xref: /linux/fs/btrfs/discard.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/jiffies.h>
4 #include <linux/kernel.h>
5 #include <linux/ktime.h>
6 #include <linux/list.h>
7 #include <linux/math64.h>
8 #include <linux/sizes.h>
9 #include <linux/workqueue.h>
10 #include "ctree.h"
11 #include "block-group.h"
12 #include "discard.h"
13 #include "free-space-cache.h"
14 #include "fs.h"
15 
16 /*
17  * This contains the logic to handle async discard.
18  *
19  * Async discard manages trimming of free space outside of transaction commit.
20  * Discarding is done by managing the block_groups on a LRU list based on free
21  * space recency.  Two passes are used to first prioritize discarding extents
22  * and then allow for trimming in the bitmap the best opportunity to coalesce.
23  * The block_groups are maintained on multiple lists to allow for multiple
24  * passes with different discard filter requirements.  A delayed work item is
25  * used to manage discarding with timeout determined by a max of the delay
26  * incurred by the iops rate limit, the byte rate limit, and the max delay of
27  * BTRFS_DISCARD_MAX_DELAY.
28  *
29  * Note, this only keeps track of block_groups that are explicitly for data.
30  * Mixed block_groups are not supported.
31  *
32  * The first list is special to manage discarding of fully free block groups.
33  * This is necessary because we issue a final trim for a full free block group
34  * after forgetting it.  When a block group becomes unused, instead of directly
35  * being added to the unused_bgs list, we add it to this first list.  Then
36  * from there, if it becomes fully discarded, we place it onto the unused_bgs
37  * list.
38  *
39  * The in-memory free space cache serves as the backing state for discard.
40  * Consequently this means there is no persistence.  We opt to load all the
41  * block groups in as not discarded, so the mount case degenerates to the
42  * crashing case.
43  *
44  * As the free space cache uses bitmaps, there exists a tradeoff between
45  * ease/efficiency for find_free_extent() and the accuracy of discard state.
46  * Here we opt to let untrimmed regions merge with everything while only letting
47  * trimmed regions merge with other trimmed regions.  This can cause
48  * overtrimming, but the coalescing benefit seems to be worth it.  Additionally,
49  * bitmap state is tracked as a whole.  If we're able to fully trim a bitmap,
50  * the trimmed flag is set on the bitmap.  Otherwise, if an allocation comes in,
51  * this resets the state and we will retry trimming the whole bitmap.  This is a
52  * tradeoff between discard state accuracy and the cost of accounting.
53  */
54 
55 /* This is an initial delay to give some chance for block reuse */
56 #define BTRFS_DISCARD_DELAY		(120ULL * NSEC_PER_SEC)
57 #define BTRFS_DISCARD_UNUSED_DELAY	(10ULL * NSEC_PER_SEC)
58 
59 #define BTRFS_DISCARD_MIN_DELAY_MSEC	(1UL)
60 #define BTRFS_DISCARD_MAX_DELAY_MSEC	(1000UL)
61 #define BTRFS_DISCARD_MAX_IOPS		(1000U)
62 
63 /* Monotonically decreasing minimum length filters after index 0 */
64 static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = {
65 	0,
66 	BTRFS_ASYNC_DISCARD_MAX_FILTER,
67 	BTRFS_ASYNC_DISCARD_MIN_FILTER
68 };
69 
70 static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl,
71 					  const struct btrfs_block_group *block_group)
72 {
73 	return &discard_ctl->discard_list[block_group->discard_index];
74 }
75 
76 /*
77  * Determine if async discard should be running.
78  *
79  * @discard_ctl: discard control
80  *
81  * Check if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set.
