xref: /linux/fs/btrfs/disk-io.c (revision 079c9534a96da9a85a2a2f9715851050fbfbf749)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 
48 static struct extent_io_ops btree_extent_io_ops;
49 static void end_workqueue_fn(struct btrfs_work *work);
50 static void free_fs_root(struct btrfs_root *root);
51 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
52 				    int read_only);
53 static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
54 static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 				      struct btrfs_root *root);
57 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
58 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
60 					struct extent_io_tree *dirty_pages,
61 					int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
63 				       struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_root *root);
65 
66 /*
67  * end_io_wq structs are used to do processing in task context when an IO is
68  * complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct end_io_wq {
72 	struct bio *bio;
73 	bio_end_io_t *end_io;
74 	void *private;
75 	struct btrfs_fs_info *info;
76 	int error;
77 	int metadata;
78 	struct list_head list;
79 	struct btrfs_work work;
80 };
81 
82 /*
83  * async submit bios are used to offload expensive checksumming
84  * onto the worker threads.  They checksum file and metadata bios
85  * just before they are sent down the IO stack.
86  */
87 struct async_submit_bio {
88 	struct inode *inode;
89 	struct bio *bio;
90 	struct list_head list;
91 	extent_submit_bio_hook_t *submit_bio_start;
92 	extent_submit_bio_hook_t *submit_bio_done;
93 	int rw;
94 	int mirror_num;
95 	unsigned long bio_flags;
96 	/*
97 	 * bio_offset is optional, can be used if the pages in the bio
98 	 * can't tell us where in the file the bio should go
99 	 */
100 	u64 bio_offset;
101 	struct btrfs_work work;
102 };
103 
104 /*
105  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
106  * eb, the lockdep key is determined by the btrfs_root it belongs to and
107  * the level the eb occupies in the tree.
108  *
109  * Different roots are used for different purposes and may nest inside each
110  * other and they require separate keysets.  As lockdep keys should be
111  * static, assign keysets according to the purpose of the root as indicated
112  * by btrfs_root->objectid.  This ensures that all special purpose roots
113  * have separate keysets.
114  *
115  * Lock-nesting across peer nodes is always done with the immediate parent
116  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
117  * subclass to avoid triggering lockdep warning in such cases.
118  *
119  * The key is set by the readpage_end_io_hook after the buffer has passed
120  * csum validation but before the pages are unlocked.  It is also set by
121  * btrfs_init_new_buffer on freshly allocated blocks.
122  *
123  * We also add a check to make sure the highest level of the tree is the
124  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
125  * needs update as well.
126  */
127 #ifdef CONFIG_DEBUG_LOCK_ALLOC
128 # if BTRFS_MAX_LEVEL != 8
129 #  error
130 # endif
131 
132 static struct btrfs_lockdep_keyset {
133 	u64			id;		/* root objectid */
134 	const char		*name_stem;	/* lock name stem */
135 	char			names[BTRFS_MAX_LEVEL + 1][20];
136 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
137 } btrfs_lockdep_keysets[] = {
138 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
139 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
140 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
141 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
142 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
143 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
144 	{ .id = BTRFS_ORPHAN_OBJECTID,		.name_stem = "orphan"	},
145 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
146 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
147 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
148 	{ .id = 0,				.name_stem = "tree"	},
149 };
150 
151 void __init btrfs_init_lockdep(void)
152 {
153 	int i, j;
154 
155 	/* initialize lockdep class names */
156 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
157 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
158 
159 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
160 			snprintf(ks->names[j], sizeof(ks->names[j]),
161 				 "btrfs-%s-%02d", ks->name_stem, j);
162 	}
163 }
164 
165 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
166 				    int level)
167 {
168 	struct btrfs_lockdep_keyset *ks;
169 
170 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
171 
172 	/* find the matching keyset, id 0 is the default entry */
173 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
174 		if (ks->id == objectid)
175 			break;
176 
177 	lockdep_set_class_and_name(&eb->lock,
178 				   &ks->keys[level], ks->names[level]);
179 }
180 
181 #endif
182 
183 /*
184  * extents on the btree inode are pretty simple, there's one extent
185  * that covers the entire device
186  */
187 static struct extent_map *btree_get_extent(struct inode *inode,
188 		struct page *page, size_t pg_offset, u64 start, u64 len,
189 		int create)
190 {
191 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
192 	struct extent_map *em;
193 	int ret;
194 
195 	read_lock(&em_tree->lock);
196 	em = lookup_extent_mapping(em_tree, start, len);
197 	if (em) {
198 		em->bdev =
199 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
200 		read_unlock(&em_tree->lock);
201 		goto out;
202 	}
203 	read_unlock(&em_tree->lock);
204 
205 	em = alloc_extent_map();
206 	if (!em) {
207 		em = ERR_PTR(-ENOMEM);
208 		goto out;
209 	}
210 	em->start = 0;
211 	em->len = (u64)-1;
212 	em->block_len = (u64)-1;
213 	em->block_start = 0;
214 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
215 
216 	write_lock(&em_tree->lock);
217 	ret = add_extent_mapping(em_tree, em);
218 	if (ret == -EEXIST) {
219 		u64 failed_start = em->start;
220 		u64 failed_len = em->len;
221 
222 		free_extent_map(em);
223 		em = lookup_extent_mapping(em_tree, start, len);
224 		if (em) {
225 			ret = 0;
226 		} else {
227 			em = lookup_extent_mapping(em_tree, failed_start,
228 						   failed_len);
229 			ret = -EIO;
230 		}
231 	} else if (ret) {
232 		free_extent_map(em);
233 		em = NULL;
234 	}
235 	write_unlock(&em_tree->lock);
236 
237 	if (ret)
238 		em = ERR_PTR(ret);
239 out:
240 	return em;
241 }
242 
243 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
244 {
245 	return crc32c(seed, data, len);
246 }
247 
248 void btrfs_csum_final(u32 crc, char *result)
249 {
250 	put_unaligned_le32(~crc, result);
251 }
252 
253 /*
254  * compute the csum for a btree block, and either verify it or write it
255  * into the csum field of the block.
256  */
257 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258 			   int verify)
259 {
260 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
261 	char *result = NULL;
262 	unsigned long len;
263 	unsigned long cur_len;
264 	unsigned long offset = BTRFS_CSUM_SIZE;
265 	char *kaddr;
266 	unsigned long map_start;
267 	unsigned long map_len;
268 	int err;
269 	u32 crc = ~(u32)0;
270 	unsigned long inline_result;
271 
272 	len = buf->len - offset;
273 	while (len > 0) {
274 		err = map_private_extent_buffer(buf, offset, 32,
275 					&kaddr, &map_start, &map_len);
276 		if (err)
277 			return 1;
278 		cur_len = min(len, map_len - (offset - map_start));
279 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
280 				      crc, cur_len);
281 		len -= cur_len;
282 		offset += cur_len;
283 	}
284 	if (csum_size > sizeof(inline_result)) {
285 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286 		if (!result)
287 			return 1;
288 	} else {
289 		result = (char *)&inline_result;
290 	}
291 
292 	btrfs_csum_final(crc, result);
293 
294 	if (verify) {
295 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
296 			u32 val;
297 			u32 found = 0;
298 			memcpy(&found, result, csum_size);
299 
300 			read_extent_buffer(buf, &val, 0, csum_size);
301 			printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
302 				       "failed on %llu wanted %X found %X "
303 				       "level %d\n",
304 				       root->fs_info->sb->s_id,
305 				       (unsigned long long)buf->start, val, found,
306 				       btrfs_header_level(buf));
307 			if (result != (char *)&inline_result)
308 				kfree(result);
309 			return 1;
310 		}
311 	} else {
312 		write_extent_buffer(buf, result, 0, csum_size);
313 	}
314 	if (result != (char *)&inline_result)
315 		kfree(result);
316 	return 0;
317 }
318 
319 /*
320  * we can't consider a given block up to date unless the transid of the
321  * block matches the transid in the parent node's pointer.  This is how we
322  * detect blocks that either didn't get written at all or got written
323  * in the wrong place.
324  */
325 static int verify_parent_transid(struct extent_io_tree *io_tree,
326 				 struct extent_buffer *eb, u64 parent_transid)
327 {
328 	struct extent_state *cached_state = NULL;
329 	int ret;
330 
331 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332 		return 0;
333 
334 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335 			 0, &cached_state, GFP_NOFS);
336 	if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
337 	    btrfs_header_generation(eb) == parent_transid) {
338 		ret = 0;
339 		goto out;
340 	}
341 	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
342 		       "found %llu\n",
343 		       (unsigned long long)eb->start,
344 		       (unsigned long long)parent_transid,
345 		       (unsigned long long)btrfs_header_generation(eb));
346 	ret = 1;
347 	clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
348 out:
349 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350 			     &cached_state, GFP_NOFS);
351 	return ret;
352 }
353 
354 /*
355  * helper to read a given tree block, doing retries as required when
356  * the checksums don't match and we have alternate mirrors to try.
357  */
358 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359 					  struct extent_buffer *eb,
360 					  u64 start, u64 parent_transid)
361 {
362 	struct extent_io_tree *io_tree;
363 	int ret;
364 	int num_copies = 0;
365 	int mirror_num = 0;
366 
367 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
368 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
369 	while (1) {
370 		ret = read_extent_buffer_pages(io_tree, eb, start,
371 					       WAIT_COMPLETE,
372 					       btree_get_extent, mirror_num);
373 		if (!ret &&
374 		    !verify_parent_transid(io_tree, eb, parent_transid))
375 			return ret;
376 
377 		/*
378 		 * This buffer's crc is fine, but its contents are corrupted, so
379 		 * there is no reason to read the other copies, they won't be
380 		 * any less wrong.
381 		 */
382 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
383 			return ret;
384 
385 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
386 					      eb->start, eb->len);
387 		if (num_copies == 1)
388 			return ret;
389 
390 		mirror_num++;
391 		if (mirror_num > num_copies)
392 			return ret;
393 	}
394 	return -EIO;
395 }
396 
397 /*
398  * checksum a dirty tree block before IO.  This has extra checks to make sure
399  * we only fill in the checksum field in the first page of a multi-page block
400  */
401 
402 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
403 {
404 	struct extent_io_tree *tree;
405 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
406 	u64 found_start;
407 	unsigned long len;
408 	struct extent_buffer *eb;
409 	int ret;
410 
411 	tree = &BTRFS_I(page->mapping->host)->io_tree;
412 
413 	if (page->private == EXTENT_PAGE_PRIVATE) {
414 		WARN_ON(1);
415 		goto out;
416 	}
417 	if (!page->private) {
418 		WARN_ON(1);
419 		goto out;
420 	}
421 	len = page->private >> 2;
422 	WARN_ON(len == 0);
423 
424 	eb = alloc_extent_buffer(tree, start, len, page);
425 	if (eb == NULL) {
426 		WARN_ON(1);
427 		goto out;
428 	}
429 	ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
430 					     btrfs_header_generation(eb));
431 	BUG_ON(ret);
432 	WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
433 
434 	found_start = btrfs_header_bytenr(eb);
435 	if (found_start != start) {
436 		WARN_ON(1);
437 		goto err;
438 	}
439 	if (eb->first_page != page) {
440 		WARN_ON(1);
441 		goto err;
442 	}
443 	if (!PageUptodate(page)) {
444 		WARN_ON(1);
445 		goto err;
446 	}
447 	csum_tree_block(root, eb, 0);
448 err:
449 	free_extent_buffer(eb);
450 out:
451 	return 0;
452 }
453 
454 static int check_tree_block_fsid(struct btrfs_root *root,
455 				 struct extent_buffer *eb)
456 {
457 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
458 	u8 fsid[BTRFS_UUID_SIZE];
459 	int ret = 1;
460 
461 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
462 			   BTRFS_FSID_SIZE);
463 	while (fs_devices) {
464 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
465 			ret = 0;
466 			break;
467 		}
468 		fs_devices = fs_devices->seed;
469 	}
470 	return ret;
471 }
472 
473 #define CORRUPT(reason, eb, root, slot)				\
474 	printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu,"	\
475 	       "root=%llu, slot=%d\n", reason,			\
476 	       (unsigned long long)btrfs_header_bytenr(eb),	\
477 	       (unsigned long long)root->objectid, slot)
478 
479 static noinline int check_leaf(struct btrfs_root *root,
480 			       struct extent_buffer *leaf)
481 {
482 	struct btrfs_key key;
483 	struct btrfs_key leaf_key;
484 	u32 nritems = btrfs_header_nritems(leaf);
485 	int slot;
486 
487 	if (nritems == 0)
488 		return 0;
489 
490 	/* Check the 0 item */
491 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
492 	    BTRFS_LEAF_DATA_SIZE(root)) {
493 		CORRUPT("invalid item offset size pair", leaf, root, 0);
494 		return -EIO;
495 	}
496 
497 	/*
498 	 * Check to make sure each items keys are in the correct order and their
499 	 * offsets make sense.  We only have to loop through nritems-1 because
500 	 * we check the current slot against the next slot, which verifies the
501 	 * next slot's offset+size makes sense and that the current's slot
502 	 * offset is correct.
503 	 */
504 	for (slot = 0; slot < nritems - 1; slot++) {
505 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
506 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
507 
508 		/* Make sure the keys are in the right order */
509 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
510 			CORRUPT("bad key order", leaf, root, slot);
511 			return -EIO;
512 		}
513 
514 		/*
515 		 * Make sure the offset and ends are right, remember that the
516 		 * item data starts at the end of the leaf and grows towards the
517 		 * front.
518 		 */
519 		if (btrfs_item_offset_nr(leaf, slot) !=
520 			btrfs_item_end_nr(leaf, slot + 1)) {
521 			CORRUPT("slot offset bad", leaf, root, slot);
522 			return -EIO;
523 		}
524 
525 		/*
526 		 * Check to make sure that we don't point outside of the leaf,
527 		 * just incase all the items are consistent to eachother, but
528 		 * all point outside of the leaf.
