xref: /linux/fs/btrfs/disk-io.c (revision e829083bc46d3d79b9aade758c350ec12342c9bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <linux/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "dev-replace.h"
33 #include "raid56.h"
34 #include "sysfs.h"
35 #include "qgroup.h"
36 #include "compression.h"
37 #include "tree-checker.h"
38 #include "ref-verify.h"
39 #include "block-group.h"
40 #include "discard.h"
41 #include "space-info.h"
42 #include "zoned.h"
43 #include "subpage.h"
44 #include "fs.h"
45 #include "accessors.h"
46 #include "extent-tree.h"
47 #include "root-tree.h"
48 #include "defrag.h"
49 #include "uuid-tree.h"
50 #include "relocation.h"
51 #include "scrub.h"
52 #include "super.h"
53 #include "delayed-inode.h"
54 
55 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
56 				 BTRFS_HEADER_FLAG_RELOC |\
57 				 BTRFS_SUPER_FLAG_ERROR |\
58 				 BTRFS_SUPER_FLAG_SEEDING |\
59 				 BTRFS_SUPER_FLAG_METADUMP |\
60 				 BTRFS_SUPER_FLAG_METADUMP_V2)
61 
62 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
63 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
64 
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)65 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
66 {
67 	if (fs_info->csum_shash)
68 		crypto_free_shash(fs_info->csum_shash);
69 }
70 
71 /*
72  * Compute the csum of a btree block and store the result to provided buffer.
73  */
csum_tree_block(struct extent_buffer * buf,u8 * result)74 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
75 {
76 	struct btrfs_fs_info *fs_info = buf->fs_info;
77 	int num_pages;
78 	u32 first_page_part;
79 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
80 	char *kaddr;
81 	int i;
82 
83 	shash->tfm = fs_info->csum_shash;
84 	crypto_shash_init(shash);
85 
86 	if (buf->addr) {
87 		/* Pages are contiguous, handle them as a big one. */
88 		kaddr = buf->addr;
89 		first_page_part = fs_info->nodesize;
90 		num_pages = 1;
91 	} else {
92 		kaddr = folio_address(buf->folios[0]);
93 		first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
94 		num_pages = num_extent_pages(buf);
95 	}
96 
97 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
98 			    first_page_part - BTRFS_CSUM_SIZE);
99 
100 	/*
101 	 * Multiple single-page folios case would reach here.
102 	 *
103 	 * nodesize <= PAGE_SIZE and large folio all handled by above
104 	 * crypto_shash_update() already.
105 	 */
106 	for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
107 		kaddr = folio_address(buf->folios[i]);
108 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
109 	}
110 	memset(result, 0, BTRFS_CSUM_SIZE);
111 	crypto_shash_final(shash, result);
112 }
113 
114 /*
115  * we can't consider a given block up to date unless the transid of the
116  * block matches the transid in the parent node's pointer.  This is how we
117  * detect blocks that either didn't get written at all or got written
118  * in the wrong place.
119  */
btrfs_buffer_uptodate(struct extent_buffer * eb,u64 parent_transid,bool atomic)120 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, bool atomic)
121 {
122 	if (!extent_buffer_uptodate(eb))
123 		return 0;
124 
125 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
126 		return 1;
127 
128 	if (atomic)
129 		return -EAGAIN;
130 
131 	if (!extent_buffer_uptodate(eb) ||
132 	    btrfs_header_generation(eb) != parent_transid) {
133 		btrfs_err_rl(eb->fs_info,
134 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
135 			eb->start, eb->read_mirror,
136 			parent_transid, btrfs_header_generation(eb));
137 		clear_extent_buffer_uptodate(eb);
138 		return 0;
139 	}
140 	return 1;
141 }
142 
btrfs_supported_super_csum(u16 csum_type)143 static bool btrfs_supported_super_csum(u16 csum_type)
144 {
145 	switch (csum_type) {
146 	case BTRFS_CSUM_TYPE_CRC32:
147 	case BTRFS_CSUM_TYPE_XXHASH:
148 	case BTRFS_CSUM_TYPE_SHA256:
149 	case BTRFS_CSUM_TYPE_BLAKE2:
150 		return true;
151 	default:
152 		return false;
153 	}
154 }
155 
156 /*
157  * Return 0 if the superblock checksum type matches the checksum value of that
158  * algorithm. Pass the raw disk superblock data.
159  */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,const struct btrfs_super_block * disk_sb)160 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
161 			   const struct btrfs_super_block *disk_sb)
162 {
163 	char result[BTRFS_CSUM_SIZE];
164 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
165 
166 	shash->tfm = fs_info->csum_shash;
167 
168 	/*
169 	 * The super_block structure does not span the whole
170 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
171 	 * filled with zeros and is included in the checksum.
172 	 */
173 	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
174 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
175 
176 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
177 		return 1;
178 
179 	return 0;
180 }
181 
btrfs_repair_eb_io_failure(const struct extent_buffer * eb,int mirror_num)182 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
183 				      int mirror_num)
184 {
185 	struct btrfs_fs_info *fs_info = eb->fs_info;
186 	const u32 step = min(fs_info->nodesize, PAGE_SIZE);
187 	const u32 nr_steps = eb->len / step;
188 	phys_addr_t paddrs[BTRFS_MAX_BLOCKSIZE / PAGE_SIZE];
189 	int ret = 0;
190 
191 	if (sb_rdonly(fs_info->sb))
192 		return -EROFS;
193 
194 	for (int i = 0; i < num_extent_pages(eb); i++) {
195 		struct folio *folio = eb->folios[i];
196 
197 		/* No large folio support yet. */
198 		ASSERT(folio_order(folio) == 0);
199 		ASSERT(i < nr_steps);
200 
201 		/*
202 		 * For nodesize < page size, there is just one paddr, with some
203 		 * offset inside the page.
204 		 *
205 		 * For nodesize >= page size, it's one or more paddrs, and eb->start
206 		 * must be aligned to page boundary.
207 		 */
208 		paddrs[i] = page_to_phys(&folio->page) + offset_in_page(eb->start);
209 	}
210 
211 	ret = btrfs_repair_io_failure(fs_info, 0, eb->start, eb->len, eb->start,
212 				      paddrs, step, mirror_num);
213 	return ret;
214 }
215 
216 /*
217  * helper to read a given tree block, doing retries as required when
218  * the checksums don't match and we have alternate mirrors to try.
219  *
220  * @check:		expected tree parentness check, see the comments of the
221  *			structure for details.
222  */
btrfs_read_extent_buffer(struct extent_buffer * eb,const struct btrfs_tree_parent_check * check)223 int btrfs_read_extent_buffer(struct extent_buffer *eb,
224 			     const struct btrfs_tree_parent_check *check)
225 {
226 	struct btrfs_fs_info *fs_info = eb->fs_info;
227 	int failed = 0;
228 	int ret;
229 	int num_copies = 0;
230 	int mirror_num = 0;
231 	int failed_mirror = 0;
232 
233 	ASSERT(check);
234 
235 	while (1) {
236 		ret = read_extent_buffer_pages(eb, mirror_num, check);
237 		if (!ret)
238 			break;
239 
240 		num_copies = btrfs_num_copies(fs_info,
241 					      eb->start, eb->len);
242 		if (num_copies == 1)
243 			break;
244 
245 		if (!failed_mirror) {
246 			failed = 1;
247 			failed_mirror = eb->read_mirror;
248 		}
249 
250 		mirror_num++;
251 		if (mirror_num == failed_mirror)
252 			mirror_num++;
253 
254 		if (mirror_num > num_copies)
255 			break;
256 	}
257 
258 	if (failed && !ret && failed_mirror)
259 		btrfs_repair_eb_io_failure(eb, failed_mirror);
260 
261 	return ret;
262 }
263 
264 /*
265  * Checksum a dirty tree block before IO.
266  */
btree_csum_one_bio(struct btrfs_bio * bbio)267 int btree_csum_one_bio(struct btrfs_bio *bbio)
268 {
269 	struct extent_buffer *eb = bbio->private;
270 	struct btrfs_fs_info *fs_info = eb->fs_info;
271 	u64 found_start = btrfs_header_bytenr(eb);
272 	u64 last_trans;
273 	u8 result[BTRFS_CSUM_SIZE];
274 	int ret;
275 
276 	/* Btree blocks are always contiguous on disk. */
277 	if (WARN_ON_ONCE(bbio->file_offset != eb->start))
278 		return -EIO;
279 	if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
280 		return -EIO;
281 
282 	/*
283 	 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
284 	 * checksum it but zero-out its content. This is done to preserve
285 	 * ordering of I/O without unnecessarily writing out data.
286 	 */
287 	if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
288 		memzero_extent_buffer(eb, 0, eb->len);
289 		return 0;
290 	}
291 
292 	if (WARN_ON_ONCE(found_start != eb->start))
293 		return -EIO;
294 	if (WARN_ON(!btrfs_meta_folio_test_uptodate(eb->folios[0], eb)))
295 		return -EIO;
296 
297 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
298 				    offsetof(struct btrfs_header, fsid),
299 				    BTRFS_FSID_SIZE) == 0);
300 	csum_tree_block(eb, result);
301 
302 	if (btrfs_header_level(eb))
303 		ret = btrfs_check_node(eb);
304 	else
305 		ret = btrfs_check_leaf(eb);
306 
307 	if (ret < 0)
308 		goto error;
309 
310 	/*
311 	 * Also check the generation, the eb reached here must be newer than
312 	 * last committed. Or something seriously wrong happened.
313 	 */
314 	last_trans = btrfs_get_last_trans_committed(fs_info);
315 	if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
316 		ret = -EUCLEAN;
317 		btrfs_err(fs_info,
318 			"block=%llu bad generation, have %llu expect > %llu",
319 			  eb->start, btrfs_header_generation(eb), last_trans);
320 		goto error;
321 	}
322 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
323 	return 0;
324 
325 error:
326 	btrfs_print_tree(eb, 0);
327 	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
328 		  eb->start);
329 	/*
330 	 * Be noisy if this is an extent buffer from a log tree. We don't abort
331 	 * a transaction in case there's a bad log tree extent buffer, we just
332 	 * fallback to a transaction commit. Still we want to know when there is
333 	 * a bad log tree extent buffer, as that may signal a bug somewhere.
334 	 */
335 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
336 		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
337 	return ret;
338 }
339 
check_tree_block_fsid(struct extent_buffer * eb)340 static bool check_tree_block_fsid(struct extent_buffer *eb)
341 {
342 	struct btrfs_fs_info *fs_info = eb->fs_info;
343 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
344 	u8 fsid[BTRFS_FSID_SIZE];
345 
346 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
347 			   BTRFS_FSID_SIZE);
348 
349 	/*
350 	 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
351 	 * This is then overwritten by metadata_uuid if it is present in the
352 	 * device_list_add(). The same true for a seed device as well. So use of
353 	 * fs_devices::metadata_uuid is appropriate here.
354 	 */
355 	if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
356 		return false;
357 
358 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
359 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
360 			return false;
361 
362 	return true;
363 }
364 
365 /* Do basic extent buffer checks at read time */
btrfs_validate_extent_buffer(struct extent_buffer * eb,const struct btrfs_tree_parent_check * check)366 int btrfs_validate_extent_buffer(struct extent_buffer *eb,
367 				 const struct btrfs_tree_parent_check *check)
368 {
369 	struct btrfs_fs_info *fs_info = eb->fs_info;
370 	u64 found_start;
371 	const u32 csum_size = fs_info->csum_size;
372 	u8 found_level;
373 	u8 result[BTRFS_CSUM_SIZE];
374 	const u8 *header_csum;
375 	int ret = 0;
376 	const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS);
377 
378 	ASSERT(check);
379 
380 	found_start = btrfs_header_bytenr(eb);
381 	if (unlikely(found_start != eb->start)) {
382 		btrfs_err_rl(fs_info,
383 			"bad tree block start, mirror %u want %llu have %llu",
384 			     eb->read_mirror, eb->start, found_start);
385 		ret = -EIO;
386 		goto out;
387 	}
388 	if (unlikely(check_tree_block_fsid(eb))) {
389 		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
390 			     eb->start, eb->read_mirror);
391 		ret = -EIO;
392 		goto out;
393 	}
394 	found_level = btrfs_header_level(eb);
395 	if (unlikely(found_level >= BTRFS_MAX_LEVEL)) {
396 		btrfs_err(fs_info,
397 			"bad tree block level, mirror %u level %d on logical %llu",
398 			eb->read_mirror, btrfs_header_level(eb), eb->start);
399 		ret = -EIO;
400 		goto out;
401 	}
402 
403 	csum_tree_block(eb, result);
404 	header_csum = folio_address(eb->folios[0]) +
405 		get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
406 
407 	if (memcmp(result, header_csum, csum_size) != 0) {
408 		btrfs_warn_rl(fs_info,
409 "checksum verify failed on logical %llu mirror %u wanted " BTRFS_CSUM_FMT " found " BTRFS_CSUM_FMT " level %d%s",
410 			      eb->start, eb->read_mirror,
411 			      BTRFS_CSUM_FMT_VALUE(csum_size, header_csum),
412 			      BTRFS_CSUM_FMT_VALUE(csum_size, result),
413 			      btrfs_header_level(eb),
414 			      ignore_csum ? ", ignored" : "");
415 		if (unlikely(!ignore_csum)) {
416 			ret = -EUCLEAN;
417 			goto out;
418 		}
419 	}
420 
421 	if (unlikely(found_level != check->level)) {
422 		btrfs_err(fs_info,
423 		"level verify failed on logical %llu mirror %u wanted %u found %u",
424 			  eb->start, eb->read_mirror, check->level, found_level);
425 		ret = -EIO;
426 		goto out;
427 	}
428 	if (unlikely(check->transid &&
429 		     btrfs_header_generation(eb) != check->transid)) {
430 		btrfs_err_rl(eb->fs_info,
431 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
432 				eb->start, eb->read_mirror, check->transid,
433 				btrfs_header_generation(eb));
434 		ret = -EIO;
435 		goto out;
436 	}
437 	if (check->has_first_key) {
438 		const struct btrfs_key *expect_key = &check->first_key;
439 		struct btrfs_key found_key;
440 
441 		if (found_level)
442 			btrfs_node_key_to_cpu(eb, &found_key, 0);
443 		else
444 			btrfs_item_key_to_cpu(eb, &found_key, 0);
445 		if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
446 			btrfs_err(fs_info,
447 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
448 				  eb->start, check->transid,
449 				  expect_key->objectid,
450 				  expect_key->type, expect_key->offset,
451 				  found_key.objectid, found_key.type,
452 				  found_key.offset);
453 			ret = -EUCLEAN;
454 			goto out;
455 		}
456 	}
457 	if (check->owner_root) {
458 		ret = btrfs_check_eb_owner(eb, check->owner_root);
459 		if (ret < 0)
460 			goto out;
461 	}
462 
463 	/* If this is a leaf block and it is corrupt, just return -EIO. */
464 	if (found_level == 0 && btrfs_check_leaf(eb))
465 		ret = -EIO;
466 
467 	if (found_level > 0 && btrfs_check_node(eb))
468 		ret = -EIO;
469 
470 	if (ret)
471 		btrfs_err(fs_info,
472 		"read time tree block corruption detected on logical %llu mirror %u",
473 			  eb->start, eb->read_mirror);
474 out:
475 	return ret;
476 }
477 
478 #ifdef CONFIG_MIGRATION
btree_migrate_folio(struct address_space * mapping,struct folio * dst,struct folio * src,enum migrate_mode mode)479 static int btree_migrate_folio(struct address_space *mapping,
480 		struct folio *dst, struct folio *src, enum migrate_mode mode)
481 {
482 	/*
483 	 * we can't safely write a btree page from here,
484 	 * we haven't done the locking hook
485 	 */
486 	if (folio_test_dirty(src))
487 		return -EAGAIN;
488 	/*
489 	 * Buffers may be managed in a filesystem specific way.
490 	 * We must have no buffers or drop them.
491 	 */
492 	if (folio_get_private(src) &&
493 	    !filemap_release_folio(src, GFP_KERNEL))
494 		return -EAGAIN;
495 	return migrate_folio(mapping, dst, src, mode);
496 }
497 #else
498 #define btree_migrate_folio NULL
499 #endif
500 
btree_release_folio(struct folio * folio,gfp_t gfp_flags)501 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
502 {
503 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
504 		return false;
505 
506 	return try_release_extent_buffer(folio);
507 }
508 
btree_invalidate_folio(struct folio * folio,size_t offset,size_t length)509 static void btree_invalidate_folio(struct folio *folio, size_t offset,
510 				 size_t length)
511 {
512 	struct extent_io_tree *tree;
513 
514 	tree = &folio_to_inode(folio)->io_tree;
515 	extent_invalidate_folio(tree, folio, offset);
516 	btree_release_folio(folio, GFP_NOFS);
517 	if (folio_get_private(folio)) {
518 		btrfs_warn(folio_to_fs_info(folio),
519 			   "folio private not zero on folio %llu",
520 			   (unsigned long long)folio_pos(folio));
521 		folio_detach_private(folio);
522 	}
523 }
524 
525 #ifdef DEBUG
btree_dirty_folio(struct address_space * mapping,struct folio * folio)526 static bool btree_dirty_folio(struct address_space *mapping,
527 		struct folio *folio)
528 {
529 	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
530 	struct btrfs_subpage_info *spi = fs_info->subpage_info;
531 	struct btrfs_subpage *subpage;
532 	struct extent_buffer *eb;
533 	int cur_bit = 0;
534 	u64 page_start = folio_pos(folio);
535 
536 	if (fs_info->sectorsize == PAGE_SIZE) {
537 		eb = folio_get_private(folio);
538 		BUG_ON(!eb);
539 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
540 		BUG_ON(!atomic_read(&eb->refs));
541 		btrfs_assert_tree_write_locked(eb);
542 		return filemap_dirty_folio(mapping, folio);
543 	}
544 
545 	ASSERT(spi);
546 	subpage = folio_get_private(folio);
547 
548 	for (cur_bit = spi->dirty_offset;
549 	     cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
550 	     cur_bit++) {
551 		unsigned long flags;
552 		u64 cur;
553 
554 		spin_lock_irqsave(&subpage->lock, flags);
555 		if (!test_bit(cur_bit, subpage->bitmaps)) {
556 			spin_unlock_irqrestore(&subpage->lock, flags);
557 			continue;
558 		}
559 		spin_unlock_irqrestore(&subpage->lock, flags);
560 		cur = page_start + cur_bit * fs_info->sectorsize;
561 
562 		eb = find_extent_buffer(fs_info, cur);
563 		ASSERT(eb);
564 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
565 		ASSERT(atomic_read(&eb->refs));
566 		btrfs_assert_tree_write_locked(eb);
567 		free_extent_buffer(eb);
568 
569 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
570 	}
571 	return filemap_dirty_folio(mapping, folio);
572 }
573 #else
574 #define btree_dirty_folio filemap_dirty_folio
575 #endif
576 
577 static const struct address_space_operations btree_aops = {
578 	.writepages	= btree_writepages,
579 	.release_folio	= btree_release_folio,
580 	.invalidate_folio = btree_invalidate_folio,
581 	.migrate_folio	= btree_migrate_folio,
582 	.dirty_folio	= btree_dirty_folio,
583 };
584 
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,int level)585 struct extent_buffer *btrfs_find_create_tree_block(
586 						struct btrfs_fs_info *fs_info,
587 						u64 bytenr, u64 owner_root,
588 						int level)
589 {
590 	if (btrfs_is_testing(fs_info))
591 		return alloc_test_extent_buffer(fs_info, bytenr);
592 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
593 }
594 
595 /*
596  * Read tree block at logical address @bytenr and do variant basic but critical
597  * verification.
598  *
599  * @check:		expected tree parentness check, see comments of the
600  *			structure for details.