82  */
83 static bool btrfs_run_discard_work(const struct btrfs_discard_ctl *discard_ctl)
84 {
85 	struct btrfs_fs_info *fs_info = container_of(discard_ctl,
86 						     struct btrfs_fs_info,
87 						     discard_ctl);
88 
89 	return (!(fs_info->sb->s_flags & SB_RDONLY) &&
90 		test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags));
91 }
92 
93 static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
94 				  struct btrfs_block_group *block_group)
95 {
96 	lockdep_assert_held(&discard_ctl->lock);
97 	if (!btrfs_run_discard_work(discard_ctl))
98 		return;
99 
100 	if (list_empty(&block_group->discard_list) ||
101 	    block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) {
102 		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED)
103 			block_group->discard_index = BTRFS_DISCARD_INDEX_START;
104 		block_group->discard_eligible_time = (ktime_get_ns() +
105 						      BTRFS_DISCARD_DELAY);
106 		block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
107 	}
108 	if (list_empty(&block_group->discard_list))
109 		btrfs_get_block_group(block_group);
110 
111 	list_move_tail(&block_group->discard_list,
112 		       get_discard_list(discard_ctl, block_group));
113 }
114 
115 static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
116 				struct btrfs_block_group *block_group)
117 {
118 	if (!btrfs_is_block_group_data_only(block_group))
119 		return;
120 
121 	spin_lock(&discard_ctl->lock);
122 	__add_to_discard_list(discard_ctl, block_group);
123 	spin_unlock(&discard_ctl->lock);
124 }
125 
126 static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl,
127 				       struct btrfs_block_group *block_group)
128 {
129 	bool queued;
130 
131 	spin_lock(&discard_ctl->lock);
132 
133 	queued = !list_empty(&block_group->discard_list);
134 
135 	if (!btrfs_run_discard_work(discard_ctl)) {
136 		spin_unlock(&discard_ctl->lock);
137 		return;
138 	}
139 
140 	list_del_init(&block_group->discard_list);
141 
142 	block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
143 	block_group->discard_eligible_time = (ktime_get_ns() +
144 					      BTRFS_DISCARD_UNUSED_DELAY);
145 	block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
146 	if (!queued)
147 		btrfs_get_block_group(block_group);
148 	list_add_tail(&block_group->discard_list,
149 		      &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]);
150 
151 	spin_unlock(&discard_ctl->lock);
152 }
153 
154 static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl,
155 				     struct btrfs_block_group *block_group)
156 {
157 	bool running = false;
158 	bool queued = false;
159 
160 	spin_lock(&discard_ctl->lock);
161 
162 	if (block_group == discard_ctl->block_group) {
163 		running = true;
164 		discard_ctl->block_group = NULL;
165 	}
166 
167 	block_group->discard_eligible_time = 0;
168 	queued = !list_empty(&block_group->discard_list);
169 	list_del_init(&block_group->discard_list);
170 	/*
171 	 * If the block group is currently running in the discard workfn, we
172 	 * don't want to deref it, since it's still being used by the workfn.
173 	 * The workfn will notice this case and deref the block group when it is
174 	 * finished.
175 	 */
176 	if (queued && !running)
177 		btrfs_put_block_group(block_group);
178 
179 	spin_unlock(&discard_ctl->lock);
180 
181 	return running;
182 }
183 
184 /*
185  * Find block_group that's up next for discarding.
186  *
187  * @discard_ctl:  discard control
188  * @now:          current time
189  *
190  * Iterate over the discard lists to find the next block_group up for
191  * discarding checking the discard_eligible_time of block_group.
192  */
193 static struct btrfs_block_group *find_next_block_group(
194 					struct btrfs_discard_ctl *discard_ctl,
195 					u64 now)
196 {
197 	struct btrfs_block_group *ret_block_group = NULL, *block_group;
198 	int i;
199 
200 	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
201 		struct list_head *discard_list = &discard_ctl->discard_list[i];
202 
203 		if (!list_empty(discard_list)) {
204 			block_group = list_first_entry(discard_list,
205 						       struct btrfs_block_group,
206 						       discard_list);
207 
208 			if (!ret_block_group)
209 				ret_block_group = block_group;
210 
211 			if (ret_block_group->discard_eligible_time < now)
212 				break;
213 
214 			if (ret_block_group->discard_eligible_time >
215 			    block_group->discard_eligible_time)
216 				ret_block_group = block_group;
217 		}
218 	}
219 
220 	return ret_block_group;
221 }
222 
223 /*
224  * Look up next block group and set it for use.
