xref: /linux/fs/btrfs/discard.c (revision 802fee26d8afd073c630a74dbe1a996970f3fd90)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/jiffies.h>
4 #include <linux/kernel.h>
5 #include <linux/ktime.h>
6 #include <linux/list.h>
7 #include <linux/math64.h>
8 #include <linux/sizes.h>
9 #include <linux/workqueue.h>
10 #include "ctree.h"
11 #include "block-group.h"
12 #include "discard.h"
13 #include "free-space-cache.h"
14 
15 /*
16  * This contains the logic to handle async discard.
17  *
18  * Async discard manages trimming of free space outside of transaction commit.
19  * Discarding is done by managing the block_groups on a LRU list based on free
20  * space recency.  Two passes are used to first prioritize discarding extents
21  * and then allow for trimming in the bitmap the best opportunity to coalesce.
22  * The block_groups are maintained on multiple lists to allow for multiple
23  * passes with different discard filter requirements.  A delayed work item is
24  * used to manage discarding with timeout determined by a max of the delay
25  * incurred by the iops rate limit, the byte rate limit, and the max delay of
26  * BTRFS_DISCARD_MAX_DELAY.
27  *
28  * Note, this only keeps track of block_groups that are explicitly for data.
29  * Mixed block_groups are not supported.
30  *
31  * The first list is special to manage discarding of fully free block groups.
32  * This is necessary because we issue a final trim for a full free block group
33  * after forgetting it.  When a block group becomes unused, instead of directly
34  * being added to the unused_bgs list, we add it to this first list.  Then
35  * from there, if it becomes fully discarded, we place it onto the unused_bgs
36  * list.
37  *
38  * The in-memory free space cache serves as the backing state for discard.
39  * Consequently this means there is no persistence.  We opt to load all the
40  * block groups in as not discarded, so the mount case degenerates to the
41  * crashing case.
42  *
43  * As the free space cache uses bitmaps, there exists a tradeoff between
44  * ease/efficiency for find_free_extent() and the accuracy of discard state.
45  * Here we opt to let untrimmed regions merge with everything while only letting
46  * trimmed regions merge with other trimmed regions.  This can cause
47  * overtrimming, but the coalescing benefit seems to be worth it.  Additionally,
48  * bitmap state is tracked as a whole.  If we're able to fully trim a bitmap,
49  * the trimmed flag is set on the bitmap.  Otherwise, if an allocation comes in,
50  * this resets the state and we will retry trimming the whole bitmap.  This is a
51  * tradeoff between discard state accuracy and the cost of accounting.
52  */
53 
54 /* This is an initial delay to give some chance for block reuse */
55 #define BTRFS_DISCARD_DELAY		(120ULL * NSEC_PER_SEC)
56 #define BTRFS_DISCARD_UNUSED_DELAY	(10ULL * NSEC_PER_SEC)
57 
58 /* Target completion latency of discarding all discardable extents */
59 #define BTRFS_DISCARD_TARGET_MSEC	(6 * 60 * 60UL * MSEC_PER_SEC)
60 #define BTRFS_DISCARD_MIN_DELAY_MSEC	(1UL)
61 #define BTRFS_DISCARD_MAX_DELAY_MSEC	(1000UL)
62 #define BTRFS_DISCARD_MAX_IOPS		(10U)
63 
64 /* Montonically decreasing minimum length filters after index 0 */
65 static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = {
66 	0,
67 	BTRFS_ASYNC_DISCARD_MAX_FILTER,
68 	BTRFS_ASYNC_DISCARD_MIN_FILTER
69 };
70 
71 static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl,
72 					  struct btrfs_block_group *block_group)
73 {
74 	return &discard_ctl->discard_list[block_group->discard_index];
75 }
76 
77 static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
78 				  struct btrfs_block_group *block_group)
79 {
80 	if (!btrfs_run_discard_work(discard_ctl))
81 		return;
82 
83 	if (list_empty(&block_group->discard_list) ||
84 	    block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) {
85 		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED)
86 			block_group->discard_index = BTRFS_DISCARD_INDEX_START;
87 		block_group->discard_eligible_time = (ktime_get_ns() +
88 						      BTRFS_DISCARD_DELAY);
89 		block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
90 	}
91 
92 	list_move_tail(&block_group->discard_list,
93 		       get_discard_list(discard_ctl, block_group));
94 }
95 
96 static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
97 				struct btrfs_block_group *block_group)
98 {
99 	if (!btrfs_is_block_group_data_only(block_group))
100 		return;
101 
102 	spin_lock(&discard_ctl->lock);
103 	__add_to_discard_list(discard_ctl, block_group);
104 	spin_unlock(&discard_ctl->lock);
105 }
106 
107 static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl,
