887 
3888 		ret = btrfs_commit_super(root);
3889 		if (ret)
3890 			btrfs_err(fs_info, "commit super ret %d", ret);
3891 	}
3892 
3893 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3894 		btrfs_error_commit_super(root);
3895 
3896 	kthread_stop(fs_info->transaction_kthread);
3897 	kthread_stop(fs_info->cleaner_kthread);
3898 
3899 	fs_info->closing = 2;
3900 	smp_mb();
3901 
3902 	btrfs_free_qgroup_config(fs_info);
3903 
3904 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3905 		btrfs_info(fs_info, "at unmount delalloc count %lld",
3906 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3907 	}
3908 
3909 	btrfs_sysfs_remove_mounted(fs_info);
3910 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3911 
3912 	btrfs_free_fs_roots(fs_info);
3913 
3914 	btrfs_put_block_group_cache(fs_info);
3915 
3916 	btrfs_free_block_groups(fs_info);
3917 
3918 	/*
3919 	 * we must make sure there is not any read request to
3920 	 * submit after we stopping all workers.
3921 	 */
3922 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3923 	btrfs_stop_all_workers(fs_info);
3924 
3925 	fs_info->open = 0;
3926 	free_root_pointers(fs_info, 1);
3927 
3928 	iput(fs_info->btree_inode);
3929 
3930 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3931 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3932 		btrfsic_unmount(root, fs_info->fs_devices);
3933 #endif
3934 
3935 	btrfs_close_devices(fs_info->fs_devices);
3936 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3937 
3938 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3939 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3940 	percpu_counter_destroy(&fs_info->bio_counter);
3941 	bdi_destroy(&fs_info->bdi);
3942 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3943 
3944 	btrfs_free_stripe_hash_table(fs_info);
3945 
3946 	__btrfs_free_block_rsv(root->orphan_block_rsv);
3947 	root->orphan_block_rsv = NULL;
3948 
3949 	lock_chunks(root);
3950 	while (!list_empty(&fs_info->pinned_chunks)) {
3951 		struct extent_map *em;
3952 
3953 		em = list_first_entry(&fs_info->pinned_chunks,
3954 				      struct extent_map, list);
3955 		list_del_init(&em->list);
3956 		free_extent_map(em);
3957 	}
3958 	unlock_chunks(root);
3959 }
3960 
3961 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3962 			  int atomic)
3963 {
3964 	int ret;
3965 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3966 
3967 	ret = extent_buffer_uptodate(buf);
3968 	if (!ret)
3969 		return ret;
3970 
3971 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3972 				    parent_transid, atomic);
3973 	if (ret == -EAGAIN)
3974 		return ret;
3975 	return !ret;
3976 }
3977 
3978 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3979 {
3980 	struct btrfs_root *root;
3981 	u64 transid = btrfs_header_generation(buf);
3982 	int was_dirty;
3983 
3984 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3985 	/*
3986 	 * This is a fast path so only do this check if we have sanity tests
3987 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3988 	 * outside of the sanity tests.