601  */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,struct btrfs_tree_parent_check * check)602 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
603 				      struct btrfs_tree_parent_check *check)
604 {
605 	struct extent_buffer *buf = NULL;
606 	int ret;
607 
608 	ASSERT(check);
609 
610 	buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
611 					   check->level);
612 	if (IS_ERR(buf))
613 		return buf;
614 
615 	ret = btrfs_read_extent_buffer(buf, check);
616 	if (ret) {
617 		free_extent_buffer_stale(buf);
618 		return ERR_PTR(ret);
619 	}
620 	return buf;
621 
622 }
623 
btrfs_alloc_root(struct btrfs_fs_info * fs_info,u64 objectid,gfp_t flags)624 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
625 					   u64 objectid, gfp_t flags)
626 {
627 	struct btrfs_root *root;
628 
629 	root = kzalloc(sizeof(*root), flags);
630 	if (!root)
631 		return NULL;
632 
633 	root->fs_info = fs_info;
634 	root->root_key.objectid = objectid;
635 	RB_CLEAR_NODE(&root->rb_node);
636 
637 	xa_init(&root->inodes);
638 	xa_init(&root->delayed_nodes);
639 
640 	btrfs_init_root_block_rsv(root);
641 
642 	INIT_LIST_HEAD(&root->dirty_list);
643 	INIT_LIST_HEAD(&root->root_list);
644 	INIT_LIST_HEAD(&root->delalloc_inodes);
645 	INIT_LIST_HEAD(&root->delalloc_root);
646 	INIT_LIST_HEAD(&root->ordered_extents);
647 	INIT_LIST_HEAD(&root->ordered_root);
648 	INIT_LIST_HEAD(&root->reloc_dirty_list);
649 	spin_lock_init(&root->delalloc_lock);
650 	spin_lock_init(&root->ordered_extent_lock);
651 	spin_lock_init(&root->accounting_lock);
652 	spin_lock_init(&root->qgroup_meta_rsv_lock);
653 	mutex_init(&root->objectid_mutex);
654 	mutex_init(&root->log_mutex);
655 	mutex_init(&root->ordered_extent_mutex);
656 	mutex_init(&root->delalloc_mutex);
657 	init_waitqueue_head(&root->qgroup_flush_wait);
658 	init_waitqueue_head(&root->log_writer_wait);
659 	init_waitqueue_head(&root->log_commit_wait[0]);
660 	init_waitqueue_head(&root->log_commit_wait[1]);
661 	INIT_LIST_HEAD(&root->log_ctxs[0]);
662 	INIT_LIST_HEAD(&root->log_ctxs[1]);
663 	atomic_set(&root->log_commit[0], 0);
664 	atomic_set(&root->log_commit[1], 0);
665 	atomic_set(&root->log_writers, 0);
666 	atomic_set(&root->log_batch, 0);
667 	refcount_set(&root->refs, 1);
668 	atomic_set(&root->snapshot_force_cow, 0);
669 	atomic_set(&root->nr_swapfiles, 0);
670 	root->log_transid_committed = -1;
671 	if (!btrfs_is_testing(fs_info)) {
672 		btrfs_extent_io_tree_init(fs_info, &root->dirty_log_pages,
673 					  IO_TREE_ROOT_DIRTY_LOG_PAGES);
674 		btrfs_extent_io_tree_init(fs_info, &root->log_csum_range,
675 					  IO_TREE_LOG_CSUM_RANGE);
676 	}
677 
678 	spin_lock_init(&root->root_item_lock);
679 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
680 #ifdef CONFIG_BTRFS_DEBUG
681 	INIT_LIST_HEAD(&root->leak_list);
682 	spin_lock(&fs_info->fs_roots_radix_lock);
683 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
684 	spin_unlock(&fs_info->fs_roots_radix_lock);
685 #endif
686 
687 	return root;
688 }
689 
690 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
691 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)692 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
693 {
694 	struct btrfs_root *root;
695 
696 	if (!fs_info)
697 		return ERR_PTR(-EINVAL);
698 
699 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
700 	if (!root)
701 		return ERR_PTR(-ENOMEM);
702 
703 	/* We don't use the stripesize in selftest, set it as sectorsize */
704 	root->alloc_bytenr = 0;
705 
706 	return root;
707 }
708 #endif
709 
global_root_cmp(struct rb_node * a_node,const struct rb_node * b_node)710 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
711 {
712 	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
713 	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
714 
715 	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
716 }
717 
global_root_key_cmp(const void * k,const struct rb_node * node)718 static int global_root_key_cmp(const void *k, const struct rb_node *node)
719 {
720 	const struct btrfs_key *key = k;
721 	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
722 
723 	return btrfs_comp_cpu_keys(key, &root->root_key);
724 }
725 
btrfs_global_root_insert(struct btrfs_root * root)726 int btrfs_global_root_insert(struct btrfs_root *root)
727 {
728 	struct btrfs_fs_info *fs_info = root->fs_info;
729 	struct rb_node *tmp;
730 	int ret = 0;
731 
732 	write_lock(&fs_info->global_root_lock);
733 	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
734 	write_unlock(&fs_info->global_root_lock);
735 
736 	if (tmp) {
737 		ret = -EEXIST;
738 		btrfs_warn(fs_info, "global root %llu %llu already exists",
739 			   btrfs_root_id(root), root->root_key.offset);
740 	}
741 	return ret;
742 }
743 
btrfs_global_root_delete(struct btrfs_root * root)744 void btrfs_global_root_delete(struct btrfs_root *root)
745 {
746 	struct btrfs_fs_info *fs_info = root->fs_info;
747 
748 	write_lock(&fs_info->global_root_lock);
749 	rb_erase(&root->rb_node, &fs_info->global_root_tree);
750 	write_unlock(&fs_info->global_root_lock);
751 }
752 
btrfs_global_root(struct btrfs_fs_info * fs_info,struct btrfs_key * key)753 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
754 				     struct btrfs_key *key)
755 {
756 	struct rb_node *node;
757 	struct btrfs_root *root = NULL;
758 
759 	read_lock(&fs_info->global_root_lock);
760 	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
761 	if (node)
762 		root = container_of(node, struct btrfs_root, rb_node);
763 	read_unlock(&fs_info->global_root_lock);
764 
765 	return root;
766 }
767 
btrfs_global_root_id(struct btrfs_fs_info * fs_info,u64 bytenr)768 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
769 {
770 	struct btrfs_block_group *block_group;
771 	u64 ret;
772 
773 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
774 		return 0;
775 
776 	if (bytenr)
777 		block_group = btrfs_lookup_block_group(fs_info, bytenr);
778 	else
779 		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
780 	ASSERT(block_group);
781 	if (!block_group)
782 		return 0;
783 	ret = block_group->global_root_id;
784 	btrfs_put_block_group(block_group);
785 
786 	return ret;
787 }
788 
btrfs_csum_root(struct btrfs_fs_info * fs_info,u64 bytenr)789 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
790 {
791 	struct btrfs_key key = {
792 		.objectid = BTRFS_CSUM_TREE_OBJECTID,
793 		.type = BTRFS_ROOT_ITEM_KEY,
794 		.offset = btrfs_global_root_id(fs_info, bytenr),
795 	};
796 
797 	return btrfs_global_root(fs_info, &key);
798 }
799 
btrfs_extent_root(struct btrfs_fs_info * fs_info,u64 bytenr)800 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
801 {
802 	struct btrfs_key key = {
803 		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
804 		.type = BTRFS_ROOT_ITEM_KEY,
805 		.offset = btrfs_global_root_id(fs_info, bytenr),
806 	};
807 
808 	return btrfs_global_root(fs_info, &key);
809 }
810 
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)811 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
812 				     u64 objectid)
813 {
814 	struct btrfs_fs_info *fs_info = trans->fs_info;
815 	struct extent_buffer *leaf;
816 	struct btrfs_root *tree_root = fs_info->tree_root;
817 	struct btrfs_root *root;
818 	struct btrfs_key key;
819 	unsigned int nofs_flag;
820 	int ret = 0;
821 
822 	/*
823 	 * We're holding a transaction handle, so use a NOFS memory allocation
824 	 * context to avoid deadlock if reclaim happens.
825 	 */
826 	nofs_flag = memalloc_nofs_save();
827 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
828 	memalloc_nofs_restore(nofs_flag);
829 	if (!root)
830 		return ERR_PTR(-ENOMEM);
831 
832 	root->root_key.objectid = objectid;
833 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
834 	root->root_key.offset = 0;
835 
836 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
837 				      0, BTRFS_NESTING_NORMAL);
838 	if (IS_ERR(leaf)) {
839 		ret = PTR_ERR(leaf);
840 		leaf = NULL;
841 		goto fail;
842 	}
843 
844 	root->node = leaf;
845 	btrfs_mark_buffer_dirty(trans, leaf);
846 
847 	root->commit_root = btrfs_root_node(root);
848 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
849 
850 	btrfs_set_root_flags(&root->root_item, 0);
851 	btrfs_set_root_limit(&root->root_item, 0);
852 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
853 	btrfs_set_root_generation(&root->root_item, trans->transid);
854 	btrfs_set_root_level(&root->root_item, 0);
855 	btrfs_set_root_refs(&root->root_item, 1);
856 	btrfs_set_root_used(&root->root_item, leaf->len);
857 	btrfs_set_root_last_snapshot(&root->root_item, 0);
858 	btrfs_set_root_dirid(&root->root_item, 0);
859 	if (btrfs_is_fstree(objectid))
860 		generate_random_guid(root->root_item.uuid);
861 	else
862 		export_guid(root->root_item.uuid, &guid_null);
863 	btrfs_set_root_drop_level(&root->root_item, 0);
864 
865 	btrfs_tree_unlock(leaf);
866 
867 	key.objectid = objectid;
868 	key.type = BTRFS_ROOT_ITEM_KEY;
869 	key.offset = 0;
870 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
871 	if (ret)
872 		goto fail;
873 
874 	return root;
875 
876 fail:
877 	btrfs_put_root(root);
878 
879 	return ERR_PTR(ret);
880 }
881 
alloc_log_tree(struct btrfs_fs_info * fs_info)882 static struct btrfs_root *alloc_log_tree(struct btrfs_fs_info *fs_info)
883 {
884 	struct btrfs_root *root;
885 
886 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
887 	if (!root)
888 		return ERR_PTR(-ENOMEM);
889 
890 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
891 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
892 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
893 
894 	return root;
895 }
896 
btrfs_alloc_log_tree_node(struct btrfs_trans_handle * trans,struct btrfs_root * root)897 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
898 			      struct btrfs_root *root)
899 {
900 	struct extent_buffer *leaf;
901 
902 	/*
903 	 * DON'T set SHAREABLE bit for log trees.
904 	 *
905 	 * Log trees are not exposed to user space thus can't be snapshotted,
906 	 * and they go away before a real commit is actually done.
907 	 *
908 	 * They do store pointers to file data extents, and those reference
909 	 * counts still get updated (along with back refs to the log tree).
910 	 */
911 
912 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
913 			NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
914 	if (IS_ERR(leaf))
915 		return PTR_ERR(leaf);
916 
917 	root->node = leaf;
918 
919 	btrfs_mark_buffer_dirty(trans, root->node);
920 	btrfs_tree_unlock(root->node);
921 
922 	return 0;
923 }
924 
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)925 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
926 			     struct btrfs_fs_info *fs_info)
927 {
928 	struct btrfs_root *log_root;
929 
930 	log_root = alloc_log_tree(fs_info);
931 	if (IS_ERR(log_root))
932 		return PTR_ERR(log_root);
933 
934 	if (!btrfs_is_zoned(fs_info)) {
935 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
936 
937 		if (ret) {
938 			btrfs_put_root(log_root);
939 			return ret;
940 		}
941 	}
942 
943 	WARN_ON(fs_info->log_root_tree);
944 	fs_info->log_root_tree = log_root;
945 	return 0;
946 }
947 
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)948 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
949 		       struct btrfs_root *root)
950 {
951 	struct btrfs_fs_info *fs_info = root->fs_info;
952 	struct btrfs_root *log_root;
953 	struct btrfs_inode_item *inode_item;
954 	int ret;
955 
956 	log_root = alloc_log_tree(fs_info);
957 	if (IS_ERR(log_root))
958 		return PTR_ERR(log_root);
959 
960 	ret = btrfs_alloc_log_tree_node(trans, log_root);
961 	if (ret) {
962 		btrfs_put_root(log_root);
963 		return ret;
964 	}
965 
966 	btrfs_set_root_last_trans(log_root, trans->transid);
967 	log_root->root_key.offset = btrfs_root_id(root);
968 
969 	inode_item = &log_root->root_item.inode;
970 	btrfs_set_stack_inode_generation(inode_item, 1);
971 	btrfs_set_stack_inode_size(inode_item, 3);
972 	btrfs_set_stack_inode_nlink(inode_item, 1);
973 	btrfs_set_stack_inode_nbytes(inode_item,
974 				     fs_info->nodesize);
975 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
976 
977 	btrfs_set_root_node(&log_root->root_item, log_root->node);
978 
979 	WARN_ON(root->log_root);
980 	root->log_root = log_root;
981 	btrfs_set_root_log_transid(root, 0);
982 	root->log_transid_committed = -1;
983 	btrfs_set_root_last_log_commit(root, 0);
984 	return 0;
985 }
986 
read_tree_root_path(struct btrfs_root * tree_root,struct btrfs_path * path,const struct btrfs_key * key)987 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
988 					      struct btrfs_path *path,
989 					      const struct btrfs_key *key)
990 {
991 	struct btrfs_root *root;
992 	struct btrfs_tree_parent_check check = { 0 };
993 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
994 	u64 generation;
995 	int ret;
996 	int level;
997 
998 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
999 	if (!root)
1000 		return ERR_PTR(-ENOMEM);
1001 
1002 	ret = btrfs_find_root(tree_root, key, path,
1003 			      &root->root_item, &root->root_key);
1004 	if (ret) {
1005 		if (ret > 0)
1006 			ret = -ENOENT;
1007 		goto fail;
1008 	}
1009 
1010 	generation = btrfs_root_generation(&root->root_item);
1011 	level = btrfs_root_level(&root->root_item);
1012 	check.level = level;
1013 	check.transid = generation;
1014 	check.owner_root = key->objectid;
1015 	root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1016 				     &check);
1017 	if (IS_ERR(root->node)) {
1018 		ret = PTR_ERR(root->node);
1019 		root->node = NULL;
1020 		goto fail;
1021 	}
1022 	if (unlikely(!btrfs_buffer_uptodate(root->node, generation, false))) {
1023 		ret = -EIO;
1024 		goto fail;
1025 	}
1026 
1027 	/*
1028 	 * For real fs, and not log/reloc trees, root owner must
1029 	 * match its root node owner
1030 	 */
1031 	if (unlikely(!btrfs_is_testing(fs_info) &&
1032 		     btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1033 		     btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
1034 		     btrfs_root_id(root) != btrfs_header_owner(root->node))) {
1035 		btrfs_crit(fs_info,
1036 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1037 			   btrfs_root_id(root), root->node->start,
1038 			   btrfs_header_owner(root->node),
1039 			   btrfs_root_id(root));
1040 		ret = -EUCLEAN;
1041 		goto fail;
1042 	}
1043 	root->commit_root = btrfs_root_node(root);
1044 	return root;
1045 fail:
1046 	btrfs_put_root(root);
1047 	return ERR_PTR(ret);
1048 }
1049 
btrfs_read_tree_root(struct btrfs_root * tree_root,const struct btrfs_key * key)1050 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1051 					const struct btrfs_key *key)
1052 {
1053 	struct btrfs_root *root;
1054 	BTRFS_PATH_AUTO_FREE(path);
1055 
1056 	path = btrfs_alloc_path();
1057 	if (!path)
1058 		return ERR_PTR(-ENOMEM);
1059 	root = read_tree_root_path(tree_root, path, key);
1060 
1061 	return root;
1062 }
1063 
1064 /*
1065  * Initialize subvolume root in-memory structure.
1066  *
1067  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1068  *
1069  * In case of failure the caller is responsible to call btrfs_free_fs_root()
1070  */
btrfs_init_fs_root(struct btrfs_root * root,dev_t anon_dev)1071 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1072 {
1073 	int ret;
1074 
1075 	btrfs_drew_lock_init(&root->snapshot_lock);
1076 
1077 	if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1078 	    !btrfs_is_data_reloc_root(root) &&
1079 	    btrfs_is_fstree(btrfs_root_id(root))) {
1080 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1081 		btrfs_check_and_init_root_item(&root->root_item);
1082 	}
1083 
1084 	/*
1085 	 * Don't assign anonymous block device to roots that are not exposed to
1086 	 * userspace, the id pool is limited to 1M
1087 	 */
1088 	if (btrfs_is_fstree(btrfs_root_id(root)) &&
1089 	    btrfs_root_refs(&root->root_item) > 0) {
1090 		if (!anon_dev) {
1091 			ret = get_anon_bdev(&root->anon_dev);
1092 			if (ret)
1093 				return ret;
1094 		} else {
1095 			root->anon_dev = anon_dev;
1096 		}
1097 	}
1098 
1099 	mutex_lock(&root->objectid_mutex);
1100 	ret = btrfs_init_root_free_objectid(root);
1101 	if (ret) {
1102 		mutex_unlock(&root->objectid_mutex);
1103 		return ret;
1104 	}
1105 
1106 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1107 
1108 	mutex_unlock(&root->objectid_mutex);
1109 
1110 	return 0;
1111 }
1112 
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1113 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1114 					       u64 root_id)
1115 {
1116 	struct btrfs_root *root;
1117 
1118 	spin_lock(&fs_info->fs_roots_radix_lock);
1119 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1120 				 (unsigned long)root_id);
1121 	root = btrfs_grab_root(root);
1122 	spin_unlock(&fs_info->fs_roots_radix_lock);
1123 	return root;
1124 }
1125 
btrfs_get_global_root(struct btrfs_fs_info * fs_info,u64 objectid)1126 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1127 						u64 objectid)
1128 {
1129 	struct btrfs_key key = {
1130 		.objectid = objectid,
1131 		.type = BTRFS_ROOT_ITEM_KEY,
1132 		.offset = 0,
1133 	};
1134 
1135 	switch (objectid) {
1136 	case BTRFS_ROOT_TREE_OBJECTID:
1137 		return btrfs_grab_root(fs_info->tree_root);
1138 	case BTRFS_EXTENT_TREE_OBJECTID:
1139 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1140 	case BTRFS_CHUNK_TREE_OBJECTID:
1141 		return btrfs_grab_root(fs_info->chunk_root);
1142 	case BTRFS_DEV_TREE_OBJECTID:
1143 		return btrfs_grab_root(fs_info->dev_root);
1144 	case BTRFS_CSUM_TREE_OBJECTID:
1145 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1146 	case BTRFS_QUOTA_TREE_OBJECTID:
1147 		return btrfs_grab_root(fs_info->quota_root);
1148 	case BTRFS_UUID_TREE_OBJECTID:
1149 		return btrfs_grab_root(fs_info->uuid_root);
1150 	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1151 		return btrfs_grab_root(fs_info->block_group_root);
1152 	case BTRFS_FREE_SPACE_TREE_OBJECTID:
1153 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1154 	case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1155 		return btrfs_grab_root(fs_info->stripe_root);
1156 	default:
1157 		return NULL;
1158 	}
1159 }
1160 
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1161 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1162 			 struct btrfs_root *root)
1163 {
1164 	int ret;
1165 
1166 	ret = radix_tree_preload(GFP_NOFS);
1167 	if (ret)
1168 		return ret;
1169 
1170 	spin_lock(&fs_info->fs_roots_radix_lock);
1171 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1172 				(unsigned long)btrfs_root_id(root),
1173 				root);
1174 	if (ret == 0) {
1175 		btrfs_grab_root(root);
1176 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1177 	}
1178 	spin_unlock(&fs_info->fs_roots_radix_lock);
1179 	radix_tree_preload_end();
1180 
1181 	return ret;
1182 }
1183 
btrfs_check_leaked_roots(const struct btrfs_fs_info * fs_info)1184 void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info)
1185 {
1186 #ifdef CONFIG_BTRFS_DEBUG
1187 	struct btrfs_root *root;
1188 
1189 	while (!list_empty(&fs_info->allocated_roots)) {
1190 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1191 
1192 		root = list_first_entry(&fs_info->allocated_roots,
1193 					struct btrfs_root, leak_list);
1194 		btrfs_err(fs_info, "leaked root %s refcount %d",
1195 			  btrfs_root_name(&root->root_key, buf),
1196 			  refcount_read(&root->refs));
1197 		WARN_ON_ONCE(1);
1198 		while (refcount_read(&root->refs) > 1)
1199 			btrfs_put_root(root);
1200 		btrfs_put_root(root);
1201 	}
1202 #endif
1203 }
1204 
free_global_roots(struct btrfs_fs_info * fs_info)1205 static void free_global_roots(struct btrfs_fs_info *fs_info)
1206 {
1207 	struct btrfs_root *root;
1208 	struct rb_node *node;
1209 
1210 	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1211 		root = rb_entry(node, struct btrfs_root, rb_node);
1212 		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1213 		btrfs_put_root(root);
1214 	}
1215 }
1216 
btrfs_free_fs_info(struct btrfs_fs_info * fs_info)1217 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1218 {
1219 	struct percpu_counter *em_counter = &fs_info->evictable_extent_maps;
1220 
1221 	if (fs_info->fs_devices)
1222 		btrfs_close_devices(fs_info->fs_devices);
1223 	btrfs_free_compress_wsm(fs_info);
1224 	percpu_counter_destroy(&fs_info->stats_read_blocks);
1225 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1226 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1227 	percpu_counter_destroy(&fs_info->ordered_bytes);
1228 	if (percpu_counter_initialized(em_counter))
1229 		ASSERT(percpu_counter_sum_positive(em_counter) == 0);
1230 	percpu_counter_destroy(em_counter);
1231 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1232 	btrfs_free_csum_hash(fs_info);
1233 	btrfs_free_stripe_hash_table(fs_info);
1234 	btrfs_free_ref_cache(fs_info);
1235 	kfree(fs_info->balance_ctl);
1236 	kfree(fs_info->delayed_root);
1237 	free_global_roots(fs_info);
1238 	btrfs_put_root(fs_info->tree_root);
1239 	btrfs_put_root(fs_info->chunk_root);
1240 	btrfs_put_root(fs_info->dev_root);
1241 	btrfs_put_root(fs_info->quota_root);
1242 	btrfs_put_root(fs_info->uuid_root);
1243 	btrfs_put_root(fs_info->fs_root);
1244 	btrfs_put_root(fs_info->data_reloc_root);
1245 	btrfs_put_root(fs_info->block_group_root);
1246 	btrfs_put_root(fs_info->stripe_root);
1247 	btrfs_check_leaked_roots(fs_info);
1248 	btrfs_extent_buffer_leak_debug_check(fs_info);
1249 	kfree(fs_info->super_copy);
1250 	kfree(fs_info->super_for_commit);
1251 	kvfree(fs_info);
1252 }
1253 
1254 
1255 /*
1256  * Get an in-memory reference of a root structure.