108 				       struct btrfs_block_group *block_group)
109 {
110 	spin_lock(&discard_ctl->lock);
111 
112 	if (!btrfs_run_discard_work(discard_ctl)) {
113 		spin_unlock(&discard_ctl->lock);
114 		return;
115 	}
116 
117 	list_del_init(&block_group->discard_list);
118 
119 	block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
120 	block_group->discard_eligible_time = (ktime_get_ns() +
121 					      BTRFS_DISCARD_UNUSED_DELAY);
122 	block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
123 	list_add_tail(&block_group->discard_list,
124 		      &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]);
125 
126 	spin_unlock(&discard_ctl->lock);
127 }
128 
129 static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl,
130 				     struct btrfs_block_group *block_group)
131 {
132 	bool running = false;
133 
134 	spin_lock(&discard_ctl->lock);
135 
136 	if (block_group == discard_ctl->block_group) {
137 		running = true;
138 		discard_ctl->block_group = NULL;
139 	}
140 
141 	block_group->discard_eligible_time = 0;
142 	list_del_init(&block_group->discard_list);
143 
144 	spin_unlock(&discard_ctl->lock);
145 
146 	return running;
147 }
148 
149 /**
150  * find_next_block_group - find block_group that's up next for discarding
151  * @discard_ctl: discard control
152  * @now: current time
153  *
154  * Iterate over the discard lists to find the next block_group up for
155  * discarding checking the discard_eligible_time of block_group.
156  */
157 static struct btrfs_block_group *find_next_block_group(
158 					struct btrfs_discard_ctl *discard_ctl,
159 					u64 now)
160 {
161 	struct btrfs_block_group *ret_block_group = NULL, *block_group;
162 	int i;
163 
164 	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
165 		struct list_head *discard_list = &discard_ctl->discard_list[i];
166 
167 		if (!list_empty(discard_list)) {
168 			block_group = list_first_entry(discard_list,
169 						       struct btrfs_block_group,
170 						       discard_list);
171 
172 			if (!ret_block_group)
173 				ret_block_group = block_group;
174 
175 			if (ret_block_group->discard_eligible_time < now)
176 				break;
177 
178 			if (ret_block_group->discard_eligible_time >
179 			    block_group->discard_eligible_time)
180 				ret_block_group = block_group;
181 		}
182 	}
183 
184 	return ret_block_group;
185 }
186 
187 /**
188  * peek_discard_list - wrap find_next_block_group()
189  * @discard_ctl: discard control
190  * @discard_state: the discard_state of the block_group after state management
191  * @discard_index: the discard_index of the block_group after state management
192  *
193  * This wraps find_next_block_group() and sets the block_group to be in use.
194  * discard_state's control flow is managed here.  Variables related to
195  * discard_state are reset here as needed (eg discard_cursor).  @discard_state
196  * and @discard_index are remembered as it may change while we're discarding,
197  * but we want the discard to execute in the context determined here.
198  */
199 static struct btrfs_block_group *peek_discard_list(
200 					struct btrfs_discard_ctl *discard_ctl,
201 					enum btrfs_discard_state *discard_state,
202 					int *discard_index)
203 {
204 	struct btrfs_block_group *block_group;
205 	const u64 now = ktime_get_ns();
206 
207 	spin_lock(&discard_ctl->lock);
208 again:
209 	block_group = find_next_block_group(discard_ctl, now);
210 
211 	if (block_group && now > block_group->discard_eligible_time) {
212 		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED &&
213 		    block_group->used != 0) {
214 			if (btrfs_is_block_group_data_only(block_group))
215 				__add_to_discard_list(discard_ctl, block_group);
216 			else
217 				list_del_init(&block_group->discard_list);
218 			goto again;
219 		}
220 		if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) {
221 			block_group->discard_cursor = block_group->start;
222 			block_group->discard_state = BTRFS_DISCARD_EXTENTS;
223 		}
224 		discard_ctl->block_group = block_group;
225 		*discard_state = block_group->discard_state;
226 		*discard_index = block_group->discard_index;
227 	} else {
228 		block_group = NULL;
229 	}
230 
231 	spin_unlock(&discard_ctl->lock);
232 
233 	return block_group;
234 }
235 
236 /**
237  * btrfs_discard_check_filter - updates a block groups filters
238  * @block_group: block group of interest
239  * @bytes: recently freed region size after coalescing
240  *
241  * Async discard maintains multiple lists with progressively smaller filters
242  * to prioritize discarding based on size.  Should a free space that matches
243  * a larger filter be returned to the free_space_cache, prioritize that discard
244  * by moving @block_group to the proper filter.
