1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <linux/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "dev-replace.h" 33 #include "raid56.h" 34 #include "sysfs.h" 35 #include "qgroup.h" 36 #include "compression.h" 37 #include "tree-checker.h" 38 #include "ref-verify.h" 39 #include "block-group.h" 40 #include "discard.h" 41 #include "space-info.h" 42 #include "zoned.h" 43 #include "subpage.h" 44 #include "fs.h" 45 #include "accessors.h" 46 #include "extent-tree.h" 47 #include "root-tree.h" 48 #include "defrag.h" 49 #include "uuid-tree.h" 50 #include "relocation.h" 51 #include "scrub.h" 52 #include "super.h" 53 54 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 55 BTRFS_HEADER_FLAG_RELOC |\ 56 BTRFS_SUPER_FLAG_ERROR |\ 57 BTRFS_SUPER_FLAG_SEEDING |\ 58 BTRFS_SUPER_FLAG_METADUMP |\ 59 BTRFS_SUPER_FLAG_METADUMP_V2) 60 61 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 62 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 63 64 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 65 { 66 if (fs_info->csum_shash) 67 crypto_free_shash(fs_info->csum_shash); 68 } 69 70 /* 71 * Compute the csum of a btree block and store the result to provided buffer. 72 */ 73 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 74 { 75 struct btrfs_fs_info *fs_info = buf->fs_info; 76 int num_pages; 77 u32 first_page_part; 78 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 79 char *kaddr; 80 int i; 81 82 shash->tfm = fs_info->csum_shash; 83 crypto_shash_init(shash); 84 85 if (buf->addr) { 86 /* Pages are contiguous, handle them as a big one. */ 87 kaddr = buf->addr; 88 first_page_part = fs_info->nodesize; 89 num_pages = 1; 90 } else { 91 kaddr = folio_address(buf->folios[0]); 92 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 93 num_pages = num_extent_pages(buf); 94 } 95 96 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 97 first_page_part - BTRFS_CSUM_SIZE); 98 99 /* 100 * Multiple single-page folios case would reach here. 101 * 102 * nodesize <= PAGE_SIZE and large folio all handled by above 103 * crypto_shash_update() already. 104 */ 105 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { 106 kaddr = folio_address(buf->folios[i]); 107 crypto_shash_update(shash, kaddr, PAGE_SIZE); 108 } 109 memset(result, 0, BTRFS_CSUM_SIZE); 110 crypto_shash_final(shash, result); 111 } 112 113 /* 114 * we can't consider a given block up to date unless the transid of the 115 * block matches the transid in the parent node's pointer. This is how we 116 * detect blocks that either didn't get written at all or got written 117 * in the wrong place. 118 */ 119 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic) 120 { 121 if (!extent_buffer_uptodate(eb)) 122 return 0; 123 124 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 125 return 1; 126 127 if (atomic) 128 return -EAGAIN; 129 130 if (!extent_buffer_uptodate(eb) || 131 btrfs_header_generation(eb) != parent_transid) { 132 btrfs_err_rl(eb->fs_info, 133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 134 eb->start, eb->read_mirror, 135 parent_transid, btrfs_header_generation(eb)); 136 clear_extent_buffer_uptodate(eb); 137 return 0; 138 } 139 return 1; 140 } 141 142 static bool btrfs_supported_super_csum(u16 csum_type) 143 { 144 switch (csum_type) { 145 case BTRFS_CSUM_TYPE_CRC32: 146 case BTRFS_CSUM_TYPE_XXHASH: 147 case BTRFS_CSUM_TYPE_SHA256: 148 case BTRFS_CSUM_TYPE_BLAKE2: 149 return true; 150 default: 151 return false; 152 } 153 } 154 155 /* 156 * Return 0 if the superblock checksum type matches the checksum value of that 157 * algorithm. Pass the raw disk superblock data. 158 */ 159 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 160 const struct btrfs_super_block *disk_sb) 161 { 162 char result[BTRFS_CSUM_SIZE]; 163 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 164 165 shash->tfm = fs_info->csum_shash; 166 167 /* 168 * The super_block structure does not span the whole 169 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 170 * filled with zeros and is included in the checksum. 171 */ 172 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 173 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 174 175 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 176 return 1; 177 178 return 0; 179 } 180 181 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 182 int mirror_num) 183 { 184 struct btrfs_fs_info *fs_info = eb->fs_info; 185 int ret = 0; 186 187 if (sb_rdonly(fs_info->sb)) 188 return -EROFS; 189 190 for (int i = 0; i < num_extent_folios(eb); i++) { 191 struct folio *folio = eb->folios[i]; 192 u64 start = max_t(u64, eb->start, folio_pos(folio)); 193 u64 end = min_t(u64, eb->start + eb->len, 194 folio_pos(folio) + eb->folio_size); 195 u32 len = end - start; 196 197 ret = btrfs_repair_io_failure(fs_info, 0, start, len, 198 start, folio, offset_in_folio(folio, start), 199 mirror_num); 200 if (ret) 201 break; 202 } 203 204 return ret; 205 } 206 207 /* 208 * helper to read a given tree block, doing retries as required when 209 * the checksums don't match and we have alternate mirrors to try. 210 * 211 * @check: expected tree parentness check, see the comments of the 212 * structure for details. 213 */ 214 int btrfs_read_extent_buffer(struct extent_buffer *eb, 215 const struct btrfs_tree_parent_check *check) 216 { 217 struct btrfs_fs_info *fs_info = eb->fs_info; 218 int failed = 0; 219 int ret; 220 int num_copies = 0; 221 int mirror_num = 0; 222 int failed_mirror = 0; 223 224 ASSERT(check); 225 226 while (1) { 227 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 228 ret = read_extent_buffer_pages(eb, mirror_num, check); 229 if (!ret) 230 break; 231 232 num_copies = btrfs_num_copies(fs_info, 233 eb->start, eb->len); 234 if (num_copies == 1) 235 break; 236 237 if (!failed_mirror) { 238 failed = 1; 239 failed_mirror = eb->read_mirror; 240 } 241 242 mirror_num++; 243 if (mirror_num == failed_mirror) 244 mirror_num++; 245 246 if (mirror_num > num_copies) 247 break; 248 } 249 250 if (failed && !ret && failed_mirror) 251 btrfs_repair_eb_io_failure(eb, failed_mirror); 252 253 return ret; 254 } 255 256 /* 257 * Checksum a dirty tree block before IO. 258 */ 259 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio) 260 { 261 struct extent_buffer *eb = bbio->private; 262 struct btrfs_fs_info *fs_info = eb->fs_info; 263 u64 found_start = btrfs_header_bytenr(eb); 264 u64 last_trans; 265 u8 result[BTRFS_CSUM_SIZE]; 266 int ret; 267 268 /* Btree blocks are always contiguous on disk. */ 269 if (WARN_ON_ONCE(bbio->file_offset != eb->start)) 270 return BLK_STS_IOERR; 271 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len)) 272 return BLK_STS_IOERR; 273 274 /* 275 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't 276 * checksum it but zero-out its content. This is done to preserve 277 * ordering of I/O without unnecessarily writing out data. 278 */ 279 if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) { 280 memzero_extent_buffer(eb, 0, eb->len); 281 return BLK_STS_OK; 282 } 283 284 if (WARN_ON_ONCE(found_start != eb->start)) 285 return BLK_STS_IOERR; 286 if (WARN_ON(!btrfs_meta_folio_test_uptodate(eb->folios[0], eb))) 287 return BLK_STS_IOERR; 288 289 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 290 offsetof(struct btrfs_header, fsid), 291 BTRFS_FSID_SIZE) == 0); 292 csum_tree_block(eb, result); 293 294 if (btrfs_header_level(eb)) 295 ret = btrfs_check_node(eb); 296 else 297 ret = btrfs_check_leaf(eb); 298 299 if (ret < 0) 300 goto error; 301 302 /* 303 * Also check the generation, the eb reached here must be newer than 304 * last committed. Or something seriously wrong happened. 305 */ 306 last_trans = btrfs_get_last_trans_committed(fs_info); 307 if (unlikely(btrfs_header_generation(eb) <= last_trans)) { 308 ret = -EUCLEAN; 309 btrfs_err(fs_info, 310 "block=%llu bad generation, have %llu expect > %llu", 311 eb->start, btrfs_header_generation(eb), last_trans); 312 goto error; 313 } 314 write_extent_buffer(eb, result, 0, fs_info->csum_size); 315 return BLK_STS_OK; 316 317 error: 318 btrfs_print_tree(eb, 0); 319 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 320 eb->start); 321 /* 322 * Be noisy if this is an extent buffer from a log tree. We don't abort 323 * a transaction in case there's a bad log tree extent buffer, we just 324 * fallback to a transaction commit. Still we want to know when there is 325 * a bad log tree extent buffer, as that may signal a bug somewhere. 326 */ 327 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 328 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 329 return errno_to_blk_status(ret); 330 } 331 332 static bool check_tree_block_fsid(struct extent_buffer *eb) 333 { 334 struct btrfs_fs_info *fs_info = eb->fs_info; 335 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 336 u8 fsid[BTRFS_FSID_SIZE]; 337 338 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 339 BTRFS_FSID_SIZE); 340 341 /* 342 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid. 343 * This is then overwritten by metadata_uuid if it is present in the 344 * device_list_add(). The same true for a seed device as well. So use of 345 * fs_devices::metadata_uuid is appropriate here. 346 */ 347 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0) 348 return false; 349 350 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 351 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 352 return false; 353 354 return true; 355 } 356 357 /* Do basic extent buffer checks at read time */ 358 int btrfs_validate_extent_buffer(struct extent_buffer *eb, 359 const struct btrfs_tree_parent_check *check) 360 { 361 struct btrfs_fs_info *fs_info = eb->fs_info; 362 u64 found_start; 363 const u32 csum_size = fs_info->csum_size; 364 u8 found_level; 365 u8 result[BTRFS_CSUM_SIZE]; 366 const u8 *header_csum; 367 int ret = 0; 368 const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS); 369 370 ASSERT(check); 371 372 found_start = btrfs_header_bytenr(eb); 373 if (found_start != eb->start) { 374 btrfs_err_rl(fs_info, 375 "bad tree block start, mirror %u want %llu have %llu", 376 eb->read_mirror, eb->start, found_start); 377 ret = -EIO; 378 goto out; 379 } 380 if (check_tree_block_fsid(eb)) { 381 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 382 eb->start, eb->read_mirror); 383 ret = -EIO; 384 goto out; 385 } 386 found_level = btrfs_header_level(eb); 387 if (found_level >= BTRFS_MAX_LEVEL) { 388 btrfs_err(fs_info, 389 "bad tree block level, mirror %u level %d on logical %llu", 390 eb->read_mirror, btrfs_header_level(eb), eb->start); 391 ret = -EIO; 392 goto out; 393 } 394 395 csum_tree_block(eb, result); 396 header_csum = folio_address(eb->folios[0]) + 397 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum)); 398 399 if (memcmp(result, header_csum, csum_size) != 0) { 400 btrfs_warn_rl(fs_info, 401 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d%s", 402 eb->start, eb->read_mirror, 403 CSUM_FMT_VALUE(csum_size, header_csum), 404 CSUM_FMT_VALUE(csum_size, result), 405 btrfs_header_level(eb), 406 ignore_csum ? ", ignored" : ""); 407 if (!ignore_csum) { 408 ret = -EUCLEAN; 409 goto out; 410 } 411 } 412 413 if (found_level != check->level) { 414 btrfs_err(fs_info, 415 "level verify failed on logical %llu mirror %u wanted %u found %u", 416 eb->start, eb->read_mirror, check->level, found_level); 417 ret = -EIO; 418 goto out; 419 } 420 if (unlikely(check->transid && 421 btrfs_header_generation(eb) != check->transid)) { 422 btrfs_err_rl(eb->fs_info, 423 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 424 eb->start, eb->read_mirror, check->transid, 425 btrfs_header_generation(eb)); 426 ret = -EIO; 427 goto out; 428 } 429 if (check->has_first_key) { 430 const struct btrfs_key *expect_key = &check->first_key; 431 struct btrfs_key found_key; 432 433 if (found_level) 434 btrfs_node_key_to_cpu(eb, &found_key, 0); 435 else 436 btrfs_item_key_to_cpu(eb, &found_key, 0); 437 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 438 btrfs_err(fs_info, 439 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 440 eb->start, check->transid, 441 expect_key->objectid, 442 expect_key->type, expect_key->offset, 443 found_key.objectid, found_key.type, 444 found_key.offset); 445 ret = -EUCLEAN; 446 goto out; 447 } 448 } 449 if (check->owner_root) { 450 ret = btrfs_check_eb_owner(eb, check->owner_root); 451 if (ret < 0) 452 goto out; 453 } 454 455 /* 456 * If this is a leaf block and it is corrupt, set the corrupt bit so 457 * that we don't try and read the other copies of this block, just 458 * return -EIO. 459 */ 460 if (found_level == 0 && btrfs_check_leaf(eb)) { 461 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 462 ret = -EIO; 463 } 464 465 if (found_level > 0 && btrfs_check_node(eb)) 466 ret = -EIO; 467 468 if (ret) 469 btrfs_err(fs_info, 470 "read time tree block corruption detected on logical %llu mirror %u", 471 eb->start, eb->read_mirror); 472 out: 473 return ret; 474 } 475 476 #ifdef CONFIG_MIGRATION 477 static int btree_migrate_folio(struct address_space *mapping, 478 struct folio *dst, struct folio *src, enum migrate_mode mode) 479 { 480 /* 481 * we can't safely write a btree page from here, 482 * we haven't done the locking hook 483 */ 484 if (folio_test_dirty(src)) 485 return -EAGAIN; 486 /* 487 * Buffers may be managed in a filesystem specific way. 488 * We must have no buffers or drop them. 489 */ 490 if (folio_get_private(src) && 491 !filemap_release_folio(src, GFP_KERNEL)) 492 return -EAGAIN; 493 return migrate_folio(mapping, dst, src, mode); 494 } 495 #else 496 #define btree_migrate_folio NULL 497 #endif 498 499 static int btree_writepages(struct address_space *mapping, 500 struct writeback_control *wbc) 501 { 502 int ret; 503 504 if (wbc->sync_mode == WB_SYNC_NONE) { 505 struct btrfs_fs_info *fs_info; 506 507 if (wbc->for_kupdate) 508 return 0; 509 510 fs_info = inode_to_fs_info(mapping->host); 511 /* this is a bit racy, but that's ok */ 512 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 513 BTRFS_DIRTY_METADATA_THRESH, 514 fs_info->dirty_metadata_batch); 515 if (ret < 0) 516 return 0; 517 } 518 return btree_write_cache_pages(mapping, wbc); 519 } 520 521 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 522 { 523 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 524 return false; 525 526 return try_release_extent_buffer(folio); 527 } 528 529 static void btree_invalidate_folio(struct folio *folio, size_t offset, 530 size_t length) 531 { 532 struct extent_io_tree *tree; 533 534 tree = &folio_to_inode(folio)->io_tree; 535 extent_invalidate_folio(tree, folio, offset); 536 btree_release_folio(folio, GFP_NOFS); 537 if (folio_get_private(folio)) { 538 btrfs_warn(folio_to_fs_info(folio), 539 "folio private not zero on folio %llu", 540 (unsigned long long)folio_pos(folio)); 541 folio_detach_private(folio); 542 } 543 } 544 545 #ifdef DEBUG 546 static bool btree_dirty_folio(struct address_space *mapping, 547 struct folio *folio) 548 { 549 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 550 struct btrfs_subpage_info *spi = fs_info->subpage_info; 551 struct btrfs_subpage *subpage; 552 struct extent_buffer *eb; 553 int cur_bit = 0; 554 u64 page_start = folio_pos(folio); 555 556 if (fs_info->sectorsize == PAGE_SIZE) { 557 eb = folio_get_private(folio); 558 BUG_ON(!eb); 559 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 560 BUG_ON(!atomic_read(&eb->refs)); 561 btrfs_assert_tree_write_locked(eb); 562 return filemap_dirty_folio(mapping, folio); 563 } 564 565 ASSERT(spi); 566 subpage = folio_get_private(folio); 567 568 for (cur_bit = spi->dirty_offset; 569 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits; 570 cur_bit++) { 571 unsigned long flags; 572 u64 cur; 573 574 spin_lock_irqsave(&subpage->lock, flags); 575 if (!test_bit(cur_bit, subpage->bitmaps)) { 576 spin_unlock_irqrestore(&subpage->lock, flags); 577 continue; 578 } 579 spin_unlock_irqrestore(&subpage->lock, flags); 580 cur = page_start + cur_bit * fs_info->sectorsize; 581 582 eb = find_extent_buffer(fs_info, cur); 583 ASSERT(eb); 584 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 585 ASSERT(atomic_read(&eb->refs)); 586 btrfs_assert_tree_write_locked(eb); 587 free_extent_buffer(eb); 588 589 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1; 590 } 591 return filemap_dirty_folio(mapping, folio); 592 } 593 #else 594 #define btree_dirty_folio filemap_dirty_folio 595 #endif 596 597 static const struct address_space_operations btree_aops = { 598 .writepages = btree_writepages, 599 .release_folio = btree_release_folio, 600 .invalidate_folio = btree_invalidate_folio, 601 .migrate_folio = btree_migrate_folio, 602 .dirty_folio = btree_dirty_folio, 603 }; 604 605 struct extent_buffer *btrfs_find_create_tree_block( 606 struct btrfs_fs_info *fs_info, 607 u64 bytenr, u64 owner_root, 608 int level) 609 { 610 if (btrfs_is_testing(fs_info)) 611 return alloc_test_extent_buffer(fs_info, bytenr); 612 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 613 } 614 615 /* 616 * Read tree block at logical address @bytenr and do variant basic but critical 617 * verification. 618 * 619 * @check: expected tree parentness check, see comments of the 620 * structure for details. 