3989 	 */
3990 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3991 		return;
3992 #endif
3993 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3994 	btrfs_assert_tree_locked(buf);
3995 	if (transid != root->fs_info->generation)
3996 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3997 		       "found %llu running %llu\n",
3998 			buf->start, transid, root->fs_info->generation);
3999 	was_dirty = set_extent_buffer_dirty(buf);
4000 	if (!was_dirty)
4001 		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
4002 				     buf->len,
4003 				     root->fs_info->dirty_metadata_batch);
4004 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4005 	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4006 		btrfs_print_leaf(root, buf);
4007 		ASSERT(0);
4008 	}
4009 #endif
4010 }
4011 
4012 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4013 					int flush_delayed)
4014 {
4015 	/*
4016 	 * looks as though older kernels can get into trouble with
4017 	 * this code, they end up stuck in balance_dirty_pages forever
4018 	 */
4019 	int ret;
4020 
4021 	if (current->flags & PF_MEMALLOC)
4022 		return;
4023 
4024 	if (flush_delayed)
4025 		btrfs_balance_delayed_items(root);
4026 
4027 	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4028 				     BTRFS_DIRTY_METADATA_THRESH);
4029 	if (ret > 0) {
4030 		balance_dirty_pages_ratelimited(
4031 				   root->fs_info->btree_inode->i_mapping);
4032 	}
4033 }
4034 
4035 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4036 {
4037 	__btrfs_btree_balance_dirty(root, 1);
4038 }
4039 
4040 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4041 {
4042 	__btrfs_btree_balance_dirty(root, 0);
4043 }
4044 
4045 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4046 {
4047 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4048 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4049 }
4050 
4051 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4052 			      int read_only)
4053 {
4054 	struct btrfs_super_block *sb = fs_info->super_copy;
4055 	u64 nodesize = btrfs_super_nodesize(sb);
4056 	u64 sectorsize = btrfs_super_sectorsize(sb);
4057 	int ret = 0;
4058 
4059 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4060 		printk(KERN_ERR "BTRFS: no valid FS found\n");
4061 		ret = -EINVAL;
4062 	}
4063 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4064 		printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4065 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4066 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4067 		printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4068 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4069 		ret = -EINVAL;
4070 	}
4071 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4072 		printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4073 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4074 		ret = -EINVAL;
4075 	}
4076 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4077 		printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4078 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4079 		ret = -EINVAL;
4080 	}
4081 
4082 	/*
4083 	 * Check sectorsize and nodesize first, other check will need it.
4084 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4085 	 */
4086 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4087 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4088 		printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4089 		ret = -EINVAL;
4090 	}
4091 	/* Only PAGE SIZE is supported yet */
4092 	if (sectorsize != PAGE_SIZE) {
4093 		printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4094 				sectorsize, PAGE_SIZE);
4095 		ret = -EINVAL;
4096 	}
4097 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4098 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4099 		printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4100 		ret = -EINVAL;
4101 	}
4102 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4103 		printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4104 				le32_to_cpu(sb->__unused_leafsize),
4105 				nodesize);
4106 		ret = -EINVAL;
4107 	}
4108 
4109 	/* Root alignment check */
4110 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4111 		printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4112 				btrfs_super_root(sb));
4113 		ret = -EINVAL;
4114 	}
4115 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4116 		printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4117 				btrfs_super_chunk_root(sb));
4118 		ret = -EINVAL;
4119 	}
4120 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4121 		printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4122 				btrfs_super_log_root(sb));
4123 		ret = -EINVAL;
4124 	}
4125 
4126 	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4127 		printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4128 				fs_info->fsid, sb->dev_item.fsid);
4129 		ret = -EINVAL;
4130 	}
4131 
4132 	/*
4133 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4134 	 * done later
4135 	 */
4136 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4137 		btrfs_err(fs_info, "bytes_used is too small %llu",
4138 		       btrfs_super_bytes_used(sb));
4139 		ret = -EINVAL;
4140 	}
4141 	if (!is_power_of_2(btrfs_super_stripesize(sb)) ||
4142 	    btrfs_super_stripesize(sb) != sectorsize) {
4143 		btrfs_err(fs_info, "invalid stripesize %u",
4144 		       btrfs_super_stripesize(sb));
4145 		ret = -EINVAL;
4146 	}
4147 	if (btrfs_super_num_devices(sb) > (1UL << 31))
4148 		printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4149 				btrfs_super_num_devices(sb));
4150 	if (btrfs_super_num_devices(sb) == 0) {
4151 		printk(KERN_ERR "BTRFS: number of devices is 0\n");
4152 		ret = -EINVAL;
4153 	}
4154 
4155 	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4156 		printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4157 				btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4158 		ret = -EINVAL;
4159 	}
4160 
4161 	/*
4162 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
4163 	 * and one chunk
4164 	 */
4165 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4166 		printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4167 				btrfs_super_sys_array_size(sb),
4168 				BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4169 		ret = -EINVAL;
4170 	}
4171 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4172 			+ sizeof(struct btrfs_chunk)) {
4173 		printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4174 				btrfs_super_sys_array_size(sb),
4175 				sizeof(struct btrfs_disk_key)
4176 				+ sizeof(struct btrfs_chunk));
4177 		ret = -EINVAL;
4178 	}
4179 
4180 	/*
4181 	 * The generation is a global counter, we'll trust it more than the others
4182 	 * but it's still possible that it's the one that's wrong.