1257  *
1258  * For essential trees like root/extent tree, we grab it from fs_info directly.
1259  * For subvolume trees, we check the cached filesystem roots first. If not
1260  * found, then read it from disk and add it to cached fs roots.
1261  *
1262  * Caller should release the root by calling btrfs_put_root() after the usage.
1263  *
1264  * NOTE: Reloc and log trees can't be read by this function as they share the
1265  *	 same root objectid.
1266  *
1267  * @objectid:	root id
1268  * @anon_dev:	preallocated anonymous block device number for new roots,
1269  *		pass NULL for a new allocation.
1270  * @check_ref:	whether to check root item references, If true, return -ENOENT
1271  *		for orphan roots
1272  */
btrfs_get_root_ref(struct btrfs_fs_info * fs_info,u64 objectid,dev_t * anon_dev,bool check_ref)1273 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1274 					     u64 objectid, dev_t *anon_dev,
1275 					     bool check_ref)
1276 {
1277 	struct btrfs_root *root;
1278 	struct btrfs_path *path;
1279 	struct btrfs_key key;
1280 	int ret;
1281 
1282 	root = btrfs_get_global_root(fs_info, objectid);
1283 	if (root)
1284 		return root;
1285 
1286 	/*
1287 	 * If we're called for non-subvolume trees, and above function didn't
1288 	 * find one, do not try to read it from disk.
1289 	 *
1290 	 * This is namely for free-space-tree and quota tree, which can change
1291 	 * at runtime and should only be grabbed from fs_info.
1292 	 */
1293 	if (!btrfs_is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1294 		return ERR_PTR(-ENOENT);
1295 again:
1296 	root = btrfs_lookup_fs_root(fs_info, objectid);
1297 	if (root) {
1298 		/*
1299 		 * Some other caller may have read out the newly inserted
1300 		 * subvolume already (for things like backref walk etc).  Not
1301 		 * that common but still possible.  In that case, we just need
1302 		 * to free the anon_dev.
1303 		 */
1304 		if (unlikely(anon_dev && *anon_dev)) {
1305 			free_anon_bdev(*anon_dev);
1306 			*anon_dev = 0;
1307 		}
1308 
1309 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1310 			btrfs_put_root(root);
1311 			return ERR_PTR(-ENOENT);
1312 		}
1313 		return root;
1314 	}
1315 
1316 	key.objectid = objectid;
1317 	key.type = BTRFS_ROOT_ITEM_KEY;
1318 	key.offset = (u64)-1;
1319 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1320 	if (IS_ERR(root))
1321 		return root;
1322 
1323 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1324 		ret = -ENOENT;
1325 		goto fail;
1326 	}
1327 
1328 	ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
1329 	if (ret)
1330 		goto fail;
1331 
1332 	path = btrfs_alloc_path();
1333 	if (!path) {
1334 		ret = -ENOMEM;
1335 		goto fail;
1336 	}
1337 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1338 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1339 	key.offset = objectid;
1340 
1341 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1342 	btrfs_free_path(path);
1343 	if (ret < 0)
1344 		goto fail;
1345 	if (ret == 0)
1346 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1347 
1348 	ret = btrfs_insert_fs_root(fs_info, root);
1349 	if (ret) {
1350 		if (ret == -EEXIST) {
1351 			btrfs_put_root(root);
1352 			goto again;
1353 		}
1354 		goto fail;
1355 	}
1356 	return root;
1357 fail:
1358 	/*
1359 	 * If our caller provided us an anonymous device, then it's his
1360 	 * responsibility to free it in case we fail. So we have to set our
1361 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1362 	 * and once again by our caller.
1363 	 */
1364 	if (anon_dev && *anon_dev)
1365 		root->anon_dev = 0;
1366 	btrfs_put_root(root);
1367 	return ERR_PTR(ret);
1368 }
1369 
1370 /*
1371  * Get in-memory reference of a root structure
1372  *
1373  * @objectid:	tree objectid
1374  * @check_ref:	if set, verify that the tree exists and the item has at least
1375  *		one reference
1376  */
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,bool check_ref)1377 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1378 				     u64 objectid, bool check_ref)
1379 {
1380 	return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
1381 }
1382 
1383 /*
1384  * Get in-memory reference of a root structure, created as new, optionally pass
1385  * the anonymous block device id
1386  *
1387  * @objectid:	tree objectid
1388  * @anon_dev:	if NULL, allocate a new anonymous block device or use the
1389  *		parameter value if not NULL
1390  */
btrfs_get_new_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,dev_t * anon_dev)1391 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1392 					 u64 objectid, dev_t *anon_dev)
1393 {
1394 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1395 }
1396 
1397 /*
1398  * Return a root for the given objectid.
1399  *
1400  * @fs_info:	the fs_info
1401  * @objectid:	the objectid we need to lookup
1402  *
1403  * This is exclusively used for backref walking, and exists specifically because
1404  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1405  * creation time, which means we may have to read the tree_root in order to look
1406  * up a fs root that is not in memory.  If the root is not in memory we will
1407  * read the tree root commit root and look up the fs root from there.  This is a
1408  * temporary root, it will not be inserted into the radix tree as it doesn't
1409  * have the most uptodate information, it'll simply be discarded once the
1410  * backref code is finished using the root.
1411  */
btrfs_get_fs_root_commit_root(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 objectid)1412 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1413 						 struct btrfs_path *path,
1414 						 u64 objectid)
1415 {
1416 	struct btrfs_root *root;
1417 	struct btrfs_key key;
1418 
1419 	ASSERT(path->search_commit_root && path->skip_locking);
1420 
1421 	/*
1422 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1423 	 * since this is called via the backref walking code we won't be looking
1424 	 * up a root that doesn't exist, unless there's corruption.  So if root
1425 	 * != NULL just return it.
1426 	 */
1427 	root = btrfs_get_global_root(fs_info, objectid);
1428 	if (root)
1429 		return root;
1430 
1431 	root = btrfs_lookup_fs_root(fs_info, objectid);
1432 	if (root)
1433 		return root;
1434 
1435 	key.objectid = objectid;
1436 	key.type = BTRFS_ROOT_ITEM_KEY;
1437 	key.offset = (u64)-1;
1438 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1439 	btrfs_release_path(path);
1440 
1441 	return root;
1442 }
1443 
cleaner_kthread(void * arg)1444 static int cleaner_kthread(void *arg)
1445 {
1446 	struct btrfs_fs_info *fs_info = arg;
1447 	int again;
1448 
1449 	while (1) {
1450 		again = 0;
1451 
1452 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1453 
1454 		/* Make the cleaner go to sleep early. */
1455 		if (btrfs_need_cleaner_sleep(fs_info))
1456 			goto sleep;
1457 
1458 		/*
1459 		 * Do not do anything if we might cause open_ctree() to block
1460 		 * before we have finished mounting the filesystem.
1461 		 */
1462 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1463 			goto sleep;
1464 
1465 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1466 			goto sleep;
1467 
1468 		/*
1469 		 * Avoid the problem that we change the status of the fs
1470 		 * during the above check and trylock.
1471 		 */
1472 		if (btrfs_need_cleaner_sleep(fs_info)) {
1473 			mutex_unlock(&fs_info->cleaner_mutex);
1474 			goto sleep;
1475 		}
1476 
1477 		if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1478 			btrfs_sysfs_feature_update(fs_info);
1479 
1480 		btrfs_run_delayed_iputs(fs_info);
1481 
1482 		again = btrfs_clean_one_deleted_snapshot(fs_info);
1483 		mutex_unlock(&fs_info->cleaner_mutex);
1484 
1485 		/*
1486 		 * The defragger has dealt with the R/O remount and umount,
1487 		 * needn't do anything special here.
1488 		 */
1489 		btrfs_run_defrag_inodes(fs_info);
1490 
1491 		/*
1492 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1493 		 * with relocation (btrfs_relocate_chunk) and relocation
1494 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1495 		 * after acquiring fs_info->reclaim_bgs_lock. So we
1496 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1497 		 * unused block groups.
1498 		 */
1499 		btrfs_delete_unused_bgs(fs_info);
1500 
1501 		/*
1502 		 * Reclaim block groups in the reclaim_bgs list after we deleted
1503 		 * all unused block_groups. This possibly gives us some more free
1504 		 * space.
1505 		 */
1506 		btrfs_reclaim_bgs(fs_info);
1507 sleep:
1508 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1509 		if (kthread_should_park())
1510 			kthread_parkme();
1511 		if (kthread_should_stop())
1512 			return 0;
1513 		if (!again) {
1514 			set_current_state(TASK_INTERRUPTIBLE);
1515 			schedule();
1516 			__set_current_state(TASK_RUNNING);
1517 		}
1518 	}
1519 }
1520 
transaction_kthread(void * arg)1521 static int transaction_kthread(void *arg)
1522 {
1523 	struct btrfs_root *root = arg;
1524 	struct btrfs_fs_info *fs_info = root->fs_info;
1525 	struct btrfs_trans_handle *trans;
1526 	struct btrfs_transaction *cur;
1527 	u64 transid;
1528 	time64_t delta;
1529 	unsigned long delay;
1530 	bool cannot_commit;
1531 
1532 	do {
1533 		cannot_commit = false;
1534 		delay = secs_to_jiffies(fs_info->commit_interval);
1535 		mutex_lock(&fs_info->transaction_kthread_mutex);
1536 
1537 		spin_lock(&fs_info->trans_lock);
1538 		cur = fs_info->running_transaction;
1539 		if (!cur) {
1540 			spin_unlock(&fs_info->trans_lock);
1541 			goto sleep;
1542 		}
1543 
1544 		delta = ktime_get_seconds() - cur->start_time;
1545 		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1546 		    cur->state < TRANS_STATE_COMMIT_PREP &&
1547 		    delta < fs_info->commit_interval) {
1548 			spin_unlock(&fs_info->trans_lock);
1549 			delay -= secs_to_jiffies(delta - 1);
1550 			delay = min(delay,
1551 				    secs_to_jiffies(fs_info->commit_interval));
1552 			goto sleep;
1553 		}
1554 		transid = cur->transid;
1555 		spin_unlock(&fs_info->trans_lock);
1556 
1557 		/* If the file system is aborted, this will always fail. */
1558 		trans = btrfs_attach_transaction(root);
1559 		if (IS_ERR(trans)) {
1560 			if (PTR_ERR(trans) != -ENOENT)
1561 				cannot_commit = true;
1562 			goto sleep;
1563 		}
1564 		if (transid == trans->transid) {
1565 			btrfs_commit_transaction(trans);
1566 		} else {
1567 			btrfs_end_transaction(trans);
1568 		}
1569 sleep:
1570 		wake_up_process(fs_info->cleaner_kthread);
1571 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1572 
1573 		if (BTRFS_FS_ERROR(fs_info))
1574 			btrfs_cleanup_transaction(fs_info);
1575 		if (!kthread_should_stop() &&
1576 				(!btrfs_transaction_blocked(fs_info) ||
1577 				 cannot_commit))
1578 			schedule_timeout_interruptible(delay);
1579 	} while (!kthread_should_stop());
1580 	return 0;
1581 }
1582 
1583 /*
1584  * This will find the highest generation in the array of root backups.  The
1585  * index of the highest array is returned, or -EINVAL if we can't find
1586  * anything.
1587  *
1588  * We check to make sure the array is valid by comparing the
1589  * generation of the latest  root in the array with the generation
1590  * in the super block.  If they don't match we pitch it.
1591  */
find_newest_super_backup(struct btrfs_fs_info * info)1592 static int find_newest_super_backup(struct btrfs_fs_info *info)
1593 {
1594 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1595 	u64 cur;
1596 	struct btrfs_root_backup *root_backup;
1597 	int i;
1598 
1599 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1600 		root_backup = info->super_copy->super_roots + i;
1601 		cur = btrfs_backup_tree_root_gen(root_backup);
1602 		if (cur == newest_gen)
1603 			return i;
1604 	}
1605 
1606 	return -EINVAL;
1607 }
1608 
1609 /*
1610  * copy all the root pointers into the super backup array.
1611  * this will bump the backup pointer by one when it is
1612  * done
1613  */
backup_super_roots(struct btrfs_fs_info * info)1614 static void backup_super_roots(struct btrfs_fs_info *info)
1615 {
1616 	const int next_backup = info->backup_root_index;
1617 	struct btrfs_root_backup *root_backup;
1618 
1619 	root_backup = info->super_for_commit->super_roots + next_backup;
1620 
1621 	/*
1622 	 * make sure all of our padding and empty slots get zero filled
1623 	 * regardless of which ones we use today
1624 	 */
1625 	memset(root_backup, 0, sizeof(*root_backup));
1626 
1627 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1628 
1629 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1630 	btrfs_set_backup_tree_root_gen(root_backup,
1631 			       btrfs_header_generation(info->tree_root->node));
1632 
1633 	btrfs_set_backup_tree_root_level(root_backup,
1634 			       btrfs_header_level(info->tree_root->node));
1635 
1636 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1637 	btrfs_set_backup_chunk_root_gen(root_backup,
1638 			       btrfs_header_generation(info->chunk_root->node));
1639 	btrfs_set_backup_chunk_root_level(root_backup,
1640 			       btrfs_header_level(info->chunk_root->node));
1641 
1642 	if (!btrfs_fs_incompat(info, EXTENT_TREE_V2)) {
1643 		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1644 		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1645 
1646 		btrfs_set_backup_extent_root(root_backup,
1647 					     extent_root->node->start);
1648 		btrfs_set_backup_extent_root_gen(root_backup,
1649 				btrfs_header_generation(extent_root->node));
1650 		btrfs_set_backup_extent_root_level(root_backup,
1651 					btrfs_header_level(extent_root->node));
1652 
1653 		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1654 		btrfs_set_backup_csum_root_gen(root_backup,
1655 					       btrfs_header_generation(csum_root->node));
1656 		btrfs_set_backup_csum_root_level(root_backup,
1657 						 btrfs_header_level(csum_root->node));
1658 	}
1659 
1660 	/*
1661 	 * we might commit during log recovery, which happens before we set
1662 	 * the fs_root.  Make sure it is valid before we fill it in.
1663 	 */
1664 	if (info->fs_root && info->fs_root->node) {
1665 		btrfs_set_backup_fs_root(root_backup,
1666 					 info->fs_root->node->start);
1667 		btrfs_set_backup_fs_root_gen(root_backup,
1668 			       btrfs_header_generation(info->fs_root->node));
1669 		btrfs_set_backup_fs_root_level(root_backup,
1670 			       btrfs_header_level(info->fs_root->node));
1671 	}
1672 
1673 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1674 	btrfs_set_backup_dev_root_gen(root_backup,
1675 			       btrfs_header_generation(info->dev_root->node));
1676 	btrfs_set_backup_dev_root_level(root_backup,
1677 				       btrfs_header_level(info->dev_root->node));
1678 
1679 	btrfs_set_backup_total_bytes(root_backup,
1680 			     btrfs_super_total_bytes(info->super_copy));
1681 	btrfs_set_backup_bytes_used(root_backup,
1682 			     btrfs_super_bytes_used(info->super_copy));
1683 	btrfs_set_backup_num_devices(root_backup,
1684 			     btrfs_super_num_devices(info->super_copy));
1685 
1686 	/*
1687 	 * if we don't copy this out to the super_copy, it won't get remembered
1688 	 * for the next commit
1689 	 */
1690 	memcpy(&info->super_copy->super_roots,
1691 	       &info->super_for_commit->super_roots,
1692 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1693 }
1694 
1695 /*
1696  * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1697  * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1698  *
1699  * @fs_info:  filesystem whose backup roots need to be read
1700  * @priority: priority of backup root required
1701  *
1702  * Returns backup root index on success and -EINVAL otherwise.
1703  */
read_backup_root(struct btrfs_fs_info * fs_info,u8 priority)1704 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1705 {
1706 	int backup_index = find_newest_super_backup(fs_info);
1707 	struct btrfs_super_block *super = fs_info->super_copy;
1708 	struct btrfs_root_backup *root_backup;
1709 
1710 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1711 		if (priority == 0)
1712 			return backup_index;
1713 
1714 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1715 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1716 	} else {
1717 		return -EINVAL;
1718 	}
1719 
1720 	root_backup = super->super_roots + backup_index;
1721 
1722 	btrfs_set_super_generation(super,
1723 				   btrfs_backup_tree_root_gen(root_backup));
1724 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1725 	btrfs_set_super_root_level(super,
1726 				   btrfs_backup_tree_root_level(root_backup));
1727 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1728 
1729 	/*
1730 	 * Fixme: the total bytes and num_devices need to match or we should
1731 	 * need a fsck
1732 	 */
1733 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1734 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1735 
1736 	return backup_index;
1737 }
1738 
1739 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)1740 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1741 {
1742 	btrfs_destroy_workqueue(fs_info->fixup_workers);
1743 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1744 	btrfs_destroy_workqueue(fs_info->workers);
1745 	if (fs_info->endio_workers)
1746 		destroy_workqueue(fs_info->endio_workers);
1747 	if (fs_info->rmw_workers)
1748 		destroy_workqueue(fs_info->rmw_workers);
1749 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1750 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1751 	btrfs_destroy_workqueue(fs_info->delayed_workers);
1752 	btrfs_destroy_workqueue(fs_info->caching_workers);
1753 	btrfs_destroy_workqueue(fs_info->flush_workers);
1754 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1755 	if (fs_info->discard_ctl.discard_workers)
1756 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1757 	/*
1758 	 * Now that all other work queues are destroyed, we can safely destroy
1759 	 * the queues used for metadata I/O, since tasks from those other work
1760 	 * queues can do metadata I/O operations.