529 		 */
530 		if (btrfs_item_end_nr(leaf, slot) >
531 		    BTRFS_LEAF_DATA_SIZE(root)) {
532 			CORRUPT("slot end outside of leaf", leaf, root, slot);
533 			return -EIO;
534 		}
535 	}
536 
537 	return 0;
538 }
539 
540 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
541 			       struct extent_state *state)
542 {
543 	struct extent_io_tree *tree;
544 	u64 found_start;
545 	int found_level;
546 	unsigned long len;
547 	struct extent_buffer *eb;
548 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
549 	int ret = 0;
550 
551 	tree = &BTRFS_I(page->mapping->host)->io_tree;
552 	if (page->private == EXTENT_PAGE_PRIVATE)
553 		goto out;
554 	if (!page->private)
555 		goto out;
556 
557 	len = page->private >> 2;
558 	WARN_ON(len == 0);
559 
560 	eb = alloc_extent_buffer(tree, start, len, page);
561 	if (eb == NULL) {
562 		ret = -EIO;
563 		goto out;
564 	}
565 
566 	found_start = btrfs_header_bytenr(eb);
567 	if (found_start != start) {
568 		printk_ratelimited(KERN_INFO "btrfs bad tree block start "
569 			       "%llu %llu\n",
570 			       (unsigned long long)found_start,
571 			       (unsigned long long)eb->start);
572 		ret = -EIO;
573 		goto err;
574 	}
575 	if (eb->first_page != page) {
576 		printk(KERN_INFO "btrfs bad first page %lu %lu\n",
577 		       eb->first_page->index, page->index);
578 		WARN_ON(1);
579 		ret = -EIO;
580 		goto err;
581 	}
582 	if (check_tree_block_fsid(root, eb)) {
583 		printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
584 			       (unsigned long long)eb->start);
585 		ret = -EIO;
586 		goto err;
587 	}
588 	found_level = btrfs_header_level(eb);
589 
590 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
591 				       eb, found_level);
592 
593 	ret = csum_tree_block(root, eb, 1);
594 	if (ret) {
595 		ret = -EIO;
596 		goto err;
597 	}
598 
599 	/*
600 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
601 	 * that we don't try and read the other copies of this block, just
602 	 * return -EIO.
603 	 */
604 	if (found_level == 0 && check_leaf(root, eb)) {
605 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
606 		ret = -EIO;
607 	}
608 
609 	end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
610 	end = eb->start + end - 1;
611 err:
612 	if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
613 		clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
614 		btree_readahead_hook(root, eb, eb->start, ret);
615 	}
616 
617 	free_extent_buffer(eb);
618 out:
619 	return ret;
620 }
621 
622 static int btree_io_failed_hook(struct bio *failed_bio,
623 			 struct page *page, u64 start, u64 end,
624 			 int mirror_num, struct extent_state *state)
625 {
626 	struct extent_io_tree *tree;
627 	unsigned long len;
628 	struct extent_buffer *eb;
629 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
630 
631 	tree = &BTRFS_I(page->mapping->host)->io_tree;
632 	if (page->private == EXTENT_PAGE_PRIVATE)
633 		goto out;
634 	if (!page->private)
635 		goto out;
636 
637 	len = page->private >> 2;
638 	WARN_ON(len == 0);
639 
640 	eb = alloc_extent_buffer(tree, start, len, page);
641 	if (eb == NULL)
642 		goto out;
643 
644 	if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
645 		clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
646 		btree_readahead_hook(root, eb, eb->start, -EIO);
647 	}
648 	free_extent_buffer(eb);
649 
650 out:
651 	return -EIO;	/* we fixed nothing */
652 }
653 
654 static void end_workqueue_bio(struct bio *bio, int err)
655 {
656 	struct end_io_wq *end_io_wq = bio->bi_private;
657 	struct btrfs_fs_info *fs_info;
658 
659 	fs_info = end_io_wq->info;
660 	end_io_wq->error = err;
661 	end_io_wq->work.func = end_workqueue_fn;
662 	end_io_wq->work.flags = 0;
663 
664 	if (bio->bi_rw & REQ_WRITE) {
665 		if (end_io_wq->metadata == 1)
666 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
667 					   &end_io_wq->work);
668 		else if (end_io_wq->metadata == 2)
669 			btrfs_queue_worker(&fs_info->endio_freespace_worker,
670 					   &end_io_wq->work);
671 		else
672 			btrfs_queue_worker(&fs_info->endio_write_workers,
673 					   &end_io_wq->work);
674 	} else {
675 		if (end_io_wq->metadata)
676 			btrfs_queue_worker(&fs_info->endio_meta_workers,
677 					   &end_io_wq->work);
678 		else
679 			btrfs_queue_worker(&fs_info->endio_workers,
680 					   &end_io_wq->work);
681 	}
682 }
683 
684 /*
685  * For the metadata arg you want
686  *
687  * 0 - if data
688  * 1 - if normal metadta
689  * 2 - if writing to the free space cache area
690  */
691 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
692 			int metadata)
693 {
694 	struct end_io_wq *end_io_wq;
695 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
696 	if (!end_io_wq)
697 		return -ENOMEM;
698 
699 	end_io_wq->private = bio->bi_private;
700 	end_io_wq->end_io = bio->bi_end_io;
701 	end_io_wq->info = info;
702 	end_io_wq->error = 0;
703 	end_io_wq->bio = bio;
704 	end_io_wq->metadata = metadata;
705 
706 	bio->bi_private = end_io_wq;
707 	bio->bi_end_io = end_workqueue_bio;
708 	return 0;
709 }
710 
711 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
712 {
713 	unsigned long limit = min_t(unsigned long,
714 				    info->workers.max_workers,
715 				    info->fs_devices->open_devices);
716 	return 256 * limit;
717 }
718 
719 static void run_one_async_start(struct btrfs_work *work)
720 {
721 	struct async_submit_bio *async;
722 
723 	async = container_of(work, struct  async_submit_bio, work);
724 	async->submit_bio_start(async->inode, async->rw, async->bio,
725 			       async->mirror_num, async->bio_flags,
726 			       async->bio_offset);
727 }
728 
729 static void run_one_async_done(struct btrfs_work *work)
730 {
731 	struct btrfs_fs_info *fs_info;
732 	struct async_submit_bio *async;
733 	int limit;
734 
735 	async = container_of(work, struct  async_submit_bio, work);
736 	fs_info = BTRFS_I(async->inode)->root->fs_info;
737 
738 	limit = btrfs_async_submit_limit(fs_info);
739 	limit = limit * 2 / 3;
740 
741 	atomic_dec(&fs_info->nr_async_submits);
742 
743 	if (atomic_read(&fs_info->nr_async_submits) < limit &&
744 	    waitqueue_active(&fs_info->async_submit_wait))
745 		wake_up(&fs_info->async_submit_wait);
746 
747 	async->submit_bio_done(async->inode, async->rw, async->bio,
748 			       async->mirror_num, async->bio_flags,
749 			       async->bio_offset);
750 }
751 
752 static void run_one_async_free(struct btrfs_work *work)
753 {
754 	struct async_submit_bio *async;
755 
756 	async = container_of(work, struct  async_submit_bio, work);
757 	kfree(async);
758 }
759 
760 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
761 			int rw, struct bio *bio, int mirror_num,
762 			unsigned long bio_flags,
763 			u64 bio_offset,
764 			extent_submit_bio_hook_t *submit_bio_start,
765 			extent_submit_bio_hook_t *submit_bio_done)
766 {
767 	struct async_submit_bio *async;
768 
769 	async = kmalloc(sizeof(*async), GFP_NOFS);
770 	if (!async)
771 		return -ENOMEM;
772 
773 	async->inode = inode;
774 	async->rw = rw;
775 	async->bio = bio;
776 	async->mirror_num = mirror_num;
777 	async->submit_bio_start = submit_bio_start;
778 	async->submit_bio_done = submit_bio_done;
779 
780 	async->work.func = run_one_async_start;
781 	async->work.ordered_func = run_one_async_done;
782 	async->work.ordered_free = run_one_async_free;
783 
784 	async->work.flags = 0;
785 	async->bio_flags = bio_flags;
786 	async->bio_offset = bio_offset;
787 
788 	atomic_inc(&fs_info->nr_async_submits);
789 
790 	if (rw & REQ_SYNC)
791 		btrfs_set_work_high_prio(&async->work);
792 
793 	btrfs_queue_worker(&fs_info->workers, &async->work);
794 
795 	while (atomic_read(&fs_info->async_submit_draining) &&
796 	      atomic_read(&fs_info->nr_async_submits)) {
797 		wait_event(fs_info->async_submit_wait,
798 			   (atomic_read(&fs_info->nr_async_submits) == 0));
799 	}
800 
801 	return 0;
802 }
803 
804 static int btree_csum_one_bio(struct bio *bio)
805 {
806 	struct bio_vec *bvec = bio->bi_io_vec;
807 	int bio_index = 0;
808 	struct btrfs_root *root;
809 
810 	WARN_ON(bio->bi_vcnt <= 0);
811 	while (bio_index < bio->bi_vcnt) {
812 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
813 		csum_dirty_buffer(root, bvec->bv_page);
814 		bio_index++;
815 		bvec++;
816 	}
817 	return 0;
818 }
819 
820 static int __btree_submit_bio_start(struct inode *inode, int rw,
821 				    struct bio *bio, int mirror_num,
822 				    unsigned long bio_flags,
823 				    u64 bio_offset)
824 {
825 	/*
826 	 * when we're called for a write, we're already in the async
827 	 * submission context.  Just jump into btrfs_map_bio
828 	 */
829 	btree_csum_one_bio(bio);
830 	return 0;
831 }
832 
833 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
834 				 int mirror_num, unsigned long bio_flags,
835 				 u64 bio_offset)
836 {
837 	/*
838 	 * when we're called for a write, we're already in the async
839 	 * submission context.  Just jump into btrfs_map_bio
840 	 */
841 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
842 }
843 
844 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
845 				 int mirror_num, unsigned long bio_flags,
846 				 u64 bio_offset)
847 {
848 	int ret;
849 
850 	ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
851 					  bio, 1);
852 	BUG_ON(ret);
853 
854 	if (!(rw & REQ_WRITE)) {
855 		/*
856 		 * called for a read, do the setup so that checksum validation
857 		 * can happen in the async kernel threads
858 		 */
859 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
860 				     mirror_num, 0);
861 	}
862 
863 	/*
864 	 * kthread helpers are used to submit writes so that checksumming
865 	 * can happen in parallel across all CPUs
866 	 */
867 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
868 				   inode, rw, bio, mirror_num, 0,
869 				   bio_offset,
870 				   __btree_submit_bio_start,
871 				   __btree_submit_bio_done);
872 }
873 
874 #ifdef CONFIG_MIGRATION
875 static int btree_migratepage(struct address_space *mapping,
876 			struct page *newpage, struct page *page,
877 			enum migrate_mode mode)
878 {
879 	/*
880 	 * we can't safely write a btree page from here,
881 	 * we haven't done the locking hook
882 	 */
883 	if (PageDirty(page))
884 		return -EAGAIN;
885 	/*
886 	 * Buffers may be managed in a filesystem specific way.
887 	 * We must have no buffers or drop them.
888 	 */
889 	if (page_has_private(page) &&
890 	    !try_to_release_page(page, GFP_KERNEL))
891 		return -EAGAIN;
892 	return migrate_page(mapping, newpage, page, mode);
893 }
894 #endif
895 
896 static int btree_writepage(struct page *page, struct writeback_control *wbc)
897 {
898 	struct extent_io_tree *tree;
899 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
900 	struct extent_buffer *eb;
901 	int was_dirty;
902 
903 	tree = &BTRFS_I(page->mapping->host)->io_tree;
904 	if (!(current->flags & PF_MEMALLOC)) {
905 		return extent_write_full_page(tree, page,
906 					      btree_get_extent, wbc);
907 	}
908 
909 	redirty_page_for_writepage(wbc, page);
910 	eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
911 	WARN_ON(!eb);
912 
913 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
914 	if (!was_dirty) {
915 		spin_lock(&root->fs_info->delalloc_lock);
916 		root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
917 		spin_unlock(&root->fs_info->delalloc_lock);
918 	}
919 	free_extent_buffer(eb);
920 
921 	unlock_page(page);
922 	return 0;
923 }
924 
925 static int btree_writepages(struct address_space *mapping,
926 			    struct writeback_control *wbc)
927 {
928 	struct extent_io_tree *tree;
929 	tree = &BTRFS_I(mapping->host)->io_tree;
930 	if (wbc->sync_mode == WB_SYNC_NONE) {
931 		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
932 		u64 num_dirty;
933 		unsigned long thresh = 32 * 1024 * 1024;
934 
935 		if (wbc->for_kupdate)
936 			return 0;
937 
938 		/* this is a bit racy, but that's ok */
939 		num_dirty = root->fs_info->dirty_metadata_bytes;
940 		if (num_dirty < thresh)
941 			return 0;
942 	}
943 	return extent_writepages(tree, mapping, btree_get_extent, wbc);
944 }
945 
946 static int btree_readpage(struct file *file, struct page *page)
947 {
948 	struct extent_io_tree *tree;
949 	tree = &BTRFS_I(page->mapping->host)->io_tree;
950 	return extent_read_full_page(tree, page, btree_get_extent, 0);
951 }
952 
953 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
954 {
955 	struct extent_io_tree *tree;
956 	struct extent_map_tree *map;
957 	int ret;
958 
959 	if (PageWriteback(page) || PageDirty(page))
960 		return 0;
961 
962 	tree = &BTRFS_I(page->mapping->host)->io_tree;
963 	map = &BTRFS_I(page->mapping->host)->extent_tree;
964 
965 	/*
966 	 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
967 	 * slab allocation from alloc_extent_state down the callchain where
968 	 * it'd hit a BUG_ON as those flags are not allowed.