245  */
246 void btrfs_discard_check_filter(struct btrfs_block_group *block_group,
247 				u64 bytes)
248 {
249 	struct btrfs_discard_ctl *discard_ctl;
250 
251 	if (!block_group ||
252 	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
253 		return;
254 
255 	discard_ctl = &block_group->fs_info->discard_ctl;
256 
257 	if (block_group->discard_index > BTRFS_DISCARD_INDEX_START &&
258 	    bytes >= discard_minlen[block_group->discard_index - 1]) {
259 		int i;
260 
261 		remove_from_discard_list(discard_ctl, block_group);
262 
263 		for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS;
264 		     i++) {
265 			if (bytes >= discard_minlen[i]) {
266 				block_group->discard_index = i;
267 				add_to_discard_list(discard_ctl, block_group);
268 				break;
269 			}
270 		}
271 	}
272 }
273 
274 /**
275  * btrfs_update_discard_index - moves a block group along the discard lists
276  * @discard_ctl: discard control
277  * @block_group: block_group of interest
278  *
279  * Increment @block_group's discard_index.  If it falls of the list, let it be.
280  * Otherwise add it back to the appropriate list.
281  */
282 static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl,
283 				       struct btrfs_block_group *block_group)
284 {
285 	block_group->discard_index++;
286 	if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) {
287 		block_group->discard_index = 1;
288 		return;
289 	}
290 
291 	add_to_discard_list(discard_ctl, block_group);
292 }
293 
294 /**
295  * btrfs_discard_cancel_work - remove a block_group from the discard lists
296  * @discard_ctl: discard control
297  * @block_group: block_group of interest
298  *
299  * This removes @block_group from the discard lists.  If necessary, it waits on
300  * the current work and then reschedules the delayed work.
301  */
302 void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl,
303 			       struct btrfs_block_group *block_group)
304 {
305 	if (remove_from_discard_list(discard_ctl, block_group)) {
306 		cancel_delayed_work_sync(&discard_ctl->work);
307 		btrfs_discard_schedule_work(discard_ctl, true);
308 	}
309 }
310 
311 /**
312  * btrfs_discard_queue_work - handles queuing the block_groups
313  * @discard_ctl: discard control
314  * @block_group: block_group of interest
315  *
316  * This maintains the LRU order of the discard lists.
317  */
318 void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl,
319 			      struct btrfs_block_group *block_group)
320 {
321 	if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
322 		return;
323 
324 	if (block_group->used == 0)
325 		add_to_discard_unused_list(discard_ctl, block_group);
326 	else
327 		add_to_discard_list(discard_ctl, block_group);
328 
329 	if (!delayed_work_pending(&discard_ctl->work))
330 		btrfs_discard_schedule_work(discard_ctl, false);
331 }
332 
333 /**
334  * btrfs_discard_schedule_work - responsible for scheduling the discard work
335  * @discard_ctl: discard control
336  * @override: override the current timer
337  *
338  * Discards are issued by a delayed workqueue item.  @override is used to
339  * update the current delay as the baseline delay interval is reevaluated on
340  * transaction commit.  This is also maxed with any other rate limit.
341  */
342 void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
343 				 bool override)
344 {
345 	struct btrfs_block_group *block_group;
346 	const u64 now = ktime_get_ns();
347 
348 	spin_lock(&discard_ctl->lock);
349 
350 	if (!btrfs_run_discard_work(discard_ctl))
351 		goto out;
352 
353 	if (!override && delayed_work_pending(&discard_ctl->work))
354 		goto out;
355 
356 	block_group = find_next_block_group(discard_ctl, now);
357 	if (block_group) {
358 		u64 delay = discard_ctl->delay_ms * NSEC_PER_MSEC;
359 		u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit);
360 
361 		/*
362 		 * A single delayed workqueue item is responsible for
363 		 * discarding, so we can manage the bytes rate limit by keeping
364 		 * track of the previous discard.