225  *
226  * @discard_ctl:   discard control
227  * @discard_state: the discard_state of the block_group after state management
228  * @discard_index: the discard_index of the block_group after state management
229  * @now:           time when discard was invoked, in ns
230  *
231  * Wrap find_next_block_group() and set the block_group to be in use.
232  * @discard_state's control flow is managed here.  Variables related to
233  * @discard_state are reset here as needed (eg. @discard_cursor).  @discard_state
234  * and @discard_index are remembered as it may change while we're discarding,
235  * but we want the discard to execute in the context determined here.
236  */
237 static struct btrfs_block_group *peek_discard_list(
238 					struct btrfs_discard_ctl *discard_ctl,
239 					enum btrfs_discard_state *discard_state,
240 					int *discard_index, u64 now)
241 {
242 	struct btrfs_block_group *block_group;
243 
244 	spin_lock(&discard_ctl->lock);
245 again:
246 	block_group = find_next_block_group(discard_ctl, now);
247 
248 	if (block_group && now >= block_group->discard_eligible_time) {
249 		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED &&
250 		    block_group->used != 0) {
251 			if (btrfs_is_block_group_data_only(block_group)) {
252 				__add_to_discard_list(discard_ctl, block_group);
253 			} else {
254 				list_del_init(&block_group->discard_list);
255 				btrfs_put_block_group(block_group);
256 			}
257 			goto again;
258 		}
259 		if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) {
260 			block_group->discard_cursor = block_group->start;
261 			block_group->discard_state = BTRFS_DISCARD_EXTENTS;
262 		}
263 		discard_ctl->block_group = block_group;
264 	}
265 	if (block_group) {
266 		*discard_state = block_group->discard_state;
267 		*discard_index = block_group->discard_index;
268 	}
269 	spin_unlock(&discard_ctl->lock);
270 
271 	return block_group;
272 }
273 
274 /*
275  * Update a block group's filters.
276  *
277  * @block_group:  block group of interest
278  * @bytes:        recently freed region size after coalescing
279  *
280  * Async discard maintains multiple lists with progressively smaller filters
281  * to prioritize discarding based on size.  Should a free space that matches
282  * a larger filter be returned to the free_space_cache, prioritize that discard
283  * by moving @block_group to the proper filter.
284  */
285 void btrfs_discard_check_filter(struct btrfs_block_group *block_group,
286 				u64 bytes)
287 {
288 	struct btrfs_discard_ctl *discard_ctl;
289 
290 	if (!block_group ||
291 	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
292 		return;
293 
294 	discard_ctl = &block_group->fs_info->discard_ctl;
295 
296 	if (block_group->discard_index > BTRFS_DISCARD_INDEX_START &&
297 	    bytes >= discard_minlen[block_group->discard_index - 1]) {
298 		int i;
299 
300 		remove_from_discard_list(discard_ctl, block_group);
301 
302 		for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS;
303 		     i++) {
304 			if (bytes >= discard_minlen[i]) {
305 				block_group->discard_index = i;
306 				add_to_discard_list(discard_ctl, block_group);
307 				break;
308 			}
309 		}
310 	}
311 }
312 
313 /*
314  * Move a block group along the discard lists.
315  *
316  * @discard_ctl: discard control
317  * @block_group: block_group of interest
318  *
319  * Increment @block_group's discard_index.  If it falls of the list, let it be.
320  * Otherwise add it back to the appropriate list.
321  */
322 static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl,
323 				       struct btrfs_block_group *block_group)
324 {
325 	block_group->discard_index++;
326 	if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) {
327 		block_group->discard_index = 1;
328 		return;
329 	}
330 
331 	add_to_discard_list(discard_ctl, block_group);
332 }
333 
334 /*
335  * Remove a block_group from the discard lists.