969 	 */
970 	gfp_flags &= ~GFP_SLAB_BUG_MASK;
971 
972 	ret = try_release_extent_state(map, tree, page, gfp_flags);
973 	if (!ret)
974 		return 0;
975 
976 	ret = try_release_extent_buffer(tree, page);
977 	if (ret == 1) {
978 		ClearPagePrivate(page);
979 		set_page_private(page, 0);
980 		page_cache_release(page);
981 	}
982 
983 	return ret;
984 }
985 
986 static void btree_invalidatepage(struct page *page, unsigned long offset)
987 {
988 	struct extent_io_tree *tree;
989 	tree = &BTRFS_I(page->mapping->host)->io_tree;
990 	extent_invalidatepage(tree, page, offset);
991 	btree_releasepage(page, GFP_NOFS);
992 	if (PagePrivate(page)) {
993 		printk(KERN_WARNING "btrfs warning page private not zero "
994 		       "on page %llu\n", (unsigned long long)page_offset(page));
995 		ClearPagePrivate(page);
996 		set_page_private(page, 0);
997 		page_cache_release(page);
998 	}
999 }
1000 
1001 static const struct address_space_operations btree_aops = {
1002 	.readpage	= btree_readpage,
1003 	.writepage	= btree_writepage,
1004 	.writepages	= btree_writepages,
1005 	.releasepage	= btree_releasepage,
1006 	.invalidatepage = btree_invalidatepage,
1007 #ifdef CONFIG_MIGRATION
1008 	.migratepage	= btree_migratepage,
1009 #endif
1010 };
1011 
1012 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1013 			 u64 parent_transid)
1014 {
1015 	struct extent_buffer *buf = NULL;
1016 	struct inode *btree_inode = root->fs_info->btree_inode;
1017 	int ret = 0;
1018 
1019 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1020 	if (!buf)
1021 		return 0;
1022 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1023 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1024 	free_extent_buffer(buf);
1025 	return ret;
1026 }
1027 
1028 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1029 			 int mirror_num, struct extent_buffer **eb)
1030 {
1031 	struct extent_buffer *buf = NULL;
1032 	struct inode *btree_inode = root->fs_info->btree_inode;
1033 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1034 	int ret;
1035 
1036 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1037 	if (!buf)
1038 		return 0;
1039 
1040 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1041 
1042 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1043 				       btree_get_extent, mirror_num);
1044 	if (ret) {
1045 		free_extent_buffer(buf);
1046 		return ret;
1047 	}
1048 
1049 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1050 		free_extent_buffer(buf);
1051 		return -EIO;
1052 	} else if (extent_buffer_uptodate(io_tree, buf, NULL)) {
1053 		*eb = buf;
1054 	} else {
1055 		free_extent_buffer(buf);
1056 	}
1057 	return 0;
1058 }
1059 
1060 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1061 					    u64 bytenr, u32 blocksize)
1062 {
1063 	struct inode *btree_inode = root->fs_info->btree_inode;
1064 	struct extent_buffer *eb;
1065 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1066 				bytenr, blocksize);
1067 	return eb;
1068 }
1069 
1070 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1071 						 u64 bytenr, u32 blocksize)
1072 {
1073 	struct inode *btree_inode = root->fs_info->btree_inode;
1074 	struct extent_buffer *eb;
1075 
1076 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1077 				 bytenr, blocksize, NULL);
1078 	return eb;
1079 }
1080 
1081 
1082 int btrfs_write_tree_block(struct extent_buffer *buf)
1083 {
1084 	return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
1085 					buf->start + buf->len - 1);
1086 }
1087 
1088 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1089 {
1090 	return filemap_fdatawait_range(buf->first_page->mapping,
1091 				       buf->start, buf->start + buf->len - 1);
1092 }
1093 
1094 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1095 				      u32 blocksize, u64 parent_transid)
1096 {
1097 	struct extent_buffer *buf = NULL;
1098 	int ret;
1099 
1100 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1101 	if (!buf)
1102 		return NULL;
1103 
1104 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1105 
1106 	if (ret == 0)
1107 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
1108 	return buf;
1109 
1110 }
1111 
1112 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1113 		     struct extent_buffer *buf)
1114 {
1115 	struct inode *btree_inode = root->fs_info->btree_inode;
1116 	if (btrfs_header_generation(buf) ==
1117 	    root->fs_info->running_transaction->transid) {
1118 		btrfs_assert_tree_locked(buf);
1119 
1120 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1121 			spin_lock(&root->fs_info->delalloc_lock);
1122 			if (root->fs_info->dirty_metadata_bytes >= buf->len)
1123 				root->fs_info->dirty_metadata_bytes -= buf->len;
1124 			else
1125 				WARN_ON(1);
1126 			spin_unlock(&root->fs_info->delalloc_lock);
1127 		}
1128 
1129 		/* ugh, clear_extent_buffer_dirty needs to lock the page */
1130 		btrfs_set_lock_blocking(buf);
1131 		clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
1132 					  buf);
1133 	}
1134 	return 0;
1135 }
1136 
1137 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1138 			u32 stripesize, struct btrfs_root *root,
1139 			struct btrfs_fs_info *fs_info,
1140 			u64 objectid)
1141 {
1142 	root->node = NULL;
1143 	root->commit_root = NULL;
1144 	root->sectorsize = sectorsize;
1145 	root->nodesize = nodesize;
1146 	root->leafsize = leafsize;
1147 	root->stripesize = stripesize;
1148 	root->ref_cows = 0;
1149 	root->track_dirty = 0;
1150 	root->in_radix = 0;
1151 	root->orphan_item_inserted = 0;
1152 	root->orphan_cleanup_state = 0;
1153 
1154 	root->objectid = objectid;
1155 	root->last_trans = 0;
1156 	root->highest_objectid = 0;
1157 	root->name = NULL;
1158 	root->inode_tree = RB_ROOT;
1159 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1160 	root->block_rsv = NULL;
1161 	root->orphan_block_rsv = NULL;
1162 
1163 	INIT_LIST_HEAD(&root->dirty_list);
1164 	INIT_LIST_HEAD(&root->orphan_list);
1165 	INIT_LIST_HEAD(&root->root_list);
1166 	spin_lock_init(&root->orphan_lock);
1167 	spin_lock_init(&root->inode_lock);
1168 	spin_lock_init(&root->accounting_lock);
1169 	mutex_init(&root->objectid_mutex);
1170 	mutex_init(&root->log_mutex);
1171 	init_waitqueue_head(&root->log_writer_wait);
1172 	init_waitqueue_head(&root->log_commit_wait[0]);
1173 	init_waitqueue_head(&root->log_commit_wait[1]);
1174 	atomic_set(&root->log_commit[0], 0);
1175 	atomic_set(&root->log_commit[1], 0);
1176 	atomic_set(&root->log_writers, 0);
1177 	root->log_batch = 0;
1178 	root->log_transid = 0;
1179 	root->last_log_commit = 0;
1180 	extent_io_tree_init(&root->dirty_log_pages,
1181 			     fs_info->btree_inode->i_mapping);
1182 
1183 	memset(&root->root_key, 0, sizeof(root->root_key));
1184 	memset(&root->root_item, 0, sizeof(root->root_item));
1185 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1186 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1187 	root->defrag_trans_start = fs_info->generation;
1188 	init_completion(&root->kobj_unregister);
1189 	root->defrag_running = 0;
1190 	root->root_key.objectid = objectid;
1191 	root->anon_dev = 0;
1192 	return 0;
1193 }
1194 
1195 static int find_and_setup_root(struct btrfs_root *tree_root,
1196 			       struct btrfs_fs_info *fs_info,
1197 			       u64 objectid,
1198 			       struct btrfs_root *root)
1199 {
1200 	int ret;
1201 	u32 blocksize;
1202 	u64 generation;
1203 
1204 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1205 		     tree_root->sectorsize, tree_root->stripesize,
1206 		     root, fs_info, objectid);
1207 	ret = btrfs_find_last_root(tree_root, objectid,
1208 				   &root->root_item, &root->root_key);
1209 	if (ret > 0)
1210 		return -ENOENT;
1211 	BUG_ON(ret);
1212 
1213 	generation = btrfs_root_generation(&root->root_item);
1214 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1215 	root->commit_root = NULL;
1216 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1217 				     blocksize, generation);
1218 	if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1219 		free_extent_buffer(root->node);
1220 		root->node = NULL;
1221 		return -EIO;
1222 	}
1223 	root->commit_root = btrfs_root_node(root);
1224 	return 0;
1225 }
1226 
1227 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1228 {
1229 	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1230 	if (root)
1231 		root->fs_info = fs_info;
1232 	return root;
1233 }
1234 
1235 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1236 					 struct btrfs_fs_info *fs_info)
1237 {
1238 	struct btrfs_root *root;
1239 	struct btrfs_root *tree_root = fs_info->tree_root;
1240 	struct extent_buffer *leaf;
1241 
1242 	root = btrfs_alloc_root(fs_info);
1243 	if (!root)
1244 		return ERR_PTR(-ENOMEM);
1245 
1246 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1247 		     tree_root->sectorsize, tree_root->stripesize,
1248 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1249 
1250 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1251 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1252 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1253 	/*
1254 	 * log trees do not get reference counted because they go away
1255 	 * before a real commit is actually done.  They do store pointers
1256 	 * to file data extents, and those reference counts still get
1257 	 * updated (along with back refs to the log tree).
1258 	 */
1259 	root->ref_cows = 0;
1260 
1261 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1262 				      BTRFS_TREE_LOG_OBJECTID, NULL,
1263 				      0, 0, 0, 0);
1264 	if (IS_ERR(leaf)) {
1265 		kfree(root);
1266 		return ERR_CAST(leaf);
1267 	}
1268 
1269 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1270 	btrfs_set_header_bytenr(leaf, leaf->start);
1271 	btrfs_set_header_generation(leaf, trans->transid);
1272 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1273 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1274 	root->node = leaf;
1275 
1276 	write_extent_buffer(root->node, root->fs_info->fsid,
1277 			    (unsigned long)btrfs_header_fsid(root->node),
1278 			    BTRFS_FSID_SIZE);
1279 	btrfs_mark_buffer_dirty(root->node);
1280 	btrfs_tree_unlock(root->node);
1281 	return root;
1282 }
1283 
1284 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1285 			     struct btrfs_fs_info *fs_info)
1286 {
1287 	struct btrfs_root *log_root;
1288 
1289 	log_root = alloc_log_tree(trans, fs_info);
1290 	if (IS_ERR(log_root))
1291 		return PTR_ERR(log_root);
1292 	WARN_ON(fs_info->log_root_tree);
1293 	fs_info->log_root_tree = log_root;
1294 	return 0;
1295 }
1296 
1297 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1298 		       struct btrfs_root *root)
1299 {
1300 	struct btrfs_root *log_root;
1301 	struct btrfs_inode_item *inode_item;
1302 
1303 	log_root = alloc_log_tree(trans, root->fs_info);
1304 	if (IS_ERR(log_root))
1305 		return PTR_ERR(log_root);
1306 
1307 	log_root->last_trans = trans->transid;
1308 	log_root->root_key.offset = root->root_key.objectid;
1309 
1310 	inode_item = &log_root->root_item.inode;
1311 	inode_item->generation = cpu_to_le64(1);
1312 	inode_item->size = cpu_to_le64(3);
1313 	inode_item->nlink = cpu_to_le32(1);
1314 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1315 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1316 
1317 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1318 
1319 	WARN_ON(root->log_root);
1320 	root->log_root = log_root;
1321 	root->log_transid = 0;
1322 	root->last_log_commit = 0;
1323 	return 0;
1324 }
1325 
1326 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1327 					       struct btrfs_key *location)
1328 {
1329 	struct btrfs_root *root;
1330 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1331 	struct btrfs_path *path;
1332 	struct extent_buffer *l;
1333 	u64 generation;
1334 	u32 blocksize;
1335 	int ret = 0;
1336 
1337 	root = btrfs_alloc_root(fs_info);
1338 	if (!root)
1339 		return ERR_PTR(-ENOMEM);
1340 	if (location->offset == (u64)-1) {
1341 		ret = find_and_setup_root(tree_root, fs_info,
1342 					  location->objectid, root);
1343 		if (ret) {
1344 			kfree(root);
1345 			return ERR_PTR(ret);
1346 		}
1347 		goto out;
1348 	}
1349 
1350 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1351 		     tree_root->sectorsize, tree_root->stripesize,
1352 		     root, fs_info, location->objectid);
1353 
1354 	path = btrfs_alloc_path();
1355 	if (!path) {
1356 		kfree(root);
1357 		return ERR_PTR(-ENOMEM);
1358 	}
1359 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1360 	if (ret == 0) {
1361 		l = path->nodes[0];
1362 		read_extent_buffer(l, &root->root_item,
1363 				btrfs_item_ptr_offset(l, path->slots[0]),
1364 				sizeof(root->root_item));
1365 		memcpy(&root->root_key, location, sizeof(*location));
1366 	}
1367 	btrfs_free_path(path);
1368 	if (ret) {
1369 		kfree(root);
1370 		if (ret > 0)
1371 			ret = -ENOENT;
1372 		return ERR_PTR(ret);
1373 	}
1374 
1375 	generation = btrfs_root_generation(&root->root_item);
1376 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1377 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1378 				     blocksize, generation);
1379 	root->commit_root = btrfs_root_node(root);
1380 	BUG_ON(!root->node);
1381 out:
1382 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1383 		root->ref_cows = 1;
1384 		btrfs_check_and_init_root_item(&root->root_item);
1385 	}
1386 
1387 	return root;
1388 }
1389 
1390 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1391 					      struct btrfs_key *location)
1392 {
1393 	struct btrfs_root *root;
1394 	int ret;
1395 
1396 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1397 		return fs_info->tree_root;
1398 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1399 		return fs_info->extent_root;
1400 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1401 		return fs_info->chunk_root;
1402 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1403 		return fs_info->dev_root;
1404 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1405 		return fs_info->csum_root;
1406 again:
1407 	spin_lock(&fs_info->fs_roots_radix_lock);
1408 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1409 				 (unsigned long)location->objectid);
1410 	spin_unlock(&fs_info->fs_roots_radix_lock);
1411 	if (root)
1412 		return root;
1413 
1414 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1415 	if (IS_ERR(root))
1416 		return root;
1417 
1418 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1419 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1420 					GFP_NOFS);
1421 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1422 		ret = -ENOMEM;
1423 		goto fail;
1424 	}
1425 
1426 	btrfs_init_free_ino_ctl(root);
1427 	mutex_init(&root->fs_commit_mutex);
1428 	spin_lock_init(&root->cache_lock);
1429 	init_waitqueue_head(&root->cache_wait);
1430 
1431 	ret = get_anon_bdev(&root->anon_dev);
1432 	if (ret)
1433 		goto fail;
1434 
1435 	if (btrfs_root_refs(&root->root_item) == 0) {
1436 		ret = -ENOENT;
1437 		goto fail;
1438 	}
1439 
1440 	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1441 	if (ret < 0)
1442 		goto fail;
1443 	if (ret == 0)
1444 		root->orphan_item_inserted = 1;
1445 
1446 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1447 	if (ret)
1448 		goto fail;
1449 
1450 	spin_lock(&fs_info->fs_roots_radix_lock);
1451 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1452 				(unsigned long)root->root_key.objectid,
1453 				root);
1454 	if (ret == 0)
1455 		root->in_radix = 1;
1456 
1457 	spin_unlock(&fs_info->fs_roots_radix_lock);
1458 	radix_tree_preload_end();
1459 	if (ret) {
1460 		if (ret == -EEXIST) {
1461 			free_fs_root(root);
1462 			goto again;
1463 		}
1464 		goto fail;
1465 	}
1466 
1467 	ret = btrfs_find_dead_roots(fs_info->tree_root,
1468 				    root->root_key.objectid);
1469 	WARN_ON(ret);
1470 	return root;
1471 fail:
1472 	free_fs_root(root);
1473 	return ERR_PTR(ret);
1474 }
1475 
1476 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1477 {
1478 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1479 	int ret = 0;
1480 	struct btrfs_device *device;
1481 	struct backing_dev_info *bdi;
1482 
1483 	rcu_read_lock();
1484 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1485 		if (!device->bdev)
1486 			continue;
1487 		bdi = blk_get_backing_dev_info(device->bdev);
1488 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1489 			ret = 1;
1490 			break;
1491 		}
1492 	}
1493 	rcu_read_unlock();
1494 	return ret;
1495 }
1496 
1497 /*
1498  * If this fails, caller must call bdi_destroy() to get rid of the
1499  * bdi again.