365 		 */
366 		if (kbps_limit && discard_ctl->prev_discard) {
367 			u64 bps_limit = ((u64)kbps_limit) * SZ_1K;
368 			u64 bps_delay = div64_u64(discard_ctl->prev_discard *
369 						  NSEC_PER_SEC, bps_limit);
370 
371 			delay = max(delay, bps_delay);
372 		}
373 
374 		/*
375 		 * This timeout is to hopefully prevent immediate discarding
376 		 * in a recently allocated block group.
377 		 */
378 		if (now < block_group->discard_eligible_time) {
379 			u64 bg_timeout = block_group->discard_eligible_time - now;
380 
381 			delay = max(delay, bg_timeout);
382 		}
383 
384 		if (override && discard_ctl->prev_discard) {
385 			u64 elapsed = now - discard_ctl->prev_discard_time;
386 
387 			if (delay > elapsed)
388 				delay -= elapsed;
389 			else
390 				delay = 0;
391 		}
392 
393 		mod_delayed_work(discard_ctl->discard_workers,
394 				 &discard_ctl->work, nsecs_to_jiffies(delay));
395 	}
396 out:
397 	spin_unlock(&discard_ctl->lock);
398 }
399 
400 /**
401  * btrfs_finish_discard_pass - determine next step of a block_group
402  * @discard_ctl: discard control
403  * @block_group: block_group of interest
404  *
405  * This determines the next step for a block group after it's finished going
406  * through a pass on a discard list.  If it is unused and fully trimmed, we can
407  * mark it unused and send it to the unused_bgs path.  Otherwise, pass it onto
408  * the appropriate filter list or let it fall off.
409  */
410 static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl,
411 				      struct btrfs_block_group *block_group)
412 {
413 	remove_from_discard_list(discard_ctl, block_group);
414 
415 	if (block_group->used == 0) {
416 		if (btrfs_is_free_space_trimmed(block_group))
417 			btrfs_mark_bg_unused(block_group);
418 		else
419 			add_to_discard_unused_list(discard_ctl, block_group);
420 	} else {
421 		btrfs_update_discard_index(discard_ctl, block_group);
422 	}
423 }
424 
425 /**
426  * btrfs_discard_workfn - discard work function
427  * @work: work
428  *
429  * This finds the next block_group to start discarding and then discards a
430  * single region.  It does this in a two-pass fashion: first extents and second
431  * bitmaps.  Completely discarded block groups are sent to the unused_bgs path.
432  */
433 static void btrfs_discard_workfn(struct work_struct *work)
434 {
435 	struct btrfs_discard_ctl *discard_ctl;
436 	struct btrfs_block_group *block_group;
437 	enum btrfs_discard_state discard_state;
438 	int discard_index = 0;
439 	u64 trimmed = 0;
440 	u64 minlen = 0;
441 
442 	discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work);
443 
444 	block_group = peek_discard_list(discard_ctl, &discard_state,
445 					&discard_index);
446 	if (!block_group || !btrfs_run_discard_work(discard_ctl))
447 		return;
448 
449 	/* Perform discarding */
450 	minlen = discard_minlen[discard_index];
451 
452 	if (discard_state == BTRFS_DISCARD_BITMAPS) {
453 		u64 maxlen = 0;
454 
455 		/*
456 		 * Use the previous levels minimum discard length as the max
457 		 * length filter.  In the case something is added to make a
458 		 * region go beyond the max filter, the entire bitmap is set
459 		 * back to BTRFS_TRIM_STATE_UNTRIMMED.
460 		 */
461 		if (discard_index != BTRFS_DISCARD_INDEX_UNUSED)
462 			maxlen = discard_minlen[discard_index - 1];
463 
464 		btrfs_trim_block_group_bitmaps(block_group, &trimmed,
465 				       block_group->discard_cursor,
466 				       btrfs_block_group_end(block_group),
467 				       minlen, maxlen, true);
468 		discard_ctl->discard_bitmap_bytes += trimmed;
469 	} else {
470 		btrfs_trim_block_group_extents(block_group, &trimmed,
471 				       block_group->discard_cursor,
472 				       btrfs_block_group_end(block_group),
473 				       minlen, true);
474 		discard_ctl->discard_extent_bytes += trimmed;
475 	}
476 
477 	/*
478 	 * Updated without locks as this is inside the workfn and nothing else
479 	 * is reading the values
480 	 */
481 	discard_ctl->prev_discard = trimmed;
482 	discard_ctl->prev_discard_time = ktime_get_ns();
483 
484 	/* Determine next steps for a block_group */
485 	if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) {
486 		if (discard_state == BTRFS_DISCARD_BITMAPS) {
487 			btrfs_finish_discard_pass(discard_ctl, block_group);
488 		} else {
489 			block_group->discard_cursor = block_group->start;
490 			spin_lock(&discard_ctl->lock);
491 			if (block_group->discard_state !=
492 			    BTRFS_DISCARD_RESET_CURSOR)
493 				block_group->discard_state =
494 							BTRFS_DISCARD_BITMAPS;
495 			spin_unlock(&discard_ctl->lock);
496 		}
497 	}
498 
499 	spin_lock(&discard_ctl->lock);
500 	discard_ctl->block_group = NULL;
501 	spin_unlock(&discard_ctl->lock);
502 
503 	btrfs_discard_schedule_work(discard_ctl, false);
504 }
505 
506 /**
507  * btrfs_run_discard_work - determines if async discard should be running
508  * @discard_ctl: discard control
509  *
510  * Checks if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set.