1761 	 */
1762 	if (fs_info->endio_meta_workers)
1763 		destroy_workqueue(fs_info->endio_meta_workers);
1764 }
1765 
free_root_extent_buffers(struct btrfs_root * root)1766 static void free_root_extent_buffers(struct btrfs_root *root)
1767 {
1768 	if (root) {
1769 		free_extent_buffer(root->node);
1770 		free_extent_buffer(root->commit_root);
1771 		root->node = NULL;
1772 		root->commit_root = NULL;
1773 	}
1774 }
1775 
free_global_root_pointers(struct btrfs_fs_info * fs_info)1776 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1777 {
1778 	struct btrfs_root *root, *tmp;
1779 
1780 	rbtree_postorder_for_each_entry_safe(root, tmp,
1781 					     &fs_info->global_root_tree,
1782 					     rb_node)
1783 		free_root_extent_buffers(root);
1784 }
1785 
1786 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)1787 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1788 {
1789 	free_root_extent_buffers(info->tree_root);
1790 
1791 	free_global_root_pointers(info);
1792 	free_root_extent_buffers(info->dev_root);
1793 	free_root_extent_buffers(info->quota_root);
1794 	free_root_extent_buffers(info->uuid_root);
1795 	free_root_extent_buffers(info->fs_root);
1796 	free_root_extent_buffers(info->data_reloc_root);
1797 	free_root_extent_buffers(info->block_group_root);
1798 	free_root_extent_buffers(info->stripe_root);
1799 	if (free_chunk_root)
1800 		free_root_extent_buffers(info->chunk_root);
1801 }
1802 
btrfs_put_root(struct btrfs_root * root)1803 void btrfs_put_root(struct btrfs_root *root)
1804 {
1805 	if (!root)
1806 		return;
1807 
1808 	if (refcount_dec_and_test(&root->refs)) {
1809 		if (WARN_ON(!xa_empty(&root->inodes)))
1810 			xa_destroy(&root->inodes);
1811 		if (WARN_ON(!xa_empty(&root->delayed_nodes)))
1812 			xa_destroy(&root->delayed_nodes);
1813 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1814 		if (root->anon_dev)
1815 			free_anon_bdev(root->anon_dev);
1816 		free_root_extent_buffers(root);
1817 #ifdef CONFIG_BTRFS_DEBUG
1818 		spin_lock(&root->fs_info->fs_roots_radix_lock);
1819 		list_del_init(&root->leak_list);
1820 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
1821 #endif
1822 		kfree(root);
1823 	}
1824 }
1825 
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)1826 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1827 {
1828 	int ret;
1829 	struct btrfs_root *gang[8];
1830 	int i;
1831 
1832 	while (!list_empty(&fs_info->dead_roots)) {
1833 		gang[0] = list_first_entry(&fs_info->dead_roots,
1834 					   struct btrfs_root, root_list);
1835 		list_del(&gang[0]->root_list);
1836 
1837 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1838 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1839 		btrfs_put_root(gang[0]);
1840 	}
1841 
1842 	while (1) {
1843 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1844 					     (void **)gang, 0,
1845 					     ARRAY_SIZE(gang));
1846 		if (!ret)
1847 			break;
1848 		for (i = 0; i < ret; i++)
1849 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1850 	}
1851 }
1852 
btrfs_init_scrub(struct btrfs_fs_info * fs_info)1853 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1854 {
1855 	mutex_init(&fs_info->scrub_lock);
1856 	atomic_set(&fs_info->scrubs_running, 0);
1857 	atomic_set(&fs_info->scrub_pause_req, 0);
1858 	atomic_set(&fs_info->scrubs_paused, 0);
1859 	atomic_set(&fs_info->scrub_cancel_req, 0);
1860 	init_waitqueue_head(&fs_info->scrub_pause_wait);
1861 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
1862 }
1863 
btrfs_init_balance(struct btrfs_fs_info * fs_info)1864 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1865 {
1866 	spin_lock_init(&fs_info->balance_lock);
1867 	mutex_init(&fs_info->balance_mutex);
1868 	atomic_set(&fs_info->balance_pause_req, 0);
1869 	atomic_set(&fs_info->balance_cancel_req, 0);
1870 	fs_info->balance_ctl = NULL;
1871 	init_waitqueue_head(&fs_info->balance_wait_q);
1872 	atomic_set(&fs_info->reloc_cancel_req, 0);
1873 }
1874 
btrfs_init_btree_inode(struct super_block * sb)1875 static int btrfs_init_btree_inode(struct super_block *sb)
1876 {
1877 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1878 	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1879 					      fs_info->tree_root);
1880 	struct inode *inode;
1881 
1882 	inode = new_inode(sb);
1883 	if (!inode)
1884 		return -ENOMEM;
1885 
1886 	btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID);
1887 	set_nlink(inode, 1);
1888 	/*
1889 	 * we set the i_size on the btree inode to the max possible int.
1890 	 * the real end of the address space is determined by all of
1891 	 * the devices in the system
1892 	 */
1893 	inode->i_size = OFFSET_MAX;
1894 	inode->i_mapping->a_ops = &btree_aops;
1895 	mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1896 
1897 	btrfs_extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1898 				  IO_TREE_BTREE_INODE_IO);
1899 	btrfs_extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1900 
1901 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1902 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1903 	__insert_inode_hash(inode, hash);
1904 	set_bit(AS_KERNEL_FILE, &inode->i_mapping->flags);
1905 	fs_info->btree_inode = inode;
1906 
1907 	return 0;
1908 }
1909 
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)1910 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1911 {
1912 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1913 	init_rwsem(&fs_info->dev_replace.rwsem);
1914 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1915 }
1916 
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)1917 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1918 {
1919 	spin_lock_init(&fs_info->qgroup_lock);
1920 	mutex_init(&fs_info->qgroup_ioctl_lock);
1921 	fs_info->qgroup_tree = RB_ROOT;
1922 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1923 	fs_info->qgroup_seq = 1;
1924 	fs_info->qgroup_rescan_running = false;
1925 	fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT;
1926 	mutex_init(&fs_info->qgroup_rescan_lock);
1927 }
1928 
btrfs_init_workqueues(struct btrfs_fs_info * fs_info)1929 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1930 {
1931 	u32 max_active = fs_info->thread_pool_size;
1932 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1933 	unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_PERCPU;
1934 
1935 	fs_info->workers =
1936 		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1937 
1938 	fs_info->delalloc_workers =
1939 		btrfs_alloc_workqueue(fs_info, "delalloc",
1940 				      flags, max_active, 2);
1941 
1942 	fs_info->flush_workers =
1943 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1944 				      flags, max_active, 0);
1945 
1946 	fs_info->caching_workers =
1947 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1948 
1949 	fs_info->fixup_workers =
1950 		btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1951 
1952 	fs_info->endio_workers =
1953 		alloc_workqueue("btrfs-endio", flags, max_active);
1954 	fs_info->endio_meta_workers =
1955 		alloc_workqueue("btrfs-endio-meta", flags, max_active);
1956 	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
1957 	fs_info->endio_write_workers =
1958 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1959 				      max_active, 2);
1960 	fs_info->endio_freespace_worker =
1961 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
1962 				      max_active, 0);
1963 	fs_info->delayed_workers =
1964 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
1965 				      max_active, 0);
1966 	fs_info->qgroup_rescan_workers =
1967 		btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
1968 					      ordered_flags);
1969 	fs_info->discard_ctl.discard_workers =
1970 		alloc_ordered_workqueue("btrfs-discard", WQ_FREEZABLE);
1971 
1972 	if (!(fs_info->workers &&
1973 	      fs_info->delalloc_workers && fs_info->flush_workers &&
1974 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
1975 	      fs_info->endio_write_workers &&
1976 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
1977 	      fs_info->caching_workers && fs_info->fixup_workers &&
1978 	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
1979 	      fs_info->discard_ctl.discard_workers)) {
1980 		return -ENOMEM;
1981 	}
1982 
1983 	return 0;
1984 }
1985 
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)1986 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
1987 {
1988 	struct crypto_shash *csum_shash;
1989 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
1990 
1991 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
1992 
1993 	if (IS_ERR(csum_shash)) {
1994 		btrfs_err(fs_info, "error allocating %s hash for checksum",
1995 			  csum_driver);
1996 		return PTR_ERR(csum_shash);
1997 	}
1998 
1999 	fs_info->csum_shash = csum_shash;
2000 
2001 	/* Check if the checksum implementation is a fast accelerated one. */
2002 	switch (csum_type) {
2003 	case BTRFS_CSUM_TYPE_CRC32:
2004 		if (crc32_optimizations() & CRC32C_OPTIMIZATION)
2005 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2006 		break;
2007 	case BTRFS_CSUM_TYPE_XXHASH:
2008 		set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2009 		break;
2010 	default:
2011 		break;
2012 	}
2013 
2014 	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2015 			btrfs_super_csum_name(csum_type),
2016 			crypto_shash_driver_name(csum_shash));
2017 	return 0;
2018 }
2019 
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2020 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2021 			    struct btrfs_fs_devices *fs_devices)
2022 {
2023 	int ret;
2024 	struct btrfs_tree_parent_check check = { 0 };
2025 	struct btrfs_root *log_tree_root;
2026 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2027 	u64 bytenr = btrfs_super_log_root(disk_super);
2028 	int level = btrfs_super_log_root_level(disk_super);
2029 
2030 	if (unlikely(fs_devices->rw_devices == 0)) {
2031 		btrfs_warn(fs_info, "log replay required on RO media");
2032 		return -EIO;
2033 	}
2034 
2035 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2036 					 GFP_KERNEL);
2037 	if (!log_tree_root)
2038 		return -ENOMEM;
2039 
2040 	check.level = level;
2041 	check.transid = fs_info->generation + 1;
2042 	check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2043 	log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2044 	if (IS_ERR(log_tree_root->node)) {
2045 		btrfs_warn(fs_info, "failed to read log tree");
2046 		ret = PTR_ERR(log_tree_root->node);
2047 		log_tree_root->node = NULL;
2048 		btrfs_put_root(log_tree_root);
2049 		return ret;
2050 	}
2051 	if (unlikely(!extent_buffer_uptodate(log_tree_root->node))) {
2052 		btrfs_err(fs_info, "failed to read log tree");
2053 		btrfs_put_root(log_tree_root);
2054 		return -EIO;
2055 	}
2056 
2057 	/* returns with log_tree_root freed on success */
2058 	ret = btrfs_recover_log_trees(log_tree_root);
2059 	btrfs_put_root(log_tree_root);
2060 	if (ret) {
2061 		btrfs_handle_fs_error(fs_info, ret,
2062 				      "Failed to recover log tree");
2063 		return ret;
2064 	}
2065 
2066 	if (sb_rdonly(fs_info->sb)) {
2067 		ret = btrfs_commit_super(fs_info);
2068 		if (ret)
2069 			return ret;
2070 	}
2071 
2072 	return 0;
2073 }
2074 
load_global_roots_objectid(struct btrfs_root * tree_root,struct btrfs_path * path,u64 objectid,const char * name)2075 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2076 				      struct btrfs_path *path, u64 objectid,
2077 				      const char *name)
2078 {
2079 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2080 	struct btrfs_root *root;
2081 	u64 max_global_id = 0;
2082 	int ret;
2083 	struct btrfs_key key = {
2084 		.objectid = objectid,
2085 		.type = BTRFS_ROOT_ITEM_KEY,
2086 		.offset = 0,
2087 	};
2088 	bool found = false;
2089 
2090 	/* If we have IGNOREDATACSUMS skip loading these roots. */
2091 	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2092 	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2093 		set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2094 		return 0;
2095 	}
2096 
2097 	while (1) {
2098 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2099 		if (ret < 0)
2100 			break;
2101 
2102 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2103 			ret = btrfs_next_leaf(tree_root, path);
2104 			if (ret) {
2105 				if (ret > 0)
2106 					ret = 0;
2107 				break;
2108 			}
2109 		}
2110 		ret = 0;
2111 
2112 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2113 		if (key.objectid != objectid)
2114 			break;
2115 		btrfs_release_path(path);
2116 
2117 		/*
2118 		 * Just worry about this for extent tree, it'll be the same for
2119 		 * everybody.
2120 		 */
2121 		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2122 			max_global_id = max(max_global_id, key.offset);
2123 
2124 		found = true;
2125 		root = read_tree_root_path(tree_root, path, &key);
2126 		if (IS_ERR(root)) {
2127 			ret = PTR_ERR(root);
2128 			break;
2129 		}
2130 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2131 		ret = btrfs_global_root_insert(root);
2132 		if (ret) {
2133 			btrfs_put_root(root);
2134 			break;
2135 		}
2136 		key.offset++;
2137 	}
2138 	btrfs_release_path(path);
2139 
2140 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2141 		fs_info->nr_global_roots = max_global_id + 1;
2142 
2143 	if (!found || ret) {
2144 		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2145 			set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2146 
2147 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2148 			ret = ret ? ret : -ENOENT;
2149 		else
2150 			ret = 0;
2151 		btrfs_err(fs_info, "failed to load root %s", name);
2152 	}
2153 	return ret;
2154 }
2155 
load_global_roots(struct btrfs_root * tree_root)2156 static int load_global_roots(struct btrfs_root *tree_root)
2157 {
2158 	BTRFS_PATH_AUTO_FREE(path);
2159 	int ret;
2160 
2161 	path = btrfs_alloc_path();
2162 	if (!path)
2163 		return -ENOMEM;
2164 
2165 	ret = load_global_roots_objectid(tree_root, path,
2166 					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2167 	if (ret)
2168 		return ret;
2169 	ret = load_global_roots_objectid(tree_root, path,
2170 					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2171 	if (ret)
2172 		return ret;
2173 	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2174 		return ret;
2175 	ret = load_global_roots_objectid(tree_root, path,
2176 					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2177 					 "free space");
2178 
2179 	return ret;
2180 }
2181 
btrfs_read_roots(struct btrfs_fs_info * fs_info)2182 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2183 {
2184 	struct btrfs_root *tree_root = fs_info->tree_root;
2185 	struct btrfs_root *root;
2186 	struct btrfs_key location;
2187 	int ret;
2188 
2189 	ASSERT(fs_info->tree_root);
2190 
2191 	ret = load_global_roots(tree_root);
2192 	if (ret)
2193 		return ret;
2194 
2195 	location.type = BTRFS_ROOT_ITEM_KEY;
2196 	location.offset = 0;
2197 
2198 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2199 		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2200 		root = btrfs_read_tree_root(tree_root, &location);
2201 		if (IS_ERR(root)) {
2202 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2203 				ret = PTR_ERR(root);
2204 				goto out;
2205 			}
2206 		} else {
2207 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2208 			fs_info->block_group_root = root;
2209 		}
2210 	}
2211 
2212 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2213 	root = btrfs_read_tree_root(tree_root, &location);
2214 	if (IS_ERR(root)) {
2215 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2216 			ret = PTR_ERR(root);
2217 			goto out;
2218 		}
2219 	} else {
2220 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2221 		fs_info->dev_root = root;
2222 	}
2223 	/* Initialize fs_info for all devices in any case */
2224 	ret = btrfs_init_devices_late(fs_info);
2225 	if (ret)
2226 		goto out;
2227 
2228 	/*
2229 	 * This tree can share blocks with some other fs tree during relocation
2230 	 * and we need a proper setup by btrfs_get_fs_root
2231 	 */
2232 	root = btrfs_get_fs_root(tree_root->fs_info,
2233 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2234 	if (IS_ERR(root)) {
2235 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2236 			location.objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
2237 			ret = PTR_ERR(root);
2238 			goto out;
2239 		}
2240 	} else {
2241 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2242 		fs_info->data_reloc_root = root;
2243 	}
2244 
2245 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2246 	root = btrfs_read_tree_root(tree_root, &location);
2247 	if (!IS_ERR(root)) {
2248 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2249 		fs_info->quota_root = root;
2250 	}
2251 
2252 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2253 	root = btrfs_read_tree_root(tree_root, &location);
2254 	if (IS_ERR(root)) {
2255 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2256 			ret = PTR_ERR(root);
2257 			if (ret != -ENOENT)
2258 				goto out;
2259 		}
2260 	} else {
2261 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2262 		fs_info->uuid_root = root;
2263 	}
2264 
2265 	if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2266 		location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2267 		root = btrfs_read_tree_root(tree_root, &location);
2268 		if (IS_ERR(root)) {
2269 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2270 				ret = PTR_ERR(root);
2271 				goto out;
2272 			}
2273 		} else {
2274 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2275 			fs_info->stripe_root = root;
2276 		}
2277 	}
2278 
2279 	return 0;
2280 out:
2281 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2282 		   location.objectid, ret);
2283 	return ret;
2284 }
2285 
validate_sys_chunk_array(const struct btrfs_fs_info * fs_info,const struct btrfs_super_block * sb)2286 static int validate_sys_chunk_array(const struct btrfs_fs_info *fs_info,
2287 				    const struct btrfs_super_block *sb)
2288 {
2289 	unsigned int cur = 0; /* Offset inside the sys chunk array */
2290 	/*
2291 	 * At sb read time, fs_info is not fully initialized. Thus we have
2292 	 * to use super block sectorsize, which should have been validated.
2293 	 */
2294 	const u32 sectorsize = btrfs_super_sectorsize(sb);
2295 	u32 sys_array_size = btrfs_super_sys_array_size(sb);
2296 
2297 	if (unlikely(sys_array_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)) {
2298 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2299 			  sys_array_size, BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2300 		return -EUCLEAN;
2301 	}
2302 
2303 	while (cur < sys_array_size) {
2304 		struct btrfs_disk_key *disk_key;
2305 		struct btrfs_chunk *chunk;
2306 		struct btrfs_key key;
2307 		u64 type;
2308 		u16 num_stripes;
2309 		u32 len;
2310 		int ret;
2311 
2312 		disk_key = (struct btrfs_disk_key *)(sb->sys_chunk_array + cur);
2313 		len = sizeof(*disk_key);
2314 
2315 		if (unlikely(cur + len > sys_array_size))
2316 			goto short_read;
2317 		cur += len;
2318 
2319 		btrfs_disk_key_to_cpu(&key, disk_key);
2320 		if (unlikely(key.type != BTRFS_CHUNK_ITEM_KEY)) {
2321 			btrfs_err(fs_info,
2322 			    "unexpected item type %u in sys_array at offset %u",
2323 				  key.type, cur);
2324 			return -EUCLEAN;
2325 		}
2326 		chunk = (struct btrfs_chunk *)(sb->sys_chunk_array + cur);
2327 		num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2328 		if (unlikely(cur + btrfs_chunk_item_size(num_stripes) > sys_array_size))
2329 			goto short_read;
2330 		type = btrfs_stack_chunk_type(chunk);
2331 		if (unlikely(!(type & BTRFS_BLOCK_GROUP_SYSTEM))) {
2332 			btrfs_err(fs_info,
2333 			"invalid chunk type %llu in sys_array at offset %u",
2334 				  type, cur);
2335 			return -EUCLEAN;
2336 		}
2337 		ret = btrfs_check_chunk_valid(fs_info, NULL, chunk, key.offset,
2338 					      sectorsize);
2339 		if (ret < 0)
2340 			return ret;
2341 		cur += btrfs_chunk_item_size(num_stripes);
2342 	}
2343 	return 0;
2344 short_read:
2345 	btrfs_err(fs_info,
2346 	"super block sys chunk array short read, cur=%u sys_array_size=%u",
2347 		  cur, sys_array_size);
2348 	return -EUCLEAN;
2349 }
2350 
2351 /*
2352  * Real super block validation
2353  * NOTE: super csum type and incompat features will not be checked here.
2354  *
2355  * @sb:		super block to check
2356  * @mirror_num:	the super block number to check its bytenr:
2357  * 		0	the primary (1st) sb
2358  * 		1, 2	2nd and 3rd backup copy
2359  * 	       -1	skip bytenr check
2360  */
btrfs_validate_super(const struct btrfs_fs_info * fs_info,const struct btrfs_super_block * sb,int mirror_num)2361 int btrfs_validate_super(const struct btrfs_fs_info *fs_info,
2362 			 const struct btrfs_super_block *sb, int mirror_num)
2363 {
2364 	u64 nodesize = btrfs_super_nodesize(sb);
2365 	u64 sectorsize = btrfs_super_sectorsize(sb);
2366 	int ret = 0;
2367 	const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS);
2368 
2369 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2370 		btrfs_err(fs_info, "no valid FS found");
2371 		ret = -EINVAL;
2372 	}
2373 	if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) {
2374 		if (!ignore_flags) {
2375 			btrfs_err(fs_info,
2376 			"unrecognized or unsupported super flag 0x%llx",
2377 				  btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2378 			ret = -EINVAL;
2379 		} else {
2380 			btrfs_info(fs_info,
2381 			"unrecognized or unsupported super flags: 0x%llx, ignored",
2382 				   btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2383 		}
2384 	}
2385 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2386 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2387 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2388 		ret = -EINVAL;
2389 	}
2390 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2391 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2392 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2393 		ret = -EINVAL;
2394 	}
2395 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2396 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2397 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2398 		ret = -EINVAL;
2399 	}
2400 
2401 	/*
2402 	 * Check sectorsize and nodesize first, other check will need it.
2403 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2404 	 */
2405 	if (!is_power_of_2(sectorsize) || sectorsize < BTRFS_MIN_BLOCKSIZE ||
2406 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2407 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2408 		ret = -EINVAL;
2409 	}
2410 
2411 	if (!btrfs_supported_blocksize(sectorsize)) {
2412 		btrfs_err(fs_info,
2413 			"sectorsize %llu not yet supported for page size %lu",
2414 			sectorsize, PAGE_SIZE);
2415 		ret = -EINVAL;
2416 	}
2417 
2418 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2419 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2420 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2421 		ret = -EINVAL;
2422 	}
2423 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2424 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2425 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2426 		ret = -EINVAL;
2427 	}
2428 
2429 	/* Root alignment check */
2430 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2431 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2432 			   btrfs_super_root(sb));
2433 		ret = -EINVAL;
2434 	}
2435 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2436 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2437 			   btrfs_super_chunk_root(sb));
2438 		ret = -EINVAL;
2439 	}
2440 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2441 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2442 			   btrfs_super_log_root(sb));
2443 		ret = -EINVAL;
2444 	}
2445 
2446 	if (!fs_info->fs_devices->temp_fsid &&
2447 	    memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2448 		btrfs_err(fs_info,
2449 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2450 			  sb->fsid, fs_info->fs_devices->fsid);
2451 		ret = -EINVAL;
2452 	}
2453 
2454 	if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2455 		   BTRFS_FSID_SIZE) != 0) {
2456 		btrfs_err(fs_info,
2457 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2458 			  btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2459 		ret = -EINVAL;
2460 	}
2461 
2462 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2463 		   BTRFS_FSID_SIZE) != 0) {
2464 		btrfs_err(fs_info,
2465 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2466 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2467 		ret = -EINVAL;
2468 	}
2469 
2470 	/*
2471 	 * Artificial requirement for block-group-tree to force newer features
2472 	 * (free-space-tree, no-holes) so the test matrix is smaller.