621 */ 622 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 623 struct btrfs_tree_parent_check *check) 624 { 625 struct extent_buffer *buf = NULL; 626 int ret; 627 628 ASSERT(check); 629 630 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 631 check->level); 632 if (IS_ERR(buf)) 633 return buf; 634 635 ret = btrfs_read_extent_buffer(buf, check); 636 if (ret) { 637 free_extent_buffer_stale(buf); 638 return ERR_PTR(ret); 639 } 640 return buf; 641 642 } 643 644 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 645 u64 objectid) 646 { 647 bool dummy = btrfs_is_testing(fs_info); 648 649 memset(&root->root_key, 0, sizeof(root->root_key)); 650 memset(&root->root_item, 0, sizeof(root->root_item)); 651 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 652 root->fs_info = fs_info; 653 root->root_key.objectid = objectid; 654 root->node = NULL; 655 root->commit_root = NULL; 656 root->state = 0; 657 RB_CLEAR_NODE(&root->rb_node); 658 659 btrfs_set_root_last_trans(root, 0); 660 root->free_objectid = 0; 661 root->nr_delalloc_inodes = 0; 662 root->nr_ordered_extents = 0; 663 xa_init(&root->inodes); 664 xa_init(&root->delayed_nodes); 665 666 btrfs_init_root_block_rsv(root); 667 668 INIT_LIST_HEAD(&root->dirty_list); 669 INIT_LIST_HEAD(&root->root_list); 670 INIT_LIST_HEAD(&root->delalloc_inodes); 671 INIT_LIST_HEAD(&root->delalloc_root); 672 INIT_LIST_HEAD(&root->ordered_extents); 673 INIT_LIST_HEAD(&root->ordered_root); 674 INIT_LIST_HEAD(&root->reloc_dirty_list); 675 spin_lock_init(&root->delalloc_lock); 676 spin_lock_init(&root->ordered_extent_lock); 677 spin_lock_init(&root->accounting_lock); 678 spin_lock_init(&root->qgroup_meta_rsv_lock); 679 mutex_init(&root->objectid_mutex); 680 mutex_init(&root->log_mutex); 681 mutex_init(&root->ordered_extent_mutex); 682 mutex_init(&root->delalloc_mutex); 683 init_waitqueue_head(&root->qgroup_flush_wait); 684 init_waitqueue_head(&root->log_writer_wait); 685 init_waitqueue_head(&root->log_commit_wait[0]); 686 init_waitqueue_head(&root->log_commit_wait[1]); 687 INIT_LIST_HEAD(&root->log_ctxs[0]); 688 INIT_LIST_HEAD(&root->log_ctxs[1]); 689 atomic_set(&root->log_commit[0], 0); 690 atomic_set(&root->log_commit[1], 0); 691 atomic_set(&root->log_writers, 0); 692 atomic_set(&root->log_batch, 0); 693 refcount_set(&root->refs, 1); 694 atomic_set(&root->snapshot_force_cow, 0); 695 atomic_set(&root->nr_swapfiles, 0); 696 btrfs_set_root_log_transid(root, 0); 697 root->log_transid_committed = -1; 698 btrfs_set_root_last_log_commit(root, 0); 699 root->anon_dev = 0; 700 if (!dummy) { 701 extent_io_tree_init(fs_info, &root->dirty_log_pages, 702 IO_TREE_ROOT_DIRTY_LOG_PAGES); 703 extent_io_tree_init(fs_info, &root->log_csum_range, 704 IO_TREE_LOG_CSUM_RANGE); 705 } 706 707 spin_lock_init(&root->root_item_lock); 708 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 709 #ifdef CONFIG_BTRFS_DEBUG 710 INIT_LIST_HEAD(&root->leak_list); 711 spin_lock(&fs_info->fs_roots_radix_lock); 712 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 713 spin_unlock(&fs_info->fs_roots_radix_lock); 714 #endif 715 } 716 717 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 718 u64 objectid, gfp_t flags) 719 { 720 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 721 if (root) 722 __setup_root(root, fs_info, objectid); 723 return root; 724 } 725 726 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 727 /* Should only be used by the testing infrastructure */ 728 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 729 { 730 struct btrfs_root *root; 731 732 if (!fs_info) 733 return ERR_PTR(-EINVAL); 734 735 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 736 if (!root) 737 return ERR_PTR(-ENOMEM); 738 739 /* We don't use the stripesize in selftest, set it as sectorsize */ 740 root->alloc_bytenr = 0; 741 742 return root; 743 } 744 #endif 745 746 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 747 { 748 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 749 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 750 751 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 752 } 753 754 static int global_root_key_cmp(const void *k, const struct rb_node *node) 755 { 756 const struct btrfs_key *key = k; 757 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 758 759 return btrfs_comp_cpu_keys(key, &root->root_key); 760 } 761 762 int btrfs_global_root_insert(struct btrfs_root *root) 763 { 764 struct btrfs_fs_info *fs_info = root->fs_info; 765 struct rb_node *tmp; 766 int ret = 0; 767 768 write_lock(&fs_info->global_root_lock); 769 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 770 write_unlock(&fs_info->global_root_lock); 771 772 if (tmp) { 773 ret = -EEXIST; 774 btrfs_warn(fs_info, "global root %llu %llu already exists", 775 btrfs_root_id(root), root->root_key.offset); 776 } 777 return ret; 778 } 779 780 void btrfs_global_root_delete(struct btrfs_root *root) 781 { 782 struct btrfs_fs_info *fs_info = root->fs_info; 783 784 write_lock(&fs_info->global_root_lock); 785 rb_erase(&root->rb_node, &fs_info->global_root_tree); 786 write_unlock(&fs_info->global_root_lock); 787 } 788 789 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 790 struct btrfs_key *key) 791 { 792 struct rb_node *node; 793 struct btrfs_root *root = NULL; 794 795 read_lock(&fs_info->global_root_lock); 796 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 797 if (node) 798 root = container_of(node, struct btrfs_root, rb_node); 799 read_unlock(&fs_info->global_root_lock); 800 801 return root; 802 } 803 804 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 805 { 806 struct btrfs_block_group *block_group; 807 u64 ret; 808 809 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 810 return 0; 811 812 if (bytenr) 813 block_group = btrfs_lookup_block_group(fs_info, bytenr); 814 else 815 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 816 ASSERT(block_group); 817 if (!block_group) 818 return 0; 819 ret = block_group->global_root_id; 820 btrfs_put_block_group(block_group); 821 822 return ret; 823 } 824 825 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 826 { 827 struct btrfs_key key = { 828 .objectid = BTRFS_CSUM_TREE_OBJECTID, 829 .type = BTRFS_ROOT_ITEM_KEY, 830 .offset = btrfs_global_root_id(fs_info, bytenr), 831 }; 832 833 return btrfs_global_root(fs_info, &key); 834 } 835 836 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 837 { 838 struct btrfs_key key = { 839 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 840 .type = BTRFS_ROOT_ITEM_KEY, 841 .offset = btrfs_global_root_id(fs_info, bytenr), 842 }; 843 844 return btrfs_global_root(fs_info, &key); 845 } 846 847 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 848 u64 objectid) 849 { 850 struct btrfs_fs_info *fs_info = trans->fs_info; 851 struct extent_buffer *leaf; 852 struct btrfs_root *tree_root = fs_info->tree_root; 853 struct btrfs_root *root; 854 struct btrfs_key key; 855 unsigned int nofs_flag; 856 int ret = 0; 857 858 /* 859 * We're holding a transaction handle, so use a NOFS memory allocation 860 * context to avoid deadlock if reclaim happens. 861 */ 862 nofs_flag = memalloc_nofs_save(); 863 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 864 memalloc_nofs_restore(nofs_flag); 865 if (!root) 866 return ERR_PTR(-ENOMEM); 867 868 root->root_key.objectid = objectid; 869 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 870 root->root_key.offset = 0; 871 872 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 873 0, BTRFS_NESTING_NORMAL); 874 if (IS_ERR(leaf)) { 875 ret = PTR_ERR(leaf); 876 leaf = NULL; 877 goto fail; 878 } 879 880 root->node = leaf; 881 btrfs_mark_buffer_dirty(trans, leaf); 882 883 root->commit_root = btrfs_root_node(root); 884 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 885 886 btrfs_set_root_flags(&root->root_item, 0); 887 btrfs_set_root_limit(&root->root_item, 0); 888 btrfs_set_root_bytenr(&root->root_item, leaf->start); 889 btrfs_set_root_generation(&root->root_item, trans->transid); 890 btrfs_set_root_level(&root->root_item, 0); 891 btrfs_set_root_refs(&root->root_item, 1); 892 btrfs_set_root_used(&root->root_item, leaf->len); 893 btrfs_set_root_last_snapshot(&root->root_item, 0); 894 btrfs_set_root_dirid(&root->root_item, 0); 895 if (is_fstree(objectid)) 896 generate_random_guid(root->root_item.uuid); 897 else 898 export_guid(root->root_item.uuid, &guid_null); 899 btrfs_set_root_drop_level(&root->root_item, 0); 900 901 btrfs_tree_unlock(leaf); 902 903 key.objectid = objectid; 904 key.type = BTRFS_ROOT_ITEM_KEY; 905 key.offset = 0; 906 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 907 if (ret) 908 goto fail; 909 910 return root; 911 912 fail: 913 btrfs_put_root(root); 914 915 return ERR_PTR(ret); 916 } 917 918 static struct btrfs_root *alloc_log_tree(struct btrfs_fs_info *fs_info) 919 { 920 struct btrfs_root *root; 921 922 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 923 if (!root) 924 return ERR_PTR(-ENOMEM); 925 926 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 927 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 928 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 929 930 return root; 931 } 932 933 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 934 struct btrfs_root *root) 935 { 936 struct extent_buffer *leaf; 937 938 /* 939 * DON'T set SHAREABLE bit for log trees. 940 * 941 * Log trees are not exposed to user space thus can't be snapshotted, 942 * and they go away before a real commit is actually done. 943 * 944 * They do store pointers to file data extents, and those reference 945 * counts still get updated (along with back refs to the log tree). 946 */ 947 948 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 949 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL); 950 if (IS_ERR(leaf)) 951 return PTR_ERR(leaf); 952 953 root->node = leaf; 954 955 btrfs_mark_buffer_dirty(trans, root->node); 956 btrfs_tree_unlock(root->node); 957 958 return 0; 959 } 960 961 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 962 struct btrfs_fs_info *fs_info) 963 { 964 struct btrfs_root *log_root; 965 966 log_root = alloc_log_tree(fs_info); 967 if (IS_ERR(log_root)) 968 return PTR_ERR(log_root); 969 970 if (!btrfs_is_zoned(fs_info)) { 971 int ret = btrfs_alloc_log_tree_node(trans, log_root); 972 973 if (ret) { 974 btrfs_put_root(log_root); 975 return ret; 976 } 977 } 978 979 WARN_ON(fs_info->log_root_tree); 980 fs_info->log_root_tree = log_root; 981 return 0; 982 } 983 984 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 985 struct btrfs_root *root) 986 { 987 struct btrfs_fs_info *fs_info = root->fs_info; 988 struct btrfs_root *log_root; 989 struct btrfs_inode_item *inode_item; 990 int ret; 991 992 log_root = alloc_log_tree(fs_info); 993 if (IS_ERR(log_root)) 994 return PTR_ERR(log_root); 995 996 ret = btrfs_alloc_log_tree_node(trans, log_root); 997 if (ret) { 998 btrfs_put_root(log_root); 999 return ret; 1000 } 1001 1002 btrfs_set_root_last_trans(log_root, trans->transid); 1003 log_root->root_key.offset = btrfs_root_id(root); 1004 1005 inode_item = &log_root->root_item.inode; 1006 btrfs_set_stack_inode_generation(inode_item, 1); 1007 btrfs_set_stack_inode_size(inode_item, 3); 1008 btrfs_set_stack_inode_nlink(inode_item, 1); 1009 btrfs_set_stack_inode_nbytes(inode_item, 1010 fs_info->nodesize); 1011 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1012 1013 btrfs_set_root_node(&log_root->root_item, log_root->node); 1014 1015 WARN_ON(root->log_root); 1016 root->log_root = log_root; 1017 btrfs_set_root_log_transid(root, 0); 1018 root->log_transid_committed = -1; 1019 btrfs_set_root_last_log_commit(root, 0); 1020 return 0; 1021 } 1022 1023 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1024 struct btrfs_path *path, 1025 const struct btrfs_key *key) 1026 { 1027 struct btrfs_root *root; 1028 struct btrfs_tree_parent_check check = { 0 }; 1029 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1030 u64 generation; 1031 int ret; 1032 int level; 1033 1034 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1035 if (!root) 1036 return ERR_PTR(-ENOMEM); 1037 1038 ret = btrfs_find_root(tree_root, key, path, 1039 &root->root_item, &root->root_key); 1040 if (ret) { 1041 if (ret > 0) 1042 ret = -ENOENT; 1043 goto fail; 1044 } 1045 1046 generation = btrfs_root_generation(&root->root_item); 1047 level = btrfs_root_level(&root->root_item); 1048 check.level = level; 1049 check.transid = generation; 1050 check.owner_root = key->objectid; 1051 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1052 &check); 1053 if (IS_ERR(root->node)) { 1054 ret = PTR_ERR(root->node); 1055 root->node = NULL; 1056 goto fail; 1057 } 1058 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1059 ret = -EIO; 1060 goto fail; 1061 } 1062 1063 /* 1064 * For real fs, and not log/reloc trees, root owner must 1065 * match its root node owner 1066 */ 1067 if (!btrfs_is_testing(fs_info) && 1068 btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && 1069 btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID && 1070 btrfs_root_id(root) != btrfs_header_owner(root->node)) { 1071 btrfs_crit(fs_info, 1072 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1073 btrfs_root_id(root), root->node->start, 1074 btrfs_header_owner(root->node), 1075 btrfs_root_id(root)); 1076 ret = -EUCLEAN; 1077 goto fail; 1078 } 1079 root->commit_root = btrfs_root_node(root); 1080 return root; 1081 fail: 1082 btrfs_put_root(root); 1083 return ERR_PTR(ret); 1084 } 1085 1086 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1087 const struct btrfs_key *key) 1088 { 1089 struct btrfs_root *root; 1090 BTRFS_PATH_AUTO_FREE(path); 1091 1092 path = btrfs_alloc_path(); 1093 if (!path) 1094 return ERR_PTR(-ENOMEM); 1095 root = read_tree_root_path(tree_root, path, key); 1096 1097 return root; 1098 } 1099 1100 /* 1101 * Initialize subvolume root in-memory structure. 1102 * 1103 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1104 * 1105 * In case of failure the caller is responsible to call btrfs_free_fs_root() 1106 */ 1107 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1108 { 1109 int ret; 1110 1111 btrfs_drew_lock_init(&root->snapshot_lock); 1112 1113 if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && 1114 !btrfs_is_data_reloc_root(root) && 1115 is_fstree(btrfs_root_id(root))) { 1116 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1117 btrfs_check_and_init_root_item(&root->root_item); 1118 } 1119 1120 /* 1121 * Don't assign anonymous block device to roots that are not exposed to 1122 * userspace, the id pool is limited to 1M 1123 */ 1124 if (is_fstree(btrfs_root_id(root)) && 1125 btrfs_root_refs(&root->root_item) > 0) { 1126 if (!anon_dev) { 1127 ret = get_anon_bdev(&root->anon_dev); 1128 if (ret) 1129 return ret; 1130 } else { 1131 root->anon_dev = anon_dev; 1132 } 1133 } 1134 1135 mutex_lock(&root->objectid_mutex); 1136 ret = btrfs_init_root_free_objectid(root); 1137 if (ret) { 1138 mutex_unlock(&root->objectid_mutex); 1139 return ret; 1140 } 1141 1142 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1143 1144 mutex_unlock(&root->objectid_mutex); 1145 1146 return 0; 1147 } 1148 1149 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1150 u64 root_id) 1151 { 1152 struct btrfs_root *root; 1153 1154 spin_lock(&fs_info->fs_roots_radix_lock); 1155 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1156 (unsigned long)root_id); 1157 root = btrfs_grab_root(root); 1158 spin_unlock(&fs_info->fs_roots_radix_lock); 1159 return root; 1160 } 1161 1162 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1163 u64 objectid) 1164 { 1165 struct btrfs_key key = { 1166 .objectid = objectid, 1167 .type = BTRFS_ROOT_ITEM_KEY, 1168 .offset = 0, 1169 }; 1170 1171 switch (objectid) { 1172 case BTRFS_ROOT_TREE_OBJECTID: 1173 return btrfs_grab_root(fs_info->tree_root); 1174 case BTRFS_EXTENT_TREE_OBJECTID: 1175 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1176 case BTRFS_CHUNK_TREE_OBJECTID: 1177 return btrfs_grab_root(fs_info->chunk_root); 1178 case BTRFS_DEV_TREE_OBJECTID: 1179 return btrfs_grab_root(fs_info->dev_root); 1180 case BTRFS_CSUM_TREE_OBJECTID: 1181 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1182 case BTRFS_QUOTA_TREE_OBJECTID: 1183 return btrfs_grab_root(fs_info->quota_root); 1184 case BTRFS_UUID_TREE_OBJECTID: 1185 return btrfs_grab_root(fs_info->uuid_root); 1186 case BTRFS_BLOCK_GROUP_TREE_OBJECTID: 1187 return btrfs_grab_root(fs_info->block_group_root); 1188 case BTRFS_FREE_SPACE_TREE_OBJECTID: 1189 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1190 case BTRFS_RAID_STRIPE_TREE_OBJECTID: 1191 return btrfs_grab_root(fs_info->stripe_root); 1192 default: 1193 return NULL; 1194 } 1195 } 1196 1197 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1198 struct btrfs_root *root) 1199 { 1200 int ret; 1201 1202 ret = radix_tree_preload(GFP_NOFS); 1203 if (ret) 1204 return ret; 1205 1206 spin_lock(&fs_info->fs_roots_radix_lock); 1207 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1208 (unsigned long)btrfs_root_id(root), 1209 root); 1210 if (ret == 0) { 1211 btrfs_grab_root(root); 1212 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1213 } 1214 spin_unlock(&fs_info->fs_roots_radix_lock); 1215 radix_tree_preload_end(); 1216 1217 return ret; 1218 } 1219 1220 void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info) 1221 { 1222 #ifdef CONFIG_BTRFS_DEBUG 1223 struct btrfs_root *root; 1224 1225 while (!list_empty(&fs_info->allocated_roots)) { 1226 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1227 1228 root = list_first_entry(&fs_info->allocated_roots, 1229 struct btrfs_root, leak_list); 1230 btrfs_err(fs_info, "leaked root %s refcount %d", 1231 btrfs_root_name(&root->root_key, buf), 1232 refcount_read(&root->refs)); 1233 WARN_ON_ONCE(1); 1234 while (refcount_read(&root->refs) > 1) 1235 btrfs_put_root(root); 1236 btrfs_put_root(root); 1237 } 1238 #endif 1239 } 1240 1241 static void free_global_roots(struct btrfs_fs_info *fs_info) 1242 { 1243 struct btrfs_root *root; 1244 struct rb_node *node; 1245 1246 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1247 root = rb_entry(node, struct btrfs_root, rb_node); 1248 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1249 btrfs_put_root(root); 1250 } 1251 } 1252 1253 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1254 { 1255 struct percpu_counter *em_counter = &fs_info->evictable_extent_maps; 1256 1257 percpu_counter_destroy(&fs_info->stats_read_blocks); 1258 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1259 percpu_counter_destroy(&fs_info->delalloc_bytes); 1260 percpu_counter_destroy(&fs_info->ordered_bytes); 1261 if (percpu_counter_initialized(em_counter)) 1262 ASSERT(percpu_counter_sum_positive(em_counter) == 0); 1263 percpu_counter_destroy(em_counter); 1264 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1265 btrfs_free_csum_hash(fs_info); 1266 btrfs_free_stripe_hash_table(fs_info); 1267 btrfs_free_ref_cache(fs_info); 1268 kfree(fs_info->balance_ctl); 1269 kfree(fs_info->delayed_root); 1270 free_global_roots(fs_info); 1271 btrfs_put_root(fs_info->tree_root); 1272 btrfs_put_root(fs_info->chunk_root); 1273 btrfs_put_root(fs_info->dev_root); 1274 btrfs_put_root(fs_info->quota_root); 1275 btrfs_put_root(fs_info->uuid_root); 1276 btrfs_put_root(fs_info->fs_root); 1277 btrfs_put_root(fs_info->data_reloc_root); 1278 btrfs_put_root(fs_info->block_group_root); 1279 btrfs_put_root(fs_info->stripe_root); 1280 btrfs_check_leaked_roots(fs_info); 1281 btrfs_extent_buffer_leak_debug_check(fs_info); 1282 kfree(fs_info->super_copy); 1283 kfree(fs_info->super_for_commit); 1284 kvfree(fs_info); 1285 } 1286 1287 1288 /* 1289 * Get an in-memory reference of a root structure. 1290 * 1291 * For essential trees like root/extent tree, we grab it from fs_info directly. 1292 * For subvolume trees, we check the cached filesystem roots first. If not 1293 * found, then read it from disk and add it to cached fs roots. 1294 * 1295 * Caller should release the root by calling btrfs_put_root() after the usage. 1296 * 1297 * NOTE: Reloc and log trees can't be read by this function as they share the 1298 * same root objectid. 1299 * 1300 * @objectid: root id 1301 * @anon_dev: preallocated anonymous block device number for new roots, 1302 * pass NULL for a new allocation. 1303 * @check_ref: whether to check root item references, If true, return -ENOENT 1304 * for orphan roots 1305 */ 1306 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1307 u64 objectid, dev_t *anon_dev, 1308 bool check_ref) 1309 { 1310 struct btrfs_root *root; 1311 struct btrfs_path *path; 1312 struct btrfs_key key; 1313 int ret; 1314 1315 root = btrfs_get_global_root(fs_info, objectid); 1316 if (root) 1317 return root; 1318 1319 /* 1320 * If we're called for non-subvolume trees, and above function didn't 1321 * find one, do not try to read it from disk. 1322 * 1323 * This is namely for free-space-tree and quota tree, which can change 1324 * at runtime and should only be grabbed from fs_info. 1325 */ 1326 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) 1327 return ERR_PTR(-ENOENT); 1328 again: 1329 root = btrfs_lookup_fs_root(fs_info, objectid); 1330 if (root) { 1331 /* 1332 * Some other caller may have read out the newly inserted 1333 * subvolume already (for things like backref walk etc). Not 1334 * that common but still possible. In that case, we just need 1335 * to free the anon_dev. 1336 */ 1337 if (unlikely(anon_dev && *anon_dev)) { 1338 free_anon_bdev(*anon_dev); 1339 *anon_dev = 0; 1340 } 1341 1342 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1343 btrfs_put_root(root); 1344 return ERR_PTR(-ENOENT); 1345 } 1346 return root; 1347 } 1348 1349 key.objectid = objectid; 1350 key.type = BTRFS_ROOT_ITEM_KEY; 1351 key.offset = (u64)-1; 1352 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1353 if (IS_ERR(root)) 1354 return root; 1355 1356 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1357 ret = -ENOENT; 1358 goto fail; 1359 } 1360 1361 ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0); 1362 if (ret) 1363 goto fail; 1364 1365 path = btrfs_alloc_path(); 1366 if (!path) { 1367 ret = -ENOMEM; 1368 goto fail; 1369 } 1370 key.objectid = BTRFS_ORPHAN_OBJECTID; 1371 key.type = BTRFS_ORPHAN_ITEM_KEY; 1372 key.offset = objectid; 1373 1374 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1375 btrfs_free_path(path); 1376 if (ret < 0) 1377 goto fail; 1378 if (ret == 0) 1379 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1380 1381 ret = btrfs_insert_fs_root(fs_info, root); 1382 if (ret) { 1383 if (ret == -EEXIST) { 1384 btrfs_put_root(root); 1385 goto again; 1386 } 1387 goto fail; 1388 } 1389 return root; 1390 fail: 1391 /* 1392 * If our caller provided us an anonymous device, then it's his 1393 * responsibility to free it in case we fail. So we have to set our 1394 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1395 * and once again by our caller. 