1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/jiffies.h> 4 #include <linux/kernel.h> 5 #include <linux/ktime.h> 6 #include <linux/list.h> 7 #include <linux/math64.h> 8 #include <linux/sizes.h> 9 #include <linux/workqueue.h> 10 #include "ctree.h" 11 #include "block-group.h" 12 #include "discard.h" 13 #include "free-space-cache.h" 14 #include "fs.h" 15 16 /* 17 * This contains the logic to handle async discard. 18 * 19 * Async discard manages trimming of free space outside of transaction commit. 20 * Discarding is done by managing the block_groups on a LRU list based on free 21 * space recency. Two passes are used to first prioritize discarding extents 22 * and then allow for trimming in the bitmap the best opportunity to coalesce. 23 * The block_groups are maintained on multiple lists to allow for multiple 24 * passes with different discard filter requirements. A delayed work item is 25 * used to manage discarding with timeout determined by a max of the delay 26 * incurred by the iops rate limit, the byte rate limit, and the max delay of 27 * BTRFS_DISCARD_MAX_DELAY. 28 * 29 * Note, this only keeps track of block_groups that are explicitly for data. 30 * Mixed block_groups are not supported. 31 * 32 * The first list is special to manage discarding of fully free block groups. 33 * This is necessary because we issue a final trim for a full free block group 34 * after forgetting it. When a block group becomes unused, instead of directly 35 * being added to the unused_bgs list, we add it to this first list. Then 36 * from there, if it becomes fully discarded, we place it onto the unused_bgs 37 * list. 38 * 39 * The in-memory free space cache serves as the backing state for discard. 40 * Consequently this means there is no persistence. We opt to load all the 41 * block groups in as not discarded, so the mount case degenerates to the 42 * crashing case. 43 * 44 * As the free space cache uses bitmaps, there exists a tradeoff between 45 * ease/efficiency for find_free_extent() and the accuracy of discard state. 46 * Here we opt to let untrimmed regions merge with everything while only letting 47 * trimmed regions merge with other trimmed regions. This can cause 48 * overtrimming, but the coalescing benefit seems to be worth it. Additionally, 49 * bitmap state is tracked as a whole. If we're able to fully trim a bitmap, 50 * the trimmed flag is set on the bitmap. Otherwise, if an allocation comes in, 51 * this resets the state and we will retry trimming the whole bitmap. This is a 52 * tradeoff between discard state accuracy and the cost of accounting. 53 */ 54 55 /* This is an initial delay to give some chance for block reuse */ 56 #define BTRFS_DISCARD_DELAY (120ULL * NSEC_PER_SEC) 57 #define BTRFS_DISCARD_UNUSED_DELAY (10ULL * NSEC_PER_SEC) 58 59 #define BTRFS_DISCARD_MIN_DELAY_MSEC (1UL) 60 #define BTRFS_DISCARD_MAX_DELAY_MSEC (1000UL) 61 #define BTRFS_DISCARD_MAX_IOPS (1000U) 62 63 /* Monotonically decreasing minimum length filters after index 0 */ 64 static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = { 65 0, 66 BTRFS_ASYNC_DISCARD_MAX_FILTER, 67 BTRFS_ASYNC_DISCARD_MIN_FILTER 68 }; 69 70 static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl, 71 const struct btrfs_block_group *block_group) 72 { 73 return &discard_ctl->discard_list[block_group->discard_index]; 74 } 75 76 /* 77 * Determine if async discard should be running. 78 * 79 * @discard_ctl: discard control 80 * 81 * Check if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set. 82 */ 83 static bool btrfs_run_discard_work(const struct btrfs_discard_ctl *discard_ctl) 84 { 85 struct btrfs_fs_info *fs_info = container_of(discard_ctl, 86 struct btrfs_fs_info, 87 discard_ctl); 88 89 return (!