2473 	 */
2474 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2475 	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2476 	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2477 		btrfs_err(fs_info,
2478 		"block-group-tree feature requires free-space-tree and no-holes");
2479 		ret = -EINVAL;
2480 	}
2481 
2482 	/*
2483 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2484 	 * done later
2485 	 */
2486 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2487 		btrfs_err(fs_info, "bytes_used is too small %llu",
2488 			  btrfs_super_bytes_used(sb));
2489 		ret = -EINVAL;
2490 	}
2491 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2492 		btrfs_err(fs_info, "invalid stripesize %u",
2493 			  btrfs_super_stripesize(sb));
2494 		ret = -EINVAL;
2495 	}
2496 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2497 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2498 			   btrfs_super_num_devices(sb));
2499 	if (btrfs_super_num_devices(sb) == 0) {
2500 		btrfs_err(fs_info, "number of devices is 0");
2501 		ret = -EINVAL;
2502 	}
2503 
2504 	if (mirror_num >= 0 &&
2505 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2506 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2507 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2508 		ret = -EINVAL;
2509 	}
2510 
2511 	if (ret)
2512 		return ret;
2513 
2514 	ret = validate_sys_chunk_array(fs_info, sb);
2515 
2516 	/*
2517 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2518 	 * and one chunk
2519 	 */
2520 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2521 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2522 			  btrfs_super_sys_array_size(sb),
2523 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2524 		ret = -EINVAL;
2525 	}
2526 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2527 			+ sizeof(struct btrfs_chunk)) {
2528 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2529 			  btrfs_super_sys_array_size(sb),
2530 			  sizeof(struct btrfs_disk_key)
2531 			  + sizeof(struct btrfs_chunk));
2532 		ret = -EINVAL;
2533 	}
2534 
2535 	/*
2536 	 * The generation is a global counter, we'll trust it more than the others
2537 	 * but it's still possible that it's the one that's wrong.
2538 	 */
2539 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2540 		btrfs_warn(fs_info,
2541 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2542 			btrfs_super_generation(sb),
2543 			btrfs_super_chunk_root_generation(sb));
2544 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2545 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2546 		btrfs_warn(fs_info,
2547 			"suspicious: generation < cache_generation: %llu < %llu",
2548 			btrfs_super_generation(sb),
2549 			btrfs_super_cache_generation(sb));
2550 
2551 	return ret;
2552 }
2553 
2554 /*
2555  * Validation of super block at mount time.
2556  * Some checks already done early at mount time, like csum type and incompat
2557  * flags will be skipped.
2558  */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2559 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2560 {
2561 	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2562 }
2563 
2564 /*
2565  * Validation of super block at write time.
2566  * Some checks like bytenr check will be skipped as their values will be
2567  * overwritten soon.
2568  * Extra checks like csum type and incompat flags will be done here.
2569  */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2570 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2571 				      struct btrfs_super_block *sb)
2572 {
2573 	int ret;
2574 
2575 	ret = btrfs_validate_super(fs_info, sb, -1);
2576 	if (ret < 0)
2577 		goto out;
2578 	if (unlikely(!btrfs_supported_super_csum(btrfs_super_csum_type(sb)))) {
2579 		ret = -EUCLEAN;
2580 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2581 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2582 		goto out;
2583 	}
2584 	if (unlikely(btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP)) {
2585 		ret = -EUCLEAN;
2586 		btrfs_err(fs_info,
2587 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2588 			  btrfs_super_incompat_flags(sb),
2589 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2590 		goto out;
2591 	}
2592 out:
2593 	if (ret < 0)
2594 		btrfs_err(fs_info,
2595 		"super block corruption detected before writing it to disk");
2596 	return ret;
2597 }
2598 
load_super_root(struct btrfs_root * root,u64 bytenr,u64 gen,int level)2599 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2600 {
2601 	struct btrfs_tree_parent_check check = {
2602 		.level = level,
2603 		.transid = gen,
2604 		.owner_root = btrfs_root_id(root)
2605 	};
2606 	int ret = 0;
2607 
2608 	root->node = read_tree_block(root->fs_info, bytenr, &check);
2609 	if (IS_ERR(root->node)) {
2610 		ret = PTR_ERR(root->node);
2611 		root->node = NULL;
2612 		return ret;
2613 	}
2614 	if (unlikely(!extent_buffer_uptodate(root->node))) {
2615 		free_extent_buffer(root->node);
2616 		root->node = NULL;
2617 		return -EIO;
2618 	}
2619 
2620 	btrfs_set_root_node(&root->root_item, root->node);
2621 	root->commit_root = btrfs_root_node(root);
2622 	btrfs_set_root_refs(&root->root_item, 1);
2623 	return ret;
2624 }
2625 
load_important_roots(struct btrfs_fs_info * fs_info)2626 static int load_important_roots(struct btrfs_fs_info *fs_info)
2627 {
2628 	struct btrfs_super_block *sb = fs_info->super_copy;
2629 	u64 gen, bytenr;
2630 	int level, ret;
2631 
2632 	bytenr = btrfs_super_root(sb);
2633 	gen = btrfs_super_generation(sb);
2634 	level = btrfs_super_root_level(sb);
2635 	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2636 	if (ret) {
2637 		btrfs_warn(fs_info, "couldn't read tree root");
2638 		return ret;
2639 	}
2640 	return 0;
2641 }
2642 
init_tree_roots(struct btrfs_fs_info * fs_info)2643 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2644 {
2645 	int backup_index = find_newest_super_backup(fs_info);
2646 	struct btrfs_super_block *sb = fs_info->super_copy;
2647 	struct btrfs_root *tree_root = fs_info->tree_root;
2648 	bool handle_error = false;
2649 	int ret = 0;
2650 	int i;
2651 
2652 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2653 		if (handle_error) {
2654 			if (!IS_ERR(tree_root->node))
2655 				free_extent_buffer(tree_root->node);
2656 			tree_root->node = NULL;
2657 
2658 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2659 				break;
2660 
2661 			free_root_pointers(fs_info, 0);
2662 
2663 			/*
2664 			 * Don't use the log in recovery mode, it won't be
2665 			 * valid
2666 			 */
2667 			btrfs_set_super_log_root(sb, 0);
2668 
2669 			btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2670 			ret = read_backup_root(fs_info, i);
2671 			backup_index = ret;
2672 			if (ret < 0)
2673 				return ret;
2674 		}
2675 
2676 		ret = load_important_roots(fs_info);
2677 		if (ret) {
2678 			handle_error = true;
2679 			continue;
2680 		}
2681 
2682 		/*
2683 		 * No need to hold btrfs_root::objectid_mutex since the fs
2684 		 * hasn't been fully initialised and we are the only user
2685 		 */
2686 		ret = btrfs_init_root_free_objectid(tree_root);
2687 		if (ret < 0) {
2688 			handle_error = true;
2689 			continue;
2690 		}
2691 
2692 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2693 
2694 		ret = btrfs_read_roots(fs_info);
2695 		if (ret < 0) {
2696 			handle_error = true;
2697 			continue;
2698 		}
2699 
2700 		/* All successful */
2701 		fs_info->generation = btrfs_header_generation(tree_root->node);
2702 		btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2703 		fs_info->last_reloc_trans = 0;
2704 
2705 		/* Always begin writing backup roots after the one being used */
2706 		if (backup_index < 0) {
2707 			fs_info->backup_root_index = 0;
2708 		} else {
2709 			fs_info->backup_root_index = backup_index + 1;
2710 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2711 		}
2712 		break;
2713 	}
2714 
2715 	return ret;
2716 }
2717 
2718 /*
2719  * Lockdep gets confused between our buffer_tree which requires IRQ locking because
2720  * we modify marks in the IRQ context, and our delayed inode xarray which doesn't
2721  * have these requirements. Use a class key so lockdep doesn't get them mixed up.
2722  */
2723 static struct lock_class_key buffer_xa_class;
2724 
btrfs_init_fs_info(struct btrfs_fs_info * fs_info)2725 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2726 {
2727 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2728 
2729 	/* Use the same flags as mapping->i_pages. */
2730 	xa_init_flags(&fs_info->buffer_tree, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
2731 	lockdep_set_class(&fs_info->buffer_tree.xa_lock, &buffer_xa_class);
2732 
2733 	INIT_LIST_HEAD(&fs_info->trans_list);
2734 	INIT_LIST_HEAD(&fs_info->dead_roots);
2735 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2736 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2737 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2738 	spin_lock_init(&fs_info->delalloc_root_lock);
2739 	spin_lock_init(&fs_info->trans_lock);
2740 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2741 	spin_lock_init(&fs_info->delayed_iput_lock);
2742 	spin_lock_init(&fs_info->defrag_inodes_lock);
2743 	spin_lock_init(&fs_info->super_lock);
2744 	spin_lock_init(&fs_info->unused_bgs_lock);
2745 	spin_lock_init(&fs_info->treelog_bg_lock);
2746 	spin_lock_init(&fs_info->zone_active_bgs_lock);
2747 	spin_lock_init(&fs_info->relocation_bg_lock);
2748 	rwlock_init(&fs_info->tree_mod_log_lock);
2749 	rwlock_init(&fs_info->global_root_lock);
2750 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2751 	mutex_init(&fs_info->reclaim_bgs_lock);
2752 	mutex_init(&fs_info->reloc_mutex);
2753 	mutex_init(&fs_info->delalloc_root_mutex);
2754 	mutex_init(&fs_info->zoned_meta_io_lock);
2755 	mutex_init(&fs_info->zoned_data_reloc_io_lock);
2756 	seqlock_init(&fs_info->profiles_lock);
2757 
2758 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2759 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2760 	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2761 	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2762 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2763 				     BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2764 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2765 				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2766 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2767 				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2768 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2769 				     BTRFS_LOCKDEP_TRANS_COMPLETED);
2770 
2771 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2772 	INIT_LIST_HEAD(&fs_info->space_info);
2773 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2774 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2775 	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2776 	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2777 #ifdef CONFIG_BTRFS_DEBUG
2778 	INIT_LIST_HEAD(&fs_info->allocated_roots);
2779 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2780 	spin_lock_init(&fs_info->eb_leak_lock);
2781 #endif
2782 	fs_info->mapping_tree = RB_ROOT_CACHED;
2783 	rwlock_init(&fs_info->mapping_tree_lock);
2784 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2785 			     BTRFS_BLOCK_RSV_GLOBAL);
2786 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2787 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2788 	btrfs_init_block_rsv(&fs_info->treelog_rsv, BTRFS_BLOCK_RSV_TREELOG);
2789 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2790 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2791 			     BTRFS_BLOCK_RSV_DELOPS);
2792 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2793 			     BTRFS_BLOCK_RSV_DELREFS);
2794 
2795 	atomic_set(&fs_info->async_delalloc_pages, 0);
2796 	atomic_set(&fs_info->defrag_running, 0);
2797 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2798 	atomic64_set(&fs_info->tree_mod_seq, 0);
2799 	fs_info->global_root_tree = RB_ROOT;
2800 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2801 	fs_info->metadata_ratio = 0;
2802 	fs_info->defrag_inodes = RB_ROOT;
2803 	atomic64_set(&fs_info->free_chunk_space, 0);
2804 	fs_info->tree_mod_log = RB_ROOT;
2805 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2806 	btrfs_init_ref_verify(fs_info);
2807 
2808 	fs_info->thread_pool_size = min_t(unsigned long,
2809 					  num_online_cpus() + 2, 8);
2810 
2811 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2812 	spin_lock_init(&fs_info->ordered_root_lock);
2813 
2814 	btrfs_init_scrub(fs_info);
2815 	btrfs_init_balance(fs_info);
2816 	btrfs_init_async_reclaim_work(fs_info);
2817 	btrfs_init_extent_map_shrinker_work(fs_info);
2818 
2819 	rwlock_init(&fs_info->block_group_cache_lock);
2820 	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2821 
2822 	btrfs_extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2823 				  IO_TREE_FS_EXCLUDED_EXTENTS);
2824 
2825 	mutex_init(&fs_info->ordered_operations_mutex);
2826 	mutex_init(&fs_info->tree_log_mutex);
2827 	mutex_init(&fs_info->chunk_mutex);
2828 	mutex_init(&fs_info->transaction_kthread_mutex);
2829 	mutex_init(&fs_info->cleaner_mutex);
2830 	mutex_init(&fs_info->ro_block_group_mutex);
2831 	init_rwsem(&fs_info->commit_root_sem);
2832 	init_rwsem(&fs_info->cleanup_work_sem);
2833 	init_rwsem(&fs_info->subvol_sem);
2834 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2835 
2836 	btrfs_init_dev_replace_locks(fs_info);
2837 	btrfs_init_qgroup(fs_info);
2838 	btrfs_discard_init(fs_info);
2839 
2840 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2841 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2842 
2843 	init_waitqueue_head(&fs_info->transaction_throttle);
2844 	init_waitqueue_head(&fs_info->transaction_wait);
2845 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2846 	init_waitqueue_head(&fs_info->async_submit_wait);
2847 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2848 
2849 	/* Usable values until the real ones are cached from the superblock */
2850 	fs_info->nodesize = 4096;
2851 	fs_info->sectorsize = 4096;
2852 	fs_info->sectorsize_bits = ilog2(4096);
2853 	fs_info->stripesize = 4096;
2854 
2855 	/* Default compress algorithm when user does -o compress */
2856 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2857 
2858 	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2859 
2860 	spin_lock_init(&fs_info->swapfile_pins_lock);
2861 	fs_info->swapfile_pins = RB_ROOT;
2862 
2863 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2864 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2865 }
2866 
init_mount_fs_info(struct btrfs_fs_info * fs_info,struct super_block * sb)2867 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2868 {
2869 	int ret;
2870 
2871 	fs_info->sb = sb;
2872 	/* Temporary fixed values for block size until we read the superblock. */
2873 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2874 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2875 
2876 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2877 	if (ret)
2878 		return ret;
2879 
2880 	ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL);
2881 	if (ret)
2882 		return ret;
2883 
2884 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2885 	if (ret)
2886 		return ret;
2887 
2888 	ret = percpu_counter_init(&fs_info->stats_read_blocks, 0, GFP_KERNEL);
2889 	if (ret)
2890 		return ret;
2891 
2892 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2893 					(1 + ilog2(nr_cpu_ids));
2894 
2895 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2896 	if (ret)
2897 		return ret;
2898 
2899 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2900 			GFP_KERNEL);
2901 	if (ret)
2902 		return ret;
2903 
2904 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2905 					GFP_KERNEL);
2906 	if (!fs_info->delayed_root)
2907 		return -ENOMEM;
2908 	btrfs_init_delayed_root(fs_info->delayed_root);
2909 
2910 	if (sb_rdonly(sb))
2911 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2912 	if (btrfs_test_opt(fs_info, IGNOREMETACSUMS))
2913 		set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state);
2914 
2915 	return btrfs_alloc_stripe_hash_table(fs_info);
2916 }
2917 
btrfs_uuid_rescan_kthread(void * data)2918 static int btrfs_uuid_rescan_kthread(void *data)
2919 {
2920 	struct btrfs_fs_info *fs_info = data;
2921 	int ret;
2922 
2923 	/*
2924 	 * 1st step is to iterate through the existing UUID tree and
2925 	 * to delete all entries that contain outdated data.
2926 	 * 2nd step is to add all missing entries to the UUID tree.
2927 	 */
2928 	ret = btrfs_uuid_tree_iterate(fs_info);
2929 	if (ret < 0) {
2930 		if (ret != -EINTR)
2931 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2932 				   ret);
2933 		up(&fs_info->uuid_tree_rescan_sem);
2934 		return ret;
2935 	}
2936 	return btrfs_uuid_scan_kthread(data);
2937 }
2938 
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)2939 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2940 {
2941 	struct task_struct *task;
2942 
2943 	down(&fs_info->uuid_tree_rescan_sem);
2944 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2945 	if (IS_ERR(task)) {
2946 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2947 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2948 		up(&fs_info->uuid_tree_rescan_sem);
2949 		return PTR_ERR(task);
2950 	}
2951 
2952 	return 0;
2953 }
2954 
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)2955 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2956 {
2957 	u64 root_objectid = 0;
2958 	struct btrfs_root *gang[8];
2959 	int ret = 0;
2960 
2961 	while (1) {
2962 		unsigned int found;
2963 
2964 		spin_lock(&fs_info->fs_roots_radix_lock);
2965 		found = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2966 					     (void **)gang, root_objectid,
2967 					     ARRAY_SIZE(gang));
2968 		if (!found) {
2969 			spin_unlock(&fs_info->fs_roots_radix_lock);
2970 			break;
2971 		}
2972 		root_objectid = btrfs_root_id(gang[found - 1]) + 1;
2973 
2974 		for (int i = 0; i < found; i++) {
2975 			/* Avoid to grab roots in dead_roots. */
2976 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2977 				gang[i] = NULL;
2978 				continue;
2979 			}
2980 			/* Grab all the search result for later use. */
2981 			gang[i] = btrfs_grab_root(gang[i]);
2982 		}
2983 		spin_unlock(&fs_info->fs_roots_radix_lock);
2984 
2985 		for (int i = 0; i < found; i++) {
2986 			if (!gang[i])
2987 				continue;
2988 			root_objectid = btrfs_root_id(gang[i]);
2989 			/*
2990 			 * Continue to release the remaining roots after the first
2991 			 * error without cleanup and preserve the first error
2992 			 * for the return.
2993 			 */
2994 			if (!ret)
2995 				ret = btrfs_orphan_cleanup(gang[i]);
2996 			btrfs_put_root(gang[i]);
2997 		}
2998 		if (ret)
2999 			break;
3000 
3001 		root_objectid++;
3002 	}
3003 	return ret;
3004 }
3005 
3006 /*
3007  * Mounting logic specific to read-write file systems. Shared by open_ctree
3008  * and btrfs_remount when remounting from read-only to read-write.
3009  */
btrfs_start_pre_rw_mount(struct btrfs_fs_info * fs_info)3010 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3011 {
3012 	int ret;
3013 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3014 	bool rebuild_free_space_tree = false;
3015 
3016 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3017 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3018 		if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
3019 			btrfs_warn(fs_info,
3020 				   "'clear_cache' option is ignored with extent tree v2");
3021 		else
3022 			rebuild_free_space_tree = true;
3023 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3024 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3025 		btrfs_warn(fs_info, "free space tree is invalid");
3026 		rebuild_free_space_tree = true;
3027 	}
3028 
3029 	if (rebuild_free_space_tree) {
3030 		btrfs_info(fs_info, "rebuilding free space tree");
3031 		ret = btrfs_rebuild_free_space_tree(fs_info);
3032 		if (ret) {
3033 			btrfs_warn(fs_info,
3034 				   "failed to rebuild free space tree: %d", ret);
3035 			goto out;
3036 		}
3037 	}
3038 
3039 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3040 	    !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3041 		btrfs_info(fs_info, "disabling free space tree");
3042 		ret = btrfs_delete_free_space_tree(fs_info);
3043 		if (ret) {
3044 			btrfs_warn(fs_info,
3045 				   "failed to disable free space tree: %d", ret);
3046 			goto out;
3047 		}
3048 	}
3049 
3050 	/*
3051 	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3052 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3053 	 * them into the fs_info->fs_roots_radix tree. This must be done before
3054 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3055 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3056 	 * item before the root's tree is deleted - this means that if we unmount
3057 	 * or crash before the deletion completes, on the next mount we will not
3058 	 * delete what remains of the tree because the orphan item does not
3059 	 * exists anymore, which is what tells us we have a pending deletion.
3060 	 */
3061 	ret = btrfs_find_orphan_roots(fs_info);
3062 	if (ret)
3063 		goto out;
3064 
3065 	ret = btrfs_cleanup_fs_roots(fs_info);
3066 	if (ret)
3067 		goto out;
3068 
3069 	down_read(&fs_info->cleanup_work_sem);
3070 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3071 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3072 		up_read(&fs_info->cleanup_work_sem);
3073 		goto out;
3074 	}
3075 	up_read(&fs_info->cleanup_work_sem);
3076 
3077 	mutex_lock(&fs_info->cleaner_mutex);
3078 	ret = btrfs_recover_relocation(fs_info);
3079 	mutex_unlock(&fs_info->cleaner_mutex);
3080 	if (ret < 0) {
3081 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3082 		goto out;
3083 	}
3084 
3085 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3086 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3087 		btrfs_info(fs_info, "creating free space tree");
3088 		ret = btrfs_create_free_space_tree(fs_info);
3089 		if (ret) {
3090 			btrfs_warn(fs_info,
3091 				"failed to create free space tree: %d", ret);
3092 			goto out;
3093 		}
3094 	}
3095 
3096 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3097 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3098 		if (ret)
3099 			goto out;
3100 	}
3101 
3102 	ret = btrfs_resume_balance_async(fs_info);
3103 	if (ret)
3104 		goto out;
3105 
3106 	ret = btrfs_resume_dev_replace_async(fs_info);
3107 	if (ret) {
3108 		btrfs_warn(fs_info, "failed to resume dev_replace");
3109 		goto out;
3110 	}
3111 
3112 	btrfs_qgroup_rescan_resume(fs_info);
3113 
3114 	if (!fs_info->uuid_root) {
3115 		btrfs_info(fs_info, "creating UUID tree");
3116 		ret = btrfs_create_uuid_tree(fs_info);
3117 		if (ret) {
3118 			btrfs_warn(fs_info,
3119 				   "failed to create the UUID tree %d", ret);
3120 			goto out;
3121 		}
3122 	}
3123 
3124 out:
3125 	return ret;
3126 }
3127 
3128 /*
3129  * Do various sanity and dependency checks of different features.