1396 */ 1397 if (anon_dev && *anon_dev) 1398 root->anon_dev = 0; 1399 btrfs_put_root(root); 1400 return ERR_PTR(ret); 1401 } 1402 1403 /* 1404 * Get in-memory reference of a root structure 1405 * 1406 * @objectid: tree objectid 1407 * @check_ref: if set, verify that the tree exists and the item has at least 1408 * one reference 1409 */ 1410 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1411 u64 objectid, bool check_ref) 1412 { 1413 return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref); 1414 } 1415 1416 /* 1417 * Get in-memory reference of a root structure, created as new, optionally pass 1418 * the anonymous block device id 1419 * 1420 * @objectid: tree objectid 1421 * @anon_dev: if NULL, allocate a new anonymous block device or use the 1422 * parameter value if not NULL 1423 */ 1424 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1425 u64 objectid, dev_t *anon_dev) 1426 { 1427 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1428 } 1429 1430 /* 1431 * Return a root for the given objectid. 1432 * 1433 * @fs_info: the fs_info 1434 * @objectid: the objectid we need to lookup 1435 * 1436 * This is exclusively used for backref walking, and exists specifically because 1437 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1438 * creation time, which means we may have to read the tree_root in order to look 1439 * up a fs root that is not in memory. If the root is not in memory we will 1440 * read the tree root commit root and look up the fs root from there. This is a 1441 * temporary root, it will not be inserted into the radix tree as it doesn't 1442 * have the most uptodate information, it'll simply be discarded once the 1443 * backref code is finished using the root. 1444 */ 1445 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1446 struct btrfs_path *path, 1447 u64 objectid) 1448 { 1449 struct btrfs_root *root; 1450 struct btrfs_key key; 1451 1452 ASSERT(path->search_commit_root && path->skip_locking); 1453 1454 /* 1455 * This can return -ENOENT if we ask for a root that doesn't exist, but 1456 * since this is called via the backref walking code we won't be looking 1457 * up a root that doesn't exist, unless there's corruption. So if root 1458 * != NULL just return it. 1459 */ 1460 root = btrfs_get_global_root(fs_info, objectid); 1461 if (root) 1462 return root; 1463 1464 root = btrfs_lookup_fs_root(fs_info, objectid); 1465 if (root) 1466 return root; 1467 1468 key.objectid = objectid; 1469 key.type = BTRFS_ROOT_ITEM_KEY; 1470 key.offset = (u64)-1; 1471 root = read_tree_root_path(fs_info->tree_root, path, &key); 1472 btrfs_release_path(path); 1473 1474 return root; 1475 } 1476 1477 static int cleaner_kthread(void *arg) 1478 { 1479 struct btrfs_fs_info *fs_info = arg; 1480 int again; 1481 1482 while (1) { 1483 again = 0; 1484 1485 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1486 1487 /* Make the cleaner go to sleep early. */ 1488 if (btrfs_need_cleaner_sleep(fs_info)) 1489 goto sleep; 1490 1491 /* 1492 * Do not do anything if we might cause open_ctree() to block 1493 * before we have finished mounting the filesystem. 1494 */ 1495 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1496 goto sleep; 1497 1498 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1499 goto sleep; 1500 1501 /* 1502 * Avoid the problem that we change the status of the fs 1503 * during the above check and trylock. 1504 */ 1505 if (btrfs_need_cleaner_sleep(fs_info)) { 1506 mutex_unlock(&fs_info->cleaner_mutex); 1507 goto sleep; 1508 } 1509 1510 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) 1511 btrfs_sysfs_feature_update(fs_info); 1512 1513 btrfs_run_delayed_iputs(fs_info); 1514 1515 again = btrfs_clean_one_deleted_snapshot(fs_info); 1516 mutex_unlock(&fs_info->cleaner_mutex); 1517 1518 /* 1519 * The defragger has dealt with the R/O remount and umount, 1520 * needn't do anything special here. 1521 */ 1522 btrfs_run_defrag_inodes(fs_info); 1523 1524 /* 1525 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1526 * with relocation (btrfs_relocate_chunk) and relocation 1527 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1528 * after acquiring fs_info->reclaim_bgs_lock. So we 1529 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1530 * unused block groups. 1531 */ 1532 btrfs_delete_unused_bgs(fs_info); 1533 1534 /* 1535 * Reclaim block groups in the reclaim_bgs list after we deleted 1536 * all unused block_groups. This possibly gives us some more free 1537 * space. 1538 */ 1539 btrfs_reclaim_bgs(fs_info); 1540 sleep: 1541 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1542 if (kthread_should_park()) 1543 kthread_parkme(); 1544 if (kthread_should_stop()) 1545 return 0; 1546 if (!again) { 1547 set_current_state(TASK_INTERRUPTIBLE); 1548 schedule(); 1549 __set_current_state(TASK_RUNNING); 1550 } 1551 } 1552 } 1553 1554 static int transaction_kthread(void *arg) 1555 { 1556 struct btrfs_root *root = arg; 1557 struct btrfs_fs_info *fs_info = root->fs_info; 1558 struct btrfs_trans_handle *trans; 1559 struct btrfs_transaction *cur; 1560 u64 transid; 1561 time64_t delta; 1562 unsigned long delay; 1563 bool cannot_commit; 1564 1565 do { 1566 cannot_commit = false; 1567 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1568 mutex_lock(&fs_info->transaction_kthread_mutex); 1569 1570 spin_lock(&fs_info->trans_lock); 1571 cur = fs_info->running_transaction; 1572 if (!cur) { 1573 spin_unlock(&fs_info->trans_lock); 1574 goto sleep; 1575 } 1576 1577 delta = ktime_get_seconds() - cur->start_time; 1578 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1579 cur->state < TRANS_STATE_COMMIT_PREP && 1580 delta < fs_info->commit_interval) { 1581 spin_unlock(&fs_info->trans_lock); 1582 delay -= msecs_to_jiffies((delta - 1) * 1000); 1583 delay = min(delay, 1584 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1585 goto sleep; 1586 } 1587 transid = cur->transid; 1588 spin_unlock(&fs_info->trans_lock); 1589 1590 /* If the file system is aborted, this will always fail. */ 1591 trans = btrfs_attach_transaction(root); 1592 if (IS_ERR(trans)) { 1593 if (PTR_ERR(trans) != -ENOENT) 1594 cannot_commit = true; 1595 goto sleep; 1596 } 1597 if (transid == trans->transid) { 1598 btrfs_commit_transaction(trans); 1599 } else { 1600 btrfs_end_transaction(trans); 1601 } 1602 sleep: 1603 wake_up_process(fs_info->cleaner_kthread); 1604 mutex_unlock(&fs_info->transaction_kthread_mutex); 1605 1606 if (BTRFS_FS_ERROR(fs_info)) 1607 btrfs_cleanup_transaction(fs_info); 1608 if (!kthread_should_stop() && 1609 (!btrfs_transaction_blocked(fs_info) || 1610 cannot_commit)) 1611 schedule_timeout_interruptible(delay); 1612 } while (!kthread_should_stop()); 1613 return 0; 1614 } 1615 1616 /* 1617 * This will find the highest generation in the array of root backups. The 1618 * index of the highest array is returned, or -EINVAL if we can't find 1619 * anything. 1620 * 1621 * We check to make sure the array is valid by comparing the 1622 * generation of the latest root in the array with the generation 1623 * in the super block. If they don't match we pitch it. 1624 */ 1625 static int find_newest_super_backup(struct btrfs_fs_info *info) 1626 { 1627 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1628 u64 cur; 1629 struct btrfs_root_backup *root_backup; 1630 int i; 1631 1632 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1633 root_backup = info->super_copy->super_roots + i; 1634 cur = btrfs_backup_tree_root_gen(root_backup); 1635 if (cur == newest_gen) 1636 return i; 1637 } 1638 1639 return -EINVAL; 1640 } 1641 1642 /* 1643 * copy all the root pointers into the super backup array. 1644 * this will bump the backup pointer by one when it is 1645 * done 1646 */ 1647 static void backup_super_roots(struct btrfs_fs_info *info) 1648 { 1649 const int next_backup = info->backup_root_index; 1650 struct btrfs_root_backup *root_backup; 1651 1652 root_backup = info->super_for_commit->super_roots + next_backup; 1653 1654 /* 1655 * make sure all of our padding and empty slots get zero filled 1656 * regardless of which ones we use today 1657 */ 1658 memset(root_backup, 0, sizeof(*root_backup)); 1659 1660 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1661 1662 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1663 btrfs_set_backup_tree_root_gen(root_backup, 1664 btrfs_header_generation(info->tree_root->node)); 1665 1666 btrfs_set_backup_tree_root_level(root_backup, 1667 btrfs_header_level(info->tree_root->node)); 1668 1669 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1670 btrfs_set_backup_chunk_root_gen(root_backup, 1671 btrfs_header_generation(info->chunk_root->node)); 1672 btrfs_set_backup_chunk_root_level(root_backup, 1673 btrfs_header_level(info->chunk_root->node)); 1674 1675 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1676 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1677 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1678 1679 btrfs_set_backup_extent_root(root_backup, 1680 extent_root->node->start); 1681 btrfs_set_backup_extent_root_gen(root_backup, 1682 btrfs_header_generation(extent_root->node)); 1683 btrfs_set_backup_extent_root_level(root_backup, 1684 btrfs_header_level(extent_root->node)); 1685 1686 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1687 btrfs_set_backup_csum_root_gen(root_backup, 1688 btrfs_header_generation(csum_root->node)); 1689 btrfs_set_backup_csum_root_level(root_backup, 1690 btrfs_header_level(csum_root->node)); 1691 } 1692 1693 /* 1694 * we might commit during log recovery, which happens before we set 1695 * the fs_root. Make sure it is valid before we fill it in. 1696 */ 1697 if (info->fs_root && info->fs_root->node) { 1698 btrfs_set_backup_fs_root(root_backup, 1699 info->fs_root->node->start); 1700 btrfs_set_backup_fs_root_gen(root_backup, 1701 btrfs_header_generation(info->fs_root->node)); 1702 btrfs_set_backup_fs_root_level(root_backup, 1703 btrfs_header_level(info->fs_root->node)); 1704 } 1705 1706 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1707 btrfs_set_backup_dev_root_gen(root_backup, 1708 btrfs_header_generation(info->dev_root->node)); 1709 btrfs_set_backup_dev_root_level(root_backup, 1710 btrfs_header_level(info->dev_root->node)); 1711 1712 btrfs_set_backup_total_bytes(root_backup, 1713 btrfs_super_total_bytes(info->super_copy)); 1714 btrfs_set_backup_bytes_used(root_backup, 1715 btrfs_super_bytes_used(info->super_copy)); 1716 btrfs_set_backup_num_devices(root_backup, 1717 btrfs_super_num_devices(info->super_copy)); 1718 1719 /* 1720 * if we don't copy this out to the super_copy, it won't get remembered 1721 * for the next commit 1722 */ 1723 memcpy(&info->super_copy->super_roots, 1724 &info->super_for_commit->super_roots, 1725 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1726 } 1727 1728 /* 1729 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio 1730 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1731 * 1732 * @fs_info: filesystem whose backup roots need to be read 1733 * @priority: priority of backup root required 1734 * 1735 * Returns backup root index on success and -EINVAL otherwise. 1736 */ 1737 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1738 { 1739 int backup_index = find_newest_super_backup(fs_info); 1740 struct btrfs_super_block *super = fs_info->super_copy; 1741 struct btrfs_root_backup *root_backup; 1742 1743 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1744 if (priority == 0) 1745 return backup_index; 1746 1747 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1748 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1749 } else { 1750 return -EINVAL; 1751 } 1752 1753 root_backup = super->super_roots + backup_index; 1754 1755 btrfs_set_super_generation(super, 1756 btrfs_backup_tree_root_gen(root_backup)); 1757 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1758 btrfs_set_super_root_level(super, 1759 btrfs_backup_tree_root_level(root_backup)); 1760 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1761 1762 /* 1763 * Fixme: the total bytes and num_devices need to match or we should 1764 * need a fsck 1765 */ 1766 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1767 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1768 1769 return backup_index; 1770 } 1771 1772 /* helper to cleanup workers */ 1773 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1774 { 1775 btrfs_destroy_workqueue(fs_info->fixup_workers); 1776 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1777 btrfs_destroy_workqueue(fs_info->workers); 1778 if (fs_info->endio_workers) 1779 destroy_workqueue(fs_info->endio_workers); 1780 if (fs_info->rmw_workers) 1781 destroy_workqueue(fs_info->rmw_workers); 1782 if (fs_info->compressed_write_workers) 1783 destroy_workqueue(fs_info->compressed_write_workers); 1784 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1785 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1786 btrfs_destroy_workqueue(fs_info->delayed_workers); 1787 btrfs_destroy_workqueue(fs_info->caching_workers); 1788 btrfs_destroy_workqueue(fs_info->flush_workers); 1789 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1790 if (fs_info->discard_ctl.discard_workers) 1791 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1792 /* 1793 * Now that all other work queues are destroyed, we can safely destroy 1794 * the queues used for metadata I/O, since tasks from those other work 1795 * queues can do metadata I/O operations. 1796 */ 1797 if (fs_info->endio_meta_workers) 1798 destroy_workqueue(fs_info->endio_meta_workers); 1799 } 1800 1801 static void free_root_extent_buffers(struct btrfs_root *root) 1802 { 1803 if (root) { 1804 free_extent_buffer(root->node); 1805 free_extent_buffer(root->commit_root); 1806 root->node = NULL; 1807 root->commit_root = NULL; 1808 } 1809 } 1810 1811 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 1812 { 1813 struct btrfs_root *root, *tmp; 1814 1815 rbtree_postorder_for_each_entry_safe(root, tmp, 1816 &fs_info->global_root_tree, 1817 rb_node) 1818 free_root_extent_buffers(root); 1819 } 1820 1821 /* helper to cleanup tree roots */ 1822 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1823 { 1824 free_root_extent_buffers(info->tree_root); 1825 1826 free_global_root_pointers(info); 1827 free_root_extent_buffers(info->dev_root); 1828 free_root_extent_buffers(info->quota_root); 1829 free_root_extent_buffers(info->uuid_root); 1830 free_root_extent_buffers(info->fs_root); 1831 free_root_extent_buffers(info->data_reloc_root); 1832 free_root_extent_buffers(info->block_group_root); 1833 free_root_extent_buffers(info->stripe_root); 1834 if (free_chunk_root) 1835 free_root_extent_buffers(info->chunk_root); 1836 } 1837 1838 void btrfs_put_root(struct btrfs_root *root) 1839 { 1840 if (!root) 1841 return; 1842 1843 if (refcount_dec_and_test(&root->refs)) { 1844 if (WARN_ON(!xa_empty(&root->inodes))) 1845 xa_destroy(&root->inodes); 1846 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 1847 if (root->anon_dev) 1848 free_anon_bdev(root->anon_dev); 1849 free_root_extent_buffers(root); 1850 #ifdef CONFIG_BTRFS_DEBUG 1851 spin_lock(&root->fs_info->fs_roots_radix_lock); 1852 list_del_init(&root->leak_list); 1853 spin_unlock(&root->fs_info->fs_roots_radix_lock); 1854 #endif 1855 kfree(root); 1856 } 1857 } 1858 1859 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 1860 { 1861 int ret; 1862 struct btrfs_root *gang[8]; 1863 int i; 1864 1865 while (!list_empty(&fs_info->dead_roots)) { 1866 gang[0] = list_entry(fs_info->dead_roots.next, 1867 struct btrfs_root, root_list); 1868 list_del(&gang[0]->root_list); 1869 1870 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 1871 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 1872 btrfs_put_root(gang[0]); 1873 } 1874 1875 while (1) { 1876 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 1877 (void **)gang, 0, 1878 ARRAY_SIZE(gang)); 1879 if (!ret) 1880 break; 1881 for (i = 0; i < ret; i++) 1882 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 1883 } 1884 } 1885 1886 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 1887 { 1888 mutex_init(&fs_info->scrub_lock); 1889 atomic_set(&fs_info->scrubs_running, 0); 1890 atomic_set(&fs_info->scrub_pause_req, 0); 1891 atomic_set(&fs_info->scrubs_paused, 0); 1892 atomic_set(&fs_info->scrub_cancel_req, 0); 1893 init_waitqueue_head(&fs_info->scrub_pause_wait); 1894 refcount_set(&fs_info->scrub_workers_refcnt, 0); 1895 } 1896 1897 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 1898 { 1899 spin_lock_init(&fs_info->balance_lock); 1900 mutex_init(&fs_info->balance_mutex); 1901 atomic_set(&fs_info->balance_pause_req, 0); 1902 atomic_set(&fs_info->balance_cancel_req, 0); 1903 fs_info->balance_ctl = NULL; 1904 init_waitqueue_head(&fs_info->balance_wait_q); 1905 atomic_set(&fs_info->reloc_cancel_req, 0); 1906 } 1907 1908 static int btrfs_init_btree_inode(struct super_block *sb) 1909 { 1910 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1911 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 1912 fs_info->tree_root); 1913 struct inode *inode; 1914 1915 inode = new_inode(sb); 1916 if (!inode) 1917 return -ENOMEM; 1918 1919 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID); 1920 set_nlink(inode, 1); 1921 /* 1922 * we set the i_size on the btree inode to the max possible int. 1923 * the real end of the address space is determined by all of 1924 * the devices in the system 1925 */ 1926 inode->i_size = OFFSET_MAX; 1927 inode->i_mapping->a_ops = &btree_aops; 1928 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); 1929 1930 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 1931 IO_TREE_BTREE_INODE_IO); 1932 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 1933 1934 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 1935 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 1936 __insert_inode_hash(inode, hash); 1937 fs_info->btree_inode = inode; 1938 1939 return 0; 1940 } 1941 1942 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 1943 { 1944 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 1945 init_rwsem(&fs_info->dev_replace.rwsem); 1946 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 1947 } 1948 1949 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 1950 { 1951 spin_lock_init(&fs_info->qgroup_lock); 1952 mutex_init(&fs_info->qgroup_ioctl_lock); 1953 fs_info->qgroup_tree = RB_ROOT; 1954 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 1955 fs_info->qgroup_seq = 1; 1956 fs_info->qgroup_ulist = NULL; 1957 fs_info->qgroup_rescan_running = false; 1958 fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT; 1959 mutex_init(&fs_info->qgroup_rescan_lock); 1960 } 1961 1962 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 1963 { 1964 u32 max_active = fs_info->thread_pool_size; 1965 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 1966 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE; 1967 1968 fs_info->workers = 1969 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 1970 1971 fs_info->delalloc_workers = 1972 btrfs_alloc_workqueue(fs_info, "delalloc", 1973 flags, max_active, 2); 1974 1975 fs_info->flush_workers = 1976 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 1977 flags, max_active, 0); 1978 1979 fs_info->caching_workers = 1980 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 1981 1982 fs_info->fixup_workers = 1983 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags); 1984 1985 fs_info->endio_workers = 1986 alloc_workqueue("btrfs-endio", flags, max_active); 1987 fs_info->endio_meta_workers = 1988 alloc_workqueue("btrfs-endio-meta", flags, max_active); 1989 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 1990 fs_info->endio_write_workers = 1991 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 1992 max_active, 2); 1993 fs_info->compressed_write_workers = 1994 alloc_workqueue("btrfs-compressed-write", flags, max_active); 1995 fs_info->endio_freespace_worker = 1996 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 1997 max_active, 0); 1998 fs_info->delayed_workers = 1999 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2000 max_active, 0); 2001 fs_info->qgroup_rescan_workers = 2002 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan", 2003 ordered_flags); 2004 fs_info->discard_ctl.discard_workers = 2005 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE); 2006 2007 if (!