(fs_info->sb->s_flags & SB_RDONLY) && 90 test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags)); 91 } 92 93 static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl, 94 struct btrfs_block_group *block_group) 95 { 96 lockdep_assert_held(&discard_ctl->lock); 97 98 if (list_empty(&block_group->discard_list) || 99 block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) { 100 if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) 101 block_group->discard_index = BTRFS_DISCARD_INDEX_START; 102 block_group->discard_eligible_time = (ktime_get_ns() + 103 BTRFS_DISCARD_DELAY); 104 block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR; 105 } 106 if (list_empty(&block_group->discard_list)) 107 btrfs_get_block_group(block_group); 108 109 list_move_tail(&block_group->discard_list, 110 get_discard_list(discard_ctl, block_group)); 111 } 112 113 static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl, 114 struct btrfs_block_group *block_group) 115 { 116 if (!btrfs_is_block_group_data_only(block_group)) 117 return; 118 119 if (!btrfs_run_discard_work(discard_ctl)) 120 return; 121 122 spin_lock(&discard_ctl->lock); 123 __add_to_discard_list(discard_ctl, block_group); 124 spin_unlock(&discard_ctl->lock); 125 } 126 127 static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl, 128 struct btrfs_block_group *block_group) 129 { 130 bool queued; 131 132 spin_lock(&discard_ctl->lock); 133 134 queued = !list_empty(&block_group->discard_list); 135 136 if (!btrfs_run_discard_work(discard_ctl)) { 137 spin_unlock(&discard_ctl->lock); 138 return; 139 } 140 141 list_del_init(&block_group->discard_list); 142 143 block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED; 144 block_group->discard_eligible_time = (ktime_get_ns() + 145 BTRFS_DISCARD_UNUSED_DELAY); 146 block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR; 147 if (!queued) 148 btrfs_get_block_group(block_group); 149 list_add_tail(&block_group->discard_list, 150 &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]); 151 152 spin_unlock(&discard_ctl->lock); 153 } 154 155 static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl, 156 struct btrfs_block_group *block_group) 157 { 158 bool running = false; 159 bool queued = false; 160 161 spin_lock(&discard_ctl->lock); 162 163 if (block_group == discard_ctl->block_group) { 164 running = true; 165 discard_ctl->block_group = NULL; 166 } 167 168 block_group->discard_eligible_time = 0; 169 queued = !list_empty(&block_group->discard_list); 170 list_del_init(&block_group->discard_list); 171 if (queued) 172 btrfs_put_block_group(block_group); 173 174 spin_unlock(&discard_ctl->lock); 175 176 return running; 177 } 178 179 /* 180 * Find block_group that's up next for discarding. 181 * 182 * @discard_ctl: discard control 183 * @now: current time 184 * 185 * Iterate over the discard lists to find the next block_group up for 186 * discarding checking the discard_eligible_time of block_group. 187 */ 188 static struct btrfs_block_group *find_next_block_group( 189 struct btrfs_discard_ctl *discard_ctl, 190 u64 now) 191 { 192 struct btrfs_block_group *ret_block_group = NULL, *block_group; 193 int i; 194 195 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) { 196 struct list_head *discard_list = &discard_ctl->discard_list[i]; 197 198 if (!list_empty(discard_list)) { 199 block_group = list_first_entry(discard_list, 200 struct btrfs_block_group, 201 discard_list); 202 203 if (!ret_block_group) 204 ret_block_group = block_group; 205 206 if (ret_block_group->discard_eligible_time < now) 207 break; 208 209 if (ret_block_group->discard_eligible_time > 210 block_group->discard_eligible_time) 211 ret_block_group = block_group; 212 } 213 } 214 215 return ret_block_group; 216 } 217 218 /* 219 * Look up next block group and set it for use. 220 * 221 * @discard_ctl: discard control 222 * @discard_state: the discard_state of the block_group after state management 223 * @discard_index: the discard_index of the block_group after state management 224 * @now: time when discard was invoked, in ns 225 * 226 * Wrap find_next_block_group() and set the block_group to be in use. 227 * @discard_state's control flow is managed here. Variables related to 228 * @discard_state are reset here as needed (eg. @discard_cursor). @discard_state 229 * and @discard_index are remembered as it may change while we're discarding, 230 * but we want the discard to execute in the context determined here. 231 */ 232 static struct btrfs_block_group *peek_discard_list( 233 struct btrfs_discard_ctl *discard_ctl, 234 enum btrfs_discard_state *discard_state, 235 int *discard_index, u64 now) 236 { 237 struct btrfs_block_group *block_group; 238 239 spin_lock(&discard_ctl->lock); 240 again: 241 block_group = find_next_block_group(discard_ctl, now); 242 243 if (block_group && now >= block_group->discard_eligible_time) { 244 if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED && 245 block_group->used != 0) { 246 if (btrfs_is_block_group_data_only(block_group)) { 247 __add_to_discard_list(discard_ctl, block_group); 248 /* 249 * The block group must have been moved to other 250 * discard list even if discard was disabled in 251 * the meantime or a transaction abort happened, 252 * otherwise we can end up in an infinite loop, 253 * always jumping into the 'again' label and 254 * keep getting this block group over and over 255 * in case there are no other block groups in 256 * the discard lists. 