4183 	 */
4184 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4185 		printk(KERN_WARNING
4186 			"BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4187 			btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4188 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4189 	    && btrfs_super_cache_generation(sb) != (u64)-1)
4190 		printk(KERN_WARNING
4191 			"BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4192 			btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4193 
4194 	return ret;
4195 }
4196 
4197 static void btrfs_error_commit_super(struct btrfs_root *root)
4198 {
4199 	mutex_lock(&root->fs_info->cleaner_mutex);
4200 	btrfs_run_delayed_iputs(root);
4201 	mutex_unlock(&root->fs_info->cleaner_mutex);
4202 
4203 	down_write(&root->fs_info->cleanup_work_sem);
4204 	up_write(&root->fs_info->cleanup_work_sem);
4205 
4206 	/* cleanup FS via transaction */
4207 	btrfs_cleanup_transaction(root);
4208 }
4209 
4210 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4211 {
4212 	struct btrfs_ordered_extent *ordered;
4213 
4214 	spin_lock(&root->ordered_extent_lock);
4215 	/*
4216 	 * This will just short circuit the ordered completion stuff which will
4217 	 * make sure the ordered extent gets properly cleaned up.
4218 	 */
4219 	list_for_each_entry(ordered, &root->ordered_extents,
4220 			    root_extent_list)
4221 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4222 	spin_unlock(&root->ordered_extent_lock);
4223 }
4224 
4225 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4226 {
4227 	struct btrfs_root *root;
4228 	struct list_head splice;
4229 
4230 	INIT_LIST_HEAD(&splice);
4231 
4232 	spin_lock(&fs_info->ordered_root_lock);
4233 	list_splice_init(&fs_info->ordered_roots, &splice);
4234 	while (!list_empty(&splice)) {
4235 		root = list_first_entry(&splice, struct btrfs_root,
4236 					ordered_root);
4237 		list_move_tail(&root->ordered_root,
4238 			       &fs_info->ordered_roots);
4239 
4240 		spin_unlock(&fs_info->ordered_root_lock);
4241 		btrfs_destroy_ordered_extents(root);
4242 
4243 		cond_resched();
4244 		spin_lock(&fs_info->ordered_root_lock);
4245 	}
4246 	spin_unlock(&fs_info->ordered_root_lock);
4247 }
4248 
4249 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4250 				      struct btrfs_root *root)
4251 {
4252 	struct rb_node *node;
4253 	struct btrfs_delayed_ref_root *delayed_refs;
4254 	struct btrfs_delayed_ref_node *ref;
4255 	int ret = 0;
4256 
4257 	delayed_refs = &trans->delayed_refs;
4258 
4259 	spin_lock(&delayed_refs->lock);
4260 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4261 		spin_unlock(&delayed_refs->lock);
4262 		btrfs_info(root->fs_info, "delayed_refs has NO entry");
4263 		return ret;
4264 	}
4265 
4266 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4267 		struct btrfs_delayed_ref_head *head;
4268 		struct btrfs_delayed_ref_node *tmp;
4269 		bool pin_bytes = false;
4270 
4271 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4272 				href_node);
4273 		if (!mutex_trylock(&head->mutex)) {
4274 			atomic_inc(&head->node.refs);
4275 			spin_unlock(&delayed_refs->lock);
4276 
4277 			mutex_lock(&head->mutex);
4278 			mutex_unlock(&head->mutex);
4279 			btrfs_put_delayed_ref(&head->node);
4280 			spin_lock(&delayed_refs->lock);
4281 			continue;
4282 		}
4283 		spin_lock(&head->lock);
4284 		list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4285 						 list) {
4286 			ref->in_tree = 0;
4287 			list_del(&ref->list);
4288 			atomic_dec(&delayed_refs->num_entries);
4289 			btrfs_put_delayed_ref(ref);
4290 		}