(fs_info->workers && 2008 fs_info->delalloc_workers && fs_info->flush_workers && 2009 fs_info->endio_workers && fs_info->endio_meta_workers && 2010 fs_info->compressed_write_workers && 2011 fs_info->endio_write_workers && 2012 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2013 fs_info->caching_workers && fs_info->fixup_workers && 2014 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2015 fs_info->discard_ctl.discard_workers)) { 2016 return -ENOMEM; 2017 } 2018 2019 return 0; 2020 } 2021 2022 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2023 { 2024 struct crypto_shash *csum_shash; 2025 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2026 2027 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2028 2029 if (IS_ERR(csum_shash)) { 2030 btrfs_err(fs_info, "error allocating %s hash for checksum", 2031 csum_driver); 2032 return PTR_ERR(csum_shash); 2033 } 2034 2035 fs_info->csum_shash = csum_shash; 2036 2037 /* 2038 * Check if the checksum implementation is a fast accelerated one. 2039 * As-is this is a bit of a hack and should be replaced once the csum 2040 * implementations provide that information themselves. 2041 */ 2042 switch (csum_type) { 2043 case BTRFS_CSUM_TYPE_CRC32: 2044 if (!strstr(crypto_shash_driver_name(csum_shash), "generic")) 2045 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2046 break; 2047 case BTRFS_CSUM_TYPE_XXHASH: 2048 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2049 break; 2050 default: 2051 break; 2052 } 2053 2054 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2055 btrfs_super_csum_name(csum_type), 2056 crypto_shash_driver_name(csum_shash)); 2057 return 0; 2058 } 2059 2060 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2061 struct btrfs_fs_devices *fs_devices) 2062 { 2063 int ret; 2064 struct btrfs_tree_parent_check check = { 0 }; 2065 struct btrfs_root *log_tree_root; 2066 struct btrfs_super_block *disk_super = fs_info->super_copy; 2067 u64 bytenr = btrfs_super_log_root(disk_super); 2068 int level = btrfs_super_log_root_level(disk_super); 2069 2070 if (fs_devices->rw_devices == 0) { 2071 btrfs_warn(fs_info, "log replay required on RO media"); 2072 return -EIO; 2073 } 2074 2075 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2076 GFP_KERNEL); 2077 if (!log_tree_root) 2078 return -ENOMEM; 2079 2080 check.level = level; 2081 check.transid = fs_info->generation + 1; 2082 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2083 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2084 if (IS_ERR(log_tree_root->node)) { 2085 btrfs_warn(fs_info, "failed to read log tree"); 2086 ret = PTR_ERR(log_tree_root->node); 2087 log_tree_root->node = NULL; 2088 btrfs_put_root(log_tree_root); 2089 return ret; 2090 } 2091 if (!extent_buffer_uptodate(log_tree_root->node)) { 2092 btrfs_err(fs_info, "failed to read log tree"); 2093 btrfs_put_root(log_tree_root); 2094 return -EIO; 2095 } 2096 2097 /* returns with log_tree_root freed on success */ 2098 ret = btrfs_recover_log_trees(log_tree_root); 2099 if (ret) { 2100 btrfs_handle_fs_error(fs_info, ret, 2101 "Failed to recover log tree"); 2102 btrfs_put_root(log_tree_root); 2103 return ret; 2104 } 2105 2106 if (sb_rdonly(fs_info->sb)) { 2107 ret = btrfs_commit_super(fs_info); 2108 if (ret) 2109 return ret; 2110 } 2111 2112 return 0; 2113 } 2114 2115 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2116 struct btrfs_path *path, u64 objectid, 2117 const char *name) 2118 { 2119 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2120 struct btrfs_root *root; 2121 u64 max_global_id = 0; 2122 int ret; 2123 struct btrfs_key key = { 2124 .objectid = objectid, 2125 .type = BTRFS_ROOT_ITEM_KEY, 2126 .offset = 0, 2127 }; 2128 bool found = false; 2129 2130 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2131 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2132 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2133 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); 2134 return 0; 2135 } 2136 2137 while (1) { 2138 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2139 if (ret < 0) 2140 break; 2141 2142 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2143 ret = btrfs_next_leaf(tree_root, path); 2144 if (ret) { 2145 if (ret > 0) 2146 ret = 0; 2147 break; 2148 } 2149 } 2150 ret = 0; 2151 2152 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2153 if (key.objectid != objectid) 2154 break; 2155 btrfs_release_path(path); 2156 2157 /* 2158 * Just worry about this for extent tree, it'll be the same for 2159 * everybody. 2160 */ 2161 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2162 max_global_id = max(max_global_id, key.offset); 2163 2164 found = true; 2165 root = read_tree_root_path(tree_root, path, &key); 2166 if (IS_ERR(root)) { 2167 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2168 ret = PTR_ERR(root); 2169 break; 2170 } 2171 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2172 ret = btrfs_global_root_insert(root); 2173 if (ret) { 2174 btrfs_put_root(root); 2175 break; 2176 } 2177 key.offset++; 2178 } 2179 btrfs_release_path(path); 2180 2181 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2182 fs_info->nr_global_roots = max_global_id + 1; 2183 2184 if (!found || ret) { 2185 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2186 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); 2187 2188 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2189 ret = ret ? ret : -ENOENT; 2190 else 2191 ret = 0; 2192 btrfs_err(fs_info, "failed to load root %s", name); 2193 } 2194 return ret; 2195 } 2196 2197 static int load_global_roots(struct btrfs_root *tree_root) 2198 { 2199 BTRFS_PATH_AUTO_FREE(path); 2200 int ret; 2201 2202 path = btrfs_alloc_path(); 2203 if (!path) 2204 return -ENOMEM; 2205 2206 ret = load_global_roots_objectid(tree_root, path, 2207 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2208 if (ret) 2209 return ret; 2210 ret = load_global_roots_objectid(tree_root, path, 2211 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2212 if (ret) 2213 return ret; 2214 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2215 return ret; 2216 ret = load_global_roots_objectid(tree_root, path, 2217 BTRFS_FREE_SPACE_TREE_OBJECTID, 2218 "free space"); 2219 2220 return ret; 2221 } 2222 2223 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2224 { 2225 struct btrfs_root *tree_root = fs_info->tree_root; 2226 struct btrfs_root *root; 2227 struct btrfs_key location; 2228 int ret; 2229 2230 ASSERT(fs_info->tree_root); 2231 2232 ret = load_global_roots(tree_root); 2233 if (ret) 2234 return ret; 2235 2236 location.type = BTRFS_ROOT_ITEM_KEY; 2237 location.offset = 0; 2238 2239 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2240 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2241 root = btrfs_read_tree_root(tree_root, &location); 2242 if (IS_ERR(root)) { 2243 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2244 ret = PTR_ERR(root); 2245 goto out; 2246 } 2247 } else { 2248 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2249 fs_info->block_group_root = root; 2250 } 2251 } 2252 2253 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2254 root = btrfs_read_tree_root(tree_root, &location); 2255 if (IS_ERR(root)) { 2256 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2257 ret = PTR_ERR(root); 2258 goto out; 2259 } 2260 } else { 2261 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2262 fs_info->dev_root = root; 2263 } 2264 /* Initialize fs_info for all devices in any case */ 2265 ret = btrfs_init_devices_late(fs_info); 2266 if (ret) 2267 goto out; 2268 2269 /* 2270 * This tree can share blocks with some other fs tree during relocation 2271 * and we need a proper setup by btrfs_get_fs_root 2272 */ 2273 root = btrfs_get_fs_root(tree_root->fs_info, 2274 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2275 if (IS_ERR(root)) { 2276 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2277 ret = PTR_ERR(root); 2278 goto out; 2279 } 2280 } else { 2281 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2282 fs_info->data_reloc_root = root; 2283 } 2284 2285 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2286 root = btrfs_read_tree_root(tree_root, &location); 2287 if (!IS_ERR(root)) { 2288 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2289 fs_info->quota_root = root; 2290 } 2291 2292 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2293 root = btrfs_read_tree_root(tree_root, &location); 2294 if (IS_ERR(root)) { 2295 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2296 ret = PTR_ERR(root); 2297 if (ret != -ENOENT) 2298 goto out; 2299 } 2300 } else { 2301 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2302 fs_info->uuid_root = root; 2303 } 2304 2305 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) { 2306 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID; 2307 root = btrfs_read_tree_root(tree_root, &location); 2308 if (IS_ERR(root)) { 2309 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2310 ret = PTR_ERR(root); 2311 goto out; 2312 } 2313 } else { 2314 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2315 fs_info->stripe_root = root; 2316 } 2317 } 2318 2319 return 0; 2320 out: 2321 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2322 location.objectid, ret); 2323 return ret; 2324 } 2325 2326 static int validate_sys_chunk_array(const struct btrfs_fs_info *fs_info, 2327 const struct btrfs_super_block *sb) 2328 { 2329 unsigned int cur = 0; /* Offset inside the sys chunk array */ 2330 /* 2331 * At sb read time, fs_info is not fully initialized. Thus we have 2332 * to use super block sectorsize, which should have been validated. 2333 */ 2334 const u32 sectorsize = btrfs_super_sectorsize(sb); 2335 u32 sys_array_size = btrfs_super_sys_array_size(sb); 2336 2337 if (sys_array_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2338 btrfs_err(fs_info, "system chunk array too big %u > %u", 2339 sys_array_size, BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2340 return -EUCLEAN; 2341 } 2342 2343 while (cur < sys_array_size) { 2344 struct btrfs_disk_key *disk_key; 2345 struct btrfs_chunk *chunk; 2346 struct btrfs_key key; 2347 u64 type; 2348 u16 num_stripes; 2349 u32 len; 2350 int ret; 2351 2352 disk_key = (struct btrfs_disk_key *)(sb->sys_chunk_array + cur); 2353 len = sizeof(*disk_key); 2354 2355 if (cur + len > sys_array_size) 2356 goto short_read; 2357 cur += len; 2358 2359 btrfs_disk_key_to_cpu(&key, disk_key); 2360 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 2361 btrfs_err(fs_info, 2362 "unexpected item type %u in sys_array at offset %u", 2363 key.type, cur); 2364 return -EUCLEAN; 2365 } 2366 chunk = (struct btrfs_chunk *)(sb->sys_chunk_array + cur); 2367 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2368 if (cur + btrfs_chunk_item_size(num_stripes) > sys_array_size) 2369 goto short_read; 2370 type = btrfs_stack_chunk_type(chunk); 2371 if (!(type & BTRFS_BLOCK_GROUP_SYSTEM)) { 2372 btrfs_err(fs_info, 2373 "invalid chunk type %llu in sys_array at offset %u", 2374 type, cur); 2375 return -EUCLEAN; 2376 } 2377 ret = btrfs_check_chunk_valid(fs_info, NULL, chunk, key.offset, 2378 sectorsize); 2379 if (ret < 0) 2380 return ret; 2381 cur += btrfs_chunk_item_size(num_stripes); 2382 } 2383 return 0; 2384 short_read: 2385 btrfs_err(fs_info, 2386 "super block sys chunk array short read, cur=%u sys_array_size=%u", 2387 cur, sys_array_size); 2388 return -EUCLEAN; 2389 } 2390 2391 /* 2392 * Real super block validation 2393 * NOTE: super csum type and incompat features will not be checked here. 2394 * 2395 * @sb: super block to check 2396 * @mirror_num: the super block number to check its bytenr: 2397 * 0 the primary (1st) sb 2398 * 1, 2 2nd and 3rd backup copy 2399 * -1 skip bytenr check 2400 */ 2401 int btrfs_validate_super(const struct btrfs_fs_info *fs_info, 2402 const struct btrfs_super_block *sb, int mirror_num) 2403 { 2404 u64 nodesize = btrfs_super_nodesize(sb); 2405 u64 sectorsize = btrfs_super_sectorsize(sb); 2406 int ret = 0; 2407 const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS); 2408 2409 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2410 btrfs_err(fs_info, "no valid FS found"); 2411 ret = -EINVAL; 2412 } 2413 if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) { 2414 if (!ignore_flags) { 2415 btrfs_err(fs_info, 2416 "unrecognized or unsupported super flag 0x%llx", 2417 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2418 ret = -EINVAL; 2419 } else { 2420 btrfs_info(fs_info, 2421 "unrecognized or unsupported super flags: 0x%llx, ignored", 2422 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2423 } 2424 } 2425 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2426 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2427 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2428 ret = -EINVAL; 2429 } 2430 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2431 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2432 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2433 ret = -EINVAL; 2434 } 2435 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2436 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2437 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2438 ret = -EINVAL; 2439 } 2440 2441 /* 2442 * Check sectorsize and nodesize first, other check will need it. 2443 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2444 */ 2445 if (!is_power_of_2(sectorsize) || sectorsize < BTRFS_MIN_BLOCKSIZE || 2446 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2447 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2448 ret = -EINVAL; 2449 } 2450 2451 /* 2452 * We only support at most 3 sectorsizes: 4K, PAGE_SIZE, MIN_BLOCKSIZE. 2453 * 2454 * For 4K page sized systems with non-debug builds, all 3 matches (4K). 2455 * For 4K page sized systems with debug builds, there are two block sizes 2456 * supported. (4K and 2K) 2457 * 2458 * We can support 16K sectorsize with 64K page size without problem, 2459 * but such sectorsize/pagesize combination doesn't make much sense. 2460 * 4K will be our future standard, PAGE_SIZE is supported from the very 2461 * beginning. 2462 */ 2463 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && 2464 sectorsize != PAGE_SIZE && 2465 sectorsize != BTRFS_MIN_BLOCKSIZE)) { 2466 btrfs_err(fs_info, 2467 "sectorsize %llu not yet supported for page size %lu", 2468 sectorsize, PAGE_SIZE); 2469 ret = -EINVAL; 2470 } 2471 2472 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2473 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2474 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2475 ret = -EINVAL; 2476 } 2477 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2478 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2479 le32_to_cpu(sb->__unused_leafsize), nodesize); 2480 ret = -EINVAL; 2481 } 2482 2483 /* Root alignment check */ 2484 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2485 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2486 btrfs_super_root(sb)); 2487 ret = -EINVAL; 2488 } 2489 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2490 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2491 btrfs_super_chunk_root(sb)); 2492 ret = -EINVAL; 2493 } 2494 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2495 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2496 btrfs_super_log_root(sb)); 2497 ret = -EINVAL; 2498 } 2499 2500 if (!fs_info->fs_devices->temp_fsid && 2501 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) { 2502 btrfs_err(fs_info, 2503 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2504 sb->fsid, fs_info->fs_devices->fsid); 2505 ret = -EINVAL; 2506 } 2507 2508 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb), 2509 BTRFS_FSID_SIZE) != 0) { 2510 btrfs_err(fs_info, 2511 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2512 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid); 2513 ret = -EINVAL; 2514 } 2515 2516 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2517 BTRFS_FSID_SIZE) != 0) { 2518 btrfs_err(fs_info, 2519 "dev_item UUID does not match metadata fsid: %pU != %pU", 2520 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2521 ret = -EINVAL; 2522 } 2523 2524 /* 2525 * Artificial requirement for block-group-tree to force newer features 2526 * (free-space-tree, no-holes) so the test matrix is smaller. 