257 */ 258 ASSERT(block_group->discard_index != 259 BTRFS_DISCARD_INDEX_UNUSED); 260 } else { 261 list_del_init(&block_group->discard_list); 262 btrfs_put_block_group(block_group); 263 } 264 goto again; 265 } 266 if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) { 267 block_group->discard_cursor = block_group->start; 268 block_group->discard_state = BTRFS_DISCARD_EXTENTS; 269 } 270 } 271 if (block_group) { 272 btrfs_get_block_group(block_group); 273 discard_ctl->block_group = block_group; 274 *discard_state = block_group->discard_state; 275 *discard_index = block_group->discard_index; 276 } 277 spin_unlock(&discard_ctl->lock); 278 279 return block_group; 280 } 281 282 /* 283 * Update a block group's filters. 284 * 285 * @block_group: block group of interest 286 * @bytes: recently freed region size after coalescing 287 * 288 * Async discard maintains multiple lists with progressively smaller filters 289 * to prioritize discarding based on size. Should a free space that matches 290 * a larger filter be returned to the free_space_cache, prioritize that discard 291 * by moving @block_group to the proper filter. 292 */ 293 void btrfs_discard_check_filter(struct btrfs_block_group *block_group, 294 u64 bytes) 295 { 296 struct btrfs_discard_ctl *discard_ctl; 297 298 if (!block_group || 299 !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC)) 300 return; 301 302 discard_ctl = &block_group->fs_info->discard_ctl; 303 304 if (block_group->discard_index > BTRFS_DISCARD_INDEX_START && 305 bytes >= discard_minlen[block_group->discard_index - 1]) { 306 int i; 307 308 remove_from_discard_list(discard_ctl, block_group); 309 310 for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS; 311 i++) { 312 if (bytes >= discard_minlen[i]) { 313 block_group->discard_index = i; 314 add_to_discard_list(discard_ctl, block_group); 315 break; 316 } 317 } 318 } 319 } 320 321 /* 322 * Move a block group along the discard lists. 323 * 324 * @discard_ctl: discard control 325 * @block_group: block_group of interest 326 * 327 * Increment @block_group's discard_index. If it falls of the list, let it be. 328 * Otherwise add it back to the appropriate list. 329 */ 330 static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl, 331 struct btrfs_block_group *block_group) 332 { 333 block_group->discard_index++; 334 if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) { 335 block_group->discard_index = 1; 336 return; 337 } 338 339 add_to_discard_list(discard_ctl, block_group); 340 } 341 342 /* 343 * Remove a block_group from the discard lists. 344 * 345 * @discard_ctl: discard control 346 * @block_group: block_group of interest 347 * 348 * Remove @block_group from the discard lists. If necessary, wait on the 349 * current work and then reschedule the delayed work. 350 */ 351 void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl, 352 struct btrfs_block_group *block_group) 353 { 354 if (remove_from_discard_list(discard_ctl, block_group)) { 355 cancel_delayed_work_sync(&discard_ctl->work); 356 btrfs_discard_schedule_work(discard_ctl, true); 357 } 358 } 359 360 /* 361 * Handles queuing the block_groups. 362 * 363 * @discard_ctl: discard control 364 * @block_group: block_group of interest 365 * 366 * Maintain the LRU order of the discard lists. 367 */ 368 void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl, 369 struct btrfs_block_group *block_group) 370 { 371 if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC)) 372 return; 373 374 if (block_group->used == 0) 375 add_to_discard_unused_list(discard_ctl, block_group); 376 else 377 add_to_discard_list(discard_ctl, block_group); 378 379 if (!delayed_work_pending(&discard_ctl->work)) 380 btrfs_discard_schedule_work(discard_ctl, false); 381 } 382 383 static void __btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl, 384 u64 now, bool override) 385 { 386 struct btrfs_block_group *block_group; 387 388 if (!btrfs_run_discard_work(discard_ctl)) 389 return; 390 if (!override && delayed_work_pending(&discard_ctl->work)) 391 return; 392 393 block_group = find_next_block_group(discard_ctl, now); 394 if (block_group) { 395 u64 delay = discard_ctl->delay_ms * NSEC_PER_MSEC; 396 u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit); 397 398 /* 399 * A single delayed workqueue item is responsible for 400 * discarding, so we can manage the bytes rate limit by keeping 401 * track of the previous discard. 