336  *
337  * @discard_ctl: discard control
338  * @block_group: block_group of interest
339  *
340  * Remove @block_group from the discard lists.  If necessary, wait on the
341  * current work and then reschedule the delayed work.
342  */
343 void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl,
344 			       struct btrfs_block_group *block_group)
345 {
346 	if (remove_from_discard_list(discard_ctl, block_group)) {
347 		cancel_delayed_work_sync(&discard_ctl->work);
348 		btrfs_discard_schedule_work(discard_ctl, true);
349 	}
350 }
351 
352 /*
353  * Handles queuing the block_groups.
354  *
355  * @discard_ctl: discard control
356  * @block_group: block_group of interest
357  *
358  * Maintain the LRU order of the discard lists.
359  */
360 void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl,
361 			      struct btrfs_block_group *block_group)
362 {
363 	if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
364 		return;
365 
366 	if (block_group->used == 0)
367 		add_to_discard_unused_list(discard_ctl, block_group);
368 	else
369 		add_to_discard_list(discard_ctl, block_group);
370 
371 	if (!delayed_work_pending(&discard_ctl->work))
372 		btrfs_discard_schedule_work(discard_ctl, false);
373 }
374 
375 static void __btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
376 					  u64 now, bool override)
377 {
378 	struct btrfs_block_group *block_group;
379 
380 	if (!btrfs_run_discard_work(discard_ctl))
381 		return;
382 	if (!override && delayed_work_pending(&discard_ctl->work))
383 		return;
384 
385 	block_group = find_next_block_group(discard_ctl, now);
386 	if (block_group) {
387 		u64 delay = discard_ctl->delay_ms * NSEC_PER_MSEC;
388 		u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit);
389 
390 		/*
391 		 * A single delayed workqueue item is responsible for
392 		 * discarding, so we can manage the bytes rate limit by keeping
393 		 * track of the previous discard.
394 		 */
395 		if (kbps_limit && discard_ctl->prev_discard) {
396 			u64 bps_limit = ((u64)kbps_limit) * SZ_1K;
397 			u64 bps_delay = div64_u64(discard_ctl->prev_discard *
398 						  NSEC_PER_SEC, bps_limit);
399 
400 			delay = max(delay, bps_delay);
401 		}
402 
403 		/*
404 		 * This timeout is to hopefully prevent immediate discarding
405 		 * in a recently allocated block group.
406 		 */
407 		if (now < block_group->discard_eligible_time) {
408 			u64 bg_timeout = block_group->discard_eligible_time - now;
409 
410 			delay = max(delay, bg_timeout);
411 		}
412 
413 		if (override && discard_ctl->prev_discard) {
414 			u64 elapsed = now - discard_ctl->prev_discard_time;
415 
416 			if (delay > elapsed)
417 				delay -= elapsed;
418 			else
419 				delay = 0;
420 		}
421 
422 		mod_delayed_work(discard_ctl->discard_workers,
423 				 &discard_ctl->work, nsecs_to_jiffies(delay));
424 	}
425 }
426 
427 /*
428  * Responsible for scheduling the discard work.
429  *
430  * @discard_ctl:  discard control
431  * @override:     override the current timer
432  *
433  * Discards are issued by a delayed workqueue item.  @override is used to
434  * update the current delay as the baseline delay interval is reevaluated on
435  * transaction commit.  This is also maxed with any other rate limit.
436  */
437 void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
438 				 bool override)
439 {
440 	const u64 now = ktime_get_ns();
441 
442 	spin_lock(&discard_ctl->lock);
443 	__btrfs_discard_schedule_work(discard_ctl, now, override);
444 	spin_unlock(&discard_ctl->lock);
445 }
446 
447 /*
448  * Determine next step of a block_group.
449  *
450  * @discard_ctl: discard control
451  * @block_group: block_group of interest
452  *
453  * Determine the next step for a block group after it's finished going through
454  * a pass on a discard list.  If it is unused and fully trimmed, we can mark it
455  * unused and send it to the unused_bgs path.  Otherwise, pass it onto the
456  * appropriate filter list or let it fall off.