2527 */ 2528 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2529 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2530 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2531 btrfs_err(fs_info, 2532 "block-group-tree feature requires free-space-tree and no-holes"); 2533 ret = -EINVAL; 2534 } 2535 2536 /* 2537 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2538 * done later 2539 */ 2540 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2541 btrfs_err(fs_info, "bytes_used is too small %llu", 2542 btrfs_super_bytes_used(sb)); 2543 ret = -EINVAL; 2544 } 2545 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2546 btrfs_err(fs_info, "invalid stripesize %u", 2547 btrfs_super_stripesize(sb)); 2548 ret = -EINVAL; 2549 } 2550 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2551 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2552 btrfs_super_num_devices(sb)); 2553 if (btrfs_super_num_devices(sb) == 0) { 2554 btrfs_err(fs_info, "number of devices is 0"); 2555 ret = -EINVAL; 2556 } 2557 2558 if (mirror_num >= 0 && 2559 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2560 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2561 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2562 ret = -EINVAL; 2563 } 2564 2565 if (ret) 2566 return ret; 2567 2568 ret = validate_sys_chunk_array(fs_info, sb); 2569 2570 /* 2571 * Obvious sys_chunk_array corruptions, it must hold at least one key 2572 * and one chunk 2573 */ 2574 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2575 btrfs_err(fs_info, "system chunk array too big %u > %u", 2576 btrfs_super_sys_array_size(sb), 2577 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2578 ret = -EINVAL; 2579 } 2580 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2581 + sizeof(struct btrfs_chunk)) { 2582 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2583 btrfs_super_sys_array_size(sb), 2584 sizeof(struct btrfs_disk_key) 2585 + sizeof(struct btrfs_chunk)); 2586 ret = -EINVAL; 2587 } 2588 2589 /* 2590 * The generation is a global counter, we'll trust it more than the others 2591 * but it's still possible that it's the one that's wrong. 2592 */ 2593 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2594 btrfs_warn(fs_info, 2595 "suspicious: generation < chunk_root_generation: %llu < %llu", 2596 btrfs_super_generation(sb), 2597 btrfs_super_chunk_root_generation(sb)); 2598 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2599 && btrfs_super_cache_generation(sb) != (u64)-1) 2600 btrfs_warn(fs_info, 2601 "suspicious: generation < cache_generation: %llu < %llu", 2602 btrfs_super_generation(sb), 2603 btrfs_super_cache_generation(sb)); 2604 2605 return ret; 2606 } 2607 2608 /* 2609 * Validation of super block at mount time. 2610 * Some checks already done early at mount time, like csum type and incompat 2611 * flags will be skipped. 2612 */ 2613 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2614 { 2615 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2616 } 2617 2618 /* 2619 * Validation of super block at write time. 2620 * Some checks like bytenr check will be skipped as their values will be 2621 * overwritten soon. 2622 * Extra checks like csum type and incompat flags will be done here. 2623 */ 2624 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2625 struct btrfs_super_block *sb) 2626 { 2627 int ret; 2628 2629 ret = btrfs_validate_super(fs_info, sb, -1); 2630 if (ret < 0) 2631 goto out; 2632 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2633 ret = -EUCLEAN; 2634 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2635 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2636 goto out; 2637 } 2638 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2639 ret = -EUCLEAN; 2640 btrfs_err(fs_info, 2641 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2642 btrfs_super_incompat_flags(sb), 2643 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2644 goto out; 2645 } 2646 out: 2647 if (ret < 0) 2648 btrfs_err(fs_info, 2649 "super block corruption detected before writing it to disk"); 2650 return ret; 2651 } 2652 2653 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2654 { 2655 struct btrfs_tree_parent_check check = { 2656 .level = level, 2657 .transid = gen, 2658 .owner_root = btrfs_root_id(root) 2659 }; 2660 int ret = 0; 2661 2662 root->node = read_tree_block(root->fs_info, bytenr, &check); 2663 if (IS_ERR(root->node)) { 2664 ret = PTR_ERR(root->node); 2665 root->node = NULL; 2666 return ret; 2667 } 2668 if (!extent_buffer_uptodate(root->node)) { 2669 free_extent_buffer(root->node); 2670 root->node = NULL; 2671 return -EIO; 2672 } 2673 2674 btrfs_set_root_node(&root->root_item, root->node); 2675 root->commit_root = btrfs_root_node(root); 2676 btrfs_set_root_refs(&root->root_item, 1); 2677 return ret; 2678 } 2679 2680 static int load_important_roots(struct btrfs_fs_info *fs_info) 2681 { 2682 struct btrfs_super_block *sb = fs_info->super_copy; 2683 u64 gen, bytenr; 2684 int level, ret; 2685 2686 bytenr = btrfs_super_root(sb); 2687 gen = btrfs_super_generation(sb); 2688 level = btrfs_super_root_level(sb); 2689 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2690 if (ret) { 2691 btrfs_warn(fs_info, "couldn't read tree root"); 2692 return ret; 2693 } 2694 return 0; 2695 } 2696 2697 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2698 { 2699 int backup_index = find_newest_super_backup(fs_info); 2700 struct btrfs_super_block *sb = fs_info->super_copy; 2701 struct btrfs_root *tree_root = fs_info->tree_root; 2702 bool handle_error = false; 2703 int ret = 0; 2704 int i; 2705 2706 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2707 if (handle_error) { 2708 if (!IS_ERR(tree_root->node)) 2709 free_extent_buffer(tree_root->node); 2710 tree_root->node = NULL; 2711 2712 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2713 break; 2714 2715 free_root_pointers(fs_info, 0); 2716 2717 /* 2718 * Don't use the log in recovery mode, it won't be 2719 * valid 2720 */ 2721 btrfs_set_super_log_root(sb, 0); 2722 2723 btrfs_warn(fs_info, "try to load backup roots slot %d", i); 2724 ret = read_backup_root(fs_info, i); 2725 backup_index = ret; 2726 if (ret < 0) 2727 return ret; 2728 } 2729 2730 ret = load_important_roots(fs_info); 2731 if (ret) { 2732 handle_error = true; 2733 continue; 2734 } 2735 2736 /* 2737 * No need to hold btrfs_root::objectid_mutex since the fs 2738 * hasn't been fully initialised and we are the only user 2739 */ 2740 ret = btrfs_init_root_free_objectid(tree_root); 2741 if (ret < 0) { 2742 handle_error = true; 2743 continue; 2744 } 2745 2746 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2747 2748 ret = btrfs_read_roots(fs_info); 2749 if (ret < 0) { 2750 handle_error = true; 2751 continue; 2752 } 2753 2754 /* All successful */ 2755 fs_info->generation = btrfs_header_generation(tree_root->node); 2756 btrfs_set_last_trans_committed(fs_info, fs_info->generation); 2757 fs_info->last_reloc_trans = 0; 2758 2759 /* Always begin writing backup roots after the one being used */ 2760 if (backup_index < 0) { 2761 fs_info->backup_root_index = 0; 2762 } else { 2763 fs_info->backup_root_index = backup_index + 1; 2764 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2765 } 2766 break; 2767 } 2768 2769 return ret; 2770 } 2771 2772 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2773 { 2774 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2775 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2776 INIT_LIST_HEAD(&fs_info->trans_list); 2777 INIT_LIST_HEAD(&fs_info->dead_roots); 2778 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2779 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2780 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2781 spin_lock_init(&fs_info->delalloc_root_lock); 2782 spin_lock_init(&fs_info->trans_lock); 2783 spin_lock_init(&fs_info->fs_roots_radix_lock); 2784 spin_lock_init(&fs_info->delayed_iput_lock); 2785 spin_lock_init(&fs_info->defrag_inodes_lock); 2786 spin_lock_init(&fs_info->super_lock); 2787 spin_lock_init(&fs_info->buffer_lock); 2788 spin_lock_init(&fs_info->unused_bgs_lock); 2789 spin_lock_init(&fs_info->treelog_bg_lock); 2790 spin_lock_init(&fs_info->zone_active_bgs_lock); 2791 spin_lock_init(&fs_info->relocation_bg_lock); 2792 rwlock_init(&fs_info->tree_mod_log_lock); 2793 rwlock_init(&fs_info->global_root_lock); 2794 mutex_init(&fs_info->unused_bg_unpin_mutex); 2795 mutex_init(&fs_info->reclaim_bgs_lock); 2796 mutex_init(&fs_info->reloc_mutex); 2797 mutex_init(&fs_info->delalloc_root_mutex); 2798 mutex_init(&fs_info->zoned_meta_io_lock); 2799 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2800 seqlock_init(&fs_info->profiles_lock); 2801 2802 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2803 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2804 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2805 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2806 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep, 2807 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2808 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2809 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2810 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 2811 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2812 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 2813 BTRFS_LOCKDEP_TRANS_COMPLETED); 2814 2815 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2816 INIT_LIST_HEAD(&fs_info->space_info); 2817 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2818 INIT_LIST_HEAD(&fs_info->unused_bgs); 2819 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2820 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2821 #ifdef CONFIG_BTRFS_DEBUG 2822 INIT_LIST_HEAD(&fs_info->allocated_roots); 2823 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2824 spin_lock_init(&fs_info->eb_leak_lock); 2825 #endif 2826 fs_info->mapping_tree = RB_ROOT_CACHED; 2827 rwlock_init(&fs_info->mapping_tree_lock); 2828 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2829 BTRFS_BLOCK_RSV_GLOBAL); 2830 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2831 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2832 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2833 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2834 BTRFS_BLOCK_RSV_DELOPS); 2835 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2836 BTRFS_BLOCK_RSV_DELREFS); 2837 2838 atomic_set(&fs_info->async_delalloc_pages, 0); 2839 atomic_set(&fs_info->defrag_running, 0); 2840 atomic_set(&fs_info->nr_delayed_iputs, 0); 2841 atomic64_set(&fs_info->tree_mod_seq, 0); 2842 fs_info->global_root_tree = RB_ROOT; 2843 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2844 fs_info->metadata_ratio = 0; 2845 fs_info->defrag_inodes = RB_ROOT; 2846 atomic64_set(&fs_info->free_chunk_space, 0); 2847 fs_info->tree_mod_log = RB_ROOT; 2848 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2849 btrfs_init_ref_verify(fs_info); 2850 2851 fs_info->thread_pool_size = min_t(unsigned long, 2852 num_online_cpus() + 2, 8); 2853 2854 INIT_LIST_HEAD(&fs_info->ordered_roots); 2855 spin_lock_init(&fs_info->ordered_root_lock); 2856 2857 btrfs_init_scrub(fs_info); 2858 btrfs_init_balance(fs_info); 2859 btrfs_init_async_reclaim_work(fs_info); 2860 btrfs_init_extent_map_shrinker_work(fs_info); 2861 2862 rwlock_init(&fs_info->block_group_cache_lock); 2863 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 2864 2865 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2866 IO_TREE_FS_EXCLUDED_EXTENTS); 2867 2868 mutex_init(&fs_info->ordered_operations_mutex); 2869 mutex_init(&fs_info->tree_log_mutex); 2870 mutex_init(&fs_info->chunk_mutex); 2871 mutex_init(&fs_info->transaction_kthread_mutex); 2872 mutex_init(&fs_info->cleaner_mutex); 2873 mutex_init(&fs_info->ro_block_group_mutex); 2874 init_rwsem(&fs_info->commit_root_sem); 2875 init_rwsem(&fs_info->cleanup_work_sem); 2876 init_rwsem(&fs_info->subvol_sem); 2877 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2878 2879 btrfs_init_dev_replace_locks(fs_info); 2880 btrfs_init_qgroup(fs_info); 2881 btrfs_discard_init(fs_info); 2882 2883 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2884 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2885 2886 init_waitqueue_head(&fs_info->transaction_throttle); 2887 init_waitqueue_head(&fs_info->transaction_wait); 2888 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2889 init_waitqueue_head(&fs_info->async_submit_wait); 2890 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2891 2892 /* Usable values until the real ones are cached from the superblock */ 2893 fs_info->nodesize = 4096; 2894 fs_info->sectorsize = 4096; 2895 fs_info->sectorsize_bits = ilog2(4096); 2896 fs_info->stripesize = 4096; 2897 2898 /* Default compress algorithm when user does -o compress */ 2899 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2900 2901 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 2902 2903 spin_lock_init(&fs_info->swapfile_pins_lock); 2904 fs_info->swapfile_pins = RB_ROOT; 2905 2906 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 2907 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 2908 } 2909 2910 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2911 { 2912 int ret; 2913 2914 fs_info->sb = sb; 2915 /* Temporary fixed values for block size until we read the superblock. */ 2916 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2917 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2918 2919 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 2920 if (ret) 2921 return ret; 2922 2923 ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL); 2924 if (ret) 2925 return ret; 2926 2927 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2928 if (ret) 2929 return ret; 2930 2931 ret = percpu_counter_init(&fs_info->stats_read_blocks, 0, GFP_KERNEL); 2932 if (ret) 2933 return ret; 2934 2935 fs_info->dirty_metadata_batch = PAGE_SIZE * 2936 (1 + ilog2(nr_cpu_ids)); 2937 2938 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2939 if (ret) 2940 return ret; 2941 2942 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2943 GFP_KERNEL); 2944 if (ret) 2945 return ret; 2946 2947 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2948 GFP_KERNEL); 2949 if (!fs_info->delayed_root) 2950 return -ENOMEM; 2951 btrfs_init_delayed_root(fs_info->delayed_root); 2952 2953 if (sb_rdonly(sb)) 2954 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2955 if (btrfs_test_opt(fs_info, IGNOREMETACSUMS)) 2956 set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state); 2957 2958 return btrfs_alloc_stripe_hash_table(fs_info); 2959 } 2960 2961 static int btrfs_uuid_rescan_kthread(void *data) 2962 { 2963 struct btrfs_fs_info *fs_info = data; 2964 int ret; 2965 2966 /* 2967 * 1st step is to iterate through the existing UUID tree and 2968 * to delete all entries that contain outdated data. 2969 * 2nd step is to add all missing entries to the UUID tree. 2970 */ 2971 ret = btrfs_uuid_tree_iterate(fs_info); 2972 if (ret < 0) { 2973 if (ret != -EINTR) 2974 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2975 ret); 2976 up(&fs_info->uuid_tree_rescan_sem); 2977 return ret; 2978 } 2979 return btrfs_uuid_scan_kthread(data); 2980 } 2981 2982 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2983 { 2984 struct task_struct *task; 2985 2986 down(&fs_info->uuid_tree_rescan_sem); 2987 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2988 if (IS_ERR(task)) { 2989 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2990 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2991 up(&fs_info->uuid_tree_rescan_sem); 2992 return PTR_ERR(task); 2993 } 2994 2995 return 0; 2996 } 2997 2998 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2999 { 3000 u64 root_objectid = 0; 3001 struct btrfs_root *gang[8]; 3002 int ret = 0; 3003 3004 while (1) { 3005 unsigned int found; 3006 3007 spin_lock(&fs_info->fs_roots_radix_lock); 3008 found = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3009 (void **)gang, root_objectid, 3010 ARRAY_SIZE(gang)); 3011 if (!found) { 3012 spin_unlock(&fs_info->fs_roots_radix_lock); 3013 break; 3014 } 3015 root_objectid = btrfs_root_id(gang[found - 1]) + 1; 3016 3017 for (int i = 0; i < found; i++) { 3018 /* Avoid to grab roots in dead_roots. */ 3019 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3020 gang[i] = NULL; 3021 continue; 3022 } 3023 /* Grab all the search result for later use. */ 3024 gang[i] = btrfs_grab_root(gang[i]); 3025 } 3026 spin_unlock(&fs_info->fs_roots_radix_lock); 3027 3028 for (int i = 0; i < found; i++) { 3029 if (!gang[i]) 3030 continue; 3031 root_objectid = btrfs_root_id(gang[i]); 3032 /* 3033 * Continue to release the remaining roots after the first 3034 * error without cleanup and preserve the first error 3035 * for the return. 3036 */ 3037 if (!ret) 3038 ret = btrfs_orphan_cleanup(gang[i]); 3039 btrfs_put_root(gang[i]); 3040 } 3041 if (ret) 3042 break; 3043 3044 root_objectid++; 3045 } 3046 return ret; 3047 } 3048 3049 /* 3050 * Mounting logic specific to read-write file systems. Shared by open_ctree 3051 * and btrfs_remount when remounting from read-only to read-write. 3052 */ 3053 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 3054 { 3055 int ret; 3056 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 3057 bool rebuild_free_space_tree = false; 3058 3059 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3060 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3061 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 3062 btrfs_warn(fs_info, 3063 "'clear_cache' option is ignored with extent tree v2"); 3064 else 3065 rebuild_free_space_tree = true; 3066 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3067 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3068 btrfs_warn(fs_info, "free space tree is invalid"); 3069 rebuild_free_space_tree = true; 3070 } 3071 3072 if (rebuild_free_space_tree) { 3073 btrfs_info(fs_info, "rebuilding free space tree"); 3074 ret = btrfs_rebuild_free_space_tree(fs_info); 3075 if (ret) { 3076 btrfs_warn(fs_info, 3077 "failed to rebuild free space tree: %d", ret); 3078 goto out; 3079 } 3080 } 3081 3082 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3083 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 3084 btrfs_info(fs_info, "disabling free space tree"); 3085 ret = btrfs_delete_free_space_tree(fs_info); 3086 if (ret) { 3087 btrfs_warn(fs_info, 3088 "failed to disable free space tree: %d", ret); 3089 goto out; 3090 } 3091 } 3092 3093 /* 3094 * btrfs_find_orphan_roots() is responsible for finding all the dead 3095 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3096 * them into the fs_info->fs_roots_radix tree. This must be done before 3097 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3098 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3099 * item before the root's tree is deleted - this means that if we unmount 3100 * or crash before the deletion completes, on the next mount we will not 3101 * delete what remains of the tree because the orphan item does not 3102 * exists anymore, which is what tells us we have a pending deletion. 3103 */ 3104 ret = btrfs_find_orphan_roots(fs_info); 3105 if (ret) 3106 goto out; 3107 3108 ret = btrfs_cleanup_fs_roots(fs_info); 3109 if (ret) 3110 goto out; 3111 3112 down_read(&fs_info->cleanup_work_sem); 3113 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3114 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3115 up_read(&fs_info->cleanup_work_sem); 3116 goto out; 3117 } 3118 up_read(&fs_info->cleanup_work_sem); 3119 3120 mutex_lock(&fs_info->cleaner_mutex); 3121 ret = btrfs_recover_relocation(fs_info); 3122 mutex_unlock(&fs_info->cleaner_mutex); 3123 if (ret < 0) { 3124 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3125 goto out; 3126 } 3127 3128 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3129 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3130 btrfs_info(fs_info, "creating free space tree"); 3131 ret = btrfs_create_free_space_tree(fs_info); 3132 if (ret) { 3133 btrfs_warn(fs_info, 3134 "failed to create free space tree: %d", ret); 3135 goto out; 3136 } 3137 } 3138 3139 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3140 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3141 if (ret) 3142 goto out; 3143 } 3144 3145 ret = btrfs_resume_balance_async(fs_info); 3146 if (ret) 3147 goto out; 3148 3149 ret = btrfs_resume_dev_replace_async(fs_info); 3150 if (ret) { 3151 btrfs_warn(fs_info, "failed to resume dev_replace"); 3152 goto out; 3153 } 3154 3155 btrfs_qgroup_rescan_resume(fs_info); 3156 3157 if (!fs_info->uuid_root) { 3158 btrfs_info(fs_info, "creating UUID tree"); 3159 ret = btrfs_create_uuid_tree(fs_info); 3160 if (ret) { 3161 btrfs_warn(fs_info, 3162 "failed to create the UUID tree %d", ret); 3163 goto out; 3164 } 3165 } 3166 3167 out: 3168 return ret; 3169 } 3170 3171 /* 3172 * Do various sanity and dependency checks of different features. 