1500  */
1501 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1502 {
1503 	int err;
1504 
1505 	bdi->capabilities = BDI_CAP_MAP_COPY;
1506 	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1507 	if (err)
1508 		return err;
1509 
1510 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1511 	bdi->congested_fn	= btrfs_congested_fn;
1512 	bdi->congested_data	= info;
1513 	return 0;
1514 }
1515 
1516 static int bio_ready_for_csum(struct bio *bio)
1517 {
1518 	u64 length = 0;
1519 	u64 buf_len = 0;
1520 	u64 start = 0;
1521 	struct page *page;
1522 	struct extent_io_tree *io_tree = NULL;
1523 	struct bio_vec *bvec;
1524 	int i;
1525 	int ret;
1526 
1527 	bio_for_each_segment(bvec, bio, i) {
1528 		page = bvec->bv_page;
1529 		if (page->private == EXTENT_PAGE_PRIVATE) {
1530 			length += bvec->bv_len;
1531 			continue;
1532 		}
1533 		if (!page->private) {
1534 			length += bvec->bv_len;
1535 			continue;
1536 		}
1537 		length = bvec->bv_len;
1538 		buf_len = page->private >> 2;
1539 		start = page_offset(page) + bvec->bv_offset;
1540 		io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1541 	}
1542 	/* are we fully contained in this bio? */
1543 	if (buf_len <= length)
1544 		return 1;
1545 
1546 	ret = extent_range_uptodate(io_tree, start + length,
1547 				    start + buf_len - 1);
1548 	return ret;
1549 }
1550 
1551 /*
1552  * called by the kthread helper functions to finally call the bio end_io
1553  * functions.  This is where read checksum verification actually happens
1554  */
1555 static void end_workqueue_fn(struct btrfs_work *work)
1556 {
1557 	struct bio *bio;
1558 	struct end_io_wq *end_io_wq;
1559 	struct btrfs_fs_info *fs_info;
1560 	int error;
1561 
1562 	end_io_wq = container_of(work, struct end_io_wq, work);
1563 	bio = end_io_wq->bio;
1564 	fs_info = end_io_wq->info;
1565 
1566 	/* metadata bio reads are special because the whole tree block must
1567 	 * be checksummed at once.  This makes sure the entire block is in
1568 	 * ram and up to date before trying to verify things.  For
1569 	 * blocksize <= pagesize, it is basically a noop
1570 	 */
1571 	if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
1572 	    !bio_ready_for_csum(bio)) {
1573 		btrfs_queue_worker(&fs_info->endio_meta_workers,
1574 				   &end_io_wq->work);
1575 		return;
1576 	}
1577 	error = end_io_wq->error;
1578 	bio->bi_private = end_io_wq->private;
1579 	bio->bi_end_io = end_io_wq->end_io;
1580 	kfree(end_io_wq);
1581 	bio_endio(bio, error);
1582 }
1583 
1584 static int cleaner_kthread(void *arg)
1585 {
1586 	struct btrfs_root *root = arg;
1587 
1588 	do {
1589 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1590 
1591 		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1592 		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
1593 			btrfs_run_delayed_iputs(root);
1594 			btrfs_clean_old_snapshots(root);
1595 			mutex_unlock(&root->fs_info->cleaner_mutex);
1596 			btrfs_run_defrag_inodes(root->fs_info);
1597 		}
1598 
1599 		if (!try_to_freeze()) {
1600 			set_current_state(TASK_INTERRUPTIBLE);
1601 			if (!kthread_should_stop())
1602 				schedule();
1603 			__set_current_state(TASK_RUNNING);
1604 		}
1605 	} while (!kthread_should_stop());
1606 	return 0;
1607 }
1608 
1609 static int transaction_kthread(void *arg)
1610 {
1611 	struct btrfs_root *root = arg;
1612 	struct btrfs_trans_handle *trans;
1613 	struct btrfs_transaction *cur;
1614 	u64 transid;
1615 	unsigned long now;
1616 	unsigned long delay;
1617 	int ret;
1618 
1619 	do {
1620 		delay = HZ * 30;
1621 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1622 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1623 
1624 		spin_lock(&root->fs_info->trans_lock);
1625 		cur = root->fs_info->running_transaction;
1626 		if (!cur) {
1627 			spin_unlock(&root->fs_info->trans_lock);
1628 			goto sleep;
1629 		}
1630 
1631 		now = get_seconds();
1632 		if (!cur->blocked &&
1633 		    (now < cur->start_time || now - cur->start_time < 30)) {
1634 			spin_unlock(&root->fs_info->trans_lock);
1635 			delay = HZ * 5;
1636 			goto sleep;
1637 		}
1638 		transid = cur->transid;
1639 		spin_unlock(&root->fs_info->trans_lock);
1640 
1641 		trans = btrfs_join_transaction(root);
1642 		BUG_ON(IS_ERR(trans));
1643 		if (transid == trans->transid) {
1644 			ret = btrfs_commit_transaction(trans, root);
1645 			BUG_ON(ret);
1646 		} else {
1647 			btrfs_end_transaction(trans, root);
1648 		}
1649 sleep:
1650 		wake_up_process(root->fs_info->cleaner_kthread);
1651 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1652 
1653 		if (!try_to_freeze()) {
1654 			set_current_state(TASK_INTERRUPTIBLE);
1655 			if (!kthread_should_stop() &&
1656 			    !btrfs_transaction_blocked(root->fs_info))
1657 				schedule_timeout(delay);
1658 			__set_current_state(TASK_RUNNING);
1659 		}
1660 	} while (!kthread_should_stop());
1661 	return 0;
1662 }
1663 
1664 /*
1665  * this will find the highest generation in the array of
1666  * root backups.  The index of the highest array is returned,
1667  * or -1 if we can't find anything.
1668  *
1669  * We check to make sure the array is valid by comparing the
1670  * generation of the latest  root in the array with the generation
1671  * in the super block.  If they don't match we pitch it.
1672  */
1673 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1674 {
1675 	u64 cur;
1676 	int newest_index = -1;
1677 	struct btrfs_root_backup *root_backup;
1678 	int i;
1679 
1680 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1681 		root_backup = info->super_copy->super_roots + i;
1682 		cur = btrfs_backup_tree_root_gen(root_backup);
1683 		if (cur == newest_gen)
1684 			newest_index = i;
1685 	}
1686 
1687 	/* check to see if we actually wrapped around */
1688 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1689 		root_backup = info->super_copy->super_roots;
1690 		cur = btrfs_backup_tree_root_gen(root_backup);
1691 		if (cur == newest_gen)
1692 			newest_index = 0;
1693 	}
1694 	return newest_index;
1695 }
1696 
1697 
1698 /*
1699  * find the oldest backup so we know where to store new entries
1700  * in the backup array.  This will set the backup_root_index
1701  * field in the fs_info struct
1702  */
1703 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1704 				     u64 newest_gen)
1705 {
1706 	int newest_index = -1;
1707 
1708 	newest_index = find_newest_super_backup(info, newest_gen);
1709 	/* if there was garbage in there, just move along */
1710 	if (newest_index == -1) {
1711 		info->backup_root_index = 0;
1712 	} else {
1713 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1714 	}
1715 }
1716 
1717 /*
1718  * copy all the root pointers into the super backup array.
1719  * this will bump the backup pointer by one when it is
1720  * done
1721  */
1722 static void backup_super_roots(struct btrfs_fs_info *info)
1723 {
1724 	int next_backup;
1725 	struct btrfs_root_backup *root_backup;
1726 	int last_backup;
1727 
1728 	next_backup = info->backup_root_index;
1729 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1730 		BTRFS_NUM_BACKUP_ROOTS;
1731 
1732 	/*
1733 	 * just overwrite the last backup if we're at the same generation
1734 	 * this happens only at umount
1735 	 */
1736 	root_backup = info->super_for_commit->super_roots + last_backup;
1737 	if (btrfs_backup_tree_root_gen(root_backup) ==
1738 	    btrfs_header_generation(info->tree_root->node))
1739 		next_backup = last_backup;
1740 
1741 	root_backup = info->super_for_commit->super_roots + next_backup;
1742 
1743 	/*
1744 	 * make sure all of our padding and empty slots get zero filled
1745 	 * regardless of which ones we use today
1746 	 */
1747 	memset(root_backup, 0, sizeof(*root_backup));
1748 
1749 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1750 
1751 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1752 	btrfs_set_backup_tree_root_gen(root_backup,
1753 			       btrfs_header_generation(info->tree_root->node));
1754 
1755 	btrfs_set_backup_tree_root_level(root_backup,
1756 			       btrfs_header_level(info->tree_root->node));
1757 
1758 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1759 	btrfs_set_backup_chunk_root_gen(root_backup,
1760 			       btrfs_header_generation(info->chunk_root->node));
1761 	btrfs_set_backup_chunk_root_level(root_backup,
1762 			       btrfs_header_level(info->chunk_root->node));
1763 
1764 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1765 	btrfs_set_backup_extent_root_gen(root_backup,
1766 			       btrfs_header_generation(info->extent_root->node));
1767 	btrfs_set_backup_extent_root_level(root_backup,
1768 			       btrfs_header_level(info->extent_root->node));
1769 
1770 	/*
1771 	 * we might commit during log recovery, which happens before we set
1772 	 * the fs_root.  Make sure it is valid before we fill it in.
1773 	 */
1774 	if (info->fs_root && info->fs_root->node) {
1775 		btrfs_set_backup_fs_root(root_backup,
1776 					 info->fs_root->node->start);
1777 		btrfs_set_backup_fs_root_gen(root_backup,
1778 			       btrfs_header_generation(info->fs_root->node));
1779 		btrfs_set_backup_fs_root_level(root_backup,
1780 			       btrfs_header_level(info->fs_root->node));
1781 	}
1782 
1783 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1784 	btrfs_set_backup_dev_root_gen(root_backup,
1785 			       btrfs_header_generation(info->dev_root->node));
1786 	btrfs_set_backup_dev_root_level(root_backup,
1787 				       btrfs_header_level(info->dev_root->node));
1788 
1789 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1790 	btrfs_set_backup_csum_root_gen(root_backup,
1791 			       btrfs_header_generation(info->csum_root->node));
1792 	btrfs_set_backup_csum_root_level(root_backup,
1793 			       btrfs_header_level(info->csum_root->node));
1794 
1795 	btrfs_set_backup_total_bytes(root_backup,
1796 			     btrfs_super_total_bytes(info->super_copy));
1797 	btrfs_set_backup_bytes_used(root_backup,
1798 			     btrfs_super_bytes_used(info->super_copy));
1799 	btrfs_set_backup_num_devices(root_backup,
1800 			     btrfs_super_num_devices(info->super_copy));
1801 
1802 	/*
1803 	 * if we don't copy this out to the super_copy, it won't get remembered
1804 	 * for the next commit
1805 	 */
1806 	memcpy(&info->super_copy->super_roots,
1807 	       &info->super_for_commit->super_roots,
1808 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1809 }
1810 
1811 /*
1812  * this copies info out of the root backup array and back into
1813  * the in-memory super block.  It is meant to help iterate through
1814  * the array, so you send it the number of backups you've already
1815  * tried and the last backup index you used.