511  */
512 bool btrfs_run_discard_work(struct btrfs_discard_ctl *discard_ctl)
513 {
514 	struct btrfs_fs_info *fs_info = container_of(discard_ctl,
515 						     struct btrfs_fs_info,
516 						     discard_ctl);
517 
518 	return (!(fs_info->sb->s_flags & SB_RDONLY) &&
519 		test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags));
520 }
521 
522 /**
523  * btrfs_discard_calc_delay - recalculate the base delay
524  * @discard_ctl: discard control
525  *
526  * Recalculate the base delay which is based off the total number of
527  * discardable_extents.  Clamp this between the lower_limit (iops_limit or 1ms)
528  * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC).
529  */
530 void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl)
531 {
532 	s32 discardable_extents;
533 	s64 discardable_bytes;
534 	u32 iops_limit;
535 	unsigned long delay;
536 
537 	discardable_extents = atomic_read(&discard_ctl->discardable_extents);
538 	if (!discardable_extents)
539 		return;
540 
541 	spin_lock(&discard_ctl->lock);
542 
543 	/*
544 	 * The following is to fix a potential -1 discrepenancy that we're not
545 	 * sure how to reproduce. But given that this is the only place that
546 	 * utilizes these numbers and this is only called by from
547 	 * btrfs_finish_extent_commit() which is synchronized, we can correct
548 	 * here.
549 	 */
550 	if (discardable_extents < 0)
551 		atomic_add(-discardable_extents,
552 			   &discard_ctl->discardable_extents);
553 
554 	discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes);
555 	if (discardable_bytes < 0)
556 		atomic64_add(-discardable_bytes,
557 			     &discard_ctl->discardable_bytes);
558 
559 	if (discardable_extents <= 0) {
560 		spin_unlock(&discard_ctl->lock);
561 		return;
562 	}
563 
564 	iops_limit = READ_ONCE(discard_ctl->iops_limit);
565 	if (iops_limit)
566 		delay = MSEC_PER_SEC / iops_limit;
567 	else
568 		delay = BTRFS_DISCARD_TARGET_MSEC / discardable_extents;
569 
570 	delay = clamp(delay, BTRFS_DISCARD_MIN_DELAY_MSEC,
571 		      BTRFS_DISCARD_MAX_DELAY_MSEC);
572 	discard_ctl->delay_ms = delay;
573 
574 	spin_unlock(&discard_ctl->lock);
575 }
576 
577 /**
578  * btrfs_discard_update_discardable - propagate discard counters
579  * @block_group: block_group of interest
580  *
581  * This propagates deltas of counters up to the discard_ctl.  It maintains a
582  * current counter and a previous counter passing the delta up to the global
583  * stat.  Then the current counter value becomes the previous counter value.