3173 * 3174 * @is_rw_mount: If the mount is read-write. 3175 * 3176 * This is the place for less strict checks (like for subpage or artificial 3177 * feature dependencies). 3178 * 3179 * For strict checks or possible corruption detection, see 3180 * btrfs_validate_super(). 3181 * 3182 * This should be called after btrfs_parse_options(), as some mount options 3183 * (space cache related) can modify on-disk format like free space tree and 3184 * screw up certain feature dependencies. 3185 */ 3186 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3187 { 3188 struct btrfs_super_block *disk_super = fs_info->super_copy; 3189 u64 incompat = btrfs_super_incompat_flags(disk_super); 3190 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3191 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3192 3193 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3194 btrfs_err(fs_info, 3195 "cannot mount because of unknown incompat features (0x%llx)", 3196 incompat); 3197 return -EINVAL; 3198 } 3199 3200 /* Runtime limitation for mixed block groups. */ 3201 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3202 (fs_info->sectorsize != fs_info->nodesize)) { 3203 btrfs_err(fs_info, 3204 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3205 fs_info->nodesize, fs_info->sectorsize); 3206 return -EINVAL; 3207 } 3208 3209 /* Mixed backref is an always-enabled feature. */ 3210 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3211 3212 /* Set compression related flags just in case. */ 3213 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3214 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3215 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3216 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3217 3218 /* 3219 * An ancient flag, which should really be marked deprecated. 3220 * Such runtime limitation doesn't really need a incompat flag. 3221 */ 3222 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3223 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3224 3225 if (compat_ro_unsupp && is_rw_mount) { 3226 btrfs_err(fs_info, 3227 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3228 compat_ro); 3229 return -EINVAL; 3230 } 3231 3232 /* 3233 * We have unsupported RO compat features, although RO mounted, we 3234 * should not cause any metadata writes, including log replay. 3235 * Or we could screw up whatever the new feature requires. 3236 */ 3237 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3238 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3239 btrfs_err(fs_info, 3240 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3241 compat_ro); 3242 return -EINVAL; 3243 } 3244 3245 /* 3246 * Artificial limitations for block group tree, to force 3247 * block-group-tree to rely on no-holes and free-space-tree. 3248 */ 3249 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3250 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3251 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3252 btrfs_err(fs_info, 3253 "block-group-tree feature requires no-holes and free-space-tree features"); 3254 return -EINVAL; 3255 } 3256 3257 /* 3258 * Subpage runtime limitation on v1 cache. 3259 * 3260 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3261 * we're already defaulting to v2 cache, no need to bother v1 as it's 3262 * going to be deprecated anyway. 3263 */ 3264 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3265 btrfs_warn(fs_info, 3266 "v1 space cache is not supported for page size %lu with sectorsize %u", 3267 PAGE_SIZE, fs_info->sectorsize); 3268 return -EINVAL; 3269 } 3270 3271 /* This can be called by remount, we need to protect the super block. */ 3272 spin_lock(&fs_info->super_lock); 3273 btrfs_set_super_incompat_flags(disk_super, incompat); 3274 spin_unlock(&fs_info->super_lock); 3275 3276 return 0; 3277 } 3278 3279 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices) 3280 { 3281 u32 sectorsize; 3282 u32 nodesize; 3283 u32 stripesize; 3284 u64 generation; 3285 u16 csum_type; 3286 struct btrfs_super_block *disk_super; 3287 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3288 struct btrfs_root *tree_root; 3289 struct btrfs_root *chunk_root; 3290 int ret; 3291 int level; 3292 3293 ret = init_mount_fs_info(fs_info, sb); 3294 if (ret) 3295 goto fail; 3296 3297 /* These need to be init'ed before we start creating inodes and such. */ 3298 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3299 GFP_KERNEL); 3300 fs_info->tree_root = tree_root; 3301 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3302 GFP_KERNEL); 3303 fs_info->chunk_root = chunk_root; 3304 if (!tree_root || !chunk_root) { 3305 ret = -ENOMEM; 3306 goto fail; 3307 } 3308 3309 ret = btrfs_init_btree_inode(sb); 3310 if (ret) 3311 goto fail; 3312 3313 invalidate_bdev(fs_devices->latest_dev->bdev); 3314 3315 /* 3316 * Read super block and check the signature bytes only 3317 */ 3318 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3319 if (IS_ERR(disk_super)) { 3320 ret = PTR_ERR(disk_super); 3321 goto fail_alloc; 3322 } 3323 3324 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid); 3325 /* 3326 * Verify the type first, if that or the checksum value are 3327 * corrupted, we'll find out 3328 */ 3329 csum_type = btrfs_super_csum_type(disk_super); 3330 if (!btrfs_supported_super_csum(csum_type)) { 3331 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3332 csum_type); 3333 ret = -EINVAL; 3334 btrfs_release_disk_super(disk_super); 3335 goto fail_alloc; 3336 } 3337 3338 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3339 3340 ret = btrfs_init_csum_hash(fs_info, csum_type); 3341 if (ret) { 3342 btrfs_release_disk_super(disk_super); 3343 goto fail_alloc; 3344 } 3345 3346 /* 3347 * We want to check superblock checksum, the type is stored inside. 3348 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3349 */ 3350 if (btrfs_check_super_csum(fs_info, disk_super)) { 3351 btrfs_err(fs_info, "superblock checksum mismatch"); 3352 ret = -EINVAL; 3353 btrfs_release_disk_super(disk_super); 3354 goto fail_alloc; 3355 } 3356 3357 /* 3358 * super_copy is zeroed at allocation time and we never touch the 3359 * following bytes up to INFO_SIZE, the checksum is calculated from 3360 * the whole block of INFO_SIZE 3361 */ 3362 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3363 btrfs_release_disk_super(disk_super); 3364 3365 disk_super = fs_info->super_copy; 3366 3367 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3368 sizeof(*fs_info->super_for_commit)); 3369 3370 ret = btrfs_validate_mount_super(fs_info); 3371 if (ret) { 3372 btrfs_err(fs_info, "superblock contains fatal errors"); 3373 ret = -EINVAL; 3374 goto fail_alloc; 3375 } 3376 3377 if (!btrfs_super_root(disk_super)) { 3378 btrfs_err(fs_info, "invalid superblock tree root bytenr"); 3379 ret = -EINVAL; 3380 goto fail_alloc; 3381 } 3382 3383 /* check FS state, whether FS is broken. */ 3384 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3385 WRITE_ONCE(fs_info->fs_error, -EUCLEAN); 3386 3387 /* Set up fs_info before parsing mount options */ 3388 nodesize = btrfs_super_nodesize(disk_super); 3389 sectorsize = btrfs_super_sectorsize(disk_super); 3390 stripesize = sectorsize; 3391 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3392 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3393 3394 fs_info->nodesize = nodesize; 3395 fs_info->sectorsize = sectorsize; 3396 fs_info->sectorsize_bits = ilog2(sectorsize); 3397 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3398 fs_info->stripesize = stripesize; 3399 fs_info->fs_devices->fs_info = fs_info; 3400 3401 /* 3402 * Handle the space caching options appropriately now that we have the 3403 * super block loaded and validated. 3404 */ 3405 btrfs_set_free_space_cache_settings(fs_info); 3406 3407 if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) { 3408 ret = -EINVAL; 3409 goto fail_alloc; 3410 } 3411 3412 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3413 if (ret < 0) 3414 goto fail_alloc; 3415 3416 /* 3417 * At this point our mount options are validated, if we set ->max_inline 3418 * to something non-standard make sure we truncate it to sectorsize. 3419 */ 3420 fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize); 3421 3422 ret = btrfs_init_workqueues(fs_info); 3423 if (ret) 3424 goto fail_sb_buffer; 3425 3426 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3427 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3428 3429 /* Update the values for the current filesystem. */ 3430 sb->s_blocksize = sectorsize; 3431 sb->s_blocksize_bits = blksize_bits(sectorsize); 3432 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3433 3434 mutex_lock(&fs_info->chunk_mutex); 3435 ret = btrfs_read_sys_array(fs_info); 3436 mutex_unlock(&fs_info->chunk_mutex); 3437 if (ret) { 3438 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3439 goto fail_sb_buffer; 3440 } 3441 3442 generation = btrfs_super_chunk_root_generation(disk_super); 3443 level = btrfs_super_chunk_root_level(disk_super); 3444 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3445 generation, level); 3446 if (ret) { 3447 btrfs_err(fs_info, "failed to read chunk root"); 3448 goto fail_tree_roots; 3449 } 3450 3451 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3452 offsetof(struct btrfs_header, chunk_tree_uuid), 3453 BTRFS_UUID_SIZE); 3454 3455 ret = btrfs_read_chunk_tree(fs_info); 3456 if (ret) { 3457 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3458 goto fail_tree_roots; 3459 } 3460 3461 /* 3462 * At this point we know all the devices that make this filesystem, 3463 * including the seed devices but we don't know yet if the replace 3464 * target is required. So free devices that are not part of this 3465 * filesystem but skip the replace target device which is checked 3466 * below in btrfs_init_dev_replace(). 3467 */ 3468 btrfs_free_extra_devids(fs_devices); 3469 if (!fs_devices->latest_dev->bdev) { 3470 btrfs_err(fs_info, "failed to read devices"); 3471 ret = -EIO; 3472 goto fail_tree_roots; 3473 } 3474 3475 ret = init_tree_roots(fs_info); 3476 if (ret) 3477 goto fail_tree_roots; 3478 3479 /* 3480 * Get zone type information of zoned block devices. This will also 3481 * handle emulation of a zoned filesystem if a regular device has the 3482 * zoned incompat feature flag set. 3483 */ 3484 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3485 if (ret) { 3486 btrfs_err(fs_info, 3487 "zoned: failed to read device zone info: %d", ret); 3488 goto fail_block_groups; 3489 } 3490 3491 /* 3492 * If we have a uuid root and we're not being told to rescan we need to 3493 * check the generation here so we can set the 3494 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3495 * transaction during a balance or the log replay without updating the 3496 * uuid generation, and then if we crash we would rescan the uuid tree, 3497 * even though it was perfectly fine. 3498 */ 3499 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3500 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3501 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3502 3503 ret = btrfs_verify_dev_extents(fs_info); 3504 if (ret) { 3505 btrfs_err(fs_info, 3506 "failed to verify dev extents against chunks: %d", 3507 ret); 3508 goto fail_block_groups; 3509 } 3510 ret = btrfs_recover_balance(fs_info); 3511 if (ret) { 3512 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3513 goto fail_block_groups; 3514 } 3515 3516 ret = btrfs_init_dev_stats(fs_info); 3517 if (ret) { 3518 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3519 goto fail_block_groups; 3520 } 3521 3522 ret = btrfs_init_dev_replace(fs_info); 3523 if (ret) { 3524 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3525 goto fail_block_groups; 3526 } 3527 3528 ret = btrfs_check_zoned_mode(fs_info); 3529 if (ret) { 3530 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3531 ret); 3532 goto fail_block_groups; 3533 } 3534 3535 ret = btrfs_sysfs_add_fsid(fs_devices); 3536 if (ret) { 3537 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3538 ret); 3539 goto fail_block_groups; 3540 } 3541 3542 ret = btrfs_sysfs_add_mounted(fs_info); 3543 if (ret) { 3544 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3545 goto fail_fsdev_sysfs; 3546 } 3547 3548 ret = btrfs_init_space_info(fs_info); 3549 if (ret) { 3550 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3551 goto fail_sysfs; 3552 } 3553 3554 ret = btrfs_read_block_groups(fs_info); 3555 if (ret) { 3556 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3557 goto fail_sysfs; 3558 } 3559 3560 btrfs_free_zone_cache(fs_info); 3561 3562 btrfs_check_active_zone_reservation(fs_info); 3563 3564 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3565 !btrfs_check_rw_degradable(fs_info, NULL)) { 3566 btrfs_warn(fs_info, 3567 "writable mount is not allowed due to too many missing devices"); 3568 ret = -EINVAL; 3569 goto fail_sysfs; 3570 } 3571 3572 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3573 "btrfs-cleaner"); 3574 if (IS_ERR(fs_info->cleaner_kthread)) { 3575 ret = PTR_ERR(fs_info->cleaner_kthread); 3576 goto fail_sysfs; 3577 } 3578 3579 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3580 tree_root, 3581 "btrfs-transaction"); 3582 if (IS_ERR(fs_info->transaction_kthread)) { 3583 ret = PTR_ERR(fs_info->transaction_kthread); 3584 goto fail_cleaner; 3585 } 3586 3587 ret = btrfs_read_qgroup_config(fs_info); 3588 if (ret) 3589 goto fail_trans_kthread; 3590 3591 if (btrfs_build_ref_tree(fs_info)) 3592 btrfs_err(fs_info, "couldn't build ref tree"); 3593 3594 /* do not make disk changes in broken FS or nologreplay is given */ 3595 if (btrfs_super_log_root(disk_super) != 0 && 3596 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3597 btrfs_info(fs_info, "start tree-log replay"); 3598 ret = btrfs_replay_log(fs_info, fs_devices); 3599 if (ret) 3600 goto fail_qgroup; 3601 } 3602 3603 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3604 if (IS_ERR(fs_info->fs_root)) { 3605 ret = PTR_ERR(fs_info->fs_root); 3606 btrfs_warn(fs_info, "failed to read fs tree: %d", ret); 3607 fs_info->fs_root = NULL; 3608 goto fail_qgroup; 3609 } 3610 3611 if (sb_rdonly(sb)) 3612 return 0; 3613 3614 ret = btrfs_start_pre_rw_mount(fs_info); 3615 if (ret) { 3616 close_ctree(fs_info); 3617 return ret; 3618 } 3619 btrfs_discard_resume(fs_info); 3620 3621 if (fs_info->uuid_root && 3622 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3623 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3624 btrfs_info(fs_info, "checking UUID tree"); 3625 ret = btrfs_check_uuid_tree(fs_info); 3626 if (ret) { 3627 btrfs_warn(fs_info, 3628 "failed to check the UUID tree: %d", ret); 3629 close_ctree(fs_info); 3630 return ret; 3631 } 3632 } 3633 3634 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3635 3636 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3637 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3638 wake_up_process(fs_info->cleaner_kthread); 3639 3640 return 0; 3641 3642 fail_qgroup: 3643 btrfs_free_qgroup_config(fs_info); 3644 fail_trans_kthread: 3645 kthread_stop(fs_info->transaction_kthread); 3646 btrfs_cleanup_transaction(fs_info); 3647 btrfs_free_fs_roots(fs_info); 3648 fail_cleaner: 3649 kthread_stop(fs_info->cleaner_kthread); 3650 3651 /* 3652 * make sure we're done with the btree inode before we stop our 3653 * kthreads 3654 */ 3655 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3656 3657 fail_sysfs: 3658 btrfs_sysfs_remove_mounted(fs_info); 3659 3660 fail_fsdev_sysfs: 3661 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3662 3663 fail_block_groups: 3664 btrfs_put_block_group_cache(fs_info); 3665 3666 fail_tree_roots: 3667 if (fs_info->data_reloc_root) 3668 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3669 free_root_pointers(fs_info, true); 3670 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3671 3672 fail_sb_buffer: 3673 btrfs_stop_all_workers(fs_info); 3674 btrfs_free_block_groups(fs_info); 3675 fail_alloc: 3676 btrfs_mapping_tree_free(fs_info); 3677 3678 iput(fs_info->btree_inode); 3679 fail: 3680 btrfs_close_devices(fs_info->fs_devices); 3681 ASSERT(ret < 0); 3682 return ret; 3683 } 3684 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3685 3686 static void btrfs_end_super_write(struct bio *bio) 3687 { 3688 struct btrfs_device *device = bio->bi_private; 3689 struct folio_iter fi; 3690 3691 bio_for_each_folio_all(fi, bio) { 3692 if (bio->bi_status) { 3693 btrfs_warn_rl_in_rcu(device->fs_info, 3694 "lost super block write due to IO error on %s (%d)", 3695 btrfs_dev_name(device), 3696 blk_status_to_errno(bio->bi_status)); 3697 btrfs_dev_stat_inc_and_print(device, 3698 BTRFS_DEV_STAT_WRITE_ERRS); 3699 /* Ensure failure if the primary sb fails. */ 3700 if (bio->bi_opf & REQ_FUA) 3701 atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR, 3702 &device->sb_write_errors); 3703 else 3704 atomic_inc(&device->sb_write_errors); 3705 } 3706 folio_unlock(fi.folio); 3707 folio_put(fi.folio); 3708 } 3709 3710 bio_put(bio); 3711 } 3712 3713 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3714 int copy_num, bool drop_cache) 3715 { 3716 struct btrfs_super_block *super; 3717 struct page *page; 3718 u64 bytenr, bytenr_orig; 3719 struct address_space *mapping = bdev->bd_mapping; 3720 int ret; 3721 3722 bytenr_orig = btrfs_sb_offset(copy_num); 3723 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3724 if (ret == -ENOENT) 3725 return ERR_PTR(-EINVAL); 3726 else if (ret) 3727 return ERR_PTR(ret); 3728 3729 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 3730 return ERR_PTR(-EINVAL); 3731 3732 if (drop_cache) { 3733 /* This should only be called with the primary sb. */ 3734 ASSERT(copy_num == 0); 3735 3736 /* 3737 * Drop the page of the primary superblock, so later read will 3738 * always read from the device. 3739 */ 3740 invalidate_inode_pages2_range(mapping, 3741 bytenr >> PAGE_SHIFT, 3742 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 3743 } 3744 3745 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3746 if (IS_ERR(page)) 3747 return ERR_CAST(page); 3748 3749 super = page_address(page); 3750 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3751 btrfs_release_disk_super(super); 3752 return ERR_PTR(-ENODATA); 3753 } 3754 3755 if (btrfs_super_bytenr(super) != bytenr_orig) { 3756 btrfs_release_disk_super(super); 3757 return ERR_PTR(-EINVAL); 3758 } 3759 3760 return super; 3761 } 3762 3763 3764 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3765 { 3766 struct btrfs_super_block *super, *latest = NULL; 3767 int i; 3768 u64 transid = 0; 3769 3770 /* we would like to check all the supers, but that would make 3771 * a btrfs mount succeed after a mkfs from a different FS. 3772 * So, we need to add a special mount option to scan for 3773 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3774 */ 3775 for (i = 0; i < 1; i++) { 3776 super = btrfs_read_dev_one_super(bdev, i, false); 3777 if (IS_ERR(super)) 3778 continue; 3779 3780 if (!latest || btrfs_super_generation(super) > transid) { 3781 if (latest) 3782 btrfs_release_disk_super(super); 3783 3784 latest = super; 3785 transid = btrfs_super_generation(super); 3786 } 3787 } 3788 3789 return super; 3790 } 3791 3792 /* 3793 * Write superblock @sb to the @device. Do not wait for completion, all the 3794 * folios we use for writing are locked. 