1816  *
1817  * this returns -1 when it has tried all the backups
1818  */
1819 static noinline int next_root_backup(struct btrfs_fs_info *info,
1820 				     struct btrfs_super_block *super,
1821 				     int *num_backups_tried, int *backup_index)
1822 {
1823 	struct btrfs_root_backup *root_backup;
1824 	int newest = *backup_index;
1825 
1826 	if (*num_backups_tried == 0) {
1827 		u64 gen = btrfs_super_generation(super);
1828 
1829 		newest = find_newest_super_backup(info, gen);
1830 		if (newest == -1)
1831 			return -1;
1832 
1833 		*backup_index = newest;
1834 		*num_backups_tried = 1;
1835 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1836 		/* we've tried all the backups, all done */
1837 		return -1;
1838 	} else {
1839 		/* jump to the next oldest backup */
1840 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1841 			BTRFS_NUM_BACKUP_ROOTS;
1842 		*backup_index = newest;
1843 		*num_backups_tried += 1;
1844 	}
1845 	root_backup = super->super_roots + newest;
1846 
1847 	btrfs_set_super_generation(super,
1848 				   btrfs_backup_tree_root_gen(root_backup));
1849 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1850 	btrfs_set_super_root_level(super,
1851 				   btrfs_backup_tree_root_level(root_backup));
1852 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1853 
1854 	/*
1855 	 * fixme: the total bytes and num_devices need to match or we should
1856 	 * need a fsck
1857 	 */
1858 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1859 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1860 	return 0;
1861 }
1862 
1863 /* helper to cleanup tree roots */
1864 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1865 {
1866 	free_extent_buffer(info->tree_root->node);
1867 	free_extent_buffer(info->tree_root->commit_root);
1868 	free_extent_buffer(info->dev_root->node);
1869 	free_extent_buffer(info->dev_root->commit_root);
1870 	free_extent_buffer(info->extent_root->node);
1871 	free_extent_buffer(info->extent_root->commit_root);
1872 	free_extent_buffer(info->csum_root->node);
1873 	free_extent_buffer(info->csum_root->commit_root);
1874 
1875 	info->tree_root->node = NULL;
1876 	info->tree_root->commit_root = NULL;
1877 	info->dev_root->node = NULL;
1878 	info->dev_root->commit_root = NULL;
1879 	info->extent_root->node = NULL;
1880 	info->extent_root->commit_root = NULL;
1881 	info->csum_root->node = NULL;
1882 	info->csum_root->commit_root = NULL;
1883 
1884 	if (chunk_root) {
1885 		free_extent_buffer(info->chunk_root->node);
1886 		free_extent_buffer(info->chunk_root->commit_root);
1887 		info->chunk_root->node = NULL;
1888 		info->chunk_root->commit_root = NULL;
1889 	}
1890 }
1891 
1892 
1893 int open_ctree(struct super_block *sb,
1894 	       struct btrfs_fs_devices *fs_devices,
1895 	       char *options)
1896 {
1897 	u32 sectorsize;
1898 	u32 nodesize;
1899 	u32 leafsize;
1900 	u32 blocksize;
1901 	u32 stripesize;
1902 	u64 generation;
1903 	u64 features;
1904 	struct btrfs_key location;
1905 	struct buffer_head *bh;
1906 	struct btrfs_super_block *disk_super;
1907 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1908 	struct btrfs_root *tree_root;
1909 	struct btrfs_root *extent_root;
1910 	struct btrfs_root *csum_root;
1911 	struct btrfs_root *chunk_root;
1912 	struct btrfs_root *dev_root;
1913 	struct btrfs_root *log_tree_root;
1914 	int ret;
1915 	int err = -EINVAL;
1916 	int num_backups_tried = 0;
1917 	int backup_index = 0;
1918 
1919 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1920 	extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1921 	csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1922 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1923 	dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1924 
1925 	if (!tree_root || !extent_root || !csum_root ||
1926 	    !chunk_root || !dev_root) {
1927 		err = -ENOMEM;
1928 		goto fail;
1929 	}
1930 
1931 	ret = init_srcu_struct(&fs_info->subvol_srcu);
1932 	if (ret) {
1933 		err = ret;
1934 		goto fail;
1935 	}
1936 
1937 	ret = setup_bdi(fs_info, &fs_info->bdi);
1938 	if (ret) {
1939 		err = ret;
1940 		goto fail_srcu;
1941 	}
1942 
1943 	fs_info->btree_inode = new_inode(sb);
1944 	if (!fs_info->btree_inode) {
1945 		err = -ENOMEM;
1946 		goto fail_bdi;
1947 	}
1948 
1949 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1950 
1951 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1952 	INIT_LIST_HEAD(&fs_info->trans_list);
1953 	INIT_LIST_HEAD(&fs_info->dead_roots);
1954 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
1955 	INIT_LIST_HEAD(&fs_info->hashers);
1956 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1957 	INIT_LIST_HEAD(&fs_info->ordered_operations);
1958 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
1959 	spin_lock_init(&fs_info->delalloc_lock);
1960 	spin_lock_init(&fs_info->trans_lock);
1961 	spin_lock_init(&fs_info->ref_cache_lock);
1962 	spin_lock_init(&fs_info->fs_roots_radix_lock);
1963 	spin_lock_init(&fs_info->delayed_iput_lock);
1964 	spin_lock_init(&fs_info->defrag_inodes_lock);
1965 	spin_lock_init(&fs_info->free_chunk_lock);
1966 	mutex_init(&fs_info->reloc_mutex);
1967 
1968 	init_completion(&fs_info->kobj_unregister);
1969 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1970 	INIT_LIST_HEAD(&fs_info->space_info);
1971 	btrfs_mapping_init(&fs_info->mapping_tree);
1972 	btrfs_init_block_rsv(&fs_info->global_block_rsv);
1973 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1974 	btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1975 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1976 	btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1977 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
1978 	atomic_set(&fs_info->nr_async_submits, 0);
1979 	atomic_set(&fs_info->async_delalloc_pages, 0);
1980 	atomic_set(&fs_info->async_submit_draining, 0);
1981 	atomic_set(&fs_info->nr_async_bios, 0);
1982 	atomic_set(&fs_info->defrag_running, 0);
1983 	fs_info->sb = sb;
1984 	fs_info->max_inline = 8192 * 1024;
1985 	fs_info->metadata_ratio = 0;
1986 	fs_info->defrag_inodes = RB_ROOT;
1987 	fs_info->trans_no_join = 0;
1988 	fs_info->free_chunk_space = 0;
1989 
1990 	/* readahead state */
1991 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1992 	spin_lock_init(&fs_info->reada_lock);
1993 
1994 	fs_info->thread_pool_size = min_t(unsigned long,
1995 					  num_online_cpus() + 2, 8);
1996 
1997 	INIT_LIST_HEAD(&fs_info->ordered_extents);
1998 	spin_lock_init(&fs_info->ordered_extent_lock);
1999 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2000 					GFP_NOFS);
2001 	if (!fs_info->delayed_root) {
2002 		err = -ENOMEM;
2003 		goto fail_iput;
2004 	}
2005 	btrfs_init_delayed_root(fs_info->delayed_root);
2006 
2007 	mutex_init(&fs_info->scrub_lock);
2008 	atomic_set(&fs_info->scrubs_running, 0);
2009 	atomic_set(&fs_info->scrub_pause_req, 0);
2010 	atomic_set(&fs_info->scrubs_paused, 0);
2011 	atomic_set(&fs_info->scrub_cancel_req, 0);
2012 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2013 	init_rwsem(&fs_info->scrub_super_lock);
2014 	fs_info->scrub_workers_refcnt = 0;
2015 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2016 	fs_info->check_integrity_print_mask = 0;
2017 #endif
2018 
2019 	spin_lock_init(&fs_info->balance_lock);
2020 	mutex_init(&fs_info->balance_mutex);
2021 	atomic_set(&fs_info->balance_running, 0);
2022 	atomic_set(&fs_info->balance_pause_req, 0);
2023 	atomic_set(&fs_info->balance_cancel_req, 0);
2024 	fs_info->balance_ctl = NULL;
2025 	init_waitqueue_head(&fs_info->balance_wait_q);
2026 
2027 	sb->s_blocksize = 4096;
2028 	sb->s_blocksize_bits = blksize_bits(4096);
2029 	sb->s_bdi = &fs_info->bdi;
2030 
2031 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2032 	set_nlink(fs_info->btree_inode, 1);
2033 	/*
2034 	 * we set the i_size on the btree inode to the max possible int.
2035 	 * the real end of the address space is determined by all of
2036 	 * the devices in the system
2037 	 */
2038 	fs_info->btree_inode->i_size = OFFSET_MAX;
2039 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2040 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2041 
2042 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2043 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2044 			     fs_info->btree_inode->i_mapping);
2045 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2046 
2047 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2048 
2049 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2050 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2051 	       sizeof(struct btrfs_key));
2052 	BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
2053 	insert_inode_hash(fs_info->btree_inode);
2054 
2055 	spin_lock_init(&fs_info->block_group_cache_lock);
2056 	fs_info->block_group_cache_tree = RB_ROOT;
2057 
2058 	extent_io_tree_init(&fs_info->freed_extents[0],
2059 			     fs_info->btree_inode->i_mapping);
2060 	extent_io_tree_init(&fs_info->freed_extents[1],
2061 			     fs_info->btree_inode->i_mapping);
2062 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2063 	fs_info->do_barriers = 1;
2064 
2065 
2066 	mutex_init(&fs_info->ordered_operations_mutex);
2067 	mutex_init(&fs_info->tree_log_mutex);
2068 	mutex_init(&fs_info->chunk_mutex);
2069 	mutex_init(&fs_info->transaction_kthread_mutex);
2070 	mutex_init(&fs_info->cleaner_mutex);
2071 	mutex_init(&fs_info->volume_mutex);
2072 	init_rwsem(&fs_info->extent_commit_sem);
2073 	init_rwsem(&fs_info->cleanup_work_sem);
2074 	init_rwsem(&fs_info->subvol_sem);
2075 
2076 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2077 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2078 
2079 	init_waitqueue_head(&fs_info->transaction_throttle);
2080 	init_waitqueue_head(&fs_info->transaction_wait);
2081 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2082 	init_waitqueue_head(&fs_info->async_submit_wait);
2083 
2084 	__setup_root(4096, 4096, 4096, 4096, tree_root,
2085 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2086 
2087 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2088 	if (!bh) {
2089 		err = -EINVAL;
2090 		goto fail_alloc;
2091 	}
2092 
2093 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2094 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2095 	       sizeof(*fs_info->super_for_commit));
2096 	brelse(bh);
2097 
2098 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2099 
2100 	disk_super = fs_info->super_copy;
2101 	if (!btrfs_super_root(disk_super))
2102 		goto fail_alloc;
2103 
2104 	/* check FS state, whether FS is broken. */
2105 	fs_info->fs_state |= btrfs_super_flags(disk_super);
2106 
2107 	btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2108 
2109 	/*
2110 	 * run through our array of backup supers and setup
2111 	 * our ring pointer to the oldest one
2112 	 */
2113 	generation = btrfs_super_generation(disk_super);
2114 	find_oldest_super_backup(fs_info, generation);
2115 
2116 	/*
2117 	 * In the long term, we'll store the compression type in the super
2118 	 * block, and it'll be used for per file compression control.
2119 	 */
2120 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2121 
2122 	ret = btrfs_parse_options(tree_root, options);
2123 	if (ret) {
2124 		err = ret;
2125 		goto fail_alloc;
2126 	}
2127 
2128 	features = btrfs_super_incompat_flags(disk_super) &
2129 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2130 	if (features) {
2131 		printk(KERN_ERR "BTRFS: couldn't mount because of "
2132 		       "unsupported optional features (%Lx).\n",
2133 		       (unsigned long long)features);
2134 		err = -EINVAL;
2135 		goto fail_alloc;
2136 	}
2137 
2138 	features = btrfs_super_incompat_flags(disk_super);
2139 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2140 	if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2141 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2142 	btrfs_set_super_incompat_flags(disk_super, features);
2143 
2144 	features = btrfs_super_compat_ro_flags(disk_super) &
2145 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2146 	if (!(sb->s_flags & MS_RDONLY) && features) {
2147 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2148 		       "unsupported option features (%Lx).\n",
2149 		       (unsigned long long)features);
2150 		err = -EINVAL;
2151 		goto fail_alloc;
2152 	}
2153 
2154 	btrfs_init_workers(&fs_info->generic_worker,
2155 			   "genwork", 1, NULL);
2156 
2157 	btrfs_init_workers(&fs_info->workers, "worker",
2158 			   fs_info->thread_pool_size,
2159 			   &fs_info->generic_worker);
2160 
2161 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2162 			   fs_info->thread_pool_size,
2163 			   &fs_info->generic_worker);
2164 
2165 	btrfs_init_workers(&fs_info->submit_workers, "submit",
2166 			   min_t(u64, fs_devices->num_devices,
2167 			   fs_info->thread_pool_size),
2168 			   &fs_info->generic_worker);
2169 
2170 	btrfs_init_workers(&fs_info->caching_workers, "cache",
2171 			   2, &fs_info->generic_worker);
2172 
2173 	/* a higher idle thresh on the submit workers makes it much more
2174 	 * likely that bios will be send down in a sane order to the
2175 	 * devices
2176 	 */
2177 	fs_info->submit_workers.idle_thresh = 64;
2178 
2179 	fs_info->workers.idle_thresh = 16;
2180 	fs_info->workers.ordered = 1;
2181 
2182 	fs_info->delalloc_workers.idle_thresh = 2;
2183 	fs_info->delalloc_workers.ordered = 1;
2184 
2185 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2186 			   &fs_info->generic_worker);
2187 	btrfs_init_workers(&fs_info->endio_workers, "endio",
2188 			   fs_info->thread_pool_size,
2189 			   &fs_info->generic_worker);
2190 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2191 			   fs_info->thread_pool_size,
2192 			   &fs_info->generic_worker);
2193 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
2194 			   "endio-meta-write", fs_info->thread_pool_size,
2195 			   &fs_info->generic_worker);
2196 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2197 			   fs_info->thread_pool_size,
2198 			   &fs_info->generic_worker);
2199 	btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2200 			   1, &fs_info->generic_worker);
2201 	btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2202 			   fs_info->thread_pool_size,
2203 			   &fs_info->generic_worker);
2204 	btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2205 			   fs_info->thread_pool_size,
2206 			   &fs_info->generic_worker);
2207 
2208 	/*
2209 	 * endios are largely parallel and should have a very
2210 	 * low idle thresh
2211 	 */
2212 	fs_info->endio_workers.idle_thresh = 4;
2213 	fs_info->endio_meta_workers.idle_thresh = 4;
2214 
2215 	fs_info->endio_write_workers.idle_thresh = 2;
2216 	fs_info->endio_meta_write_workers.idle_thresh = 2;
2217 	fs_info->readahead_workers.idle_thresh = 2;
2218 
2219 	/*
2220 	 * btrfs_start_workers can really only fail because of ENOMEM so just
2221 	 * return -ENOMEM if any of these fail.