4291 		if (head->must_insert_reserved)
4292 			pin_bytes = true;
4293 		btrfs_free_delayed_extent_op(head->extent_op);
4294 		delayed_refs->num_heads--;
4295 		if (head->processing == 0)
4296 			delayed_refs->num_heads_ready--;
4297 		atomic_dec(&delayed_refs->num_entries);
4298 		head->node.in_tree = 0;
4299 		rb_erase(&head->href_node, &delayed_refs->href_root);
4300 		spin_unlock(&head->lock);
4301 		spin_unlock(&delayed_refs->lock);
4302 		mutex_unlock(&head->mutex);
4303 
4304 		if (pin_bytes)
4305 			btrfs_pin_extent(root, head->node.bytenr,
4306 					 head->node.num_bytes, 1);
4307 		btrfs_put_delayed_ref(&head->node);
4308 		cond_resched();
4309 		spin_lock(&delayed_refs->lock);
4310 	}
4311 
4312 	spin_unlock(&delayed_refs->lock);
4313 
4314 	return ret;
4315 }
4316 
4317 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4318 {
4319 	struct btrfs_inode *btrfs_inode;
4320 	struct list_head splice;
4321 
4322 	INIT_LIST_HEAD(&splice);
4323 
4324 	spin_lock(&root->delalloc_lock);
4325 	list_splice_init(&root->delalloc_inodes, &splice);
4326 
4327 	while (!list_empty(&splice)) {
4328 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4329 					       delalloc_inodes);
4330 
4331 		list_del_init(&btrfs_inode->delalloc_inodes);
4332 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4333 			  &btrfs_inode->runtime_flags);
4334 		spin_unlock(&root->delalloc_lock);
4335 
4336 		btrfs_invalidate_inodes(btrfs_inode->root);
4337 
4338 		spin_lock(&root->delalloc_lock);
4339 	}
4340 
4341 	spin_unlock(&root->delalloc_lock);
4342 }
4343 
4344 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4345 {
4346 	struct btrfs_root *root;
4347 	struct list_head splice;
4348 
4349 	INIT_LIST_HEAD(&splice);
4350 
4351 	spin_lock(&fs_info->delalloc_root_lock);
4352 	list_splice_init(&fs_info->delalloc_roots, &splice);
4353 	while (!list_empty(&splice)) {
4354 		root = list_first_entry(&splice, struct btrfs_root,
4355 					 delalloc_root);
4356 		list_del_init(&root->delalloc_root);
4357 		root = btrfs_grab_fs_root(root);
4358 		BUG_ON(!root);
4359 		spin_unlock(&fs_info->delalloc_root_lock);
4360 
4361 		btrfs_destroy_delalloc_inodes(root);
4362 		btrfs_put_fs_root(root);
4363 
4364 		spin_lock(&fs_info->delalloc_root_lock);
4365 	}
4366 	spin_unlock(&fs_info->delalloc_root_lock);
4367 }
4368 
4369 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4370 					struct extent_io_tree *dirty_pages,
4371 					int mark)
4372 {
4373 	int ret;
4374 	struct extent_buffer *eb;
4375 	u64 start = 0;
4376 	u64 end;
4377 
4378 	while (1) {
4379 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4380 					    mark, NULL);
4381 		if (ret)
4382 			break;
4383 
4384 		clear_extent_bits(dirty_pages, start, end, mark);
4385 		while (start <= end) {
4386 			eb = btrfs_find_tree_block(root->fs_info, start);
4387 			start += root->nodesize;
4388 			if (!eb)
4389 				continue;
4390 			wait_on_extent_buffer_writeback(eb);
4391 
4392 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4393 					       &eb->bflags))
4394 				clear_extent_buffer_dirty(eb);
4395 			free_extent_buffer_stale(eb);
4396 		}
4397 	}
4398 
4399 	return ret;
4400 }
4401 
4402 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4403 				       struct extent_io_tree *pinned_extents)
4404 {
4405 	struct extent_io_tree *unpin;
4406 	u64 start;
4407 	u64 end;
4408 	int ret;
4409 	bool loop = true;
4410 
4411 	unpin = pinned_extents;
4412 again:
4413 	while (1) {
4414 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4415 					    EXTENT_DIRTY, NULL);
4416 		if (ret)
4417 			break;
4418 