402 */ 403 if (kbps_limit && discard_ctl->prev_discard) { 404 u64 bps_limit = ((u64)kbps_limit) * SZ_1K; 405 u64 bps_delay = div64_u64(discard_ctl->prev_discard * 406 NSEC_PER_SEC, bps_limit); 407 408 delay = max(delay, bps_delay); 409 } 410 411 /* 412 * This timeout is to hopefully prevent immediate discarding 413 * in a recently allocated block group. 414 */ 415 if (now < block_group->discard_eligible_time) { 416 u64 bg_timeout = block_group->discard_eligible_time - now; 417 418 delay = max(delay, bg_timeout); 419 } 420 421 if (override && discard_ctl->prev_discard) { 422 u64 elapsed = now - discard_ctl->prev_discard_time; 423 424 if (delay > elapsed) 425 delay -= elapsed; 426 else 427 delay = 0; 428 } 429 430 mod_delayed_work(discard_ctl->discard_workers, 431 &discard_ctl->work, nsecs_to_jiffies(delay)); 432 } 433 } 434 435 /* 436 * Responsible for scheduling the discard work. 437 * 438 * @discard_ctl: discard control 439 * @override: override the current timer 440 * 441 * Discards are issued by a delayed workqueue item. @override is used to 442 * update the current delay as the baseline delay interval is reevaluated on 443 * transaction commit. This is also maxed with any other rate limit. 444 */ 445 void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl, 446 bool override) 447 { 448 const u64 now = ktime_get_ns(); 449 450 spin_lock(&discard_ctl->lock); 451 __btrfs_discard_schedule_work(discard_ctl, now, override); 452 spin_unlock(&discard_ctl->lock); 453 } 454 455 /* 456 * Determine next step of a block_group. 457 * 458 * @discard_ctl: discard control 459 * @block_group: block_group of interest 460 * 461 * Determine the next step for a block group after it's finished going through 462 * a pass on a discard list. If it is unused and fully trimmed, we can mark it 463 * unused and send it to the unused_bgs path. Otherwise, pass it onto the 464 * appropriate filter list or let it fall off. 465 */ 466 static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl, 467 struct btrfs_block_group *block_group) 468 { 469 remove_from_discard_list(discard_ctl, block_group); 470 471 if (block_group->used == 0) { 472 if (btrfs_is_free_space_trimmed(block_group)) 473 btrfs_mark_bg_unused(block_group); 474 else 475 add_to_discard_unused_list(discard_ctl, block_group); 476 } else { 477 btrfs_update_discard_index(discard_ctl, block_group); 478 } 479 } 480 481 /* 482 * Discard work queue callback 483 * 484 * @work: work 485 * 486 * Find the next block_group to start discarding and then discard a single 487 * region. It does this in a two-pass fashion: first extents and second 488 * bitmaps. Completely discarded block groups are sent to the unused_bgs path. 489 */ 490 static void btrfs_discard_workfn(struct work_struct *work) 491 { 492 struct btrfs_discard_ctl *discard_ctl; 493 struct btrfs_block_group *block_group; 494 enum btrfs_discard_state discard_state; 495 int discard_index = 0; 496 u64 trimmed = 0; 497 u64 minlen = 0; 498 u64 now = ktime_get_ns(); 499 500 discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work); 501 502 block_group = peek_discard_list(discard_ctl, &discard_state, 503 &discard_index, now); 504 if (!block_group) 505 return; 506 if (!btrfs_run_discard_work(discard_ctl)) { 507 spin_lock(&discard_ctl->lock); 508 btrfs_put_block_group(block_group); 509 discard_ctl->block_group = NULL; 510 spin_unlock(&discard_ctl->lock); 511 return; 512 } 513 if (now < block_group->discard_eligible_time) { 514 spin_lock(&discard_ctl->lock); 515 btrfs_put_block_group(block_group); 516 discard_ctl->block_group = NULL; 517 spin_unlock(&discard_ctl->lock); 518 btrfs_discard_schedule_work(discard_ctl, false); 519 return; 520 } 521 522 /* Perform discarding */ 523 minlen = discard_minlen[discard_index]; 524 525 if (discard_state == BTRFS_DISCARD_BITMAPS) { 526 u64 maxlen = 0; 527 528 /* 529 * Use the previous levels minimum discard length as the max 530 * length filter. In the case something is added to make a 531 * region go beyond the max filter, the entire bitmap is set 532 * back to BTRFS_TRIM_STATE_UNTRIMMED. 