3130  *
3131  * @is_rw_mount:	If the mount is read-write.
3132  *
3133  * This is the place for less strict checks (like for subpage or artificial
3134  * feature dependencies).
3135  *
3136  * For strict checks or possible corruption detection, see
3137  * btrfs_validate_super().
3138  *
3139  * This should be called after btrfs_parse_options(), as some mount options
3140  * (space cache related) can modify on-disk format like free space tree and
3141  * screw up certain feature dependencies.
3142  */
btrfs_check_features(struct btrfs_fs_info * fs_info,bool is_rw_mount)3143 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3144 {
3145 	struct btrfs_super_block *disk_super = fs_info->super_copy;
3146 	u64 incompat = btrfs_super_incompat_flags(disk_super);
3147 	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3148 	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3149 
3150 	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3151 		btrfs_err(fs_info,
3152 		"cannot mount because of unknown incompat features (0x%llx)",
3153 		    incompat);
3154 		return -EINVAL;
3155 	}
3156 
3157 	/* Runtime limitation for mixed block groups. */
3158 	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3159 	    (fs_info->sectorsize != fs_info->nodesize)) {
3160 		btrfs_err(fs_info,
3161 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3162 			fs_info->nodesize, fs_info->sectorsize);
3163 		return -EINVAL;
3164 	}
3165 
3166 	/* Mixed backref is an always-enabled feature. */
3167 	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3168 
3169 	/* Set compression related flags just in case. */
3170 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3171 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3172 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3173 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3174 
3175 	/*
3176 	 * An ancient flag, which should really be marked deprecated.
3177 	 * Such runtime limitation doesn't really need a incompat flag.
3178 	 */
3179 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3180 		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3181 
3182 	if (compat_ro_unsupp && is_rw_mount) {
3183 		btrfs_err(fs_info,
3184 	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3185 		       compat_ro);
3186 		return -EINVAL;
3187 	}
3188 
3189 	/*
3190 	 * We have unsupported RO compat features, although RO mounted, we
3191 	 * should not cause any metadata writes, including log replay.
3192 	 * Or we could screw up whatever the new feature requires.
3193 	 */
3194 	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3195 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3196 		btrfs_err(fs_info,
3197 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3198 			  compat_ro);
3199 		return -EINVAL;
3200 	}
3201 
3202 	/*
3203 	 * Artificial limitations for block group tree, to force
3204 	 * block-group-tree to rely on no-holes and free-space-tree.
3205 	 */
3206 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3207 	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3208 	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3209 		btrfs_err(fs_info,
3210 "block-group-tree feature requires no-holes and free-space-tree features");
3211 		return -EINVAL;
3212 	}
3213 
3214 	/*
3215 	 * Subpage/bs > ps runtime limitation on v1 cache.
3216 	 *
3217 	 * V1 space cache still has some hard coded PAGE_SIZE usage, while
3218 	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3219 	 * going to be deprecated anyway.
3220 	 */
3221 	if (fs_info->sectorsize != PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3222 		btrfs_warn(fs_info,
3223 	"v1 space cache is not supported for page size %lu with sectorsize %u",
3224 			   PAGE_SIZE, fs_info->sectorsize);
3225 		return -EINVAL;
3226 	}
3227 
3228 	/* This can be called by remount, we need to protect the super block. */
3229 	spin_lock(&fs_info->super_lock);
3230 	btrfs_set_super_incompat_flags(disk_super, incompat);
3231 	spin_unlock(&fs_info->super_lock);
3232 
3233 	return 0;
3234 }
3235 
fs_is_full_ro(const struct btrfs_fs_info * fs_info)3236 static bool fs_is_full_ro(const struct btrfs_fs_info *fs_info)
3237 {
3238 	if (!sb_rdonly(fs_info->sb))
3239 		return false;
3240 	if (unlikely(fs_info->mount_opt & BTRFS_MOUNT_FULL_RO_MASK))
3241 		return true;
3242 	return false;
3243 }
3244 
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices)3245 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices)
3246 {
3247 	u32 sectorsize;
3248 	u32 nodesize;
3249 	u32 stripesize;
3250 	u64 generation;
3251 	u16 csum_type;
3252 	struct btrfs_super_block *disk_super;
3253 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3254 	struct btrfs_root *tree_root;
3255 	struct btrfs_root *chunk_root;
3256 	int ret;
3257 	int level;
3258 
3259 	ret = init_mount_fs_info(fs_info, sb);
3260 	if (ret)
3261 		goto fail;
3262 
3263 	/* These need to be init'ed before we start creating inodes and such. */
3264 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3265 				     GFP_KERNEL);
3266 	fs_info->tree_root = tree_root;
3267 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3268 				      GFP_KERNEL);
3269 	fs_info->chunk_root = chunk_root;
3270 	if (!tree_root || !chunk_root) {
3271 		ret = -ENOMEM;
3272 		goto fail;
3273 	}
3274 
3275 	ret = btrfs_init_btree_inode(sb);
3276 	if (ret)
3277 		goto fail;
3278 
3279 	invalidate_bdev(fs_devices->latest_dev->bdev);
3280 
3281 	/*
3282 	 * Read super block and check the signature bytes only
3283 	 */
3284 	disk_super = btrfs_read_disk_super(fs_devices->latest_dev->bdev, 0, false);
3285 	if (IS_ERR(disk_super)) {
3286 		ret = PTR_ERR(disk_super);
3287 		goto fail_alloc;
3288 	}
3289 
3290 	btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3291 	/*
3292 	 * Verify the type first, if that or the checksum value are
3293 	 * corrupted, we'll find out
3294 	 */
3295 	csum_type = btrfs_super_csum_type(disk_super);
3296 	if (!btrfs_supported_super_csum(csum_type)) {
3297 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3298 			  csum_type);
3299 		ret = -EINVAL;
3300 		btrfs_release_disk_super(disk_super);
3301 		goto fail_alloc;
3302 	}
3303 
3304 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3305 
3306 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3307 	if (ret) {
3308 		btrfs_release_disk_super(disk_super);
3309 		goto fail_alloc;
3310 	}
3311 
3312 	/*
3313 	 * We want to check superblock checksum, the type is stored inside.
3314 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3315 	 */
3316 	if (btrfs_check_super_csum(fs_info, disk_super)) {
3317 		btrfs_err(fs_info, "superblock checksum mismatch");
3318 		ret = -EINVAL;
3319 		btrfs_release_disk_super(disk_super);
3320 		goto fail_alloc;
3321 	}
3322 
3323 	/*
3324 	 * super_copy is zeroed at allocation time and we never touch the
3325 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3326 	 * the whole block of INFO_SIZE
3327 	 */
3328 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3329 	btrfs_release_disk_super(disk_super);
3330 
3331 	disk_super = fs_info->super_copy;
3332 
3333 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3334 	       sizeof(*fs_info->super_for_commit));
3335 
3336 	ret = btrfs_validate_mount_super(fs_info);
3337 	if (ret) {
3338 		btrfs_err(fs_info, "superblock contains fatal errors");
3339 		ret = -EINVAL;
3340 		goto fail_alloc;
3341 	}
3342 
3343 	if (!btrfs_super_root(disk_super)) {
3344 		btrfs_err(fs_info, "invalid superblock tree root bytenr");
3345 		ret = -EINVAL;
3346 		goto fail_alloc;
3347 	}
3348 
3349 	/* check FS state, whether FS is broken. */
3350 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3351 		WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3352 
3353 	/* If the fs has any rescue options, no transaction is allowed. */
3354 	if (fs_is_full_ro(fs_info))
3355 		WRITE_ONCE(fs_info->fs_error, -EROFS);
3356 
3357 	/* Set up fs_info before parsing mount options */
3358 	nodesize = btrfs_super_nodesize(disk_super);
3359 	sectorsize = btrfs_super_sectorsize(disk_super);
3360 	stripesize = sectorsize;
3361 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3362 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3363 
3364 	fs_info->nodesize = nodesize;
3365 	fs_info->nodesize_bits = ilog2(nodesize);
3366 	fs_info->sectorsize = sectorsize;
3367 	fs_info->sectorsize_bits = ilog2(sectorsize);
3368 	fs_info->block_min_order = ilog2(round_up(sectorsize, PAGE_SIZE) >> PAGE_SHIFT);
3369 	fs_info->block_max_order = ilog2((BITS_PER_LONG << fs_info->sectorsize_bits) >> PAGE_SHIFT);
3370 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3371 	fs_info->stripesize = stripesize;
3372 	fs_info->fs_devices->fs_info = fs_info;
3373 
3374 	if (fs_info->sectorsize > PAGE_SIZE)
3375 		btrfs_warn(fs_info,
3376 			   "support for block size %u with page size %lu is experimental, some features may be missing",
3377 			   fs_info->sectorsize, PAGE_SIZE);
3378 	/*
3379 	 * Handle the space caching options appropriately now that we have the
3380 	 * super block loaded and validated.
3381 	 */
3382 	btrfs_set_free_space_cache_settings(fs_info);
3383 
3384 	if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3385 		ret = -EINVAL;
3386 		goto fail_alloc;
3387 	}
3388 
3389 	ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3390 	if (ret < 0)
3391 		goto fail_alloc;
3392 
3393 	/*
3394 	 * At this point our mount options are validated, if we set ->max_inline
3395 	 * to something non-standard make sure we truncate it to sectorsize.
3396 	 */
3397 	fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3398 
3399 	ret = btrfs_alloc_compress_wsm(fs_info);
3400 	if (ret)
3401 		goto fail_sb_buffer;
3402 	ret = btrfs_init_workqueues(fs_info);
3403 	if (ret)
3404 		goto fail_sb_buffer;
3405 
3406 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3407 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3408 
3409 	/* Update the values for the current filesystem. */
3410 	sb->s_blocksize = sectorsize;
3411 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3412 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3413 
3414 	mutex_lock(&fs_info->chunk_mutex);
3415 	ret = btrfs_read_sys_array(fs_info);
3416 	mutex_unlock(&fs_info->chunk_mutex);
3417 	if (ret) {
3418 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3419 		goto fail_sb_buffer;
3420 	}
3421 
3422 	generation = btrfs_super_chunk_root_generation(disk_super);
3423 	level = btrfs_super_chunk_root_level(disk_super);
3424 	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3425 			      generation, level);
3426 	if (ret) {
3427 		btrfs_err(fs_info, "failed to read chunk root");
3428 		goto fail_tree_roots;
3429 	}
3430 
3431 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3432 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3433 			   BTRFS_UUID_SIZE);
3434 
3435 	ret = btrfs_read_chunk_tree(fs_info);
3436 	if (ret) {
3437 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3438 		goto fail_tree_roots;
3439 	}
3440 
3441 	/*
3442 	 * At this point we know all the devices that make this filesystem,
3443 	 * including the seed devices but we don't know yet if the replace
3444 	 * target is required. So free devices that are not part of this
3445 	 * filesystem but skip the replace target device which is checked
3446 	 * below in btrfs_init_dev_replace().
3447 	 */
3448 	btrfs_free_extra_devids(fs_devices);
3449 	if (unlikely(!fs_devices->latest_dev->bdev)) {
3450 		btrfs_err(fs_info, "failed to read devices");
3451 		ret = -EIO;
3452 		goto fail_tree_roots;
3453 	}
3454 
3455 	ret = init_tree_roots(fs_info);
3456 	if (ret)
3457 		goto fail_tree_roots;
3458 
3459 	/*
3460 	 * Get zone type information of zoned block devices. This will also
3461 	 * handle emulation of a zoned filesystem if a regular device has the
3462 	 * zoned incompat feature flag set.
3463 	 */
3464 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3465 	if (ret) {
3466 		btrfs_err(fs_info,
3467 			  "zoned: failed to read device zone info: %d", ret);
3468 		goto fail_block_groups;
3469 	}
3470 
3471 	/*
3472 	 * If we have a uuid root and we're not being told to rescan we need to
3473 	 * check the generation here so we can set the
3474 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3475 	 * transaction during a balance or the log replay without updating the
3476 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3477 	 * even though it was perfectly fine.
3478 	 */
3479 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3480 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3481 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3482 
3483 	if (unlikely(btrfs_verify_dev_items(fs_info))) {
3484 		ret = -EUCLEAN;
3485 		goto fail_block_groups;
3486 	}
3487 	ret = btrfs_verify_dev_extents(fs_info);
3488 	if (ret) {
3489 		btrfs_err(fs_info,
3490 			  "failed to verify dev extents against chunks: %d",
3491 			  ret);
3492 		goto fail_block_groups;
3493 	}
3494 	ret = btrfs_recover_balance(fs_info);
3495 	if (ret) {
3496 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3497 		goto fail_block_groups;
3498 	}
3499 
3500 	ret = btrfs_init_dev_stats(fs_info);
3501 	if (ret) {
3502 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3503 		goto fail_block_groups;
3504 	}
3505 
3506 	ret = btrfs_init_dev_replace(fs_info);
3507 	if (ret) {
3508 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3509 		goto fail_block_groups;
3510 	}
3511 
3512 	ret = btrfs_check_zoned_mode(fs_info);
3513 	if (ret) {
3514 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3515 			  ret);
3516 		goto fail_block_groups;
3517 	}
3518 
3519 	ret = btrfs_sysfs_add_fsid(fs_devices);
3520 	if (ret) {
3521 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3522 				ret);
3523 		goto fail_block_groups;
3524 	}
3525 
3526 	ret = btrfs_sysfs_add_mounted(fs_info);
3527 	if (ret) {
3528 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3529 		goto fail_fsdev_sysfs;
3530 	}
3531 
3532 	ret = btrfs_init_space_info(fs_info);
3533 	if (ret) {
3534 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3535 		goto fail_sysfs;
3536 	}
3537 
3538 	ret = btrfs_read_block_groups(fs_info);
3539 	if (ret) {
3540 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3541 		goto fail_sysfs;
3542 	}
3543 
3544 	btrfs_zoned_reserve_data_reloc_bg(fs_info);
3545 	btrfs_free_zone_cache(fs_info);
3546 
3547 	btrfs_check_active_zone_reservation(fs_info);
3548 
3549 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3550 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3551 		btrfs_warn(fs_info,
3552 		"writable mount is not allowed due to too many missing devices");
3553 		ret = -EINVAL;
3554 		goto fail_sysfs;
3555 	}
3556 
3557 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3558 					       "btrfs-cleaner");
3559 	if (IS_ERR(fs_info->cleaner_kthread)) {
3560 		ret = PTR_ERR(fs_info->cleaner_kthread);
3561 		goto fail_sysfs;
3562 	}
3563 
3564 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3565 						   tree_root,
3566 						   "btrfs-transaction");
3567 	if (IS_ERR(fs_info->transaction_kthread)) {
3568 		ret = PTR_ERR(fs_info->transaction_kthread);
3569 		goto fail_cleaner;
3570 	}
3571 
3572 	ret = btrfs_read_qgroup_config(fs_info);
3573 	if (ret)
3574 		goto fail_trans_kthread;
3575 
3576 	if (btrfs_build_ref_tree(fs_info))
3577 		btrfs_err(fs_info, "couldn't build ref tree");
3578 
3579 	/* do not make disk changes in broken FS or nologreplay is given */
3580 	if (btrfs_super_log_root(disk_super) != 0 &&
3581 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3582 		btrfs_info(fs_info, "start tree-log replay");
3583 		ret = btrfs_replay_log(fs_info, fs_devices);
3584 		if (ret)
3585 			goto fail_qgroup;
3586 	}
3587 
3588 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3589 	if (IS_ERR(fs_info->fs_root)) {
3590 		ret = PTR_ERR(fs_info->fs_root);
3591 		btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3592 		fs_info->fs_root = NULL;
3593 		goto fail_qgroup;
3594 	}
3595 
3596 	if (sb_rdonly(sb))
3597 		return 0;
3598 
3599 	ret = btrfs_start_pre_rw_mount(fs_info);
3600 	if (ret) {
3601 		close_ctree(fs_info);
3602 		return ret;
3603 	}
3604 	btrfs_discard_resume(fs_info);
3605 
3606 	if (fs_info->uuid_root &&
3607 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3608 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3609 		btrfs_info(fs_info, "checking UUID tree");
3610 		ret = btrfs_check_uuid_tree(fs_info);
3611 		if (ret) {
3612 			btrfs_warn(fs_info,
3613 				"failed to check the UUID tree: %d", ret);
3614 			close_ctree(fs_info);
3615 			return ret;
3616 		}
3617 	}
3618 
3619 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3620 
3621 	/* Kick the cleaner thread so it'll start deleting snapshots. */
3622 	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3623 		wake_up_process(fs_info->cleaner_kthread);
3624 
3625 	return 0;
3626 
3627 fail_qgroup:
3628 	btrfs_free_qgroup_config(fs_info);
3629 fail_trans_kthread:
3630 	kthread_stop(fs_info->transaction_kthread);
3631 	btrfs_cleanup_transaction(fs_info);
3632 	btrfs_free_fs_roots(fs_info);
3633 fail_cleaner:
3634 	kthread_stop(fs_info->cleaner_kthread);
3635 
3636 	/*
3637 	 * make sure we're done with the btree inode before we stop our
3638 	 * kthreads
3639 	 */
3640 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3641 
3642 fail_sysfs:
3643 	btrfs_sysfs_remove_mounted(fs_info);
3644 
3645 fail_fsdev_sysfs:
3646 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3647 
3648 fail_block_groups:
3649 	btrfs_put_block_group_cache(fs_info);
3650 
3651 fail_tree_roots:
3652 	if (fs_info->data_reloc_root)
3653 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3654 	free_root_pointers(fs_info, true);
3655 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3656 
3657 fail_sb_buffer:
3658 	btrfs_stop_all_workers(fs_info);
3659 	btrfs_free_block_groups(fs_info);
3660 fail_alloc:
3661 	btrfs_mapping_tree_free(fs_info);
3662 
3663 	iput(fs_info->btree_inode);
3664 fail:
3665 	ASSERT(ret < 0);
3666 	return ret;
3667 }
3668 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3669 
btrfs_end_super_write(struct bio * bio)3670 static void btrfs_end_super_write(struct bio *bio)
3671 {
3672 	struct btrfs_device *device = bio->bi_private;
3673 	struct folio_iter fi;
3674 
3675 	bio_for_each_folio_all(fi, bio) {
3676 		if (bio->bi_status) {
3677 			btrfs_warn_rl(device->fs_info,
3678 				"lost super block write due to IO error on %s (%d)",
3679 				btrfs_dev_name(device),
3680 				blk_status_to_errno(bio->bi_status));
3681 			btrfs_dev_stat_inc_and_print(device,
3682 						     BTRFS_DEV_STAT_WRITE_ERRS);
3683 			/* Ensure failure if the primary sb fails. */
3684 			if (bio->bi_opf & REQ_FUA)
3685 				atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR,
3686 					   &device->sb_write_errors);
3687 			else
3688 				atomic_inc(&device->sb_write_errors);
3689 		}
3690 		folio_unlock(fi.folio);
3691 		folio_put(fi.folio);
3692 	}
3693 
3694 	bio_put(bio);
3695 }
3696 
3697 /*
3698  * Write superblock @sb to the @device. Do not wait for completion, all the
3699  * folios we use for writing are locked.
3700  *
3701  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3702  * the expected device size at commit time. Note that max_mirrors must be
3703  * same for write and wait phases.
3704  *
3705  * Return number of errors when folio is not found or submission fails.