2222 	 */
2223 	ret = btrfs_start_workers(&fs_info->workers);
2224 	ret |= btrfs_start_workers(&fs_info->generic_worker);
2225 	ret |= btrfs_start_workers(&fs_info->submit_workers);
2226 	ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2227 	ret |= btrfs_start_workers(&fs_info->fixup_workers);
2228 	ret |= btrfs_start_workers(&fs_info->endio_workers);
2229 	ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2230 	ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2231 	ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2232 	ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2233 	ret |= btrfs_start_workers(&fs_info->delayed_workers);
2234 	ret |= btrfs_start_workers(&fs_info->caching_workers);
2235 	ret |= btrfs_start_workers(&fs_info->readahead_workers);
2236 	if (ret) {
2237 		ret = -ENOMEM;
2238 		goto fail_sb_buffer;
2239 	}
2240 
2241 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2242 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2243 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2244 
2245 	nodesize = btrfs_super_nodesize(disk_super);
2246 	leafsize = btrfs_super_leafsize(disk_super);
2247 	sectorsize = btrfs_super_sectorsize(disk_super);
2248 	stripesize = btrfs_super_stripesize(disk_super);
2249 	tree_root->nodesize = nodesize;
2250 	tree_root->leafsize = leafsize;
2251 	tree_root->sectorsize = sectorsize;
2252 	tree_root->stripesize = stripesize;
2253 
2254 	sb->s_blocksize = sectorsize;
2255 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2256 
2257 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2258 		    sizeof(disk_super->magic))) {
2259 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2260 		goto fail_sb_buffer;
2261 	}
2262 
2263 	mutex_lock(&fs_info->chunk_mutex);
2264 	ret = btrfs_read_sys_array(tree_root);
2265 	mutex_unlock(&fs_info->chunk_mutex);
2266 	if (ret) {
2267 		printk(KERN_WARNING "btrfs: failed to read the system "
2268 		       "array on %s\n", sb->s_id);
2269 		goto fail_sb_buffer;
2270 	}
2271 
2272 	blocksize = btrfs_level_size(tree_root,
2273 				     btrfs_super_chunk_root_level(disk_super));
2274 	generation = btrfs_super_chunk_root_generation(disk_super);
2275 
2276 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
2277 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2278 
2279 	chunk_root->node = read_tree_block(chunk_root,
2280 					   btrfs_super_chunk_root(disk_super),
2281 					   blocksize, generation);
2282 	BUG_ON(!chunk_root->node);
2283 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2284 		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2285 		       sb->s_id);
2286 		goto fail_tree_roots;
2287 	}
2288 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2289 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2290 
2291 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2292 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2293 	   BTRFS_UUID_SIZE);
2294 
2295 	ret = btrfs_read_chunk_tree(chunk_root);
2296 	if (ret) {
2297 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2298 		       sb->s_id);
2299 		goto fail_tree_roots;
2300 	}
2301 
2302 	btrfs_close_extra_devices(fs_devices);
2303 
2304 retry_root_backup:
2305 	blocksize = btrfs_level_size(tree_root,
2306 				     btrfs_super_root_level(disk_super));
2307 	generation = btrfs_super_generation(disk_super);
2308 
2309 	tree_root->node = read_tree_block(tree_root,
2310 					  btrfs_super_root(disk_super),
2311 					  blocksize, generation);
2312 	if (!tree_root->node ||
2313 	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2314 		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2315 		       sb->s_id);
2316 
2317 		goto recovery_tree_root;
2318 	}
2319 
2320 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2321 	tree_root->commit_root = btrfs_root_node(tree_root);
2322 
2323 	ret = find_and_setup_root(tree_root, fs_info,
2324 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2325 	if (ret)
2326 		goto recovery_tree_root;
2327 	extent_root->track_dirty = 1;
2328 
2329 	ret = find_and_setup_root(tree_root, fs_info,
2330 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
2331 	if (ret)
2332 		goto recovery_tree_root;
2333 	dev_root->track_dirty = 1;
2334 
2335 	ret = find_and_setup_root(tree_root, fs_info,
2336 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
2337 	if (ret)
2338 		goto recovery_tree_root;
2339 
2340 	csum_root->track_dirty = 1;
2341 
2342 	fs_info->generation = generation;
2343 	fs_info->last_trans_committed = generation;
2344 
2345 	ret = btrfs_init_space_info(fs_info);
2346 	if (ret) {
2347 		printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2348 		goto fail_block_groups;
2349 	}
2350 
2351 	ret = btrfs_read_block_groups(extent_root);
2352 	if (ret) {
2353 		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2354 		goto fail_block_groups;
2355 	}
2356 
2357 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2358 					       "btrfs-cleaner");
2359 	if (IS_ERR(fs_info->cleaner_kthread))
2360 		goto fail_block_groups;
2361 
2362 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2363 						   tree_root,
2364 						   "btrfs-transaction");
2365 	if (IS_ERR(fs_info->transaction_kthread))
2366 		goto fail_cleaner;
2367 
2368 	if (!btrfs_test_opt(tree_root, SSD) &&
2369 	    !btrfs_test_opt(tree_root, NOSSD) &&
2370 	    !fs_info->fs_devices->rotating) {
2371 		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2372 		       "mode\n");
2373 		btrfs_set_opt(fs_info->mount_opt, SSD);
2374 	}
2375 
2376 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2377 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2378 		ret = btrfsic_mount(tree_root, fs_devices,
2379 				    btrfs_test_opt(tree_root,
2380 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2381 				    1 : 0,
2382 				    fs_info->check_integrity_print_mask);
2383 		if (ret)
2384 			printk(KERN_WARNING "btrfs: failed to initialize"
2385 			       " integrity check module %s\n", sb->s_id);
2386 	}
2387 #endif
2388 
2389 	/* do not make disk changes in broken FS */
2390 	if (btrfs_super_log_root(disk_super) != 0 &&
2391 	    !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2392 		u64 bytenr = btrfs_super_log_root(disk_super);
2393 
2394 		if (fs_devices->rw_devices == 0) {
2395 			printk(KERN_WARNING "Btrfs log replay required "
2396 			       "on RO media\n");
2397 			err = -EIO;
2398 			goto fail_trans_kthread;
2399 		}
2400 		blocksize =
2401 		     btrfs_level_size(tree_root,
2402 				      btrfs_super_log_root_level(disk_super));
2403 
2404 		log_tree_root = btrfs_alloc_root(fs_info);
2405 		if (!log_tree_root) {
2406 			err = -ENOMEM;
2407 			goto fail_trans_kthread;
2408 		}
2409 
2410 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2411 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2412 
2413 		log_tree_root->node = read_tree_block(tree_root, bytenr,
2414 						      blocksize,
2415 						      generation + 1);
2416 		ret = btrfs_recover_log_trees(log_tree_root);
2417 		BUG_ON(ret);
2418 
2419 		if (sb->s_flags & MS_RDONLY) {
2420 			ret =  btrfs_commit_super(tree_root);
2421 			BUG_ON(ret);
2422 		}
2423 	}
2424 
2425 	ret = btrfs_find_orphan_roots(tree_root);
2426 	BUG_ON(ret);
2427 
2428 	if (!(sb->s_flags & MS_RDONLY)) {
2429 		ret = btrfs_cleanup_fs_roots(fs_info);
2430 		BUG_ON(ret);
2431 
2432 		ret = btrfs_recover_relocation(tree_root);
2433 		if (ret < 0) {
2434 			printk(KERN_WARNING
2435 			       "btrfs: failed to recover relocation\n");
2436 			err = -EINVAL;
2437 			goto fail_trans_kthread;
2438 		}
2439 	}
2440 
2441 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2442 	location.type = BTRFS_ROOT_ITEM_KEY;
2443 	location.offset = (u64)-1;
2444 
2445 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2446 	if (!fs_info->fs_root)
2447 		goto fail_trans_kthread;
2448 	if (IS_ERR(fs_info->fs_root)) {
2449 		err = PTR_ERR(fs_info->fs_root);
2450 		goto fail_trans_kthread;
2451 	}
2452 
2453 	if (!(sb->s_flags & MS_RDONLY)) {
2454 		down_read(&fs_info->cleanup_work_sem);
2455 		err = btrfs_orphan_cleanup(fs_info->fs_root);
2456 		if (!err)
2457 			err = btrfs_orphan_cleanup(fs_info->tree_root);
2458 		up_read(&fs_info->cleanup_work_sem);
2459 
2460 		if (!err)
2461 			err = btrfs_recover_balance(fs_info->tree_root);
2462 
2463 		if (err) {
2464 			close_ctree(tree_root);
2465 			return err;
2466 		}
2467 	}
2468 
2469 	return 0;
2470 
2471 fail_trans_kthread:
2472 	kthread_stop(fs_info->transaction_kthread);
2473 fail_cleaner:
2474 	kthread_stop(fs_info->cleaner_kthread);
2475 
2476 	/*
2477 	 * make sure we're done with the btree inode before we stop our
2478 	 * kthreads
2479 	 */
2480 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2481 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2482 
2483 fail_block_groups:
2484 	btrfs_free_block_groups(fs_info);
2485 
2486 fail_tree_roots:
2487 	free_root_pointers(fs_info, 1);
2488 
2489 fail_sb_buffer:
2490 	btrfs_stop_workers(&fs_info->generic_worker);
2491 	btrfs_stop_workers(&fs_info->readahead_workers);
2492 	btrfs_stop_workers(&fs_info->fixup_workers);
2493 	btrfs_stop_workers(&fs_info->delalloc_workers);
2494 	btrfs_stop_workers(&fs_info->workers);
2495 	btrfs_stop_workers(&fs_info->endio_workers);
2496 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2497 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2498 	btrfs_stop_workers(&fs_info->endio_write_workers);
2499 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2500 	btrfs_stop_workers(&fs_info->submit_workers);
2501 	btrfs_stop_workers(&fs_info->delayed_workers);
2502 	btrfs_stop_workers(&fs_info->caching_workers);
2503 fail_alloc:
2504 fail_iput:
2505 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2506 
2507 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2508 	iput(fs_info->btree_inode);
2509 fail_bdi:
2510 	bdi_destroy(&fs_info->bdi);
2511 fail_srcu:
2512 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2513 fail:
2514 	btrfs_close_devices(fs_info->fs_devices);
2515 	return err;
2516 
2517 recovery_tree_root:
2518 	if (!btrfs_test_opt(tree_root, RECOVERY))
2519 		goto fail_tree_roots;
2520 
2521 	free_root_pointers(fs_info, 0);
2522 
2523 	/* don't use the log in recovery mode, it won't be valid */
2524 	btrfs_set_super_log_root(disk_super, 0);
2525 
2526 	/* we can't trust the free space cache either */
2527 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2528 
2529 	ret = next_root_backup(fs_info, fs_info->super_copy,
2530 			       &num_backups_tried, &backup_index);
2531 	if (ret == -1)
2532 		goto fail_block_groups;
2533 	goto retry_root_backup;
2534 }
2535 
2536 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2537 {
2538 	char b[BDEVNAME_SIZE];
2539 
2540 	if (uptodate) {
2541 		set_buffer_uptodate(bh);
2542 	} else {
2543 		printk_ratelimited(KERN_WARNING "lost page write due to "
2544 					"I/O error on %s\n",
2545 				       bdevname(bh->b_bdev, b));
2546 		/* note, we dont' set_buffer_write_io_error because we have
2547 		 * our own ways of dealing with the IO errors
2548 		 */
2549 		clear_buffer_uptodate(bh);
2550 	}
2551 	unlock_buffer(bh);
2552 	put_bh(bh);
2553 }
2554 
2555 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2556 {
2557 	struct buffer_head *bh;
2558 	struct buffer_head *latest = NULL;
2559 	struct btrfs_super_block *super;
2560 	int i;
2561 	u64 transid = 0;
2562 	u64 bytenr;
2563 
2564 	/* we would like to check all the supers, but that would make
2565 	 * a btrfs mount succeed after a mkfs from a different FS.
2566 	 * So, we need to add a special mount option to scan for
2567 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2568 	 */
2569 	for (i = 0; i < 1; i++) {
2570 		bytenr = btrfs_sb_offset(i);
2571 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2572 			break;
2573 		bh = __bread(bdev, bytenr / 4096, 4096);
2574 		if (!bh)
2575 			continue;
2576 
2577 		super = (struct btrfs_super_block *)bh->b_data;
2578 		if (btrfs_super_bytenr(super) != bytenr ||
2579 		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2580 			    sizeof(super->magic))) {
2581 			brelse(bh);
2582 			continue;
2583 		}
2584 
2585 		if (!latest || btrfs_super_generation(super) > transid) {
2586 			brelse(latest);
2587 			latest = bh;
2588 			transid = btrfs_super_generation(super);
2589 		} else {
2590 			brelse(bh);
2591 		}
2592 	}
2593 	return latest;
2594 }
2595 
2596 /*
2597  * this should be called twice, once with wait == 0 and
2598  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2599  * we write are pinned.
2600  *
2601  * They are released when wait == 1 is done.
2602  * max_mirrors must be the same for both runs, and it indicates how
2603  * many supers on this one device should be written.
2604  *
2605  * max_mirrors == 0 means to write them all.
2606  */
2607 static int write_dev_supers(struct btrfs_device *device,
2608 			    struct btrfs_super_block *sb,
2609 			    int do_barriers, int wait, int max_mirrors)
2610 {
2611 	struct buffer_head *bh;
2612 	int i;
2613 	int ret;
2614 	int errors = 0;
2615 	u32 crc;
2616 	u64 bytenr;
2617 
2618 	if (max_mirrors == 0)
2619 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2620 
2621 	for (i = 0; i < max_mirrors; i++) {
2622 		bytenr = btrfs_sb_offset(i);
2623 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2624 			break;
2625 
2626 		if (wait) {
2627 			bh = __find_get_block(device->bdev, bytenr / 4096,
2628 					      BTRFS_SUPER_INFO_SIZE);
2629 			BUG_ON(!bh);
2630 			wait_on_buffer(bh);
2631 			if (!buffer_uptodate(bh))
2632 				errors++;
2633 
2634 			/* drop our reference */
2635 			brelse(bh);
2636 
2637 			/* drop the reference from the wait == 0 run */
2638 			brelse(bh);
2639 			continue;
2640 		} else {
2641 			btrfs_set_super_bytenr(sb, bytenr);
2642 
2643 			crc = ~(u32)0;
2644 			crc = btrfs_csum_data(NULL, (char *)sb +
2645 					      BTRFS_CSUM_SIZE, crc,
2646 					      BTRFS_SUPER_INFO_SIZE -
2647 					      BTRFS_CSUM_SIZE);
2648 			btrfs_csum_final(crc, sb->csum);
2649 
2650 			/*
2651 			 * one reference for us, and we leave it for the
2652 			 * caller
2653 			 */
2654 			bh = __getblk(device->bdev, bytenr / 4096,
2655 				      BTRFS_SUPER_INFO_SIZE);
2656 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2657 
2658 			/* one reference for submit_bh */
2659 			get_bh(bh);
2660 
2661 			set_buffer_uptodate(bh);
2662 			lock_buffer(bh);
2663 			bh->b_end_io = btrfs_end_buffer_write_sync;
2664 		}
2665 
2666 		/*
2667 		 * we fua the first super.  The others we allow
2668 		 * to go down lazy.
2669 		 */
2670 		ret = btrfsic_submit_bh(WRITE_FUA, bh);
2671 		if (ret)
2672 			errors++;
2673 	}
2674 	return errors < i ? 0 : -1;
2675 }
2676 
2677 /*
2678  * endio for the write_dev_flush, this will wake anyone waiting
2679  * for the barrier when it is done
2680  */
2681 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2682 {
2683 	if (err) {
2684 		if (err == -EOPNOTSUPP)
2685 			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2686 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
2687 	}
2688 	if (bio->bi_private)
2689 		complete(bio->bi_private);
2690 	bio_put(bio);
2691 }
2692 
2693 /*
2694  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2695  * sent down.  With wait == 1, it waits for the previous flush.