457  */
458 static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl,
459 				      struct btrfs_block_group *block_group)
460 {
461 	remove_from_discard_list(discard_ctl, block_group);
462 
463 	if (block_group->used == 0) {
464 		if (btrfs_is_free_space_trimmed(block_group))
465 			btrfs_mark_bg_unused(block_group);
466 		else
467 			add_to_discard_unused_list(discard_ctl, block_group);
468 	} else {
469 		btrfs_update_discard_index(discard_ctl, block_group);
470 	}
471 }
472 
473 /*
474  * Discard work queue callback
475  *
476  * @work: work
477  *
478  * Find the next block_group to start discarding and then discard a single
479  * region.  It does this in a two-pass fashion: first extents and second
480  * bitmaps.  Completely discarded block groups are sent to the unused_bgs path.
481  */
482 static void btrfs_discard_workfn(struct work_struct *work)
483 {
484 	struct btrfs_discard_ctl *discard_ctl;
485 	struct btrfs_block_group *block_group;
486 	enum btrfs_discard_state discard_state;
487 	int discard_index = 0;
488 	u64 trimmed = 0;
489 	u64 minlen = 0;
490 	u64 now = ktime_get_ns();
491 
492 	discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work);
493 
494 	block_group = peek_discard_list(discard_ctl, &discard_state,
495 					&discard_index, now);
496 	if (!block_group || !btrfs_run_discard_work(discard_ctl))
497 		return;
498 	if (now < block_group->discard_eligible_time) {
499 		btrfs_discard_schedule_work(discard_ctl, false);
500 		return;
501 	}
502 
503 	/* Perform discarding */
504 	minlen = discard_minlen[discard_index];
505 
506 	if (discard_state == BTRFS_DISCARD_BITMAPS) {
507 		u64 maxlen = 0;
508 
509 		/*
510 		 * Use the previous levels minimum discard length as the max
511 		 * length filter.  In the case something is added to make a
512 		 * region go beyond the max filter, the entire bitmap is set
513 		 * back to BTRFS_TRIM_STATE_UNTRIMMED.
514 		 */
515 		if (discard_index != BTRFS_DISCARD_INDEX_UNUSED)
516 			maxlen = discard_minlen[discard_index - 1];
517 
518 		btrfs_trim_block_group_bitmaps(block_group, &trimmed,
519 				       block_group->discard_cursor,
520 				       btrfs_block_group_end(block_group),
521 				       minlen, maxlen, true);
522 		discard_ctl->discard_bitmap_bytes += trimmed;
523 	} else {
524 		btrfs_trim_block_group_extents(block_group, &trimmed,
525 				       block_group->discard_cursor,
526 				       btrfs_block_group_end(block_group),
527 				       minlen, true);
528 		discard_ctl->discard_extent_bytes += trimmed;
529 	}
530 
531 	/* Determine next steps for a block_group */
532 	if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) {
533 		if (discard_state == BTRFS_DISCARD_BITMAPS) {
534 			btrfs_finish_discard_pass(discard_ctl, block_group);
535 		} else {
536 			block_group->discard_cursor = block_group->start;
537 			spin_lock(&discard_ctl->lock);
538 			if (block_group->discard_state !=
539 			    BTRFS_DISCARD_RESET_CURSOR)
540 				block_group->discard_state =
541 							BTRFS_DISCARD_BITMAPS;
542 			spin_unlock(&discard_ctl->lock);
543 		}
544 	}
545 
546 	now = ktime_get_ns();
547 	spin_lock(&discard_ctl->lock);
548 	discard_ctl->prev_discard = trimmed;
549 	discard_ctl->prev_discard_time = now;
550 	/*
551 	 * If the block group was removed from the discard list while it was
552 	 * running in this workfn, then we didn't deref it, since this function
553 	 * still owned that reference. But we set the discard_ctl->block_group
554 	 * back to NULL, so we can use that condition to know that now we need
555 	 * to deref the block_group.