3706  */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3707 static int write_dev_supers(struct btrfs_device *device,
3708 			    struct btrfs_super_block *sb, int max_mirrors)
3709 {
3710 	struct btrfs_fs_info *fs_info = device->fs_info;
3711 	struct address_space *mapping = device->bdev->bd_mapping;
3712 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3713 	int i;
3714 	int ret;
3715 	u64 bytenr, bytenr_orig;
3716 
3717 	atomic_set(&device->sb_write_errors, 0);
3718 
3719 	if (max_mirrors == 0)
3720 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3721 
3722 	shash->tfm = fs_info->csum_shash;
3723 
3724 	for (i = 0; i < max_mirrors; i++) {
3725 		struct folio *folio;
3726 		struct bio *bio;
3727 		struct btrfs_super_block *disk_super;
3728 		size_t offset;
3729 
3730 		bytenr_orig = btrfs_sb_offset(i);
3731 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3732 		if (ret == -ENOENT) {
3733 			continue;
3734 		} else if (ret < 0) {
3735 			btrfs_err(device->fs_info,
3736 			  "couldn't get super block location for mirror %d error %d",
3737 			  i, ret);
3738 			atomic_inc(&device->sb_write_errors);
3739 			continue;
3740 		}
3741 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3742 		    device->commit_total_bytes)
3743 			break;
3744 
3745 		btrfs_set_super_bytenr(sb, bytenr_orig);
3746 
3747 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3748 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3749 				    sb->csum);
3750 
3751 		folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT,
3752 					    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3753 					    GFP_NOFS);
3754 		if (IS_ERR(folio)) {
3755 			btrfs_err(device->fs_info,
3756 			  "couldn't get super block page for bytenr %llu error %ld",
3757 			  bytenr, PTR_ERR(folio));
3758 			atomic_inc(&device->sb_write_errors);
3759 			continue;
3760 		}
3761 
3762 		offset = offset_in_folio(folio, bytenr);
3763 		disk_super = folio_address(folio) + offset;
3764 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3765 
3766 		/*
3767 		 * Directly use bios here instead of relying on the page cache
3768 		 * to do I/O, so we don't lose the ability to do integrity
3769 		 * checking.
3770 		 */
3771 		bio = bio_alloc(device->bdev, 1,
3772 				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3773 				GFP_NOFS);
3774 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3775 		bio->bi_private = device;
3776 		bio->bi_end_io = btrfs_end_super_write;
3777 		bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset);
3778 
3779 		/*
3780 		 * We FUA only the first super block.  The others we allow to
3781 		 * go down lazy and there's a short window where the on-disk
3782 		 * copies might still contain the older version.
3783 		 */
3784 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3785 			bio->bi_opf |= REQ_FUA;
3786 		submit_bio(bio);
3787 
3788 		if (btrfs_advance_sb_log(device, i))
3789 			atomic_inc(&device->sb_write_errors);
3790 	}
3791 	return atomic_read(&device->sb_write_errors) < i ? 0 : -1;
3792 }
3793 
3794 /*
3795  * Wait for write completion of superblocks done by write_dev_supers,
3796  * @max_mirrors same for write and wait phases.
3797  *
3798  * Return -1 if primary super block write failed or when there were no super block
3799  * copies written. Otherwise 0.
3800  */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3801 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3802 {
3803 	int i;
3804 	int errors = 0;
3805 	bool primary_failed = false;
3806 	int ret;
3807 	u64 bytenr;
3808 
3809 	if (max_mirrors == 0)
3810 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3811 
3812 	for (i = 0; i < max_mirrors; i++) {
3813 		struct folio *folio;
3814 
3815 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3816 		if (ret == -ENOENT) {
3817 			break;
3818 		} else if (ret < 0) {
3819 			errors++;
3820 			if (i == 0)
3821 				primary_failed = true;
3822 			continue;
3823 		}
3824 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3825 		    device->commit_total_bytes)
3826 			break;
3827 
3828 		folio = filemap_get_folio(device->bdev->bd_mapping,
3829 					  bytenr >> PAGE_SHIFT);
3830 		/* If the folio has been removed, then we know it completed. */
3831 		if (IS_ERR(folio))
3832 			continue;
3833 
3834 		/* Folio will be unlocked once the write completes. */
3835 		folio_wait_locked(folio);
3836 		folio_put(folio);
3837 	}
3838 
3839 	errors += atomic_read(&device->sb_write_errors);
3840 	if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR)
3841 		primary_failed = true;
3842 	if (primary_failed) {
3843 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3844 			  device->devid);
3845 		return -1;
3846 	}
3847 
3848 	return errors < i ? 0 : -1;
3849 }
3850 
3851 /*
3852  * endio for the write_dev_flush, this will wake anyone waiting
3853  * for the barrier when it is done
3854  */
btrfs_end_empty_barrier(struct bio * bio)3855 static void btrfs_end_empty_barrier(struct bio *bio)
3856 {
3857 	bio_uninit(bio);
3858 	complete(bio->bi_private);
3859 }
3860 
3861 /*
3862  * Submit a flush request to the device if it supports it. Error handling is
3863  * done in the waiting counterpart.
3864  */
write_dev_flush(struct btrfs_device * device)3865 static void write_dev_flush(struct btrfs_device *device)
3866 {
3867 	struct bio *bio = &device->flush_bio;
3868 
3869 	device->last_flush_error = BLK_STS_OK;
3870 
3871 	bio_init(bio, device->bdev, NULL, 0,
3872 		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3873 	bio->bi_end_io = btrfs_end_empty_barrier;
3874 	init_completion(&device->flush_wait);
3875 	bio->bi_private = &device->flush_wait;
3876 	submit_bio(bio);
3877 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3878 }
3879 
3880 /*
3881  * If the flush bio has been submitted by write_dev_flush, wait for it.
3882  * Return true for any error, and false otherwise.
3883  */
wait_dev_flush(struct btrfs_device * device)3884 static bool wait_dev_flush(struct btrfs_device *device)
3885 {
3886 	struct bio *bio = &device->flush_bio;
3887 
3888 	if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3889 		return false;
3890 
3891 	wait_for_completion_io(&device->flush_wait);
3892 
3893 	if (bio->bi_status) {
3894 		device->last_flush_error = bio->bi_status;
3895 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3896 		return true;
3897 	}
3898 
3899 	return false;
3900 }
3901 
3902 /*
3903  * send an empty flush down to each device in parallel,
3904  * then wait for them
3905  */
barrier_all_devices(struct btrfs_fs_info * info)3906 static int barrier_all_devices(struct btrfs_fs_info *info)
3907 {
3908 	struct list_head *head;
3909 	struct btrfs_device *dev;
3910 	int errors_wait = 0;
3911 
3912 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3913 	/* send down all the barriers */
3914 	head = &info->fs_devices->devices;
3915 	list_for_each_entry(dev, head, dev_list) {
3916 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3917 			continue;
3918 		if (!dev->bdev)
3919 			continue;
3920 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3921 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3922 			continue;
3923 
3924 		write_dev_flush(dev);
3925 	}
3926 
3927 	/* wait for all the barriers */
3928 	list_for_each_entry(dev, head, dev_list) {
3929 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3930 			continue;
3931 		if (!dev->bdev) {
3932 			errors_wait++;
3933 			continue;
3934 		}
3935 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3936 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3937 			continue;
3938 
3939 		if (wait_dev_flush(dev))
3940 			errors_wait++;
3941 	}
3942 
3943 	/*
3944 	 * Checks last_flush_error of disks in order to determine the device
3945 	 * state.
3946 	 */
3947 	if (unlikely(errors_wait && !btrfs_check_rw_degradable(info, NULL)))
3948 		return -EIO;
3949 
3950 	return 0;
3951 }
3952 
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)3953 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3954 {
3955 	int raid_type;
3956 	int min_tolerated = INT_MAX;
3957 
3958 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3959 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3960 		min_tolerated = min_t(int, min_tolerated,
3961 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3962 				    tolerated_failures);
3963 
3964 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3965 		if (raid_type == BTRFS_RAID_SINGLE)
3966 			continue;
3967 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3968 			continue;
3969 		min_tolerated = min_t(int, min_tolerated,
3970 				    btrfs_raid_array[raid_type].
3971 				    tolerated_failures);
3972 	}
3973 
3974 	if (min_tolerated == INT_MAX) {
3975 		btrfs_warn(NULL, "unknown raid flag: %llu", flags);
3976 		min_tolerated = 0;
3977 	}
3978 
3979 	return min_tolerated;
3980 }
3981 
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)3982 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3983 {
3984 	struct list_head *head;
3985 	struct btrfs_device *dev;
3986 	struct btrfs_super_block *sb;
3987 	struct btrfs_dev_item *dev_item;
3988 	int ret;
3989 	int do_barriers;
3990 	int max_errors;
3991 	int total_errors = 0;
3992 	u64 flags;
3993 
3994 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3995 
3996 	/*
3997 	 * max_mirrors == 0 indicates we're from commit_transaction,
3998 	 * not from fsync where the tree roots in fs_info have not
3999 	 * been consistent on disk.
4000 	 */
4001 	if (max_mirrors == 0)
4002 		backup_super_roots(fs_info);
4003 
4004 	sb = fs_info->super_for_commit;
4005 	dev_item = &sb->dev_item;
4006 
4007 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4008 	head = &fs_info->fs_devices->devices;
4009 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4010 
4011 	if (do_barriers) {
4012 		ret = barrier_all_devices(fs_info);
4013 		if (ret) {
4014 			mutex_unlock(
4015 				&fs_info->fs_devices->device_list_mutex);
4016 			btrfs_handle_fs_error(fs_info, ret,
4017 					      "errors while submitting device barriers.");
4018 			return ret;
4019 		}
4020 	}
4021 
4022 	list_for_each_entry(dev, head, dev_list) {
4023 		if (!dev->bdev) {
4024 			total_errors++;
4025 			continue;
4026 		}
4027 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4028 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4029 			continue;
4030 
4031 		btrfs_set_stack_device_generation(dev_item, 0);
4032 		btrfs_set_stack_device_type(dev_item, dev->type);
4033 		btrfs_set_stack_device_id(dev_item, dev->devid);
4034 		btrfs_set_stack_device_total_bytes(dev_item,
4035 						   dev->commit_total_bytes);
4036 		btrfs_set_stack_device_bytes_used(dev_item,
4037 						  dev->commit_bytes_used);
4038 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4039 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4040 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4041 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4042 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4043 		       BTRFS_FSID_SIZE);
4044 
4045 		flags = btrfs_super_flags(sb);
4046 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4047 
4048 		ret = btrfs_validate_write_super(fs_info, sb);
4049 		if (unlikely(ret < 0)) {
4050 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4051 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4052 				"unexpected superblock corruption detected");
4053 			return -EUCLEAN;
4054 		}
4055 
4056 		ret = write_dev_supers(dev, sb, max_mirrors);
4057 		if (ret)
4058 			total_errors++;
4059 	}
4060 	if (unlikely(total_errors > max_errors)) {
4061 		btrfs_err(fs_info, "%d errors while writing supers",
4062 			  total_errors);
4063 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4064 
4065 		/* FUA is masked off if unsupported and can't be the reason */
4066 		btrfs_handle_fs_error(fs_info, -EIO,
4067 				      "%d errors while writing supers",
4068 				      total_errors);
4069 		return -EIO;
4070 	}
4071 
4072 	total_errors = 0;
4073 	list_for_each_entry(dev, head, dev_list) {
4074 		if (!dev->bdev)
4075 			continue;
4076 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4077 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4078 			continue;
4079 
4080 		ret = wait_dev_supers(dev, max_mirrors);
4081 		if (ret)
4082 			total_errors++;
4083 	}
4084 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4085 	if (unlikely(total_errors > max_errors)) {
4086 		btrfs_handle_fs_error(fs_info, -EIO,
4087 				      "%d errors while writing supers",
4088 				      total_errors);
4089 		return -EIO;
4090 	}
4091 	return 0;
4092 }
4093 
4094 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)4095 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4096 				  struct btrfs_root *root)
4097 {
4098 	bool drop_ref = false;
4099 
4100 	spin_lock(&fs_info->fs_roots_radix_lock);
4101 	radix_tree_delete(&fs_info->fs_roots_radix,
4102 			  (unsigned long)btrfs_root_id(root));
4103 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4104 		drop_ref = true;
4105 	spin_unlock(&fs_info->fs_roots_radix_lock);
4106 
4107 	if (BTRFS_FS_ERROR(fs_info)) {
4108 		ASSERT(root->log_root == NULL);
4109 		if (root->reloc_root) {
4110 			btrfs_put_root(root->reloc_root);
4111 			root->reloc_root = NULL;
4112 		}
4113 	}
4114 
4115 	if (drop_ref)
4116 		btrfs_put_root(root);
4117 }
4118 
btrfs_commit_super(struct btrfs_fs_info * fs_info)4119 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4120 {
4121 	mutex_lock(&fs_info->cleaner_mutex);
4122 	btrfs_run_delayed_iputs(fs_info);
4123 	mutex_unlock(&fs_info->cleaner_mutex);
4124 	wake_up_process(fs_info->cleaner_kthread);
4125 
4126 	/* wait until ongoing cleanup work done */
4127 	down_write(&fs_info->cleanup_work_sem);
4128 	up_write(&fs_info->cleanup_work_sem);
4129 
4130 	return btrfs_commit_current_transaction(fs_info->tree_root);
4131 }
4132 
warn_about_uncommitted_trans(struct btrfs_fs_info * fs_info)4133 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4134 {
4135 	struct btrfs_transaction *trans;
4136 	struct btrfs_transaction *tmp;
4137 	bool found = false;
4138 
4139 	/*
4140 	 * This function is only called at the very end of close_ctree(),
4141 	 * thus no other running transaction, no need to take trans_lock.
4142 	 */
4143 	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4144 	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4145 		struct extent_state *cached = NULL;
4146 		u64 dirty_bytes = 0;
4147 		u64 cur = 0;
4148 		u64 found_start;
4149 		u64 found_end;
4150 
4151 		found = true;
4152 		while (btrfs_find_first_extent_bit(&trans->dirty_pages, cur,
4153 						   &found_start, &found_end,
4154 						   EXTENT_DIRTY, &cached)) {
4155 			dirty_bytes += found_end + 1 - found_start;
4156 			cur = found_end + 1;
4157 		}
4158 		btrfs_warn(fs_info,
4159 	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4160 			   trans->transid, dirty_bytes);
4161 		btrfs_cleanup_one_transaction(trans);
4162 
4163 		if (trans == fs_info->running_transaction)
4164 			fs_info->running_transaction = NULL;
4165 		list_del_init(&trans->list);
4166 
4167 		btrfs_put_transaction(trans);
4168 		trace_btrfs_transaction_commit(fs_info);
4169 	}
4170 	ASSERT(!found);
4171 }
4172 
close_ctree(struct btrfs_fs_info * fs_info)4173 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4174 {
4175 	int ret;
4176 
4177 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4178 
4179 	/*
4180 	 * If we had UNFINISHED_DROPS we could still be processing them, so
4181 	 * clear that bit and wake up relocation so it can stop.
4182 	 * We must do this before stopping the block group reclaim task, because
4183 	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4184 	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4185 	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4186 	 * return 1.
4187 	 */
4188 	btrfs_wake_unfinished_drop(fs_info);
4189 
4190 	/*
4191 	 * We may have the reclaim task running and relocating a data block group,
4192 	 * in which case it may create delayed iputs. So stop it before we park
4193 	 * the cleaner kthread otherwise we can get new delayed iputs after
4194 	 * parking the cleaner, and that can make the async reclaim task to hang
4195 	 * if it's waiting for delayed iputs to complete, since the cleaner is
4196 	 * parked and can not run delayed iputs - this will make us hang when
4197 	 * trying to stop the async reclaim task.
4198 	 */
4199 	cancel_work_sync(&fs_info->reclaim_bgs_work);
4200 	/*
4201 	 * We don't want the cleaner to start new transactions, add more delayed
4202 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4203 	 * because that frees the task_struct, and the transaction kthread might
4204 	 * still try to wake up the cleaner.
4205 	 */
4206 	kthread_park(fs_info->cleaner_kthread);
4207 
4208 	/* wait for the qgroup rescan worker to stop */
4209 	btrfs_qgroup_wait_for_completion(fs_info, false);
4210 
4211 	/* wait for the uuid_scan task to finish */
4212 	down(&fs_info->uuid_tree_rescan_sem);
4213 	/* avoid complains from lockdep et al., set sem back to initial state */
4214 	up(&fs_info->uuid_tree_rescan_sem);
4215 
4216 	/* pause restriper - we want to resume on mount */
4217 	btrfs_pause_balance(fs_info);
4218 
4219 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4220 
4221 	btrfs_scrub_cancel(fs_info);
4222 
4223 	/* wait for any defraggers to finish */
4224 	wait_event(fs_info->transaction_wait,
4225 		   (atomic_read(&fs_info->defrag_running) == 0));
4226 
4227 	/* clear out the rbtree of defraggable inodes */
4228 	btrfs_cleanup_defrag_inodes(fs_info);
4229 
4230 	/*
4231 	 * Handle the error fs first, as it will flush and wait for all ordered
4232 	 * extents.  This will generate delayed iputs, thus we want to handle
4233 	 * it first.
4234 	 */
4235 	if (unlikely(BTRFS_FS_ERROR(fs_info)))
4236 		btrfs_error_commit_super(fs_info);
4237 
4238 	/*
4239 	 * Wait for any fixup workers to complete.
4240 	 * If we don't wait for them here and they are still running by the time
4241 	 * we call kthread_stop() against the cleaner kthread further below, we
4242 	 * get an use-after-free on the cleaner because the fixup worker adds an
4243 	 * inode to the list of delayed iputs and then attempts to wakeup the
4244 	 * cleaner kthread, which was already stopped and destroyed. We parked
4245 	 * already the cleaner, but below we run all pending delayed iputs.
4246 	 */
4247 	btrfs_flush_workqueue(fs_info->fixup_workers);
4248 	/*
4249 	 * Similar case here, we have to wait for delalloc workers before we
4250 	 * proceed below and stop the cleaner kthread, otherwise we trigger a
4251 	 * use-after-tree on the cleaner kthread task_struct when a delalloc
4252 	 * worker running submit_compressed_extents() adds a delayed iput, which
4253 	 * does a wake up on the cleaner kthread, which was already freed below
4254 	 * when we call kthread_stop().
4255 	 */
4256 	btrfs_flush_workqueue(fs_info->delalloc_workers);
4257 
4258 	/*
4259 	 * We can have ordered extents getting their last reference dropped from
4260 	 * the fs_info->workers queue because for async writes for data bios we
4261 	 * queue a work for that queue, at btrfs_wq_submit_bio(), that runs
4262 	 * run_one_async_done() which calls btrfs_bio_end_io() in case the bio
4263 	 * has an error, and that later function can do the final
4264 	 * btrfs_put_ordered_extent() on the ordered extent attached to the bio,
4265 	 * which adds a delayed iput for the inode. So we must flush the queue
4266 	 * so that we don't have delayed iputs after committing the current
4267 	 * transaction below and stopping the cleaner and transaction kthreads.
4268 	 */
4269 	btrfs_flush_workqueue(fs_info->workers);
4270 
4271 	/*
4272 	 * When finishing a compressed write bio we schedule a work queue item
4273 	 * to finish an ordered extent - end_bbio_compressed_write()
4274 	 * calls btrfs_finish_ordered_extent() which in turns does a call to
4275 	 * btrfs_queue_ordered_fn(), and that queues the ordered extent
4276 	 * completion either in the endio_write_workers work queue or in the
4277 	 * fs_info->endio_freespace_worker work queue. We flush those queues
4278 	 * below, so before we flush them we must flush this queue for the
4279 	 * workers of compressed writes.
4280 	 */
4281 	flush_workqueue(fs_info->endio_workers);
4282 
4283 	/*
4284 	 * After we parked the cleaner kthread, ordered extents may have
4285 	 * completed and created new delayed iputs. If one of the async reclaim
4286 	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4287 	 * can hang forever trying to stop it, because if a delayed iput is
4288 	 * added after it ran btrfs_run_delayed_iputs() and before it called
4289 	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4290 	 * no one else to run iputs.
4291 	 *
4292 	 * So wait for all ongoing ordered extents to complete and then run
4293 	 * delayed iputs. This works because once we reach this point no one
4294 	 * can create new ordered extents, but delayed iputs can still be added
4295 	 * by a reclaim worker (see comments further below).
4296 	 *
4297 	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4298 	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4299 	 * but the delayed iput for the respective inode is made only when doing
4300 	 * the final btrfs_put_ordered_extent() (which must happen at
4301 	 * btrfs_finish_ordered_io() when we are unmounting).
4302 	 */
4303 	btrfs_flush_workqueue(fs_info->endio_write_workers);
4304 	/* Ordered extents for free space inodes. */
4305 	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4306 	/*
4307 	 * Run delayed iputs in case an async reclaim worker is waiting for them
4308 	 * to be run as mentioned above.
4309 	 */
4310 	btrfs_run_delayed_iputs(fs_info);
4311 
4312 	cancel_work_sync(&fs_info->async_reclaim_work);
4313 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4314 	cancel_work_sync(&fs_info->preempt_reclaim_work);
4315 	cancel_work_sync(&fs_info->em_shrinker_work);
4316 
4317 	/*
4318 	 * Run delayed iputs again because an async reclaim worker may have
4319 	 * added new ones if it was flushing delalloc:
4320 	 *
4321 	 * shrink_delalloc() -> btrfs_start_delalloc_roots() ->
4322 	 *    start_delalloc_inodes() -> btrfs_add_delayed_iput()
4323 	 */
4324 	btrfs_run_delayed_iputs(fs_info);
4325 
4326 	/* There should be no more workload to generate new delayed iputs. */
4327 	set_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state);
4328 
4329 	/* Cancel or finish ongoing discard work */
4330 	btrfs_discard_cleanup(fs_info);
4331 
4332 	if (!sb_rdonly(fs_info->sb)) {
4333 		/*
4334 		 * The cleaner kthread is stopped, so do one final pass over
4335 		 * unused block groups.