2696  *
2697  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2698  * capable
2699  */
2700 static int write_dev_flush(struct btrfs_device *device, int wait)
2701 {
2702 	struct bio *bio;
2703 	int ret = 0;
2704 
2705 	if (device->nobarriers)
2706 		return 0;
2707 
2708 	if (wait) {
2709 		bio = device->flush_bio;
2710 		if (!bio)
2711 			return 0;
2712 
2713 		wait_for_completion(&device->flush_wait);
2714 
2715 		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2716 			printk("btrfs: disabling barriers on dev %s\n",
2717 			       device->name);
2718 			device->nobarriers = 1;
2719 		}
2720 		if (!bio_flagged(bio, BIO_UPTODATE)) {
2721 			ret = -EIO;
2722 		}
2723 
2724 		/* drop the reference from the wait == 0 run */
2725 		bio_put(bio);
2726 		device->flush_bio = NULL;
2727 
2728 		return ret;
2729 	}
2730 
2731 	/*
2732 	 * one reference for us, and we leave it for the
2733 	 * caller
2734 	 */
2735 	device->flush_bio = NULL;;
2736 	bio = bio_alloc(GFP_NOFS, 0);
2737 	if (!bio)
2738 		return -ENOMEM;
2739 
2740 	bio->bi_end_io = btrfs_end_empty_barrier;
2741 	bio->bi_bdev = device->bdev;
2742 	init_completion(&device->flush_wait);
2743 	bio->bi_private = &device->flush_wait;
2744 	device->flush_bio = bio;
2745 
2746 	bio_get(bio);
2747 	btrfsic_submit_bio(WRITE_FLUSH, bio);
2748 
2749 	return 0;
2750 }
2751 
2752 /*
2753  * send an empty flush down to each device in parallel,
2754  * then wait for them
2755  */
2756 static int barrier_all_devices(struct btrfs_fs_info *info)
2757 {
2758 	struct list_head *head;
2759 	struct btrfs_device *dev;
2760 	int errors = 0;
2761 	int ret;
2762 
2763 	/* send down all the barriers */
2764 	head = &info->fs_devices->devices;
2765 	list_for_each_entry_rcu(dev, head, dev_list) {
2766 		if (!dev->bdev) {
2767 			errors++;
2768 			continue;
2769 		}
2770 		if (!dev->in_fs_metadata || !dev->writeable)
2771 			continue;
2772 
2773 		ret = write_dev_flush(dev, 0);
2774 		if (ret)
2775 			errors++;
2776 	}
2777 
2778 	/* wait for all the barriers */
2779 	list_for_each_entry_rcu(dev, head, dev_list) {
2780 		if (!dev->bdev) {
2781 			errors++;
2782 			continue;
2783 		}
2784 		if (!dev->in_fs_metadata || !dev->writeable)
2785 			continue;
2786 
2787 		ret = write_dev_flush(dev, 1);
2788 		if (ret)
2789 			errors++;
2790 	}
2791 	if (errors)
2792 		return -EIO;
2793 	return 0;
2794 }
2795 
2796 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2797 {
2798 	struct list_head *head;
2799 	struct btrfs_device *dev;
2800 	struct btrfs_super_block *sb;
2801 	struct btrfs_dev_item *dev_item;
2802 	int ret;
2803 	int do_barriers;
2804 	int max_errors;
2805 	int total_errors = 0;
2806 	u64 flags;
2807 
2808 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2809 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2810 	backup_super_roots(root->fs_info);
2811 
2812 	sb = root->fs_info->super_for_commit;
2813 	dev_item = &sb->dev_item;
2814 
2815 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2816 	head = &root->fs_info->fs_devices->devices;
2817 
2818 	if (do_barriers)
2819 		barrier_all_devices(root->fs_info);
2820 
2821 	list_for_each_entry_rcu(dev, head, dev_list) {
2822 		if (!dev->bdev) {
2823 			total_errors++;
2824 			continue;
2825 		}
2826 		if (!dev->in_fs_metadata || !dev->writeable)
2827 			continue;
2828 
2829 		btrfs_set_stack_device_generation(dev_item, 0);
2830 		btrfs_set_stack_device_type(dev_item, dev->type);
2831 		btrfs_set_stack_device_id(dev_item, dev->devid);
2832 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2833 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2834 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2835 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2836 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2837 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2838 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2839 
2840 		flags = btrfs_super_flags(sb);
2841 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2842 
2843 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2844 		if (ret)
2845 			total_errors++;
2846 	}
2847 	if (total_errors > max_errors) {
2848 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2849 		       total_errors);
2850 		BUG();
2851 	}
2852 
2853 	total_errors = 0;
2854 	list_for_each_entry_rcu(dev, head, dev_list) {
2855 		if (!dev->bdev)
2856 			continue;
2857 		if (!dev->in_fs_metadata || !dev->writeable)
2858 			continue;
2859 
2860 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2861 		if (ret)
2862 			total_errors++;
2863 	}
2864 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2865 	if (total_errors > max_errors) {
2866 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2867 		       total_errors);
2868 		BUG();
2869 	}
2870 	return 0;
2871 }
2872 
2873 int write_ctree_super(struct btrfs_trans_handle *trans,
2874 		      struct btrfs_root *root, int max_mirrors)
2875 {
2876 	int ret;
2877 
2878 	ret = write_all_supers(root, max_mirrors);
2879 	return ret;
2880 }
2881 
2882 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2883 {
2884 	spin_lock(&fs_info->fs_roots_radix_lock);
2885 	radix_tree_delete(&fs_info->fs_roots_radix,
2886 			  (unsigned long)root->root_key.objectid);
2887 	spin_unlock(&fs_info->fs_roots_radix_lock);
2888 
2889 	if (btrfs_root_refs(&root->root_item) == 0)
2890 		synchronize_srcu(&fs_info->subvol_srcu);
2891 
2892 	__btrfs_remove_free_space_cache(root->free_ino_pinned);
2893 	__btrfs_remove_free_space_cache(root->free_ino_ctl);
2894 	free_fs_root(root);
2895 	return 0;
2896 }
2897 
2898 static void free_fs_root(struct btrfs_root *root)
2899 {
2900 	iput(root->cache_inode);
2901 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2902 	if (root->anon_dev)
2903 		free_anon_bdev(root->anon_dev);
2904 	free_extent_buffer(root->node);
2905 	free_extent_buffer(root->commit_root);
2906 	kfree(root->free_ino_ctl);
2907 	kfree(root->free_ino_pinned);
2908 	kfree(root->name);
2909 	kfree(root);
2910 }
2911 
2912 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2913 {
2914 	int ret;
2915 	struct btrfs_root *gang[8];
2916 	int i;
2917 
2918 	while (!list_empty(&fs_info->dead_roots)) {
2919 		gang[0] = list_entry(fs_info->dead_roots.next,
2920 				     struct btrfs_root, root_list);
2921 		list_del(&gang[0]->root_list);
2922 
2923 		if (gang[0]->in_radix) {
2924 			btrfs_free_fs_root(fs_info, gang[0]);
2925 		} else {
2926 			free_extent_buffer(gang[0]->node);
2927 			free_extent_buffer(gang[0]->commit_root);
2928 			kfree(gang[0]);
2929 		}
2930 	}
2931 
2932 	while (1) {
2933 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2934 					     (void **)gang, 0,
2935 					     ARRAY_SIZE(gang));
2936 		if (!ret)
2937 			break;
2938 		for (i = 0; i < ret; i++)
2939 			btrfs_free_fs_root(fs_info, gang[i]);
2940 	}
2941 	return 0;
2942 }
2943 
2944 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2945 {
2946 	u64 root_objectid = 0;
2947 	struct btrfs_root *gang[8];
2948 	int i;
2949 	int ret;
2950 
2951 	while (1) {
2952 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2953 					     (void **)gang, root_objectid,
2954 					     ARRAY_SIZE(gang));
2955 		if (!ret)
2956 			break;
2957 
2958 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
2959 		for (i = 0; i < ret; i++) {
2960 			int err;
2961 
2962 			root_objectid = gang[i]->root_key.objectid;
2963 			err = btrfs_orphan_cleanup(gang[i]);
2964 			if (err)
2965 				return err;
2966 		}
2967 		root_objectid++;
2968 	}
2969 	return 0;
2970 }
2971 
2972 int btrfs_commit_super(struct btrfs_root *root)
2973 {
2974 	struct btrfs_trans_handle *trans;
2975 	int ret;
2976 
2977 	mutex_lock(&root->fs_info->cleaner_mutex);
2978 	btrfs_run_delayed_iputs(root);
2979 	btrfs_clean_old_snapshots(root);
2980 	mutex_unlock(&root->fs_info->cleaner_mutex);
2981 
2982 	/* wait until ongoing cleanup work done */
2983 	down_write(&root->fs_info->cleanup_work_sem);
2984 	up_write(&root->fs_info->cleanup_work_sem);
2985 
2986 	trans = btrfs_join_transaction(root);
2987 	if (IS_ERR(trans))
2988 		return PTR_ERR(trans);
2989 	ret = btrfs_commit_transaction(trans, root);
2990 	BUG_ON(ret);
2991 	/* run commit again to drop the original snapshot */
2992 	trans = btrfs_join_transaction(root);
2993 	if (IS_ERR(trans))
2994 		return PTR_ERR(trans);
2995 	btrfs_commit_transaction(trans, root);
2996 	ret = btrfs_write_and_wait_transaction(NULL, root);
2997 	BUG_ON(ret);
2998 
2999 	ret = write_ctree_super(NULL, root, 0);
3000 	return ret;
3001 }
3002 
3003 int close_ctree(struct btrfs_root *root)
3004 {
3005 	struct btrfs_fs_info *fs_info = root->fs_info;
3006 	int ret;
3007 
3008 	fs_info->closing = 1;
3009 	smp_mb();
3010 
3011 	/* pause restriper - we want to resume on mount */
3012 	btrfs_pause_balance(root->fs_info);
3013 
3014 	btrfs_scrub_cancel(root);
3015 
3016 	/* wait for any defraggers to finish */
3017 	wait_event(fs_info->transaction_wait,
3018 		   (atomic_read(&fs_info->defrag_running) == 0));
3019 
3020 	/* clear out the rbtree of defraggable inodes */
3021 	btrfs_run_defrag_inodes(fs_info);
3022 
3023 	/*
3024 	 * Here come 2 situations when btrfs is broken to flip readonly:
3025 	 *
3026 	 * 1. when btrfs flips readonly somewhere else before
3027 	 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3028 	 * and btrfs will skip to write sb directly to keep
3029 	 * ERROR state on disk.
3030 	 *
3031 	 * 2. when btrfs flips readonly just in btrfs_commit_super,
3032 	 * and in such case, btrfs cannot write sb via btrfs_commit_super,
3033 	 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3034 	 * btrfs will cleanup all FS resources first and write sb then.
3035 	 */
3036 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3037 		ret = btrfs_commit_super(root);
3038 		if (ret)
3039 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3040 	}
3041 
3042 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3043 		ret = btrfs_error_commit_super(root);
3044 		if (ret)
3045 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3046 	}
3047 
3048 	btrfs_put_block_group_cache(fs_info);
3049 
3050 	kthread_stop(fs_info->transaction_kthread);
3051 	kthread_stop(fs_info->cleaner_kthread);
3052 
3053 	fs_info->closing = 2;
3054 	smp_mb();
3055 
3056 	if (fs_info->delalloc_bytes) {
3057 		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3058 		       (unsigned long long)fs_info->delalloc_bytes);
3059 	}
3060 	if (fs_info->total_ref_cache_size) {
3061 		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3062 		       (unsigned long long)fs_info->total_ref_cache_size);
3063 	}
3064 
3065 	free_extent_buffer(fs_info->extent_root->node);
3066 	free_extent_buffer(fs_info->extent_root->commit_root);
3067 	free_extent_buffer(fs_info->tree_root->node);
3068 	free_extent_buffer(fs_info->tree_root->commit_root);
3069 	free_extent_buffer(fs_info->chunk_root->node);
3070 	free_extent_buffer(fs_info->chunk_root->commit_root);
3071 	free_extent_buffer(fs_info->dev_root->node);
3072 	free_extent_buffer(fs_info->dev_root->commit_root);
3073 	free_extent_buffer(fs_info->csum_root->node);
3074 	free_extent_buffer(fs_info->csum_root->commit_root);
3075 
3076 	btrfs_free_block_groups(fs_info);
3077 
3078 	del_fs_roots(fs_info);
3079 
3080 	iput(fs_info->btree_inode);
3081 
3082 	btrfs_stop_workers(&fs_info->generic_worker);
3083 	btrfs_stop_workers(&fs_info->fixup_workers);
3084 	btrfs_stop_workers(&fs_info->delalloc_workers);
3085 	btrfs_stop_workers(&fs_info->workers);
3086 	btrfs_stop_workers(&fs_info->endio_workers);
3087 	btrfs_stop_workers(&fs_info->endio_meta_workers);
3088 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3089 	btrfs_stop_workers(&fs_info->endio_write_workers);
3090 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
3091 	btrfs_stop_workers(&fs_info->submit_workers);
3092 	btrfs_stop_workers(&fs_info->delayed_workers);
3093 	btrfs_stop_workers(&fs_info->caching_workers);
3094 	btrfs_stop_workers(&fs_info->readahead_workers);
3095 
3096 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3097 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3098 		btrfsic_unmount(root, fs_info->fs_devices);
3099 #endif
3100 
3101 	btrfs_close_devices(fs_info->fs_devices);
3102 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3103 
3104 	bdi_destroy(&fs_info->bdi);
3105 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3106 
3107 	return 0;
3108 }
3109 
3110 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
3111 {
3112 	int ret;
3113 	struct inode *btree_inode = buf->first_page->mapping->host;
3114 
3115 	ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
3116 				     NULL);
3117 	if (!ret)
3118 		return ret;
3119 
3120 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3121 				    parent_transid);
3122 	return !ret;
3123 }
3124 
3125 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3126 {
3127 	struct inode *btree_inode = buf->first_page->mapping->host;
3128 	return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
3129 					  buf);
3130 }
3131 
3132 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3133 {
3134 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
3135 	u64 transid = btrfs_header_generation(buf);
3136 	struct inode *btree_inode = root->fs_info->btree_inode;
3137 	int was_dirty;
3138 
3139 	btrfs_assert_tree_locked(buf);
3140 	if (transid != root->fs_info->generation) {
3141 		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3142 		       "found %llu running %llu\n",