4419 		clear_extent_dirty(unpin, start, end);
4420 		btrfs_error_unpin_extent_range(root, start, end);
4421 		cond_resched();
4422 	}
4423 
4424 	if (loop) {
4425 		if (unpin == &root->fs_info->freed_extents[0])
4426 			unpin = &root->fs_info->freed_extents[1];
4427 		else
4428 			unpin = &root->fs_info->freed_extents[0];
4429 		loop = false;
4430 		goto again;
4431 	}
4432 
4433 	return 0;
4434 }
4435 
4436 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4437 				   struct btrfs_root *root)
4438 {
4439 	btrfs_destroy_delayed_refs(cur_trans, root);
4440 
4441 	cur_trans->state = TRANS_STATE_COMMIT_START;
4442 	wake_up(&root->fs_info->transaction_blocked_wait);
4443 
4444 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4445 	wake_up(&root->fs_info->transaction_wait);
4446 
4447 	btrfs_destroy_delayed_inodes(root);
4448 	btrfs_assert_delayed_root_empty(root);
4449 
4450 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4451 				     EXTENT_DIRTY);
4452 	btrfs_destroy_pinned_extent(root,
4453 				    root->fs_info->pinned_extents);
4454 
4455 	cur_trans->state =TRANS_STATE_COMPLETED;
4456 	wake_up(&cur_trans->commit_wait);
4457 
4458 	/*
4459 	memset(cur_trans, 0, sizeof(*cur_trans));
4460 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4461 	*/
4462 }
4463 
4464 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4465 {
4466 	struct btrfs_transaction *t;
4467 
4468 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
4469 
4470 	spin_lock(&root->fs_info->trans_lock);
4471 	while (!list_empty(&root->fs_info->trans_list)) {
4472 		t = list_first_entry(&root->fs_info->trans_list,
4473 				     struct btrfs_transaction, list);
4474 		if (t->state >= TRANS_STATE_COMMIT_START) {
4475 			atomic_inc(&t->use_count);
4476 			spin_unlock(&root->fs_info->trans_lock);
4477 			btrfs_wait_for_commit(root, t->transid);
4478 			btrfs_put_transaction(t);
4479 			spin_lock(&root->fs_info->trans_lock);
4480 			continue;
4481 		}
4482 		if (t == root->fs_info->running_transaction) {
4483 			t->state = TRANS_STATE_COMMIT_DOING;
4484 			spin_unlock(&root->fs_info->trans_lock);
4485 			/*
4486 			 * We wait for 0 num_writers since we don't hold a trans
4487 			 * handle open currently for this transaction.
4488 			 */
4489 			wait_event(t->writer_wait,
4490 				   atomic_read(&t->num_writers) == 0);
4491 		} else {
4492 			spin_unlock(&root->fs_info->trans_lock);
4493 		}
4494 		btrfs_cleanup_one_transaction(t, root);
4495 
4496 		spin_lock(&root->fs_info->trans_lock);
4497 		if (t == root->fs_info->running_transaction)
4498 			root->fs_info->running_transaction = NULL;
4499 		list_del_init(&t->list);
4500 		spin_unlock(&root->fs_info->trans_lock);
4501 
4502 		btrfs_put_transaction(t);
4503 		trace_btrfs_transaction_commit(root);
4504 		spin_lock(&root->fs_info->trans_lock);
4505 	}
4506 	spin_unlock(&root->fs_info->trans_lock);
4507 	btrfs_destroy_all_ordered_extents(root->fs_info);
4508 	btrfs_destroy_delayed_inodes(root);
4509 	btrfs_assert_delayed_root_empty(root);
4510 	btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4511 	btrfs_destroy_all_delalloc_inodes(root->fs_info);
4512 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4513 
4514 	return 0;
4515 }
4516 
4517 static const struct extent_io_ops btree_extent_io_ops = {
4518 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4519 	.readpage_io_failed_hook = btree_io_failed_hook,
4520 	.submit_bio_hook = btree_submit_bio_hook,
4521 	/* note we're sharing with inode.c for the merge bio hook */
4522 	.merge_bio_hook = btrfs_merge_bio_hook,
4523 };
4524