3795 * 3796 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3797 * the expected device size at commit time. Note that max_mirrors must be 3798 * same for write and wait phases. 3799 * 3800 * Return number of errors when folio is not found or submission fails. 3801 */ 3802 static int write_dev_supers(struct btrfs_device *device, 3803 struct btrfs_super_block *sb, int max_mirrors) 3804 { 3805 struct btrfs_fs_info *fs_info = device->fs_info; 3806 struct address_space *mapping = device->bdev->bd_mapping; 3807 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3808 int i; 3809 int ret; 3810 u64 bytenr, bytenr_orig; 3811 3812 atomic_set(&device->sb_write_errors, 0); 3813 3814 if (max_mirrors == 0) 3815 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3816 3817 shash->tfm = fs_info->csum_shash; 3818 3819 for (i = 0; i < max_mirrors; i++) { 3820 struct folio *folio; 3821 struct bio *bio; 3822 struct btrfs_super_block *disk_super; 3823 size_t offset; 3824 3825 bytenr_orig = btrfs_sb_offset(i); 3826 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3827 if (ret == -ENOENT) { 3828 continue; 3829 } else if (ret < 0) { 3830 btrfs_err(device->fs_info, 3831 "couldn't get super block location for mirror %d", 3832 i); 3833 atomic_inc(&device->sb_write_errors); 3834 continue; 3835 } 3836 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3837 device->commit_total_bytes) 3838 break; 3839 3840 btrfs_set_super_bytenr(sb, bytenr_orig); 3841 3842 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3843 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3844 sb->csum); 3845 3846 folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT, 3847 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3848 GFP_NOFS); 3849 if (IS_ERR(folio)) { 3850 btrfs_err(device->fs_info, 3851 "couldn't get super block page for bytenr %llu", 3852 bytenr); 3853 atomic_inc(&device->sb_write_errors); 3854 continue; 3855 } 3856 ASSERT(folio_order(folio) == 0); 3857 3858 offset = offset_in_folio(folio, bytenr); 3859 disk_super = folio_address(folio) + offset; 3860 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3861 3862 /* 3863 * Directly use bios here instead of relying on the page cache 3864 * to do I/O, so we don't lose the ability to do integrity 3865 * checking. 3866 */ 3867 bio = bio_alloc(device->bdev, 1, 3868 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 3869 GFP_NOFS); 3870 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3871 bio->bi_private = device; 3872 bio->bi_end_io = btrfs_end_super_write; 3873 bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset); 3874 3875 /* 3876 * We FUA only the first super block. The others we allow to 3877 * go down lazy and there's a short window where the on-disk 3878 * copies might still contain the older version. 3879 */ 3880 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3881 bio->bi_opf |= REQ_FUA; 3882 submit_bio(bio); 3883 3884 if (btrfs_advance_sb_log(device, i)) 3885 atomic_inc(&device->sb_write_errors); 3886 } 3887 return atomic_read(&device->sb_write_errors) < i ? 0 : -1; 3888 } 3889 3890 /* 3891 * Wait for write completion of superblocks done by write_dev_supers, 3892 * @max_mirrors same for write and wait phases. 3893 * 3894 * Return -1 if primary super block write failed or when there were no super block 3895 * copies written. Otherwise 0. 3896 */ 3897 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3898 { 3899 int i; 3900 int errors = 0; 3901 bool primary_failed = false; 3902 int ret; 3903 u64 bytenr; 3904 3905 if (max_mirrors == 0) 3906 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3907 3908 for (i = 0; i < max_mirrors; i++) { 3909 struct folio *folio; 3910 3911 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 3912 if (ret == -ENOENT) { 3913 break; 3914 } else if (ret < 0) { 3915 errors++; 3916 if (i == 0) 3917 primary_failed = true; 3918 continue; 3919 } 3920 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3921 device->commit_total_bytes) 3922 break; 3923 3924 folio = filemap_get_folio(device->bdev->bd_mapping, 3925 bytenr >> PAGE_SHIFT); 3926 /* If the folio has been removed, then we know it completed. */ 3927 if (IS_ERR(folio)) 3928 continue; 3929 ASSERT(folio_order(folio) == 0); 3930 3931 /* Folio will be unlocked once the write completes. */ 3932 folio_wait_locked(folio); 3933 folio_put(folio); 3934 } 3935 3936 errors += atomic_read(&device->sb_write_errors); 3937 if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR) 3938 primary_failed = true; 3939 if (primary_failed) { 3940 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3941 device->devid); 3942 return -1; 3943 } 3944 3945 return errors < i ? 0 : -1; 3946 } 3947 3948 /* 3949 * endio for the write_dev_flush, this will wake anyone waiting 3950 * for the barrier when it is done 3951 */ 3952 static void btrfs_end_empty_barrier(struct bio *bio) 3953 { 3954 bio_uninit(bio); 3955 complete(bio->bi_private); 3956 } 3957 3958 /* 3959 * Submit a flush request to the device if it supports it. Error handling is 3960 * done in the waiting counterpart. 3961 */ 3962 static void write_dev_flush(struct btrfs_device *device) 3963 { 3964 struct bio *bio = &device->flush_bio; 3965 3966 device->last_flush_error = BLK_STS_OK; 3967 3968 bio_init(bio, device->bdev, NULL, 0, 3969 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 3970 bio->bi_end_io = btrfs_end_empty_barrier; 3971 init_completion(&device->flush_wait); 3972 bio->bi_private = &device->flush_wait; 3973 submit_bio(bio); 3974 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3975 } 3976 3977 /* 3978 * If the flush bio has been submitted by write_dev_flush, wait for it. 3979 * Return true for any error, and false otherwise. 3980 */ 3981 static bool wait_dev_flush(struct btrfs_device *device) 3982 { 3983 struct bio *bio = &device->flush_bio; 3984 3985 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3986 return false; 3987 3988 wait_for_completion_io(&device->flush_wait); 3989 3990 if (bio->bi_status) { 3991 device->last_flush_error = bio->bi_status; 3992 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); 3993 return true; 3994 } 3995 3996 return false; 3997 } 3998 3999 /* 4000 * send an empty flush down to each device in parallel, 4001 * then wait for them 4002 */ 4003 static int barrier_all_devices(struct btrfs_fs_info *info) 4004 { 4005 struct list_head *head; 4006 struct btrfs_device *dev; 4007 int errors_wait = 0; 4008 4009 lockdep_assert_held(&info->fs_devices->device_list_mutex); 4010 /* send down all the barriers */ 4011 head = &info->fs_devices->devices; 4012 list_for_each_entry(dev, head, dev_list) { 4013 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4014 continue; 4015 if (!dev->bdev) 4016 continue; 4017 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4018 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4019 continue; 4020 4021 write_dev_flush(dev); 4022 } 4023 4024 /* wait for all the barriers */ 4025 list_for_each_entry(dev, head, dev_list) { 4026 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 4027 continue; 4028 if (!dev->bdev) { 4029 errors_wait++; 4030 continue; 4031 } 4032 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4033 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4034 continue; 4035 4036 if (wait_dev_flush(dev)) 4037 errors_wait++; 4038 } 4039 4040 /* 4041 * Checks last_flush_error of disks in order to determine the device 4042 * state. 4043 */ 4044 if (errors_wait && !btrfs_check_rw_degradable(info, NULL)) 4045 return -EIO; 4046 4047 return 0; 4048 } 4049 4050 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 4051 { 4052 int raid_type; 4053 int min_tolerated = INT_MAX; 4054 4055 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 4056 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 4057 min_tolerated = min_t(int, min_tolerated, 4058 btrfs_raid_array[BTRFS_RAID_SINGLE]. 4059 tolerated_failures); 4060 4061 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4062 if (raid_type == BTRFS_RAID_SINGLE) 4063 continue; 4064 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 4065 continue; 4066 min_tolerated = min_t(int, min_tolerated, 4067 btrfs_raid_array[raid_type]. 4068 tolerated_failures); 4069 } 4070 4071 if (min_tolerated == INT_MAX) { 4072 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4073 min_tolerated = 0; 4074 } 4075 4076 return min_tolerated; 4077 } 4078 4079 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4080 { 4081 struct list_head *head; 4082 struct btrfs_device *dev; 4083 struct btrfs_super_block *sb; 4084 struct btrfs_dev_item *dev_item; 4085 int ret; 4086 int do_barriers; 4087 int max_errors; 4088 int total_errors = 0; 4089 u64 flags; 4090 4091 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4092 4093 /* 4094 * max_mirrors == 0 indicates we're from commit_transaction, 4095 * not from fsync where the tree roots in fs_info have not 4096 * been consistent on disk. 4097 */ 4098 if (max_mirrors == 0) 4099 backup_super_roots(fs_info); 4100 4101 sb = fs_info->super_for_commit; 4102 dev_item = &sb->dev_item; 4103 4104 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4105 head = &fs_info->fs_devices->devices; 4106 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4107 4108 if (do_barriers) { 4109 ret = barrier_all_devices(fs_info); 4110 if (ret) { 4111 mutex_unlock( 4112 &fs_info->fs_devices->device_list_mutex); 4113 btrfs_handle_fs_error(fs_info, ret, 4114 "errors while submitting device barriers."); 4115 return ret; 4116 } 4117 } 4118 4119 list_for_each_entry(dev, head, dev_list) { 4120 if (!dev->bdev) { 4121 total_errors++; 4122 continue; 4123 } 4124 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4125 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4126 continue; 4127 4128 btrfs_set_stack_device_generation(dev_item, 0); 4129 btrfs_set_stack_device_type(dev_item, dev->type); 4130 btrfs_set_stack_device_id(dev_item, dev->devid); 4131 btrfs_set_stack_device_total_bytes(dev_item, 4132 dev->commit_total_bytes); 4133 btrfs_set_stack_device_bytes_used(dev_item, 4134 dev->commit_bytes_used); 4135 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4136 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4137 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4138 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4139 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4140 BTRFS_FSID_SIZE); 4141 4142 flags = btrfs_super_flags(sb); 4143 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4144 4145 ret = btrfs_validate_write_super(fs_info, sb); 4146 if (ret < 0) { 4147 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4148 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4149 "unexpected superblock corruption detected"); 4150 return -EUCLEAN; 4151 } 4152 4153 ret = write_dev_supers(dev, sb, max_mirrors); 4154 if (ret) 4155 total_errors++; 4156 } 4157 if (total_errors > max_errors) { 4158 btrfs_err(fs_info, "%d errors while writing supers", 4159 total_errors); 4160 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4161 4162 /* FUA is masked off if unsupported and can't be the reason */ 4163 btrfs_handle_fs_error(fs_info, -EIO, 4164 "%d errors while writing supers", 4165 total_errors); 4166 return -EIO; 4167 } 4168 4169 total_errors = 0; 4170 list_for_each_entry(dev, head, dev_list) { 4171 if (!dev->bdev) 4172 continue; 4173 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4174 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4175 continue; 4176 4177 ret = wait_dev_supers(dev, max_mirrors); 4178 if (ret) 4179 total_errors++; 4180 } 4181 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4182 if (total_errors > max_errors) { 4183 btrfs_handle_fs_error(fs_info, -EIO, 4184 "%d errors while writing supers", 4185 total_errors); 4186 return -EIO; 4187 } 4188 return 0; 4189 } 4190 4191 /* Drop a fs root from the radix tree and free it. */ 4192 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4193 struct btrfs_root *root) 4194 { 4195 bool drop_ref = false; 4196 4197 spin_lock(&fs_info->fs_roots_radix_lock); 4198 radix_tree_delete(&fs_info->fs_roots_radix, 4199 (unsigned long)btrfs_root_id(root)); 4200 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4201 drop_ref = true; 4202 spin_unlock(&fs_info->fs_roots_radix_lock); 4203 4204 if (BTRFS_FS_ERROR(fs_info)) { 4205 ASSERT(root->log_root == NULL); 4206 if (root->reloc_root) { 4207 btrfs_put_root(root->reloc_root); 4208 root->reloc_root = NULL; 4209 } 4210 } 4211 4212 if (drop_ref) 4213 btrfs_put_root(root); 4214 } 4215 4216 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4217 { 4218 mutex_lock(&fs_info->cleaner_mutex); 4219 btrfs_run_delayed_iputs(fs_info); 4220 mutex_unlock(&fs_info->cleaner_mutex); 4221 wake_up_process(fs_info->cleaner_kthread); 4222 4223 /* wait until ongoing cleanup work done */ 4224 down_write(&fs_info->cleanup_work_sem); 4225 up_write(&fs_info->cleanup_work_sem); 4226 4227 return btrfs_commit_current_transaction(fs_info->tree_root); 4228 } 4229 4230 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4231 { 4232 struct btrfs_transaction *trans; 4233 struct btrfs_transaction *tmp; 4234 bool found = false; 4235 4236 /* 4237 * This function is only called at the very end of close_ctree(), 4238 * thus no other running transaction, no need to take trans_lock. 4239 */ 4240 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4241 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4242 struct extent_state *cached = NULL; 4243 u64 dirty_bytes = 0; 4244 u64 cur = 0; 4245 u64 found_start; 4246 u64 found_end; 4247 4248 found = true; 4249 while (find_first_extent_bit(&trans->dirty_pages, cur, 4250 &found_start, &found_end, EXTENT_DIRTY, &cached)) { 4251 dirty_bytes += found_end + 1 - found_start; 4252 cur = found_end + 1; 4253 } 4254 btrfs_warn(fs_info, 4255 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4256 trans->transid, dirty_bytes); 4257 btrfs_cleanup_one_transaction(trans); 4258 4259 if (trans == fs_info->running_transaction) 4260 fs_info->running_transaction = NULL; 4261 list_del_init(&trans->list); 4262 4263 btrfs_put_transaction(trans); 4264 trace_btrfs_transaction_commit(fs_info); 4265 } 4266 ASSERT(!found); 4267 } 4268 4269 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4270 { 4271 int ret; 4272 4273 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4274 4275 /* 4276 * If we had UNFINISHED_DROPS we could still be processing them, so 4277 * clear that bit and wake up relocation so it can stop. 4278 * We must do this before stopping the block group reclaim task, because 4279 * at btrfs_relocate_block_group() we wait for this bit, and after the 4280 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4281 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4282 * return 1. 4283 */ 4284 btrfs_wake_unfinished_drop(fs_info); 4285 4286 /* 4287 * We may have the reclaim task running and relocating a data block group, 4288 * in which case it may create delayed iputs. So stop it before we park 4289 * the cleaner kthread otherwise we can get new delayed iputs after 4290 * parking the cleaner, and that can make the async reclaim task to hang 4291 * if it's waiting for delayed iputs to complete, since the cleaner is 4292 * parked and can not run delayed iputs - this will make us hang when 4293 * trying to stop the async reclaim task. 4294 */ 4295 cancel_work_sync(&fs_info->reclaim_bgs_work); 4296 /* 4297 * We don't want the cleaner to start new transactions, add more delayed 4298 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4299 * because that frees the task_struct, and the transaction kthread might 4300 * still try to wake up the cleaner. 4301 */ 4302 kthread_park(fs_info->cleaner_kthread); 4303 4304 /* wait for the qgroup rescan worker to stop */ 4305 btrfs_qgroup_wait_for_completion(fs_info, false); 4306 4307 /* wait for the uuid_scan task to finish */ 4308 down(&fs_info->uuid_tree_rescan_sem); 4309 /* avoid complains from lockdep et al., set sem back to initial state */ 4310 up(&fs_info->uuid_tree_rescan_sem); 4311 4312 /* pause restriper - we want to resume on mount */ 4313 btrfs_pause_balance(fs_info); 4314 4315 btrfs_dev_replace_suspend_for_unmount(fs_info); 4316 4317 btrfs_scrub_cancel(fs_info); 4318 4319 /* wait for any defraggers to finish */ 4320 wait_event(fs_info->transaction_wait, 4321 (atomic_read(&fs_info->defrag_running) == 0)); 4322 4323 /* clear out the rbtree of defraggable inodes */ 4324 btrfs_cleanup_defrag_inodes(fs_info); 4325 4326 /* 4327 * Handle the error fs first, as it will flush and wait for all ordered 4328 * extents. This will generate delayed iputs, thus we want to handle 4329 * it first. 4330 */ 4331 if (unlikely(BTRFS_FS_ERROR(fs_info))) 4332 btrfs_error_commit_super(fs_info); 4333 4334 /* 4335 * Wait for any fixup workers to complete. 4336 * If we don't wait for them here and they are still running by the time 4337 * we call kthread_stop() against the cleaner kthread further below, we 4338 * get an use-after-free on the cleaner because the fixup worker adds an 4339 * inode to the list of delayed iputs and then attempts to wakeup the 4340 * cleaner kthread, which was already stopped and destroyed. We parked 4341 * already the cleaner, but below we run all pending delayed iputs. 4342 */ 4343 btrfs_flush_workqueue(fs_info->fixup_workers); 4344 /* 4345 * Similar case here, we have to wait for delalloc workers before we 4346 * proceed below and stop the cleaner kthread, otherwise we trigger a 4347 * use-after-tree on the cleaner kthread task_struct when a delalloc 4348 * worker running submit_compressed_extents() adds a delayed iput, which 4349 * does a wake up on the cleaner kthread, which was already freed below 4350 * when we call kthread_stop(). 4351 */ 4352 btrfs_flush_workqueue(fs_info->delalloc_workers); 4353 4354 /* 4355 * We can have ordered extents getting their last reference dropped from 4356 * the fs_info->workers queue because for async writes for data bios we 4357 * queue a work for that queue, at btrfs_wq_submit_bio(), that runs 4358 * run_one_async_done() which calls btrfs_bio_end_io() in case the bio 4359 * has an error, and that later function can do the final 4360 * btrfs_put_ordered_extent() on the ordered extent attached to the bio, 4361 * which adds a delayed iput for the inode. So we must flush the queue 4362 * so that we don't have delayed iputs after committing the current 4363 * transaction below and stopping the cleaner and transaction kthreads. 4364 */ 4365 btrfs_flush_workqueue(fs_info->workers); 4366 4367 /* 4368 * When finishing a compressed write bio we schedule a work queue item 4369 * to finish an ordered extent - btrfs_finish_compressed_write_work() 4370 * calls btrfs_finish_ordered_extent() which in turns does a call to 4371 * btrfs_queue_ordered_fn(), and that queues the ordered extent 4372 * completion either in the endio_write_workers work queue or in the 4373 * fs_info->endio_freespace_worker work queue. We flush those queues 4374 * below, so before we flush them we must flush this queue for the 4375 * workers of compressed writes. 