556 	 */
557 	if (discard_ctl->block_group == NULL)
558 		btrfs_put_block_group(block_group);
559 	discard_ctl->block_group = NULL;
560 	__btrfs_discard_schedule_work(discard_ctl, now, false);
561 	spin_unlock(&discard_ctl->lock);
562 }
563 
564 /*
565  * Recalculate the base delay.
566  *
567  * @discard_ctl: discard control
568  *
569  * Recalculate the base delay which is based off the total number of
570  * discardable_extents.  Clamp this between the lower_limit (iops_limit or 1ms)
571  * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC).
572  */
573 void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl)
574 {
575 	s32 discardable_extents;
576 	s64 discardable_bytes;
577 	u32 iops_limit;
578 	unsigned long min_delay = BTRFS_DISCARD_MIN_DELAY_MSEC;
579 	unsigned long delay;
580 
581 	discardable_extents = atomic_read(&discard_ctl->discardable_extents);
582 	if (!discardable_extents)
583 		return;
584 
585 	spin_lock(&discard_ctl->lock);
586 
587 	/*
588 	 * The following is to fix a potential -1 discrepancy that we're not
589 	 * sure how to reproduce. But given that this is the only place that
590 	 * utilizes these numbers and this is only called by from
591 	 * btrfs_finish_extent_commit() which is synchronized, we can correct
592 	 * here.
593 	 */
594 	if (discardable_extents < 0)
595 		atomic_add(-discardable_extents,
596 			   &discard_ctl->discardable_extents);
597 
598 	discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes);
599 	if (discardable_bytes < 0)
600 		atomic64_add(-discardable_bytes,
601 			     &discard_ctl->discardable_bytes);
602 
603 	if (discardable_extents <= 0) {
604 		spin_unlock(&discard_ctl->lock);
605 		return;
606 	}
607 
608 	iops_limit = READ_ONCE(discard_ctl->iops_limit);
609 
610 	if (iops_limit) {
611 		delay = MSEC_PER_SEC / iops_limit;
612 	} else {
613 		/*
614 		 * Unset iops_limit means go as fast as possible, so allow a
615 		 * delay of 0.
616 		 */
617 		delay = 0;
618 		min_delay = 0;
619 	}
620 
621 	delay = clamp(delay, min_delay, BTRFS_DISCARD_MAX_DELAY_MSEC);
622 	discard_ctl->delay_ms = delay;
623 
624 	spin_unlock(&discard_ctl->lock);
625 }
626 
627 /*
628  * Propagate discard counters.
629  *
630  * @block_group: block_group of interest
631  *
632  * Propagate deltas of counters up to the discard_ctl.  It maintains a current
633  * counter and a previous counter passing the delta up to the global stat.
634  * Then the current counter value becomes the previous counter value.
635  */
636 void btrfs_discard_update_discardable(struct btrfs_block_group *block_group)
637 {
638 	struct btrfs_free_space_ctl *ctl;
639 	struct btrfs_discard_ctl *discard_ctl;
640 	s32 extents_delta;
641 	s64 bytes_delta;
642 
643 	if (!block_group ||
644 	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) ||
645 	    !btrfs_is_block_group_data_only(block_group))
646 		return;
647 
648 	ctl = block_group->free_space_ctl;
649 	discard_ctl = &block_group->fs_info->discard_ctl;
650 
651 	lockdep_assert_held(&ctl->tree_lock);
652 	extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] -
653 			ctl->discardable_extents[BTRFS_STAT_PREV];
654 	if (extents_delta) {
655 		atomic_add(extents_delta, &discard_ctl->discardable_extents);
656 		ctl->discardable_extents[BTRFS_STAT_PREV] =
657 			ctl->discardable_extents[BTRFS_STAT_CURR];
658 	}
659 
660 	bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] -
661 		      ctl->discardable_bytes[BTRFS_STAT_PREV];
662 	if (bytes_delta) {
663 		atomic64_add(bytes_delta, &discard_ctl->discardable_bytes);
664 		ctl->discardable_bytes[BTRFS_STAT_PREV] =
665 			ctl->discardable_bytes[BTRFS_STAT_CURR];
666 	}
667 }
668 
669 /*
670  * Punt unused_bgs list to discard lists.