584  */
585 void btrfs_discard_update_discardable(struct btrfs_block_group *block_group)
586 {
587 	struct btrfs_free_space_ctl *ctl;
588 	struct btrfs_discard_ctl *discard_ctl;
589 	s32 extents_delta;
590 	s64 bytes_delta;
591 
592 	if (!block_group ||
593 	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) ||
594 	    !btrfs_is_block_group_data_only(block_group))
595 		return;
596 
597 	ctl = block_group->free_space_ctl;
598 	discard_ctl = &block_group->fs_info->discard_ctl;
599 
600 	lockdep_assert_held(&ctl->tree_lock);
601 	extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] -
602 			ctl->discardable_extents[BTRFS_STAT_PREV];
603 	if (extents_delta) {
604 		atomic_add(extents_delta, &discard_ctl->discardable_extents);
605 		ctl->discardable_extents[BTRFS_STAT_PREV] =
606 			ctl->discardable_extents[BTRFS_STAT_CURR];
607 	}
608 
609 	bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] -
610 		      ctl->discardable_bytes[BTRFS_STAT_PREV];
611 	if (bytes_delta) {
612 		atomic64_add(bytes_delta, &discard_ctl->discardable_bytes);
613 		ctl->discardable_bytes[BTRFS_STAT_PREV] =
614 			ctl->discardable_bytes[BTRFS_STAT_CURR];
615 	}
616 }
617 
618 /**
619  * btrfs_discard_punt_unused_bgs_list - punt unused_bgs list to discard lists
620  * @fs_info: fs_info of interest
621  *
622  * The unused_bgs list needs to be punted to the discard lists because the
623  * order of operations is changed.  In the normal sychronous discard path, the
624  * block groups are trimmed via a single large trim in transaction commit.  This
625  * is ultimately what we are trying to avoid with asynchronous discard.  Thus,
626  * it must be done before going down the unused_bgs path.
627  */
628 void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info)
629 {
630 	struct btrfs_block_group *block_group, *next;
631 
632 	spin_lock(&fs_info->unused_bgs_lock);
633 	/* We enabled async discard, so punt all to the queue */
634 	list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs,
635 				 bg_list) {
636 		list_del_init(&block_group->bg_list);
637 		btrfs_put_block_group(block_group);
638 		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
639 	}
640 	spin_unlock(&fs_info->unused_bgs_lock);
641 }
642 
643 /**
644  * btrfs_discard_purge_list - purge discard lists
645  * @discard_ctl: discard control
646  *
647  * If we are disabling async discard, we may have intercepted block groups that
648  * are completely free and ready for the unused_bgs path.  As discarding will
649  * now happen in transaction commit or not at all, we can safely mark the
650  * corresponding block groups as unused and they will be sent on their merry
651  * way to the unused_bgs list.
652  */
653 static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl)
654 {
655 	struct btrfs_block_group *block_group, *next;
656 	int i;
657 
658 	spin_lock(&discard_ctl->lock);
659 	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
660 		list_for_each_entry_safe(block_group, next,
661 					 &discard_ctl->discard_list[i],
662 					 discard_list) {
663 			list_del_init(&block_group->discard_list);
664 			spin_unlock(&discard_ctl->lock);
665 			if (block_group->used == 0)
666 				btrfs_mark_bg_unused(block_group);
667 			spin_lock(&discard_ctl->lock);
668 		}
669 	}
670 	spin_unlock(&discard_ctl->lock);
671 }
672 
673 void btrfs_discard_resume(struct btrfs_fs_info *fs_info)
674 {
675 	if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
676 		btrfs_discard_cleanup(fs_info);
677 		return;
678 	}
679 
680 	btrfs_discard_punt_unused_bgs_list(fs_info);
681 
682 	set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
683 }
684 
685 void btrfs_discard_stop(struct btrfs_fs_info *fs_info)
686 {
687 	clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
688 }
689 
690 void btrfs_discard_init(struct btrfs_fs_info *fs_info)
691 {
692 	struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl;
693 	int i;
694 
695 	spin_lock_init(&discard_ctl->lock);
696 	INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn);
697 
698 	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++)
699 		INIT_LIST_HEAD(&discard_ctl->discard_list[i]);
700 
701 	discard_ctl->prev_discard = 0;
702 	discard_ctl->prev_discard_time = 0;
703 	atomic_set(&discard_ctl->discardable_extents, 0);
704 	atomic64_set(&discard_ctl->discardable_bytes, 0);
705 	discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE;
706 	discard_ctl->delay_ms = BTRFS_DISCARD_MAX_DELAY_MSEC;
707 	discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS;
708 	discard_ctl->kbps_limit = 0;
709 	discard_ctl->discard_extent_bytes = 0;
710 	discard_ctl->discard_bitmap_bytes = 0;
711 	atomic64_set(&discard_ctl->discard_bytes_saved, 0);
712 }
713 
714 void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info)
715 {
716 	btrfs_discard_stop(fs_info);
717 	cancel_delayed_work_sync(&fs_info->discard_ctl.work);
718 	btrfs_discard_purge_list(&fs_info->discard_ctl);
719 }
720