3143 			(unsigned long long)buf->start,
3144 			(unsigned long long)transid,
3145 			(unsigned long long)root->fs_info->generation);
3146 		WARN_ON(1);
3147 	}
3148 	was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
3149 					    buf);
3150 	if (!was_dirty) {
3151 		spin_lock(&root->fs_info->delalloc_lock);
3152 		root->fs_info->dirty_metadata_bytes += buf->len;
3153 		spin_unlock(&root->fs_info->delalloc_lock);
3154 	}
3155 }
3156 
3157 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3158 {
3159 	/*
3160 	 * looks as though older kernels can get into trouble with
3161 	 * this code, they end up stuck in balance_dirty_pages forever
3162 	 */
3163 	u64 num_dirty;
3164 	unsigned long thresh = 32 * 1024 * 1024;
3165 
3166 	if (current->flags & PF_MEMALLOC)
3167 		return;
3168 
3169 	btrfs_balance_delayed_items(root);
3170 
3171 	num_dirty = root->fs_info->dirty_metadata_bytes;
3172 
3173 	if (num_dirty > thresh) {
3174 		balance_dirty_pages_ratelimited_nr(
3175 				   root->fs_info->btree_inode->i_mapping, 1);
3176 	}
3177 	return;
3178 }
3179 
3180 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3181 {
3182 	/*
3183 	 * looks as though older kernels can get into trouble with
3184 	 * this code, they end up stuck in balance_dirty_pages forever
3185 	 */
3186 	u64 num_dirty;
3187 	unsigned long thresh = 32 * 1024 * 1024;
3188 
3189 	if (current->flags & PF_MEMALLOC)
3190 		return;
3191 
3192 	num_dirty = root->fs_info->dirty_metadata_bytes;
3193 
3194 	if (num_dirty > thresh) {
3195 		balance_dirty_pages_ratelimited_nr(
3196 				   root->fs_info->btree_inode->i_mapping, 1);
3197 	}
3198 	return;
3199 }
3200 
3201 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3202 {
3203 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
3204 	int ret;
3205 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3206 	if (ret == 0)
3207 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
3208 	return ret;
3209 }
3210 
3211 static int btree_lock_page_hook(struct page *page, void *data,
3212 				void (*flush_fn)(void *))
3213 {
3214 	struct inode *inode = page->mapping->host;
3215 	struct btrfs_root *root = BTRFS_I(inode)->root;
3216 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3217 	struct extent_buffer *eb;
3218 	unsigned long len;
3219 	u64 bytenr = page_offset(page);
3220 
3221 	if (page->private == EXTENT_PAGE_PRIVATE)
3222 		goto out;
3223 
3224 	len = page->private >> 2;
3225 	eb = find_extent_buffer(io_tree, bytenr, len);
3226 	if (!eb)
3227 		goto out;
3228 
3229 	if (!btrfs_try_tree_write_lock(eb)) {
3230 		flush_fn(data);
3231 		btrfs_tree_lock(eb);
3232 	}
3233 	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3234 
3235 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3236 		spin_lock(&root->fs_info->delalloc_lock);
3237 		if (root->fs_info->dirty_metadata_bytes >= eb->len)
3238 			root->fs_info->dirty_metadata_bytes -= eb->len;
3239 		else
3240 			WARN_ON(1);
3241 		spin_unlock(&root->fs_info->delalloc_lock);
3242 	}
3243 
3244 	btrfs_tree_unlock(eb);
3245 	free_extent_buffer(eb);
3246 out:
3247 	if (!trylock_page(page)) {
3248 		flush_fn(data);
3249 		lock_page(page);
3250 	}
3251 	return 0;
3252 }
3253 
3254 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3255 			      int read_only)
3256 {
3257 	if (read_only)
3258 		return;
3259 
3260 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3261 		printk(KERN_WARNING "warning: mount fs with errors, "
3262 		       "running btrfsck is recommended\n");
3263 }
3264 
3265 int btrfs_error_commit_super(struct btrfs_root *root)
3266 {
3267 	int ret;
3268 
3269 	mutex_lock(&root->fs_info->cleaner_mutex);
3270 	btrfs_run_delayed_iputs(root);
3271 	mutex_unlock(&root->fs_info->cleaner_mutex);
3272 
3273 	down_write(&root->fs_info->cleanup_work_sem);
3274 	up_write(&root->fs_info->cleanup_work_sem);
3275 
3276 	/* cleanup FS via transaction */
3277 	btrfs_cleanup_transaction(root);
3278 
3279 	ret = write_ctree_super(NULL, root, 0);
3280 
3281 	return ret;
3282 }
3283 
3284 static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
3285 {
3286 	struct btrfs_inode *btrfs_inode;
3287 	struct list_head splice;
3288 
3289 	INIT_LIST_HEAD(&splice);
3290 
3291 	mutex_lock(&root->fs_info->ordered_operations_mutex);
3292 	spin_lock(&root->fs_info->ordered_extent_lock);
3293 
3294 	list_splice_init(&root->fs_info->ordered_operations, &splice);
3295 	while (!list_empty(&splice)) {
3296 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3297 					 ordered_operations);
3298 
3299 		list_del_init(&btrfs_inode->ordered_operations);
3300 
3301 		btrfs_invalidate_inodes(btrfs_inode->root);
3302 	}
3303 
3304 	spin_unlock(&root->fs_info->ordered_extent_lock);
3305 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
3306 
3307 	return 0;
3308 }
3309 
3310 static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
3311 {
3312 	struct list_head splice;
3313 	struct btrfs_ordered_extent *ordered;
3314 	struct inode *inode;
3315 
3316 	INIT_LIST_HEAD(&splice);
3317 
3318 	spin_lock(&root->fs_info->ordered_extent_lock);
3319 
3320 	list_splice_init(&root->fs_info->ordered_extents, &splice);
3321 	while (!list_empty(&splice)) {
3322 		ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3323 				     root_extent_list);
3324 
3325 		list_del_init(&ordered->root_extent_list);
3326 		atomic_inc(&ordered->refs);
3327 
3328 		/* the inode may be getting freed (in sys_unlink path). */
3329 		inode = igrab(ordered->inode);
3330 
3331 		spin_unlock(&root->fs_info->ordered_extent_lock);
3332 		if (inode)
3333 			iput(inode);
3334 
3335 		atomic_set(&ordered->refs, 1);
3336 		btrfs_put_ordered_extent(ordered);
3337 
3338 		spin_lock(&root->fs_info->ordered_extent_lock);
3339 	}
3340 
3341 	spin_unlock(&root->fs_info->ordered_extent_lock);
3342 
3343 	return 0;
3344 }
3345 
3346 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3347 				      struct btrfs_root *root)
3348 {
3349 	struct rb_node *node;
3350 	struct btrfs_delayed_ref_root *delayed_refs;
3351 	struct btrfs_delayed_ref_node *ref;
3352 	int ret = 0;
3353 
3354 	delayed_refs = &trans->delayed_refs;
3355 
3356 	spin_lock(&delayed_refs->lock);
3357 	if (delayed_refs->num_entries == 0) {
3358 		spin_unlock(&delayed_refs->lock);
3359 		printk(KERN_INFO "delayed_refs has NO entry\n");
3360 		return ret;
3361 	}
3362 
3363 	node = rb_first(&delayed_refs->root);
3364 	while (node) {
3365 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3366 		node = rb_next(node);
3367 
3368 		ref->in_tree = 0;
3369 		rb_erase(&ref->rb_node, &delayed_refs->root);
3370 		delayed_refs->num_entries--;
3371 
3372 		atomic_set(&ref->refs, 1);
3373 		if (btrfs_delayed_ref_is_head(ref)) {
3374 			struct btrfs_delayed_ref_head *head;
3375 
3376 			head = btrfs_delayed_node_to_head(ref);
3377 			mutex_lock(&head->mutex);
3378 			kfree(head->extent_op);
3379 			delayed_refs->num_heads--;
3380 			if (list_empty(&head->cluster))
3381 				delayed_refs->num_heads_ready--;
3382 			list_del_init(&head->cluster);
3383 			mutex_unlock(&head->mutex);
3384 		}
3385 
3386 		spin_unlock(&delayed_refs->lock);
3387 		btrfs_put_delayed_ref(ref);
3388 
3389 		cond_resched();
3390 		spin_lock(&delayed_refs->lock);
3391 	}
3392 
3393 	spin_unlock(&delayed_refs->lock);
3394 
3395 	return ret;
3396 }
3397 
3398 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3399 {
3400 	struct btrfs_pending_snapshot *snapshot;
3401 	struct list_head splice;
3402 
3403 	INIT_LIST_HEAD(&splice);
3404 
3405 	list_splice_init(&t->pending_snapshots, &splice);
3406 
3407 	while (!list_empty(&splice)) {
3408 		snapshot = list_entry(splice.next,
3409 				      struct btrfs_pending_snapshot,
3410 				      list);
3411 
3412 		list_del_init(&snapshot->list);
3413 
3414 		kfree(snapshot);
3415 	}
3416 
3417 	return 0;
3418 }
3419 
3420 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3421 {
3422 	struct btrfs_inode *btrfs_inode;
3423 	struct list_head splice;
3424 
3425 	INIT_LIST_HEAD(&splice);
3426 
3427 	spin_lock(&root->fs_info->delalloc_lock);
3428 	list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3429 
3430 	while (!list_empty(&splice)) {
3431 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3432 				    delalloc_inodes);
3433 
3434 		list_del_init(&btrfs_inode->delalloc_inodes);
3435 
3436 		btrfs_invalidate_inodes(btrfs_inode->root);
3437 	}
3438 
3439 	spin_unlock(&root->fs_info->delalloc_lock);
3440 
3441 	return 0;
3442 }
3443 
3444 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3445 					struct extent_io_tree *dirty_pages,
3446 					int mark)
3447 {
3448 	int ret;
3449 	struct page *page;
3450 	struct inode *btree_inode = root->fs_info->btree_inode;
3451 	struct extent_buffer *eb;
3452 	u64 start = 0;
3453 	u64 end;
3454 	u64 offset;
3455 	unsigned long index;
3456 
3457 	while (1) {
3458 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3459 					    mark);
3460 		if (ret)
3461 			break;
3462 
3463 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3464 		while (start <= end) {
3465 			index = start >> PAGE_CACHE_SHIFT;
3466 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3467 			page = find_get_page(btree_inode->i_mapping, index);
3468 			if (!page)
3469 				continue;
3470 			offset = page_offset(page);
3471 
3472 			spin_lock(&dirty_pages->buffer_lock);
3473 			eb = radix_tree_lookup(
3474 			     &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3475 					       offset >> PAGE_CACHE_SHIFT);
3476 			spin_unlock(&dirty_pages->buffer_lock);
3477 			if (eb) {
3478 				ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3479 							 &eb->bflags);
3480 				atomic_set(&eb->refs, 1);
3481 			}
3482 			if (PageWriteback(page))
3483 				end_page_writeback(page);
3484 
3485 			lock_page(page);
3486 			if (PageDirty(page)) {
3487 				clear_page_dirty_for_io(page);
3488 				spin_lock_irq(&page->mapping->tree_lock);
3489 				radix_tree_tag_clear(&page->mapping->page_tree,
3490 							page_index(page),
3491 							PAGECACHE_TAG_DIRTY);
3492 				spin_unlock_irq(&page->mapping->tree_lock);
3493 			}
3494 
3495 			page->mapping->a_ops->invalidatepage(page, 0);
3496 			unlock_page(page);
3497 		}
3498 	}
3499 
3500 	return ret;
3501 }
3502 
3503 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3504 				       struct extent_io_tree *pinned_extents)
3505 {
3506 	struct extent_io_tree *unpin;
3507 	u64 start;
3508 	u64 end;
3509 	int ret;
3510 
3511 	unpin = pinned_extents;
3512 	while (1) {
3513 		ret = find_first_extent_bit(unpin, 0, &start, &end,
3514 					    EXTENT_DIRTY);
3515 		if (ret)
3516 			break;
3517 
3518 		/* opt_discard */
3519 		if (btrfs_test_opt(root, DISCARD))
3520 			ret = btrfs_error_discard_extent(root, start,
3521 							 end + 1 - start,
3522 							 NULL);
3523 
3524 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
3525 		btrfs_error_unpin_extent_range(root, start, end);
3526 		cond_resched();
3527 	}
3528 
3529 	return 0;
3530 }
3531 
3532 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3533 {
3534 	struct btrfs_transaction *t;
3535 	LIST_HEAD(list);
3536 
3537 	WARN_ON(1);
3538 
3539 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
3540 
3541 	spin_lock(&root->fs_info->trans_lock);
3542 	list_splice_init(&root->fs_info->trans_list, &list);
3543 	root->fs_info->trans_no_join = 1;
3544 	spin_unlock(&root->fs_info->trans_lock);
3545 
3546 	while (!list_empty(&list)) {
3547 		t = list_entry(list.next, struct btrfs_transaction, list);
3548 		if (!t)
3549 			break;
3550 
3551 		btrfs_destroy_ordered_operations(root);
3552 
3553 		btrfs_destroy_ordered_extents(root);
3554 
3555 		btrfs_destroy_delayed_refs(t, root);
3556 
3557 		btrfs_block_rsv_release(root,
3558 					&root->fs_info->trans_block_rsv,
3559 					t->dirty_pages.dirty_bytes);
3560 
3561 		/* FIXME: cleanup wait for commit */
3562 		t->in_commit = 1;
3563 		t->blocked = 1;
3564 		if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3565 			wake_up(&root->fs_info->transaction_blocked_wait);
3566 
3567 		t->blocked = 0;
3568 		if (waitqueue_active(&root->fs_info->transaction_wait))
3569 			wake_up(&root->fs_info->transaction_wait);
3570 
3571 		t->commit_done = 1;
3572 		if (waitqueue_active(&t->commit_wait))
3573 			wake_up(&t->commit_wait);
3574 
3575 		btrfs_destroy_pending_snapshots(t);
3576 
3577 		btrfs_destroy_delalloc_inodes(root);
3578 
3579 		spin_lock(&root->fs_info->trans_lock);
3580 		root->fs_info->running_transaction = NULL;
3581 		spin_unlock(&root->fs_info->trans_lock);
3582 
3583 		btrfs_destroy_marked_extents(root, &t->dirty_pages,
3584 					     EXTENT_DIRTY);
3585 
3586 		btrfs_destroy_pinned_extent(root,
3587 					    root->fs_info->pinned_extents);
3588 
3589 		atomic_set(&t->use_count, 0);
3590 		list_del_init(&t->list);
3591 		memset(t, 0, sizeof(*t));
3592 		kmem_cache_free(btrfs_transaction_cachep, t);
3593 	}
3594 
3595 	spin_lock(&root->fs_info->trans_lock);
3596 	root->fs_info->trans_no_join = 0;
3597 	spin_unlock(&root->fs_info->trans_lock);
3598 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3599 
3600 	return 0;
3601 }
3602 
3603 static struct extent_io_ops btree_extent_io_ops = {
3604 	.write_cache_pages_lock_hook = btree_lock_page_hook,
3605 	.readpage_end_io_hook = btree_readpage_end_io_hook,
3606 	.readpage_io_failed_hook = btree_io_failed_hook,
3607 	.submit_bio_hook = btree_submit_bio_hook,
3608 	/* note we're sharing with inode.c for the merge bio hook */
3609 	.merge_bio_hook = btrfs_merge_bio_hook,
3610 };
3611