4336 		 */
4337 		btrfs_delete_unused_bgs(fs_info);
4338 
4339 		/*
4340 		 * There might be existing delayed inode workers still running
4341 		 * and holding an empty delayed inode item. We must wait for
4342 		 * them to complete first because they can create a transaction.
4343 		 * This happens when someone calls btrfs_balance_delayed_items()
4344 		 * and then a transaction commit runs the same delayed nodes
4345 		 * before any delayed worker has done something with the nodes.
4346 		 * We must wait for any worker here and not at transaction
4347 		 * commit time since that could cause a deadlock.
4348 		 * This is a very rare case.
4349 		 */
4350 		btrfs_flush_workqueue(fs_info->delayed_workers);
4351 
4352 		ret = btrfs_commit_super(fs_info);
4353 		if (ret)
4354 			btrfs_err(fs_info, "commit super ret %d", ret);
4355 	}
4356 
4357 	kthread_stop(fs_info->transaction_kthread);
4358 	kthread_stop(fs_info->cleaner_kthread);
4359 
4360 	ASSERT(list_empty(&fs_info->delayed_iputs));
4361 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4362 
4363 	if (btrfs_check_quota_leak(fs_info)) {
4364 		DEBUG_WARN("qgroup reserved space leaked");
4365 		btrfs_err(fs_info, "qgroup reserved space leaked");
4366 	}
4367 
4368 	btrfs_free_qgroup_config(fs_info);
4369 	ASSERT(list_empty(&fs_info->delalloc_roots));
4370 
4371 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4372 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4373 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4374 	}
4375 
4376 	if (percpu_counter_sum(&fs_info->ordered_bytes))
4377 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4378 			   percpu_counter_sum(&fs_info->ordered_bytes));
4379 
4380 	btrfs_sysfs_remove_mounted(fs_info);
4381 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4382 
4383 	btrfs_put_block_group_cache(fs_info);
4384 
4385 	/*
4386 	 * we must make sure there is not any read request to
4387 	 * submit after we stopping all workers.
4388 	 */
4389 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4390 	btrfs_stop_all_workers(fs_info);
4391 
4392 	/* We shouldn't have any transaction open at this point */
4393 	warn_about_uncommitted_trans(fs_info);
4394 
4395 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4396 	free_root_pointers(fs_info, true);
4397 	btrfs_free_fs_roots(fs_info);
4398 
4399 	/*
4400 	 * We must free the block groups after dropping the fs_roots as we could
4401 	 * have had an IO error and have left over tree log blocks that aren't
4402 	 * cleaned up until the fs roots are freed.  This makes the block group
4403 	 * accounting appear to be wrong because there's pending reserved bytes,
4404 	 * so make sure we do the block group cleanup afterwards.
4405 	 */
4406 	btrfs_free_block_groups(fs_info);
4407 
4408 	iput(fs_info->btree_inode);
4409 
4410 	btrfs_mapping_tree_free(fs_info);
4411 }
4412 
btrfs_mark_buffer_dirty(struct btrfs_trans_handle * trans,struct extent_buffer * buf)4413 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4414 			     struct extent_buffer *buf)
4415 {
4416 	struct btrfs_fs_info *fs_info = buf->fs_info;
4417 	u64 transid = btrfs_header_generation(buf);
4418 
4419 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4420 	/*
4421 	 * This is a fast path so only do this check if we have sanity tests
4422 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4423 	 * outside of the sanity tests.
4424 	 */
4425 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4426 		return;
4427 #endif
4428 	/* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4429 	ASSERT(trans->transid == fs_info->generation);
4430 	btrfs_assert_tree_write_locked(buf);
4431 	if (unlikely(transid != fs_info->generation)) {
4432 		btrfs_abort_transaction(trans, -EUCLEAN);
4433 		btrfs_crit(fs_info,
4434 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4435 			   buf->start, transid, fs_info->generation);
4436 	}
4437 	set_extent_buffer_dirty(buf);
4438 }
4439 
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4440 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4441 					int flush_delayed)
4442 {
4443 	/*
4444 	 * looks as though older kernels can get into trouble with
4445 	 * this code, they end up stuck in balance_dirty_pages forever
4446 	 */
4447 	int ret;
4448 
4449 	if (current->flags & PF_MEMALLOC)
4450 		return;
4451 
4452 	if (flush_delayed)
4453 		btrfs_balance_delayed_items(fs_info);
4454 
4455 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4456 				     BTRFS_DIRTY_METADATA_THRESH,
4457 				     fs_info->dirty_metadata_batch);
4458 	if (ret > 0) {
4459 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4460 	}
4461 }
4462 
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4463 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4464 {
4465 	__btrfs_btree_balance_dirty(fs_info, 1);
4466 }
4467 
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4468 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4469 {
4470 	__btrfs_btree_balance_dirty(fs_info, 0);
4471 }
4472 
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4473 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4474 {
4475 	/* cleanup FS via transaction */
4476 	btrfs_cleanup_transaction(fs_info);
4477 
4478 	down_write(&fs_info->cleanup_work_sem);
4479 	up_write(&fs_info->cleanup_work_sem);
4480 }
4481 
btrfs_drop_all_logs(struct btrfs_fs_info * fs_info)4482 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4483 {
4484 	struct btrfs_root *gang[8];
4485 	u64 root_objectid = 0;
4486 	int ret;
4487 
4488 	spin_lock(&fs_info->fs_roots_radix_lock);
4489 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4490 					     (void **)gang, root_objectid,
4491 					     ARRAY_SIZE(gang))) != 0) {
4492 		int i;
4493 
4494 		for (i = 0; i < ret; i++)
4495 			gang[i] = btrfs_grab_root(gang[i]);
4496 		spin_unlock(&fs_info->fs_roots_radix_lock);
4497 
4498 		for (i = 0; i < ret; i++) {
4499 			if (!gang[i])
4500 				continue;
4501 			root_objectid = btrfs_root_id(gang[i]);
4502 			btrfs_free_log(NULL, gang[i]);
4503 			btrfs_put_root(gang[i]);
4504 		}
4505 		root_objectid++;
4506 		spin_lock(&fs_info->fs_roots_radix_lock);
4507 	}
4508 	spin_unlock(&fs_info->fs_roots_radix_lock);
4509 	btrfs_free_log_root_tree(NULL, fs_info);
4510 }
4511 
btrfs_destroy_ordered_extents(struct btrfs_root * root)4512 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4513 {
4514 	struct btrfs_ordered_extent *ordered;
4515 
4516 	spin_lock(&root->ordered_extent_lock);
4517 	/*
4518 	 * This will just short circuit the ordered completion stuff which will
4519 	 * make sure the ordered extent gets properly cleaned up.
4520 	 */
4521 	list_for_each_entry(ordered, &root->ordered_extents,
4522 			    root_extent_list)
4523 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4524 	spin_unlock(&root->ordered_extent_lock);
4525 }
4526 
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4527 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4528 {
4529 	struct btrfs_root *root;
4530 	LIST_HEAD(splice);
4531 
4532 	spin_lock(&fs_info->ordered_root_lock);
4533 	list_splice_init(&fs_info->ordered_roots, &splice);
4534 	while (!list_empty(&splice)) {
4535 		root = list_first_entry(&splice, struct btrfs_root,
4536 					ordered_root);
4537 		list_move_tail(&root->ordered_root,
4538 			       &fs_info->ordered_roots);
4539 
4540 		spin_unlock(&fs_info->ordered_root_lock);
4541 		btrfs_destroy_ordered_extents(root);
4542 
4543 		cond_resched();
4544 		spin_lock(&fs_info->ordered_root_lock);
4545 	}
4546 	spin_unlock(&fs_info->ordered_root_lock);
4547 
4548 	/*
4549 	 * We need this here because if we've been flipped read-only we won't
4550 	 * get sync() from the umount, so we need to make sure any ordered
4551 	 * extents that haven't had their dirty pages IO start writeout yet
4552 	 * actually get run and error out properly.
4553 	 */
4554 	btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
4555 }
4556 
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4557 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4558 {
4559 	struct btrfs_inode *btrfs_inode;
4560 	LIST_HEAD(splice);
4561 
4562 	spin_lock(&root->delalloc_lock);
4563 	list_splice_init(&root->delalloc_inodes, &splice);
4564 
4565 	while (!list_empty(&splice)) {
4566 		struct inode *inode = NULL;
4567 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4568 					       delalloc_inodes);
4569 		btrfs_del_delalloc_inode(btrfs_inode);
4570 		spin_unlock(&root->delalloc_lock);
4571 
4572 		/*
4573 		 * Make sure we get a live inode and that it'll not disappear
4574 		 * meanwhile.
4575 		 */
4576 		inode = igrab(&btrfs_inode->vfs_inode);
4577 		if (inode) {
4578 			unsigned int nofs_flag;
4579 
4580 			nofs_flag = memalloc_nofs_save();
4581 			invalidate_inode_pages2(inode->i_mapping);
4582 			memalloc_nofs_restore(nofs_flag);
4583 			iput(inode);
4584 		}
4585 		spin_lock(&root->delalloc_lock);
4586 	}
4587 	spin_unlock(&root->delalloc_lock);
4588 }
4589 
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4590 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4591 {
4592 	struct btrfs_root *root;
4593 	LIST_HEAD(splice);
4594 
4595 	spin_lock(&fs_info->delalloc_root_lock);
4596 	list_splice_init(&fs_info->delalloc_roots, &splice);
4597 	while (!list_empty(&splice)) {
4598 		root = list_first_entry(&splice, struct btrfs_root,
4599 					 delalloc_root);
4600 		root = btrfs_grab_root(root);
4601 		BUG_ON(!root);
4602 		spin_unlock(&fs_info->delalloc_root_lock);
4603 
4604 		btrfs_destroy_delalloc_inodes(root);
4605 		btrfs_put_root(root);
4606 
4607 		spin_lock(&fs_info->delalloc_root_lock);
4608 	}
4609 	spin_unlock(&fs_info->delalloc_root_lock);
4610 }
4611 
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4612 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4613 					 struct extent_io_tree *dirty_pages,
4614 					 int mark)
4615 {
4616 	struct extent_buffer *eb;
4617 	u64 start = 0;
4618 	u64 end;
4619 
4620 	while (btrfs_find_first_extent_bit(dirty_pages, start, &start, &end,
4621 					   mark, NULL)) {
4622 		btrfs_clear_extent_bit(dirty_pages, start, end, mark, NULL);
4623 		while (start <= end) {
4624 			eb = find_extent_buffer(fs_info, start);
4625 			start += fs_info->nodesize;
4626 			if (!eb)
4627 				continue;
4628 
4629 			btrfs_tree_lock(eb);
4630 			wait_on_extent_buffer_writeback(eb);
4631 			btrfs_clear_buffer_dirty(NULL, eb);
4632 			btrfs_tree_unlock(eb);
4633 
4634 			free_extent_buffer_stale(eb);
4635 		}
4636 	}
4637 }
4638 
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * unpin)4639 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4640 					struct extent_io_tree *unpin)
4641 {
4642 	u64 start;
4643 	u64 end;
4644 
4645 	while (1) {
4646 		struct extent_state *cached_state = NULL;
4647 
4648 		/*
4649 		 * The btrfs_finish_extent_commit() may get the same range as
4650 		 * ours between find_first_extent_bit and clear_extent_dirty.
4651 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4652 		 * the same extent range.
4653 		 */
4654 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4655 		if (!btrfs_find_first_extent_bit(unpin, 0, &start, &end,
4656 						 EXTENT_DIRTY, &cached_state)) {
4657 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4658 			break;
4659 		}
4660 
4661 		btrfs_clear_extent_dirty(unpin, start, end, &cached_state);
4662 		btrfs_free_extent_state(cached_state);
4663 		btrfs_error_unpin_extent_range(fs_info, start, end);
4664 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4665 		cond_resched();
4666 	}
4667 }
4668 
btrfs_cleanup_bg_io(struct btrfs_block_group * cache)4669 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4670 {
4671 	struct inode *inode;
4672 
4673 	inode = cache->io_ctl.inode;
4674 	if (inode) {
4675 		unsigned int nofs_flag;
4676 
4677 		nofs_flag = memalloc_nofs_save();
4678 		invalidate_inode_pages2(inode->i_mapping);
4679 		memalloc_nofs_restore(nofs_flag);
4680 
4681 		BTRFS_I(inode)->generation = 0;
4682 		cache->io_ctl.inode = NULL;
4683 		iput(inode);
4684 	}
4685 	ASSERT(cache->io_ctl.pages == NULL);
4686 	btrfs_put_block_group(cache);
4687 }
4688 
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4689 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4690 			     struct btrfs_fs_info *fs_info)
4691 {
4692 	struct btrfs_block_group *cache;
4693 
4694 	spin_lock(&cur_trans->dirty_bgs_lock);
4695 	while (!list_empty(&cur_trans->dirty_bgs)) {
4696 		cache = list_first_entry(&cur_trans->dirty_bgs,
4697 					 struct btrfs_block_group,
4698 					 dirty_list);
4699 
4700 		if (!list_empty(&cache->io_list)) {
4701 			spin_unlock(&cur_trans->dirty_bgs_lock);
4702 			list_del_init(&cache->io_list);
4703 			btrfs_cleanup_bg_io(cache);
4704 			spin_lock(&cur_trans->dirty_bgs_lock);
4705 		}
4706 
4707 		list_del_init(&cache->dirty_list);
4708 		spin_lock(&cache->lock);
4709 		cache->disk_cache_state = BTRFS_DC_ERROR;
4710 		spin_unlock(&cache->lock);
4711 
4712 		spin_unlock(&cur_trans->dirty_bgs_lock);
4713 		btrfs_put_block_group(cache);
4714 		btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4715 		spin_lock(&cur_trans->dirty_bgs_lock);
4716 	}
4717 	spin_unlock(&cur_trans->dirty_bgs_lock);
4718 
4719 	/*
4720 	 * Refer to the definition of io_bgs member for details why it's safe
4721 	 * to use it without any locking
4722 	 */
4723 	while (!list_empty(&cur_trans->io_bgs)) {
4724 		cache = list_first_entry(&cur_trans->io_bgs,
4725 					 struct btrfs_block_group,
4726 					 io_list);
4727 
4728 		list_del_init(&cache->io_list);
4729 		spin_lock(&cache->lock);
4730 		cache->disk_cache_state = BTRFS_DC_ERROR;
4731 		spin_unlock(&cache->lock);
4732 		btrfs_cleanup_bg_io(cache);
4733 	}
4734 }
4735 
btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info * fs_info)4736 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4737 {
4738 	struct btrfs_root *gang[8];
4739 	int i;
4740 	int ret;
4741 
4742 	spin_lock(&fs_info->fs_roots_radix_lock);
4743 	while (1) {
4744 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4745 						 (void **)gang, 0,
4746 						 ARRAY_SIZE(gang),
4747 						 BTRFS_ROOT_TRANS_TAG);
4748 		if (ret == 0)
4749 			break;
4750 		for (i = 0; i < ret; i++) {
4751 			struct btrfs_root *root = gang[i];
4752 
4753 			btrfs_qgroup_free_meta_all_pertrans(root);
4754 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
4755 					(unsigned long)btrfs_root_id(root),
4756 					BTRFS_ROOT_TRANS_TAG);
4757 		}
4758 	}
4759 	spin_unlock(&fs_info->fs_roots_radix_lock);
4760 }
4761 
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans)4762 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans)
4763 {
4764 	struct btrfs_fs_info *fs_info = cur_trans->fs_info;
4765 	struct btrfs_device *dev, *tmp;
4766 
4767 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4768 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4769 	ASSERT(list_empty(&cur_trans->io_bgs));
4770 
4771 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4772 				 post_commit_list) {
4773 		list_del_init(&dev->post_commit_list);
4774 	}
4775 
4776 	btrfs_destroy_delayed_refs(cur_trans);
4777 
4778 	cur_trans->state = TRANS_STATE_COMMIT_START;
4779 	wake_up(&fs_info->transaction_blocked_wait);
4780 
4781 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4782 	wake_up(&fs_info->transaction_wait);
4783 
4784 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4785 				     EXTENT_DIRTY);
4786 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4787 
4788 	cur_trans->state =TRANS_STATE_COMPLETED;
4789 	wake_up(&cur_trans->commit_wait);
4790 }
4791 
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)4792 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4793 {
4794 	struct btrfs_transaction *t;
4795 
4796 	mutex_lock(&fs_info->transaction_kthread_mutex);
4797 
4798 	spin_lock(&fs_info->trans_lock);
4799 	while (!list_empty(&fs_info->trans_list)) {
4800 		t = list_first_entry(&fs_info->trans_list,
4801 				     struct btrfs_transaction, list);
4802 		if (t->state >= TRANS_STATE_COMMIT_PREP) {
4803 			refcount_inc(&t->use_count);
4804 			spin_unlock(&fs_info->trans_lock);
4805 			btrfs_wait_for_commit(fs_info, t->transid);
4806 			btrfs_put_transaction(t);
4807 			spin_lock(&fs_info->trans_lock);
4808 			continue;
4809 		}
4810 		if (t == fs_info->running_transaction) {
4811 			t->state = TRANS_STATE_COMMIT_DOING;
4812 			spin_unlock(&fs_info->trans_lock);
4813 			/*
4814 			 * We wait for 0 num_writers since we don't hold a trans
4815 			 * handle open currently for this transaction.
4816 			 */
4817 			wait_event(t->writer_wait,
4818 				   atomic_read(&t->num_writers) == 0);
4819 		} else {
4820 			spin_unlock(&fs_info->trans_lock);
4821 		}
4822 		btrfs_cleanup_one_transaction(t);
4823 
4824 		spin_lock(&fs_info->trans_lock);
4825 		if (t == fs_info->running_transaction)
4826 			fs_info->running_transaction = NULL;
4827 		list_del_init(&t->list);
4828 		spin_unlock(&fs_info->trans_lock);
4829 
4830 		btrfs_put_transaction(t);
4831 		trace_btrfs_transaction_commit(fs_info);
4832 		spin_lock(&fs_info->trans_lock);
4833 	}
4834 	spin_unlock(&fs_info->trans_lock);
4835 	btrfs_destroy_all_ordered_extents(fs_info);
4836 	btrfs_destroy_delayed_inodes(fs_info);
4837 	btrfs_assert_delayed_root_empty(fs_info);
4838 	btrfs_destroy_all_delalloc_inodes(fs_info);
4839 	btrfs_drop_all_logs(fs_info);
4840 	btrfs_free_all_qgroup_pertrans(fs_info);
4841 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4842 
4843 	return 0;
4844 }
4845 
btrfs_init_root_free_objectid(struct btrfs_root * root)4846 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4847 {
4848 	BTRFS_PATH_AUTO_FREE(path);
4849 	int ret;
4850 	struct extent_buffer *l;
4851 	struct btrfs_key search_key;
4852 	struct btrfs_key found_key;
4853 	int slot;
4854 
4855 	path = btrfs_alloc_path();
4856 	if (!path)
4857 		return -ENOMEM;
4858 
4859 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4860 	search_key.type = -1;
4861 	search_key.offset = (u64)-1;
4862 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4863 	if (ret < 0)
4864 		return ret;
4865 	if (unlikely(ret == 0)) {
4866 		/*
4867 		 * Key with offset -1 found, there would have to exist a root
4868 		 * with such id, but this is out of valid range.
4869 		 */
4870 		return -EUCLEAN;
4871 	}
4872 	if (path->slots[0] > 0) {
4873 		slot = path->slots[0] - 1;
4874 		l = path->nodes[0];
4875 		btrfs_item_key_to_cpu(l, &found_key, slot);
4876 		root->free_objectid = max_t(u64, found_key.objectid + 1,
4877 					    BTRFS_FIRST_FREE_OBJECTID);
4878 	} else {
4879 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4880 	}
4881 
4882 	return 0;
4883 }
4884 
btrfs_get_free_objectid(struct btrfs_root * root,u64 * objectid)4885 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4886 {
4887 	int ret;
4888 	mutex_lock(&root->objectid_mutex);
4889 
4890 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4891 		btrfs_warn(root->fs_info,
4892 			   "the objectid of root %llu reaches its highest value",
4893 			   btrfs_root_id(root));
4894 		ret = -ENOSPC;
4895 		goto out;
4896 	}
4897 
4898 	*objectid = root->free_objectid++;
4899 	ret = 0;
4900 out:
4901 	mutex_unlock(&root->objectid_mutex);
4902 	return ret;
4903 }
4904