671  *
672  * @fs_info: fs_info of interest
673  *
674  * The unused_bgs list needs to be punted to the discard lists because the
675  * order of operations is changed.  In the normal synchronous discard path, the
676  * block groups are trimmed via a single large trim in transaction commit.  This
677  * is ultimately what we are trying to avoid with asynchronous discard.  Thus,
678  * it must be done before going down the unused_bgs path.
679  */
680 void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info)
681 {
682 	struct btrfs_block_group *block_group, *next;
683 
684 	spin_lock(&fs_info->unused_bgs_lock);
685 	/* We enabled async discard, so punt all to the queue */
686 	list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs,
687 				 bg_list) {
688 		list_del_init(&block_group->bg_list);
689 		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
690 		/*
691 		 * This put is for the get done by btrfs_mark_bg_unused.
692 		 * Queueing discard incremented it for discard's reference.
693 		 */
694 		btrfs_put_block_group(block_group);
695 	}
696 	spin_unlock(&fs_info->unused_bgs_lock);
697 }
698 
699 /*
700  * Purge discard lists.
701  *
702  * @discard_ctl: discard control
703  *
704  * If we are disabling async discard, we may have intercepted block groups that
705  * are completely free and ready for the unused_bgs path.  As discarding will
706  * now happen in transaction commit or not at all, we can safely mark the
707  * corresponding block groups as unused and they will be sent on their merry
708  * way to the unused_bgs list.
709  */
710 static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl)
711 {
712 	struct btrfs_block_group *block_group, *next;
713 	int i;
714 
715 	spin_lock(&discard_ctl->lock);
716 	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
717 		list_for_each_entry_safe(block_group, next,
718 					 &discard_ctl->discard_list[i],
719 					 discard_list) {
720 			list_del_init(&block_group->discard_list);
721 			spin_unlock(&discard_ctl->lock);
722 			if (block_group->used == 0)
723 				btrfs_mark_bg_unused(block_group);
724 			spin_lock(&discard_ctl->lock);
725 			btrfs_put_block_group(block_group);
726 		}
727 	}
728 	spin_unlock(&discard_ctl->lock);
729 }
730 
731 void btrfs_discard_resume(struct btrfs_fs_info *fs_info)
732 {
733 	if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
734 		btrfs_discard_cleanup(fs_info);
735 		return;
736 	}
737 
738 	btrfs_discard_punt_unused_bgs_list(fs_info);
739 
740 	set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
741 }
742 
743 void btrfs_discard_stop(struct btrfs_fs_info *fs_info)
744 {
745 	clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
746 }
747 
748 void btrfs_discard_init(struct btrfs_fs_info *fs_info)
749 {
750 	struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl;
751 	int i;
752 
753 	spin_lock_init(&discard_ctl->lock);
754 	INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn);
755 
756 	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++)
757 		INIT_LIST_HEAD(&discard_ctl->discard_list[i]);
758 
759 	discard_ctl->prev_discard = 0;
760 	discard_ctl->prev_discard_time = 0;
761 	atomic_set(&discard_ctl->discardable_extents, 0);
762 	atomic64_set(&discard_ctl->discardable_bytes, 0);
763 	discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE;
764 	discard_ctl->delay_ms = BTRFS_DISCARD_MAX_DELAY_MSEC;
765 	discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS;
766 	discard_ctl->kbps_limit = 0;
767 	discard_ctl->discard_extent_bytes = 0;
768 	discard_ctl->discard_bitmap_bytes = 0;
769 	atomic64_set(&discard_ctl->discard_bytes_saved, 0);
770 }
771 
772 void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info)
773 {
774 	btrfs_discard_stop(fs_info);
775 	cancel_delayed_work_sync(&fs_info->discard_ctl.work);
776 	btrfs_discard_purge_list(&fs_info->discard_ctl);
777 }
778