533 */ 534 if (discard_index != BTRFS_DISCARD_INDEX_UNUSED) 535 maxlen = discard_minlen[discard_index - 1]; 536 537 btrfs_trim_block_group_bitmaps(block_group, &trimmed, 538 block_group->discard_cursor, 539 btrfs_block_group_end(block_group), 540 minlen, maxlen, true); 541 discard_ctl->discard_bitmap_bytes += trimmed; 542 } else { 543 btrfs_trim_block_group_extents(block_group, &trimmed, 544 block_group->discard_cursor, 545 btrfs_block_group_end(block_group), 546 minlen, true); 547 discard_ctl->discard_extent_bytes += trimmed; 548 } 549 550 /* Determine next steps for a block_group */ 551 if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) { 552 if (discard_state == BTRFS_DISCARD_BITMAPS) { 553 btrfs_finish_discard_pass(discard_ctl, block_group); 554 } else { 555 block_group->discard_cursor = block_group->start; 556 spin_lock(&discard_ctl->lock); 557 if (block_group->discard_state != 558 BTRFS_DISCARD_RESET_CURSOR) 559 block_group->discard_state = 560 BTRFS_DISCARD_BITMAPS; 561 spin_unlock(&discard_ctl->lock); 562 } 563 } 564 565 now = ktime_get_ns(); 566 spin_lock(&discard_ctl->lock); 567 discard_ctl->prev_discard = trimmed; 568 discard_ctl->prev_discard_time = now; 569 btrfs_put_block_group(block_group); 570 discard_ctl->block_group = NULL; 571 __btrfs_discard_schedule_work(discard_ctl, now, false); 572 spin_unlock(&discard_ctl->lock); 573 } 574 575 /* 576 * Recalculate the base delay. 577 * 578 * @discard_ctl: discard control 579 * 580 * Recalculate the base delay which is based off the total number of 581 * discardable_extents. Clamp this between the lower_limit (iops_limit or 1ms) 582 * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC). 583 */ 584 void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl) 585 { 586 s32 discardable_extents; 587 s64 discardable_bytes; 588 u32 iops_limit; 589 unsigned long min_delay = BTRFS_DISCARD_MIN_DELAY_MSEC; 590 unsigned long delay; 591 592 discardable_extents = atomic_read(&discard_ctl->discardable_extents); 593 if (!discardable_extents) 594 return; 595 596 spin_lock(&discard_ctl->lock); 597 598 /* 599 * The following is to fix a potential -1 discrepancy that we're not 600 * sure how to reproduce. But given that this is the only place that 601 * utilizes these numbers and this is only called by from 602 * btrfs_finish_extent_commit() which is synchronized, we can correct 603 * here. 604 */ 605 if (discardable_extents < 0) 606 atomic_add(-discardable_extents, 607 &discard_ctl->discardable_extents); 608 609 discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes); 610 if (discardable_bytes < 0) 611 atomic64_add(-discardable_bytes, 612 &discard_ctl->discardable_bytes); 613 614 if (discardable_extents <= 0) { 615 spin_unlock(&discard_ctl->lock); 616 return; 617 } 618 619 iops_limit = READ_ONCE(discard_ctl->iops_limit); 620 621 if (iops_limit) { 622 delay = MSEC_PER_SEC / iops_limit; 623 } else { 624 /* 625 * Unset iops_limit means go as fast as possible, so allow a 626 * delay of 0. 627 */ 628 delay = 0; 629 min_delay = 0; 630 } 631 632 delay = clamp(delay, min_delay, BTRFS_DISCARD_MAX_DELAY_MSEC); 633 discard_ctl->delay_ms = delay; 634 635 spin_unlock(&discard_ctl->lock); 636 } 637 638 /* 639 * Propagate discard counters. 640 * 641 * @block_group: block_group of interest 642 * 643 * Propagate deltas of counters up to the discard_ctl. It maintains a current 644 * counter and a previous counter passing the delta up to the global stat. 645 * Then the current counter value becomes the previous counter value. 646 */ 647 void btrfs_discard_update_discardable(struct btrfs_block_group *block_group) 648 { 649 struct btrfs_free_space_ctl *ctl; 650 struct btrfs_discard_ctl *discard_ctl; 651 s32 extents_delta; 652 s64 bytes_delta; 653 654 if (!block_group || 655 !