4376 */ 4377 flush_workqueue(fs_info->compressed_write_workers); 4378 4379 /* 4380 * After we parked the cleaner kthread, ordered extents may have 4381 * completed and created new delayed iputs. If one of the async reclaim 4382 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4383 * can hang forever trying to stop it, because if a delayed iput is 4384 * added after it ran btrfs_run_delayed_iputs() and before it called 4385 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4386 * no one else to run iputs. 4387 * 4388 * So wait for all ongoing ordered extents to complete and then run 4389 * delayed iputs. This works because once we reach this point no one 4390 * can either create new ordered extents nor create delayed iputs 4391 * through some other means. 4392 * 4393 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4394 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4395 * but the delayed iput for the respective inode is made only when doing 4396 * the final btrfs_put_ordered_extent() (which must happen at 4397 * btrfs_finish_ordered_io() when we are unmounting). 4398 */ 4399 btrfs_flush_workqueue(fs_info->endio_write_workers); 4400 /* Ordered extents for free space inodes. */ 4401 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4402 btrfs_run_delayed_iputs(fs_info); 4403 /* There should be no more workload to generate new delayed iputs. */ 4404 set_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state); 4405 4406 cancel_work_sync(&fs_info->async_reclaim_work); 4407 cancel_work_sync(&fs_info->async_data_reclaim_work); 4408 cancel_work_sync(&fs_info->preempt_reclaim_work); 4409 cancel_work_sync(&fs_info->em_shrinker_work); 4410 4411 /* Cancel or finish ongoing discard work */ 4412 btrfs_discard_cleanup(fs_info); 4413 4414 if (!sb_rdonly(fs_info->sb)) { 4415 /* 4416 * The cleaner kthread is stopped, so do one final pass over 4417 * unused block groups. 4418 */ 4419 btrfs_delete_unused_bgs(fs_info); 4420 4421 /* 4422 * There might be existing delayed inode workers still running 4423 * and holding an empty delayed inode item. We must wait for 4424 * them to complete first because they can create a transaction. 4425 * This happens when someone calls btrfs_balance_delayed_items() 4426 * and then a transaction commit runs the same delayed nodes 4427 * before any delayed worker has done something with the nodes. 4428 * We must wait for any worker here and not at transaction 4429 * commit time since that could cause a deadlock. 4430 * This is a very rare case. 4431 */ 4432 btrfs_flush_workqueue(fs_info->delayed_workers); 4433 4434 ret = btrfs_commit_super(fs_info); 4435 if (ret) 4436 btrfs_err(fs_info, "commit super ret %d", ret); 4437 } 4438 4439 kthread_stop(fs_info->transaction_kthread); 4440 kthread_stop(fs_info->cleaner_kthread); 4441 4442 ASSERT(list_empty(&fs_info->delayed_iputs)); 4443 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4444 4445 if (btrfs_check_quota_leak(fs_info)) { 4446 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4447 btrfs_err(fs_info, "qgroup reserved space leaked"); 4448 } 4449 4450 btrfs_free_qgroup_config(fs_info); 4451 ASSERT(list_empty(&fs_info->delalloc_roots)); 4452 4453 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4454 btrfs_info(fs_info, "at unmount delalloc count %lld", 4455 percpu_counter_sum(&fs_info->delalloc_bytes)); 4456 } 4457 4458 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4459 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4460 percpu_counter_sum(&fs_info->ordered_bytes)); 4461 4462 btrfs_sysfs_remove_mounted(fs_info); 4463 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4464 4465 btrfs_put_block_group_cache(fs_info); 4466 4467 /* 4468 * we must make sure there is not any read request to 4469 * submit after we stopping all workers. 4470 */ 4471 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4472 btrfs_stop_all_workers(fs_info); 4473 4474 /* We shouldn't have any transaction open at this point */ 4475 warn_about_uncommitted_trans(fs_info); 4476 4477 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4478 free_root_pointers(fs_info, true); 4479 btrfs_free_fs_roots(fs_info); 4480 4481 /* 4482 * We must free the block groups after dropping the fs_roots as we could 4483 * have had an IO error and have left over tree log blocks that aren't 4484 * cleaned up until the fs roots are freed. This makes the block group 4485 * accounting appear to be wrong because there's pending reserved bytes, 4486 * so make sure we do the block group cleanup afterwards. 4487 */ 4488 btrfs_free_block_groups(fs_info); 4489 4490 iput(fs_info->btree_inode); 4491 4492 btrfs_mapping_tree_free(fs_info); 4493 btrfs_close_devices(fs_info->fs_devices); 4494 } 4495 4496 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans, 4497 struct extent_buffer *buf) 4498 { 4499 struct btrfs_fs_info *fs_info = buf->fs_info; 4500 u64 transid = btrfs_header_generation(buf); 4501 4502 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4503 /* 4504 * This is a fast path so only do this check if we have sanity tests 4505 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4506 * outside of the sanity tests. 4507 */ 4508 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4509 return; 4510 #endif 4511 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */ 4512 ASSERT(trans->transid == fs_info->generation); 4513 btrfs_assert_tree_write_locked(buf); 4514 if (unlikely(transid != fs_info->generation)) { 4515 btrfs_abort_transaction(trans, -EUCLEAN); 4516 btrfs_crit(fs_info, 4517 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu", 4518 buf->start, transid, fs_info->generation); 4519 } 4520 set_extent_buffer_dirty(buf); 4521 } 4522 4523 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4524 int flush_delayed) 4525 { 4526 /* 4527 * looks as though older kernels can get into trouble with 4528 * this code, they end up stuck in balance_dirty_pages forever 4529 */ 4530 int ret; 4531 4532 if (current->flags & PF_MEMALLOC) 4533 return; 4534 4535 if (flush_delayed) 4536 btrfs_balance_delayed_items(fs_info); 4537 4538 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4539 BTRFS_DIRTY_METADATA_THRESH, 4540 fs_info->dirty_metadata_batch); 4541 if (ret > 0) { 4542 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4543 } 4544 } 4545 4546 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4547 { 4548 __btrfs_btree_balance_dirty(fs_info, 1); 4549 } 4550 4551 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4552 { 4553 __btrfs_btree_balance_dirty(fs_info, 0); 4554 } 4555 4556 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4557 { 4558 /* cleanup FS via transaction */ 4559 btrfs_cleanup_transaction(fs_info); 4560 4561 down_write(&fs_info->cleanup_work_sem); 4562 up_write(&fs_info->cleanup_work_sem); 4563 } 4564 4565 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4566 { 4567 struct btrfs_root *gang[8]; 4568 u64 root_objectid = 0; 4569 int ret; 4570 4571 spin_lock(&fs_info->fs_roots_radix_lock); 4572 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4573 (void **)gang, root_objectid, 4574 ARRAY_SIZE(gang))) != 0) { 4575 int i; 4576 4577 for (i = 0; i < ret; i++) 4578 gang[i] = btrfs_grab_root(gang[i]); 4579 spin_unlock(&fs_info->fs_roots_radix_lock); 4580 4581 for (i = 0; i < ret; i++) { 4582 if (!gang[i]) 4583 continue; 4584 root_objectid = btrfs_root_id(gang[i]); 4585 btrfs_free_log(NULL, gang[i]); 4586 btrfs_put_root(gang[i]); 4587 } 4588 root_objectid++; 4589 spin_lock(&fs_info->fs_roots_radix_lock); 4590 } 4591 spin_unlock(&fs_info->fs_roots_radix_lock); 4592 btrfs_free_log_root_tree(NULL, fs_info); 4593 } 4594 4595 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4596 { 4597 struct btrfs_ordered_extent *ordered; 4598 4599 spin_lock(&root->ordered_extent_lock); 4600 /* 4601 * This will just short circuit the ordered completion stuff which will 4602 * make sure the ordered extent gets properly cleaned up. 4603 */ 4604 list_for_each_entry(ordered, &root->ordered_extents, 4605 root_extent_list) 4606 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4607 spin_unlock(&root->ordered_extent_lock); 4608 } 4609 4610 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4611 { 4612 struct btrfs_root *root; 4613 LIST_HEAD(splice); 4614 4615 spin_lock(&fs_info->ordered_root_lock); 4616 list_splice_init(&fs_info->ordered_roots, &splice); 4617 while (!list_empty(&splice)) { 4618 root = list_first_entry(&splice, struct btrfs_root, 4619 ordered_root); 4620 list_move_tail(&root->ordered_root, 4621 &fs_info->ordered_roots); 4622 4623 spin_unlock(&fs_info->ordered_root_lock); 4624 btrfs_destroy_ordered_extents(root); 4625 4626 cond_resched(); 4627 spin_lock(&fs_info->ordered_root_lock); 4628 } 4629 spin_unlock(&fs_info->ordered_root_lock); 4630 4631 /* 4632 * We need this here because if we've been flipped read-only we won't 4633 * get sync() from the umount, so we need to make sure any ordered 4634 * extents that haven't had their dirty pages IO start writeout yet 4635 * actually get run and error out properly. 4636 */ 4637 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL); 4638 } 4639 4640 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4641 { 4642 struct btrfs_inode *btrfs_inode; 4643 LIST_HEAD(splice); 4644 4645 spin_lock(&root->delalloc_lock); 4646 list_splice_init(&root->delalloc_inodes, &splice); 4647 4648 while (!list_empty(&splice)) { 4649 struct inode *inode = NULL; 4650 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4651 delalloc_inodes); 4652 btrfs_del_delalloc_inode(btrfs_inode); 4653 spin_unlock(&root->delalloc_lock); 4654 4655 /* 4656 * Make sure we get a live inode and that it'll not disappear 4657 * meanwhile. 4658 */ 4659 inode = igrab(&btrfs_inode->vfs_inode); 4660 if (inode) { 4661 unsigned int nofs_flag; 4662 4663 nofs_flag = memalloc_nofs_save(); 4664 invalidate_inode_pages2(inode->i_mapping); 4665 memalloc_nofs_restore(nofs_flag); 4666 iput(inode); 4667 } 4668 spin_lock(&root->delalloc_lock); 4669 } 4670 spin_unlock(&root->delalloc_lock); 4671 } 4672 4673 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4674 { 4675 struct btrfs_root *root; 4676 LIST_HEAD(splice); 4677 4678 spin_lock(&fs_info->delalloc_root_lock); 4679 list_splice_init(&fs_info->delalloc_roots, &splice); 4680 while (!list_empty(&splice)) { 4681 root = list_first_entry(&splice, struct btrfs_root, 4682 delalloc_root); 4683 root = btrfs_grab_root(root); 4684 BUG_ON(!root); 4685 spin_unlock(&fs_info->delalloc_root_lock); 4686 4687 btrfs_destroy_delalloc_inodes(root); 4688 btrfs_put_root(root); 4689 4690 spin_lock(&fs_info->delalloc_root_lock); 4691 } 4692 spin_unlock(&fs_info->delalloc_root_lock); 4693 } 4694 4695 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4696 struct extent_io_tree *dirty_pages, 4697 int mark) 4698 { 4699 struct extent_buffer *eb; 4700 u64 start = 0; 4701 u64 end; 4702 4703 while (find_first_extent_bit(dirty_pages, start, &start, &end, 4704 mark, NULL)) { 4705 clear_extent_bits(dirty_pages, start, end, mark); 4706 while (start <= end) { 4707 eb = find_extent_buffer(fs_info, start); 4708 start += fs_info->nodesize; 4709 if (!eb) 4710 continue; 4711 4712 btrfs_tree_lock(eb); 4713 wait_on_extent_buffer_writeback(eb); 4714 btrfs_clear_buffer_dirty(NULL, eb); 4715 btrfs_tree_unlock(eb); 4716 4717 free_extent_buffer_stale(eb); 4718 } 4719 } 4720 } 4721 4722 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4723 struct extent_io_tree *unpin) 4724 { 4725 u64 start; 4726 u64 end; 4727 4728 while (1) { 4729 struct extent_state *cached_state = NULL; 4730 4731 /* 4732 * The btrfs_finish_extent_commit() may get the same range as 4733 * ours between find_first_extent_bit and clear_extent_dirty. 4734 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4735 * the same extent range. 4736 */ 4737 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4738 if (!find_first_extent_bit(unpin, 0, &start, &end, 4739 EXTENT_DIRTY, &cached_state)) { 4740 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4741 break; 4742 } 4743 4744 clear_extent_dirty(unpin, start, end, &cached_state); 4745 free_extent_state(cached_state); 4746 btrfs_error_unpin_extent_range(fs_info, start, end); 4747 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4748 cond_resched(); 4749 } 4750 } 4751 4752 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4753 { 4754 struct inode *inode; 4755 4756 inode = cache->io_ctl.inode; 4757 if (inode) { 4758 unsigned int nofs_flag; 4759 4760 nofs_flag = memalloc_nofs_save(); 4761 invalidate_inode_pages2(inode->i_mapping); 4762 memalloc_nofs_restore(nofs_flag); 4763 4764 BTRFS_I(inode)->generation = 0; 4765 cache->io_ctl.inode = NULL; 4766 iput(inode); 4767 } 4768 ASSERT(cache->io_ctl.pages == NULL); 4769 btrfs_put_block_group(cache); 4770 } 4771 4772 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4773 struct btrfs_fs_info *fs_info) 4774 { 4775 struct btrfs_block_group *cache; 4776 4777 spin_lock(&cur_trans->dirty_bgs_lock); 4778 while (!list_empty(&cur_trans->dirty_bgs)) { 4779 cache = list_first_entry(&cur_trans->dirty_bgs, 4780 struct btrfs_block_group, 4781 dirty_list); 4782 4783 if (!list_empty(&cache->io_list)) { 4784 spin_unlock(&cur_trans->dirty_bgs_lock); 4785 list_del_init(&cache->io_list); 4786 btrfs_cleanup_bg_io(cache); 4787 spin_lock(&cur_trans->dirty_bgs_lock); 4788 } 4789 4790 list_del_init(&cache->dirty_list); 4791 spin_lock(&cache->lock); 4792 cache->disk_cache_state = BTRFS_DC_ERROR; 4793 spin_unlock(&cache->lock); 4794 4795 spin_unlock(&cur_trans->dirty_bgs_lock); 4796 btrfs_put_block_group(cache); 4797 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 4798 spin_lock(&cur_trans->dirty_bgs_lock); 4799 } 4800 spin_unlock(&cur_trans->dirty_bgs_lock); 4801 4802 /* 4803 * Refer to the definition of io_bgs member for details why it's safe 4804 * to use it without any locking 4805 */ 4806 while (!list_empty(&cur_trans->io_bgs)) { 4807 cache = list_first_entry(&cur_trans->io_bgs, 4808 struct btrfs_block_group, 4809 io_list); 4810 4811 list_del_init(&cache->io_list); 4812 spin_lock(&cache->lock); 4813 cache->disk_cache_state = BTRFS_DC_ERROR; 4814 spin_unlock(&cache->lock); 4815 btrfs_cleanup_bg_io(cache); 4816 } 4817 } 4818 4819 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info) 4820 { 4821 struct btrfs_root *gang[8]; 4822 int i; 4823 int ret; 4824 4825 spin_lock(&fs_info->fs_roots_radix_lock); 4826 while (1) { 4827 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 4828 (void **)gang, 0, 4829 ARRAY_SIZE(gang), 4830 BTRFS_ROOT_TRANS_TAG); 4831 if (ret == 0) 4832 break; 4833 for (i = 0; i < ret; i++) { 4834 struct btrfs_root *root = gang[i]; 4835 4836 btrfs_qgroup_free_meta_all_pertrans(root); 4837 radix_tree_tag_clear(&fs_info->fs_roots_radix, 4838 (unsigned long)btrfs_root_id(root), 4839 BTRFS_ROOT_TRANS_TAG); 4840 } 4841 } 4842 spin_unlock(&fs_info->fs_roots_radix_lock); 4843 } 4844 4845 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans) 4846 { 4847 struct btrfs_fs_info *fs_info = cur_trans->fs_info; 4848 struct btrfs_device *dev, *tmp; 4849 4850 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4851 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4852 ASSERT(list_empty(&cur_trans->io_bgs)); 4853 4854 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4855 post_commit_list) { 4856 list_del_init(&dev->post_commit_list); 4857 } 4858 4859 btrfs_destroy_delayed_refs(cur_trans); 4860 4861 cur_trans->state = TRANS_STATE_COMMIT_START; 4862 wake_up(&fs_info->transaction_blocked_wait); 4863 4864 cur_trans->state = TRANS_STATE_UNBLOCKED; 4865 wake_up(&fs_info->transaction_wait); 4866 4867 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4868 EXTENT_DIRTY); 4869 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4870 4871 cur_trans->state =TRANS_STATE_COMPLETED; 4872 wake_up(&cur_trans->commit_wait); 4873 } 4874 4875 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4876 { 4877 struct btrfs_transaction *t; 4878 4879 mutex_lock(&fs_info->transaction_kthread_mutex); 4880 4881 spin_lock(&fs_info->trans_lock); 4882 while (!list_empty(&fs_info->trans_list)) { 4883 t = list_first_entry(&fs_info->trans_list, 4884 struct btrfs_transaction, list); 4885 if (t->state >= TRANS_STATE_COMMIT_PREP) { 4886 refcount_inc(&t->use_count); 4887 spin_unlock(&fs_info->trans_lock); 4888 btrfs_wait_for_commit(fs_info, t->transid); 4889 btrfs_put_transaction(t); 4890 spin_lock(&fs_info->trans_lock); 4891 continue; 4892 } 4893 if (t == fs_info->running_transaction) { 4894 t->state = TRANS_STATE_COMMIT_DOING; 4895 spin_unlock(&fs_info->trans_lock); 4896 /* 4897 * We wait for 0 num_writers since we don't hold a trans 4898 * handle open currently for this transaction. 4899 */ 4900 wait_event(t->writer_wait, 4901 atomic_read(&t->num_writers) == 0); 4902 } else { 4903 spin_unlock(&fs_info->trans_lock); 4904 } 4905 btrfs_cleanup_one_transaction(t); 4906 4907 spin_lock(&fs_info->trans_lock); 4908 if (t == fs_info->running_transaction) 4909 fs_info->running_transaction = NULL; 4910 list_del_init(&t->list); 4911 spin_unlock(&fs_info->trans_lock); 4912 4913 btrfs_put_transaction(t); 4914 trace_btrfs_transaction_commit(fs_info); 4915 spin_lock(&fs_info->trans_lock); 4916 } 4917 spin_unlock(&fs_info->trans_lock); 4918 btrfs_destroy_all_ordered_extents(fs_info); 4919 btrfs_destroy_delayed_inodes(fs_info); 4920 btrfs_assert_delayed_root_empty(fs_info); 4921 btrfs_destroy_all_delalloc_inodes(fs_info); 4922 btrfs_drop_all_logs(fs_info); 4923 btrfs_free_all_qgroup_pertrans(fs_info); 4924 mutex_unlock(&fs_info->transaction_kthread_mutex); 4925 4926 return 0; 4927 } 4928 4929 int btrfs_init_root_free_objectid(struct btrfs_root *root) 4930 { 4931 BTRFS_PATH_AUTO_FREE(path); 4932 int ret; 4933 struct extent_buffer *l; 4934 struct btrfs_key search_key; 4935 struct btrfs_key found_key; 4936 int slot; 4937 4938 path = btrfs_alloc_path(); 4939 if (!path) 4940 return -ENOMEM; 4941 4942 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 4943 search_key.type = -1; 4944 search_key.offset = (u64)-1; 4945 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 4946 if (ret < 0) 4947 return ret; 4948 if (ret == 0) { 4949 /* 4950 * Key with offset -1 found, there would have to exist a root 4951 * with such id, but this is out of valid range. 4952 */ 4953 return -EUCLEAN; 4954 } 4955 if (path->slots[0] > 0) { 4956 slot = path->slots[0] - 1; 4957 l = path->nodes[0]; 4958 btrfs_item_key_to_cpu(l, &found_key, slot); 4959 root->free_objectid = max_t(u64, found_key.objectid + 1, 4960 BTRFS_FIRST_FREE_OBJECTID); 4961 } else { 4962 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 4963 } 4964 4965 return 0; 4966 } 4967 4968 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 4969 { 4970 int ret; 4971 mutex_lock(&root->objectid_mutex); 4972 4973 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 4974 btrfs_warn(root->fs_info, 4975 "the objectid of root %llu reaches its highest value", 4976 btrfs_root_id(root)); 4977 ret = -ENOSPC; 4978 goto out; 4979 } 4980 4981 *objectid = root->free_objectid++; 4982 ret = 0; 4983 out: 4984 mutex_unlock(&root->objectid_mutex); 4985 return ret; 4986 } 4987