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) || 656 !btrfs_is_block_group_data_only(block_group)) 657 return; 658 659 ctl = block_group->free_space_ctl; 660 discard_ctl = &block_group->fs_info->discard_ctl; 661 662 lockdep_assert_held(&ctl->tree_lock); 663 extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] - 664 ctl->discardable_extents[BTRFS_STAT_PREV]; 665 if (extents_delta) { 666 atomic_add(extents_delta, &discard_ctl->discardable_extents); 667 ctl->discardable_extents[BTRFS_STAT_PREV] = 668 ctl->discardable_extents[BTRFS_STAT_CURR]; 669 } 670 671 bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] - 672 ctl->discardable_bytes[BTRFS_STAT_PREV]; 673 if (bytes_delta) { 674 atomic64_add(bytes_delta, &discard_ctl->discardable_bytes); 675 ctl->discardable_bytes[BTRFS_STAT_PREV] = 676 ctl->discardable_bytes[BTRFS_STAT_CURR]; 677 } 678 } 679 680 /* 681 * Punt unused_bgs list to discard lists. 682 * 683 * @fs_info: fs_info of interest 684 * 685 * The unused_bgs list needs to be punted to the discard lists because the 686 * order of operations is changed. In the normal synchronous discard path, the 687 * block groups are trimmed via a single large trim in transaction commit. This 688 * is ultimately what we are trying to avoid with asynchronous discard. Thus, 689 * it must be done before going down the unused_bgs path. 690 */ 691 void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info) 692 { 693 struct btrfs_block_group *block_group, *next; 694 695 spin_lock(&fs_info->unused_bgs_lock); 696 /* We enabled async discard, so punt all to the queue */ 697 list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs, 698 bg_list) { 699 list_del_init(&block_group->bg_list); 700 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group); 701 /* 702 * This put is for the get done by btrfs_mark_bg_unused. 703 * Queueing discard incremented it for discard's reference. 704 */ 705 btrfs_put_block_group(block_group); 706 } 707 spin_unlock(&fs_info->unused_bgs_lock); 708 } 709 710 /* 711 * Purge discard lists. 712 * 713 * @discard_ctl: discard control 714 * 715 * If we are disabling async discard, we may have intercepted block groups that 716 * are completely free and ready for the unused_bgs path. As discarding will 717 * now happen in transaction commit or not at all, we can safely mark the 718 * corresponding block groups as unused and they will be sent on their merry 719 * way to the unused_bgs list. 720 */ 721 static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl) 722 { 723 struct btrfs_block_group *block_group, *next; 724 int i; 725 726 spin_lock(&discard_ctl->lock); 727 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) { 728 list_for_each_entry_safe(block_group, next, 729 &discard_ctl->discard_list[i], 730 discard_list) { 731 list_del_init(&block_group->discard_list); 732 spin_unlock(&discard_ctl->lock); 733 if (block_group->used == 0) 734 btrfs_mark_bg_unused(block_group); 735 spin_lock(&discard_ctl->lock); 736 btrfs_put_block_group(block_group); 737 } 738 } 739 spin_unlock(&discard_ctl->lock); 740 } 741 742 void btrfs_discard_resume(struct btrfs_fs_info *fs_info) 743 { 744 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 745 btrfs_discard_cleanup(fs_info); 746 return; 747 } 748 749 btrfs_discard_punt_unused_bgs_list(fs_info); 750 751 set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags); 752 } 753 754 void btrfs_discard_stop(struct btrfs_fs_info *fs_info) 755 { 756 clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags); 757 } 758 759 void btrfs_discard_init(struct btrfs_fs_info *fs_info) 760 { 761 struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl; 762 int i; 763 764 spin_lock_init(&discard_ctl->lock); 765 INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn); 766 767 for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) 768 INIT_LIST_HEAD(&discard_ctl->discard_list[i]); 769 770 discard_ctl->prev_discard = 0; 771 discard_ctl->prev_discard_time = 0; 772 atomic_set(&discard_ctl->discardable_extents, 0); 773 atomic64_set(&discard_ctl->discardable_bytes, 0); 774 discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE; 775 discard_ctl->delay_ms = BTRFS_DISCARD_MAX_DELAY_MSEC; 776 discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS; 777 discard_ctl->kbps_limit = 0; 778 discard_ctl->discard_extent_bytes = 0; 779 discard_ctl->discard_bitmap_bytes = 0; 780 atomic64_set(&discard_ctl->discard_bytes_saved, 0); 781 } 782 783 void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info) 784 { 785 btrfs_discard_stop(fs_info); 786 cancel_delayed_work_sync(&fs_info->discard_ctl.work); 787 btrfs_discard_purge_list(&fs_info->discard_ctl); 788 } 789